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1 Abstract 

Minor group human rhinoviruses (HRVs), causative agents of the common cold, 

are internalized by receptor-mediated endocytosis. The low endosomal pH (<pH 5.8) 

triggers the uncoating process. The innermost capsid protein VP4 is released and the 

amphipathic N-terminus of VP1 is externalized, generating hydrophobic A-particles that 

interact with the endosomal membrane. Trans-membrane RNA release into the 

cytoplasm results in empty capsids or B-particles, retained in intact endosomes.  

In the current study, the 3D structures of A- and B-particles of HRV2 were solved 

from cryo-EM data to resolutions below 10 Å. By mutual comparison and docking of the 

published X-ray coordinates of native HRV2, the main structural changes during rhino-

viral uncoating were investigated. 

A-particles expanded by 4.7 % compared to native virus and pores opened at the 

2- and 5-fold axes. Concomitantly, VP4 was expelled and the VP1 N-terminus was 

externalized via the pseudo-3-fold axis. The genome became more ordered and an 

inner RNA shell could be resolved, contacting the capsid at the 2- and pseudo-3-fold 

axes. 

Acid-triggered B-particles differed from A-particles only in the released RNA 

genome and the VP1 N-terminus that became too disordered to be resolved. By 

comparison to the published EM map of heat-induced B-particles, equivalence of 

heating and acidification as triggers for rhino-viral uncoating was demonstrated. 

For studying uncoating in the context of membranes, liposomes were decorated 

with a recombinant receptor fragment of VLDLR and HRV2 was specifically attached. 
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Viral conversion was triggered by acidification and halted at different stages by EM 

preparation techniques. New intermediate particles with partially externalized RNA were 

visualized and empty capsids remained membrane-associated. The kinetics of 

uncoating was faster than in solution, suggesting a catalytic effect of the membrane or 

of the pH gradient across it on RNA release.  

The current data depict the main conformational changes minor group 

rhinoviruses undergo during uncoating. They additionally emphasize the importance of 

investigating rhino-viral RNA release in the context of membranes. 
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2 Zusammenfassung 

Humane Rhinoviren (HRVs) der „minor“ Rezeptorgruppe, Erreger der 

gewöhnlichen Erkältung, werden durch Rezeptor vermittelte Endozytose in die Zelle 

aufgenommen. Der niedrige pH-Wert in Endosomen (<pH 5.8) induziert den Uncoating-

Prozess. Das interne Kapsidprotein VP4 und der amphipathische N-Terminus von VP1 

werden externalisiert, wodurch das hydrophobe A-Partikel generiert wird, das an die 

endosomale Membran bindet. Der darauffolgende trans-Membran RNA-Transfer 

resultiert in leere Kapside oder B-Partikel, die in den intakten Endosomen 

zurückbleiben. 

In der vorliegenden Studie wurde die Struktur von A- und B-Partikeln von HRV2 

von cryo-EM Daten bis zu unter 10 Å Auflösung rekonstruiert. Durch Vergleiche 

miteinander und Docking der Röntgenstruktur von nativem Virus wurden die 

Strukturänderungen während des rhino-viralen Uncoating-Prozesses untersucht. 

A-Partikel expandierten im Vergleich zu nativem Virus um 4.7 % und Poren 

öffneten sich an den 2- und 5-fachen Symmetrieachsen. Gleichzeitig wurde VP4 

freigesetzt und der VP1 N-Terminus an der pseudo-3-fachen Achse externalisiert. Das 

Genom wies einen höheren Ordnungsgrad auf und eine interne RNA-Hülle wurde 

rekonstruiert, die das Kapsid an den 2- und pseudo-3-fachen Achsen berührte. 

Säure induzierte B-Partikel unterschieden sich von A-Partikeln in der RNA-

Freisetzung und im VP1 N-Terminus, der durch seine hohe, konformative Flexibilität 

nicht rekonstruiert werden konnte.  Vergleiche mit der publizierten Struktur von Hitze 
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induzierten B-Partikeln bewiesen die Äquivalenz von erhöhten Temperaturen und Säure 

als Auslöser des Uncoating-Prozesses. 

Um Uncoating im Zusammenhang mit Membranen zu untersuchen, wurden 

Liposome mit einem rekombinanten Rezeptorfragment vom VLDLR dekoriert und HRV2 

wurde spezifisch daran gebunden. Virale Strukturänderungen wurden durch 

Ansäuerung induziert und durch EM-Präparationstechniken angehalten. Dadurch 

konnten neue Zwischenstadien des Uncoating mit partiell freigesetzter RNA und 

membrangebundene, leere Kapside visualisiert werden. Die Kinetik des RNA-Transfers 

war schneller als in Lösung, was auf eine mögliche, katalytische Aktivität der Membrane 

oder des pH-Gradienten über diese auf die RNA-Freisetzung hinweist. 

Die vorliegenden Daten beschreiben die Strukturänderungen von HRVs der 

„minor“ Rezeptorgruppe während des Uncoating-Prozesses. Sie untermauern 

außerdem die Wichtigkeit, rhino-viralen RNA-Transfer im Zusammenhang mit 

Membranen zu untersuchen. 
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3 Introduction 

3.1 Pathology 

Human Rhinoviruses (HRVs) are the main causative agents of the common cold, 

an infection of the respiratory tract that is characterized by nasal obstruction, 

rhinorrhoea, and general malaise (Heikkinen T and Jaervinen A, 2003). Rhino-viral 

colds are associated with exacerbations of asthma (Message SD et al., 2008) and 

chronic obstructive pulmonary disease (Mallia P et al., 2006) and can be accompanied 

by secondary bacterial infections, leading to acute otitis media (Savolainen-Kopra C et 

al., 2009) or pneumonia (Juven T et al., 2000; Jennings LC et al., 2008). HRVs are 

responsible for millions of lost working and school hours and the associated financial 

loss. More importantly, they also pose a threat to children, elderly, and immuno- 

compromised patients (Johnston SL, 2005). 

HRVs are transmitted via respiratory secretions in particle aerosols or on 

contaminated hands and environmental surfaces (Winther B et al., 2007l). Once they 

reach the nasopharyngeal mucosa, they infect epithelial cells, using specific receptors. 

Within 8 h to 10 h, infectious viral particles can be detected in nasal secretions and viral 

shed peaks around 48 h post inoculation (Winther B et al., 1986; Harris JM 2nd and 

Gwaltney JM Jr, 1996). The infection is self-limiting and usually restricted to the upper 

respiratory tract. However, viral RNA has also been detected in the lower airways 

(Papadopoulos NG et al., 2000; Mosser AG et al., 2005). As found in nasal biopsies, in 

vivo, HRVs do not cause significant histo-pathological changes (Winther B et al., 1984), 
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it has thus been suggested that the clinical symptoms may be caused by the immune-

response of the host. In particular, the levels of interleukin-6 and -8 in nasal mucus were 

shown to correlate with the severity of symptoms (Turner RB et al., 1998; Papadopoulos 

NG et al., 2000). 

Currently, HRV infections are treated symptomatically using analgesics, 

antitussives or decongestants, because so far, no specific anti-rhino-viral drugs are 

approved for clinical use (Rollinger JM and Schmidtke M, 2009). Strategies for their 

development focus on conserved rhino-viral features such as capsid proteins, 

proteinases or components of RNA synthesis. This is essential, to target the over 100 

known serotypes (Palmenberg AC et al., 2009) and to limit the emergence of escape 

mutants. Due to the high variability of HRVs, successful vaccination has long been 

considered impossible. Recently, cross- reactivity of antibodies against viral protein 1 

(VP1) and 4 (VP4) have been shown (Katpally U et al., 2009), so that combinations of 

recombinant capsid proteins might be suitable antigens for vaccination. 

Considering the wide medical distribution and the lack of efficient prevention or 

treatment, further investigation of HRVs is of great importance. Deeper knowledge on 

the molecular details of their infection pathway may allow identification of conserved 

drug targets. In addition, findings on HRVs could be extrapolated to other, more 

pathogenic viruses of the Picornaviridae, such as Poliovirus, Hepatitis A Virus and 

Food- and Mouth Disease Virus. 
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3.2 Picornaviridae 

Human Rhinoviruses belong to the family Picornaviridae of the order 

Picornavirales. It is a family of small (i.e. “pico” in Latin), non-enveloped, icosahedral 

viruses with a single-stranded, positive sense RNA genome. Picornaviridae include 

many important pathogens for humans and livestock, such as Poliovirus, 

Coxsackievirus, Hepatitis A Virus, and Food- and Mouth Disease Virus. They are 

subdivided into the 12 genera Aphtovirus, Avihepatovirus, Cardiovirus, Enterovirus, 

Erbovirus, Hepatovirus, Kobuvirus, Parechovirus, Sapelovirus, Senecavirus, 

Teschovirus, and Tremovirus. Human Rhinoviruses are assigned to the genus 

Enterovirus that consists of seven different Enterovirus species plus the three Human 

Rhinovirus species A, B, and C (http://www.ictvonline.org/virusTaxonomy.asp, 

18.04.2011). 

99 serotypes of HRVs, obtained from clinical specimens, were classified 

according to sequence similarity into the species HRV-A and HRV-B, with 74 and 25 

strains, respectively (Ledford RM et al., 2004; Laine P et al., 2005). Alternatively, these 

rhinoviruses can be grouped on the basis of receptor specificity. 87 serotypes, the major 

group viruses, use Intercellular Adhesion Molecule-1 (ICAM-1) for attachment to host 

cells (Greve JM et al., 1989), whereas 12, the minor group viruses, bind members of the 

Low-Density Lipoprotein Receptor (LDLR) superfamily (Hofer F et al., 1994; Vlasak M et 

al., 2005). The major group contains both, HRV-A and –B strains, but the minor group 

consists only of HRV-A serotypes. A third method of rhino-viral classification is their 

sensitivity to a panel of capsid binding anti-virals, a group of hydrophobic but otherwise 

chemically divergent compounds. Some HRVs are inhibited by drugs with a long 

http://www.ictvonline.org/virusTaxonomy.asp
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aliphatic chain, whereas others are neutralized by shorter compounds, classifying them 

into drug reactive group A and B, respectively (Andries K et al., 1990; Mckinlay et al., 

1992). There is a strong correlation between these two groups and the amino acid 

sequence of the drugs’ binding site, a hydrophobic pocket on the viral surface, probably 

reflecting its geometry. The correlation holds also for the entire rhino-viral genome, so 

that most antiviral group A viruses belong to the HRV-B species and vice versa (Andries 

K et al., 1990; Palmenberg AC et al., 2009). 

In 2007, new HRV strains were discovered that cause influenza-like illnesses 

with severe respiratory distress (Lau SK et al., 2007). Sequence analysis revealed that 

they differ clearly from the previously known 99 serotypes (Palmenberg AC et al., 2009) 

and they were thus classified into the new species HRV-C. Just recently, HRV-C viruses 

could be propagated in cell culture, following transfection with viral RNA. First data on 

reactivity to capsid binders allocated HRV-C15 to drug reactive group B. The host cell 

receptor is not known yet, but data by Bochkov Y et al. (2011) indicated that HRV-C 

would fall into a separate receptor group. 

 Figure 1 gives an overview on rhino-viral classification. 
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Figure 1 Genome tree for all known HRV serotypes. Human Rhinoviruses are phylogenetically 
grouped into the three species HRV-A, B, and C. Alternatively, HRVs are classified based on receptor 
specificity into a major (M) and minor (m) group, binding ICAM-1 and members of the LDLR superfamily, 
respectively. The receptor of HRV-C viruses has yet to be identified. Reactivity to hydrophobic capsid 
binders assigns HRVs to drug reactive groups A and B (here 1 and 2), being more susceptible to long 
and short compounds, respectively. Recently, HRV-C15 was allocated to drug reactive group B. The 
minor group HRV2, belonging to HRV- A species and drug reactive group 2, is studied in the current 
thesis (arrow). Figure from Palmenberg AC et al. (2009). 

 

The current thesis focuses on minor group rhinoviruses, especially on HRV2, its 

best studied member. It belongs to the HRV-A species and the drug reactive group B.  
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3.3 Virion structure 

The X-ray structure of native HRV2 has been solved to 2.6 Å resolution 

(Verdaguer N et al., 2000). Human rhinoviruses consist of a 30 nm large, non-

enveloped, icosahedral protein capsid that harbors a 7.2 kb long, single-stranded, and 

positive sense RNA genome. The capsid is composed of 60 copies of each of the four 

capsid proteins viral protein 1 (VP1), VP2, VP3, and VP4. The first three make up the 

outer surface of the virus, whereas VP4, as well as the N-termini of VP1 and VP2 are 

found, partially disordered, in the interior of the capsid (Rossmann MG, 2002). The 

internal RNA genome lacks symmetry. In the X-ray structure, only weak density in 

proximity to Tryptophan 2038 of VP2 has been attributed to viral RNA. 

Although different in sequence, the surface proteins VP1 to VP3 have similar 

sizes (32.9 kDa, 29.0 kDa, and 26.1 kDa, respectively) and folds. Eight anti-parallel β-

sheets, nine in VP2, form a wedge-shaped β-barrel. At its narrow end, loops connect 

the anti-parallel β-sheets B and C, H and I, E and D, F and G. These point towards the 

5- fold axis in VP1, towards the pseudo-6-fold axis in VP2 and VP3. VP1 to VP3 

together form one of the 60 protomers of the viral capsid, resulting in a T=1 (pseudo 

T=3) surface lattice (Rossmann MG, 2002) (Figure 2). 
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Figure 2 Schematic representation of the picornaviral capsid and the fold of surface proteins. The 
non-enveloped capsid of picornaviruses is composed of 60 copies of the viral proteins 1 to 4. VP1 to VP3 
form a T=1 (pseudo T=3) icosahedron with VP4 located on the capsid interior. Around the 5-fold axis, a 
depression (outlined in grey) is the binding site for the major group receptor ICAM- 1 and a class of 
hydrophobic antivirals (A, from Rossmann MG, 1989). The surface proteins VP1 to VP3 fold in a wedge-
shaped β-barrel, with antigenic loops connecting their eight anti- parallel β- sheets. The loops of VP1 
assemble at the star-shaped dome at the 5-fold axis, forming the attachment site of minor group 
receptors (B, from Hogle JM et al.,1985). 

 

The different serotypes arise from varying amino acid sequences of the surface 

loops (Rossmann MG et al., 1985; Chapman MS and Rossmann MG, 1993). Especially 

the loops of VP1 harbor strong antigenic epitopes. In native virions, they assemble at 

the 5-fold axis, forming a star-shaped dome that is the receptor binding site for minor 

group viruses (Verdaguer N et al., 2004).  

An about 15 Å deep canyon around the 5-fold axis is formed by insertions into 

the β-barrel structure of all surface proteins but mainly of VP1. In native virions, the 

pocket factor, a lipophilic molecule, most likely a myristate, is bound to a hydrophobic 

depression in the canyon floor. The hydrophobic capsid binders, used for rhino-viral 

classification into drug reactive groups, replace this pocket factor (Rossmann MG, 1989; 

Zhang Y et al., 2004). They stabilize the capsid and thereby inhibit structural changes 

A          B 
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required for uncoating (Gruenberger M et al., 1991; Phelps DK et al., 1998; Okun VM et 

al., 2002). 

3.4 Genome structure 

Within the protein capsid, HRVs harbor a single-stranded, positive-sense RNA 

genome of 7.2 kb length. Functionally, it can be subdivided into different parts.  

At its 5’ end, the genomic protein VPg is covalently bound to the nucleic acid. It 

serves as primer for the viral RNA polymerase during positive and negative stand 

synthesis (Wimmer E, 1982). This is followed by a 5’ untranslated region (UTR), 

containing an internal ribosomal entry site (IRES). Rhino-viral RNA lacks the m7G cap 

of cellular mRNA, required for recognition by and binding to ribosomes. Instead, the 

IRES, a characteristically folded RNA secondary structure, promotes binding of 

ribosomes and thus initiation of translation (Jackson RJ and Kaminski A, 1995; 

Kaminski A et al., 2010). It gives viral protein expression a selective advantage over 

cellular polypeptide synthesis, when viral effector proteins shut down cap-dependent 

translation during the course of infection (Haghighat A et al., 1996; Svitkin YV et al., 

1999). 

Rhino-viral RNA contains one single open reading frame (ORF), encoding one 

polyprotein. It can be divided into the three main parts P1 to P3. The P1 region contains 

the sequence for the structural proteins VP1 to VP4, whereas P2 and P3 encode non- 

structural proteins. The proteases 2A and 3C autocatalytically cleave the viral 

polyprotein upon translation (Palmenberg AC et al., 1979; Toyoda H et al., 1986). They 

are also responsible for shutting off the host cell machinery. The proteins 2B and 2C are 
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involved in determining the host range of the virus (Yin FH and Lomax NB, 1983; Lomax 

NB and Yin FH, 1989). Proteins 2C, 3A, VPg, and the RNA polymerase 3D are required 

for RNA replication. 

The 3’ non-coding region terminates in a poly-A tail. Rhino-viral RNA thus largely 

resembles mRNA and can directly serve as template for protein synthesis and 

replication. 

Figure 3 gives an overview of the rhino-viral genome. 

 

 

Figure 3 Schematic representation of the rhino-viral genome. At its 5’ end, rhino-viral RNA is linked to 
the genomic protein VPg (grey), followed by a 5’ untranslated region (UTR). It contains an internal 
ribosomal entry site (IRES) for the initiation of translation. The open reading frame encodes one single 
polyprotein with the structural and non- structural proteins in regions P1 and P2/P3, respectively. The 3’ 
UTR terminates in a poly-A tail. 

3.5 Receptor binding 

For identification of and attachment to target cells, minor group rhinoviruses use 

the Low-Density Lipoprotein Receptor (LDLR), the Very-Low-Density Lipoprotein 

Receptor (VLDLR) or LDLR-Related Protein (LRP) (Hofer F et al., 1994; Vlasak M et al., 

2005; Marlovits TC et al., 1998). 

Members of the LDLR superfamily bind a variety of different ligands (Herz J and 

Strickland DK, 2001; Blacklow SC, 2007). Structurally, they consist of different numbers 

of ligand binding modules, the 40 to 50 residue-long complement repeats. One 

individual repeat has generally low affinity towards natural ligands but several modules 
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bind concertedly with high avidity (Andersen OM et al., 2000; Wruss J et al., 2007). C-

terminally of the complement repeats, lipoprotein receptors contain an epidermal growth 

factor (EGF)-precursor domain with a six-bladed β-propeller. At the acidic pH within 

endosomes, the propeller forms an intra-molecular bond with the ligand binding 

modules, thereby displacing attached ligands (Rudenko G et al., 2002; Konecsni T et 

al., 2009). In LDLR and VLDLR there is a heavily O-glycosilated domain before the 

trans-membrane domain. The cytoplasmic tail of the receptors contains a clathrin-

localization sequence, required for clathrin-mediated endocytosis (Brown MS et al., 

1997) (Figure 4). 

 

Figure 4 Scheme of low-density lipoprotein receptors, binding minor group rhinoviruses, and of a 
recombinant VLDLR mini-receptor, used in the current thesis. Low-Density Lipoprotein Receptor 
(LDLR), Very-Low-Density Lipoprotein receptor (VLDLR), and LDLR-Related Protein (LRP), the receptors 
of minor group rhinoviruses, contain three important domains for rhino-viral infection. At the N-terminus or 
throughout LRP, various numbers of complement type repeats (red) constitute the ligand binding domain. 
The β-propeller (YWTD) within the epidermal growth factor (EGF) precursor domain (blue) interacts with 
the complement repeats at acidic pH of endosomes, so that bound virus is dissociated. Finally, the 
cytoplasmic tail contains a clathrin-localization sequence (NPxY), required for clathrin-mediated 
endocytosis. Soluble VLDLR mini-receptors, used for studying virus-receptor interactions in vitro, consist 
of different binding modules, fused to maltose-binding protein (MBP) for solubility, and of a His6 tag for 
purification. V33333, a concatemer of the high affinity binding module 3, was used in the current thesis. 
Adapted from Brown MS et al. (1997). 
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Binding of VLDLR to the minor group virus HRV2 is best studied. Of the eight 

binding modules, complement repeats V2 and V3 attach to the virus, with the latter 

having the highest affinity (Neumann E et al., 2003; Verdaguer N et al., 2004). X-ray 

structures of concatemers V23 or V33333, bound to HRV2, showed receptor binding on 

the star-shaped dome at the 5-fold axis. One complement repeat is attached per viral 

protomer, interacting with the surface loops BC, DE and HI of two adjacent VP1s. 

(Verdaguer N et al., 2004; Querol-Audi J et al., 2009) (Figure 5).  

 

Figure 5 X-ray structure of V33333 bound to HRV2, view on 5-fold 
axis. The binding modules of the VLDLR mini-receptor attach to HRV2 in 
a ring-like structure around the star-shaped dome of the viral 5- fold axis. 
One complement repeat (yellow) interacts with two adjacent VP1 
proteins (green). VP2 (rose) and VP3 (blue) are not involved in receptor 
binding (Querol-Audi J et al., 2009). 

 

The mini-receptor V33333 attaches to all five VP1s at a viral vertex, forming a 

ring-like structure. Occupancy of 100 %, with 12 receptor molecules per virion, was 

observed (Querol-Audi J et al., 2009, Konecsni T et al., 2004). Of all investigated 
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VLDLR-derived mini-receptors, V33333 has the highest binding avidity towards HRV2, 

without causing significant aggregation (Verdaguer N et al., 2004; Moser R et al., 2005; 

Wruss J et al., 2007). In the current thesis, it was thus chosen for binding HRV2 to 

liposomal membranes. 

3.6 Infection pathway 

Upon binding to lipoprotein receptors on the cell surface, minor group 

rhinoviruses are taken up by clathrin-mediated endocytosis (Snyers L et al., 2003). If 

this pathway is blocked, internalization can also occur via clathrin-independent routes 

(Bayer N et al., 2001; Huber M et al., 2001). In both cases, virus is trafficked to early 

endosomes. At their mildly acidic pH (pH 6.5 to pH 6.0) (Mellman I et al., 1986; 

Mukherjee S et al.,1997), the ligand binding domain of the receptor folds back and 

interacts with the β-propeller, thereby displacing the bound cargo (Brabec M et al., 

2003; Konecsni T et al., 2009). The lipoprotein receptors are recycled to the cell 

surface, whereas released virus is further trafficked to endosomal carrier vesicles and 

late endosomes. Values of pH below pH 5.8 trigger conformational changes of the viral 

capsid, generating hydrophobic A-particles. It is believed that externalized, amphipathic 

viral residues insert into the endosomal membrane, forming a trans-membrane pore, 

through which the viral RNA is released into the cytoplasm. Empty capsids remain 

within intact endosomes and are further trafficked to lysosomes for degradation (Prchla 

E et al., 1994; Schober D et al., 1998). Although so far never visualized, in vitro and in 

vivo data strongly support this pore-hypothesis (Prchla E et al., 1995; Weiss VU et al., 

2010). Ten kDa FITC Dextran, co-internalized with HRV2, was released into the 
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cytoplasm as result of viral infection, whereas 70 kDa FITC-Dextran remained within the 

endosomal compartment (Brabec M et al., 2005). This indicates that size selective 

pores formed in the endosomal membrane during HRV2 infection. In addition, HRV2 

was shown to transfer its genome into liposomal nanocontainers, filled with a reverse 

transcription mixture, without inducing leakage of the components (Bilek G et al., 

submitted).  

In the cytoplasm, the positive-sense, single-stranded RNA genome serves as 

template for protein synthesis and replication. The Internal Ribosomal Entry Site (IRES) 

in the 5’ UTR recruits ribosomes, translating a polyprotein composed of structural and 

non-structural proteins. It is autocatalytically cleaved by the proteases 2Apro and 3Cpro. 

The genomic protein VPg serves as primer for transcription of negative-sense RNA by 

the virally encoded RNA-dependent RNA polymerase, followed by plus-strand 

synthesis. The accumulating capsid proteins VP0, VP1 and VP3 assemble into 

pentamers and package the VPg-RNA into non-infectious provirions. Upon maturation, 

VP0 is cleaved into VP2 and VP4 and the infectious rhinovirus is released from the cell. 

 

The current thesis focuses on the uncoating process of minor group rhinoviruses, 

especially on the structure of subviral particles. 

3.7 Subviral particles 

Native HRVs, released from host cells, are metastable. They traffic their viral 

RNA between target cells. Exposure to pH values below pH 5.8, as found in endosomal 

carrier vesicles and late endosomes, triggers conformational changes of the capsid and 
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the formation of subviral particles. The inner capsid protein VP4 is expelled and the 

amphipathic N-terminus of VP1, internal in native virions, is externalized. The resulting 

hydrophobic A-particle interacts with the endosomal membrane and subsequently 

releases its RNA genome into the cytoplasm, leaving behind the empty capsid or B- 

particle. 

Lonberg-Holm K and Noble-Harvey J (1973) first isolated subviral particles A and 

B from extracts of infected cells 15 min and 60 min post infection, respectively. Both 

exhibit changed antigenicity, when compared to native virus, and fail to bind to the 

cellular receptor (Lonberg-Holm K and Yin FH, 1973; Noble J and Lonberg-Holm K, 

1973; Neubauer C et al., 1987). In addition, they can be distinguished by difference in 

sedimentation behavior in density gradients or varying electrophoretic mobilities 

(Lonberg-Holm K and Noble-Harvey J, 1973; Okun VM et al., 2002; Weiss VU, 2009).  

Both particle species can also be generated in vitro. They show comparable 

antigenicity, sedimentation and polypeptide composition as their equivalents, found in 

infected cells (Korant BD et al., 1972; Lonberg-Holm K and Noble-Harvey J, 1973). 

Findings on particles, generated in vitro, may thus be applied to in vivo.  

3.7.1 A-particle 

A-particles are stable intermediates of the uncoating process. They are found in 

infected cells 15 min post infection but can also be generated in vitro by exposure to 

acidic pH or incubation at elevated temperatures (Korant BD et al., 1972; Lonberg- 

Holm K and Yin FH, 1973; Lonberg- Holm K and Noble- Harvey J, 1973; Weiss, VU, 

2009). They have expelled the inner capsid protein VP4 and externalized the N-

terminus of VP1, but still harbor their RNA genome. In density gradients, they sediment 
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about 10 % more slowly than native virions i.e. at 135 S instead of 150 S. Being 

hydrophobic, A-particles attach to membranes and ex vivo isolates were found to be 

associated with cellular membranes (Lonberg-Holm K and Korant BD, 1972; Lonberg-

Holm K et al., 1976).  

3.7.2 B-particle 

A so far unknown trigger converts A- into B-particles. They are empty protein 

capsids and the final stage of the uncoating process. In addition to loss of VP4 and 

externalization of the VP1 N-terminus, they have also released their RNA genome, 

sedimenting thus at 80 S. In vitro, they can be formed by exposure to elevated 

temperatures. 

The cryo-EM structure of heat- induced B-particles, generated by incubation of 

native HRV2 at 55 °C for 30 min, was solved to 15 Å resolution. It allows more detailed 

insights into the conformational changes the capsid undergoes during uncoating. 

Compared to native virions, the capsid of B-particles expands by about 4 %. Structural 

rearrangements at the 2-fold axis cause a thinning of the capsid and formation of 

protuberances at its inner surface. The star-shaped dome at the 5-fold axis rotates by 7 

degrees, opening a 10 Å wide channel. This pore has been suggested as exit site of the 

viral genome (Hewat EA et al., 2002) (Figure 6).  
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Figure 6 B-particles are 4 % larger than native HRV2 and have a 10 Å large pore at the 5-fold axis. 
The X-ray structure of native HRV2, filtered to 12 Å resolution, is shown in comparison to the EM map of 
heated-induced B-particles at 15 Å. Upon uncoating, HRV2 expands by 4 %. The star-shaped 5-fold axis 
rotates clockwise, opening a channel. Figure from Hewat EA et al. (2002). 
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4 Objectives 

Structural data is available for the start and endpoint of rhino-viral uncoating, but 

little is known about intermediates, such as A-particles. It was the goal of the first part of 

this thesis, to determine a medium resolution structure of A-particles.  

As in vivo uncoating occurs in close proximity to the endosomal membrane, the 

second part of this thesis examines viral conversion in the context of membranes. By 

investigating uncoating intermediates from a structural point of view, we expect deeper 

insights into early events of rhino-viral infection. 
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5 Materials and Methods 

5.1 Materials 

5.1.1 Chemicals 

All chemicals were purchased from Sigma Aldrich (Steinheim, DE), if not 

indicated otherwise. Lipids were obtained from Avanti Polar Lipids (Alabastar, US). 

5.1.2 Antibodies 

Antibody conjugates were bought from Jackson ImmunoResearch Laboratories 

(West Grove, US). 

5.1.3 Cells 

HeLa Ohio cells were obtained from the European Collection of Cell Culture. 

5.1.4 Virus 

Human rhinovirus serotype 2 (HRV2) was originally obtained from the American 

Type Culture Collection (ATCC). Its identity was routinely confirmed with guinea pig 

anti-HRV2 antibodies from ATCC. 

5.2 Methods 

5.2.1 Cell propagation 

HeLa Ohio cells were grown in Minimal Essential Medium (MEM) supplemented 

with 1 % L-glutamine (GIBCO, Paisley, GB), 10 % heat-deactivated fetal calf serum, 
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and 1 % penicillin/streptomycin (GIBCO, Paisley, GB) at 37 ºC and 5 % CO2. For 

splitting, cells were washed with PBS and detached with trypsin-EDTA (PAA, Pasching, 

AT). Trypsin was deactivated with growth medium. Cells were pelleted in a Heraeus 

Megafuge 1.0 (Kendro, Langenselbold, DE) at 1200 rpm for 5 min, resuspended in 

growth medium and split accordingly for further cultivation. 

5.2.2 Virus growth and purification 

HeLa Ohio cells were grown to confluence in 18 162 cm2 tissue culture flasks, 

detached as described above and transferred to 6 L MEM supplemented with 7 % horse 

serum (GIBCO, Paisley, GB), 1 % L-glutamine (GIBCO, Paisley, GB) and 1 % 

penicillin/streptomycin (GIBCO, Paisley, GB) (Suspension Medium). Suspension 

cultures were grown in spinner flasks at 37 ºC and 25 rpm rotation for 4 days. Cells 

were pelleted in a in a J6-HC Beckman centrifuge (Beckman Coulter, Brea, US), using a 

JLA rotor at 2000 rpm and room temperature (RT) for 15 min. They were resuspended 

in MEM supplemented with 2 % horse serum (GIBCO, Paisley, GB), 3 mM MgCl2, 1 % 

L-glutamine (GIBCO, Paisley, GB), and 1 % penicillin/streptomycin (GIBCO, Paisley, 

GB) (Infection Medium). Cells were infected with HRV2 at a multiplicity of infection 

(MOI) of 1 and incubated for 16.5 h in a Heraeus Thermo electron corp. incubator at 34 

ºC and 25 rpm rotation. Cells were pelleted in a J6-HC Beckman centrifuge using a 

TY.JS4.2 rotor at 4200 rpm and 4 ºC for 15 min. The pellet was resuspended in 60 mL 

10 mM Tris- HCl pH 7.4, 10 mM EDTA (Virus Buffer B) and subjected to three cycles of 

freezing at -80 ºC and thawing. It was dounced 40 times in a tight fitting vessel. After 3 

min sonication, 60 mL 20 mM Tris- HCl pH 7.5, 2 mM MgCl2 (Virus Buffer A) were 

added and cell debris was pelleted in a RC5C Sorvall Centrifuge (Thermo Fisher 
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Scientific, Waltham, US), using an SS34 rotor at 20000 rpm and 4 ºC for 30 min. Virus 

in the supernatant was pelleted in an XL-70 Beckman Ultracentrifuge (Beckman 

Coulter, Brea, US), using a Ti45 rotor at 30000 rpm and 4 ºC for 2 h. The pellet was 

resuspended in 2 mL virus buffer A and digested with 50 μL 5 mg/ml DNase 1 (Roche, 

Wien, AT), 5 mg/ml RNase A (Roche, Wien, AT) for 10 min at RT. 500 μL trypsin-EDTA 

were added and it was incubated at 37 ºC for 5 min. The solution was adjusted to 10 % 

N-lauryl sarcosine and left over night (ON) at 4 ºC. After removal of insoluble material by 

pelleting in a 5415 D Eppendorf table top centrifuge (Eppendorf, Hamburg, DE) at 

14000 rpm, the supernatant was applied to a 30 mL 7.5 % - 45 % sucrose gradient in 

virus buffer A and centrifuged in an XL-70 Beckman Ultracentrifuge, using an SW28 

rotor at 25000 rpm and 4 ºC for 3.5 h. Virus bands were visible upon illumination from 

above and were extracted with needle and syringe. The virus was pelleted in an XL-70 

Beckman Ultracentrifuge, using an SW28 rotor at 25000 rpm and 4 ºC ON. Purified 

virus was resuspended in 200 μL 50 mM Na borate pH 7.4. Borate buffer was chosen 

for quality analysis in capillary electrophoresis.  

5.2.3 Generation of subviral A-particles 

Purified HRV2 in 50 mM Na borate pH 7.4 was brought to pH 5.0 with 1.4 

volumes 50 mM Na acetate pH 5.0 for 15 min at RT, reneutralized with 1.2 volumes 100 

mM Na borate pH 8.3 and incubated for 1 h at RT. If indicated, the protocol by Korant 

BD et al. (1972) was used. Virus was mixed with an equal volume of 1 M Tris-HCl pH 

5.0, incubated at RT for 20 min, chilled on ice and re-neutralized with one volume 0.5 M 

Tris base.  
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5.2.4 Immunization of rabbits 

To generate antibodies against the VP1 N-terminus (VP1-NT), a rabbit was 

immunized with 1 mg VP1-6K peptide. It consists of the 24 N-terminal amino acids of 

VP1 plus 6 C-terminal Lysines for solubility (NPVENYIDEV LNEVLVVPNI NSSN 

KKKKKK). After 20 days and 42 days, the rabbit obtained boosts of 1 mg peptide each. 

It was sacrificed 75 days after the first injection. 

5.2.5 Activity ELISA of anti-VP1-NT serum 

The peptide VP1-6K was bound to a micro- titer plate at 5 µg/well in 50 mM Tris 

pH 8.0. It was blocked with 1 % BSA/50 mM Tris pH 8.0. Pre-immune and immunized 

rabbit serum were applied in a 1:3 dilution series from 1:100 to 1:81000 in 50 mM Tris 

pH 8.0. Binding of antibodies was detected with goat anti-rabbit HRP conjugates at a 

1:10k dilution in 1 % BSA/50 mM Tris pH 8.0. As background controls, rabbit serum at 

1:300 dilution was added to BSA- coated wells or it was replaced by BSA on peptide 

coated wells. It was incubated in 100 µL/well substrate solution of 100 mM Na acetate 

pH 6.0, 30 µg/mL TMB, 1:3000 H2O2 in until a visible signal developed. The reaction 

was quenched with 50 µL/well of 1 M H2SO4. The absorbance at 450 nm was 

measured with a Multiskan RC plate reader (Labsystems, Quickborn, DE). 

5.2.6 Antibody purification 

A 1 mL HiTrap rProtein A column (GE Healthcare, Waukesha, US) was 

equilibrated with 10 column volumes 100 mM Tris pH 8.0. Rabbit serum, adjusted to 

100 mM Tris pH 8.0, was applied in 1 mL aliquots and the column was washed with five 

column volumes of 100 mM Tris pH 8.0. Bound antibodies were eluted with 100 mM 
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glycine pH 3.0 into 1/10th volume 1 M Tris pH 8.0. Protein containing fractions were 

checked for purity on a 15 % reducing SDS gel. 

5.2.7 Generation of Fab fragments 

Purified IgGs were dialysed against 100 mM NaAcetate pH 5.5 ON and 

concentrated to roughly 5 mg/ml using centriprep concentrators with a molecular weight 

cut-off of 30 kDa (Amicon, Beverly US). Cysteine and EDTA were added to final 

concentrations of 50 mM and 1 mM, respectively. Ten µg papain (Roche, Wien, AT) 

were added per mg antibody and the mixture was incubated at 37ºC for 75 min. The 

digestion was quenched in 75 mM iodoacetamide at RT for 30 min. The papain reaction 

mix was dialysed against 50 mM Tris pH 8.0 ON. 

5.2.8 Purification of Fab fragments 

A 1 mL HiTrap rProtein A column was equilibrated with 50 mM Tris pH 8.0. The 

papain digestion mix in 50 mM Tris pH 8.0 was applied in 5 mL aliquots. The column 

was washed with five column volumes 50 mM Tris pH 8.0. The Fab containing flow 

through was collected and concentrated using centriprep concentrators with a molecular 

weight cut-off of 30 kDa. Bound Fc fragments and undigested antibodies were eluted 

with 100 mM glycine pH 3.0 into 1/10th volumne 1 M Tris pH 8.0. The purity of isolated 

Fab fragments was checked on 15 % reducing and non-reducing SDS gels. 

5.2.9 Detection of Fab binding to viral proteins by Western Blot  

Ten µg HRV2 and 10 µg HRV14 as control were run on a 15 % reducing SDS 

gel. An Immobiolon transfer membrane (Millipore, Billerica, US) was pre-activated with 

methanol and proteins were blotted in 25 mM Tris-HCl pH 8.0, 30 % methanol, 194 mM 
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glycine (Blotting Buffer) for 1.5 h, using a Transfer SD Semi-Dry Transfer Cell (Biorad, 

Hercules, US). The membrane was blocked with 5 % dry milk powder in PBS for 1 h at 

RT (Maresi, Vienna, AT). Fab fragments were added at 11 μg/mL and incubated for 1.5 

h at RT. Immune-complexes were detected with goat anti-rabbit HRP conjugates at 

1:10000 dilution for 1 h. The membrane was soaked in a substrate solution of 1:1 

SuperSignal West Pico Stable Peroxide solution : SuperSignal West Pico 

Luminol/Enhancer Solution (ThermoFisher, Waltham, US). CL-X Posure X-ray films 

(ThermoFisher, Waltham, US) were exposed to the membrane and developed in a 

CURIX 60 developing machine (AGFA, Mortsel, BE). As control, a separate gel was 

stained with coomassie brilliant blue after SDS gel electrophoresis. 

5.2.10 Purification of A-particle:Fab complexes 

Seventy-three μg freshly made A-particles were incubated with 10 mg Fab 

fragments for 30 min at RT. This corresponds to a molar ratio of Fab:VP1 of 370:1. 

Samples were applied to an 11 mL 7.5 % - 45 % sucrose density gradient in Virus 

Buffer A and centrifuged in an XL-70 Beckman Ultracentrifuge, using an SW Ti45 rotor 

at 35000 rpm and 4 ºC for 2 h. Fractions (0.5 mL) were collected from the top of the 

gradient and complexes were identified by anti-rabbit and anti-HRV2 dot blot.  

An Immobilon transfer membrane was activated with methanol and rinsed with 

Blotting Buffer. Five μL of each fraction were applied, as positive control 0.4 μg HRV2 or 

1.6 μg Fab were used. The membrane was air dried and blocked with 5 % dry milk 

powder in PBS. For detection of virus, the monoclonal antibody 8F5 (Skern T et al., 

1987), diluted 1:1000 in 5 % milk/PBS, was bound for 1 h at RT, followed by a goat anti-

mouse HRP conjugate, diluted at 1:10000 dilution in 5 % milk/PBS for 1 h at RT. Fab 
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fragments were directly detected with a goat anti-mouse HRP conjugate at 1:10000 

dilution in 5 % milk/PBS. The membrane was soaked in a substrate solution of 1:1 

SuperSignal West Pico Stable Peroxide solution : SuperSignal West Pico 

Luminol/Enhancer Solution (ThermoFisher, Waltham, US). CL-X Posure X-ray films 

(ThermoFisher, Waltham, US) were exposed to the membrane and developed in a 

CURIX 60 developing machine (AGFA, Mortsel, BE).  

Complex-containing fractions were pooled, adjusted to 10 mL with Virus Buffer A 

and pelleted ON in an XL-70 Beckman Ultracentrifuge, using an SW Ti45 rotor at 35000 

rpm and 4 ºC. The pellet was resuspended in 15 μL 50 mM Na borate pH 8.3. 

5.2.11 Preparation of recombinant receptor V33333 

E.coli TB1 were transformed with the maltose-binding protein (MBP)-V33333-

His6 fusion protein in the expression vector pMalc2b (Moser R et al., 2005). The 

recombinant receptor was expressed according to Ronacher B et al. (2000) with 

modifications. Briefly, bacteria were grown in 1 L LB medium at 37 ºC to a density of 

A600 of 0.7. Protein expression was induced with 0.3 mM IPTG at 30 ºC ON. Cells were 

pelleted in a Sorvall RC5C centrifuge, using a GS-3 rotor at 5000 rpm and 4 ºC for 20 

min. The pellet was resuspended in 30 mL 25 mN Tris- HCl pH 7.5, 150 mM NaCl, 2 

mM CaCl2 (TBSC) and sonicated 6 times for 10 s on ice, using a Bandelin Sonoplus 

HD200 sonicator (Bandelin, Berlin, DE). Cell debris was pelleted in a Sorvall RC5C 

centrifuge, using an SS34 rotor at 19000 rpm and 4 ºC for 20 min. The supernatant was 

incubated with 5 mL Ni-NTA slurry (Qiagen, Venlo, NL) for 2 h at RT. Ni-NTA beads 

were separated by centrifugation in a Heraeus Megafuge 1.0 at 4000 rpm and 4 ºC for 

10 min. They were washed three times with 30 mL 10 mM imidazole/TBSC for 20 min 
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each. Receptor was eluted in 4 mL aliquots with 0.2 M imidazole/TBSC. The eluted 

fractions were dialysed at 4 ºC against 1 mM cystamin, 10 mM cysteamin in TBSC with 

buffer changes 3 times per day until imidazole was diluted below 10 μM. 

5.2.12 Liposome Preparation 

 
Table 1 Lipids and their molar ratios used for preparation of large, uni-lamellar vesicles 

Lipid Abbreviation Ratio [mol] 

Cholesterol  Ch        1.5 

1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine POPC        1 

L-α-phosphatidylethanolamine PE        1 

Sphingomyelin SM        1 

1,2,-dioleoyl-sn-glycero-3-[(N-(5-amino-1-carboxypentyl) 
iminodiacetic acid) succinyl] (nickel salt) 

DGS-NTA        0.5 

1-oleoyl-2-[12-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino] 
lauroyl]-sn-glycero-3-phosphocholine 

NBD-PC        0.05 

 
 

Lipids, dissolved in chloroform, were mixed at molar ratios shown in Table 1 to a 

total amount of 10.1 μmol lipid. The mixture was rotated in a point bottom flask under a 

continuous stream of nitrogen gas, using a Büchi Rotavapor (Büchi Labortechnik 

GmbH, Essen, DE) at 55 rpm for 3 h. The dried lipid film was hydrated in 1.3 mL 50 mM 

Tris pH 8.0 at 45 rpm for 2 h, with three short intervals of vortexing during the last 30 

min. The suspension of multi-lamellar vesicles was stored over night at 4 ºC. Liposomes 

were homogenized to large, uni-lamellar vesicles (LUVs) by sequential extrusion 

through 400 nm and 200 nm polycarbonate membranes (Whatman, Kent, GB), using a 

mini extruder (Avanti Polar Lipids, Alabaster, US). 
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5.2.13 Preparation of membrane-attached viral particles 

Large uni-lamellar vesicles, containing NTA-lipids, were decorated with His6-

tagged V33333 mini-receptor for 30 min at RT. Purified HRV2 was bound for 30 min at 

RT. Molar ratios were as indicated in the results section.  

5.2.14 Flotation of liposome-containing samples 

Samples were adjusted to 200 µL 50 % sucrose in 50 mM Tris pH 8.0. They were 

sequentially overlaid with 0.9 mL 25 % sucrose/ 50 mM Tris pH 8.0 and 0.9 mL plain 

buffer. Samples were subjected to ultracentrifugation in an Optima Benchtop 

Ultracentrifuge (Beckman Coulter, Brea, US), using a TLS55 swing-out rotor at 45000 

rpm and 4 °C for 4 h. 167 µL aliquots were taken from the top of the gradient. 

Liposome-containing fractions were identified by fluorescence measurements, using a 

Wallac 1420 Victor V plate reader (Perkin Elmer, Waltham, US) at 485 nm and 535 nm 

excitation and emission wavelength, respectively. The virus concentration of individual 

fractions was determined by end point dilution assays (TCID50) (Blake K and O'Connell 

S, 1993). The fraction with highest fluorescence was used for further experiments. 

5.2.15 Preparation of membrane-attached uncoating intermediates 

V33333-decorated LUVs were separated from free receptor by flotation. Virus 

was attached to receptor-decorated liposomes for 30 min at RT at the molar ratios 

indicated. Five µL of the complex were brought to pH 5.4 with 2.6 µL 1 M Na acetate pH 

5.4, as previously determined on a larger scale. After different acidification times, 

samples were directly applied to carbon-coated copper grids and prepared for negative 

stain transmission electron microscopy (TEM). 
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5.2.16 Capillary electrophoresis (CE) 

CE measurements were performed on a 3D CE instrument (Agilent, Waldbronn, 

Germany), using a fused silica capillary of 50 μm inner diameter, 375 μm outer 

diameter, 60.0 cm total and 51.5 cm effective length (Polymicro, Phoenic, US). 

Electrophoresis was performed at 2.5 kV (positive polarity mode) with 100 mM Na 

borate buffer pH 8.3, 10 mM Thesit as background electrolyte (BGE). Viral particles or 

immune-complexes were diluted with 100 mM Na borate buffer pH 8.3 to the 

concentrations indicated. Samples were injected with 50 mbar for 9 s and detected via 

UV adsorption at 205 nm and 260 nm. 

5.2.17 Negative stain Transmission Electron Microscopy (TEM) 

Carbon-coated copper grids (Agar Scientific, purchased via Groepl, Tulln, 

Austria) were glow-discharged at 20 mA for 30 min or for 1 min, in case of liposome- 

containing specimens, in the Bal-Tec SCD Sutter Coater (Scotia, US). Four µL sample 

was adsorbed for 1 min, washed and stained with 2 % Na phosphor-tungstate pH 7.2 

for 1 min. Specimens were imaged in a n 80 kV FEI Morgagni 268 transmission electron 

microscope (Hillsboro, US) and images were taken, using an 11 Mpixel Morada CCD 

camera. 

5.2.18 Cryo-TEM  

Viral samples were frozen as described in Resch GP et al. (2011). Briefly, 

Quantifoil 400 nm copper grids with a 1.2/1.3 holey carbon film (Jena, DE) were glow 

discharged at 20 mA for 5 min in a Bal-Tec SCD Sputter Coater (Scotia, USA) or for 1 

min in an glow discharging device according to Aebi U and Pollard TD (1987). Using the 

Leica EM Grid Plunger (Vienna, Austria), 4 µL sample were applied per grid in a 
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humidified chamber at 80 % humidity and 25 ºC. Samples were adsorbed for 30 s, 

blotted for 0.8 s with Whatman filter paper 1 (Kent, GB) and plunge frozen in liquid 

ethane, cooled with liquid nitrogen to -174 ºC. 

Cryo-samples were imaged in a FEI Tecnai F30 Polara cryo-TEM (Hillsboro, 

Oregon, US) at 300 kV, with C2 and objective aperture adjusted to 70 µm and 100 µm, 

respectively. The nominal magnification was set to 50000 fold. The electron dosage was 

limited to 20 electrons per Å2. Images were taken between -0.8 μm and -3.5 μm 

defocus with a GIF 2002 2k CCD camera, using the automatic image acquisition 

software Leginon (Carragher B et al., 2000). 

Samples of membrane-bound HRV2 were frozen on C-flat holey carbon grids 

(Protochips, Raleigh, North Carolina, USA) and cryo-imaged in a Philips CM200 TEM 

by Heather A. Holdaway at Purdue University, US. 

5.2.19  Icosahedral Reconstruction 

For all micrographs, the parameters for correcting the contrast transfer function 

(CTF) were calculated, using the software ctffind3 within the xmipp package (Mindell JA 

and Grigorieff N, 2003; Sorzano CO et al., 2004). In case of bad correlations of 

theoretical and actual Thon rings, the CTF-parameters were additionally determined by 

hand in bsoft (Heymann JB and Belnap DM, 2007) or robem (Yan X et al., 2007). 

Images were manually selected for regular Thon rings, extending beyond 10 Å 

resolution. All further processing steps were done in xmipp (Sorzano CO et al., 2004). 

Micrographs were phase-flipped. Particles were automatically picked, visually inspected 

and manually selected for 3D reconstruction. As starting model, the X-ray structure of 

native HRV2 was scaled to the radial average of the particles and filtered to 30 Å. 
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Particles were assigned to different defocus groups for alignment by icosahedral 

projection matching. This was sequentially done with images binned by a factor of 2 and 

unbinned data. For the final reconstruction, 90 % of the particles were used, based on 

the correlation coefficient of their alignment. 3D maps were corrected for amplitude 

decay using the program embfactor (Fernandez JJ et al., 2008). 

5.2.20 Determination of the actual magnification 

The X-ray structure of native HRV2 was scaled to different sizes. It was 

compared to the reconstructed EM map of native HRV2, using a program by Daniel 

Luque Buzo. Based on their cross-correlation, the actual size of the reconstruction was 

determined with respect to the X-ray structure of native HRV2. 

5.2.21 Fitting of X-ray coordinates into EM maps 

The X-ray coordinates of the viral capsid proteins were written into individual 

coordinate files, preserving their relative orientations. Using the software UROX 2.0 

(Siebert X and Navaza J, 2009), they were fitted into the amplitude-corrected electron 

density map, allowing separate movements of the proteins with respect to each other. 
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6 Results 

6.1 Cryo-EM structure of A-particles 

The X-ray structure of native HRV2 was solved to 2.6 Å (Verdaguer N et al., 

2000) and a cryo-EM map of B-particles was reconstructed to 15 Å (Hewat EA et al., 

2002). Structural data is thus available on particles, corresponding to the start and end 

point of the uncoating process. However, little is known about the conformational 

changes involved and the structure of intermediates. 

A-particles, stable intermediates of the uncoating process, were already 

described by Lonberg-Holm K and Korant BD in 1972, but for rhinoviruses, they have so 

far not been addressed from a structural point of view. It was the aim of the first part of 

this thesis to obtain a medium resolution structure of A-particles and, by comparison to 

native HRV2, to gain further insights into the structural changes, minor group HRVs 

undergo during uncoating. 

Upon binding to their cellular receptor, minor group HRVs are endocytosed and 

transported to endosomes. The low pH environment within these vesicles triggers an 

irreversible conformational change, leading to the formation of hydrophobic A-particles 

(Korant BD et al., 1972). They have expelled their inner capsid protein VP4 but still 

contain their RNA genome.  

These sub-viral particles can be generated in vitro by acidification to pH 5.0. 

They resemble viral particles isolated from HeLa cells 15 min post infection (Lonberg- 

Holm K and Noble- Harvey J, 1973). Alternatively, A-particles can also be generated by 
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incubation at 56 ºC (Okun VM et al., 2002; Weiss VU, 2009). In the current thesis, the 

physiological trigger for viral conversion, acidic pH, was chosen to generate A-particles. 

6.1.1 A-particles are generated by acidification with buffers of high or low ionic 

strength 

The original protocol by Korant BD et al. (1972) suggests 1 M Na acetate pH 5.0 

for acidification of 20 min and 0.5 M Tris base for re-neutralization. Such high ionic 

strength buffers give considerable background in cryo-electron microscopy (EM), the 

method of choice for structure determination of intermediates, contaminated with other 

particle species and of unknown long-term stability. Especially in cryo-EM, it is 

recommended to manipulate the sample as little as possible to avoid damage or 

deformations. This would introduce structural in-homogeneity, limiting the resolution that 

can be achieved (Zhou ZH, 2008). For that reason an alternative method for generating 

A-particles was set up, using low ionic strength buffers. Virus was acidified with 50 mM 

Na acetate pH 5.0 for 15 min and re-neutralized with 100 mM Na borate pH 8.3.  

Both protocols yielded sub-viral particles that had indistinguishable appearances 

in negative stain transmission electron microscopy (TEM). The contrast material 

penetrated into the core of A-particles, revealing internal structures, but the genome 

prevented complete filling of their interior. This partial stain penetration clearly 

distinguished A-particles from empty capsids, having completely filled cores, and from 

native virus, that was impermeable to the negative stain and had thus homogeneous 

density (Figure 7).  
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Figure 7 High and low ionic strength acidification: Visually identical A-particles in negative stain 
TEM. A-particles were generated from purified HRV2 (A) according to Korant BD et al. (1972) (B) or by 
acidification with 50 mM Na acetate pH 5.0 for 15 min and re-neutralization with 100 mM Na borate pH 
8.3 (C). Samples were diluted to 0.4 mg/ml, adsorbed to glow-discharged carbon-coated copper grids and 
stained with 2% phosphotungstate pH 7.2. Images were taken in an 80 kV Morgagni TEM, using an 11 
Mpixel CCD camera. Native virus has homogeneous electron density (A), whereas A-particles of both 
preparations are partially penetrated by the negative stain, revealing internal structures. Both samples 
additionally contain empty capsids with dark, completely filled cores (arrow heads) and broken particles 
(B, C). Size bar=100 nm. 
 

 

Heat-induced A-particles, described by Weiss VU (2009) had identical 

appearance in negative stain TEM. In contrast, Okun VM et al. (2002) observed empty 

and broken capsids. Characterization of these particles was outside the scope of their 

work so that the identity of their proposed A-particles was not confirmed. 

In parallel, A-particles, generated by different procedures, were analyzed in 

capillary electrophoresis (CE), a well-established method for separating native virus and 

sub-viral particles (Okun VM et al., 1999; Kremser L et al., 2006; Kremser L et al., 

2009). Acidification with high and low ionic strengths buffers yielded A-particles with 

identical electrophoretic mobility of 16.6*10-9 m2/Vs ± 0.4*10-9 m2/Vs and 17.4*10-9 

m2/Vs ± 1.2*10-9 m2/Vs, respectively. These results were in agreement with CE data 

from heat-induced A-particles, migrating at 17.8*10-9  m2/Vs (Weiss VU, 2009) (Figure 

8, left panel). Based on their electrophoretic mobility, they could be clearly distinguished 
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from native HRV2 and temperature-triggered B-particles, migrating at 6.6*10-9 m2/Vs ± 

0.5*10-9 m2/Vs and 8.5*10-9 m2/Vs (Weiss VU, 2009), respectively (Figure 8, right 

panel). 

As already seen in negative stain TEM, both preparations of acid-triggered A-

particles also contained a small fraction of empty capsids. Unlike native virus and A-

particles, they lacked UV adsorption at 260 nm, indicating that they had lost their RNA 

genome. Unlike empty capsids so far described, they were generated by acidification, 

the physiological trigger, and not by incubation at elevated temperatures. However, with 

8*10-9 m2/Vs ± 0.3*10-9 m2/Vs, acid-triggered empty capsids had a similar 

electrophoretic mobility as head-induced B-particles.  

 

Figure 8 Acidification with high and low ionic strength buffers: A- particle with identical 
electrophoretic mobility. A-particles were generated from purified HRV2, according to Korant BD et al. 
(1972) or by acidification with 50 mM Na acetate pH 5.0 for 15 min and re-neutralization with 100 mM Na 
borate pH 8.3. Subviral particles and native virus as control were diluted to 1.1 mg/ml and adjusted to 
1:4000 DMSO as marker for the electro-osmotic flow. They were analyzed in capillary electrophoresis, 
using 100 mM Na borate pH 8.3, 10 mM Thesit as background electrolyte. A-particles prepared by 
acidification with high and low ionic strength buffers had an electrophoretic mobility of 16.6*10-9 m2/Vs ± 
0.4*10-9 m2/Vs (n=5) and 17.4*10-9 m2/Vs ± 1.2*10-9 m2/Vs (n=5), respectively. This corresponds well 
to the data of heated A-particles, migrating at 17.8 *10-9 m2/Vs, shown for comparison (Weiss VU, 2009). 
A-particles thus clearly differed from native virus migrating at 6.6*10-9 m2/Vs ± 0.6*10-9 m2/Vs (n=5), 
from acid-triggered empty capsids with 8*10-9 m2/Vs ± 0.3*10-9 m2/Vs (n=5) and from heated-induced 
empty capsid with 8.5*10-9 m2/Vs (Weiss VU, 2009) electro-phoretic mobility. 
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Acidification of purified HRV2 with low ionic strength buffers induced the 

formation of subviral particles that, in TEM and CE, were found identical to A-particles, 

generated according to Korant BD et al. (1972) or Weiss VU (2009). They were thus 

directly plunge frozen in liquid ethane and imaged in cryo-electron microscopy. As 

control, cryo-data were collected from native HRV2.  

6.1.2 The cryo-EM structure of native HRV2 validates the chosen reconstruction 

strategy 

As control for cryo-imaging and data processing, cryo-data were collected from 

native HRV2. Micrographs with regular Thon rings and data extending beyond 10 Å 

resolution were selected for further processing. Particles were automatically picked, 

followed by manual sorting. The parameters for the correction of the contrast transfer 

function (CTF) were automatically determined and manually revised. As starting map for 

projection matching, the X-ray coordinates of native HRV2 were scaled to the radial 

average of boxed particles and filtered to 30 Å resolution. Icosahedral refinement was 

employed until no further improvement in resolution could be achieved. The final 

reconstruction was corrected for amplitude decay. 

The structure of native HRV2 was reconstructed from 7946 particles. It 

converged at 8.2 Å resolution, according to its Fourier Shell Correlation (FSC) of 0.5.  

In surface view, the reconstructed density showed all rhino-viral features, such as 

the star-shaped mesa at the 5-fold axis and the surrounding canyon. The triangular 

plateau at the 3-fold axis with its protrusions and the depression at the 2-fold axis were 

also well visible. The comparison with the X-ray structure, filtered at 8.2 Å, revealed 

small differences at the 5-fold axis.  
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As X-ray structure not the experimentally determined electron density map was 

used. Instead, the X-ray structure was derived from the pdb coordinates, describing an 

ideal situation. This data contained full amplitude information; more details and thus 

slight differences were expected for the X-ray map. 

In the X-ray structure of native HRV2, the viral genome was not resolved, due to 

its structural in-homogeneity. Only low density was visible for ordered RNA in close 

proximity to Tryptophan 2038 of VP2 (Verdaguer N et al., 2000). The EM map had a 

significantly lower resolution, so that conformational differences of residues, smaller 

than 8.2 Å, fell under its detection limit. Consequently, also less-ordered regions, such 

as parts of the viral genome, could be visible in the EM map. Additional density at the 

inner surface of the capsid, seen in the EM reconstruction, was thus attributed to 

encapsidated RNA (Figure 9). 

 

Figure 9 The reconstructed EM map of native HRV2 is comparable to its published X-ray structure 
but additionally reveals RNA density. 7946 particles of native HRV2 were aligned by icosahedral 
projection matching. The reconstruction converged at 8.2 Å resolution (left panel). The X-ray structure of 
native HRV2 (Verdaguer N et al., 2000) was filtered to the same resolution (central panel). The difference 
map reveals slight differences at the 5-fold axis. Additional density in the EM map, on the inner surface of 
the capsid, was attributed to RNA (right panel). Graphs were made in chimera and radially colored 
(Pettersen EF et al., 2004). The EM structure and difference map were presented at 2.5 σ i.e standard 
deviation of the electron density. The X-ray map was contoured to enclose the same volume as the EM 
map. In the difference map, densities smaller than 8.23 Å3 were not displayed, as they lay under the 
resolution limit of the reconstruction. 
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The X-ray coordinates of the capsid proteins VP1 to VP3 were saved in individual 

coordinate files. They were fitted into the electron density map of native HRV2 with the 

software UROX 2.0 (Siebert X and Navaza J, 2009), allowing their independent 

arrangement with respect to each other.  The position of VP4 was kept relative to VP2. 

Because of its small size, its independent fitting did not converge. The new orientations 

of the capsid proteins differed from the published coordinates by a root-mean-square-

deviation (RMSD) of about 1 Å, which was too small to be resolved at the resolution of 

the EM map (Figure 10). 

 

Figure 10 Fitting the X-ray coordinates of VP1 to VP4 into the EM map confirms the original 
orientations. The coordinates of the capsid proteins VP1 to VP3 were saved as separate coordinate files 
while VP4 was linked to VP2. The proteins were fitted into the EM density map using the software UROX 
2.0 (Siebert X and Navaza J, 2009). The original and fitted coordinates are displayed in light and dark 
colors, respectively. At the present resolution of 8.2 Å, re-orientations of the capsid proteins by about 1 Å 
were insignificant (left panel). The fitted coordinates are displayed together with the EM structure, 
showing well resolved α-helices and β-sheets. This is especially visible for the VP2 α-helix close to the 2-
fold axis, and VP1 β-sheets, forming the 5-fold axis (arrow heads). The viral asymmetric unit (ASU) is 
shown; symmetry axes are indicated by numbers (right panel). Figures were made in chimera.  

 

The successful reconstruction of native HRV2 from cryo-EM data to 8.2 Å 

resolution validates the chosen cryo-imaging and processing approach. 
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6.1.3 Structure of HRV2 A-particles at 8.9 Å resolution 

Cryo-images of A-particles were processed identically to the data of native 

HRV2. Projection matching of 15170 particles converged at 8.9 Å resolution, 

considering a FSC of 0.5. 

Comparing the three-dimensional reconstructions of native and A-particles, an 

overall expansion of the virus by about 4 % to 31.4 nm diameter could be detected upon 

acidification (Figure 11 and 12). Concomitantly, a pore opened at the depression of the 

2-fold axis. The conformational changes involved were most apparent at the inner 

surface of the capsid, where protuberances at the 2-fold rearranged. In addition, the 

star-shaped dome at the 5-fold axis rotated clockwise by 11 degrees, creating a channel 

at its center (Figure 11). 
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Figure 11 A-particles are 4 % larger than native virus and have pores in their capsid. 15170 
A-particles were aligned by icosahedral projection matching and reconstructed to 8.9 Å 
resolution. For comparison the EM map of native HRV2 was filtered to the same resolution. Upon 
acidification, viral particles expanded by 4 %. Pores formed at the 2-fold (arrow heads) and 5-fold 
axes. Figures were made in chimera. Maps were contoured to 2.5 σ and radially colored. 

 

The rotational average of the structure of A-particles revealed an additional peak 

of density underneath the 3.6 nm thick protein capsid. Empty capsids lacked this signal; 

it was thus attributed to a shell of viral RNA. Different Class averages of particles also 

showed this layer of genomic density, excluding that it was an artifact of icosahedral 

averaging (Figure 12). 
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Figure 12 A-particles contain a layer of ordered RNA at the inner surface of the capsid. The 3D 
reconstruction of A-particles and empty capsids were rotationally averaged, using the software spider 
(Shaikh TR et al., 2008). For B-particles, the empty protein capsid yields a single peak at a radius of 120 
Å to 157 Å. The genomic RNA, only present in A-particles, gives an additional density peak at a radius of 
87 Å to 157 Å, in close proximity to the protein shell (A). 3114 images of individual A-particles were 
aligned and averaged, using maximum-likelihood multi-reference refinement (Scheres SH et al., 2005). 
The class average of the raw data also shows this layer of ordered RNA density (B). 

 

At contour levels of the 3D map lower than 1.5 σ, the RNA shell became 

apparent at the inner surface of the protein capsid. In native virions, density for the viral 

genome was restricted to the 2-fold axis, where limited RNA-protein contacts were 

already reported in the X-ray structure (Verdaguer N et al., 2000). During conversion 

from native to A-particle, also the genome expanded and got more ordered. It created a 

layer of density at the inner surface of the capsid, resolvable at 8.9 Å resolution. At the 

2-fold axis the already existing RNA contact with VP2 became more prominent and 

RNA was visible directly beneath the opening in the capsid. Additional RNA interactions 

with viral proteins localized to the pseudo-3-fold axis (Figure 13).  
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Figure 13 In A-particles, the viral genome contacts the capsid at the 2- and pseudo-3-fold 
axes. At 1.5 σ contour level, density attributed to RNA, is visible. In native HRV2, few parts of the 
genome are resolved, contacting the protein capsid at the 2-fold axis. In A-particles, the genome 
is more ordered and forms a shell in closer proximity to the capsid. RNA-protein interactions 
localize to the 2- and pseudo-3-fold axes. Figures were made in chimera. Maps are contoured to 
1.5 σ and radially colored. Reference lines are shown for better visualization of the RNA 
expansion. 

 

6.1.4 Fitting the X-ray coordinates of native HRV2 into A-particles reveals the 

largest changes at the N-terminal residues of VPs 

The X-ray coordinates of VP1 to VP3 from native HRV2 were fitted into the EM 

map of A-particles as described above. Since subviral particles expelled the inner 

capsid protein VP4, it was excluded from the analysis. 
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Compared to its position in native HRV2, VP1 in A-particles moved radially 

outwards by about 7 Å. The β-sheets, that form the 5-fold axis, shifted clockwise, 

opening a channel at the center of the star-shaped dome.  

Based on data from the related poliovirus (Fricks CE and Hogle JM, 1990), 

Hewat EA et al. (2002) suggested that during conversion from native rhinovirus to A-

particles, the N-terminus of VP1 got externalized. Accordingly, in the EM structure of A-

particles, no density on the inside of the capsid could be attributed to the 60 N-terminal 

residues of VP1. Instead, new density appeared on the surface of the particle at the 

pseudo-3-fold axis, at the junction of VP1 to VP3. After docking the X-ray coordinates of 

VP1 to VP3 into the EM map of A-particles, this new density was not occupied by any of 

the protein residues. In addition, it was in proximity to the last resolved N-terminal amino 

acid of VP1. It may thus represent its externalized N-terminus (Figure 14).  

Supporting these data, there was a spherical region of low density i.e. a solvent-

filled bubble at the pseudo-3-fold axis of native HRV2. Upon conversion to A-particles, 

this area is filled with density, most likely the exiting VP1 N-terminus (Figure 34). 

In the cryo-EM structure of heat-induced B-particles, Hewat EA et al. (2002) also 

described missing density for the 59 N-terminal residues of VP1on the inside of the 

capsid. They also observed the appearance of density in the formerly solvent-filled 

bubble at the pseudo-3-fold axis. It was thus proposed as exit site for the VP1 N-

terminus. However, they did not describe the appearance of additional density on the 

surface of B-particles.  
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Figure 14 Fitting the coordinates of native HRV2 into A-particles reveals movement of VP1 by 7 Å 
and externalization of the VP1 N-terminus. The coordinates of the capsid proteins VP1 to VP3 were 
saved as separate coordinate files and fitted into the EM map of A-particles, using the software UROX 
2.0. VP4 was excluded, as it was expelled from A-particles. The original and fitted coordinates of VP1 are 
displayed in light and dark blue, respectively. In A-particles, VP1 moved radially by 7 Å (A). On the interior 
of the capsid, no density is found for the 60 N-terminal residues of VP1 (arrow heads) (B). At the surface 
of the particle, new density appeared (arrow heads), probably the externalized VP1 N-terminus. To 
emphasize the proximity of this new density and the first resolved amino acid of VP1, the 60 N-terminal 
residues, not seen as density on the interior of the capsid, are colored in red (C). Figures were made in 
chimera. The EM map is contoured to 2.5 σ. Symmetry axes and VP1 termini are indicated by numbers 
and letters, respectively.  

 

Upon conversion to A-particles, VP2 shifted outwards by about 5 Å, probably as 

part of capsid expansion. Concomitantly, a pore opened at the 2-fold axis between two 

symmetry related VP2s. On the interior surface of the capsid, about 30 N-terminal 

residues of VP2 rotated towards the center of the particle.  

The cryo-EM structure of native HRV2 showed that Tryptophan 2038 of VP2 was 

in contact with the viral genome. In A-particles this interaction was maintained. In 
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addition, significantly more RNA density was observed close to the 2-fold axis, 

indicating a higher degree of order within the genome. At 1.5 σ contour level, the RNA 

shell was clearly visible, extending beneath the pore at the 2-fold axis. It is thus very 

suggestive, that the viral genome is externalized through this opening in the capsid 

(Figure 15). 

 

Figure 15 In A-particles, the fitted coordinates of native VP2 shifted by 5 Å, opening a pore at the 
2-fold axis. The N-terminus rotated inwards and is in proximity to the viral genome. The 
coordinates of VP2 were fitted into the EM map of A-particles as described in Figure 14. The original and 
fitted coordinates of VP2 are displayed in red and pink, respectively. The VP2 coordinates, fitted into the 
EM map of A-particles, shifted outwards of the capsid by 5 Å (A), opening a pore at the 2-fold axis (B). 
Density attributed to the VP2 N-terminus (arrow heads) indicates a movement of the 30 N-terminal 
residues (green) towards the center of the particle (C). Tryptophan 2038 (green arrow head) is in close 
contact to density attributed to the viral genome (arrow head) (D). Figures were made in chimera. The EM 
map is contoured to 2.5 σ. Symmetry axes and protein termini are labeled. 
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As part of capsid expansion during the formation of A-particles, VP3 moved 

radially towards the outside of the capsid by about 5 Å. The biggest change occurred at 

the N-terminus, where the first 20 residues shifted outwards by 10 Å. This is in 

accordance with data from heat-induced B-particles (Hewat EA et al., 2002) (Figure 16). 

 

Figure 16 Upon fitting into the EM density of A-particles, native VP3 and its N-terminus shift 
radially by 5 Å and 10 Å, respectively. The coordinates of VP3 were fitted into the EM map of A-
particles as described in Figure 14. The original and fitted coordinates of VP3 are displayed in dark and 
bright green, respectively. In A-particles, VP3 is displaced radially by 5 Å towards the outside of the 
capsid. At the 5-fold axis its 20 N-terminal residues were shifted outwards by 10 Å. Figures were made in 
chimera. The EM map is contoured to 2.5 σ. Symmetry axes and protein termini are labeled. 

 

In general, all three capsid proteins shifted towards the outside of the capsid, 

upon conversion from native to A-particles. The β-sheets within one VP largely 

maintained their relative orientations. The biggest conformational changes were 

observed for the N-terminal loops. 
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6.1.5 Structure of acid-triggered B-particles at 9.8 Å resolution 

Most published data of HRV B-particles stems from samples, generated by 

incubation at elevated temperatures. This includes the published structure of HRV2 B-

particles, reconstructed from cryo-EM images to 15 Å resolution (Hewat EA et al., 

2002). However, it was never proven that elevated temperatures and acidification, as 

triggers for uncoating, lead to structurally identical particles. 

CE and TEM data showed that acid-triggered preparations of A-particles 

contained a small fraction of empty capsids. Although being generated by the natural 

trigger, these particles have so far not been investigated from a structural point of view. 

For comparison to the structures of native and A-particles, they were picked and 

processed as described above. The icosahedral reconstruction of 2976 particles 

converged at 9.8 Å resolution, according to a FSC of 0.5. 

At the parameters of the published structure i.e. 15 Å resolution and 1 σ contour 

level, heat- and acid-triggered capsids were identical in surface view and central 

sections (Figure 17).  No difference map was calculated, due to the different sampling 

sizes of the two EM structures.  
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Figure 17 EM maps of heat- and acid-triggered empty capsids are identical up to 15 Å resolution. 
The cryo-EM structure of acid-induced capsids was filtered to 15 Å resolution and compared to heat-
triggered B-particles (Hewat EA et al., 2002). No significant differences can be detected in surface view or 
central sections. Figures were made in chimera. EM maps are contoured to 1 σ and radially colored. 
Central sections were displayed with the software bshow from the bsoft package (Heymann JB and 
Belnap DM, 2007). 

 

Verdaguer N et al. (in preparation) recently solved the X-ray structure of heat-

triggered B-particles. They generously provided their data for comparisons to cryo-EM 

structures in this thesis. 

The coordinates of VP1 to VP3 of heat-induced B-particles were saved in 

separate files. They were fitted into the EM map of acid-triggered capsids with the 

software UROX 2.0, allowing independent movement of the proteins with respect to 

each other.  
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Compared to their original positions, VP1 to VP3 were displaced by about 1 Å in 

the EM-map of acid-triggered capsids. As the reconstruction had a resolution of 9.8 Å, 

these shifts were insignificant (Figure 18). 

 

Figure 18 Fitting the X-ray coordinates of VP1 to VP4 from heat-induced B-particles into the EM 
map of acid-triggered capsids confirms the original orientations. The coordinates of the capsid 
proteins VP1 to VP3 from heat-induced B-particles were saved as separate coordinate files. The proteins 
were fitted into the EM density map of acid-triggered capsids, using the software UROX 2.0 (Siebert X 
and Navaza J, 2009). The original and fitted coordinates are displayed in light and dark colors, 
respectively. At the present resolution of 9.8 Å, re-orientations of the capsid proteins by about 1 Å are 
insignificant (left panel). The fitted coordinates are displayed together with the EM structure, showing a 
good fit of the viral asymmetric unit (ASU) (right panel). Symmetry axes are indicated by numbers. 
Figures were made in chimera.  
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The current data demonstrate for the first time the equivalence of heating and 

acidification as triggers for rhino-viral uncoating. Empty capsids generated by both 

methods are identical up to 9.8 Å resolution.   

6.1.6 A- and B-particles differ in the presence of the genome and the location of 

the VP1 N-terminus 

The cryo-EM structure of A-particles was filtered at 9.8 Å resolution and 

compared to that of B-particles. By calculating the difference map of A- minus B-

particles, additional density was found in A-particles.  

The release of the viral genome lead to the formation of empty capsids.  As 

expected, the RNA shell, seen in A-particles, was lost in B-particles. Surprisingly, the 

difference map revealed that density at the pseudo-3-fold axis, attributed to the 

externalized VP1 N-terminus in A-particles, also disappeared in B-particles (Figure 19). 

 

Figure 19 During conversion from A- to B-particles, the viral genome is released and density, 
attributed to the VP1 N-terminus, disappears from the capsid surface. The EM map of A- particles 
was filtered to 9.8 Å resolution and the structure of B-particles subtracted from it. The difference map 
(red) is shown together with the EM map of B-particles (grey). The viral genome, seen as RNA shell in A-
particles, gets released upon formation of B-particles. At the pseudo-3-fold axis, density, assigned to the 
VP1 N-terminus, is lost in empty capsids. Figures were made in chimera. EM maps are displayed at 2.5 
σ. In the difference map, densities smaller than 9.83 Å3 are not displayed, as they are insignificant at the 
present resolution. 
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In addition, the EM map of A-particles was subtracted from the structure of B-

particles, to reveal densities of empty capsids that are not seen in A-particles. 

Surprisingly, no significant additional density was seen at 2.5 σ contour level. At 9.8 Å 

resolution, the localization of the VP1 N-terminus could thus not be determined in empty 

capsids. It might not be resolved due to structural in-homogeneity. 

6.1.7 Fitting the X-ray coordinates from empty capsids into the density of A-

particles additionally reveals rotation of the VP1 surface loops 

The comparison of the EM structures of A- and B-particles was limited to the 

lower resolution of the map of the empty particles. The X-ray coordinates of heat-

induced empty capsids (Verdaguer N et al., in preparation) were thus fitted into the 

structure of A-particles, as described above. 

With respect to their original positions, the coordinates of VP2 and VP3 were 

displaced by 1 Å, upon fitting into the structure of A-particles. At 8.9 Å resolution, these 

movements lay under the detection limit.  

A considerable shift occurred at the loops of VP1, forming the star-shaped mesa 

at the 5-fold axis. As shown in section 6.1.11.2, during conversion from A- to B-

particles, the star-shaped dome rotated counter-clockwise by 4 degrees.  

In the X-ray structure of heat-triggered B-particles, about 60 N-terminal residues 

of VP1 were not resolved, indicating conformational flexibility. In the EM map of A-

particles, density at the pseudo-3-fold axis, attributed to the externalized VP1 N-

terminus, was not occupied by any of the fitted VPs from empty capsids. The data thus 

underline that this density may be the exit site of the VP1 N-terminus (Figure 20). 
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Figure 20 A- and B-particles differ in the conformation of the loops and of the N-terminus of VP1. 
The X-ray coordinates of VP1 to VP3 from B-particles were saved in individual coordinate files. They were 
fitted into the EM density of A-particles with the software UROX 2.0, allowing individual movement of VPs 
with respect to each other. At 8.9 Å resolution, movements of VP2 and VP3 during fitting were 
insignificant. In VP1 a considerable shift of the surface loops is visible. The X-ray structure does not 
resolve the 60 N-terminal residues of VP1. In A-particles, density at the pseudo-3-fold axis cannot be 
assigned to any X-ray coordinates, confirming it as exit site of the externalized VP1 N-terminus (arrow 
heads). Figures were made in chimera. The EM map is contoured to 2.5 σ. Symmetry axes and the 
truncated VP1 N-terminus are indicated. 

 

6.1.8 Generation of Fab fragments against the VP1 N-terminus 

The cryo-EM structures of HRV2 particles strongly suggested that the VP1 N-

terminus (VP1-NT) was externalized via the pseudo-3-fold axis of the capsid. As final 
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confirmation of these data, we intended to identify the exit site of VP1-NT by binding of 

specific Fab fragments.  

Antibodies against the VP1-NT were raised in a rabbit by immunization with a 

synthetic peptide. It comprised the 24 N-terminal residues of the protein plus six C-

terminal Lysines for increased solubility (NPVENYIDEV LNEVLVVPNI NSSN KKKKKK) 

(Skern T et al., 1985). In accordance with the membrane-modulating activity of the VP1-

NT (Lonberg-Holm K et al., 1976; Fuchs R and Blaas D, 2010), Weiss VU et al. (2010) 

demonstrated that this peptide induced leakage in liposomal membranes at acidic pH.  

In immunoprecipitation assays with 35S-labeled HRV2, the anti-VP1-NT serum 

precipitated 67 % ± 8 % of acidified and re-neutralized virions, while binding only 8 % ± 

1 % of native virus. The elevated background levels (binding native HRV2) may be 

explained by transient exposure of the VP1-NT, due to viral breathing (Lonberg-Holm K 

et al., 1976; Roivainen M et al., 1993; Li Q et al., 1994) (Figure 21A).  

For their use in cryo-EM, Fab fragments were generated from serum antibodies 

to prevent aggregation of immune-complexes. In Western Blots, anti-VP1-NT Fabs 

specifically reacted with VP1 of HRV2. They failed to cross-react with other capsid 

proteins or the major group HRV14 that has a dissimilar VP1-NT sequence (Stanway G 

et al., 1984) (Figure 21B). 
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Figure 21 Antibodies and Fabs against the VP1 N-terminus (VP1-NT) specifically bind VP1 of HRV2 
and preferentially acidified virions. Subviral particles and denatured virions of 32S-labeled HRV2 were 
precipitated by 2G2 antibodies bound to Staphylococcus aureus. Remaining native virus in the 
supernatant was exposed to pH 5.0 for 20 min and reneutralized. Acidified virions were precipitated by 
Staphylococcus aureus-conjugated anti-VP1-NT antibodies. As control, native HRV2, kept at pH 7, was 
immunoprecipitated. Anti-VP1-NT immunoglobulins bound 67 % ± 8 % (n=2) of acidified virus, while 
recognizing only 8 % ± 1 % (n=2) of HRV2 kept at pH 7. Data by Abdul Ghafoor Khan (A). Ten μg of 
HRVs were denatured and run on a 15 % reducing SDS gel and transferred to membranes. Blots were 
exposed to anti- VP1-NT Fab fragments and binding was detected by anti-rabbit HRP-conjugates. Fabs 
specifically bound VP1 of HRV2. Cross-reaction with the major group virus HRV14 was not detectable. 
Blots are representatives of three independent experiments (B). 

 

Due to their specificity and preferred recognition of acidified virus, anti-VP1-NT 

Fab fragments were used for structural studies with A-particles. 

6.1.9 A-particles decorated with anti-VP1-NT Fab fragments 

Fab fragments from anti-VP1-NT rabbit serum were incubated with A-particles at 

a molar ratio of 370:1 Fab:VP1. Complexes were separated on a 7.5 % - 45 % sucrose 

gradient, identified by anti-rabbit and anti-HRV2 dot blots and pelleted by 

ultracentrifugation. In capillary electrophoresis, Fab binding shifted the peak of A-

particles from 17.4*10-9 m2/Vs ± 1.2*10-9 m2/Vs to 11.8*10-9 m2/Vs ± 1.2*10-9 m2/Vs 

(Figure 22). Fab fragments alone migrated at 4.0*10-9 m2/Vs ± 0.1*10-9 m2/Vs. 
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Increasing the Fab:VP1 ratio to 593:1 resulted in the same electrophoretic mobility of 

the complex, suggesting saturation.  

 

Figure 22 Fab binding shifted the electrophoretic mobility of A- particles. 
A-particles were incubated with anti-VP1-NT Fabs at a molar ratio of 370 
Fab:VP1. Complexes were purified on sucrose gradients, pelleted by 
ultracentrifugation and analyzed in capillary electrophoresis. Experimental 
conditions were as described in Figure 8. A-particle:Fab complexes, migrating 
at 11.8*10-9 m2/Vs ± 1.2*10-9 m2/Vs (n=6), could be clearly separated from 
undecorated A-particles and Fabs at 17.4*10-9 m2/Vs ± 1.2*10-9 m2/Vs (n=5) 
and 4.0*10-9 m2/Vs ± 0.1*10-9 m2/Vs (n=5), respectively. Measurements were 
performed by Xavier Subirats. 

 

Purified complexes were frozen and imaged in cryo-TEM. Cryo-data was 

analyzed as described above. 

6.1.10 The structure of A-particle:Fab complexes 

The structure of A-particles with bound anti-VP1-NT Fabs was solved to 8.7 Å 

resolution, considering a Fourier Shell Correlation of 0.5. It was filtered to 8.9 Å and 

compared to the EM map of un-decorated A-particles that have the same resolution.  

Despite being visible in cryo-images, no additional density for Fab fragments 

could be detected in the EM-map of immune-complexes, but surprisingly, the visible 
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density for the externalized VP1 N-terminus was diminished. The pore at the 2-fold axis 

appeared smaller for immune-complexes, but these changes were insignificant at 2.5 σ 

contour level (Figure 23). 

 

Figure 23 Fab fragments bound to A-particles are visible in cryo-images but not in the 
icosahedral 3D reconstruction. Frozen, hydrated specimens were imaged in a FEI Polara cryo-
TEM at -3.4 μm defocus and 20 e-/Å2 electron dosage. A-particles have a smooth surface; bound 
Fab fragments are visible as corona-like density around the virus (arrow heads). 15170 and 
10500 images were used for the icosahedral reconstruction of A-particles and of A-particles 
decorated with anti-VP1-NT Fabs. In the 3D map of the immune-complexes, no additional density 
can be seen for bound Fab fragments, when compared to the structure of un-decorated A-
particles. Surprisingly, density for the VP1 N-terminus seems to have diminished (arrow heads). 
Micrographs were auto-adjusted for contrast in Adobe Photoshop 6.0 (www.adobe.com). Figures 
were made in chimera. EM maps are contoured at 2.5 σ and radially colored. 
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In the X-ray structure of native HRV2, the VP1 N-termini are disordered 

(Verdaguer N et al., 2000). Fab fragments bound to these flexible residues may be 

visible in low-resolution micrographs. During icosahedral reconstruction, however, their 

density could be averaged out due to conformational in-homogeneity, so that the Fab 

signal became indistinguishable from the background noise.  

The individual images of A-particles and A-particle:Fab complexes were thus 

classified using maximum-likelihood multi-reference refinement, to identify structural 

sub-populations (Scheres SH et al., 2005). 

Comparing the class average of A-particles to that of A-particle:Fab complexes, 

there appeared to be some weak, additional density above the 2-fold axis of the 

immune-complexes. It was smeared out and did not allow allocation to a particular site 

on the viral surface (Figure 24). 

 

Figure 24 In Class averages of A-particle:Fab complexes, smeared-out 
density is visible for the bound Fabs. Images of A-particles and A-particle:Fab  
complexes were aligned and classified using maximum-likelihood multi-reference 
refinement (Scheres SH et al., 2005). The depicted class averages contain 1782 
particles each. For the immune-complex there seems to be additional density 
smeared out over the 2-fold axis (arrow heads). 

 

Further classification of the data above into several different classes did not yield 

any improvement but visually comparable class averages. The program also failed to 
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distinguish between A-particles and A-particle:Fab complexes, when both data sets 

were pooled. The resulting class averages contained a ratio of about 60:40 and 30:70 

A-particles to immune-complexes. It seems that the density of the Fab fragments is too 

weak so that the capsid is dominant during classification. 

The circumference of the capsid was thus selected with a crown mask and 

particles were rotationally aligned, according to surface density, using figure 24 as 

reference. For A-particle:Fab complexes, the additional density of the Fab fragments 

was clearly visible in the resulting class average, but the features of the capsid were 

smeared out to a homogenous ring. Broadening of the mask to include some pixels of 

the capsids retained faint 5-folds at the expense of Fab alignment (Figure 25). 
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Figure 25 Rotational alignment of A-particle:Fab complexes, based on surface 
density, better resolves Fab density. The circumference of the images of A-particles 
and A-particle:Fab complexes was masked and rotationally aligned. Density for Fab 
fragments at the viral surface is clearly visible for immune complexes, in contrast to A-
particles particles alone, confirming Fab binding (arrow heads). However, the capsid 
structure is smeared out making allocation of the binding site impossible. Including 
parts of the virus during alignment resolved capsid features but decreased Fab 
contrast.  

 

In an attempt to resolve some viral characteristics, the entire particles were 

rotationally re-aligned without restriction, using the class average of aligned Fabs 

(Figure 25) as reference. Two iterations yielded discernable 5-fold axes; after four 

iterations the capsid was fully aligned. However, during this process the Fab fragments 

got progressively averaged out. Restricting rotational rearrangements to 60 º, the angle 

between two adjacent 5-fold axes, slightly improved the Fab signal but did not reveal a 

discrete attachment site (Figure 26).  
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Figure 26 Limited rotational re-alignment of A-particle:Fab complexes resolves capsid features at 
the expense of Fab contrast. The radial restriction of the alignment was removed and entire particles 
were rotationally re-aligned for different iterations. After two cycles, capsid features are recognizable in 
class averages and after four iterations, the virion is resolved. In parallel, however, the Fab fragments get 
gradually averaged out. Limiting rotations to 60 º does not significantly improve Fab signals; they remain 
smeared out between the 5-fold axes (arrow heads). 

 

Careful alignment of A-particle:Fab complexes and of A-particles as control 

confirmed that Fab fragments were attached to the viral capsid. However, their density 

was smeared out between adjacent 5-fold axes, making allocation of the binding site, 

even by single particle analysis, impossible.  

The rational of these experiments was based on X-ray data of native HRV2, 

showing that the 15 N-terminal residues of VP1 are disordered (Verdaguer N et al., 

2000). For identifying the externalized VP1-NT in A-particles, Fab fragments were thus 

generated, that target the 24 N-terminal amino acids. However, the recent X-ray 
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structure of empty capsids revealed that in subviral particles, the 60 N-terminal amino 

acids of VP1 are disordered (Verdaguer N et al., in preparation). Based on that, the 

location of bound Fab fragments is expected to be highly variable on the surface of A-

particles. Considering also the polyclonal nature of the Fab fragments, this may explain 

why their density is averaged out during icosahedral reconstruction.  

For identifying the exit site of the VP1 N-terminus, monoclonal antibodies may be 

used in the future that target residues closer to the structurally stable protein chain. 

Alternatively, an indirect approach may be chosen, by digesting externalized protein 

residues with proteases and by identifying the missing densities in EM structures. This 

approach was chosen by Bubeck D et al. (2005b) to allocate the exit site of VP1-NT in 

A-particles of poliovirus. 

6.1.11 Structural changes during uncoating of minor group HRVs 

Already in low contrast cryo-images, different HRV particles could be visually 

distinguished by their different core densities. Native virions appeared as spheres of 

homogenous density, while A-particles seemed to be less dense and internally more 

structured. Acid-triggered B-particles, equivalent to heat-induced empty capsids, 

differed most strongly from other particle species; they were visible as solvent-filled 

circles of empty capsids (Figure 27).  
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Figure 27 Different HRV2 particles are distinguishable in cryo-images by different core densities. 
Frozen, hydrated specimens were imaged in a FEI Polara cryo-TEM at -2.2 μm defocus and 20 e-/Å2 
electron dosage. Native HRV2 has homogeneous density. A-particles appear to have internal structures. 
Acid-triggered B-particles, found in the preparation of A-particles, lack core density (arrow head). Images 
were auto-adjusted for contrast in Adobe Photoshop 6.0 (www.adobe.com). Size bar = 100 nm. 

 

The EM maps of all three particle species, native, A- and B-particles, were 

reconstructed by the same processing strategy, as described above. The 

reconstructions resulted in structures of different resolutions. 7946 images yielded an 

EM map of native HRV2 of 8.2 Å resolution. With considerably less particles i.e. 2976, 

B-particles were reconstructed to 9.8 Å resolution. Surprisingly, 15170 images, used for 

determining the structure of A-particles, achieved only a resolution of 8.9 Å. Attempts at 

improving this EM map by a more stringent particle selection failed, which suggests the 

presence of subpopulations or conformational flexibility of these particles.  

In the future this question might be solved by 2D classification of raw images. 

Particles could also be grouped according to different density levels of their genome, 

which could possibly identify intermediates with partially released RNA.  
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For direct comparison, all three EM maps were filtered at 10 Å resolution. In the 

surface view, several main differences between native and subviral capsids became 

apparent. During uncoating HRV2 expanded. Concomitantly, the star-shaped dome at 

the 5-fold axis rotated and a channel opened at its center. The inner capsid protein VP4, 

localized at the 5-fold axis, was expelled. An additional pore formed at the 2-fold axis, in 

close proximity to contact sites of the protein capsid and the genome. In A-particles the 

RNA got more ordered and formed a shell of density close to the inner surface of the 

capsid, contacting it at the 2- and pseudo-3-fold axis. In B-particles it was released. At 

the pseudo-3-fold axis, the VP1 N-terminus was externalized in A-particles; in B-

particles, however, it became too disordered to be resolved (Figure 28). 
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Figure 28 Subviral particles are larger than native virus and pores are formed in their capsid. The 
particles differ in the externalization of VP4, of the VP1 N-terminus and of the RNA genome. EM 
maps of native HRV2, A- and B-particles were filtered to 10 Å resolution. Upon uncoating, the capsid of 
HRV2 expanded and pores opened at the 2- and 5-fold axes. In A-particles the VP1 N-terminus is 
externalized at the pseudo-3-fold axis, in B-particles, it cannot be localized. At 1.5 σ contour level, 
ordered parts of the genome are resolved. Upon conversion to A-particles, the RNA becomes more 
ordered and forms a density shell on the inner surface of the capsid, contacting it at the 2-fold axis. In B-
particles, the genome is expelled. These changes will be described in detail in the next figures. Figures 
were made in chimera. EM density maps are displayed at 2.5 σ and 1.5 σ and radially colored. 

 

The following sections address these changes in detail. 
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6.1.11.1  Capsid Expansion 

During the reconstruction process, the actual magnification of the microscope 

was determined by scaling the EM map of native HRV2 to the X-ray structure 

(Verdaguer N et al., 2000). The EM structure of native virus had thus the expected 

diameter of 30 nm.  

Comparing the rotational averages of the maps from native and subviral 

particles, the dimensions of A- and B-particles were determined. Both subviral particles 

had the same size of 31.4 nm in diameter, corresponding to a capsid expansion by 4.7 

% (Figure 29). 

 

Figure 29 Subviral particles are 4.7 % larger than native HRV2. The rotational 
averages of the EM maps from native, A- and B-particles were calculated with spider. 
Density values were scaled to 1. Native HRV2 has radius of 150 Å. A- and B-particles 
have the same size, with 157 Å radius. 

 

Hewat EA et al. (2002) described an overall size increase of 4 % from native to 

empty capsids, but mentioned a stronger expansion at the 5-fold axis. However, these 

authors did not specify, how this size increase was determined. Rotational averages 

consider the entire capsid, including the protruding 5-fold axis. As a consequence, the 
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overall expansion of the capsid, that was determined here, might be slightly larger than 

that of the capsid base. It is thus likely that current results and data by Hewat EA et al. 

(2002) reflect the same capsid expansion.  

6.1.11.2  Rotation of the 5-fold axis and opening of a pore 

During conversion from native HRV2 to A-particles the tips of the star-shaped 

mesa at the 5-fold axis rotated clockwise by 11 degrees and a pore opened at its 

center. Surprisingly, upon generation of B-particles, a counter-clockwise movement of 4 

degrees occurred, slightly decreasing the diameter of the central channel (Figure 30). 

 

 

Figure 30 Compared to native HRV2, the tips of the star-shaped dome at the 5-fold axis rotate 
clockwise by 11 and 7 degrees in A- and B-particles, respectively. The EM maps were filtered to 
10 Å resolution. The structure of native virus was displayed simultaneously with the maps of A- or B-
particles in chimera. It was rotated in 1 degree steps, until the tips of the star-shaped mesa at the 5-
fold axis were aligned with those of subviral particles. In A- and B-particles the star-shaped dome at 
the 5-fold axis is rotated clockwise by 11 and 7 degrees, respectively, when compared to native 
HRV2. Figures were made in chimera. EM densities around the 5-fold axis are displayed at 2.5 σ. 
Reference lines are show for better visualization of the rotation. 

 

The results of empty capsids correspond well to data by Hewat EA et al., (2002), who 

also observed a clock-wise rotation of the star-shaped dome by 7 degrees, when 

compared to native HRV2. 
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6.1.11.3  Loss of VP4 

In native HRV2, the inner capsid protein VP4 was localized to the 5-fold axis. 

Due to its small size, only parts of it were resolved in the cryo-EM map of native virus. In 

B-particles, this density was lost, indicating release of VP4 during uncoating. This is in 

accordance with data by Lonberg-Holm K and Korant BD (1972) who described that 

VP4 was expelled in subviral particles.  

From the structure of A-particles, loss of VP4 could not be unequivocally 

confirmed. Parts of the RNA shell, found in these particles, extended below the 5-fold 

axis, close to the position of VP4 in native virions. At the current resolution, it could not 

be distinguished whether all of this density stemmed from RNA or partially from shifted 

VP4 (Figure 31). 

 

Figure 31 Density attributed to VP4 in native HRV2 is lost in B-particles. EM-density maps, filtered to 
10 Å resolution, were simultaneously displayed with the X-ray coordinates of VP4 (red), fitted into the 
native structure. In native HRV2, density at the 5-fold axis on the inner surface of the capsid can be 
attributed to VP4 (arrow heads). Due to its small size and the limited resolution, only parts of the protein 
are resolved. In empty capsids this density is missing, indicating release of VP4. Due to the RNA shell, 
extending beneath the 5-fold axis, loss of VP4 cannot be confirmed in A-particles. Figures were made in 
chimera. EM maps are contoured to 1.5 σ, their inner surface is shown. Symmetry axes are labeled. 

 

However, Weiss VU (2009) demonstrated that VP4 was expelled from heat-

induced A-particles. 
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6.1.11.4   Opening of a pore at the 2-fold axis 

As part of viral expansion during uncoating, a pore opened in the capsid of A-

particles at the 2-fold axis. It was also present in the structure of B-particles but visually 

appeared to be smaller. This size difference of the pore was insignificant at 2.5 σ 

contour level. However, the density, narrowing the pore at the 2-fold axis of B-particles, 

became visible in difference maps at contour levels of 1.7 σ or below. This indicated 

that it was less conserved than other parts of the capsid. 

 In the cryo-EM structure of heat-triggered B-particles, Hewat EA et al. (2002) 

described a thinning of the capsid at the 2-fold axis, when compared to native virions, 

but these authors did not observe the opening of a pore. This discrepancy can be 

explained by the significantly lower resolution of their EM-map and the low contour 

level, at which it was displayed. 

Docking of the X-ray coordinates from B-particles into the cryo-EM map of A-

particles showed that the protein capsids of both subviral particles were identical around 

the 2-fold axis at 10 Å resolution. In the structure of A-particles, however, additional 

density was resolved on the inner surface of the capsid, beneath the 2-fold axis. It was 

thus attributed to ordered regions of the genome. By docking the coordinates of native 

HRV2, this RNA density was shown to contact Tryptophan 2038 of VP2 (Figure 15). 

After filtering the map to 10 Å resolution, RNA was visible as discrete dots of density at 

2.5 σ contour level (Figure 32). 

Tryptophan 2038 of VP2 was already found to be in proximity of ordered RNA, in 

the X-ray structure of native HR2 and of other rhino- and enteroviruses (Filman DJ et 

al., 1989; Arnold E and Rossmann MG, 1990; Hadfield AT et al., 1997, Verdaguer N et 
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al., 2000). The cryo-EM map of native virus, contoured to 1.5 σ, also showed this 

protein-RNA interaction. Additional density, attributed to the viral genome, localized 

around the 2-fold axis.  

At the same contour level, significantly more RNA density was visible in A-

particles. It extended over the pore at the 2-fold axis, suggesting this point as site for 

RNA externalization during the formation of B-particles. 

 

Figure 32 In A-particles, the viral genome extends over the pore at the 2-fold axis. EM maps of 
native and subviral particles were filtered to 10 Å resolution. Their inner surface is displayed, looking at 
the 2-fold axis. Compared to native virions, a pore opened at the 2-fold axis in subviral particles. In A-
particles, density, attributed to the viral genome, is resolved close to this opening, at 2.5 σ contour level 
(arrow heads). Contouring the maps to 1.5 σ, more RNA density becomes visible. In native HRV2, it is 
localized around the 2-fold axis, contacting, among other residues, Tryptophan 2038 of VP2 (arrow 
heads). In the structure of A-particles, the genome extends over the pore; in B-particles, it is completely 
lost. Figures were made in chimera. EM maps are radially colored. 
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6.1.11.5  Externalization of the VP1 N-terminus 

In native HRV2, the amphipathic N-terminus of VP1 was found on the interior 

surface of the capsid, close to the 2- and pseudo-3-fold axes (Figure 14). Upon 

conversion to A-particles, these residues were externalized at the pseudo-3-fold axis, 

visible as small dot of density (Figure 33). According to data from docking analysis, on 

the inner surface of A-particles, density was missing for the 60 N-terminal residues of 

VP1. Density corresponding to this protein fragment would be considerably larger than 

the newly appearing dot on the surface of A-particles. However, it is expected that most 

of the residues may be disordered and thus not resolved. This has already been shown 

for the externalized N-terminus of VP1 in poliovirus (Bubeck D et al., 2005b). 

Surprisingly, the VP1 N-terminus could not be resolved in B-particles. Instead, an 

additional pore was visible at the pseudo-3-fold axis. This is in accordance with EM and 

X-ray data on empty capsids by Hewat EA et al. (2002) and Verdaguer N et al. (in 

preparation), respectively.  
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Figure 33 The VP1 N-terminus is externalized at the pseudo-3-fold axis of A-particles, it is not 
resolved in B-particles. The cryo-EM maps of native and subviral particles were filtered to 10 Å 
resolution. In native HRV2, the VP1 N-terminus is localized at interior of the capsid, in proximity to the 2- 
and pseudo-3-fold axes. Upon conversion to A-particles it is externalized at the pseudo-3-fold axis (arrow 
heads). In empty capsids it is not resolved but a pore becomes visible at the pseudo-3-fold axis (arrow 
heads). Figures were made in chimera. EM maps around the 5-fold axis are displayed at 2.5 σ and 
radially colored.  

 

In the central section of the EM map from native HRV2, an area of low density 

was visible at the pseudo-3-fold axis, corresponding to a solvent-filled bubble. During 

the transition from native to A-particle, this area was filled with density, probably the 

externalized VP1 N-terminus. In empty capsids, this bubble remained occupied with 

density, indicating that the N-terminal residues of VP1 were still in place and passing 

through the viral shell (Figure 34). This has already been described for heat-triggered B-

particles (Hewat EA et al., 2002). 

6.1.11.6   Formation of an RNA shell in A- and genome release in B-particles 

As described above, RNA-protein contacts were resolved close to the 2-fold axis 

in native HRV2. This ordered fragment of the genome was also visible in the central 

section of the EM map. 

Upon conversion to A-particles, a significantly larger part of the genome became 

ordered enough to be visible in the EM structure, forming an RNA shell on the interior of 
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the capsid. The RNA-protein contact at the 2-fold axis was maintained in A-particles. In 

the central section of this structure, it seemed that an additional interaction site formed 

at the 5-fold axis. However, no contact could be resolved at 1.5 σ contour level. 

The interior density shell completely disappeared, during the formation of B-

particles, confirming it as stemming from RNA (Figure 34). 

 

Figure 34 The genome becomes more ordered in A- and is expelled in B-particles. EM-maps of 
native and subviral particles were filtered to 10 Å. Central sections are displayed. In native HRV2, parts of 
ordered RNA are resolved beneath the 2-fold axis (black arrow head). In A-particles, the genome 
becomes more ordered and forms an RNA shell within the capsid. It contacts the capsid at the 2-fold axis 
(black arrow head) and extends beneath the pore (white arrow heads). The RNA shell is also in close 
proximity to the protein shell at the 5-fold axis, however, no contact points of RNA and protein densities 
are seen at 1.5 σ (green arrow head). Density, attributed to RNA, is lost in B-particles. In native virus, a 
solvent-filled area at the pseudo-3-fold axis is visible. It is occupied by density in subviral particles, 
possibly by the externalized VP1 N-terminus (red arrow heads). Central sections were displayed with 
bshow. Symmetry axes are indicated.  
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6.2 Membrane-attached uncoating intermediates of minor group rhinoviruses 

In vivo, uncoating of human rhinoviruses occurs in the context of cellular 

membranes. Hydrophobic subviral particles are generated in endosomes due to the 

acidic pH and attach to the endosomal membrane. Although so far not visualized, it is 

believed that their externalized amphipathic residues form a trans-membrane pore, 

through which the viral genome is released into the cytoplasm. To fully understand the 

uncoating process, intermediate particles need thus to be studied also in the context of 

lipid bi-layers. The goal of the second part of this thesis was to set up a model system 

for investigating these membrane-attached uncoating intermediates from a structural 

point of view. 

Despite being physiological, isolated endosomes are not well suited for structural 

studies where concentrated and pure samples are required. The variability, introduced 

by the associated and endosomal proteins, would introduce a considerable background 

and the cellular source limits the amounts of the organelle that can be purified 

(Beaumelle BD and Hopkins CR, 1989). Alternatively, using liposomes as model 

membranes, Bubeck D et al. (2005a) solved the structure of membrane-attached native 

poliovirus and Bilek G et al. (2007) showed attachment of HRV2 to PEGylated 

liposomes in capillary electrophoresis. Here we chose a similar but more physiological 

approach, to study membrane-bound uncoating intermediates of the minor group 

rhinoviruses HRV2. 
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6.2.1 HRV2 specifically binds to receptor-decorated liposomes of endosome-like 

composition 

Liposomes were prepared with a lipid composition close to that of late 

endosomes with 30 mol% cholesterol (Ch), 20 mol% phosphatidylcholine (PC), 20 

mol% phosphatidylethanolamine (PE) and 20 mol% sphingomyelin (SM). In order to 

allow efficient binding of His6-tagged recombinant receptors, 10% 1,2-dioleoyl-sn-

glycero-3-[(N-(5-amino-1-carboxypentyl)iminodiacetic acid)succinyl] (DGS-NTA) lipids 

were additionally included. NBD-PC, 1-oleoyl-2-[12-[(7-nitro-2-1,3-benzoxadiazol-4-

yl)amino] lauroyl]-sn-glycero-3-phosphocholine, served as fluorescent tracer. 

Lysobisphosphatidic acid (LPA), an endosomal lipid involved in membrane fusion and 

the generation of multi-vesicular bodies, was excluded from the liposome composition. 

Successful HRV2 infection from the plasma membrane, that lacks this lipid, proved LPA 

to be irrelevant for trans-membrane RNA release of rhinoviruses (Kobayashi T et al., 

2002; Brabec M et al., 2003; Matsuo H et al., 2004; van Meer G et al., 2008). Similar 

liposome compositions were previously used to study poliovirus, attached to receptor-

decorated liposomes or pH-dependent membrane-fusion of Semliki Forest virus. (White 

J and Helenius A, 1980; Bubeck D et al., 2005a). 

The well studied, high affinity mini-receptor V33333 was bound via its His6-tag to 

NTA-groups of the liposomes. It is a derivative of VLDLR and consists of concatemers 

of the high affinity complement repeat 3. (Moser R et al., 2005; Wruss J et al., 2007; 

Querol-Audi J et al., 2009).  

Native HRV2 specifically attached to these receptor-decorated model 

membranes and co-migrated with liposomes on sucrose density gradients. In the 



Results 
 

 86 
 

absence of receptor, virions failed to bind to the vesicles and remained in the bottom 

fraction of the gradient (Figure 35).  

 

Figure 35 HRV2 specifically binds to liposomes decorated with the VLDLR minireceptor V33333. 
Large unilamellar vesicles (LUV), containing NTA- and fluorescent tracer lipids, were decorated with the 
His6-tagged recombinant receptor V33333 (R). HRV2 (V) specifically attached to these model 
membranes (A). LUV:R:V complexes as well as a control lacking receptor (LUV:V) were overlaid with a 
50%/25%/0% sucrose step gradient and subjected to ultracentrifugation. Liposomes and virus were 
detected by fluorescence measurements (C) and TCID50 infectivity assays (D), respectively. HRV2 co-
flotated only with V33333-decorated liposomes; in the absence of receptor, virtually all virions remained 
at the bottom of the gradient. The peak fraction of the complex was applied to glow-discharged carbon-
coated copper grids and negatively stained with 2% phosphotungstate pH 7.2. Images were taken in an 
80 kV Morgagni TEM using an 11 Mpixel CCD camera. Attachment of virions to lipid vesicles can be 
clearly seen. Size bar = 100 nm (B). TEM images and flotation data are representatives of three 
independent experiments. Flotations and TCID50 assays by Nena Matscheko and Irene Gösler, 
respectively.  

 



Results 
 

 87 
 

Aiming at single particle reconstruction of cryo-EM data, conditions for complex 

formation were optimized in negative stain TEM to maximize virus binding without 

causing significant aggregation. As each virus has 12 receptor binding sites, receptors 

attached to different vesicles can simultaneously bind to the same virion, thereby 

forming aggregates, useless for single particle reconstruction. Molar ratios of 8.4*104 

mol lipid : 79 mol receptor : 1 mol virus gave the best results. Considering the different 

sizes of the individual lipids as well as the diameter of the extruded liposomes, this 

corresponds to an average of about 5 virions per liposome. It has to be noted that not all 

virions attached to liposomes and that even after separating complexes from free virus 

via flotation, virions fell off the vesicles again. This reduced the theoretical number to 

effectively 2 to 3 bound virions per vesicle (Figure 35B). Increasing the receptor 

concentration did improve virus attachment but lead to considerable aggregation of 

complexes. 

6.2.2 Cryo-EM of membrane-attached HRV2 

Using conditions for complex formation as determined by negative stain TEM, 

membrane-attached HRV2 was frozen for cryo-electron microscopy. Surprisingly, cryo-

images showed considerable portions of free virus and undecorated liposomes. 

It may be that grid adsorption in negative stain TEM promoted co-localization of 

virus with liposomes. However, efficient complex formation was demonstrated via 

flotation, making this unlikely (Figure 35). 

According to Kelly DF et al. (2008), plunge freezing during cryo-preparation could 

affect the NTA:His6 interaction. Their data on binding of His6-tagged transferrin 

receptor to NTA-containing lipid monolayers showed that for comparable binding, 
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vitrified samples required higher concentrations of NTA-lipids than negative stain 

preparations. Liposomes were thus prepared containing their recommended 20 % of 

NTA-lipids. Alternatively, vesicles with 5 % tris-NTA lipid were made that bind hexa-

histidines with significantly higher affinity than conventional mono-NTA (Huang Z et al., 

2009). Different virus:receptor:liposome ratios were screened as well as pre-charging 

NTA groups with excess of Ni2+ ions. However, conditions yielding more membrane-

attached particles also led to aggregation. These preparations could not be used for 

cryo-EM imaging. 

HRV2, bound to liposomes with 10 % NiNTA lipids, was thus frozen and cryo-

imaged in a Philips CM200 TEM. Per micrograph an average of 13 membrane-attached 

virions were imaged, yielding a total of 653 particles for an initial reconstruction (Figure 

36). Binding levels of HRV2 to receptor-decorated liposomes were thus comparable to 

that of poliovirus (Bubeck D et al., 2008). 

Cryo-data were analyzed with the auto3dem package (Yan X et al., 2007). 

Particles were manually picked and CTF-corrected. Images were aligned by icosahedral 

projection matching, using the X-ray structure of native HRV2, filtered to 25 Å, as 

starting map. 

Considering a Fourier Shell Correlation of 0.5, the EM-map of membrane-

attached HRV2 was solved to 23.8 Å resolution. It showed characteristic rhino-viral 

features such as the tri-angular plateau at the 3- and the depression at the 2-fold axis. 

At 1 σ contour level, additional density was seen at the 5-fold axis, when compared to 

the structure of native HRV2.  This density formed a ring-like structure around the star-

shaped dome of the virus, corresponding well to bound receptor, as it was resolved in 
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the X-ray structure of receptor-decorated HRV2 (Verdaguer N et al., 2004; Querol-Audi 

J et al., 2009).  In the EM-map, the density of the receptor was less pronounced, 

indicating partial occupancy. This was expected, as the samples contained a 106-fold 

molar excess of NTA-lipids to His6-tagged V33333. The majority of the receptor should 

thus be membrane-bound and not free in solution, so that it could not saturate the viral 

pentamers.  

Due to icosahedral averaging the attachment site of the virus on liposomal 

membrane was not resolved (Figure 36). 

 

Figure 36 The icosahedral reconstruction of membrane-bound HRV2 shows partial receptor 
occupancy. HRV2 was attached to liposomes with NTA-lipids via the His6-tagged receptor V33333. It 
was reconstructed from cryo-images by icosahedral projection matching, using the software package 
auto3dem (Yan X et al., 2007). In the EM map weaker density is visible for the receptor, when compared 
to the X-ray structure of receptor-decorated HRV2, filtered to 25 Å (Verdaguer N et al., 2004). This 
indicates partial receptor occupancy. Figures were made in chimera. EM and X-ray maps were contoured 
to 1 σ and radially colored.  

 

The low resolution EM map confirms that the established model system of 

membrane-bound HRV2 can be successfully used in cryo-EM studies. 
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6.2.3 Membrane-attached uncoating intermediates 

The used receptor V33333 was shown to have anti-viral activity by stabilizing the 

capsid and thereby inhibiting uncoating of minor group rhinoviruses (Moser R et al., 

2005; Nicodemou A et al., 2005). To reduce the inhibitory influence of the receptor 

during the study of membrane-attached uncoating intermediates, liposomes were 

decorated with V33333 and complexes were separated from unbound receptor via 

flotation. HRV2 was attached at a virus to lipid ratio of 1.85*10-6.  

In analogy to in vivo, uncoating of membrane-attached HRV2 was triggered by 

exposure to pH 5.4, a pH value also found in late endosomes (Schmid S et al., 1989). 

Complexes were acidified for different time intervals for up to 30 min and uncoating was 

halted by negative stain sample preparation. In that way a time course of RNA release 

could be visualized in TEM.  

Without trigger, most particles were native virus with homogenous electron 

density. Within 2 min of exposure to pH 5.4, intermediates formed, identifiable by partial 

stain penetration. Surprisingly, these virions looked considerably different from A-

particles; part of their RNA density was already released. For most intermediates, the 

residual internal density was rod-shaped and spanned the viral capsid, suggesting a 

common stage in the uncoating process (Figure 37B). Prolonged acidification, for over 

15 min, lead to complete loss of internal density. The particles visually resembled empty 

capsids but remained membrane-associated (Figure 37C). 
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Figure 37 Uncoating of membrane-attached HRV2 involves a new uncoating intermediate with 
partially released RNA. Liposomes with NTA-lipids were decorated with His6-tagged V33333. Free 
receptor was removed via flotation in a sucrose gradient. HRV2 was bound and acidified to pH 5.4 for the 
times indicated. Uncoating was halted by sample adsorption to carbon-coated copper grids and negative 
staining with 2 % phospho-tungstate pH 7.2. Samples were imaged in an 80 kV TEM. Particles were 
classified according to different degrees of stain penetration (A). Without acidification, most membrane-
attached virions are native HRV2. After 2 min exposure to pH 5.4, intermediate particles form with 
partially released RNA (B). Uncoating is completed after 15 min acidification, when most particles are 
membrane-attached empty capsids (C). Per time point about 200 particles were examined. 

 

It has to be mentioned that different virus preparations differed slightly in their pH 

stability. The peak of their individual particle species was thus obtained after slightly 

different exposure times to pH 5.4, but the sequence of particle species was consistent 

for all preparations tested.  
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Using the experimental conditions described here, Bilek G et al. (submitted) 

demonstrated that membrane-attached HRV2 transferred its genome into the liposomal 

lumen. They detected the trans-located RNA within the vesicle via an encapsidated 

reverse transcription mix and via subsequent amplification of the generated cDNA by 

PCR. Their results prove the validity of using receptor-decorated liposomes for studying 

rhino-viral uncoating in the context of membranes. 

6.2.4 Rhino-viral uncoating on membranes proceeds faster than in solution and 

terminates in a lipophilic empty capsid 

Comparing rhino-viral uncoating in solution and on membranes, two main 

differences became apparent.  

The time course of RNA release was much faster for membrane-bound virus. 

Already within 2 min incubation at pH 5.4, the majority of virions partially released their 

genome. In solution, however, acidification of HRV2 at pH 5.0 for 15 min resulted in A-

particles, still harboring the full viral genome. The lower pH of exposure for generating 

A-particles would rather be expected to accelerate the uncoating process. It seems thus 

that there is an additional factor accelerating RNA release in the context of membranes. 

The used receptor was shown to inhibit uncoating, the trigger for RNA release may thus 

be the lipid bi-layer itself or the pH gradient across it.  

After RNA translocation, empty capsid remained attached to the membrane.  

This was in contrast to B-particles, generated in solution, that failed to attach to lipid bi-

layers (Lonberg-Holm K et al., 1976).  

Solving the structure of membrane-attached intermediates in the future will 

elucidate the differences between subviral particles in solution and attached to 
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membranes. In addition, it may help to show how rhinoviruses transfer their genome 

through lipid bi-layers.  
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7 Discussion 

In the current thesis the EM-maps of HRV2 A- and B-particles were solved to 

resolutions better than 10 Å. The structural changes of the capsid during uncoating 

were revealed by their comparison with the X-ray structure of native HRV2. Using a 

liposome-based model system, viral conversion was also investigated in the context of 

membranes. Thereby new intermediate particles with partially released RNA were 

discovered.  

7.1 Uncoating of minor group rhinoviruses: Proposed model 

Considering these results in the context of already published data on HRV2, we 

propose the following model for uncoating of minor group rhinoviruses. 

Upon binding to receptors of the LDLR family, minor group rhinoviruses are 

internalized via clathrin-mediated endocytosis (Snyers L et al., 2003). They are 

transported to endosomal carrier vesicles and late endosomes. At the low pH within 

these vesicles, the receptor forms an intra-molecular bond, releasing the bound virus 

(Brabec M et al., 2003; Konecsni T et al., 2009). The acidic pH also triggers 

conformational changes of the viral capsid, generating the hydrophobic A-particle 

(Lonberg-Holm K and Noble-Harvey J, 1973). The amphipathic N-terminus of VP1 is 

externalized via the pseudo-3-fold axis and VP4 is expelled at a yet unknown site. As 

externalization of the VP1 N-terminus occurs at a specific location on the viral capsid, it 

is expected that A-particles attach to the membrane in a defined orientation, even in the 

absence of receptor binding. 
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The orientation of subviral particles on membranes is yet unknown. At the 2-fold 

axis the largest pore opens in the capsid and the genome localizes directly beneath this 

opening. We thus propose that the virus approaches the membrane with its 2-fold axis. 

In that case, two VP1 N-termini, externalized in proximity to the hole at the 2-fold axis, 

would anchor the A-particle in the endosomal membrane. In negative stain images of 

membrane-attached uncoating intermediates, viral particles are often engulfed by the 

liposomal membrane, indicating that also distant VP1 N-termini contribute to the 

attachment. 

Structurally, A- and B-particles are very similar. However, the pores in the capsid 

are larger in A-particles and also the rotation of the star-shaped dome at the 5-fold axis 

is more pronounced than in empty capsids. It seems thus that A-particles represent an 

expanded or strained state of the final capsid structure, probably to facilitate RNA 

release. Such expanded intermediate particles have already been suggested for 

poliovirus (Levy HC et al., 2010). 

Within minutes of exposure to acidic pH, virions start to release their genome. 

This probably occurs in discrete steps, because intermediates with partially released 

RNA have a consistent appearance in negative stain TEM. Their residual RNA is visible 

as rod-shaped density within an otherwise empty capsid. Brandenburg B et al. (2007) 

presented evidence for poliovirus RNA exiting the capsid in a single-stranded form. As 

also suggested for PV, it may be that the release of rhino-viral RNA is halted at certain 

points of RNA unwinding, corresponding to the observed intermediate particles. 

Bilek et al. (submitted) demonstrated that HRV2 transferred its genome into 

liposomes without disrupting vesicle integrity, indicating the formation of a pore for 
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trans-membrane release of RNA into the cytoplasm. The externalized N-terminus of 

VP1 and the expelled VP4 have been implicated in that, as both permeabilize 

membranes at acidic pH (Zauner W et al., 1995; Weiss VU et al., 2010). As mentioned 

above, the exit site of VP4 on the capsid is unknown. Based on low resolution 

structures, the 5-fold axis has been suggested as site of externalization (Hewat EA et 

al., 2002; Hewat EA and Blaas D, 2004). However, in the current structures of A- and B-

particles at sub-nanometer resolution, the N-terminus of VP3 narrows the channel at the 

5-fold axis, making it an unlikely site for VP4 externalization. Alternatively, Xing L et al. 

(2003) proposed that in uncoating intermediates of receptor-decorated HRV3, VP4 was 

released from the capsid via the pseudo-3-fold axis. At the same site, a hole is visible in 

the structure of HRV2 B-particles (Verdaguer N et al., in preparation). The trans-

membrane pore may consequently form close to the viral 2-fold axis, from where the 

viral genome is released. It is likely that this occurs at an asymmetric site on the capsid, 

induced by the presence of the membrane, as already proposed for PV (Levy HC et al., 

2010). 

Upon RNA release, the empty capsid remains attached to the endosomal 

membrane. After fusion of late endosomes with lysosomes, it is degraded.  

7.2 Uncoating of minor group rhinoviruses: Similarities and 

differences to major group rhinoviruses and poliovirus 

Structural changes during uncoating of one receptor group of rhinoviruses are 

often generalized to the other. In addition, many results on uncoating of the closely 

related poliovirus (PV) are extrapolated to rhinoviruses. 
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For the main conformational changes of the capsid this turns out to be valid and 

uncoating of minor and major group HRVs but also of PV shows similarities. Uncoating 

of both virus species occurs in endosomes and via a stable intermediate, the A-particle. 

It is enlarged by roughly 4 %, when compared to native virions, and the RNA genome 

forms a density shell in close proximity to the capsid (Xing L et al., 2003; Bubeck D et 

al., 2005b). The VP1 N-terminus of A-particles is externalized and VP4 is expelled. Both 

interact with membranes (Tosteson MT and Chow M, 1997; Danthi P et al., 2003; Weiss 

VU et al., 2010) and are believed to aid in transferring the viral genome from 

endosomes into the cytoplasm. 

However, essential differences between the virus species were also 

demonstrated, underlining that extrapolations have to be considered with caution. 

7.2.1 Receptor 

Poliovirus and major group rhinoviruses share a similar receptor binding site, the 

canyon, a depression in the capsid surface surrounding the viral 5-fold axis. Their 

receptors, Poliovirus Receptor (PVR) and ICAM-1, respectively, have immunoglobulin-

like ectodomains that bind to the floor of the canyon and thereby induce structural 

changes of the capsid. In PV this leads directly to the formation of A-particles. In 

accordance to that, ICAM-1 directly induces uncoating of some major group serotypes 

such as HRV3 (Greve JM et al., 1991; Xing L et al., 2003). For other serotypes, 

including HRV14, a combination of ICAM-1 binding and low pH is required for uncoating 

(Nurani G et al., 2003). The receptors of minor group rhinoviruses, the members of the 

LDLR family, already differ structurally from PVR and ICAM-1. They consist of 

complement repeats that attach in a ring-shaped conformation around the viral star-
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shaped dome at the 5-fold axis. LDLRs have no catalytic activity and serve merely as 

vehicle for endocytosis. At the acidic pH found in endosomes, they form an intra-

molecular bond and thereby release the bound virus. Solely the low pH within 

endosomes is thus responsible for the formation of A-particles of minor group 

rhinoviruses (Prchla E et al., 1994). 

7.2.2 A- and B-particles 

For rhinoviruses, A- and B-particle have similar capsid structures at sub-

nanometer resolution and differ only in the location of the VP1 N-terminus and the 

presence or release of the genome. Already in A-particles pores form at the 2- and 5-

fold axes. They remain open also during the transition to B-particles, although they 

become slightly reduced in size. The EM map of B-particles was reconstructed from 

about 3000 images to sub-nanometer resolution and the X-ray structure was recently 

solved with essentially the same result at 10 Å resolution (Verdaguer N et al., in 

preparation). It is thus unlikely that structurally different classes of B-particles exist. 

In contrast, Bubeck D et al. (2005b) described an intact protein shell for PV A-

particles. Its further conversion to empty capsids occurs in discrete steps, involving an 

early and a late B-particle that differ significantly at sub-nanometer resolution. Early B-

particles have intact capsids with thinned density at the 2-fold axis. They transform into 

late B-particles with visible holes in their protein shell (Levy HC et al., 2010). 

The positions of these openings in the capsid also differ between rhino- and 

poliovirus. As previously described, direct channels open in the capsid of HRV2 at the 

2- and 5-fold axes. An additional pore is seen in B-particles at the pseudo-3-fold axis. 

For the major group HRV14, the channel at the 5-fold axis was also described. At the 2-
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fold axis, only a thinning of the capsid was observed but not a direct opening. This is 

probably due to the limited resolution of the map (Hewat EA and Blaas D, 2004). In the 

structure of receptor-decorated B-particles of HRV3, another major group rhinovirus, the 

dome at the 5-fold axis remains intact during uncoating, but a channel opens at the 

pseudo3-fold axis (Xing L et al., 2003). 

In PV, however, the 2-fold axis of late B-particles has a completely different 

appearance. A density bridge spans the 2-fold axis and two holes open adjacent to it, 

between the 2- and pseudo-3-fold axes. Consistent with data from HRV2, the star-

shaped dome at the 5-fold axis rotates during uncoating of PV but it remains intact.  For 

PV B-particles, the channel at the pseudo-3-fold axis was also described (Levy HC et 

al., 2010). 

7.2.3 Externalization of the VP1 N-terminus and VP4 

A further difference between the viruses is the exit site of the VP1 N-terminus. In 

HRV2 A-particles, the protein residues are externalized at the pseudo-3-fold axis via a 

spherical area, filled with solvent in native virus. Externalization of the VP1 N-terminus 

at this point would be blocked by bound ICAM-1 or PVR in major gourp HRVs and PV, 

respectively. Accordingly, in HRV14, the solvent-filled bubble at the pseudo-3-fold axis 

remains unchanged during uncoating. Hewat EA and Blaas D (2004) proposed the base 

of the canyon, between two neighboring VP1s, as alternative exit site of the VP1 N-

terminus. Consistent with major group rhinoviruses, the VP1 N-terminus of poliovirus is 

externalized at the same location (Bubeck D et al., 2005b). 

Considering the release of VP4, HRV2 and PV behave similarly during 

uncoating. Both viruses release most of their inner capsid protein that is believed to 
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form a trans-membrane pore for RNA transfer into the cytoplasm (Weiss VU, 2009; 

Bilek G et al., submitted). In contrast, the major group HRV3 and HRV14 were shown to 

only partially expel VP4 (Casasnovas JM and Springer TA, 1994; Hewat EA and Blaas 

D, 2004). This is consistent with data by Schober D et al. (1998) who showed that major 

group HRVs disrupt the endsome during uncoating, rather than forming a pore for RNA 

release.  

7.2.4 RNA release 

For poliovirus the structure of an additional subviral particle was solved to 45 Å, 

an intermediate between A- and B-particle, caught in the act of RNA release. It 

constitutes about 5 % of particles in heat-triggered preparations of empty capsids and is 

structurally assigned to the class of early B-particles (Bostina M et al., 2011). In TEM, 

caught-in-the-act particles of PV resemble membrane-attached rhino-viral 

intermediates, generated by acidification at pH 5.4 for 2 min. Both types of particles 

appear as empty capsids with rod-shaped internal RNA density.  

In PV, averaging of sub-tomograms of caught-in-the-act particles reveals 

externalization of the viral genome via one of the holes between the 2- and pseudo-3-

fold axes. Bostina M et al. (2011) suggested that viral protein residues may catalyze 

unwinding of the RNA for its single-stranded release from the capsid. In the structure of 

PV A-particles, protein-RNA interactions are localized to the pseudo-3- and 5-fold axes 

(Bubeck D et al., 2005b). In contrast, in HRV2 A-particles, the genome contacts the 

protein capsid at the 2- and pseudo-3-fold axes. Density of ordered RNA extends also 

beneath the capsid hole at the 2-fold axis, making this the probable site for RNA 
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release. Solving the structure of intermediates with rod-shaped RNA density may 

elucidate rhino-viral RNA externalization in the future. 
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