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1. Introduction

Proteins are one of the most essential parts of any biological organism, taking
part in virtually every process within living cells. Among many other functions,
proteins make our muscles move, carry the oxygen in our blood and neutralize
harmful intruders like bacteria and viruses. The first important information about
any protein is the sequence of its building blocks, the amino acids, organic molecules
consisting of elements such as carbon, hydrogen, oxygen and nitrogen. Biochemists
call the sequence of amino acids the primary structure of a protein. Still, key to the
biological function is the way the amino acids are structured within the molecule,
the way how they are folded, which determines a protein’s secondary and tertiary
structure. Everybody knows that an egg undergoes a remarkable transition when
cooked, yet this transition solely changes the structure of the proteins in the egg,
but not the sequence of amino acids.

Clearly, such complex folding and unfolding transitions are also of interest in
physics. However, right now, the full numerical treatment of a real-world protein
is rather challenging. After all, a typical protein consists of 100 to 300 amino
acids, and each amino acid is built of about 20 atoms, leading to a huge amount of
complex interactions. Therefore, to work with proteins in a computer simulation,
typically one has to rely on coarse-grained descriptions.

A radically different approach, compared to coarse-grained descriptions, is to try
to capture the essential properties of complex molecules like proteins with an even
much simpler model. This thesis deals with such a model. Instead of trying to find
an accurate description of some specific protein, we just work with a polymer chain
of identical, spherical particles with some short-range attractive force. Despite its
simple interactions, this model is able to reproduce quite a complex phase behavior.
Hence, the polymer chain can serve as a model of short chain-like proteins, as for
example Ubiquitin, a regulatory protein that has been found in almost all tissues.

In particular, the chain is able to fold itself into a ground state where the particles
are packed very closely together. Contrary to a real protein, this ground state is not
unique. Nevertheless, we would like to understand the complex folding transition
on the most fundamental level, and computer simulations are able to provide such
understanding.

The simulation technique we use to achieve this goal is called transition path
sampling. As the name already indicates, it is able to find pathways taking the
system from one stable state, say, the unfolded state, to another stable state,
which is, in our case, of course the folded state. Afterwards, with the harvested
pathways at our disposal, we can follow the transition step by step and search for
important intermediate configurations, or transition states. In this thesis, we apply



1. Introduction

the transition path sampling technique in order to learn more about the polymer
chain. That way, we can look for intermediate states of the transition and try to
find a reaction coordinate. A reaction coordinate is a number that conveys the
progress of the transition, in other words, how far the reaction or transition has
already gone from the initial to the final state. However, for the polymer chain
this task remains an open challenge so far.

In addition to the analysis of the polymer chain, we perform a mathematical
analysis of the mechanisms that lead to the generation of new transition pathways
in the simulation. Then we are able to compare this analysis’ predictions with the
results from the actual simulation.



2. The square-well potential
polymer chain model

The model investigated throughout this work is a single, flexible homopolymer
chain. It consists of N identical, spherical monomers with a hard sphere core of
diameter 0. The distance L to neighboring monomers is fixed, and in our case,
L = o always holds true. Non-neighboring monomers interact via the square-well
potential

oo 0< ri; < 0,
u(ri;) = —e o <ry < Ao, (2.1)
0 i > )\O‘,

where r;; = |r; — 7| is the distance between the i-th and the j-th monomer. From
this definition it is clear that overlaps of the hard cores are not allowed. Further-
more, the parameter A defines the range of the attractive interaction. Obviously,
A > 1, since A =1 is just an ordinary hard sphere potential. Apart from the fixed
bond lengths between neighboring monomers and the restrictions arising from the
hard core of the square-well potential, the chain is allowed to move freely.

1.5 .

0.5 _

u(ry)/e

—0.5 .

0 0.5 1 1.5 2 2.5 3

Tz‘j/O'

Figure 2.1.: Square-well potential for A = 1.5



2. The square-well potential polymer chain model

We can think of the polymer chain as a simple model for small chain-like proteins.
With that interpretation, the square-well potential has to be considered as an
effective potential, already taking into consideration any solvent effects. However,
any temperature dependence of the solvent’s properties (and hence of the effective
potential) is neglected.

Due to the form of the potential, the system has a discrete energy spectrum
given as

E, = —ne, (2.2)

where n is the number of square-well overlaps in the chain. Obviously, the ground
state energy depends on the interaction range A, since this value will affect the
number of overlaps in a given chain configuration.

This model, despite its simplicity, has already shown a number of interesting
thermodynamic properties. Hence, there have been done a considerable amount
of investigations of the system [1-3]. In the remainder of this chapter, we will
therefore discuss the results of previous research on the square-well polymer chain.

In the following, reduced units will be used instead of physical units. This means,
for example, instead of the temperature T" we use the reduced temperature

kT
T = % (2.3)

which is a dimensionless number. Here, kg is the Boltzmann constant. Similarly,
the dimensionless length r}; = r;;/o will be used. For the sake of simple notation,
we will furthermore omit the superscripts for the reduced units.

Figure 2.2.: A graphical representation of the N = 64 polymer chain. The spheres
correspond with the hard cores of the individual monomers.



2.1. Mean-square radius of gyration

2.1. Mean-square radius of gyration

One of the most intriguing properties of the polymer chain is its phase behavior
under different (reduced) temperatures 7" and interaction ranges A. Some early
research on this topic was done by Zhou etal. [1]. They have performed Monte
Carlo simulations for chains with interactions of Eqn. (2.1) with A = 1.5 and lengths
up to NV = 64. One of the quantities they have studied is the mean-square radius
of gyration
2 1 & . . 2

R, = <N ;(n — Trmean) > ) (2.4)
which is nothing more than the mean-squared distance of the monomers from the
geometrical center of the chain

1 N
_)mean = X _; 2.5
T v Z;T (2.5)

For equal-mass particles (as it is the case for our chain), the geometrical center
coincides with the center of mass. Sometimes, the alternative expression

1
R: = <m2r2]> (2.6)
1<)
is found. It is shown in appendix A that this expression is equivalent to Eqn. (2.4).
Zhou etal. have calculated R; for a variety of chain sizes and temperatures,
as can be seen in Fig.2.3. Later, I will compare my own simulations with these
results. The sigmoidal shape of the function already shows that a transition from
an expanded high-temperature phase to a compact low-temperature phase takes
place.

2.2. Analytic results for small chains

For very small chains, namely for N = 3 and N = 4, Taylor and Lipson were
able to calculate the mean-square radius of gyration, the mean energy of the chain
and its heat capacity analytically exact [4]. For these short chains, it is possible
to analytically calculate the intramolecular distribution function of the system by
integration. Roughly speaking, the intramolecular distribution function w;;(r) tells
one the expected distance between the i-th and j-th particle. Having determined
that, one can calculate e.g. the mean-square distance between the i-th and j-th
particle as [4]

<rfj> =dr /drr4w,~j(r). (2.7)

The mean-square radius of gyration is then obtained by averaging this quantity
over all pairs of particles, in analogy to Eqn. (2.6):

R? = % S (). (2.8)

1<J
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R #(0"N)

Reduced Temperature

Figure 2.3.: Mean-square radius of gyration for different chain lengths and A = 1.5,
as calculated by Zhou et al. The solid line represents the analytic result
from Taylor and Lipson [4,5] for the N = 4 chain, while the dotted
lines are spline fits. Image taken from Ref. [1].
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For the N = 4 chain, some of the integrals contributing to the intramolecular
distribution function have to be determined numerically. The final results, given
in Fig. 2.3 (for the N = 4 chain), agree well with values calculated in Monte Carlo
simulations.

For longer chains, approximations have to be made. This, while conserving the
qualitative behavior of the system, results in a disagreement between the analytic
values and the results from simulations [5].

2.3. Phase transitions and phase diagram

Figure 2.4.: A graphical representation of the crystallite state for the N = 128
polymer chain, with A\ = 1.04 and T" = 0.424. Again, the spheres
correspond with the hard cores of the individual monomers.

Taylor, Paul and Binder have determined a (7—)\) phase diagram for a N = 128
chain as shown in Fig.2.5 [2]. Depending on the value of A, there exist two or
three different phases. In all cases, for high temperatures the chain is in the
expanded coil phase, and then undergoes one or two phase transitions when the
temperature is decreased. For values A > 1.06, there exists a second-order phase
transition to the compact, but disordered collapsed globule phase. Decreasing the
temperature further leads to a first-order transition to the frozen crystallite phase.
For A < 1.05, the expanded coil freezes directly into the crystallite phase. In my
work, I concentrated on this discontinuous phase transition. The phase diagram for
the N = 64 chain shown in Fig. 2.6 looks similar, but is slightly shifted downwards.
The N = 64 chain freezes directly to the crystallite phase for A < 1.04. These (to
my knowledge yet unpublished) results for the smaller chain were provided by
Wolfgang Paul.

Taylor etal. [2] have obtained their results using the Wang-Landau sampling
method. This Monte Carlo algorithm is able to construct the density of states
g(E,) for a given system by iteration, even though in this case the function covers
about 840 orders of magnitude. Then, from the known density of states, one can



2. The square-well potential polymer chain model

Figure 2.5.:

Figure 2.6.:
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Temperature — interaction range (7-\) phase diagram for the N = 128
polymer chain (taken from Ref. [2]). The dots represent the phase
transition temperatures for the respective values of A, while the lines
are interpolations between these points.
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(T-X) phase diagram for the N = 64 polymer chain. Again, the dots
represent the phase transition temperatures, while the lines are inter-
polations. Data provided by Wolfgang Paul, University of Jena.
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calculate all desired thermodynamic properties by integration. In particular, the
location of phase transitions can be derived from an analysis of the heat capacity
of the system [3]. The heat capacity is given as

OT) = g ((B% — (BY?). (29)

This result can be obtained by combining the equations of classical thermodynamics
and those of statistical mechanics. The expectation values (E?) and (E) are easy
to calculate if the density of states is known. In particular we have

U(T) = (B,) = % S E,g(E,)e Br/ksT, (2.10)

with the partition function

Z(T) =" g(E,)e Fn/ksT (2.11)

n

as a normalization constant. Then, for a finite-size system, maxima in C(T") can
be related to phase transitions or similar structural rearrangements, as seen in
Fig.2.7. This approach, used by Taylor etal. [2,3], has the advantage that one
has to perform only one simulation, and can afterwards use the obtained results
for all temperatures. In Chapter 3, we will discuss the more traditional Metropolis
algorithm used in my work, which is only valid for a fixed temperature.

An alternative to the approach discussed so far is to directly make use of the
probability density function

1
P(E,,T) = —g(B,)e P/*T 2.12
(B T) = G o(E)e (212
at a given temperature. If the system is close to a first-order phase transition, one
expects to see a bimodal distribution in the probability density. Directly at the
transition, both peaks should be weighted equally, as seen in Fig. 2.8.
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Figure 2.7.: Heat capacity per monomer for the N = 256 polymer chain for different

10

values of A, and, in the inset, for A = 1.05 and different chain sizes N.
The clear peak in the specific heat function indicates the location of
the freezing transition, while the shoulder seen only for bigger values
of A (or smaller N) locates the coil-to-globule transition. Image taken
from Ref. [3].
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Figure 2.8.: Probability density function for the N = 256 polymer chain (solid
line), taken from Ref. [3]. Since T* = 0.477 is a transition tempera-
ture for the system under investigation, the two peaks in the bimodal
distribution have equal area. The dashed line represents the free en-
ergy F(E,T) = —kgTIn P(E,T) of the system. Note the location of
the two phases in the local minima of the free energy, and there is a
barrier in between separating the phases.
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3. Simulation Methods

In this chapter, we will discuss the numerical methods used in my investigation of
the polymer chain. First, I will give a brief overview of the standard Metropolis
Monte Carlo algorithm to generate samples out of a given probability distribution.
After that, we will learn the basics about transition path sampling. This simulation
technique, which is a direct application of the Metropolis algorithm, is able to
sample transition pathways as they occur in phase transitions. Then, we will
discuss a number of methods used to analyze the structural properties of simulated
systems.

3.1. Metropolis Monte Carlo

Let us assume we have some given probability distribution p. For example, in the
canonical ensemble of statistical mechanics, this distribution is

p(rN,pN) o< e_BH(TN’pN), (3.1)

which is a function of all the coordinates 7" and momenta p" of the physical

system. Here, 8 = 1/kgT is the inverse temperature and H(r™,p") = U(r") +
FEyin(p") is the Hamiltonian, the sum of potential and kinetic energy of the system.
The expectation value of some observable A is calculated as

Jar e AN, )
fdrNdeefﬁH(”NmN) '

(A) = (3.2)

Now suppose, A does not depend on the momenta of the system. Then the inte-

gration over pY cancels out of Eqn. (3.2) and we are left with

[drNe PUCE™) A(rN)
[drNe—BUCY)

(4) = (3.3)

This kind of integral can be approximated by taking a sample out of the distribution
and evaluating the value of A at the sample configurations:

1 N
o ; (3.4)

In that case, one takes the unweighted average of all the values evaluated at the
chosen configuration. However, these configurations are distributed according to

13



3. Simulation Methods

the respective probability distribution. Metropolis Monte Carlo, first introduced
in Ref. [6], is a way of generating such a sample by performing a random walk in
configuration space. This random walk is constrained by rules which ensure the
validity of the sample.

3.1.1. Metropolis algorithm

Without further proof, we will just give the details of the Metropolis algorithm, for
the special case mentioned above. That is to say, we have a system in the canonical
ensemble. This system is described by the number of particles N, the volume V
and the temperature T'. To specify a configuration of the system, we need to know
the positions of all particles.

We start with some arbitrary initial configuration, denoted by V. The algorithm
then works as follows:

1. Select some random particle :.

2. Generate a trial state: Move that particle by a small random distance A7),
such that 7, — 7 = 7, + AT,

3. Evaluate the value of the potential at the new trial configuration and take

the difference to the old value: AU = U(...,7},...) = U(...,7,...).

4. If AU < 0, accept the trial configuration. Otherwise, only accept the trial
configuration with a probability of e #2Y.

5. If accepted, the trial state becomes you new initial state. If not, just keep
the old initial state for the next iteration.

6. Continue from step 1.

It is important to note that e 2V is nothing but the ratio of the probability
distribution evaluated at the trial state to that at the initial state. That means,
the higher the energy difference AU is, the less likely a trial state gets accepted.
This acceptance criterion is actually only one of many different ones, all satisfying
the detailed balance condition. This condition ensures the validity of the generated
random walk as a (correlated) sample of the probability distribution.

In general, the Metropolis algorithm can be used for any system where one wants
to generate a sample from a known probability distribution.

3.2. Transition path sampling

Transition path sampling, or TPS, is a simulation technique to sample rare tran-
sitions in complex systems. Suppose we have a system which is most of the time
in either one of two well-known stable states, denoted by A and B. These states
correspond to two regions in the configuration space of the system. An obvious

14
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example would be the polymer chain at the respective phase coexistence tempera-
ture, with A and B corresponding to the expanded coil and the frozen crystallite.
Discriminating between the two states A and B is easy; however, the transition
mechanism taking the system from A to B is unknown. Here, transition path sam-
pling comes into play, since it is able to sample the transition pathways. In the
following, I will explain the details of this method. Most of these details are taken
from various review articles, such as [7-9)].

Figure 3.1.: Transition pathways connecting the stable states A and B on a
schematic sketch of a rough potential energy landscape. Image taken
from Ref. [7].

3.2.1. Transition path ensemble

The basis for TPS is the definition of the transition path ensemble, or in other
words, the set of all reactive pathways connecting A with B. Those pathways
should start at time 0 in A and end at 7 in B. Each path is described by an
ordered sequence of microstates, or configurations:

l’(T) = {an LAty L2ALy - - - 71"7'}- (35)

x¢, which we also call a time slice, is the complete configuration of the system at
time ¢t. This time does not necessarily have to be a physical time. As we will see
later, TPS can also be applied if the underlying dynamics of the system is a Monte
Carlo “time” evolution. Depending on the concrete dynamics, x; may consist of
all the positions and momenta (r™, p™) of the particles, or of all the positions (V)
only. In any case, the underlying dynamics are assumed to be Markovian, meaning
the probability of the future time evolution is fully described by the current state
of the system and does not depend on previous states.

15



3. Simulation Methods

The probability density for observing a particular path can be written as the
initial probability density p(xq) multiplied with the product of all single time step
transition probabilities:

T/At—1
Plz(T)] = p(o) H P(Tiae = Tip1)ar)- (3.6)

1=0

Obviously, both the probability density for the initial state and the transition
probabilities for the single time steps depend on the details of the system under
consideration and the respective dynamics of the simulation. Now, if we want
to obtain the transition path ensemble, we have to restrict the path ensemble of
Eqn. (3.6) to paths beginning in A and ending in B. Mathematically, that is done
by introducing the characteristic function of the regions,

Paple(T)] = ha(o)Pla(T)lhs(wr)/Za(T), (3.7)

with the characteristic function

1 if z€A
h = ’ 3.8
a(@) {0 if z¢A. (38)

hp is defined accordingly for region B. In addition to that, we need the path
partition function

Zap(T) = [De(T) halwo)Pla(T)]hs (wr) (3.9)
as a normalization constant. The notation
/ D(T) = / / drodns . .. dor (3.10)

stands for an integration over all time slices, similar to the path integral formalism
of quantum mechanics. The set of all pathways connecting A with B, together
with the weight function (3.7), is called the transition path ensemble.

Having done the formal definition, we would now like to create a working im-
plementation of a TPS algorithm, which is able to sample the transition path
ensemble. As a first step, we are interested in the form of the single time step
transition probabilities, if the system performs a Metropolis Monte Carlo random
walk in configuration space. In this case we have [9]

p(ﬂft — xtJrAt) = U}(.Tt — xtJrAt) + 5(.7715 — xtJrAt)Q(xt)’ (311)

with the acceptance probability for a trial move from z; to x;ya¢

w(zy — Tea) = N(T — Typae) - Min [1, %] (3.12)

16



3.2. Transition path sampling

and the total rejection probability for a move starting from x;
Qz)=1— /dxfw(x o). (3.13)

In other words, if we want to give the full probability (density) for going from some
initial state x; to any possible final state x;,a¢, we must not forget the possibility
to stay at z; in the case of rejection, represented by the second term in Eqn. (3.11).
Furthermore, Eqn. (3.12) is nothing but the usual Metropolis acceptance criterion,
multiplied with the ad-hoc trial probability n(z; — z4ya;) to generate a trial move
from z; to x4 Ay

3.2.2. Generating new trajectories out of existing ones

Let us examine the detailed balance condition for the transition path ensemble in
more detail. Formally, it means that the frequency of accepted moves from an old
path to a new one is exactly balanced by the frequency of the opposite move [9]:

Paplr® (T)x[2(T) — 2"(T)] = Pag[z™(T)|r[z™(T) — 2(T)].  (3.14)

Here, the superscripts ) and (™ stand for the old respectively new trajectory
while 7[z©)(T) — 2™ (T)] is the conditional probability to accept a move to
™ given the initial path is #(®. As in the case of traditional Monte Carlo, this
probability can be expressed as a product of the ad-hoc trial probability and the
actual acceptance probability:

T[e®(T) = 2®(T)] = Paen g (T) = 2(T)] % Pace[z©(T) — 2™(T)]. (3.15)

Combining the last two equations, one obtains a condition for the acceptance prob-
ability:
Pacc[r(T) = &™(T)] _ Pap[z® (T)] Pyen[x™(T) — 2(T)]
Pace[z®(T) = 2©(T)]  Pap[a(T)] Pyenlz® (T) — 2™(T)]

Once again, that condition can be satisfied using the Metropolis acceptance crite-
rion

(3.16)

Pap[r™ (T)] Peen [z (T) — 2 (T)]

, . (3.7
G| ML
Now, since the old trajectory is reactive, in other words ha [a:(()o)] = hp [:cgﬁ)] =1,
this expression can be simplified to

Pace[#©(T) — 2(T)] = min [1

Plx® ()| Pyen [z — 2]
Plal(T)) Pgen ) — 2]

Pacc2® = 2] = hulz{M]hp [:E%I—l)] min ll,

] . (3.18)

Note that here, for the sake of a shorter equation, we have used z(® — 2™ =
2©(T) = 2™ (T), while z{" and x%r—l) stand for the (single!) configurations at
times 0 and T in the new path.

17



3. Simulation Methods

In the following, we will apply Eqn. (3.18) to a standard Metropolis simulation as
the underlying dynamics and thus make the last step towards a full TPS simulation:
Obtaining correct algorithms for generating new trial paths out of existing ones.
Two such algorithms have proven to be especially useful: Shooting and shifting
moves.

3.2.3. Shooting moves

The basic idea for a shooting move is to randomly select a time slice within the
path, and then (at least in the case of deterministic dynamics) perturb the system
slightly at that point. Then you use the perturbed state as a starting point for a
forward and backward time evolution of the system, thus generating a new trajec-
tory. This new trial trajectory is then — as in traditional Monte Carlo — accepted
with an appropriate acceptance criterion. However, if the underlying dynamics
are of a stochastic nature, as it is the case for Monte Carlo dynamics, we can
omit the modification step. Instead, it is possible to directly start the new trial
trajectory from an unmodified configuration. Furthermore, you only need to gen-
erate either the backward or forward trajectory segment in one move, thus saving
computational cost.

(0)

:Ut, = xt/

A B

Figure 3.2.: Schematic picture of a shooting move for stochastic dynamics. Due to
the stochastic nature of the system, the shooting point need not be
modified prior to the forward and backward shooting. Image taken
from [9].

For the forward path segment of a trial trajectory, beginning at some time ¢’, the
generation probability can be expressed as a product of the single-step transition
probabilities [9]:

T/At—1 @) o)
f n n
Pyenlo = 1] = II » (xiAt - x(i—f—l)At) ; (3.19)
i=t' /At

where p(x; — x4y a¢) is already known from Eqn. (3.6). A similar expression gives
the generation probability for the backward segment of the trial trajectory. In
order to obtain the full generation probability for the complete trajectory, one
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3.2. Transition path sampling

must also take into consideration the respective probability for the modification of
the shooting point. The final generation probability is then given as [9]:

T/At 1
Pgen[:c(o)(T) — x(n)(T)] pgen[l’t/ — xt, H p( TNy — 55821)&)
=t /At
e (m)
H ( Tint — x(z I)At) (32())

with the probability pgenlz — 2] to generate the state 2\ out of z{ and

the single-step transition probability p(z; — z;_a;) for the time-reversed evolution
of the system. Now, in order to obtain an explicit expression for the acceptance
criterion, you have to take 3.20 and put the fraction

Pyen[r®(T) = 2'9(T)]
Peen[©)(T) = 2(T)]

(3.21)

into the second argument of the minimum function in Eqn. (3.18). As shown in
more detail in [9], you can make considerable simplifications if you assume that the
dynamics of the system conserve a stationary distribution and the distribution of
initial states is an equilibrium distribution, identical to the stationary distribution
conserved by the dynamics. Further assuming a symmetric generation probability
for the shooting point, one obtains in the end

(n)
Prcela® (T) = 2 (T = hiale®™ )] min [1, ZE?(/" );] | (3.22)

As already mentioned, in the case of stochastic dynamics, the shooting point need
not be modified, thus z = z and therefore p(z!’) = p({”). This leads to a

further simplification:
Pace[z®(T) — 2®(T)] = hala§"]hpaP]. (3.23)

In other words, if you perform your simulation according to the dynamics given
by, say, the Metropolis Monte Carlo algorithm, the only thing you have to worry
about concerning acceptance is the obvious one: deciding whether the trial path
starts in A and ends in B. Furthermore, it is possible to grow and check only either
the forward or backward segment separately, thus saving computational cost.

3.2.4. Shifting moves

A shifting move is in a certain sense orthogonal to a shooting move. Instead of
regrowing the path from some shooting point, in a shifting move the existing path
is shifted a certain amount 6t forward or backward in time. Afterwards, the then
missing fragment is regrown according to the underlying dynamics. A schematic
picture of such a move can be seen in figure 3.3.
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(a)

A B

Figure 3.3.: Schematic picture of forward (a) and backward (b) shifting moves.
Image taken from Ref. [9].

In the case of a forward shifting move, the time slices from t' =0 to t' =T — 6t
are identical to a part of the old path [9]:

e, =2lQ s, for i=0,... (T —dt)/At. (3.24)
Hence, the generation probability for the forward shifting move does only depend

on the product of the single time step transition probablities for the new segment
of the path:

T/At—1
PLlz®(T) = 2= TI R, = 20 ar): (3.25)
i=(T—6t)/ At

An analogous expression can be given for a backward shifting move. Again, in the
end we are interested in an acceptance criterion for both sorts of shifting moves.
For that criterion, we require the shifting length §t (which should be an integer
multiple of At) to be drawn from the same distribution for forward and backward
shifting moves. Furthermore, some additional restrictions are applied. They are
the same as already known from the discussion of the shooting moves. In particular,
it is assumed that the underlying dynamics conserve a stationary distribution and
the initial conditions of the system are drawn from the same distribution. With all
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those requirements, it is possible to simplify the acceptance probability for forward
shifting moves to [9]

Plela(T) = «®(T)] = halag” hsla). (3.26)
The same acceptance criterion is valid for backward shifting moves. That means,

a shifted path can be accepted whenever it is reactive, i.e. whenever it starts in
region A and ends in region B.

3.2.5. Committor analysis and transition state ensemble

Transition path sampling is able to sample otherwise practically non-observable
reactive trajectories, taking a system from one (meta-) stable state to another. As
a consequence, a typical transition path is expected to consist of many unlikely
intermediate states of the system, somewhere in the transition region between A
and B. To quantify these states, it is useful to introduce the committor of a given
state outside A or B. Formally, it is defined as [§]

 [Da(tyP(D)5(r — w)hs(x)
PE () = D Pl — w0)

(3.27)

This means that the committor pg is nothing but the fraction of pathways starting
at the configuration r and ending up in region B after a time ¢, with the committor
pa defined accordingly for region A. Thus, pg is a statistical value of how committed
a given initial state is to finally evolve into region B. Accordingly, a committor
value of pp =~ 0 means that the system will evolve to region A most of the time,
while pp &~ 1 implies the same for region B. In this definition, the committor also
depends on time. When actually calculating committor values, this time should be
much larger than the typical relaxation time of the system, such that the committor
becomes practically time-independent.

However, in any real-world simulation, you can only calculate a finite number of
trajectories, check if the end configuration is in B, and thus obtain an approxima-
tion for the committor:

1 XN ;
p(r,t) ~ = S hp(a) = pi (r,0) (3.28)
=1

If you now assume that these N trajectories are statistically independent, for large
N this pSBN)(r, t) is a random Gauf§ variable with a standard deviation of

o= w. (3.29)

This implies that for reaching a given desired accuracy, the largest number of
trajectories is needed for states with pgp ~ 1/2. These are, however, the most
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interesting states — the transition states of the system. Formally, such a transition
state is defined as having equal probability for becoming A or B:

PA = DB- (3.30)

If you then further assume that p4 + pg = 1 (in other words, that there are no
other basins of attraction except A and B), it follows immediately that a transition
state is characterized by pgp = 1/2. The set containing all transition states of the
system is called the transition state ensemble (TSE).

Now, in order to calculate committor values and find transition states with
pp = 1/2, you should take configurations out of your sampled pathways as ini-
tial configurations. Launch a minimal number of N.;, trajectories from each of
those configurations. Then, estimate each committor value by equation 3.28 and
its statistical error by

(V) (V)
Ny _ | PB (1-p5’)
o\ = \J N . (3.31)
Continue generating trajectories until the desired accuracy is reached. Now, the
configuration is excluded from the transition state ensemble if 0.5 does not lie in
the interval [pSBN) —ac™), pSBN) + ac™]. Otherwise, the generation of additional
trajectories is continued until a maximal number of N, is reached. The config-
uration is considered to be part of the TSE if 1/2 is still within the confidence
interval after the N,.. iterations. The value of o depends on the desired confi-
dence level; to give an example, a value of & = 2 is needed for a confidence level
of 95% [9]. That means, with that value the probability that the real committor
value is in the interval [pi) — 20 pi) 4 261 s 95%.

It is also possible to check if 1/2 is within the confidence interval directly after
the Ny trajectories have been calculated, as done for example in Ref. [10]. That
will save some computational cost, but at the expense of a lower accuracy for the
states that are not members of the TSE.

3.3. Structural analysis

In this section, we will cover the methods to analyze the structural properties
of simulated molecular systems, in particular the polymer chain. However, the
bond order parameters and connection coefficients discussed in the following are
applicable to a wide range of physical systems.

3.3.1. Pair correlation function

The pair correlation function g(r), also known as radial distribution function, de-
scribes the mean density at a distance r around a single particle. Formally, it is
defined as [11]

000) = i (200 =), (3.2

1]
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where N is the number of particles in the system and p the average global (num-
ber) density. More accurately, we can think of g(r) as the local density around a
particle, compared to the average particle density in the system under the assump-
tion of a homogeneous distribution. The pair correlation function is important for
several reasons. First of all, it allows an insight into the structure in the vicinity
of a particle. Furthermore, for systems with additive pair interactions, the ther-
modynamic properties are fully determined by g(r). For very long distances, the
(undirected) structural correlation between particles vanishes. Therefore, we have

lim g(r) =1, (3.33)
since the density in a certain distance around any particle approaches the average
density of the system as this distance approaches infinity.

In the case of a single, isolated system like the polymer chain, it is difficult to
define the average particle density p. Nevertheless, it makes sense to calculate
g(r), even though it is neither normalized for such a system nor is lim, . g(r) =1
true anymore. Still, you can obtain useful structural information about your system
from the analysis of g(r). For example, the first maximum in g(r) gives the average
distance between next neighbors.

3.3.2. Steinhardt bond order parameters

The orientational order parameters described here were first introduced in Ref.
[12]. They provide a way of identifying the local structure around a particle in a
molecular system. In principle, they do not only allow us to distinguish between
liquid and solid structure, but can also classify the type of solid structure.

First, define the complex quantity g, (7) of particle i as

) = 1 Nb(i)Y e — T 3.34
le(z) - Nb<Z) ]2 lm<rl_rj)7 ( : )

where the Y}, are the spherical harmonics. The index [ is a non-negative integer,
and for the index m we have m = —I[,—l 4+ 1,...,0,...,l. The sum runs over
all nearest neighbors of particle ¢, and hence N() is the number of these nearest
neighbors. Now, based on the ¢,,, you can define the local bond order parameters,
or Steinhardt order parameters, as

qz(i)ZJ £ le%m(i)IQ- (3.35)

20+1 ~

These parameters are sensitive to different crystal structures. Especially ¢4 and g¢q
haven proven to be useful in distinguishing between cubic and hexagonal structures.
One way to obtain such structural information is to plot the parameters for all the
particles in the ¢4-¢¢ plane. Then, depending on the structure of the system, the
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parameters will tend to cluster in certain regions of that plane. However, as shown
in Ref. [13], thermal fluctuations tend to smear out the parameter distributions
considerably, thus making it very hard to distinguish between, say, BCC and HCP
structures. For that reason, Lechner and Dellago have introduced an averaged form
of the local bond order parameters:

Qi) = $ 2;” : Zl |Gim (2) |2, (3.36)

+
where 1
Nb(l) + 1 ]%)

are the locally averaged ¢;,,. The sum, indicated by Nb(z’), runs over all neighbors of
particle 7 plus the particle 7 itself. As clearly visible in Fig. 3.4, using that approach
offers a much better distinction between different crystal structures in thermally
fluctuating systems.

0.5+

0.4

f 03 B -
L ® BCC | ® BCC |

® FCC ® FCC

0.2 ® HCP | ® HCP
- e LIQ T e LIQ
0.1 = e
gl 1l 1 1 1 41| ) IR IO N
0 005 01 015 02 025 0 005 01 015 02

q, q,

Figure 3.4.: q4-qg¢ plane and g4-¢s plane for a Lennard-Jones system in three dif-
ferent crystal structures and in the liquid phase. The averaged form
of the local bond order parameters allows a much better distinction
between the different structures. Image taken from Ref. [13].

Apart from the local parameters described so far, it is also possible to define
global bond order parameters of the form [14]

A . 1/2
_ T 2
Q= (%Hmz_llw ) , (3.39)
where the @y, are an averaged version of the g,,(7):
Qun = = ——. 3.39
| T, (D) (339

Again, Ny(i) denotes the number of nearest neighbors of particle .
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3.3.3. Connection coefficients

The connection coefficient d;; between particle ¢ and particle j is defined as the
normalized scalar product [15]

(S0 baom @) (g laon ()

It can be shown that d;; = d;‘j = dj; and therefore d;; € R. Furthermore, we have
—1 < d;; < 1. What makes the d;; important is that their distribution in a given
system strongly depends on the structure of that system. In liquids, the d;; tend
to be distributed around 0, while for solids the distribution gets narrower and is
shifted towards 1. Two particles ¢ and j can thus be defined to be connected when
d;; exceeds a certain threshold. In subsequent simulations, 0.5 was chosen as that
threshold. In Chapter 6, an example for the usefulness of the connection coefficients
will be given, comparing the expanded coil state with the frozen crystallite. Then,
a particle can be defined as solid-like if its number of connections exceeds another
threshold, say, 7. However, in the case of a system without periodic boundary
conditions and thus a non-negligible surface, many particles on the surface will
not be recognized as solid-like, since their number of connections is too low, simply
because they are surface particles. A refined approach to work around this problem
is to make the threshold dependent on the number of next neighbors of the particle.
In other words, a particle is considered as solid-like if it has a minimum number
of next neighbors (e.g. 4) and is connected to “almost all” of these neighbors, or
being more precise, to at least all but one of its neighbors to give some freedom
for thermal fluctuations. That way, on the one hand, surface particles can also be
detected as solid-like. On the other hand, the dependence of the threshold on the
number of next neighbors makes sure that particles deep within the system are not
misdetected as solid-like when they are in fact still in a liquid phase, as you would
have to expect if you just lowered the threshold globally.
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4.

Implementation

This chapter deals with the actual implementation of the simulations used to study
the polymer chain. First, I will describe the plain Metropolis Monte Carlo sim-
ulation. In the second part, we will continue with the TPS simulation based on

that.

4.1. Metropolis Monte Carlo simulation

The first step in the actual implementation of a working simulation was the cre-
ation of a standard Metropolis Monte Carlo program, written in Fortran 90. My
simulation consists of a main program and various auxiliary tools. The scheme
how they work together is based on similar programs by Martin Neumann. The
programs are the following:

mkpolychain is used to prepare the system, specifying all necessary parame-
ters such as N, T"and \. Furthermore, the technical parameters controlling
how many iterations are done have to be entered. By default, the program
creates a random, unordered open chain configuration, however, it is also
possible to read the initial positions of the chain monomers from an ASCII
file. All the information is stored in a binary input file.

polychain is the actual simulation program. It reads the input file, performs
the Metropolis algorithm and calculates averages of different quantities of in-
terest, such as the potential energy of the system. Afterwards, the final state
of the system and the accumulated averages are written to a binary output
file. This output file can be read again by the program, thus directly con-
tinuing the simulation. In that way, it is possible to split up long simulation
runs into small parts and save all the intermediate results.

apolychain is used to create human-readable output of the results after a
simulation. This program reads the output file of the main program, dis-
plays all relevant parameters and averages on the screen, and can also create
additional PDB files of the system in order to be visualized with other tools.

zpolychain is another auxiliary program designed to read an output file, reset
all averages, and write a new input file. It can be used after an initial
equilibration procedure of the simulated polymer chain, thus starting the
actual simulation run from a more natural state of the system.
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The main simulation in the polychain program runs according to a simple scheme.
The main loop in the code runs a predefined number of passes. One pass consists
of N X nysip single-particle moves, where nyg, is some integer. After every pass,
all the averages are calculated and accumulated. A single particle move is either
one of three distinct possibilities, selected at random. These three moves are

1. crankshaft moves, where a random monomer within the chain is rotated
through a small angle about the axis defined by the line connecting the two
neighboring particles;

2. end moves, where the 1st or N-th monomer is rotated a small angle about a
random axis;

3. pivot moves, where a monomer ¢ within the chain is again selected randomly
and the whole chain segment [i + 1, N] undergoes a random Euler rotation
about the i-th monomer.

For the pivot moves, it might look strange at first glance not to implement the
“reverse” move, i. e. rotating the segments [1,i—1], and holding the other part fixed.
However, that would be completely equivalent, since only the relative positions of
the monomers to each other are relevant, and not their absolute positions in some
arbitrary frame of reference. Also for that reason, the whole chain is shifted such
that the 1st monomer coincides with the coordinate origin again before the main
program writes its output file.

On average, of N single-particle moves, one is a pivot move, two are end moves,
and the remaining N — 3 are crankshaft moves.

With the described set of programs, it is already possible to calculate many
equilibrium properties of the polymer chain. However, to get a grasp of the actual
transition mechanisms taking the system from the expanded coil to the frozen
crystallite state, such a simulation is not enough. For that task, we need transition
path sampling.

4.2. Transition path sampling

For the TPS simulation, some additional programs had to be written. They use the
same subroutines as the plain MMC simulation for the dynamical evolution of the
system. However, before actually starting a TPS run, you need some initial path,
which is in general somewhat tricky to find. In the case of my simulations, due to
the stochastic nature of Monte Carlo, a simple trial-and-error procedure worked
well for that task. I started with a N = 128 configuration at the coexistence
curve (7' = 0.424 for A = 1.04) in the crystallite state, obtained from the standard
simulation. This configuration was melted by a massive increase in the temperature
of the system, while saving the intermediate configurations at regular MC time
intervals. Afterwards, these intermediate states were taken as a basis for many
parallel evolutions of the system at the original temperature of T = 0.424. By
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an observation of the MC time development of the potential energies for all those
pathways, I was able to select “promising” trajectory parts. One of those paths
was further split up by simply changing the state of the random number generator
and then starting parallel MC evolutions. Then, some of those trajectories froze
again to the crystallite, while others continued to melt. By further splitting up
the “fastest” up and down going trajectories by a change of the random number
generator’s state, I was able to generate a sufficiently short transition path in the
end. Of course, it was also necessary to reverse the “up” (i.e. to the coil state)
going trajectory before attaching the “down” going part to it. Fortunately, that is
no problem at all since there is no time direction in a Monte Carlo simulation.

Having found an initial path (corresponding to an initial system configuration in
the plain simulation), the scheme of the TPS is very similar to that of the normal
Monte Carlo program. Again, my simulation actually consists of several smaller
programs, namely the following:

o tpspolychain reads an initial path (which is again stored in a simple binary in-
put file) and performs the TPS. The final path and the accumulated averages
of some quantities are written to a path output file.

e pathloader is a multi-purpose program to obtain human-readable results from
a path file, such as the development of physical parameters along a given path.
In addition to that, the program can do certain modifications to a path, such
as reversing or shortening it.

o selectstates reads a path file and randomly selects states which are neither A
(coil) nor B (crystallite) for committor analysis. Those states are written to
standard binary files as used by the main program polychain.

o committorana is the program performing the committor analysis, as described
in chapter 3.2.5 (page 21). It reads one of the binary files produced by
selectstates and writes the configuration and the results of the committor
calculation to another output file of the same format.

Apart from the described programs, there are also some additional smaller ones
written for special purposes, especially the creation of an initial path. However,
those are not needed once such a path is found. Furthermore, the program faketps
simulates the procedure of a TPS simulation without actually performing any un-
derlying dynamics, in order to gain insight into the efficiency of a simulation. We
will focus on that aspect in the next chapter.

The first simulated transition pathways for the N = 128 chain have a length of
40,000 passes, with nii, = 950, thus leading to a total of 128 x 40,000 x 50 =
256,000, 000 single-particle moves per trajectory. On the machines used for my
calculations, it takes a CPU time of roughly 10 minutes for these moves to run. In
a path file, the system configuration is saved whenever a pass is completed, that
means there are 40,000 configurations in one path.
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One of the crucial properties of a TPS simulation is its efficiency in generating new
transition pathways. After all, in the end you are interested in sampling as many
trajectories as possible in a given amount of CPU time. Therefore, this chapter
deals with the efficiency of a TPS simulation in finding new transition pathways.
For that, we will also introduce a simple model of a TPS simulation and compare
it with real simulation results.

5.1. The path survival function

Concerning the efficiency of the sampling of new transition pathways, we first need
to introduce a function that returns the fraction of identical configurations in two

paths:
1 T/At

AT, (D) = ey 3 i wia) (5.1)

with the Kronecker delta

1 if x,=ux;
O(wi,x;) = LT 5.2
( ]) {0 if T * Xj. ( )
Now, we are able to define some sort of time correlation function:
c(k) = (fla™(T), ™9 (7)) , (5.3)

where 2™+%) (T is the path that evolved from the path 2™ (T) after &k TPS moves.
Now suppose only shooting moves are performed in the TPS, but no shifting moves.
Then c(k) is exactly the function we are looking for: It gives us the average fraction
of a path that was already part of that path k& TPS iterations ago, or, in other
words, the surviving fraction of an initial part after k iterations. Therefore, we
could also think of ¢(k) as the path survival function. This function should help us
to determine the average time until a completely new path is accepted. Naturally,
we expect c¢(k) to be near 1 for very small &, and that it should practically vanish
for very big k. In the simulation, the path survival function is calculated directly
by implementing Eqn. (5.3). Fig.5.1 gives an example for ¢(k) computed for a real
TPS run.

The choice of the optimal path length in a TPS simulation is a somewhat tricky
task. On the one hand, it should not be too long, to ensure that the CPU time
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required for one single path remains feasible. On the other hand, a too short
path length is also not optimal, since it will lower the acceptance rate of trial
moves considerably. Thus, in the end the mean time between the generation of
completely new pathways might even increase instead of getting shorter.

1 T T
| fake simulation
\ N = 128 simulation
\ fit (approximation)
0.8 H
0.6 ||
=
T
0.4
0.2 F
0 | | | I T
0 100 200 300 400 500 600

TPS Monte Carlo time k

Figure 5.1.: Path survival function ¢(k) for a typical TPS run with a path length
of 40,000 jobs, giving the average fraction of the configurations in the
path still present after k& TPS iterations. In the case of the “fake”
simulation, which is shown for comparison, after selecting the shooting
point, the acceptance was simply drawn from a distribution, given in
Fig.5.3. The fit of the simulation data is according to Eqn. (5.15).

5.2. Simulating the simulation

One could even think of performing some sort of “fake” TPS simulation in order
to test the behavior of ¢(k) for different scenarios. It turns out that a very crude
acceptance model is able to reproduce the real c(k) satisfactorily, as seen in Fig. 5.1.
First, as in a real TPS, a random time slice within the “path” is selected, along with
a shooting direction. Then, the remaining path length to A (backward shooting)
respectively B (forward shooting) is determined. The trial move is then accepted
with a certain probability yet to be found. Surely, this probability will depend on
the length of the remaining path fraction.
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5.3. Analytic calculation of the path survival
function

Let us define the function ¢(t) as the probability that a time slice at time ¢ is
changed in the next TPS move, assuming that there are only shooting moves. In
that case, the function is given as

1o, 11 T,
q(t)za?/odtplg(t)—i-é?/t dt'pa(t), (5.4)

where pg(t’) is the committor of the state at time slice ¢’ in the path, and pa(t') is
defined accordingly. The function ¢(t) is a sum of two terms: The first term is the
probability that a forward shooting move started somewhere before the time ¢ gets
accepted and thus the time slice at ¢ is changed. In addition to that, the second
term gives the same probability for a backward shooting move started somewhere
after t. The factor 1/2 comes from the fact that you have equal probabilities
for forward and backward shooting moves. The second factor, 1/7, takes the
initial choosing probability for the shooting point into account, which is equally
distributed along the path.

In the TPS simulation program, an approximation for ¢(t) is calculated in two
different ways. First, we use a straightforward approach where we simply count
how often each slice in the path is updated. Secondly, we implement Eqn. (5.4)
numerically, assuming an equal probability for forward and backward shooting

Nmax Nmax
Here, Np.. stands for the total number of forward and backward shooting moves
so far. N¢g(t) is the number of successful forward shooting moves (ending in B),
started between 0 and ¢. N, a(t) is defined accordingly as the number of successful
backward shooting moves, started between ¢ and 7. Basically, this is just a coarse-
grained version of the direct approach, so we expect that the two different versions
agree very well, and as seen in Fig. 5.2, they do.

Furthermore, we calculate approximations for p4(t) and pg(t), denoted by fa(t)
and fg(t), by bunching a number of adjacent slices together, and count how often
a shooting move started within that interval succeeds. We will later see that these
approximations prove to be useful for developing an accurate model of a TPS
simulation.

If q(t) is the probability that the time slice at t gets updated in one TPS iteration,
1 — q(t) is the probability that this does not happen. Accordingly, [1 — q(¢)]* is
the probability that the time slice remains unchanged after £ TPS iterations. This
sounds already very similar to the path survival function c¢(k), which gives the
average unchanged fraction of a path after £ TPS iterations. However, in order to
get the actual c(k), we have to average [1 — ¢(t)]* over all possible time slices:

o(k) = % / Tt — g()]". (5.6)

moves:

. (5.5)
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Figure 5.2.: ¢q(t) for N = 64 TPS simulations with two different temperatures.
The function was calculated both directly (green, orange) as well as
via implementing Eqn. (5.4) numerically (red, blue).

Now, let us rewrite that as
c(k) = 7_/ dt exp{In[1 — ¢q(¢)]"} (5.7)
0

= %/OTdt exp{kIn[l — q(t)]}. (5.8)

It is reasonable to assume that 1 — ¢(t) is a function which has a unique maximum
around some value ¢y within the path. Therefore, we can do a Taylor expansion of
the logarithm around that value:

In[1 — q(t)] = In[1 — q(to)] — a(t — t0)* + O(t*), (5.9)

where the first term in the expansion as well as a are constants. Furthermore,
the first-order term vanishes since we have assumed that ¢, is the position of the
maximum of 1 — ¢(¢). Now, we can use the Taylor expansion in the calculation of
c(k):

1 T
(k) ~ = /0 dt exp{kIn[1 — q(to)] —ka(t — t5)?} (5.10)
— % /O Tt exp{—bk} exp{—ka(t — to)} (5.11)

Effectively, we have approximated the original function [1 — ¢(¢)]¥ with an atten-
uation factor e~ times a Gaussian function e *¢(¢—%)*  The first factor in the
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integral is independent of t. If furthermore k is big enough, we can assume that
the Gaussian function is essentially peaked around ¢, and practically vanishes for
bigger distances to ty. In particular, it should be sufficiently small at the inte-
gration boundaries 0 and 7. In that case, we can substitute the boundaries with
minus and plus infinity, thus simplifying the calculation of the Gaussian integral:

c(k) =~ %ebk /dt exp{—ka(t — to)*} (5.12)
Loy [T
= e (5.13)

Here, we have used that
/dxe_(”b)Q/c = +em. (5.14)

In the end, we get a very simple result for ¢(k), which is of the form

o—bk

clk)=A——=. 5.15

(k) = A% (5.15)

We can now use this function — with parameters A and b — to attempt to fit

the calculated values for ¢(k) from the real simulation as well as those from the
simulated TPS run.

However, when performing a simulated TPS, the evolution of the committor
values along the path is in general unknown. Therefore, one has to choose some
substitute function for pg and p,, denoted by fg and f4. One possible choice is
given in Fig. 5.3, where

0 if t<048T,
t) = 5.16
/5 () {t/T—o.48 if > 0487, (5.16)
and
—§i+08 if +<0.637
fay={"63T = (5.17)
0 if t>063T.

With this model, the probability for the innermost part of the path to get updated
practically vanishes. Nevertheless, this model is able to reproduce the results for
c(k) from the real N = 128 TPS simulation very well. One could thus speculate
that the acceptance function for the real TPS is of a similar form. A numerical
approximation of the acceptance function of the real simulation is given in Fig. 5.4.

5.4. Mean time between path updates

Another interesting quantity concerning the efficiency of a TPS simulation is the
distribution of the time intervals between two updates for a given time slice. This
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Figure 5.3.: One possible choice for the acceptance function for the simulated TPS
run, which was used for the run from Fig.5.1. This suggests that the
acceptance function for the real TPS is similar to the simple model,
with a rather low changing probability for the innermost part of the
path.

distribution is closely related to ¢(k). The mean TPS time T,(t) between two
updates is simply the inverse of the update probability ¢(t):

1
T,(t) = —. (5.18)
q(t)
With this definition, one can calculate a histogram H (t), giving the (not yet nor-
malized) distribution of the mean time between updates over the whole path:

H(T) = OTdtq(t)(S[T—Tu(t)] (5.19)
_ o q(ty)
RE=AAl (5.20)

where according to the integration rules for the delta function, the sum runs over

all zeroes t; of
T.(t) =T —T,(1). (5.21)

The additional factor ¢(¢) in the integral is necessary since every slice contributes
to the histogram with a frequency directly proportional to its update probability.
However, having the distribution of the mean times between path updates is not
enough. In order to obtain the full distribution of the update intervals, we need the
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Figure 5.4.: Path acceptance as a function of time for the same two N = 64 TPS
simulations as used for Fig.5.2. In this calculation, 1,000 adjacent
slices each were bunched together for the averaging procedure. The
approximate acceptance value is then the fraction of successful shoot-
ing moves started from within these 1,000 slices.

complete information for each slice, in other words, the complete distribution of
update time intervals for each slice, and not only the average of that distribution.
As already known from Eqn. (5.6), the probability to observe no update after k
TPS iterations is [1 — ¢(¢)]". Therefore, the probability Py, to observe an update
of the time slice at t after k+ 1 TPS iterations is the product of the probability to
observe no update in the £ iterations before and the actual update probability for
one iteration:

Py = [1—q(t)]"q(®). (5.22)

Therefore, it is immediately clear that

P
P

—1-q(b), (5.23)

which is constant for all values of k. Hence, the sequence {P;} is a decreasing
geometrical sequence with scaling factor 1 — ¢(¢). One can also rewrite Eqn. (5.22)
as

Py = q(t)elta0F (5.24)
= q(t)er i) (5.25)
= q(t)e . (5.26)
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5. Path Sampling Statistics

Thus, it is possible to determine ¢(t) at a given time slice from an exponential fit
of the distribution of update intervals for that time slice. This average is

k=Y kP (5.27)
= i k(1 —q)* ¢ (5.28)
=q O_O(k;+1)(1—q)’f. (5.29)

As shown in appendix B, the value of the infinite sum is 1/¢?. Therefore, we end
up with

: (5.30)

which is nothing but a discretized way of writing Eqn. (5.18) and thus exactly what
we should have expected.

With the result for the distribution of update intervals as a function of the posi-
tion in the path at our disposal, we are now able to calculate the full distribution
of these intervals. We already know that for each time slice ¢, there is a distribu-
tion of update intervals associated with that slice. This distribution is given by
Eqn. (5.22), in slightly different notation it is

Py(k) = q(t)[1 — q()]*". (5.31)

If we would like to obtain the distribution for the whole path, we simply have to
average this function:

Pn(F) = 2= [ dta(t)[1 ~ a(o) " (5.32)

So, the final distribution can be obtained in a similar way as ¢(k). As in the case of
c(k), we can apply a Taylor expansion to the integrand. Analogous to Eqn. (5.11),
we can write

Poatn(k) = %/OTdtq(t) exp{—b(k — 1)} exp{—(k — 1)a(t — ty)*} (5.33)

~ 2 [Narlatro) + T

(t — to)?] exp{—b(k — 1)} exp{—(k — Da(t — t,)?}.
(5.34)

Once again, we have used the fact that ¢y is the position of the minimum of ¢(t),
thus ¢(tp) = 0. If then k is big enough, we can also substitute the integration
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Figure 5.5.: (Normalized) P;(t), the distribution of update intervals at the begin-
ning of the path, and fit with an exponential function according to
Eqn. (5.31). Again, the same N = 64 TPS simulation at 7" = 0.3975
as for Fig. 5.2 was used. In order to obtain better statistics, the his-
togram was actually constructed with the update intervals of the first
100 time slices.

boundaries with minus and plus infinity again:

Pyain(k /dt (to) + )(t —to)?*] exp{—b(k — 1)} exp{—(k — Da(t — ty)*}
(5.35)

750 —b(k—1) —b(k—1)
o—blk— = o0k~ TP (5.36)

The first term in the mtegral is simply the approximation for ¢(k), shifted by one,
times another constant. For the evaluation of the second term, we have used that

e )3
/dasze’mg/C _ VT .

; (5.37)

In the end, we can write the distribution in the form

—b(k—1 A B
Poan (k) = e~ (w: — T 1)3) (5.38)

in order to apply another fitting procedure to the corresponding data collected in
the simulation.
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5.5. Tree representation of path acceptance

Another form of visualizing the progress of a TPS simulation (with at least some
amount of stochastic dynamics and shooting moves only) is to draw a tree diagram
as already done by Juraszek and Bolhuis [16]. In such a tree representation, the
z-axis of the diagram corresponds to the time of the transition pathways, while
the progress of the TPS iterations is shown on the y-axis, running from top to
bottom. A horizontal line is drawn whenever a trial path, or, more precisely, a
trial partial path, is accepted. The corresponding shooting point is indicated by
a vertical line. A path that is completely independent from the previous path is
obtained whenever a forward shot is accepted that starts from a point from within a
previously successful backward shooting move, or vice versa. In the diagram, such
an event is visualized by an overlap between the respective forward and backward
shooting moves. An example for a tree representation is given in Fig. 5.6.

Figure 5.6.: Tree representation of a typical TPS simulation for the N = 64 chain
with A = 1.04 and T" = 0.38. Successful forward shooting moves are
drawn in blue, backward shooting moves in green. Shooting points are
indicated by vertical lines. As indicated by the overlap between green
and blue lines, an independent path is generated in the lower third of
the tree. The diagram covers about 200 TPS iterations.

It is clear that for any simulation run, the tree representation of the path history
holds the full information required to calculate the path survival function ¢(k) and
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5.6. Calculation for a simple acceptance model and comparison with a simulated TPS run

all the other related quantities discussed in this chapter. For example, the function
q(t) can be viewed as the density of tree lines along the path time axis.

5.6. Calculation for a simple acceptance model
and comparison with a simulated TPS run

Here, a practical example for the previous calculations should be performed and
also checked against a corresponding simulated TPS run. First, we need two ac-
ceptance functions for forward and backward shooting moves. For simplicity, let
T = 1. The acceptance function we choose for forward shooting moves is

t

fe(t) = 2 (5.39)

and the symmetrically defined function for backward shooting moves is

t 1
)= —— + =, 4
falt) = =5+ (5.40)
We can now calculate
1 ot
/ At falt) + 5 / dt' fa(t') (5.41)
1

+ ! (5.42)
=7 < :

From this, we can calculate the histogram H(T') of the mean times between path
updates. However, since ¢(t) is symmetric about 1/2, we can simplify our calcula-

tion by integrating only from 0 to 1/2:

T) 1/2c1l (t)o lT ! ] (5.43)

=2 tq(t - —. 5.43
0 q(t)

For that, we need the roots of the argument of the delta function:

1 !

1173

After a bit of algebra and solving a quadratic equation, we get

+ (5.45)

1
t172 == - 1

DO | —
N

We note that the roots are only real and within (0, 1) if 8 < T < 16, which makes
perfect sense, since this is the codomain of 1/¢(t). Furthermore, we can exclude t;,
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5. Path Sampling Statistics

as it is greater than 1/2. We also need the derivative of Eqn. (5.44) with respect
to ¢, which turns out to be

d 1 Lt 1
a(”m)zg@ (5-1) (540

qlt=(T)] = % (5.47)

and doing some additional algebra, we end up with the distribution function

Finally, using

H(T) = 5 61 (5.48)

which is, as already mentioned, only defined for 8 < 7" < 16. A comparison of
this distribution function with the result from a “fake” TPS run with the same
acceptance model shows very good agreement (Fig.5.7).

0.4 : : :
fake TPS simulation +
analytic result
0.35 | |
0.3 + 4
&
= 025 1
el
kS|
= L 7
£ 0.2
55 | +
=) R +
0.15 t+ ety + -
01 | + by +++++++++++++++ ++ . . N ta o+ +++ I+ |
005 I I I I I I I
8 9 10 11 12 13 14 15 16

TPS Monte Carlo time T between path updates
Figure 5.7.: Exact result for H(T'), the distribution function of the average
times between path updates, for our simple path acceptance model
(Eqn. (5.48)) and the result from a “fake” TPS run with the same

acceptance function as in the analytic calculation. Both curves are
normalized for comparison.

In order to calculate the path survival function

o) = [ Lt — g0, (5.49)
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5.6. Calculation for a simple acceptance model and comparison with a simulated TPS run

we can either use the above approximations or simply plug the integral into a
computer algebra system like Mathematica. If we do the latter, we end up with

15\ % 1 3 1
)= (35) P[5 k555 (5:50)

where o F'y(a, b; ¢; z) is the hypergeometric function. The exact, the numerical and
the approximate result are shown for comparison in Fig.5.8. As expected, the
exact and the numerical result from the simulated TPS are practically identical.
The approximation is only good for values of k of about 20 or bigger. For smaller
values, the function [1 — ¢(¢)]* is not small enough at the integration boundaries 0
and 1 of Eqn. (5.49), thus the step to substitute them by minus and plus infinity
is not really justified.

1 T
| exact
T approximation
b | fake simulation =
0.8 } \ |
0.6 | |
&
T
0.4 - |
0.2 F |
0
0 70 80

TPS Monte Carlo time k

Figure 5.8.: Comparison between the exact result for c(k), the result from the
“fake” TPS simulation and the approximation for our simple path ac-
ceptance model. Clearly, the approximation is only valid for bigger
values of k. In the case of the TPS, a total of 50,000 TPS Monte

Carlo steps were simulated.

The other alternative is to use the approximate form of ¢(k) as given in Eqn. (5.13).
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For that, we first need the values of all the constants in the Taylor approximation:

()4

1
-
o= —%% 1~ q(0)]],_, , = % (5.53)
b=—1In[l—-¢(1/2)]=1n % (5.54)

This leads us to

e(k) = (%)k \/% (5.55)

A last check of the validity of all these calculations is to compare ¢(1) with a
more direct result for the same quantity. ¢(1) is the average fraction of a path after
a single iteration. We can calculate that “by hand” as well. First, the average
fraction of a path remaining after a successful shot is

1
d
@@Jzﬁfgﬁiﬁ. (5.56)
Jodz fp(z)
Putting in all the numbers, we end up with
2
<"L‘i"em> = g (557)

The complete average is now simply the weighted mean of one (for the case, that
the trial move is rejected) and (zf.,). As the total acceptance for a trial move is
1/4, we have

3 1

<%m>:1x1+1@;9 (5.58)
11

=15 (5.59)

This result turns out to be exactly the same as ¢(1) = }—2 o F'y [%, -1;3 %5}
Very similar to ¢(k) is the distribution function for the update intervals for the

complete path,
1
Pran(k) = [ dtq()[1 = q(t))* " (5.60)
If you perform the calculation with Mathematica, you will get

1
Ppath(k) - 521_3k7k_1F1 [3, 1-— k’, 1-—

) -9
k, 4; , 5.61
vm+1\ﬂ5—J (5.61)

as a result, where Fj(a,by,bs,c;x,y) is the Appell hypergeometric function. Al-
ternatively, we can also perform the approximation procedure described above.
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5.6. Calculation for a simple acceptance model and comparison with a simulated TPS run

Note that as ¢(t) is a second-order polynomial in ¢, its Taylor approximation up
to second order is already exact. Plugging in the already known constants into
Eqn. (5.36), we get

1 /15\%! 157 1 /15\F1 1537
Pon(k) = — (= -+ (= —_— . .62
bain (F) = 75 (16) k—1) 3 (16) Bk —1)° 562

Another comparison, between the exact, the numeric and the approximate result
for Poan(k), is given in Fig.5.9. The result is very similar to that for ¢(k), again
the approximation is only valid for bigger values of k.

0.1 :
exact
\ approximation
. fake simulation o
0.08 |7 1
. 0.06  ©® \ |
~2 ‘\\
& o\
S ool |
0.02 + ]
DDDDDEED\DE*D%
0 L . A N Eﬁm%ﬁﬁﬂﬂﬁaﬁg@ﬁﬂ?ﬂ%ﬂ Seceoocos
0 10 20 30 40 50 60 70 80

TPS Monte Carlo time k

Figure 5.9.: Comparison between the exact result for Py (k), the result from the
“fake” TPS simulation and the approximation for our simple path ac-
ceptance model. As in the case of ¢(k), the approximation is only valid
for bigger values of k. The same “fake” TPS simulation as for the cal-
culation of ¢(k), with a total of 50,000 simulated TPS Monte Carlo
steps, was used.
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6. Results and discussion

In this chapter, I will discuss the results of my simulations. I am going to start by
comparing my Metropolis Monte Carlo simulation with that by Zhou et al. Then,
the validity of the simulation is further checked by comparing the results for a
few different temperatures and interaction ranges with those from Taylor etal.
Later, we will evaluate the performance and especially the results from the TPS
simulation. The transition pathways harvested by the TPS are then used for an ex-
tensive committor analysis and a statistical analysis of the found transition states.
In particular, we are able to confirm an observation already made by Taylor et al.
in Ref. [2]: The typical transition state indeed consists of a crystalline nucleus
attached to one or more chain fragments. However, due to our insights in the
dynamics of the transition, we can further investigate the structural properties of
these transition states.

6.1. Metropolis Monte Carlo results

I have performed a number of simulations with A = 1.5 for different temperatures,
as already done by Zhou etal. [1]. This was actually the first step I have taken to
check the validity of my implementation. As shown in Fig. 6.1, the two simulations
agree very well. Since the Zhou et al. results were taken graphically from Fig. 2.3,
the data points are not fully accurate. However, it says in the paper that the errors
are (except for the N = 64 chain) smaller than the size of the points, which is also
the expected error from the graphical extraction process. For the N = 64 chain,
the errors are a bit larger, as seen in Fig. 2.3.

For an estimation of the errors in my own simulation, I have calculated block av-
erages of the simulation results and used them as de facto statistically independent
estimates for the quantities in question. 20 blocks, consisting of 200,000 passes
each, were used, where each pass consists of 50 x 128 single-particle moves. One
example is taken from the simulation of the N = 64 chain at A = 1.5 and T' = 1.0,
in that case we have

(R%)/N = 0.073033 % 0.00009,
(U)/N = —2.949 = 0.002.

So, the statistical errors are that small that they are actually well within the dots
in Fig. 6.1. Another calculation for the same system, but at the higher temperature
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Figure 6.1.: Normalized mean-square radius of gyration versus temperature, com-
parision between my own Metropolis Monte Carlo simulation results
and those of Zhou etal., as published in Ref. [1]. Their data points
were extracted graphically from Fig. 2.3.

of T'= 10 yields

(R2)/N = 0.467 £+ 0.002, (6.3)
(UY/N = —0.59432 4 0.0009.

Again, also for this higher temperature, the error in the mean-square radius of
gyration is well within the dots in the diagram. As a last test, I have estimated
the error for a temperature of T' = 2, as the error in the results of Zhou et al. is
biggest for that temperature. In that case, we have

(R2)/N = 0.164 % 0.001, (6.5)
(U)/N = —1.554 & 0.004.

Thus, also for this temperature, the error for the mean-square radius of gyration
is within the dots in the diagram.

As expected, the pair correlation function g(r) (Fig.6.2) for the N = 128 chain
looks very different for the expanded coil and the crystalline phase. For the coil,
g(r) has only one maximum at r = 1, which is due to the fixed bond length
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Figure 6.2.: Pair correlation function g(r) for N = 128, A = 1.04, T" = 0.424,
coil and crystalline phase. Due to the lack of a useful definition of
the density for a finite system like the polymer chain, this g(r) is not
normalized.

between neighboring chain segments. In contrast, the pair correlation function for
the crystalline phase shows many distinct maxima due to the very ordered structure
of the chain. In both cases, g(r) = 0 for » < 1 as a consequence of the hard cores
of the monomers.

Also the distribution of g4 and gg, or, more precisely, the particle’s locations in
the ¢4-Gs plane, are considerably different for the two phases of our system (see
Fig.6.3). To gain an insight into the structure of the system, one can compare the
diagram for the polymer chain with the result from Lechner and Dellago [13]. For
the crystallite state, the location of the dots in the g4-gg plane suggests that the
system is mainly in a hcp structure. That makes perfect sense since due to the
form of the square-well potential, one would expect that in a crystalline phase, the
particles tend to be packed as closely as possible. Due to the finite nature of the
system, especially the distribution of the coil particles in the g4-gs plane (without
the averaging over next neighbors) looks rather distorted (Fig.6.4). The difference
to the distribution of the averaged parameters is, however, much smaller for the
crystallite state.

Another interesting quantity is the overall Monte Carlo acceptance rate as a
function of the particle position within the chain. As seen in Fig.6.6, there is
as expected a rather strong difference between the coil and the crystalline phase.
In the unordered coil phase, where the chain can move rather freely, the overal
acceptance rate is quite high and practically constant for all positions in the chain.
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Figure 6.3.: q4-g plane for two typical sample configurations from the system with
N =128, A = 1.04, T = 0.424. For the crystallite state, we further
distinguish between compact and non-compact particles.
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Figure 6.4.: q4-g¢ plane for two typical sample configurations from the system with
N =128, A = 1.04, T' = 0.424. For the crystallite state, we further
distinguish between compact and non-compact particles.
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Figure 6.5.: Distribution of the connection coefficients d;; for N = 128, A = 1.04,
T = 0.424. The histograms were collected during a simulation run of
the system in the coil respectively crystallite state and are normalized
for comparison.
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In contrast to that, the acceptance rate in the densely packed crystalline phase is
much lower. Furthermore, it is strongly dependent on the particle position within
the chain. This indicates that especially particles very deep within the nucleus are
unlikely to change there positions once they have crystallized.

In order to perform a TPS simulation to study a phase transition, one needs to
know the coexistence temperature for the given system. For the N = 128 chain,
this information is already available in the form of a complete phase diagram (see
Fig. 2.5 on page 8) for a wide range of values for A, as published by Taylor et al. [2].
For the N = 64 chain and the same value of A = 1.04 as for the simulation of the
longer chain, an approximate transition temperature of 7" = 0.38 was determined
by interpolation of the data provided by Wolfgang Paul (Fig. 2.6).

Also, for the TPS one has to be able to distinguish between the two different
phases of the system. In our case, the chain is considered to be in crystallite or
B state if its number of solid-like particles is above a certain threshold N, and
its potential energy is below a certain threshold Uy.,/N. The coil or A state is
defined in the same way, of course with opposite thresholds Ny., and Uy, /N.
These thresholds are different for different chain sizes. Table 6.2 gives an overview
of the thresholds used in our TPS simulations.

N =64 N =128
coil Upin/N -0.8 -0.8
Ninax 2 6
crystallite Umax/N -2.1 -2.1
Nmin 35 60

Table 6.2.: Thresholds used to distinguish between coil and crystallite state.

6.2. Committor analysis

After harvesting about 70 independent pathways (for N = 128, A = 1.04, T =
0.424) with our TPS simulation, the next logical step was a committor analysis of
the states in these transition paths. An interesting property of such a transition
pathway is the development of the committor value pg along the time of the path,
which corresponds to a “perfect” reaction coordinate. One example for such a time
development is given in Fig.6.7, along with the time development of the global
order parameter (Jg of the whole chain. It is observed that instead of directly
evolving from region A to region B in a steady way, the system undergoes a very
rough transition. This already indicates that the transition mechanism is of a rather
complex nature. Also the time development of the committor for a smaller system
(Fig. 6.8) looks very similar. However, the actual transition takes considerable less
Monte Carlo time, which has to be expected for a smaller system.
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Figure 6.7.: Time development of the committor pg (blue) and the global order
parameter Qg (green) for a typical transition path. The simulation was
performed with N = 128, A = 1.04, T' = 0.424. One pass corresponds

to N x 50 single-particle moves.

In Figs.6.9 and 6.10, we have plotted the time development of the potential
energy per particle and the number of solid-like particles for the same two transition
pathways. These are the quantities which are used to distinguish between the two
states of the system.

6.2.1. Finding a reaction coordinate

A reaction coordinate is a one-dimensional function of a system’s configuration
which allows to track the progress of a transition. Obviously, we would like to find
a suitable reaction coordinate for the coil to crystallite transition of the polymer
chain. In classical nucleation theory, the size of the biggest crystalline cluster is
used as a reaction coordinate [15]. Since our system is only one finite object, there
is normally also only one crystalline nucleus in a transition, and we could try to
use its size as a reaction coordinate. One way to test if some quantity can be used
as reaction coordinate is to take many different configurations and plot the value
of the proposed reaction coordinate against the calculated committor in a diagram
for each of them.

In Fig. 6.11, we have such a plot for the size of the crystalline nucleus as a possible
reaction coordinate. The system is again the N = 128 chain with A = 1.04 at the
transition temperature 7" = 0.424. From each of the harvested transition paths,
200 random configurations which are neither A nor B were selected. Size means
here simply number of crystalline particles in the nucleus. A particle is defined as
crystalline if it has more than four connections (see section 3.3.3, page 25) and is
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Figure 6.8.: Time development of the committor pp (blue) and the global order
parameter (g (green) for a typical transition path of the smaller system
with N = 64, A = 1.04, T' = 0.38. One pass corresponds to N x 50

single-particle moves.
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Figure 6.9.: Time development of the potential energy per particle (blue) and the
number of particles in the crystalline nucleus (green) for the same

N = 128 transition path as in Fig.6.7.
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Figure 6.10.: Time development of the potential energy per particle (blue) and the
number of particles in the crystalline nucleus (green) for the same
N = 64 transition path as in Fig.6.8.
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Figure 6.11.: Committor pp as a function of the number of particles in the crys-
talline nucleus for random configurations from the N = 128 tran-
sition pathways. The error bars indicate the error approximation
(Eqn. (3.31)) for the calculated committors.
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furthermore connected to at least all but one of its next neighbors. For a good
reaction coordinate, we would expect a sigmoidal shape of pg(r), where r is the
proposed coordinate. However, as seen in the diagram, there is a huge range of
nucleus sizes where every committor value between 0 and 1 is possible. We can
thus conclude that the nucleus size is not sufficient to describe the progress of the
coil to crystallite transition of the system.

One approach to obtain a better reaction coordinate is to perform a likelihood
maximization as first described by Peters and Trout [17]. The proposed coordinate
is modeled as

qg=co+cipr+capa+..., (6.7)

where the p; are physical parameters of the system and the ¢; are the coefficients to
optimize. That way, the reaction coordinate is basically just a linear combination
of different physical parameters. However, by introducing parameters like, for
example, p3 = p1po, it is also possible to include non-linear contributions.

Clarion Tung has provided me with his implementation of the optimization pro-
cedure. With the calculated committor values of the N = 128 polymer chain, I
have tried a number of different physical parameters for the model reaction coordi-
nate. Naturally, the number of particles in the crystalline nucleus and the potential
energy per particle are expected to be promising candidates for such physical vari-
ables that play an important role in the transition. Other parameters I have tried
include — but are not limited to — the anisotropy (6.9) of the system, the principal
moments of inertia and the number of chain-like loops in a configuration and global
order parameters like ()4 and (Jg. Unfortunately, none of these variables was able
to considerably improve the result compared to the number of crystalline particles
or the potential energy per particle alone.

One example for such an unsuccessful trial is shown in Fig.6.12. In that case,
in addition to the potential energy per particle, a second physical parameter was
used for the optimization procedure. It is defined as

A=N? (6.8)

nucl»

where Np.q is the number of particles in the crystalline nucleus, which was already
used in Fig.6.11. For a more or less sphere-like nucleus, A is expected to be
proportional to the surface area of the nucleus.

6.2.2. Transition state ensemble

Another important goal of the committor analysis is to find a sample from the tran-
sition state ensemble. This is done by searching for configurations with a commit-
tor value of 1/2, up to statistical errors. The procedure described in section 3.2.5
(page 21) was used to obtain that sample, with Ny, = 10 and Ny., = 100.
After performing the 10 initial time evolutions, configurations where 1/2 was
not within [pSBN) — 20N pSBN) + 20 were excluded from the further selection.
In the end, a configuration was considered part of the TSE if 1/2 was within
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Figure 6.12.: Committor pp as a function of a model reaction coordinate for the
same states as used for Fig.6.11.

Figure 6.13.: Typical transition state for the N = 128 polymer chain, with A = 1.04
and T' = 0.424. The observation of Taylor etal. [2] can be confirmed
via committor analysis: The typical transition state indeed consists
of a crystalline nucleus attached to one or more chain fragments.
Dark blue indicates crystalline particles; particles in light blue are
in a compact, but not yet crystalline structure; red marks chain-like
particles and white means that neither of these criteria applies.
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[PU00) — ¢(100) (1000 5(100)] " Out of the transition paths for the N = 128 chain, a
little less than 500 transition states were harvested with that approach. A typical
example from these states is shown in Fig. 6.13. Already a first visual analysis of the
configurations in the TSE confirmed the observation of Taylor et al. [2] concerning
the structure of transition states. They concluded that the typical transition state
consists of a crystalline nucleus attached to one or more extended chain fragments.
However, their result was only drawn from a visual analysis of states which are
energetically in between the high-energy coil and the low-energy crystalline phase.
Thanks to the new results from the committor analysis, the initial observation
could be confirmed using a more rigorous approach.
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Figure 6.14.: Histogram of the number of particles in the crystalline nucleus for

configurations within the N = 128 TSE, and fit with a normal
distribution.

In Fig.6.14, we have a histogram of the number of particles in the crystalline
core for configurations that are part of the transition state ensemble. As has
already become clear from the dependence of the committor on the nucleus size, this
distribution is rather broad. However, most of the transition states are clustered
around a nucleus size of about 38, with a standard deviation of 4. The fit with
a normal distribution yields the same result. The distribution of the energy per
particle for the same configurations (Fig.6.16) looks rather similar. This comes
not at all unexpected as the biggest contribution to the system’s potential energy
comes from the region where the particles are packed very densely — in other words,
the crystalline core.

In Fig.6.15, the distribution of nucleus sizes for the smaller N = 64, A\ = 1.04
system is shown for comparison. For this system, a much shorter committor calcu-
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Figure 6.15.: Histogram of the number of particles in the crystalline nucleus for con-
figurations within the N = 64 TSE, and fit with a normal distribution.
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lation has yielded about 800 transition states. The transition states are clustered
around a nucleus size of about 17 particles, again with a standard deviation of 4.
The anisotropy

-[max o 1’
Lnin
where [« and I, are the largest respectively smallest principal moments of in-
ertia, has a different distribution within the TSE (Fig.6.17). Both the distribution
of the anisotropy of the whole system and of the crystalline core only are shown.
While the distribution for the whole chains is rather broad and has a long tail
towards big anisotropy values, the distribution for the crystalline cores is sharply
peaked around 0.5. Again, this confirms the observation that the presence of a
more or less spherical or at least not too anisotropic, crystalline nucleus is impor-
tant. However, the overall shape of the complete system, mostly determined by
the positions of the open chain segments, does not play an important role in the
transition.

a =

(6.9)

2.5 T T T
complete system
crystalline nucleus
9 L
1.5+
=
=Y
1L
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0 ! H 0 - =) ! ! !
0 1 2 3 4 5 6 7 8

anisotropy a
Figure 6.17.: Histogram of the anisotropy of both the complete system and the

crystalline core only for configurations within the N = 128 TSE. The
histograms are normalized for comparison.
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7. Final Remarks

We have studied the first-order freezing transition of a single, flexible homopolymer
chain with square-well interactions. Using the transition path sampling simulation
technique and an evolution according to Metropolis Monte Carlo dynamics, we were
able to sample the transition state ensemble of this system. We performed our TPS
simulations with an interaction range of A = 1.04 for two different chain lengths of
N =64 and N = 128. Prior to that, we have validated the implementation of the
Metropolis Monte Carlo simulation by comparing our simulations with results from
the literature for A = 1.5 and different chain lengths of 16, 32 and 64 monomers.

In addition to the TPS simulations of the polymer chain, we have performed
a statistical analysis of the efficiency of TPS in finding new transition pathways.
The path survival function introduced in this thesis can be used to find out how
much simulation time it takes on average to find a completely new transition path.
Furthermore, we have also calculated the distribution of update times along a path.
In all cases, the predictions derived from our analytical calculations have agreed
very well with the results from the actual TPS simulations.

Our committor analysis of the harvested transition pathways has yielded a sam-
ple from the transition state ensemble. A statistical analysis of the TSE confirmed
the previous observations concerning the structure of the typical transition states.
The states in the TSE have a single crystalline nucleus, while the rest of the sys-
tem is still in a chain-like configuration. The nucleus sizes are normally distributed
around an average value. The crystalline nucleus is typically already in the hcp
structure, which is also the preferred structure of the fully crystallized system.
Furthermore, it is evident that the anisotropy distribution of the nuclei alone is
much sharper than that of the whole transition states. This indicates that, typi-
cally, the nuclei in the transition states show less deviation from a spherical shape
than the whole system, with its often extended open chain fragments. However,
it remains an open question how the structural properties of the nucleus and the
chain fragments contribute to a reaction coordinate. It is clear that due to the
complex constraints of the system, a reaction coordinate cannot be determined by
the size of the crystalline nucleus alone. Instead, one could speculate that also the
spatial arrangement of the chain plays an important role in the further progress
of the folding transition. The challenge for further research is thus to identify
the relevant degrees of freedom involved in the chain arrangement. Possibly, the
application of machine learning algorithms can help solving this complex puzzle.
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A. Calculation of the
mean-square radius of
gyration

It will be shown that Eqns. (2.4) and (2.6) are equivalent. From Eqn. (2.4), when

dropping the brackets for averaging, we have
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This is exactly Eqn. (2.6), of course again without the averaging.

(A.1)

(A.2)

(A.3)
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B. Calculation of the average
time between path updates

In order to obtain the average time between path updates at a given time slice
with update probability ¢, we need to calculate

k:qi(lsﬂ)(l—q)’f. (B.1)

The difficult part is the infinite sum

Iij(k+1)(1—q)k: % (B.2)

In this calculation, the crucial step is to note that in some sense, this sum is nothing
but an infinite collection of geometric series. Let us first consider the partial sum

m

Sk +1)(1- ). (B.3)

k=0

For the sake of simplicity, let us introduce p := 1 — ¢, where p € [0,1). We can now
visualize the sum as

m

Yo(k+1pt = P (B.4)
+ p + pP 4+ P
+ ...
+ p" + P+ p" o+ .+ P

This is now a geometric series up to index m, plus the same series without the first
element, plus the same series without the first two elements, and so on. We know
that for a geometric series

m k 1— perl

dopf=—. (B.5)

k=0 L=p
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B. Calculation of the average time between path updates

Hence, we can write

m 1_pm+1 mfll_anrl
k+pt=m+)—L — Sy L
;;) L=p nzzo L—=p
_ ym+1 1 m—1 _n+1
= (m+1)——— — +y L
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1—0p 1—p —1l-p
B 1 (m + 1)pm+1 1 1 — pm—I—l
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B 1— pm+1 (m + 1)pm+1
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The last remaining step is to take the limit as m approaches infinity:

Z(k +1)(1 - q)k = lim Z(k} +1)(1 - q)k
k=0 M0 =0
] 1— pm+1 (m + l)perl
= lim —
m=oe (1 —p)? 1—p
B 1
(1—p)?
1
— ? O
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Abstract

We investigate the crystallization of a single, flexible homopolymer chain using
transition path sampling (TPS). The chain consists of N identical spherical mono-
mers evolving according to Metropolis Monte Carlo dynamics. While neighboring
monomers have a fixed distance, the non-neighboring monomers interact via a
square-well potential. For a sufficiently small interaction range A, the system un-
dergoes a first-order freezing transition from an expanded, unordered phase to a
compact crystalline state. TPS and committor analysis are used to study the tran-
sition state ensemble of the chain and to search for possible reaction coordinates.
Earlier observations concerning the structural properties of the transition states
are confirmed by our calculations: The typical transition states indeed consist of
a crystalline nucleus attached to one or more chain fragments. Furthermore, we
investigate the statistical properties of TPS simulations and introduce the path
survival function c(k). This quantity gives the average unchanged fraction of a
transition path after & TPS iterations.

Zusammenfassung

Wir verwenden die Simulationstechnik Transition Path Sampling (TPS), um die
Kristallisation einer einzelnen, flexiblen Polymerkette zu untersuchen. Die Ket-
te setzt sich aus N identischen, kugelférmigen Monomeren zusammen, wobei die
zeitliche Entwicklung des Systems durch die Metropolis-Monte-Carlo-Dynamik be-
stimmt wird. Wéahrend aneinander angrenzende Monomere einen fixen Abstand
haben, wechselwirken nicht angrenzende Teilchen mit einem Kastenpotential. So-
lange die Reichweite A des Potentials klein genug ist, vollzieht das System einen
Phaseniibergang erster Ordnung von einem ausgedehnten, ungeordneten Zustand
zu einem kristallinen, kompakten Zustand. TPS und Committor-Analyse werden
verwendet, um diesen Phaseniibergang zu studieren und nach etwaigen Reaktions-
koordinaten zu suchen. Frithere Beobachtungen betreffend der Struktur der Uber-
gangszustinde kénnen bestétigt werden: Tatsichlich besteht ein typischer Uber-
gangszustand aus einem kristallinen Kern, der an ein oder mehrere kettenartige
Fragmente angeheftet ist. Auflerdem untersuchen wir die statistischen Eigenschaf-
ten von TPS-Simulationen und fihren die Path Survival Function c(k) ein. Diese
gibt uns den durchschnittlichen ungeénderten Anteil eines Ubergangspfades nach
k TPS-Iterationen an.
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