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Abstract 

Protein phosphorylation and dephosphorylation, carried out by kinases and phosphatases respec-

tively, represent hallmarks of intracellular signalling cascades. One of the most abundant ser-

ine/threonine phosphatases PP2A, protein phosphatase 2A, fulfills distinct roles in cell cycle 

regulation, programmed cell death and signal transduction pathways. Active and specific PP2A 

is represented by heterotrimeric holoenzymes, which need to be tightly regulated to cope with 

various substrates. Different studies revealed posttranslational mechanisms, as for instance 

phosphorylation and methylation, to be key modifications for the regulation of PP2A.  

PTPA, the phosphtase two A phosphatase activator, was originally identified as an activator of 

the in vitro phosphotyrosyl phosphatase activity of PP2A [Cayla et al, 1990]. Furthermore, Fell-

ner and coworkers showed a deletion of the yeast homologues of PTPA, RRD1 and RRD2, to 

reduce catalytic activity, affect substrate specificity, protein stability and metal dependence of 

PP2A [Fellner et al., 2003]. Recently, inactive PP2A was shown to be reactivated by PTPA. 

Nevertheless, the identification of an exact function of PTPA in mammals is still missing. A 

conservation of function is emphasized through the ability of mammalian PTPA to complement 

the proliferation phenotype of a rrd1∆/rrd2∆ yeast strain. Moreover, previous findings of apop-

totic conditions, emerging upon knock down or due to overexpression of PTPA in mammalian 

cell lines, pinpointed towards an essential role of PTPA.  

Therefore, we wanted to further elucidate the consequence of PTPA knock down in mammalian 

cells by the use of shRNA and siRNA. Single clones of HelaTRex cells, stably transfected with 

a vector coding for the inducible expression of a targeting shRNA against the mRNA of PTPA, 

were shown to efficiently reduce the protein to 15% of its normal amount. Furthermore, short 

interfering RNAs were applied and resulted in a PTPA protein knock down to 1/4 in comparison 

to normal amount. A combination of both methods, however, failed to decrease PTPA to lower 

levels. Despite these low amounts of PTPA, a significant alteration of phenotype could not be 

observed.  

Furthermore, we intended to unravel the subcellular localization of PTPA by the use of different 

antibodies specific for mammalian PTPA, applied in subcellular fractionation experiments and 

immunofluorescence analyses. Upon the subdivision of Hela cells into nuclear and cytoplasmic 

fractions, a major distributrion of PTPA in the cytoplasm was confirmed by immuno blot analy-

sis. As opposed to this, PTPA seemed to emerge mainly in nuclear compartments if analysed 

with immunofluorescence.  
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Abstract in German 

Phosphorylierung und Dephosphorylierung von Proteinen repräsentieren wichtige  Modifizie-

rungen in intrazellulären Signalkaskaden, welche für die Aktivierung und Deaktivierung der 

jeweiligen Proteine verantwortlich sind. Eine der häufigsten Serin/Threonin Phosphatasen, 

PP2A, Protein Phosphatase 2A, erfüllt dabei eine wichtige Rolle in der Zellzyklusregulation, im 

programmierten Zelltod sowie in Signaltransduktionswegen. Heterotrimere Holoenzyme reprä-

sentieren dabei das aktive und spezifische PP2A, welches wiederum sehr genau reguliert werden 

muss um die Interaktion mit verschiedenen Substraten bewerkstelligen zu können. Unterschied-

liche Studien verdeutlichten bereits, dass sowohl Phosphorylierung als auch Methylierung wich-

tige Modifikationen für die Funktion von PP2A darstellen.  

PTPA, der Phosphtase 2 A Phosphatase Aktivator, wurde ursprünglich als Aktivator der in vitro 

Phosphotyrosin Phosphatase Aktivität von PP2A identifiziert [Cayla et al, 1990]. Zusätzlich 

zeigten Fellner und Kolleg_innen, dass eine Deletion der homologen Proteine von PTPA in He-

fe, RRD1 und RRD2, sowohl die katalytische Aktivität von PP2A reduziert als auch die Sub-

stratspezifität, Proteinstabilität und Abhängigkeit von Metallionen beeinträchtigt. Kürzlich wur-

de gezeigt, dass inaktives PP2A durch PTPA reaktiviert werden kann. Dennoch fehlt bisher die 

Charakterisierung der exakten Funktion von PTPA in Säugetieren. Der Umstand, dass Säuge-

tier-PTPA den Wildtyp Phänotyp von einem rrd1∆/rrd2∆ Hefestamm komplementieren kann, 

bestärkt die Hypothese einer konservierten und essentiellen Funktion von PTPA. Frühere Studi-

en zeigten zudem, dass sowohl durch Überexprimierung als auch durch Knock-down von PTPA, 

apoptotische Bedingungen entstehen und dieses Protein insofern eine essentielle Rolle ein-

nimmt.  

Deshalb war es ein Teilziel dieser Arbeit mittels shRNA und siRNA weitere Konsequenzen ei-

nes PTPA-Knock-down in Säugetierzellen zu untersuchen. Einzelzellklone einer HelaTRex 

Zelllinie, stabil transfiziert mit einem Vektor, der eine induzierbare Expression einer shRNA 

gegen die mRNA von PTPA kodiert, zeigten eine effiziente Reduktion des Proteins auf 15% der 

normalen Menge. Zusätzlich wurden siRNAs (short interfering RNAs) angewandt und erzielten 

einen PTPA Knock-down auf 1/4 der normalen Menge. Schließlich wurden beide Methoden 

kombiniert, konnten aber keine weitere Reduzierung der Proteinmenge von PTPA erreichen. 

Trotz geringer Mengen von PTPA, konnte keine signifikante Veränderung des Phänotyps beo-

bachtet werden.  
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Darüber hinaus wollten wir mithilfe der Anwendung verschiedener PTPA spezifischer Antikör-

per, in Experimenten der subzellulären Fraktionierung und Immunfluoreszenz, die subzelluläre 

Lokalisierung des Proteins aufdecken. Western-Blot-Analysen konnten in Hela-Zellen, welche 

in Kern- und Zytoplasmafraktionen unterteilt wurden, ein hauptsächliches Vorkommen von 

PTPA im Zytoplasma bestätigen. Im Gegensatz dazu trat PTPA in Analysen von 

Immunfluoreszenzen vorrangig im Kernkompartiment auf.  
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1. Introduction 

Protein phosphorylation and dephosphorylation represent hallmarks of intracellular signalling 

cascades. Many human proteins experience a regulation of their biological function via the 

mechanism of protein phosphorylation, carried out by a dynamic and highly regulated class of 

enzymes [Honkanen and Golden, 2002]. As a consequence of their importance, these enzymes 

have been intensively studied over the last years.  

Phosphorylation regulates a large variety of cellular processes, like signal transduction, cell cy-

cle regulation or apoptosis. It represents a fast and reversible mechanism to activate enzymes, 

label proteins for degradation, facilitate protein-protein interactions or determine the subcellular 

localization of proteins. Phosphorylation occurs primarily on three amino acids: Serine, 

threonine and tyrosine, with serine as the most frequently phosphorylated (~98%) amino acid. 

Furthermore, kinases catalyse phosphorylation and phosphatases operate as antagonists.  

Until recently, 518 putative protein kinases have been identified [Johnson and Hunter, 2005], 

which can be divided into 90 tyrosine and 428 serine/threonine kinases. Surprisingly, 107 pro-

tein tyrosine phosphatases and [Alonso et al., 2004] but only 30 serine/threonine phosphatases 

accomplish the function of dephosphorylation. The phosphatases can be subdivided based on 

their substrate specificity into: serine/threonine specific (PSTPs), tyrosine specific (PTPs) and 

dual specificity phosphatases (DSPs). PSTPs possess a catalytic core structure distinct to the 

core of PTPs and DSPs and hence use distinct catalytic mechanisms for the hydrolysis of the 

phosphoester bond [Fellner et al., 2003]. PSPs are different from PTPs/DSPs, which are more 

similar to each other regarding the catalytic mechanism. PSPs comprise three major families: 

PPMs, metal-dependent protein phosphatases, FCP/SCPs, aspartate-based phosphatases and 

PPPs, phosphoprotein phosphatases, [Yigong Shi, 2009]. Whereas PPM and PPPs both need 

metal ions for their catalytic activity, FCP/SCP use an aspartate-based mechanism. In contrast to 

the PPM family, which contains additional domains to determine substrate specificity, PPPs do 

have a multisubunit architecture with catalytic and regulatory subunits. Moreover, the PPP and 

PPM family differ in their sensitivity for inhibitors, which was important for the discrimination 

between type 1 versus type 2 phosphatases [Ingebritsen and Cohen, 1983]. The PPP family in-

cludes PP1, PP2A, PP2B, PP4, PP5, PP6 and PP7.  

This study focuses on protein phosphatase 2A, PP2A, a member of the PPP family, and its acti-

vator protein, phosphatase 2A phosphatase activator, PTPA.  
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PP2A fulfills various roles in cell cycle regulation, programmed cell death and signal transduc-

tion pathways, as for instance in the MAP-Kinase and the TOR pathway, respectively [Di Como 

et al., 1996, Jiang et al., 1999, Sontag et al., 1993].  

As a consequence of its multisubunit architecture, embodied in three core subunits, PP2A is able 

to cope with a variety of substrates in different cellular localizations.  

 

1.1. Structure and subunits of protein phosphatase 2A (PP2A) 

PP2A is a serine/threonine phosphatase, which is highly conserved between yeast and human 

and represents one of the most abundant cellular proteins in some tissues. It exhibits a multisub-

unit architecture with three major subunits, determining its specificity. The heterodimeric core 

enzyme is characterized through a 65 kDa structural A subunit and a 37 kDa catalytic C subunit. 

Together with one of many different regulatory B subunits, more than 72 different hetero-

trimeric holoenzymes can be formed. Via this mechanism substrate specificity as well as cellular 

localization can be determined.  

  

Figure 1: Structure of PP2A; adapted from “Protein phosphatase 2A, a highly regulated familiy of se-

rine/threonine phosphatases implicated in cell growth and signaling”; Veerle Janssens and Jozef Goris 

(2001) Biochem J 353(Pt 3): 417-39.  

Figure 1 displays an illustration of the A subunit, which forms the core enzyme together with 

the C subunit [Goris et al., 2001]. Together with the B subunit, which originates from one of the 

four identified families, B (B55R55), B´ (B56/PR61), B´´ (PR48, PR59, PR72/130) and 

B´´´(PR93/PR110/striatin/SG2NA), the substrate specific holoenzyme is formed.  
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1.1.1. The structural subunit  

Two constitutively expressed isoforms, α and β, exist, sharing 86%sequence identity [Hem-

mings et al., 1990]. The structure of the A subunit consists of 15 HEAT (huntingtin-elongation-

A subunit TOR) repeats with each HEAT repeat defined by two antiparallel α-helices connected 

by an intra-repeat loop and adjacent repeats connected by inter-repeat loops. The conformation 

of the A subunit resembles a hook shaped structure before binding to the C subunit. When build-

ing a heterodimeric complex, the structural subunit changes to a more closed structure, upon 

interaction between HEAT repeats 11 and 15 with the C subunit [Cho et al., 2007].  

Interestingly, Aβ isoform was identified as a putative tumor suppressor. Somatic alterations of 

the β isoform were found in certain cancers [Wang et al., 1998, Ruediger et al., 2001] and the 

loss of functional Aβ was contributed to transformation [Sablina et al., 2007].  

1.1.2. The catalytic subunit 

Within its catalytic domain, the C subunit reveals sequence homology to other Serine/Threonine 

phosphatases, like PP1, PP2B, PP4 and PP6. Similar to the structural subunit, the catalytic sub-

unit exhibits 97% of sequence identity between the two isoforms, α and β, which are both con-

stitutively expressed in brain and heart [Stone et al., 1988, Arino et al., 1988, Green et al., 

1987]. However, the α-isoform is up to 10 fold more abundant than the β-isoform [Khew-

Goodall and Hemmings, 1988]. A deletion of the α-isoform in mice was found to be embryoni-

cally lethal without the β-isoform being able to compensate the loss [Götz et al., 1998]. The het-

erodimeric core enzyme is assembled via A and C subunit interactions which are mediated 

through intra-repeat loops and inner helices of A subunit HEAT repeats 11-15. The importance 

of this interaction for a functional holozyme is underlined by the fact that some missense muta-

tions inhibiting this AC core dimer interaction are cancer-associated [Cho et al., 2007]. Fur-

thermore, PP2A-specific inhibitors like okadaic acid and microcystin can bind to the catalytic 

subunit and interact with amino acids surrounding the active site [Xing et al., 2006].  

Finally, the C subunit contains a highly conserved C-terminal domain, featuring a critical role in 

the regulation of PP2A, as it recruits the B subunit to the core enzyme possibly through a neu-

tralization of the charge-charge repulsion and subsequent binding of the B56 subunit to the C 

terminal tail [Cho et al., 2007]. Furthermore, methylation of the highly conserved C-terminal 

domain was suggested to enhance the affinity of the PP2A core enzyme for some regulatory 
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subunits and therefore influence the formation of a PP2A holoenzyme [Ikehara et al., 2007, 

Xing et al., 2006].  

1.1.3. The regulatory subunits 

As mentioned before, the regulatory subunits determine specificity and localization of the PP2A 

holoenzyme. The B subunit comprises four families, with each of them containing two to five 

isoforms and multiple splice variants: B (PR55), B´(PR61), B´´(PR48/PR72/PR130) and 

B´´´(PR93/PR110). Examples for the diverse functions of PP2A holoenzymes, containing dis-

tinct regulatory subunits, are the dephosphorylation of microtubule-binding protein tau, medi-

ated by a PP2A holoenzyme with the B subunit (PR55) [Drewes et al., 1993, Gong et al., 1994, 

Xu et al., 2008], and the suggested interaction of B´subunit (PR61) with shugoshin [Kitajima et 

al., 2006, Riedel et al., 2006, Tang et al., 2006]. 

A PP2A holoenzyme containing regulatory B´ subunit was found to make interactions with A 

and C subunits to a greater extend than a PP2A holoenzyme containing B subunit. A shared fea-

ture of PP2A holoenzymes containing B or B´ regulatory subunits is that their potential sub-

strate-binding site is on the top face and in close vicinity to the active site of the catalytic sub-

unit [Yigong Shi, 2009]. All regulatory subunits, except the last family, interact directly with the 

PP2A core enzyme and do not share sequence similarity. The B´´´family shares a conserved 

epitope with the B´subunit and contains WD40-repeats for the interaction with the PP2A core 

enzyme [Janssens and Goris, 2001]. Finally, their expression patterns vary greatly in different 

tissues as well as interaction with substrates [Yigong Shi, 2009].  

 

1.2. Protein phosphatase 2A in yeast 

The serine/threonine phosphatase PP2A is widely distributed in eukaryotes and highly con-

served from yeast to human. Therefore, PP2A was studied extensively using deletion mutant 

analysis in Saccharomyces cerevisiae. The catalytic subunit is composed of two isoforms, 

PPH21 and PPH22, exhibiting 74% amino acid sequence identity to the mammalian C subunit 

[Sneddon et al., 1990]. A double disruption of both isoforms leads to severe growth defects and 

to lethality, if PPH3, a related Ppase gene, is not present. Furthermore, pph21/pph22 mutants 

led to an abnormal morphology of cells and smaller buds [Ronne et al., 1991]. The A subunit is 



15 

 

represented by TPD3, which is in yeast also required for the production of tRNA. S.cerevisiae 

lacking TPD3 exhibits multi-budded and multinucleated cells [van Zyl et al., 1989]. Finally, the 

mammalian regulatory subunits B (PR55) and B´(PR61), are in yeast represented by CDC55 and 

RTS1. A heterotrimeric complex of PP2A with CDC55 has multiple roles in mitosis, with mu-

tants lacking a functional kinetochore/spindle assembly checkpoint, while PP2A holoenzyme 

with RTS1 takes part in the cellular stress response [Chan et al., 2009, Queralt et al., 2008]. Ad-

ditionally, knockout studies revealed that the two subunits are not interchangeable [Healy, Zol-

nierowicz et al., 1991, Shu, Yang et al., 1997, Zhao et al., 1997].  

 

1.3. A potential model for PP2A biogenesis  

PP2A can make up to 1% of all enzymes in some tissues, fulfills multiple functions in signalling 

pathways and is likely to act as a tumor suppressor [Mumby, 2007]. Therefore, its activity and 

inactivity need to be tightly regulated. This regulation takes place on different levels: First, the 

assembly of the PP2A holoenzyme is dependent on the availability of specific regulatory sub-

units as well as their expression patterns. Second, an autoregulatory mechanism, which acts on 

the translational level, was found to adjust a constant level of catalytic subunit [Schönthal et al., 

1998]. Furthermore, a regulatory circuit could result in activation and inactivation of PP2A, 

through the removal and loading of metal ions [Fellner et al., 2003].  

And in addition to these mechanisms, posttranslational mechanisms, as phosphorylation and 

methylation, take their part in the formation of an active and specific PP2A holoenzyme.  

First, phosphorylation is an important mechanism initiated through various stimuli and leading 

to diverse effects. The C-terminal part of the catalytic subunit of PP2A was shown to be phos-

phorylated in vitro by the pp60
v-src 

and pp56
lck

 kinases, leading to inactivation of the enzyme 

[Chen et al., 1992]. In vivo, phosphorylation of Tyrosine
307

 in the C-terminal has been detected 

in T-cells and fibroblasts. Further, phosphorylation occurs due to stimuli of the epidermal 

growth factor, serum and in response to IL-1, TNFα or insulin [Chen et al., 1994, Guy et al., 

1995, Srinivasan and Begum, 1994, Begum and Ragolia, 1996 and 1999]. Additionally, phos-

phorylation of the regulatory subunits, especially the B´family, resulted in altered substrate 

specificity (PR61δ) and increased activation (PR61α) of them [Xu et al., 2000, Usui et al., 

1998].  
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Second, methylation was shown to play an essential role in holoenzyme assembly. Demethyla-

tion performs an opposing effect and changes in methylation control the binding of B subunits 

to the core dimer [Tolstykh et al, 2000]. Furthermore, the PP2A holoenzyme was found destabi-

lized in strains lacking methyltransferase [Wu et al, 2000]. The methylation of the C-terminus of 

the C subunit can have different consequences. 

Reversible methylation of the C-terminal Leucine309 in the conserved TPDYFL309 motif of the 

catalytic subunit controls the recruitment of some regulatory subunits to the PP2A core enzyme 

[Ikehara et al., 2007, Xing et al., 2006]. Mutational analyses of the carboxy terminus of the C 

subunit revealed its importance for the binding of B subunit [Ogris et al, 1997]. Furthermore, the 

methylated core enzyme could exhibit a higher binding affinity for the regulatory subunit, me-

thylation could serve as an assembly signal for the PP2A holoenzyme or it could recruit other 

proteins facilitating the holoenzyme assembly [Yigong Shi, 2009].  

Two conserved enzymes are counteractive for the methylation of PP2A: LCMT1, a leucine car-

boxyl methyltransferase, catalyses methylation of PP2A C subunit, and PME-1, PP2A methyles-

terase, catalyses the removal of the methyl group [Ogris et al, 1997, De Baere et al., 1999, Lee 

et al., 1996 and 1993]. Furthermore, evidence was gathered that PME-1 associates with two in-

active mutants of PP2A [Ogris et al., 1999]. While PP2A was inactive through stable binding of 

PME-1, it could be reactivated by PTPA, the phosphatase two A phosphatase activator [Longin 

et al., 2004]. So, LCMT1, which fulfills methylation, and PTPA, reactivating inactive PP2A, 

oppose the function of PME-1.  

 

1.4. Phosphatase 2A phosphatase activator, PTPA 

In this study, PTPA, the phosphatase two A phosphatase activator, and its functional role in 

mammalian cell cycle is the subject of interest. PTPA is ubiquitously expressed and highly con-

served in a variety of species, emphasized through the fact that the PTPA primary structures of 

rabbits and humans share more than 96% of sequence identity [Van Hoof et al., 1994 and 1998, 

Cayla et al., 1994]. Originally, PTPA was characterized to stimulate the phosphotyrosyl activity 

of PP2A [Cayla et al., 1990, Van Hoof et al., 1994]. Later on, RRD proteins, the PTPA homo-

logues in yeast, were shown to be required for an active and P-Ser/P-Thr specific C subunit of 

PP2A in vivo [Fellner et al., 2003]. However, after revealing the potential of PTPA to reactivate 

the serine/threonine phosphatase activity of an inactive form of PP2A, which was in a complex 
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with the methylesterase PME-1 [Longin et al., 2004, Van Hoof et al., 2005], it was renamed the 

phosphatase two A phosphatase activator.  

1.4.1. Structure of PTPA 

Human PTPA is encoded by a single gene mapped on chromosome 9q34 and is organized into 

10 exons and 9 introns [Van Hoof et al., 1995, Janssens et al., 2000]. Seven transcripts are pos-

sible due to alternative splicing, with all of them including exons 5-10 (Figure 2). All transcripts 

are expressed from the same TATA-less promoter, regulated by the yin yang 1 (YY1) transcrip-

tion factor, which binds to two sides within the minimal promoter [Janssens et al., 2000]. All 

isoforms contain exon 1 and thus could be generated from a single pre-RNA by alternative 

splicing, which is suggested to represent a potential target for the regulation of PTPA. However, 

not all of the isoforms lead to a functional product. PTPAα, with a molecular weight of ~37kDa, 

is the most abundant isoform expressed, followed by PTPAβ and PTPAδ [Janssens et al., 2000, 

Magnusdottir et al., 2006].  

 

Figure 2: PTPA splice variants: PTPA gene is represented by the top line with the 5´UTR and 3´UTR 

on the left and right side, respectively (3´UTR is not drawn to scale). Small boxes repesent exons. The 

isoform structure of PTPA results from RT-PCR reactions of total RNA from human HepG2 and Saos-2 

cells and subsequent sequencing. Adapted from Janssens et al., 2000, Eur J Biochem. 267(14):4406-

4413.  
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The full length human PTPA contains 323 amino acids and exhibits a crystal structure at 1.9 A. 

The mostly α-helical compact structure, including 17 α helices and four short β-sheets, was di-

vided into three subdomains: core, lid and linker. A highly conserved surface patch or cleft, sur-

rounding the border between lid and linker domain was found to be a potential region for the 

interaction of peptide segments [Magnusdottir et al., 2006] or responsible for interacting with 

PP2A [Chao et al.. 2006]. If ATP binding is possible in the deep pocket and moreover, might 

enhance the interaction between PTPA and PP2A [Chao et al., 2006], or if ATP is unlikely to be 

a cofactor/substrate for PTPA [Magnusdottir et al., 2006, Leulliot et al., 2006] remains un-

solved. Furthermore, in vivo PTPA activity and in vitro activation of PP2A was shown to be 

influenced by mutations on the surface of the peptide binding pocket, emphasising the impor-

tance of the conserved region [Leulliot et al., 2006].  

1.4.2. Functions of PTPA in yeast  

Originally, PTPA was identified as an activator of the in vitro phosphotyrosyl phosphatase ac-

tivity of PP2A in an ATP/Mg
2+

 dependent reaction [Cayla et al., 1990]. Later, it was found to be 

required for active and specific PP2A [Fellner et al., 2003]. Recently, it was renamed, due to its 

potential to reactivate inactive PP2A, bound to PME-1 (for references, see above). PTPA is 

highly conserved from yeast to human.  

In yeast, PTPA is encoded by two genes, termed RRD1 and RRD2 (rapamycine resistance dele-

tion), since the phenotype of their deletion causes rapamycin resistance [Rempola et al., 2000]. 

Double deletion of RRD genes leads to synthetic lethality, while single deletion yeast strains 

exhibit an altered proliferation rate, aberrant bud morphology and a defective spindle checkpoint 

[Rempola et al., 2000, Van Hoof et al., 2001]. Furthermore, evidence was found that deletion of 

RRD1 and RRD2 generated a catalytic subunit of PP2A, differing from the wild-type enzyme in 

terms of substrate specificity, protein stability and metal dependance. As the catalytic subunit of 

PP2A, despite the RRD deletions, still assembles with A and B subunits, RRD functions are not 

required for holoenzyme assembly, but for the formation of an active PP2A enzyme with correct 

substrate specificity for phospho-serine/threonine over phospho-tyrosine [Fellner et al., 2003]. 

Interestingly, RRD functions are not completely redundant, as a deletion of RRD1 results in a 

more severe phenotype compared to RRD2 deletion, including aberrant bud morphology, ab-

normal actin distribution and growth defects [Jordens et al., 2006]. An additional study implied, 

that RRD1 mutants display hypersensitivity to oxidative DNA damage [Ramotar et al., 1998]. 
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Furthermore, RRD1 was indicated to serve as an activator/regulator of SIT4 catalytic activity, 

probably responsible for the more severe phenotype of a RRD1 deletion strain, due to less activ-

ity of SIT4 [Fellner et al., 2003]. Moreover, RRD2 is suggested to interact with PPH21/PPH22 

and human PP2A C subunit expressed in yeast in vivo, as its deletion caused a larger decrease in 

catalytic activity than in a RRD1 deletion strain. Additionally, recombinant expression of RRD2 

in a RRD deletion strain regenerated PP2A activity more efficiently than RRD1 [Fellber et al., 

2003]. Once more, this partial redundancy might be due to a high degree of conservation of 

PP2A and RRD/PTPA [Fellner et al., 2003]. Due to the fact, that PTPA is represented by one 

protein in mammals, whereas two proteins are necessary in yeast, an evolutionary shift regard-

ing the function of PTPA has been proposed.  

Recently, PTPA was reported to be a novel peptidyl-prolyl cis/trans-isomerase (PPIase), target-

ing Pro190 in the catalytic subunit of PP2A. ATP hydrolysis and a conformational change in the 

C subunit should regulate the activity of PP2A [Jordens et al., 2006]. Interestingly, the PPIase 

activity was not exclusively due to the presence of ATP/Mg
2+

, as the proline isomerase activity 

was measurable as well without ATP/Mg
2+

.  

These findings can be summarized in models for PTPA/RRD mode of action (see figure 3A and 

B). PTPA/RRD induces a conformational change in the catalytic site of the C subunit of PP2A, 

narrowing the possibility of entry for bulky P-Tyr substrates (indicated by pNPP in Figure 3A). 

P-Ser/Thr substrates enter and produce a PP2A catalytic core with a high affinity for metal ions 

(figure 3A). Hombauer and coworkers proposed a potential model for PP2A biogenesis, de-

pendent on the function of RRD/PTPA (see figure 3B). RRD2 and TPD3 interact with an inac-

tive demethylated form of the C subunit. Subsequently, PPM1 can methylate the catalytic sub-

unit and the regulatory subunit binds to the complex, forming an active heterotrimeric PP2A. 

PPE1 could carry out a surveillance function of the TPD3/RRD2-dependent C subunit matura-

tion, as it could prevent the premature generation of active C subunit and holoenzyme assembly.  

Moreover, Chao and coworkers proposed a different model with PTPA acting as an ATPase, 

responsible for the pNPPase activity of PP2A and thus, the change of substrate specificity to P-

Tyr substrates [Chao et al., 2006]. This is controversial, as ATP and Mg
2+

 were shown to acti-

vate the phosphotyrosyl phosphatase activity of PP2A on their own [Fellner et al., 2003].  
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Figure 3: Models of RRD/PTPA function. A) PTPA/RRD induces a conformational change in 

PP2Ac. Para-nitrophenyl phosphate (pNPP) represents a bulky P-Tyr-like substrate. (P-Ser-R) phospho-

serine substrate; (P-Thr-R) phospho-threonine substrate. M1 and M2 indicate metal ion 1 and metal ion 

2, respectively, located in the catalytic core of the catalytic subunit of PP2A. The indicated amino acid 

residues represent amino acids of the PP2A catalytic subunit that are required for metal ion coordination 

and catalysis. (D) Asp; (H) His; (N) Asn; (R) Arg; (Y) Tyr. Adapted from Fellner et al. 2003; Genes Dev. 

17(17): 2138-50. B) Potential model of PP2A biogenesis. RRD2/TPD3 (TPD3 = A subunit in yeast) 

interacts preferentially with the demethylated and inactive form of the C subunit by targeting the 

PPH21:PPE1 complex. With the help of PPE1, premature generation of active C subunit and holoen-

zyme assembly is prevented. A heterotrimeric fully active and specific holoenzyme is built after dissocia-

tion of RRD2 and association of the regulatory subunit. Hombauer et al. (2007) PLoS Biol. 5(6):e155. 

1.4.3. Functions of PTPA in mammals 

Interestingly, mammalian PTPA was shown to complement the proliferation phenotype in a 

rrd1∆/rrd2∆ yeast strain, indicating a conservation of functions [Fellner et al., 2003]. But still, 

little is known about the mechanism by which PTPA activates or interacts with PP2A. Two 

studies provided evidence for an important function of PTPA. First, Fellner et al. determined the 

effects of downregulated PTPA on cell survival in Hela cells. Hela cells were transiently trans-

fected with either a targeting vector, PTPA-RNAi, expressing a short interfering RNA against 

the coding sequence of PTPA, an empty pSUPER vector or a vector expressing a nonsense oli-

gonucleotide, NS-RNAi. 48 hours after transfection, Hela cells containing the PTPA-RNAi con-

A B
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struct undergo apoptotic cell death, as demonstrated by nuclear fragmentation and caspase-3 

staining, a marker for apoptotic conditions. In comparison, cells transfected with NS-RNAi or 

the pSUPER vector did not reveal signs of apoptotic conditions.   

In a different study by Azam and co-workers [Azam et al., 2007], ectopic overexpression of 

PTPA-GFP induced cell death as indicated by morphological changes, activation of caspase-3 

and detection of annexin V staining, without involving p53 or MAP kinases in the apoptotic 

pathway. Further, upon overexpression of a PTPA-GFP fusion protein in HCT116 cells, the lo-

calization of PTPA was determined to occur mainly in the nucleus (figure 4B, arrows indicating 

nucleus). The observed cytoplasmic staining was attributed to the overexpression of PTPA-GFP. 

To summarize, a correct balance of PTPA seems to be necessary for the homeostasis of the cell, 

as both studies detected apoptotic behaviour due to a shift in the cellular level of PTPA.  

  

Figure 4: Suppression of PTPA expression by RNAi triggers apoptotic cell death in mammalian 

cells. A) HeLa cells were cotransfected with a vector containing a puromycin resistance marker and the 

green fluorescence protein (GFP) and either an empty vector as negative control (pSUPER), pSUPER-

B

A
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NS-PTPA containing a “nonsense”-targeting sequence (NS-RNAi) , or pSUPER-PTPA containing a tar-

geting sequence against PTPA. (PTPA-RNAi). 48 h after transfection, cells were stained with an antibody 

specific for active caspase-3 and counterstained with DAPI. Co-transfected cells are indicated by GFP-

staining. Adapted from Fellner et al. 2003; Genes Dev. 17(17): 2138-50. B) Localization of PTPA. Cells 

were transiently transfected for 24 hours in HCT116 cells with either pPTPA-GFP (panels A-C) or the 

empty pEYFP vector (panels D-F). Cells were counterstained with DAPI (A and D); localization of 

pPTPA-GFP and GFP is shown in B and E, respectively, and merged picture in C and F. Arrows point to 

the nucleus (Nuc). Adapted from Azam et al. (2007) Apoptosis. 12(7):1243-55. 

 

1.5. Aim of this study 

1.5.1. Knockdown of mammalian PTPA 

Primarily, the project aimed to investigate the potential involvement of PTPA in the manifesta-

tion of Alzheimer´s disease. A dominant feature of this neurodegenerative disease is hyperphos-

phorylation of the microtubule-associated protein tau, which results in neurofibrillar tangles that 

trigger neuronal death [Virshup and Shenolikar, 2009]. PP2A is a main regulator of the dephos-

phorylation of tau and as such, is responsible for a pathological hyperphosphorylation when 

inhibited in cultured cells or in mice expressing a mutant form of the catalytic subunit Cα of 

PP2A [Kins et al., 2001, Sontag et al., 1996, Iqbal et al., 2005]. Furthermore, Sontag and co-

workers could link defective Bα subunit expression with the phospho-tau pathology together 

with a reduced PP2A catalytic activity in affected brain regions [Sontag et al., 1999 and 2004]. 

Because our data in yeast showed, that RRD/PTPA is essential for the biogenesis of active 

PP2A holoenzyme, including the yeast homologue of B/PR55 subunit, we hypothesized, that the 

decreased loss of PTPA would reduce PP2A activity and further enhance the hyperphosphoryla-

tion of tau. As the reason for the dysfunction of PP2A holoenzyme remained unclear, the effect 

of PTPA on the biogenesis of PP2A and further the effect of its downregulation on the phos-

phorylation of tau was still a matter of debate.  

Recently, apoptotic cell death was demonstrated to occur after suppression of human PTPA in 

Hela cells due to transient transfections with a constitutive pSUPER vector system expressing 

RNAi against the coding sequence of PTPA [Fellner et al., 2003].  

Based on this result, an essential role for PTPA in mammalian cell survival was proposed. How-

ever, the reason for the apoptotic cell death remained unclear. As biochemical analyses were 
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missing, we wanted to investigate the role of PTPA in the biogenesis of PP2A and confirm or 

abandon the hypothesis of a potential involvement of PTPA in the manifestation of the Alzhei-

mer disease. Thus, further studies using Neuronal cells were performed (see thesis of Martina 

Mitterhuber). As the constitutive expression of RNAi causes apoptosis, an inducible vector sys-

tem allowing the production of RNAi under control of an inducible promoter, was preferred. 

Due to time-dependent induction, different levels of protein are achievable and possible pheno-

typic effects can be monitored in inducible vector systems. A schematic representation of the 

Tet Repressor system, used in this study, is shown in figure 5.  

 

Figure 5: pNTO vector containing the Tet Repressor system.The pNTOneo vector with TO (Tetracyc-

line Operator) and H1 promotor. After addition of doxycycline, the Tet Repressor dissociates from the 

promoter and transcription of shRNA can start. Adapted from Stefan Strack et al. (2004) J Biol Chem. 

279(46):47732-9. 

In the absence of doxycycline, a tetracycline analogue, repressor proteins bind to the Tet opera-

tor and block transcription. Following the addition of doxycycline, which binds to the repressor 

proteins, the repressor proteins dissociate and shRNA gets transcribed under control of the RNA 

Pol III dependent H1 promoter. After synthesis of the shRNA in the nucleus, the transcript is 

processed by two enzymes, namely Drosha and DGCR8, producing 2nt 3´overhangs. After 

transport into the cytoplasm, the pre-shRNA is loaded into the Dicer complex, which leads to a 

product of 21-23 bp double-stranded siRNA. Subsequently, the siRNA targets the complemen-

tary mRNA by an unknown process and gets incorporated into the RNA-induced silencing com-

plex (RISC). Finally, the mRNA is degraded and siRNA can be released for additional rounds of 

gene silencing [Rao et al., 2009, Lee et al., 2003, Zhang et al., 2002]. The pNTO vector (kindly 

provided by Stefan Strack, Strack et al., 2004) contains a neomycin resistance for selection of 

transfected cells and requires the native TetR for its function. Thus, stably expressing TetR cell 

lines have to be used.  
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Martina Mitterhuber generated stably transfected N2ATRex cell line with the pNTOneo vector. 

The vector contains a shRNA sequence, targeting the C-terminal part of the mRNA of PTPA, 

which is under the control of a doxycycline inducible promoter. Neither cell proliferation nor 

PP2A activity were altered after knockdown of PTPA to 50% of its wild type level. High leaky 

expression and low inducibility accompanied these experiments with N2ATRex cells [see di-

ploma thesis of Martina Mitterhuber], and therefore, HEKTRex cells stable transfected with the 

same vector system were further analysed by Michaela Kugler. HEKTRex cells, an immortal-

ized embryonic kidney cell line, express RNAi targeting the ORF I position 903-921 of human 

PTPA upon induction with doxycycline. In addition, cells transfected with the pNTOneo vector, 

expressing a missense PTPA RNAi, were used as control cells. The missense PTPA sequence 

contains three mismatches at positions 4, 10 and 16 of the PTPA targeting sequence, and is 

therefore unable to bind the PTPA mRNA. HEKTRex cells exhibited a knockdown of PTPA to 

approximately one fourth. However, the downregulation of PTPA did not seem to have an effect 

on PP2A complex assembly. Additional, HEKTRex cells with a low amount of PTPA did not 

even exhibit an effect on proliferation after 10 days of RNAi expression.  

Because of the result of transient PTPA knockdown in Hela cells (see above), a HelaTRex cell 

line was (performed by Michaela Kugler) stably transfected with the pNTOneo vector, express-

ing either a missense PTPA RNAi or the PTPA targeting sequence. The same vectors as utilised 

in previous experiments were used. The knockdown of PTPA in HelaTrex cells was checked 

during my Wahlbeispiel and in this study. Since the previous studies (see above) did not result 

in unambiguous results we wanted to unravel the phenotype of downregulated PTPA in mam-

malian cells.  

We hypothesized, that proliferation in PTPA knockdown cells would change and thus, a 6 days 

proliferation test was performed. Furthermore, flow cytometric analyses of PTPA knockdown 

cells were made after treatment with Nocodazole. We speculated, that cells with a low amount 

of PTPA and arrested in M phase due to treatment with Nocodazole could overcome the spindle 

assembly checkpoint.  

Besides inducible cell lines expressing a shRNA, short interfering RNAs (siRNA) targeting the 

conserved C terminal part of PTPA were used for knockdown analysis in Hela and HEKTRex 

cells. The efficiency of PTPA downregulation by these methods was quantified via the LI-COR 

Odyssey system on protein level and via quantitative reverse transcription PCR on mRNA level. 

Moreover, a combination of shRNA and siRNA was used to knockdown PTPA below a critical 
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level. Due to fact, that apoptotic behaviour was shown to occur in some but not all cell lines (see 

diploma thesis of Michaela Kugler), we wanted to find an explanation why the knockdown of 

PTPA seemed to differ. Finally, the construction of a conditional knock-out vector was started, 

to make an inducible knock-out possible in further studies.  

1.5.2. Subcellular localization of mammalian PTPA 

Previously, Azam et al. indicated a mainly nuclear localization of mammalian PTPA (see figure 

4B for details) based on the overexpression of GFP tagged PTPA in HCT116 cells. These au-

thors further concluded that the cytoplasmic staining results from the overexpression of the pro-

tein. However, up till now further evidence is missing and the subcellular localization of PTPA 

remains unclear. Moreover, our biogenesis model would rather indicate a role for PTPA as a 

chaperone at the ribosome. Due to the fact, that Azam and coworkers made their assumption 

based on microscope analysis solely, we aimed to analyse the localization of PTPA by subcellu-

lar fractionation. In addition, we wanted to identify the subcellular localization with a second 

method and identify the localization and quantity of the protein in knockdown cells. To achieve 

this aim, I started, in collaboration with with Stefan Schüchner and Marko Roblek, the produc-

tion of a monoclonal antibody against PTPA, and used two different monoclonal antibodies for 

immunofluorescence analysis.  
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2. Materials and Methods 

2.1 Tissue culture 

 

2.1.1. Cell lines and stable transfected single clones:  

2.1.1.1. Cell lines used in this study:  

Cell line description DMEM + FCS Selective antibiotics  

Hela Human cervical cancer cell line DMEM + 10%FCS  

HelaTRex Human cervical cancer cell line stably 

expressing the Tet Repressor (kindly pro-

vided by Michael Glotzer) 

DMEM + 10%FCS 

Tetfree 

5µg/ml Blasticidin  

HelaTRex-

pNTOneo-

CT/Mis 

Human cervical cancer cell line stably 

expressing the Tet Repressor and stably 

transfected with the pNTOneo-vector 

(generated by Michaela Kugler) 

DMEM + 10%FCS 

Tetfree 

5µg/ml Blasticidin + 

800µg/µl Neomycin 

HEKTRex Human embryonic kidney cell line stably 

expressing the Tet Repressor (kindly pro-

vided by Stefan Strack) 

DMEM + 10%FCS 

Tetfree 

5µg/ml Blasticidin  

HEKTRex-

pNTOneo-

CT/Mis 

Human embryonic kidney cell line stably 

expressing the Tet Repressor and stably 

transfected with the pNTOneo-vector 

(generated by Martina Mitterhuber) 

DMEM + 10%FCS 

Tetfree 

5µg/ml Blasticidin + 

300µg/µl Neomycin 

NIH3T3 Mouse fibroblast cell line DMEM + 10%FCS  

BOSC23 Human kidney cell line derived from 

293T cells 

DMEM + 10%FCS  

Hela pWZL Human cervical cancer cell line stably 

transfected with the pWZL-vector (kindly 

provided by Patrick Piribauer) 

DMEM + 10%FCS  

X63.Ag8.653  Mouse myeloma cell line X63 medium  
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2.1.1.2. shRNA sequences:   

shPTPA-1 forward (PTPA-

CtfwPetra#630)  

5´-GATCCCC-GTTCCCTGTGATCCAGCAC-TTCAAGAGA-

GTGCTGGATCACAGGGAAC-TTTTTGGAAA-3´ 

shPTPA-1 reverse (PTPA-

CtrevPetra#631) 

5´-AGCTTTTCCAAAAA-GTTCCCTGTGATCCAGCAC-

TCTCTTGAA-GTGCTGGATCACAGGGAAC-GGG-3´ 

shControl-1 forward (PTPA-

Ctmisfw#632) 

5´-GATCCCC-GTTTCCTGTAATCCAACAC-TTCAAGAGA-

GTGTTGGATTACAGGAAAC-TTTTTGGAAA-3´ 

shControl-1 reverse (PTPA-

Ctmisrev#633) 

5´-AGCTTTTCCAAAAA-GTTTCCTGTAATCCAACAC-

TCTCTTGAA-GTGTTGGATTACAGGAAAC-GGG-3´ 

 

The shRNA sequences [Fellner et al., 2003] were cloned by Martina Mitterhuber (see diploma 

thesis). “shPTPA-1forward” refers to “CT” in the following, as it represents the targeting se-

quence against the C-terminal part of mouse and human PTPA. “shControl-1reverse” is termed 

“Mis” in further, as it stands for the targeting sequence including 3 mismatches. Thus, the Mis-

sequence is used as a non-binding control. The “CT-sequence” is 100% homologous to the 

mouse and human PTPA.  

 

2.1.2. Solutions and media:  

10xPBS: Dissolve 80g NaCl, 2g KCl, 2g KH2PO4 and 14,4g Na2HPO4 in ddH
2
O, adjust to a 

final volume of 1l, adjust to pH 7.4, autoclave and store at RT. 

DMEM (Gibco #31660-083): Dissolve one package in 5l ddH
2
O and stir for 30min until com-

pletely dissolved. Add 30g NaHCO
3
, stir until completely dissolved and add ddH

2
O up to 10l. 

Filter sterilize through a membrane filter (0,2μm) and make aliquots of 450ml. Store at 4°C. 

Add glutamine, if stored longer than 2 weeks. 

Trypsin: Dissolve 250mg Trypsin in 25ml 10xPBS and add water to a total of 245ml. Stir for 2 

hours. Add 5ml 1% Na-EDTA (pH 7.4), mix and filter sterilize through a membrane filter 

(0,2μm). Store aliquots of 10ml at –20°C.  
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Blasticidin (Invitrogen #R210-01): Dissolve 50mg in 20ml ddH
2
O, filter sterilize through a 

membrane filter (0,2μm), aliquot and store at –20°C. Use to an end concentration of 5µg/ml.   

Hygromycin B (Calbiochem #400049): Dissolve 50mg/ml in ddH2O, filter sterilize through a 

membrane filter (0.2μm), use to an end concentration of 200μg/ml for HekTRex cells (Calbio-

chem #400049).  

Puromycin (Sigma #P-7255): Dissolve 100mg Puromycin in 10ml ddH2O, filter sterilize 

through a membrane filter (0,2μm), aliquot and store at –20°C. Use to an end concentration of 

1µg/ml for Hela-pWZL cells and 5µg/ml for NIH3T3 cells.  

Doxycycline (Sigma #D-9891): Dissolve 10mg in 10ml ddH2O, filter sterilize through a mem-

brane filter (0,2μm), aliquot and store at –20°C. Use to an end concentration of 1µg/ml.  

Geneticin (Gibco #11811-098): Dissolve 1g in 100ml DMEM +P/S, filter sterilize through a 

membrane filter (0,2μm), aliquot and store at –20°C. Use to an end concentration of 600µg/ml.  

AB: 0.6g Penicillin-G; 1g Streptomycin-sulfate; 10ml 10x PBS. Add H
2
O to 100ml, filter steril-

ize through a membrane filter (0,2μm) and store 5ml aliquots at -20°C. 

DMSO (Dimethylsulfoxide, Applichem #A3672.0250) 

FCS (fetal calf serum, Gibco #4023696J): Store 50ml aliquots at -20°C. 

Polybrene (Hexadimethrine bromide, Sigma #C-6628): Dissolve 40mg Polybrene in 10ml 

ddH2O, filter sterilize through a membrane filter (0,2μm) and store 1ml aliquots at -20°C.  

Propidium Iodide (Roche #11348639001): 0.5mg/ml 

RNAse Type I-A:  Dissolve 10mg/ml RNAse A (Sigma #R-5125) in 10mM sodium acetate pH 

5.2. Heat to 100°C for 15min and allow to cool slowly to RT. Adjust the pH by adding 0.1 vol-

umes of 1M Tris-Cl pH 7.4. Store 1ml aliquots at -20°C.  

Chloroquine (1000x): Dissolve 0.129g Chloroquine (Sigma #C-6628) in 10ml ddH2O, filter 

sterilize through a membrane filter (0,2μm) and store aliquots at -20°C.  

2xHBS: 280mM NaCl; 50mM Hepes pH 7.12 (AppliChem #A1069); 1.5mM Na2HPO4; Add 

ddH2O to 100ml, autoclave and store at 4°C.  
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Polybrene (1000x): Dissolve 40mg Polybrene (Hexadimethrine bromide, Sigma #52495) in 

10ml ddH2O, filter sterilize through a membrane filter (0,2μm) and store 1ml aliquots at -20°C.  

2.5M CaCl2: dissolve 36.8g CaCl2.2H2O in 100ml ddH2O, autoclave and store at 4°C.  

X63 Medium: 435ml DMEM (Gibco #31660-083); 50ml FCS; 5ml P/S; 5ml Glutamine (Sig-

ma); 5ml Natrium-Pyruvate (Sigma).  

 

2.1.3. Cultivation and propagation:  

Petri-dishes with 60mm/100mm/150mm diameter were used and all cells were grown in 

DMEM+10% FCS+P/S at 37° with 7.5%CO2 except hybridoma cells, which were propagated at 

5%CO2. In order to split the cells, either for induction with doxycycline or propagation, they 

were washed with ~5ml of 1xPBS, trypsinized and resuspended in medium.  

 

2.1.4. Counting of cells:  

To determine the cell number, 50μl of cell suspension were diluted in 5ml CASY®ton solution 

and cells were counted with a CASY® (Schärfe System) cell counter. For transfections, im-

munofluorescences and doxycycline inductions, 50µl of cells were counted with a Bürker 

0.1mm counting chamber (Optik Labor). 

 

2.1.5. Freezing and thawing:  

Cells were washed with 5ml of 1xPBS. Subsequently ~500µl Trypsin/p100 was used to detach 

the cells from the petri-dish, and 10ml of adequate medium was used to collect the cells. After 

centrifugation at 1200g, the pellet was resuspended in 1ml 10%DMSO + 90%FCS (freezing 

mix), stored at -80° for two weeks and transferred onto liquid nitrogen afterwards. For thawing, 

freezing stocks were put shortly on 37°C, diluted in DMEM + 10%FCS and centrifuged at 

1200g. The supernatant was soaked off and the pellet resuspended in 10ml of DMEM + 

10%FCS, which was preincubated for 1 hour at 37°C and 7.5%CO2.  
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2.1.6. Induction of doxycycline with HelaTRex cells:  

To test the knockdown of PTPA in HelaTRex-pNTOneo, mixed and single clones after induc-

tion with doxycycline, 1x10
6
 cells were seeded on a 100mm petri dish. To induce the production 

of RNAi, which is under control of a doxycycline inducible H1 promotor, 10µl of doxycyclin 

(1µg/ml) per 100mm petri-dish were added to the medium once every day for 96hours. For the 

determination of knockdown efficieny whole protein lysates of induced and uninduced negative 

controls were made afterwards.  

 

2.1.7. Proliferation test:  

 To test the proliferation behaviour of HelaTRex-pNTOneo-CT/Mis single 

clones over a period of 6 days, different amounts of cells were seeded on 

100mm petri dishes and induced with 1µg/ml of doxycycline every day. 

After four days, a media change was made with all petri dishes. Whole 

cell lysates were made starting from day 1 with induced and uninduced 

samples and loaded on 10% SDS PAGE to determine the knockdown of 

PTPA. The cells were counted before lysis to analyse the corresponding 

cell count.   

 

 

2.1.8. Propidium Iodide labelling and flow cytometry analysis:   

In order to identify apoptotic behaviour, the DNA of the cells was stained with propidium io-

dide, an intercalating agent used for flow cytometry to evaluate cell viability and DNA content.  

HelaTRex single clones were induced with 1µg/ml doxycycline every 24 hours for 4 days and 

uninduced samples were taken as negative controls. After 96 hours, cell proliferation was ana-

lysed via flow cytometry analysis. 0.5x10
6
 – 1x10

6
 cells were used for labelling with propidium 

iodide. Cells were washed one time with 5ml of 1xPBS, trypsinized and resuspended with 10ml 

of DMEM containing 10%FCS. Cells were counted with counting chamber (see 2.1.4.) and an 

appropriate volume transferred to a Falcon tube. The cell  suspension was centrifuged for 5 

minutes at 1200 rpm, supernatant was removed and the pellet resuspended in 500µl 1xPBS. 

500µl of cold 95% ethanol (stored beforehand at -20°C) was added drop-wise while vortexing in 

Number of cells seeded 

3x10
6
 lyse on day 1 

3x10
6
 lyse on day 2 

1x10
6
 lyse on day 3 

1x10
6
 lyse on day 4 

5x10
5
 lyse on day 5 

1x10
5
 lyse on day 6 
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order to prevent clumping. Incubation was done for a minimum of 20 minutes on ice. Fixed 

samples can be stored over months before analysis. To pellet cells again, centrifugation was 

done at 1000rpm for 7 minutes at 4°C, supernatant was removed and pellet was resuspended in 

500µl PI-RNAse solution. Dye solution contains 50µg/ml PI and 100µg/ml RNAse Type I-A in 

1xPBS. Samples were mixed well, transferred to FACS-tubes, incubated at room temperature in 

the dark for a minimum of 20 minutes and analysed by flow cytometry with a FACS Calibur
TM 

(BD Biosiences).  

 

2.1.9. Nocodazole assay:  

Nocodazole is a drug, affecting the spindle assembly and stops all cells in M-phase. As some 

cancer cell lines do often have a defective spindle assembly checkpoint, flow cytometry analysis 

has been performed after treatment as described in section2.1.8 with the following modifica-

tions. 1x10
6
 cells of HelaTRex-pNTOneo single clones were seeded, induced for 96 hours with 

1µg/ml doxycycline and the uninduced cells were used as negative control. After 96 hours of 

induction, 0.5µg/ml Nocodazole (0.15mM; stock = 2.5mg/ml) was added to the medium and the 

cells were cultivated o/n either for 20 hours or 30 hours with Nocodazole treatment. Medium 

was poured off including detached cells and remaining cells were carefully washed with 5ml of 

1xPBS. 1xPBS was poured off and added to the medium containing detached cells. Cells were 

trypsinized and resuspended in medium containing detached cells. Cells were counted with 

counting chamber (see 2.1.4.) and centrifuged at 1200 rpm for 5 minutes. To be able to check 

the knockdown on a protein level, whole cell lysates were made additionally, as the drug treat-

ment was done in duplicates.  

 

2.1.10. Preparation of Retroviral Supernatant and infection of cells:   

For infection of mammalian cells with retrovirus containing supernatant, three different vectors 

were used: pRetroSuperStuffer-CT, pRetroSuperStuffer-Mis and pRetroSuperStuffer. After infection 

with the retroviral supernatant, cells were selected with puromycin. The shRNA targeting PTPA 

should be expressed constitutively. All pipet tips, tubes, glass pipettes and tissue culture plates 

were soaked in hypochlorit after usage.  
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2.1.10.1. Production of retroviral supernatant:   

The production of retroviral supernatant was achieved using BOSC23 cells, which are a derived 

from 293T cells. The BOSC23 cell line is permanently transfected with a helper virus, providing 

all necessary components for creating a competent virus and furthermore is easy to transfect 

transiently with a retroviral vector. 5x10
6
 cells were seeded on p60 tissue culture plates. Before 

starting to transfect the cells, pasteur pipettes were shortly treated with a flame. The medium 

was sucked off and replaced very carefully by 4ml DMEM including 10% FCS and 25µM 

chloroquine. Subsequently, the transfection mix was prepared in a certain order: 450µl of sterile 

H2O, 10µg of vector-DNA (see 2.4.9.) and 50µl 2.5M CaCl2. The solution was mixed thor-

oughly by pipetting up and down a few times and added dropwise to 500µl 2xHBS while bub-

bling with a pasteur-pipette and a pipette boy. The final mix was added immediately and drop-

wise to the cells and left on for at least 9 hours. A change of medium was done afterwards with 

4ml of DMEM and 10% FCS and left on o/n. Another change of medium was done the next day 

with 3ml of DMEM and 10% FCS and left on o/n again. The first retroviral supernatant was 

harvested by transferring the supernatant to a new tube. Medium was replaced and 24 hours 

later, the second retroviral supernatant could be harvested. Part of the volume of the retroviral 

supernatant was stored at -80°C whereas the other part was used immediately.  

 

2.1.10.2. Infection of cells:   

Two different cell lines have been used for infection, NIH3T3 and Hela-pWZL cells. NIH3T3 is 

a mouse fibroblast cell line, while Hela-pWZL is a cell line stably transfected with a vector, 

expressing ecotropic mouse retrovirus receptor (P.Piribauer and E.Ogris, unpublished data).  

The day before infection, 5x10
5
 cells/p100 were seeded on three tissue culture plates for the 

infection with pRetroSuperStuffer-CT, pRetroSuperStuffer-Mis and pRetroSuperStuffer. The medium 

was sucked off before infection and replaced with 3ml retroviral supernatant and 4µg/ml poly-

brene. If less supernatant should be taken, the volume can be filled up with DMEM and 10% 

FCS. The infectious supernatant was left on for a minimum of 3 hours and a maximum of 5 

hours. Afterwards, the medium was carefully sucked off and disposed in hypochlorite. Subse-

quently 10ml DMEM and 10% FCS were added on the tissue culture plate. The day after, the 

cells from a p100 were split on three plates, in order to make whole cell lysates consecutively 

three days in a row and analyse via 10% SDS-PAGE and western blotting. Additionally, in-
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fected cells were selected with 5µg/ml puromycin for each tissue culture plate of NIH3T3 cells 

and 1µg/ml for each tissue culture plate of Hela-pWZL cells, as the pRetroSuperStuffer vector 

contains a puromycin selection marker.  

 

2.2. Working with proteins 

 

2.2.1. Solutions and media:  

30% Acrylamide: 292g acrylamide; 8g bisacrylamide. Fill up to 1l with ddH2O. Add mixed-

bed, ion-exchange resin (BioRad AG 501-X6) to the final solution and store in dark at 4°C.  

1M Tris pH 8.8: Dissolve 242.3g Tris in 1l of ddH2O. Adjust pH to pH 8.8 and fill up to 2l 

with ddH
2
O, autoclave and store at 4°C.  

1M Tris pH 6.8: Dissolve 60.5g Tris in ddH2O. Adjust pH to pH 6.8 and fill up to 500ml with 

H2O, autoclave and store at 4°C.  

20% SDS: Dissolve 40g SDS (Amresco #0227) in 100ml of ddH2O, stir and slightly heat, fill up 

to 200ml with H2O and store at RT.  

10% APS:  Dissolve 1g ammoniumperoxodisulfate (Merck #1201) in 10ml ddH2O and store at 

4°C.  

TEMED (N,N,N’,N’-Tetramethylenediamine, Fluka #87689)  

10xRunning buffer: Dissolve 250mM Tris, 2M Glycine and 35mM SDS in 5l H2O and store at 

RT.  

Transfer buffer with Methanol: 25mM Tris; 190mM Glycine; 20% (v/v) Methanol. Dissolve 

Tris and Glycine in 8l H2O and add Methanol, store at 4°C.  

Ponceau S stock solution (10x): 2g Ponceau S (Serva #33429); 30g Trichloroacetic acid (Ap-

pliChem #A1431); 30g Sulfosalicylic acid (Merck #1.00691). Dissolve and fill up to 100ml with 

ddH2O and store at RT.  

Ponceau S working solution: Dilute Ponceau S stock solution 1:10 with ddH2O.   
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20% Sodium-azide (Merck #67188): Dissolve 2g sodium-azide in 10ml ddH2O and store in 

the dark at 4°C.  

GSD stock (3x): 335mM DTT (Gerbu #1008); 230mM SDS; 4.5M Glycerol (Merck #1.04092); 

20ml ddH2O. Add a bit bromphenolblue (Amresco #0312) and a few drops 1M Tris pH 6.8 until 

solution appears blue. Store 2ml aliquots at -20°C. To obtain 1x GSD, dilute the stock with 

ddH2O.  

1% Thimerosal (Sigma #T-5125): Dissolve 0.5g Thimerosal in 50ml ddH2O. Store in the dark 

at 4°C.  

Prestained Protein Molecular Weight Standards (Biorad #161-0373): Store at -20°C. Use 

4μl or 8μl for one lane on a small or large SDS-polyacrylamide gel, respectively.  

10xPBS: 1.37M NaCl; 27mM KCl; 43mM Na2HPO4; 
14mM KH2PO4. Dissolve in ddH2O, ad-

just to pH 7.4 and autoclave.  

1xPBS (working solution): 137mM NaCl; 2.7mM KCl; 4.3mM Na2HPO4; 1.4mM KH2PO4.  

3% milk (blocking solution): 15g Non fat dry milk (NFDM); 50μl 20% sodium azide. Add 

PBS and 0.05% Tween20 to 500ml and store at 4°C.  

0.5% milk (for incubation): 2.5g Non fat dry milk (NFDM); 500μl 1% Thimerosal. Add PBS 

+ 0.05% Tween 20 to 500ml and store at 4°C.  

Ni-NTA beads (Qiagen #30410)  

PMSF-stock (100x): Dissolve 0.697g PMSF (Roche #837091) in 20ml isopropanol and store 

aliquots of 1ml at room temperature, protected from light.  

Aprotinin-stock (200x): Store aliquots of 1ml Aprotinin (Sigma #A-6012) at 4°C.  

Complete (25x): Dissolve one Complete
TM

 

Protease Inhibitor cocktail tablet (Boehringer 

Mannheim #1836145) in 2ml IP-Lyse buffer and store at 4°C for a maximum of 2 weeks.  

RNAse A (Sigma #R-5125) Dissolve 10mg/ml RNAse A in 10mM sodium acetate pH 5.2. Heat 

to 100°C for 15min and cool down to RT. Adjust the pH by adding 0.1 volumes of 1M Tris-Cl 

pH 7.4. Store 1ml aliquots at -20°C. Use to an end concentration of 10µg/ml.  
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0.1M Glycine buffer: Dissolve 3.76g glycine in 400ml H
2
O. Adjust to pH 3.0 and add ddH2O 

to 500ml. Store at 4°C.  

Wash buffer (for Ni-NTA beads): 50mM NaH2PO4; 300 mM NaCl; 20mM imidazole. Adjust 

pH to pH 8.0 and add ddH2O to 500ml.  

Elution buffer (for Ni-NTA beads): 50mM NaH2PO4; 300 mM NaCl; 250 mM imidazole. Ad-

just pH to pH 8.0 and add ddH2O to 500ml.  

Coomassie-stock: Dissolve 2.5g Coomassie (Serva #17524) in 500ml methanol, stir over night, 

add 500ml ddH2O and store at room temperature.  

Coomassie working solution: 30% Ethanol; 30% Coomassie-stock; 10% acetic acid; 30% 

ddH2O.  

Destaining solution: 30% Ethanol; 60% ddH2O; 10% acetic acid  

IP Wash: 10% glycerol; 20mM Tris pH 8.0; 135 mM NaCl. Filter sterilize through a membrane 

filter (0,2μm) and store at 4°C.  

IP Lyse: 450ml IP Wash; 50ml 1% NP-40.  

Buffer F1: 20mM Tris pH7.6; 50mM β-mercaptoethanol; 0.1mM EDTA, 2mM MgCl2; add 

protease inhibitors (Aprotinin, PMSF, Complete) and fill up to 100ml with ddH2O.  

 

2.2.2. Purification of soluble His-tagged proteins via Ni-agarose beads:  

Bacteria of the strain Rosetta (-), expressing pB´His NP SpHI/NcOI PTPA#2), were lysed in IP-

Lyse and sonicated (see 2.3.5.). Furthermore, the bacterial lysate was centrifuged for 30 minutes 

at 5000rpm at 4°C. The supernatant was collected and 100µl of Ni-NTA beads, which was 

equilibrated in 25mM Tris pH 8.4, was added to the supernatant from 100ml of a bacterial cul-

ture with OD550=1. The suspension was shaked at 4°C for either 1-2 hours or o/n. Subsequently, 

the beads were washed 4 times with 25mM Tris pH8.4 (containing Aprotinin and PMSF) and 5 

times with washing buffer (containing Aprotinin and PMSF). Centrifugation was done between 

every washing step for 1 minute at 1000rpm. The bound proteins were eluted with elution buffer 

for 1 hour at 4°C. The efficiency of elution was checked on a 10% SDS-PAGE.  
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2.2.3. Lysis of mammalian cells with IP-Lyse buffer:  

Cells of a whole p100 were washed with 5ml of 1xPBS and afterwards with 5ml of IP Wash 

buffer. The buffer was sucked off and 500µl IP Lyse buffer (containing Aprotinin, PMSF and 

Complete) was added to a 100mm tissue culture dish. The dish was incubated on a rotator for 20 

minutes at 4°C. The cells were collected with a rubber scrapper, homogenized by pipetting and 

centrifuged for 10 minutes at 14.000rpm at 4°C. The supernatant was taken to measure the pro-

tein concentration using the Bradford method (see 2.2.4.). Whole cell lysates were either stored 

at -80°C or mixed with GSD, denatured at 95°C for 5 minutes and used for SDS-PAGE imme-

diately.  

To lyse cells in smaller volumes of lysis buffer, cells were washed 1 time with 5ml of 1xPBS, 

trypsinized and resuspended in DMEM and 10% FCS. After centrifugation for 5 minutes at 

1200rpm, cell pellet was washed again with 5ml of 1xPBS, centrifuged and the supernatant was 

sucked off. The pellet was resuspended in 50µl-200µl IP Lyse buffer (depending on pellet size 

and cell count) and incubated on a rotator for 20 minutes at 4°C. Centrifugation followed for 10 

minutes at 4°C and the protein concentration of the supernatant could be measured.  

 

2.2.4. Determination of protein concentration:   

Bradford reagent (Bio-Rad Protein Assay Dye Reagent #500-0006) was diluted 1:5 with ddH2O. 

1µl of cell lysate or protein solution was added and incubated for at least 10 minutes at room 

temperature. The protein concentration was determined by measuring the absorption at 595nm. 

Each sample was measured at least two times.  
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2.2.5. SDS-PAGE (SDS-Polyacrylamide gel electrophoresis):  

 

 

 

 

 

 

 

The gel unit was assembled together. Components were mixed together (without APS and 

TEMED) and degased to avoid air bubbles. 10% APS and TEMED were added, and the mixture 

was poured into the gel unit. The separation gel was covered with ddH2O until polymerized. 

Subsequently, ddH2O was sucked off, the stacking gel could be poured and the appropriate gel 

comb inserted. After polymerization of the stacking gel, the comb was removed and slots were 

washed with water before inserting into the running unit. 1xrunning buffer was added and air 

bubbles removed with a pasteur pipette. Boiled samples were loaded and the gel was run for 

either 8 mA o/n or 120 V for 1.5 hours.  

 

2.2.6. Coomassie staining of gels:   

SDS-PAG was stained with Coomassie staining solution for 1-2 hours, incubated in destaining 

solution for approximately 2 hours and dried for 3.5 hours at 80°C in a vacuum trap.  

 

2.2.7. Western blotting:   

The western sandwich was assembled in the following way: support pad, 3 sheets of 3MM 

Whatman paper, gel, nitrocellulose membrane (Whatman Protran Nitrocellulose Membrane Fil-

ters), 3 sheets of 3MM Whatman paper and suport pad. All components were soaked before in 

1xtransfer buffer and air bubbles were avoided. The western sandwich was inserted into the 

transfer unit and the proteins were transferred at 4°C for either 3.5 hours at 500mA (big gel) or 

1xSeparating gel 10% 

30% Acrylamide 13.4ml 

Tris pH 8.8 15ml 

SDS 20%  200µl 

ddH2O 11.7ml 

APS 10% 134µl 

TEMED 26µl 

1xStacking gel 

30% Acrylamide 1.7ml 

Tris pH 8.8 1.25ml 

SDS 20% 50µl 

ddH2O 7.1ml 

APS 10% 50µl 

TEMED 10µl 
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1.5 hours at 250mA (small gel). After the transfer, the nitrocellulose membrane was washed 

shortly with ddH2O and stained with 1xPonceau S. To remove Ponceau, the membrane was 

washed for 1 minute with 1xPBS-Tween and blocked afterwards with 3% NFDM for 1 hour at 

room temperature. After blocking, the membrane was washed once with 1xPBS-Tween and in-

cubated with the appropriate primary antibody, diluted in 0.5% NFDM, o/n at 4°C. Before incu-

bation with the secondary antibody, the nitrocellulose membrane was washed 3 times for 5 min-

utes with 1xPBS-Tween. The membrane was incubated with the appropriate HRP-coupled sec-

ondary antibody, diluted in 0.5% NFDM, for 1 hour at room temperature. All incubations were 

done on a shaker. After incubation with the secondary antibody, the membrane was washed 3 

times for 10 minutes with 1xPBS-Tween. ECL solutions were mixed (oxidizing reagent and 

enhanced luminal reagent, Perkin Elmer) in equal amounts and the membrane was incubated for 

1 minute, wrapped in a foil and exposed to X-ray films. Alternatively, immunodetection with 

the LI-COR infrared imaging system has been done for quantifying (see 2.2.8.).  

 

2.2.8. Immunodetection with LI-COR infrared imaging system:  

After incubation for 1 hour with an appropriate IR-dye coupled secondary antibody, the nitrocel-

lulose membrane was washed three times with 1xPBS-Tween and scanned with the LI-COR 

Odyssey infrared imaging system. The adequate program, “Odyssey 2.1.”, was used at medium 

resolution with an intensity of 5 at 700nm excitation wavelength. Afterwards the membrane 

could be either dried between Whatman papers or blocked again with 3% NFDM for 30 minutes 

and incubated with a different primary antibody.  

 

2.2.9. Antibodies used for western blotting:   

Primary as well as secondary antibodies have been diluted in 0.5%NFDM-PBS-Tween.  
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2.2.9.1. Primary antibodies:  

 

2.2.9.2. Secondary antibodies:  

 

 

 

 

 

 

 

Primary antibod-

ies 

Clone/Source Dilution Species kDa 

Anti-PTPA  R171, 5.bleed (Ingrid Mudrak; 

Fellner et al., 2003) 

1:10.000 Rabbit polyclonal 40.6 

Anti-β-tubulin  AA2 (upstate, #05-661) 1:10.000 Mouse monoclonal 50 

Anti-GAPDH  MAB374 (millipore) 1:40.000 Mouse monoclonal 39 

Anti-PTPA 5G3 (Ingrid Mudrak) 1:1000 Mouse monoclonal 40.6 

Anti-His (GE healthcare, #27471001) 1:10.000 Mouse monoclonal  

Anti-Lamin A/C 3A6-4C11 (Roblek et al., 

2010) 

1:1000 Mouse monoclonal 75 

Anti-PTPA 132/10, 4.bleed (this study) 1:200 Rabbit polyclonal 40.6 

Anti-PTPA 6G2 (this study) 1:20 Mouse polyclonal 40.6 

Anti-PTPA 7F12-10B (this study) 1:20 Mouse monoclonal 40.6 

Anti-PTPA 6G2-7F (this study) 1:20 Mouse monoclonal 40.6 

Anti-EAPP 582 (Novy et al., 2005) 1:5.000 Rabbit polyclonal 36 

Secondary antibodies Source Description Dilution 

HRP anti-mouse Goat, Jackson #115-035-008 IgG, Fcγ fragment specific 1:5.000  

HRP anti-rabbit Goat, Jackson #111-035-008 IgG, Fcγ fragment specific 1:5000  

Alexa 680 anti-mouse Goat, Invitrogen A-21057 IgG heavy and light chain 1:20.000 

Alexa 680 anti-rabbit Goat, Invitrogen A-21076 IgG heavy and light chain 1:20.000 
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2.2.10. Immunofluorescence:  

5x10
4
 Hela cells (or Helatrex-pNTOneo single clones after 3x induction with doxycyline every 

24 hours for 3 days) were seeded in a single well of a 6 well tissue culture plate. Helatrex-

pNTOneo single clones were induced once again after seeding with 1µg/ml doxycycline. Cells 

were cultivated o/n. Medium was sucked off and cells were washed two times with 1xPBS. All 

following steps were performed at room temperature. Cells were fixed with 3.7% formalde-

hyde/PBS for 15 minutes and washed again three times with 1xPBS. Quenching was done with 

50mM NH4Cl/PBS for 15 minutes followed by two times washing with 1xPBS. Subsequently, 

cells were permeabilized with 0.1% Triton X-100/PBS and washed afterwards three times with 

1xPBS. Cells were incubated with 3% BSA/PBS for 1 hour and incubated afterwards with the 

primary antibody, diluted in 1%BSA/PBS, for either 2 hours at room temperature or 4°C o/n. 

Afterwards, cells were washed three times and incubated with the fluorescence dye coupled sec-

ondary antibody (diluted in 1%BSA/PBS; absorption maximum was either 594 or 488nm) for 1 

hour at room temperature. After three times of washing, cell nuclei were stained with Hoechst 

33342/PBS (750ng/ml) for 10 minutes, washed once with 1xPBS and two times with ddH2O. 

The cover slips were mounted with Vectashield (Vector Laboraties). Slides were stored at 4°C. 

Images were recorded using a Zeiss LSM 510 Meta confocal microscope.  

 

2.2.11. Antibodies used in Immunofluorescence:  

Secondary antibodies for immunofluorescence were diluted in 1%BSA/PBS. Primary antibodies 

were either diluted as well or used without dilution.  
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2.2.11.1. Primary antibodies for Immunofluorescence:  

 

2.2.11.2. Secondary antibodies for Immunofluorescence:  

 

 

 

 

2.2.12. Sub-cellular fractionation:  

In order to analyse the localization of PTPA, Hela cell lysates were fractionated into cytoplasm 

and nucleus. Hela cells were cultivated on p100 tissue culture plates until they reached a conflu-

ent status. The cells were washed 1 time with 1xPBS, trypsinized, counted with a counting 

chamber and washed again 2 times with ice-cold PBS. Between all the washing steps centrifuga-

tion was done at 1200rpm for 5 minutes each. Cells were resuspended in 250µl Buffer F1 per 

1x10
6
 cells and incubated at room temperature for 2 minutes. An incubation on ice followed for 

10 minutes and afterwards, NP-40 was added to a final concentration of 1% (v/v). A whole cell 

lysate aliquot (50µl) was taken before homogenizing the sample by passing the solution care-

fully through a 20G needle for three times. The nuclei were pelleted by centrifugation at 600g 

for 5 minutes at 4°C and the supernatant was harvested as the cytoplasmic fraction. The nuclei 

were washed 3 times in Buffer F1 containing 1% NP-40 and resuspended afterwards in 200µl 

Primary antibody Clone/Source Dilution Species 

Anti-PTPA 5G3 (Ingrid Mudrak) 1:10 Mouse monoclonal 

Anti-Lamin A/C 3A6-4C11 (Roblek et al., 2010) 1:100 Mouse monoclonal 

Anti-PTPA 132/10, 4.bleed (this study)  Rabbit polyclonal 

Anti-PTPA 6G2 (this study)  Mouse polyclonal 

Anti-PTPA 7F12-10B (this study)  Mouse monoclonal 

Anti-PTPA 6G2-7F (this study)  Mouse monoclonal 

Secondary antibodies Source Description Dilution 

Alexa Fluor 594 goat anti-mouse Molecular probes, #A11005 594, IgG (H+L) 1:500 

Alexa Fluor 488 goat anti-mouse Molecular probes, #A11029 488, IgG (H+L) 1:500 
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Buffer F1 including 1% NP-40. Whole cell lysates, cytoplasmic and nuclear fractions were 

boiled in GSD-buffer for 5 minutes at 95°C and analysed by SDS-PAGE and Western blotting.  

 

2.2.13. CIP-treatment of mammalian cell lysates:  

Lysates of mammalian cells (Hela, HelaTRex, HEKTRex, NIH 3T3) were made with IP-Lyse 

buffer (see 2.2.3.) and either stored at -80°C for a short period or prepared freshly before the 

CIP-treatment. After determining the protein concentration (see 2.2.4.) with the Bradford 

method, 100µg of each sample was used for the phosphatase treatment and pipetted together 

with all components. NEBuffer 3 (New England Biolabs) and 5000 U of alkaline phosphatase 

(CIP, New England Biolabs, NEB #M0290S) was added and filled up to a final volume of 50µl 

with ddH2O. The assay was incubated for 60 minutes at 37°C on a shaker. The reaction was 

stopped by the addition of GSD-buffer and samples were analysed by SDS-PAGE and Western 

blotting.  

 

2.2.14. Purification of antibodies:  

2.2.14.1. Purification of antibodies using the SulfoLink
®
 Kit:  

For the affinity purification of the polyclonal rabbit anti-PTPA antibody (R.171, 5.bleed), the 

SulfoLink
®

 Kit (Pierce Biotechnology; #44895) was used. The guidelines provided by the sup-

plier´s protocol were followed for the SulfoLink column coupled with peptid #5 (5.1.2000). The 

efficiency of elution was checked on a 10% SDS-PAG.  

 

2.2.14.2. Affinity purification of antibodies:  

For the affinity purification of three different monoclonal and polyclonal antibodies against 

PTPA, 7F12 10B (mouse monoclonal), 6G2 (mouse polyclonal) and 132/10 (rabbit polyclonal), 

His-tagged PTPA bound to a nitrocellulose membrane has been used. Full length His-tagged 

PTPA was purified as described under 2.2.2. and the protein concentration was determined us-

ing the Bradford method (see 2.2.4.). 100µg of PTPA-His was denatured in GSD-buffer at 95°C  

and loaded on a 10% SDS-PAG (see 2.2.5.) followed by Western blotting (see 2.2.7.). After 

transferring the protein to the nitrocellulose membrane, the membrane was stained with 
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1xPonceau S. The PTPA specific antigen band was cut out, chopped into small pieces with a 

broadness of approximately 1mm and put into 2ml eppendorf tubes. The membrane pieces were 

incubated for 2 days at 4°C on a rotator with 1ml of each serum, centrifuged shortly and the 

supernatant was removed and checked for the depletion of PTPA specific antibody. The mem-

brane pieces were washed 1 time with 1ml of 10mM Tris pH8.0 and another time with 1ml of 

10mM Tris pH8.0 including 10.5mM NaCl. For acidic elution, the membrane pieces with the 

bound antibody were incubated three times for 2 minutes each with 200µl of 100mM Glycin 

pH2.5, centrifuged in between and the supernatants were neutralized with 50µl of 1M Tris 

pH8.0 including sodium-azide (1:1000). All eluates were diluted 1:200 with 0.5% NFDM and 

analysed by western blotting together with unpurified antibodies, diluted 1:20 and 1:200 with 

0.5%NFDM.  

 

2.3. Working with Bacteria 

 

2.3.1. Solutions and Media:  

LB-medium: 5g Tryptone (AppliChem #A1553); 2.5g Yeast extract (AppliChem #A1552); 

2.5g NaCl; Dissolve in 500ml ddH2O, autoclave immediately and store at RT.  

LB-agar plates: 5g Tryptone; 2.5g Yeast extract; 2.5g NaCl; 7.5g Agar (AppliChem #A0949); 

Dissolve in 500ml ddH2O, autoclave immediately, cool to 50°C, add appropriate antibiotics, 

pour plates and store plates at 4°C.  

Ampicillin-stock (100x) (Gerbu #1046): Dissolve 10mg/ml in ddH2O. Filter sterilize through a 

membrane filter with a pore size of 0.2µm and store aliquots at -20°C.  

Kanamycin-stock (200x) (Sigma #K-4000): Dissolve 10mg/ml in ddH2O. Filter sterilize 

through a membrane filter with a pore size of 0.2µm and store aliquots at -20°C.  

Chloramphenicol-stock (1000x) (Serva #16785): Dissolve 34mg/ml in 96% ethanol and store 

at -20°C.  

200mM IPTG-stock: Dissolve 9.35g IPTG in 200ml of ddH2O and store aliquots at -20°C.  
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Bacterial strains:  

XL1blue: recA1 endA1 gyrA96 hsdR17 supE44 relA1 lac [F´proAB lacI
q
Z∆M15 Tn10 (Tet

R
)] 

The bacterial strain is tetracycline resistant.  

Origami(DE3)pLysS: ∆(ara-leu)7697 ∆lacX74 ∆phoA PvuII phoR araD139 ahpC galE galL 

rpsL F´[lac
-
 lacI

q
 pro] (DE3) gor522::Tn10 trxB pLysS (Cam

R
, Str

R
, Kan

R
, Tet

R
)                   

The bacterial strain is chloramphenicol, streptamycin, kanamycin and tetracyclin resistant.  

Rosetta(DE3)pLysS: F´ompThsdSB(rB
-
mB

-
) gal dcm lacYI(DE3) pLysSRARE (Cam

R
)           

The bacterial strain is chloramphenicol resistant.  

Rosetta
TM

(DE3): F´ompThsdSB(rB
-
mB

-
) gal dcm lacYI(DE3) pRARE (Cam

R
)                          

The bacterial strain is chloramphenicol resistant.  

EL350: DY380 [(cro-bioA) <> araC-PBADcre]; The EL350 strain has no resistance and in-

cludes a genomically integrated Cre gene, which is inducible by a temperature switch from 32°C 

to 42°C. EL350 bacteria have been kindly provided by Astrid Hagelkruys (lab group of Chris-

tian Seiser, Mfpl).  

 

2.3.2. Growth of bacteria:  

All bacterial strains, except EL350, were grown in LB-medium or on LB-agar plates at 37°C 

containing 100µg/ml Ampicillin. EL350 are temperature sensitive and were grown at 32°C 

without adding antibiotics.  

 

2.3.3. Freezing/thawing of bacteria:  

For freezing, 200ml of glycerol and 800µl of bacterial o/n culture were mixed thoroughly and 

stored at -80°C. For thawing, the freezing stock was scraped with a pipette tip and the scraped 

material was inoculated in 5ml of LB-medium including the appropriate antibiotics o/n at 37°C 

on a shaker.  
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2.3.4. Transformation of temperature sensitive bacterial strains:  

An aliquot of temperature sensitive bacteria was thawed on ice. 10µl of a ligation reaction or 

~50ng of plasmid DNA was added to the bacteria. In case of a retransformation 1-2ng of 

plasmid DNA was used. After DNA addition, the sample was incubated for 15 minutes on ice 

and 1 minute at 42°C for heat shock. The sample was cooled for 2 minutes on ice and 1ml LB-

medium (without antibiotics) was added. The bacteria were incubated for 1 hour at 37°C while 

shaking. Subsequently cells were centrifueg at 14.000rpm for 15 seconds and 2/3 of the 

supernatant was discarded. The pellet was resuspended with the rest of the supernatant and 

plated onto LB-agar plates containing the respective selective antibiotics. Incubation was carried 

out o/n at 37°C.  

 

2.3.5. Bacterial expression of fusion proteins:  

5ml LB-Amp have been inoculated with a bacterial clone from a LB-agar plate and incubated 

o/n at 37°C. The o/n culture was diluted in 200ml LB-Amp and incubated at 37°C until it 

reached an OD550 of 0.8-1. The expression of recombinant protein was induced with 1mM IPTG 

for 3 hours at 37°C. A small aliquot of bacterial culture was kept uninduced as  negative control. 

Bacteria were centrifuged for 5 minutes at 5000rpm at 4°C, supernatant discarded and the pellet 

of uninduced bacteria was resuspended in 2ml of 25mM Tris pH8.4 (containing Aprotinin and 

PMSF) per OD550. The pellet of induced bacteria was resuspended in an appropriate volume of 

25mM Tris pH8.4 (containing Aprotinin and PMSF) according to OD550. Subsequently, bacteria 

were lysed via sonication for 3 times 30 seconds each with ~30 seconds of incubation on ice 

between the sonication steps. A 60µl aliquot was taken and centrifuged for 10 minutes at 

10.000rpm and  4°C. 30µl of 3xGSD was added to the supernatant and the insoluble protein 

fraction was resuspendend in 90µl of 1xGSD. The samples were boiled for 5 minutes at 95°C 

and analysed by SDS-PAGE, Western blotting and Coomassie staining. The rest of bacterial 

lysate was centrifuged for 30 minutes at 5000rpm and 4°C after sonication. The supernatant was 

stored at 4°C and the insoluble fraction at -20°C. For the expression of PTPA-His (full length), 

Origami, Rosetta (-) and Rosetta (+) were used in order to compare the efficiency of three 

different strains.  
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2.3.6. Transformation of BAC DNA into EL350 bacteria via Electroporation:  

5ml of LB-medium were inoculated with a single clone of EL350 bacteria and incubated o/n at 

32°C. 1ml of o/n culture was transferred to 20ml LB-medium and incubated at 32°C until an 

OD600 of 0.5. 10 ml of bacterial culture was used per preparation. To achieve cell competence, 

10ml of bacterial culture was incubated on ice for 5 minutes and subsequently centrifuged for 5 

minutes at 4000rpm and 0°C. The pellet was resuspended in 1ml of ice-cold ddH2O and trans-

ferred to a 1.5ml eppendorf tube (pre-cooled on ice). Centrifugation was repeated for 5 minutes 

at 4000rpm and 0°C, and the pellet was washed again with 1ml of ice-cold ddH2O. The third 

washing step was carried out with 15% ice-cold glycerol. The bacterial pellet was resuspended 

after the centrifugation step in 50µl of 15% ice-cold glycerol and cells were transferred to a 

0.2cm electroporation cuvette, which was cooled at -20°C before. Before the electroporation 

could be started, the cuvettes were wiped dry with a tissue to prevent drops of liquid in the aper-

ture. Electroporation was carried out with a Bio-Rad Gene Pulser
®
 at 2.5kV, 200Ω and 25µF 

with three different concentrations of BAC-DNA, 200ng, 500ng and 1000ng respectively. 200ng 

of the pSuper-plasmid have been used as a positive control for the electroporation. Right after-

wards, every sample was incubated with 1ml of LB-medium at 32°C for 1 hour, plated on LB-

agar plates including selective antibiotics and incubated for 2 days at 32°C. Two different con-

centrations of chloramphenicol were used for selective antibiotics on LB-agar plates for BAC-

DNA: 15µg/ml and 7.5µg/ml. Two clones of BAC-preparations were used: RP24339 D2#4, 

RP23431 H3#4 

 

2.4. Working with DNA 

 

2.4.1. Solutions and Media:  

50x TAE: 484g Tris; 114ml acetic acid; 200ml 0.5M EDTA pH8.0; Dissolve and fill up to 2l 

with ddH2O and store at RT.  

1x TAE (working solution): 40mM Tris acetate; 2mM EDTA.  

Lambda DNA Marker (Fermentas #SM0111): Dilute the concentrated marker to a final con-

centration of 0.1µg/µl, heat the solution to 65°C for 5 minutes, cool on ice and store aliquots at -

20°C.  
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6x DNA loading dye (Fermentas #R0611) 

Low molecular weight DNA Ladder (NEB #N3233L) 

Gene Ruler
TM

 1kb DNA Ladder (Fermentas #SM0311) 

BAC-preparation solutions:  

    Solution 1: 50mM Tris pH8.0; 10mM EDTA; 100µg/ml Rnase A; Dissolved in ddH2O, filter 

sterilized through a membrane filter with a pore size of 0.2µm and stored at 4°C.  

    Solution 2: 0.2N NaOH; 1%SDS; Dissolved in ddH2O, filter sterilized through a membrane 

filter with a pore size of 0.2µm and stored at RT.  

    Solution 3: 3M Potassium acetate; Dissolved in ddH2O, pH was adjusted to pH5.5 with gla-

cial acetic acid, autoclaved and stored at 4°C.  

RNAse A (Sigma #R-5125): 10mg/ml RNAse A were dissolved in 10mM sodium acetate 

pH5.2, heated up to 100°C for 15 minutes and cooled down to RT. The pH was adjusted by add-

ing 0.1 volumes of 1M Tris-Cl pH7.4 and aliquots were stored at -20°C.  

 

2.4.2. Plasmid Mini preparation using the QIAprep
®
 Spin Miniprep Kit (Qiagen #27106):  

The guidelines provided by the supplier´s protocol were followed.  

 

2.4.3. Plasmid Midi preparation using PureYield
TM

 Plasmid Midiprep System (Promega 

#252219):  

For large amounts of plasmid DNA preparation the Pure Yield
TM

 Plasmid Midiprep System kit 

was used. The guidelines provided by the supplier´s protocol were used.  

 

2.4.4. DNA Isolation of BAC clones:  

A sterile toothpick was used to inoculate a single isolated bacterial colony into 5ml of LB-

medium containing 15µg/ml Chloramphenicol. The bacterial culture incubated o/n at 37°C 

while shaking. After removing the toothpicks, the o/n culture was centrifuged for 10 minutes at 
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3000rpm at RT. The supernatant was discarded and the pellet resuspended in 0.3ml of Solution 

1. After adding 0.3ml of Solution 2, the components were mixed by gently shaking the tube. 

After incubation at RT for ~5 minutes, the appearance of the solution changed from turbid to 

almost translucent. 0.3ml of Solution 3 was added slowly during slight shaking and an incuba-

tion for at least 5 minutes on ice followed. Samples were centrifuged for 10 minutes at 

10.000rpm and 4°C and the supernatant was transferred to an eppendorf tube containing 0.8ml 

of ice-cold isopropanol. The sample was mixed by inverting and incubated on ice for at least 5 

minutes. Centrifugation carried out again for 15 minutes at 10.000rpm and 4°C. Subsequently, 

the supernatant was removed and 0.5ml of 70% Ethanol was added to wash the DNA pellet. 

After centrifuging the sample for 5 minutes at 10.000rpm and 4°C, the supernatant was removed 

and the pellet was air dried. When the appearance of the DNA pellet turned from white to trans-

lucent, it was resuspended in ~40µl of TE through slightly tipping at the bottom of the tube or 

alternatively by incubation at 37°C for 15 minutes. Isolated DNA was stored at 4°C or used im-

mediately for further analysis.  

BAC clones used for DNA Isolation were: RP23431 H3; RP24339 D2; RP23165L 19.  

 

2.4.5. Analysis of DNA isolated from BAC clones with PCR:  

To confirm the identity of the obtained BAC-clones (purchased from http://bacpac.chori.org/), 

whether they contain the PTPA gene, the DNA of the three clones was isolated (see 2.4.4.) and 

checked by PCR. PCR was carried out using the GoTag
®
Green Master Mix (Promega), which 

already includes DNA polymerase, dNTPs, MgCl2 and reaction buffer. 10µl of GoTag
®

Green 

Master Mix, 9µl of nuclease free ddH2O, 5pmol/µl of PTPA specific primers and 50-100ng of 

BAC-DNA were mixed on ice and placed in a preheated PCR Thermocycler.  

PTPA specific primers for analysis of DNA isolated from BAC clones:  

Exon 6 sense: GTCTCTGCAAGATTGGTGTACTCCG 

Exon 7 antisense: GACCCCATACGCCCTGGCTGCCTG 

Both primers have been ordered from Sigma-Aldrich, resuspended according to supplier´s data-

sheet with nuclease free ddH2O at 37°C for 15 minutes. The primer mix used in the Polymerase 

chain reaction, was made by mixing 5pmol/µl of each primer-solution and 90µl of ddH2O 

(5µmol).  

http://bacpac.chori.org/
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Afterwards, PCR products were analysed on a 1.8% agarose gel (in 1xTAE), which was run at 

120V for ~40 minutes.  

Positive BAC clones used for Transformation of BAC DNA into EL350 bacteria via Electropo-

ration (see 2.3.6.): RP23431 H3 #4; RP24339 D2 #4.  

 

2.4.6. Restriction digest:   

For digesting 1µg of plasmid DNA, 1 U of appropriate restriction enzyme was used and the re-

action mix was prepared as suggested by the supplier. The total volume of the reaction mix was 

150µl for preparative purpose. The samples were incubated o/n at 37°C. 10µl of restriction di-

gest were mixed afterwards with 2µl of 6x DNA loading dye and analysed on a 1.5% agarose 

gel (in 1xTAE).  

 

2.4.7. Elution of DNA fragments:  

For isolation of DNA fragments from agarose gels, the Wizard
®
SV Gel and PCR Clean-Up Sys-

tem (Promega #A9283) was used and instructions of suppliers protocol followed. The desired 

DNA band was excised from the gel and placed into a 1.5ml eppendorf tube. The eluted DNA 

was stored at -20°C and 1-5µl of elution was checked on an agarose gel.  

 

2.4.8. Ligation of DNA fragments:  

50-100ng of plasmid DNA were mixed and DNA inserted at a molar ratio of 1:3 in a final vol-

ume of 20µl containing 2µl of T4 ligation buffer (containing 10mM ATP) and 0.5 U of T4 DNA 

ligase (NEB). The mixture was incubated o/n at 16°C. 10µl of ligated DNA were used to trans-

form heat-shock competent E.coli (see 2.3.4.).  
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2.4.9. Cloning of pRetroSuperStuffer-CT/Mis:  

pRetroSuperStuffer was chosen for the infection of mammalian cells with a retroviral vector (see 

2.1.10.). The final pRetroSuperStuffer-CT transfected into a packaging cell line expresses the viral 

packaging signal, the H1-shRNA expression cassette and a puromycin resistance gene.  

The pSuper-CT and pSuper-Mis were cut with EcoRI and XhoI (fragment sizes of ~300bp) to 

obtain the DNA fragment including the H1-RNA promoter and shRNA sequence. The restric-

tion products were electrophoretically seperated in an agarose gel, eluted from the gel and used 

for ligation with EcoRI and XhoI cutted, electrophoretically separated and eluted pRetroSuper-

Stuffer (fragment size of 5.3kb). After ligation of each 300bp DNA fragment with one pRetroSu-

perStuffer, the samples were used to transform heat-shock competent E.coli.  

Positive clones of pRetroSuperStuffer-CT used for Retroviral Infection: Clone 3 

Positive clones of pRetroSuperStuffer-Mis used for Retroviral Infection: Clone 2 

Both vectors were sequenced at LGC genomics with primer H1RNApro:  

5´-GAATCGCGGGCCCAGTGTCA-3´ 

 

2.5. Working with RNA 

 

2.5.1. Solutions and Media:  

Trizol
®
Reagent (Invitrogen): kindly provided by the lab of Christian Seiser 

10x MOPS: 41.85g MOPS (morpholinopropanesulfonic acid); 6.8g sodium acetate-3H2O; Dis-

solve in 800ml of ddH2O, add 20ml of 0.5M Na2EDTA and adjust pH to 7.0. Fill up to 1 litre 

with ddH2O.  

Iscript cDNA synthesis kit (BioRad) 

3M sodium-acetate: Dissolve in ddH2O, adjust to pH5.5, filter sterilize and store at 4°C.  

Lipofectamine 2000 (Invitrogen #11668-019) 
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2.5.2. Isolation of RNA using Trizol
®
Reagent:  

1x10
6
 of HelaTRex-pNTOneo-CT Cl.L or Mis Cl.D cells were seeded on a p100 tissue culture 

dish, and induced with doxycycline (1µg/ml) for 96 hours (see 2.1.6.). Hela cells were seeded as 

well and used as a standard. For the first step of homogenization, cells were washed with 

1xPBS, trypsinized and harvested with 1ml of Trizol
®
Reagent for each p100 culture dish. The 

sample was centrifuged for 10 minutes at 12.000rpm at 4°C and the supernatant transferred to a 

new eppendorf tube. For the next step, the phase separation, 0.2ml chloroform were added, the 

sample was shaken vigorously for ~15 seconds, incubated at RT for 3 minutes and centrifuged 

again for 15 minutes at 12.000rpm and 4°C. To precipitate the RNA, the upper aqueous phase 

was transferred to a new eppendorf tube, 0.5ml of isopropyl alcohol were added, the sample was 

incubated for 10 minutes at RT and centrifuged for 10 minutes at 12.000rpm and 4°C. For wash-

ing the RNA pellet, the supernatant was removed and 1ml of 75% ethanol was added. The sam-

ple was mixed and centrifuged again for 5 minutes at 7500rpm and 4°C. The supernatant was 

removed, the pellet air dried and finally resuspended in ~30µl of nuclease free ddH2O. For the 

second precipitation, 3µl of 3M sodium-acetate and 75µl of 96% ethanol were added and incu-

bated with the sample at -20°C o/n. Centrifugation was carried out for 30 minutes at 12.000rpm 

and 4°C, the pellet was washed again with 1ml of 75% ethanol and resuspended in 30µl of nu-

clease free water. The concentration of RNA was measured with a NanoDrop spectrophotome-

ter.  

To check the integrity of the RNA, 1µg of isolated RNA was mixed with 9µl of ddH2O and 2µl 

of RNA loading buffer with ethidiumbromide, incubated at 65°C for 5 minutes and put on ice 

for 1 minute. 1.2g agarose, 90ml ddH2O, 10ml of 10xMOPS and 5.2ml formaldehyde were 

mixed, heated and poured in the appropriate gel tray. Subsequently, samples were loaded and 

the MOPS-gel and run at 70V for ~20 minutes.  

 

2.5.3. cDNA-synthesis using iScript™ cDNA Synthesis Kit (BIO-RAD):  

For the synthesis of cDNA, iScript™ cDNA Synthesis Kit (BIO-RAD #170-8891) was used. 

1µg of RNA in a maximum of 10µl volume, 4µl of 5x iScript reaction mix, 1µl of iScript re-

verse transcriptase and 5µl of nuclease-free water were mixed together on ice and placed in a 

preheated PCR-Thermocycler. For the PCR program to reverse transcribe RNA into cDNA, the 
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guidelines of supplier´s protocol were followed. Afterwards, the cDNA product was filled up 

with 180 µl of ddH2O and the efficiency of the cDNA-synthesis checked on an agarose gel.  

 

2.5.4. Gradient RT-PCR with KAPA SYBR
®
 FAST Bio-Rad iCycler 2x qPCR Master Mix 

(Kapa Biosystems):  

For determining the optimal annealing temperature for the used primer sets, a gradient PCR was 

set up using a BIO-RAD light cycler. Both primer pairs for human PTPA, hPTPA 1 (marked in 

red) and hPTPA 2 (marked in blue), producing fragment sizes of 210bp and 270bp respectively, 

were tested. Annealing temperatures used for testing were: 65°C, 64.5°C, 63.3°C, 61.4°C, 

58.9°C, 57.1°C, 55.8°C and 55.0°C.  

The KAPA SYBR
®

 FAST Bio-Rad iCycler 2x qPCR Master Mix was used, including fluo-

rescein reference dye. Hela cDNA served as a template. Each component was thawed on ice and 

put on an ice-cold tray while pipetting onto the 96-well plate. A foil was placed over the surface 

of the plate, which was centrifuged at 1200rpm for 30 seconds. All samples were analysed in 

duplicates. The guidelines of supplier´s protocol were followed and the set-up of the qRT-PCR 

was done with the help of Anna Sawicka (lab group of Christian Seiser, Mfpl). After the reac-

tion, samples were analysed on a 1.5% agarose gel. Although every annealing temperature gave 

rise to a product, the most stringent temperature working for both primerpairs was 58°C.  

Human PTPA cDNA (NM_021131.4, NM_178000.2):  

5´-ATGGCTGAGGGCGAGCGGCAGCCGCCGCCAGATTCTTCAGAGGAGGCCCCTCCAGCCAC 

TCAGAACTTCATCATTCCAAAAAAGGAGATCCACACAGTTCCAGACATGGGCAAATGGAAG

CGTTCTCAGGCATACGCTGACTACATCGGATTCATCCTTACCCTCAACGAAGGTGTGAAGGG

GAAGAAGCTGACCTTCGAGTACAGAGTCTCCGAGGCCATTGAGAAACTAGTCGCTCTTCTC

AACACGCTGGACAGGTGGATTGATGAGACTCCTCCAGTGGACCAGCCCTCTCGGTTTGGGA

ATAAGGCATACAGGACCTGGTATGCCAAACTTGATGAGGAAGCAGAAAACTTGGTGGCCAC

AGTGGTCCCTACCCATCTGGCAGCTGCTGTGCCTGAGGTGGCTGTTTACCTAAAGGAGTCAG

TGGGGAACTCCACGCGCATTGACTACGGCACAGGGCATGAGGCAGCCTTCGCTGCTTTCCTC

TGCTGTCTCTGCAAGATTGGGGTGCTCCGGGTGGATGACCAAATAGCTATTGTCTTCAAGGT

GTTCAATCGGTACCTTGAGGTTATGCGGAAACTCCAGAAAACATACAGGATGGAGCCAGCC

GGCAGCCAGGGAGTGTGGGGTCTGGATGACTTCCAGTTTCTGCCCTTCATCTGGGGCAGTTC

GCAGCTGATAGACCACCCATACCTGGAGCCCAGACACTTTGTGGATGAGAAGGCCGTGAAT

GAGAACCACAAGGACTACATGTTCCTGGAGTGTATCCTGTTTATTACCGAGATGAAGACTG

GCCCATTTGCAGAGCACTCCAACCAGCTGTGGAACATCAGCGCCGTCCCTTCCTGGTCCAAA

GTGAACCAGGGTCTCATCCGCATGTATAAGGCCGAGTGCCTGGAGAAGTTCCCTGTGATCC

AGCACTTCAAGTTCGGGAGCCTGCTGCCCATCCATCCTGTCACGTCGGGCTAG- 3´ 
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hPTPA sense 1: AGTCGCTCTTCTCAACAC 

hPTPA antisense 1: TGTGCCGTAGTCAATGC 

hPTPA sense 2: TGTCTTCAAGGTGTTCAATCG 

hPTPA antisense 2: GCTGGTTGGAGTGCTCTG 

 

2.5.5. qRT-PCR with KAPA SYBR
®
 FAST Bio-Rad iCycler 2x qPCR Master Mix (Kapa 

Biosystems):  

For qPCR, the KAPA SYBR
®
 FAST Bio-Rad iCycler 2x qPCR Master Mix was used following 

the guidelines of supplier´s protocol. All samples were prepared and analysed in duplicates, 

normalized onto a dilution series of Hela cDNA (1:1, 1:2, 1:4, 1:8, 1:16), with a starting amount 

of 50µg, and a gapdh primer pair as a control for a housekeeping gene. The qRT-PCR was run 

with a BIO-RAD light cycler at an annealing temperature of 58°C with each primer (sense and 

antisense) at a concentration of 10µM. After the reaction, each value of samples with hPTPA 

primers was normalized onto the respective value of gapdh primers. The dilution curve was nec-

essary to control the linear range. All calculations and analysis were done with the help of Anna 

Sawicka and Sabine Lagger (lab group of Christian Seiser, Mfpl).  

 

2.5.6. Transfection of mammalian cells using Lipofectamine 2000:  

Different cell lines were used for transfection using Lipofectamine 2000 (Invitrogen #11668-

027): Hela, HEKTREX, HelaTRex-pNTOneo-CT Cl.L and HelaTRex-pNEOneo-Mis Cl.D. All 

cell lines used for transient transfections were grown in DMEM + 10% FCS with appropriate 

selective antibiotics and medium was changed to DMEM + 10%FCS w/o antibiotics the day 

before transfection was performed. 5x10
5 

cells of HEKTRex cells and 4x10
5
 cells of Hela-

derived cell lines were seeded on 6-well tissue culture plates on the day before transfection ac-

cording to the optimization of transfection efficiency (see 2.5.7.). Prior to transfection, every-

thing was wiped with RNase AWAY® (Fisher Scientific) and 70% ethanol. Either 25pmol, 

50pmol or 100pmol of siRNA was diluted in 250µl of Opti-MEM® I Reduced-Serum Medium 

(1x) (#11058-021) and incubated for 5 minutes at room temperature. 8µl of Lipofectamine 2000 

was diluted as well in 250µl of Opti-MEM and incubated at room temperature for 5 minutes. 
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Both samples were mixed carefully and incubated together at room temperature for 20 minutes. 

Meanwhile, cells were washed with 1xPBS and supplemented with 2ml of DMEM (Dulbecco´s 

modified Eagle´s medium) + 10%FCS. The transfection mix was added dropwise and removed 

after 5 hours. For further analysis, whole cell lysats were made (see 2.2.3.), followed by SDS-

PAGE, western blotting and quantification using the Li-Cor infrared scanner.  

 

2.5.6.1. Sequences of siRNAs:  

The abbrevation “CT” refers to C-terminal part of human PTPA and is identical with the 

shPTPA sequence (see 2.1.1.2.) with the exception of uracil replacing thymine, as shPTPA is 

DNA in contrast to siRNAs. “Mis” is the siRNA sequence including mismatches and was used 

as a non-binding negative control. The siRNAs were ordered and purchased from SIGMA-

Aldrich and provided as duplexes of above sequences. SASI_Hs01_00123722 sense and an-

tisense was a prevalidated siRNA from the SIGMA-Aldrich library spanning exon 7 and 8 of 

human PTPA, with position 660-679 in ORF according to sequence NM_178001.2, and termed 

“siRNAsigma” in further results. siRNAs were diluted with Nuclease free water according to sup-

plier´s protocol and stored at -20°C. Nanogram calculation was made for duplex siRNAs.  

 

 

 

 25pmol 50pmol 100pmol 

hPTPA-CT(sense) 

hPTPA-CT(antisense) 

5´-GUUCCCUGUGAUCCAGCAC [dT] [dT]-3´ 

5´-GUGCUGGAUCACAGGGAAC[dT] [dT]-3´ 

333ng 666ng 1333ng 

hPTPA-Mis (sense) 

hPTPA-Mis (antisense) 

5´-GUUUCCUGUAAUCCAACAC[dT] [dT]-3´ 

5´-GUGUUGGAUUACAGGAAAC[dT] [dT]-3´ 

332ng 664ng 1328ng 

SASI_Hs01_00123722 

SASI_Hs01_00123722_

AS 

5´-CAAUCGGUACCUUGAGGUU[dT] [dT]-3´ 

5´-AACCUCAAGGUACCGAUUG[dT] [dT]-3´ 

333ng 665ng 1330ng 
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2.5.7. Optimizing transfection efficiency: 

For the optimization of transfection efficiency, different cell numbers of Hela and HEKTRex 

cells were transfected with 0.8µg of pmax GFP (provided by Matthias Artaker), followed by a 

flow cytometric analysis with FACS-Aria
TM

 cell sorter (BD Biosciences). Cells were seeded on 

a 24-well tissue culture plate the day before transfection. For the transfection, three different 

amounts of Lipofectamine 2000 were used: 1µl, 1.5µl and 2µl. The day after transfection, cells 

were washed once with 1xPBS, trypsinized, resuspended in DMEM + 10%FCS, centrifuged at 

1200rpm for 5 minutes and resuspended in 0.5ml of 1xPBS. Samples were transferred to FACS-

tubes and analysed. 

HEKTRex (cells/well) Lipofectamine 2000 (µl) Hela (cells/well) Lipofectamine 2000 (µl) 

250.000 2 85.000 1.5 

200.000 2 80.000 1.5 

175.000 2 77.500 1.5 

150.000 2 75.000 1.5 

125.000 2 72.500 1.5 

100.000 2 70.000 1.5 

75.000 2 67.500 1.5 

50.000 2 65.000 1.5 

150.000 1.5 75.000 1 

150.000 2 75.000 1.5 

150.000 2.5 75.000 2 

 

2.6. Working with mice and rabbits 

For the production of a new antibody against PTPA, which would also work in an immunofluo-

rescence-staining, 4 mice and 1 rabbit were immunized with full length His-tagged PTPA, antis-

era were tested in Western blot and immunofluorescence analyses.  
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2.6.1. Solutions and media:   

Purified His-tagged PTPA: pB´His NP SpHI/NcOI PTPA#2  

HAT Medium: 400ml DMEM (Sigma #D5671); 50ml Fetal Cl.1 (HyClone #SH30080.03); 

25ml BM-Condimed H1 (LaRoche #11088947001); 5ml Penicillin/Streptomycin (P/S) (Sigma 

#P4333); 5ml L-Glutamine (Sigma #G2150); 5ml Na-Pyruvate (Sigma #S8636); 10ml HAT 

supplement (Gibco #21060) 

 

2.6.2. Mouse Immunisation:   

Four mice, originating from the strain RBF/DnJ RB(8.12)5Bnr, were immunized with 50µg of 

antigen. The antigen was mixed with adjuvants in a ratio of 1:1. The mix was applied subcuta-

neously and the final immunization (final boost) was carried out without adjuvants and injected 

intraperitoneally. All mice were immunized by Marko Roblek.  

 

2.6.3. Mouse Bleeds:   

The bleeds were taken from the tail vein except the final bleed, which was taken from the heart. 

All bleeds were taken from Marko Roblek. About 50µl of blood was taken, incubated at 37°C 

for 1 hour and centrifuged for 5 minutes at 14.000rpm. After o/n storage at 4°C, centrifugation 

was done again for 10 minutes at 14.000rpm, the serum was taken and sodium-azide (0.02%) 

added. The serum was stored at 4°C.  
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2.6.4. Mouse Immunisation schedule:  

Day 0 Pre-immune bleed from tail vein 

1.immunisation (sc) with ~50µg of antigen + adjuvants 

Day 14 2.immunisation (sc) with ~50µg of antigen + adjuvants 

Day 24 1.bleed from tail vein 

Day 35 3.immunisation (sc) with ~50µg of antigen + adjuvants 

Day 45 2.bleed from tail vein 

Day 56 Final boost for best responder (ip) with ~50µg of antigen 

Day 59 Fusion of splenocyte from best responder 

 

2.6.3. Generation of hybridoma:   

2.6.3.1. Fusion:  

To create monoclonal antibodies, splenocytes of the immunised mice were fused with a certain 

cell number of myeloma cells. The fusion has been done by Marko Roblek (please see diploma 

thesis of Marko Roblek for further details, pages 61-62 and Roblek et al., 2010).  

 

2.6.3.2. Test of hybridoma supernatant:  

The supernatant of the hybridomas was tested for presence of antibodies 8-10 days after fusion 

by immunoblotting assay on whole cell lysates using miniblotter devices from Immunetics 

(#MN28).  

 

2.6.3.3. Minimal dilution of positive hybridoma clones:  

The supernatant of the respective hybridoma mixclone was taken as a control for further testings 

and stored at 4°C. Hybridoma mix clones were resuspended in HAT medium, the number of 

cells was determined using a counting chamber and dilutions of 3.6 cells/well and 1.5 cells/well 

were prepared on a 96 well tissue culture plate. Other positive mixed clones were frozen as well 
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as remaining cells of the minimally diluted clone. The minimal dilution has been done by Stefan 

Schüchner.  

 

2.6.3.4. Expansion of monoclonal hybridoma and production of monoclonal antibody:  

Single hybridoma clones, tested positive by Western blotting or immunofluorescence, were ex-

panded to bigger tissue culture dishes and at least 3 vials of each clone were frozen. Before cul-

tivating the clones in DMEM containing 10%FCS w/o selection drugs, the clones were grown in 

HT medium for three passages. I froze at least three vials of cells and expanded the clone onto 

5-10 p150 cell culture dishes, cultivated it without change of medium until all cells were dead 

and harvested the supernatant, stored it at 4°C or froze it at -20°C.  

 

2.6.4. Rabbit immunisation and bleeds:  

One New Zealand White Rabbit has been immunized with a defined amount of antigen (see be-

low) and the immunisation has been done according to the schedule shown. The antigen emul-

sion has been applied intradermaly at the neck. The bleeds were taken from the ear vein and up 

to 50ml of blood was taken. Preparation and storage has been done as described under 2.6.3. 

The bleeds were taken by Prof.Marcela Hermann as well as immunisations.  

 

2.6.5. Immunisation schedule of rabbit 

Day 0 Pre-immune bleed from ear vein 

1.immunisation (id) with ~250µg of antigen + adjuvants 

Day 14 2.immunisation (id) with ~125µg of antigen + adjuvants 

Day 24 1.bleed from ear vein 

Day 35 3.immunisation (id) with ~75 µg of antigen + adjuvants 

Day 45 2.bleed from ear vein 

Day 56, 77 Last immunisation with 75 µg of antigen + incomplete adjuvants 
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3. Results 

Knockdown of PTPA 

 

3.1. Knockdown of PTPA with stably transfected single clones  

3.1.1. Testing of stable transfected HelaTRex-pNTOneo single clones 

Previous studies revealed no effect on the phenotype of N2ATRex and HEKTRex cell lines (di-

ploma thesis of Mitterhuber and Kugler) after downregulation of PTPA to 25-40% of wild type 

levels.  Thus, the current project was focused on the analysis of phenotypical effects, apoptotic 

behaviour or effects on the biogenesis of PP2A in HelaTRex cells. Single clones of stably trans-

fected HelaTRex-pNTOneo-CT or Mis cells (transfected and selected by Michaela Kugler dur-

ing her diploma thesis) were tested for the ability of PTPA knockdown by western blotting and 

quantification using the LI-COR Odyssey infrared scanning system. The targeting RNAi con-

sisted of a 21bp shRNA, expressed by the RNA Pol III dependent H1 promoter upon induction 

with doxycycline, and shared complete sequence identity between mouse and human. In con-

trast, the mismatch RNAi contained three mismatch base pairs compared to the PTPA wild type 

sequence at positions 14, 10 and 16, and therefore should be incapable of binding to the mRNA 

of PTPA.  

To induce the knockdown of PTPA, 1µg/ml of doxycycline was applied every day to the cells 

for 96 hours. Subsequently, whole cell lysates were PTPA levels were analysed by western blot-

ting and quantified using the LI-COR Odyssey infrared imaging system. In summary, 18 Hela-

TRex single clones stably transfected with the targeting construct and 9 single clones stably 

transfected with the missense construct were tested (for further data please see protocols of 2009 

and 2010 regarding this study). Additionally, HelaTRex cells stably transfected with an empty 

vector construct, served as negative control.    
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Figure 6: Summary of stably transfected HelaTRex-pNTOneo-CT/Mis single clones. HelaTRex-

pNTOneo-CT and Mis cells were induced for 96 hours with 1µg/ml of doxycycline added every 24 hours 

and uninduced samples were taken as negative control. Whole cell lysates were prepared. 50µg were 

used for immunoblotting (10% SDS-PAG) with anti-gapdh (1:40.000) and anti-β-tubulin (1:10.000) anti-

bodies, while 150µg were used for immunoblotting (10% SDS-PAG) with anti-PTPA-antibody (132/10; 

1:10.000). Amounts of PTPA of induced samples (+) were normalized to the gapdh and β-tubulin levels, 

respectively, and uninduced samples (-) were set as 100%. Obtained results (representing a triplicate of 

induction) were quantified with the Li-Cor Odyssey imaging system and were included only if the quantifi-

cation was in the linear range of detection. CT = shRNA against C-terminal part of PTPA, targeting con-

struct; Mis = mismatch construct, non-targeting control; Cl. = Clone. Figure adapted from my Vertie-

fungsübungsprotokoll, 2010.  

One single clone, expressing the targeting RNAi, HelaTRex-pNTOneo-CT Cl.L, achieved a 

knock down to approximately 15% of total amount of PTPA. Surprisingly, HelaTRex-

pNTOneo-Mis Cl. D and HelaTRex-pNTOneo-Mis Cl. C, expressing a missense sequence upon 

induction with doxycycline, revealed an upregulation of PTPA rather than remaining the amount 

on a constant level, while the negative control, cells stable transfected with an empty vector, 

showed a downregulation to 52% of PTPA in comparison to uninduced cells.  
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Due to the efficient potential to knock down PTPA, HelaTRex-pNTOneo-CT Cl.L, a single 

clone expressing a PTPA targeting sequence, represented the most promising candidate for fur-

ther investigations.  

3.1.2. Proliferation assay with HelaTRex-pNTOneo-CT Clone L and HelaTRex-pNTOneo-

Mis Clone C 

Due to the fact, that a low amount of PTPA was unable to kill cells, we hypothesized that a re-

duction of PTPA levels could have an impact on the proliferation of mammalian cells. Hela-

TRex-pNTOneo-CT Clone L and Mis Clone C cells were induced with doxycycline and counted 

each day before lysis. Subsequently, lysates were analysed by western blotting and PTPA ex-

pression quantified with the LI-COR Odyssey imaging system. We wanted to test whether there 

would be a correlation between cell number and amount of PTPA level.  

The cells transfected with the empty vector showed no difference in proliferation between in-

duced and uninduced state, although a reduction to 68% of PTPA was calculated on day 5 in 

induced cells in comparison to uninduced cells (figure 7A and D). Furthermore, HelaTRex-

pNTOneo-Mis Clone C cells revealed a slightly altered proliferation upon induction with doxy-

cycline at days 3 and 4 in comparison to uninduced cells (figure 7C). This effect could be 

caused by a difference in cell number previous to the induction, as all whole cell lysates and cell 

counts were prepared separately for each day. Moreover, induced HelaTRex-pNTOneo-Mis Cl. 

C cells contained 96% of normal PTPA level.  

HelaTRex cells containing the vector expressing the targeting RNAi, appeared to be hampered 

in proliferation on day two, but recovered quickly and showed normal proliferation and dou-

bling time starting at day three (figure 7B). Finally, induced HelaTRex-pNTOneo-CT Cl.L cells, 

revealed a knock down to 8% of cellular PTPA in comparison to uninduced sample.  

However, the minimum and maximum standards for the definition of the linear range for the 

quantification were inaccurate. Thus, the exact calculation of downregulated PTPA could vary. 

Furthermore, the proliferation assay was performed one time and has to be repeated at least two 

more times in order to have a definite result.  
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Figure 7: Proliferation growth curves. A-C) HelaTRex-pNTOneo-CT Cl.L, -Mis Cl.C and cells trans-

fected with emtpy vector (see 2.1.7. for cell numbers) were induced for 120 hours with 1µg/ml of dox-

ycycline added every 24 hours, uninduced cells of each clone were taken as negative control. Cells were 

counted every day. Dashed and solid lines represent uninduced and induced sample, respectively. D) 

Whole cell lysates of day 5 were analysed by western blotting (10%SDS-PAG). 50µg was used for im-

munoblotting (10% SDS-PAG) with anti-gapdh (1:40.000) and anti-β-tubulin (1:10.000) antibodies, while 

150µg was used for immunoblotting (10% SDS-PAG) with anti-PTPA-antibody (132/10; 1:10.000). 

Amounts of PTPA of induced samples (+) were normalized to the gapdh and β-tubulin levels, respective-

ly, and uninduced samples (-) were set as 100%. Obtained results (representing a single experiment) 

were quantified with the Li-Cor Odyssey imaging system. Minimum (80µg and 30µg for PTPA and for 

loading controls, respectively) and maximum protein standards (240µg and 90µg for PTPA and for load-

ing controls, respectively) were used for the definition of a linear range. CT = shRNA against C-terminal 

part of PTPA, targeting construct; Mis = mismatch construct, non-targeting control; Cl. = Clone.  
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3.1.3. Nocodazole assay with HelaTRex-pNTOneo-CT Clone L    

RRD∆ mutants were demonstrated to be hypersensitive to nocodazole and reveal inappropriate 

mitotic spindle formation, without showing a G2 arrest. Thus, a function in mitotic spindle for-

mation was proposed [Van Hoof et al., 2001].  

Nocodazole is a drug interfering with the polymerization of microtubules and prevents cells to 

form metaphase spindles [Nüsse et al., 1984]. As microtubules cannot attach to kinetochores, 

the spindle checkpoint gets activated and cells arrest in prometaphase. Furthermore, synchro-

nized cells can be analysed via flow cytometer. The Nocodazole assay was performed, to inves-

tigate whether a reduced amount of PTPA would affect the spindle assembly checkpoint arrest.  

1x10
6
 HelaTRex-pNTOneo-CT Cl.L cells were seeded and induced for 96 hours with 1µg/ml of 

doxycycline. After 75 hours of doxycycline induction, 0.5µg/ml of Nocodazole was used to ar-

rest the cells for 20 hours [Yeong et al., 2003]. After 20 hours of Nocodazole arrest, cells were 

divided into two fractions: Whereas one fraction was taken for the preparation of whole cell 

lysates, the second fraction was stained with propidium iodide, which intercalates in the DNA, 

and subsequently analysed by flow cytometry. Two gates were defined for the analysis of Hela-

TRex-pNTOneo-CT Cl.L cells with flow cytometry (data not shown). The first gate was set as 

single cell gate, to exclude debris and aggregates. The second gate served to avoid doublets, 

which occur when two cells stuck together and cross the path of the laser beam at the same time.  

No significant difference in the DNA histogram was observed between doxycycline induced and 

uninduced cells without treatment of Nocodazole (see figure 8.1.C and A, respectively). The 

cells residing in the logarithmic phase were proliferating, with most of the cells resided in G1 

phase, represented by a clear G1 peak, followed by cells in S phase, doubling their DNA con-

tent, and finally, cells were observed to be in G2 phase, containing a double amount of DNA, 

indicated by the G2 peak.  

Doxycycline induced and uninduced HelaTRex-pNTOneo-CT Cl.L cells treated with Nocoda-

zole, respectively, revealed similar DNA histograms (figure 8.1.D and B, respectively). Obvi-

ously, the cell-arrest in the transition of G2/M phase was successful, as reflected by a higher 

number of cells residing in G2 phase. However, there was an increase of a small population of 

cells with DNA content below 2n, a sub G1 population, which can be characteristic for apop-

totic cells or cells that pass over the spindle assembly checkpoint (figure 8.1.D). The additional 

peak prior to a value of 2n DNA content (FL2-A) occurred in cells treated with Nocodazole and 
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doxycycline (figure 8.1.D, peak indicated by red arrow). Finally, immunoblotting of whole cell 

lysates of the samples used in this assay (figure 8.1.E) showed a knock down of PTPA in cells 

induced for the expression of RNAi.  

The 20 hour treatment of HelaTRex-pNTOneo-CT Cl.L cells was repeated without containing 

an sub G1 population. However, a major amount of cells of doxycycline induced cells was ob-

served to reside in G1 phase (figure 8.2.B) in comparison to doxycycline uninduced cells (figure 

8.2.A). Surprisingly, this effect turned out to be similar in doxycycline induced cells treated with 

Nocodazole for 30 hours (8.2.D) in comparison to doxycycline uninduced cells (figure 8.2.C).  

In summary, it is still unclear, if cells with a reduced amount of PTPA succeed to emerge a 

spindle assembly checkpoint and start to proliferate again.  
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Figure 8.1.: Nocodazole treatment with induced and uninduced HelaTRex-pNTOneo-CT Cl.L.  Cells 

were induced for 96 hours with 1µg/ml of doxycycline, added every 24 hours. Nocodazole treatment was 

performed with 0.5µg/ml for 20 hours, cells were stained with propidium iodide and analysis was per-

formed with FACS Calibur
TM

. Untreated and uninduced HelaTRex-pNTOneo-CT Cl.L cells were utilized 

for gating and furthermore, cells were divided due to their size and granularity. 10.000 cells were ana-

lysed for each profile. PI labeling was detected in FL-2 channel. A) – D) represent DNA histograms of 

HelaTRex-pNTOneo-CT Cl. L cells without doxycycline and w/o and with Nocodazole, respectively (A, B) 

C

B

D

unind. ind

w
ith

 N
o
co

d
a
zo

le
 

w
/o

 N
o
co

d
a
zo

le

w
/o

 N
o
co

d
a
zo

le
 

w
ith

 N
o
co

d
a
zo

le
 

u
n
tr

e
a
te

d
 

PTPA

β-tubulin

GAPDH

37kD

37kD

50kD

E

A
G1    

G1

G1  

G1

S  

G2  

S  

S  S  

G2

G2

G2  

-dox

- Nocodazole

-dox 

+Nocodazole

+dox

-Nocodazole
+dox 

+Nocodazole



68 

 

and DNA histograms of doxycycline induced cells w/o and with Nocodazole, respectively (C, D). Red 

arrow depicts additional peak (D). E) Whole protein lysates were tested by western blot analysis 

(10%SDS-PAG). 30µg were used for immunoblotting with anti-gapdh (1:40.000), anti-β-tubulin (1:10.000) 

antibodies and anti-PTPA-antibody (1:1.000; 5G3). “Untreated” relates to a lysate of HelaTRex-

pNTOneo-CT Cl.L without doxycycline or Nocodazole treatment and was taken as negative control. un-

ind. = uninduced with doxycyline; ind. = induced with doxycyline.   

 

Figure 8.2.: Nocodazole treatment with induced and uninduced HelaTRex-pNTOneo-CT Cl.L.  Cells 

were induced for 96 hours with 1µg/ml of doxycycline, added every 24 hours. Nocodazole treatment was 

performed with 0.5µg/ml for 20 hours or 30 hours, A-B and C-D respectively. Cells were stained with 

propidium iodide and analysis was performed with FACS Calibur
TM

. Untreated and uninduced HelaTRex-

pNTOneo-CT Cl.L cells were utilized for gating and furthermore, cells were divided due to their size and 

granularity. 10.000 cells were analysed for each profile. PI labeling was detected in FL-2 channel. A) and 

B) represent DNA histograms of doxycycline uninduced (A) and induced (B) HelaTRex-pNTOneo-CT Cl. 

L cells, respectively, with 20 hours treatment of Nocodazole. C) and D) represent DNA histograms of 

doxycycline uninduced (C) and induced (D) HelaTRex-pNTOneo-CT Cl. L cells, respectively, with 30 

hours treatment of Nocodazole.   
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3.1.4. Evaluation of the stable knockdown of PTPA by qRT-PCR 

The knockdown of cellular PTPA with stably transfected HelaTRex-pNTOneo-CT/Mis cells has 

been quantified on protein level by using the LI-COR Odyssey imaging scanner. A knock down 

to a minimum of 15% +/- 7.5% of cellular PTPA was achieved in the clone HelaTRex-

pNTOneo-CT Cl. L expressing a targeting RNAi (see above). Due to the fact, that such a low 

level of PTPA did not cause phenotypical effects in terms of proliferation or spindle assembly 

checkpoint (see above), a qRT-PCR was set up, to allow additional quantification on the mRNA 

level. By this approach we aimed to address two questions: The determination of the effect of 

the targeting shRNA on downregulation of the mRNA for PTPA isoforms and the correlation of 

downregulated protein and mRNA amounts to check the knock down efficiency. We speculated 

about the presence of a compensating mechanism, by which a PTPA isoform that might not 

have been affected by the chosen shRNA targeting sequence could have taken over the role of 

the mainly expressed isoform, PTPAα. The shRNA targets exon 10 in the conserved C-terminal 

part of PTPA mRNA and would affect most of the published PTPA isoforms. Janssens and co-

workers showed the presence of 7 main isoforms with 2 of them lacking exon 3 and all of them 

containing exons 5 to 8. However, 27 protein coding isoforms were published on ensembl.org 

with 15 PTPA isoforms lacking exons 3 and 4 and only 14 PTPA isoforms containing exon 5. 

Therefore, two primerpairs for human PTPA were designed (Beacon Designer
TM

 program) 

spanning exon 3 to exon 4 (primerpair 1), leading to a product of 210bp, and exon 5 to exon 8 

(primerpair 2), leading to a product of 270bp.  

Prior to analysis of the PTPA mRNA isolated from the doxycycline induced samples, a gradient 

PCR was carried out with temperatures ranging from 55°C to 65°C, in order to find the optimal 

temperature for both primers regarding their specificity (please see section 2.5.4. for details), 

which turned out to be at 58°C. HelaTRex cells, taken as negative control, and HelaTRex-

pNTOneo-CT Cl.L cells, were induced for 96hours with 1µg/ml of doxycycline. Subsequently, 

RNA was isolated and reverse transcribed into cDNA (see 2.5.2. and 2.5.3.). Furthermore, a 

dilution series with RNA isolated from Hela cells was prepared (see 2.5.5.) in order to obtain a 

standard curve defining the linear range. Values of the samples were extrapolated from the stan-

dard curve. To ensure accurate results, every sample was analysed twice and normalized to the 

PCR product of human GAPDH. Relative differences of mRNA abundance are presented in 

figure 9.  
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Figure 9: qRT-PCR of stably transfected single clones with two primerpairs. Cells were induced for 

96 hours with 1µg/ml of doxycycline, added every 24 hours, and analysed via qRT-PCR. 50µg of Hela 

cDNA served as standard for a dilution series (1:1, 1:2, 1:4, 1:8, 1:16) to construct the standard curve. 

Results represent samples normalized onto GAPDH as housekeeping gene control and were calculated 

as fold change relative to control. Standard deviation reveals double measurements of one experiment. 

A) and B) represent primerpair1 and 2. CT = C-terminal; Mis = missense construct; -/+ dox = uninduced 

and induced cells, respectively.   

qPCR results obtained from mRNA of HelaTRex cells revealed no significant difference be-

tween doxycycline induced and non-induced samples. In contrast, the amount of PTPA mRNA 

(calculated as fold change relative to uninduced negative control) of doxycycline induced cells 

expressing the targeting RNAi, represented 29% with primerpair 1 in comparison to uninduced 

sample (figure 9 A). Further, doxycycline induced sample amplified with primerpair 2 revealed 

a downregulation to 40.9% in comparison to the respective uninduced sample (figure 9B). Re-

markably, primerpair 2 spanning exon 5 to exon 8, generally led to a higher amount of mRNA 

when comparing the relative values.  

To summarize, PTPA mRNA of knock down cells was still present. Although values gained 

with qRT-PCR describe relative rather than absolute levels of PTPA mRNA, a reduction to ei-

ther 29% or 40.9%, depending on the primerpair, represented a higher amount, in comparison to 
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the PTPA protein values quantified with the LI-COR Odyssey scanning system. Second, qRT-

PCR with primerpair 2, targeting the conserved C-terminal part of PTPA mRNA, resulted in 

higher values of PTPA mRNA in comparison to primerpair 1.  

 

3.2. Knockdown of PTPA with siRNAs 

Based on previous experiments, where a suppression of PTPA protein down to 15% did not 

cause phenotypic effects, we decided to further test the knock down of PTPA with siRNAs. 

Short hairpin RNAs and small interfering RNAs are intrinsically different molecules [Rao et al., 

2009] and their mechanisms, off-target effects and interference pathways vary. Thus, we de-

cided to design and evaluate the knockdown of PTPA using siRNA constructs in order to ana-

lyse whether this system would have a more striking effect, regarding PTPA levels.  

To design siRNAs, we followed the guidelines summarized by Tuschl and coworkers [Tuschl et 

al., 2004]. The sequences of the siRNAs termed “siRNA-CT” and “siRNA-Mis”, were identical 

with the previously used shRNAs, targeting the C-terminal part of PTPA and including three 

mismatches at position 4, 10 and 16, respectively. Furthermore, a second siRNA, named 

“siRNA-sigma”, targeted exon 7 and 8 of human PTPA (see 2.5.6.1. for further details). Both 

siRNAs had a length of 21 nucleotides including two thymidines at the 3´end, and a GC content 

of approximately 50%. Possible off-target effects were checked in a homology BLAST with the 

help of an algorithm developed at Whitehead institute (http://jura.wi.mit.edu/bioc/siRNAext/) 

without identifying additonal targets.  

3.2.1. Optimizing the transfection efficiency 

In order to avoid problems with specificity due to the use of inappropriate amounts of transfec-

tion reagent or cell count, the transfection efficiency was optimized by adjusting cell number 

and concentration of transfection reagent.  

Different amounts of Hela and HEKTRex cells were seeded on 24-well tissue culture plates and 

transfected with 0.8µg of pmax-GFP, a vector encoding the green fluorescent protein. 1µl, 

1.5µl, 2µl and 2.5µl of transfection reagent, Lipofectamine 2000, were used. The day after trans-

fection, cells were prepared for flow cytometric analysis with the FACS-Aria
TM

 cell sorter 

(please see table of 2.5.7. for exact cell counts analysed).  

http://jura.wi.mit.edu/bioc/siRNAext/
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99% of transfection efficiency was accomplished for the HEKTRex cell line, using 100.000 

cells/well, 2µl Lipofectamine 2000 and 0.8µg plasmid on a 24-well tissue culture plate. Up to 

60% of transfection efficiency was obtained with Hela cells at a density of 80.000 cells/well 

with either 1.5µl or 2µl Lipofectamine 2000 and 0.8µg plasmid. The parameters including cell 

density, transfection reagent and amount of plasmid for cotransfection were applied for all fur-

ther transfections unless stated differently.  

3.2.2. Evaluation of different amounts of siRNAs 

Unlike shRNA, siRNA is delivered into the cytoplasm and rather unstable. Further, siRNA is 

more susceptible to degradation in the cytoplasm and high doses are required to achieve a 

knockdown of mRNA. Moreover, high amounts of siRNAs were correlated to cytotoxic and 

non-specific off-target effects. The application of low doses of potent siRNAs has been reported 

to efficiently reduce side-effects [Zhen Li et al., 2008]. Thus, evaluation of a suitable amount of 

siRNA for transfections represents a crucial part of any siRNA experiment.  

As first transfections using 25pmol of siRNAs (data not shown) revealed an insufficient down-

regulation of PTPA, 50pmol and 100pmol of siRNAs were applied (please see 2.5.6.1. for the 

amount of ng corresponding to pmol).  

Hela and HEKTRex cells were seeded according to optimized transfection conditions (see 

3.2.2.) and transfected transiently with either 50pmol/100pmol of siRNA-Mis, the mismatch 

control, 50pmol/100pmol of siRNA-CT, targeting the C-terminal part of PTPA, or 

50pmol/100pmol of siRNA-sigma, targeting exon 7-8. Samples were analysed by western blot-

ting, 48 hours post transfection, and PTPA levels were quantified with the LI-COR Odyssey 

system. 
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Figure 10: Evaluation of different amounts of siRNAs with Hela and HEKTRex cells. Hela and 

HEKTRex cells were transfected transiently for 48 hours with either 50pmol or 100pmol of different siR-

NAs. Whole cell lysates were analysed by western blotting (10%SDS-PAG). 30µg of whole cell lysates 

was used for immunoblotting (10% SDS-PAG) with anti-gapdh (1:40.000), anti-β-tubulin (1:10.000) anti-

bodies and anti-PTPA-antibody (132/10; 1:10.000). Amounts of PTPA were normalized onto gapdh and 

β-tubulin taken as loading controls and the negative control taken as 100%. Obtained results 

(representing single experiments) were quantified with the Li-COR Odyssey imaging system. Minimum 

(10µg) and maximum (60µg) protein standards were used for the definition of a linear range. CT = siRNA 

against C-terminal part of PTPA, targeting construct; Mis = mismatch siRNA, non-targeting control; Cl. = 

Clone; negative control = cells transfected solely with mastermix.   

Transfection of 50pmol of siRNA-CT was most successful for a knock down of PTPA in HEK-

TRex cells, as western blot analyses revealed a downregulation to one fourth of the PTPA levels 

in the control cells. 100pmol of siRNA-CT resulted in a knock down to approximately 75% of 

PTPA. No significant difference was observed between 50 and 100pmol of siRNA-sigma, as 

both were sufficient to knock down PTPA to 30%. Interestingly, an upregulation to either 125% 

or ~180% of PTPA was observed when using 50pmol or 100pmol of siRNA-Mis, respectively 

(see figure 10B). As 50pmol of siRNA-Mis implied less increase of PTPA, this amount was 

applied for further investigations. In contrast to the result of HEKTRex cells, both amounts of 

siRNA-sigma, 50pmol and 100pmol, efficiently reduced PTPA to 30% of its levels in Hela cells 

(figure 10A).  
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To summarize, 50pmol of siRNA-CT was used in further studies as a standard amount. Addi-

tionally, none of the transient transfections did cause killing of cells.  

3.2.3. Evaluation of the knockdown of PTPA with siRNAs by qRT-PCR 

Again, the knock down was evaluated using the complementary approach of quantifying the 

PTPA mRNA using qRT-PCR.  

40.000 Hela cells were seeded in each well of a 6-well tissue culture plate and transfected with 

different amounts of siRNAs: 50pmol of siRNA-CT, 50pmol of siRNA-Mis, 50pmol of siRNA-

sigma and a mixture of 25pmol of siRNA-CT and 25pmol of siRNA-sigma. 48 hours post trans-

fection, RNA was isolated and reverse transcribed into cDNA. In this case, solely primerpair 2, 

spanning exon 5 to 8, was applied for amplification of mRNA. Again (see above), a dilution 

series with RNA isolated from Hela cells was prepared (see 2.5.5.) in order to obtain a standard 

curve defining the linear range. Values of the samples were extrapolated from the standard 

curve. Once more, every sample was analysed twice and normalized to the PCR product of hu-

man GAPDH, to ensure accurate results. Relative differences of mRNA abundance, correlated 

to each other, are presented in figure 11.  

First of all, the quantification of PTPA mRNA in the negative control was affected by a large 

standard deviation, rendering the reliability of the results uncertain (figure 11). Nevertheless, 

amounts of mRNA were calculated as fold change relative to non-transfected negative control. 

Transfection with 50pmol of siRNA-CT or siRNA-sigma, showed a knock down to approxi-

mately one third of PTPA mRNA, while 50pmol of siRNA-Mis revealed a slight decrease to 

80% of PTPA mRNA level. Finally, a combination of both targeting siRNAs, siRNA-CT and 

siRNA-sigma, sufficiently induced the degradation of PTPA mRNA down to 23% of the origi-

nal amount.  

To sum up, the levels quantified by the LI-COR Odyssey system on protein level and qRT-PCR 

on RNA level turned out to be similar.  
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Figure 11: qRT-PCR of transient transfection. Hela cells were transfected for 48 hours with four differ-

ent amounts of siRNAs: 50pmol siRNA-CT, 50pmol siRNA-Mis, 50pmol siRNA-sigma, 25pmol siRNA-CT 

+ 25pmol siRNA-sigma. Mastermix of transfection served as negative control. Samples were analysed by 

qRT-PCR. 50µg of Hela cDNA served as standard for a dilution series (1:1, 1:2, 1:4, 1:8, 1:16) to con-

struct the standard curve. Results represent samples normalized onto GAPDH as housekeeping gene 

control and were calculated as fold change relative to control. Standard deviation reveals double mea-

surements of one experiment. CT = C-terminal; Mis = missense construct; sigma = prevalidated siRNA.   

 

3.3. Combination of siRNA snd shRNA to suppress PTPA in Hela cells 

Suppression of PTPA to 15%, achieved either by shRNA or siRNA, did not have obvious ef-

fects on cell proliferation or survival. Therefore, we hypothesized that a combination of both 

methods might further decrease PTPA levels. Thus, HelaTRex-pNTOneo-CT Cl.L and HEK-

TRex-pNTOneo-CT Cl.8 cells were analysed for the capability to knock down PTPA to an even 

lower level than achieved by each method alone (see diploma thesis of Michaela Kugler for de-

scription of HEKTRex-pNTOneo-CT Cl.8).  

1x10
6
 HelaTRex-pNTOneo-CT Cl.L cells and HEKTRex-pNTOneo-CT Cl.8 cells (described 

and validated in diploma thesis of Michaela Kugler) were seeded and induced with 1µg/ml of 

doxycycline for 96 hours. After 96 hours, cells were transfected (for details see 2.5.6.) with dif-
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ferent amounts of siRNAs: 50pmol of siRNA-CT, siRNA-sigma, siRNA-Mis and a combination 

of 25pmol of siRNA-CT and siRNA-sigma, respectively. After 48 hours, whole cell lysates 

were prepared and analysed.  

HEKTRex-pNTOneo-CT Cl.8 cells, induced with doxycycline, revealed a knockdown to 72% 

of PTPA, if transiently transfected with siRNA-CT. A downregulation to 41% of PTPA protein 

was achieved, if transfected with siRNA-sigma. An upregulation to 180% of PTPA protein was 

obtained with siRNA-Mis, the missense control. Finally, a knockdown to 20% of total amount 

of PTPA was achieved, if transiently transfected with a combination of both siRNAs (figure 

12A). These results were obtained after normalization of values to the PTPA level of transfec-

tion control cells. If normalized to the PTPA levels in doxycycline uninduced cells (negative 

control), doxycycline induced HEKTRex-pNTOneo-CT Cl.8 cells revealed a downregulation to 

22% of PTPA protein if transfected with siRNA-CT, 16% with siRNA-sigma, 39% with siRNA-

Mis and 9% if transfected with a combination of siRNA-CT and siRNA-sigma.  

Due to a mistake, it was not possible to normalize values of HelaTRex-pNTOneo-CT Cl.L cells 

to an uninduced negative control. So, reduced amounts of PTPA were normalized to the trans-

fection control only, represented by the value of a doxycycline induced sample incubated with 

transfection reagents. Doxycycline induced HelaTRex-pNTOneo-CT Cl.L cells exhibited a 

knockdown to 35% of PTPA protein with siRNA-CT, 40% with siRNA-sigma, 127% with 

siRNA-Mis and 40% with the combination of both targeting siRNAs (figure 12 B).  
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Figure 12: Combination of siRNA and shRNA suppression of PTPA in HelaTRex-pNTOneo-CT Cl.L 

and HEKTRex-pNTOneo-CT Cl.8 cells. Cells were induced for 96 hours with 1µg/ml of doxycycline, 

added every 24 hours, transiently transfected and incubated for another 48 hours without additional in-

duction of doxycycline. Whole cell lysates were prepared and tested by western blot analysis (10% SDS-

PAG). PTPA levels were quantified with a LI-COR Odyssey imaging system. 30µg were taken for immu-

noblotting with anti-gapdh (1:40.000), anti-β-tubulin (1:10.000) and anti-PTPA antibod (5G3, 1:1000). A) 

Induced HEKTRex-pNTOneo-CT Cl.8 cells. Amounts of PTPA were first normalized onto GAPDH and 

β-tubulin as loading controls. Then, values were normalized to the “negative control”, related to the PTPA 

amount in negative control cells, or to the transfection control. B) Induced HelaTRex-pNTOneo-CT Cl.L 

cells. Amounts of PTPA were first normalized onto GAPDH, β-tubulin as loading controls. Then, values 

were normalized to the “transfection control”, representing a cell lysate of induced sample transfected 

with mastermix solely. CT = RNAi sequence against C-terminal part of PTPA; Mis = mismatch construct; 

sigma = prevalidated siRNA; Cl. = Clone; transfection control = induced sample transfected with master-

mix.   

Although the application of siRNA-CT in HelaTRex-pNTOneo-CT Cl.L cells revealed a knock-

down to 35%, the residing amount of protein was representative for already reduced protein le-

vels due to the lack of a negative control for normalization. Thus, a significant interpretation of 

these data was not possible. Furthermore, a combination of both targeting siRNAs turned out to 

be most effective in terms of knocking down PTPA in induced HEKTRex cells, with a reduction 

to 9% in comparison to uninduced cells. Regardless of the use of RNAi, there was still an 
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amount of at least 9% of PTPA protein present. That low amount did not affect cell viability so 

far.  

 

3.4. Knockdown of PTPA by retroviral infection  

So far, the combination of shRNA and siRNA against PTPA suppressed PTPA levels to 9% in 

comparison to untreated samples. As this low level seemed to be sufficient for the function of 

PTPA, I speculated whether the long half-life of PTPA [Donehower et al., 1992] or a low 

threshold level could be responsible for rendering cellular functions intact. Therefore, we hy-

pothesized, that a retroviral vector, pRetroSuperStuffer, constitutively expressing a RNAi targeting 

sequence for the mRNA of PTPA, could downregulate PTPA more efficiently below an amount 

of 9%. The RNAi expression of pRetroSuperStuffer was under control of a polymerase III de-

pendent H1-promoter and the shRNA sequence was identical to “siRNA-CT”. Additionally, a 

puromycin resistance gene served as a marker for selection of infected cells and a specially de-

signed 3´LTR with a deletion of the LTR promoter facilitated the inactivation the LTR mediated 

transcription upon integration. Finally, an ampicillin resistance allowed propagation of the 

plasmid in E. coli.  

Further, pRetroSuperStuffer-CT Clone 3 and pRetroSuperStuffer-Mis Clone 2 were chosen for the 

production of retroviral contamining supernatants, which were used for subsequent infections of 

NIH3T3 cells. NIH3T3 cells were selected with 5µg/ml puromycin, to avoid untransfected cells. 

Finally, samples were analysed by western blotting three days in a row post infection.  
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Figure 13: Retroviral Infection of mouse fibroblast cells for 3 days. NIH3T3 cells were selected with 

5µg/ml puromycin for infection with either pRetroSuperStuffer-CT, containing a targeting shRNA against 

mRNA of PTPA, pRetroSuperStuffer-Mis, containing a shRNA uncapable of binding to the mRNA, or emtpy 

vector control, pRetroSuperStuffer. 30µg of whole cell lysates were analysed by immunoblotting (10%SDS-

PAG) with anti-PTPA-antibody (5G3, 1:1000), anti- β-tubulin (1:10.000) and anti-gapdh (1:40.000). A), B) 

and C), refer to day 1, day 2 and day 3 post infections, respectively. CT = shRNA against C-terminal 

part of PTPA, targeting construct; Mis = mismatch construct, non-targeting control.   

Although a slight reduction of PTPA could be observed at day 1 post infection with pRetroSu-

perStuffer-CT (figure 13A), no significant knock down of PTPA could be visualized at day 2 or 3 

post infections (figure 13B and C). Therefore, the infection with retroviral contamining super-

natant of NIH3T3 cells was repeated but did not reveal an effect on the level of PTPA again 

(data not shown). The RNAi sequence is fully complementary between mouse and human.  

Thus, the infection was repeated with Hela cells stably transfected with the pWZL vector, con-

stitutively expressing an ecotropic murine retroviral receptor and furthermore allowing for an 

infection with murine specific retroviruses (data not shown). A significant knock down of PTPA 

was achieved neither in NIH3T3 cells nor in Hela-pWZL cells. Hence, a vector backbone muta-

tion could be held responsible, as the shRNA sequences of the vector were verified through se-

quencing.  
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3.5. First steps of cloning a conditional knock-out vector targeting PTPA 

RRD1/RRD2, the PTPA homologues in yeast, were shown to fulfill essential functions in yeast. 

In this study, the results of knockdown experiments revealed, that ~10% of PTPA were suffi-

cient for PTPAs function. In order to find out about PTPAs function, we aimed to delete the 

PTPA gene in a loss-of-function approach and started the design of a conditional knock-out vec-

tor targeting PTPA in mouse in collaboration with Arabella Meixner (“Stem Cell Centre – 

Mouse Gene Targeting”, IMBA, Vienna). A conditional knock-out vector can be used to gener-

ate both, null and conditional alleles of a gene, using the Cre/LoxP and Flp/FRT recombinase 

system [Adams and Weyden, 2008]. As such, a vector could inactivate PTPA in the germline or 

in certain tissues, it represents an elegant model to elucidate PTPA´s function.  

First, the length of homology arms, critically affecting targeting frequency [Hasty et al 1991], 

and selection of targeted exon was the matter of debate. Due to the fact, that all isoforms related 

to PTPA are expressed from the same promoter [Janssens 1999], we decided to target N-

terminal exon 2 and exon 3 and thereupon inhibit the production of all isoforms. Furthermore, 

site-specific recombinase target sites including Flp/FRT and Cre/loxP were planned to flank the 

DNA sequence. The target would then be cre- excisable and the resistance marker gene, used for 

selection of ES cells, could be removed.   

3.5.1. Verifying BAC-clones  

In order to construct the targeting vector, a bacterial artificial chromosome (BAC), containing 

the PTPA gene, had to be used. Three such clones were obtained and had to be checked by PCR 

for the presence of the PTPA gene: RP23431 H3, RP24339 D2 and RP23165L 19.  

The DNA of two BAC-type clones was isolated and checked by PCR (for further details please 

see 2.4.4. and 2.4.5.). The correct PCR product, containing 676bp, was determined for two 

BAC-clones, RP23431 H3 #4 and RP24339 D2 #4 (figure 14, positive samples are marked in 

red). Subsequently, both were used for electroporation into EL350 bacteria.  
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Figure 14: Verifying BAC-clones. DNA of three BAC-clones, RP23431 H3, RP24339 D2 and 

RP23165L 19, was isolated and checked by PCR to confirm the identity whether they contain the PTPA 

gene. Samples were analysed on a 1.8% agarose gel which was run for 40 minutes. The positive control 

gave a product with a size of ~700bp. Samples positive for PTPA gene are marked in red. Negative con-

trol = PCR mastermix without template; positive control = Rosa 26 (kindly provided by Stefan Schüchner) 

3.5.2. Electroporation of BAC-clone and EL350 

After identifying the BAC-clone containing the PTPA gene, I tried to electroporate the BAC-

clone into EL350 bacteria, which are capable of Red homologous recombination and Cre/loxP 

mediated recombination due to a temperature shift up to 37°C [Lee at al., 2001].  

Different amounts of BAC-DNA were chosen for the electroporation. I used 

100ng/500ng/1000ng or 200ng/500ng/1000ng of DNA preparation of BAC-clone RP24339 D2 

#4 and selected with 15µg/ml or 7.5µg/ml of Chloramphenicol after electroporation, repspec-

tively. Furthermore, I used 200ng/500ng/1000ng of DNA preparation of BAC-clone RP23431 

H3 #4 and selected again with either 15µg/ml or 7.5µg/ml of Chloramphenicol (for details 

please see 2.3.6.). 100ng or 200ng of pSuper vector served as electroporation control. The elec-

troporation was carried out three times with a Bio-Rad Gene Pulser
®
 at 2.5kV, 200Ω and 25µF 

and freshly prepared competent cells (see 2.3.6.). However, none of the attempts including 

BAC-DNA turned out to be successful, although the electroporation with pSuper vector control 

worked out each time.  
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Subcellular localization of PTPA 

 

3.6. Subcellular localization of PTPA  

So far, knockdown experiments with siRNA or shRNA revealed a PTPA level of 10% without 

hampered proliferation or affected cell viability. Michaela Kugler found signs of apoptosis in 

transiently transfected Hela, U2OS, SW480 and N2A cells due to the knockdown of PTPA (see 

diploma thesis of Michaela Kugler for details), no precise conclusions could be drawn, as a 

PTPA specific antibody, which would work in immunofluorescence, was missing. Therefore, 

we aimed to identify the PTPA levels in Hela cells transiently transfected with shRNA and de-

termine whether low amounts of PTPA would correlate with apoptosis induction.  

Additionally, Azam and coworkers proposed a mainly nuclear localization of PTPA [Azam et 

al., 2007]. These authors overexpressed a PTPA-GFP fusion protein in HCT116 cells and pri-

marily found a nuclear distribution. They assumed the cytoplasmic occurrence to be a conse-

quence of the overexpression. As this study was based solely on overexpression, we aimed to 

identify the subcellular localization of PTPA with the advantage of a new antibody specific for 

PTPA.  

3.6.1. Subcellular localization of PTPA via fractionation  

As a second method to determine the subcellular localization of PTPA, we applied subcellular 

fractionation, which works with a separation of nucleus and cytoplasm [Roblek et al., 2010, 

Rosner and Hengstschläger, 2008] (for details see 2.2.12.).  
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Figure 15: Subcellular localization of PTPA in Hela cells. Hela cells were fractionated into a cytop-

lasmic and nuclear fraction by centrifugation. Subsequently, lysates of each fraction were tested by 

western blot analysis (10% SDS-PAG) with each lane containing the lysates from 100.000 cells. Immu-

noblotting was performed with anti-lamin A/C (4C11; 1:1000) and anti-β-tubulin (1:10.000), with Lamin 

A/C and β-tubulin serving as nuclear and cytoplasmic marker, respectively.  PTPA was detected with 

anti-PTPA antibody (5G3; 1:1000). All panels, A), B) and C) represent independent fractionation experi-

ments. Arrows indicats an additional band above PTPA.  

Hela cell lysates were subdivided into three fractions: whole cell lysate, cytoplasmic and nuclear 

fraction and analysed by immunoblotting with monoclonal anti-PTPA antibody (5G3) and 

monoclonal anti-β-tubulin and anti-lamin A/C antibodies, as markers for cytoplasm and nucleus, 

respectively [Roblek et al., 2010, Thyberg and Moskalewski, 1985].  

37kD

50kD

75kD

lamin A/C

PTPA

β-tubulin

c
y
to

p
la

s
m

ic
 f
ra

c
ti
o
n

w
h
o
le

 c
e
ll 

ly
s
a
te

n
u
c
le

a
r 

fr
a
c
ti
o
n

c
y
to

p
la

s
m

ic
 f
ra

c
ti
o
n

w
h
o
le

 c
e
ll 

ly
s
a
te

n
u
c
le

a
r 

fr
a
c
ti
o
n

75kD

50kD

C
y
to

p
la

s
m

ic
 f

ra
c
ti
o
n

W
h
o
le

 c
e
ll 

ly
s
a
te

n
u
c
le

a
r 

fr
a
c
ti
o
n

37kD

50kD

75kD

BA

lamin A/C

PTPA

β-tubulin

C
experiment 1 experiment 2 experiment 3



84 

 

Immunoblotting with anti-lamin A/C antibody revealed two strong bands occurring at 69kDa 

and 62kDa, representing Lamin A and C (figure 15A-C). Furthermore, anti-β-tubulin antibody 

recognized β-tubulin in the cytoplasmic fractions (figure 15A and B, lower part of both panels). 

PTPA was detectable mainly in the cytoplasmic fraction of Hela cells with a molecluar weight 

of approximately 38kDa (figure 15A-c). A weak signal was detectable in the nuclear fraction 

once (figure 15A). Since a signal of anti-lamin A/C antibody was detectable as well in the cyto-

plasmic fraction, the fractionation seemed not to be as pure as intended. Therefore, the subcellu-

lar fractionation was repeated and revealed a specific signal for PTPA occurring in the cyto-

plasmic fraction (figure 15C). In this case, a clear distinction was obvious, with signals of anti-

lamin A/C and anti-β-tubulin antibody referring to the nuclear fraction and cytoplasmic fraction 

solely. However, the exposure times of immunoblots shown in figure 15 varied. The results of 

experiments 1 and 2 represent an exposure time of 20 minutes in case of incubation with anti-

lamin A/C antibody, while the result of incubation with anti-lamin A/C antibody of experiment 

3 depicts a 5 minute exposure.  

Interestingly, additional bands with a molecular weight of 42kDa occurred above the signal of 

PTPA (figure 15, additional band indicated by red arrow). To investigate, if the additional band 

could represent a phosphorylated species of PTPA, further experiments were necessary (see be-

low).  

3.6.2. Identification of potential phosphorylation of PTPA 

To determine, if the additional band migrating above the PTPA specific signal in SDS-PAG (see 

above) could represent a phosphorylated species of PTPA, further analyses were carried out. 

Calf Intestinal Alkaline Phosphatase (CIP) was used for the removal of potential phosphoryla-

tion [e.g. Wang et al., 1993]. To further investigate the possibility of the occurrence of addi-

tional bands in further cell lines, NIH3T3, HEKTRex, HelaTRex and Hela cells were included 

in the assay. Finally, anti-EAPP (E2F associated phospho protein) antibody (kindly provided by 

Peter Andorfer) served as positive control for the phosphatase treatment, since EAPP was shown 

to shift in migration behaviour upon treatment with CIP due to the removal of phosphorylation 

[Novy et al., 2005].  
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100µg of whole cell lysates of the indicated cell lines were incubated with 5000 Units of CIP 

and analysed by western blot and immunoblotting with anti-PTPA antibody (5G3), anti-EAPP 

antibody and anti-β-tubulin and anti-GAPDH antibody as loading controls.  

First of all, the signal referring to EAPP, appearing at ~36kDa, represented a double band in 

samples untreated with the phosphatase. Upon CIP treatment the upper EAPP band disappeared 

(figure 16A). Interestingly, the additional band above PTPA (figure 16A, indicated by red ar-

row) occurred in all samples, with and without incubation of CIP, except NIH3T3 lysates. 

Moreover, the amount of slower migrating species is less in HEKTRex cells compared to Hela 

cells. Further controls, whole cell lysates of Hela cells with and without buffer, were included in 

the second experiment and did not exhibit any difference between control samples (figure 16B).  

 

Figure 16: Phosphatase treatment of cell lysates. A) and B) represent independent experiments: 

100µg of whole cell lysates of different cell lines was incubated with 5000 U of CIP and NEBuffer 3 (see 

2.2.13. for details). Moreover, samples were analysed by immunoblotting (10% SDS-PAG) with anti-

PTPA (5G3, 1:1000), anti-β-tubulin (1:10.000), anti-GAPDH (1:40.000) and anti-EAPP antibody 

(1:5.000). Samples without CIP incubation (-CIP) and without NEBuffer 3 (control in B) served as nega-

tive controls. Arrows point out the additional band of PTPA. Two bands are indicated referring to EAPP. 

+CIP = incubation with CIP; control = Hela lysate with or w/o buffer (-/+ buffer) 
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Further research in the ensembl-database (www.ensembl.org), revealed the existence of two 

isoforms specific for human PTPA with molecular weights of 40.6 kDa, representing the β-

isoform of PTPA [Janssens et al, 2000], and 42.15 kDa, while no isoform with molecular 

weights more than 36.7 kDa was predicted for mouse PTPA. To sum up, an additional isoform 

exists for human PTPA, which could be identified by immunoblotting and did not reduce its 

signal intensity upon incubation with CIP. Further, the PTPA specific isoform could be sup-

pressed by shRNA/siRNA.  

 

3.7. Production of a new antibody against PTPA 

Recently used PTPA specific antibodies did not work in immunofluorescence, as a reduction of 

signal intensity was missing in cells with suppressed PTPA levels (as shown in western blot 

analyses, please see “Wahlbeispiel-protocol” for further details). Thus, we aimed to produce a 

new one that might work for immunofluorescence analysis, to identify altered protein levels. 

Second, subcellular fractionation experiments demonstrated a distribution of the protein mainly 

to the cytoplasm (see above). Therefore, a new antibody specific for the application in im-

munofluorescence could confirm these results. 

Initially, the polyclonal anti-rabbit PTPA antibody (171.1), which was applied for quantitative 

detection of PTPA in previous results, was affinity purified by covalent coupling on a SulfoLink 

antigen-column in order to improve signal intensity and specificity (for details please see 

2.2.14.1.). However, even after this purification procedure various unspecific background bands 

were recognized in the immnunoblot analysis (data not shown). Hence, full length His-tagged 

PTPA was recombinantly expressed and purified on Ni-agarose beads. This purified PTPA was 

subsequently used for immunisation of four mice and one rabbit (in collaboration with Marko 

Roblek and Stefan Schüchner).  

3.7.1. Recombinant expression of full length PTPA and His purification 

To evaluate the most efficient bacterial strain in terms of expressing the antigen, full length His-

tagged PTPA (pB´His NP SpHI/NcOI PTPA#2 ) was recombinantly expressed in three different 

bacterial strains, Origami, Rosetta (+) and Rosetta (-). Rosetta (-), the strain with the highest 

amounts of expressed antigen, was chosen for expressing large quantities of His-tagged PTPA.  

http://www.ensembl.org/
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Following the IPTG induced expression of His-tagged PTPA (please see 2.3.5. for details), 

soluble and insoluble fractions of cell lysates were analysed by western blotting (data not 

shown) and Coomassie staining, to check whether PTPA was expressed in soluble or insoluble 

fraction. Subsequently, samples were His-purified with NI-NTA beads (see 2.2.2.) and tested by 

western blotting (data not shown) and Coomassie staining. Eluted fractions, termed elution 1 

and 2, NI-NTA beads, to check the amount of antigen still bound and samples uninduced for the 

expression of PTPA, serving as negative controls, were tested. Finally, a dilution series of re-

combinantly expressed and His-purified antigen was compared with BSA-standards by 

Coomassie analysis to estimate protein amounts.  

  

Figure 17: His – purification of recombinantly expressed PTPA. A) PTPA was recombinantly ex-

pressed in Rosetta (-) followed by His-tag purification, SDS-PAG analysis (10%) and Coomassie stain-

ing. Soluble and insoluble fractions of bacteria induced and uninduced with IPTG (0.75% and 1.5% of 

total volumes, of soluble and insoluble fractions) are shown in right panel (before purification). His-

purified samples of induced and uninduced soluble fractions are shown in the left panel (3% of total vol-

ume). B) The concentration of His-tag purified samples was determined by SDS-PAG analysis (10%) 

and Coomassie staining. PTPA and BSA, containing molecular weights of 42kDa and 66kDa, respec-

tively, are indicated with bars aside of each figue. pellet = insoluble fraction; SN = supernatant, soluble 

fraction; beads = Ni-NTA beads.   
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A higher amount of full length His-tagged PTPA was present in the IPTG induced soluble frac-

tion compared to induced insoluble fraction (figure 17A, right panel). However, even without 

IPTG induction, there was around one fourth of the amount in comparison to induced samples. 

Furthermore, I purified His-tagged protein from the soluble fractions, eluted with imidazol (see 

2.2.2. for further details) and tested the eluted samples with western blotting (data not shown) 

and Coomassie staining. Induced eluted fractions 1 and 2 contained at least more than twice as 

much antigen in comparison to uninduced eluted fraction (figure 17A, middle panel). As some 

antigen was still bound to the Ni-agarose beads, the elution with imidazol could be repeated. 

Finally, His-purified PTPA was compared to BSA standards in a dilution series (see above). 

Approximately 2µl of His-purified protein was found equivalent to 6µg of BSA standard (figure 

17B). To sum up, the efficiency of the His-purification was sufficient for the production of anti-

gen in order to immunise mice and rabbit, but the NI-NTA beads could be reused for purifica-

tion once again.  

3.7.2. New antibodies specific for PTPA 

Following the heterologous protein expression and purification, 4 mice originating from the 

strain RBF/DnJ RB(8.12)5Bnr and 1 New Zealand White rabbit were immunised with full 

length PTPA (please see 2.6. for further details) and subsequently tested for their immunre-

sponse. Preimmune sera and final bleeds were tested for signal specificity and intensity in the 

immunofluorescence and immunoblotting analyses.  

The polyclonal rabbit anti-PTPA antibody recognized PTPA in the immunoblot of Hela cell 

lysates but also many other proteins with similar intensities (figure 18.C). Therefore, sera were 

stored at 4°C without further evaluation. Next, preimmune sera and sera from fourth bleeds of 

mouse 1 and 4, respectively, were tested in immunofluorescence (figure 19, 1-3). Fourth bleeds 

of mouse 1 and 4, revealed a prominent cytoplasmic signal (figure 19, 2 and 3) in comparison to 

anti-PTPA antibody 5G3, which showed a predominantly nuclear staining (figure 19, 4). Addi-

tionally, preimmune serum of mouse 1 stained rather diffusely (figure 19, 1). Based on a more 

homogenous signal arising from incubation of Hela cells with fourth bleed of mouse 4 in com-

parison to mouse 1 (figure 19, 2), we decided to fuse splenocytes of mouse 4 with X63.Ag8.653 

cells.  
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Subsequently, splenocytes of mouse 4 were fused with X63.Ag8.653 cells and seeded onto 4x96 

well plates and 4x12 well plates (fusion was performed by Marko Roblek). Hybridoma super-

natants were tested for the presence of PTPA specific antibodies by immunoblotting 8 days after 

fusion. In the first testing round, pools of supernatants from 8 wells (for 96 well plate) and pools 

of 2 wells (for 12 well plates) were checked for the presence of antibodies specific for PTPA 

(data not shown). 10 pools of supernatants, positive for PTPA, were retested individually, in 

order to detect hybridoma clones responsible for the production of the antibody (figure 18.B). 

 

Figure 18: Test of hybridoma supernatants and polyclonal rabbit antibody. A) Final bleed of immu-

nized rabbit was tested for PTPA specificity in a western blot analysis (10% SDS-PAG) of Hela cell ly-

sates. Preimmune serum of rabbit 132 (1:100 with 0.5%NFDM) and 4.bleed (final bleed, 1:100 with 

0.5%NFDM) were tested. Anti-rabbit polyclonal antibody against PTPA (R171.1) was used as positive 

control (1:10.000 with 0.5%NFDM). B) Hybridoma supernatans were tested for the presence of antibod-

ies after fusion of splenocytes with X63.Ag8.653 cells in pools of supernatants (data not shown). Next, 

50µl supernatant of individual wells from each positive pool of hybridoma cells was retested in western 

blot analysis (10% SDS-PAG) of Hela cell lysates. 2.bleed of mouse 4 (1:100 with 0.5%NFDM) served as 
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control. Among the PTPA positive hybridoma supernatants, the following (highlighted in red) were tested 

in the immunofluorescence application: 5E10, 5C12, 5F12, 6G2, 7F12, 1B3, 1D2, 1D5 and 4B5. C) 50µl 

of supernatant of minimal diluted mixed clones, 6G2 and 7F12, were analysed by western blotting (10% 

SDS-PAG) of Hela cell lysates. Two PTPA specific single clones, 6G2 7F and 7F12 10B, were chosen 

for further analysis in immunofluorescence.  

Pools of hybridoma supernatant, containing PTPA specific antibodies (data not shown), were 

seperated into to individual supernatant of each well and the following hybridoma mix clones 

were chosen: 1B3, 1D2, 5E10, 6G2 and 7F12 (figure 18.B, highlighted in red). They exhibited 

slightly different appearances in immunoblot analyses in terms of signal strength and specificity. 

Additionally, each hybridoma subclone was tested in immunofluorescence. Mix clones 1D2 and 

5E10 showed similar staining patterns except of intensity and clones 6G2 and 7F12 represented 

differential patterns to each other (figure 20, 1-5). Mixed hybridoma subclone 6G2 localized 

PTPA mainly in cytoplasmic regions, while 7F12 showed a detection of the antigen in the nu-

cleus (figure 20, 4 and 5). Thus, both mixed clones were chosen for minimal dilution on 96 well 

plates with cell densities of 1.6 clones/well and 3.6 clones/well (please see 2.6.3. for further de-

tails).  

Following minimal dilution, supernatants were analysed by western blotting in pools of 12 wells 

and retested for the identification of single clones producing PTPA-specific antibodies (figure 

18.C). Interestingly, all single clones of minimal diluted hybridoma subclone 7F12 detected an 

additional band around 100kDa in the immunoblot analysis (figure 18.C, right panel), while all 

single clones originating from subclone 6G2, showed a similar pattern in comparison to anti-

PTPA antibody, 5G3 (figure 18.C, left panel).  

Furthermore, subclone 6G2 10B, which contained 1 clone/well after minimal dilution, and sub-

clone 7F12 10B, which contained 4 clones/well after minimal dilution, were tested again in im-

munofluorescence (figure 21, 1-4). Single hybridoma clone 6G2 10B clearly lost the cytoplas-

mic staining after minimal dilution and represented a specific staining in the nucleus (figure 21, 

1). In contrast, mixed subclone 6G2 still exhibited cytoplasmic staining (figure 21, 2). Although 

it was unclear, if the cytoplasmic staining of mixed hybridoma clone 6G2 would be due to 

PTPA specific binding, the supernatant was chosen for further investigations, as previous analy-

ses of subcellular fractionated Hela cells checked by immunoblotting revealed a mainly cyto-

plasmic distribution of PTPA in Hela cells (see above). Finally, minimal diluted hybridoma sub-

clone 7F12 10B allowed an improved signal intensity and its nuclear staining remained (figure 

21, 3).  
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In order to further identify the knock down of PTPA via immunofluorescence, mixed clone 6G2 

and single clone 7F12 10B, localizing PTPA in the cytoplasm and nucleus, respectively, were 

chosen. Therefore, both hybridoma clones were expanded to at least 10x100 diameter tissue 

culture plates.  
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Figure 19: Test of preimmune sera and immune sera. 5x10
4
 Hela cells were prepared according to 

the description in 2.2.10. Preimmune serum (1) and immune sera of final bleeds of mouse 4 and 1 (2 and 

3), diluted 1:100 in 1%BSA/PBS, and anti-PTPA antibody 5G3 (4), diluted 1:10, were incubated o/n at 

4°C. Signals appearing in green (middle panel) refer to an incubation with secondary antibody Alexa 488 

(1:500 in 1%BSA/PBS). Cells were counterstained with Hoechst 33342 (left panel). Right panel 

represents merged pictures. Yellow arrows depict either nuclear (nuc.) or cytoplasmic (cyt.) staining. 

Pictures were taken with a Zeiss LSM 510 Meta confocal microscope (63x objective) using the corres-

ponding LSM 510 Meta software.  
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Figure 20: Test of mixed hybridoma clones. 5x10
4
 Hela cells were prepared according to the descrip-

tion in 2.2.10. Supernatants of mixed hybridoma clone 1B3 (1), 1D2 (2), 5E10 (3), 6G2 (4) and 7F12 (5) 

were diluted 1:100 in 1%BSA/PBS and incubated o/n at 4°C. Signals appearing in green (middle panel) 

refer to an incubation with secondary antibody Alexa 488 (1:500 in 1%BSA/PBS). Cells were counters-

tained with Hoechst 33342 (left panel). Right panel represents merged pictures. Yellow arrows depict 

either nuclear (nuc.) or cytoplasmic (cyt.) staining. Pictures were taken with a Zeiss LSM 510 Meta con-

focal microscope (63x objective) using the corresponding LSM 510 Meta software. 
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Figure 21: Test of minimally diluted hybridoma clones. 5x10
4
 Hela cells were prepared according to 

the description in 2.2.10. Undiluted supernatants of minimally diluted hybridoma clones 6G2 7F (1) and 

7F12 10B (2) were incubated o/n at 4°C. Undiluted supernatants of mixed hybridoma clones 6G2 (2) and 

7F12 (4) were incubated o/n at 4°C. Signals appearing in red (middle panel) refer to an incubation with 

secondary antibody Alexa 594 (1:500 in 1%BSA/PBS). Cells were counterstained with Hoechst 33342 

(left panel). Right panel represents merged pictures. Yellow arrows depict either nuclear (nuc.) or cytop-

lasmic (cyt.) staining. Pictures were taken with a Zeiss LSM 510 Meta confocal microscope (63x objec-

tive) using the corresponding LSM 510 Meta software. 
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3.7.3. Purification of mouse anti-PTPA subclones 6G2, 7F12 10B and rabbit anti-PTPA 

polyclonal serum 132/10 

Immunofluorescences with mixed hybridoma clone 6G2 7F and supernatant of monoclonal 

7F12 10B (figure 21), indicated, that PTPA would occur mainly in the nucleus. In contrast, the 

hybridoma mix clone, 6G2, displayed a predominantly cytoplasmatic staining. To further im-

prove specificity by reducing the background and to concentrate the antibodies, supernatant of 

mixed subclone 6G2, single subclone 7F12 10B and polyclonal rabbit anti-PTPA serum 

(132/10), were affinity purified. Therefore, 1ml of each supernatant was incubated with His-

tagged PTPA blotted on a nitrocellulose membrane (for details please see 2.2.14.2.). Subsequent 

washing and elution of antibodies completed the purification procedure.  

 

Figure 22: Purification of antibodies. Antibodies were affinity purified from supernatants or antiserum 

of mixed clone 6G2, subclone 7F12 10B and 132/10 were tested by western blotting analyses of whole 

cell Hela lysates (10%SDS-PAG). Lanes indicated as 7F12 10B (A), 6G2 (B) and 312/10 (C) (1:20), 

were incubated with supernatants before purification (1:20). Lanes of “depleted supernatant/serum” 

(1:200) were incubated with supernatants after incubation of the nitrocellulose bound antigen. Eluates 1-

3 were incubated with purified antibodies of eluted fractions (1:200). Monoclonal anti-PTPA antibody 5G3 

(1:1000) represents the positive control. Arrow is indicating PTPA for A, B and C and molecular weights 

are indicated as well for A, B and C.  

In case of subclone 7F12 10B (figure 22 A), eluted fractions 1 and 2 showed less off target sig-

nals in comparison to the immunoblot incubated with raw supernatant of 7F12 10B. Interest-

ingly, all immunoblots with 7F12 10B supernatants demonstrated an additional band at 100kDa. 
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Finally, eluted fraction 1 and 2 were pooled for further analysis without including eluted frac-

tion 3, as it showed reduced signal intensity. Second, only slight differences in signal intensities 

were recognized in immunoblots with mixed hybridoma subclone 6G2 (figure 22 B). Each frac-

tion revealed clear PTPA-specific signals occurring at 37kDa and 42kDa, representing two main 

human isoforms, respectively. Thus, all eluted fractions were pooled for further use. Finally, 

purified rabbit serum 132/10 showed improved specificity in all eluates and eluted fractions one 

to three were pooled (figure 22 C).  

Although the purification turned out to be successful, due to a reduction of unspecific back-

ground bands and an increase of PTPA specific signal, some PTPA specific antibody was still 

bound to the nitrocellulose membrane (figure 22, depleted supernatant/serum). Moreover, raw 

supernatants were incubated with the nitrocellulose membrane at a dilution of 1:20, while the 

result of eluates represented a dilution of 1:200. Thus, it is difficult to compare the samples di-

rectly.  

3.7.4. Evaluation of downregulated PTPA via immunofluorescence 

To determine the degree of PTPA knock down using the purified antibodies, HelaTRex-

pNTOneo CT Cl.L and HelaTRex-pNTOneo-Mis Cl.D cells were induced for the expression of 

RNAi (see above for details) and analysed by western blotting and immunofluorescence.  

Cells induced with doxycycline for 96 hours and uninduced cells were permeabilized and fixed 

with 3.7% formaldehyde, and incubated with purified or raw hybridoma supernatant. Finally, 

samples were analysed by confocal laser scanning microscopy and western blotting, to visualise 

remaining PTPA and to determine the degree of PTPA knock down, respectively.  

First, knock down of PTPA was confirmed by immunoblotting with the purified 7F12 10B su-

pernatant (figure 23). The monoclonal anti-PTPA antibody 5G3 as well as the novel hybridoma 

supernatant 7F12 10B detected the decrease of PTPA levels. Upon shRNA induced downregula-

tion of PTPA, the 100kDa protein, detected by 7F12 10B, was not reduced suggesting that it 

was not a PTPA specific protein. So, the novel monoclonal 7F12 10B antibody detected specific 

PTPA.  
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Figure 23: Evaluation of downregulated PTPA by immunoblot analyses with different antibodies. 

HelaTRex-pNTOneo-CT Cl.L and HelaTRex-pNTOneo-Mis Cl.D cells were induced for 96 hours with 

1µg/ml of doxycycline added everey 24 hours and uninduced samples were taken as negative control. 

Whole cell lysates were prepared and analysed by 10% SDS-PAG. Immunoblotting was performed with 

anti-PTPA antibody 5G3 (1:1000), A), raw supernatant of monoclonal 7F12 10B (1:20), B), β-tubulin 

(1:10.000) and GAPDH (1:40.000). unind. = uninduced sample without doxycycline; ind. = sample in-

duced with doxycycline.  

Furthermore, we expected that the downregulation of PTPA would be also detected in im-

munofluorescence analysis. Raw supernatants of 7F12 10B, exhibiting nuclear staining, did not 

show any differences in signal intensity between induced and uninduced sample (figure 24 A, 3 

and 4). Surprisingly, purified supernatant of 7F12 10B, previously exhibiting nuclear staining, 

showed a cytoplasmic accompanied by an intense staining surrounding the nucleus.  
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Figure 24: Detection of PTPA in cells with purified/raw 7F12 10B.  HelaTRex-pNTOneo-CT Cl.L cells 

were induced for 96 hours with 1µg/ml of doxycycline added every 24 hours, seeded on 6-well tissue 

culture plates, permeabilized and fixed with 3.7% formaldehyde (see 2.2.10). Undiluted affinity purified 

supernatant of 7F12 10B, with doxycycline induced (1) and uninduced (2) cells, and undiluted raw super-

natant, with doxycycline induced (3) and uninduced (4) cells, were incubated o/n at 4°C. Signals appear-

ing in red and green (middle panel) refer to incubation with secondary antibodies Alexa 594/488 (1:500 in 

1%BSA/PBS). Cells were counterstained with Hoechst 33342 (left panel). Right panel represents merged 

pictures. Yellow arrows depict either nuclear (nuc.) or cytoplasmic (cyt.) staining. Pictures were taken 

with a Zeiss LSM 510 Meta confocal microscope (63x objective) using the corresponding LSM 510 Meta 

software. 

 

1

2

3

4

p
u
ri
fi
e

d
 7

F
1

2
 1

0
B

in
d
u

c
e

d
 

p
u
ri
fi
e

d
 7

F
1

2
 1

0
B

u
n
in

d
u

c
e

d
 

ra
w

 7
F

1
2

 1
0
B

in
d
u

c
e

d
 

ra
w

 7
F

1
2

 1
0
B

u
n
in

d
u

c
e

d
 

cyt.

nuc.



99 

 

Figure 25: Detection of PTPA in cells with purified/raw 6G2.  HelaTRex-pNTOneo-CT Cl.L cells were 

induced for 96 hours with 1µg/ml of doxycycline added every 24 hours, seeded on 6-well tissue culture 

plates, permeabilized and fixed with 3.7% formaldehyde (see 2.2.10). Undiluted affinity purified superna-

tant of mixed hybridoma clone 6G2, with doxycycline induced (1) and uninduced (2) cells, and undiluted 

raw supernatant of mixed clone 6G2, with doxycycline induced (3) and uninduced (4) cells, were incu-

bated o/n at 4°C. Signals appearing in red and green (middle panel) refer to incubation with secondary 

antibodies Alexa 594/488 (1:500 in 1%BSA/PBS). Cells were counterstained with Hoechst 33342 (left 

panel). Right panel represents merged pictures. Yellow arrows depict either nuclear (nuc.) or cytoplasmic 

(cyt.) staining. Pictures were taken with a Zeiss LSM 510 Meta confocal microscope (63x objective) using 

the corresponding LSM 510 Meta software. 
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Moreover, application of the supernatant of hybridoma mix clone 6G2, which mostly detected 

PTPA in the cytoplasm (as shown in figures 20 and 21), revealed similar characteristics as the 

monoclonal anti-PTPA antibody, 5G3, if purified (figure 25, 1 and 2). The immunofluorescence 

of raw supernatant of mixed clone 6G2 displayed weaker signal intensity in comparison to puri-

fied supernatant (figure 25). However, we did not observe any differences in intensities of im-

munofluorescence signals between doxycycline induced and uninduced samples of HelaTRex-

pNTOneo CT Cl.L cells (figures 24 and 25). Due to affinity purification, one species of anti-

body specific for PTPA was enriched. Thus, the result was similar to the outcome using minimal 

diluted clones in immunofluorescence, as the monoclonal hybridoma supernatant of 6G2 7F 

exhibited same staining characteristics as purified mixed clone 6G2 mixed. Furthermore, hybri-

doma mix clone 6G2 could contain other species specific for PTPA strongly staining the cyto-

plasm in immunofluorescence.  

Finally, no significant signs of signal reduction could be ascertained in immunofluorescence, 

neither by using purified polyclonal rabbit anti-PTPA antibody nor by using monoclonal anti-

PTPA antibody 5G3 (data not shown). One consistent effect emerged: All monoclonal super-

natants, 6G2 7F, 7F12 10B and purified mixed clone 6G2, predominantly displayed a nuclear 

staining together with weak cytoplasmic staining (figures 21, 24, 25). On the other hand, hybri-

doma mix clones 6G2, 5E10, 1B2 and 1D3, displayed differential staining patterns.  

3.7.5. Subcellular localization of PTPA by using 6G2 and 7F12 10B in subcellular fractio-

nation 

Previously, evidence was found for the nuclear distribution of PTPA, as overexpressed GFP-

tagged PTPA was found to occur predominantly in the nucleus [Azam et al., 2007].  

Furthermore, my own experiment (figure 15), using subcellular fractionation, revealed that 

PTPA was detected most abundantly in the cytoplasmic fraction. To confirm this result, we gen-

erated new antibodies specific for PTPA and tested them in immunofluorescence application. 

Surprisingly, PTPA could not be localized exclusively to one cellular compartment but rather 

appeared to occur in both albeit not to a similar extend. Therefore, the subcellular fractionation 

was repeated and immunoblots were performed with raw supernatant of hybridoma subclone 

6G2 and raw supernatant of monoclonal 7F12 10B.  
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Figure 26: Detection of subcellular localization of PTPA with 6G2 and 7F12 10B. Hela cells were 

fractionated into a cytoplasmic and nuclear fraction by centrifugation. Subsequently, lysates of each frac-

tion were tested by western blot analysis (10% SDS-PAG) with each lane containing the lysates from 

100.000 cells. Immunoblotting was performed with hybridoma mix clone 6G2 (1:20), hybridoma single 

clone 7F12 10B (1:20), anti-PTPA antibody 5G3 (1:1000), anti-lamin A/C (4C11; 1:1000) and anti-β-

tubulin (1:10.000). Lamin A/C and β-tubulin constitute marker for nucleus and cytoplasm, respectively.   

First, immunoblotting with anti-lamin A/C antibody, revealed, that this nucleus specific protein 

was also detected in the cytoplasmic fraction, indicating that, for technical reasons, the cyto-

plasmic fraction was slightly contaminated with nuclear proteins (lowest panel in figure 26).  

However, immunoblotting with β-tubulin, the cytoplasmic marker, showed a clear distinction 

between both cellular compartments and allowed further interpretation of results. To be able to 

37kD

50kD

75kD

100kD

PTPA

6G2 7F12 

10B

5G3

50kD

75kD

β - tubulin

Lamin A/C

w
h
o
le

 c
e
ll 

ly
s
a
te

c
y
to

p
la

s
m

ic
 f

ra
c
ti
o
n

n
u
c
le

a
r 

fr
a
c
ti
o
n

w
h
o
le

 c
e
ll 

ly
s
a
te

c
y
to

p
la

s
m

ic
 f

ra
c
ti
o
n

n
u
c
le

a
r 

fr
a
c
ti
o
n

w
h
o
le

 c
e
ll 

ly
s
a
te

c
y
to

p
la

s
m

ic
 f

ra
c
ti
o
n

n
u
c
le

a
r 

fr
a
c
ti
o
n



102 

 

compare all antibodies, the exposure time of 35 minutes (figure 26) was the same for each incu-

bation.  

All three antibodies recognized the double band of PTPA occuring at 37kDa and 42kDa with the 

majority of PTPA residing in the cytoplasmic fraction and only a minor fraction found in the 

nucleus. So, the main difference between these antibodies was in the pattern of background 

bands. Hybridoma mix clone 6G2 and monoclonal anti-PTPA antibody 5G3 detected mostly 

identical background bands with an additional band occurring around 55kDa in whole cell lys-

ates and nuclear fractions. But, only hybridoma mix clone 6G2 demonstrated a dominant cyto-

plasmic staining in immunofluorescence analyses, whereas anti-PTPA antibody 5G3 predomi-

nantly showed a nuclear staining. Hybridoma subclone 7F12 10B recognized a huge number of 

unspecific background bands, possibly due to the fact, that the supernatant still included 3 

clones after minimal dilution. However, 7F12 10B detected PTPA as well mainly in the cyto-

plasmic fraction and a prominent additional band around 100kDa, featuring similar intensities in 

all fractions.  

To sum up, the subcellular fractionation experiment revealed a clear predominant presence of 

PTPA in the cytoplasm rather than the nucleus. This result is partly in contrast to immunofluo-

rescence analyses with same antibodies.  
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 4. Discussion  

Protein phosphorylation and dephosphorylation, catalysed by kinases and phosphatases, respec-

tively, represent highly conserved mechanisms responsible for activation and deactivation of 

protein functions. One of the most abundant serine/threonin phosphatases, PP2A, makes up to 

0.1% of the total cellular protein content and distinct forms PP2A holoenzymes to regulate cel-

lular development and important pathways inhibiting cancer or apoptotis [Gallego and Virshup, 

2005]. PP2A exhibits a multisubunit architecture, with a fully active and specific heterotrimer 

assembled through a catalytic, a structural and one of a large number of regulatory subunits. Due 

to its various roles in cellular processes, PP2A needs to be tightly regulated, facilitated through 

posttranslational modifications such as phosphorylation and methylation. Moreover, PTPA, the 

highly conserved phosphatase two A phosphatase activator, was shown to be involved in the de 

novo activation of PP2A [Fellner et al., 2003, Longin et al., 2004, Van Hoof et al., 2005]. Dele-

tion of both PTPA homologues in yeast, RRD1 and RRD2, affects substrate specificity, protein 

stability and metal dependence of PP2A [Fellner et al., 2003]. Highly conserved between yeast 

and human, the importance of PTPA is further emphasised through apoptotic conditions emerg-

ing upon transient PTPA knock down with RNAi or overexpression in mammalian cells [Fellner 

et al., 2003, Azam et al., 2007].  

Primarily, the project aimed to investigate the potential involvement of PTPA in Alzheimer´s 

disease, as decrease of active PP2A holoenzymes was demonstrated to be a critical factor for 

this neurodegenerative disorder [Sontag et al., 2010]. Therefore, a neuroblastoma cell line, 

N2ATRex, was stably transfected with a vector system expressing RNAi towards PTPA upon 

induction with doxycycline. Due to the fact, that PP2A activity and cell proliferation were unaf-

fected upon a reduction of PTPA to 50%, another mammalian cell line, HEKTRex, was ana-

lysed in the same way. However, again neither PP2A activity nor cell proliferation were affected 

by a knock down of PTPA to ~20% of its wild type level [Mitterhuber, 2008, Kugler, 2009]. 

Based on previous transient knock down experiments in Hela cells, in which suppression of 

PTPA caused apoptosis, we wanted to unravel the effects of downregulated PTPA on cell sur-

vival and proliferation in HelaTRex cells.  
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Knockdown of PTPA 

4.1. Knockdown of mammalian PTPA with shRNA 

First, stably transfected single clones of HelaTRex cells were analysed for possible knockdown 

of PTPA upon doxycycline induced expression of shRNA. In HelaTRex-pNTOneo-CT Clone L 

cells, we could efficiently downregulate PTPA protein to approximately 15% of its wild type 

level. The proliferation behaviour of cells with reduced PTPA levels was monitored and cells 

were treated with Nocodazole in order to check the integrity of the spindle assembly checkpoint. 

However, although proliferation of HelaTRex-pNTOneo-CT Clone L cells seemed to be ham-

pered once at day 2 of knock down, the cells recovered quickly. It is very likely, that the ob-

served variations in cell counts of HelaTRex cells, could arise from differences in cell numbers 

seeded prior to the induction with doxycycline. In conclusion, a downregulation to approxi-

mately 15% of cellular PTPA did not result in a detectable effect on proliferation.  

However, HelaTRex-pNTOneo-CT Cl.L cells showed a sub G1 peak upon a 20 hours treatment 

with Nocodazole. In a repetition and as well in a 30 hours treatment with Nocodazole, doxycy-

cline treated cells contained a major amount of cells in the G1 phase. If cells with a reduced 

amount of PTPA protein succeed to emerge a spindle assembly checkpoint is still unclear. 

Though, further experiments will be necessary to allow a specific statement.  

Different issues could be hold responsible for the lack of a significant phenotype upon knock 

down of the protein. First of all, I speculated about high protein stability and long half-life time 

[Janssens et al., 2000] rendering enough protein present in order to maintain a functional level. 

However, the quantification of PTPA with the LI-COR Odyssey infrared scanning system re-

vealed a knock down to 15% of original amount. This successful knock down demonstrated that 

a calculated half-life time of 24 hours cannot be the reason for a missing phenotype. Moreover, 

PTPA probably works as an enzyme and thus, 15% of its amount could be sufficient to fulfill its 

function. Third, HelaTRex and HEKTRex represent transformed cell lines, possibly containing 

compensatory mutations for a low PTPA level. Furthermore, those cell lines could possess 

upregulated PTPA levels as normal amounts, rendering them less affected by a downregulation 

of PTPA protein. In addition, a balance, defined by a certain level of PTPA protein, could be 

feasible for viable cells after downregulation. Previously, Schönthal and coworkers demon-
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strated an autoregulatory control adjusting the amount of PP2A C subunit to constant levels, 

exerted at the translational level [Schönthal et al., 1998].  

However, it could as well be possible, that another PTPA specific isoform would complement 

the knockdown of PTPA. In this study, an isoform with a molecular weight of 42kDa, which 

was identified as such (see 3.6.2.), demonstrated a reduction of signal intensity upon knock 

down of PTPA. Although this isoform cannot be responsible to compensate the loss of PTPA, it 

is tempting to speculate that others would be functionally redundant and exert this function.  

Human PTPA is defined by different isoforms with α and β isoforms mainly expressed in some 

tissues [Janssens et al., 2000]. The shRNA/siRNA used in this study, targeting exon 10 of con-

served C-terminal part of PTPA, would affect most of the published isoforms, as almost every 

protein coding isoform contains exons of the conserved part. Although Janssens and coworkers 

showed the presence of 7 main isoforms of PTPA, 2 of them lacking exon 3 and all of them con-

taining the C-terminal part of mRNA, 27 protein coding isoforms are published on ensembl.org, 

with only 14 PTPA isoforms containing the first exon of the conserved C-terminal part.  

To reveal the existence of an isoform, potentially increased in its amount upon knock down, we 

aimed to determine the downregulation of PTPA with a second method, reverse transcription 

quantitative real-time PCR. Before that, PTPA knock down was analysed on protein level by 

using the LI-COR Odyssey scanning system, measuring chemiluminescence of fluorescent la-

belled secondary antibodies, and presenting a semi-quantitative method [www.licor.com]. In 

order to detect mRNA at different positions, two primerpairs were applied. Primerpair 1 targeted 

exon 3 and 4, and primerpair 2, was leading to a product ranging from exon 5 to 8, spanning the 

conserved C-terminal part of mRNA. Due to the fact, that some isoforms are lacking exon 3 or 

4, we expected to observe a difference in PCR products.  

The qRT-PCR product of the doxycycline induced sample correlated well with the amount of 

downregulated protein, determined as described above. PTPA mRNA of doxycycline induced 

HelaTRex-pNTOneo-CT Clone L cells was reduced to 29% or 40.9% in comparison to unin-

duced cells, if checked with primerpair 1 or primerpair 2, respectively. Generally, a higher 

amount of PTPA mRNA was detectable with primerpair 2, possibly due to the fact, that most of 

the isoforms contain exons 5 to 8. However, 29% of PTPA mRNA, if checked with qRT-PCR 

and a primerpair targeting exon 3 and 4, was higher in comparison to 15% of PTPA protein, 

quantified with immunoblotting and the LI-COR Odyssey scanning system. Hence, a compensa-
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tory mechanism could exist, increasing the level of transcription upon knock down and thus, 

affirming the essential function of PTPA.  

An additional observation accompanied the analysis of PTPA knock down with stably trans-

fected single clones: HelaTRex-pNTOneo-Mis Clone D and C exhibited elevated amounts of 

PTPA protein upon expression of mismatch shRNA in comparison to uninduced samples. This 

was an exclusive effect of the non-binding RNAi construct and could not be observed in Hela-

TRex cells stable transfected with an empty vector. Although the sequence was checked in silico 

for possible off-target effects, no reasons for this result could be identified so far. Nevertheless, 

it is unclear, if an off-target effect can be hold responsible for the observation of increased 

PTPA levels in HelaTRex-pNTOneo-Mis Clone C/D cells.  

Following, we wanted to suppress the PTPA levles in shRNA induced cells even further. There-

fore, we aimed to use small interfering RNAs for the knock down of PTPA mRNA. The use of 

different amounts of siRNAs could facilitate the achievement of variable knock down degrees, 

thereby enabling the determination of a hypothetical PTPA threshold level. In addition, it could 

be investigated, if the upregulation of PTPA, observed in stable transfected single clones ex-

pressing mismatch RNAi, would occur as well in the application of siRNA.  

4.1.2. Knockdown of PTPA with siRNAs 

Primarily, conditions for transient transfections of siRNAs in Hela and HEKTRex cells were 

optimized and yielded up to 60% and approximately 99% of efficiency, respectively. Transient 

transfections were performed with two targeting siRNAs, one exhibiting the same sequence as 

previously used “CT” shRNA and a second, targeting exon 7 and 8 of human PTPA, together 

with a mismatch siRNA, with an identical sequence to shRNA-Mis. 50pmol or 100pmol of 

siRNAs were delivered to Hela and HEKTRex cells.  

Surprisingly, a reduction to approximately 30% of PTPA was achieved with 50pmol of siRNA 

targeting exon 7 and 8 in both cell lines. On the contrary, the application of 50pmol of siRNA, 

featuring an identical sequence to shRNA-CT, accomplished a knock down to one fourth of 

PTPA in comparison to its normal amount. Once again, the success of the downregulation via 

transient transfections was quantified by real-time PCR and showed a reduction to one third of 

mRNA with each targeting siRNA. McAnuff and coworkers demonstrated, that the assimilation 

of shRNA into the endogenous miRNA pathway results in a significantly higher efficiency in 
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comparison to siRNA [McAnuff et al., 2007]. Furthermore, siRNAs were described to suffer 

from high degradation and turnover and additionally require a higher dose to fulfil knock down, 

contributing to a higher extend of off-target effects [Rao et al., 2009]. Our results were consis-

tent with these findings, as the shRNA expression system seemed to work more efficiently and 

could provide a higher degree of PTPA knock down in comparison to transient transfected Hela 

or HEKTRex cells.  

Most interestingly, the effect of upregulated PTPA on protein level upon expression of mis-

match RNAi was recurring. Transient transfections with 50pmol or 100pmol of mismatch RNAi 

induced an increase of 125% or 180% of PTPA on protein level. As the real-time PCR revealed 

a constant level of PTPA mRNA after transfection with missense siRNA, the off-target effect is 

detectable solely by immunoblotting with specific antibodies. Similar findings were demon-

strated by Stout Delgado and coworkers [Stout-Delgado et al., 2007] without mentioning possi-

ble reasons. Recently, Ge Shan proposed, that targeting siRNAs and negative or positive con-

trols should be used at the same dosage and outlined, that non-binding control RNAs would not 

utilize the RNAi pathway [Ge Shan, 2010]. So, possibly the use of another cellular pathway 

could account for an upregulation of PTPA protein. Although short interfering and small hairpin 

RNAs are intrinsically different molecules, this unwanted off-target effect was inherent to both 

methods. Interestingly, it has been shown, that siRNA and shRNA constructs with complemen-

tary sequences can produce same off-target effects across cell lines and independently of deliv-

ery method [Jackson et al., 2006]. However, the cause for the upregulation of PTPA when ex-

pressing or transfecting mismatch constructs is still unclear. To further avoid off-target effects, 

chemical modifications of riboses were found to increase stability and specificity of siRNA 

without affecting the potency [Jackson et al., 2006, Federov et al., 2006].  

To sum up, shRNA demonstrated a higher knock down efficiency, down regulating PTPA to 

15% of its normal amount in comparison to transiently applied siRNAs, which represented a 

downregulation to appoximately 30%. Remarkably, this downregulation seems to exceed stan-

dard knock down efficiencies, as previously summarized by Ge Shan [Ge Shan, 2010]. As an 

effect on cell survival was still missing, the same explanations as made for shRNA mediated 

suppression of PTPA are possible: A very low treshold level of PTPA needed to maintain its 

functional role in mammalian cells or a compensatory mechanism, as for instance functional 

redundancy of isoforms.  
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4.1.3. Additional methods and future prospective 

To downregulate the mRNA of PTPA further below its potential critical threshold level, a com-

bination of doxycycline induced stable transfected single clones and transient transfection of 

siRNAs was made. After a 96 hour induction with doxycycline in HelaTRex-pNTOneo-CT 

Clone L, cells were transiently transfected with targeting siRNAs. Disappointingly, PTPA still 

seemed to be present, despite this harsh knockdown treatment. The lowest level of PTPA in 

doxycycline induced HEKTRex-pNTOneo-CT Clone 8 and HelaTRex-pNTOneo-CT Clone L 

cells was achieved with a combination of of siRNA-CT and siRNA-sigma and yielded a knock 

down to 20% and 40%, respectively. The reason for the fact, that stably transfected single clones 

alone were more successful in terms of PTPA downregulation upon shRNA induction as the 

combination of stably transfected clones and transient siRNA transfections remains elusive.  

Furthermore, a retroviral infection using pRetroSuperStuffer constitutively expressing a targeting 

shRNA, representing the same C-terminal sequence as previously used, was carried out in 

mouse fibroblast cells, NIH3T3. However, a significant reduction of PTPA could not be demon-

strated. Since the shRNA sequence was correct as determined by sequencing, a putative vector 

backbone mutation could be hold responsible.  

In summary, the methods to downregulate PTPA below a critical threshold level failed. There-

fore, we started to design a conditional knock-out vector for the generation of PTPA knock-out 

mice in cooperation with Arabella Meixner. The vector was decided to target exons 2 and 3, 

becuase targets near the highly conserved C-terminal end could again facilitate the production of 

N-terminal domains of PTPA. Subsequently, bacterial artificial chromosomes with the respec-

tive partial PTPA gene sequence were ordered. Unfortunately, I failed to electroporate these 

BACs into EL350 bacteria, which express the cre-recombinase upon heat shift, represented a 

hurdle which could not be cleared.  

To sum up, using a conditional knock-out mouse model will presumably facilitate the elucida-

tion of the function of PTPA in future investigations. So, in vivo studies of complete loss of 

PTPA could complement previous analyses in yeast, clear up the mystery of how the phos-

phatase two A activator works in mammalian cells and which factors possibly stimulate its per-

formance.  
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Subcellular localization of PTPA 

 

Previously, Azam and coworkers showed that overexpressed GFP-tagged PTPA occurred in the 

nucleus [Azam et al., 2007]. As this result was based solely on microscopy analysis, we aimed 

to determine the localization by two different methods: subcellular fractionation and im-

munofluorescence analyses. First, Hela cells were subdivided into nucleus and cytoplasm, ac-

cording to recently published protocols [Hengstschläger and Rosner, 2008], and analysed by 

immunoblotting. Second, new monoclonal antibodies specific for PTPA were generated, tested 

by immunoblottiung with subcellular fractionated samples and applied in immunofluorescence 

analyses using Hela cells.  

Initially, we found human PTPA in our cellular fractionation experiments mainly localized in 

the cytoplasm, with some also detectable in the nuclear compartment. For the determination of 

PTPA localization, we aimed to apply a second method. Therefore, the production of a new 

monoclonal antibody specific for PTPA was initiated. The evaluation of hybridoma subclones, 

arising from fusion of mouse 4 splenocytes with X63 cells, resulted in the decision for one 

minimally diluted hybridoma clone, 7F12 10B, and a hybdridoma mix clone, 6G2 to be included 

in further experiments. The decision for hybridoma clones was based on immunofluorescence 

analyses of Hela cells with antigen containing supernatant. Hybridoma clone 7F12 10B showed 

a predominantly nuclear staining, while hybridoma mix clone 6G2 revealed an intense cyto-

plasmic together with a minor nuclear staining. To further improve specificity by reducing the 

background bands in immunoblotting and possibly increase the staining intensity, supernatants 

of mixed subclone 6G2 and single subclone 7F12 10B were affinity purified by incubation with 

His-tagged PTPA blotted on a nitrocellulose membrane. Purified supernatant of hybridoma mix 

clone 6G2 revealed similar characteristics in immunofluorescence analysis as monoclonal anti-

PTPA antibody 5G3, as it showed mainly nuclear staining. As mentioned above, affinity purifi-

cation can enrich one species of antibodies out of supernatant containing different antibodies. 

The application of purifed 7F12 10B supernatant exhibited cytoplasmic staining accompanied 

by an intense staining surrounding the nucleus. One effect was striking: All monoclonal anti-

PTPA antibodies displayed a mainly nuclear staining together with weak cytoplasmic occur-

rence.  

Furthermore, purified and raw supernatants of 7F12 10B and mix clone 6G2 were applied in 

immunofluorescences of HelaTRex-pNTOneo-CT Clone L cells induced with doxycycline for 
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the expression of shRNA. None of the new produced antibodies was able to ascertain a signifi-

cant signal reduction in immunofluorescence analyses of the PTPA protein, which was shown to 

be reduced to 15% of its wild type level.  

Finally, supernatants of hybridoma clone 7F12 10B and hybridoma mix clone 6G2 were applied 

in immunoblotting with subcellular fractionated samples and demonstrated a mainly cytoplas-

mic distribution of PTPA. Interestingly, additional bands seemed to belong to particular com-

partments, especially regarding the nuclear fraction. Most obvious, immunoblotting with 7F12 

10B antibody, showed a prominent band at 100kDa without reducing the signal intensity upon 

knock down of PTPA in both cellular compartments.   

Due to diverging results obtained with subcellular fraction of cellular compartments and im-

munofluorescences with novel antibodies against PTPA, the exact localization of PTPA is still a 

matter of debate. Interestingly, Bollen and Beullens recently pointed out that protein phosphata-

ses shuttle between cytoplasm and nucleus which enables them to act as signal transducers [Bol-

len and Beullens, 2002]. PP2A was found to occur as well in the nucleoplasma [Turowski et al., 

1995] and therefore, indicating a possible explanation for the differential localization of PTPA. 

PTPA could shuttle to fulfil its versatile functions.  

Concluding, PTPA possibly plays a multifactorial role in cellular mechanisms. Fellner and co-

workers proposed a chaperone function of PTPA, facilitating the incorporation of divalent 

cations to the PP2A active site, which was accompanied by recent findings of Sablina and co-

workers, who demonstrated PTPA to regulate methylation of PP2A C subunit [Fellner et al., 

2003, Sablina et al., 2010]. Further observations implicated a role as tumor suppressor for 

PTPA, as overexpression induced apoptosis in colon carcinoma cells [Azam et al., 2007].  

Further studies are needed to illuminate PTPAs function and to shed light upon the interaction 

with PP2A and other targets.   
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6. Appendix 

pNTOneo-CT, pNTOneo-Mis: 

 

pSuper-CT, pSuper-Mis: 

 

 

 

T7 promoter

ampR

Bgl II

shRNA

Hind III
pSuper

3193bp
Xho I

EcoRI
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pmaxGFP: 

 

pRetroSuper-CT and pRetroSuper-Mis: 

 

Strategy: cut pSuper-CT/Mis and pRetroSuper with EcoRI and XhoI; gel elution of insert and vector 

(11.2.10); ligation of ~300bp –CT and –Mis of pSuper with pRetroSuper (12.2.10) 

Positive clones: pRetroSuper-CT Clone 3, pRetroSuper-Mis Clone 2 

Sequenced: 10.3.10 at LGC genomics with primer H1RNA pro 5´-GAATCGCGGGCCCAGTGTCA-3´
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