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A. Introduction 
 
 
A.1. The role of archaea and bacteria in the biogeochemical nitrogen cycle 
 
The element nitrogen (N) is formed during natural nuclear fusion in suns and is one of the most 

abundant elements in the universe. On earth, it constitutes the major portion of the atmosphere 

with 78% by volume. This elemental nitrogen (N2) is very inert despite it is one of the most 

electronegative elements besides noble gases, oxygen and fluorine. The reason for that is the 

very stable intramolecular triple bond between the two nitrogen atoms. 

 

Bound in organic molecules, it appears in the form of nucleic acids, proteins and vitamins and is 

therefore of enormous importance to all organisms. In the human body, it is the most abundant 

element after carbon (C), hydrogen (H) and oxygen (O). On average, it accounts for 6.25% of 

the dry mass of all organisms (Bothe et al., 2007). Thereby, its oxidation state ranges from +5 in 

nitrate (NO3
-) to -3 in ammonia (NH3). 

 

In nature, the conversion of these inorganic compounds is controlled by a reaction cycle called 

the biogeochemical nitrogen cycle (Bothe et al., 2007). Of particular importance for most steps 

of the conversion between these states are archaea and bacteria. For instance, nitrogen fixation 

and anaerobic ammonium oxidation (ANAMMOX) are carried out exclusively by these organ-

isms. The biogeochemical nitrogen cycle is shown in Figure 1. 

 

For a long time, our knowledge of the microbial nitrogen cycle was based on studies from Bei-

jerinck, Winogradsky, Gayon and Dupetit at the end of the 19th century (Beijerinck, 1888; Wi-

nogradsky, 1890; Gayon and Dupetit, 1886). But particularly in the last decade new aspects 

were revealed. 

 



Introduction 

2 

 
Figure 1: The biogeochemical nitrogen cycle. 

 

The first step of the nitrogen cycle (Figure 1) is the nitrogen fixation which is carried out exclu-

sively by archaea and bacteria (Cabello et al., 2004). Thereby, the inert elemental nitrogen is 

fixed and reduced to bioavailable ammonia (NH3). In this state it can be exploited as nitrogen 

source by many organisms of all domains of life (Kneip et al., 2007; Zehr et al., 2000). During 

the nitrification process, ammonia or ammonium (NH4
+) are oxidized via nitrite (NO2

-) to nitrate  

(NO3
-). This two-step process is performed by ammonia-oxidizing archaea (AOA) and bacteria 

(AOB) which oxidize ammonia or ammonium to nitrite - the rate-limiting step - and by nitrite-

oxidizing bacteria (NOB) performing the oxidation of nitrite to nitrate (Könneke et al., 2005; 

Bock and Wagner, 2001). In these two steps, the respective reduced inorganic nitrogen com-

pound serves as electron donor being the major source of energy, and oxygen (O2) serves as 

electron acceptor. In combination with autotrophic fixation of CO2 this lifestyle is called chemo-

lithoautotrophic (Bock and Wagner, 2001). To date, no organism capable of performing ammo-

nia and nitrite oxidation is known. 

 

In the denitrification process, nitrate is reduced to nitrite, nitric oxide (NO) and further via ni-

trous oxide (N2O) to atmospheric nitrogen gas (Hayatsu et al., 2008; Cabello et al., 2004). In 

this stepwise reduction the respective nitrogen compounds serve as electron acceptor under an-

oxic conditions. Thereby, denitrification is assumed to be one of the major sources of the green-

house gases nitric and nitrous oxide that are emitted to the atmosphere (Jetten et al., 2008). 



Introduction 

3 

 

Nitrification and denitrification processes have been known for a long time. Only recently, in 

the year 1999, the process of anaerobic ammonia oxidation (ANAMMOX) was confirmed 

(Strous et al., 1999). This step of the nitrogen cycle had previously been predicted based on en-

ergy calculations (Broda, 1977). Thereby, ammonium is oxidized under anoxic conditions via 

hydrazine (N2H4) using nitrite as electron acceptor. The end product of this energy gaining reac-

tion is elemental nitrogen. All organisms identified to date to be capable of performing this 

process belong to the phylum Planctomycetes (Jetten et al., 2008, Strous et al., 1999). 

 
 

A.2. Nitrifying microorganisms 
 

Ammonia- and nitrite-oxidizing microorganisms often inhabit the same environments. There, 

different strains of ammonia-oxidizing bacteria (AOB), ammonia-oxidizing archaea (AOA) and 

nitrite-oxidizing bacteria (NOB) fill different niches depending on the concentration of ammonia 

and nitrite, respectively (Schramm et al., 1999; Maixner et al., 2006). Besides these compounds 

also physiological claims in relation to temperature, pH, oxygen concentration and salinity are 

influencing the choice of the habitat (Alawi et al., 2007, Santoro et al., 2008; Nicol et al., 2008; 

Erguder et al., 2009). 

 

A.2.1. Ammonia oxidation 

The aerobic oxidation of ammonia to nitrite by AOB is a two-step process with the intermediate 

compound hydroxylamine (NH2OH). The chemical reactions of this two-step oxidation are 

shown in Figure 2. Thereby, the oxidation of ammonia to hydroxylamine is catalyzed by the 

enzyme ammonia monooxygenase (AMO). The oxidation of hydroxylamine to nitrite is carried 

out by the enzyme hydroxylamine oxidoreductase (HAO) (Olson and Hooper, 1983; Bock and 

Wagner, 2006). 

 

 AMO 

NH3 + O2 + 2H+ + 2e-   NH2OH + H2O 

 

       HAO 

    NH2OH + H2O                  HNO2 + 4H+ + 4e- 

Figure 2: Chemical reactions in biological 
ammonia-oxidation. 
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A.2.1.1. Ammonia-oxidizing bacteria (AOB) 

Until the year 2005, it was believed that the oxidation of ammonia to nitrite by autotrophic mi-

crobes is exclusively performed by aerobic bacteria, the so-called ammonia-oxidizing bacteria 

(AOB) (Jetten et al., 2008). All yet known genera of AOB (Nitrosomonas, Nitrosococcus, Ni-

trosospira, Nitrosovibrio and Nitrosolobus) - characterized by the prefix “Nitroso-“ - are aero-

bic chemolithoautotrophic beta- and gammaproteobacteria (Purkhold et al., 2000; Bock and 

Wagner, 2006; Bock et al., 1991). A common property of all AOB yet known have is their slow 

growth rate. For example, the maximum growth rate for Nitrosomonas in laboratory experi-

ments was 1.7 d-1 (Bock et al., 1990; Bock and Wagner, 2006). 

 

A.2.1.2. Ammonia-oxidizing archaea (AOA) 

With the isolation of the archaeon “Candidatus Nitrosopumilus maritimus” it was shown that 

aerobic ammonia oxidation is not exclusively performed by bacteria (Könneke et al., 2005). 

AOA grow chemolithoautotrophically and oxidize ammonia to nitrite. Since this finding, many 

environments have been screened for the presence of AOA by detecting the alpha-subunit of the 

putative archaeal ammonia monooxygenase gene (amo) amoA. The results of these studies sug-

gest that AOA are of enormous importance in the biogeochemical nitrogen cycle since the puta-

tive archaeal amo genes were found to be more abundant than bacterial amo genes in many ma-

rine and terrestrial environments (Francis et al., 2005; Leininger et al., 2006; Zhang et al., 

2008). A newly-proposed phylum of the archaea, namely Thaumarchaeota, contains species 

capable of living chemolithoautotrophically by oxidizing ammonia. Cultured representatives are 

the four species Nitrosopumilus maritimius, Crenarchaeum symbiosum, Nitrososphaera garge-

sis and Nitrososphaera viennensis (Brochier-Armanet et al., 2008; Spang et al., 2010; Tourna et 

al., 2011). 

 

A.2.2. Nitrite oxidation 

The oxidation of nitrite to nitrate is catalyzed by the enzyme nitrite oxidoreductase (Nxr). This 

enzyme was shown to also be capable of performing the reverse step, the reduction of nitrate to 

nitrite (Bock and Wagner, 2006; Sundermeyer-Klinger et al., 1984). The chemical reactions for 

the  oxidation of nitrite are cited in Figure 3. 
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         NO2
- + H2O                 NO3

- + 2H+ + 2e- 

2H+ + 2e- + ½ O2                 H2O 

 

Figure 3: Chemical reactions in biolog-
ical nitrite-oxidation catalyzed by the 
nitrite oxidoreductase (Nxr). 

 

 

A.2.2.1. Nitrite oxidizing bacteria (NOB) 

Nitrite oxidizing bacteria (NOB) have a chemolithoautotrophic lifestyle. Thereby, they gain en-

ergy by oxidizing the respective reduced nitrogen compound by using O2 as electron-acceptor. 

Carbon for the assimilation of organic compounds is provided by fixed CO2. In their name all 

NOB include the prefix ”Nitro-”. So far, organisms belonging to only a handful of genera are 

capable of performing nitrite oxidation. Their phylogenetic affiliation however is diverse. They 

belong to different subclasses of the phylum Proteobacteria as well as to the phyla Nitrospirae 

and Chloroflexi. These known genera are namely Nitrobacter, Nitrococcus, Nitrospina, Nitro-

toga, Nitrolancetus (Teske et al., 1994; Alawi et al., 2007; Sorokin et al., unpublished) and Ni-

trospira (Ehrich et al., 1995). All known NOB are highly fastidious concerning their demands 

on the environment and grow very slowly (Alawi et al., 2007). 

 
 

A.3. The genus Nitrospira 
 

The first member of this genus belonging to the phylum Nitrospirae was described in the year 

1986 with Nitrospira marina (Watson et al., 1986). To date, only four species of this genus, 

namely Nitrospira marina, Nitrospira moscoviensis, “Candidatus Nitrospira bockiana” and very 

recently Nitrospira calida could be cultivated in pure culture (Watson et al., 1986; Ehrich et al., 

1995; Lebedeva et al., 2008). One further species affiliated to this genus - namely “Candidatus 

Nitrospira defluvii” (Ca. N. defluvii) - was isolated from activated sludge and is highly enriched 

up to 90% (Spieck et al., 2006). One reason for the low number of cultivated members of this 

genus lies in the difficulties of cultivation. These are their very slow growth on the one hand and 

for such members growing in colonies the difficulty to separate Nitrospira cells from other NOB 

and heterotrophic contaminants on the other hand (Spieck et al., 2006, Lebedeva et al., 2008). 

For a long time, little was known about the diversity and environmental distribution of this ge-
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nus due to these difficulties in cultivation. A lot of new information concerning the genus Nitro-

spira was revealed with the rise of cultivation-independent molecular methods including the 

“rRNA approach” (Amann et al., 1995). Members of this genus could be detected in a variety of 

natural habitats as well as in activated sludge and biofilm samples (Daims et al., 2001, Holmes 

et al., 2001, Hentschel et al., 2002). Based on these data the genus Nitrospira currently is subdi-

vided into six sublineages. The affiliation to a sublineage is based on at least 94.9% sequence 

identity of two 16S rRNA sequences. The 16S rRNA sequence-similarity of members of differ-

ent sublineages always has to be below 94% (Daims et al., 2001a). Table 1 shows a list of the 

six sublineages plus some additional information. 

 
 

Table 1: Known sublineages of the genus Nitrospira. 

Sublineage Isolate or enrichment Occurrence Reference(s) 

I Ca. N. defluvii Nitrifying sewage treatment systems Spieck et al., 2006 

II Nitrospira moscoviensis 
Wastewater treatment plants (WWTPs), soils, 
rhizosphere samples, freshwater habitats, drinking 
water distribution systems, groundwater 

Ehrich et al., 1995 

III 16S rRNA clones Nullarbor cave system (Australia) Holmes et al., 2001 

IV Nitrospira marina Halophilic and marine habitats - planktonic as 
well as sediments, symbionts of marine sponges 

Watson et al., 1986, 
Hentschel et al., 2002 

V “Ca. Nitrospira bockiana” Urban heating system of Moscow Lebedeva et al., 2008 

VI Nitrospira calida Garga hot springs Lebedeva et al., 2011 

 

It was shown that members of Nitrospira sublineage I are of great importance in wastewater 

treatment systems since they usually account for 1 to 20% of all detectable bacteria (Daims et 

al., 2001; Juretschko et al., 1998; Okabe et al., 1999; Müller, 2008). Besides this sublineage, 

also members of sublineage II of the genus Nitrospira are of great importance in wastewater 

treatment plants (WWTPs) (Maixner et al., 2006; Müller, 2008). 

 

Besides the classification of the genus Nitrospira in sublineages, a recent study revealed a high 

microdiversity within this genus (Dorninger et al., unpublished). This refers especially to sub-

lineage II of the genus Nitrospira and was uncovered by phylogenetic analysis of Nitrospira 16S 

rRNA gene sequences retrieved from the WWTP of the University of Veterinary Medicine 

Vienna (Vetmed) (Figure 4). Thereby, the co-occurrence of three subpopulations of Nitrospira 

sublineage II (framed red in Figure 4) could be demonstrated by the use of FISH probes specific 

for each cluster. The abundances of these clusters were analyzed in a semi-quantitative way in 

samples taken during a six-year period. The obtained results of this study are shown in Table 2. 
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A.3.1. Nitrospira in wastewater treatment plants (WWTPs) 

Before the advent of cultivation-independent methods for the detection of microorganisms in 

environmental samples like the “rRNA approach” (Amann et al., 1995), it was believed that 

species of the genus Nitrobacter are mainly responsible for the oxidation of nitrite to nitrate in 

WWTPs (Coskuner and Curtis, 2002). This assumption was based on studies applying classical 

methods for investigating microbial communities in activated sludge. However, FISH with 

rRNA-targeted probes revealed that uncultured Nitrospira are highly abundant in sewage treat-

ment systems (Müller, 2008; Daims et al., 2001a; Juretschko et al., 1998). The dominance of 

Nitrospira in comparison to Nitrobacter is due to a better adaptation of Nitrospira to the prevail-

ing conditions in WWTPs. 

 

For example, a study with nitrifying biofilms showed that bacteria belonging to the genus Nitro-

spira have a much higher affinity for nitrite compared to cells of the genus Nitrobacter 

(Schramm et al., 1999). Thus, they could be assigned to a K-strategy (Nogueira and Melo, 2006; 

Andrews et al., 1986). Members of the genus Nitrobacter as proposed r-strategists are assumed 

to need higher nitrite-concentrations (Hunik et al., 1993; Prosser, 1989; Andrews et al., 1986). 

Figure 4: Phylogenetic tree of the subpopula-
tions of Nitrospira sublineage II (kindly pro-
vided by Christiane Dorninger (Dorninger et 
al., unpublished). Framed in red boxes are 
those subpopulations (clusters) that were ex-
amined semi-quantitatively using FISH. 

Table 2: Microdiversity in sublineage II 
of the genus Nitrospira in the WWTP of 
the University of Veterinary Medicine 
Vienna (Dorninger et al., unpublished). 

Sampling date 

subpopulation 

Cluster 
2.4 

Cluster 
2.5 

Cluster 
2.2 

2004-03-04 + + ++ 

2004-04-15 ++ +++ ++ 

2004-07-13 + +++ ++ 

2007-05-14 ++ ++ ++ 

2007-06-28 ++ ++ ++ 

2008-11-17 +++ ++ + 

2009-02-03 +++ ++ + 

2009-10-07 +++ + - 

2010-07-02 +++ + + 

+ few colonies detectable 
++ some colonies detectable 
+++ many colonies detectable 
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Differences in the nitrite-affinity between these two genera could also be supported by differ-

ences in the localization and orientation of the putative Nxr enzymes in the cell membrane 

which were extracted from Nitrobacter as well as from Nitrospira moscoviensis (Spieck et al., 

1998). But also a coexistence of these two genera was observed at a certain nitrite-concentration 

(Bartosch et al., 2002). And also within the genus Nitrospira there might be different prefer-

ences of different sublineages with respect to their preferred nitrite concentrations. This was 

shown in a study where two different Nitrospira sublineages were examined in situ. It was hy-

pothesized that sublineage I prefers higher nitrite concentrations compared to sublineage II, an 

assumption based on the distances in which these bacteria occur to AOB (Maixner et al., 2006). 

 

However, not only nitrite is determining the occurrence of Nitrospira in sewage treatment 

plants, since there are many other factors affecting the appearance of organisms in certain habi-

tats. For example, the dissolved oxygen concentration can also be a selecting factor, as it was 

shown in two studies that members of Nitrospira dominated cells of the genus Nitrobacter when 

the dissolved oxygen concentration was low (Downing and Nerenberg 2008, Schramm et al., 

2000). And again, also for different sublineages of the genus Nitrospira differences in terms of 

preferred oxygen concentrations have been observed. It was shown that sublineage I can deal 

with lower dissolved oxygen concentrations than sublineage II either due to a higher oxygen 

affinity or a lower oxygen tolerance of this sublineage (Park and Noguera, 2008). Another factor 

which might affect the growth of NOB in WWTPs is the abundance and composition of organic 

compounds. 

 

A.3.2. Nitrite oxidoreductase (Nxr) - key enzyme for energy generation 

The nitrite oxidorecductase (Nxr) is the key enzyme responsible for the oxidation of nitrite in 

chemolithoautotrophic, nitrite-oxidizing bacteria. This enzyme belongs to the DMSO reductase 

family of molybdopterin-containing enzymes (Lücker et al., 2010). As the name suggests, this 

enzyme is also capable of performing the reverse step, the reduction of nitrate to nitrite, as 

shown for the Nxr of Nitrobacter (Sundermeyer-Klinger et al., 1984). 

 

The Nxr is built up by at least two subunits - the alpha and beta subunit - where the alpha sub-

unit contains the substrate-binding site and the molybdopterin cofactor (Meincke et al., 1992; 

Sundermeyer-Klinger et al., 1984). The beta subunit is assumed to perform tasks in the electron 

transport (Kirstein et al., 1993). Ca. N. defluvii contains two copies of the nxrAB cluster in its 
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genome. The same applies to Nitrobacter winogradskyi also containing two copies of these two 

genes (Starkenburg et al., 2006). Nitrospira moscoviensis, in contrast, encodes three copies of 

the nxrA subunit (Koch, 2009, unpublished). In Ca. N. defluvii, the alpha subunits were shown 

to be similar to 86.6% on amino acid level while the beta subunits are identical to 100% on ami-

no acid level. The difference between the two predicted alpha subunits could be due to differ-

ences in the substrate affinity or specificity. Concerning the expression of these two paralogous 

nxrA genes a former study with biomass from the main WWTP Vienna showed that only the 

nxrA2 gene was expressed (Koch, 2009, unpublished). This was examined using RT-PCR. 

Whether the nxrA1 gene perhaps is expressed under different environmental conditions is not 

known yet.  

 

Besides the alpha and beta subunits, for Ca. N. defluvii there were four candidates for a putative 

gamma subunit found with an amino acid identity between 27 to 33%. The gamma subunit 

could serve as a membrane-anchor for the holoenzyme and channel electrons from the beta sub-

unit to the electron chain as shown for other enzymes of the DMSO reductase family (Lücker et 

al., 2010).  

 

The biochemistry of Nxr was mainly described on the basis of the Nxr of Nitrobacter spp. How-

ever, there are differences in the overall arrangement of this enzyme concerning its localization 

in Nitrospira compared to Nitrobacter. In comparison to Nitrobacter, the Nxr in Nitrospira is 

located on the outer side of the cell membrane reaching into the periplasm and is not located on 

the cytoplasmic side (Spieck et al., 1996 and 1998). In Nitrobacter cells, the oxidation of nitrite 

is performed on the cytoplasmic side, which requires a transport of nitrite into the cytoplasma. 

This leads to an enrichment of nitrate within the cell which has to be removed. For Nitrospira 

moscoviensis it was detected immunocytochemically that the Nxr is located on the periplasmic 

side of the inner cell membrane (Spieck et al., 1998). This is also supposed for Ca. N. defluvii 

since the nxrA1 as well as nxrA2 genes contain a motif for the twin-arginine protein transloca-

tion (Tat) pathway. All putative nxrC-candidates indeed encode a signal peptide for the Sec-

pathway while for the nxrB subunits a “hitchhiker” mechanism is assumed because signal pep-

tides are missing (Lücker et al., 2010). 

 

The proposed perpilasmic orientation of the Nxr of Nitrospira on the basis of biochemical as 

well as genomic data has two advantages for the organism. On the one hand there is no need for 

nitrite and nitrate transporters to import nitrite and remove nitrate from the cell which could ac-
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cumulate and lead to toxification. On the other hand, the release of protons in the periplasm ow-

ing to nitrite oxidation and the concomitant proton-consuming reduction of oxygen in the cytop-

lasm contribute to the membrane potential and should therefore be advantageous to Ca. N. def-

luvii (Lücker et al., 2010). 

 

Electrons from the electron donor nitrite are supposed to be transferred to a cytochrome (cyt.) c 

and further to a terminal cyt. c oxidase (Lücker et al., 2010). The terminal oxidase in Nitrobac-

ter belongs to the aa3 type (Starkenburg et al., 2008). For Ca. N. defluvii indeed no terminal 

oxidase of the a-type is supposed based on genomic data. Instead, four putative “cyt. bd-like 

oxidases“ are encoded that could transfer electrons from cyt. c to oxygen (Lücker et al., 2010).  

 

The regulation of the expression of the two nxrAB clusters seems to be different according to 

genomic data. The nxrA2B2 expression might be regulated by a two-component signaling sys-

tem since the gene upstream of the nxrA2 gene encodes a sigma-54-dependent transcriptional 

regulator with a CheY-like response regulator receiver region. The sigma-54 dependent tran-

scriptional regulator upstream the cluster nxrA1B1, however, differs from the one of nxrA2B2 

(Daims et al., 2010). 

 

Another important property of the Nxr is that it can also perform the reduction of nitrate to ni-

trite. This was shown for the Nxr of Nitrobacter hamburgensis in a former study (Sundermeyer-

Klinger et al., 1984). There, reduced methyl- and benzylviologen as well as NADH+ were 

shown to be suitable electron donors for the Nxr to reduce nitrate. Thus, this enzyme can also 

play a role in the denitrification process.  

 

A.3.3. Utilization of organic substrates 

In general, there are two ways to utilize organic substrates: On the one hand, the use as carbon 

source and, on the other hand, the use as energy source. Nitrospira marina was shown to 

achieve higher growth yields when pyruvate was present (Watson et al., 1986). Another study 

showed that uncultered Nitrospira in activated sludge assimiliated pyruvate in addition to inor-

ganic carbon under oxic conditions (Daims et al., 2001). Based on this study, Nitrospira is as-

sumed to be capable of living mixotrophically - i.e. it incorporates inorganic and organic carbon 

sources simultaneously. This in turn could facilitate the competitiveness of this genus in sewage 

treatment plants. For Ca. N. defluvii, the possible capability of assimilating organic carbon from 
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pyurvate and some other simple carbon compounds is also supported by genomic data (Lücker 

et al., 2010). In the recently published genome of Ca. N. defluvii, the complete Embden-

Meyerhof-Parnas pathway for the metabolization of hexose sugars, as well as pathways for the 

catabolic degradation and assimilation of acetate, pyruvate and formate are present. Further-

more, candidate genes for the degradation of branched amino acids were found as well as genes 

encoding sugar transporters for the utilization of sugars. 

 

Additionally, all enzymes for the oxidative tricarboxylic acid cycle (oTCA) with the exception 

of the 2-oxoglutarate dehydrogenase complex (ODH) have been encoded. This missing enzyme 

could theoretically be replaced by the 2-oxoglutarate:ferredoxin oxidoreductase (OGOR). If all 

these genes were functional, Ca. N. defluvii could at least benefit from a mixotrophic lifestyle 

(Lücker et al., 2010). But still, it is unknown whether bacteria of the genus Nitrospira are capa-

ble of using organic compounds as energy source. 

 

 

A.4. Aims of this study 
 
A.4.1. Development of  quantitative real-time PCR assays for the detection of the expres-

sion of  various genes in “Candidatus Nitrospira defluvii” 

The existence of a sequenced genome of an organism provides lots of interesting information. 

This in turn raises new questions as, for example, which genes are actually transcribed and 

which ones are further translated to proteins. The aim of this part of this thesis was to investigate 

the differences in the expression of several genes of Ca. N. defluvii under different environmen-

tal conditions. Therefore, assays for the reverse transcription (RT) of mRNA/rRNA and subse-

quent quantification via qPCR should be developed. The method of combining reverse transcrip-

tion (RT) and quantitative real-time PCR (qPCR), in the following referred to as RT-qPCR, is a 

very sensitive tool for this purpose (Nolan et al., 2006). In detail, assays should be developed for 

the detection of the two paralogous nxrA gene copies as well as for the detection of the expres-

sion of the gltA gene encoding the enzyme citrate synthase. This enzyme is essential and indica-

tive for the oTCA-cycle. In order to normalize the measured expression level of the previously 

mentioned genes, a fourth qPCR assay should be developed for the expression of the 16S rRNA 

gene. Since the 16S rRNA is assumed to be stable in its abundance in Ca. N. defluvii, its copy 

number is an indicator for the cell number. This method for normalization was chosen since it is 

not possible to determine the cell number by simple cell counting due to growth in colonies. 
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A.4.2. Detection of a possible nitrite-regulated expression of two paralogous copies of the 

nitrite oxidoreductase enzyme genes 

Although members of the genus Nitrospira play a significant role in most natural and engi-

neered ecosystems, very little is known about their nitrite oxidizing system. This study was de-

signed to investigate a possible regulation of the expression of the nxrA genes by the concentra-

tion of the encoded enzyme’s substrate. Therefore, Ca. N. defluvii cultures should be incubated 

under different nitrite-concentrations and be examined by the developed RT-qPCR assays for 

two paralogous of the nxrA genes.  

 

A.4.3. Exploration of a possible nitrate reducing activity coupled to organic compound 

oxidation by “Candidatus Nitrospira defluvii” 

The Nxr of Nitrobacter was shown to be also capable of performing the reduction of nitrate to 

nitrite (Sundermeyer-Klinger et al., 1984). Therefore, Ca. N. defluvii may be able to couple the 

oxidation of organic compounds to nitrate reduction for energy generation, presumably under 

oxygen depletion. To date, it is not known yet if Ca. N. defluvii can utilize organic compounds 

for the generation of energy. Therefore, not only the use of nitrate as electron acceptor is uncer-

tain, one also has to find a compatible electron donor which might be used by this organism. For 

this purpose, pyruvate was chosen since it was shown that uncultured Nitrospira in activated 

sludge were at least capable of assimilating pyruvate (Daims et al., 2001). The choice of pyur-

vate in this context is moreover obvious since it is not only an energy source for aerobic organ-

isms using the oTCA cycle, but also for some anaerobic organisms capable of fermenting pyru-

vate to lactate. After incubating Ca. N. defluvii cultures under anoxic conditions with pyruvate 

and nitrate possible differences in the expression pattern of the two nxrA genes should be exam-

ined applying the developed qPCR assays. Then, the comparison of the expression pattern with 

the control incubation without pyruvate and nitrate as well could provide a hint for a nitrate re-

ducing activity of one of the two Nxr copies. 
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A.4.4. Investigation of the coexistence of three subpopulations of Nitrospira sublineage II 

in the wastewater treatment plant of the University of veterinary medicine Vienna 

applying quantitative FISH 

The microdiversity of Nitrospira sublineage II in activated sludge of the WWTP of the Vetmed 

had been investigated in a recent study (Dorninger et al., unpublished). A stable coexistence of 

three closely related subpopulations of Nitrospira sublineage II was demonstrated qualitatively 

and analyzed in a semi-quantitative way during a six-year period. The aim of this study was to 

quantify the biovolume fraction of the three subpopulations Cluster 2.2, 2.4 and 2.5 relative to 

the Nitrospira sublineage II population, the total Nitrospira population and the total bacterial 

population. 
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B. Material and Methods 
 

For the preparation of all buffers, media and solutions double distilled and sterile filtered water 

(ddH20) was used. This purification was accomplished by using a MQ Biocel-purification facili-

ty. To sterilize high-temperature-stable solutions and equipment a waterevapour-high pressure 

autoclave was used. The autoclavation step was performed for 20 min. at 121 °C and a pressure 

of 1.013 x 105 Pascal. Unstable chemicals were sterile filtered (0.22 µm) instead and added to 

the solutions afterwards. All used chemicals were of p.a. qualitiy.  

 

 
B.1. Technical equipment 
Table 3: Technical equipment. 

Equipment Company 

Bead beater Fast Prep FP 120  Savant Instruments Inc., Holbrook, NY, USA 

Centrifuges: 
Mikro 22 R 
Rotina 35 S Centrifuge 
Galaxy Mini Centrifuge 
Centrifuge 5840 R 

 
Andreas Hettich GmbH & Co. KG, Tuttlingen, Germany 
Andreas Hettich GmbH & Co. KG, Tuttlingen, Germany 
VWR international, West Chester, PA, USA 
Eppendorf AG, Hamburg, Germany  

Confocal Laser Scanning Microscope LSM 510 Meta  Carl Zeiss MicroImaging GmbH, Jena, Germany 

Devices for gelelectrophoresis:  
Electrophoresis cell (Sub-Cell GT) 
Electrophoresis power supply (PowerPac Basic)  
Sub-Cell GT UV-Transparent Gel Tray (15 x15 cm)  
Gel Dokumentationsystem MediaSystem FlexiLine 4040 

 
Bio-Rad Laboratories GmbH, Munich, Germany  
Bio-Rad Laboratories GmbH, Munich, Germany  
Bio-Rad Laboratories GmbH, Munich, Germany  
Biostep, Jahnsdorf, Germany 

DNA Sequencer Applied Biosystems 3130 Applied Biosystems Lincoln, USA 

Hybridisation oven UE-500 Memmert GmbH, Schwabach, Germany 

Laminar flow hood Safe 2010 Modell 1.2  Holten, Jouan Nordic, Allerød, Denmark 

Microbiological incubator KB 115  Binder GmbH, Tuttlingen, Germany 

Microwave MD6460 Microstar  

NanoDrop® ND-1000 UV/Vis spectrophotometer  NanoDrop Technologies Inc., Wilmington, DE, USA  
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PCR thermocyclers: 
iCycler iQ Real-Time PCR Detection 
iCycler IQ Thermocycler 

 
Biorad, München, Germany 
Biorad, München, Germany 

pH-Meter WTW inoLab Level 1 Wissenschaftlich-Technische Werkstätten GmbH, 
Weilheim, Germany 

Eppendorf Research® pipettes 1 – 1000 μl Eppendorf AG, Hamburg, Germany 

Platform shaker Innova 2300  New Brunswick Co., Inc., Madison NJ, USA 

Scales:  
OHAUS® Analytical Plus balance  
Sartorius BL 3100  

 
Ohaus Corporation, Pine Brook, NJ, USA  
Sartorius AG, Göttingen, Germany  

Transilluminator UST-30M-8E (312 nm)  Biostep GmbH, Jahnsdorf, Germany 

Ultraviolet Sterilizing PCR Workstation  Peqlab Biotechnology GmbH, Erlangen, Germany 

Variomag® Maxi magnetic stirrer Variomag®, Dayton Beach, FL, USA 

Vortex Genie 2 Scientific Industries, New York, USA 

Water purification facility: MQ Biocel Millipore Corporation, Billerica, MA, USA 

Water vapour high pressure autoclaves: 
Varioklav 135S 
Varioklav 25T 

 
H+P, München, Germany 
H+P, München, Germany 

Waterbaths: 
DC10 Thermo 
GFL Typ 1004 

 
Haake, Karlsruhe, Germany 
Gesellschaft für Labortechnik GmbH, Burgwedel, Germany 

 
 

B.2. Expendables 
Table 4: List of expendables. 

Expendable item Company 

Bead-beating-caps  

Cover glasses 24 x 60 mm  Paul Marienfeld GmbH & Co. KG, Lauda-Königshofen, 
Germany  

Cover slips 24×50 mm Paul Marienfeld GmbH & Co. KG, Lauda-Königshofen, 
Germany  

Eppendorf reaction tubes (ERT), various sizes Eppendorf AG, Hamburg, Germany 

Greiner tubes (15 ml, 50 ml)  Greiner Bio-One GmbH, Frickenhausen, Germany  

Microscope slides (76 x 26 mm)  Carl Roth GmbH & Co. KG, Karlsruhe, Germany  
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Microseal films: 
Microseal “A” film 
Microseal® “B” film 

 
MJ Research, Waltham, MA, USA 
Biorad, München, Germany 

Microtiterplates: 
Microtiterplates Microseal TM 96, V-form 
Thermo-Fast® 96 QPCR plates 
U96 MicroWell™ Plates, 0.5 ml 

 
MJ Research, Waltham, MA, USA 
Peqlab Biotechnology GmbH, Germany 
Nunc TM Serving life science, Roskilde, Denmark 

Needles Sterican® (ø 0.45 x 25 mm, ø 0.90 x 40 mm), single 
use, sterile  B.Braun Melsungen AG, Melsungen, Germany  

Nitrate test strips 0-500 mg L-1 Merck KGaA, Darmstadt, Germany 

Nitrite test strips 0-80 mg L-1 Merck KGaA, Darmstadt, Germany 

Parafilm® "M" Pechiney Plastic Packaging, Chicago, USA 

PCR tubes (0.2 ml)  Biozym Scientific GmbH, Hessisch Oldendorf, Germany  

Petri dishes 94/16 Greiner Bio-one GmbH, Frickenhausen, Germany 

Pipette tips (various sizes)  Carl Roth GmbH & Co. KG, Karlsruhe, Germany  

Schott DURAN® Erlenmeyer flasks, various sizes Schott Glas, Mainz, Germany 

Schott DURAN® laboratory glass bottles, various sizes Schott Glas, Mainz, Germany 

Sterile filters; 0.22 μm pore size  Qualilab®, Merck Labor und Vertrieb GmbH, Bruchsal, 
Germany 

Syringe ( 5 ml) Omnifix® single use, sterile  B.Braun Melsungen AG, Melsungen, Germany  

Syringe (1 ml) Inject® - F 1ml, single use, sterile  B.Braun Melsungen AG, Melsungen, Germany  

Test tubes Assistant Karl Hecht KG, Sondheim, Germany 

 
 

B.3. Chemicals and ready-to-use-solutions 
Table 5: List of used chemicals. 

Expendable item Company 

6x DNA Loading Dye  Fermentas, St. Leon-Rot, Germany 

Agar FLUKA Chemie AG, Buchs, Switzerland 

Ammonium chloride (NH4Cl)  Carl Roth GmbH & Co., Karlsruhe, Germany 

Ampicillin (100 mg mL-1) Sigma-Aldrich Chemie GmbH, Steinhausen, Germany 

Boric acid (H3BO3) Carl Roth GmbH & Co., Karlsruhe, Germany 

Bromphenol Blue  Sigma-Alderich Chemie GmbH, Steinhausen, Germany 

Calcium carbonate (CaCO3) Carl Roth GmbH & Co., Karlsruhe, Germany 

Chloroform (CHCl3) Carl Roth GmbH & Co., Karlsruhe, Germany 

Citifluor AF1  Agar Scientific Limited, Essex, England 

Di-ethyl-pyrocarbonate (DEPC)  Sigma-Aldrich Chemie GmbH, Steinhausen, Germany 

Di-sodium-hydrogenphosphate dihydrate (Na2HPO4 x 2H20)  Carl Roth GmbH & Co. KG, Karlsruhe, Germany  

Ethanol absolute (EtOH) Merck KGaA, Darmstadt, Germany 

Ethidium Bromide (EtBr) (C21H20BrN3)  FLUKA Chemie AG, Buchs, Switzerland 

Ethylene-di-amine-tetra-acetic acid (EDTA), disodium salt  Carl Roth GmbH & Co., Karlsruhe, Germany 
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Ficoll® 400  Sigma-Alderich Chemie GmbH, Steinhausen, Germany 

Fluorescein Calibration Dye Bio-Rad Laboratories GmbH, Munich, Germany  

Formamide (FA) (CH3NO) Carl Roth GmbH & Co., Karlsruhe, Germany 

GeneRulerTM 100bp Plus DNA Ladder  Fermentas, St. Leon-Rot, Germany 

GeneRulerTM 1kb DNA Ladder (KBL)  Fermentas, St. Leon-Rot, Germany 

Glycogen  Applied Biosystems/Ambion, Austin, TX, USA  

Hydrochloric acid (HCl)  Carl Roth GmbH & Co., Karlsruhe, Germany 

Hydrogen Peroxid (H2O2), 30%  Carl Roth GmbH & Co., Karlsruhe, Germany 

Kanamycin (100 mg mL-1) Sigma-Alderich Chemie GmbH, Steinhausen, Germany 

LE Agarose Biozym Scientific GmbH, Oldendorf, Germany 

Magnesium chloride (MgCl2) Carl Roth GmbH & Co., Karlsruhe, Germany 

Magnesiumsulfate heptahydrate (MgSO4 x 7 H2O)  Merck KGaA, Darmstadt, Germany 

N-(1-Naphthyl)-ethylendiamindihydrochlorid (NED) Carl Roth GmbH & Co., Karlsruhe, Germany 

Ortho-phosphorous acid (H3PO4) Carl Roth GmbH & Co., Karlsruhe, Germany 

Paraformaldehyde (PFA) (OH(CH2O)nH) Carl Roth GmbH & Co., Karlsruhe, Germany 

Potassium chloride (KCl)  Merck KGaA, Darmstadt, Germany 

Potassium dihydrogen phosphate (KH2PO4) J.T. Baker, Deventer, Netherlands 

S.O.C.-Medium  Invitrogen Corporation, Carlsbad, USA 

Sodium acetate (NaC2H3O2) Sigma-Alderich Chemie GmbH, Steinhausen, Germany 

Sodium chloride (NaCl)  Carl Roth GmbH & Co., Karlsruhe, Germany 

Sodium dodecyl sulfate (SDS)  Carl Roth GmbH & Co., Karlsruhe, Germany 

Sodium hydroxide (NaOH)  J.T. Baker, Deventer, Netherlands 

Sodium nitrate (NaNO3) Carl Roth GmbH & Co., Karlsruhe, Germany 

Sodium nitrite (NaNO2)  Carl Roth GmbH & Co., Karlsruhe, Germany 

Sodium pyruvate (C3H3NaO3) FLUKA Chemie AG, Buchs, Switzerland 

Sodium-di-hydrogenphosphate (NaH2PO4)  Carl Roth GmbH & Co., Karlsruhe, Germany 

Sulfanilamid  Carl Roth GmbH & Co., Karlsruhe, Germany 

Tris (HOCH2)3CNH2 Carl Roth GmbH & Co., Karlsruhe, Germany 

TRIzol® Reagent Invitrogen Corporation, Carlsbad, USA 

Xylencyanol  Sigma-Aldrich Chemie GmbH, Steinhausen, Germany 

Yeast extract Oxoid Ltd., Hampshire, England 
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B.4. Kits 
Table 6: List of used Kits. 

Kit Company 

DNeasy Blood & Tissue Kit QIAgen 

pGEM®-T Easy Vector System I Promega 

Platinum® SYBR® Green qPCR SuperMix UDG Invitrogen 

QIA quick PCR Purification Kit QIAgen 

QIAprep Spin Miniprep Kit  QIAgen 

Quant-iT™ PicoGreen® dsDNA Assay Kit Invitrogen 

Quant-iT™ RiboGreen® RNA Assay Kit Invitrogen 

RevertAid™ First Strand cDNA Synthesis Kit Fermentas 

SuperScript® III Reverse Transcriptase Kit Invitrogen 

TOPO® XL PCR Cloning Kit Invitrogen 

TRIzol® Plus RNA Purification Kit Invitrogen 

TURBO DNA-free™ Ambion 

 
 
 
B.5. Software/Online-Tools       
Table 7: List of used software/Online-Tools 

Software/Online-Tools URL Reference 

Basic Local Alignment Search Tool http://blast.ncbi.nlm.nih.gov/Blast.cgi  Altschul et al., 1990 

Copy number calculator http://endmemo.com/bio/dnacopynum.php   

daime http://www.microbial-ecology.net/daime/ Daims et al., 2006 

Finch TV http://www.geospiza.com/finchtv/  Geospiza, USA 

Molecular weight calculator http://www.currentprotocols.com/tools/dnarnaprotein-molecular-
weight-calculator   

Oligonucleotide Properties Calculator http://www.basic.northwestern.edu/biotools/oligocalc.html Kibbe, 2007 

Primer Dimer Check http://mfold.rna.albany.edu/?q=DINAMelt/Two-state-melting Markham and Zuker, 2005 

Primer3 http://frodo.wi.mit.edu/primer3/ Rozen and Skaletsky, 2000 

Probe Base http://www.microbial-ecology.net/probebase/  Loy et al. 2007 

Probe Check http://www.microbial-ecology.net/probecheck/  Loy et al. 2008 

Reverse Complementation Tool http://www.bioinformatics.org/sms/rev_comp.html   
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B.6. Buffers, media and solutions 
 

B.6.1. General buffers and solutions 

Phosphate buffered saline (PBS) stock solution 

NaH2PO4 35.6 g L-1 
Na2HPO4 27.6 g L-1 
pH of NaH2PO4 solution had to be adjusted to a pH = 7.2 -7.4 

 

1 x PBS 

NaCl 7.6 g 
PBS stock solution 50 mL 
ddH2O ad 1000 mL 
pH to 7.2–7.4 

 

B.6.2. Buffers for gel-electrophoresis 

10 x TBE 

Tris 162.0 g 
Boric acid 27.5 g 
EDTA 9.3 g 
ddH2O ad 1000 mL 
pH to 8.3 – 8.7 

 

1 x TBE 

10 x TBE 100 mL 
ddH2O ad 1000 mL 

 

Loading buffer 

Ficoll 25% (w/v) 2.5 g 
Bromphenol blue 0.5% (w/v) 0.05 g 
Xylencyanol 0.5% (w/v) 0.05 g 
EDTA 50 mM 0.15 g 
ddH2O ad 10 mL 

 

Ethidium bromide solution 

EtBr-stock solution (10 mg mL-1) diluted 1:10,000 in ddH2O 
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B.6.3. Media for cultivation of microorganisms 

Culture medium for „Candidatus Nitrospira defluvii“-enrichment 

NOB stock solution 10 x 

CaCO3 0.1 g 
NaCl 5 g 
MgSO4 x 7 H20 0.5 g 
KH2PO4 1.5 g 
NH4Cl 0.1 g 
ddH20 up to 1,000 mL  

 

NOB medium 

NOB stock solution 100 mL 
trace elements (supplied by 1mL 
Alexander Galushko) 
ddH20 up to 1,000 mL 
pH to 8.6 before autoclaving, pH should drop to ~ 7.6 within 2-4 days 

 

Culture medium for recombinant Escherichia coli TOP10 cells 

Luria Bertani (LB) medium 
Tryptone 10.0 g L-1 
Yeast extract 5.0 g L-1 
NaCl 5.0 g L-1 
ddH2O ad 1000 ml 
pH to 7.0-7.5 
 
For the preparation of solid LB medium the addition of 15 gram Agarose per Liter was ne-
cessary before autoclaving. Autoclaved LB medium and LB plates were stored at 4°C. 

 

SOC-Medium (content of TOPO® XL PCR Cloning Kit) 
Tryptone 2 % w/v 
Yeast extract 0.5 % w/v 
NaCl 10 mM 
KCl 2.5 mM 
MgCl2 10 mM 
MgSO4 10 mM 
Glucose 20 mM 
Storage at -20°C 
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B.6.4. Antibiotics 

For LB plates, the antibiotic stock solution (100 mg L-1) was added to the autoclaved medium at 

a temperature of approximately 50 °C. Into test tubes with 5 mL LB for the growth of E. coli 

strains the respective antibiotic was added immediately before usage for growth of cells.  

Kanamycin 

Kanamycin stock solution 100 mg mL-1
 was diluted to an end concentration of 100 µg µL-1 

Ampicillin 

Ampicillin stock solution 100 mg mL-1 was diluted to 100 µg µL-1 

 

B.6.5. Selection solutions 

X-Gal (5-brom-4-chlor-3-indolyl-β-D-galactopyranoside) stock solution was dissolved in di-

methylformamide (N,N-dimethylmethanamide) to a final concentration of 40 mg mL-1. This 

solution was filter sterilized and then stored at -20 °C. 

 

B.6.6. Solutions for the measurement of nitrite concentrations 

1% Sulfanilamide solution 

Sulfanilamide 0.25 g 
ortho-Phosphorous acid 1.25 g 
H2Odd ad 25 mL 

 

0.1% N-(1-Naphtyl-)ethylendiamin-dihydrochloride solution 

NED (N-(1-Naphtyl-) 0.025 g 
ethylendiamin-dihydrochloride) 
H2Odd ad 25 mL 
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B.7. Cultivation of microorganisms 
 

B.7.1. Cultivation of recombinant Escherichia coli TOP10 cells 

For the cultivation of E. coli cells two methods were applied. The first one was to cultivate the 

cells on solid LB agarose medium on plates. To select for cells harboring a vector an antibiotic 

was added to the LB medium (B.6.4). The vector possesses the appropriate antibiotic resistance. 

For further growth of selected colonies from plates liquid cultivation was applied. For this, test 

tubes containing 5 mL liquid LB medium were used. Prior to inoculation, sterile antibiotic-

solution was added (B.6.4). Single colonies of interest - in case of pGEM cloning only white 

colonies containing an insert - were picked from LB plates with toothpicks under sterile condi-

tions and taken to inoculate the liquid LB medium in the test tubes. 

 

The plates as well as the test tubes were incubated at 37 °C over night (o/n) and maintained at 4 

°C. The test tubes with liquid media were shaken to optimize the supply of oxygen. The liquid 

cultures were further used for the isolation of plasmid DNA (B.8.2). 

 

B.7.2. Cultivation of ”Candidatus Nitrospira defluvii“ 

For the maintenance of enrichment cultures of Ca. N. defluvii 200 mL Schott DURAN® flasks 

containing 150 mL NOB minimal medium were used. Additionally to essential salts and trace 

elements nitrite (NO2
-) was added to a final concentration of 3 mM. The nitrite concentration 

was checked once a week using nitrite test strips (0-80 mg L-1) and adjusted if necessary. The 

activity of the cultures was assessed by monitoring the consumption of nitrite. When the con-

sumption rate decreased this was a hint for the accumulation of nitrate (NO3
-) in the medium 

which in higher concentrations inhibits the metabolism of Nitrospira. Nitrate arises from the 

oxidation of nitrite due to the activity of the cells. If such an accumulation of nitrate was observ-

able the cultures were split into three 50 mL Greiner tubes and centrifuged at 6,000 rpm for 10(-

20) min at room temperature (RT). The supernatant was discarded, the cells resuspended in 

fresh NOB-medium and decanted into a fresh and sterile 200 mL Schott DURAN® flasks. NO2
- 

was added to a final concentration of 3 mM. 



Material and Methods 

23 

 

B.8.  Methods for DNA isolation 
 

B.8.1. DNA isolation from ”Candidatus Nitrospira defluvii“ cultures 

Genomic DNA from Ca. N. defluvii was isolated using the DNeasy Blood & Tissue Kit. For 

this, 60 mL of Ca. N. defluvii enrichment culture of a chemostat batch reactor-culture were har-

vested by centrifugation at 8,000 rpm for 10 min at RT. All further steps were performed ac-

cording to the protocol for the isolation of DNA from gram-negative bacteria provided by the 

manufacturer. DNA-solutions were stored at -20 °C. 

 

B.8.2. Plasmid isolation from recombinant E.coli TOP10 cells 

To isolate plasmid DNA from E. coli TOP10 cells the QIAprep Spin Miniprep Kit was used. 

Cells with plasmid containing the right insert were grown o/n in test tubes with 5 mL LB me-

dium. The culture was harvested by centrifugation at 13,000 rpm for 1 and the supernatant dis-

carded. All further steps were carried out according to the manufacturer’s instructions. The 

plasmid DNA was eluted in 50 µL ddH2O. 

 

B.9. Isolation of total RNA  
A 100 mL Ca. N. defluvii culture was divided into two 50 mL Greiner tubes, centrifuged at 

11,000 rpm for 1 min at RT and the supernatant decanted. Aliquots of the supernatant were 

stored for subsequent analyses. The cell pellets were washed with 40 mL 1 x PBS and centri-

fuged once again as mentioned above. All these steps have to be conducted as fast as possible 

since the half-life of mRNA in archaea and bacteria is very short (Seilinger et al., 2003; Anders-

son et al., 2006). The washing step increases the yield of RNA since inhibiting substances are 

removed at this step. The pellets were then transferred to bead-beating-caps whereof each of 

them contained 1 mL TRIzol® Reagent. Very important at this step is to transfer only lowest 

possible volumes of medium to the TRIzol® Reagent additional to the pellet in order to not 

change the pH of the TRIzol® solution. Then the tubes were bead-beated for 45 sec at level 6 in 

the Bead beater Fast Prep FP 120 and cooled on ice. All these steps were carried out as fast as 

possible since the transcriptome can change very quickly. 
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The purification of total RNA was performed using the TRIzol® Plus RNA Purification Kit. All 

steps were conducted following the manufacturer’s instructions. The RNA was eluted from the 

spin columns in 30 µL DEPC-treated ddH2O. 

 

B.10.  DNase treatment of RNA 
Remaining DNA in RNA solutions was digested using the TURBO DNA-free™-Kit. All steps 

were carried out following the manufacturer’s instructions. To check if all DNA was digested a 

PCR was performed with RNA solution as template. In order to detect even smallest residual of 

DNA the PCR was conducted performing 40 amplification cycles. The primers used were spe-

cific for the 16S rRNA gene (16S_814_FW / 16S_911_RV). After PCR 15 µL of the product 

were loaded onto a 2.5 % agarose gel and an electrophoresis was performed. If no band was 

visible on the gel the respective RNA solution was assumed to be free of DNA, otherwise the 

DNA digestion had to be repeated. 

 

B.11.  Ethanol precipitation of RNA 
Precipitation of RNA was performed to remove substances from the RNA solution that might 

inhibit the DNase during the digestion of DNA as well as the polymerase during qPCR. 

 

For the precipitation of the RNA 0.1 volume 3 M sodium acetate and 1/50 volume glycogen 

were added to the RNA solutions. Then 3 volumes 100% ethanol were added to the tubes which 

then were incubated at -80 °C for 30 min to precipitate the RNA. To recover the RNA the solu-

tions were centrifuged at 14,000 rpm for 30 min at 4 °C before the supernatant was carefully 

removed. After a further short centrifugation step remaining supernatant was removed. To wash 

the RNA 1 mL ice cold 70% ethanol was added before vortexing and centrifuging the tubes at 

14,000 rpm for 15 min at 4 °C. After removing the supernatant, the washing step was repeated. 

The RNA pellets were dried for approximately 5 min at RT, resuspended in 30 µL DEPC-

treated ddH20 and stored at -80 °C. 
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B.12.  Synthesis of cDNA applying Reverse Transcription (RT) 
 

For the purpose to synthesize DNA complementary to RNA (cDNA), two different Kits were 

applied to get information about the reproducibility when applying different enzymes. The first 

Kit used was the RevertAid™ First Strand cDNA Synthesis Kit (Fermentas). The enzyme per-

forming the reverse transcription supplied in this Kit was isolated from the Moloney Murine 

Leukemia Virus and is capable of synthesizing cDNA up to 13 kb. The primers used are listed in 

Table 8. A so-called “multiplexed” reaction was performed where several primers were applied 

in the same reaction. Between 22.7 and 250.0 ng of total RNA were used for the synthesis reac-

tion which was performed following the manufacturer’s instructions. The maximum volume of 

total RNA solution possible to introduce are 10.5 µL per reaction. 

 
Table 8: Primers used for reverse transcription. 

Primer Sequence (5’-3’) Amount per reaction [pmol] 

16S_911_RV CCG TCA ATT CCT TTG AGT TT 25 

gltA_RV TTG TCC GTC AGT CGC TCA 25 

NxrA_RV CCG ACT TCA ACA TGA CGT C 25 

 

The synthesis step was conducted at 45 °C for 60 min. After the inactivation of the RT-enzyme 

the cDNA was immediately diluted 1:10, subdivided into aliquots for qPCR analysis and stored 

at -20 °C. 

 

The second Kit used was the SuperScript® III First-Strand Synthesis System. A “multiplexed” 

reaction with three different primers (see Table 8) was performed for which 2 pmol of each pri-

mer and 250 ng of total RNA were used. The synthesis step was performed for 60 min at 55 °C. 

All steps were conducted according to the manufacturers’ instructions. 

 



Material and Methods 

26 

 

B.13. Analyses of nucleic acids 
  

B.13.1.  Qualitative analysis of nucleic acids using agarose gel electrophoresis 

For a qualitative analysis of nucleic acids agarose gel electrophoresis was performed. This tech-

nique allows a separation of nucleic acids according to their mass. The underlying principle is 

that negatively charged nucleic acids migrate within an electric field in direction to the anode. 

The longer a fragment, the slower it is migrating through an agarose gel.  

 

For the preparation of agarose gels 1 to 2.5 % w/v agarose - depending on the length of the 

fragments to be separated - were dissolved in 1 x TBE buffer by heating in a microwave oven. 

The liquid agarose solution subsequently was cooled to a temperature above the polymerization 

temperature and poured into a gel tray. The tray previously was prepared with one or more 

combs to create pockets the samples could be loaded in after the polymerization. The tray with 

solid agarose was inserted into an electrophoresis cell filled with 1 x TBE buffer. 5-15 µL of 

nucleic acid solution were mixed with loading buffer and applied to the pockets in the gel. The 

length of nucleic acid fragments in the samples was determined by comparison to a marker con-

taining nucleic acid fragments of defined lengths which was applied to the adjacent pockets. The 

nucleic acids were then separated by applying a voltage between 90 to 120 volts for 45 to 100 

min. Table 9 shows which agarose gels and DNA ladders were used for certain nucleic acid 

fragments of different lengths. 

 
Table 9: Agarose gels and DNA ladders used for the separation of fragments of different length via agarose 

gel electrophoresis. 

Fragment length 
[bp] 

% agarose 
[w/v] 

Voltage 
[V] 

time 
[min] DNA ladder 

> 300 1.0 120 45 
GeneRuler™ 1 kb DNA Ladder, 250-10,000 bp or 

GeneRuler™ 100 bp DNA Ladder, ready-to-use, 100-1000 bp 

50-200 2.5 90 80-100 
GeneRuler™ 100 bp DNA Ladder, ready-to-use, 100-1000 bp or 

O'RangeRuler™ 50 bp DNA Ladder, ready-to-use, 50-1000 bp 

 

After the separation step the nucleic acids in the gels were stained in ethidium bromide staining 

solution (B.6.2) and visualized by UV-transillumination (λ = 312 nm). The documentation and 

digitalization was performed using a digital camera-system. The pictures were edited using the 

software Adobe Photoshop. 
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B.13.2.  Quantitative analysis of nucleic acids 

B.13.2.1. Photometric determination of nucleic acid concentrations using a NanoDrop® ND-1000 

spectrophotometer 

1.5 µL of nucleic acid solution were applied to the end of the fiber optic cable of the device to 

determine the concentration of the nucleic acid solution at λ = 260 nm. 

 

B.13.2.2. Quantification of DNA-concentrations using the Quant-iT™ PicoGreen® dsDNA Assay 

Kit 

PicoGreen® is a Fluorescence dye that intercalates into double-stranded (ds) DNA. The advan-

tage of this ultrasensitive Fluorescence dye is that the emission after incorporation is much 

stronger than unbound to DNA. The dye is excited at λ = 480 and emits at λ = 520 nm. The high 

sensitivity allows an accurate determination of DNA-concentrations of samples with unknown 

DNA-concentration. Therefore, a DNA-dilution series from a defined λ-phage-DNA-solution  

(100 µg mL-1 in TE buffer) has to be measured for comparison. The obtained linear regression 

after measurement of the fluorescence of the standards (STD) allows the calculation of the con-

centrations in the samples. All steps were conducted following the instructions of the manufac-

turer. The photometrical measurement of the fluorescence was performed in a TECAN Infinite 

200 PRO multimode microplate reader where multiple measurements (2 x 2) per well were per-

formed. The excitation wavelength and wavelength of detection were set as mentioned above. 

 

B.13.2.3. Quantification of total RNA-concentrations using the Quant-iT™ RiboGreen® RNA As-

say Kit 

Quant-iT™ RiboGreen® reagent is an ultrasensitive fluorescence dye binding to single stranded 

(ss) RNA. Its excitation maximum is at λ = 500 nm and the emission maximum at λ = 525 nm. 

The enormous sensitivity allows an accurate determination of RNA-concentrations based on a 

comparison with the fluorescence signals of measured RNA standards. The applied standard 

dilution series was prepared from a standard stock - a mixture of 16S and 23S rRNA from E. 

coli - which is provided in the Kit. All steps were performed according to the manufacturer’s 

instructions. The TECAN Infinite 200 PRO multimode microplate reader was used for photo-

metrical measurement of the fluorescence. Excitation was chosen as mentioned above. The 

Emission was measured at λ = 525 nm. Multiple measurements per well (2 x 2) were performed. 
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B.13.3.  Amplification of DNA fragments using Polymerase Chain Reaction (PCR) 

The Polymerase Chain Reaction (PCR) allows the specific and exponential amplification of 

DNA-fragments of interest using the enzyme Taq DNA Polymerase. After melting of the 

double-stranded DNA at 95 °C specific oligonucleotides (“primers”) bind specifically to the 

single-stranded DNA at a certain annealing temperature (Ta). The Taq DNA Polymerase elon-

gates at the 3’ end of the primer at a temperature of 72 °C. These three steps are repeated up to 

40 times. In this way up to billions of copies can be amplified from a single template. The used 

ingredients and volumes are listed in Table 10. Table 11 contains a list of all primers used. 

 
Table 10: Reaction mixture for one standard PCR reaction.  

Solution Volume per 
reaction [µL] 

End concentra-
tion [mM] 

ddH2O 33.75  

10x buffer 5.00 (1x) 

dNTP Mix 5.00 0.2 

MgCl2 4.00 2.0 

Forward primer 0.50 1.0 

Reverse primer 0.50 1.0 

MBI Taq DNA polyme-
rase 0.25  

Template DNA 1.00 (~ 100 ng) 

End volume 50  
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Table 11: List of primers used for qPCR including information on primers designed for RT-qPCR either manually or using the Online-Tool Primer3. 

Primer Sequence (5’-3’) 
Binding 
position 

(5`) 

Length of 
Primer 

[bp] 

GC-
content 

[%] 

Length of 
Primer 

[bp] 

Annealing 
Temp. 
[°C] 

Length of am-
plified Frag-

ment [bp] 

Specificity 
gene / product Reference 

16S_814_FW CTA AGT GTC GGC GGG TTA 13854501 18 56 18 
61.4 98 

16S rRNA gene of Ca. 
N. defluvii / 16S rRNA 

this study 

16S_911_RV CCG TCA ATT CCT TTG AGT TT 13855471 20 40 20 

gltA_FW GGA CCT CTG CAT GCG TCT 23971651 18 61 18 
54.3 99 gltA / citrate synthase 

gltA_RV TTG TCC GTC AGT CGC TCA 23972461 18 56 18 

NxrA1_FW CGG ATG GCG GAT ACG TAT AAG 31895711 21 52 21 63.9 118 nxrA1 / putative Nxr, 
α-subunit 

NxrA2_FW GCG TGT TCC ACT TCG TGT AC 32182121 20 55 20 66.5 108 
nxrA2 / putative Nxr, 

α-subunit 

NxrA_RV CCG ACT TCA ACA TGA CGT C 31894541/ 
32183191 19 53 19 63.9/66.52 118/ 

1082 

nxrA1 + nxrA2 / 
putative Nxr, 

α-subunit 

M13 Forward CAG GAA ACA GCT ATG AC * 17 47 17 
60 depending on 

insert-length 

pCR®-XL-TOPO® 
Vector / 

pGEM®-T Easy Vector 

TOPO cloning 
kit (Invitrogen) M13 Reverse GTA AAA CGA CGG CCA G * 16 56 16 

* depending on the used Vector (see in the respective manual) 
1 in Ca. N. defluvii 
2 dependend on the used Forward primer 
Nxr … nitrite oxidoreducatse 
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To avoid contaminations with free DNA, the reactions were mixed in a PCR hood. Before pre-

paring the reactions the tubes, H2Odd, MgCl2 and 10x buffer were exposed to UV-light for 15 

min. The master mix was kept on 4 °C whenever possible as well as the reaction tubes. 

 

The PCR Cycler has to be programmed with the respective programs shown in Table 12 depend-

ing on the primers used and the length of the fragments to be amplified. This allows an automat-

ic sequence of the different temperature steps. 

 
Table 12: PCR programs for standard PCR. 

Step Temperature 
[°C] Duration [min] Repeats 

Denaturation 95 05:00 1 x 

Denaturation 95 00:30 

35-40 x Primer annealing 54.3 - 66.5 1 00:30 

Elongation step 72 00:20 - 01:00 2 

Final elongation 72 10:00 1 x 

1 The annealing temperature is primer-specific. 
2 The elongation time depends on the length of the fragments to be amplified. The Taq polymerase used amplifies approximately 1,000 bp per 

minute. 

 

B.13.4.  Purification of PCR products using the QIAquick PCR Purification Kit 

Before PCR products can be used for further applications such as cloning, the amplified DNA 

fragments have to be purified from primers, genomic DNA, salts and other substances contained 

in the PCR reaction mixture. The purification was conducted according to the manufacturer’s 

instructions. The DNA was eluted from the spin columns it was bound to with 50 µL ddH2O and 

then stored at -20 °C. 
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B.14.  Development of quantitative real-time PCR (qPCR) assays for the de-

tection of the expression of several genes in “Candidatus Nitrospira de-

fluvii” 
 

B.14.1.  Quantitative real-time PCR 

Quantitative real-time PCR allows for the observation of the amount of amplified DNA after 

each cycle of a PCR in real-time. In general, the amplification of DNA during a PCR reaction is 

described as a sigmoid curve where the time point, on which the log-linear (exponential) phase 

of the amplification starts, depends on the initially present amount of template DNA. This in-

formation can be used to calculate the original template concentration of a reaction by compar-

ing the amplification curves of tested samples to that of defined standards for which the initial 

amount of template DNA is known. The detection of the amplified DNA is possible by applying 

an ultrasensitive fluorescence dye. SYBR Green I is a minor-groove DNA binding dye with a 

high affinity to double stranded DNA (dsDNA) (Witter et al., 1997). When bound to dsDNA the 

emission at 530 nm increases more than 1,000-fold to its pure form unbound to dsDNA (Real-

Time Applications Guide, Bio-Rad Laboratories). The assay relies on measuring the increase in 

fluorescent signal, which is proportional to the amount of DNA produced during each PCR 

cycle (Nolan et al., 2006). 

 

All qPCR reactions were performed in black 96-well microtiterplates. For the preparation of the 

reaction mixtures the 2x Platinum® SYBR® Green qPCR SuperMix UDG was used. All reac-

tions were mixed according to the manufacturer’s instructions. The volumes used for one reac-

tion are cited in Table 13. 45 µL of the master mix solution containing all ingredients except the 

template DNA were aliquoted into the wells. Then 5 µL of diluted cDNA and prediluted stan-

dard DNA were added respectively. The standards were conducted in duplicate, the unknown 

samples in triplicate. The plate then was sealed with a transparent film, covered with aluminum 

foil and centrifuged before the qPCR was run in an iCycler IQ Thermocycler. The fluorescence 

in this device is measured with the iCycler iQ Real-Time PCR Detection system. The correlation 

of the fluorescence intensity with the cycle number performed by the software allows the com-

putation of an amplification curve for each sample.   



Material and Methods 

32 

 

Table 13: Reaction mixture for a standard qPCR.  

Solution Volume per reaction 
[µL] 

ddH2O 17.5 

2x Platinum® SYBR® Green qPCR SuperMix-UDG 25.0 

Primer FW 1 1.0 

Primer RV 1 1.0 

Fluorescein (1 µM) 0.5 

(c)DNA of Ca. N. defluvii enrichment 5.0 

∑ 50.0 
1 The concentration of the primers was chosen between 500 nM and 1000 nM de-

pending on the determination of the optimal primer concentration as stated in 

B.14.3 and C.1.3. 

 

The flow chart in Figure 5 shows all steps for the development of a qPCR assay. 

 

Evaluation of the specifity of the developed qPCR assay

Determination of the optimal primer concentration

Development of a qPCR assay

Primer design

Examination of the optimal annealing temperature (Ta)

Synthesis of standards by cloning and PCR

Calculation of the copy numbers of the standard solutions

Evaluation of the specifity of the developed qPCR assay

Determination of the optimal primer concentration

Development of a qPCR assay

Primer design

Examination of the optimal annealing temperature (Ta)

Synthesis of standards by cloning and PCR

Calculation of the copy numbers of the standard solutions

Evaluation of the specifity of the developed qPCR assay

Determination of the optimal primer concentration

Development of a qPCR assay

Primer design

Examination of the optimal annealing temperature (Ta)

Synthesis of standards by cloning and PCR

Calculation of the copy numbers of the standard solutions

 

Figure 5: Workflow for the development of a qPCR assay. 
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B.14.2.  Primer design for RT-qPCR 

The first step of the development of a RT-qPCR assay is to design specific primers for the re-

gions of interest. Primers for qPCR should possess a length between 15 and 25 bp, a predicted 

annealing temperature (Ta) of at least 5 °C below the melting temperature (Tm) of the formed 

primer-DNA duplex, a GC-content between 50 and 80 percent and the amplified fragment 

should have a length between 80 and 120 bp (Innis et al., 1990; Dorak, 2006). The primers for 

the 16S rRNA-gene fragment and the gltA gene fragments were constructed using the Online 

Tool Primer3 (see in B.5) using the settings in Table 14. The primers for the two paralogous 

nxrA genes were constructed manually. To compare the different transcription levels of these 

two putative nitrite-oxidoreductase subunits the efficiency of the primers should be comparable. 

For this reason, the same reverse primer should capture both paralogous genes. Consequently, 

the goal was to find an identically region in the alignment of these two gene sequences to find a 

common reverse primer. A further requirement was to find a variable region 80 to 120 bp up-

stream of this identical region at which the two sequences differ significantly to set the forward 

primers within this region (Dorak, 2006). Due to these restrictive requirements only one region 

in the two nxrA genes was of interest for a qPCR assay. 

 
Table 14: Settings for the construction of primers 

using the Online Tool Primer3 (Rozen and Ska-

letsky, 2000). 

Length [bp] 

Min. 16 bp 

Opt. 18 bp 

Max. 24 bp 

Primer Tm 

Min. 55 °C 

Opt. 60 °C 

Max. 63 °C 

GC-content 
Min. 50 % 

Max. 80 % 

Concentration of monovalent cations 50 

Max. self complementarity 8.00 

3’ self compl. 3 

Product size [bp] 80-120 bp 

  

http://jura.wi.mit.edu/rozen/�
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Since the primer design is of paramount importance for the development of a qPCR assay the 

designed primers were checked in silico for their suitability for qPCR. Therefore, it was checked 

if they potentially form hairpins or primer dimers. Additionally, the primers where checked for 

binding sites within 10 kb to the target site in the genome of Ca. N. defluvii to rule out unspecif-

ic amplification. The final step in the development was to check the primer sequences using the 

NCBI database to show which organisms could be captured by the respective primer. Thereby, 

the only primer capturing many 16S rRNA genes of other organisms was the reverse primer 

specific for the 16S rRNA. Since particularly this primer must be most specific to rule out any 

unspecific detection, it was additionally checked against 16S rRNA sequences of a clone library 

from a Ca. N. defluvii-enrichment culture provided by Christiane Dorninger. The reverse primer 

bound to some sequences, but in combination with the highly specific forward primer the detec-

tion during qPCR could be ruled out. 

 

B.14.3. Examination of the optimal annealing temperature for the designed primer pairs 

using Temperature-Gradient PCR 

Temperature gradient PCR allows to determine the optimal annealing temperature (Ta) of a pri-

mer pair. The reaction mixtures for the PCRs are identical to that of standard PCRs. The deter-

mining factor is that different annealing temperatures are applied. To get most specific amplifi-

cation of the target sequence the highest possible Ta at which a product is obtained is chosen for 

further applications. This was checked with agarose gel electrophoresis. Thereby, genomic DNA 

of a Ca. N. defluvii enrichment culture served as template for these reactions. The examined 

annealing temperatures are shown in Table 15. 

 
 

 

Table 15: Applied annealing temperatures for gradient PCR. 

Row A B C D E F G H 

Temperature 
[°C] 

1 Gradient 1 48.0 47.6 48.8 63.2 68.0 61.4 63.7 66.0 
2 Gradient 2 46.0 47.7 50.4 54.3 59.9 63.9 66.5 68.0 

1 for 16S rRNA specific primers 
2 for gltA-, nxrA1- and nxrA2-specific primers 
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B.14.4. Synthesis of standards by cloning and PCR 

B.14.4.1. Cloning of DNA fragments for the synthesis of standards for RT-qPCR 

For the synthesis of standards for RT-qPCR the target sequences of the four genes of interest 

(A.4.1) were amplified with the respective primer pair (Table 16) via PCR and purified accord-

ing to B.13.4. These PCR products were subsequently cloned into plasmids whereof DNA frag-

ments with overhangs could be synthesized by PCR. These pure PCR products containing the 

respective target site for the qPCR assays served as standards for qPCR. Thereby, on has to con-

sider that the use of linear DNA fragments as templates is preferable because plasmids exist in 

supercoiled, coiled and linear form. The accessibility for primers and polymerase in coiled state 

is decreased in comparison to linear state. As the cDNA synthesized from RNA persists in linear 

state also the template in the standard reactions should be present in linear form to ensure com-

parability. 

 

The cloning was performed with two different cloning systems, namely pGEM®-T Easy Vector 

System I and TOPO® XL PCR Cloning Kit. 

 

The pGEM®-T Easy Vector System I works with a T4 Ligase which has to be added to the reac-

tion mixture separately while the TOPO® XL PCR Cloning Kit works with a vector that features 

a covalently bound Topoisomerase enabling the ligation of the DNA fragments into the vector. 

The applied cloning systems for the respective gene fragment are cited in Table 16. All steps 

were conducted following the manufacturers’ instructions. 

 
Table 16: Applied cloning system for syn-

thesis of standards for qPCR. 

Gene fragment Applied cloning system 

16S rRNA TOPO® XL PCR Cloning 
Kit 

gltA pGEM®-T Easy Vector Sys-
tem I 

nxrA1 TOPO® XL PCR Cloning 
Kit 

nxrA2 pGEM®-T Easy Vector Sys-
tem I 
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After heat-shock transformation of the ligated plasmids into recombinant E. coli TOP10 cells 

they were plated on LB agar-plates with kanamycin in case of TOPO® XL vector and ampicillin 

in case of the pGEM®-T Easy Vector as selection agent and incubated o/n at 37 °C. 

 

The screening for clones harbouring an insert works differently in both applied cloning systems. 

The pCR®-XL-TOPO® vector is a suicide vector encoding the lethal gene ccdB. Inserting a 

DNA-fragment into the vector disrupts the expression of this gene and allows this organism to 

grow. Cells without insert die due to the expression of the toxic ccdB gene (Bernard et al., 

1994). The pGEM®-T Easy vector works with blue/white screening. When inserting a DNA-

fragment in this vector the expression of the alpha-peptide coding region of the beta-

galactosidase enzyme gets disrupted. Lacking this functional enzyme these cells are not able to 

cleave X-Gal which is spread on the LB agar plates. X-Gal is a colorless compound that turns 

blue after cleavage by the beta-galactosidase. Therefore, white cells without functional beta-

galactosidase are harbouring an insert and can be used for growth in liquid LB for further analy-

ses. 

 

B.14.4.2. Insert screening for clones containing the correct inserts via PCR 

To screen for clones containing an insert of desired length in the transformed vectors insert 

screening PCRs with M13-primers were performed according to B.14.4.2. Therefore, single 

colonies were picked with toothpicks from the agar-plates they were grown on and transferred to 

a LB master plate. The remaining cells on the toothpick served as template for previously pre-

pared PCR-reactions by stirring the toothpicks in the reaction mixtures for some seconds. The 

colonies on the LB master plate containing an insert of the correct length confirmed by applying 

the PCR products on an agarose gel then were used for the inoculation of liquid LB medium to 

grow high amounts of cells containing oodles of plasmids (see B.7.1). From these cultures the 

plasmid DNA was isolated according to B.8.2. 

 

B.14.4.3. Synthesis of standards for RT-qPCR via PCR 

For the synthesis of standards for the developed qPCR assays, PCR applying the M13 primer 

pair (M13F and M13R) and the accordant plasmid as template was conducted. The PCR prod-

ucts of multiple identical PCR-reactions were pooled and purified using the QIA quick PCR 

Purification Kit following the manufacturer’s instructions (B.13.4). After elution in 50 µL 

ddH20 the concentration of the standard stock was determined using the Quant-iT™ Pico-

Green® dsDNA Assay Kit as shown in B.13.2. Finally, the standard stocks were diluted in in-
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crements of 10 down to a dilution of 10-13. Aliquots of 20 µL were prepared and stored at 

-20 °C. 

 

B.14.5.  Calculation of copy numbers of the synthesized standards 

For the calculation of the copy numbers of the synthesized standards, the molecular weights 

(MW) of the M13-PCR products of the plasmids containing the gene fragments of interest were 

calculated based on the sequence of the inserts and the amplified M13-overhangs using the On-

line Tool DNA/RNA/Protein Molecular Weight Calculator (B.5). Based on the calculated mole-

cular weight of the standard fragments and the determined concentration [ng µL-1] of these solu-

tions the calculation of the copy number per µL was performed according to Formula 1. 

 

Formula 1: Calculation of copy numbers. 

copy number x µL-1 = 
c [ng µL-1] 

MW [Da] x 1,66053878283 x 10-15 [ng] 

1 Dalton (Da) = 1.66053878283 x 10-27 kg 

 

 

B.14.6.  qPCR program 

Table 17: qPCR programs for the developed qPCR assays. 

Cycle Step Temperature [°C] Time [mm:ss] Repeats Data collec-
tion 

1 1 95.0 05:00 1x  

2 

1 95.0 00:40 

40x 

 

2 

16S rRNA 61.4 

00:30 yes gltA 54.3 
nxrA1 63.9 
nxrA2 66.5 

3 72.0 00:40 yes 
3 1 95.0 01:00 1  
4 1 55.0 01:00 1  

5 1 55.0-95.0 
(0.5 °C increase after each cycle) 00:10 80x 

yes 
(melt curve + 
data analysis) 
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B.14.7.  Determination of the optimal primer concentrations for qPCR 

To determine the optimal primer concentrations enabling the highest possible efficiency for each 

qPCR assay reactions with differently concentrated primer solutions were prepared and run in 

duplicate. The evaluated primer concentrations are shown in Table 18. The optimal primer con-

centrations for which the lowest threshold cycle (Ct) and the highest fluorescence signal was 

observed were used for further qPCR analyses. Plasmids harboring the correct insert were used 

as templates. 

 
Table 18: Evaluated Primer-concentrations for qPCR. 

 Concentration 
Forward-Primer [nM] 

Concentration 
Reverse-Primer [nM] 

F250/R250 250 250 

F500/R500 500 500 

F750/R750 750 750 

F1000/R1000 1000 1000 

F250/R1000 250 1000 

F1000/R250 1000 250 
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B.14.8.  Schematic plate setup for evaluation of the qPCR assays 

Figure 6 shows a schematic plate setup for a qPCR run. The standards were run in duplicate.  

Tested samples with unknown concentration of target DNA were run in triplicate. Each run in-

cluded at least one negative control with ddH2O as template. 

  

 1 2 3 4 5 6 7 8 9 10 11 12 

A 
                        

B 
  

STD 10-3 STD 10-4 STD 10-5 STD 10-6 STD 10-7 STD 10-8 STD 10-9 STD 10-10 STD 10-11 NTC - 
water   

C 
  

STD 10-3 STD 10-4 STD 10-5 STD 10-6 STD 10-7 STD 10-8 STD 10-9 STD 10-10 STD 10-11  
  

D 
  

          
  

E 
  

sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9 sample 10 NTC - 
water 

F 
  

sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9 sample 10 
 

G 
  

sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9 sample 10 
 

H 
                        

Figure 6: Schematic plate setup for the evaluation of the developed qPCR assays. NTC = negative 

control 

 

 
 

 

B.14.9.  Checking the specificity of the qPCR assays 

The specificity of the qPCR assays was checked by analyzing the melting curves after each run 

as well as by applying the qPCR products to a 2.5% agarose gel to confirm the desired product 

by length control. Additionally, the primer specificity was checked once by sequencing. 

 

B.14.9.1. Melting curve analysis 

Melting curve analysis is an important tool for checking the quality of PCR products. The melt-

ing temperature is determined by the length and GC-content of nucleic acid. For measuring the 

melting curve the fluorescence intensities in the wells were measured within a range of 55 °C to 

95 °C in increments of 0.5 °C. The temperature at which the decrease in fluorescence intensity 

was determined to be highest is defined as melting temperature (Tm) of the respective PCR 

product. At this temperature the dsDNA-fragments are melted and therefore no fluorescence 

signal can be detected since the dye emits magnitudes higher fluorescence when intercalated 
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into double stranded DNA. Ideally, there is one single peak for a PCR product suggesting only 

one sort of nucleic acid. If there would exist another amplicon with another melting temperature 

a second peak would be visible. The melting curve was determined immediately after each 

qPCR run in the iCycler IQ Thermocycler. 

 

B.14.9.2. Direct sequencing of PCR products 

To check whether there is no unspecific amplification in PCR with cDNA reverse transcribed 

from Ca. N. defluvii RNA the PCR products were directly sequenced. 

 

The sequencing method is based on the abortion of the amplification due to the use of fluores-

cently labelled ddNTPs besides common dNTPs lacking the 3’ OH group (one colour specific 

for one base). Thereby, the amplifications stop at an unknown point by accident. These fluores-

cently labelled PCR products subsequently are separated electrophoretically and the attached 

dyes are detected. In this way, the DNA sequence can be revealed. To get best possible certainty 

about the product not only one primer was used but the sequencing was conducted in both direc-

tions in independent reactions. This allows an alignment of the sequences obtained with the for-

ward- and the reverse-primer to get the full sequence of the amplicon. For this purpose, the PCR 

products for all four examined genes were sequenced applying cyclesequencing - a di-deoxy 

mediated chain termination (Sanger et al., 1977) based PCR (Saiki et al., 1988). The primers 

used are cited in Table 11. The sequencing was performed by Martina Grill. 

 

The chromatograms obtained by the electrophoretical separation had to be read out manually. A 

computerized analyzes was not possible for most sequences due to the shortness of the obtained 

PCR products (~ 100 bp). Afterwards the sequences obtained for sequencing reaction using the 

reverse primer was reverse complemented and then aligned to the sequence obtained using the 

forward primer. The overlapping region could be identified and the sequences could be com-

pleted. 

 

The obtained sequences were then compared to the NCBI database using the search algorithm 

BLAST (B.5) (Altschul et al., 1990) to find regions of high similarity to known sequences in the 

database. 
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B.15. Gene expression study 
 

B.15.1.  Incubation of ”Candidatus Nitrospira defluvii“ under different environmental con-

ditions 

To examine changes in the transcription of the nxrA1 and nxrA2 genes under different environ-

mental conditions cultures of Ca. N. defluvii were incubated at different NO2
--concentrations 

under oxic conditions on the one hand and with pyurvate and NO3
- under anoxic conditions on 

the other hand. The exact incubation conditions are shown in Table 19. Each incubation was 

prepared in duplicate and carried out at 30 °C. 

 
Table 19: Incubation conditions for the incubation experi-

ments. 

 oxic conditions anoxic conditions 

e--Donator NO2
- NO2

- NO2
- Pyruvate 

- Concentration 
[mM] 0.3 3 15 0.5 

e--Acceptor 
O2 O2 O2 

NO3
- 

- Concentration 
[mM] 2.5 

 

For these incubations eight 150 mL enrichment cultures - maintained as described in B.7.2 - 

were used. They were active up to the start of the incubation experiments and free of detectable 

nitrite. For the incubation experiments 250 mL Schott bottles airtightly closed with rubber stop-

pers were used and filled with 100 mL NOB-medium.  To adjust the respective incubation flasks 

to the right environmental conditions (Table 19), sterile filtered NaNO2 solution, anoxic NaNO3 

solution and anoxic pyruvate solution were prepared and injected with syringes and needles un-

der sterile conditions next to the Bunsen burner. Additionally, 6 mL N2CO2 gas mixture (20% 

CO2) were added to the bottles to supply sufficient CO2. To avoid input of remaining oxygen in 

the needles into the anoxic bottles when taking samples or adding substances the needles and 

syringes were flushed with N2CO2 gas mixture before injection into the bottles. To ensure that 

each approach contained approximately the same amount of cells the cultures were pooled in 

anoxic medium before splitting them up into the different incubation bottles. For each approach 

the same amount of pooled culture was injected into the Schott bottles. 
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The concentrations of nitrite and nitrate in the different incubations were controlled regularly by 

sampling and measuring with nitrite (NO2
-) and nitrate (NO3

-) test strips and adjusted if neces-

sary. The samples were centrifuged at 14,000 rpm for 10 min at RT to pellet the cells and the 

supernatant was stored at -20 °C for later measurements. 

 
 

 

B.15.2.  Method for accurate measurement of NO2
--concentrations (Griess Reaction)  

For an accurate measurement of nitrite concentrations of taken samples the Griess reaction was 

applied (Griess, 1879). In this reaction nitrite reacts with sulfanilamide and NED and forms a 

pinkish compound which is measurable photometrically. Therefore, the absorbance at a wave-

length of 545 nm is measured. The method is sensitive for nitrite concentrations up to 100 µM. 

To calculate the nitrite concentrations of samples the measured values were compared to meas-

ured values for a dilution series of a defined nitrite solution. All samples had to be diluted to lie 

within the range of the standards. 

 

For the preparation of the nitrite standards a 0.1 M nitrite solution was prepared in NOB-

medium. This solution was diluted with NOB-medium down to 50, 37.5, 25, 18.75, 6.25 and 

3.125 µM. In addition pure NOB-medium was included for the calculation of the standard 

curve. The thawed samples of the 3 mM nitrite incubations were diluted 1:100 and the samples 

of the 15 mM nitrite incubation 1:500 to be in the range of the standards. 50 µL of samples and 

standards were applied in triplicate to a transparent 96-well microtiterplate. Then, 1 µL 1% sul-

fanilamide solution was added to each well containing sample or standard solution and incu-

bated for approx. 2 min. Subsequently, 1 µL 0.1% N-(1-Naphtyl-)ethylendiamin-

dihydrochloride solution was added to each well inducing a color change from transparent to 

pinkish if nitrite is present. This color change is based on the chemical reaction shown in Figure 

7. The intensity of the colour change increases linearly up to a concentration of 100 µM NO2
-. 

The photometrical measurement of the absorbance was performed in a TECAN Infinite 200 

PRO multimode microplate reader where multiple measurements (2 x 2) per well were per-

formed. The obtained values then where averaged. 
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Figure 7: Griess reaction  (Griess, 1879; 
Griess Reagent System, Promega) 

 

 

B.16. Investigation of the coexistence of three subpopulations of Nitrospira 

sublineage II in the wastewater treatment plant of the University of vet-

erinary medicine Vienna applying quantitative FISH 
 

B.16.1.  Fluorescence in situ hybridization (FISH) 

FISH is a method that enables the specific visualization of certain taxa in their natural habitat 

using fluorescently labeled oligonucleotide probes. These probes are artificially synthesized for 

the organisms of interest and bind specifically to their 16S or 23S rRNA. Cells are fixed with 

PFA or Ethanol and then immobilized on a microscope slide. The next step is a hybridization of 

the specific oligonucleotide probes with the rRNA under stringent conditions. To remove un-

bound probes a washing step is performed subsequently. The excitation of the fluorescence dye 

bound to the oligonucleotide probes at a specific wavelength then allows the detection using an 

epifluorescence or confocal laser scanning microscope. 
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B.16.1.1. Oligonucleotide probes used targeting the 16S rRNA 

Table 20: Properties of applied FISH probes for the quantification. 

Probe Sequence (5’-3’) Binding 
position* 

FA 
[%] Specificity Reference 

Competitor 
sequence 

(5’-3’) 

EUB338 GCT GCC TCC CGT 
AGG AGT 338-355 0-50 Most Bacteria (Amann et al., 1990) - 

EUB338II GCA GCC ACC CGT 
AGG TGT 338-355 0-50 Planctomycetales (Daims H. et al., 1999) - 

EUB338III GCT GCC ACC CGT 
AGG TGT 338-355 0-50 Verrucomicrobiales 

(Daims H. et al., 1999) 
 

- 

Ntspa662 GGA ATT CCG CGC 
TCC TCT 662 - 679 35 Genus Nitrospira (Daims H. et al., 2001) 

GGA ATT 
CCG CTC 
TCC TCT 

Ntspa1151 TTC TCC TGG GCA 
GTC TCT CC 1151 - 1170 35-40 sublineage II of the 

genus Nitrospira 
(Maixner F. et al., 

2006) - 

Ntspa175 GAC CAG GAG CCG 
TAT GCG 175 - 193 25 cluster 2.2 (Stoecker et al., 2010) - 

Ntspa195   20 cluster 2.4 (Dorninger et al., 
unpublished) - 

Ntspa256Cl2   20 cluster 2.5 (Dorninger et al., 
unpublished) - 

* binding position according to E.coli 16S rRNA (Brosius et al., 1981) 

 

Table 21: Properties of used fluorescence dyes. 

Fluorescence dye Absorption maximum [nm] Emission maximum [nm] molar extinction coefficient [1/mol*cm] 

Fluos 494 518 7.5 x 104 

Cy3 554 570 1.3 x 105 

Cy5 650 667 ≥2 x 105 

 

 

B.16.1.2. Cell fixation with paraformaldehyde (PFA) 

For the fixation of sludge samples three volumes 4% PFA solution were added to one volume of 

sludge and incubated for approximately 2 h at 4 °C. Subsequently, the sludge was centrifuged at 

11,000 rpm for 15 min and the supernatant was discarded. By resuspending the pellet in 1x PBS 

and subsequent centrifugation as mentioned before the pellet was washed. The supernatant was 

discarded and the sludge pellet resuspended in a mixture of one volume 1x PBS and one volume 

EtOHabs.. These PFA-fixed samples were stored at -20 °C. 
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B.16.1.3. Cell immobilization 

3 x 10 µL of fixed activated sludge were successively pipetted onto a microscope slide and dried 

at 46 °C. For quantifications with probes giving very weak signal the amount of sludge was de-

creased down to at least 1.5 µL to reduce the autofluorescence (AF) signal. 

 

B.16.1.4. Dehydration of the cells 

To further dehydrate the samples after drying in the immobilization step and to increase the 

permeability of the cells an ethanol series was performed. For this, the slides were immersed for 

3 min into 50%, 80% and 96% ethanol in this sequence and subsequently air-dried.  

 

B.16.1.5. Hybridization 

The hybridization has to be performed under stringent conditions. Since all hybridizations are 

carried out at 46 °C the adjustment of stringency is not ensured by change of temperature but by 

addition of formamide (FA). FA acts as destabilizer of hydrogen bonds between two strands and 

increases the stringency in this way. NaCl on the other hand acts stabilizing and facilitates the 

formation of duplexes between rRNA and DNA-probes. In this way the stringency can be de-

creased. This is made possible by a masking of the negatively charged nucleic acid backbone by 

Na+ ions and thereby a reduction of the repulsion between the two strands. The composition of 

the hybridization buffer (HB) according to the required FA concentration is shown in Table 22. 

 
Table 22: Composition of hybridization buffer (HB) depending on the desired FA concentration. 

FA [%] 0 5 10 20 25 30 35 40 45 50 

5 M NaCl [µL] 180 180 180 180 180 180 180 180 180 180 

1 M Tris/HCl pH 8 
[µL] 20 20 20 20 20 20 20 20 20 20 

ddH20 [µL] 800 750 700 600 550 500 450 400 350 300 

FA [µL] 0 50 100 200 250 300 350 400 450 500 

10% SDS (w/v) [µL] 1 1 1 1 1 1 1 1 1 1 

 

 

10 µL of HB were pipetted onto each well. 1 µL of each probe was added to the applied HB and 

mixed by pipetting up and down carefully. The rest of the 1 mL of HB was emptied into a 50 

mL Greiner tube prepared with a piece of paper tissue. The slide was inserted into this Greiner 

tube taking care that the slide lies horizontally. The tube then was closed and placed into an hy-
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bridization oven set to 46 °C and incubated for 15 hours. The reason for this long incubation 

time was that especially the probes specific for subpopulations of Nitrospira sublineage II give 

very weak signals and therefore have to be hybridized for longer times to improve the binding. 

To ensure comparability of all applied probes all of them had to be hybridized for the same pe-

riod of time. 

 

B.16.1.6. Washing step 

After the hybridization step the slides had to be washed to remove unbound probes. The strin-

gency in the washing buffer is determined by the addition of NaCl. To guarantee that only Na+ 

ions stabilize the nucleic acid-duplexes, EDTA is added to bind bivalent cations which also 

could affect the stringency. The composition of the washing buffer (WB) depending on the FA 

concentration used in the HB is shown in Table 23. 

 
Table 23: Composition of washing buffer (WB) depending on the introduced FA concentra-
tion in the hybridization buffer (HB). 

FA [%] in HB 0 5 10 20 25 30 35 40 45 50 

5 M NaCl [µL] 9000 6300 4500 2150 1490 1020 700 460 300 180 

1 M Tris/HCl pH 8 
[mL] 1 1 1 1 1 1 1 1 1 1 

0.5 M EDTA pH 8 
[µL] 0 0 0 500 500 500 500 500 500 500 

ddH20 ad 50 mL 

10% SDS (w/v) [µL] 50 50 50 50 50 50 50 50 50 50 

 

In the washing step the slides were washed in pre-heated, 48 °C warm WB for 10 min. To wash 

away all remaining probes and salt, an additional washing step followed under hyper-stringent 

conditions by dipping the slide shortly into ice cold ddH20. In order not to wash away correctly 

bound probes this hyperstringent washing step had to be really short. Afterwards the slides were 

dried immediately with compressed air and could then be analysed or stored at -20 °C in the 

dark. 
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B.16.2.  Analyzed activated sludge samples 

All samples analyzed in this study were obtained from Christiane Dorninger. The samples were 

taken in the WWTP of the Vetmed within the years 2004 and 2010 and PFA-fixed for the stabi-

lization of the bacterial cell morphology of especially garm-negative bacteria. All sampling 

times are shown in Table 24. 

 

Table 24: Analyzed activated sludge samples of the WWTP of the University of Veterinary Medicine Vienna. 

03/04/04 04/15/04 07/13/04 05/14/07 06/28/07 11/17/08 02/03/09 10/07/09 07/02/10 08/16/10 

 

 

B.16.3.  Confocal laser scanning miscroscopy (CLSM) 

This special microscope type allows one to take pictures only of single planes of a sample. This 

is made possible by the application of an adjustable pinhole in the beampath which excludes 

light emitted from planes out of the focus. The objects are scanned with different lasers of spe-

cific excitation-wavelength which is depending on the applied fluorescence dye. After detection 

of the emission the signals are converted into digital images by the microscope software. 

 

B.16.4.  Detection of labelled cells using the CLSM 

Before microscopic inspection the slides were covered with Citifluor AF1 and a cover slip. 

Citifluor AF1 reduces bleaching effects on the fluorescence dye during the application of very 

intense laserbeams. For microscopy, two He-Ne-lasers were used with excitation-wavelengths at 

453 and 633 nm for the excitation of the fluorescence dyes Cy3 and Cy5, respectively. For the 

quantification an oil-objective with a 40x magnification in combination with a 10x magnifying 

ocular were used.  

 

B.16.5.  Quantification of labelled cells using daime 

The biovolume fraction of a subpopulation labelled with a Cy3-labelled probe was quantified 

relative to the biovolume of a higher order population labelled with a Cy5-labelled probe. This 

was done for 30 two-dimensional pictures taken at randomly selected positions on the micro-

scopic slide by searching for thick layer of biomass when visualized under transmitted light 

were. The biovolume fraction then was determined by using the software daime.  
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The settings for recording of most pictures are listed in Table 25. In case of the probe specific 

for cluster 2.5 of Nitrospira sublineage II the settings had to be adjusted by increasing the di-

ameter of the pinhole due to the extremely weak signal. 

 
Table 25: Settings for image recording. 

Pinhole diameter 1.1 µm 

Picture number 2 

Resolution 512 x 512 

Objective 400 x 

Zoom 1 x 

Scanspeed 8 

Pixel time 2.56 µs 

 

The analysis of the pictures was carried out using the software daime. The first step of the 

analysis is to segment the images to distinguish between objects and background signals. This 

has to be done for both levels - the superordinate and the subordinate probes. These automati-

cally defined objects can furthermore be edited by hand for applications such as the removal of 

artefacts which have been observed during the recording of the images. This is particularly im-

portant when an artefact gives signals in both channels (Cy3 and Cy5) or only in Cy5. If there 

are artefacts only in the subordinate level - here always the Cy3 channel - there is the possibility 

of removal by the software automatically. The congruency threshold was set to 50% to eliminate 

all signals from the subordinate level which are not covered by the superordinate probes at least 

to 50%. 

 

The recorded images were evaluated using the software daime. The biovolume fractions calcu-

lated for each picture were then cumulated. The cumulative curves can be exported from the 

software and show the change of the average biovolume fraction after adding each further pic-

ture to the analysis. Observing the development of the cumulative curve provides information 

about the sufficiency of the number of pictures taken. If there is no visible change in the total 

biovolume fraction after a certain number of pictures taken this number can be assumed to be 

accurate. 

 

Important information about the quality of the assay is also revealed by the standard deviations 

for each examined samples. This standard deviation is calculated for each examined sample out 
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of 30 pictures. The standard deviation then provides information about the consistence of the 

distribution of the quantified cells. This information is especially important when quantifying 

cells growing in colonies because thereby the variations from picture to picture are assumed to 

be high. 
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C. Results 
 

C.1. Development of quantitative real-time PCR assays for different genes of 

“Candidatus Nitrospira defluvii” 
 

C.1.1.  Primer design for RT-qPCR 

Table 11 shows all primers designed for the reverse transcription and subsequent qPCR to am-

plify fragments of four different genes of Ca. N. defluvii. The length of the amplified fragments 

was between 98 and 118 bp. As mentioned in B.14.2 the two paralogous nxrA-copies should be 

captured by the same reverse primer which was possible in the 3’-region of the genes. 

 

C.1.2. In-silico check for primer specificity 

To ensure the specificity of the designed primers, they were additionally checked in silico 

against the NCBI-database. Thereby, all primers were shown to be specific with the exception of 

the reverse primer specific for the 16S rRNA. This one, however, was shown to be specific in 

combination with the designed forward primer after checking this primer pair against the 16S 

rRNA contaminant clone library of the Ca. N. defluvii enrichment culture. 

 

C.1.3.  Examination of the optimal annealing temperature (Ta) for the developed primer 

pairs 

The optimal annealing temperatures (Ta) for the examined primer pairs were found to range be-

tween 54.3 and 66.5 °C (Table 26). The selection of the optimal Ta was carried out by selecting 

the highest temperature at which specific amplification was observed. Thereby, the risk of un-

specific binding of the primers to other, similar regions can be reduced. The selected tempera-

tures are framed with black rectangles in Figure 8  and Figure 9. Especially for the gene nxrA2 

the Ta is quite high but still applicable. 
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Figure 8: Gel pictures of gradient-PCRs for the evaluation of the optimal annealing temperatures for two 

different primer pairs. A: 16S rRNA-specific primers. B: gltA-specific primers.  

 

Figure 9: Gel pictures of gradient-PCRs for the evaluation of the optimal annealing temperatures for two 

different primer pairs. C: nxrA1-specific primers. D: nxrA2-specific primers. 
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Table 26: Selected primer annealing tempera-

tures for the designed primer pairs. 

Primer Pair Optimal Ta
 [°C] 

16S_814_FW / 16S_911_RV 61.4 

gltA_FW / gltA_RV 54.3 

NxrA1_FW / NxrA1_RV 63.9 

NxrA2_FW / NxrA1_RV 66.5 

 

 

C.1.4. Synthesis of standards for qPCR by cloning 

For the synthesis of standards for qPCR the target gene fragments were amplified via PCR with 

the respective specific primers and purified. The obtained PCR products then were cloned into 

vectors. After growing of cultures containing these vectors and isolation of the plasmids via 

miniprep the desired plasmid solutions were obtained. All information concerning the applied 

cloning systems and the concentrations of the plasmid solutions are listed in Table 27. 

 
 

Table 27: Plasmids containing the target-gene-fragments for the synthesis of qPCR-standards. 

Target 
gene 

Length of 
target frag-
ment [bp] 

Used vector 
Concentration of 

plasmid DNA 
[ng µL-1]* 

Molecular weight of 
amplified vector-
overhangs [kDa] 

Molecular weight of 
vector-overhangs + 

insert [kDa] 

16S rRNA 98 pCR®-XL-TOPO® 326.5 150.33 211.19 

gltA 99 pGEM®-T Easy Vector 209.1 143.46 204.91 

nxrA1 118 pCR®-XL-TOPO® 233.9 150.33 223.42 

nxrA2 108 pGEM®-T Easy Vector 169.4 143.46 210.23 

* measured with NanoDrop® ND-1000 spectrophotometer. 

 

The actual synthesis of the standards was done by performing PCR using the M13F/R primer 

pair and 1:100-dilutions of each plasmid listed in Table 27 as template. To get more PCR prod-

uct five PCRs per target-gene were performed in parallel and pooled afterwards. All information 

concerning the PCR products is listed in Table 27.  

 

These PCR products were purified according to B.13.4 and used as standards for qPCR by dilut-

ing them 1:10 in several steps. Aliquots of 20 µL were prepared and stored at -20 °C to prevent 

degradation by repeated thawing.  
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C.1.5. Calculation of copy numbers of the synthesized standards 

To calculate the copy numbers of the standards the concentrations of the purified M13-PCR 

products were measured using the Quant-iT™ PicoGreen® dsDNA Assay Kit. The copy num-

bers of the undiluted standard stocks (STD 100) have been calculated according to B.14.5. The 

measured concentrations of the standard stocks as well as the calculated copy number per µL are 

listed in Table 28. 

 
Table 28: Information on synthesized standards con-

cerning their MW, concentration and copy number. 

Target gene 
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16S rRNA 62.2 342 211.19 1.77 x 1011 

gltA 5.4 331 204.91 1.58 x 1010 

nxrA1 18.2 362 223.42 4.90 x 1010 

nxrA2 64.9 340 210.23 1.86 x 1011 
* calculated using the Quant-iT™ PicoGreen® dsDNA Assay Kit 
MW = molecular weight 

 
 

C.1.6.  Determination of the optimal primer concentrations for qPCR 

For the determination of the optimal primer concentration for the qPCR assays identical reac-

tions with the exception of the primer concentration were prepared. 5 µL of standard solution - 

ranging between 0.1 and 10.0 pg µL-1 for the different assays - served as templates. The optimal 

primer concentration for each assay was selected on basis of the threshold-cycle (Ct) and the 

fluorescence intensity. A combination of a low Ct-value and high fluorescence intensity was 

desired. An example of the selection based on these requirements is shown in Figure 10 A for 

the nxrA2 qPCR assay where the primer concentration of 750 nM for the forward as well as for 

the reverse primer gave the lowest Ct-value for the reaction in combination with the highest 

fluorescence signal (Figure 10 B). The results of all primer evaluations are shown in Table 29.   
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Figure 10: Example for the evaluation of the optimal primer concentration based on the evalua-

tion for the nxrA2 qPCR assay. A: Amplification curves of the reactions with the optimal 

primer concentration of 750 nM for the forward (FW) and reverse (RV) primer, respectively 

showing the lowest Ct-value. B: Amplification curves of all reactions with different primer-

concentrations. 

 

 

 

 

 

 

 

 

 

 

 

Table 29: Optimal primer concentrations for the four developed qPCR assays. 

Target gene Primer pair Optimal annealing 
temperature [°C] 

Optimal primer concen-
trations [nM] 

FW-
primer 

RV-
primer 

16S rRNA 16S_814_FW/RV 61.4 750 1000 

gltA gltA_FW/RV 54.3 500 500 

nxrA1 NxrA1_FW/NxrA_RV 63.9 750 750 

nxrA2 NxrA2_FW/NxrA_RV 66.5 750 750 

A B 
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C.1.7.  Evaluation of qPCR assays with cDNA from “Candidatus Nitrospira defluvii” 

For each qPCR assay a test run with cDNA synthesized by reverse transcription (RT) of total 

RNA from Ca. N. defluvii enrichment culture with the respective reverse-primer was performed. 

The total RNA was isolated from an enrichment culture of Ca. N. defluvii according to B.9. For 

the synthesis of cDNA two different RT-Kits were used to get also information about the influ-

ence of the used Reverse Transcriptase on the efficiency and comparability of the assay. The RT 

reactions with the two different Kits from Fermentas and Invitrogen (Table 6) were performed 

as described in B.12. Thereby, 250 ng of total RNA were used per reaction. For the qPCR runs 5 

µL of different dilutions (10-1, 10-2 and 10-3) of the RT-products were used as templates to get an 

assessment of how much cDNA is necessary to get evaluable results. Also the efficiencies of the 

qPCR assays and thus the efficiencies of the amplifications depending on the quality of the 

primers were evaluated in this way. 

 

C.1.7.1. 16S rRNA qPCR assay 

The first qPCR assay that was tested was specific for the 16S rRNA of Ca. N. defluvii. Figure 

11 shows that the duplicates of standards fit very well and also the distances between the differ-

ent standard solutions are very similar. This proves accurate pipetting. Detection was possible 

for the standards diluted to 10-3 to 10-9. Therefore, there is the possibility to detect between 886 

and 8.86 x 108 copies of 16S rRNA with this assay based on the calculation in C.1.5. 

 

 
Figure 11: Amplification curves of standards and negative 

controls of the 16S rRNA qPCR test run. 

 

Figure 12 A and B show the calculated standard curve with a quite high correlation coefficient 

of 0.998 and a PCR efficiency of about 80%. Thereby, there were no conspicuous outliers. Dis-
A 
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A 

B 

played in A are the dilutions (10-1, 10-2 and 10-3) of cDNA synthesized using the RevertAid™ 

First Strand cDNA Synthesis Kit (in the following referred to as Fermentas-Kit). Figure 12 B 

shows the results for the applied cDNA synthesized with the second applied reverse transcrip-

tase (SuperScript®, Invitrogen) which was compared to the one of Fermentas. One can see that 

there are nearly the same results obtained for the two different RT-Kits. The 1:10 dilutions of 

cDNA synthesized from 250 ng total RNA are detected in the upper range of the applied stan-

dards. Therefore, also the 1:10 dilution of cDNA transcribed from 100 ng total RNA which is 

recommended as minimal amount of total RNA per reaction should be easily detectable with 

this assay. 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Figure 12: Standard curves and concentrations of tested samples of the 16S rRNA qPCR. A: Standard curve 

with tested samples reverse transcribed with RevertAid™ First Strand cDNA Synthesis Kit. B: Standard 

curve with samples reverse transcribed with SuperScript® Reverse transcriptase. 
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C.1.7.2. gltA qPCR assay 

The expression of the mRNA of the gltA gene encoding the enzyme citrate synthase was de-

tected with the gltA qPCR assay. Figure 13 shows the amplification curves of the standards 10-3 

to 10-11 and of the negative controls - all in duplicates. The amplification curves of the negative 

controls show amplification after approximately 36 cycles similar to that of STD 10-11 (see Fig-

ure 13, additionally marked with an arrow). The duplicates are very consistent. The distances 

between the different standard dilutions at the interface with the threshold line show similar 

lenghts. Detection of gltA copies was possible for the standards 10-3 to 10-10 allowing the detec-

tion of gltA mRNA copies in samples between 8 and 7.89 x 107 copies.  

 

 
Figure 13: Amplification curves of standards and negative controls of the 

gltA qPCR test run. 

 

 

Figure 14 A and B show the calculated standard curve. The PCR efficiency of about 99% and a 

correlation coefficient of 0.999 are almost perfect and confirm a high efficiency of this assay. 

Furthermore, the measured samples reverse transcribed with the two different RT-Kits are 

shown. The obtained results are comparable for the different dilutions of samples (1:10, 1:100, 

1:1000). The expression of the citrate synthase seems to be very low since the 1:10 dilutions are 

detected near standard 10-7 and therefore contain only approximately 8,000 copies. This is more 

than four orders of magnitude lower than the expression of the 16S rRNA. 

STD 10-11

Negative control

STD 10-11

Negative control

STD 10-11

Negative control

STD 10-11

Negative control
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C.1.7.3. nxrA1 qPCR assay 

For the nxrA1 qPCR the standard dilutions from 10-3 to 10-11 (shown here from 10-3 to 10-9) were 

detectable (Figure 15). Similar distances between the amplification curves of the different stan-

dards applied in duplicate show an accurate dilution of the standards. With the standards diluted 

to 10-3 to 10-11 a detection of 3 to 2.53 x 108 copies of the nxrA1 gene is possible.  
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 14: Standard curves of the gltA qPCR. A: Standard curve with samples reverse transcribed with 

RevertAid™ First Strand cDNA Synthesis Kit: B: Standard curve with samples reverse transcribed with 

SuperScript® Reverse transcriptase. 

 
Figure 15: Amplification curves of standards and negative 
controls of the nxrA1 qPCR test run. 

B 

A 
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Figure 16: Standard curves of the nxrA1 qPCR evaluation. A: Standard curve with samples reverse tran-

scribed with RevertAid™ First Strand cDNA Synthesis Kit: B: Standard curve with samples transcribed 

with SuperScript® Reverse transcriptase. 

 

The calculated standard curve for this qPCR is displayed in Figure 16 A and B. The PCR effi-

ciency of 90.3% is very high and shows that the applied primer pair is well-suited for a qPCR 

assay. The correlation coefficient was perfect with 1.000. 

 

 The results for the samples synthesized with the two different reverse transcriptase enzymes are 

displayed in Figure 16 A and B, respectively. The nxrA1 gene is expressed at a very low level. 

Therefore, standards diluted to 10-10 and 10-11 were included in further qPCR assays investigat-

ing this gene. The comparison of the two different RT enzymes shows similar results for the two 

first dilutions of the RT-product (1:10, 1:100). The 1:1000-dilution was not detectable. 

B 

A 
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C.1.7.4. nxrA2 qPCR assay 

Figure 17 shows the amplification curves for the standards of the nxrA2 gene diluted to 10-4 to 

10-9. The range of detectable copy numbers of the nxrA2 gene in an unknown sample therefore 

is between 930 and 9.3 x 107 copies. The duplicates of the standards fit very well and also the 

distances between the amplification curves of the different standards are similar showing accu-

rate dilution.  

 

 
Figure 17: Amplification curves of standards and negative 

controls of the nxrA2 qPCR test run. 

 

 

The standard curves shown in Figure 18 show a high PCR efficiency of 88.0%. The correlation 

coefficient of 1.000 confirms accurate pipetting. The unknown samples transcribed with differ-

ent RT-enzymes show similar results. This again confirms the same efficiency of the applied 

RT-enzymes. The expression of the nxrA2 gene in comparison with the nxrA1 gene is much 

higher. 
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Figure 18: Standard curves of the nxrA2 qPCR. A: Standard curve with samples reverse transcribed with 

RevertAid™ First Strand cDNA Synthesis Kit: B: Standard curve with samples transcribed with Super-

Script® Reverse transcriptase. 

 

B 

A 
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C.1.8. Evaluation of the specificity of the qPCR assays by melting curve analyses 

 

C.1.8.1. 16S rRNA qPCR assay 

Figure 19 shows the melting curves of the evaluation of the 16S rRNA assay. All tested samples 

and standards showed similar melting curves. The negative controls show clearly that there was 

no product and therefore no amplification. 

 

 
Figure 19: Melting curves of standards, negative 

controls and tested samples of the 16S qPCR evalua-

tion. 

 

 

C.1.8.2. gltA qPCR assay 

Figure 20 A shows the melting curves of all standards and the negative controls of the gltA 

qPCR test run. The higher concentrated standards (10-3 to 10-9) and the 1:10 and 1:100 dilutions 

of the samples show one peak at about 88 °C. The standards 10-10 and 10-11 as well as the 1:1000 

dilutions of the samples and the negative controls in contrast show a second peak at about 78 °C.  
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C.1.8.3. nxrA1 qPCR assay 

All melting curves of the qPCR assay specific for the nxrA1 gene shows one sharp peak at about 

85 °C for all standards (Figure 21). No primer dimer formation and no detectable peaks for the 

negative controls were observable. 
 

 

 
Figure 20: Melting curves of standards, negative controls and 

samples of the gltA qPCR evaluation. A: Melting curves of all 

reactions. B: Melting curves of all reactions without the nega-

tive controls, standards 10-10 and 10-11 and 1:1000 dilutions of 

the tested samples. 

 
Figure 21: Melting curves of standards, negative con-

trols and samples of the nxrA1 qPCR test run. 

A 

B 

Second peak of the 
standards 10-10 and 
10-11, the negative 
controls and the 
1:1000 diluted un-
known samples. 
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C.1.8.4. nxrA2 qPCR assay 

Figure 22 shows the melting curves of all standards, tested samples and negative controls of the 

nxrA2 qPCR evaluation. All standards have a peak at about 87 °C and no peaks are visible for 

the negative controls.  

 

 
Figure 22: Melting curves of standards, negative 

controls and samples of the nxrA2 qPCR test run. 

 

C.1.9.  Evaluation of the specificity of the primers developed for qPCR by sequencing of 

RT-PCR products 

The same cDNA as applied in the qPCR test runs was used as template for end-point PCR. The 

primer pairs and PCR programs applied for these reactions were identical to the qPCR runs. The 

PCR products were sequenced to get more information about the specificity of the developed 

primers. The obtained sequences are shown in Table 30. The primer-targeting sites are marked 

grey at the beginning and end of the sequences. For the gltA- and nxrA2-specific primers the 

amplified fragments were 100% identical to the respective region in the target genes. In the ob-

tained sequences for the 16S rRNA- and nxrA1-specific primers there were gaps (indicated as “-

“ in Table 30) in the obtained sequences when aligned against the gene sequences of the genome 

of Ca. N. defluvii. For the amplicon obtained by applying the 16S rRNA targeting primers three 

gaps were detected in the sequence and for the nxrA1 targeting primers one gap was observed. 

The chromatograms for all sequences did not show any background signal suggesting that there 

was no unspecific amplification. 
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Table 30: Sequences obtained for direct sequencing of RT-PCR products for the examination of the primer-
specificity. The grey region in the middle of the sequences is the overlapping part of the sequences obtained 
by using the the forward- and reverse-primer for the sequencing reaction, respectively. 

Primer pair Sequence 
Alignment 
(BLAST) 

Identities Gaps 

16S_814_FW / 
16S_911_RV 

CTAAGTGTCGGCGGGTTACCGCCGGTGCCGCAGCTAACGCATTAAGTATCC-GCCTGGGA-GTACGGCCGCAAGGTTGAA-CTCAAAGGAATTGACGG 
95/98 
(97%) 

3/98 
(3%) 

gltA_FW / 
gltA_RV 

GGACCTCTGCATGCGTCTCTTCAACGTCTGCGGAACGTCCCCGCTGTATGAGGTGGCCGTGGCGGTGGAGCAACTCGCGGGTGAGCGACTGACGGACAA 
99/99 

(100%) 
0/99 
(0%) 

NxrA1_FW / 
NxrA_RV 

CGGATGGCGGATACGTATAAGTTTGTCTATCACAACCGGG-GGATATTTACGTGCAGCGCATTCTCGATGCGTCGACCACGTTTTTCGGCTACAGCGCCGACGTCATGTTGAAGTCGG 
117/118 
(99%) 

1/118 
(0%) 

NxrA2_FW / 
NxrA_RV 

GCGTGTTCCACTTCGTGTACATGAACCGCGTCGATGTTTATCCGCAGCGGATGCTGGATGCCAGCGCCACCTGCTACGGATACAGCGCTGACGTCATGTTGAAGTCGG 

 

108/108 
(100%) 

0/108 
(0%) 

 

 

C.1.10. Summarized results of the qPCR assay evaluations 

Table 31: Summarized results of the qPCR evaluations including copy numbers of the tested samples. 

Gene Dilution of 
cDNA 

Calculated copy number in 
original sample (multiplied 

with dilution factor) Standards used 
PCR 

Efficiency 
[%] 

Correlation 
Coefficient 

(R2) 

Melting 
temperature 

[° C] 
Fermentas Superscript 

16S 

10 5,6E+09 3,97E+09 

10-3 - 10-9 79% 0.998 86 100 1,45E+10 9,29E+09 

1000 1,02E+10 9,82E+09 

gltA 

10 8,44E+04 4,19E+04 

10-3 - 10-11 98,9% 0.999 89 / 78* 100 4,87E+04 4,20E+04 

1000 8,52E+03 6,35E+03 

NxrA1 10 2,72E+03 2,70E+03 10-3 - 10-9 90,3% 1.000 84 

NxrA2 

10 2,75E+06 3,25E+06 

10-4 - 10-9 88% 1.000 86 100 2,03E+06 3,02E+06 

1000 3,94E+05 7,45E+05 

* melting temperature of the second peak in the negative controls and standards 10-10 and 10-11 
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C.2. Gene expression study 
 

C.2.1.  Incubation of „Candidatus Nitrospira defluvii” under different environmental con-

ditions 

Five different incubations of Ca. N. defluvii cultures were performed in duplicate. During the 

incubation time of 53 hours in case of the oxic incubations and 69 hours in case of the anoxic 

incubations repeatedly samples of 1 mL were taken to check the concentrations of nitrite in the 

oxic incubations and nitrate in the anoxic incubations. The concentrations were checked with 

nitrite (0-80 mg x L-1) and nitrate (0-500 mg x L-1) test strips. The timepoints at which samples 

were taken or nitrite or nitrate was added are listed in Table 32. 
Table 32: Time points of sampling for checking concentrations of nitrite, nitrate or pyruvate. 

sampling time [h] 

oxic incubations anoxic incubations 

0.3 mM 3 mM 15 mM NO3
- + pyru-
vate 

control (with-
out NO3

- and 
pyruvate) 

2.5 + + + + + 

5.0 + + + + + 

12.0 + - - - - 

19.0 + + + + + 

22.0 + - - - - 

23.5 + - - - - 

25.0 + + + + + 

29.0 + + + + + 

35.0 + + - - - 

43.0 + + + + + 

45.5 + - - - - 

47.0 - - - + + 

47.5 + - - - - 

49.0 + + + - - 

51.0 + - - + + 

52.0 + - - - - 

53.0 + + + - - 

69.0 - - - + + 

+ sample taken - no sample taken 

 xxx nitrite/nitrate concentration adjusted. 
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Furthermore, nitrite measurements via Griess reaction were performed to determine the exact 

nitrite concentration of the samples taken during the incubation. These measurements were per-

formed for the 3 mM and 15 mM nitrite incubations. The nitrite concentrations are illustrated in 

Figure 23 A and B. For the 0.3 mM nitrite incubations this measurement was not performed 

because nitrite was added in very short intervals. The concentration ranged between 0 and 0.3 

mM nitrite. 

 

Figure 23: A: Nitrite concentrations during 3 mM incubations. B: Nitrite concentrations during 15 mM 

incubations. 

 

For the oxic incubations with 3 mM nitrite the actual concentrations were in a range between 1.5 

and 3 mM nitrite during the incubation. Nitrite was added twice, once after 35 hours and once 

four hours before harvesting of the cells. 

 

In case of the oxic incubations with 15 mM nitrite the concentrations were always in a range 

between 12.5 and 16 mM nitrite. Here, nitrite was added once after 49 hours. The measurement 

revealed that the nitrite concentration in replicate II was always higher than in replicate I by 

about 1.5 mM. For the oxic incubation with 0.3 mM nitrite consumed nitrite was replaced 12 

times. 

 

In the anoxic incubations there was no nitrate-consumption visible during the whole incubation 

period. However, a consumption of pyruvate was observable. This was measured qualitatively 

by Bela Hausmann with capillary electrophoresis (method not shown). Therefore, anoxic pyru-

vate solution was added twice. 
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C.2.2.  Isolation of total RNA from “Candidatus Nitrospira defluvii” cultures 

Table 33 shows the determined concentrations of isolated nucleic acids after the isolation of 

total RNA performed according to B.9. To check for the quality of the RNA an agarose gel elec-

trophoresis was performed (Figure 24). The upper band represents the 23S rRNA, the lower one 

the 16S rRNA. The 5S rRNA is not visible because due to its length of approximately 120 bp 

(Szymanski et al., 2002) it gets lost during the purification on a column. The 23S and 16S rRNA 

is visible due to its high abundance. Other RNA forms like mRNA are also present in the gel but 

not visible due to their low abundance. On the gel only the samples containing high concentra-

tions of RNA were applied. Lowly concentrated RNA solutions contained insufficient RNA to 

be visible on a gel. Since all samples were treated the same way the quality of the more highly 

concentrated samples should be representative for the quality of all samples. 
 

Table 33: RNA concentrations meas-
ured with NanoDrop® ND-1000 spec-
trophotometer. RI = replicate I; RII = 
replicate II; marked grey = anoxic 
incubation; control: incubations with-
out substrate; 

 

 

 

 

 

 

 

 

 

 

 

Figure 24: Agarose gel eclectrophoresis 
photo of isolated RNA. Lane 1-7: isolated 
RNA of the incubation experiments. Lane 
8: positive control - Ca. N. defluvii RNA 
from bioreactor culture provided by 
Christiane Dorninger. marked grey = 
anoxic incubation; 

Sample 
nucleic acid con-

centration 
[ng x µL-1] 

 

0.3 mM NO2
- RI 27.06 

0.3 mM NO2
- RII 35.76 

3 mM NO2
- RI 33.68 

3 mM NO2
- RII 80.46 

15 mM NO2
- RI 44.84 

15 mM NO2
- RII 38.12 

NO3
- + pyruvate RI 13.17 

NO3
- + pyruvate RII 103.22 

control RI 21.60 

control RII 60.18 
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C.2.3.  DNase treatment 

In Figure 25 A-C the PCR products of reactions using DNase treated RNA solution as template 

are shown. In this way the RNA solutions were checked for remaining DNA. The treatment was 

performed several times until there was no band visible on the gel anymore. The samples shown 

in Figure 25 C were not free of DNA after five DNA digestions for which reason the RNA was 

precipitated and once again treated with DNase. After this step the RNA was free of DNA. To 

use always the same amount of RNA for each RT reaction the concentrations were measured 

using the Quant-iT™ RiboGreen® RNA Assay Kit (B.13.2). The measured concentrations are 

shown in Table 34.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 25: A-C: Gel picture of PCRs performed on DNase treated RNA solutions. Pic-

tures were modified by splicing together with Adobe Photo Shop-software. marked grey 

= anoxic incubation; 
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C.2.4. cDNA synthesis applying reverse transcription (RT) 

 

The cDNA synthesis was performed as described in B.12. The use of the minimum recommend-

ed amount of 100 ng total RNA per RT reaction was based on the low concentrations of total 

RNA after isolation and DNase-treatment. For all samples 100 ng were used with one exception. 

For the incubation with NO3
- + pyruvate replicate I only 23 ng could be used due to its extreme-

ly low concentration. The concentrations of the RNA solutions as well as the actually used 

amounts of RNA are shown in Table 34 for each sample. 

 
Table 34: Measured RNA concentrations after isolation of RNA using the Quant-iT™ RiboGreen® 

RNA Assay Kit. P = pyruvate, control = no nitrate or pyurvate added; 

 Sample 
0.3 mM NO2

- 3mM NO2
- 15 mM NO2

- NO3
- + P control 

RI RII RI RII RI RII RI RII RI RII 

Concentration of 
isolated total RNA 
[ng µL-1] 

10.57 22.90 14.87 26.69 10.52 13.36 2.16 29.31 17.28 16.69 

Volume to-use for 
100 ng total RNA 
[µL] 

9.46 4.37 6.73 3.75 9.51 7.48 46.38 3.41 5.79 5.99 

Actually used vol-
ume of total RNA 
[µL] 

9.46 4.37 6.73 3.75 9.51 7.48 10.50 3.41 5.79 5.99 

Actually used 
amount of total 
RNA [ng] 

100 100 100 100 100 100 27.3 100 100 100 

 

 

Following, a PCR for each examined gene and each sample was conducted to check if the re-

verse transcription was successful. Figure 26 shows the results of the gelelectrophoretical analy-

sis of the PCR products. It shows that the multiplexed RT reactions worked out well for all ex-

amined samples confirmed by single bands. Furthermore, different gene expression patterns 

were observable for the gtlA as well as for the nxrA1 gene depending on the incubation condi-

tions. To reveal the observed differences in the gene expression levels in more detail, qPCR was 

performed. 
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Figure 26: Gel pictures of RT-PCRs for each examined gene. A: 16S rRNA; B: gltA; C: nxrA1; D: nxrA2; 

 
 

 

 

 

 

 

 

 

 

 

C.2.5. Quantitative real-time PCR 

In Table 35 the PCR efficiency as well as the correlation coefficient for each performed qPCR 

run is shown. The efficiencies were all above 80%. An efficiency of 100% would be desirable 

meaning a doubling of the PCR products after each cycle. This, however, is unlikely due to the 

presence of inhibitory substances in the reaction mixture. Therefore, a minimal efficiency was 

set with 75%. The correlation coefficients were all above 0.997 indicating a high pipetting accu-

racy. The calculation of the copy numbers of the tested samples was performed using the iCyc-

ler iQ Real-Time PCR Detection system and the included software. 
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Table 35: PCR Efficiencies and correlation coefficients of 
the performed qPCR runs. 

qPCR assay PCR efficiency [%] Correlation coefficient (R2) 

16S rRNA 81.6 0.999 

gltA 95.6 0.999 

nxrA1 82.8 0.999 

nxrA2 84.1 0.997 

 

The calculation of the copy number of each transcript in each sample was performed for all rep-

licates according to B.14.5. The results of this calculation are shown in Table 36, wehereby the 

copy numbers of the triplicates where averaged. 

 
Table 36: Calculated copy numbers of examined samples. Triplicates were averaged. 

Sample 

16S rRNA gltA nxrA1 nxrA2 

copy 
number* sd copy 

number* sd copy 
number* sd copy 

number* sd 

0.3 mM RI 3,18E+08 6,83E+07 2,85E+03 5,21E+02 1,17E+03 2,09E+02 1,75E+05 5,64E+04 

0.3 mM RII 4,93E+08 2,57E+07 1,74E+03 1,58E+01 2,61E+03 3,46E+02 2,74E+05 3,41E+04 

3 mM RI 2,12E+08 3,35E+07 3,14E+03 5,45E+02 3,11E+04 1,23E+04 1,86E+05 8,32E+04 

3 mM RII 2,40E+08 3,18E+07 1,45E+03 9,30E+01 3,22E+04 3,38E+03 6,30E+04 2,41E+04 

15 mM RI 1,90E+08 9,46E+06 6,61E+02 1,07E+02 3,62E+04 4,92E+03 1,29E+04 5,46E+03 

15 mM RII 1,90E+08 2,75E+07 1,29E+02 5,96E+00 2,71E+01 1,16E+01 3,35E+04 1,66E+04 

NO3
- + P RI 2,14E+07 2,60E+06 5,19E+01 1,06E+01 6,68E+00 1,24E+00 1,22E+04 4,03E+03 

NO3
- + P RII 1,02E+08 1,51E+07 1,24E+02 2,54E+00 1,13E+01 3,09E+00 7,47E+04 3,08E+04 

control RI 4,35E+08 3,74E+07 1,65E+03 9,93E+01 1,97E+02 2,69E+01 3,21E+05 2,43E+04 

control RII 2,01E+08 1,59E+07 7,48E+02 2,36E+02 5,56E+01 9,70E+00 9,27E+04 2,59E+04 

* arithmetic average out of three replicates 

sd … standard deviation
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C.2.5.1. Expression of the 16S rRNA gene 

Figure 27 shows the expression levels of the 16S rRNA gene in copy numbers for all incuba-

tions. The expression levels between the biological replicates were consistent since they were 

always within one order of magnitude. The similar copy numbers of all incubations except one 

is due to the fact that the same amounts of total RNA were used for the RT reactions. Only for 

incubation NO3
- + pyruvate replicate I a lower amount of total RNA was used resulting in a con-

siderably lower copy number than replicate II. These values were adducted for the standardiza-

tion of the expression of the other genes. 
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 Figure 27: Expression of the 16S rRNA 

gene. Oxic incubations: Concentration 

of nitrite used for the respective incuba-

tion shown in mM; Anoxic incubations 

(marked grey): NO3
- + P = incubation 

with 0.5 mM pyruvate and 2.5 mM ni-

trate; control = incubation without ni-

trate and pyruvate added; RI = replicate 

I; RII = replicate II; 
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C.2.5.2. Expression of the gltA gene 

Figure 28 shows the copy numbers of the gltA mRNA relative to the copy number of the 16S 

rRNA of the respective incubation. The replicates were all within one order of magnitude. For 

the expression levels of the 3 mM nitrite incubations a slightly higher expression of the gltA 

gene was observable. However, obvious differences between the different incubations could not 

be observed. 
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Figure 28: Expression of the gltA gene 

relative to the expression of the 16S 

rRNA gene multiplied by 107. Oxic incu-

bations: Concentration of nitrite used for 

the respective incubation shown in mM; 

Anoxic incubations (marked grey): NO3
- 

+ P = incubation with 0.5 mM pyruvate 

and 2.5 mM nitrate; control = incubation 

without nitrate and pyruvate added; RI = 

replicate I; RII = replicate II; 

 Figure 29: Expression of the nxrA1 gene 

relative to the expression of the 16S 

rRNA gene multiplied by 107.  Oxic incu-

bations: Concentration of nitrite used for 

the respective incubation shown in mM; 

Anoxic incubations (marked grey): NO3
- 

+ P = incubation with 0.5 mM pyruvate 

and 2.5 mM nitrate; control = incubation 

without nitrate and pyruvate added; RI = 

replicate I; RII = replicate II; 
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C.2.5.3. Expression of the nxrA1 gene 

The expression of the nxrA1 gene was considerably different between the different incubations 

as shown in Figure 29. Again, the expression of this gene relative to the 16S rRNA gene expres-

sion is shown. The expression of the nxrA1 gene was about 30 times higher in the incubations 

with 3 mM nitrite than in the incubations with 0.3 mM nitrite incubations. Replicate I of the 15 

mM nitrite incubation exhibited a similarly high expression level as the 3 mM incubations. In-

terestingly, replicate II of the 15 mM incubation did not behave similar to replicate I and showed 

a pretty low expression level of the nxrA1 gene. The anoxic incubations showed no detectable 

expression of this gene. To completely rule out DNA contamination, especially for the confir-

mation of the results obtained for the 15 mM incubations, untranscribed RNA of all samples was 

applied to an nxrA1-specific qPCR run showing no amplification at all. Therefore, the possibil-

ity of DNA-contamination could be ruled out. 

 

C.2.5.4. Expression of the nxrA2 gene 

The obtained numbers for the expression of the nxrA2 gene relative to the expression of the 16S 

rRNA gene are visualized in Figure 30. The expression levels are within one order of magnitude 

both for the oxic and anoxic incubations. Only for the 15 mM incubations there seems to be a 

little lower expression level. 
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Figure 30: Expression of the nxrA2 gene 

relative to the expression of the 16S rRNA 

gene.   Oxic incubations: Concentration of 

nitrite used for the respective incubation 

shown in mM; Anoxic incubations 

(marked grey): NO3- + P = incubation 

with 0.5 mM pyruvate and 2.5 mM ni-

trate; control = incubation without nitrate 

and pyruvate added; RI = replicate I; RII 

= replicate II; 

 Figure 31: Comparison of the expression 

levels of the nxrA1 gene and nxrA2 gene. 

Oxic incubations: Concentration of nitrite 

used for the respective incubation shown 

in mM; Anoxic incubations (marked 

grey): NO3- + P = incubation with 0.5 mM 

pyruvate and 2.5 mM nitrate; control = 

incubation without nitrate and pyruvate 

added; RI = replicate I; RII = replicate II; 

 

 

C.2.5.5. Expression of the nxrA1 gene compared to the nxrA2 gene 

Figure 31 shows that the nxrA2 genes show a much higher expression in the incubations with 

0.3 mM nitrite as well as in the anoxic incubations. There the proportion of the nxrA1 transcript 

makes up only a small fraction of all nxrA transcripts. In the incubations with 3 mM nitrite the 

expression of the nxrA1 gene is considerably higher but still not exceeding the expression of the 

nxrA2 expression level. The highest nxrA1 / nxrA2 ratio was observed for the 15 mM nitrite rep-

licate I incubation where the expression of nxrA1 exceeds the expression of the nxrA2 gene by 

about three times. This data does not fit with the obtained data for replicate II. There, the ex-

pression of the nxrA1 in comparison to the expression of nxrA2 is negligible. 
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C.3. Investigation of the coexistence of three subpopulations of Nitrospira 

sublineage II in the wastewater treatment plant of the University of vet-

erinary medicine Vienna applying quantitative FISH 
 
 
C.3.1.  Quantification of the abundance of the genus Nitrospira 

Cells belonging to the genus Nitrospira made up between 7.8 and 20.2 percent of the whole bac-

terial biomass during the examined period between 2004 and 2010 (Figure 32). Figure 33 shows 

the cumulative curves calculated for each sample. Here the change of the biovolume fraction 

after each further included picture in the analysis is visible. If the biovolume fraction is not 

changing anymore the number of pictures taken can be assumed to be sufficient for giving sig-

nificant results. This is the case for all examined samples. 
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Figure 32: Biovolume fractions of the genus 

Nitrospira (Ntspa662) relative to all bacteria 

(EUB338Mix). The error bars show the stan-

dard deviation for 30 pictures. 

 Figure 33: Cumulative curves of the quantifica-

tion of the biovolume fractions of the genus Ni-

trospira (Ntspa662) relative to all bacteria 

(EUB338Mix). 
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C.3.2.  Quantification of the biovolume fraction of Nitrospira sublineage II relative to the 

genus Nitrospira 

Figure 34 shows the biovolume fraction of Nitrospira sublineage II of all Nitrospira cells in the 

examined samples. The biovolume fractions were relatively constant over time ranging between 

63.9 and 75.1 percent during the sampling period. This is also confirmed by the standard devia-

tions shown in Figure 34. Additionally, the cumulative curves are visualized in Figure 35 where 

all calculated biovolume fractions can be assumed to be stable after approximately 15 pictures 

taken. 
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Figure 34: Biovolume fractions of Nitrospira subli-

neage II (Ntspa1151) relative to all Nitrospira 

(Ntspa662) cells. The error bars show the standard 

deviation for 30 pictures.  

 Figure 35: Cumulative curves of the quantification 

of the biovolume fractions of Nitrospira sublineage 

II (Ntspa1151) relative to all Nitrospira (Ntspa662) 

cells.  

 

 

C.3.3.  Quantification of the cluster 2.4 of Nitrospira sublineage II  

For cluster 2.4 labelled by probe Ntspa195 a clear shift in their abundance was visible over the 

examined period (Figure 36). In the beginning of the sampling period in the year 2004 cluster 

2.4 made up only about 20 percent of all sublineage II cells. A sharp increase of the biovolume 

fraction occurred between 2007 and 2010 up to a biovolume fraction of 76.6 percent. The cumu-

lative curves in Figure 37 show more or less constant biovolume fractions from picture number 

15 on for all samples, assuring the validity of the calculated biovolume fractions. 
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Figure 36: Biovolume fractions of Nitrospira 

cluster 2.4 (Ntspa195) relative to Nitrospira 

sublineage II (Ntspa1151). The error bars 

show the standard deviation for 30 pictures.  

 Figure 37: Cumulative curves of the quantification of 

the biovolume fractions of Nitrospira subpopulation 

Cluster 2.4 (Ntspa195) relative to all Nitrospira SLII 

(Ntspa1151) cells. 

 

 

C.3.4.  Quantification of the cluster 2.5 of Nitrospira sublineage II  

Cluster 2.5 showed a more or less stable abundance in all samples (Figure 38). In the beginning 

cells of this subpopulation made up about 30 percent of the whole Nitrospira sublineage II bio-

mass while in the end only about 10 percent were assignable to this subpopulation. However, 

considering the large standard deviations, a statement about a slightly decreasaing shift in the 

abundance over the examined period would not be reliable. The cumulative curves in Figure 39 

show that the number of pictures taken was sufficient. 
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Figure 38: Biovolume fractions of  Nitrospira clus-

ter 2.5 (Ntspa256Cl2) of Nitrospira sublineage II 

(Ntspa1151). The error bars show the standard 

deviation for 30 pictures.  

 Figure 39: Cumulative curves of the quantifica-

tion of the biovolume fractions of Nitrospira sub-

population cluster 2.5 (Ntspa256Cl2) relative to all 

Nitrospira sublineage II (Ntspa1151) cells.  

 

C.3.5.  Quantification of the cluster 2.2 of Nitrospira sublineage II  

This subpopulation could not be quantified due to the very weak signal of the used probe. The 

signal of this probe was detectable in the microscope by eye but it was not possible to take pic-

tures of sufficient quality of these colonies. An upregulation of the signal gain to improve the 

recording of the FISH-labelled cells also led to increased detection of aufofluorescence (AF) 

signal which covered the signal of the cells. Another fact disabling the quantification was that 

cells belonging to this subpopulation were extremely rare which would call for taking much 

more pictures to get statistically significant results. This was impaired by the AF problem men-

tioned before. 
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Summarizing all obtained results, a list of all quantified biovolume fractions of the different 

examined taxa is shown in Table 37. 

 
Table 37: Biovolume fractions of all quantified groups in all examined samples.   

sampling date 

Biovolume fraction 
of the genus Nitro-
spira relative to all 

bacteria 

[%] 

Biovolume fraction 
of Nitrospira sub-

lineage II relative to 
the genus Nitrospira 

[%] 

Biovolume fraction 
of Nitrospira cluster 
2.4 relative to Nitro-
spira sublineage II 

[%] 

Biovolume fraction 
of Nitrospira cluster 
2.5 relative to Nitro-
spira sublineage II 

[%] 

2004-03-04 79,5 16,1 16,4 33,9 

2004-04-15 75,1 20,2 21,3 28,6 

2004-07-13 74,1 8,4 18,7 19,6 

2007-05-14 74,2 13,2 26,1 10,8 

2007-06-28 72,8 18,0 36,7 12,0 

2008-11-17 70,4 15,3 50,4 10,7 

2009-02-03 73,5 14,0 61,4 9,3 

2009-10-07 65,3 10,2 57,1 10,8 

2010-07-02 63,9 18,5 76,6 11,4 
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D. Discussion 
 

D.1. Development of a quantitative real-time PCR assay for the detection of 

the expression of several genes in “Candidatus Nitrospira defluvii” 
 

D.1.1. Advantages and disadvantages of the used SYBR®Green chemistry for qPCR 

Quantitative real-time PCR in combination with foregoing reverse transcription of mRNA tar-

gets (RT-qPCR) is a very sensitive method for the quantification of expression levels of genes 

(Nolan et al., 2006). To date, there are several qPCR applications available, all having their ad-

vantages and disadvantages (Wong and Medrano, 2005). The applied method in this study was 

the SYBR®Green chemistry with the big advantage that any primer pair can be used as long as a 

certain product length is not exceeded. Thereby, no additional probes have to be designed in 

contrast to quantification using the TaqMan™ chemistry (Holland et al., 1991).  

 

Like every molecular method, also the SYBR®Green chemistry has its disadvantages. The first 

drawback of this method is an inhibiting effect of the SYBR®Green fluorescence dye on the 

PCR-reaction if it is too highly concentrated (Monis et al., 2004). In this study this problem was 

circumvented by the use of a ready-to-use Kit from Invitrogen. Another disadvantage is that it is 

not possible to detect multiple target genes in a single (multiplex) reaction, contrary to 

TaqMan™ chemistry where several probes labelled with different fluorescence dyes can be ap-

plied simultaenously (Nolan et al., 2006). 

 

The main drawback of SYBR®Green chemistry, however, is the co-detection of unspecific am-

plicons such as primer dimers. Therefore, it is of greatest importance to make sure that the prim-

ers are highly specific in order to rule out any unspecific amplification (Dorak, 2006). By con-

trast, in case of TaqMan™ chemistry, the fluorescence dye is only released if all three oligonu-

cleotides bind correctly, and therefore co-detection of unspecific amplicons is not an issue. 
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D.1.2. Methods for the normalization of gene expression levels 

An important challenge when designing a RT-qPCR assay is to develop an appropriate method 

for the normalization of the measured gene expression. Under ideal conditions, for example for 

planktonic cells, mRNA expression levels can be normalized against cell numbers. This is diffi-

cult when working with tissue samples or cultures where the cell number is not determinable 

(Wong and Medrano, 2005). For Ca. N. defluvii cultures, cell counting is not feasible due to 

their growth in dense flocs. In such cases, control genes are often used to normalize the expres-

sion levels of the genes of interest. Thereby, the ideal control gene should be expressed constitu-

tively regardless of the experimental conditions (Wong and Medrano, 2005). For this purpose, 

so-called “housekeeping” genes are often used (Schmittgen and Zakrajsek, 2000). 

 

Another possibility is to normalize against the total RNA amount which has to be measured ap-

plying an accurate method like RiboGreen® (Bustin, 2000). However, this method is not as reli-

able as reference genes, since total RNA levels are affected by cellular processes, RNA quality 

and the reverse transcription efficiency (Wong and Medrano, 2005). 

 

According to the current opinion, the best solution for the normalization is the employment of 

multiple housekeeping genes (Vandesompele et al., 2002). In this study, the development of 

multiple assays for different housekeeping genes was not feasible since to date little is known 

about the expression stability of certain genes in Ca. N. defluvii. 

 

Therefore, in this study, the 16S rRNA was chosen for the normalization of the gene expression 

levels of the other examined genes. This decision was based on earlier studies which had ob-

served that the ribosome content and consequently the amount of rRNA in nitrifying bacteria is 

stable, also during periods of starvation (Wagner et al., 1995; Morgenroth et al., 2000). 
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D.1.3. Methods for the evaluation of the specificity of a qPCR assay 

D.1.3.1. Agarose gel electrophoresis 

The first step in the evaluation of the primer specificity was to perform agarose gel electropho-

resis. This quick method provides first information concerning the correct length of the prod-

ucts. The possibility of unspecific amplification leading to a product with the same length as the 

desired amplicon was unlikely concerning the Ca. N. defluvii genome, since the primers were 

additionally checked for primer binding sites in the genome. Still, contaminants in the enrich-

ment-cultures could also possess binding sites for the primers. 

 

D.1.3.2. Melting curve analysis 

Melting curve analysis was performed to investigate the amplicons not only by their length but 

also by their properties concerning their nucleotide compositions. In case of one single amplicon 

type, the melting curve should show one peak at the temperature, at which the majority of the 

double stranded nucleic acids is melted. At this point, the difference in fluorescence before and 

after melting of the double stranded DNA fragments is highest. Ideally, all PCR reactions with a 

specific primer pair should show the same peak in the melting curve, whereas the negative con-

trols should show no peak at all. This was the case for all reactions of the 16S rRNA, nxrA1 and 

nxrA2 assay. In the case of unspecific amplification, a second peak would be visible with high 

probability. This occurred with the standards 10-10 and 10-11 and with the negative controls in the 

gltA-specific qPCR assay, probably due to primer dimer formation. This explanation is sup-

ported by the observation that the melting curves for the standard dilutions 10-3 to 10-9 showed 

only one single peak. Based on this information concerning the melting curves, the 16S rRNA, 

nxrA1 and nxrA2 assays can be assumed to be highly specific. The same is true for the gltA as-

say as long as the template concentrations of the tested samples were within the range of the 

standards where no primer dimer formation occurred.  

 

However, there is a chance that two or more different amplicons possess the same melting tem-

perature based on their length and GC-content and consequently would show one single peak in 

the melting curve. Such amplicons could not be distinguished by melting curve analysis alone. 

Therefore, the combination of both, agarose gel electrophoresis and melting-curve-analysis, is of 

great importance.  
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D.1.3.3. Sequencing of RT-PCR products 

Besides the two methods mentioned above, the specificity of the developed qPCR assays was 

also checked by rDNA-sequencing. Therefore, PCR products obtained from RT of total Ca. N. 

defluvii RNA and subsequent end-point-PCR were directly sequenced. Despite some gaps in 

two of the four obtained sequences the chromatograms suggested only specific amplification 

and therefore confirmed the assays to be highly specific. One possible reason for the observed 

gaps could have been the formation of deletion mutants during RT-PCR. This assumption is 

based on the observation that PCR templates containing stable secondary structures as typical 

for rRNA can lead to deletion mutagenesis in PCR products (von Wintzingerode et al., 1997). 

Point-mutations, deletions and insertions during the RT-reaction thereby are amplified during 

PCR and a mix of slightly different amplicons is obtained. Furthermore, ambiguities in the ob-

tained sequences can result from direct-sequencing of the PCR products. 

 

D.1.4. Methods for the synthesis of standards 

The synthesis of standards for the calculation of the copy number in unknown samples is an-

other very important point besides all previously mentioned considerations when developing a 

qPCR assay. In general, there are several possibilities for the synthesis of standards. They can 

either be PCR products, circular plasmids or linearized plasmids containing the target fragment 

(Dhanasekaran et al., 2010). PCR products used as standards have the disadvantage to be of 

lower stability against freezing and thawing compared to plasmids. The disadvantage of plas-

mids is that they can also exist in coiled and supercoiled form which can reduce the accessibility 

of the template for the primers as well as for the polymerase enzyme. Consequently, the use of 

plasmids as standards can lead to an underestimation of the copy number of supercoiled plas-

mids (Suzuki et al., 2000). PCR products are present in linearized form and thus are better com-

parable with the cDNA targets in the unknown samples. For this reason, in this study, the stan-

dards were amplified with M13-primers from plasmids containing the correct insert to obtain 

linearized DNA. The drawback of increased susceptibility to degradation of linearized PCR 

products was circumvented by aliquoting them to prevent multiple freezing and thawing steps. 

 

D.1.5. Factors influencing the efficiency of a qPCR assay 

The last step in the development of a qPCR assay is to check the assay for sufficient efficiency, 

which is determined by the designed primers as well as other factors like inhibitory components. 

To evaluate the efficiency of the qPCR assays test runs were performed. A PCR efficiency of 
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100%, meaning the doubling of the PCR products during each cycle, would be desirable. For all 

assays conducted in this study a PCR efficiency between 80 and 100% was achieved. An effi-

ciency of above 100% is also possible and indicates the formation of primer dimers which are 

co-detected and bias the calculations. This might be suspected for the gltA qPCR assay with its 

conspicuously high efficiency. However, this is unlikely since there was no primer dimer forma-

tion observed for the applied standards. 

 

The already mentioned inhibiting compounds have to be removed as thoroughly as possible 

since they can lead to a reduction of the sensitivity and the kinetics of the qPCR (Radstrom et 

al., 2004). In this study, this risk was reduced by precipitating and washing the RNA to remove 

these compounds. Furthermore, it should be noted that the issue of inhibitory compounds is 

more of a problem for absolute quantification, but should not interfere with relative quantifica-

tion since the inhibitors hamper the amplification of reference genes to the same extent. 

 

Another factor influencing the efficiency of a qPCR assay is RNA quality. Degradation of tran-

scripts during processing can also lead to distortions in their quantification (Bustin, 2002). In 

this study, RNA quality was checked by applying the RNA to an agarose gel. Special devices 

like the Agilent Bioanalyser or the BioRad Experion microfluidic capillary electrophoresis sys-

tem would allow better assessments of the RNA quality by measuring the RNA quality more 

objectively based on several characteristics (Nolan et al., 2006). 

 

Furthermore, the efficiency of the reverse transcription of RNA to cDNA influences the reliabil-

ity of the RT-qPCR assay. Here, it would be desirable to get one cDNA copy per transcript. The 

use of target-specific primers is recommended because they are most specific and sensitive and 

therefore achieve the highest possible efficiency (Nolan et al., 2006). 

 

Summing up, these qPCR assays developed for four genes of Ca. N. defluvii were shown to be 

highly specific and provide powerful tools for the further investigation of the energy metabolism 

of Ca. N. defluvii. 
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D.2. Gene expression study 
 

D.2.1.  Incubation setup 

The aim of this experiment was the detection of possible physiological responses of Ca. N. de-

fluvii to changing environmental conditions on a transcriptome-level. Thereby, we focused on 

three genes for which a RT-qPCR assay was developed.  

 

D.2.1.1. Oxic  incubation with different nitrite concentrations 

Ca. N. defluvii possesses two copies of the nxrAB gene cluster encoding a putative nitrite oxi-

doreductase. There is evidence that the expression of these two gene clusters is regulated differ-

ently (Lücker et al., 2010; Koch, 2009, unpublished). Furthermore, the nitrite concentration is 

suspected to be a regulating factor for the expression of these genes. Therefore, Ca. N. defluvii 

cultures were incubated at three different nitrite concentrations. One nitrite concentration was 

set to 3 mM, which is the optimal concentration for nitrite oxidation by Ca. N. defluvii (Spieck 

et al., 2006). A considerably lower concentration was chosen with 0.3 mM - a concentration Ca. 

N. defluvii still can grow with (Spieck et al., 2006). This concentration was also shown to be 

optimal for the growth of a member of sublineage II of the genus Nitrospira, namely Nitrospira 

moscoviensis (Ehrich et al., 1995). Apart from that, this low concentration better reflects the 

ambient nitrite concentrations in WWTPs. Besides these two different nitrite concentrations, an 

additional rather high concentration of 15 mM was chosen which is close to the upper maximum 

of 20-25 mM of nitrite Ca. N. defluvii can deal with (Lebedeva et al., 2008). 

 

The main issue concerning the implementation of the incubations was to keep the nitrite concen-

trations constant. Since the used nitrite test strips are very inaccurate and insensitive, changes in 

the nitrite concentrations were difficult to detect. This led to fluctuations in the nitrite concentra-

tions measured after the incubation applying the Griess reaction (Griess, 1879). In the end, the 

expression of genes was not examined at certain nitrite-concentrations but rather at different 

ranges of nitrite concentrations. But still, these ranges were never overlapping and clearly dis-

tinguishable from each other. For further studies, an alternative method to keep the concentra-

tions more stable would be a chemostat continuous culturing system. However, accurate devices 

for this purpose are very expensive and their operation is laborious. 
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D.2.1.2. Anoxic incubation with nitrate and pyruvate 

The Nxr of Nitrobacter was shown to be capable of performing the reduction of nitrate to nitrite 

(Freitag et al., 1987; Bock et al., 1988). Moreover, also Nitrospira moscoviensis was capable of 

reducing nitrate when using hydrogen as electron donor under anoxic conditions (Ehrich et al., 

1995). Based on this knowledge, it should be tested if also Ca. N. defluvii might be able to re-

duce nitrate under anoxic conditions. To answer this question for Ca. N. defluvii, anoxic incuba-

tions were performed with 2.5 mM nitrate as possible electron acceptor. As possible electron 

donor pyruvate was added to an end concentration of 0.5 mM. Pyruvate was chosen because it 

was shown that uncultered Nitrospira in activated sludge assimilated pyruvate in addition to 

inorganic carbon under oxic conditions (Daims et al., 2001). However, there was no visible con-

sumption of nitrate during the incubation suggesting that there was no denitrification. However, 

consumption of pyruvate was observed. This might be explained by the activity of heterotrophic 

contaminants, which could have used pyruvate as carbon source. Furthermore, heterotrophic 

contaminants could have used pyruvate as electron donor in the fermentation of extracellular 

polymeric substances (EPS) leaching from Ca. N. defluvii cells. 

 

D.2.2. Gene expression analyses 

D.2.2.1. Expression of the 16S rRNA gene under oxic conditions with different nitrite concentra-

tions  

The expression of the 16S rRNA gene was examined for the normalization of the expression 

levels of the other examined genes since the amount of 16S rRNA is an indicator for the cell 

number. The analysis of the obtained qPCR results showed that the expression levels of the 16S 

rRNA gene were similar in all but one of the incubations despite differing environmental condi-

tions. The calculated copy numbers were within one order of magnitude. Only for replicate I of 

the anoxic incubations with nitrate and pyruvate a lower number of 16S rRNA copies was de-

tected. This most probably results from the fact that a smaller amount of total RNA was used for 

the RT for this sample as compared to the other samples. Consequently, the proportion of 16S 

rRNA relative to total RNA seems to be more or less stable, also under different environmental 

conditions at least for short incubation times as performed in this study. Therefore, the 16S 

rRNA was shown to be suitable for the normalization of the expression levels of other genes. 

However, to test the 16S rRNA for its suitability as reference gene for Ca. N. defluvii in more 

detail, a study applying lots of different environmental conditions and incubation times would 

have to be conducted.  
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D.2.2.2. Expression of the gltA gene under oxic conditions with different nitrite concentrations 

The expression of the gltA gene encoding the citrate synthase enzyme was examined to prove 

the potential use of organic compounds by Ca. N. defluvii. This enzyme is indicative for the 

oxidative tricarboxylic acid cycle (oTCA). This metabolic pathway generates reduced electron 

carriers like NADH+ which are partially used for the conservation of energy in the form of ATP 

during respiration. Although in Ca. N. defluvii one enzyme complex of the oTCA cycle, namely 

the 2-oxoglutarate dehydrogenase complex (ODH), is missing, this complex could be replaced 

by the enzyme 2-oxoglutarate:ferredoxin oxidoreductase (OGOR) which is included in the re-

verse tricarboxylic acid cycle (rTCA-cycle) and also encoded in Ca. N. defluvii (Lücker et al., 

2010). OGOR usually is very O2-sensitive but it was shown to be also functional in some mi-

croaerophilic autotrophs such as Hydrogenobacter thermophilus where it is included in the 

rTCA-cycle (Campbell et al., 2006; Shiba et al., 1985). Interestingly, the one of the two encoded 

OGOR-copies in H. thermophilus tolerating higher concentrations of O2 is highly similar to the 

one of Ca. N. defluvii (Yamamoto et al., 2006; Lücker et al., 2010). 

 

In this study, the expression of the gltA gene showed a similar pattern in all incubations, the oxic 

as well as the anoxic ones. Therefore, a basic constitutive expression is assumed for this gene. 

However, it was not expected for the anoxic incubations to show any upregulation of the expres-

sion of this gene since a decrease of TCA cycle function during anaerobic growth with nitrate 

was observed for E. coli as well as for Pseuudomonas fluorescens and is suggested to be a 

broadly distributed regulatory mechanism. In E. coli, the synthesis of most enzymes of the TCA 

cycle were shown to be partially repressed and the synthesis of two enzymes - 2-oxoglutarate 

dehydrogenase and succinate dehydrogenase - was repressed nearly completely when growing 

on glucose and using nitrate as electron acceptor under anoxic conditions (Prohl et al., 1998). In 

the oxic incubations, however, no pyruvate or similar potential electron donor was supplied 

since the main focus in this study was on the investigation of the nxrA genes. Due to biomass 

limitation it was not possible to investigate the expression of the gltA gene under oxic conditions 

when supplying pyruvate. The only possible upregulation would have been expected if Ca. N. 

defluvii had used their own storage compounds or organic compounds leaching from contami-

nants. 

 

In general, the necessity to use organic compounds could arise in case of environmental condi-

tions where energy generation by oxidizing nitrite is inhibited or decreased due to nitrite-

limitation. Therefore, for further studies it would be of interest to test Ca. N. defluvii for the use 
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of pyruvate under oxic conditions since it was observed that uncultured Nitrospira assimilate 

pyruvate in activated sludge when oxygen is present as revealed by MAR-FISH (Daims et al., 

2001). 

 
D.2.2.3. Expression of the paralogous nxrA genes under oxic conditions with different nitrite con-

centrations 

The main focus of the gene expression study was on the expression of the two different nxrA 

paralogs. The presence of more copies of paralogous genes in the genome of one organism is not 

unusual. In general, besides gene loss and horizontal gene transfer, such gene duplications are a 

very important tool for the adaptation of bacteria to new environmental conditions by functional 

diversification and specialization. A new function for one of the paralogs can evolve based on 

the assumption that one of the paralogous gene copies escapes the selection pressure for main-

taining the specific function while the original function is maintained by the second copy 

(Gevers et al., 2004; Koonin et al., 2005). Such duplications are even known for enzymes in-

volved in the microbial nitrogen-cycle. For example, the nifH gene in Azorhizobium caulinodans 

encoding the enzyme dinitrogen reductase and the nirS gene in one strain of Thauera sp. encod-

ing the enzyme nitrite reductase are present in duplicate (Iki et al., 2007; Etchebehere and 

Tiedje, 2005). In the latter example, different transcriptional activities suggest functional differ-

ences between the paralogs. A functional difference is also assumed for the two nxrA paralogs, 

also when having the same catalytical effect. Otherwise, one duplicate would be redundant and 

probably be lost from the genome. 

 

The most interesting finding in this study was the differential expression of the nxrA1 gene un-

der different conditions. Under anoxic conditions and under oxic conditions with 0.3 mM nitrite 

as well as in one replicate with 15 mM nitrite, the expression of nxrA1 was at the lower limit of 

detectability. Unfortunately, the expression of the nxrA1 gene between the replicates in the 15 

mM incubations differed enormously. This difference was unexpected, especially since the ex-

pression levels of all other examined genes matched quite well between the replicates. Taken 

together, these results allow two hypotheses. 

 

One hypothesis is that the nxrA1 gene is only expressed at a nitrite concentration near 3 mM. 

This is the concentration Ca. N. defluvii was shown to exhibit the highest nitrite oxidation rate 

(Spieck et al., 2006). This would mean that both paralogous genes are expressed at optimal con-

ditions to obtain maximal amounts of protein for the utilization of nitrite. However, this hy-
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pothesis implies that the obtained result for the expression of the nxrA1 gene in replicate I of the 

15 mM nitrite incubations was wrong. An explanation for this could be DNA contamination 

since there was a weak band in the gel picture of the PCR with the DNase-treated RNA solution 

of this incubation. However, this explanation seems unlikely since the expression levels of the 

other examined genes matched quite well between the two replicates and the RT was performed 

as a multiplexed reaction - meaning that all transcripts were reverse transcribed in one reaction. 

Furthermore, a non-RT qPCR was conducted and showed no amplification and therefore con-

firms the obtained results. The possibility, that the reverse primer for the nxrA1 gene was not 

added in the RT of replicate II of the 15 mM nitrite incubation was ruled out by repeating the 

RT-reaction and subsequent end-point PCR. In this experiment, a strong band was visible for 

replicate I while no band was obtained for replicate II (data not shown). This, again, confirms 

the obtained results. 

 

The second hypothesis suggests an upregulation of the nxrA1 gene with increasing nitrite con-

centrations. A similar nitrite-dependent upregulation of enzymes using nitrite as substrate has 

already been shown in former studies. Haveman and colleagues (2004) showed that the expres-

sion of the nrfHA gene encoding a cytochrome c nitrite reductase was upregulated in Desulfovi-

brio vulgaris with 5 mM nitrite compared to 0.1 mM nitrite. Another study on the Cyanobacte-

rium Synechococcus sp. revealed a nitrite-dependent activation of the expression of a nitrate 

assimilation operon (Kikuchi et al., 1996). 

 

However, if an upregulation of nxrA1 depending on increasing nitrite concentrations did occur, 

an explanation for the extremely low expression level of the nxrA1 gene in replicate II of the 15 

mM nitrite incubations is missing. Concerning this, the measurement of the nitrite concentra-

tions after the incubations applying the Griess reaction (Griess, 1879) revealed not only fluctua-

tions in the nitrite concentrations over the whole incubation time, but also differences between 

the two 15 mM nitrite replicates. Due to inaccuracy of the syringes the actual concentrations 

deviated by about 1.5 mM between the two replicates being higher in replicate II. One explana-

tion derived from this finding could be that downregulation of the nxrA1-expression occurred 

due to a decrease in oxygen, which could have been caused by a higher oxidation-rate of nitrite 

in this incubation. Fresh supply of oxygen was avoided by using airtightly closed bottles. 

 

A rough calculation challenges this hypothesis. A headspace of about 200 mL includes ap-

proximately 42 mL of molecular oxygen (O2). Under standard conditions an ideal gas has a mo-
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lar volume of 24 mL mmol-1. Therefore, 42 mL pure O2 have ~1.75 mmol of O2 which is 

enough to oxidize 3.5 mmol of nitrite. During the experiment, 0.6 mmol nitrite were added and 

about the same amount was consumed. For this reason, the cells should not have experienced 

oxygen deficiency. Still, this cannot be ruled out since other processes consuming O2 as well as 

contaminants respiring O2 also have to be considered. 

 

Another possible explanation for the differences in the expression of the nxrA1 gene could be 

that the slightly higher nitrite-concentration in replicate II itself was inhibiting the expression of 

the nxrA1 gene. The conditions were chosen close to the upper limit of nitrite Ca. N. defluvii 

can deal with, defined by 20-25 mM nitrite (Lebedeva et al., 2008). 

 

Taken together, there are many open questions to be answered concerning these experiments. To 

prove all the hypotheses mentioned, these experiments would have to be repeated in more repli-

cates.  

 

The expression of the nxrA2 gene was similar in all incubations with a slightly reduced expres-

sion in the oxic 15 mM nitrite incubations. This similar expression level under different condi-

tions suggests a constitutive expression of this gene. Results of a former study in the main 

WWTP of Vienna also support constitutive expression of the nxrA2 gene (Koch, 2009, unpub-

lished). The constitutive expression of the nxrB gene later was interpreted as an adaptation to 

enable the utilization of nitrite immediately after becoming available (Lücker et al., 2010). This 

is likely since the concentrations of nitrite in natural habitats can change very quickly. 

 

The combination of the assumed upregulation of the expression of the nxrA1 gene with increas-

ing nitrite concentrations with the constitutive expression of the nxrA2 gene shows similarities 

to other organisms. For example, in Methylocystis sp., it was shown that two different particu-

late methane monooxygenase enzymes (pMMO) converting methane to methanol were ex-

pressed differently (Baani et al. 2008). There, one pMMO was constitutively expressed, whereas 

the second one was expressed only at high concentrations of methane. Another example for such 

an expression pattern was shown for one strain of Thauera sp. This strain has two copies of nirS 

encoding a nitrite reductase enzyme. There, again, one gene was expressed constitutively while 

the other one was upregulated at higher nitrate-concentrations (Etchebehere and Tiedje, 2005). 
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Therefore, referring to the obtained results, a similar expression pattern to the aforementioned 

examples could also be hypothesized for Ca. N. defluvii. If an upregulation of the nxrA1 gene 

dependent on increasing nitrite concentrations really could be confirmed this could be inter-

preted as an adaptation to achieve higher growth yields at temporarily higher nitrite concentra-

tions or a kind of defence mechanism to eliminate nitrite when exceeding a harmful concentra-

tion. However, the latter hypothesis is less likely since Ca. N. defluvii was shown to grow up to 

a nitrite concentration of 20-25 mM (Lebedeva et al., 2008). 

 

For further support of this hypothesis, a comparison of the two nxrA subunits of Ca. N. defluvii 

to the nxrA subunits of Nitrospira moscoviensis could be of interest. This organism was shown 

to grow best at a nitrite concentration of 0.35 mM (Ehrich et al., 1995). Therefore, it would be 

of interest if there is a higher similarity of the nxrA genes of Nitrospira moscoviensis to the 

nxrA2 gene of Ca. N. defluvii since the latter was also shown to be expressed at these low nitrite 

concentrations. However, this comparison is complicated by the fact that the sequences of the 

nxrA genes of Nitrospira moscoviensis are not complete due to gaps in the obtained genome 

sequences (Koch, unpublished). The available partial sequences of the nxrA genes of N. 

moscoviensis were compared to each other and showed a higher similarity to each other than to 

the nxrA copies of Ca. N. defluvii (Koch, 2009, unpublished; Koch, unpublished). However, for 

a reliable comparison between the Nxr’s of N. moscoviensis and Ca. N. defluvii the whole se-

quences of the nxrA copies of Nitrospira moscoviensis must be available. Furthermore, to make 

valid statements concerning their potential substrates and substrate affinities, purified prepara-

tions of the encoded enzymes in their native conformation would be needed.  

 
D.2.2.4. Expression of the paralogous nxrA genes under anoxic conditions with pyruvate and ni-

trate 

This study was conducted to answer the question whether one of the two Nxr copies in Ca. N. 

defluvii could also play a role in denitrification. Nitrobacter and Nitrospira moscoviensis were 

shown to reduce nitrate to nitrite under anoxic conditions (Freitag et al., 1987; Bock et al., 1988; 

Ehrich et al., 1995). To answer this question for Ca. N. defluvii, anoxic incubations were per-

formed with nitrate as electron acceptor and pyruvate as possible electron donor. A significant 

change in the expression level of the two nxrA copies would be expected if one of the two Nxr’s 

encoded in Ca. N. defluvii was able to perform nitrate reduction. However, the nxrA2 gene was 

expressed at the same level as under nitrifying conditions which would be consistent with the 

proposed constitutive expression of this gene and no expression of the nxrA1 gene was ob-
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served. Therefore, a denitrifying role for nxrA1 can be excluded, at least under the tested condi-

tions. For the Nxr encoded by the nxrA2 gene a denitrifying role is unlikely since there was no, 

at least visible, consumption of nitrate over the incubation time. However, there is no real evi-

dence that the Nxr encoded by the nxrA2 gene is not able to perform the reduction of nitrate to 

nitrite since this gene was clearly expressed under denitryfing conditions. The limiting factor in 

this experiment was the method for the measurement of the nitrate concentration. With the ap-

plied test strips a change in the nitrate concentration by half would not have been clearly detect-

able.  

 

Additionally to all these hypotheses, however, also the prevalent pool of proteins has to be con-

sidered when examining the transcriptome of an organism. Proteins often have a much longer 

lifetime compared to transcripts and a sufficient pool of protein for the implementation of the 

protein’s function can make it reduant and even detrimental in terms of energy costs to tran-

scribe the respective gene. Consequently, the transcription of a certain gene can be repressed or 

downregulated due to the existing protein pool although the environmental conditions would ask 

for its expression. Therefore, the lack of detectability of a certain transcript does not mean ab-

sence and inactivity of the encoded protein. This also has to be considered in this study since the 

incubation times were very short. Consequently, for making reliable statements concerning 

changes in the transcriptional activity of certain genes the additional investigation of the pro-

teom is indispensable. 

 

Taken together, with all these results obtained, a first step in the uncovering of the functions of 

the Nxr paralogs has been made and a basis for further investigations was provided. 
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D.3. Investigation of the coexistence of three subpopulations of Nitrospira 

sublineage II in the wastewater treatment plant of the University of vet-

erinary medicine Vienna applying quantitative FISH 
 

D.3.1. Quantification of three subpopulations of Nitrospira sublineage II over a time pe-

riod of six years 

The aim of this study was to examine the abundances of different subpopulations of Nitrospira 

sublineage II in the WWTP of the University of Veterinary Medicine Vienna. In this WWTP, 

this genus represented up to 1/5 of the total bacterial biomass over the observation period of six 

years. Generally, in WWTPs the NOB-community is dominated by two sublineages of this ge-

nus, I and II. Sublineage I was shown to make up between 1 to 20 % of the bacterial biomass in 

many engineered systems (Müller, 2008; Daims et al., 2001a; Schramm et al., 1998; Juretschko 

et al., 1998; Dorninger et al., unpublished; this study). In this study examining the WWTP of the 

Vetmed, sublineage II was dominating very consistently over the whole observation period. 

However, the appearance of sublineage I and II has not yet been linked to specific environ-

mental conditions with the exception of one study by Maixner and colleagues (2006). They 

could show that these two sublineages in principle can either outcompete each other or coexist 

stably depending on the nitrite concentration. Unfortunately, no data concerning the nitrite lev-

els are available for the WWTP of the Vetmed. The stable coexistence there might also rely on a 

niche differentiation as mentioned in the study from Maixner and colleagues (2006). Thereby, 

two major kinds of niche differentiation are conceivable. A spatial niche differentiation would 

emerge when one sublineage with lower nitrite affinity is localized closer to ammonia-oxidizing 

bacteria (AOB) and the sublineage with higher nitrite-affinity lives farther from these substrate-

supplying AOB. A chronological niche differentiation could be due to fluctuations in the nitrite-

concentration based on irregular charging of the WWTP with sewage. Beside the nitrite concen-

tration there are several other factors that can result in changes in the environmental conditions 

and therefore affect the community composition. Especially the presence of different carbon 

sources which could favor the growth of a certain subpopulation and differences in the oxygen 

concentration could affect the community composition. In respect to oxygen a different affinity 

to oxygen among the subpopulations could explain a stable coexistence due to changes in the 

oxygen concentration within the system during the processing of wastewater.  
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Another hypothesis that could explain the dominance of sublineage II in this WWTP is that the 

nitrite concentrations in this WWTP are rather low. This suggestion is based on the fact that the 

only cultured member of sublineage II, Nitrospira moscoviensis, grows best at a rather low con-

centration of 0.35 mM nitrite (Ehrich et al., 1995) in comparison to Ca. N. defluvii representing 

sublineage I and growing best at a nitrite concentration of 3 mM (Spieck et al., 2006). But still, 

there can be many other factors affecting the competitiveness of different sublineages, as for 

example organic compounds which could probably be used for mixotrophic lifestyles (Watson 

et al., 1986; Lücker et al., 2010). 

 

The quantified abundances of the two examined subpopulations 195 and 256Cl2 were more or 

less consistent with the qualitative assessment by Christiane Dorninger. However, for cluster 2.4 

a clearly increasing abundance was observed over time since the beginning of sampling in the 

year 2004. The cluster 2.5 did not show comparable abundance shifts and remained stable over 

time. But still, a stable coexistence of these subpopulations was clearly demonstrated in this 

study. To explain such a coexistence and also shifts in the abundances of these two subpopula-

tions it would be of interest to have supplementary data about the wastewater composition in 

terms of concentrations of nitrite, ammonium, trace elements, urea, other organic compounds 

and potentially toxic substances like antibiotics as well as pH and temperature. Shifts in the 

wastewater composition could possibly be linked to shifts in the composition of these subpopu-

lations and give hints to their physiological requirements. Probably they represent different eco-

types with different physiological requirements despite a close relation on the basis of 16S 

rRNA sequence analysis. This, for example, was shown for different populations of the genus 

Prochlorococcus which were adapted to high- and low-light conditions, respectively (Coleman 

and Chisholm, 2007). 

 

Unfortunately, the abundance of the third subpopulation, cluster 2.2, could not be quantified due 

to the weak signal obtained from this probe which did not allow taking suitable pictures for 

quantification. 
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D.3.2. Limitations for the quantification of bacterial cells using fluorescence in situ hy-

bridization (FISH) 

As mentioned above, the quantification of cluster 2.2 was not possible due to the weak signal of 

the used probe. A reason for the weak signal of this probe as well as for the probe 256Cl2 could 

be low accessibility of the target region due to the secondary structure of the 16S rRNA. Low in 

situ accessibility was reported earlier for many regions of the 16S and 23S rRNA of E.coli 

(Fuchs et al., 1998, 2000 and 2001). There, approximately 30% of the total 16S rRNA sequence 

showed a low accessibility (Fuchs et al., 1998). A consensus 16S rRNA accessibility map for 

prokaryotes was created that should be considered during probe design (Behrens et al., 2003).  

 

For the design of probes targeting very closely related organisms whose variability of the 16S 

rRNA is only based on SNPs, the accessibility map cannot always be taken into account. Fur-

thermore, the accessibility of certain rRNA regions varies among organisms. Therefore, even 

considering this consensus accessibility map does not guarantee a good FISH signal. One way to 

improve accessibility is to use unlabelled helper probes (Fuchs et al., 2000). Other possible solu-

tions would be to elongate the hybridization time up to 96 h or to design longer probes (Yilmaz 

et al., 2006). Also the use of double-labelled FISH-probes was shown to increase the signal 

from labelled cells at least twice. Even for single-labelled probes which did not give any detect-

able signal, the identical, but double-labelled probe could be detected. Double-labelling has  

been supposed to open the secondary structure of the rRNA (Stoecker et al., 2010). Neverthe-

less, all these techniques have specific limitations (Stoecker et al., 2010). 

 

In addition to problems with the signal intensity of probes, the so-called “autofluorescence” 

(AF) of sludges is an issue to consider, i.e. when organic compounds or minerals emit at the 

same wavelength as the applied fluorescence dye. In this context, the so-called signal-to-noise 

ratio should be mentioned. The signal-to-noise ratio (SNR) compares the intensity of a desired 

signal to the intensity level of the background noise. The higher the SNR, the easier it is to dis-

tinguish between labelled cells and the autofluorescence of activated slude - the background 

noise. In the case of probes giving low signal intensities, the SNR can be very low which in turn 

can make it unfeasible to quantify bacterial populations despite the use of suitable probes. This 

is especially problematic when using probes which give weak signals. For the probe Ntspa175 

targeting cluster 2.2 of Nitrospira sublineage II the AF signal almost completely covered the 
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signal from labelled colonies in most of the cases when applying the Cy3 fluorescence dye. An 

alternative to this fluorescence dye would have been the use of Fluos-labelled probes. But also 

for this dye enormous AF was observed. Especially for probe Ntspa175 and probe Ntspa256Cl2 

specific for Nitrospira cluster 2.5, Fluos-labelled probes gave weaker signals compared to Cy3-

labelled probes and therefore images were even harder to take. The Fluos fluorochrome is only 

advantageous when using epifluorescence microscopy. Thereby, the application of this dye al-

lows a differentiation between “real” and AF signal by eye since various shades are distinguish-

able. However, after digitalization of the original signal by taking images a differentiation of 

differently coloured shades is not possible anymore and therefore the application of the Fluos 

fluorochrome would not have been advantageous when quantifiying populations on basis of 

digitalized images. 

 

For further studies the signal intensity of the probes must be improved to obtain more valid data 

for all known subpopulations. Some possible approaches to obtain enhanced signals from the 

targeted subpopulations for a more reliable image analysis were mentioned above. Further stud-

ies could then tackle to seasonal changes in the composition of nitrifying bacteria in this WWTP 

by seasonal sampling in equal time intervals. Additional analyses of the wastewater composition 

could give more detailed insights into shifts in the composition of the NOB. Changes in the 

wastewater composition could be linked to changes in feed composition and the keeping of ani-

mals at Vetmed during the year. 

 

Summing up, the obtained results showed that a stable coexistence of very closely related organ-

isms in the same habitat is possible at the level of sublineages as well as at the level of subpopu-

lations. Which physiological differences between the different Nitrospira populations provide 

the basis of this coexistence needs to be explored further. 
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E. Summary 
 

The biogeochemical nitrogen cycle is of paramount importance for the biosphere since nitrogen 

is essential to all organisms. Therefore, microbes participating in this cycle have been investi-

gated for more than one century. But still, much is unknown. Especially the nitrification process 

- the transformation of ammonia/ammonium to nitrate - is of particular interest since many new 

aspects have been revealed in the last decade. This study focussed on the further investigation of 

the genus Nitrospira - a genus of nitrite-oxidizing bacteria (NOB) performing the oxidation of 

nitrite to nitrate - the second step in the nitrification process. This bacterial genus was investi-

gated concerning its ecophysiology on the one hand and its distribution in the wastewater treat-

ment plant of the University of Veterinary Medicine Vienna on the other hand. 

 

The key enzyme for the oxidation of nitrite to nitrate is the membrane-associated nitrite-

oxidoreductase (Nxr) which in ”Candidatus Nitrospira defluvii” - a member of sublineage I of 

the genus Nitrospira - is present in two copies in the genome. The alpha-subunits of the encoded 

enzymes differ from each other indicating possible differences of their substrate-affinities. 

Therefore, the first part of this study focussed on the expression of these alpha-subunits with 

different nitrite concentrations to reveal a possible substrate-dependent regulation. For this pur-

pose, qPCR assays specific for these genes were developed. First experiments supported the 

hypothesis that one of the Nxr’s is constitutively expressed, whereas the second copy is upregu-

lated at a nitrite-concentration of 3 mM - the optimal concentration for growth of Ca. N. deflu-

vii. Furthermore, this enzyme was shown to be capable of performing the reverse step - the re-

duction of nitrate to nitrite - in other organisms. Therefore, the developed qPCR assays were 

also used to check for the expression of the two encoded Nxr enzymes under denitrifying condi-

tions. First results, however, did not support this hypothesis. 

 

Another part of this thesis tackled to a possible mixotrophic lifestyle of this organism by exam-

ining the expression of the enzyme citrate synthase. This enzyme is essential in the oxidative 

tricarboxylic acid cycle (oTCA), which is yet unknown to be functional in Ca. N. defluvii. To 

analyze its expression, a qPCR assay specific for the gltA gene encoding the citrate synthase was 

developed. This assay allows the investigation of Ca. N. defluvii with regard to the use of or-

ganic compounds with the oTCA cycle. Future experiments with cultures of Ca. N. defluvii 

should test the use of different organic compounds after incubating the cultures under oxic con-
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ditions. Such data could explain the distribution of this sublineage as well as its dominance in 

some wastewater treatment plants (WWTPs). 

 

Another part of this study dealt with the distribution of Nitrospira populations in the WWTP of 

the University of Veterinary Medicine Vienna. Different subpopulations of sublineage II of the 

genus Nitrospira were examined concerning their abundance in samples taken over six years. 

For this purpose, fluorescence in situ hybridization (FISH) in combination with confocal mi-

croscopy and the image analysis software daime was applied. This study showed that members 

of sublineage II of the genus Nitrospira are highly dominant in this WWTP. Furthermore, stable 

coexistence of different subpopulations over the whole sampling period was revealed. This 

likely is caused by differences in the ecophysiology of the subpopulations which may represent 

different ecotypes. Due to different physiological demands or capabilities they could inhabit 

different niches in WWTP.  

 

Taken together, new insights into the ecophysiology and community structure of nitrite-

oxidizing bacteria have been revealed and provide material for further investigations. Such in-

formation about the genus Nitrospira is important to better understand the nitrification process 

in WWTPs. 
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F. Zusammenfassung 
 

Der biogeochemische Stickstoff-Kreislauf ist von enormer Bedeutung für die Biosphäre, da das 

Element Stickstoff für alle Organismen lebensnotwendig ist. Aus diesem Grund heraus wurde 

seit mehr als einem Jahrhundert intensiv an jenen Mikroorganismen geforscht, die für die 

Umwandlung von Stickstoffverbindungen veranwortlich sind. Doch bis heute gibt es noch viele 

zu klärende Fragen, was diese Prozesse betrifft. Diesbezüglich ist vor allem der Prozess der 

Nitrifikation von besonderem Interesse, da gerade in Bezug darauf innerhalb des letzten 

Jahrzehnts viele neue Erkenntnisse gewonnen wurden. Die Nitrifikation ist jener Teil des 

Stickstoff-Kreislaufes, in dem Ammonium/Ammoniak zu Nitrat oxidiert wird.  

 

Diese Diplomarbeit fokussierte sich auf die weitere Erforschung der Gattung Nitrospira, einer 

Gattung von Nitrit-oxidierenden Bakterien (NOB), welche den zweiten Schritt der Nitrifikation 

– die Oxidation von Nitrit zu Nitrat - durchführen. Ziel dabei war es einerseits, mehr über die 

Ökophysiologie dieser Mikroorganismen sowie andererseits mehr über ihre temporäre 

Verteilung in der Kläranlage der Veterinärmedizinischen Universität Wien in Erfahrung zu 

bringen.  

 

Das Schlüsselenzym für die Oxidation von Nitrit ist das membranassoziierte Enzym Nitrit-

Oxidoreductase (Nxr). Jene Gene, welche dieses Enzym codieren, liegen im Genom von 

“Candidatus Nitrospira defluvii“ (Ca. N. defluvii), einer Art der sublineage I der Gattung 

Nitrospira, in jeweils zwei paralogen Kopien vor. Jene beiden paralogen Gene, welche die 

alpha-Untereinheiten codieren, unterscheiden sich dabei deutlich voneinander. Da diese 

Untereinheiten für die Substratbindung verantwortlich sind, könnte dies auf unterschiedliche 

Substrat-Affinititäten hindeuten. Daher fokussierte sich der erste Teil dieser Studie darauf, die 

Expression dieser alpha-Untereinheiten unter unterschiedlichen Nitritkonzentrationen zu 

untersuchen, um so eine mögliche Substrat-abhängige Regulierung dieser Gene aufzeigen zu 

können. Dafür wurde eine qPCR-Methode entwickelt, welche spezifisch die Expression dieser 

beiden Gene detektieren kann. Erste Experimente stützen die Hypothese, dass eines der beiden 

Gene konstituitiv exprimiert wird, während die Expression des zweiten Gens bei einer Nitrit-

Konzentration von 3 mM hochreguliert wird. Dies entspricht jener Konzentration, bei der Ca. N. 

defluvii die höchste Nitrit-Oxidationsrate aufweist. Weiters kann mit der entwickelten qPCR-

Methode auch getestet werden, ob eines der beiden codierten Nxr-Enzyme auch den reversen 
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Schritt - die Reduktion von Nitrat zu Nitrit - katalysieren kann. Dies konnte zuvor schon für das 

Nxr-Enzym von anderen Organismen gezeigt werden. Erste Versuche konnten diese Hypothese 

jedoch nicht stützen.  

 

Eine weitere Arbeit dieser Diplomarbeit beschäftigte sich mit der Untersuchung eines möglichen 

mixotrophen Lebensstils von Ca. N. defluvii. Um dies zu untersuchen sollte die Expression des 

Enzyms Citrat-Synthase untersucht werden. Dieses Enzym ist essentiell im oxidativen 

Tricarbonsäurezyklus (Krebs-Zyklus, Zitronensäurezyklus). Ob dieser in Ca. N. defluvii 

funktionell ist, konnte bislang noch nicht gezeigt werden. Deshalb wurde auch für das Gen gltA, 

welches die Citrat-Synthase codiert, eine qPCR-Methode entwickelt. Diese ermöglicht den 

Nachweis der Nutzung von organischen Verbindungen über den Tricarbonsäurezyklus, wenn 

eine erhöhte Expression dieses Gens nachgewiesen werden kann. Aufgrund von 

Biomasselimitierung konnten diesbezüglich jedoch keine spezifischen Untersuchungen 

durchgeführt werden. Diese könnten jedoch Gegenstand von zukünftigen Experimenten sein, bei 

denen Anreicherungskulturen von Ca. N. defluvii unter oxischen Bedingungen mit bestimmten 

organischen Verbindungen inkubiert werden könnten. Ergebnisse aus diesen Untersuchungen 

könnten Hinweise für die weite Verbreitung sowie die Dominanz der Gattung Nitrospira in 

Kläranlagen aufgrund von möglichen Präferenzen bezogen auf verschiedene organische 

Verbindungen liefern. 

 

Ein weiterer Teil dieser Diplomarbeit befasste sich mit der Verbreitung von Populationen der 

Gattung Nitrospira in der Kläranlage der Veterinärmedizinischen Universität Wien. Dabei 

wurden die Häufigkeiten verschiedener nahverwandter Subpopulationen der sublineage II der 

Gattung Nitrospira basierend auf ihren Biomasseanteilen untersucht. Um diese zu erheben 

wurde die Methode Fluoreszenz in situ Hybridisierung (FISH) in Kombination mit 

Konfokalmikroskopie sowie der Quantifizierungssoftware daime eingesetzt. Die durchgeführten 

Erhebungen zeigten, dass sublineage II-angehörige Populationen der Gattung Nitrospira in 

dieser Kläranlage höchstabundant waren. Innerhalb dieser sublineage II konnte weiters eine 

stabile Koexistenz von zwei Subpopulationen über den gesamten Beprobungszeitraum 

nachgewiesen werden. Diese stabile Koexistenz könnte auf verschiedenen physiologischen 

Anforderungen oder Fähigkeiten dieser Subpopulationen basieren.  

 

Zusammenfassend konnten neue Einblicke in die Ökophysiologie und die Gemeinschaftstruktur 

von Nitritoxidierenden Bakterien gewonnen werden, welche wiederum Grundlage für weitere 
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Experimente darstellen. Diese Informationen wiederum sind von enormer Bedeutung, um den 

Prozess der Nitrifikation in Kläranlagen besser verstehen zu können. 
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G. Abbreviations 
 
 

% percent 

°C degree Celsius 

0.3 mM NO2
- R1 Ca. N. defluvii incubation with 0.3 mM nitrite replicate 1 

0.3 mM NO2
- R2 Ca. N. defluvii incubation with 0.3 mM nitrite replicate 2 

15 mM NO2
- R1 Ca. N. defluvii incubation with 15 mM nitrite replicate 1 

15 mM NO2
- R2 Ca. N. defluvii incubation with 0.3 mM nitrite replicate 1 

3 mM NO2
- R1 Ca. N. defluvii incubation with 3 mM nitrite replicate 1 

3 mM NO2
- R2 Ca. N. defluvii incubation with 3 mM nitrite replicate 2 

A Adenine 

abs absolute 

AOA ammonia-oxidizing archaea 

AOB ammonia-oxidizing bacteria 

BLAST Basic Local Alignment Search Tool 

bp base pair(s) 

C Cytosine 

Ca. N. defluvii “Candidatus Nitrospira defluvii“ 

CLSM Confocal laser scanning microscope 

Cy3 
5,5'-di-sulfo-1,1'-di-(X-carbopentynyl)-3,3,3',3'-tetra-methylindol-Cy3.18-derivative 
Nhydroxysuccimidester 

Cy5 
5,5'-di-sulfo-1,1'-di-(X-carbopentynyl)-3,3,3',3'-tetra-methylindol-Cy5.18-derivative 
Nhydroxysuccimidester 

dd double distilled and filtered 

DNA deoxy-ribonucleic acid 

dNTP desoxy-nucleotide-tri-phosphate 

E. coli Escherichia coli 

EDTA ethylene-di-amine-tetra-acetic acid 

ERT Eppendorf reaction tube 

et al. et alteri (lat., “and others”) 

EtBr Ethidium bomide 

FA Formamide 

FISH Fluorescence in situ hybridisation 

FLUOS 5,(6)-carboxfluorescein-N-hydroxysuccimidester 

FW forward (primer labelling) 

g gram(s) 

G Guanine 

h hour(s) 
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H2O water 

HCl Hydrochloric acid 

k kilo (103) 

KBL kilobase-ladder (DNA length standard) 

L liter(s) 

LB Luria Bertani 

m milli (10-3) 

M molar 

min minute(s) 

mM mili molar 

mol Mol 

n nano (10-9) 

N2 elemental nitrogen 

N2O Nitrous oxide 

NaCl Sodium chloride 

NCBI National Center for Biotechnology Information 

NH3 Ammonia 

NH4
+ Ammonium 

NirS, nirS nitrite reductase and corresponding gene 

NO Nitric oxide 

NO2
- Nitrite 

NO3
- Nitrate 

NOB  nitrite-oxidizing bacteria  

Nxr, nxr  nitrite oxidoreductase and corresponding gene 

o/n over night 

O2 molecular oxygen 

p pico (10-12) 

PBS Phosphate buffered saline 

PCR Polymerase chain reaction 

PFA Paraformaldehyde 

RNA Ribonucleic acid 

rpm rotations per minute 

rRNA ribosomal RNA 

RT Room temperature or Reverse transcription 

RV reverse (primer labelling) 

SDS Sodium dodecyl sulphate 

sec. second(s) 

STD standard 

Taq thermostable DNA-polymerase from Thermus aquaticus 
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TBE Tris-boric acid-EDTA 

U Uracil 

UV Ultraviolet 

Vetmed University of Veterinary Medicine Vienna 

w/v weight per volume 

λ wavelength 

μ mikro (10-6) 
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