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Abstract

The objective of this study is twofold. One of them is the pricing and hedging
of collateralized debt obligations (CDOs) and the other is the modeling of
inflation linked derivatives. In the first part, we first review the framework
introduced in Filipović et al. [2009] for the pricing and hedging of CDOs. As a
first step towards the investigation of the market incompleteness, we examine
the uniqueness of the martingale measure in the defaultable (T, x)-bonds
market introduced in Filipović et al. [2009] and show that the equivalent
local martingale measure (ELMM) is unique. Following this we specify an
affine two factor stochastic drift model for the pricing and hedging of single
tranche synthetic CDOs. We estimate the affine factor model on the iTraxx
Europe data. The novelty of this part lies in the fact that the data covers a
period, which witnessed different market conditions such as the recent credit
crises. As the main tool for the estimation of the affine factor model we
use quasi maximum likelihood based on a Kalman filter. Estimation results
show that the two factor stochastic drift model is successful in terms of fitting
the market data even for super-senior tranches. Apart from estimating the
model, we analyze the real world performance of two hedging strategies,
namely the variance minimizing and regression based hedging. We also run
a simulation analysis where normal and extreme loss scenarios are generated
via method of importance sampling. Finally we assess the hedging strategies
under these more general scenarios.

The second part of this thesis deals with the pricing and hedging of inflation-
indexed derivatives. Assuming that the foreign currency analogy holds we
first consider a three-factor Gaussian affine model for the pricing of nominal
and inflation indexed bonds. By using the theory of affine processes we get
closed form bond prices. Imposing no-arbitrage assumption leads to drift
restrictions that the factor process has to satisfy. In particular, one of the
conditions the drift matrix of the factor process has to satisfy is the well
known Fisher equation. Then, under the assumption of diagonalizable drift
matrix we find conditions on the eigenvalues and the eigenvectors of the drift
matrix which guarantee the hedge of an inflation indexed bond of a given
maturity only by trading nominal bonds of different maturities. Combining
no-arbitrage restrictions with the hedging conditions on the diagonalizable
drift matrix and utilizing the market completeness criterion given in Davis
and Obloj [2008] we find that cases in which it is possible to hedge infla-
tion bonds by using nominal bonds coincide with cases where the market is
spanned by the continuum of nominal bonds. That is, we show that under
the assumption of diagonalizable drift matrix, hedging of inflation bonds by



using nominal bonds is possible if and only if the market is spanned by the
nominal bonds.

Finally, we consider a multi-country setting where domestic and foreign nom-
inal and real bonds are traded. We first specify the real and nominal bond
prices, price index and exchange rate dynamics as Itô processes and assume
that there is no- arbitrage in the market. Imposing no-arbitrage assumption
immediately yields the usual definition of real exchange rate (RER) between
the foreign and domestic economies. Moreover, we get drift conditions for
real and nominal term structures of the domestic and foreign economies.
Assuming martingale property for RER we find a relation on the real inter-
est rate differential of the two economies. More importantly, we find that
the martingale assumption on RER is equivalent to the condition that the
nominal interest rate differentials between the two economies is given by the
sum of appreciation rate of the exchange rate and the risk premium arising
from exchange rate uncertainty. Motivated by the importance of the infor-
mation on RER for central banks, we introduce a forward contract written
on RER. This yields the forward real exchange rate whose value can be ex-
pressed in terms of the price of the domestic and foreign inflation indexed
bonds. We further construct multi-country inflation linked derivatives such
as foreign exchange inflation options and real exchange rate swaps with the
idea of providing a protection for the foreign purchasing power of a domes-
tic income. We use the change of numeraire technique to get the prices of
these derivatives and under the assumption of deterministic volatility in the
inflation indexed bond price dynamics, we get closed form formulae.



Zusammenfassung

Das Ziel dieser Studie ist zweifach. Einer von ihnen ist das Pricing und Hedg-
ing von Collateralized Debt Obligations (CDOs) und die andere ist die Mod-
ellierung von Inflation Linked-Derivaten. Im ersten Teil untersuchen wir die
Modellierung Setup in Filipović et al. [2009] für die Pricing und Hedging von
CDOs. In einem ersten Schritt auf dem Weg der Untersuchung des Marktes
Unvollständigkeit, untersuchen wir die Einzigartigkeit des Martingalmass in
der gegebenen (T,x)-bond Markt und zeigen, dass die entsprechenden äquiv-
alenten lokalen Martingalmass (ELMM) einzigartig ist. Dann schlagen wir
eine affine Zwei-Faktor-stochastische Drift-Modell für die Pricing und Hedg-
ing von synthetischen Single-Tranche CDOs. Wir schätzen die affine Faktor-
Modell auf den iTraxx Europe-Daten. Die Neuheit dieses Teils liegt in der
Tatsache, dass die Daten Periode eine Periode, die unterschiedlichen Mark-
tbedingungen wie die Kreditkrise erlebt abdeckt. Für die Abschätzung der
affine Faktor-Modell verwenden wir quasi Maximum- Likelihood- Schätzung
basierend auf dem Kalman-Filter. Schätzergebnisse zeigen, dass die Zwei-
Faktor- stochastische Drift-Modell erfolgreich in Bezug auf die fit der Mark-
tdaten auch für Super- Senior- Tranchen ist. Abgesehen von der Schätzung
des Modells analysieren wir die reale Welt Performance von zwei Hedge-
Strategien, nämlich die Varianz minimizing und Regression based Hedging.
Wir führen auch eine Simulation Analyse, wo normale und Extremschaden-
szenarien via Methode importance sampling generiert werden. Schliesslich
bewerten wir die Hedging-Strategien im Rahmen dieser allgemeinen Szenar-
ien.

Der zweite Teil beshäftigt sich mit die Pricing und Hedging von inflation-
sindexierten Derivaten. In diesem Teil, vorausgesetzt, dass die foreign cur-
rency analogy hält betrachten wir eine Drei-Faktor-Gauss-affine Modell für
die Preisgestaltung der nominalen und inflationsindexierten Anleihen. Mit
Hilfe der Theorie der affine Prozesse, die wir bekommen Anleihenkurse in
der geschlossenen Form. No-Arbitrage-Annahme führt zu drift Bedingun-
gen, die den Faktor Prozess hat zu befriedigen. Insbesondere ist eine der
Bedingungen der bekannte Fisher-Gleichung. Dann unter der Annahme diag-
onalisierbar Drift-Matrix finden wir Bedingungen an die Eigenwerte und die
Eigenvektoren der Drift Matrix, die die Hedging einer inflationsindexierten
Anleihe nur durch den Handel mit nominalen Anleihen mit unterschiedlichen
Laufzeiten zu gewährleisten. Die Kombination No-Arbitrage- Einschränkun-
gen mit der Hedging Bedingungen auf dem diagonalisierbar Drift-Matrix
und die Nutzung des Marktes Vollständigkeit Kriterium gegeben in Davis



and Obloj [2008] finden wir, dass die Hedging von inflationsindexierten An-
leihen mit nominalen Anleihen ist möglich, wenn und nur wenn der Markt
durch die nominale Anleihen aufgespannt wird.

Schliesslich betrachten wir eine Multi-Country Modell, wo in-und ausländis-
chen nominalen und realen Anleihen gehandelt werden. Wir nehmen zuerst
an, dass die realen und nominellen Kurs der Anleihe, Preisindex und Wech-
selkurs einem Itô Prozess folgen. Dann haben wir vorausgesetzten, dass der
Markt Arbitrage-frei ist. No-Arbitrage-Annahme ergibt sich unmittelbar die
übliche Definition des realen Wechselkurses (RW) zwischen den ausländis-
chen und inländischen Economies. Darüber hinaus erhalten wir drift Be-
dingungen für reale und nominale Zinsstrukturen des in-und auslŁndischen
Economies. Unter der Annahme, Martingal Eigenschaft für RW finden wir
eine Beziehung auf die reale Zinsdifferenz zwischen den Economies. Motiviert
durch die Bedeutung der Informationen über die RW für die Zentralbanken,
führen wir einen Forward-Kontrakt auf RW geschrieben. Daraus ergibt sich
die Forward realen Wechselkurs, die in Bezug auf den Preis der inländis-
chen und ausländischen Inflation Anleihen geschrieben werden können. Wir
näher vorstellen Multi-Country inflationsindexierten Derivaten, wie Foreign
Exchange Inflation-Optionen und die Inflation RW-Swaps mit der Idee, einen
Schutz für die ausländischen Kaufkraft der inländischen Einkünfte. Wir ver-
wenden die change of numeraire Technik, um die Preise für diese Derivate zu
erhalten und unter der Annahme von deterministischen Volatilität an den
inflationsindexierten Anleihen Preisdynamik, bekommen wir die Derivate
Preisen in der geschlossenen Form.
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Chapter 1

Introduction

This thesis deals with the pricing and hedging of credit and inflation linked derivatives.
Part I (Chapter 2) addresses the pricing and hedging of collateralized debt obligations
(CDO). Credit derivatives market has witnessed an enormous growth between the years
1997 and 2007 increasing the necessity of models to price and hedge derivatives such
as credit default swaps (CDS), index default swaps and synthetic single trance CDOs
(STCDOs), to name a few. Although the financial crises of 2008 caused a decline in
the global outstanding notional volume of credit derivatives, the credit derivatives mar-
ket still possesses its potential benefits such as completing markets via providing the
opportunity to buy or sell insurance on credit risky portfolios.

As all derivative markets, credit markets are exposed to risk. The two main sources
of exposure are the default risk and the market or spread risk. Hence, a sound model
for pricing and hedging of credit linked products is expected to incorporate these two
components. However, most of the existing models, such as the Gaussian copula model,
do not take the credit spread risk into account and they solely focus on the modeling
of default component. On the other hand, for the consistent pricing of CDOs with
different maturities and to be able to perform dynamic hedging analysis, a sensible
model should also possesses a dynamic nature. That is, instead of modeling the default
time distributions of constituents at a given point in time, specification of the evolution
of default distributions of constituents or the portfolio loss process should be considered.

Motivated by HJM framework for default-free term structures, [Filipović et al., 2009]
develop a dynamic no-arbitrage setting for the modeling of forward credit spreads. As
the building block, the defaultable (T, x)-bond term structure is introduced. Then, it is
shown that, as in the case of HJM default free term structure framework, any exogenous
specification of the volatility and contagion parameters yields a unique consistent loss
process and hence defines an arbitrage free term structure of (T, x)- bonds. Under this
general setup Filipović et al. [2009] proposes doubly stochastic affine term structure
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models as a tractable class. The framework introduced in Filipović et al. [2009] clearly
possesses the properties of being dynamic and incorporation of the credit spreads in the
modeling of CDOs. Hence, we find it worthwhile to specify a factor model under this
framework and test the performance of the model on the market data.

In Chapter 2 of this thesis, we first review the framework introduced in Filipović et al.
[2009]. Contrary to the case in Filipović et al. [2009], where all dynamics are specified
directly under an equivalent martingale measure Q, we start building the model under
the historical probability measure P. When it comes to pricing, however, we need the
risk-neutral dynamics of all modeling components. With this line of reasoning and as
a first step towards the investigation of the market incompleteness, we examine the
uniqueness of the martingale measure in the given market and show that the equivalent
local martingale measure (ELMM) is unique for the (T, x)-bond market introduced in
Filipović et al. [2009]. Following this, we specify a two factor affine stochastic drift model
and give its details.

In Section 3 of Chapter 2, we estimate the affine factor model on the iTraxx Europe
data. The novelty of this part lies in the fact that the data covers a period, which
witnessed different market conditions such as the recent credit crises. As the main tool
for the estimation of the affine factor model we use quasi maximum likelihood based
on a Kalman filter. This method requires the knowledge of conditional moments of the
factor process. In this context, we utilize the polynomial property of moments for an
affine diffusion process and compute the first two conditional moments of the factor
process explicitly. Estimation results show that the two factor stochastic drift model is
successful in terms of fitting the market data even for super-senior tranches. Apart from
estimating the model, we analyze the real world performance of two hedging strategies,
namely the variance minimizing and regression based hedging. The detailed information
on these hedging strategies is given in Section 4. We also run a simulation analysis where
normal and extreme loss scenarios are generated via method of importance sampling.
Finally we assess the hedging strategies under these more general scenarios.

Part II (including Chapter 3 and 4) is devoted to the pricing and hedging of inflation-
linked products. Inflation indexed derivative market is important in the sense that it
provides the opportunity to eliminate the inflation risk and guarantees the real interest
that will be earned in a given period of time. Naturally, demand for inflation linked
products is increasing as in the financial markets the amount of the inflation-linked
liabilities is increasing. On the other side, monetary authorities increase their issue of
inflation linked bonds to make the inflation targeting policies more reliable and to reduce
the inflation premium that they have to pay when they issue nominal bonds.

Chapter 3 of the thesis focuses on the pricing and hedging of inflation indexed bond in a
three factor affine framework. Under the foreign currency analogy we consider a three-
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factor Gaussian affine model for the pricing of nominal and inflation indexed bonds. The
factor process is considered to be composed of the nominal short rate, real short rate
and the logarithm of the price index process. By utilizing tools from the theory of affine
processes we get closed form expressions for nominal bond price, inflation indexed bond
price and the price index. Under the foreign currency analogy, imposing no-arbitrage
assumption leads to drift restrictions that the factor process has to satisfy. In particular,
one of the conditions the drift matrix of the factor process has to satisfy is the well known
Fisher equation which states that the expected appreciation in the price index is equal to
the difference between the nominal and real short rates. We also deal with the hedging
question and under the assumption of diagonalizable drift matrix we find conditions on
the eigenvalues and the eigenvectors of the drift matrix which guarantee the hedge of an
inflation indexed bond of a given maturity only by trading nominal bonds of different
maturities. The novelty if this work is due to this analysis.

Combining no-arbitrage restrictions with the hedging conditions on the diagonalizable
drift matrix and utilizing the market completeness criterion given in Davis and Obloj
[2008] we find that under the foreign currency analogy, cases in which it is possible to
hedge inflation bonds by using nominal bonds coincide with cases where the market is
spanned by the continuum of nominal bonds. Hence, as the second main contribution
of this study, we show that under the above modeling setup there is no such situation
that it is possible to hedge inflation bonds but hedging of other contingent claims is
not granted. To sum up, our findings suggests that under the foreign currency and the
assumption of diagonalizable drift matrix, hedging of inflation bonds by using nominal
bonds is possible if and only if the market is spanned by the nominal bonds.

Currently we are living in a financial environment where the economies are strongly
linked to each other by the exchange rates. Thus, it is natural to consider the effects
of exchange rates on inflation and other macroeconomic variables. To be more clear,
one can think of the situation where the appreciation of exchange rates makes imported
goods more expensive in terms of the domestic currency. In such a case, an increase in the
price of the imported goods might cause an overall price level increase, that is, inflation.
Therefore, in inflation term structure modeling taking the exchange rates into account
might be useful. With this motivation Slinko [2006] investigates the joint dynamics of the
nominal exchange rate and the domestic and foreign nominal and real term structures.
In Chapter 4 1, with the same line of reasoning we propose a multi-country setting for
inflation linked derivative pricing. The other source of our motivation is the fact that in
a multi-country setting, presence of the inflation linked instrument might create extra
information about the real exchange rate (RER) and real rate differentials between the
countries.

1This chapter is based on a joint work with Irina Slinko
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We consider a multi-country setting where domestic and foreign nominal and real bonds
are traded. We first specify the real and nominal bond prices, price index and exchange
rate dynamics as Itô processes and assume that there is no- arbitrage in the market.
Imposing no-arbitrage assumption immediately yields the usual definition of RER be-
tween the foreign and domestic economies. Moreover we get drift conditions for real and
nominal term structures of the domestic and foreign economies. Assuming martingale
property for the the real exchange rate we find a relation on the real interest rate differ-
ential of the two economies. More importantly, we find that the martingale assumption
on RER is equivalent to the condition that the nominal interest rate differentials between
the two economies is given by the sum of appreciation rate of the exchange rate and the
risk premium arising from exchange rate uncertainty.

Motivated by the importance of the information on RER for central banks, we introduce
a forward contract written on RER. This yields the forward real exchange rate whose
value can be expressed in terms of the price of the domestic and foreign inflation indexed
bonds. We further construct multi-country inflation linked derivatives such as foreign
exchange inflation options and real exchange rate swaps with the idea of providing a
guarantee for the foreign purchasing power of a domestic income. We extensively use
the change of numeraire technique to get the prices of these derivatives. Furthermore, we
get closed form formulae under the assumption of deterministic volatility in the inflation
indexed bond price dynamics.

Each chapter of this thesis is essentially self-contained with its own introduction, problem
definition and conclusion and uses its own notation.



Part I

CDO Pricing and Hedging
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2

A Dynamic CDO Term Structure
Model

2.1 Introduction

Credit derivatives market is important in the sense that it provides opportunity to buy
and sell insurance on credit risky investments. The key instruments, namely collateral-
ized debt obligations (CDO), is first developed in 1987 by bankers at Drexel Burnham
Lambert Inc. Within 10 years, CDOs market had become the fastest growing sector
of the asset-backed synthetic securities market. CDO can be defined as a structured
product which is backed by portfolio of credit risky assets. Although the structure and
the underlying asset composition may vary according to the type of a CDO, the basic
idea is the same. There is the originator, having the portfolio of credit risky assets such
as credit card payments, mortgage payments, etc. A corporate entity, called special
purpose vehicle (SPV), is constructed for the securitization of the credit risky assets.
SPVs purchased the credit risky portfolio from the originator and issue various class
of bonds backed by assets from the portfolio with different credit risk characteristics.
These classes are called tranches. Synthetic CDOs are special type of CDOs where the
credit risky portfolio is consist of credit default swaps (CDS).

CDS is a derivative instrument in which the investor (protection seller) receives the fixed
periodic spread in exchange for the payment that has to be made conditional upon the
occurrence of a loss due to default of the reference entity. In the same way, in an index
default swap the credit risk of a equally weighted portfolio of reference entities (the
index) is exchanged between the protection buyer and protections seller. In a STCDO
position, the invested tranche references a specific segment of the loss distribution of the
index, that is, a specific exposure to the credit risk of the underlying index is undertaken
and in turn, a flow of coupon payments are received. Losses are allocated first to the

7



8 2.1 Introduction

equity tranche, which is the lowest tranche, and then to higher tranches as mezzanine,
senior and super-senior tranches. The most liquid single-tranches are referencing the two
main credit default swap indices the CDX IG index in North America and the iTraxx
Europe index in Europe. CDX IG and iTraxx Europe index is a selection of 125 single
name CDS. Although the attachment and detachment points are different, there are
six tranches in both indices. The index market has various maturity choices such as
3, 5, 7, 10, ...-year. Among these, the STCDOs with a maturity of 5 years are observed
to be the most liquid ones.

The risk of a position taken in the credit market stems from two sources. The default
risk, that is the risk arise from the possibility of the default of an obligor and the market
or spread risk associated with the changes in the credit qualities and the interest rates.
Thus, a sensible model for the pricing and hedging of credit risky securities is expected
to incorporate the modeling of default and credit spread dynamics. However, in most
of the portfolio credit derivatives models, the focus is solely on the modeling of the
default. To give an example, consider the Gaussian copula model [Li, 2000] which has
become a market practice for the pricing and hedging of portfolio credit derivatives.
The idea of this model is to construct the joint distribution of defaults. Firstly, it
is assumed that the default time of each constituent of the portfolio is exponentially
distributed with the same parameter. Then, to put a dependency structure between the
default times of different constituents, the default time of each constituent is related
with a Gaussian latent factor which is decomposed as firm specific and market factors.
Assuming that the market exposure of all constituents are same, default correlation
between any constituents is implied to be explained by a single dependency parameter.
This is restrictive and does not sound very realistic. Moreover, from its vey nature, this
framework does not allow for the dynamic modeling of default time distributions and
thus characterized as static.

There are number of models alternative to the Gaussian copula model for the pricing
and hedging of portfolio credit derivatives. [Bielecki et al., 2010] classified the portfolio
credit models under two main approaches. In the bottom-up approach the fundamental
objects to be modeled are the loss processes of portfolio constituents whose sum give
the total portfolio loss. While on the contrary, the top-down approach aims to model
the evolution of the aggregate portfolio loss process directly. The advantage of the
bottom-up approach is that it allows for the hedging of portfolio derivatives with the
underlying constituents. However, there is a trade-off between the seeming realism
and practical implementability of this approach. For an overview of the top-down and
bottom up approaches that have been developed for pricing and hedging of portfolio
credit derivatives we refer to Section 2 in [Bielecki et al., 2010] and references therein.



2. A DYNAMIC CDO TERM STRUCTURE MODEL 9

One may also classify the portfolio credit models as static or dynamic models. Static
models, such as Gaussian copula model and some other copula based models, the par-
ticular interest is the default time distributions of constituents at a given point in time
as the maturity of the credit product. The deficiency of these models is that the con-
sistent pricing for different maturities is not possible. Moreover, these models do not
allow for dynamic hedging as they do not provide a consistent basis for the assessment
of the behavior of prices over time. On the other hand, the dynamic models specify the
evolution of default time distributions of constituent or the total loss process depending
on the top-down or bottom up framework that is followed. To our knowledge, Duffie and
Garleanu [2001], in which correlated intensities are constructed for constituent names
by using affine factor processes, is the first study addressing the dynamic framework for
pricing of CDOs. Schönbucher [2005], Sidenius et al. [2008], Filipović et al. [2009] and
Frey and Backhaus [2010] are the other examples for dynamic models for CDO pricing.

Schönbucher [2005], Sidenius et al. [2008] and Filipović et al. [2009] are very much in the
same spirit that both models are inspired by the HJM ( see Heath et al. [1992]) framework
and model the full forward distribution of the loss process. This allows for the consistent
incorporation of the dynamics of credit spreads to the modeling of multiname credit
derivatives. Schönbucher [2005] introduces the forward loss distributions, and finds a
Markov chain with the same marginal distribution as the loss process. The Sidenius et al.
[2008] model is specified by a two-layer process. The first layer models the dynamics
of portfolio loss distributions in the absence of default information. This is called the
background process and calibration to the full grid of marginal loss distributions, implied
by the current CDO tranche value, is performed conditional on this background process.
The second layer models the loss process itself as a Markov process conditioned on the
path taken by the background process.

Motivated by HJM framework for default-free term structures, [Filipović et al., 2009]
also develops a dynamic no-arbitrage setting for the modeling of forward credit spreads.
As the building block, the defaultable (T, x)-bond term structure is introduced and the
necessary and sufficient conditions for the absence of arbitrage for this market is given.
Moreover, it is shown that, as in the case of HJM default free term structure framework,
any exogenous specification of the volatility and contagion parameters yields a unique
consistent loss process and thus an arbitrage free term structure. This framework pro-
vides the generalization of aforementioned top-down approach and allows for feedback
and contagion effects. Furthermore, under this general setup a tractable class of doubly
stochastic affine term structure models is proposed. Based on [Filipović et al., 2009],
Filipovic and Schmidt [2010] studies the hedging of STCDOs with the index default
swap and an explicit variance minimizing hedging strategy is computed for a one-factor
affine model. However, the empirical performance of the one-factor affine model and the
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hedging strategy is not analyzed and left as a future work. One of the main objectives
of the recent study is to complete this missing part.

There are studies which focus on the empirical performance of different models for pricing
and hedging of CDOs. Frey and Backhaus [2010] study the hedging of STCDOs in a
dynamic setting where spread risk and default contagion are incorporated. Reckon
with the incompleteness of the market arising from the presence of spread and default
risk, they compute variance-minimizing strategies for consistent and dynamic hedging
of STCDOs with the underlying CDSs. Moreover, they showed the impact of default
contagion on sensitivity based hedge ratios via numerical comparison with the Gaussian
copula model. They also showed that the variance-minimizing strategy provides a model-
based endogenous interpolation between the hedging against spread risk and default risk.

In the literature, the unique study comparing various pricing models and hedging strate-
gies for STCDOs belongs to Cont and Kan [2011]. One important result of this study
suggests that the large portion of the risk in STCDOs are unhedgeable because of the
market incompleteness. Another result, which is at odds with the existing literature
(see, e.g., Bielecki et al. [2010]), shows that bottom-up models are not observed to per-
form consistently better than top-down models. Furthermore, among various hedging
strategies including the variance-minimizing hedge, regression-based hedging strategy is
found to be surprisingly effective. While performing the numerical analysis below, we
will refer to this study again.

Inspired by the above mentioned results, we set out the specific issues to be explored in
this study in terms of the following objectives:

1. To investigate the market incompleteness for the defaultable (T,x)-bond market
introduced in Filipović et al. [2009];

2. To specify a tractable affine factor model under the framework of Filipović et al.
[2009] which fits market data;

3. To estimate the affine factor model on the given data set including the recent
financial crisis period;

4. To assess the performance of variance minimizing and regression based hedging
strategy within the given data set;

5. To run a simulation analysis for the assessment of hedging strategies under more
general scenarios.

Following the objectives of the study set out above, we investigate the real world perfor-
mance of the one-factor affine model introduced in Filipović et al. [2009]. Experiencing
the inadequacy of the one factor-model in fitting the iTraxx Europe data, we propose
a two-factor affine factor model in which a catastrophic risk component is considered



2. A DYNAMIC CDO TERM STRUCTURE MODEL 11

as a tool for explaining the dynamics of the super-senior tranches. For the estimation
of the affine factor model, we use a quasi maximum likelihood approach based on the
Kalman filter. The usage of the Kalman filter necessitates the knowledge of the first two
moments of the factor process. In this context, we use the polynomial property of affine
processes and compute the conditional means and variances of the process explicitly. We
then analyze the real world performance of variance minimizing and regression based
hedging strategies for the hedging of STCDOs with the underlying index default swap.
Our findings suggest that two-factor affine model is successful in describing the whole
data set. Furthermore, within the data period, both hedging strategies are efficient in
reducing the risk on the STCDO significantly. In particular, the simulation analysis,
where we use importance sampling technique to generate loss scenarios, indicates that
variance minimizing hedge performs better than regression based hedge under general
scenarios permitting non-zero loss trajectories.

This chapter is structured as follows. In the next section we provide the overview of the
modeling framework and investigate the market completeness. Section 3 describes the
cash-flow structure of STCDOs in detail. In Section 4, together with variance minimizing
and regression based hedging strategies for the hedging of STCDOs, we give the hedging
algorithm and two criteria for the assessment of hedging performance. Section 5 and
6 introduces the estimation and simulation methodology respectively. Section 7, which
is the numerical analysis part, presents the data set and gives the results. Section 8
summarizes the results and concludes the chapter.

2.2 Modeling Framework

The framework introduced in Filipović et al. [2009] for the dynamic modeling of CDO
term-structures covers a very general class of models where doubly stochastic framework,
which is obtained via omitting the contagion effects, is given as a special case. Under
this doubly stochastic framework, Filipović et al. [2009] proposes doubly stochastic affine
term structure models as an analytically tractable class. The two-factor (stochastic drift)
model that we introduce below is a particular choice among the aforementioned affine
models.

In this part we first make an overview of the modeling setup given in Filipović et al.
[2009]. Contrary to the case in Filipović et al. [2009], where all dynamics are specified
directly under an equivalent martingale measure Q, we start building the model under
the historical probability measure P. When it comes to pricing, however, we need the
risk-neutral dynamics of all modeling components. With this line of reasoning and as
a first step towards the investigation of the market incompleteness, we examine the
uniqueness of the martingale measure in the given market and show that the equivalent
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local martingale measure (ELMM) is unique for the (T, x)-bond market introduced in
Filipović et al. [2009]. We then give the HJM type no-arbitrage restrictions in terms of
the P parameters of the model. Following this we introduce two-factor stochastic drift
model and give its details. Finally discussing the implications of our model choice in
terms of the yielded default intensity and loss given default distributions we conclude
the section.

2.2.1 Theoretical Background

A stochastic basis (Ω,F, (Ft),P) satisfying the usual conditions is fixed where P indicates
the historical probability measure. We consider a CDO pool of credits with the notional
normalized to 1. x ∈ [0, 1] represents the loss fraction, that is, x represents the state
where 100x% of the overall nominal has defaulted.

The aggregate loss process, representing the ratio of CDO-losses realized by time t is
indicated by Lt. The hypothetical (T, x)-bond paying 1{LT≤x} at maturity T , x ∈ [0, 1]

is considered as the building-block of the CDO term-structure model. The (T, x)-bond
price at time t ≤ T is denoted by P (t, T, x) and it is assumed that bond price term
structure movements is in the form

P (t, T, x) = 1{Lt≤x}e
−

� T
t f(t,u,x)du (2.1)

where f(t, T, x) is the forward rate that one can contract at time t, given the condition
that the aggregate loss level has not exceed the level x, on a defaultable forward invest-
ment of one euro that begins at time T and returned an instant dT later conditional
on the event that the loss level LT+dT is below x. This description suggests how the
(T, x)-bond prices incorporates the market risk (credit spread risk) as well as the default
risk and thus provides a basis for a model which considers not only the default risk but
also the credit spreads for the pricing of multi-name credit derivatives.

(A1) The aggregate loss process

Lt =
�

s≤t

∆Ls (2.2)

is assumed to be an [0, 1]-valued, non-decreasing marked point process 1 with absolutely
continuous P-compensator ν

p(t, dx)dt.

Now we assume that, for all (T, x), the P-dynamics of the (T, x)-forward rate process

1See Appendix for the definition and properties of a marked point process
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f(t, T, x), t ≤ T , is in the form

f(t, T, x) = f(0, T, x) +

� t

0
a
p(s, T, x)ds+

� t

0
b(s, T, x)� · dW P

s (2.3)

+

� t

0

�

(0,1]
c(s, T, x; y)µ(ds, dy)

where W
P is some d-dimensional P-Brownian motion and µ(dt, dx) denotes the integer-

valued random measure associated to the jumps of L, that is

µ(ω; dt, dx) =
�

s>0

1{∆Ls(ω) �=0}δ(s,∆Ls(ω))(dt, dx)

where δa is the Dirac measure at point a.

Notice that the specification of the forward rate dynamics in (2.3), via coefficient c, allows
for the contagion, or feedback effect of the loss process on the rates. Now to provide
a suitable basis for further formal analysis, we make the following assumptions on the
parameters of the forward rates. In the following, we denote optional and predictable
σ-algebra on Ω× R+ with O and P, respectively.

(A2) the initial forward curve f(0, T, x) is B(R+) ⊗ B([0, 1])- measurable, and locally
integrable: � T

0
|f(0, u, x)|du < ∞ for all (T, x)

(A3) the drift parameter ap(t, T, x) is R-valued O⊗B(R+)⊗B([0, 1])- measurable, and
locally integrable:

� T

0

� T

0
|ap(t, u, x)|dtdu < ∞ for all (T, x),

(A4) the volatility parameter b(t, T, x) is Rd-valued O⊗B(R+)⊗B([0, 1])- measurable,
and locally bounded:

sup
t≤u≤T

�b(t, u, x)� < ∞ for all (T, x),

(A5) the contagion parameter c(t, u, x; y) is R-valued P⊗B(R+)⊗B([0, 1])⊗B([0, 1])-
measurable, and locally bounded:

sup
t≤u≤T,y∈[0,1]

|c(t, u, x; y)| < ∞ for all (T, x),

(A6) a finite time horizon [0, T ∗], T ∗
< ∞ is considered,
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(A7) Ft is assumed to be the internal one, that is, Ft = σ
�
W

P
s , µ(ds, dξ), s ≤ t

�
.

Under (A2)-(A5), it is guaranteed that the risk-free discount factor e
−

� t
0 rsds , where

rt = f(t, t, 1), is well defined. Then, we denote the discounted (T, x)-bond price by

Z(t, T, x) = e
−

� t
0 rsdsP (t, T, x)

Next lemma gives P-dynamics of the Z(t, T, x) implied by the relation (2.1) and the
forward rate dynamics given in (2.3).

Lemma 2.1 Assume (A2)-(A5) holds, then the P-dynamics of the discounted (T, x)-
bond price process is given by

dZ(t, T, x)

Z(t−, T, x)
= α

p(t, T, x)dt+ β(t, T, x)� · dW P
t

+

�

(0,1]
γ(t, T, x, ξ)(µ(dt, dξ)− ν

p(t, dξ)dt)
(2.4)

where

α
p(t, T, x) =− rt − λ

p(t, x) + f(t, t, x)−
� T

t
a
p(t, u, x)du+

1

2
�
� T

t
b(t, u, x)du�2

+

�

(0,1]
(e−

� T
t c(t,u,x;ξ)du − 1)1{Lt−+y≤x}ν

p(t, dy)
(2.5)

β(t, T, x) =

� T

t
b(t, u, x)du (2.6)

γ(t, T, x, ξ) = e
−

� T
t c(t,u,x;ξ)du1{Lt−+ξ≤x} − 1 (2.7)

and λ
p is defined as

λ
p(t, x) =

�

(0,1]
1{Lt−+y>x}ν

p(t, dy). (2.8)

Proof. The proof mainly utilizes a stochastic Fubini argument and Itô’s formula to get
the dynamics of e−

� T
t f(t,u,x)du. Then, the possibility of writing

1{Lt≤x} = 1 +

� t

0

�

(0,1]
(−1{Ls−+y>x}1{Ls−≤x})µ(ds, dy) (2.9)

and using this in the application of the integration by parts formula to

P (t, T, x) = 1{Lt≤x}e
−

� T
t f(t,u,x)du

yields the desired results. For more details, we refer to Filipovic and Schmidt [2010],
proof of Lemma 2.1.



2. A DYNAMIC CDO TERM STRUCTURE MODEL 15

Remark 2.1 Having Lt as given in (A1) implies that the default times of the (T, x)-
bonds, that is

τx = inf{t|Lt > x}

are totally inaccessible. Indeed the intensity of default times is given by λ
p(t, x). This

becomes more clear from the fact that −1{τ≤t} is a càdlàg supermartingale and by Doob-
Meyer decomposition, there exists an increasing predictable process At with A0 = 0 such
that

Mt = −1{τ≤t} +At

is a martingale. From the very definition of νp and due to (A1), we have

1{Lt≤x} +

� t

0

�

(0,1]
1{Ls−+y>x}1{Ls−≤x}ν

p(s, dy)ds

is a martingale and hence

At =

� t

0

�

(0,1]
1{Ls−+y>x}1{Ls−≤x}ν

p(s, dy)ds.

Then, defining λ
p(t, x) as in (2.8) one gets the desired result.

Conversely, the intensity processes uniquely determines the compensator ν
p(t, dx) as,

(see Filipović et al. [2009], Lemma 3.1),

ν
p(t, (0, x]) = λ

p(t, Lt−)− λ
p(t, Lt− + x), x ∈ [0, 1] (2.10)

where λ
p(t, x) = 0 for x ≥ 1. Furthermore, λp(t, x) is decreasing in x for any t.

Now we define the set Θ and H of Rd and R-valued processes as follows

Θ :=
�
θ predictable :

� T

0
�θ�2dt < ∞, a.s. ∀T > 0

�

and

H :=
�
h(ω, t, x) P⊗B([0, 1])-measurable :

� T

0

�

(0,1]
|h(t, ξ)|νp(t, dξ)dt < ∞, a.s. ∀T

�

The following lemma proves some auxiliary facts that will be used in the proof of the
main theorem on the uniqueness of the martingale measure in the above (T, x)-bond
market.

Lemma 2.2 Assume (A2)-(A6) holds and h be any process in H, then the following
holds

(i) β(t, T, x) is continuous in T ∈ [t, T ∗],

(ii)
�

(0,1]
γ(t, T, x; ξ)h(t, ξ)νp(t, dξ) is continuous in T ∈ [t, T ∗],
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(iii)
�

(0,1]
1{Lt−+ξ>x}h(t, ξ)ν

p(t, dξ) is càdlàg in x ∈ [0, 1].

Proof. (i) is obvious since we have β(t, T, x) =
� T
t b(t, u, x)du. For (ii), fix t, x ∈

[0, T ]× (0, 1] and ω ∈ Ω and define

F (t, x, T ) :=

�

(0,1]
f(t, x, T ; ξ)νp(t, dξ)

where
f(t, x, T ; ξ) := (e−

� T
t c(t,u,x;ξ)du1{Lt−+ξ≤x} − 1)h(t, ξ)

Clearly, f is continuous in T , that is, any sequence Tn ∈ [0, T ∗], Tn → T we have

lim
n→∞

f(t, x, Tn; ξ) = f(t, x, T ; ξ) ∀t, x, ξ.

Now define

fn(ξ) = f(t, x, Tn; ξ) (2.11)

from (A5), we have |c(t, u, x; ξ)| is bounded for u ∈ [t, T ∗] implying that for all (t, x, ξ),
|fn(ξ)| ≤ |h(t, ξ)| for each n. Since h ∈ H, dominated convergence theorem applies and
yields the desired result as follows

lim
n→∞

F (t, x, Tn) =

�

(0,1]
lim
n→∞

f(t, x, Tn; ξ) = F (t, x, T )

(iii) Fix ω ∈ Ω and t ∈ [0, T ] and observe that

1{Lt−+ξ>x}

is càdlàg in x ∈ [0, 1]. Take any sequence xn ↓ x in [0, 1] and define

fn(ξ) = 1{Lt−+ξ>xn}h(t, ξ)

then
lim
n→∞

fn(ξ) = 1{Lt−+ξ>x}h(t, ξ)

Since have |fn(ξ)| ≤ |h(t, ξ)| it follows from the dominated convergence theorem that

lim
n→∞

�

(0,1]
fn(ξ)ν

p(t, dξ) =

�

(0,1]
1{Lt−+ξ>x}h(t, ξ)ν

p(t, dξ)

After showing the right continuity, now we deal with the existence of left limits. Take a
sequence xn ↑ x in [0, 1]. We have

lim
n→∞

fn(ξ) = 1{Lt−+ξ≥xn}h(t, ξ)
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Hence, by dominated convergence theorem we have

lim
n→∞

�

(0,1]
fn(ξ)ν

p(t, dξ) =

�

(0,1]
1{Lt−+ξ≥xn}h(t, ξ)ν

p(t, dξ)

The following definition gives the criteria for absence of arbitrage opportunities in the
given (T, x)-bond market.

Definition 2.1 Let T ∗
< ∞ and the set Q is defined by

Q :=
�
Q ∼ P on FT ∗ |Z(t, T, x) Q-local martingale, ∀T ∈ [0, T ∗], x ∈ [0, 1]

�
.

Then, the market is called arbitrage free if Q is non-empty.

To guarantee the absence of arbitrage in the market, we now assume that Q is non-
empty. As we mentioned before, the framework introduced in Filipović et al. [2009] is a
generalization of HJM framework to defaultable term structures and naturally, assuming
no arbitrage in the market yields some restrictions in the modeling components. Namely,
assuming no arbitrage in the (T, x)-bond market put on one hand a relation between
the short end of the defaultable forward rates and the intensity of (T, x)-bonds and on
the other hand a restriction on the drift parameter of the forward rates. Next theorem
gives conditions resulting from no-arbitrage assumption.

Theorem 2.1 Assume (A1)-(A7) holds and the (T, x)-bond market is arbitrage-free
in the sense of Definition 2.1. Then,

� T

t
a
p(t, u, x)du =

1

2

���
� T

t
b(t, u, x)du

���
2
+

� T

t
b(t, u, x)�du · θt

+

�

(0,1]
(e−

� T
t c(t,u,x;y)du − 1)1{Lt−+y≤x}ht(y)ν

p(t, dy),
(2.12)

λ
q(t, x) = f(t, t, x)− rt (2.13)

on Lt− ≤ x, dP⊗ dt-a.s for all (T, x) where

λ
q(t, x) =

�

(0,1]
1{Lt−+y>x}ht(y)ν

p(t, dy)

and (θ, h) are processes in Θ×H.

Proof. Under the assumption of no-arbitrage, we know that there exists a measure Q ∈ Q

equivalent to P. Since the filtration Ft is assumed to be the internal one, that is,
generated by the Brownian motion W

P and the random measure µ, the result of Theorem
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A.4 applies. That is, the equivalent measure Q is in the form dQ = MTdP where
martingale Mt follows the dynamics

dMt = Mt−
�
θt · dW P

t +

�

(0,1]
(h(t, ξ)− 1)(µ(dt, dξ)− ν

p(t, dξ)dt
�

(2.14)

for some processes θ ∈ Θ and h ∈ H. We now write the Q-dynamics of the discounted
bond price process Z(t, T, x) as follows

dZ(t, T, x)

Z(t−, T, x)
=
�
α
p(t, T, x) + β(t, T, x)� · θt +

�

(0,1]
γ(t, T, x, ξ)(ht(ξ)− 1)νp(t, dξ)

�
dt

+ β(t, T, x)� · dWQ
t +

�

(0,1]
γ(t, T, x, ξ)(µ(dt, dξ)− ν

q(t, dξ)dt)

(2.15)

where ν
q(t, dx)dt = ht(x)νp(t, dx)dt is the Q-compensator of µ and dW

Q
t = dW

P
t − θtdt

is a Q-Brownian motion.

For Q to be a martingale measure, the discounted price process has to be a local martin-
gale under this measure. This implies that, the drift of equation (2.38) has to be zero,
that is, for all T ∈ [0, T ∗], x ∈ [0, 1]

α
p(t, T, x)+β(t, T, x)� ·θt+

�

(0,1]
γ(t, T, x, ξ)(ht(ξ)−1)νp(t, dξ) = 0, dP⊗dt-a.s. (2.16)

Now, recall that α
p satisfies (2.5). Plugging this equation into (2.16) yields

−rt − λ
p(t, x) + f(t, t, x)−

� T

t
a
p(t, u, x)du+

1

2

���
� T

t
b(t, u, x)du

���
2

+

�

(0,1]
(e−

� T
t c(t,u,x;y)du − 1)1{Lt+y≤x}ν

p(t, dy) +

� T

t
b(t, u, x)�du · θt

+

�

(0,1]
γ(t, T, x; y)(ht(y)− 1)νp(t, dy) = 0, dP⊗ dt− a.s.

(2.17)

Now denote by NT,x the dP ⊗ dt-null set such that (2.21) holds for all (ω, t) ∈ N
c
T,x.

Then, define dP⊗ dt-null set

Nx :=
�

T∈Q∩[0,T ∗]

NT,x

Observe that (2.17) holds for all (ω, t) ∈ N
c
x and for all T ∈ Q ∩ [0, T ∗]. Using Lemma

2.2 facts (i)-(ii) and an approximating argument we obtain that (2.17) holds for all
(ω, t) ∈ N

c
x and for all T ∈ [0, T ∗]. Hence in particular for T = t. Now recall that

α
p(t, t, x) = β(t, t, x) = 0 which yields that for fix x and T = t, (2.17) reduces to

−rt − λ
p(t, x) + f(t, t, x)−

�

(0,1]
1{Lt−+y>x}(ht(y)− 1)νp(t, dy) = 0 (2.18)
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for all (ω, t) ∈ N
c
x.

Now we define
N =

�

x∈Q∩[0,1]

Nx (2.19)

Again, an approximation argument together with fact (iii) of Lemma 2.2 implies that
(2.18) holds for all (ω, t) ∈ N

c and x ∈ (Lt−(ω), 1]. Inserting the definition of λp(t, x) in
(2.18) and defining

λ
q(t, x) :=

�

(0,1]
1{Lt−+y>x}ht(y)ν

p(t, dy)

we get (2.13).

Finally, plugging (2.18) in to (2.17) we get the drift condition (2.12).

Next theorem shows that for a finite time horizon [0, T ∗], under an assumption on the
volatility parameter β(t, T, x), the martingale measure is unique.

Theorem 2.2 Assume that A(2)-A(7) holds and there exists x1, ..., xd ∈ [0, 1] such
that 



β(t, T ∗
, x1)�

·
·

β(t, T ∗
, xd)�





is non-singular dP⊗ dt a.e (ω, t) ∈ Ω× [0, T ). Then, the ELMM is unique.

Proof. We have the equivalent measure Q in the form dQ = MTdP where martingale
Mt follows the dynamics

dMt = Mt−
�
θt · dW P

t +

�

(0,1]
(h(t, ξ)− 1)(µ(dt, dξ)− ν

p(t, dξ)dt
�

(2.20)

for some processes θ ∈ Θ and h ∈ H.

Now let (θ, h), (θ̃, h̃) ∈ Θ × H defining M and M̃ , thus Q and Q̃ respectively, satisfy
equation (2.16). In what follows, our objective is to show

θt(ω) = θ̃t(ω), dP⊗ dt− a.s

and
h(ω, t, ξ)νp(t, dξ) = h̃(ω, t, ξ)νp(t, dξ), dP⊗ dt− a.s

hence M and M̃ are indistinguishable and thus Q = Q̃. To this end, first observe that
for all T ∈ [0, T ∗], x ∈ (0, 1]

β(t, T, x)�(θt − θ̃t) +

�

(0,1]
γ(t, T, ξ)(ht(ξ)− h̃t(ξ))ν

p(t, dξ) = 0 (2.21)
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holds dP⊗ dt-a.s. Now fixing t = T as in the proof of Theorem 2.1 we get that
�

(0,1]
1{Lt−+ξ>x}(ht(ξ)− h̃t(ξ))ν

p(t, dξ) = 0 (2.22)

holds for all x ∈ (Lt−(ω), 1] and (ω, t) ∈ N
c where N is defined as in (2.19).

Here notice that the support of the measure ν
p(t, dξ) is (0, 1− Lt−(ω)] implying that

� 1−Lt−(ω)

(x−Lt−(ω))+
(h(t, ξ)− h̃(t, ξ)νp(t, dξ)) = 0 (2.23)

for all x ∈ (Lt−(ω), 1]. That is, we have
� y

0
(h(t, ξ)− h̃(t, ξ))νp(t, dξ) = 0, for all y ∈ (0, 1− Lt−(ω)].

Hence, the two measures on (0, 1] agree:

h(t, ξ)νp(t, dξ) = h̃(t, ξ)νp(t, dξ)

for all (ω, t) ∈ N
c. Plug in (2.16), we obtain

β(t, T, x)�(θt − θ̃t) = 0 (2.24)

for all (ω, t) ∈ N
c
x and for all T ∈ [t, T ∗]. From the non-singularity assumption of β

matrix, (2.24) implies θt(ω) = θ̃t(ω), dP ⊗ dt-a.s. Hence M = M̃ and thus Q = Q̃ as
desired.

Remark 2.2 Note that in the current setup, where L is a marked point process with a
continuous jump spectrum, the uniqueness of the martingale measure does not imply the
completeness of the market in the sense that every contingent claim is replicable by a self
financing hedging strategy. For default free term structure models with similar properties,
the market with a unique martingale measure is characterized as approximately complete
and the uniqueness of the measure implies completeness only when the mark space is finite
( for a detailed discussion on this subject, we refer to (Björk et al. [1997], Sec. 4.2 ). In
view of this information, a complete market setting can be reached, e.g., via choosing a
loss process with fixed jump size, say 1/N where N is the number of constituent names
in the index. Indeed, this is not counterintuitive for indices having equally weighted
constituent names.

Omitting the contagion effects from the dynamics of forward spreads, Filipović et al.
[2009] generalizes the concept of doubly stochastic Poisson processes to marked point
processes. Under this doubly stochastic framework, doubly stochastic affine term struc-
ture models are proposed as a tractable class. In the following, we first recall the
definition of an affine process and then give an overview of the doubly stochastic affine
term structure models.
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Definition 2.2 Fix d ≥ 1 and a closed state space X ∈ Rd. A d-dimensional process
X with the state space X is affine if the Ft-conditional characteristic function of XT is
exponentially affine in Xt, for all t ≤ T . That is, there exists C and Cd valued functions
φ(t, u) and ψ(t, u) respectively, with jointly continuous t-derivatives such that X = X

x

satisfies
EP[eu

�·XT |Ft] = e
φ(T−t,u)+ψ(T−t,u)�·Xt (2.25)

for all u ∈ iRd, t ≤ T and for all initial x ∈ X.

Now, let X be some X-valued diffusion process having the Q-dynamics

dXt = µ(Xt)dt+ σ(Xt) · dWt, X0 = x (2.26)

where µ and σ are continuous functions from R+ × X into Rd and Rd×d, respectively.
The idea of affine term structure models lies on the property that, the forward rates ( or
equivalently bond prices), are considered to be an affine function ( exponentially affine
function) of the state process X. That is,

f(t, T, x) = A
�(T − t, x) +B

�(T − t, , x)� ·Xt

for some functions A
�(T − t, , x) and B

�(T − t, x) with values in R and Rd, respectively.
Now define

A(T − t, x) =

� T−t

0
A

�(u, x)du, B(T − t, x) =

� T−t

0
B

�(u, x)du

In the following we recall the fundemental theorem on doubly stochastic affine term
structure models given in Filipović et al. [2009].

Theorem 2.3 Let τ = (T − t) ≥ 0 and assume X is an m-factor affine process given
by

dXt =

�
b0 +

m�

i=1

Xitbi

�
dt+ Σ(Xt)dW

Q
t (2.27)

with an affine diffusion 1
2ΣΣ

�(x) = a0 +
�m

i=1 xiai where vectors bi ∈ Rmand matrices
ai ∈ Rm×m. Then, there exists a loss process L such that

P (t, T, x) = 1{Lt≤x}e
−A(T−t,x)−B(T−t,x)�Xt (2.28)

defines an arbitrage-free (T, x)-bond market where functions A and B satisfy the following
system of Riccati equations

∂τA(τ, x) = α(x) + b
�
0 ·B(τ, x)−B(τ, x)� · a0 ·B(τ, x) (2.29)

A(0, x) = 0

∂τBi(τ, x) = βi(x) + b
�
i ·B(τ, x)−B(τ, x)� · ai ·B(τ, x) (2.30)

B(0, x) = 0
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for some R+-valued bounded measurable functions α(x), βi(x) which are non-increasing
and càdlàg with α(x) ≥ r ≥ 0 and βi(x) = 0 for x ≥ 1.

Proof. The idea of the proof is to use the no arbitrage drift condition and get the Riccati
equations that A and B satisfies. It is worth mentioning that the continuity of the process
X is also crucial in the proof. For technical details see Section 7.1 of Filipović et al.
[2009].

Here, it is important to emphasize that the functions α and βi are exogenous and can
be used to calibrate the model to the observable STCDO prices. This property of the
model becomes even more clear with the following relations.

From the Riccati equations given in above theorem, for all x ∈ [0, 1], the short rate
satisfies

f(t, t, x) = α(x) + β
�
Xt.

Then, affine model given by (2.29)-(2.30) together with the relation (2.10) and the
no-arbitrage condition (2.13) yield the following relation between α(x), β(x) and the
risk-neutral compensator of the loss process

ν
q(t, (0, x]) = f(t, t, Lt−)− f(t, t, Lt− + x)

= α(Lt−)− α(Lt− + x) + (β(Lt−)− β(Lt− + x))� ·Xt (2.31)

which implies that a default event arrives with risk-neutral intensity

Λt = α(Lt−)− r + β(Lt−)
�
Xt (2.32)

and an occurrence of a default causes a loss with risk-neutral cumulative distribution

GL(t, x) =
ν
q(t, (0, x])

νq(t, (0, 1])
(2.33)

2.2.2 Model Specification: Two-Factor (Stochastic Drift) Model

We propose the following 2-factor affine model with the P-dynamics

dYt = κy (Zt − Yt) dt+ σy

�
YtdW

y
t , Y0 = y ∈ R+ (2.34)

dZt = κz (θz − Zt) dt+ σz

�
ZtdW

z
t , Z0 = z ∈ R+ (2.35)

where κy ≥ 0 and κzθz ≥ 0 and W
y and W

z are independent P-Brownian motions.
Here, factor Z is functioning as the stochastic long run mean reversion level of factor Y .
In our empirical analysis, we also consider the nested 1-factor model where the unique
factor has a constant mean reversion level.
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To preserve the affine structure under a change of measure we specify the market price
of risk process λt = (λy

t ,λ
z
t ) in the following way

λ
y
t =

λy
√
Yt

σy
, λ

z
t =

λz
√
Zt

σz
(2.36)

Then, the Q-dynamics of the factor process reads

dYt = (κy + λy)

�
κy

κy + λy
Zt − Yt

�
dt+ σy

�
YtdW̃

y
t (2.37)

dZt = (κz + λz)

�
κz

κz + λz
θz − Zt

�
dt+ σz

�
ZtdW̃

z
t (2.38)

where W̃
y
t = W

y
t +

� t
0 λ

y
sds and W̃

z
t = W

z
t +

� t
0 λ

z
sds are Q-Brownian motions.

Given dynamics in equation(2.37)-(2.38), Theorem 2.3 immediately yields that

P (t, T, x) = 1{Lt≤x}e
−A(T−t,x)−By(T−t,x)Yt−Bz(T−t,x)Zt (2.39)

defines an arbitrage free (T, x)-bond market where A, By and Bz solves the Riccati
equations

∂τA(τ, x) = α(x) + κzθzBz(τ, x), (2.40)

A(0, x) = 0,

∂τBy(τ, x) = βy(x)− (κy + λy)By(τ, x)−
1

2
σ
2
yBy(τ, x)

2
, (2.41)

By(0, x) = 0,

∂τBz(τ, x) = βz(x) + κyBy(τ, x)− (κz + λz)Bz(τ, x)−
1

2
σ
2
zBz(τ, x)

2
, (2.42)

Bz(0, x) = 0.

for some R+-valued functions α, βy,z which are non-increasing and càdlàg with α(x) ≥
r ≥ 0 and βy,z(x) = 0 for x ≥ 1. For the above system there is no closed form solution
available, however, one can solve this system numerically.

After specifying the affine factor model, the next task is to specify functions α, βy

and βz. Here we want to point out that, particular choices for these functions imply
different dynamics for the loss process via relations (2.31)-(2.33). To be able to get an
exponentially decaying loss given default distribution we take

α(x) = γ

�
e
−a0(x∧1) − e

−a0
�
+ r (2.43)

βy(x) = e
−b0(x∧1) − e

−b0 (2.44)

where γ ≥ 0, a0 ≥ 0 , b0 ≥ 0. Moreover, we define

βz(x) = c01[0,1)(x) (2.45)
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with c0 ≥ 0. Choosing function βz as in (2.45) makes factor Z model the catastrophic
level directly via giving Dirac point mass at x = 1 in the loss given default distribution.
This is important in particular for the successful modeling of super senior tranches (see
Chen et al. [2009] ). We have the following Proposition giving implied loss compensator,
the default intensity process and loss given default distribution under specification (2.43)-
(2.45).

Proposition 2.1 Suppose the functions α, βy and β
z are in the form (2.43)-(2.45).

Then, for the one and two factor models presented above the risk neutral compensator,
the intensity process and loss given default distribution has the following form

ν
q (t, (0, x]) = γ

�
e
−a0(Lt−∧1) − e

−a0(Lt−+x∧1)
�
+
�
e
−b0(Lt−∧1) − e

−b0(Lt−+x∧1)
�
Yt

+ c01{1−Lt−≤x}Zt

Λt = γ

�
e
−a0(Lt−∧1) − e

−a0
�
+

�
e
−b0(Lt−∧1) − e

−b0
�
Yt + c01[0,1)(Lt−)Zt

GL(t, x) =
γ
�
e
−a0(Lt−∧1) − e

−a0(Lt−+x∧1)�+
�
e
−b0(Lt−∧1) − e

−b0(Lt−+x∧1)�
Yt

γ
�
e−a0(Lt−∧1) − e−a0

�
+
�
e−b0(Lt−∧1) − e−b0

�
Yt + c01[0,1)(Lt−)Zt

+
c01{0<1−Lt−≤x}Zt

γ
�
e−a0(Lt−∧1) − e−a0

�
+
�
e−b0(Lt−∧1) − e−b0

�
Yt + c01[0,1)(Lt−)Zt

(2.46)

Proof. Inserting function α, βy and βz in (2.43)-(2.45) into equations (2.31)-(2.33) yields
the result.

Here notice that the loss given default distribution is not static. Its dynamics is changing
with the level of the loss and the factor processes. Next corollary gives an explicit formula
for the time t expected loss given default implied by the loss given default distribution
given in (2.46).

Corollary 2.1 Assume that the risk neutral loss given default distribution is as in
(2.46). Then, at time t the Q-expected loss given default is given by

� ∞

−∞
xGL(t, dx) =

γ
a0

�
e
−a0Lt− − e

−a0(a0(1− Lt−) + 1)
�

γ (e−a0Lt− − e−a0) + (e−b0Lt− − e−b0)Yt + c01[0,1)(Lt−)Zt

+
1
b0

�
e
−b0Lt− − e

−b0(b0(1− Lt−) + 1)
�
Yt + c0(1− Lt−)Zt

γ (e−a0Lt− − e−a0) + (e−b0Lt− − e−b0)Yt + c01[0,1)(Lt−)Zt
(2.47)
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Proof. First, recall that Lt takes values in [0, 1]. This immediately implies that the
support of the function GL(t, x) is [0,∞) where we have GL(t, x) = 1 for {x > 1−Lt−}.
Then, we automatically have that the support of the function 1−GL(t, x) is [0, 1−Lt−].
On the other hand, it is known that for a non-negative random variable Xt we can use
the following formula to compute the expectation

E
Q[Xt] =

� ∞

0
Q(Xt ≥ x)dx =

� ∞

0
(1−Q(Xt < x))dx (2.48)

Using this and the fact that GL(t, x−) = GL(t, x) dx− a.s. we get
� ∞

−∞
xGL(t, dx) =

� 1−Lt−

0
(1−GL(t, x))dx (2.49)

Then, from equation (2.46) we get 1−GL(t, x) =

γ
�
e
−a0((Lt−+x)∧1) − e

−a0
�
+
�
e
−b0((Lt−+x)∧1) − e

−b0
�
Yt + c01[0,1)(Lt− + x)Zt

γ (e−a0Lt− − e−a0) + (e−b0Lt− − e−b0)Yt + c01[0,1)(Lt−)Zt
. (2.50)

Finally, inserting (2.50) in to (2.49) and then computing the integral finishes the proof.

2.3 Single Tranche CDOs (STCDO)

Suppose an investor has a long position in the STCDO with attachment and detachment
points x1, x2 and having coupon dates 0 < T1 < ... < Tn. The coupon payments are
determined by the pre-determined coupon rate κ

(x1,x2]
0 and the notional of the tranche,

net of the losses in the tranche realized by time Ti . The attachment point indicates the
point at which losses in the underlying index begin to erode the notional of the tranche
and in the detachment point full tranche is written down. In case of a realization of a
loss, the position holder of the respective STCDO pays the fraction of the loss which falls
into the invested tranche. In turn, until the notional of the tranche gets fully written
down, coupon payments on the remaining notional are received.

To formalize the cash flows of a STCDO we define,

H
(x1,x2](x) :=

� x2

x1

1{x≤y}dy = (x2 − x)+ − (x1 − x)+. (2.51)

Then, the long position holder of the STCDO

• receives κ
(x1,x2]
0 ×H

(x1,x2](LTi) at Ti, {i = 1, 2, ..., n}, (coupon leg)

• pays −∆H
(x1,x2](Lt) = H

(x1,x2](Lt−) − H
(x1,x2](Lt) at any time (T0, Tn] where

∆Lt �= 0, (protection leg).
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The value of the STCDO long position at time t ≤ T0 is equal to the difference between
the value of the coupon leg and protection leg which, under the assumption of constant
risk-free rates, can be represented as (see Lemma 4.1 in Filipović et al. [2009])

V
(x1,x2]
C (t) = κ

(x1,x2]
0

�

t<Ti

� x2

x1

P (t, Ti, x)dx (2.52)

and

V
(x1,x2]
P (t) =

� x2

x1

�
1{Lt≤x} − P (t, Tn, x)− r

� Tn

t
P (t, u, x)du

�
dx (2.53)

Now one can recover the par-coupon rate at time t, that is, the rate which makes
VC(t)− VP (t) = 0 as follows

κ
(x1,x2]
t =

V
(x1,x2]
P (t)

�

t<Ti

� x2

x1

P (t, Ti, x)dx
(2.54)

In practice, when κt is bigger than 5%, the market sets κt = 5% and quote the up-
front payment VP (t)− VC(t) instead. In the current analysis, this is valid for the equity
tranche and the necessary modifications are done whenever needed.

Having κt, one can write the time t value, Γ(x1,x2]
t , of the STCDO as follows

Γ(x1,x2]
t =

�
κ
(x1,x2]
0 − κ

(x1,x2]
t

� �

t<Ti

� x2

x1

P (t, Ti, x)dx (2.55)

The discounted gains process of the STCDO long position at time t, which is denoted
by G

(x1,x2]
t , is equal to the sum of accumulated discounted cash flows A

(x1,x2]
t and

discounted spot value,

G
(x1,x2]
t = A

(x1,x2]
t + e

−rt
�
V

(x1,x2]
C (t)− V

(x1,x2]
P (t)

�
(2.56)

where A
(x1,x2]
t is the difference between the value of coupon and protection payments

that has been realized by time t. That is,

A
(x1,x2]
t = κ

(x1,x2]
0

�
Ti≤t

e
−rTiH(LTi) +

� t

0
e
−ru

dH(Lu) (2.57)

2.4 Hedging of STCDOs

The gains process of a STCDO long (protection seller) position is exposed to the risk
arising from the credit events of any constituent. It is clear from (2.56) that, there is an



2. A DYNAMIC CDO TERM STRUCTURE MODEL 27

exposure to the changes in the zero-coupon spreads and the loss payments. It is possible
to a hedge a tranche position via taking offsetting positions in the underlying CDS, in
another trance or in the index. Here, our focus is the hedging of STCDO with the index.
To be able to offset negative value changes in the tranche by a dynamically rebalanced
self-financing position in the index, the long position holder in STCDO would take the
short (protection buyer) position in the index as long as the co-movement of the index
and the tranche is assured. Certainly, the amount which is invested in to the index has
to be determined via some hedging criteria. Thus, to perform the hedge, the first thing
to do is finding a relevant hedging strategy.

In the current setup we are in an incomplete market setting due to the presence of
infinite number of risk sources. Quadratic hedging approach, where the criterion is to
minimize the hedging error in mean-square sense, is one of the alternatives for hedging in
incomplete markets. By its very nature, in an incomplete market finding a self-financing
strategy which at the same time allows for perfect replication is not possible. One has to
either sacrifice the self-financing property of the hedging strategy to guarantee the perfect
replication of a claim or vice versa. In this context, Follmer and Sondermann [1986]
introduced the local risk minimization for the case where the risky asset is martingale
under the physical measure. Then the idea of risk minimization is extended to a general
semimartingale case by Schweizer [1988]. Under this approach, one seeks for the minimal
cost strategy among the hedging strategies which minimizes the one-step ahed mean-
square error between the hedging portfolio and the given contingent claim. A risk
minimizing strategy is characterized by two main properties. Firstly, it possesses the
mean self-financing property, meaning that the associated cost process is a martingale.
Second property is that, the cost process is orthogonal to the martingale part of the
underlying asset, that is the cost process represents the unhedgeble part of the claim.

An alternative method under the quadratic hedging approach is the variance minimizing
hedging. This method yields a self-financing hedging strategy which approximate the
contingent claim by the terminal value of the hedging portfolio. Here, the optimality
criterion is taken to be the Q-mean-square error between the value of the claim and the
terminal value of the hedging portfolio. When performed under the martingale measure
Q, local risk minimizing and variance minimizing approach yield the same strategies.
For the review of quadratic hedging approaches see Schweizer [1999] and for different
hedging approaches in incomplete markets, we refer to Chp. 10 in Cont and Tankov
[2004].

Frey and Backhaus [2010] uses variance minimizing hedge for the hedging of CDO
tranches with the underlying CDSs. For the hedging of STCDOs with the underly-
ing index, variance minimizing hedge is utilized in Cont and Kan [2011] as the strategy
which takes spread and default risk into account. Following the idea, Filipovic and
Schmidt [2010] derives an explicit formula for the corresponding variance minimizing
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strategy under their modeling setup with the constant risk-free rate assumption. On the

other hand, when compared to number of other hedging strategies the regression based

hedging is shown to be very effective in Cont and Kan [2011]. Motivated by this, in

our analysis we use variance minimizing and regression based strategies as our hedging

tools. This section gives the explicit formulae of variance minimizing and regression

based strategies for the two factor affine model. Furthermore, we explain the relation

between the two hedging strategies. We then outline the hedging algorithm in which the

objective is to cover the risky position in a STCDO via investing in the index. We also

introduce criteria for the assessment of the performance of a hedging strategy.

2.4.1 Variance Minimizing Strategy

In an incomplete market setting, one can use variance-minimizing criterion in which the

objective is to minimize the Q- conditional variance of the quadratic hedging error, that

is,

inf
φ

EQ

��
G

(x1,x2]
T − c+

� T

t
φsdG

(x1,x2]
s

�2 ���Ft

�
(2.58)

It is well known that, under suitable conditions on the gains process, such as the square

integrable martingale property, the minimizing strategy exists and can be computed

from the Galtchouk-Kunita-Watanebe decomposition. That is, along with the initial

capital c∗ = G
(x1,x2]
t , the self-financing strategy

φ
∗
t = −

d

�
G

(x1,x2]
t , G

(0,1]
t

�Q

d

�
G

(0,1]
t

�Q (2.59)

is the unique minimizer of (2.58). Here, �·, ·� denotes the sharp bracket process and

G
(0,1] satisfies (2.56) with x1 = 0 and x2 = 1. Results in Filipovic and Schmidt [2010]

shows that (see Sec. 5.1, Equation 20) under the assumption of deterministic risk-free

interest rate, the gains process satisfies

dG
(x1,x2]
t = e

−
� t
0 rudu

�
B

(x1,x2]
t dW

Q
t +

�

(0,1]
C

(x1,x2]
t (ξ)(µ(dt, dξ)− ν

q(t, dξ)dt)

�
(2.60)
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where

B
(x1,x2]
t =

�

(x1,x2]

�
s
(x1,x2]
0

�

t<Ti

P (t, Ti, x)β(t, Ti, x) (2.61)

+ P (t, Tn, x)β(t, Tn, x) +

� Tn

t
ruP (t, u, x)β(t, u, x)du

�
dx

C
(x1,x2]
t (ξ) =

�

(x1,x2]

�
s
(x1,x2]
0

�

t<Ti

P (t−, Ti, x)γ(t, Ti, x, ξ) (2.62)

+ P (t−, Tn, x)γ(t, Tn, x, ξ) +

� Tn

t
ruP (t−, u, x)γ(t, u, x, ξ)du

�
dx

where β and γ are defined as in (2.6) and (2.7) respectively.

If we further assume that the risk-free interest rate is constant and use the two-factor
(stochastic drift) model specification in (2.39), B(x1,x2]

t and C
(x1,x2]
t becomes

B
(x1,x2]
t =

�

(x1,x2]

�
s
(x1,x2]
0

�

t<Ti

P (t, Ti, x)β(t, Ti, x) (2.63)

+ P (t, Tn, x)β(t, Tn, x) + r

� Tn

t
P (t, u, x)β(t, u, x)du

�
dx

C
(x1,x2]
t (ξ) = −

�

(x1,x2]

�
s
(x1,x2]
0

�

t<Ti

P (t−, Ti, x)1{Lt−+ξ>x} (2.64)

+ P (t−, Tn, x)1{Lt−+ξ>x} + r

� Tn

t
P (t−, u, x)1{Lt−+ξ>x}du

�
dx

with

β(t, T, x) =
�
−By(T − t, x)σy

�
Yt , −Bz(T − t, x)σz

�
Zt

��
(2.65)

where By and Bz are functions satisfying (2.41) and (2.42) respectively. Then, for the
two-factor (stochastic drift model), under the assumption of constant risk-free rates,
equation (2.59) together with the dynamics in (2.60) yields the variance minimizing
strategy

φ
VM
t = −

B
(x1,x2]
t B

(0,1]
t +

�
(0,1]C

(x1,x2]
t (ξ)C(0,1]

t (ξ)νq(t, dξ)

(B(0,1]
t )2 +

�
(0,1](Ct(0, 1](ξ))2νq(t, dξ)

(2.66)

where B
(x1,x2]
t and C

(x1,x2]
t are given by (2.63) and (2.64) respectively. Formula (2.66)

reveals that, once we have the parameter estimates and the market data it is possible to
get the value of the variance minimizing strategy explicitly.
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2.4.2 Regression Based Strategy

Variance minimizing strategy can be criticized for suggesting an optimal hedging crite-
rion under the risk neutral measure but not the real-world measure. Considering this
drawback of the variance minimizing strategy, Cont and Kan [2011] introduces regression
based hedging strategy which takes the dynamics of market observables into account.
Here, the main point is that daily changes in the value of tranche is regressed to the
daily value changes of the index. Following the same idea as in Section 5.7 of Cont and
Kan [2011], to model the relation between the daily changes in the STCDO and index
gains process we do a linear regression analysis . Formally, we assume that the daily
changes in the STCDO and index gains processes follows

∆G
(x1,x2]
tk

= a+ b∆G
(0,1]
tk

+ �tk (2.67)

where �tk represent the independent standard Normal disturbance term. Given this
statistical model, the idea is to find the daily estimates for parameters a and b. This
is achieved via method of linear least squares in which we find estimates â and b̂ which
minimize the squared error of the observed data up to the current day. Then, each day
we set the hedge ratio φ

RB
t = −b̂, that is, in each day the hedge ratio is computed via

estimating the parameter b in above regression model by using the available data up to
that day. From the very well acknowledged formula for the least squares estimate, we
have

φ
RB
t = −

�

tk≤t

�
∆G

(0,1]
tk

−∆G
(0,1]
t

��
∆G

(x1,x2]
tk

−∆G
(x1,x2]
t

�

�

tk≤t

�
∆G

(0,1]
tk

−∆G
(0,1]
t

�2 (2.68)

where ∆G
(x1,x2]
t denotes the average of daily changes in the gains process by time t.

Remark 2.3 From the theory of linear regression, we have the following well-known
relation

φ
RB
t =

Cov

�
∆G

(x1,x2]
t ,∆G

(0,1]
t

�

σ2
�
∆G

(0,1]
t

�

= ρt

σ

�
∆G

(x1,x2]
t

�

σ

�
∆G

(0,1]
t

� (2.69)

where σ denotes the running standard deviation and ρt is the running linear correlation
coefficient which are estimated by using the available data by time t. Equation (2.69)
indicates that for regression based hedge the two main determinants of the amount that
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has to invested into the index are the linear correlation and the relative values of variances
of changes in tranche and index gains processes.

Remark 2.4 Under this setup, how well the investment in the index replicates the
gains in tranche depends very much on the variance of changes in the tranche gains
series and the linear correlation between the two series ∆G

(0,1]
tk

and ∆G
(x1,x2]
tk

, tk ≤ t.
This is because of the fact that by the regression based strategy, the remaining risk is
reduced to the minimal mean square prediction error, that is

σ
2
�
∆G

(x1,x2]
t

�
−
�
φ
RB
t

�2
σ
2
�
∆G

(0,1]
t

�
= σ

2
�
∆G

(x1,x2]
t

� �
1− ρ

2
t

�
(2.70)

where σ
2 represents the running variance. Equation (2.70) suggests that, the larger the

linear correlation or smaller the variance, the smaller the hedging error.

2.4.3 Relation between Variance Minimizing and Regression Based
Strategies

We first want to point out that, this part is just to give some intuition on the relation
between the two hedging strategies and far from being rigorous. To be able to state
the relation between the variance minimizing and regression based strategies, first recall
from the previous parts that the time t value of the regression based strategy is given
by

φ
RB
t =

Cov

�
∆G

(x1,x2]
t ,∆G

(0,1]
t

�

σ2
�
∆G

(0,1]
t

� ≈
d
�
G

(x1,x2], G(0,1]
�
t

d
�
G(0,1], G(0,1]

�
t

∆t

where [·, ·] denotes the quadratic variation process. Recall that the sharp bracket process
of a semimartingale, which we denote by �·, ·� is the compensator of the quadratic vari-
ation process and for continuous semimartingales with integrable quadratic variation,
the sharp bracket and quadratic variation processes are the same. Thus, we make the
non-rigorous argument

d
�
G

(x1,x2], G(0,1]
�
t

d
�
G(0,1], G(0,1]

�
t

∆t ≈
d
�
G

(x1,x2], G(0,1]
�P
t

d
�
G(0,1], G(0,1]

�P
t

∆t

This, together with (2.59) suggest that the difference between the two hedging strategies
is given by

φ
RB
t − φ

VM
t ≈

d
�
G

(x1,x2], G(0,1]
�P
t

d
�
G(0,1], G(0,1]

�P
t

−
d
�
G

(x1,x2], G(0,1]
�Q
t

d
�
G(0,1], G(0,1]

�Q
t

(2.71)
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Now let us consider the processes X and Y with dynamics

dXt = adt+ σdW
Q
t +

�

(0,1]
γ(ξ)(µ(dt, dξ)− ν

q(t, dξ)dt) (2.72)

dYt = bdt+ ρdW
Q
t +

�

(0,1]
δ(ξ)(µ(dt, dξ)− ν

q(t, dξ)dt) (2.73)

where all coefficients satisfy the necessary measurability and integrability conditions and
ν
q is the Q-compensator of the random measure µ. Then, we get

�X,Y �Qt =

� t

0

�
σρ+

�

(0,1]
γ(ξ)δ(ξ)νq(s, ξ)

�
ds (2.74)

�X,Y �Pt =

� t

0

�
σρ+

�

(0,1]
γ(ξ)δ(ξ)νp(s, ξ)

�
ds (2.75)

where ν
p denotes the P-compensator of µ. Using this result in (2.71) reveals that

φ
RB
t − φ

VM
t ≈

� t

0

�

(0,1]
γ(ξ)δ(ξ)(νp(s, ξ)− ν

q(s, ξ))
�
ds (2.76)

Hence, the difference between the two strategies boils down to the difference between
the Q and P-compensators of µ. Here, remember that, in our two-factor affine frame
work we implicitly assume that the Q and P-compensator of µ are identical, that is the
market price of jump risk is assumed to be zero. Thus, any difference between the two
strategies is due to the approximation arguments.

2.4.4 Hedging Algorithm

Given the attachment and detachment point x1 and x2, we first construct a STCDO
of 5-year maturity with quarterly payments. Then, the idea is to hedge this STCDO
by constructing a self-financing portfolio which consists of the index and the risk-free
account.

Having the parameter set and filtered factor series, we compute the par swap rate for each
day of the hedging period via formula (2.54). After this preliminary work, at time t0 we
calculate the hedging strategy φt0 according to the hedging methodology, i.e., variance
minimizing or regression based hedging, we choose. Following that, we construct the
zero initial value, self financing portfolio V as follows

Vt0 = φt0Γ
(0,1]
t0 + (Γ(x1,x2]

t0 − φt0Γ
(0,1]
t0 ) (2.77)

where the first term indicates the amount which is invested to the index and the second
term with the brackets denotes the amount of borrowing from the risk-free account.
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In each point tk, k = 1, ...,K, of the hedging period, having the par swap rate κ
(x1,x2]
tk

we utilize formula (2.55) to get the new spot value of the STCDO and the index. In
the sequel, we evaluate the profit and loss (P&L) from time tk−1 zero-net investment in
index. This is equal to the φtk−1 fraction of sum of change in the nominal spot value of
the index, coupon payment if due and default payment if due. That is,

P&L
(0,1]
tk

= φtk−1

�
Γ(0,1]
tk

+ 1{tk−1∈CP}κ
(0,1]
t0 H

(0,1](Ltk−1)

−(H(0,1](Ltk)−H
(0,1](Ltk−1))− Γ(0,1]

tk−1
e
r∆tk

� (2.78)

where CP indicates the set of predetermined coupon payment dates and ∆tk = tk−tk−1.
From equation (2.78), one can immediately get the time tk hedging portfolio value Vtk as
the sum Vtk−1e

r∆tk +P&L
(0,1]
tk

. Moreover, we get the nominal value of the gains process
e
rtkG

(0,1]
tk

as the sum of compounded gains value from the previous date and current
P&L value. In a similar way, we compute the P&L and gains process value for STCDO
position. Here, we want to point out that in the 0 − 3% tranche, where there is the
presence of the upfront payment, the analysis is same except that the par swap rate is
fixed to 5% and the nominal spot value of STCDO is taken to be equal to the negative
of the upfront payment.

Both for the variance minimizing and regression based hedging, we repeat the explained
procedure for each day in the sample period and report the normalized series for the
hedging portfolio value, gains process of the index and sum of these two as the total
portfolio P&L processes. Furthermore, we provide the series for the hedging strategy φ.

2.4.5 Assessment of Hedging Performance

To be able to conclude that a particular hedging strategy outperforms one another we
need some criteria. Regarding this, Cont and Kan [2011] presents two different criteria
one of which is the relative hedging error and given by the absolute value of the ratio of
average daily P&L of hedge position to average daily P&L of unhedged position. In our
notation, this corresponds to percentage value

100×

�
VK + e

rK
G

(x1,x2]
K

�

erKG
(x1,x2]
K

(2.79)

The other criterion is the reduction in volatility and measures the reduction in the
dispersion of the P&L distribution with respect to the unhedged position. Formally,
one can define reduction in volatility measure as the ratio of the daily P&L volatility
of hedged position to the daily P&L volatility of unhedged tranche position. According
to above mentioned criteria, a hedging strategy performs better as long as the related
relative hedging error and reduction in volatility values are smaller.
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The first criterion that we considered for the evaluation of the performance of a hedging
strategy is the reduction in volatility measure. However, instead of using the relative
hedging error as the second criterion, assuming the total outstanding value equal to 100,
we use the normalized total portfolio P&L series with the term

�
Vtk + e

rtkG
(x1,x2]
tk

�
× 100

x2 − x1
(2.80)

When G
(x1,x2]
tk

gets too small, the relative hedging error in (2.79) gets too large and may
yield misleading results. The other fact about this measure is that, it strongly depends
on the final date K. That is, while for some date K in the sample period the relative
hedging error can get very small and implies a successful hedge, for some other day the
result is observed to be the opposite. This is why instead of relative hedging error we
propose the whole total portfolio P&L series as one of the assessment criterion. We
conclude that a hedging strategy performs better as the P&L series stays closer to zero.

2.5 Estimation Methodology

Given the model and the data we focus on two issues. The first one is estimating model
parameters and the second one is testing the performance of the model via hedging
analysis. The first issue comprises fitting of the model to the available market data.
Recall that in the current framework the fundamental object having been modeled is
the hypothetical term-structure of (T, x)-bonds which is not a market observable data.
However, given the market observable par coupon rates κ

(x1,x2]
t for all tranches and the

index, the term-structure of (T, x)-bonds can be estimated via inverting the formula
(2.54). To be more precise, one can first estimate the zero-coupon discount curve

τ �→ D(t, τ, j) =
1

xj+1 − xj

� xj+1

xj

P (t, t+ τ, x)dx (2.81)

for all tranches (xj , xj+1]. This in turn gives the implied zero-coupon spread curve

R(t, τ, j) = −1

τ
logD(t, τ, j)− r (2.82)

Finally one can get the term structure of (T, x)-bonds via interpolating (2.82) in x. In
this study, to estimate the model parameters we mainly use the zero-coupon spread
curve data (2.82) as the input.

In the estimation of parameters, the main difficulty stems from the unobservability of
the factor process. A natural approach to overcome this problem is using filtering. In a
filtering problem, the aim is to estimate a stochastic process representing the unobserved
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factor by using the noisy past and present observations. In a Gaussian framework, where
the unobserved factor is a Gaussian process, Kalman filter yields the exact likelihood
function via providing the prediction error and its variance (see Harvey [1990]). When
using non-Gaussian models, however, the exact likelihood function is not available in
most cases. For such cases, one can use quasi-maximum likelihood estimator (QML)
approach in which the idea is to substitute the exact transition density of the non-
Gaussian factor by a normal density with mean and variance being equal to the first two
true moments of the factor process. This has been a popular method especially in the
estimation of affine term structure models and used in series of papers. For application
of the method on CIR models see Geyer and Pichler [1999], Chen and Scott [2003] and
Duffee and Stanton [2004]. Both in one and two-factor models presented above, the
factor process is non-Gaussian. Thus, to estimate model parameters and obtain the
unobservable factor we use a QML approach based on the linear Kalman filter. Since
the one factor model is nested within two-factor model, in what follows we will only give
the estimation procedure for the later one.

Let (Ytk , Ztk) ∈ R2, be the value of the factor process at time tk, {0 = t0 < t1 < ... <

tK = T}. In Kalman filtering, there is the measurement (observation) equation
expressing the observed data as a linear function of the unobservable factor plus a
measurement error. The discrete time evolution of the unobservable factor is, in turn,
expressed by the transition equation as linear in (Ytk−1 , Ztk−1). Inserting (2.39) into
(2.81) reveals that R(t, τ, i) is not linear in the factor (Yt, Zt) as desired. Recall that
we specify the function βz as βz = c01[0,1)(x). Together with this, to be able to get a
linear measurement equation, we approximate βy(x) appearing in (2.44) by a piecewise
constant function where the values are given by averaging (2.44). That is,

βy(x) ≈
6�

j=1

βj1[xj−1,xj)(x) (2.83)

where

βj =
1

xj − xj−1

� xj

xj−1

βy(x)dx (2.84)

This will yield the desired linear measurement equation.

Remark 2.5 Setting βz(x) = c01[0,1)(x) and approximating βy(x) as in (2.83) im-
plies that Bz(τ, x) is piecewise constant i.e., Bz(τ, x) = Bz(τ, xj) for x ∈ [xj−1, xj).
Furthermore, recall that in the two factor model we have

A(τ, x) = α(x)τ + κzθz

� τ

0
Bz(s, x)ds
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Thus, one can also write
� xj

xj−1

e
−A(τ,x)

dx = e
−κzθz

� τ
0 Bz(s,xj)ds

� xj

xj−1

e
−α(x)τ

dx

Remark 2.6 In (2.82), specifying α as in (2.43), taking βz = c01[0,1)(x) and approx-
imating βy as in (2.83) results in the cancelation of the risk-free rate r in the following
way

R(t, τ, j) =
1

τ
log(xj − xj−1)−

1

τ
log

�
e
−κzθz

� τ
0 Bz(s,xj)ds

� xj

xj−1

e
−γ(e−a0(x∧1)−e−a0 )τ−rτ

dx

�

+
1

τ
By(τ, xj)Yt +

1

τ
Bz(τ, xj)Zt − r + �(t, τ, j)

=
1

τ
log(xj − xj−1) +

1

τ
κzθz

� τ

0
Bz(s, xj)ds−

1

τ
log

� � xj

xj−1
e
−γ(e−a0(x∧1)−e−a0 )τ

dx

�

� �� �
Cz(τ,xj)

+
1

τ
By(τ, xj)Yt +

1

τ
Bz(τ, xj)Zt + �(t, τ, i)

(2.85)

This suggests that the risk-free rate r is not needed during the estimation .

After doing the necessary approximations, we get the linear measurement equation given
by

R(tk, τ, j) = Cz(τ, xj) +
1

τ
(By(τ, xj)Ytk +Bz(τ, xj)Ztk) + �(tk, τ, j) (2.86)

where Cz is given in (2.85). Here, measurement errors �(tk, τ, j) are assumed to be
independent and �(tk, τ, j) ∼ N(0, hj), that is the variance of the error depends on the
tranche j only. This yields diagonal covariance matrix, say H, for errors which has
entries hj as the j

th element of the diagonal.

Let P(Ytk , Ztk |Ytk−1 , Ztk−1) denotes the transition density, which is the probability den-
sity of the factor at time tk given its value at time tk−1. As mentioned above, in the
current framework the transition density is non-Gaussian. Following the QML approach,
we intend to substitute the exact transition density of the factor by a Normal density,
i.e.,

P(Ytk , Ztk |Ytk−1 , Ztk−1) ∼ N(µtk , Qtk)

where the conditional mean µtk and the covariance matrix Qtk are distributed in such a
way that the first moments of the approximate Normal and exact transition density are
equal. Here, it is necessary to compute µtk and Qtk first. In the following we use the
fact that the factor process is affine and then get the desired expressions via utilizing
the polynomial property of moments for affine processes.



2. A DYNAMIC CDO TERM STRUCTURE MODEL 37

An affine process X with state space X ∈ Rd has the property that, any conditional
moment of the process, when exists, is given by a polynomial function of the current
state. Now in the following we will explain how the computation of moments works for
the affine process X := (Y, Z), for the general case we refer to Duffie et al. [2000]. Let
us first denote the conditional characteristic function of XT given Xt by

MX(t, T,Xt, r) := E[e�ir,XT �|Xt] (2.87)

T ≥ t ≥ 0, r ∈ R2 and where i =
√
−1 and �·, ·� denotes the standard scalar product.

From the very definition of an affine process (see Definition 2.2) we have

MX(T − t,Xt, r) = e
φ(T−t,ir)+�ψ(T−t,ir),Xt� (2.88)

where φ and ψ = (ψy,ψz) solve the system of Riccati equations (see Theorem 10.1 in

Filipović [2009])

∂tφ(t, ir) = κzθzψz

φ(0, ir) = 0 (2.89)

∂tψy(t, ir) =
1

2
ψ
2
y − κyψy

∂tψz(t, ir) =
1

2
ψ
2
z + κyψy − κzψz

ψ(0, ir) = ir

One can solve the above system explicitly and show that at point zero the functions φ,
ψy and ψz have partial derivatives of all orders with respect to r = (r1, r2). This implies
that the conditional kth cross-moments given by

fk(T − t, y, z) = E[Y p
T Z

q
T |Yt = y, Zt = z] = i

−k

�
∂
k
MX

∂pr1∂
qr2

�

r=0

, p, q ∈ Z+
, p+ q = k

exists for all k ∈ Z+. The exponential structure of the characteristic function and the
fact

MX(T − t,Xt, 0) = 1, for all t ≤ T, Xt ∈ X,

imply that the conditional kth moment is a polynomial of order less than or equal to k

of the current state (y, z).

On the other hand, being an affine diffusion, (Yt, Zt)t≥0 possesses the Markov property
(see, for instance, Chp. III in Revuz and Yor [1999] for detailed information on Markov
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processes). In particular fk(T − t, y, z) solves formally the Kolmogorov backward equa-

tion

∂

∂τ
fk(τ, y, z) = Lfk(τ, y, z)

fk(0, y, z) = y
p
z
q (2.90)

where L denotes the infinitesimal generator of the process (Yt, Zt)t≥0 and it is given by

L = κy(z − y)
∂

∂y
+ κz(θz − z)

∂

∂z
+

1

2
σ
2
yy

∂
2

∂y2
+

1

2
σ
2
zz

∂
2

∂z2
(2.91)

In equation (2.90) we use the ansatz method via inserting the polynomial form of the

moments to this equation and then matching the coefficients yields system of ordinary

differential equations. Then solving these equations we get the coefficients of the polyno-

mial moment. To prove that the result we obtain is actually the solution of (2.90), that

is, the k
th conditional moment of the process (Y, Z), we use the fact that the function fk

satisfies a polynomial growth condition. For more formal statement we refer Appendix

B.

Using the property of moments we set out above, next proposition gives explicit formulae

for the conditional mean, variance and covariance of Xt.

Proposition 2.2 Given the dynamics in (2.34)-(2.35), the P-conditional expectation
of Yt and Zt is in the following form

E[Yt|Y0 = y, Z0 = z] =
θz

κz − κy

�
κz(1− e

−κyt)− κy(1− e
−κzt)

�
+ e

−κyty

+e
−κzt κy

κz − κy

�
e
t(κz−κy) − 1

�
z

(2.92)

E[Zt|Y0 = y, Z0 = z] = θz(1− e
−κzt) + e

−κztz (2.93)
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Moreover, the conditional variances Vy, Vz and the conditional covariance Vyz given by

Vy(t, y, z) =

�
e
−(5κz+7κy)t

�
e
(5κz+7κy)t(κz − 2κy)(κz − κy)

2(κz(κz + κy)σ
2
y + κ

2
yσ

2
z)θz

− 2e(5κz+6κy)tκz(κz − 2κy)(κ
2
z − κ

2
y)σ

2
y(κz(θz − y) + κy(y − z)) + e

(3κz+7κy)t

× (κz − 2κy)κ
3
y(κz + κy)σ

2
z(θz − 2z) + 2e(4κz+7κy)tκ

2
y(κ

2
y − κ

2
z)(κz(σ

2
y − 2σ2

z)

+ 2κyσ
2
z)(θz − z)− 4e(4κz+6κy)tκz(κz − 2κy)κ

2
yσ

2
z(κzθz − (κz + κy)z)

+ e
5(κz+κy)tκz(κz + κy)(κ

3
zσ

2
y(θz − 2y)− 2κ2zκyσ

2
y(θz − 4y + z)

+ 2κ3y(2σ
2
yy − σ

2
yz + σ

2
zz) + κzκ

2
y(−σ

2
zθz + σ

2
y(θz − 10y + 4z)))

��

��
2κz(κz − 2κy)(κz − κy)

2
κy(κz + κy)

�

(2.94)

Vz(t, y, z) =
σ
2
ze

−2κzt(eκzt − 1)((eκzt − 1)θz + 2z)

2κz
(2.95)

Vyz(t, y, z) =
e
−(2κz+κy)tσ2

z

2(κ3z − κzκ
2
y)

�
e
(2κz+κy)t(κz − κy)κyθz − e

κytκy(κz + κy)(θ − 2z)

− 2e(κz+κy)t(κ2z − κ
2
y)(θz − z) + 2eκztκz(κzθz − (κz + κy)z)

�
(2.96)

Proof. ( i) E[Zt|Y0 = y, Z0 = z] = g(t, y, z). Function g satisfies the Kolmogorov back-
ward equation, that is,

∂tg = κy(z − y)∂yg + κz(θz − z)∂zg +
1

2
σ
2
yy∂yyg +

1

2
σ
2
zz∂zzg (2.97)

Since (Yt, Zt)t≥0 is an affine process, we have the polynomial property of moments, that
is, g is of the following form

g(t, y, z) = g0(t) + gy(t)y + gz(t)z (2.98)

for some functions g0 ,gy, gz. Plugging (2.98) in (2.97) gives

d

dt
g0 +

d

dt
gyy +

d

dt
gzz = κy(z − y)gy + κz(θz − z)gz

Comparing the coefficients on the right and left hand side, we get the following system
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of equations.

d

dt
g0 = κzθzgz

g0(0) = 0

d

dt
gy = −κygy

gy(0) = 0

d

dt
gz = κygy − κzgz

gz(0) = 1

Solving above system we get gz(t) = e
−κzt, gy(t) ≡ 0 and g0(t) = θz(1− e

−κzt) implying
that

E[Zt|Y0 = y, Z0 = z] = θz(1− e
−κzt) + e

−κztz (2.99)

( ii) We set E[Yt|Y0 = y, Z0 = z] = h(t, y, z). Following similar arguments we have

∂th = κy(z − y)∂yh+ κz(θz − z)∂zh+
1

2
σ
2
yy∂yyh+

1

2
σ
2
zz∂zzh (2.100)

From the polynomial property of moments again we have

h(t, y, z) = h0(t) + hy(t)y + hz(t)z (2.101)

Plugging (2.101) in (2.100) gives

d

dt
h0 +

d

dt
hyy +

d

dt
hzz = κy(z − y)hy + κz(θz − z)hz

Matching the coefficients we get

d

dt
h0 = κzθzhz

h0(0) = 0

d

dt
hy = −κyhy

hy(0) = 1

d

dt
hz = κyhy − κzhz

hz(0) = 0

Solving the system, we get

h0(t) =
θz

κz − κy
(κz(1− e

−κyt)− κy(1− e
−κzt))

hy(t) = e
−κyt, hz(t) = e

−κzt κy

κz − κy
(et(κz−κy) − 1)
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implying that

E[Yt|Y0 = y, Z0 = z] =
θz

κz − κy
(κz(1− e

−κyt)− κy(1− e
−κzt)) + e

−κyty

+ e
−κzt κy

κz − κy
(et(κz−κy) − 1)z

(2.102)

( iii)E[YtZt|Y0 = y, Z0 = z] = f(t, y, z) and f satisfies

∂tf = κy(z − y)∂yf + κz(θz − z)∂zf +
1

2
σ
2
yy∂yyf +

1

2
σ
2
zz∂zzf (2.103)

Following exactly the same procedure as above we get

f(t, y, z) = f0(t) + fy(t)y + fz(t)z + fz2(t)z
2 + fzy(t)zy + fy2(t)y

2 (2.104)

Plugging (2.104) in (2.103) gives

d

dt
f0 +

d

dt
fyy +

d

dt
fzz +

d

dt
fz2z

2 +
d

dt
fzyzy +

d

dt
fy2y

2 = κy(z − y)(fy + 2fy2y + fzyz)

+ κz(θz − z)(fz + fzyy + 2fz2z)

+ σ
2
yyfy2 + σ

2
zzfz2

Thus we have

d

dt
f0 = κzθzfz

d

dt
fy = −κyfy + κzθzfzy + σ

2
yfy2

d

dt
fz = κyfy − κzfz + (2κzθz + σ

2
z)fz2

d

dt
fz2 = κyfzy − 2κzfz2

d

dt
fy2 = −2κyfy2

d

dt
fzy = 2κyfy2 − (κy + κz)fzy

with

f0(0) = fz(0) = fy(0) = fz2(0) = fy2(0) = 0, fzy(0) = 1
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Solving the above system yields

f0(t) =
e
−(2κz+κy)tθz

2(κzκ2y − κ3z)

�
2e2κzt(κz + κy)κ

2
zθz + e

κyt(κz + κy)κy(σ
2
z + 2κzθz)

− 2eκztκ
2
z(σ

2
z + (κz + κy)θz)− e

(2κz+κy)t(κz − κy)(2κ
2
zθz + κy(σ

2
z + 2κzθz))

+ 2e(κz+κy)t(κz + κy)(−κyσ
2
z + κ

2
zθz + κz(σ

2
z − 2κyθz))

�
,

fy(t) = θz(e
−κyt − e

−(κz+κy)t),

fz(t) =
e
−(2κz+κy)t

κz(κz − κy)

�
e
2κztκzκyθz + e

κytκy(σ
2
z + 2κzθz)− e

κztκz(σ
2
z + (κz + κy)θz)

+ e
(κz+κy)t(−κyσ

2
z + κ

2
zθz + κz(σ

2
z − 2κyθz))

�
,

fy2 ≡ 0, fzy = e
−(κz+κy)t, fz2(t) =

κy

κz − κy
(e−(κz+κy)t − e

−2κzt).

Inserting these expressions to (2.104) we get E[YtZt|Y0 = y, Z0 = z].

( iv)E[Z2
t |Y0 = y, Z0 = z] = q(t, y, z) and q satisfies

∂tq = κy(z − y)∂yq + κz(θz − z)∂zq +
1

2
σ
2
yy∂yyq +

1

2
σ
2
zz∂zzq (2.105)

Also, q satisfies

q(t, y, z) = q0(t) + qy(t)y + qz(t)z + qz2(t)z
2 + qzy(t)zy + qy2(t)y

2 (2.106)

Inserting (2.106) in (2.105) gives

d

dt
q0 +

d

dt
qyy +

d

dt
qzz +

d

dt
qz2z

2 +
d

dt
qzyzy +

d

dt
qy2y

2 = κy(z − y)(qy + 2qy2y + qzyz)

+ κz(θz − z)(qz + qzyy + 2qz2z)

+ σ
2
yyqy2 + σ

2
zzqz2
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which yields the system

d

dt
q0 = κzθzqz

d

dt
qy = −κyqy + κzθzqzy + σ

2
yqy2

d

dt
qz = κyqy − κzqz + (2κzθz + σ

2
z)qz2

d

dt
qz2 = κyqzy − 2κzqz2

d

dt
qy2 = −2κyqy2

d

dt
qzy = 2κyqy2 − (κy + κz)qzy

with

q0(0) = qz(0) = qy(0) = qy2(0) = qzy(0) = 0, qz2(0) = 1

We solve this system of equations and get

q0(t) =
e
−2κzt(eκzt − 1)2θz(σ2

z + 2κzθz)

2κz
,

qz(t) =
e
−2κzt(eκzt − 1)(σ2

z + 2κzθz)

κz
,

qz2(t) = e
−2κzt,

qy(t) ≡ qy2(t) ≡ qzy(t) ≡ 0.

Inserting above expressions to (2.106) yields the desired result.

( v) We set E[Y 2
t |Y0 = y, Z0 = z] = p(t, y, z). p satisfies the Kolmogorov’s backward

equation, that is,

∂tp = κy(z − y)∂yp+ κz(θz − z)∂zp+
1

2
σ
2
yy∂yyp+

1

2
σ
2
zz∂zzp (2.107)

From the polynomial property of moments we have

p(t, y, z) = p0(t) + py(t)y + pz(t)z + pz2(t)z
2 + pzy(t)zy + py2(t)y

2 (2.108)
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Plugging (2.108) in (2.107) gives

d

dt
p0 +

d

dt
pyy +

d

dt
pzz +

d

dt
pz2z

2 +
d

dt
pzyzy +

d

dt
py2y

2 = κy(z − y)(py + 2py2y + pzyz)

+ κz(θz − z)(pz + pzyy + 2pz2z)

+ σ
2
yypy2 + σ

2
zzpz2

which yields the following system of differential equations

d

dt
p0 = κzθzpz

d

dt
py = −κypy + κzθzpzy + σ

2
ypy2

d

dt
pz = κypy − κzpz + (2κzθz + σ

2
z)pz2

d

dt
pz2 = κypzy − 2κzpz2

d

dt
py2 = −2κypy2

d

dt
pzy = 2κypy2 − (κy + κz)pzy

with

p0(0) = pz(0) = py(0) = pz2(0) = pzy(0) = 0, py2(0) = 1

Solving this system of linear ODEs yields

p0(t) =
e
−(3κz+κy)tθz

2κz(κz − 2κy)(κz − κy)2κy(κz + κy)

�
e
(κz+κy)t(κz − 2κy)κ

3
y(κz + κy)

× (σ2
z + 2κzθz)− 2e3κztκ

2
z(κz − 2κy)(κ

2
z − κ

2
y)(σ

2
y + 2κyθz)− 4e2κztκ

2
z

× (κz − 2κy)κ
2
y(σ

2
z + (κz + κy)θz) + e

(3κz+κy)t(κz − 2κy)(κz − κy)
2

× (κ2zσ
2
y + κzκyσ

2
y + κ

2
yσ

2
z + 2κzκy(κz + κy)θz) + e

(3κz−κy)tκ
2
z(κz + κy)

× (κ2y(σ
2
y − σ

2
z) + κ

2
z(σ

2
y + 2κyθz)− 2κzκy(σ

2
y + 2κyθz)) + 2e(2κz+κy)tκ

2
y

× (κ2y − κ
2
z)(2κyσ

2
z − 2κ2zθz + κz(σ

2
y − 2σ2

z + 4κyθz))
�
,

py(t) =
e
−2κyt((1− e

κyt)κz(σ2
y + 2κyθz) + κy((eκyt − 1)σ2

y + 2(eκyt − e
(κy−κz)t)κyθz))

κy(κy − κz)
,
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pz(t) =
e
−(3κz+κy)t

κz(κz − 2κy)(κz − κy)2

�
− e

(κz+κy)t(κz − 2κy)κ
2
y(σ

2
z + 2κzθz)

+ e
3κztκz(κz − 2κy)(κz − κy)(σ

2
y + 2κyθz) + 2e2κztκ(κz − 2κy)κy

× (σ2
z + (κz + κy)θz)− e

(3κz−κy)tκz(κ
2
y(σ

2
y − σ

2
z) + κ

2
z(σ

2
y + 2κyθz)

− 2κzκy(σ
2
y + 2κyθz))− e

(2κz+κy)tκy(κy − κz)(2κyσ
2
z − 2κ2zθz

+ κz(σ
2
y − 2σ2

z + 4κyθz))
�
,

pzy(t) =
2κye−(κz+κy)t(e(κz−κy)t − 1)

κz − κy
,

py2(t) = e
−2κyt,

pz2(t) =
κ
2
ye

−2κzt(e(κz−κy)t − 1)2

(κz − κy)2
.

Corollary 2.2 Unconditional mean, variance and covariance of Yt and Zt is given by
the following

µ
0
y = θz, (2.109)

µ
0
z = θz, (2.110)

V
0
y =

σ
2
yθz

2κy
+

κyθzσ
2
z

2(κz + κy)κz
=

σ
2
yθz

2κy
+ V

0
yz, (2.111)

V
0
z =

σ
2
zθz

2κz
, (2.112)

V
0
yz =

σ
2
zθzκy

2κz(κz + κy)
=

κy

(κz + κy)
V

0
z . (2.113)

Proof. Letting t → ∞ in conditional moments given in Proposition 2.2 yields the desired
result.

After computing the conditional moments in Proposition (2.2) we are now ready to give
the transition equation for the two-factor model:

�
Ytk|tk−1

Ztk|tk−1

�
= M0(tk) +M1(tk)

�
Ytk−1|tk−1

Ztk−1|tk−1

�
+ vtk , vtk ∼ N(0, Q(tk)) (2.114)
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where

M0(tk) =




θz

κz − κy
(κz(1− e

−κy∆t)− κy(1− e
−κz∆t))

θz(1− e
−κz∆t)



 (2.115)

M1(tk) =



 e
−κy∆t

e
−κz∆t κy

κz − κy
(e∆t(κz−κy) − 1)

0 e
−κz∆t



 (2.116)

Q(tk) =

�
Vy(∆t, Ytk−1|tk−1

, Ztk−1|tk−1
) Vyz(∆t, Ytk−1|tk−1

, Ztk−1|tk−1
)

Vyz(∆t, Ytk−1|tk−1
, Ztk−1|tk−1

) Vz(∆t, , Ytk−1|tk−1
Ztk−1|tk−1

)

�
(2.117)

with ∆t = tk − tk−1 and Vy(t, y, z), Vz(t, y, z) and Vyz(t, y, z) are as given in (2.94),
(2.95) and (2.96) respectively.

Given the parameter set ϕ = (κz,κy, θz,λz
,λ

y
,σz,σy, a0, γ, b0, c0, H), Kalman filter con-

sists of prediction and updating steps which are applied for each time step in the data
sample. We give the filtering algorithm for the two-factor model where we use the
unconditional moments given in Corollary (2.2) as initial values of the filter:

Initialize:
�

Y0|0
Z0|0

�
=

�
θz

θz

�

P0|0 =





σ
2
yθz

2κy
+

κyθzσ
2
z

2(κz + κy)κz

σ
2
zθzκy

2κz(κz + κy)
σ
2
zθzκy

2κz(κz + κy)

σ
2
zθz

2κz





Prediction:
�

Ytk|tk−1

Ztk|tk−1

�
= M0(tk) +M1(tk)

�
Ytk−1|tk−1

Ztk−1|tk−1

�

Ptk|tk−1
= M1(tk)Ptk−1|tk−1

M1(tk)
� +Q(tk)

(Conditional covariance matrix of (Ytk , Ztk))

(2.118)
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R(τ, i)tk|tk−1
= Cz(τ, x) +

1

τ

�
By(τ, x)Ytk|tk−1

+Bz(τ, x)Ztk|tk−1

�

Ftkz = BPtk|tk−1
B

� +H
�

VC matrix of Rtk|tk−1
with B(τ, i) =

�
By(τ, i)

τ
,
Bz(τ, i)

τ

��

etk = Rtk −Rtk|tk−1
(n× n prediction error vector)

Updating:

Ktk = Ptk|tk−1
B

�
F

−1
tk

(Kalman gain)

Ytk|tk = Ytk|tk−1
+Ktketk (updated state vector)

Ptk|tk = Ptk|tk−1
−KtkBPtk|tk−1

For a non-Gaussian factor, Kalman filter provides an approximate likelihood function
which is in the following form

logL(R1, R2, ..., RN ;ϕ) = −K

2
log 2π − 1

2

K�

k=1

log |Ftk |−
1

2

K�

k=1

e
�
tkF

−1
tk

etk (2.119)

Notice that L is a function of et and Ft which are, in turn, depend on the parameter
set ϕ. Thus, as the final step of the QML method, we choose ϕ in such a way that the
likelihood function is maximized.

Here we want to point out that the observed data vectors may change size over the
sample period. This is due to the unavailability of the data for some tranches and/or
maturities . To overcome this problem, we adjust the Kalman filter algorithm in such a
way that it takes the size changes in the data into account.

2.6 Simulation Methodology

In the simulation analysis our objective is to elaborate more on the performance of the
model in a more general framework where scenarios with nonzero losses are permitted. In
this context, we do two different simulation analysis. Recall that, in our modeling setup
we deal with three stochastic processes, namely factors Y , Z and the loss process L. In
the first analysis we simulate trajectories for all three processes whereas in the second
one, which we call conditional simulation, we simulate the loss process L conditional
on the paths Yt and Zt that we filtered out via estimation procedure. In what follows
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we only discuss the first simulation methodology since the conditional simulation is a
constraint version of the first one.

We use Euler discretization to approximate the discrete time evolution of the factors Y
and Z in Equation (2.34)-(2.35) on {0 = t0 < t1 < ... < tK = T}. For k = 0, 1, ...,K − 1

we have

Ytk+1 = Ytk + κy(Ztk − Ytk)∆t+ σy

�
Ytk∆W

y
tk+1

, Y0 = y ∈ R+ (2.120)

Ztk+1 = Ztk + κz(θz − Ztk)∆t+ σz

�
Ztk∆W

z
tk+1

, Z0 = z ∈ R+ (2.121)

where ∆t = tk+1 − tk and ∆W
y,z
tk+1

= W
y,z
tk+1

−W
y,z
tk

. Here ∆W
y,z
tk+1

s are independent of
each other and distributed N(0,

√
∆t). Using this fact, to simulate trajectories of length

K for each of the processes Y and Z we first generate K numbers from the standard
normal distribution and then scale these numbers with

√
∆t. Inserting ∆W

y,z
tk+1

s and the
estimated parameters in (2.120) and (2.121) then yields a trajectory of length K for the
processes Y and Z respectively. Euler discretization methodology that we mentioned
above may give negative numbers for the values Ytk and Ztk . To avoid the negative
values, whenever realized we change these negative values by 10−8.

As the next step, to simulate the loss process L we use the simulated factors Y , Z,
parameter estimates and another parameter Ψ which we interpret as the importance
sampling parameter. The reason why we need the parameter Ψ is as follows. As it is
mentioned before, there does not occur any default during the sample period we use
and so the parameter set coming from the in-sample analysis is not able to generate
remarkable number of jumps. Moreover, Monte Carlo simulation is known to fail in
generating rare events unless the number of simulated scenarios is very large. Neverthe-
less, a frequently used technique in stress scenario generation is importance sampling.
In this context, it is possible to manipulate the number of jumps via amplifying jump
intensity Λt given in (2.32) with the importance sampling parameter Ψ. However, one
should take care of the necessary measure change for the adjustment of probabilities
assigned to each scenario. In the following we sketch the algorithm for simulating a loss
trajectory of length K.

1. Initiate the jump time τ = 0, number of jumps N = 0 and the loss process Lt0 = 0.

2. Initiate the arrival intensity Λ̄tk =
�k

n=0 Λtn at Λ̄t0 = 0.

3. Generate a number U from exponential distribution with parameter 1.

4. Set tk = τ .
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• While Λ̄tk − Λ̄τ < U and k < K calculate Λ̄tk+1 via

Λ̄tk+1 = Λ̄tk +Ψ(α(Lτ ) + βy(Lτ )Ytk + βz(Lτ )Ztk − r)∆t

set Ltk+1 = Ltk , k �→ k + 1

• If Λ̄tk − Λ̄τ ≥ U , i.e., when a jump occurs generate a number S from the
standard uniform distribution. S represents the probability of having the particular
jump size ∆Ltk = Ltk − Ltk−1 . Compute jump size via

∆Ltk = F
−1(Ltk , Ytk , Ztk , S)

where F is the jump size distribution given by

F (Ltk , Ytk , Ztk , x) =
α(Ltk) + βy(Ltk)Ytk + βz(Ltk)Ztk − α(Ltk + x)

α(Ltk) + βy(Ltk)Ytk + βz(Ltk)Ztk − r

− βy(Ltk + x)Ytk + βz(Ltk + x)Ztk

α(Ltk) + βy(Ltk)Ytk + βz(Ltk)Ztk − r

Then update the loss path and number of jumps

Ltk = Ltk +∆Ltk , N = N + 1

5. Set τ = tk. If τ > T stop, else return to step 3.

Using the methodology described above, we simulate 2000 scenarios. 1000 of the scenar-
ios are normal scenarios and generated via taking importance sampling parameter Ψ = 1.
On the other hand we take Ψ = 100 to simulate 1000 of stress scenarios. Since 1000

normal scenarios are equal probable, we set probability of each equal to q(i) = 1/1000,
i = 1, 2, ..., 1000. For the stress scenarios we first compute the likelihood ratio w(i),
i = 1, 2, ..., 1000 via

w(i) =
e
(Ψ−1)

�K−1
k=0 (α(Ltk )+βy(Ltk )Ytk+βz(Ltk )Ztk−r)∆t

ΨN
(2.122)

Then, the probability of each scenario is given by

p(i) =
w(i)

�1000
i=1 w(i)

(2.123)

Finally, to compute the probability of each scenario among 2000 scenarios we use the
fact that a normal scenario and a stress scenario are equally likely to be realized. Thus,
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we have q̄(i) = q(i)/2 and p̄(i) = p(i)/2, so that

1000�

i=1

q̄(i) + p̄(i) = 1

as it should be.

2.7 Numerical Analysis

2.7.1 Data

The raw data comprises daily observations of iTraxx Europe from 30 August 2006 to
3 August 2010. The stripped data, which has been sourced from Bank Austria is the
zero-coupon spreads across maturities/tranches, that is

R(t, τ, j) = −1

τ
logD(t, τ, j)− r (2.124)

where D is as given in (2.81) for four different time to maturities τ := T − t =

3, 5, 7, 10 and six tranches j = 1, ..., 6 with standard attachment and detachment points
0%, 3%, 6%, 9%, 12%, 22%, 100%. This corresponds to 972 observation days in each of
which we have a 6× 4 observation matrix.

We illustrate the time series of zero-coupon spreads in Figure 2.1. Naturally, the market
conditions are reflected in the data set. The index and tranche data follow relatively
stable pattern from the beginning of the data period to July 2007, where the market
is started to be affected from the credit crisis. In March 2008, we observe a spike in
the spread data which stems from the panic due to the possibility of the collapse of the
company Bear Stearns. Furthermore, a drastic upward movement is observed starting
from September 2008. This time period corresponds to the breakdown of the credit
market due to events such as the bankruptcy of Lehman Brothers. One other feature of
the data set we use is that there does not occur any default events during the sample
period.

In Figure 2.2 we provide index spreads across four maturities. Figure 2.1 and Figure 2.2
together show that the tranche data and the index data have the same up and downward
trends during the considered time period. To investigate further on the co-movement of
tranches and the index, in Figure 2.3 we give the series for running correlation between
changes in the index and changes in the tranche data for all maturities and tranches.
The striking observation in Figure 2.3a, 2.3b and 2.3c is that the correlation between
the index and the 22−100% tranche may become negative time to time. Moreover, it is
understood from these figures that the correlation between the index and the 22−100%

tranche increases drastically after July 2007.
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Figure 2.1: iTraxx Europe zero-coupon spread data from 30 Aug 2006 to 3 Aug 2010.

Figure 2.2: iTraxx Europe index spread data from 30 Aug 2006 to 3 Aug 2010.
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(a) 3-year (b) 5-year

(c) 7-year (d) 10-year

Figure 2.3: Running correlation between changes in the zero coupon tranche and index spreads from 30 Aug 2006 to 3 Aug 2010.
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As we are proposing a factor model, it is indispensable to run a principal component
analysis (PCA) to spread changes. PCA result suggests that first factor explains 83.36%
of total variation in spreads and second to fourth factors explain 88.30%, 92.29% and
94.59% respectively.

(a) First factor (b) Second factor

(c) Third factor (d) Fourth factor

Figure 2.4: PCA factor loadings

Figure 2.4 depicts the factor loadings for four principal components. The principal
component analysis suggests that one factor is not enough to explain the variation in
the data. Motivated by this result, we specify a two-factor model albeit the nested
one-factor version of the model is also estimated.

2.7.2 Results and Discussion

Using the estimation methodology given in previous sections, we fit the model to the
data set. Then, we perform a hedging analysis where the performance of variance-
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minimizing and regression based hedging results are evaluated. Moreover, we make a
simulation analysis in which normal and stress scenarios are generated. We use this set
of scenarios to assess the two aforementioned hedging approaches. We want to point out
that during whole analysis the risk-free rate is considered to be constant at r = 0.05 and
zero recovery is assumed. In the following subsections we give the results and discussion
on empirical analysis. Moreover we compare our findings with those obtained in Cont
and Kan [2011].

Estimation Results

As mentioned before, the QML approach makes it possible to estimate the model param-
eters and filtered out the unobservable factors simultaneously. We run the estimation
algorithm given in Section 2.5 for one and two factor models. Table 2.1 depicts the
parameter estimates for one and two factor models.

Table 2.1: Parameter values for the sample period 30 August 2006-3 August 2010

θz κy κz σy σz λy λz a0 γ b0 c0
2-factor model 0.0055 0.52 0.22 0.38 0.25 -0.66 -0.30 98.78 0.32 26.40 0.09
1-factor model 0.03 - 6.96e-05 - 0.15 - 1.44e-04 3.23e-05 26.08 23.96 -

We use the parameter estimates and the filtered factors to regenerate the data. We plot
actual vs estimated data in Figure 2.5 . Across all tranches/maturities the two-factor
model outperforms one factor in terms of the better fit. Furthermore, it is remarkable
how the one-factor model estimates are below from the actual data for 22% − 100%

tranche. Here, we want to point out that, a two-factor affine factor model with the
restriction of zero catastrophic component is, as the one factor-model, not able to fit to
the super-senior tranche. There, the importance of the catastrophic risk component of
the two-factor model comes into play. That is, under this two-factor affine framework
including the catastrophic component becomes inevitable for a better fit in the super-
senior tranche.

For piecewise constant βy(x), the changes of tranche spread equal

∆R(t, τ, j) =
By(τ, xj)

τ
∆Yt +

Bz(τ, xj)

τ
∆Zt

We plot the surfaces By(τ, x)/τ and Bz(τ, x)/τ in Figure 2.6. At the first sight, it can
be realized that the first factor loading in Figure 2.4, being hump shaped as function of
time to maturity, looks like a combination of By(τ, x)/τ and Bz(τ, x)/τ .

Inserting the parameter estimates and filtered factor series in formula (2.47) we get series
for expected loss given default. Moreover, to investigate the effect of the catastrophic
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(a) 0− 3% tranche (b) 3− 6% tranche

(c) 6− 9% tranche (d) 9− 12% tranche

(e) 12− 22% tranche (f) 22− 100% tranche

Figure 2.5: Actual vs Estimated Data
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(a) By(τ, x)/τ (b) Bz(τ, x)/τ

Figure 2.6: Basis surface curves By(τ, x)/τ and Bz(τ, x)/τ

component, we fix the catastrophic risk parameter c0 = 0 and insert the rest of the
estimated parameters and filtered factors into the formula. Figure 2.7a shows how the
implied expected loss given default changes in the sample period with and without
catastrophic component. In the same figure Graph 2.7b to 2.7d reveals the expected
loss given default series for different initial loss level (Lt) assumptions. In particular,
graph 2.7d reveals the case in which the loss level is changing. In Figure 2.7 series with
and without catastrophic component coincide till August 2007. This is because of the
fact that, before that time, the value of the factor Z is very close to zero. The most
important observation in Figure 2.7 is that, change in the initial loss level only causes
parallel shifts in the series without catastrophic component. However, the shape of the
series with the catastrophic component changes according to the initial loss level.

Hedging Results

For the whole sample period we perform the hedging analysis given in Section 2.4.4 for
all attachment and detachment points. As it is mentioned in Remark 2.4, variance of the
series ∆G

(x1,x2] and the linear correlation between changes in tranche and index gains
processes are important for the performance of regression based hedging. For this reason,
we provide the running variance, relative variance and correlation series in Figure 2.8.
It is observed that variance series are increasing for all tranches. On the other hand, in
July 2007 and March 2008 for all tranches but 12 − 22% and 22 − 100% there occurs
two main downward shifts in the correlation series. For the 12 − 22% the series stays
relatively constant and in 22− 100% tranche, there is a sharp increase in June 2007.

Figure 2.9 depicts the series for the gains process and nominal spot value of the STCDO
and hedging portfolio value both for regression based and variance minimizing strategy.



2. A DYNAMIC CDO TERM STRUCTURE MODEL 57

(a) (b)

(c) (d)

Figure 2.7: Expected loss given default with and without catastrophic component
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(a) Variance of ∆G(x1,x2]
t (b) Relative value of variances of ∆G(x1,x2]

t and
∆G(0,1]

t

(c) Running linear correlation ρt

Figure 2.8: Running variance, relative variance and linear correlation series
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P&L processes and the series for the variance minimizing and regression based hedging
strategies are plotted in Figure 2.10. According to P&L criterion, staying closer to
zero during the sample period, variance minimizing strategy is observed to outperform
regression based strategy for 0 − 3% tranche. For other tranches the situation is more
ambiguous as in some parts of the period the P&L series for the regression based strategy
is closer to zero and in the rest this holds true for the variance minimizing hedge.

If we focus on the last day of the sample period, for tranches 0− 3% and 9− 12% P&L
values for variance minimizing hedge are closer to zero implying a better performance
whereas for 3− 6% and 12− 22% regression based strategy performs better. The better
performance of the regression based strategy for the mentioned tranches can be explained
via Remark 2.4 and Figure 2.8a-2.8c where very high correlation between the tranche
gains process and the index is observed. Here, we want to point out that the presence
of defaults in the data set may deteriorate the linear correlation structure between the
index and tranches. This in turn may cause regression based strategy to perform worse.
We will try to clarify this assertion in the coming section where the hedging analysis
will be done under more general scenario set which permits for non-zero losses.

When we concentrate on the series for the hedging strategy φ in Figure 2.10, for all
tranches regression based hedge is observed to be more stable during the hedging period.
It is also worth mentioning that, both for variance minimizing and regression based
hedge, the change in φ at the beginning of the crisis around July 2007 for different
tranches shows different patterns. In particular, for tranches 0 − 3%, 3 − 6%, 6 − 9%,
9 − 12%, φ is decreasing in absolute value indicating a reduction in insurance and for
tranches 12 − 22% and 22 − 100% there is the opposite behavior. For the regression
based hedge, Remark 2.3 is helpful in understanding the different behavior of φ across
tranches. As it is shown in Figure 2.8b for tranches 12−22% and 22−100%, the relative
variance goes almost constant till July 2007 and then exhibits a sharp increase. On the
other hand, in the correlation graph 2.8c we observe that during the whole period the
series for 12 − 22% tranche stays constant and in July 2007 there is a large increase in
22 − 100% tranche. Together with these, Remark 2.3 suggests that, the reason of the
different behavior of the regression based strategy φ at the beginning of the crisis is the
different dynamics of the relative variance and linear correlation series of tranches.

In Figure 2.11 we provide the reduction in volatility for variance minimizing and regres-
sion based strategies. It is seen that, according to the reduction in volatility criterion,
regression based hedge perform better than variance minimizing hedge for all tranches.

We can summarize the results of this section as follows. Although the regression based
strategy yields more favorable results under the reduction in volatility criterion, accord-
ing to the P&L criterion performance of two hedging strategies depend on the tranche.
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(a) 0− 3%tranche (b) 3− 6% tranche

(c) 6− 9% tranche (d) 9− 12% tranche

(e) 12− 22% (f) 22− 100% tranche

Figure 2.9: Hedging results for the sample period: gains process, nominal spot value and
hedging portfolio value
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(a) 0− 3% tranche (b) 3− 6% tranche

(c) 6− 9% tranche (d) 9− 12% tranche

(e) 12− 22% tranche (f) 22− 100% tranche
Figure 2.10: Hedging results for the sample period: the hedging strategy φ and total
portfolio P&L process
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Figure 2.11: Reduction in volatility for variance minimizing and regression based hedge

In the next section we will do a simulation analysis to compare the performance of two
hedging strategies under more general scenarios.

Simulation Results

Using the method given in Section 2.6 and the estimated parameters of the two-factor
model we simulate 2000 trajectories for the time horizon of 252 days. 1000 of trajectories
correspond to normal scenarios and the rest represent stress scenarios. We then investi-
gate the performance of variance minimizing and the regression based hedging strategies
on simulated scenarios. Moreover, we perform a conditional simulation analysis in which
trajectories coming from the estimation are fixed and conditional on these trajectories
2000 loss scenarios are generated. We first give the results on general simulation analysis,
then the conditional simulation results follow.

In Figure 2.12 we provide sample trajectories for generated factors Y , Z and the loss
process L. In the given particular path, the loss process is observed to have two jumps
and reaches almost the value 0.03 indicating that the largest part of the 0− 3% tranche
is eroded. Effect of jumps in the loss trajectory can be seen in Figure 2.16a where the
tranche spot value becomes almost zero due to the fact that the remaining notional for
the 0− 3% tranche becomes very close to zero.

Figure 2.14 depicts P&L series for all tranches. This figure indicates that the perfor-
mance of the variance minimizing and regression based hedge similar during the 252 day
period and when concentrated on the last day of the sample, except the 3− 6% tranche,
variance minimizing hedge is observed to outperform the regression based strategy as
the total P&L value is closer to zero.
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(a) Simulated factor Z

(b) Simulated factor Y

(c) Simulated loss path

Figure 2.12: Hedging on a simulated scenario: sample trajectories
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(a) 0− 3%, 3− 6% tranche (b) 6− 9%, 9− 12% tranche

(c) 12− 22%, 22− 100% tranche

Figure 2.13: Hedging on a simulated scenario: gains process, nominal spot value and
hedging portfolio value



2. A DYNAMIC CDO TERM STRUCTURE MODEL 65

(a) 0− 3%, 3− 6%,6− 9% tranche (b) 9− 12%, 12− 22%, 22− 100% tranche

Figure 2.14: Hedging on a simulated scenario: total portfolio P&L value

Figure 2.15: Empirical distribution of L(T), 2000 scenarios with ψ = 1 and ψ = 100
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We take the set of all simulated scenarios and focus on the last date T of the simulation
period. The empirical cumulative distribution function for the loss process at time T

is given in Figure 2.15 showing that the simulation procedure is successful in the sense
that it produces loss scenarios ranging between 0 and 0.1.

To show the effect of the hedge, we plot the date T cumulative distribution of the
total hedging portfolio P&L distribution for variance minimizing and regression based
strategies. Results are depicted in Figure 2.16. Figure 2.16 implies that in most of
simulated trajectories both variance minimizing and regression based hedging strategies
yield total portfolio P&L values which are close to zero. In other words, both strategies
are successful in average. However, for all tranches, regression based strategy, which
is indicated by the dashed line, is observed to produce more extreme losses, that is
the density for the time T P&L values coming from the regression based strategy has
longer left tail. According to this observation, the variance minimizing strategy is more
successful than the regression based hedge for scenarios which permit non-zero losses.

To investigate further on the relative performances of hedging strategies, sitting at time
0, we estimate the riskiness of hedging portfolios for each day of the sample period
via computing value at risk (VAR) and expected shortfall at the confidence levels 99%

and 99.9% respectively. Results are given in in Figure 2.17. For all tranches, VAR
and expected shortfall series for regression based strategy is observed to lie above the
respective VAR and expected shortfall series of the variance minimizing hedge. In other
words, when compared to variance minimizing strategy, the regression based strategy
yields a riskier hedging portfolio.

As the second criterion, for each scenario we compute reduction in volatility for all
tranches. We then compute the descriptive statistics by taking the Radon-Nikodym
densities into account. Results for the regression based and variance minimizing hedge
is given in Table 2.2 and Table 2.3 respectively. According to these tables, for all
tranches mean values of reduction in volatility for regression based hedge are higher
than the mean values for variance minimizing hedge. This suggests that, with respect to
the reduction in volatility criterion, for all tranches variance minimizing hedge performs
better in average. On the other hand, regression based hedge yields more right-skewed
distribution for reduction in volatility implying that most of the values lie to the left
of the mean. Moreover, for all tranches regression based hedge yields more dispersed
reduction in volatility values as it is suggested by the coefficient of variation (CV) value.

Our next goal is to get the density function of reduction in volatility for regression
based and variance minimizing strategies. To achieve this, one should first compute
the related frequencies of the possible values for reduction in volatility. The important
point in this step is to adjust the frequencies coming from the stress scenarios, that is,



2. A DYNAMIC CDO TERM STRUCTURE MODEL 67

(a) 0− 3%, 3− 6% tranche (b) 6− 9%, 9− 12% tranche

(c) 12− 22%, 22− 100% tranche

Figure 2.16: Empirical distribution of P&L at T for variance minimizing and regression
based strategies
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(a) 0− 3% tranche (b) 3− 6% tranche

(c) 6− 9% tranche (d) 9− 12% tranche

(e) 12− 22% tranche (f) 22− 100% tranche
Figure 2.17: Time Series for VAR and Expected Shortfall values at 1% and 0.1% levels
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Table 2.2: Descriptive Statistics: Reduction in volatility for regression based hedge

Mean Median Std CV Max Min
0-3% 69.17 54.73 73.92 1.06 1257.5 9.86
3-6% 74.09 47.97 140.56 1.89 3531.4 6.96
6-9% 72.20 40.57 130.60 1.80 3938.8 3.86
9-12% 57.62 27.13 103.57 1.79 2766.7 5.21
12-22% 44.08 13.03 95.89 2.17 2601.9 1.61
22-100% 72.10 42.09 112.75 1.56 3761.5 5.43

Table 2.3: Descriptive Statistics: Reduction in volatility for variance minimizing hedge

Mean Median Std CV Max Min
0-3% 66.3 62.84 24.62 0.37 258.1 4.12
3-6% 64.95 55.72 43.56 0.67 601.6 3.36
6-9% 56.33 51.65 28.16 0.50 1131.8 12.95
9-12% 43.28 36.01 34.33 0.79 2223.6 10.26
12-22% 30.36 15.77 58.33 1.92 2361.4 5.45
22-100% 50.35 34.40 62.19 1.23 3261.6 15.98

scenarios which are generated by taking the importance sampling parameter ψ = 100.
However, this is easy as we have the related Radon-Nikodym densities. After we get the
adjusted frequencies, Kernel smoothing technique is used to get the density function of
reduction in volatility for regression based and variance minimizing strategies. For each
tranche, we plot the density of reduction in volatility in Figure 2.18 where for illustration
purposes logarithmic scale is used in the horizontal axis.

Conditional simulation analysis: We shall now present the results of conditional
simulation analysis. To begin with, in Figure 2.19 we provide the factor series Yt and Zt

that we filtered out from the data.

We fix the filtered factor series in Figure 2.19 and conditional on these trajectories
we simulated 2000 trajectories for the loss process again with importance sampling
parameter ψ = 1 and ψ = 100. Conditional distribution of the simulated loss process at
time T is depicted in Figure 2.20. One striking result is that, when compared with the
loss distribution function given in Figure 2.15, conditional loss distribution in Figure
2.20 gives higher probability to losses greater than 0.1. Moreover, simulation results
suggest that for ψ = 1, in 815 of 1000 simulated loss trajectories, there occurred a jump,
that is a default. This may imply that we were lucky in the crisis times that the market
did not experienced any defaults.

Our main objective for the reminder of this section is to compare our main findings with
Cont and Kan [2011].
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(a) 0− 3% tranche (b) 3− 6% tranche

(c) 6− 9% tranche (d) 9− 12% tranche

(e) 12− 22% tranche (f) 22− 100% tranche

Figure 2.18: Kernel density estimate of reduction in volatility in logarithmic scale
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(a) Filtered series: factor Y

(b) Filtered series: factor Z

Figure 2.19: Filtered series for the factors Y and Z from 30 Aug 2006 to 3 Aug 2010.

Figure 2.20: Empirical conditional distribution function of L(T )



72 2.7 Numerical Analysis

2.7.3 Comparison with Cont and Kan [2011]

Although the data set and the sample period of the current study and Cont and Kan
[2011] differs, it makes sense to provide a comparison between our findings and those
obtained in Cont and Kan [2011]. To provide a more appropriate basis for a comparison,
we first redo the in sample hedging analysis for the period covered in Cont and Kan
[2011], that is, the period 25 March-25 September 2008. According to the results of
this analysis, the regression based hedge is observed to be more efficient in terms of
the reduction in volatility criterion. This match up with the findings of Cont and Kan
[2011]. Moreover, we compare the variance minimizing and regression based strategies
under the criterion of relative hedging error (see Equation (2.79) ). In particular, we
compute the relative hedging error values at dates 16 September and 25 September 2008.
The results are depicted in Figure 2.21 where bar graphs 2.21a and 2.21b show that the
relative hedging error criterion depends very much on the final date of the hedging
period. When we compare these graphs with the ones obtained in Cont and Kan [2011],
the results are very much in the same direction.

(a) Relative hedging error at 25 September 2008 (b) Relative hedging error at 16 September 2008

(c) Reduction in volatility: 25 March 2008-25
September 2008

Figure 2.21: Relative hedging error and reduction in volatility
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Thus, the relative success of the regression based hedging in the given data period is the
common finding of the two study. However, our findings show that under more general
scenarios regression based hedge strategy can not outperform the variance minimizing
hedge. Moreover, according to the VAR and expected shortfall results, regression based
strategy is observed to engender riskier hedging portfolios.

2.8 Conclusion

In this part of this thesis, following the framework given in Filipović et al. [2009] we
propose a two-factor affine factor model in which a catastrophic risk component is con-
sidered as a tool for explaining the dynamics of the super-senior tranches. We then
investigate the uniqueness of the martingale measure and the market incompleteness for
the setup given in Filipović et al. [2009]. Moreover, we analyze the real world perfor-
mance of variance minimizing and regression based hedging strategies for the hedging of
STCDOs with the underlying index default swap. We conclude our analysis with a sim-
ulation analysis, in which the objective is to test the performance of hedging strategies
under more general loss scenarios.

The results of this part can be summarized as follows. We showed that the two-factor
model yields satisfactory results in terms of the successful fit to iTraxx Europe data.
Uniqueness of the martingale measure for the current modeling setup is proved. However,
due to the presence of infinite number of possible jump sizes for the loss process, the
market is characterized as incomplete.

Our findings also suggest that within the data period, both hedging strategies are efficient
in reducing the risk on the STCDO significantly. However, according to the reduction
in volatility criterion, the regression based strategy is observed to be more successful
than the variance minimizing hedge. This result agrees with the findings of Cont and
Kan [2011]. On the other hand, the simulation analysis, in which we use importance
sampling technique to generate loss scenarios, indicates that variance minimizing hedge
performs better than regression based hedge under more general scenarios permitting
non-zero loss trajectories.
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3

Pricing and Hedging in an Affine
Framework

3.1 Introduction

Inflation indexed derivatives are becoming popular as the amount of inflation linked
liabilities is increasing in financial markets. One can consider, for example, the insurance
sector where inflation linked products are purchased to cover inflation risk associated
with the pension payments. Moreover, in the developing economies, where a sustained
high-medium level of inflation is observed, investors prefer inflation linked products as
long-term investments with the idea of preserving the purchasing power of their nominal
income. Additionally, the current financial crisis and the rising commodity prices caused
an increase in inflation expectations resulting in an increase in the demand for inflation
linked products. On the supply side, monetary authorities increase their issue of inflation
linked bonds to make the inflation targeting policies more reliable and to reduce the
inflation premium paid in the issue of nominal bonds.

Inflation is defined as the percentage change in the value of a fixed basket of goods and
services. A zero-coupon inflation indexed bond, also called treasury inflation protected
security (TIPS), is a debt security which pays not the issue date face value but the
inflation-adjusted value when the maturity date comes. That is, the amount received
by the investor has the same purchasing power with the issue date purchasing power
of the face value. In this way, indexed bonds provide a protection against inflation. In
case of a coupon paying indexed bond, the pre-determined coupon rate is paid over the
inflation adjusted notional of the bond. In other words, unlike regular bond, an inflation
indexed bond when it is hold until the maturity, guarantees the real interest regardless
of the future realized inflation. Naturally, in this case the nominal interest is not known
a priori and varies with the realized inflation. Inflation indexed bonds are not the only
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inflation sensitive instruments. Options on inflation and inflation swaps are the other
liquid inflation linked products.

The foreign currency analogy is the most widely used approach for the modeling of
inflation derivatives. The rationale of this approach is that specifying the real and
nominal interest rate term structures and considering the nominal and real part of the
economy as the domestic and foreign economy make it possible to treat the price index
process as an exchange rate between the real and nominal economies. To be more precise,
let us consider a real bond which is defined as the instrument paying one unit of price
index basket in real terms at the maturity. Let us now consider that we are investors in
the nominal economy, that is, the economy in which the value of all assets are described
by the nominal units, i.e., money terms. Foreign currency analogy suggests that when
converted to the nominal units via price index, real bond is a traded instrument in the
nominal economy.

To our knowledge, the first pricing model for inflation linked products is proposed by
Hughston [1998] where a foreign exchange analogy for inflation derivatives pricing is
used. To price TIPS and related derivatives, Jarrow and Yildirim [2003] modeled the
evolution of the nominal and real term structures and the consumer price index by
using an HJM foreign currency analogy. More specifically, they build a arbitrage free
term structure model and derive the no arbitrage drift conditions under the assumption
that the real bank account is a tradeable asset in the nominal economy. An alternative
approach is proposed independently by Belgrade et al. [2004] and Mercurio [2005] in
which the lognormal Libor market model is adapted to inflation modeling. In this
setting, the underlying variables are the forward price indices and via modeling the
price indices they propose pricing models for inflation swaps. As an extension of the
HJM approach proposed by Jarrow and Yildirim [2003], Hinnerich [2008] proposes a
pricing model for inflation swaps in which the forward interest rates and the consumer
price index are allowed to be driven by a standard multidimensional Wiener process
and a general marked point process. Considering a three-factor Gaussian framework,
Kjaergaard [2007] models inflation dynamics and gives close form expressions for the
index, discount factors and year-on-year inflation swaps.

In this chapter, under the foreign currency analogy we consider a three-factor Gaussian
affine model for the pricing of nominal and inflation indexed bonds. The factor process is
considered to be composed of the nominal short rate, real short rate and the logarithm
of the price index process. By utilizing tools from the theory of affine processes we
get closed form expressions for nominal bond price, inflation bond price and the price
index. Imposing no-arbitrage assumption under the foreign currency analogy leads to
drift restrictions that the factor process has to satisfy. In particular, one of the conditions
that the drift matrix of the factor process has to satisfy is the well known Fisher equation
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which states that the expected appreciation in the price index is equal to the difference
between the nominal and real short rates.

When we consider the continuum of nominal bonds, indexed bonds and the real bank
account as the tradable instruments of the nominal economy, we are in a complete market
setting in the sense that every contingent claim is attainable. In such a case there is
no special hedging problem and complete hedge is provided where the hedging strategy
follows from delta hedging arguments. In the current study we investigate whether it
is possible to hedge an inflation bond of a given maturity by using nominal bonds with
different maturities only. Clearly, this question is related with the question of whether
the continuum of nominal bonds span the above mentioned affine factor market. That
is, when the set of hedging instruments is restricted to the continuum of nominal bonds,
does the market still possesses the completeness property. Naturally, the positive answer
is not for free in the sense that it necessitates some restrictions on the parameters of
the factor process. In this regard, the completeness problem for the market which is
spanned by a d-dimensional diffusion factor process and there are d tradable assets is
solved by Davis and Obloj [2008] and a criterion, depending on the partial derivatives
of the d- price processes with respect to d-factors, is given. However, as we pointed out
above, the main question is not on the market completeness, we ask for something less.
Our main goal is to find conditions on the parameters of the factor process which make
it possible to hedge inflation bonds.

As the second task, this chapter deals with the hedging question we asked above and
under the assumption of diagonalizable drift matrix for the factor process, it introduces
conditions on the eigenvalues and the eigenvectors of the drift matrix which guarantee
the hedge of an inflation indexed bond of a given maturity only by trading nominal
bonds of different maturities. The novelty of this work is due to this hedging analysis.
Combining no-arbitrage restrictions, that is, the conditions on the drift matrix, with
the conditions regarding the hedge and utilizing the criterion given in Davis and Obloj
[2008] to investigate the market completeness we find that under the foreign currency
analogy and the assumption of diagonalizable drift matrix, cases in which it is possible
to hedge inflation bonds by using nominal bonds coincide with cases where the market
is spanned by the continuum of nominal bonds. Hence, as the second main contribution
of this study, we show that in the current modeling setup there is no such situation in
which it is possible to hedge inflation bonds but hedging of other contingent claims is
not granted. To sum up, our findings suggests that under the foreign currency analogy
and diagonalizable drift matrix assumption hedging of inflation bonds by using nominal
bonds is possible if and only if the market is spanned by the nominal bonds.

This chapter is structured as follows. Section 2 describes the underlying modeling frame-
work. In Section 3 we provide pricing equations for nominal and inflation bonds. Section
4 introduces the results on hedging of inflation bonds and Section 5 concludes.



80 3.2 Model Specification

3.2 Model Specification

In the current chapter, we will use the notation X
� to denote the transpose of the matrix

or the vector x. For a matrix X, X(i,j) will represent the (i, j)th entry of the matrix and
X

(i) will address the i
th column. For a vector, x(i) will indicate the i

th entry. We will
occasionally denote a matrix with columns xi, i = 1, · · ·, n with (x1|x2| · ·|xn). The cross
product of two vectors x, y is indicated by x× y. The basis vector having 1 in the n

th

entry and other entries zero is represented by en.

We consider a finite time horizon [0, T ∗] and a frictionless market, meaning that there
are no transaction costs or taxes and short selling is allowed. The uncertainty in the
market is represented by the probability space (Ω,F, (Ft),P) where P is the statistical
probability measure. Let W

P be a 3-dimensional standard Brownian motion defined
on this probability space. The filtration (Ft) is assumed to be the natural filtration
generated by W

P and to satisfy the usual conditions.

We assume that in the given market the continuum of zero-coupon conventional (nom-
inal) and inflation-indexed bonds are traded. The zero-coupon conventional bond is
defined as the instrument which pays one unit of cash at the maturity date T and time
t ≤ T of this bond is denoted by P (t, T ). Whereas, at the maturity date T a zero-
coupon inflation-indexed bond pays the nominal value of one unit of price index at time
T . That is, it pays the nominal amount which has the same purchasing power with the
purchasing power of one unit of cash at the issue date. We indicate the time t ≤ T price
of the zero-coupon inflation-indexed bond by �Π(t, T ).

We assume that prices of conventional and inflation-indexed bonds are driven by nominal
interest rate r, real interest rate ρ and the price index I. These three factors are
represented by the following vector process X

X =




X

(1)

X
(2)

X
(3)



 =




r

ρ

log(I)



 (3.1)

Under the physical measure P the following Gaussian dynamics is assumed for the factor
process X

dXt = (BP + β
P ·Xt)dt+ Σ · dW P

t , X0 = x ∈ R+ × R2
, (3.2)

where the vector B
p ∈ R3 and the matrices β

p and Σ ∈ R3×3.

The theory of affine processes suggests that, given the dynamics in (3.2), X follows an
affine process (see Definition 2.2 and for details see e.g, Filipović [2009], Chp. 10). Affine
processes are widely used in finance due to their analytical tractability. Furthermore,
in most cases, affine factor models yield closed form pricing formulae while for others
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this class of processes make it possible to compute prices numerically via their defining
property given in (2.25). In this study, we will also utilize the affine property of the
factor processes to get closed form formulae for conventional and inflation indexed bond
prices.

The dynamics given in (3.2) are Gaussian implying that the value of the factor may
become negative with positive probability. This is not unrealistic for the real short rate
and the inflation process as they are observed to be negative time to time. However, this
particular choice can be criticized for the nominal short rates. Despite this drawback
Gaussian term structure models still receives significant interest due to their computa-
tional tractability. At this point, we also want to point out that, in addition to the
simplicity it provides for the computation of explicit pricing formulae, this particular
choice for the dynamics of the factor process is to provide an extensive hedging analysis
that will be given in a later section. Moreover, contrary to the most of the existing
models in the literature, the specification of the factor process as in (3.2) allows for
the long run as well as instantaneous relations between the real rate, nominal rate and
inflation.

Given the dynamics of nominal and real short rate processes r and ρ in (3.2), we can
immediately define the nominal and real savings account processes Sr and S

ρ as follows

S
r
t = e

� t
0 rsds, (3.3)

S
ρ
t = e

� t
0 ρsds, ∀t ∈ [0, T ∗]. (3.4)

Now we are ready to define a no-arbitrage criterion for the given bond market as follows.

Definition 3.1 The bond market is called arbitrage-free if

1. P (T, T ) = 1 and �Π(T, T ) = I(T ) for every T ∈ [0, T ∗],

2. there exists a probability measure Q on (Ω,FT ∗) equivalent to P such that the

discounted prices
P (t, T )

S
r
t

,
�Π(t, T )
S
r
t

and
I(t)Sρ

t

S
r
t

are Q-martingales.

In a market which posses the the arbitrage-free property in the sense of Definition 3.1
the conventional and inflation-indexed bond prices can be represented as

P (t, T ) = EQ
�
e
−

� T
t rsds

���Ft

�
(3.5)

�Π(t, T ) = EQ
�
e
−

� T
t rsdsIT

���Ft

�
= EQ

�
e
−

� T
t rsdse

X(3)
T

���Ft

�
(3.6)

Note that here we implicitly assume that the real bank account I(t)Sρ
t is tradable. This

is also one of the assumptions in Jarrow and Yildirim [2003]. Making this assumption is
equivalent to say that the foreign exchange analogy holds under which a drift condition
for the inflation process can be deduced. However, the results in Hinnerich [2008] shows
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that in the HJM framework, the foreign exchange analogy is indeed hold (see Lemma
2.1 in Hinnerich [2008]) irrespective of the assumption on the tradebility of I(t)Sρ

t .
Unfortunately, as we are following a short-rate modeling framework, the result given in
Hinnerich [2008] does not apply to our case. This is because, in the current framework
we are not able to define real bond prices in terms of the forward rates. Thus, to be able
to get drift conditions on the inflation process, which we will state later on this section,
we choose to make this assumption. Here, we wish to remind the worth of having these
conditions. The importance is that, without these conditions one can not guarantee the
consistency between the real and nominal economies.

In (3.2), the dynamics of the process X is specified under the physical measure P. On
the other hand, for pricing purposes we have to use the Q-dynamics of the factor process.
With this purpose in mind, in the following part we deal with the equivalent change of
measure.

Let λ be an adapted vector process in Rd such that the stochastic exponent

Et

�� .

0
λs · dW P

s

�
= e

� t
0 λu·dWu− 1

2

� t
0 �λu�2du (3.7)

is a true P-martingale. Then, Girsanov’s theorem states that

dQ
dP = ET ∗

�� .

0
λs · dW P

s

�

defines a probability measure Q equivalent to P and

Wt = W
P
t −

� t

0
λsds

is a d-dimensional Q-Brownian motion. It is a well known feature of the short- rate mod-
els that to be able to use arbitrage pricing one has to specify the process λ exogenously
and then each specification of λ satisfying the conditions of Girsanov’s theorem yields
different measures Q. As we stated above, to price inflation indexed and conventional
bonds we want to make use of the affine processes theory. In this context, it is crucial
to preserve the affine property of the factor process X under a measure transformation.
To this end, we follow the results given in Cheridito et al. [2007] and specify λ as an
affine function of the state vector Xt.

λt = λ1 + λ2Xt (3.8)

where λ1 is a 3-vector of constants and λ2 is a 3× 3 matrix. At this point one needs to
check whether this specification of λ guarantees that (3.7) is a P -martingale. The re-
sults, more specifically Theorem 2.4 of Cheridito et al. [2005] implies that this condition
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is satisfied and thus (3.7) is a true P-martingale. This shows the existence of the equiv-
alent measure under which the process X possesses the affine property. In particular,
specifying λ as in (3.8) yields the following Q-dynamics for the process X

dXt = (B + β ·Xt)dt+ σ · dWt (3.9)

with B = B
P + Σ · λ1 and β = β

P + Σ · λ2.

To guarantee the absence of arbitrage in the market, from now on we will take the
equivalent measure Q specified by λ given in (3.8) as the martingale measure. That
is, we assume that the discounted prices are martingales under this specific measure.
Indeed, this assumption yields some restrictions on the drift of the factor process X that
we will state later on.

3.3 No-arbitrage Pricing

In this part our objective is to find the price of conventional and inflation indexed bonds
under the aforementioned modeling framework. Having an arbitrage-free market, we
achieve this goal via using the formula (3.5) and (3.6). The following theorem is the first
step towards the computation of bond prices and it mainly utilizes the affine property
of the factor X under the martingale measure Q.

Theorem 3.1 The discounted transform EQ[e−
� T
t rsdseu

�·XT |Ft] of the process X hav-
ing dynamics (3.9) is in the following form

EQ
�
e
−

� T
t rsdse

u�·XT

���Ft

�
= e

Φ(T−t,u)+Ψ(T−t,u)�·Xt (3.10)

for u ∈ iR3 and t ≤ T and where Φ and Ψ = (Ψ(1)
,Ψ(2)

,Ψ(3))� are given by

Ψ(t, u) = e
β�t · u−

� t

0
e
β�(t−s) · (1, 0, 0)�ds (3.11)

and

Φ(t, u) =

� t

0

�
1
2Ψ(r, u)� · Σ · Σ� ·Ψ(r, u) +B

� ·Ψ(r, u)
�
dr. (3.12)

Proof. It follows from Theorem 10.4 of Filipović [2009] that the discounted transform
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satisfies (3.10) where Φ and Ψ solve the following system of differential equations

∂tΦ(t, u) =
1

2
Ψ(t, u)� · Σ · Σ� ·Ψ(t, u) +B

� ·Ψ(t, u), (3.13)

Φ(0, u) = 0,

∂tΨ(t, u) = β
� ·Ψ(t, u)− (1, 0, 0)�, (3.14)

Ψ(0, u) = u.

for u ∈ iR
3 and t ≤ T .

We first solve the linear differential equation (3.14) as follows

e
−β�t · ∂tΨ(t, u) = e

−β�t · β� ·Ψ(t, u)− e
−β�t · (1, 0, 0)�

∂t(e
−β�t ·Ψ(t, u)) = − e

−β�t · (1, 0, 0)� (3.15)

Here, notice that all exponentials appearing in (3.15) are matrix exponentials, i.e., for
the square matrix β we have

e
βt =

∞�

k=0

β
k

k!
t
k
.

Also recall that exponential of a matrix is always an invertible matrix, thus using
(e−β�t)−1 we get

Ψ(t, u) = (e−β�t)−1 · u− (e−β�t)−1
� t

0
e
−β�s · (1, 0, 0)�ds. (3.16)

Using the fact that (e−β�t)−1 = e
β�t one can write (3.16) as follows

Ψ(t, u) = e
β�t · u−

� t

0
e
β�(t−s) · (1, 0, 0)�ds. (3.17)

Then, as the last step one can find Φ via simple integration

Φ(t, u) =

� t

0

�
1
2Ψ(r, u)� · Σ · Σ� ·Ψ(r, u) +B

� ·Ψ(r, u)
�
dr. (3.18)

After computing the discounted transform for the factor process X, we can easily com-
pute the conventional and inflation indexed bond prices given by (3.5) and (3.6) respec-
tively. The following corollary of the Theorem 3.1 gives the desired result.

Corollary 3.1 Let X has the dynamics given in (3.2), then the time t ≤ T prices
P (t, T ) and �Π(t, T ) are given by

P (t, T ) = e
φ1(T−t)+ψ1(T−t)�·Xt (3.19)

�Π(t, T ) = e
φ2(T−t)+ψ2(T−t)�·Xt (3.20)
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where we have

ψ1(t) = −
� t

0
e
β�(t−s) · (1, 0, 0)�ds, (3.21)

φ1(t) =

� t

0

�
1
2ψ1(r)� · Σ · Σ� · ψ1(r) +B

� · ψ1(r)
�
dr (3.22)

and

ψ2(t) = e
β�t · (0, 0, 1)� −

� t

0
e
β�(t−s) · (1, 0, 0)�ds, (3.23)

φ2(t) =

� t

0

�
1
2ψ2(r)� · Σ · Σ� · ψ2(r) +B

� · ψ2(r)
�
dr. (3.24)

Proof. To find the bond price P (t, T ), we set u = (0, 0, 0) in (3.10), (3.11) and (3.12)
respectively. This yields

P (t, T ) = EQ
�
e
−

� T
t rsds

��Ft

�
= e

φ1(T−t)+ψ1(T−t)�·X(t)

where

ψ1(t) := Ψ(t, (0, 0, 0)�) = −
� t

0
e
β�(t−s) · (1, 0, 0)�ds,

φ1(t) := Φ(t, (0, 0, 0)�) =

� t

0

�
1
2ψ1(r)� · Σ · Σ� · ψ1(r) +B

� · ψ1(r)
�
dr.

Following a similar strategy, for the inflation indexed bond price we take u = (0, 0, 1)�

in (3.10) and get

�Π(t, T ) = EQ
�
e
−

� T
t rsdse

X(3)
T

���Ft

�
= e

φ2(T−t)+ψ2(T−t)�·Xt

with

ψ2(t) := Ψ(t, (0, 0, 1)�) = e
β�t · (0, 0, 1)� −

� t

0
e
β�(t−s) · (1, 0, 0)�ds,

φ2(t) := Φ(t, (0, 0, 1)�) =

� t

0

�
1
2ψ2(r)� · ΣΣ� · ψ2(r) +B

� · ψ2(r)
�
dr.

This finishes the proof.

Remark 3.1 To determine the value of the bond prices for a given set of parameters
one needs to compute the value of eβ� . Fortunately, there are methods based on some
approximation techniques to compute the matrix exponent numerically. In the particular
case, where β

� is diagonalizable, computation of the matrix exponential even reduces to
an easier task.
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As we mentioned above, absence of arbitrage in the market implies some restrictions
on the Q-drift of the factor process X. The following lemma states and proves drift
restrictions that arise from no-arbitrage condition.

Lemma 3.1 Let the foreign currency analogy hold and assume there is no arbitrage
in the market. Then the matrix β and the vector B are in the following form

β =




β
(1,1)

β
(1,2)

β
(1,3)

β
(2,1)

β
(2,2)

β
(2,3)

1 −1 0



 (3.25)

and

B =

�
B

(1)
, B

(2)
,−1

2

���Σ�(3)
���
2
��

(3.26)

where B
(i) and β

(i,j), for i = 1, 2 and j = 1, 2, 3, are constants in R.

Proof. The condition 2 of Definition 3.1 states that in an arbitrage-free market

I(t)Sρ
t

S
r
t

is a martingale under the risk neutral probability measure Q. Imposing this martingale
property to the price process will yield the desired result.

To begin with, we derive the Q dynamics of the index process I by the Itô’s formula as

dI(t)

I(t)
=

�
B

(3) + β
�(3) ·Xt +

1

2

���Σ�(3)
���
2
�
dt+ Σ�(3) · dW (t) (3.27)

Following that, the risk neutral dynamics of the process Yt =
I(t)Sρ

t
Sr
t

reads

dYt

Yt
=

�
B

(3) + β
�(3) ·Xt +

1

2

���Σ�(3)
���
2
+ ρt − rt

�
dt+ Σ�(3) · dW (t) (3.28)

Imposing the martingale property, that is, making the drift of (3.28) equal to zero
dt⊗ dQ− a.s, we get

B
(3) + β

�(3) ·Xt +
1

2
�Σ�(3)�2 = rt − ρt, (3.29)

which can be rewritten as

B
(3) + β

�(3) ·Xt +
1

2
�Σ�(3)�2 = (1,−1, 0) ·Xt (3.30)

implying that we have

β
�(3)

= (1,−1, 0) (3.31)

B
(3) = −1

2

���Σ�(3)
���
2

(3.32)



3. PRICING AND HEDGING IN AN AFFINE FRAMEWORK 87

and this finishes the proof.

Remark 3.2 Equation (3.29) is the well known Fisher equation which states that the
risk neutral appreciation rate of the price index is equal to the difference between nominal
and real short rate.

In the next section, we will continue with the hedging problem of inflation indexed bonds.

3.4 Hedging Problem

When we take the continuum of nominal bonds, indexed bonds and the real bank account
as the tradable instruments in the above introduced market, we are in a complete market
setting in the sense that every contingent claim depending on the factor process is
replicable by a self financing portfolio consisting of the tradable assets. In such a case,
hedging of an inflation bond is a trivial task as any indexed bond of a given maturity
can be replicated by a portfolio consisting of nominal bonds, indexed bonds and the
real bank account where the hedging strategies are provided by the deltas. However,
when we restrict the set of hedging instruments to the continuum of nominal bonds, the
hedging problem becomes non-trivial and becomes equivalent to the question of whether
the continuum of nominal bonds spans the market that we described above. In the
following, we will in particular narrow this problem down to the hedging of inflation
indexed bonds and ask whether inflation bonds can be replicated by nominal bonds or
not. More explicitly, the main question that we will try to answer is the following

Problem 1 Is it possible to replicate an inflation indexed bond of fix maturity by a
portfolio formed by dynamically trading in the risk free account and nominal bonds with
different maturities?

Clearly, this question is less restricted than the market completeness question and we
expect that the restrictions guaranteeing the hedge of inflation bonds should be less than
the ones needed for the market completeness. If we go back to the market completeness
question, for our current setup the market completeness question can be investigated via
results given in Davis and Obloj [2008]. This study introduces a completeness criterion
for the market which is spanned by a d-dimensional diffusion factor process and there are
d tradable assets. If in our setup, we consider the bonds with d = 3 different maturities as
the tradable assets in the market and imagine the inflation indexed bond as a contingent
claim depending on the inflation, we fall into the frame work given in Davis and Obloj
[2008]. Thus, we can use the results therein to investigate the market completeness for
our setting. Then, having the market completeness, that is, the spanning property of
nominal bonds, means the possibility of using nominal bonds in the hedging of other
derivative instruments, such as inflation swaps. In the following, in addition to provide
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an answer to Problem 1, employing the results given in Davis and Obloj [2008] we will
also investigate the market completeness.

To answer the question 1, we construct a self financing portfolio which consists of savings
account and n nominal bonds with different maturities. The Q-dynamics of the hedging
portfolio V reads

dVt =
n�

i=1

c
i
tdP (t, Ti) + rt

�
Vt −

n�

i=1

c
i
tdP (t, Ti)

�

� �� �
dt

=
n�

i=1

c
i
tP (t, Ti)

�
rtdt+ ψ1(Ti − t)� · Σ · dWt

�
+ rt

�
Vt −

n�

i=1

c
i
tP (t, Ti)

�
dt (3.33)

with T ≤ T1 < T2 < ... < Tn < T
∗ and where c

i
t ∈ R, (i = 1, ..., n), indicates the

number of the nominal bond with maturity Ti we hold at time t and the term with the
brace denotes the amount deposited on the savings account or borrowed from the savings
account. Here notice that we impose the condition that T ≤ Ti, that is maturities of
the nominal bonds that we are using for hedge must be larger than the maturity of the
inflation bond. Also notice that it is sufficient to use n = 3 different nominal bonds since
we have �W a 3-dimensional Brownian motion, that is 3 independent risk sources in the
market. Now, we apply the Itô formula and write the discounted portfolio dynamics as

d

�
Vt

St

�
=

3�

i=1

c
i
t
P (t, T )

St
ψ1(Ti − t)� · Σ · dWt (3.34)

On the other hand the discounted inflation indexed bond price process satisfies

d

�
�Π(t, T )
St

�
=

�Π(t, T )
St

ψ2(T − t)� · Σ · dWt (3.35)

In order to have Vt = �Π(t, T ) for all t ≤ T , the vector
�
c
1
t , c

2
t , c

3
t

�
should be chosen

in such a way that the quadratic variation terms that appear in dynamics (3.34) and
(3.35) become equal at all times t. Existence of such a choice guarantees the hedge of
T -inflation bond by a portfolio consisting of nominal bonds.

Assumption 1 Assume Σ given in the dynamics (3.2) is non-degenerate.

Under Assumption 1, finding an hedging portfolio which replicates �Π(t, T ) is equivalent
to

�Π(t, T )
St

ψ2(T − t)� =
3�

i=1

c
i
t
P (t, Ti)

St
ψ1(Ti − t)� (3.36)
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defining

ĉ
i
t = c

i
t
P (t, Ti)
�Π(t, T )

(3.37)

we get

ψ2(T − t) =
3�

i=1

ĉ
i
tψ1(Ti − t)� (3.38)

Equation (3.38) reveals that, our problem reduces to determine whether for each t ≥ 0

the vector ψ2(T − t), for fixed T ≤ T
∗, can be represented as a linear combination of

ψ1(Ti − t), i = 1, 2, 3, for some T ≤ T1 < T2 < T3 ≤ T
∗. That is, whether for each t the

vector ψ2(T − t) lies in the subset consisting of all possible linear combinations of the
vectors ψ1(Ti − t), i = 1, 2, 3. Here, notice that this subset is by definition the span of
vectors ψ1(Ti − t), i = 1, 2, 3 and thus a subspace of R3. Therefore, solving problem 1
becomes equivalent to find the answer of the following question.

Problem 2 Fix T ≤ T
∗, is the vector ψ2(T − t) in span{ψ1(Ti − t)|i = 1, ..., 3},

∀t ≤ T and for some Ti, i = 1, 2, 3, T ≤ T1 < T2 < T3 ≤ T
∗?

Here, we want to emphasize that T1 < T2 < T3 are fixed throughout. That is, when at
t = 0 we start with an hedging portfolio consisting of nominal bonds with maturities
T1, T2, T3 it is allowed to trade only that specific bonds at the following time points.
Instead, one can also insists on the convention that the time to maturity of the nominal
bonds are fixed. However, this convention will lead us to another problem where a
different kind of analysis is needed. Here, we first fix t. In particular, without loss of
generality we can fix t = 0. For fixed Ti, we use equations (3.21) and (3.23) and write
the 3-vectors

ψ1(Ti) = −
� Ti

0
e
β�(Ti−s)(1, 0, 0)�ds (3.39)

ψ2(T ) = e
β�T (0, 0, 1)� −

� T

0
e
β�(T−s)(1, 0, 0)�ds (3.40)

Then, we consider (3.39) as the value of the solution of the following system evaluated
at Ti.

ψ
�(z) = β

�
ψ(z)− (1, 0, 0)� (3.41)

ψ(0) = 0

for z ≥ 0.

For the reminder of this section, one of the main objectives is to characterize the span
generated by the vectors in the range of the function ψ. The next lemma is the first
step towards this goal and will significantly ease the later development of our analysis.
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Lemma 3.2 The span of the function ψ, defined as M := span{ψ(z)|z ≥ 0}, satisfies

M = span

�
e
β�r(1, 0, 0)�|r ≥ 0

�
(3.42)

Proof. Let us first define

N = span{eβ�r(1, 0, 0)�|r ≥ 0}

We have ψ : R+ → R(ψ) ⊆ R3 given by

ψ(z) = −
� z

0
e
β�(z−s) · (1, 0, 0)�ds (3.43)

M ⊂ N follows from the fact that an integral is a limit of Riemann sums and being a
subspace of R3, N is closed. To be more precise, let us define φ : R → R(φ) ⊆ R3 with

φ(r) = e
β�r · (1, 0, 0)�, r ≥ 0 (3.44)

So we have
ψ(z) = −

� z

0
φ(z − s)ds (3.45)

It is clear that for all s ∈ [0, z], the integrand in (3.45) takes values in R(φ). Thus, the
nth Riemann sum is in N. Using the fact that N is a closed subspace in R3, we conclude
that the integral in (3.45), being the limit of Riemann sums, is in N.

For the reverse inclusion, again recall the closedness property of M and deduce that
ψ
�(z) given by (3.41) is in M, ∀z ∈ R+. In particular, ψ�(0) = (1, 0, 0)� ∈ M is satisfied.

From (3.41) and the linearity property of M, this immediately implies

β
� · ψ(z) ∈ M ∀z ≥ 0 (3.46)

and repeating the above argument for the second derivative of ψ we get

β
� · ψ�(z) ∈ M ∀z ≥ 0 (3.47)

Then, taking z = 0 implies that β
� · (1, 0, 0)� ∈ M and thus

(β�)2 · ψ(z) ∈ M, ∀z ≥ 0 (3.48)

Applying this procedure for higher order derivatives, we get the following

(β�)k · (1, 0, 0)� ∈ M, ∀k ≥ 0 (3.49)

Now, using (3.49) and recalling the definition of a matrix exponential, we get

e
β�r(1, 0, 0)� =

�

k≥0

r
k (β

�)k

k!
· (1, 0, 0)� ∈ M, ∀r ≥ 0. (3.50)

Showing that N ⊂ M, this finishes the proof.
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Above lemma clearly shows that M is a β
� invariant subspace in the following sense.

Definition 3.2 Suppose A ∈ Rn×n and Z is a subspace of Rn. Z is called A-invariant
if AZ ⊆ Z, that is, we have z ∈ Z implies A · z ∈ Z.

Clearly for A ∈ Rn×n, {0} and Rn are A-invariant sets. Moreover, the subspace gen-
erated by the real eigenvector of a matrix forms a one-dimensional invariant subspace.
Furthermore, the plane generated by the eigenvectors which correspond to the complex-
conjugate pair of eigenvalues of a matrix is a two-dimensional invariant subspace.

Using the invariance property of M, next corollary extends Lemma 3.2.

Corollary 3.2 Let M is defined as in (3.42). Then, M satisfies

M = span

�
e
β�r(1, 0, 0)�|r ≥ T

�
(3.51)

Proof. First recall the invariance property of M. That is,

e
β�T

M ⊆ M (3.52)

On the other hand, it is acknowledged that an exponential of a matrix is always non-
singular. This implies

dim
�
e
β�T

M

�
= dim (M) (3.53)

This, together with (3.52) suggests

e
β�T

M = M (3.54)

Inserting the definition of M to the left hand side of (3.54) we get

M = e
β�T

span

�
e
β�r(1, 0, 0)�|r ≥ 0

�

= span

�
e
β�(T+r)(1, 0, 0)�|r ≥ 0

�

Showing that

M = span

�
e
β�r(1, 0, 0)�|r ≥ T

�
(3.55)

this finishes the proof.

At this point, we want to recall that our objective is to investigate whether

ψ2(T ) = e
β�T (0, 0, 1)� −

� T

0
e
β�(T−s)(1, 0, 0)�ds ∈ M (3.56)

holds. It is clear from the definition of M that, being equal to ψ(T ) the second term
of the above expression lies in M. If we can show that the first term is in M, linearity
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property of M immediately implies that (3.56) holds. This is what we will try to answer
in the following and the following corollary of Lemma 3.2 will convert this problem into
an equivalent one.

Corollary 3.3 Let M defined as in (3.42), then the following are equivalent:

(i) e
β�T · (0, 0, 1)� ∈ M, for all T ≤ T

∗.

(ii) (0, 0, 1)� ∈ M.

Proof. Assume (i) holds. Then, taking T = 0 immediately implies (0, 0, 1)� ∈ M. Now
let (ii) holds true. Then from the invariance property of M

β
� · (1, 0, 0)� ∈ M

�
β
�
�2

· (1, 0, 0)� ∈ M

·
·

�
β
�
�k

· (1, 0, 0)� ∈ M, ∀k

(3.57)

holds. Hence, eβ�T · (0, 0, 1)� ∈ M is satisfied.

We now investigate the structure of the subspace M. Here, it is clear from Lemma 3.2
that the subspace M is generated by the range of the solution of the following system

φ
�(r) = β

� · φ(r), r ≥ 0 (3.58)

φ(0) = (1, 0, 0)� (3.59)

and the dynamics of this system depends on the properties of the matrix β
�. Also, we

wish to point out that Z ∈ R3 is β
� invariant if and only if φ(0) ∈ Z implies φ(r) ∈ Z

for all r ≥ 0. This information, together with the initial condition of the system (3.58)
immediately implies that, if (1, 0, 0)� is an eigenvector of the matrix β

�, the system stays
in the invariant line {(c, 0, 0)�|c ∈ R}. This means that on this line the dynamics of
the system is simply the multiplication by the corresponding eigenvalue κ in every time
step. In such a case, the system fails to generate any vector of the form (0, 0, x)�, x ∈ R
which, in light of Corollary 3.3 implies that the hedge is not possible. Here, remember
that the dimension of M can be at most 3. Next proposition elaborates more on the
structure of M and states the suitable dimension that this subspace should posses for
hedging.

Proposition 3.1 Let foreign currency analogy hold and assume there is no arbitrage
in the market. Let M is defined as in (3.42). If dim (M) ≤ 2, then (0, 0, 1)� can not lie
in M.
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Proof. Let dim (M) = 2 and assume (0, 0, 1)� ∈ M. Then, for all r1, r2 ≥ 0 the deter-
minant

���
�
(0, 0, 1)�|φ(r1)|φ(r2)

���� = 0 (3.60)

In particular, for r1 = 0

���
�
(0, 0, 1)�|eβ�r2 · (1, 0, 0)�|(1, 0, 0)�

���� = 0 (3.61)

holds. This suggests,

e
β�r2 · (1, 0, 0)� = (x, 0, y)� (3.62)

with some x, y ∈ R and hence

(0, 1, 0)� · eβ�r2 · (1, 0, 0)� = 0. (3.63)

Thus, we get

M = span{(1, 0, 0), (0, 0, 1)}. (3.64)

Now recall from the proof of the Corollary 3.2 that for r ≥ 0

e
β�r

M = M

implying that

β
�
M = M (3.65)

Then, it follows from (3.64) and (3.65) that the matrix β
� is in the following form

β
� =




x1 x2 x3

0 x4 0
x5 x6 x7



 (3.66)

for some xi ∈ R, i = 1, ..., 7. However, this contradicts with the no arbitrage drift
restriction given in (3.25) since the last column in (3.66) can never become (1,−1, 0)�.

For dim (M) = 1 the result immediately follows since starting from the point (1, 0, 0)�,
M = span{(1, 0, 0)�} and thus (0, 0, 1)� /∈ M.

Ruling out the case dim (M) ≤ 2 in the investigation of hedging possibilities we left with
M = R3. Our next objective is to find necessary and sufficient conditions on β

� such
that M = R3 is satisfied. To be able to do this systematically, we find it beneficial to
use the Jordan normal form of the matrix β

�

Let the matrix β
� has the following Jordan canonical form

J = Q
−1

β
�
Q (3.67)
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with some invertible matrix Q.

Next proposition recalls a result from linear algebra on the connection between invariant
subspaces of similarity transformations. This result is needed in the proof of the next
theorem

Proposition 3.2 Let transformation A and J be similar, with the transformation
J = Q

−1
AQ. Then a subspace Z ∈ Rn is J invariant if and only if the space

QZ = {Qz|z ∈ Z}

is A invariant.

Proof. See Gohberg et al. [2006], Proposition 1.4.2.

Naturally, the form of J depends very much on the structure of the matrix β
�. In the

current situation, where β
� ∈ R3×3, there are three main possibilities we summarize

below.

1. β
� diagonalizable.

2. β
� has one real and and a pair of complex-conjugate eigenvalues.

3. β
� has real eigenvalues with multiplicity greater than one and the number of

independent eigenvectors corresponding to all eigenvalues is less than three.

In the following, we will focus on the case where β
� is diagonalizable. Recall that a ma-

trix A ∈ Rn×n is diagonalizable if and only if it has n linearly independent eigenvectors.
In such a case, the Jordan form of the matrix has a diagonal form having eigenvalues in
the diagonal entries. However, not all matrices can be diagonalized. This may be the
case when the eigenvalues, given by the roots of the characteristic polynomial are not
distinct or not real. That is, when we are not able to find a complete basis of eigen-
vectors relative to which the matrix A has a diagonal form. However, we want to point
out that defective matrices, matrices which are not diagonalizable, are rare in the sense
that in the space of real n× n matrices, defective matrices has Lebesgue measure zero.
In other words, if we pick a random square matrix from Rn×n, it will almost surely be
diagonalizable. This suggests that, in many of the real world applications, we will face
with a matrix β

� which is diagonalizable.

Next theorem gives necessary and sufficient conditions for M = R3 in the case where the
matrix β

� is diagonalizable and thus J is diagonal given by

J =




κ1 0 0
0 κ2 0
0 0 κ3



 (3.68)
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where κ1, κ2, κ3 ∈ R are eigenvalues of β�. Here note that, κi’s, i = 1, 2, 3, do not have
to be distinct. As long as the analytic and geometric multiplicities of each eigenvalue
are same, the β

� matrix has a Jordan form as given in (3.68).

Theorem 3.2 Let M is defined as in (3.42) and assume β
� be diagonalizable. Let

κi denotes the i
th eigenvalue and vi, i = 1, 2, 3, is the corresponding eigenvector of β�.

Then, M = R3 if and only if the determinant
���(vi|vj |e�1 )

��� �= 0

and κi �= κj i, j = 1, 2, 3, i �= j.

Proof. if part:

To start with, we take basis vectors

e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1)

and any index 1 ≤ i1 < ... < ik ≤ 3. Now we choose a vector z ∈ R3 which can be
written in the following form

z =
k�

j=1

pjeij (3.69)

with some pj ∈ R. Clearly, we have z ∈ span{ei1 , ..eik}. If we apply matrix J to the
vector z, we get

J · z =
k�

j=1

pjκijeij (3.70)

which also lies in span{ei1 , ..eik}. This shows that

Zi := span{ei}, i = 1, 2, 3,

Zi,j := span{ei, ej}, i, j = 1, 2, 3; i �= j,

Z := span{e1, e2, e3} = R3

are all J invariant subspaces. Then, Proposition 3.2 implies that QZi, QZi,j and QZ

are all β� invariant subspaces. For the current case, where we have three independent
eigenvectors v1, v2, v3 for matrix β

�, Q is nothing but a matrix having these eigenvectors
as the columns. Thus, we get

QZi = span{vi}, QZi,j = span{vi, vj}

and
QZ = span{v1, v2, v3} = R3

.

Here, span{v1, v2, v3} = R3 follows from the fact that vi’s are independent 3-vectors and
thus form a basis for R3.
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Now assume that matrices (vi|vj |e�1 ), i, j = {1, ..., 3}, i �= j, have nonzero determinant.
This suggests that (1, 0, 0)� does not lie in one of the one or two dimensional β� invariant
subspaces.

This assumption also yields via Proposition 3.2 that

Q
−1 · (1, 0, 0)� /∈ span{ei, ej}, i = 1, 2, 3 (3.71)

and thus Q
−1 · (1, 0, 0)� is in the form

q = (q(1), q(2), q(3))�

with some non-zero q
(1)

, q
(2)

, q
(3).

On the other hand, for the current case, the solution of the system (3.58) can be written
as

φ(r) = Q · eJr ·Q−1 · (1, 0, 0)� (3.72)

and since the matrix exponential of a diagonal matrix can be performed by exponenti-
ating each of the diagonal elements and Q is nothing but a matrix having eigenvectors
of β� as columns, we have

φ(r) = q
(1)

e
κ1rv1 + q

(2)
e
κ2rv2 + q

(3)
e
κ3rv3, r ∈ R (3.73)

Now we shall show that for any time points r1 < r2 < r3, the realizations φ(r1), φ(r2),
φ(r3) are independent vectors and thus form a basis for R3, implying that the subspace
N = R3 and hence contains the vector (0, 0, 1)�. To this end, we form a matrix D(t),
having φ(r1 − t), φ(r2 − t), φ(r3 − t) in the columns and for t = 0 we write it in the
following form

D(0) = (v1|v2|v3)




q
(1) 0 0
0 q

(2) 0
0 0 q

(3)








e
κ1r1 e

κ1r2 e
κ1r3

e
κ2r1 e

κ2r2 e
κ2r3

e
κ3r1 e

κ3r2 e
κ3r3



 (3.74)

Determinants of the first two matrices above are non-zero since q
(1)

, q
(2)

, q
(3), are

non-zero and vi, i = 1, 2, 3, are independent. Also by inspection the determinant of
the last matrix is non-zero provided that κi, i = 1, 2, 3 are distinct. This implies that
M = N = R3.

only if part:

Now assume M = R3. This necessarily implies there exists 0 < r1 < r2 such that the
determinant

���
�
(1, 0, 0)�|φ(r1)|φ(r2)

���� �= 0 (3.75)

That is,
���
�
(1, 0, 0)�| Qe

Jr1Q
−1 · (1, 0, 0)�| Qe

Jr2Q
−1 · (1, 0, 0)�

���� �= 0 (3.76)



3. PRICING AND HEDGING IN AN AFFINE FRAMEWORK 97

(3.76) can be written as

|(v1|v2|v3)|

������




q
(1) 0 0
0 q

(2) 0
0 0 q

(3)





������

������




1 e

κ1r1 e
κ1r2

1 e
κ2r1 e

κ2r2

1 e
κ3r1 e

κ3r2





������
�= 0 (3.77)

The first matrix with the eigenvectors in the columns has a non-zero determinant for
β
� diagonalizable. Thus (3.77) implies

q
(1)

, q
(2)

, q
(3) �= 0

Here recall that we have q = (q(1), q(2), q(3))� = Q
−1 ·(1, 0, 0)�. Now, using a formula for

the matrix inverse we will write the vector q in terms of the eigenvectors vi, i = 1, 2, 3.
We have

Q
−1 =

1

|Q|




v2 × v3

v3 × v1

v1 × v2



 (3.78)

where the cross product (vi × vj) is a row vector and given by

vi × vj =

�����

�
v
(2)
i v

(3)
i

v
(2)
j v

(3)
j

������ e1 −

�����

�
v
(1)
i v

(3)
i

v
(1)
j v

(3)
j

������ e2 +

�����

�
v
(1)
i v

(2)
i

v
(1)
j v

(2)
j

������ e3 (3.79)

Using the formula (3.79) in (3.78) we get

q
(1) =

v
(2)
2 · v(3)3 − v

(3)
2 · v(2)3

|Q| �= 0 (3.80)

q
(2) =

v
(2)
3 · v(3)1 − v

(3)
3 · v(2)1

|Q| �= 0 (3.81)

q
(3) =

v
(2)
1 · v(3)2 − v

(3)
1 · v(2)2

|Q| �= 0 (3.82)

(3.80)-(3.82) necessitates

v
(3)
i

v
(2)
i

�=
v
(3)
j

v
(2)
j

, i, j = 1, 2, 3, i �= j (3.83)

We have the determinant given by
���(vi|vj |(1, 0, 0)�)

��� = vi · (vj × (1, 0, 0)�)
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which is equal to

= vi ·
������

�
v
(2)
j v

(3)
j

0 0

������ e1 −

�����

�
v
(1)
j v

(3)
j

1 0

������ e2 +

�����

�
v
(1)
j v

(2)
j

1 0

������ e3

�

= v
(2)
i v

(3)
j − v

(3)
i v

(2)
j (3.84)

(3.83) implies that (3.84) is non zero and thus we show that
���(vi|vj |(1, 0, 0)�)

��� �= 0, i, j = 1, 2, 3, i �= j

must hold.

Now we go back to the last matrix appearing in (3.77). We have
������




1 e

κ1r1 e
κ1r2

1 e
κ2r1 e

κ2r2

1 e
κ3r1 e

κ3r2





������
�= 0

which is equivalent to

e
κ1r2 (eκ3r1 − e

κ2r1)− e
κ1r1

�
e
κ3r2−eκ2r2

�
+ e

κ2r1+κ3r2 − e
κ3r1+κ2r2 �= 0 (3.85)

This necessarily implies
κi �= κj , i, j = 1, 2, 3, i �= j

and this finishes the proof.

Previous theorem gives conditions on the eigenvalues and eigenvectors of β� such that
M = R3 is satisfied. Now we want to check whether these conditions contradict with the
specific form of matrix β given in (3.25). For a diagonalizable β

� next theorem states
the conditions on the eigenvalues and eigenvectors of β� such that the matrix β is in
the form (3.25).

Theorem 3.3 Let β� be diagonalizable. Then, the matrix β has the form as given in
(3.25) only if the determinant

��(vi|vj |e�3 )
�� �= 0

Proof. Assume β is in the from (3.25). We have

β
� = (·| · |(1,−1, 0)�) = QJQ

−1

Multiplying both sides with Q
−1 we get

Q
−1

β
� = JQ

−1 (3.86)
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Using formula (3.78) in (3.86) we get



v2 × v3

v3 × v1

v1 × v2







·
��� ·

���
1

−1
0



 =




κ1 0 0
0 κ2 0
0 0 κ3








v2 × v3

v3 × v1

v1 × v2





� �� �
V

(3.87)

This suggests

κ1V
(1,3) = V

(1,1) − V
(1,2) (3.88)

κ2V
(2,3) = V

(2,1) − V
(2,2) (3.89)

κ3V
(3,3) = V

(3,1) − V
(3,2) (3.90)

We utilize the cross product formula in (3.79) to calculate V
(i,j) ,i, j = 1, 2, 3. Inserting

this in (3.88)-(3.90) we get

κ1

�
v
(1)
2 v

(2)
3 − v

(2)
2 v

(1)
3

�
= v

(3)
3

�
v
(2)
2 + v

(1)
2

�
− v

(3)
2

�
v
(2)
3 + v

(1)
3

�
(3.91)

κ2

�
v
(1)
3 v

(2)
1 − v

(2)
3 v

(1)
1

�
= v

(3)
1

�
v
(2)
3 + v

(1)
3

�
− v

(3)
3

�
v
(2)
1 + v

(1)
1

�
(3.92)

κ3

�
v
(1)
1 v

(2)
2 − v

(2)
1 v

(1)
2

�
= v

(3)
2

�
v
(2)
1 + v

(1)
1

�
− v

(3)
1

�
v
(2)
2 + v

(1)
2

�
(3.93)

Here notice that under the assumption that β
� is diagonalizable

�
v
(1)
2 v

(2)
3 − v

(2)
2 v

(1)
3

�
�= 0

�
v
(1)
3 v

(2)
1 − v

(2)
3 v

(1)
1

�
�= 0

�
v
(1)
1 v

(2)
2 − v

(2)
1 v

(1)
2

�
�= 0 (3.94)

has to be satisfied. Otherwise, eigenvectors vi, i = 1, 2, 3, becomes pairwise linearly
dependent and cannot form a basis in R3. Hence, (3.91)-(3.93) are equivalent to the
following equations giving the relation between eigenvalues and eigenvectors.

κ1 =
v
(3)
3

�
v
(2)
2 + v

(1)
2

�
− v

(3)
2

�
v
(2)
3 + v

(1)
3

�

v
(1)
2 v

(2)
3 − v

(2)
2 v

(1)
3

(3.95)

κ2 =
v
(3)
1

�
v
(2)
3 + v

(1)
3

�
− v

(3)
3

�
v
(2)
1 + v

(1)
1

�

v
(1)
3 v

(2)
1 − v

(2)
3 v

(1)
1

(3.96)

κ3 =
v
(3)
2

�
v
(2)
1 + v

(1)
1

�
− v

(3)
1

�
v
(2)
2 + v

(1)
2

�

v
(1)
1 v

(2)
2 − v

(2)
1 v

(1)
2

(3.97)
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Moreover (3.94) is equivalent to

v
(1)
i

v
(2)
i

�=
v
(1)
j

v
(2)
j

, i, j = 1, 2, 3 (3.98)

Since we have
���(vi|vj |e�3 )

��� =

= vi ·
������

�
v
(2)
j v

(3)
j

0 1

������ e1 −

�����

�
v
(1)
j v

(3)
j

0 1

������ e2 +

�����

�
v
(1)
j v

(2)
j

0 0

������ e3

�

= v
(1)
i v

(2)
j − v

(2)
i v

(1)
j

(3.98) yields the desired result.

Remark 3.3 Theorem 3.2 and Theorem 3.3 together show that when β
� is assumed

to be diagonalizable the necessary conditions on β for the form (3.25) and M = R3

simultaneously are as follows

1.
��(vi|vj |e�1 )

�� �= 0

2.
��(vi|vj |e�3 )

�� �= 0

3. κi �= κj, i, j = 1, 2, 3.

In Theorem 3.2, we give the conditions which guarantees M = R3 and hence ψ2(T − t0)

lies in M for fixed t0 ∈ [0, T ]. Now in the next theorem we will first show that when
M = R3, ψ2(T − t) ∈ M holds for almost all t ≤ T . Then, the hedging result will follow.

Theorem 3.4 Assume foreign exchange analogy holds and there is no arbitrage in
the market. Assume further that the drift matrix β in (3.9) is diagonalizable. Then,
it is possible to hedge an inflation index bond with maturity T by a portfolio formed
by dynamically trading in the risk free account and nominal bonds with maturities Ti,
i = 1, 2, 3, T ≤ T1 < T2 < T3 < T

∗, if and only if
���(vi|vj |e�1 )

��� �= 0

κi �= κj , i, j = 1, 2, 3 (3.99)

are satisfied.

Proof. Since the conditions of Theorem3.2 is satisfied M = R3. Then, due to Lemma
3.2 there exists T ≤ T1 < T2 < T3 such that

M = span {ψ(T1), ψ(T2), ψ(T3)} (3.100)
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holds. Now our aim is to show

M = span {ψ(T1 − t),ψ(T2 − t),ψ(T3 − t)} (3.101)

is satisfied for all t ∈ [0, T ]\I where I is a set which has no accumulation point.

Assume (3.101) does not hold, that is,

span {ψ(T1 − t),ψ(T2 − t),ψ(T3 − t)} �= M

for all t in some open interval J ⊂ [0, T ]. Then, the determinant function

D(t) = |(ψ(T1 − t)|ψ(T2 − t)|ψ(T3 − t))| = 0

foe all t ∈ J. But since ψ(z), z ≥ 0 is a real analytic function and so does the sum
and product of it, D is also analytic on [0, T ]. This implies that D(t) = 0 for all
t ∈ [0, T ] (See Krantz and Parks [2002], Corollary 1.2.6 ). However, this contradicts
with (3.100). Showing that (3.101) holds for almost all t and for some Ti i = 1, 2, 3 such
that T ≤ T1 < T2 < T3 < T

∗ this provides a positive answer for 2. Hence, hedging of
an inflation indexed bond with portfolio of nominal bonds is granted.

Remark 3.4 In Davis and Obloj [2008], for a market which is spanned by a d- dimen-
sional diffusion factor process and there are d tradable assets, matrix of partial derivatives
of pricing functions with respect to the factors is denoted by

G(t, x) =

�
∂pi(t, x)

∂xj

�

1≤i,j≤d

where xi, i = 1, ..., d indicate factors and pi, i = 1, ..., d denote the pricing functionals
of the traded assets. Then, for this market the completeness criterion is given by

G(t0, x0) �= 0

for some point (t0, x0), provided that pi, i = 1, .., d are real analytic functions (see Corol-
lary 4.2 of Davis and Obloj [2008]). Since our market setup satisfies the assumptions
of Corollary 4.2 of Davis and Obloj [2008], we can use this criterion to check whether
we fall into a complete market setting when the conditions of Theorem 3.4 are fulfilled.
Indeed, the answer is positive, that is, provided that the conditions in Theorem 3.4 are
satisfied, the market is complete in the sense that any contingent claim depending on the
factor X can be replicated by a self-financing portfolio of nominal bonds. This is because,
for the current setup the matrix G looks like

(ψ1(T1 − t)Σ|ψ1(T2 − t)Σ|ψ1(T3 − t)Σ)

and we have already shown that this has zero determinant for some T1, T2, T3 and
almost all t ∈ (0, T ).
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As highlighted in the above remark, when the conditions in Theorem 3.4 are fulfilled,
the current market is spanned by the nominal bonds and hence any contingent claim,
depending on the factor dynamics can be replicated by a portfolio of nominal bonds
with different maturities.

Finding the hedge ratios When hedge is possible, to replicate an inflation indexed
bond of maturity T , we first choose three nominal bonds with maturities Ti, i = 1, 2, 3,
T ≤ T1 < T2 < T3 and then at each time t, given the observations of nominal and real
bond prices we find ĉ

i
t, i = 1, 2, 3 via solving the system of linear equations

(ψ1(T1 − t)|ψ1(T2 − t),ψ1(T − 3)) · (ĉ1t , ĉ2t , ĉ3t )� = ψ2(T − t) (3.102)

More explicitly, we get

(ĉ1t , ĉ
2
t , ĉ

3
t )

� = (ψ1(T1 − t)|ψ1(T2 − t),ψ1(T − 3))−1 · ψ2(T − t). (3.103)

Then, from equation (3.37) one can get

c
i
t = ĉ

i
t

�Π(t, T )
P (t, Ti)

for i = 1, 2, 3.

3.5 Summary and Outlook

In this chapter we propose a three factor affine Gaussian model for the pricing and hedg-
ing of inflation indexed bonds. Using the tools from affine processes theory we compute
formulae for nominal and inflation indexed bond prices explicitly. We then proceed with
an hedging analysis where the objective is to hedge an inflation indexed bond of given
maturity with the portfolio of nominal bonds. We are able to give criterion for hedge
under the convention that the drift matrix of the factor process is diagonalizable. More-
over, we show that in the current market setup the criterion for hedging of inflation
indexed bonds coincides with the market completeness criterion, that is criterion for the
spanning property of the continuum of nominal bonds.

Although it is not very likely, in application to real data one may encounter with cases
where the drift matrix of the factor process is not diagonalizable. Our future plan is to
complete the hedging analysis via providing an answer for such cases. Moreover, we find
it interesting to investigate more general cases such as the one where the factor process
has non-Gaussian dynamics. Also, testing our model on the real market data is left as
a future work.
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Pricing Model for a Multi-Country
Setting1

4.1 Introduction

Currently we are living in a financial environment where the economies are strongly
linked to each other by the exchange rates. Thus, it is natural to consider the effects
of exchange rates on inflation and other macroeconomic variables. To be more precise,
one can think of the situation where the appreciation of exchange rates makes imported
goods more expensive in terms of the domestic currency. In such a case increase in the
price of the imported goods might cause an overall price level increase, that is, inflation.
Therefore, in inflation term structure modeling taking the exchange rates into account
might be useful.

With the motivation we set out above Slinko [2006] investigates the joint dynamics of the
nominal exchange rate, the domestic and foreign term structures and the real exchange
rate. In this study, with the same line of reasoning we propose a multi-country setting
for inflation linked derivative pricing. The other source of our motivation is the fact that
in a multi-country setting, presence of the inflation linked instrument might create extra
information about the real exchange rate (RER) and real rate differentials between the
countries. The information on RER is important especially for the central banks.The
importance of the real exchange rate for a central bank is due to the fact that any
changes in the RER is considered as a signal on the future inflation. Thus, having the
correct information provides the possibility of taking the sensible monetary action for
the price stability (see Kipici and Kesriyeli [1997] for more details).

We summarize the main objectives of this part as follows:
1This chapter is based on a joint work with Irina Slinko
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1. To find no-arbitrage conditions for a multi-country setting where the continuum
of nominal and real bonds are traded;

2. To investigate the implications of the existence of domestic and foreign inflation
bonds on real exchange rates;

3. To show the effects of the assumptions about the real exchange rates on domestic
and foreign, nominal and real term structures;

4. To introduce and price multi-country inflation linked derivatives such as foreign
exchange inflation options and real exchange rate swaps.

Motivated by the goals we set out above, in this part we first consider a multi-country set-
ting where domestic and foreign nominal and real bonds are traded. The price processes
of nominal and real bonds of domestic and foreign economies, the price index processes
and the exchange rate is assumed to follow Itô process. We then impose no-arbitrage
condition to the two country model and this immediately yields drift conditions for real
and nominal term structures of the domestic and foreign economies. Moreover, under
the no-arbitrage assumption presence of real bonds in the domestic and real economies
automatically yields the usual definition of real exchange rate (RER). At this point, we
recall the debate on the behavior of real exchange rates. Our results suggest that, theo-
retically there is not any strict evidence showing whether the RER follows a martingale
process or it is mean reverting. However, one can assume one of these conventions and
search for the implications of it. To this end, we assume martingale property for RER
and find a relation between the real interest rates of the two economies. We further
introduce a forward contract written on RER into our model. This yields the forward
real exchange rate whose value can be expressed in terms of the price of the domestic and
foreign inflation indexed bonds. As mentioned above, this might be considered as a valu-
able information for the policy makers, in particular for the central banks. We further
construct multi-country inflation linked derivatives such as foreign exchange inflation
options and real exchange rate swaps. We extensively use the change of numeraire tech-
nique to get prices of these derivatives. In particular, we get closed form formulae under
the assumption of deterministic volatility in the inflation indexed bond price dynamics.

This part of the thesis is organized as follows. In section 2 we give the notation and
dynamics that we used in our model. Section 3 introduces the no-arbitrage and gives
the immediate implications of this assumption. Section 4 reveals all results on nominal,
real and inflation term structures of the domestic and foreign economies. By giving
basics on real exchange rates, Section 5 considers the case where RER is assumed to
follow a martingale process and mentions to the forward real exchange rates. Section
6 constructs and and deals with the pricing of inflation derivatives for the two-country
setting. Section 7 concludes the paper.
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4.2 Notation and Dynamics

For the domestic and foreign economies we consider

• Nominal bond: as a debt security which pays the face value of 1 in currency
units at the maturity date T .

• Price index: as the index number measuring the average price of a specified
basket of goods and services.

• Real bond: as the debt security that gives its holder one price index unit at
maturity T. The price of the real bond is expressed in terms of the respective price
index.

• Inflation indexed bond: as the bond which pays out the nominal value of the
one unit of the price index basket in term of the respective currency. In particular,
using the risk-neutral valuation, the price of the inflation indexed bond can be
found as the multiple of the time t price of a real bond price and the value of the
price index.

As a link between the two economies, nominal and real exchange rates are introduced
with the following definitions:

• Nominal exchange rate: is defined as the market price of a foreign currency
which is expressed in terms of the domestic currency.

• Real exchange rate: is defined as the rate at which the domestic and foreign
basket of goods and services can be exchanged. That is, it is the domestic basket
value of a foreign basket of goods and services.

An underlying probability space (Ω,F,Ft,P) is given. W is a d−dimensional standard
Brownian motion living in this probability space and Ft = σ {Ws, s ≤ t} is assumed. Un-
der the physical measure P we assume the following dynamics given for the nominal bond
price, price index, real bond price, nominal spot exchange rate, real spot exchange rate,
nominal savings account and real savings account for domestic and foreign economies
where x ∈ {d, f} and ‘d‘ and ‘f ‘ indicates domestic and foreign economies respectively.

• Nominal bond price process:

dP
x(t, T )

P x(t, T )
= a

x(t, T )dt+ b
x(t, T ) · dW (t) (4.1)

• Real bond price process:

dΠx(t, T )

Πx(t, T )
= α

x(t, T )dt+ β
x(t, T ) · dW (t) (4.2)
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• Price index value process:

dI
x(t)

Ix(t)
= p

x(t)dt+ q
x(t) · dW (t) (4.3)

• Nominal exchange rate value process:

de(t)

e(t)
= m(t)dt+ n(t) · dW (t) (4.4)

• Real exchange rate value process:

d�(t)

�(t)
= µ(t)dt+ ν(t) · dW (t) (4.5)

• Nominal savings account process:

dS
x(t) = r

x(t)Sx(t)dt (4.6)

• Real savings account process:

dΣx(t) = ρ
x(t)Σx(t)dt (4.7)

where it is assumed that volatility coefficients are d−row vectors and all coefficients
satisfy the necessary measurability and integrability conditions.

4.3 No Arbitrage

We assume that there is no arbitrage between any of the economies considered. First
implication of this assumption is that the real exchange rate satisfies the following:

�(t) =
I
f (t)e(t)

Id(t)
(4.8)

No-arbitrage assumption necessitates equation (4.8) holds true because of the fact that
we have a setting analogues to the four country model in which real exchange rate
connects domestic and foreign real economies. To be more clear let us assume we have
one unit of foreign real bond and we want to calculate the nominal value of this bond
in terms of domestic currency. To achieve this we can follow two distinct routes:

1. ) An investor has a unit of foreign real bond whose time t value is Πf (t, T ) in
terms of foreign price index basket. Nominal value of this bond is Πf (t, T )If (t) in
units of foreign currency and by definition this is equal to the value of the foreign
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inflation indexed bond. Converting this amount with the nominal exchange rate
yields Πf (t, T )If (t)e(t) which is a value of a traded asset in terms of domestic
currency.

2. ) Another investor having a unit of foreign real bond chooses to convert Πf (t, T )

to an asset in domestic real terms. This is achieved by using the real exchange
rate. Corresponding value is Πf (t, T )�(t) in units of the domestic price index
basket. Finally domestic nominal value of the bond is obtained by considering the
domestic price index value as Πf (t, T )�(t)Id(t).

It is clear that for law of one price to hold

Πf (t, T )If (t)e(t) = Πf (t, T )�(t)Id(t) (4.9)

should be satisfied. This implies that equation (4.8) holds showing that the real exchange
rate is the nominal rate which is adjusted for the inflation. Indeed this is the way how
real exchange rates are defined in the macroeconomics literature and we will manipulate
on this result in the next sections.
For given price processes If (t), Id(t) and e(t) application of the Itô formula to equation
(4.8) yields the following dynamics for the real exchange rate.

d�

�
=

�
m(t) + p

f (t)− p
d(t) + n(t) · qf (t)� + (qd(t)− q

f (t)− n(t)) · qd(t)�
�
dt (4.10)

+
�
n(t) + q

f (t)− q
d(t)

�
· dW (t)

By the fundamental theorem of asset pricing, assuming no-arbitrage in the model is
equivalent to the existence of the risk neutral probability measure Q equivalent to P
such that the elements of the following table, which consists of the traded assets in the
domestic economy, are Q- martingales.

Domestic Foreign
nominal bond P d(t,T )

Sd(t)
P f (t,T )e(t)

Sd(t)

real bond Πd(t,T )Id(t)
Sd(t)

Πf (t,T )If (t)e(t)
Sd(t)

nominal savings Sd(t)
Sd(t)

= 1 Sf (t)e(t)
Sd(t)

real savings Σd(t)Id(t)
Sd(t)

Σf (t)If (t)e(t)
Sd(t)

4.4 Main Results

By Girsanov‘s theorem, given that W (t) is a P-Brownian motion and Q is equivalent to
P, there exists a predictable, square integrable process λ(t) ∈ Rd such that

d�W (t) = dW (t)− λ(t)�dt (4.11)
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is a Q-Brownian motion. Now we are going to examine some fundamental results that
follow from the no arbitrage assumption.

1. )
ν(t) = q

f (t)− q
d(t) + n(t) (4.12)

This is a condition which shows the relation between the volatility parameters
of the real exchange rate, nominal exchange rate and foreign and domestic price
index level. It directly follows from equations (4.5) and (4.10).

2. )
r
d(t) = m(t) + r

f (t) + n(t) · λ(t)� (4.13)

Indeed this relation looks like the well known interest rate parity condition with an
additional risk premium term arising from the exchange rate risk. That additional
term is important in terms of explaining the puzzles related with the interest rates
and nominal exchange rate. To be more precise there are situations, like the ones
we witnessed on July 2007 due to the liquidity crunch, in which domestic rate is
increasing with the decreasing exchange rates and foreign rate and the additional
risk premium term in (4.13) might be useful for explaining such situations.

3. )
r
d(t) = p

d(t) + ρ
d(t) + q

d(t) · λ(t)� (4.14)

This is the very well known Fisher equation with an additional term of the inflation
risk premium arising due to the fact that the investors might fail in their inflation
expectations, pd(t), and so ask for a compensation of the amount q

d(t)λ(t).

4. )
r
f (t) = p

f (t) + ρ
f (t) + n(t) · qf (t)� + q

f (t) · λ(t)� (4.15)

This is the Fisher equation for the foreign economy.

5. )
ρ
d(t) = ρ

f (t) + µ(t) + ν(t) · qd(t)� + ν(t) · λ(t)� (4.16)

Equation (4.16) is the real interest rate parity condition.

6. )
a
d(t, T )− r

d(t) = −b
d(t, T ) · λ(t)� (4.17)
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7. )
a
f (t, T )− r

f (t) = −b
f (t, T ) · n(t)� − b

f (t, T ) · λ(t)� (4.18)

8. )
α
d(t, T )− ρ

d(t) = −β
d(t, T ) · qd(t)� − β

d(t, T ) · λ(t)� (4.19)

9. )
α
f (t, T )− ρ

f (t) = −β
f (t, T ) · (qf (t) + n(t))� − β

f (t, T ) · λ(t)top (4.20)

Equations (4.17)-(4.20) are the drift conditions for the real and nominal term
structures of the foreign and the domestic economies.

Following above discussions one of the interesting results we find is that in a multi-
country setting with the no-arbitrage assumption, relation (4.8) naturally arises as we
introduce the real bonds as the tradable instruments in domestic and foreign economies.
As it is noted earlier, this identification of the real exchange rates is very common in
macroeconomics literature. Moreover, there is a debate on the behavior of the real
exchange rates. One side argues that RER should follow a mean reverting process
under the objective measure whereas there are empirical studies which can not reject
the hypothesis that RER follows a martingale process. In this study we will investigate
implications of assuming martingale property albeit mean reversion hypothesis for real
exchange rates is also a good candidate to exploit.

4.5 Results on Real Exchange Rates

Before the World War I there was the gold standard enabling currencies to be converted
into gold from a fix rate. As a result there was implied exchange rates between the
currencies. However, during the war this system collapsed and there was a need for
another system which makes it possible to set exchange rates between the currencies. At
that point Cassel [1921] proposed the use of purchasing power parity (PPP) to determine
exchange rates. PPP states that when represented in a common currency, price levels
of the countries should be equal. This is mainly based on the law of one price under the
assumptions that the price index baskets of the countries consist of the same goods, all
final goods and factors of production are tradable between the countries and etc. (see
Rogoff [1996] for details about PPP). In more formal terms PPP means that the value
of the domestic price index is equal to the product of the foreign price index value and
the nominal exchange rate. In the previous sections it is shown that real exchange rates
are the nominal rates which are adjusted for the relative national price levels. Because
of this, a non-constant real exchange rate indicates that there are deviations from PPP.
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It is observed that RERs deviate from the value assigned by the purchasing power parity
(PPP) in the short run (see Rogoff [1996]). The line of reasoning behind this result is
given by the fact that the composition of the price index baskets of two countries are
rarely the same. Indeed this is not the unique reason that prevents real exchange rates to
follow the PPP value. If this was the case, being identical all around the world, Big-Mac
prices would be able to reflect the true market rates3. In Rogoff [1996] and Taylor and
Taylor [2004] one of the main reasons for the possibility for prices of identical goods to
differ across the countries is given by that some of the factors of production, such as
labor and land, can not be traded across the countries. Besides, tax differentials across
the countries, tariffs or other trade restrictions are listed as other reasons. In a nut
shell, the reason why the law of one price might fail to apply in such an environment is
that, economic agents are not able to trade freely over the price index baskets. However,
the existence of the inflation indexed bonds in the foreign and domestic economies and
possibility of trading them is equivalent to the trading of the price index baskets. Thus,
it is reasonable to speculate on the movement of RER via considering the dynamics of
the inflation indexed bonds of the domestic and foreign economies.

4.5.1 Martingale Property for Real Exchange Rates

In the literature there are two distinct idea about the dynamics of real exchange rates.
On one hand RER is argued to follow a mean reverting process under the physical
measure. On the other hand it is driven by a martingale process. Most of the empirical
studies failed to reject the hypothesis that the real exchange rate follows a martingale
process (see Rogoff [1996], Adler and Lehmann [1983]). If we assume the martingale
property of RER this implies via (4.10) the following

µ(t) = m(t) + p
f (t)− p

d(t) + n(t) · qf (t)� − ν(t) · qd(t)� = 0 (4.21)

To see the further implication of such an assumption we use our previous findings. From
(4.16) we get that the martingale property for RER has the following implication on the
real rate differential between the two economies

ρ
d(t)− ρ

f (t) = ν(t) · qd(t)� + ν(t) · λ(t)�. (4.22)

3Big Mac Index: is based on the theory of purchasing-power parity, i.e., the notion that a dollar
should buy the same amount in all countries. Thus in the long run, the exchange rate between two
countries should move towards the rate that equalizes the prices of an identical basket of goods and
services in each country. McDonald’s Big Mac is treated as a basket, which is produced in about
120 countries. The Big Mac PPP is the exchange rate that would mean hamburgers cost the same in
America as abroad. Comparing actual exchange rates with PPPs indicates whether a currency is under-
or overvalued. From (http://www.economist.com/markets/bigmac/about.cfm).
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From (4.21) we get

p
d(t)− p

f (t) = m(t) + n(t) · qf (t)� − ν(t) · qd(t)� (4.23)

Summing (4.22) and (4.23) and inserting the expressions for p
d(t) and p

f (t) implied by
(4.14) and (4.15) respectively, we have

r
d(t)− r

f (t)− (qd(t)− q
f (t)) · λ(t)� = m(t) + ν(t) · λ(t)� (4.24)

Using (4.12) we deduce that

r
d(t)− r

f (t) = m(t) + n(t) · λ(t)� (4.25)

Equation (4.25) tells that, martingale assumption on RER is equivalent to argue that the
nominal rate differentials between the two economies is given by the sum of appreciation
rate of the exchange rate and the risk premium arising from exchange rate uncertainty.

4.5.2 Forward Real Exchange Rates

In this part we will derive a formula for the forward real exchange rate implied by a
trade in the price index baskets of the domestic and foreign countries. Assume we have
two time instants with t < T where t is the current time and T is the expiration time.
At time t set a forward contract between the two parties which makes it possible to
exchange one unit of the foreign price index basket for the fraction A of the domestic
basket at time T . As an example 1 Euro zone price index basket for a 1.5 US basket,
et cetera. Indeed this is a forward contract on real exchange rate. Under the domestic
risk neutral measure Q such a contract has the following value at time t:

F (t, T ) = EQ[e−
� T
t rd(s)ds(If (T )e(T )−A(t, T )Id(T )|Ft] (4.26)

which is equal to

= EQ[e−
� T
t rd(s)ds

I
f (T )e(T )|Ft]− EQ[e−

� T
t rd(s)ds

A(t, T )Id(T ))|Ft]

Let us define the likelihood ratio Lt with the following

LT =
e(T )

e(t)
e
−

� T
t (rd(s)−rf (s))ds

One can show that LT is a martingale with an expected value equal to 1. Now let us
define the foreign martingale measure with the following

dQ
f

dQ
= LT (4.27)
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In the first term of the expression (4.26) if we change the measure from Q to Q
f we have

the following
EQ[e−

� T
t rd(s)ds

I
f (T )e(T )|Ft] = e(t)�Πf (t, T )

Here after changing the measure and by using the definition of inflation indexed bond
in the first and second terms we get the following formula for the value of the forward
contract:

F (t, T ) = e(t)�Πf (t, T )−A(t, T )�Πd(t, T )

We know from the general theory that,for the initial date t, F(t,T)=0 must be satisfied.
This yields the following expression for the rate A(t,T):

A(t, T ) =
e(t)�Πf (t, T )
�Πd(t, T )

(4.28)

Equation (4.28) tells us that one can find the forward real exchange rate by observing
the spot nominal exchange rate and the price of foreign and domestic inflation indexed
bonds. This might be a valuable information for policy makers and in particular for the
central banks due to reasons we mentioned before and to the fact that RER is accounted
as one of the indicators which shows the comparative advantage of a country.

4.6 Inflation Linked Foreign Exchange Derivatives or Real
Exchange Derivatives

Inflation derivatives market is enlarging with the growing amount of the inflation fea-
tures, inflation swaps and inflation options traded. One of the reasons why investors
demand such products is that these contracts guarantee a bound for the purchasing
power of the nominal income, in other words they ensure the lowest bound for the num-
ber of the domestic baskets that a unit of domestic currency can buy. However, to our
knowledge there are not any contracts which covers the joint risk based on the unfa-
vorable movements of the foreign inflation and exchange rates. Such a contract would
guarantee the foreign purchasing power of a domestic income. To achieve this, our aim
is to construct derivative instruments enabling the simultaneous hedging of foreign in-
flation and exchange rates with guaranteeing an amount of foreign real income to the
domestic investor.

4.6.1 Forward Contracts on Inflation Indexed Bonds

We consider the domestic and foreign inflation bonds maturing at time S. Let X be the
value of the contract which makes it possible to exchange domestic and foreign inflation
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indexed bonds at rate A, with an expiration date T satisfying T ≤ S. Here, the rate
A(t, T, S) indicates the fraction of domestic inflation bonds that will be exchanged for
foreign inflation bonds, that is, A can be considered as the domestic relative forward
price of two countries inflation bonds. We first find the value of A which makes the
contract fair, i.e, value which makes the initial value of the contract equal zero.

X(t, T ) = E
Q[e−

� T
t rudu(e(T )�Πf (T, S)−A

∗(t, T, S)�Πd(T, S))|Ft] = 0 (4.29)

E
Q[e−

� T
t rudue(T )�Πf (T, S)� �� �

I

|Ft] = E
Q[e−

� T
t ruduA

∗(t, T, S)�Πd(T, S)� �� �
II

|Ft] (4.30)

In equation (4.30) terms I and II are the discounted value of two domestically tradeable
assets. Thus they are martingale under the domestic nominal risk neutral measure Q.
As a result, equation (4.30) can be written as follows

e(t)�Πf (t, S) = A
∗(t, T, S)�Πd(t, S)

Implying that we have

A
∗(t, T, S) =

e(t)�Πf (t, S)
�Πd(t, S)

(4.31)

Here notice that when S goes to T we have the forward real exchange rate and when
S=T=t we have the equation for spot real exchange rates (see previous section). Now
let us take the ratio e(t)�Πf (t,S)

�Πd(t,S)
. When we take the �Πd(t, S) bond as a numeraire we have

the following expectation under the S-forward inflation measure Q
IdS :

�Πd(t, S)EQIdS [
e(T )�Πf (T, S)

�Πd(T, S)
|Ft] (4.32)

which is equal to

= B(t)EQ[
e(T )�Πf (T, S)

B(T )
|Ft] = e(t)�Πf (t, S) (4.33)

since in (4.33) the term inside the expectation is a martingale. Therefore we have

E
QIdS [

e(T )�Πf (T, S)
�Πd(T, S)

|Ft] =
e(t)�Πf (t, S)
�Πd(t, S)

(4.34)

That is e(T )�Πf (T,S)
�Πd(T,S)

is a Q
IdS martingale. It is known that forward rates are the unbiased

predictors of the future spot rates under the respective forward measure. Thus if we use
the same analogy and the fact that �Πf (S, S) = I(S) we have the following:

e(t)�Πf (t, S)
�Πd(t, S)

= E
QIdS [

e(S)�Πf (S, S)
�Πd(S, S)

|Ft] = E
QIdS [ε(S)] (4.35)
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We will use this result in the next sections.

4.6.2 Inflation Linked Foreign Exchange Option

We consider a contract where domestic and foreign parties aim to fix purchasing power
of their income in terms of the cross economy’s basket. Namely, we consider the call
option which gives the holder the right but not the obligation of changing the S-inflation
linked bond of foreign country for the bond of domestic country at expiration time T.
At time t, the payoff of the option is as follows:

X = Max[e(T )�Πf (T, S)− �Πd(T, S), 0] (4.36)

As it is very well known that the fair price at time t of a T-contingent claim X is given
by the formula

Θ(t,X) = E
Q[e−

� T
t r(s)ds

X|Ft]. (4.37)

where Q represents the domestic nominal risk neutral measure. Whence, time t value of
the option equals

E
Q[e−

� T
t r(s)ds(e(T )�Πf (T, S)− �Πd(T, S))I{e(T )�Πf (T,S)≥�Πd(T,S)}|Ft] (4.38)

By using the linearity of the expectation operator we can rewrite the equation (4.38) as

= E
Q[e−

� T
t r(s)ds

e(T )�Πf (T, S)I{e(T )�Πf (T,S)≥�Πd(T,S)}|Ft]
� �� �

I

(4.39)

E
Q[e−

� T
t r(s)ds�Πd(T, S)I{e(T )�Πf (T,S)≥�Πd(T,S)}|Ft]

� �� �
II

In what follows we will use the standard change of numeraire technic to compute the
value of the equation (4.39). In equation (4.39), part I the domestic value of the foreign
bond is a domestically traded asset with positive price process. Thus we can use it as a
numeraire and get the following

I = e(t)�Πf (t, S)EQIfS [I{e(T )�Πf (T,S)≥�Πd(T,S)}|Ft] (4.40)

where Q
IfS is the S-foreign inflation measure. It is obvious that (4.40) is equal to

I = e(t)�Πf (t, S)QIfS (
�Πd(T, S)

e(T )�Πf (T, S)
≤ 1) (4.41)

To compute the expectation in II we follow a similar way and take the domestic inflation
bond as a numeraire. This yields the following

II = �Πd(t, S)EQIdS [I{e(T )�Πf (T,S)≥�Πd(T,S)}|Ft] (4.42)
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which becomes

II = �Πd(t, S)QIdS (e(T )
�Πf (T, S)
�Πd(T, S)

≥ 1) (4.43)

where Q
IdS is the S-domestic inflation measure. It is clear from the equations (4.41)

and (4.43) that if we can compute the probabilities in these equations, the closed form
formula for the call option price directly follows. We start with introducing the process
Z(t) = e(T )�Πf (T,S)

�Πd(T,S)
. Obviously Z is a price process which is normalized by the S-domestic

inflation indexed bond. Thus, it is a martingale with respect to the domestic inflation
measure Q

IdS . That is, Z has the following dynamics

dZ(t) = Z(t)σZdW
IdS (t) (4.44)

where W
IdS (t) is a multi-dimensional QIdS Wiener Process. Indeed (4.44) is a Log-normal

process and the solution is given by

Z(T ) = Z(t) exp{−1

2

� T

t
||σZ(u)||2du+

� T

t
σZ(u)dW

IdS (u)} (4.45)

Therefore, our problem reduces to find the σZ . Indeed if σZ is non-stochastic we can
guarantee an explicit solution for our option pricing problem. Namely, if we have σZ

deterministic then the stochastic integral in (4.45) has a normal distribution with mean
zero and variance Σ2(T ) =

� T
t ||σZ(u)||2du. For the sake of completeness of the explicit

pricing formula from now on we will assume that σZ is non-stochastic. Now the aim is to
find the explicit form of σZ where under the domestic martingale measure the domestic
and foreign inflation bond price processes and the nominal exchange rate process is in
the form (4.2) and (4.4) respectively. To achieve this we apply the integration by parts
formula to Z, get the Q dynamics and derive the following formula for σZ

σZ(t) = n(t) + q
f (t)− q

d(t) + β
f (t)− β

d(t) (4.46)

Utilizing the no arbitrage conditions that we found above, we can write (4.46) as follows

ν(t)− (βd(t)− β
f (t)) (4.47)

which makes it possible to compute the probability in the second part of the equation
(4.39). To derive the probability in the part I of equation (4.39), we introduce the
following process

Y (t) =
1

Z(t)
=

�Πd(T, S)

e(T )�Πf (T, S)
(4.48)

Y is a martingale under the numeraire e(T )�Πf (T, S) and it has the following dynamics

dY (t) = Y (t)σY dW
IfS (t) (4.49)
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where W
IfS (t) is a multi-dimensional QIfS Wiener Process. One can follow the similar

way as above to clarify that σY satisfies

σY = −σZ (4.50)

Finally, via following the general option pricing formula given in Björk [2009] we get the
final valuation formula for an inflation-linked foreign exchange option.

Θ(t, If , Id, e) = e(t)�Πf (t, S)N(d1)− �Πd(t, S)N(d2) (4.51)

Here N represents the cumulative Standard Normal Distribution function and d1 and d2

are given by the following

d2 =
ln( e(t)

�Πf (t,S)
�Πd(t,S)

)− 1
2Σ

2(T )
�

Σ2(T )
(4.52)

d1 = d2 +
�
Σ2(T ) (4.53)

where

Σ2(T ) =

� T

0
||σZ(t)||2dt

4.6.3 Zero Coupon Relative Inflation Swaps

A swap is a contract to exchange the cash flows between the two parties. Traditionally
investors enter into a swap contract to exchange securities to change the maturity, cur-
rency or type of the rate from fix to floating or nominal to real. In this study we consider
a zero coupon swap with two parties A and B. Given a set of dates T1, T2, ..., TM party
A pays party B the change in the relative inflation index levels of two countries over a
predefined period T0, while part B pays the pre-specified fix rate K. Let us assume we
have TM = M years. In zero coupon relative inflation swap (ZCRIS) Party B pays

N [(1 +K)M − 1] (4.54)

and get

N [

e(TM )If (TM )
Id(TM )

e(T0)If (T0)
Id(T0)

] (4.55)

Thus, from very fundamental no arbitrage arguments the value at time t ,0 ≤ t < TM ,
of the inflation linked part of the swap is

ZCRIS(t, TM , N, I
f
, I

d
, e) = NE

Q[e−
� TM
t r(u)d(u)[

e(TM )If (TM )
Id(TM )

e(T0)If (T0)
Id(T0)

− 1]|Ft] (4.56)
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To evaluate (4.56) we use very simple replicating strategies. Namely, time t value of 1
unit which will be paid in time TM is obviously equals to the nominal domestic zero bond
price at t, i.e., P d(t, TM ). Similarly time t value of e(TM )If (TM )

Id(TM )
is equal to e(t)�Πf (t,TM )

�Πd(t,TM )
.

This is because of the fact that buying and holding a TM inflation bond up to time TM

yields I(TM ). Hence, we have

ZCRIS(t, TM , N, I
f
, I

d
, e) = N [

e(t)�Πf (t,TM )
�Πd(t,TM )

e(T0)If (T0)
Id(T0)

− P
d(t, TM )] (4.57)

We hereby use the definition of inflation bonds and equation (4.57), to calculate the
t = T0 value of the inflation linked payment. The result is as follows

ZCRIS(T0, TM , N, I
f
, I

d
, e) =

Πf (T0, TM )

Πd(T0, TM )
− P

d(T0, TM ) (4.58)

It is known that, no arbitrage necessitate that the time T0 value of the swap should be
equal to 0. That is,

N [
Πf (T0, TM )

Πd(T0, TM )
− P

d(T0, TM )] = NP
d(T0, TM )[(1 +K)M − 1] (4.59)

should be satisfied. (4.59) can be written as

Πf (T0, TM )

Πd(T0, TM )
= P

d(T0, TM )(1 +K)M (4.60)

Thus, if the market quotes the value for K , using the quoted nominal bond prices as
well, we can find the ratio of the real rates of the two countries. Indeed, one can also
check the results of the martingale property of real exchange rates on the rate K.

4.6.4 Year on Year Relative Inflation Swap

Given the M periods with T1, T2, ...TM cash flow structure of the YYRIS is that at the
time point Ti party A pays

Nφi[

e(Ti)If (Ti)
Id(Ti)

e(Ti−1)If (Ti−1)
Id(Ti−1)

− 1] (4.61)

whereas party B pays the fix amount

NφiK (4.62)
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where φi is the year fraction of the length of the interval [Ti−1, Ti]. For t < Ti we have
the following value for the floating leg of the YYRIS

Y Y RIS(t, TM , N, I
f
, I

d
, e) = NφiE

Q[e−
� Ti
t r(u)du[

e(Ti)If (Ti)
Id(Ti)

e(Ti−1)If (Ti−1)
Id(Ti−1)

− 1]|Ft] (4.63)

Equation (4.63) can be written as

NφiE
Q[e−

� Ti−1
t r(u)du

E
Q[e

−
� Ti
Ti−1

r(u)du
e(Ti)If (Ti)

Id(Ti)

e(Ti−1)If (Ti−1)
Id(Ti−1)

|FTi−1

� �� �

|Ft] (4.64)

In equation (4.64) the term with the underbrace is nothing but the time Ti−1 value of a
ZCRIS which will mature at time Ti. Thereby (4.64) becomes

= NφiE
Q[e−

� Ti−1
t r(u)du[

Πf (Ti−1, Ti)

Πd(Ti−1, Ti)
− P

d(Ti−1, Ti)]|Ft] (4.65)

which is equal to

= NφiE
Q[e−

� Ti−1
t r(u)duΠ

f (Ti−1, Ti)

Πd(Ti−1, Ti)
|Ft]−NφiP

d(t, Ti) (4.66)

Here the value of the expectation depends on the model specification of the real bonds
of domestic and foreign economies.

4.6.5 Inflation Linked Foreign Exchange Swap

Assume now again that we have M periods with T1, T2, ...TM . ILFES is set in such a way
that at each Ti, for i = 1...M the following transaction occurs between the two parties.
Party A pays the floating amount e(Ti)If (T (i)) and party B pays the floating amount
KI

d(Ti) where K is the pre-specified swap rate. Time 0 value of the associated swap is
equal to

E
Q[e−

� T1
0 r(u)du(e(T1)I

f (T1)−KI
d(T1))]+E

Q[e−
� T2
0 r(u)du(e(T2)I

f (T2)−KI
d(T2))]+ · · ·

(4.67)
+E

Q[e−
� TM
0 r(u)du(e(TM )If (TM )−KI

d(TM ))]

Following the similar arguments as in section 6.1 we can write equation (4.67) as follows

e(0)�Πf (0, T1)−K �Πd(0, T1) + e(0)�Πf (0, T2)−K �Πd(0, T2) + · · · (4.68)

+e(0)�Πf (0, TM )−K �Πd(0, TM )
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Setting the time 0 value equal to zero implies the following value for K

K =
e(0)

�M
i=1

�Πf (0, Ti)�M
i=1

�Πd(0, Ti)
(4.69)

Using the definition of inflation linked bonds we can rewrite K as follows

K =
e(0)If (0)

�M
i=1Π

f (0, Ti)

Id(0)
�M

i=1Π
d(0, Ti)

=
ε(0)

�M
i=1Π

f (0, Ti)�M
i=1Π

d(0, Ti)
(4.70)

4.7 Summary and Outlook

This part proposes a multi-country modeling framework for the pricing of inflation in-
dexed products. Considering a multi-country setting where the continuum of domestic
and foreign nominal and real bonds are traded we first specify the price processes of
nominal and real bonds of domestic and foreign economies, the price index processes
and the exchange rate as Itô processes. We then impose no-arbitrage condition to the
two country model and this immediately yields drift conditions for real and nominal term
structures of the domestic and foreign economies. Under the no-arbitrage assumption
presence of real bonds in the domestic and real economies yields the usual definition of
real exchange rate (RER). There, recalling the debate on the behavior of real exchange
rates we make the assumption that the RER follows a martingale process under the
statistical measure. This yields condition on the real interest rate differentials of the
domestic and nominal economies. Furthermore, we showed that the martingale assump-
tion on RER is equivalent to the condition that the nominal interest rate differentials
between the two economies is given by the sum of appreciation rate of the exchange rate
and the risk premium arising from exchange rate uncertainty.

Motivated by the importance of the information on RER for central banks, we introduce
a forward contract written on RER. This yields the forward real exchange rate which
can be written in terms of the price of the domestic and foreign inflation indexed bonds.

We further construct multi-country inflation linked derivatives such as foreign exchange
inflation options and real exchange rate swaps with the idea of providing a guarantee for
the foreign purchasing power of a domestic income. We extensively use the change of
numeraire technique to get prices of these derivatives. In particular, we get closed form
formulae under the assumption of deterministic volatility in the inflation indexed bond
price dynamics.

Application of the model to the real data and comparison with a nested one-country
model is left as a future study. Moreover, we are considering to investigate further on
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the RER implications of the two-country frame work for the pricing of inflation-linked
products.



Appendix A

Review for Marked Point Processes

This appendix gives a short overview of marked point processes via recalling definitions
and stating some important theorems without giving proofs. For the sake of completeness
we will first provide a background on point processes and then the theory of marked point
processes will follow. The main references that we used are Brémaud [1981], Björk et al.
[1997], Jacod and Shiryaev [1987], Jeanblanc et al. [2009] and Runggaldier [2003].

A.1 Univariate and Multivariate Point Processes

We are given a probability space (Ω,F,P). A univariate point process describes events
that occur randomly over time. It is possible to view a point process in three differ-
ent ways; as a sequence of nonnegative random variables, as an integer-valued random
measure or via its associated counting process. Following the first view, we may consider

0 = T0 < T1 < T2 < · · ·

where Ti generally indicates the time of the ith occurrence of an event. The point process
is called nonexplosive if and only if

T∞ = lim ↑ Tn = +∞

implying that finite number of events occur in a finite time interval. Now recall that a
counting process Nt is a non-negative increasing process with N0 = 0 which increases
by one at isolated times and stays constant between the times of increase. Under the
assumption of non-explosion for each Tn, the corresponding random variable Nt is defined
as

Nt = n if t ∈ [Tn, Tn+1), n ≥ 0

121
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or equivalently

Nt =
�

n≥1

1{Tn≤t}

Clearly, the process Tn and Nt carries the same information.

Let G be a given filtration. A counting process is G-adapted if and only if the random
variables (Tn, n ≥ 1) are G-stopping times. In such a case, {Nt ≤ n} = {Tn+1 > t}
belongs to Gt

The stochastic integral,
� t
0 CsdNs is defined pathwise as a Stieltjes integral for every

bounded measurable process C by

(C •N)t :=

�

(0,t]
CsdNs :=

∞�

n=1

CTn1{Tn≤t}

One can also associate a random measure to the counting process Nt. For any Borel set
A ∈ R+, for any ω,

µ(ω, A) = #{n ≥ 1 : Tn(ω) ∈ A}.

For any ω, the map A → µ(ω, A) is a positive measure on R+. Moreover, one can write

µ(ω, dt) =
�

n

δTn(ω)(dt)

where δa indicates the Dirac measure at point a. The random variable Nt can be written
as

Nt(ω) = µ(ω, (0, t]) =

�

(0,t]
µ(ω, ds)

and the stochastic integral as
�
(0,t]CsdNs =

�
(0,t]Csµ(ds).

Now let Tn be a univariate point process and Yn, n ≥ 1 a sequence of random variables
with values in {1, 2, · · ·,K}, all defined on the same probability space. For each k =

1, 2, · · ·,K we associate the counting process

Nt(k) := 1{Tn≤t}1{Yn=k}, n ≥ 1

Each Nt(k) is a univariate point process and theses processes have no common jumps.
The double sequence (Tn, Yn) or equivalently the vector process Nt = (Nt(1), · · ·, Nt(K))

called a multivariate marked point process. The first representation reveals that, one
may interpret Tn as the n

th occurrence of some event and Yn as an attribute or mark of
this event. We are now ready to speak of the marked point processes.
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A.2 Marked Point Processes

Let (Yn) be a sequence of random variables taking values in the measurable space (E,E),
and Tn (or Nt) a point process with T∞ = +∞. The double sequence (Tn, Zn, n ≥ 1)

is called an E -marked point process . The measurable space (E,E) is called the marked
space. Sometimes, marked point processes are called space-time point processes. Marked
point processes can be considered as the generalization of compound Poisson processes
where the jump sizes are no longer i.i.d random variables and the time intervals between
two consecutive jumps are no longer independent.

It is possible to associate to each A ∈ E the counting process Nt(A) defined by

Nt(A) =
�

n≥1

1{Yn∈A}1{Tn≤t}

and in particular, Nt(E) = Nt.

The natural filtration associated with the process Nt is defined by

F
µ
t := σ

�
Ns(A); s ≤ t, A ∈ E

�

Note that each Tn is an F
µ
t -stopping time.

Now recall that a random measure on R+ × E is a family of measures
�
µ(ω; dt, dy) : ω ∈ Ω

�

defined on R+ × E such that, for [0, t] × A ∈ B ⊗ E, the map ω → µ(ω; [0, t], A) is
F-measurable and µ(ω; {0} × E) = 0. One can associate with Nt a random measure µ

by
µ(ω; (0, t], A) = Nt(ω, A), t ≥ 0, A ∈ E

For a given ω ∈ Ω, µ(w; dt, dy) is σ-finite if and only if the realization Tn(ω) is non-
explosive.

We say that a map H : R+ × Ω × E → R is predictable E-marked process if it is
P⊗ E measurable where P is the predictable σ-field on (R+ ×Ω). The random measure
µ(ω; ds, dy) acts on the set of predictable E-marked processes H as

(H • µ)t =
�

(0,t]

�

E
H(s, y)µ(ds, dy) =

�

n

H(Tn, Yn)1{Tn≤t} =
Nt�

n=1

H(Tn, Yn)

where ω is suppressed in the notation .

Now we recall the definition of the compensator of the random measure µ. The compensator
of µ is the unique random measure ν such that, for every predictable process H,
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(i) the process H • ν is predictable

(ii) if, moreover, the process |H| • ν is increasing and locally integrable, the process
(H • µ−H • ν) is a local martingale.

The existence of compensator is proved e.g. in Jacod and Shiryaev [1987] (see page 66,
Thm 1.8). In the following we will assume that for every A ∈ E, the process Nt(A)

admits the F-predictable intensity λt(A), that is, there exists a predictable process (λt)

such that

Nt(A)−
� t

0
λs(A)ds

is a martingale. In such a case, we clearly have ν(ω; dt, dy) = λt(ω, dy)dt.

Theorem A.1 Let µ(dt, dy) be a E-marked point process with the (P,F)-intensity
kernel λt(dy). Then for each non-negative Ft-predictable E-marked process H

E

� � ∞

0

�

E
H(s, y)µ(ds, dy)

�
= E

� � ∞

0

�

E
H(s, y)λs(dy)ds

�

Proof. See Brémaud [1981], page 235, T3.

Now define µ̃(ds, dy) = µ(ds, dy)− λs(dy)ds. It follows from the above theorem that
�

(0,t]

�

E
H(s, y)µ̃(ds, dy)

is a (P,Ft)-local martingale provided that H is a predictable process satisfying
�

(0,t]

�

E
|H(s, y)|λs(dy)ds < ∞ P − a.s

For Brownian martingales there is the well-known result stating that every square in-
tegrable martingale with respect to the filtration generated by a Brownian motion is,
up to an additive constant, a stochastic integral of the Itô type. Next theorem states a
representation result for a general case.

Theorem A.2 A filtered probability space (Ω,F,Ft,P) given. Let W be a Brownian
motion and µ(ds, dy) a marked point process and

Ft := σ

�
Ws,F

µ
s , s ≤ t

�

completed. Then, any (P,Ft)-local martingale Mt has the representation

Mt = M0 +

� t

0
φsdWs +

� t

0

�

E
H(s, y)µ̃(ds, dy)
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where φ is a predictable square integrable process and H is predictable process such that
�

(0,t]

�

E
|H(s, y)|λs(dy)ds < ∞.

Proof. See e.g. Jacod and Shiryaev [1987], Part III.

Now we consider process of the general type

Xt = X0 +

�

[0,t]
αsds+

�

[0,t]
βsdWs+

�

(0,t]

�

E
γ(s, y)µ(ds, dy)

where all coefficients assumed to satisfy the integrability conditions and β and γ is
predictable. Next theorem gives the general Itô formula for processes of this type.

Theorem A.3 Assume that X has the dynamics of the form

dXt = αtdt+ βtdWt +

�

E
γ(t, y)µ(dt, dy)

where β and γ are predictable. Let F (t,X) be a C
1,2 function. Then the following Itô

formula holds

dF (t,Xt) = Ft(·)dt+ FX(·)αtdt+
1

2
FXX(·)β2

t dt+ FX(·)βtdWt

+
�
F (t,Xt− + γ(t, Yt))− F (t,Xt−)

�
dNt

where Nt = Nt(E) = µ((0, t], E), (·) denotes (t,Xt) and the subscribts in F indicates
partial derivatives.

Proof. See Runggaldier [2003], Section 2.4.

As a specific case, now we take an equation of the form

dXt = Xt−(αtdt+ βtdWt +

�

E
γ(t, y)µ(dt, dy)) (A.1)

where γ(t, y) > −1. Application of the Itô formula to F (t,X) = log(X) yields that

dF = αtdt−
1

2
β
2
t dt+ βdWt + log(1 + γ(t, Yt))dNs

which implies that the solution of (A.1) is in the form

Xt = X0 exp
�� t

0
(αs −

1

2
β
2
s )ds +

� t

0
βsdWs +

� t

0
log(1 + γ(s, Ys))dNs

�

Next theorem is a Girsanov type measure transformation for the finite time horizon
[0, T ∗].
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Theorem A.4 A filtered probability space (Ω,F,Ft,P) is given. On the finite time
interval [0, T ∗] , let µ(dt, dy) be an E-marked point process with (P,Ft)-compensator
ν(dt, dy) and Wt a Brownian motion. Let θt be a predictable square integrable process
and h(t, y) be predictable E-marked process satisfying

� T

0

�

E
|h(s, y)|ν(ds, dy) < ∞, ∀T ∈ [0, T ∗].

Define Mt = M
c
t .M

d
t where M

c
t and M

d
t satisfies

dM
c
t = M

c
t θddWt

dM
d
t =

�

E
(h(t, x)− 1)Md

t−(µ(dt, dx)− ν(dt, dx))

Suppose M is a true martingale. Then there exists a probability measure Q on F, equiv-
alent to P such that

dW
Q
t = dWt − θtdt is a Q Brownian motion,

ν
q(dt, dy) = h(t, y)ν(dt, dy) is Q compensator of µ(dt, dy).

Conversely, if Ft := σ

�
Ws, µ(ds, dy), s ≤ t

�
completed, then every probability measure

Q, equivalent to P, has the above structure.

Proof. See Runggaldier [2003], Thm. 2.5.
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In the following we will make the complimentary proof that is needed for the polynomial
property of affine processes.

First recall that we have the process X satisfying the stochastic differential equation

dXt :=

�
dYt

dZt

�
=

��
0

κzθz

�
+

�
−κy κy

0 −κz

� �
Yt

Zt

��
dt+

�
σy

√
Yt 0

0 σz
√
Zt

� �
dW

y
t

dW
z
t

�

(B.1)

Here, notice that the drift and diffusion parts of the above equation satisfies the linear
growth condition. That is, for any (y, z) ∈ X for the diffusion matrix, i,e., we write

����

�
σy

√
Yt 0

0 σz
√
Zt

�����
2

≤ K(1 + �(y, z)�2) (B.2)

Lemma B.1 Suppose u0 is a C
2-function on X, and u is a C

1,2 -function on R
+ ×X

whose spatial derivatives satisfies the polynomial growth condition
����

�
∂u

∂y
,
∂u

∂z

����� ≤ K(1 + �(y, z)�p), t ≤ T, (y, z) ∈ X (B.3)

for some constant K = K(T ) ≤ ∞ and some p ≥ 1, for all T < ∞.

If u(t, y, z) satisfies the Kolmogorov backward equation

∂u

∂t
= κy(z − y)

∂u

∂y
+ κz(θz − z)

∂u

∂z
+

1

2
σ
2
yy

∂
2
u

∂y2
+

1

2
σ
2
zz

∂
2
u

∂z2

u(0, y, z) = u0(y, z) (B.4)

for all t ≥ 0 and (x, y) ∈ X, then for all t ≤ T < ∞

u(T − t, Yt, Zt) = E[u0(YT , ZT )|Yt, Zt] (B.5)
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Proof. Since u is assumed to be C
1,2, in view of Itô formula we get

du(T − t, Yt, Zt) =

�
− ∂u(T − t, Yt, Zt)

∂t
+

∂u(T − t, Yt, Zt)
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2
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∂z2

�
dt

+
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y
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∂z
σz

�
ZtdW

z
t

(B.6)

Now suppose u satisfies (B.4). Then, the drift term in (B.6) immediately vanishes
implying that u(T − t, Yt, Zt) is a local martingale with u(0, YT , ZT ) = u0(YT , ZT ). We
now write

du(T − t, Yt, Zt) =
∂u(T − t, Yt, Zt)

∂y
σy

�
YtdW

y
t +

∂u(T − t, Yt, Zt)

∂z
σz

�
ZtdW

z
t (B.7)

In what follows our main objective is to show that under the assumptions of the lemma,
u(T − t, Yt, Zt) is indeed a true martingale. We have
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2 ����
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2
yYt 0
0 σ

2
zZt

����� ds
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1 + E

�
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�(Ys, Zs)�2p
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(B.8)

where the last inequality follows from the assumption (B.3) and due to the fact that
the diffusion parameter of the process X satisfies the linear growth condition. One can
show that (see Karatzas and Shreve [1991], Problem 5.3.15) the expectation in (B.8) is
finite and this yields the desired result.
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