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Abstract
In dieser Arbeit wird ein Weg zur Erstellung von realistischen, weich wirkenden, virtuellen 

Gesichtsausdrücken  vorgestellt.  Um dies  zu  ermöglichen  wurde  eine  modifizierte,  von 

Waters  1987  entwickelte,  Simulation  der  Gesichtsmuskeln  mit  einer  Simulation  der 

menschlichen  Haut  kombiniert.  Die  Hautsimulation  basiert  auf  einer  Reihe  simpler 

Bedingungen und dient zur Faltenbildung im Gesicht.  Für die Gesamtsimulation wurde 

daraufhin  ein  Tool  erstellt,  welches  das  Austesten  und  die  Manipulation  der  Muskeln 

ermöglicht.
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1. Introduction

The simulation of a virtual human face as realistic as possible and in real time, is a difficult 

challenge which can be broken down into three sub tasks. A polygon model with a realistic 

topology is the foundation, and can either be created by an artist, or acquired by a scanning 

system from a real  person.  On this  model  one,  or  often  multiple  detailed  textures  are 

applied for a realistic rendering. The textures have to include the slight color variations of 

the skin, and fine details, like pores and moles. The final task is to bring the human face to 

life by animating it. In my thesis I will focus on this last task, the animation of a human  

face, and present a solution for the generation of soft looking facial expressions. 

Realistic facial expressions are needed in many virtual simulations, such as video games 

and avatar applications. However, the achieved results are often far away from convincing 

the user that he is actually interacting with a human being. The faces of virtual humans 

tend to be not soft enough, they seem to have more in common with a mask than with an 

actual  face.  Related to  this  problem is,  that  the faces  are  also  not  expressive  enough, 

showing no real emotions. This destroys the illusion of interacting with an 'alive' human 

being rather fast. The name 'Uncanny Valley' [1] was assigned to a similar problem, when 

the viewer tends to feel repulsion or rejection towards the virtual character rather than 

emotional engagement.

In my opinion, to simulate a human face realistically, solutions for two main problems have 

to be developed. On one side a suitable simulation for the complex arrangement of  facial 

muscles has to be found, on the other side a way has to be developed to simulate human 

skin and to give the face an overall soft look. 

The task of simulating facial muscles can be solved in two ways. One is to simulate the 

positions,  the  form and the  number  of  the  facial  muscles  as  well  as  their  contraction 

behavior. The second way is to only focus on the muscle contraction, or rather the visible 

effects of the facial muscles on the surface. However, any good solution for a facial muscle 

simulation has also to be flexible enough, to be easily adjustable for different face models 

and has to be fast enough to allow the calculation in real time.

The main problem by the simulation of human skin is the creation of small wrinkles, that 
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facial expressions generate. These wrinkles do not only let us perceive a face as soft, but 

also  help  to  make  the  emotions  shown  in  the  face  more  expressive.  Therefore  it  is 

important to find a way for creating wrinkles in real time applications. Again, there are two 

ways to solve this problem. One way is to create the wrinkle information beforehand by 

either capturing it from a real person or by letting an artist create it. This generated static 

information is then mapped onto the model, similar to a texture. The second way is to 

create wrinkles dynamically from the mesh, either by letting a person define them in real 

time, or by simulating forces on the surface. However, a good skin simulation has again to 

be flexible enough to be used on different head models, and has to work in real time.

In my thesis, I will present a solution, that will allow the creation of soft looking, realistic 

facial expressions.  
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2. Related Work

Research in the field of facial animation has already brought up many different solutions to 

the mentioned problems above. In this section a general overview is  provided over the 

most common techniques,  making heavily use of a survey done by  Zhigang Deng and 

Junyong Noh [2].

The oldest and still the most commonly used solution is the use of 'blend shapes', or also 

known under the name 'shape interpolation'. This technique relies on an artist to create 

facial expressions through the manual repositioning of the points a 3d model consists of, its 

vertices. Different parts of the face are deformed and these deformations then stored. Every 

possible facial action the application needs has to be considered, like closing an eye lid, 

raising the eye brow, etc. These partial deformations can then be combined to create the 

desired facial expressions, by assigning each of the created blend shapes a certain weight. 

The neutral facial expression is then deformed depending on these weights, using some sort 

of interpolation. Most of the common 3d animation softwares, like Autodesk's Maya, 3D 

Studio Max and Blender support this technique. 

Figure 1: An example of a facial animation by Parke [3].

As a pioneer in this field, Frederick I. Parke has to be mentioned and his paper 'Computer 

Generated Animation of Faces'  [3], in which he proposed this idea of animating faces by 

interpolation.  He compared  it  to  the  traditional  style  of  animation,  in  which  the  head 

animator only defines the key poses of a character, and then passes them on to an assistant,  
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who draws the frames in between. Blend shapes also need an artist to create the key frames, 

but the positions for the points in the rest of the frames can be calculated. Unfortunately 

has the use of blend shapes a few disadvantages. First of all it needs a lot of preparation 

work before being usable in the actual application. A software for the animation of 3d 

models  is  needed,  and  the  result  heavily depends  on  the  artists  skills.  The  work  also 

depends on the resolution of the model. A high resolution model makes this technique hard 

to use,  because of the high number of points which have to be repositioned. Also, the 

preparation work has to be done for each individual face, and if the application supports 

two different characters, the work already doubles.  For video games, in which often many 

different characters have to be simulated, modeling their facial expressions takes a lot of 

time.

Another solution is the use of Free Form Deformations, which try to overcome some of the 

drawbacks blend shapes have. It basically approximates the model through a simpler shape, 

which consists of a few control points. Areas of the model can be deformed by changing 

the  position  of  these  control  points.  Rational  Free  Form  Deformations  expand  this 

technique by adding weights to the control points. A simple mesh cage has to be created to 

use this technique for producing facial expressions. The cage has control points for all the 

important  parts  of  a  face.  For  example,  there  has  to  be  one  control  point  for  the  left 

eyebrow, which is then used to raise or lower it. 

Escher et al.  [4] developed a facial deformation system using free form deformation in 

combination with the Mpeg-4 video standard, in which Facial Animation Parameters (FAP) 

and Facial  Definition Parameters (FDP) are supported.  Their  first  step was to define a 

generic  head  model  consisting  of  1500  polygons,  on  which  a  fixed  set  of  vertices, 

corresponding to the FDP feature points were put. These control points did not only allow 

the generation of facial expressions, but also made face deformations possible. Through the 

manipulation of the control points completely different faces can be generated. They used 

the Dirichlet Free Form Deformation technique, which was especially developed to allow 

mesh deformations while keeping the surface continuity. 
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Figure 2: Facial deformations based on FDP [4]. 

An  advantage  of  this  solution  over  blend  shapes,  is  the  independence  from the  mesh 

resolution. Also, if the mesh cage is generic enough, it is possible to use it for different face 

models. However, this technique still depends on surface manipulation only, and does not 

take the actual facial muscles and their behavior in account.

A completely different approach to the problem is the use of performance driven facial 

animation. With this method, an actor is needed to create the facial expressions. Simple, 

but cheap systems can be used to track certain markers on the actors face, and convert them 

into a desired format. The model on which the animation is applied to has corresponding 

control points for the tracked markers. These systems often run in real time, allowing the 

actor to watch his facial expressions on the model while creating them. 

In 2007 a real time, performance driven facial animation system, which was also able to 

create wrinkles dynamically, was presented by Bickel et al.  [5]. They divided the task of 

creating facial expressions into three optical properties, from fine scale over spatial scale to 

coarse scale properties. Coarse scale properties were the movements of the muscles, for 

example raising an eyebrow or pulling down a lip corner. Spatial scale properties were the 

resulting wrinkles that are created due to skin compression, for example on the forehead or 

around the mouth corners. And fine scale optical properties represent the small details the 

skin consists of,  like skin pores, or freckles. 

A commercial scanning software was used to create the face model, which was delivered at 

a resolution between 500k ~ 700k vertices. Another scanning system, consisting out of 6 
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cameras was used to track the facial motions. For this task about 80 to 90 facial markers 

were tracked, which were painted blue dots on the face of the actor. With this setup the 

facial expressions could be tracked and mapped to the simulated face, but still no wrinkles 

are  generated.  To calculate  them,  the self  shadowing of  the real  wrinkles  was used in 

combination with bright colors, which were applied on the face to make the contrast more 

even.

A year later in a different paper  [6] they proposed a data driven approach for creating 

wrinkles,  based  on  their  previous  work.  They expanded  their  work  and  defined  ~100 

handling vertices, which can be matched with tracking data or be manipulated by an artist. 

The wrinkles were no longer created from real time data, but were taken from an example 

data base. They captured the position differences of the handle vertices during the facial 

expression performance of an actor and used these to define a set of strains, representing 

the skin compression. These strains were then used to calculate the wrinkles. 

Figure 3: Facial expression tracking by Bickel [5].

A simple example for this technique can be imagined as the raising of an eyebrow, which 

leads to a length difference between the handle vertices of the eyebrow and the ones on the 

forehead. The smaller the distance between these points is,  the clearer are the winkles 

visible due to the bulging of the skin. With this knowledge the wrinkles are created based 

on the wrinkle sample taken from the actors expression. The results that were achieved by 

using this technique are very impressing,

For even a higher quality performance driven animation, facial motion capture is used. This 
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technique requires rather expensive equipment, but gives very satisfying results. Usually a 

high number of cameras are used to track the facial animations of an actor, to either convert 

these to blend shapes, or to drive a muscle simulation with them. Facial motion capture 

was used in the animated movies 'The Polar Express' and 'Monster House', and is in general 

not a common real time solution. It is however often used in the movie industry. Recently 

though it made its debut on the video games market with Rockstars L.A Noire, in which 

actual actors and their facial expressions were scanned and then converted into real time 

clones.

A good documented example of a scanning process was provided in 2009 with 'The Digital  

Emily Project'  [7]. This project, an cooperation between the well known Image Metrics 

company and the Graphics Laboratory at  the University of Southern California’s Institute 

for Creative Technologies, had the goal to create a synthetic face, that would look like and 

easily be mistaken for a real one. 

Figure 4: The Digital Emily project [7].

For this purpose a female actor was placed into a lighting cage consisting of 156 LED 

lights and 15 cameras. This futuristic looking setup confirms, that facial motion capture 

needs  rather  expensive  equipment  to  provide  the  desired,  realistic  results.  For  better 

tracking results 40 small markers were drawn on the actresses face using a make up pen. 

The actress was then asked to perform 38 expressions, based on Paul Ekmans Facial Action 

Coding System [8], and multiple photos were taken to capture the face and its skin details, 

down to the  stretching of  skin pores.  These were then  converted into different  texture 

maps, like specular maps, which store the amount of light reflection and normal maps, 

which  save  the  fine  skin  details.  In  the  end  each  facial  scan  provided  a  face  model  

consisting of approximately three million polygons. 

The next step was to build a lower resolution mesh consisting of about 4000 polygons, 
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resembling the neutral position of the face scans. Through this process the fine details of 

the  scan  were  lost,  but  were  put  back  in  later  through  the  texture  maps  which  were 

retrieved during the scans.  Using this  model,  blend shapes were created from the face 

scans, by using the marker points which were drawn on the actresses face. These resulting 

blend shapes then could be driven by a video performance of the actress, and  the final  

video showed tremendous realism. 

Another  approach  was  developed  in  1987,  when  Keith  Waters  presented  a  way  to 

approximate the behavior of facial  muscles, with his  Vector Muscle Model  [9]. It only 

consists of two muscle types, the linear or parallel muscle and the sphincter muscle. The 

linear muscle pulls its surface part to its root, to the point where it is fixed at the skull. it is 

used to simulate most of the facial muscles. On the other hand the sphincter muscle, which 

contracts to its center, is only used for the circular muscles around the eyes and the mouth. 

Figure 5: Example of facial deformation with Waters Muscle Model [9].

When visualized, the linear muscle is represented by a cone shaped object. It is defined by 

two points and an angle, which is representing the width of the cone. The form of the 

sphincter muscle is an ellipsoid, defined through a center point and the radii for each axis. 

It is a simple, but powerful model, and Waters was able to create a face with a variety of 

different emotions using it. 

The advantages of using an actual muscle simulation are, that the resolution of the model 

has no influence,  and that  it  can be easily adjusted for different faces,  since the facial 

expressions are no longer surface based. Unfortunately there is also a disadvantage, which 
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is that the positioning of the muscles can often be a time consuming task of trial and error. 

This is however necessary, since only a small position difference can easily be decisive 

whether it results into a realistic or unrealistic deformation. This muscle model can also be 

seen in action in one of Pixars early movies 'Tin Toy'. The face of Billy the baby has forty-

seven of Waters muscles integrated in it. 

2003 a paper  [10] discussing some improvements on this  model was presented. It was 

mainly concerned with the unrealistic  vertex  deformations,  which occur when multiple 

muscles influence the same set of vertices. A head model retrieved from a 3D scanner was 

used for this purpose, subdivided into eleven regions. The reduced face consisted of 4744 

polygons,  and was  calculated  considering that  the  expressive  regions,  for  example  the 

forehead, has to consist of more vertices than more static regions, like the back of the head. 

Additional to Waters muscle model, a pseudo muscle was used to simulate the jaw rotation. 

When multiple muscles influence a set of vertices, the problem that can occur is, that some 

vertices leave the zone of influence of one of the muscles, abruptly resulting in unrealistic 

deformations.  To solve this  problem,  the  paper  suggests  the use of  parallelism for  the 

muscle contraction. Instead of applying the full contraction force of each muscle on top of 

each other, smaller forces are applied until no more contraction force is left. Using this 

method,  more  realistic  deformations  can  be  achieved  when  two  or  more  muscles  are 

influencing the same region. 

Figure 6: Simple Wrinkle generation [10].

The paper also proposed an idea for creating a simple wrinkle simulation in combination 

with  Waters  muscle  model.  Assuming  that  the  muscles  align  with  the  skin,  a  certain 

number of wrinkles and their height is predefined for each muscle. Then, after the muscle 

contraction  is  applied,  the  wrinkles  amplitude  is  computed  and  added  to  the  vertex 
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deformation. The results prove, that by using this simple technique, the facial expressions 

achieve a bit more realism.

A different, more complex muscle model was later introduced by Waters and Terzopoulos 

[11]. The Layered Spring Mesh Muscle Model was designed to model all the anatomical 

facial features, and consisted of a three layer model. These three layers corresponded to the 

muscle tied to bone layer, a fatty tissue layer or also called dermis, and the skin layer, the 

epidermis. The idea behind it was to approximate the face through a point lattice connected 

by springs. Derived from the actual properties of the human skin, the most outer layer was 

connected with rather stiff springs, rendering it moderately resistant to deformations. On 

the other hand the springs in the layer representing the fatty tissue are highly deformable. 

Very restricted  were  the  nodes  connecting  to  the  bone  in  the  lowest  layer.  The facial 

muscles then were approximated by defining a point attached to the bone, and one attached 

to  the skin layer,  resulting in  a muscle vector similar to  the ones used in  [9].  For the 

animation of the model, all the muscle contractions are computed and the nodes deformed 

depending on the weighted sum of their influencing forces.

A similar  complex  simulation  was used  by Kähler  et  al.  [12] for  the purpose  to  built 

animated, anatomically correct head models. 

Figure 7: Anatomical correct head [12].

Their model consisted of five major components. The skin surface, which was represented 

through the triangle mesh, and was built to have more polygons in more expressive regions 

of the face. Following under the skin was a layer of muscles, modeled as an array of fibers, 

which were able to  contract  in  a linear and circular way. This layer followed a model 
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representing the skull, which was only used for the initialization of the muscle layer, and 

was not present during animation. These three layers were then connected through a mass-

spring system, assigning every vertex a certain mass and connecting it to the underlying 

muscles through springs. Finally, separate models for eyes, teeth and tongue were added. 

While  creating  the  head,  a  set  of  landmarks  was  placed  on  the  skin  surface  with 

corresponding counterparts on the skull. These were used to generate an offset between the 

skin and the skull, which is also maintained during animation. To animate the structure, the 

contraction values of the muscles are changed and the resulting forces directly applied on 

the skin mesh. Since the muscles are automatically calculated from the space between skull 

and  skin,  their  contraction  is  visualized  by  a  recalculation  after  the  skin  surfaces 

deformation.

A commonly used solution to simulate wrinkles in video games, is the use of wrinkle maps. 

These maps are very similar to normal maps, which are laid over the texture of a characters 

face when wrinkles should appear. The transparency of the texture can be regulated, to 

prevent the sudden appearance of the wrinkles, and allow a smooth transition. Wrinkle 

maps are usually created by an artist during the modeling process of a character. A high 

resolution  sculpture  is  built  for  each  character,  and then  based upon it  a  low polygon 

version  is  created.  The high resolution  sculpture  is  so  detailed that  it  can  provide  the 

wrinkle information of the skin, and the wrinkle maps are computed from it. Unfortunately, 

this  process  makes  the  wrinkle  maps  depending  on  the  character,  however  an  easy 

acquisition technique was developed by Dutreve et al.  [13]. They describe a solution for 

acquiring the information needed for the wrinkle maps from a real person and a way to 

map them to any mesh character. Since their goal was not to acquire the whole face, but 

only the  wrinkles  in  it,  they calculate  them using  the  illumination  difference  between 

different poses of the same face.

Figure 8: Wrinkle acquisition [13].

14 / 84



                                                                                                                                       Leon Beutl

To get the best possible pixel match between the two poses, they developed a deformation 

algorithm that uses a set of hand placed markers. A Gaussian smoothing is done too, to 

reduce the noise in the regions of interest, which can be marked with a simple painting 

tool. The winkles are finally calculated by approximating the light source as coming from 

the camera direction and assuming that the skin is a diffuse surface. At last an interpolation 

is done to map the marked space to the equivalent texture space of the character mesh, 

again using a set of hand placed landmarks.

 Yosuke Bando et al.  [14] described in their work algorithms for the creation of fine and 

large scale wrinkles. Fine scale winkles, being small furrows covering the whole skin, were 

realized through bump maps.  These bump maps were created by letting a user specify 

direction  vectors  directly  on  the  mesh  surface.  An  algorithm  then  matched  the  mesh 

structure to the direction vectors, resulting into a gray scaled height-map representing the 

skin furrows. Large scale wrinkles on the other hand were not implemented with maps, but 

directly modeled into the mesh. The users task is to draw lines again, but this time these 

represent  the  actual  wrinkles.  The  wrinkle  lines  were  then  converted  into  a  mesh 

deformation using the mesh structure and a predefined height. The height value specified 

the amplitude that was used to deform each vertex depending on its normal. 

Figure 9: fine scale wrinkles [14].

The deformations  were  created  in  real  time,  allowing the  user  to  immediately see  the 

changes happening. This allowed easy adjustments by redrawing the wrinkle lines or by 

changing the height parameter. However, this method was designed and only used for static 
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face meshes so far, and not for the dynamic creation of facial expressions.

Another  solution  for  creating  wrinkles  due  to  mesh  deformation  was  presented  by 

Larboulette and Cani  [15]. Their approach used a planar wrinkle curve, which gradually 

wrinkles depending on the distance between its endpoints. This curve is defined through an 

origin point, a target point and their rest length value. The user is also able to define the 

number of control points in between, which is equal to the number of wrinkles that are 

created. When the origin point moves in the direction of the target point, the position of the 

control points is recomputed to keep the rest length constant, which results into the bulging 

of the surface.

Figure 10: Wrinkle curve [15].

To use the control curve, the user simply draws it over a region of influence, which can be 

any part of a mesh. The curve then automatically anchors to the underlying mesh, which is 

done by attaching all the vertices in the influence zone to their nearest control point. Each 

vertex is then deformed depending on its nearest control point position.

16 / 84



                                                                                                                                       Leon Beutl

3. Theoretical Discussion

The main goal of my master-thesis is to create facial animations in a way that result into 

soft looking facial expressions. Therefore the two mentioned problems have to be solved. 

Finding a simulation for the human skin, that would allow the creation of wrinkles during 

deformation,  and a solution for  approximating the facial  muscles  and their  contraction 

behavior. In my opinion the harder task of these two is to find a suitable skin simulation, 

which is not only able to create wrinkles dynamically in real time, but also does so while 

needing as little preparation work as possible and which is also flexible enough to be easily 

adjustable for different face models.

None of the techniques which I encountered during my research really convinced me as 

being able to fulfill  all  of these criteria. Many of the presented solutions needed some 

preparation work or were in my opinion not flexible enough. Wrinkle maps on one hand 

require an artist, or with the capturing technique of [13] an actor to acquire the information 

from.  Also the ideas by [15] and [14], needed someone to define the wrinkles beforehand, 

even though it was the simple task of drawing them onto the mesh. Still, preferably would 

be a simulation which would actually create wrinkles on its own without the need of any 

additional work.

In my opinion a perfect solution would be a simulation that would take the given mesh 

model,  and  convert  it  into  a  skin  surface  that  automatically  creates  wrinkles  when 

compressed. A glance at related work in the computer graphics field brought up a probable 

solution. Soft-body simulations, which are often used to simulate clothing, were able to 

create realistic wrinkles for any kind of fabric. They provide the kind of dynamic wrinkle 

generation  which  the  simulation  of  human  skin  needs  too.  However  there  are  some 

differences that have to be addressed. Clothes react to external forces, like gravity and 

wind, and hang rather loosely on the human body. The human skin on the other hand 

should not move at all,  until triggered through muscle contraction, and also should not 

have that 'jiggly' effect, most cloth simulations produce. A modified soft-body simulation 

was  therefore  chosen  to  be  implemented  to  simulate  human  skin  behavior  visually 

sufficient.
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Because of this decision, to simulate the human skin by calculating forces on the surface, a 

special  solution  was  needed for  the  animation  of  the  face  model.  This  solution  is  not 

allowed to deform the surface of the mesh directly, but has to simulate forces that can be 

integrated into the skin simulation. The general requirements however, that it  has to be 

flexible enough to be easily adaptable for different head models and fast enough to run in 

real time, do not change.

Blend  shapes  were  eliminated  rather  fast,  fulfilling  none  of  these  criteria,  and  also 

performance  driven  animation  due  to  its  additional  gear  and  preparation.  Free  form 

deformation  was considered  as  an option,  but  in  my opinion preferable was an actual 

simulation of the facial muscles, and not only of the resulting surface deformations. The 

best choice seemed therefore to be one of the muscle simulations I encountered during my 

research. While the three layer muscle model used by [11], and the one used by [12], are 

reproducing  the  facial  muscle  contraction  and  the  visual  aspects  on  the  surface  very 

accurately, it seemed a bit calculation expensive to be used in real time. 

After this  elimination process the one remaining model was picked, which was Waters 

Vector Muscle Model  [9]. His model, consisting of only two types of muscles, does not 

only  entice  due  to  its  rather  simple  design,  but  also  due  to  its  proven  powerful 

performance. 

Still missing though was the needed knowledge of the positions and the forms of the facial 

muscles.  A  guideline  was  needed,  which  would  be  the  foundation  for  the  muscle 

simulation. During my research I came across two possibilities, the Mpeg-4 model [4] and 

the  Facial  Action  Coding  System  [8].  However,  the  Mpeg-4  model  was  rather  fast 

eliminated  because  it  only defines  a  set  of  feature  points.  These  points  can  easily be 

converted to any mesh model, but are not of much use for a muscle simulation.

Therefore the Facial Action Coding System (FACS) created by Ekmann et al. was chosen, 

which  was  also  used in  Waters  original  paper.  This  manual  does  not  only explain  the 

position of the facial muscles accurately, but also focuses on their visible deformations, 

which  are  described  through  Action  Units.  By  combining  these  Action  Units,  every 

possible facial expression can be created. The Facial Action Coding System was therefore 

chosen to provide the foundation for the muscle integration, and to help with the extraction 
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of the most important muscles, which have to be implemented to allow a wide range of 

facial expressions.

3.1 Skin Simulation

The developed skin simulation was derived from a simple soft-body simulation. Some of 

its basic principles, such as constraints and their iterative solving where kept, while others, 

like springs, were discarded. In the following section, I will begin by shortly explaining 

what exactly a soft-body simulation is and how it works, on the example of a mass spring 

simulation, and will then continue to discuss what changes had to be done, to get a visually 

sufficient  skin simulation as result.  All  the modifications  of the simulation were done, 

considering the performance of the final application.

3.1.1 Softbody Simulation
A soft-body simulation is  a  type of physic  simulation that  allows the,  at  least  visually 

correct, physically simulation of soft objects, such as a piece of jelly or gum. It works 

similar to a regular physics simulation, which uses a set of external and internal forces to 

move an object realistically through a virtual world. Common external forces are gravity, 

air resistance or buoyancy which are derived from the real world. Internal forces are for 

example the weight and mass of the object, or its size. Important is also the collision with 

other objects, which also produces forces that stop or redirect the movement of the model. 

All these forces and more importantly their impact on the object are calculated and then 

combined and processed  to  get  the  objects  velocity as  a  result,  which  is  added to  its 

position. This delivers a new position, the current one for the object. The calculation and 

the update of the models position is done periodically, which finally results into a visible 

movement.

This is how a general physics simulation works. The difference to a soft-body simulation 

is, that whereas in a physics simulation the simulated forces influence the whole object, in 

a soft-body simulation every vertex of a model is considered an individual object. So each 
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vertex is assigned a mass and a new position is calculated depending on the applied forces. 

This results in soft looking deformations, for example when the bottom of a ball hits the 

floor. The movements of the lower vertices suddenly stop, while the upper ones still move 

due to gravity. Visually the result would be a compression of the lower half of the ball. 

There have to be some additional internal forces that prevent the vertices from passing 

through  each  other  and  maintain  the  form  of  the  model.  However,  because  of  these 

resulting deformations, the object gives away a soft feeling that can simulate soft objects 

like a piece of jelly very accurately from the visual point of view. An even more common 

use for this simulation is in the implementation of virtual clothes. 

Similar to virtual human skin, simulated clothes only look realistic if they form wrinkles 

upon deformation. A cloth simulation has therefore be able to do three things. Allow the 

deformation of the model by external forces, such as gravity. Maintain the volume of the 

cloth,  so that upon deformation the object deforms but does not change its  size in the 

process and provide some sort of distance preservation, so that neighboring vertices cannot 

pass through each other. 

A simple way to create a soft-body simulation is by using a mass-spring simulation. This 

type of simulation assigns each vertices of the mesh a certain mass, and connects all the 

vertices with springs. This results in a net of individual objects, who are only connected 

loosely to each other. The assigned springs are derived from springs in the real world, and 

try to keep their original length, which is equal to the distance between the two involved 

vertices. If compressed, the spring develops a force to move the vertices in a direction that 

allows it to return to its rest length.

Figure 11: Cloth simulation springs [23].

Usually three types of springs are integrated into a cloth simulation, which can be seen in 
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Figure 11. Structural springs are integrated between neighboring vertices and are used to 

keep the horizontal and vertical distance between them. Shear springs are placed between 

diagonally positioned vertices to prevent a cuboid of a mesh to form a flat diamond. Bend 

springs or flex springs are placed horizontally and vertically between vertices which have 

one vertex in between them. So they are not direct neighbors, but two rest lengths away 

from each other. These help to define the bending stiffness of the cloth, resulting in ether a 

silky  or  leathery  fabric.  Integrating  these  springs  implies  that  the  mesh  has  an  even 

topology. Additionally to these springs, usually a set of constraints are implemented, most 

commonly are point and length constraints. 

A point constraint pins a certain vertex to a point in space, which is useful to define areas at 

which the cloth is pinned to an object, and should not deformed at all. Common spaces 

would be the collar of a t-shirt or a side of a flag bound to a pole. Length constraints are 

similar to springs, but try to keep the distance between the two involved vertices at the 

same length avoiding any sort of stretching. They are very important for cloth simulations 

and are needed to get rid of the jiggly feeling that result from the use of springs.

If now a force, like gravity, is applied to the simulation and the vertices start to move, a lot 

of constraints and springs will have to develop forces to keep their optimal positions. This 

is a spreading process, so if one spring moves a vertex to keep its rest length and with it the 

optimal  distance between its  two assigned vertices,  it  is  probably going to  change the 

length of a neighboring springs rest length. Now the neighboring spring has to develop a 

force too, to maintain its rest length, and this continues through the whole simulation.

Figure 12: Example of a cloth simulation done in Blender.
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The key to solve the external forces and to get the optimal positions for most of the vertices 

is a numerical integrator. This integrator is responsible to iterate through all the vertices 

and calculate their new position. It considers all the relevant forces and computes through 

numerical integration the resulting velocity. This velocity then can be easily applied to the 

vertex position, which results into an updated position. Very common integrators are the 

Euler'  Integrator,  which  is  a  relatively  fast  one.  More  complex  is  the  Runge  Kutta 

integrator,  which  also  takes  longer  to  calculate.  It  also  delivers  better  looking  results 

however. 

Unfortunately, a soft-body simulation can easily consist of thousands of objects, depending 

on  the  resolution  of  the  mesh,  and  it  can  take  a  while  to  calculate  all  the  necessary 

positions.

3.1.2 Modifications

For the purpose of simulating human skin, the soft-body simulation has to be modified. 

The main difference is that the human skin does not hang loosely around like clothes tend 

to  do.  External  forces  therefore do not  have much of  an influence and do not,  in  my 

opinion, have to be simulated at all for expressive wrinkles. For aging wrinkles it would be 

interesting to see how gravity has influence on the looser getting skin, and if it could be 

simulated in real time with a modified cloth simulation. For this thesis however the focus 

lies on expressive wrinkles. For this thesis the assumption is made that the facial skin only 

moves when a deformation occurs due to muscle contraction. 

Skin can be stretched to a certain amount, but is elastic enough to return immediately to its 

original state as soon as the force is gone. In other words, every vertex of the mesh should 

stay in its rest position, until it is deformed due to muscle movement. Unfortunately this 

can not be directly simulated by using the earlier mentioned point constraints, since then 

the vertices are then fixed on their initialization position and would never be able to move. 

We on the other hand need constraints that develop a force pulling the vertex back to its 

original position as soon as the vertex leaves it. This simulates the skin elasticity sufficient 

enough for this purpose.
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Figure 13: Force development of position constraints.

Therefore position constraints were developed, which are actually more similar to length 

constraints than to point constraints. However, while length constraints are implemented 

between two vertices with a calculated rest length, position constraints use the initialization 

position and the current position of a single vertex. The desired rest length always has the 

value zero. Therefore, as soon as a vertex moves, a force is developed that tries to pull the 

vertex  back  to  its  original  position.  The  amount  of  these  constraints  that  have  to  be 

integrated into the simulation depend on the resolution of the mesh. For each vertex one 

position constraint is added.

Position constraints simulate the elasticity of the skin, but we also need a force that handles 

skin  compression.  When  the  skin  is  compressed,  wrinkles  appear  due  to  the 

incompressibility of skin. This results into a visual effect likewise to the one presented by 

[15] and can  also be  similarly implemented.  It  can be achieved by using strict  length 

constraints, which always try to keep the vertices at their optimal rest distance. So if the 

two involved vertices are too close, forces are developed that try to push the vertices in a 

direction that allows the constraint to achieve its rest distance. When the position change 

spreads through the simulation, it usually only leaves the surface the option to bulge, and 

thus wrinkles are created. Between every vertex and its neighbor, length constraints were 

therefore implemented. The amount of these constraints is  also depending on the mesh 

resolution, since each vertex has usually between three to eight neighbors.
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Figure 14: Solving of a length constraint violation.

Position and length constraints actually succeed already in simulating the visual properties 

of human skin sufficiently, integrating springs in the simulation would only make it more 

computation expensive. Structural springs for example are used to keep a minimal distance 

between neighboring vertices.  In  our  simulation,  this  behavior  is  approximated  by the 

length constraints, who are responsible for keeping an exact distance between vertices, and 

who pretty much take over the work of very stiff structural springs, resulting in a desirable 

incompressible surface. Shear springs keep diagonal vertices apart, which is important to 

prevent the faces from deforming into flat diamonds. But this danger only exists, when the 

mesh is hanging loosely and when it is under the influence of an external force. Since the 

human skin simulation used is not influenced by external forces at all, and the position 

constraints keep the vertices at their place, the danger of deforming into flat diamonds is 

not given. This makes the use of shear springs unnecessary. Also, since the mesh for a 

human face is very rarely of even topology, bending springs would produce very different 

results,  depending on  the  part  of  the  model  that  currently deforms.  To produce  small 

wrinkles a very low bending stiffness is needed too, which can be approximated by the 

value zero. However, they would be useful to implement different skin behavior, which 

would allow the comparison between the skins of elderly people, which create wrinkles 

more  easily,  and the  skin  of  a  baby,  which creates  fewer  wrinkles.  Unfortunately,  this 

behavior would also be depending heavily on the mesh resolution, and as mentioned earlier 

the focus of this thesis lies on expression wrinkles.
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One more class of constraints is needed, which has to simulate forces generated through 

muscle contraction. These constraints cannot be derived from the mesh directly, but have to 

be added into the simulation later by the virtual muscles. The amount of these constraints 

therefore  depends  on  the  number  of  simulated  muscles.  These  muscle  constraints  are 

implemented between a vertex position, and a target position that is provided by the muscle 

simulation. Depending on the contraction strength of the muscle, a force is generated that 

pulls the vertex towards the target position. As soon as the contraction stops, the muscle 

force vanishes, allowing the vertex to return to its original position.

The final  result  is  actually a  very simple  skin  simulation,  consisting  of  three types  of 

constraints, which are used all over the face mesh and result into wrinkle generation during 

the deformation. These wrinkles are unfortunately depending on the mesh topology, but 

need no preparation or user interference at all.

3.2 The Muscle Simulation

For the implementation of facial deformations due to muscle contraction, a simple muscle 

simulation  was  chosen.  Although  this  muscle  simulation,  consisting  of  two  types  of 

muscles, is very flexible, some modifications had to be done. In the following section I will 

start  by  giving  an  overview  over  Waters  muscle  simulation,  and  by  explaining  the 

principles behind it. Then in the end the modifications of this simulation are described, as 

well as the reasons for them.

3.2.1 Waters Vector Muscle Model
For the simulation of the facial muscles Waters Vector Model was chosen, due to its, in my 

opinion, simple design but powerful performance. A simple design because it only needs 

two types of muscles, with which a wide variety of facial expressions can be created. These 

two muscles are the linear muscle and the sphincter muscle. 
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3.2.1.1 The Linear Muscle
This muscle is used to approximate all the facial muscles that pull on a part of the skin  

surface, which is the majority of them. Linear muscles are described by one end that is 

attached to the bone, and  another one embedded into the skin. While the end attached to 

the bone, in this paper called the origin of the muscle, remains static during contraction, is 

the  other  end  pulled  towards  it.  This  contracting  end  is  embedded  into  the  skin  and 

therefore  influences  a  certain  skin  area,  its  zone  of  influence.  During  contraction  the 

muscles zone of influence is pulled towards its origin. This behavior simulates the isotonic 

contraction of a muscle sufficiently.

In Waters model the origin of a linear muscle is defined through a single point, while the 

zone of influence is approximated by a circle. This muscle can therefore be described by 3 

parameters. The first one is a point in space for the origin, the second parameter another 

point for the contracting end, and finally an angle which describes the width of the muscle, 

and at the same time the area for the zone of influence. From the two defined points the 

direction of the muscle can be calculated, which always runs from the origin towards the 

contracting end. The size of the muscle depends on one hand on the distance between the 

defined points, and on the other hand on the defined angle. If the muscle is visualized it 

would have the form of a sphere segment, ranging, depending on the angle, from half a 

sphere to a thin cone shape. 

These are  only the parameters  we need to  determine the position and the form of  the 

muscle  however.  To  simulate  its  contraction  behavior,  additional  factors  are  needed. 

Important is the magnitude of the muscle, that tells us the contraction strength at each point 

on the muscle. The contraction strength is not evenly distributed on the whole muscle but 

fades away towards the origin point. In other words, the magnitude is zero at the bone 

attachment, and gradually increases to its maximum at the zone of influence. The force of 

the muscle contraction is simulated to dissipate because of the adjoining skin layers. This 

happens not only in the direction of the muscle, but also in its width. To calculate this  

behavior,  two  additional  forces,  the  radial  and  the  angular  displacement  have  to  be 

computed.
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Figure 15: Waters linear muscle in a 2D space [9].

Figure 15 shows the linear muscle applied in a  2 dimensional space which is enough to 

understand the principles. It can easily be implemented in the same way in a 3D simulation. 

V 1  defines the origin of the muscle, and V 2  the center point of the influence zone. The 

whole muscle is defined by a circle segment, with the radius  V 1V 2  and the angle Ω . For 

the calculation of the magnitude, two points which represent the distance from the origin, 

are defined. R s  represents the distance from the origin where the magnitude falloff starts, 

and R f  the distance the falloff ends. 

For every vertex that is inside the influence zone of a linear muscle, its new position can 

only be computed by calculating the angular and radiant displacement value for it. In the 

example shown in Figure 15, a new position p '  is calculated for point p  by the formula 

p '= f  p⋅K⋅A⋅R

K  stands for the muscle spring constant, which is equal to the contraction strength, A  is 

the angular displacement value, and R  the radial displacement value. 

The angular displacement value simulates the force dissipation to the side and is calculated 

by 

A=cos µ ⋅2 
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where µ  stands for the angle between V 1V 2  and V 1 p .

The radial displacement simulates force dissipation in the inverse direction of the muscle 

and is approximated for nodes inside V 1 Pm Pn  by 

 R=cos1− D
R s ⋅2 

where D  stands for the distance from the point p  to the origin V 1 . For vertices inside 

pm pn pr ps   the radial displacement is calculated by

R=cosD−
R s

R f
−Rs⋅2 

These calculations can be adopted into a 3 dimensional simulation as they are, the only 

difference is that the 2D vectors change into 3D ones. 

Figure 16: Waters linear muscle example deformation [9].

3.2.1.2 The Sphincter muscle
The  second  type  of  muscles  Waters  defined  is  the  sphincter  muscle.  This  muscle  is 

completely different from the linear muscle in shape and behavior. It has a circular shape 

and instead of pulling on the skin surface, it pinches it towards the muscle center. These 

muscles cannot be found as often as linear muscles in the human face, and exist in fact only 

three times. Around each of the eyes and around the mouth. But they are nonetheless very 
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important to simulate actions like the puckering of the lips or the pinching of the eye. 

Figure 17: Sphincter muscle contraction example [9].

To define this muscle at least two parameters are needed. A point that defines the center of 

the muscle, which is also the origin to which the skin surface is pinched towards, and a 

radius. This gives us a perfect sphere. However, often it is more advantageous to use a 

ellipsoid instead of a sphere, to approximate the mouth and eye area more realistically, 

which means that this muscle needs two or three radii. 

Again, for the contraction behavior a magnitude is needed that defines how strong the 

contraction influences the skin surface. Since the sphincter muscle is a sphere, the angular 

displacement  is  no  longer  needed.  Sill  left  is  the  radial  displacement,  because  the 

contraction force should still become less, the nearer the influenced point is towards the 

center. The radial displacement is calculated similar to the one for the linear muscle. For 

vertices inside  V 1 R s  by

R=cos1− D
R s ⋅2 

and for vertices inside R sR f  by 

R=cosD−
R s

R f −Rs ⋅2 
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D  stands again for the distance from the point p  to the center point V 1 . The formula for 

the contracted position p '  of the point p  is   

p '=p⋅K⋅R

3.2.2 Modifications
During implementation, some difficulties were encountered for simulating the opening of 

the  mouth,  and  the  opening  of  the  eyelids.  The  opening  of  the  mouth  is  a  muscle 

contraction that triggers the rotation of the lower jaw around a joint positioned near the ear, 

and is therefore hard to simulate with the before described muscles. Another problem was 

that  approximating  the  behavior  of  the  upper  eye  lids  with  linear  muscles  provided 

unrealistic results, rather looking as if the lids would be pulled into the head, instead of 

opening. If the lid is approximated by a quarter of a sphere, it would be more realistic to 

rotate it around the sphere center to simulate an eye opening, instead of pulling it upwards.

Therefore Waters muscle model was slightly modified and a third type of muscles was 

added, the rotation muscles. 

These muscle rotate  the  influenced vertices  around a  predefined joint.  Therefore upon 

contraction they develop a rotation force, that is equivalent to the degree of the rotation. 

The strength of the rotation on the individual vertex also depends on its distance to the 

joint position. If the vertex is further away, it is stronger influenced from the rotation. 

Two types of rotation muscles were implemented, though their main difference is only the 

shape, with which they define their area of influence. 

Figure 18: Rotation muscles area approximation
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For the simulation of the jaw muscle, the area in which all involved vertices are positioned 

can be approximated by a cube. The rotation joint is at the back side of this cube. The 

upper face of the cube is be at the same height as the lower lip, since upon jaw rotation 

only the lower lip moves. Assuming that the provided face model has its eyes closed in the 

neutral  position,  it  is  easier  to  capture all  important  vertices  for  the upper  lip  with an 

ellipsoid. The rotation joint is at the back side of the ellipsoid too.

3.3 Facial Action Coding System (FACS)

The FACS, firstly published in 1972 by Paul Ekmann and Wallace Friesen, is a manual that 

describes the human facial  expressions, and how they are achieved by their underlying 

muscles. For that purpose, they defined the muscle behavior in Action Units (AU), which 

either represent a single or a small group of muscles. This categorization depends on the 

visual impact the muscles have, and if the muscles have to work together to create a certain 

facial deformation or not. Action Units were created to parametrize the face into a set of 

visible muscle actions, which can be combined to create any facial expression possible. 

Each of these Action Units is described by words on one hand and visually presented on 

the other through a set of still images, and a short video clip. To differentiate the Action 

Units, each is assigned a number and a name describing its functionality. For example AU1 

would be the 'inner brow raiser'. The numbers for the action units were assigned arbitrary 

and do not follow any certain logic.

All the muscles responsible for an Action Unit are additionally explained by two images, 

one for the muscular anatomy and a second one for the muscular action. The muscular 

anatomy picture shows where each muscle is located as well as the size and the form of it. 

In  these  images  each  muscle  is  drawn  anatomically correct  and  very detailed  upon  a 

photograph of a face. A number indicates the Action Unit the muscle belongs to.

To understand the images that show the muscular action it is necessary to be familiar with 

the muscular anatomy, since the location of the muscle is only drawn schematically. In 

these images the number of each Action Unit is written in small circles, which position also 

approximates the area from which the muscle emerges from the bone structure. From this 
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position a black line is drawn to the area where the muscle is attached to the skin of the 

face. 

Figure 19: Muscle anatomy (left), Muscle action (right) [8].

The description of the Action Units is divided into the ones for the upper face, and the ones 

for  the  lower  face.  While  the  upper  face  Action  Units  are  responsible  for  eyebrows, 

forehead and eyelids, the lower face Action Units are again subdivided into five groups. 

Up/Down, Horizontal, Oblique, Orbital, and Miscellaneous Actions.

The  description  of  each  Action  Unit  is  also  subdivided  into  three  sections.  The  most 

important section for this work is the first one, called 'Appearance Changes'. In this section 

all the visual deformations that may occur due to this Action Unit are described, coarse 

deformations for example the raising of the eyebrow as well as finer scale deformations 

like the appearance of wrinkles. The second section, 'How to', gives a short tutorial on how 

to perform the action units, with a few tips if they appear difficult or impossible to do by 

yourself. In the third section, the 'Intensity Scoring', the different intensities of each Action 

Unit and its consequences are described. For this purpose a scoring mechanism consisting 

of  five  letters,  from  A to  E  was  used.  A being  the  slightest  deformation  and  E  the 

maximum.  

Figure 20: FACS Scoring Mechanism [8].

32 / 84



                                                                                                                                       Leon Beutl

Depending  on  the  intensity,  different  visual  aspects  can  appear  upon  the  muscle 

contraction.

Usually, each Action Unit described in the Facial Action Coding System is symmetric, and 

appears on each side of the face. But for the few Action Units that are unilateral and can 

occur on only one side, the abbreviation 'L' for left and 'R' for right are placed in front of 

the AU number. Altogether a total of 46 Action Units are described in the manual. For the 

purpose of thiss thesis not all Action Units were necessary, so only the most important ones 

were implemented.

33 / 84



                                                                                                                                       Leon Beutl

4. Implementation

This chapter covers all necessary aspects, which have to be known for the implementation 

of the facial expression application. It starts off by giving an overview over all the tools  

that were necessary. These tools were chosen under the following aspects: 

• Open Source / Freeware: Since everybody should be able to recreate the presented 

application, the used tools had to be freely available to everyone.

• Multiplatform: To  be  able  to  run  on  multiple  operating  system was  another  

desirable aspect, since the application should be made available to as many people 

as possible. 

• Experience: Most of the tools presented were already used in other projects, and I 

had therefore some experience in their use and knowledge about their limitations. 

It then continues with the description of the skin and muscle simulation implementation, as 

well  as with all  the implemented Action Units  from the Facial  Action Coding System. 

Some additional problems that had to be solved, such as the update of the vertex normals 

and the visualization of the muscles are explained too. 

4.1 Tools and Data

In this section an overview over all the used tools is given. Most of the tools are either 

freeware or open source software and therefore available for anybody. In the following 

pages, their general functions are described and their use for this project.

4.1.1 Ogre Software Development Kit (OgreSDK)
This graphics engine [16], is one of  most widely used open source game engines  and can 

be used on Microsoft Windows, Linux and Mac OSX. It uses the programming language 

C++  and  supports  as  programming  tools  Microsoft  Visual  C++  as  well  as  the  free 

alternative Gtk++. The used format to represent 3d objects is the .mesh format, which is a 

self  developed format  and therefore only supported  by few other  programs than Ogre. 
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However,  there  exist  already extensions  for  3DStudioMax and Blender  to  support  the 

export of models into the Ogre .mesh format. 

Ogre allows the use of Direct3D as well as Open GL for the in game rendering. It uses a 

graph  oriented  structure  for  the  rendering  of  a  scene.  There  is  one  root  node,  the 

'SceneManager', and each created object has to be attached to one of its child nodes to 

appear visible. Loading a mesh model into the application is therefore not enough. Also 

notice worthy is that there is no interface for the OgreSDK, it only provides libraries and 

content for the creation of an application. Very important for this work was the provision of 

a math library, with predefined 3D vectors and vector calculation operators, which made 

the development of the simulation easier.

4.1.2 Ogre Application Wizard

This  small  but  very  helpful  tool  [17] allows  the  automatic  creation  of  a  basic  Ogre 

application  in  combination  with  Visual  C++.  The  tool  initializes  the  most  important 

libraries, for example the OIS.lib for keyboard recognition and of course the Ogre.lib.  It 

also generates the render window with a simple menu to choose from options for settings 

like the resolution or antialising, and provides a camera as well as an example model, the 

ogre engines mascot-like ogre head. It is nice to be able to create this basic setup up by 

pressing on a button, especially if you work a lot with the ogre engine.

4.1.3 Head Model

To  test  the  simulations  a  face  model  was  needed.  Thankfully,  during  my  research  I 

stumbled across this free available male scan, in form of a bust that was delivered in .obj 

format  and  was  detailed  enough  to  allow  the  creation  of  polygonal  wrinkles  upon 

deformation. It is provided by Lee Perry-Smith under a creative common license [18]. 
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Figure 21: Unmodified Head model

4.1.4 QuickGUI
This freely available graphical user interface library [19], works well together with the ogre 

engine and provides a wide range of interface items. As the name states it, this tool is easily 

and quick to set up and and provides simple commands for the creation of its items.

It works under Windows and Linux and was chosen because of its easy integration into 

Ogre.

4.1.5 Blender
This is in my opinion the most powerful open source 3D graphics tool  [20] out there. It 

supports  not  only modeling,  but  also texturing,  animation and rendering of the created 

model.  Blender is  also able to work with a lot  of different import and export formats. 

Under these is also the .obj format, which was needed to import the provided head model.

For this work however, only a small part of this tool was used. Its main purpose was the 

modification of the head model. Since the model was a scan of a male head with the neck 

and the upper part of the shoulders still attached, some parts were removed.

A different problem that the used model provided for the simulation was, that the upper and 

lower eyelids were connected with each other as well as the lips of the mouth. Therefore to 

allow the muscles to open the eyes and the mouth of the face, these connections had to be 

removed. The following modification were done. 

• Removing the oral cavity
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• Removing the eye sockets

• Removing the neck and shoulders of the model 

• Removing the back of the head – to gain a better performance

• Removing the connecting vertices between the eyelids

• Removing the connecting vertices between the lips

Finally some of the vertices at the edge of the face were repositioned to give the edges a 

smoother look. Also, since the head scan was altered to be able to open the mouth and the 

eyelids, two additionally models were created to give the face more realism. A teeth model, 

used for the upper and lower teeth, was placed into the mouth, and an eye model into each 

eye socket.

4.1.6 Blender Ogre Exporter
This extension for blender is a python script that allows to export any model from blender 

into the ogre .mesh format [21]. Once the python script ran, the .mesh format is available 

under the export options of blender. This tool also needs the OgreXmlConverter  [22] to 

work, which creates a .xml file from the models information. This .xml file is then used to 

transform the information into a .mesh file and a .material file for the texture. If the model 

is  animated  an  additional  .skeleton  file  is  generated  for  the  animations.  The  script 

automatically converts the blender cuboid polygons into the .mesh triangles.

4.2 Implementation Overview

The implemented application is built from a set of connected modules. There is  the mesh 

model, which is the visible part of the simulation. Another module is the skin simulation, 

which purpose is the creation of wrinkles, and the muscle simulation, which animates the 

face model. To get the system running, a model has to be added, which has to be provided 

in the Ogre .mesh format,.  Since this  application was created to simulate human facial 

expressions realistically, a scanned human face model is ideal, but any model should do. 

The only property the face model needs to fulfill, is having a decent resolution, which is 
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important for the wrinkle generation. If the model is too coarse, the muscle simulation still 

works, however without the wrinkles it is not resulting into the desired soft looking facial 

expressions.  From  this  added  face  model,  the  information  needed  to  create  the  skin 

simulation is extracted automatically, and the simulation is then generated. For each of the 

vertices in the model, the information about its position and its neighboring vertices are 

gathered, to create the position and length constraints. How many of these constraints are 

added into the simulation depends on the mesh resolution. 

The next  step is  to add all  the necessary muscles to the simulation.  Position,  size and 

orientation of all the linear, sphincter and rotation muscles have to be defined and fit to the 

face model. Depending on the complexity of the desired muscle simulation, this can be a 

very  time  consuming  process.  Fortunately,  all  the  important  muscles  are  already 

implemented in the application and can be easily modified with an integrated editor, which 

should  ease  the  work  a  bit.  From  these  created  muscles,  the  muscle  constraints  are 

generated  automatically  and  added  to  the  skin  simulation.  The  amount  of  the  muscle 

constraints  depends on the number and size of the integrated muscles,  since for every 

vertex influenced by a muscle, one muscle constraint has to be added.

Now the skin simulation is final with all the necessary constraints. The position constraints 

to  keep  the  vertices  at  their  original  position,  the  length  constraints  which  allow  the 

creation of  wrinkles  dynamically,  and the muscle constraints,  that  allow the muscle to 

deform  the  simulation  upon  contraction,  and  to  form  the  facial  expressions.  If  the 

simulation is started, the following steps happen upon changing the contraction value of 

one of the muscles.

• The muscle contracts

• Update muscle constraints

• Iterate through all constraints and solve constraint violations

• Calculate new vertex positions

• Update mesh model

After  these  steps  are  done,  the  deformation  is  visible  on  the  face  model,  and  all  the 

constraints satisfied.
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Figure 22: Application overview diagram

4.3 Implementation of the skin simulation

The skin simulation was derived from the simple cloth simulation described in  [23], but 

changed  a  lot  from  the  original  during  implementation.  It  was  made  less  calculation 

expensive  by eliminating  the  unnecessary external  forces  and  springs  as  described  in 

section 3.2.2, which also made it more suitable for higher resolution models.

4.3.1 Simulation Vertices
To build this simulation we need objects that represent the vertices of a mesh. Therefore 

our skin simulation consists of an array of so called simulation vertices. These have only 

two tasks, to get the position of their influenced 'real' mesh vertices, and to update this 

position later on. To do this, it is important to understand how Ogre is storing its vertex 

information. The first step is to define the mesh that is going to be accessed. Every mesh 
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can consist of a number of sub-meshes. It has to have at least one, which happens if all 

vertices of the mesh are connected with each other, but can have multiple. This is the case 

if for example a face with eyes is saved as a single mesh file. The face is then a sub mesh, 

and each of the eyes too, since no connections exist between each of these. The next step is 

to define the sub-mesh we want to access. 

From this  sub-mesh the  vertex  data  is  accessible,  but  it  still  contains  some unwanted 

information. It provides the position of the vertices, but holds also information about their 

diffuse, specular, blending and weight values among others. To get rid of these, we define a 

filter that only retrieves the position of each vertex, which consists of three floating point 

values. These can now be retrieved and used to update the position of the mesh vertices.

Important is, that the simulation vertices are assigned a vertex id, which allows to easily 

access their mesh vertex partner later on. This is all the information the simulation vertices 

need.  A vertex  id  and position values.  The skin  simulation  is  changing the simulation 

vertices positions relevant to the forces of the constraints and then the simulation vertices 

are updating the mesh vertices. After creating these 'virtual' vertices, the skin simulation 

generates the length and position constraints. 

  

4.3.2 Position Constraints

The position constraints  are quite  easy to calculate and implement  after  generating the 

simulation vertices, because they deliver the initialization vertex position  V init  already. All 

that is left to do is create a force F p  that tries to pull the vertex back as soon as it leaves it 

original  position.  For  every simulation  vertex  a  position  constraint  is  created  and  the 

original position of the vertex saved in it.  The next step is then during run-time of the 

simulation, to calculate the distance between the vertex position and its original one. This 

is done by comparing the length values of the distance at initialization   Dist init  and at the 

current moment Dist curr . The initialization length is always zero, so it is only necessary to 

measure the current distance between the vertex and its original position. Depending on 

this distance is the magnitude M  of the resulting force.

 
M=Dist curr−0

The  next  step  is  to  calculate  the  direction  D  of  the  force,  which  can  be  done  by 
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subtracting  the  vertex  initial  position  V init  from the  vertex  current  one  V curr  and  by 

normalizing the resulting vector.

D=n V curr−V init

This forces tries to keep the mesh in its original state, and redoes all the deformations as 

soon as the muscle force vanishes. It is defined by

F p=M⋅D

This force has to be added to the influenced vertex position, resulting into the final formula 

of

V pos=V posF p

4.3.3 Length Constraints

To implement the length constraints, it is important to know which vertices are connected 

with each other. This information has to be read from the mesh, and it is  necessary to 

access the edge data. The first step is to define the mesh that hat to be accessed. Ogre saves 

the edges for all the sub-meshes into a simple list. Each edge in the list saves the id of the 

participating vertices in its vertex index, which is an integer array with the size of two.

By iterating through this edge list and extracting the mesh vertices, it is possible to match 

their id with the ones of the simulation vertices. For the length constraints however, it is  

not only necessary to know which vertices together build an edge, but also the distance 

between them. Upon initialization these distances are calculated by computing the length 

of the vector that results from subtracting the position of one of the vertices from the other.

To calculate a force F l  that keeps the vertices at the same distance from each other is the 

next step. The magnitude of this force is depending on the difference between the original 

length  Dist init  of the edge and the current one  Dist curr . If the skin is compressed, the 

magnitude M  of the force contains a negative value, resulting in a compelling force. 

M=Dist curr−Dist init

The  direction  D  of  the  force  can  be  calculated  by  subtracting  the  positions  of  the 

simulation vertices  from each other and normalizing the result. 

41 / 84



                                                                                                                                       Leon Beutl

D=n V 1 pos−V 2 pos

These constraints  produce the desired forces that help to keep the vertices at  the same 

distance from each other, and built wrinkles upon compression.

F l=M⋅D⋅0.5

Both vertices of the constraint are moved in opposite directions relevant to the resulting 

force.

V 1 pos=V 1 posF l

V 2 pos=V 2 pos−F l

4.3.4 Muscle Constraints

The muscle constraints, which simulate the influence of muscle contraction on the skin 

surface, are the most important ones for the creation of facial expressions. They cannot be 

generated  from  the  mesh  model  itself,  but  have  to  be  implemented  by  the  muscle 

simulation. These constraints need a target position V tar  for each vertex, which is assigned 

by the muscle during run-time. The magnitude  M  of the created force depends on the 

distance between the current position of the vertex V curr  and its target position. 

M=V tar−V curr 
2

The direction D  of the resulting force F m   is calculated by subtracting the vertex position 

from the target position.

D=V tar−V curr

The final force for the muscle constraints allows the face to be animated by the muscle 

simulation and is calculated by

F m=M⋅D

For each vertex that is in the influence zone of the muscle the force is added to its position.

V pos=V posFm

For this constraint it is important that, unlike position constraints, the target position is 
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changed and reassigned depending on the muscles  contraction during  run-time of  the 

simulation. 

4.3.5 Updating vertex normals

To make the wrinkles visible on the face mesh, it is unfortunately not enough to move the 

vertices to the right positions. The normals for the vertices have to be recalculated too. 

These normals influence how much light a vertex reflects, and are therefore responsible, 

how dark areas on the face are. Since wrinkles are only small surface deformations, they 

can only be perceivable from the side as small bulges, without updating the vertex normals. 

To update a vertex normal, it is necessary to recalculate it, by calculating and summing up 

all the face normals the vertex is part of and computing the average of it. 

The first step is to find out which vertex is part of what triangle. Ogre provides a triangle  

list  for  that  purpose,  which  contains  all  the  necessary information.  After  getting  these 

vertex  ids,  it  is  necessary match  them to  our  simulation  vertices  and  get  the  current 

positions from them.

For each triangle the face can be calculated by normalizing the cross product of two of its 

edge direction  vectors.  These direction vectors  are  computed by subtracting the vertex 

positions  from each other.  The face normals  are stored into an individual list  for each 

vertex that is a part of the triangle. After iterating through the whole mesh and calculating 

all the face normals, the average normal for each vertex can be computed by adding all its 

normals in a list and dividing the result through their number. This results into a new vertex 

normal for each vertex.

To update the vertex normals in the mesh, it is necessary to go through a similar process 

like the one described in section  4.3.1  for updating the position of the mesh vertices. A 

mesh and a sub-mesh has to be specified, its vertex data accessed and a filter that returns us 

only the  normal  information  implemented.  This  information  consists  of  three  floating 

points values. The next step is to overwrite these values with the new calculated vertex 

normal. After implementing the updated vertex normals, the wrinkles are clearly visible on 

the mesh.
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Figure 23: Forehead without (left) and with (right) the updated vertex normals 

4.3.6 Skin simulation overview
To initialize the skin simulation it is necessary to define two parameters. The first is the 

mesh model, the second parameter is the number of iterations the simulation should work 

through all  the  constraints  at  each time step.  After  defining these parameters,  the skin 

simulation starts by creating a simulation vertex for each 'real' mesh vertex in the model. 

All the simulation vertices are then stored in an array to make them easily accessible.The 

next step is the generation of the length constraints and the position constraints, which are 

stored in a list.  For separation purpose there is a different list for each constraint type. 

Another list is created for the muscle constraints which is later filled up by the muscle 

simulation. 

During run-time, the following steps are done for each frame in which a muscle contraction 

changes.

• Iterate through constraints

◦ Position Constraints

◦ Muscle Constraints

◦ Length Constraints

• Apply changes to simulation vertices

• Update mesh vertex positions
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• Calculate vertex normals

• Update mesh vertex normals

Figure 24: skin simulation process at run-time

It is to mention that the length and the position constraints have an separate value that 

determines  their  iteration  number.  This  was  implemented  to  allow  the  generation  of 

smoother  skin  and more  believable  wrinkles.  If  the  length  and muscle  constraints  are 

computed evenly, the length constraints do not have the chance to calculate an optimal 

position for each vertex. This results in an unrealistic skin and wrinkles. On the other hand, 

the more often the length constraints are computed, the more strength need the muscle 

constraints to allow a satisfying deformation. More on this topic will be presented in the 

section 7. Test and Performance.

4.4 Implementation of the muscle simulations

The implemented muscle simulation is based on Waters muscle model and was slightly 

modified to allow the easier realization of problematic areas, specifically the jaw rotation 

and the opening of the eyelids. Three different muscle types were therefore implemented, 

the linear muscle, the sphincter muscle and the rotation muscle.
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4.4.1 Linear muscle

The length of the linear muscle is defined by a start point, which represents the origin of 

the muscle, and an endpoint, the point where the muscle is attached to the skin surface. Its 

broad is defined by an angle alpha, and gives the muscle the form of a sphere segment. 

Additionally to that, the falloff start has to be defined, as a distance in relation to the origin  

of the muscle. These parameters take care of the visual appearance of the muscle.

Still missing though, is an identification parameter for the muscle, which was realized by 

implementing a name for each. This name is chosen depending on the relevant Action Unit 

of the Facial Action Coding System. Each muscle has to know the skin simulation which it 

affects  too,  so  that  it  is  able  to  write  his  muscle  constraints  into  the skin  simulations  

constraint list. And finally for initialization purpose, the mesh model has to be specified.

To assign  the  correct  vertices  to  the  muscle,  meaning all  the  vertices  that  the  muscle 

contains, it is necessary have to loop through all the vertex positions and use some simple 

comparisons. There are two statements, that have to be valid. The distance from the start 

point P start   of the muscle to the vertex position V pos  has to be smaller then the distance 

from the muscles start point to its end point Pend . And the angle between P start Pend  and 

P startV pos  has to be smaller than the predefined muscle angle α . If this is the case for the 

vertex position, then a new muscle constraint is added to the skin simulations constraint 

list, containing the muscle name, the simulation vertex id and the initialization contraction 

position, which is the vertexes original position. 

After all the correct muscle constraints were added, a visual form is created for the muscle. 

This is  done by using Ogres ability to  create  manual  objects.  Manual  objects  are  user 

programmed models,  which  can be compared to  the creation  of  models  in  DirectX or 

OpenGL. As for these, their use should be limited to rather simple objects, since every 

vertex  and its  connections have to  be individually defined.  The use of manual  objects 

makes  the  task  a  little  bit  easier  as  it  is  in  DirectX  by  providing  some  predefined 

parameters.
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Figure 25: Linear muscle visualization

The visual appearance of the muscle is in the form of a wire model. To approximate the 

shape of the sphere segment, a flat circle is created with connections to the origin of the 

muscle. However, this form still represents a cone and to turn it into a sphere segment  two 

curves are placed under the cone, normal to each other. Another two curves are used to 

show the distance for the begin of the falloff of the muscle. During the contraction of the 

muscle, only one parameter is needed, which simulates the strength with which the muscle 

contracts.  As described in  the  theoretical  section  3.2,  the contracted  vertex  position  is 

calculated by

p '= f  p⋅K⋅A⋅R

and all the needed values can be calculated as described in Waters paper  [9]. For each 

influenced vertex, the relevant muscle constraint is extracted from the muscle constraint 

list of the skin simulation by using the muscles name as an identifier, and the contracted 

vertex position is then added as the constraints target position. When the skin simulations 

iterates through the constraints again, the muscle constraints develop a force which pulls 

the vertices to their target positions.

4.4.2 Sphincter muscle

This muscle, which is responsible for the circular compression around the eyes and the 

mouth, is defined by a center point, which represents the bone attachment of the muscle, 

and three radii, which are needed to simulate its ellipsoidal form. Three additional inner 
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radii are needed for an inner ellipsoid, which represent the falloff start of this muscle. Also 

a scale factor was added, since the sphincter muscle only contracts uniformly towards its 

center. This scale factor helps to make some modifications to the muscle behavior. 

For the muscles around the eye, the horizontal contraction does not have as much effect as 

the vertical one, which does deform the region around the eye unrealistically otherwise. 

The region around the mouth on the other hand, has to contract stronger horizontally, or the 

circular mouth shape for the puckering of the lips can not be achieved. Other than these 

parameters, a muscle name for identification, the mesh and the relevant skin simulation 

have to be defined.

During initialization, all the vertices which belong to the muscle are extracted from the 

mesh. This is done by checking if the vertex position V pos  is inside the ellipsoid or not. 

The formula uses therefore each axes individually and checks if  the distance from the 

center point P center  to the vertex position, divided by the muscle radius R  and added up, is 

smaller than 1  or not.

 PcenterV pos x 
Rx


PcenterV pos y 

Ry


PcenterV pos z 
Rz 1

If the resulting statement is true, then the vertex is influenced by the muscle and a muscle 

constraint is added to the skin simulations constraint list.

For the visualization part a wire model is used and an ellipsoid is approximated by three 

ellipses,  one  for  each  axes.  This  is  done  for  the  outer  ellipsoid,  which  simulates  the 

boundaries of the muscle as well as for the inner ellipsoid, which represents the falloff 

distance.

Figure 26: Sphincter muscle visualization
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The contraction works similar to the one for the linear muscles. Only one parameter, a 

value for the contraction strength, is needed and the muscle then iterates through all the 

muscle constraints of the skin simulation, looking for the ones that have its name as an 

identification. It then updates their  contraction position and the vertices are moved due to 

the resulting constraint force. 

Another small modification that was implemented apart from the scale factor was to lessen 

the contracting force inside the inner ellipsoid, before the falloff starts. This was necessary 

since otherwise these areas did get too compressed, creating unrealistic wrinkles.

4.4.3 Rotation muscles

As mentioned in the theoretical part of this thesis, the rotational muscles are split into two 

subtypes,  which main difference is  their  form. The lid  muscle,  that  is  implemented  to 

simulate the opening of the eyelid, has the form of an ellipsoid, while the jaw muscle, 

which simulates the jaw rotation due to muscle contraction or in other words the opening 

of the mouth, has the form of a cuboid.  

4.4.3.1 Lid muscle
This muscle is defined by a center point and three radii for the ellipsoidal form. Since this 

is similar to the sphincter muscle, the influenced vertices are also calculated by 

  PcenterV pos x 
Rx


PcenterV pos y 

Ry


PcenterV pos z 
Rz 1

Other parameters are not needed, since the calculation of the contracted vertex positions is 

not based on Waters formula anymore. When this muscle contracts, the position of the joint 

P joint  is derived from the center point P center  minus the radius for the z axis R z , which 

puts the joint in the back of the ellipsoid. 

P joint=P center−Rz
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Figure 27: Lid muscle visualization

The value of the contraction strength has to be between 0  and 90  for this muscle, since a 

further rotation would look unrealistically, and is also not visible from the outside. 

During the contraction the rotation axis of the joint, which is the x-axis in this case, is  

calculated  and stored as  an  rotation  matrix  M rot ,  allowing to  calculate  the  contracted 

vertex positions V pos '  as

V pos '=P jointP jointV pos⋅M rot

This newly calculated position is then stored into the relevant muscle constraints as the 

target position.

4.4.3.2 Jaw Muscle
The parameters needed to create the jaw muscle are similar to the ones for the lid muscle. 

With a start point, and three length values a cuboid is formed. Though this form is simple, 

it approximates the jaw region sufficiently. For the calculation of the joint point, similar 

principles are applied too. From the start point P start  half the length value of the z-axis L z  

is subtracted resulting into the joint point P joint  

P joint=P start−
Lz

2

The contraction is calculated the same way as the one for the lid muscle is, with a small 

modification because upon opening the mouth, the lower lip tended to stay too straight. 

Preferable is that the middle part of the lip opens slightly further, resulting into a light 
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curve. Therefore for each vertex its relative position to the joint  P joint  is calculated, and 

depending on the similarities on the x and y-axis, a slightly additional force calculated by  

V posy '=V posy Lx−∣V posx – P jointx∣⋅Ly−∣V posy−P jointy∣⋅n

where  L  stands  for  the  predefined  length  values  of  the  muscle  and  n  stands  for  a 

necessary strength multiplier.   

Figure 28: Jaw muscle visualization

4.5 Implemented muscles after FACS

All the muscles in the implementation are based upon the descriptions in the Facial Action 

Coding System, and were chosen due to their importance for the creation of different facial 

expressions. The size and the place for the muscles are based upon the drawings in the 

manual, and were then manually repositioned until the results were satisfying.Since the 

wrinkles that a face creates during different facial expressions depend upon age, gender and 

topology of the face, the photographs in the copy were only used as a loose guideline for 

this purpose.

Nearly all of the implemented action units, with the exception of action unit 17, 18 and 26 

are created by muscles which are found on each part of the face. In total, 13 action units  

were used, which allow to create a large variety of expressions already.

4.5.1 AU1, inner brow raiser

This action is created by the center part of a large muscle sitting in the scalp and forehead 
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of the face. It raises the inner part of the eyebrows up, resulting into horizontal wrinkles on 

the forehead. These wrinkles do not appear across the whole forehead, but only in the 

middle part of it, and can be slightly raised at the center. 

Figure 29: neutral expression (left), implemented muscles (middle), AU1 (right)

Though this action unit was simulated by two mirrored muscles, their contraction is always 

combined together and can not be individually changed. A previous attempt to simulate this 

action unit  with a single muscle created wrinkles which were too arched, therefore the 

second muscle was added for better results.

4.5.2 AU2, outer brow raiser 
Responsible for this action unit is the lateral part of the same muscle that also creates AU1. 

Upon its contraction the outer parts of the eyebrows are raised, resulting into a arched 

shape of each, and the relevant part of the eye cover fold is stretched. This causes small 

horizontal wrinkles to appear on the sides of the forehead, above the lateral part of the 

eyebrow. This  action unit  is  mirrored,  and can be produced on either  side of  the face 

separately. For each side of the face a single muscle was implemented to approximate the 

desired behavior. 
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Figure 30: neutral expression (left), implemented muscles (middle), AU2 (right)

Since the acquired head model results from a scan, the sides of the face are not mirrored 

and have small  differences in their topology, which leads to the production of different 

wrinkles on each side. However, this is considered as realistic since it is very likely that 

each side of a face produces slightly different wrinkles. 

4.5.3 AU4, brow lowerer

Figure 31: neutral expression (left), implemented muscles (middle), AU4 (right)
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Three different muscle strands are involved to produce this action unit,. The most powerful 

of these origins a little to the side of the root of the nose and spreads upwards to a point 

above the eyebrows on the lower part  of the forehead. It is responsible for pulling the 

eyebrows together and lowering them. The second strand origins at the center of the root of 

the nose and spreads  a little  more vertically to  the center of the forehead. Even more 

vertically runs the last strand, originating next to the inner part of the eyebrows and running 

to their corners. 

These three strands nearly always act together, and were therefore chosen to be represented 

as a single action unit. Upon their contraction the inner and sometimes also the center part 

of the eyebrows is lowered and the eyebrows are pulled towards each other. This produces 

vertical wrinkles between the eyebrows which may also appear at a 45 degree angle.

Although three different muscle strands produce this action unit on each side of the face, in 

the  simulation  they  are  approximated  through  a  single  linear  muscle,  which  already 

produces decent results. For the whole action unit, two muscles were needed which also 

always work together and can not be used separately. 

4.5.4 AU5, upper lid raiser

Figure 32: neutral expression (left), implemented muscles (middle), AU5 (right)

This action unit represents the pulling back of the upper eye lid into the eye socket. The 
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muscles responsible for this action were not visually presented in the Facial Action Coding 

System, but their position and size was guessed from their purpose. When the relevant 

muscle relaxes, the eye lid falls over the eyeball and closes the eye. During the normal 

opening of the eye this muscle is only slightly contracted. Upon strong contraction the 

upper eyelid is pulled further back, often until there is nothing left visible.

For the approximation of this action unit the lid muscle, a subtype of the rotation muscle, 

was created and implemented on each side of the face. Normally these two muscles work 

together, for the purpose of  blinking or closing the eyes, or to stare with wide open eyelids, 

but sometimes they have to be used individually. Therefore this action unit can be used for 

either side of the face separately to produce animations like a wink. Especially important is 

this action unit for letting the eyelids follow the movement of the eyes of a character, which 

was integrated into the eye simulation of the implementation. 

4.5.5 AU6, cheek raiser and lid compressor

Figure 33:  neutral expression (left), implemented muscles (middle), AU6 (right)

The muscle for this  action unit  is one of the implemented sphincter muscles, and runs 

circular around the eye socket. Its circumference reaches from the eyebrows to under the 

lower eye furrow. Upon contraction this muscle pulls the skin surrounding the eye towards 

it. In detail, it lowers the eye brows a little bit, pulls the skin from the temple towards the 
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eye and lifts the cheek upwards. This process can, depending on the contraction strength, 

narrow the eye aperture and push the eye cover fold down.

During this action unit wrinkles can be generated below the eye and fine crow lines appear 

that origin at the outer part of the eye. It may also deepen the lower eye lid furrow. This 

action unit is approximated by a single sphincter muscle for each side of the face, that 

simulates the circular muscle around the eye sufficiently. Since this facial action can occur 

on each side individually, the action unit was divided and can be controlled separately.

Unfortunately the resulting wrinkles are only visible below and at the inner part of the eye, 

and nearly no crowfeet or wrinkles are created on the outer side. The reason for this may be 

the mesh resolution since the wrinkles around the eyes have to be very fine. 

4.5.6 AU9, nose wrinkler

Figure 34: neutral expression (left), implemented muscles (middle), AU9 (right)

This  action  unit  simulates  a  muscle  that  origins  at  the  root  of  the  nose  and  reaches 

downwards along its side to a point below the nostril wings. During the contraction of this 

muscle the skin at the side of the nose is pulled towards the origin of it, which results into a 

skin compression creating wrinkles on the upper part of each side and the root of the nose. 

This process can also widen and raise the nostril wings. In the process it may lower the 

brows a little bit and raises the upper lips slightly. These deformations were unfortunately 
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not implemented with this action unit, and the focus lied on the creation of wrinkles upon 

contraction.

However, the lowering of the eyebrows can be easily added by combining this action unit 

with AU4. Although this action is the result of a single muscle, the simulation uses two 

linear muscles, one on each side of the nose, to create the desired wrinkly result. These two 

muscle can only be contracted as a single unit, and produce for the same reason as AU2, 

different wrinkles on each side of the face. This action unit may not seem important, but it 

helps to get more realistic results for various facial expressions, like anger or confusion. 

4.5.7 AU10, upper lip raiser

Figure 35: neutral expression (left), implemented muscles (middle), AU10 (right)

Responsible for this action unit are two muscles, one on each side of the face, that origin 

relatively high at  a  point  over  the  nose and attach  themselves  at  the  skin  next  to  the 

nasolabial furrow. Upon contraction they pull on their skin attachment and raise it up and 

to the side towards the cheeks, resulting in the lifting of the upper lip. If the contraction is 

strong, it also raises and widens the nostril wings a bit and deepens the nasolabial furrow 

beneath them.

Since this action unit is based on a single muscle on each side of the face, the realization in 

the  implementation  was  done  with  a  single  muscle  too.  However  there  were  some 
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complications  with  the muscles  that  did  not  allow to implement  the finer  details.  The 

raising of the upper lip with two muscles could be done, but to pull its upper part back at  

the same time, to create the nasolabial furrow, proved to be not possible. To do so, the 

muscle would either distort parts of the nose too much, or pull the upper part of the lip too 

much inwards, which both lead to unrealistic deformations.

The action  unit  was therefore divided into two tasks,  raising the lips  and creating the 

furrow. Each of these tasks has a muscle assigned to it, which results in an overall of four 

muscles for this action unit.  Since the actions created with these action unit are always 

mirrored, all muscles contract at the same time and are supposed to only be used as if it  

was a single unit.

4.5.8 AU12, lip corner puller

Figure 36: neutral expression (left), implemented muscles (middle), AU12 (right)

The muscle for this action unit origins in the lower part of the cheek bones and its other 

end is attached to the lip corners. When this muscle contracts it pulls the corner of the lips 

up and to the side, resulting in a smiling mouth shape. This behavior was approximated 

with a single linear muscle on each side of the face. There is no connection between these 

muscles, allowing the contraction on only one side of the face for the raising of only one lip 

corner.
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This action unit was implemented with the knowledge that AU20 was also going to be 

used, which is responsible for the stretching of the lips. Therefore AU12 should allow a 

good combination AU20. The focus of AU12 lies in pulling the lip corner upwards, and to 

produce a realistic looking smile, AU20 has always to influence the face at the same time. 

Without it, AU12 results into unrealistic looking furrows, which can be seen in Figure 36.

4.5.9 AU15, lip corner depressor

Figure 37: neutral expression (left), implemented muscles (middle), AU5 (right)

This action unit  is  the opposite of AU12 and pulls the corner of the lips down, which 

results in a mouth shape similar to an arch. The responsible muscle origins at a point in the  

region of the lower chin and runs along the side of the chin up to the corner of the lips. 

Upon its contraction, the lip corners are not only lowered but also stretched horizontally,  

which can result in some pouching or bagging of the skin near the lip corners. 

The implementation of this action unit was uncomplicated, a single muscle on each side of 

the face was created to approximate the behavior. Its origin may not be as low as the real 

muscle, but it pulls the lip corners low enough to be sufficient for any facial expression.  

Also, when this muscle is contracted it creates a furrow at the lip corners, which looks 

pleasantly enough to give the impression of soft skin in this area.

The two muscles for  this  action were chosen to  be controllable  individually,  since the 

59 / 84



                                                                                                                                       Leon Beutl

lowering of the lip corners is needed on only one side of the face to create asymmetric 

facial expressions.

4.5.10 AU17, chin raiser

Figure 38: neutral expression (left), implemented muscles (middle), AU17 (right)

The muscle on which this action unit is based on is originating in the area just below the  

lips and reaches far down to the lower part of the chin. When the muscle contracts it pushes 

the skin of the chin upwards, which also results in a small raise of the center of the lower 

lip, creating a slight arch. During this process the skin of the chin surface gets compressed,  

which can result into a depression under the lower lip and small wrinkles on the chin boss.

This action unit is one of the few that only need a single muscle, because it happens at the 

center of the face and is therefore not a mirrored action. The implementation used therefore 

a single linear muscle for the approximation of this action unit.

During its contraction the depression under the lower lip becomes clearly visible, and a 

number of small deformations are visible on the skin boss, although none of them can 

really be called a wrinkle. A small wrinkle also appears at the corner of the lips, and the 

lower lip gets a little bit compressed. The raising of the chin may also not seem to be an  

important action unit, but again it provides small details that raise the realism of facial 
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expressions such as sadness.

4.5.11 AU18, lip pucker

Figure 39: neutral expression (left), implemented muscles (middle), AU18 (right)

This is the second action unit that uses a sphincter muscle for its approximation. The real 

muscle it is based on, runs over the upper and below the lower lip and is not really circular, 

but its behavior can be sufficiently approximated assuming that it is. Upon its contraction it 

pulls the lip corner towards the center of the mouth, resulting in a round mouth shape, 

which may be open to form the letter 'o' or it  presses the lips against each other. At the 

same time  the  center  of  the  mouth  is  pulled  forward.  During  this  deformation,  small 

wrinkles can occur on the skin of the upper lip, and also, though rarer, on the lower lip.

As already mentioned this action unit was implemented through a sphincter muscle, which 

allowed us to contract the surrounding skin of the mouth towards its center. Due to the 

relatively strong skin compression necessary to create a nearly round mouth shape, light 

wrinkles appear on the lower lip, especially to the side of it, were the compression force is  

the greatest. The lips, which are slightly pressed against each other during the contraction, 

show also very light wrinkles due to the compression.
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4.5.12 AU20, lip stretcher

This  action  unit  simulates  the horizontal  stretching of  the  lips.  The underlying muscle 

origins far to the side and back of the lower face, near to the jaw and attaches its other end 

to the lip corners. It does not only pull the mouth corners to the side upon contraction, but 

also to the back in the direction of the ears. Depending on the face topology the lip corners 

are slightly raised or lowered during this process, but the main focus of this contraction lies 

on the horizontal stretching of them.The lips become stretched and a little bit flatten during 

the  contraction  and also  the  nostril  wings  can  become elongated.  Small  wrinkles  may 

appear on the side of the cheek and the skin is pulled into the lower part of the nasolabial 

furrow. 

Figure 40: neutral expression (left), implemented muscles (middle), AU20 (right)

This action unit was implemented using a single linear muscle on each side of the face. 

Upon their contraction the big furrow near the lip corners becomes clearly visible and also 

a small wrinkle is visible to the side of it. As mentioned earlier, it is necessary to use this 

action unit in combination with AU12, to create a realistic looking smile.

4.5.13 AU26, jaw drop

The last implemented action unit is responsible for opening the mouth. It is a little bit 
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different  than the other  facial  actions,  since in  this  case,  also a joint  is  involved.  The 

responsible muscle sits far to the back and side of the head, and is attached to the jaw bone. 

He is responsible for keeping the jaw up and the mouth closed. When this muscle relaxes, 

the jaw drops and the lips part resulting in a mouth opening motion. This is in contrast to 

AU27,  which  pulls  the  jaw  open,  and  results  in  a  bigger  mouth  opening.  But  the 

implemented muscle can not be strictly assigned to either of these action units, and may be 

seen as a mix of these two.

Figure 41: neutral expression (left), implemented muscles (middle), AU26 (right)

This behavior was approximated with the jaw muscle,  which is  again a subtype of the 

rotation muscle. Due to the only small space between the lips, the corners of the lips are 

pulled too far down during contraction, but this is easily correctable, by altering the mouth 

region a little bit and creating a bigger gap between the lips. During contraction, small  

wrinkles are created at the chin boss too, which was not mentioned in the FACS, but still 

gives a soft impression.
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5. Application GUI

The GUI for the application is divided into a few sub menus, which all handle different  

tasks. All together there are five of them, which are responsible for 

1. individual action units

2. predefined emotions

3. rendering options

4. outputs

5. real-time editor

Figure 42: Application GUI overview

5.1 Individual action units

This sub menu provides a set of sliders that allows to manipulate the contraction strength 

of  all  the individual  action units  presented  in  the  previous  chapter.  If the names  exist 

double, then the first slider manipulates the left side of the face, the second one the right. 

Each row consists  of  a  text  field  representing the action  unit  number,  a slider  for  the 
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contraction strength, and a check box, that allows to make the muscle visible. This option 

is important to see what area the muscle covers and especially important for the editor, 

since  only visible  muscles  can  be  selected.  The  sliders  can  also  be  used  together  to 

combine the different muscles and allow the creation of a variety of facial expressions.

5.2 Predefined emotions

Figure 43: (in order) neutral, happy, sad, laughing, angry, surprised expression

For  testing  purpose  and  to  show some of  the  results  that  can  be  achieved  using  this 

simulation, a few facial expressions were predefined. These facial expressions are created 

by defining a  combination  of  the  implemented  individual  action  units.  The predefined 

expressions  are,  happiness,  sadness,  laughing,  anger  and  surprise.  Although  these 

expressions  can  be  combined,  to  create  for  example  an  angry  or  a  happy  surprise 

expression, they were designed to be used alone and result in unrealistic deformations if 

the value of the sliders is too high.
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Each of the defined expressions results out of the combination of the following action units

• Happiness: AU2 + AU5 + AU6 + AU14 + AU20

• Sadness: AU1 + AU4 + AU5 + AU9 + AU15 + AU17 + AU20

• Laughing: AU1 + AU2 +  AU6 + AU9 + AU14 + AU20 + AU26 

• Anger: AU2 + AU4 + AU5 + AU6 + AU9 + AU15 + AU20 + AU26

• Surprise: AU1 + AU2 + AU5 + AU9 + AU14 + AU17 + AU26

5.3 rendering options

Under  this  sub  menu,  some  miscellaneous  actions  are  combined,  which  all  have  in 

common that they alter the rendering of the model in some way.

5.3.1 Solid and wireframe mode

These radio buttons allow to switch the head rendering between the solid mode, which is 

the  normal  textured model  view,  and a  wireframe mode,  which  renders  the  head as  a 

wireframe model and allows to view its triangles. This can be useful to determine under 

which resolution, what kind of wrinkles are generated and allows to view the deformations 

clearer.

5.3.2 Show eyes and teeth

As mentioned earlier, to increase the realism of the simulation some additional models 

were created, which are the eyes and the teeth of the face. The visibility of these models 

can be switched on and of using these check boxes. This allows for example to hide the 

models when the head is viewed in the wireframe mode, since they would show through 

the mesh, and may act distracting.

5.3.3 Eye simulations

To make the head look a little bit more livelier, a simple eye simulation was implemented, 
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which can be switched on and off. For the simulation of a realistic eye behavior, two tasks 

have to be implemented. The first one is to let the eyes blink after a certain time period, 

which keeps the eyes moistened. After [24], blinking happens depending on the emotional 

state and the thoughts of the character, so it is not easy to assign a time after which a 

blinking has to occur. A random value is therefore chosen between 3 and 8 seconds, to 

determine when the next blinking happens.

The second task is to rotate the eye around in an area in which the iris would normally stay. 

This movement field was determined by simply testing the rotation range of the eyes that 

still looks naturally. The resulting values were between -30 and 30 for the yaw rotation, 

which is the left and right movement of the eye, and -20 to 25 for the pitch rotation, which  

is the up and down movement. For every new eye position, a value in the range of these is 

chosen,

To simulate the eye movement realistically, the eye should stay at its position for a while, 

and then move rather quick to the new position upon a change. So a random value with 

very little valid range is used to determine when the eye should change its position. A 

minor  problem had  to  be  solved  before  completion,  which  was  that  no  blinking  may 

happen  during  the  movement  of  the  eye.  Therefore,  the  eye  movement  value  is  only 

updated if the eye currently does not blink.

5.4 Light

The  application  uses  two  kinds  of  light,  an  area  lighting,  which  allows  to  define  the 

hardness of the shadows and is responsible for the overall darkness of the model, and a 

directional light. This directional light can be controlled using these two sliders. Using the 

first  slider  will  change  the  direction  of  the  light  on  the  horizontal  layer,  allowing  to 

smoothly turn the light one time around the model. The second slider alters the vertical 

direction, and moves the light from above the model to its bottom. This can be useful to get 

a feeling about how different facial expressions look under changing light conditions, and 

also to highlight wrinkles, which may not be as visible as the can when the light comes 

directly from the front.  
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5.5 Outputs

In this section some values of interest are shown. Currently there are only two implemented 

output fields in this sub menu. The first one is the frame rate, which is a very important 

factor and especially interesting for measuring the performance of the application.  The 

other one is the amount of muscle constraints currently used. This was implemented to get 

an overview of the implemented constraints, and how they change when the muscles are 

altered with the editor.

5.6 Real-time editor

This editor allows to arrange and redefine all the muscles in real-time so that they fit the 

face model better. It was implemented, since the coding of muscles is not as intuitive and 

the results not as easily viewable as they would be with an editor.  Since the form of the 

muscles  are  quite  different,  the  editor  differs  between  the  types  of  the  muscles,  and 

automatically provides the relevant interface items. The top text field however always stays 

the same independent from the muscle type, since it contains the name of the currently 

selected muscle.

5.6.1 Ray casting

To be able to select the muscle that has to be changed, Ogres ray casting abilities were 

used. It is necessary to define an empty ray, which is used whenever the left mouse button 

is  pressed and to  assign it  to a camera.  With the information from the camera the ray 

searches for any objects  touched by the mouse pointer.  The ray then calculates all  the 

objects that are on his path and sorts them by distance. After this process it is possible to  

iterate through the returned results.

The ray only differs between two type of objects, world fragments and movables. World 

fragments are static objects and not important for the editor. The interesting ones are the 

movables, which are all sort of dynamic objects, like our muscles or the face model. The 
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first thing that has to be done is to get rid of all the mesh models the face consists of. This 

is accomplished by comparing the mesh names, the ray returns, with the ones we assigned 

to the face models. With this comparison it is possible to remove the face model, the eyes 

and teeth from the result list. After that procedure the selected muscle is the next on the list. 

One more filter has to be applied to identify the type of the selected muscle, since their 

different forms require the changes of different parameters.  

5.6.2 Linear muscles editor

For the linear muscles, the editor provides options to change their position, their rotation 

and the scale of the muscles. Six buttons are responsible for changing the position of the 

muscle, which is done individually in each of the three axises. Since the changes can be 

either in the positive or negative direction, six buttons are the required minimum. 

To scale the muscle,  two parameters  can be changed. The length and the angle of  the 

muscle. By changing the length parameter, the overall size of the muscle is changed and it 

can be compared to a scale in all three axises. The angle on the other hand changes not only 

the broad of the muscle, but alters also the form quite a bit. As mentioned in the linear 

muscle section 4.4.1, the form of the muscle is a sphere segment, which can range from 

nearly a line shaped cone to a half sphere. For this reason the manual object of the muscle 

has to be redrawn after changes to the angle are made.

There is also the option, although for this muscle only, to rotate the muscle. The rotations 

are done individually too, allowing to make changes on each of the axis separately. Two 

buttons are provided to yaw, pitch or roll the muscle in the negative or positive direction.

Important is that, after all the changes for a muscle are done, the 'assign vertices' button has 

to  be pressed.  Only after pressing it,  are the vertices for the muscle recalculated.  This 

button was integrated to achieve a better performance, since calculating the vertices all the 

time while the editor is in use would be costly.

5.6.3 Sphincter muscle editor

For the sphincter muscles, the editor allows the manipulation of their position and size. The 

position changes work the same way as they do for the linear muscles. Six buttons are 
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provided which allow to move the muscle in the positive or negative direction of one of the 

axis. To change its size however, three parameters can be altered for this muscle. Each 

parameter represents the radius of the muscle in one of the axes, and they can be altered 

separately too. Six buttons are provided for this purpose. To finalize the changes on the 

sphincter muscle, the 'apply vertices' button has to be pressed again, so that the vertices are 

reassigned.

5.6.4 Rotation muscle editor

The editors interface for the rotational muscles was implemented generic enough to allow 

the use of the same buttons for the lid and jaw muscles. To move the muscle around on the 

axis six buttons were implemented. For the changes to the size of the muscles, the same 

principles as for the sphincter muscles are applied. Six buttons, where two represent each 

axis. This is possible, since the lid muscle, which form is an ellipsoid, and the jaw muscle, 

which is a cuboid, both need three parameter for their definition, which represent radii in 

one case and length values in the other. It is necessary for this muscle to press the 'assign 

vertices' button to allow the correct representations of the changes. 

5.6.5 Saving and Loading
If no muscle is selected, the editor changes to the saving and loading interface. In this menu 

it is possible to load different head models, and previously saved muscle systems. All the 

head models that are going to be used, have to be in a specified directory. The editor reads 

all the files from this directory, and shows the ones with a .mesh ending in a drop-down 

box. After a file was chosen, the load model button has to be pressed. When a new head is 

loaded, the application automatically deletes all constraints in the skin simulation. They are 

recreated after a  new muscle system is loaded. To load the muscles from a file, the file has  

to be in a predefined directory. A drop-down box allows to choose from these, and the load 

muscles button loads the muscles, and updates the skin simulation. After changes were 

made to the muscle system, it can be saved by typing a name and pressing the save muscles 

button.  The muscle system is  then written into a  .txt  file  and stored in  the predefined 

directory.
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6. Tests and Performance

This simulation was developed and tested on a personal laptop, using an Intel Duo Core 

processor  with  2.52GHz each,  4Gb Ram and a ATI Mobility Radeon HD 4600 Series 

graphics  card.  The  two  most  important  parameters  for  the  visual  performance  of  the 

simulation are the resolution of the used face model and the number of iterations. Some 

tests were therefore conducted with these two parameters.

6.1 Iteration testing

To test the minimum required number of iterations for the length constraints, that would 

still provide acceptable results, tests were done using the previously mentioned standard 

head. The easiest possible way was used for this, by trying out the different numbers and 

observing  the  results.  This  was  done  by  comparing  one  of  the  predefined  facial 

expressions,  laughing, since it  provided changes to the mouth region, the eyes and the 

forehead.

Figure 44: 1 iteration (left), 2 iterations (middle), 3 iterations (right)

The tests started with the number 1, which only provided a single calculation for each 

length constraint per frame. As we can see in Figure 44 above, the results are not really 
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satisfying. The forehead for starters, is supposed to wrinkle slightly, but instead only one 

hard wrinkle can be seen which looks rather like two separate scars. It is not perceived as 

very realistically because of the thickness of the wrinkle. Probably the most passable is the 

eye region, because only very slight changes exist to the neutral expression. The circular 

muscle around the eyes provide a slight compression and the nose wrinkles a bit, but the 

result  looks alright. However, the region around the mouth is the worst,  because of its 

strong deformation. The furrow around the mouth is too hard, and the mouth itself has a 

very unnatural form. Especially the mouth corners and the lower lips deform unnaturally as 

they seem to loose their original form quite a bit. 

A single deformation is obviously not enough for a model of this resolution. With two 

iterations per frame the result is perceivable better. The region on the forehead is a little bit 

more wrinkly, though the wrinkles themselves still look too hard. Not much changed in the 

eye region, however the wrinkles there are not as hard anymore as they were with only one 

iteration. The mouth region is clearly better now, as it can be seen in Figure 44. The lower 

lip does not deform that much and keeps its form and the furrow around the mouth is not as 

hard anymore. Also the corners of the mouth are much smoother now. However the overall 

look is  still  not as realistically as desired, and the generated wrinkles not soft  enough. 

Therefore another test with three iterations was done.

The wrinkles  in  the  forehead region look very smooth  now,  and are  also  not  as  hard 

anymore. In my opinion they achieve the goal to make the region look soft and appear 

realistically enough. Now the eye region looks nearly the same as with two iterations, only 

the  shadows appear  to  be slightly less  hard again.  Most  changes  appear  in  the mouth 

region. The lips now keep their form completely as do the mouth corners, and the furrows 

around them are again smoother and less hard. Three iterations are in my opinion therefore 

the minimum amount of iterations for a satisfying result.

6.2 Resolutions

The  second  series  of  tests  used  different  resolution  head  models  to  observe  if  lower 

resolution models would still provide soft looking expressions. To allow the comparison of 
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the mesh models, the lower resolution ones were derived from the standard head, by using 

the poly reducer script that blender provides. Notable is that the polygon reduction by hand 

would probably allow to keep a better mesh topology and may provide better results with 

the implementation, than this script does.

For the tests  the following three head models were used.  The first  one is  the standard 

model,  which is  a  slightly modified head scan,  consisting of  5596 vertices  and 10974 

triangles. The second one is a copy of the first one, that was reduced by 25 percent and 

consisted of 4199 vertices and 8207 triangles. The third one is another copy of the standard 

head, but this one was reduced by 50 percent and consisted of 2808 vertices and 5472 

triangles. For this comparison one of the predefined facial expressions was used again, but 

this time it was the expression anger.

Figure 45: Low resolution (left), medium resolution (middle), high resolution (right)

If we have a look at Figure 45 above, we can see that there are only slight differences 

between the different resolution models.The most remarkable difference is probably in the 

region of the mouth. The mouth corners of the low resolution model are not so clearly 

defined  anymore  and  appear  somewhat  round.  This  can  also  be  seen  on  the  furrow 

surrounding it, which appears sharper on the high resolution model.The area between the 

eyebrows only has one deep furrow instead of the small wrinkles the high resolution model 

generates. Finally some of the wrinkles the nose produces are missing or not as strongly 

visible in the low resolution version.

However, the overall soft feeling of the model and of the facial expression is still visible in  
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my opinion and produces decently realistic results.

6.3 Frame-rate

A third series of tests was conducted for the frame-rate that the application could achieve. 

Therefore, the distance of the face model to the camera, and the head models resolution 

were changed. To test the influence of the distance on the framerate, the default head model 

consisting of 5596 vertices was placed 20 (near), 40 (medium) and 60 (far) units away 

from  the  camera.  The  frame-rate  was  captured  once  without  any  simulated  muscle 

contraction, and the second time with. During contraction, the frame-rate drops quite a bit, 

due to the amount of constraints and necessary calculations, as it can be seen in Figure 46 

below. The distance however has only little influence on the frame-rate.

Figure 46: Showing the frame-rate for different distances
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To test the influence of the models resolution on the frame-rate, the same head models 

were used as described in section 6.2.   The frame-rate  was captured without  and with 

simulated muscle contraction. There is nearly no difference in in the frame-rate while no 

muscle contraction  occurs,  which can  be  seen  in  Figure 47  below.  During  contraction 

however, it is clearly visible that the low resolution model achieves a higher frame-rate, 

due to the fewer constraints it possesses. The medium and high resolution models on the 

other hand achieve nearly the same results.

Figure 47: Shows the influence of different resolution head models on the frame-rate

75 / 84



                                                                                                                                       Leon Beutl

7. Further Improvements

To  really  incorporate  the  developed  tool  into  a  production  pipeline,  some  further 

improvements might be useful. The following features are probably the most necessary

Further Testing: To really get a grip of the applicability of the simulation,  it  has to be 

applied on more face models with different topologies. The implemented editor allows the 

easy fitting of the muscles to the correct regions, but to avoid extensive corrections the face 

models have to be provided in the same size. For this work a scanned head data was used, 

which has a relatively even topology, however it would be interesting to see how good of a 

performance could  be  achieved with  a  model  especially created  for  this  simulation.  A 

models that has a higher resolution in areas were small wrinkles should be generated and a 

lower in other regions.

Wrinkle shader: Currently the presented system does all its calculation in the CPU and 

therefore  the  resulting  frame-rate  may be  suboptimal.  The  implementation  allows  the 

sufficiently smooth manipulation of muscles and deformation of skin, depending on the 

mesh resolution, but at 10000 triangles the frame-rate is only passable.  A probably better 

way would be to outsource some of the workload to the GPU. It might be possible to 

transform the deformation of the vertices into a vertex shader, which would ease the work 

on the CPU quite a bit, since the calculations of the wrinkles and the vertex normals are 

rather expensive.

Realistic skin: Currently only the provided texture for the head scan is used on the model,  

however it does not make the skin look very realistic. The visual appearance of the face 

would probably gain a lot from a normal map that simulates small pores. It might be also 

interesting to look into shader programming, to create a sub surface scattering effect, which 

emulates  the  light  dispersion  under  the  material  surface,  and  allows  to  achieve  very 

realistic looking skin.
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8. Conclusion

The goal of this thesis was to develop a way to automatically create soft looking realistic 

facial expressions from a polygon model and to provide a simple way to animate it. To 

achieve  this,  two main  problems were  solved.  A way was  developed that  allowed the 

creation of wrinkles upon skin compression, that gathered all the needed information from 

the  provided  mesh  model.  The  solution  derived  from  the  idea  of  using  a  soft-body 

simulation to achieve realistically behaving skin. Through the creation of the wrinkles, the 

facial expression gets an overall wrinkly look, that simulates the impression of soft skin. 

The second problem was to combine the skin simulation with a simple way to animate the 

face. After extensive research, a simple muscle simulation was considered the best way, 

and a slightly modified Waters vector muscle simulation was implemented.

With  the  combination  of  these two techniques,  a  tool  was  developed that  allowed the 

deformation of a face model with a set of sliders, and allowed easy adjustments of the 

provided muscle rig with a real time editor. The tests that followed the implementation 

proved in my opinion that the developed simulation worked satisfyingly for the used head 

model with different resolutions. And only slightly lesser results were achieved with the 

lower resolution model. 

However  some  improvements  are  still  necessary,  especially  to  make  the  performance 

increase, since the frame-rate is rather low due to the expensive CPU calculations that are 

necessary for the deformation of the vertices.

From the idea, research, theoretical development and implementation to the final writing of 

the thesis the project took about 7 month until its completion, and was done under the 

supervision of the computer entertainment research department of the university of Vienna. 
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10. Appendix

10.1 Zusammenfassung

Abstract: In dieser Arbeit wird ein Weg zur Erstellung von realistischen, weich wirkenden, 

virtuellen Gesichtsausdrücken vorgestellt. Um dies zu ermöglichen wurde eine Simulation 

der  Gesichtsmuskeln  mit  einer  Simulation  der  menschlichen  Haut  kombiniert.  Für  die 

Gesamtsimulation  wurde  daraufhin  ein  Tool  erstellt,  welches  das  Austesten  und  die 

Manipulation der Muskeln ermöglicht.

Die  realistische  Animation  der  Gesichter  virtueller  Menschen,  ist  mit  zwei  Problemen 

verbunden.  Man  muss  die  komplexen  Muskeln  des  Gesichtes  simulieren,  sowie  die 

Eigenschaften der menschlichen Haut visuell nachbilden. Wenn dies nicht geschieht, dann 

erscheinen die virtuellen Charaktere seltsam hölzern, und ihre Gesichter maskenhaft.  In 

dieser Arbeit wird eine Simulation vorgestellt, welche versucht diese Probleme zu lösen, 

um  die  Generierung  von  weich  wirkenden,  realistischen  Gesichtsausdrücken  zu 

ermöglichen. 

Dabei  wurde  zur  Annäherung  der  Muskelkontraktionen,  Waters  Vector  Muscle  Model 

verwendet in Kombination mit dem Facial Action Coding System. Dieses Muskelmodell 

besitzt ein relativ einfaches Design, bestehend aus nur zwei Muskelarten, ermöglicht aber 

die Generierung einer weiten Palette von Gesichtsausdrücken. Lineare Muskeln dienen zur 

Simulation  aller  isotonischen  Muskelkontraktionen,  welches  den  Großteil  unserer 

Gesichtsmuskeln  entspricht  und  Ringmuskeln  zur  Annäherung  von  kreisförmigen 

Schließbewegungen, wie sie um die Augen und Mund vorkommen. 

Das Facial Action Coding System dient in dieser Arbeit als Grundlage zur Auswahl und 

Positionierung der Muskeln.  Es war  zudem hilfreich da es  die  Folgen der Kontraktion 

einzelner  Muskeln  oder  Muskelgruppen  im  menschlichen  Gesicht  beschreibt.  Um  die 

erstellten Gesichtsausdrücke weich wirken zu lassen, wurde eine einfache Hautsimulation 

entwickelt, welche ohne jegliche Vorarbeit auskommt. Diese Simulation beruht auf einer 

kleinen Gruppe von Bedingungen welche die  Eigenschaften der  Haut  zufriedenstellend 

annähert. Insgesamt gibt es drei Arten, Positions-, Längen- und Muskelbedingungen.
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Positionsbedingungen simulieren die Elastizität der Haut und stellen den Ursprungszustand 

des Modells wieder her. Längenbedingungen dienen der Annäherung des Faltenwurfes der 

Haut  und  Muskelbedingungen  übertragen  die  Muskelkraft  und  dessen  resultierende 

Deformation auf die Hautsimulation.

Zum Austesten der  Simulation  wurde ein Programm entwickelt,  welches  mit  Hilfe  der 

Ogre  Grafikengine  erstellt  wurde.  Zur  Programmierung des  selbigen wurde  Microsofts 

Visual  Studio  C++  verwendet.  Das  erstellte  Tool  ermöglicht  das  Laden  von 

Gesichtsmodellen und Muskelsimulationen, und stellt eine Anzahl von Reglern bereit, um 

den Einfluss der einzelnen Muskeln auszutesten. Es enthält zudem einen Editor, welcher 

die Manipulation der einzelnen Muskeln ermöglicht.
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10.2 Summary

Abstract: In this thesis, a way is presented for the creation of realistic, soft-looking, virtual 

facial expressions. A simulation of the facial muscles and a simulation of the human skin 

was combined for this task. In succession a tool was developed which allowed the testing 

of the simulation and the manipulation of the virtual muscles.

The realistic animation of virtual faces poses two problems. On one hand the complex 

muscles of the human face, and on the other hand the properties of the human skin have to 

be approximated. If this is not the case, the virtual characters seem strangely 'dead' and 

their faces mask-like. In this thesis a simulation is presented, which tries to overcome these 

problems to achieve realistic, soft-looking facial expressions. 

To  approximate  the  muscle  contractions,  Waters  vector  muscle  model  is  used  in 

combination with Ekmans facial action coding system. This muscle model has a relatively 

simple design, using only two muscle types, but allows the creation of a wide range of 

facial  expressions.  Linear  muscles  are  used  to  approximate  the  isotonic  contraction 

behavior, which fits the majority of our facial muscles, and sphincter muscles simulate the 

circular contraction that occurs around the eyes and the mouth. The facial action coding 

system is used as a guideline for the choice and the positioning of the muscles. It was also 

helpful since it describes the visual impact of single muscles and muscle groups on the 

surface of the face.

To achieve a soft-look on the facial expressions, a simple skin simulation was developed 

which can be applied without any preperation work. This simulation relies on a small set of 

constraints, which simulate the properties of the human skin sufficiently. Altogether there 

are three types, position, length and muscle constraints. The position constraints are used to 

simulate the elasticity of the skin and they undo all the changes which occur due to the 

muscle contraction. Lenght constraints are used to approximate the wrinkles which the skin 

generates  upon  compression  and  muscle  constraints  transfer  the  muscle  force  and  the 

resulting deformation onto the skin simulation.

To test the simulation an application was developed, using the Ogre graphics engine and 

Microsofts Visual Studio C++ for the programming part. The developed tool allows the 
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loading of different head models and muskle simulations,  and provides a set  of sliders 

which simulate the contraction strength of the indicvidual  muscles.  It also provides an 

editor to allow manipulation of the muscles in real-time.
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