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Abstract 

 

The presence of large amounts of 90Sr and 210Pb in living organisms can lead 

to genetic as well as somatic changes; therefore from the radiation protection 

point of view it’s very important to monitor them in the environment. The 

general purpose of this work was to find a fast, sensitive, cost-effective and 

reliable method for the separation and measurement of 90Sr and 210Pb from 

different sample matrices, especially from deer bones and soil samples. 

Initially, a well known and already published extraction chromatographic 

method based on the use of Sr•Spec® resin (Eichrom Industries, Inc.) for 90Sr 

determination was applied to bone samples. However, some 210Pb 

interference in 90Sr spectra was observed in samples with higher 210Pb 

content. Various operations were tested in order to eliminate the 210Pb 

interferences in beta spectra. Finally, a two-steps procedure for the separation 

of 90Sr and 210Pb in animal bones and soil samples was developed. The two-

steps procedure for 210Pb and 90Sr determination, as well as the initial 

extraction chromatography method based on the use of Sr-Spec resin were 

successfully verified using reference samples and by re-measuring samples 

with well known 210Pb and 90Sr content. Both methods were applied to deer 

bone samples from Austria. Although the Sr-Spec method is much faster, the 

two-steps procedure is preferable, since the 90Sr spectrum is free of 210Pb 

impurities and information about the 210Pb content in the sample is also 

available. 

The 90Sr and 210Pb separation method development was further continued 

and a method utilizing 3M™ Empore™ Strontium Rad disks was applied on 

bone samples. The study showed that 3M™ Empore™ Strontium Rad disks 

present an excellent separation tool for 90Sr separation from bone samples. 

An additional aim of the dissertation was monitoring of the activity 

concentrations of anthropogenic (90Sr, 137Cs) and natural (238U, 232Th, 40K, 
210Pb) radionuclides in soil samples from three selected regions of Austria 

(Carinthia, Styria and Salzburg). The activity concentrations of 90Sr and 210Pb 

in soil samples were determined using the two-steps procedure, where 

hydroxide and oxalate precipitations were employed. The measurements of 



 

90Sr and 210Pb in soil and bone samples were done by liquid scintillation 

counting, while the chemical yields were determined by ICP-MS. The activity 

concentrations of 40K, 238U, 232Th and 137Cs in soil samples were evaluated 

using gamma spectrometry and compared with the values already reported by 

UNSCEAR compilations. It was confirmed that the pollution of environment by 
137Cs as well as by 90Sr due to the global fallout from bomb testing and the 

Chernobyl accident is still detectable. A correlation between the activity 

concentration of 90Sr and 137Cs in soil samples and site altitude was found. It 

was further found that not only the 90Sr content in studied soils increases with 

altitude, but the same holds true for the 90Sr content in deer bones from 

corresponding areas. It was found that 90Sr content in bones is also related to 

the age of animal. Additionally bone and soil samples from Slovakia were 

examined and compared to samples from Austria. Also the teeth of a 6-years-

old child were tested for 90Sr content. 

For the identification of an alpha-emitter as 210Po (discrimination against 
239Pu) in urine samples 3 short separation methods using the extractive 

cocktail Polex®, the Sr·Spec® resin and the 3M™ Empore™ Strontium Rad 

disks were developed. Only a very short handling of the sample is 

necessary, results are available within a few hours. These fast 

methods are well suited in emergency situations when 

measurements of incorporated activities are a prerequisite for further 

decisions. 
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Zusammenfassung  

 

Die Anwesenheit von größeren 90Sr und 210Pb Aktivitätskonzentration in 

lebenden Organismen kann sowohl zu genetischen als auch zu somatischen 

Änderungen führen; aus der Sicht des Strahlenschutzes ist daher deren 

Messung wichtig.  

Das allgemeine Ziel dieser Arbeit war die Entwicklung  einer schnellen, 

empfindlichen, kostengünstigen und zuverlässigen Methode für die 90Sr und 
210Pb Abtrennung aus verschiedenen Probenmaterialien,  wie besonders 

Rehknochen und Bodenproben und desen Messung. 

Zuerst wurde eine gut bekannte extraktionschromatographische Methode 

basierend auf der Verwendung von Sr•Spec® Harz (Eichrom Industries, AG) 

für die 90Sr Bestimmung in Knochenproben angewandt. Es wurde jedoch eine 

Überlagerung der 90Sr Spektren durch 210Pb beobachtet, wenn die Knochen 

einen erhöhten Gehalt von Blei aufwiesen. Verschiedene Verfahren wurden 

getestet, um diese Störung zu eliminieren. Schließlich wurde eine Zweischritt-

Methode für die 90Sr und 210Pb Trennung in Knochen- und Bodenproben 

erfolgreich entwickelt. Diese Zweischritt-Methode für die 210Pb und 90Sr 

Bestimmung, wie auch die Sr-Spec Methode wurde mit einer Referenzprobe 

und mit einer Probe mit bereits bekanntem 210Pb und 90Sr Gehalt überprüft. 

Beide Methoden wurden für Rehknochenproben aus Österreich angewandt. 

Obwohl die Sr-Spec Methode viel schneller ist, wird die Zweischritt-Methode 

bevorzugt, da das 90Sr Spektrum frei von 210Pb Verunreinigungen ist und der 
210Pb Gehalt ebenso bestimmt werden kann.  

Weiters wurde eine Methode unter Verwendung von 3M™ Empore™ 

Strontium Rad Disks für Konochenproben erfolgreich getestet.  

Ein Ziel der Dissertation war die Messung von Aktivitätskonzentrationen 

anthropogener (90Sr, 137Cs) und natürlicher (238U, 232Th, 40K, 210Pb) 

Radionuklide in Bodenproben aus drei ausgewählten Regionen Österreichs 

(Kärnten, Steiermark und Salzburg).  

Die 90Sr und 210Pb Aktivitätskonzentration in Bodenproben wurden wieder 

mittels einer Zweischritt-Methode bestimmt, wo bei eine Hydroxid- und Oxalat- 

Fällung zum Einsatz kam. Die Messung erfolgte mittels LSC, die chemische 



 

Ausbeute wurde mittels ICP-MS bestimmt. Die Aktivitätskonzentrationen von 
40K, 238U, 232Th und 137Cs in Bodenproben wurden mittels 

Gammaspektroskopie ausgewertet und mit UNSCEAR Daten verglichen. Die 

Boden-Kontamination durch 137Cs und 90Sr verursacht durch den globalen 

radioaktiven Fallout nach den Kernwaffenversuchen und durch den Unfall von 

Chernobyl ist noch immer messbar. Es wurde eine Korrelation zwischen der 
90Sr und 137Cs Aktivitätskonzentration in Bodenproben und der Seehöhe 

festgestellt. Dasselbe gilt auch für den 90Sr Gehalt in Rehknochen. Der 90Sr 

Gehalt hängt auch vom Alter des untersuchten Tieres ab. Weiters wurden 

auch Knochen- und Bodenproben aus der Slowakei untersucht, sowie die 

Zähne eines sechsjährigen Buben. 

Für die Identifizierung eines Alpha-Emitters in Harnproben als 210Po 

(Diskriminierung gegenüber 239Pu)  wurden drei kurze Trennverfahren unter 

Verwendung von Extraktionscoctail Polex®, Sr·Spec® Harz und 3M™ 

Empore™ Strontium Rad Disks entwickelt. Die Trennoperationen sind einfach 

und schnell, die Ergebnisse sind nach einigen Stunden verfügbar. Diese 

schnellen Methoden sind auch geeignet für Notfallsituationen, wenn die 

Messungen inkorporierter Aktivitäten Entscheidungsgrundlage für weitere 

Maßnahmen sind. 
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1 Introduction 
 

As a consequence of nuclear weapon tests in 1950 - 1963 and 

again after the nuclear power plant accident at Chernobyl in 1986 the 

determination of anthropogenic radionuclides, as e.g. 90Sr has been 

of widespread interest. 90Sr is one of the most hazardous fission 

products due to its chemical similarity with calcium and its following 

high transfer rate to the skeleton. Its accumulation to bone tissue 

and the high energy beta particles from its daughter nuclide 90Y may 

cause damages to bone marrow. The 90Sr activity concentrations are 

often measured to estimate the level of radioactive contamination in 

the environment, in soil, plants and living organisms to follow the 

migration, uptake processes and transfer factors, and to estimate the 

dose impact to man [1]. 

Dominating radiation exposure occurs through ingestion and 

inhalation of naturally occurring radionuclides, such as radon and its 

daughter products. The uptake of the primordial radionuclides 

remains relatively constant throughout the life [2]. 210Pb is a naturally 

occurring radionuclide, a member of 238U decay chain. Its activity 

concentration depends on geological composition of environment. 
210Pb can enter the human body through inhalation or ingestion. It 

has an important role in human radiation exposure as it decays to 

the alpha-emitter 210Po. It also incorporates into bones and replaces 

calcium within the matrix in a manner similar to the alkaline earth 

metals, deposits in the skeleton long enough and thus contributes 

highly to the skeletal dose. When evaluating the impact of the 

anthropogenic 90Sr, a comparison of the 90Sr values with those of the 

natural radionuclide 210Pb is reasonable and may be heplful. The 

presence of large amounts of 90Sr and 210Pb in living organisms can 

lead to genetic as well as somatic changes; therefore from the 

radiation point of view it’s very important to monitor them in the 

environment [2-5].  
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Several authors investigated the activity concentrations of 90Sr 

and 210Pb in soil and bone samples and a relationship between 

activity concentrations and site altitude has been studied [6,7,8,9,10]. 

Numerous procedures like selective precipitations, liquid-liquid 

extraction, extraction chromatography and ion exchange 

chromatography were described for 90Sr or 210Pb determination in 

varous matrices. In many cases the procedures for 90Sr 

determination are tedious and time consuming, coupled with 

production of huge amounts of waste, or lack separation efficiency 

due to the mutual cross-contamination by lead and other interferents. 

The complexity of some procedures and their reliance on 90Y 

ingrowth make these methods unsuitable for the use in emergency 

situations. The main objective of the study was to develop a fast, 

cheap and reliable method for separation and measurement of 90Sr 

and 210Pb in soil and bone samples. 

The bones of deer are often used as “biomonitors” of possible 
90Sr and 210Pb contamination. As deer are members of a complicated 

food chain, they were chosen for this research together with soil 

samples. The animals whose bones were used in this work were 

hunted to keep the equilibrium in nature and not for research 

interests. 

  In general, the radiochemical analyses of 90Sr are time-

consuming. Therefore in Austria the 90Sr data from field studies after 

the Chernobyl fallout are scarce and limited to lowland areas and are 

missing in the range between 500 – 1700 m site altitudes [9]. This 

work aspires to supplement these missing data. The objective of this 

work was to separate and measure 90Sr and 210Pb in soil and bone 

samples from the same regions to get a better understanding of the 

availability of 90Sr to deer. From soil data the amount of deposited 
90Sr can be derived directly. A drawback, however, may be rather 

large small-scale variations of the deposition. These variations are 

smoothed in the animal bones, because deer feed larger areas.  

On 1st of November 2006 Mr. Alexander Litvinenko was fatally poisoned 

by 210Po and that resulted in his death on 23th November. At the time of 
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Litvinenko's death, no one was quite certain what had killed him. Thallium or 

some unspecified cocktail of drugs had all been suggested with varying 

degrees of authority. Just after his death on the 24th November 2006 it was 

confirmed that 210Po had been detected in Litvinenko's urine. The traces of 
210Po were found also at his home and at a London restaurant and hotel he 

visited the day he became ill [11].  As 210Po can be determined by using tools 

developed for 90Sr-measurements, some very fast procedures useful also in 

emergency situations were investigated.  

 

1.1 Objectives of the thesis 
 

In general, the aims of the presented thesis can be summarized 

in the following points: 

 

1. Development of effective methods for 90Sr and 210Pb determination in 

soil and bone samples. 

 • Verification of the methods using reference materials. 

 • Comparison of the methods with already known methods. 

 

2. Examination of soil samples for major contributors of the natural 

radioactivity (238U, 232Th and 40K) and for the anthropogenic 137Cs and 
90Sr. 

 

3. Comparison of 90Sr and 137Cs content in soil profiles; study the 

correlation between the activity concentration of 90Sr and 137Cs in soil 

samples and site altitude. 

 

4. Calculation of 90Sr/137Cs isotopic ratios in appropriate soil layers to 

estimate Chernobyl or global fallout impact. 

5. Examination of bone samples for 90Sr and 210Pb content. 
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6. Comparison of 90Sr and 210Pb content in bones of deer to the content in 

respective soil samples. Study the soil to bone transfer factors for 90Sr 

and 210Pb.   

 

7. Study the influence of site altitude and age of the animal on 90Sr 

content in bones of deer. 

 

8. Development of new methods for fast identification of an alpha-emitter 
210Po in urine samples for emergency situations. 

   

1.2 Radioactivity of the environment 
 

Ionizing radiation as well as radionuclides are inseparable from our lives.  

Natural radioactivity is spread in environment and comes mainly from the 

activity of the primordial 232Th and 238U and their daughters and from the 

activity of 40K. Practically all compounds of environment such as soil, rocks, 

plants, air and water contain radionuclides. They are incorporated in our 

bodies, are present in Earth’s crust, in walls of our homes, schools, offices, in 

our food and water. We breathe the air which contains radioactive particles. 

The cosmic radiation is bombarding Earth’s atmosphere creating cosmogenic 

radionuclides. The sources of radiation can also be artificial, created by 

human activity. These anthropogenic radionuclides were mainly released to 

the environment after nuclear weapons tests and nuclear accidents like 

Chernobyl (1986) [12]. 

 

1.2.1 Anthropogenic radionuclides 
 

Anthropogenic (man-made) radionuclides were created by human 

activities. In the second half of the 20th century the background from the 

anthropogenic radionuclides started to increase due to nuclear weapon tests, 

nuclear accidents, mining and milling operations of uranium ores, nuclear fuel 

fabrication processes, reprocessing of spent fuel, operations of nuclear 

reactors, nuclear medicine, and from storage of nuclear wastes. Significant 
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amounts of radionuclides were released into the environment from nuclear 

bomb tests and after accidents such as explosion in a high level waste 

storage tank at Kyshtym, former USSR (1957); accidents at Windscale, UK 

(1957); Three Mile Island, USA (1979); Chernobyl, USSR (1986). The 

Chernobyl accident was the most serious accident and has a special place in 

the history of nuclear reactor operations but other “smaller” releases have also 

importance in raising of the local radiation background [13, 14]. The typical 

examples of long-lived anthropogenic radionuclides released to the 

environment are: 90Sr, 134Cs, 137Cs, 85Kr, 95Zr, 239Pu, 129I etc. The 

radionuclides can be transported into the human body through inhalation, as 

well as through the food chain. The United Nations Scientific Committee on 

the Effects of Atomic Radiation (UNSCEAR) estimate that the average annual 

dose of radiation per person during the year 2000 c

background: 2.5 mSv 

medical diagnostics: 0.4 mSv 

nuclear weapon tests: 0.005 mSv 

Chernobyl accident: 0.002 mSv 

nuclear fuel cycle: 0.0002 mSv 

 

The biological as well as geochemical behavior of radionuclides must be 

monitored to assess the potential health risk for public. The nuclides with 

longer physical half-lifes, such as 90Sr and 137Cs have also considerable 

biological half-lifes and therefore are significantly harmful to humans [15,16]. 

 

1.2.1.1 Strontium 
 

1.2.1.1.1 General characteristics of strontium 
Strontium exists in nature in four stable isotopes 84Sr, 86Sr, 87Sr and 

88Sr. Sr and Ca are members of the alkaline earth metals, with similar 

properties of cation chemistry (ionic radius, charge-to-size ratio and high 

coordination number). Strontium is a soft, reactive metal, first recognized in 

1790 by A. Crawford. It is naturally occurring in minerals Strontianite (SrCO3) 

and Celestine (SrSO4). Strontium was named after Strontian, a village in 

orresponded to: 

 natural 
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Scotland where the mineral was found. Strontium forms divalent cations, 

forms many insoluble compounds and stable chelate complexes [17].  

Unstable Sr isotopes are produced at relatively high yields in nuclear 

fission. In the series of mass numbers 73 - 105, there are 2 radionuclides with 

relatively long half-lifes, i.e. 89Sr, 90Sr, which are pure beta emitters. Other 

radioactive strontium isotopes are short-lived. The title “radiostrontium“ is 

commonly used for 90Sr and 89Sr [1,12,18]. The stable and some unstable 

isotopes of strontium are shown in Table 1. 

 

Isotope 
 

Natural 
abundance (%) 

Half-life 
 

Decay 
mode 

Decay energy 
(MeV) 

Decay 
product 

82Sr Synthetic 25.36 d Ε - 82Rb 
83Sr 1.35 d Ε - 83Rb 
  β

+ 1.23 83Rb 
 

Synthetic 
 
  Γ 0.76; 0.36  

84Sr 0.56 Stable 
85Sr 64.84 d Ε  85Rb 
 

Synthetic 
  Γ 0.514D  

86Sr 9.86 Stable 
87Sr 7.0 Stable 
88Sr 82.58 Stable 
89Sr 52.52 d Ε 1.49 89Rb 
 

synthetic 
  β

- 0.909 D 89Y 
90Sr  synthetic 28.8 y β

- 0.546 90Y 

 

d – day     D – delayed radiation   y - years 

ε – electron capture  γ – gamma radiation 

β
+ - positron emission  β

- - negatron emission 

 

Table 1. Stable and some unstable isotopes of strontium [18]. 

 
90Sr is a pure beta emitter with a half-life of 28.8 years, decays by 

emission of beta particles with maximum energy of 545.9 keV to 90Y and 90Y 

to stable 90Zr, Figure 1. 90Y is also a pure beta emitter with a half - life of 64 

hours and emits hard beta particles with maximum energy of 2.28 MeV.   

 

.,9064,28.2,908.28,54.0,90 2/12/1 stabZrYSr
hrsTMeVyrsTMeV  → → == ββ

 

Figure 1. The scheme of radioactive decay of 90Sr.  
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As 90Sr is chemically similar to calcium it has a high transfer rate to the 

skeletal system. Inside of human bones together with its daughter product 90Y 

it leads to internal irradiation which can cause bone cancer, cancer of soft 

tissues, leukaemia etc. 90Sr and 90Y belong to the most hazardous fission 

products [12,19,20]. 

 Practically all 90Sr brought into the upper layers of atmosphere by 

testing of nuclear weapons (in 1950-1960) settled back to the Earth’s surface 

up to the 1970’s. The surface contamination of soil by 90Sr involves the 

increasing of its activity concentration in vegetable products cultivated on this 

soil. A reliable indicator of children exposure by 90Sr is milk. Milk and milk 

products are the main sources of calcium for human body. The vertical 

migration of anthropogenic radionuclides in soil is a complex process which 

depends on many factors (type of radionuclide, type of soil, its permeability 

and chemical composition, amount of rainfall, use of fertilizers etc.)  Sr has 

significant migration ability in soil which leads to its consecutive transport to 

the plants and all living organisms. The retention of strontium in soil is also 

affected by soil diversity, especially important is the organic mould content. 

Hence, into the human body 90Sr can be incorporated by food chain. From the 

radiation point of view it is very important to study 90Sr behavior in 

environment [19]. 
89Sr (T½ = 53.6 days, EβMax = 1.5 MeV) is a short lived radionuclide. It 

is a considerable contaminant of plants surfaces directly after a nuclear 

accident [19]. 

 

1.2.1.1.2 Separation methods for determination of 90Sr 
 

In recent years a large variety of methods for 90Sr determination in 

environmental, biological, as well as in nuclear waste samples were utilized. 

On a large scale methods are used like extraction chromatography, selective 

precipitation, liquid-liquid extraction, ion exchange chromatography. 

Eventually the separation methods are combined depending on the sample 

matrix [21-29]. The aim of eac h of these separation 

 remove the radionuclides 

methods is to sepa-

rate and purify the strontium, to



1. Introduction 

 8 

which may interfere with the β-spectrum of 90Sr, as well as to remove other 

inactive interferences presented in sample. It is necessary to choose the 

proper separation process, with minimal operation time, waste production, 

health risk for operator, costs and with a maximal efficiency and repeatability 

of experiment.  

 

1.2.1.1.2.1 Selective precipitations 

 

The precipitation methods are based upon different solubility of cations 

in a certain solution. Main disadvantage of these methods is a yield clearly 

lower than 100%. The precipitation steps are time-consuming and have to be 

repeated several times to obtain an adequate result. The precipitation 

separation methods are useful to separate Sr from alkaline earth metals (e.g. 

Ca, Ba, Ra), from Y and other interfering elements.  

Many authors used the traditional method with fuming nitric acid to 

difference between solubility of strontium and calcium nitrates in concentrated 

nitric acid. Sr is precipitated as nitrate several times to achieve a good 

separation from most elements, especially from Ca [38]. A series of chromate 

precipitations are provided to eliminate Ba, Pb and Ra, followed by iron 

hydroxide precipitations to eliminate traces of Fe, Al and other fission 

products. Purified 90Sr is allowed to stand for ingrowth of 90Y. After 90Sr + 90Y 

have reached the equilibrium, 90Y is precipitated and converted to the oxalate 

for beta measurement. The method permits the handling of large volume 

samples, provides good decontaminations for the majority of interferences 

and is selective. The main disadvantage is working with fuming nitric acid, 

which gives off harmful fumes, is corrosive and presents a health hazard for 

the operator. The method is time-consuming and destructive for laboratory 

equipment [39].  

To substitute the use of nitric acid, a cheaper and safer method was 

provided using NaOH. The method utilizes the difference in solubility of Sr and 

 alternative methods for Sr 

separation have been introduced. Potassium rhodizonate is also a suitable 

 The method is  based on the  [30-37].separate Sr from Ca

Ca hydroxides for Sr separation [40-42].  Various
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agent for Sr separation from Ca. Strontium, but not calcium reacts in neutral 

solution with potassium rhodizonate to form a stable precipitate [43]. The co-

precipitation of Y with ferric hydroxide can be used to separate Sr from Y. The 

oxalate, chromate, phosphate, carbonate, hydroxide precipitations are often 

applied to separate a bulk of interfering radionuclides. However, all these 

procedures require several chemical steps before final beta-counting of 90Sr 

[26,39,44]. 

 

1.2.1.1.2.2 Liquid-liquid extraction (LLE) 

 

 LLE or solvent extraction comprises on distribution equilibrium in the 

system of two immiscible solvents. The element pass to the solvent in which it 

is more soluble. The consolidation of phase equilibrium between two 

immiscible solutions is a main condition. The Nernst’s distribution law is 

describing this equilibrium. If a solute is distributed in the same molecular form 

between two immiscible solvents, then for constant temperature Nernst’s 

distribution law can be expressed as:   

       c

c
K

aq

org
D =

 

 

KD: distribution coefficient 

corg: concentration of solute in organic phase 

caq: concentration of solute in aqueous phase 

 

The KD value for the extracted molecule should be considerably 

higher than 1. Organic substances can be easily extracted to 

adequate organic solvents. In case of inorganic substances, it is 

necessary to transfer them to the form of a neutral complex 

compound [45].  
90Y can be separated by extraction with tributyl phosphate 

(TBP) or bis-(2-ethylhexyl) phosphoric acid (HDEHP) from acidic 

medium. Tributyl phosphate (TBP) is an organophosphorous 
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compound used in liquid-liquid extraction of tetravalent and 

hexavalent actinides. A 30% solution of TBP in kerosene is 

commonly used in solvent extraction of uranium, thorium and 

plutonium from spent uranium fuel rods dissolved in nitric acid in 

PUREX process (nuclear reprocessing process) [14]. Pure TBP is 

used for extraction of Y from concentrated nitric acid solution. For 
90Sr determination in reactor wastes extraction with TBP was 

repeated three times and Cerenkov radiation of the high-energy 

beta-particle emission of 90Y was measured [46]. To determine the 

activity concentration of 90Sr in human bones, the extraction of Y 

with TBP followed by Y-oxalate precipitation can be utilized [47]. In 

determination of 90Sr in mushrooms and soil, the extraction of Y by 

TBP followed precipitation of Y as hydroxide from the organic phase 

by the addition of ethanol and ammonium hydroxide. To separate Y 

from Fe, two oxalate precipitations of Y were provided [48]. An 

improved method of 90Sr determination in environmental matrices (as 

e.g. raw and dried milk, plants, soil) was elaborated. In this method 

Th radioisotopes (especially 234Th) were extracted by Aliquat 336 

from 8M HNO3 before the TBP extraction. Y was precipitated as 

oxalate after extraction by TBP [52].  Many other extractants e.g. t-

octyl phosphine oxid (TOPO) or tenoyl-tri-fluoracetone (TTA) have 

been used for Y extraction [49]. The method was utilized in 

radiochemistry laboratories to eliminate the use of fuming nitric acid 

method. However, all separation methods based on 90Y analysis 

require more than 14 days to achieve radioactive equilibrium, 

therefore they are not suitabe in emergency situations. Moreover, the 

applied organic solvents (TBP, DEHPA, dichlormetane) are toxic and 

present a health risk for the operator [50- 55].  

Pedersen in 1967 reported the synthesis, metal ion 

complexation properties and unusual ligating properties of a large 

number of macrocyclic polyethers, so called crown ethers [56]. In 

1987, the Nobel price in chemistry was awarded to three researchers 

in macrocyclic chemistry, namely C. J. Pedersen, D. J. Cram, and J.-

M. Lehn. 
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 Crown ethers are the cyclic oligomers of dioxane. The 

essential repeating unit of any simple crown ether is ethyleneoxy (-

CH2-CH2O-) which repeats twice in dioxane and six times in 18-

crown-6. Several crown ether structures are presented in Figure 2.  

 

O

O
O

O

O
OO

O O

O

OO

OO O
O

O

O
O

O

13-Crown-4 15-Crown-5 18-Crown-6dioxane 9-Crown-3
 

 

Figure 2: Cyclo-oligomers of ethylene oxide, from dioxane to 18-crown-6 [57]. 

 

Crown ethers are colorless, neutral and soluble in aromatic solvents 

(especially in chloroform and chloromethane). The first number in 

crown ether’s name corresponds to the number of atoms in cycle and 

the second number refers to the number of oxygen atoms in cycle. 

Crown ethers have the ability to bind certain cations by forming 

complexes. The interior of the ring is hydrophilic; the oxygen atoms 

can coordinate with the cation situated at the interior of the ring. The 

oxygen atoms behave like a Lewis base because of the free 

electrone pair orientated to the interior of the cavity. The exterior of 

the ring is hydrophobic and for this reason resulting cations often 

form salts which are soluble in nonpolar solvents. Some of these 

cyclic ethers form relatively stable complexes with alkali and alkaline 

earth metal ions [56,57]. Since Pedersen´s discovery studies of 

crown ethers have grown tremendously. The use of these 

macrocyclic polyethers for the separation of strontium and calcium 

established, that the satisfactory separation of strontium and calcium 

is achieved using either dicyclohexano-18-crown-6 or dibenzo-18-

crown-6 [61]. 

has been proposed [58-60].  After several studies,  it was 
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1.2.1.1.2.3 Ion exchange chromatography (IEC) 

 

Ion exchangers are high molecular weight organic polymers (e. 

g. di-vinyl-benzene and styrene) containing diverse functional groups 

covalently bound to the polymer support. Ion exchangers are 

practically gel dispersed systems where the dispersed medium is a 

low-molecular solvent (water). The polymer skeleton can be 

inorganic (zirkonylphosphate, aluminosilicates) or organic (polymer 

exchanger, exchanger on cellulose or dextrine basis). According to 

the functional ability they can be divided into cation exchange resins 

(catexes) and anion exchange resins (anexes). The reticulated bonds 

(ion bonds, metylene or di-vinyl-benzene bridges) together with 

polymer chain create a tridimensional skeleton. The ions of the resin 

(e.g. –SO3H, -COOH, -NH2 etc.) can be exchanged by ions from 

solutions which flow through them. 

For separation of alkaline earth ions frequently used cation 

exchangers are strongly acidic sulfonated resins containing -SO3
- 

groups. The affinity to the functional group –SO3H is decreasing in 

line: Ra>Ba>Sr>Ca>Mg [62]. 

The cation exchange behavior of Sr was investigated in a 

variety of samples and in different solutions of acids (e.g. HNO3, 

HCl, HBr) [63-65 ]. 

 

1.2.1.1.2.4 Extraction chromatography (EC) 

 

EC is also called solid state extraction (SPE). It is an 

extraction method where liquid extractants are sorbed on the surface 

of an inert solid support material (silica or resin as solid sorbents 

packed into disposable plastic or glass cartridges or imbedded into 

Teflon or glass fiber disks). A part of extraction chromatographic 

resin bead is depicted in Figure 3.  

  



1. Introduction 

 13 

 

 

Figure 3. Surface of porous extraction chromatographic resin bead [66].  

 

The studied analyte is dissolved in a liquid phase. Then the analyte 

is sorbed from liquid phase into solid phase. The interaction of the 

analyte with solid phase has to be stronger than its interaction with 

liquid phase where it is dissolved. The mobile phase is usually an 

acid solution, eventually complexants are used to enhance 

selectivities or rinsing of strongly bound metals from the column.  

SPE techniques were developed to substitute many traditional liquid-

liquid extraction methods for strontium determination in aqueous 

matrix [45,66]. The process of extraction is realized in the thin 

surface layer providing excellent contact of the reagents. SPE 

techniques provide many advantages compared to ion exchange or 

solvent extraction. The main advantage is much less consumption of 

organic solvents which are usually health-hazardous and harmful for 

environment. The advantages of SPE compared to IEC and LLE are 

summarized in following points [67,68]: 

 

▪ rapidity, accuracy, reproducibility 

▪ simple procedure 

▪ less reagents and chemicals used 

▪ less waste solutions produced 

▪ less glassware used 

▪ high recoveries 
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▪ time saving 

 

It was found, that strontium may be effectively extracted from 

nitric acid by a 1M solution of 4,4´(5´)-bis(tert-butylcyclohexano)-18-

crown-6 (DtBuCH18C6) in 1-octanol (Figure 4) sorbed on an inert 

substrate.  

 

O
O

O

O
O

O

 

 

Figure 4. Structure of 4,4’,(5’)-bis(tert-butylcyclohexano)-18-crown-6 [68]. 

 

It has been shown that this material has sufficient selectivity to 

permit the isolation of strontium from samples containing diverse 

interfering radionuclides and also from samples containing huge 

t is available 

commercially as Sr Resin (so called Sr▪Spec) from EiChrom 

Industries, Inc. and TRISKEM Int. The extraction equilibrium can be 

expressed as follow: 

 

Sr2+
(aq) + Crown(org) + 2NO3

- ↔ Sr(Crown)(NO3)2(org)    [68,70] 

 

In Figure 5 is described nitric acid dependency of capacity factor k´ 

(the number of free column volumes to peak maximum) for alkali and 

alkaline earth elements at room temperature. 

 

amount of calcium [69-71]. Nowadays, this reagen
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Figure 5. Dependence of the capacity factor (k´) for alkali and alkaline earth 

metal ions on nitric acid concentration at 23-25°C.  Particle size of loaded resin: 

50-100µm [71] 

 

From Figure 5 can be seen, that sorption of strontium on Sr resin 

gets higher with increasing concentration of nitric acid. At 8M HNO3 

medium the sorption of strontium is most significant with a capacity 

factor of strontium of approximately 90; at 0.05M HNO3 the capacity 

factor is lower than 1. In the whole concentration range alkali and 

other alkaline earth metal ions exhibit much less affinity to Sr Resin 

than strontium. The lowest sorption ability has calcium; it can be 

easily separated from strontium by rinsing the column with 3M HNO3. 

Sr resin exhibits selectivity towards Sr ions with respect to several 

cations (i.e. Y, Zr, Na, Li, Mg, Mn, Al, Ag, Fe, Co, Cu, Ni, Zn, Cd, Ca, 

Ba) from 3M HNO3 medium. From Figure 6 it can be seen, that Sr 

resin is selective for Sr over Ba, Ra, K.  The highest sorption capacity 

exhibits barium which can be separated from strontium by rinsing the 

resin with 8M HNO3 [71]. The elution behavior of a selection of 

elements on the Sr Resin is charted in Table2. 
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Percent of element found in F.C.V. 

3M HNO3 – 0.01 M Oxalic acid 
 

   
0.05M 
HNO3  

Element 1-5 6-10 11-15 16-20 21-25 26-30 31-40 F.C.V 
Li 100 - - - - - -  
Na 100 - - - - - -  
K 66 35 - - - - -  
Rb 100 - - - - - -  
Cs 100 - - - - - -  
Mg 100 - - - - - -  
Ca 100 - - - - - -  
Sr - - - - - - 99  
Ba - - 53 42 6 0.7 -  
Ra 99 - - - - -  
Al 100 - - - - - -  
Cr 100 - - - - - -  
Mn 100 - - - - - -  
Fe 99 0.6 0.2 0.4 - - -  
Co 100 - - - - - -  
Ni 100 - - - - - -  
Cu 100 0.2 - - - - -  
Zn 100 0.2 - - - - -  
Y 100 0.1 - - - - -  
Zr 91 0.4 0.2 - - - -  
Mo 84 16 - - -  
Tc 57 43 - - - - -  
Ru 100 - - - - - -  
Rh 100 - - - - - -  
Pd 100 - - - - - -  
Ag 15 88 2 - - - -  
Cd 100 0.1 - - - - -  
La-Eu 100 0.1 - - - - -  
Hg 5 5 19 40 19 10 5  

 
Table 2. Elution behaviour of common elements and fission products of the 

strontium-selective resin (Column parameters: Particle size=50-100µm, Bed 

volume = 1cm3, Bed hight = 5.0 cm, F.V.C = 0.60 mL) [71]. 

   

The capacity factor of potassium is close to 100. It may cause 

interferences in case of samples with large amounts of potassium (as 

e.g. soil samples). It was suggested to use the oxalate precipitation 

for Sr preconcentration and separation from alkali metals [68].  

Pb is retained by this resin more strongly than Sr over the wide 

range of nitric acid concentrations, Figure 6. 
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Figure 6. Dependence of the capacity factor (k´) for various ions at 23-25°C on 

the nitric acid concentration. Particle size of loaded resin: 50-100µm [71]. 

 

Tetravalent neptunium, plutonium and polonium are retained at least 

as well as strontium over certain ranges of acidities. To prevent the 

retention of tetravalent actinides on Sr▪Spec Resin, addition of oxalic 

acid as competitive complexing agent can be utilized [71]. 

It was found that the maximum resin capacity for strontium is 

8.1 mg of Sr per gram of Sr▪Spec Resin. Up to 2 g of calcium and 

200 mg of potassium can be loaded on the Sr column (3g Sr Spec) 

without decrease of strontium recovery [72]. 

Separation of 90Sr from large variety of samples like milk, urine, soil, 

bones, food, milk etc. was utilized using Sr▪Spec Resin. Precipitation steps 

are widely used before the purification of Sr on Sr▪Spec Resin to remove 

the bulk of interfering elements i.e. iron, potassium, alkali metals 

[8,25,29,68,72-76]. 

When determining Sr in environmental samples with higher 210Pb 

content some authors observed impurities in beta spectra of 90Sr. The 

obtained spectra revealed that the impurity was caused by 210Pb and its 
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daughters 210Bi and 210Po. It was found that in some cases, when the 210Pb in 

the sample is in excess to 90Sr, the extraction chromatographic method based 

on the use of Sr resin is not sufficient to eliminate the 210Pb traces (and its 

daughters 210Bi and 210Po) in the Sr fraction. To achieve better separation of 

Sr from Pb in bone and plants samples, lead iodide precipitation was utilized 

before Sr counting [77]. It was also found that in case of soil samples the 

practical way to avoid interference from 210Pb in the 90Sr spectra was to 

perform three precipitations before bringing the sample to the Sr Spec 

column. Hydroxide precipitation was utilized to remove Fe, which co-

precipitates also 210Pb. Addition of Pb carrier followed by chromate 

precipitation (Pb and Ba are quantitatively precipitated) and finally carbonate 

precipitatation of Sr was applied. Precipitated carbonates were dissolved in 

nitric acid and loaded onto Sr Spec column in 3M HNO3 [76]. 

Sr Resin is often used in combined procedures for 

determination of Sr and actinides. In combined procedures, actinides 

are concentrated and removed by co-precipitation, anion exchange 

or extraction chromatography and Sr is removed usually by EC with 

Sr Resin. The main principle of these methods is that actinides are 

separated first before separation of Sr by Sr▪Spec Resin 

[78-83].  

For the analysis of liquid samples (i.e. surface, ground, 

drinking water) a selective disk, Empore™ Strontium Rad Disk has 

been developed [84]. The SPE EmporeTM Sr Rad Disk (3M 

Corporation) uses a Sr-selective crown ether extractant (AnaLigTM 

Molecular Recognizing Technology by IBC Advanced Technologies) 

mounted on polytetrafluoroethylene (PTFE) fibrils. PTFE is an inert 

material which has no influence on the absorption properties of 

sorbent. The whole separation process using EmporeTM Sr Rad Disk 

requires only 30 minutes of operator time. The advantages of 

EmporeTM Sr Rad Disk application can be summarized in following 

points [84-86]: 

 

▪ high separation efficiency 

▪ easy manipulation 
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▪ unpretending in time and technical skills 

▪ elimination of waste 

▪ minimalization of sample volume and volume of eluent 

 

In the process of sorption on EmporeTM Sr Rad Disk the stable 

strontium is a competitor for radiostrontium. To obtain quantitative 

recovery the sum of stable and radiostrontium loaded onto the disk 

should not exceed 3mg (Table 3) [85,87].  

 

Sr Retention, % (± 2%)  Interfering cation a  
 2M HNO 3

 b 4M HNO 3
 b 

10.000 ppm Li+  99 
10.000 ppm NH4+ 6 10 

10.000 ppm Na+ 76 83 
10.000 ppm Mg2+  97 

10.000 ppm K+ 1 3 
10.000 Ca2+ 33 24 
100 ppm K+ 53 89 

100 ppm Ca2+ 99 97 
100 ppm NH4+ 96 97 

10 ppm Pb2+ 22 17 
1ppm Pb2+ 97 99 

0.1 ppm Ba2+ 101 97 
Stable strontium effect 

[Sr2+]   4M HNO 3 
1.6 mg  98 
3.2 mg  97 
6.4 mg  63 
8.0 mg   52 

 

a solutions were prepared from the chloride salts of listed cations, except for Sr 

solutions, prepared from nitrate salt. 
b samples contained 1.6 mg strontium per liter of nitric acid solutions.  

Table 3. Cation interference on sorption of radiostrontium by EmporeTM Sr Disk 

[87]. 

It was reported that the radiochemical yield of 90Sr was greater 

than 70% for ground water samples and the determination results 

were in good agreement with those obtained with conventional 

methods [88]. It was found, that optimal Sr uptake on Sr Rad Disk is 

at ≥ 2M HNO3. Also barium, radium and lead are retained by the Disk 

(Table 3) [87]. At levels typical for environmental samples these 

interferences are minimal. It should be avoided during the whole 
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filtration procedure to pass air through the filter in order to decrease 

possible interferences from radon daughter entrapment on the disk. 

The disk is conditioned with methanol before the separation. 

The sample solution is acidified to 2-4M HNO3 or HCl, followed by 

flowing through the disk under slight vacuum. The daughter 90Y can 

be stripped from the disk with 2M HNO3. It is possible to strip Sr from 

the disk with adequate complexing agent (as e.g. 

ethylenediaminetetraacetic acid - EDTA). EDTA4- usually binds to metal 

cation through its two amines and four carboxylates (Figure 7) [89]. The 

EmporeTM Sr Rad Disks are expensive and this may be the reason, 

that this material is only rarely used [90-92].  

 

A                                         B      

 

Figure 7. A) structure of ethylenediaminetetraacetic acid B) EDTA-Sr-chelate 

complex  

 

1.2.1.1.2.5 Comparison of three different separation procedures for Sr determination 

 

Three radiochemical procedures for the determination of 90Sr 

in environmental samples (fuming nitric acid method, EC method 

using Sr Resin and method using ion exchangers) were compared [93]. 

All results obtained by the analysis of tea, rice, soil and milk by the tree 

methods agreed well. When using Sr▪Spec Resin the time needed is much 

shorter than for the other two methods. In the cited work three counters were 

used: a low-background counter, a liquid scintillation counter and a Cerenkov 

counter. Due to the low background of the liquid scintillation counter the 



1. Introduction 

 21 

detection limit for Cerenkov counting is about two times higher than that for 

low-background counting.  

Three EC materials (AnaLig Sr-01 – molecular recognizing ligand 

covalently bounded to inert support, produced by IBC Advanced 

Technologies, Sr Resin and EmporeTM Sr Rad Disk) were studied for Sr 

determination in environmental samples [94]. It was found that all 

studied materials are suitable for quantitative and reliable Sr 

separation from aqueous solutions. Slightly higher Sr recoveries 

were observed for the separation method with AnaLig Sr-01 and 

EmporeTM Sr Rad Disk. 

1.2.1.2 Caesium 
 

As mentioned in chapter 1.2 the significant amount of 

anthropogenic radionuclides like Cs radioisotopes were released to 

the environment due to nuclear explosions, accidents like Chernobyl, 

nuclear fuel cycle activities and nuclear medicine. 134Cs with half-life of 

2.062 years is a rather short-lived caesim isotope. Due to its short half-life, the 

presence of 134Cs in environmental samples would indicate a very recent 

nuclear accident. 134Cs released from Chernobyl accident and from testing of 

nuclear weapons decayed already below detection limit. 

The most significant Cs isotope is 137Cs (half-life of 30.1 years, 

with maximum beta energy at 0.51 MeV and 1.18 MeV; maximum 

gamma energy at 661.6 KeV). In environment 137Cs migrates, sorbs 

onto natural matrices and enters to the food chain. 137Cs can be 

transported to the human body by ingestion or inhalation of 

resuspended matter, it is distributed by blood thought the whole body 

and accumulates in soft tissues and muscles. The presence of this 

radio-toxic metal in human body can lead to somatic as well as 

genetic changes and therefore is carefully monitored in the 

environment [95-97]. 
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1.2.2 Natural radionuclides 
 

The natural radionuclides are those with lifetimes comparable to the 

age of earth (primordial radionuclides) or those which are components of 

natural decay chains beginning with 232Th, 238U and 235U.  

The main part of natural radioactivity stems from the activity of the 

primordial radionuclides 238U and 232Th together with their radioactive 

daughter products and from 40K. The activity concentration of 40K in soil is an 

order of magnitude higher than that of 238U and 232Th. More than 50% of our 

annual effective radiation dose comes from inhalation of the 238U decay 

progeny 222Rn and its daughters, and about 10% derives from intake of 

radionuclides by ingestion of food or water. Natural radionuclides are present 

in varying degrees in air, in water, in organic materials and in living organisms. 

External terrestrial radiation sources contribute by around 10% of the annual 

dose and are mainly caused by 40K and by γ-emitting decay products of 238U 

and 232Th. There are some areas of markedly higher absorbed dose rates in 

air throughout the world that are associated with thorium-bearing and 

uranium-bearing minerals in soil. The background radiation varies from place 

to place depending on mineral composition of the soil [15,16]. Thus, the 

knowledge of the distribution of these radionuclides is of principal interest 

[98-101]. 

 

1.2.2.1 Lead-210 
 

210Pb is a naturally occurring radionuclide and the member of the 

uranium-238 decay chain. 210Pb emits low energy beta particles (Eβmax 

=20keV in 81%, 61keV in 19%) and gamma rays (Eγ=46.5 keV in 4.06%) with 

a half-life of 22.3 years. It is considered as one of the most toxic natural 

radionuclides remaining in skeleton long enough to produce a high skeletal 

dose. The daughter products of 210Pb are 210Bi (β-emitter with a half-life of 

5.012 days) and 210Po (α-emitter with a half-life of 138.376 days) [102].  

Several methods for 210Pb determination in environmental samples (i.e. 

selective precipitations, solvent extractions, ion exchange) were described 
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210Pb can be evaluated directly 

using gamma spectrometry system where the gamma line at energy 46.5 keV 

is used. The activity of 210Pb can by determined indirectly from measurement 

of 210Po alpha particles after its ingrowth from 210Pb. This method is time 

consuming and could not be applied for emergency samples because of time 

needed for the ingrowth of 210Po (more than 6 months) [106]. Other indirect 

methods for 210Pb determination are based on measuring its beta emitting 

daughter 210Bi using low-level background alpha/beta proportional counting or 

liquid scintillation counting [107,108]. 210Pb is of environmental importance 

because of its contribution to natural radiation dose [109,110]. 

 

1.2.2.2 Polonium-210 
 

Polonium isotopes are produced via natural uranium and thorium decay 

and also by artificial induced nuclear reactions. Natural 210Po is a member of 

uranium decay chain, it occures in environment after out-gassing and 

subsequent decay of 222Rn. 210Po (half-life of 138.376 days) decays directly to 

its stable daughter 206Pb by emission of alpha particles. Due to its short half-

life, 210Po is extremely radiotoxic if incorporated into the human body. After 

ingestion or inhalation it is taken up in the blood, distributed in soft tissues, in 

kidney, liver, spleen and bone marrow. 

It can be significantly enriched in various biological samples such as fish and 

shellfish [111,112]. Most of the methods involved for its determination are 

based on chemical separations (ion exchange, solvent extraction, extraction 

chromatography) and α-spectrometry measurements. Nickel, copper or silver 

disks are used to make polonium alpha-sources, because Po spontaneously 

deposits on these metals. The extractive liquid scintillation cocktail 

POLEXTM (trioctylphosphine oxide as extractive molecule) was 

developed for extraction of polonium from aquous samples. POLEXTM 

provides a fast and simple method for determination of Po isotopes from 

phosphoric acid solution [111-113]. 

[102-105].  samples  activity In high
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1.3 Measuring techniques used in this thesis 
 

1.3.1 Liquid scintillation spectrometry 
 

A scintillation detector consists of a scintillator optically coupled to the 

photomultiplier tube, Figure 8.  

 

 
 

Figure 8. Scinti llation detector  
 

Ionizing radiation interacts with scintillator and produces photon flashes, which 

are converted to photoelectrons by a photocathode. Photoelectrons are 

multiplied in the electron multiplier thus giving detectable voltage pulses. A 

scintillating material is usually an inorganic crystal or an organic solid (for γ-

detection) or an organic liquid (best suited for low-energy betas) [14]. The 

amplitude of the pulse is proportional to the amount of light that has reached 

the photomultiplier tube i.e. it is directly proportional to the energy of the 

emitted particle. The measuremet by LSC involves the mixture of the aquous 

sample with an appropriate scintillation cocktail. Scintillation vials have to be 

transparent at the wavelength of the used scintillator and resistant to the 

solvent. The liquid scintillator is prepared by dissolving of scintillation material 

in suitable organic solvent. The scintillation cocktail is usually composed of 

following components: 

Sample 

Photocathode 

 

Dynode Anode 

Photoelectrons 

Scintillator 

Reflector 

Photomultiplier 
tube 

Optical coupling 
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- solvent: toluene, xylene, benzene etc. 

- scintillator: PPO (2,5-diphenyloxazole) 

- wavelength shifters: POPOP (p-bis-[2-(5-phenyloxazolyl)]benzene); If 

the scintillator emits photons with a wavelenth too short for maximum 

photomultipier sensitivity it is shifted to lower vawelengths.  

 

Several liquid scintillation cocktails are nowadays commercially available 

(Ultima GoldTM, HiSafe®III etc.) [111,114]. Liquid scintillation counters offer 

several advantages compared to other detectors especially for low energy 

beta counting as attenuation by the detector window, backscattering and self-

absorption are avoided [14]. The main advantage of liquid scintillation 

counting is a high counting efficiency (90-100%) [114]. Liquid scintillation 

spectrometers as e.g. Quantulus®1220 low-level counter (Wallac Oy, Finland, 

now Perkin Elmer) provide information about the shape of spectra and 

enables to differentiate between α- and β-emitters by pulse shape analysis. 

Background is very low due to passive and active (electronic) shielding 

(Figure 9). Quantulus®1220 was used in this work as a reliable technique for 
90Sr, 210Pb and 210Po determination.  

 

 

 

Figure 9. Outline of the liquid scintillation counter Quantus®1220, WallacOy, 

Finland (now Perkin-Elmer) [115]. 
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1.3.2 Germanium gamma-ray detectors 
 

Germanium detectors are semiconductor detectors. After interaction of 

photons with the sensitive area of detector, electrons and holes along the 

photon track are created. The created charge is proportional to energy 

deposited in detector and is converted into a voltage pulse by a preamplifier. 

The shape and amplitude of pulse is a function of detector geometry and of 

electric field distribution. 

Reverse-Electrode Ge Detector (REGe) Canberra (GR 2020) with 20% 

eficiency relative to NaI and 3 keV resolution was used in this work. The 

geometry of the REGe detector is similar to other coaxial germanium 

detectors. The REGe detectors have opposite electrode configuration than 

coaxial detectors, P-type electrode is outside and N-type electrode is inside 

(Figure 10). This kind of detector is suitable for medium and high energy γ-

rays detection (5 keV – 10 MeV). It was observed that radiation damages in 

convential coaxial detectors due to charged particles and neutrons cause hole 

trapping in germanium. In REGe detectors the holes are collected by the 

outside electrode. The detector is placed in a low-background lead shield. 

 

 

 

Figure 10. REGe detector cross section [116]. 
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Because of relative low band gap of germanium these 

detectors have to be cooled by liquid nitrogen in order to reduce the 

thermal generation of charge carriers [116]. 

 

1.3.3 Inductively coupled plasma mass spectrometry (ICP-MS) 
 

ICP technology was built upon the same principles used in atomic 

emission spectrometry. Nebulized aerosol of the samples is atomized and 

ionized in high temperature argon plasma and analyzed based on their mass 

to charge ratios. ICP-MS is excellent tool for measurement of the trace 

elements as low as one part per trillion (ppt). It is also possible to scan more 

than 70 elements to determine the composition of an unknown sample. A 

schematic diagram of the ICP-MS, 7500 Series (Agilent) instrument is shown 

in Figure 11 [117]. In this work chemical yields for strontium and lead 

separations were determined by ICP-MS Agilent 7500ce Instrument, equipped 

with a CETAC ASX-520 autosampler from Waldbronn, Germany.  

 

 
 
 
Figure 11. A schematic diagram of the ICP-MS, 7500 Series (Agilent) instrument [117]. 
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2 Results 
 

The main results of my doctoral thesis are based on following publications: 
 
Isolation and measurement of strontium-90 and lad-2 10 in 

environmental samples using a strontium-specific re sin and 

liquid scintillation counting 

 

Wallova G, Wallner G (2009) In: Eikenberg J, Jäggi M, Beer H, Baehrle H (ed) 

LSC 2008, Advances in Liquin Scintillation Spectrometry, Davos, Switzerland, 

May 25-30, 2008, Radiocarbon, Tuscon, 367-373 

 
Wallner G. conceived the initial idea; Wallova G. expanded the initial idea. 

Wallova G. conducted experimental part (preparation of samples, 

radioanalytical separations, measurements using LCS). Wallova G. assisted 

with ICP-MS measurements. Wallova G. wrote the manuscript. Wallner G. 

assisted in reviewing the article and helpful discussions.  

Contribution of Wallova G. to the article: 80%. 

 

 

Determination of 90Sr and 210Pb in deer bone samples by liquid 

scintillation counting after ion-exchange procedure s 

 

Wallova G, Kandler N, Wallner G (2010) J Radioanal Nucl Chem 286:429-433 

 

Wallner G. and Wallova G. conceived the initial idea. Wallova G. conducted 

experimental part (preparation of samples, radioanalytical separations, 

measurements using LSC). Wallova G. assisted with ICP-MS measurements. 

Kandler N. conducted ICP-MS measurements. Wallova G. wrote the 

manuscript. Wallner G. assisted in reviewing the article and helpful 

discussions. 

Contribution of Wallova G. to the article: 75%. 
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Austria 

 

Wallova G, Kandler N, Wallner G (May, 2011) revised manuscript submitted in 

J Environment Radioact 

 

Wallner G. and Wallova G. conceived the initial idea. Wallova G. conducted 

experimental part (preparation of samples, radioanalytical separations, 

measurements using LSC). Wallova G. assisted with ICP-MS measurements. 

Kandler N. conducted ICP-MS measurements. Wallova G. wrote the 

experimental part of manuscript. Wallner G. wrote the article. 

Contribution of Wallova G to the article: 70%. 

 

 

Fast determination of Po-210 in urine by LSC as a m eans to 

estimate deliberate poisioning 

 

Wallner G, Schönhofer F, Wallova G, Steger F (Okt. 2010) revised manuscript 

submitted in  LSC 2010, Advances in Liquin Scintillation Spectrometry, 6-10 

September 2010, Paris, France,  Radiocarbon, Tuscon 

 

Wallner G. and Schönhofer F. conceived the initial idea. Wallova G. and 

Wallner G. expanded the initial idea and conducted experimental part 

(preparation of samples, radioanalytical separations, measurements using 

LSC). Wallner G. wrote the manuscript. Schönhofer F., Steger F. assisted with 

helpful discussions and reviewing of article.  

Contribution of Wallova G. to the article: 40%. 
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is not included in thesis because it was used for attaining of RNDr. degree on 

Comenius University in Bratislava.    

 

Determination of naturally occurring radionuclides in selected 

rocks from Hetaunda area, central Nepal 

 

Wallova G, Acharya KK, Wallner G (2010) J Radioanal Nucl Chem 283: 713-

718 

 

Wallova G. and Wallner G. conceived the initial idea. Acharya K. K. did the 

sampling, developed the geographical and geological map. Wallova G. 

conducted experimental part (performed all gamma measurements and data 

evaluations). Wallova G. wrote the manuscript. Wallner G. assisted in 

reviewing of article and helpful discussions.  

Contribution of Wallova G. to the article: 75%. 
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and liquid scintillation counting 

 

Wallova G, Wallner G (2009) In: Eikenberg J, Jäggi M, Beer H, Baehrle H (ed) 

LSC 2008, Advances in Liquin Scintillation Spectrometry, Davos, Switzerland, 

May 25-30, 2008, Radiocarbon, Tuscon, 367-373 
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2.2 Determination of 90Sr and 210Pb in deer bone samples by 
liquid scintillation counting after ion-exchange 
procedures 

 

Wallova G, Kandler N, Wallner G (2010) J Radioanal Nucl Chem 286:429-433 
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2.3 Monitoring of radionuclides in soil and bone samples 
from Austria 

 

Wallova G, Kandler N, Wallner G (May, 2011) manuscript submited to J 

Environment Radioact 
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Abstract 

 

The activity concentrations of anthropogenic (90Sr, 137Cs) and natural (238U, 
232Th, 40K, 210Pb) radionuclides were determined in soil samples from three 

different regions in Austria (Styria, Carinthia and Salzburg). A direct 

correlation between the activity concentration of 90Sr and 137Cs in soil samples 

and site altitude was found. 90Sr and 210Pb activity concentrations were also 

determined in bones ash of deer hunted in these regions. Additional bone 

samples were collected all over Austria. The 90Sr values in deer bones are 

directly proportional to the values in the respective soil samples and also to 

the age of the animals.  

For the 90Sr and 210Pb determinations in bone samples first Pb was separated 

on a Dowex column, then Sr was purified using Sr•Spec® resin. In soil 

samples an additional hydroxide precipitation was employed to eliminate 

interfering iron. For the first time also the 3M Empore® Sr Rad disk method 

was successfully applied to bone samples. With this method the chemical 

procedure can be shortened by more than a factor of 2. The 90Sr and 210Pb 

fractions were measured by liquid scintillation counting, while the chemical 
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yields were determined by ICP-MS. The activity concentrations of 40K, 238U, 
232Th and 137Cs in soil samples were evaluated using gamma spectrometry. 

 

 Key words Natural radionuclides · Anthropogenic radionuclides · 

Environmental samples · Sr•Spec® resin · 3M EmporeTM Sr Rad Disk 

 

Introduction 

 
Naturally occurring radionuclides like 40K and the members of the uranium 

and thorium decay chains are omnipresent in the environment and their 

distribution in soil profiles has been studied by several authors [1-4]. Since the 

atomic weapons tests in the fifties and early sixties of the last century and the 

Chernobyl accident in 1986, also anthropogenic fission and activation 

products are dispersed in nature. Due to their relatively long half-lifes of 28.5 

and 30.17 yr, the fission products 90Sr and 137Cs which are of relevance from 

the radiation protection point of view, can still be detected in environmental 

samples. In this paper we present soil sample data of natural and 

anthropogenic radionuclides from selected areas in Austria. The measured 

activity concentrations of the artificial nuclides increased with increasing 

altitude of the sampling sites due to higher amount of precipitation in the 

mountains, which is the main scavenging process for airborne particles [5, 6]. 

From the 90Sr/137Cs activity ratio measured the portions of the respective 

contamination sources could be determined [7]. The obtained data set a 

baseline for future changes in environmental radioactivity coupled with human 

activities [3]. 

The main emphasis of our work, however, was the investigation of animal 

bones with respect to the β-emitter 90Sr which is a bone seeker due to its 

chemical similarity with calcium [8]. In the past several papers about 90Sr in 

deer and roe deer of Austrian origin were published [6, 9, 10]. To have also 

more recent data, additional to soil profiles also bone samples from deer were 

collected and their 90Sr and 210Pb concentrations were measured. The 

animals stem from sites with altitudes between 150 and 1530 m a.s.l. and 

these recent data should fill a gap in the already published values. The latter 
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were mostly from animals from lower parts of Austria, only one site was an 

Alpine one. On the other hand, by comparing old and recent data possible 

changes in the bioavailability of 90Sr could be detected. Problems addressed 

already in the preceding papers as e.g. 90Sr concentration in dependence of 

animal age or site altitude could now be investigated in more detail. 

For the determination of 90Sr in environmental samples numerous methods 

such as fuming nitric acid procedure, precipitations, ion exchange, or 

extraction techniques using Sr•Spec® resin from Eichrom Technologies have 

been described [11-14]. The most convenient method for determination of 90Sr 

– at least in aqueous samples - utilizes a strontium selective ion exchange 

material in filter form, namely the EmporeTM Strontium Rad Disk [15-18]. In 

this work, we successfully applied the Sr Rad Disk method for determination 

of 90Sr in bone ash samples and verified the results by comparing the results 

with data gained by using the Sr•Spec® technique. The measurement of the 
90Sr and of the previously separated 210Pb was done by low-level liquid 

scintillation counting. 

 

Experimental 

 

Reagents and equipment 

 

All reagents were of analytical grade: Hydrochloric acid 37%, Nitric acid 65%, 

Methanol 99.9%, Oxalic acid dihydrate, Natrium hydroxide, aqueous Ammonia 

solution 25%,  Hydrogen peroxide 30% solution purchased from Merck; 

Ethylenediaminetetraacetic acid disodium salt dihydrate 99.0-101% 

purchased from Sigma; liquid scintillation cocktail OptiPhase HiSafe™III from 

Perkin Elmer; EmporeTM Sr RAD disks from 3M Company; strontium nitrate, 

lead nitrate, Dowex 1x8 (Cl-- form, 100-200 mesh) from Fluka. 

The dilutions were made with deionized Milli-Q 18 MΩ•cm water (Millipore, 

USA). 
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Chemical yield for strontium and lead separations were determined with ICP-

MS Agilent 7500ce Instrument, equipped with a CETAC ASX-520 

autosampler from Waldbronn, Germany. Activity concentrations of 90Sr and 
210Pb were conducted on LS counter Quantulus 1220 from WallacOy, Finland 

(now Perkin-Elmer). Reverse electrode Germanium Detector Canberra GR 

2020 was used for the activity concentration determinations of 137Cs and 238U 

and 232Th. 

 

Collection of the samples 

 

Our soil samples stem from the eastern part of the Alps in Styria (Rettenegg, 

860 m; Kaltenegg, 1000 m), the southern part of the Central Alps in Carinthia 

(Ossiacher Tauern, 680 m; and Saualpe, 1895 m; a mountain ridge with 

Mirniger Alm, 1530 m, on its western slope) and from the Central Alps in 

Salzburg (Mariapfarr region, 1340 m; 1530 m and 1786 m). With a tube an 

approximately 10 cm deep bore was drilled into the soil. The obtained 

samples were divided into layers. Before measurement the samples were air 

dried.  

The bones of deer hunted in different regions in Austria were obtained from 

institutions and private hunters. The bones were stored deep frozen. 

 

Gamma spectrometry of soil samples 

 
The air dried soil samples were cleaned by removing big stones and plant 

roots, grinded and sealed in plastic Marinelli beakers. The Marinelli beakers 

were filled to a certain height, so that the geometry was the same for all 

samples. The respective sample mass was about 10 g. Samples were stored 

for 1 month before measurement to achieve ingrowth of Rn isotopes with their 

respective daughters. The activity concentrations of anthropogenic 137Cs and 

natural 40K, 238U and 232Th in soil samples were evaluated using a Reverse 

Electrode Ge Detector (Canberra GR 2020) with 20% efficiency relative to NaI 

and 3 keV resolution. As previously published in our work, the respective 
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specific activities (Bq.kg-1) of 238U and 232Th were determined indirectly using 

the daughters 226Ra, 214Pb, 214Bi and 228Ac, 212Pb, 208Tl, respectively [19]. The 

activity concentrations of 40K and 137Cs were calculated directly using the 

gamma lines at 1460.8 keV and 661.6 keV, respectively.  

 

The determination of 90Sr and 210Pb in soil and bone samples  

 

The bone ash samples were treated according to our two-steps procedure 

which is given in more detail in [20, 21]. In the first step, Pb was separated 

from Sr and other cations on a Dowex 1x8 (100-200 mesh) column. 

Subsequently 90Sr was purified on Sr•Spec® resin. Both fractions were mixed 

with the cocktail OptiPhase HiSafe™III and measured by LSC on a 

Quantulus®1220 (Wallac, Finland, now Perkin Elmer). The lower limit of 

detection (LLD) of 90Sr was calculated according to [22]. It was 6.5 Bq.kg-1 for 

bone ash samples (sample counting time: 200 min, background counting time: 

1000 min, the mean value for chemical recovery: 69% and sample mass: 1g 

of bone ash), and 0.6 Bq.kg-1 for soil samples (counting times and chemical 

recovery as with ash samples, sample mass: 10g of air dried soil). The LLD of 
210Pb calculated by the [22] was 6 Bq.kg-1 for bone samples (counting times 

as given above, chemical recovery: 51% and sample mass: 1g of bone ash), 

and 0.8 Bq.kg-1 for soil samples (chemical recovery: 41% and sample mass: 

10g of air dried soil). 

For soil samples, the two-step procedure was extended by alkaline 

precipitation of iron as described in literature [23-25]. After the Pb separation 

on Dowex, the Sr containing fraction was evaporated to dryness. The residue 

was taken up in approximately 50 mL water and spiked with 5 mg Fe3+ carrier. 

While stirring, 6M NaOH was added until pH=9 was reached. The solution 

was heated to 70°C and stirred for 30 minutes. Afte r cooling, the iron 

hydroxide precipitate was centrifuged off. To the supernatant 50 mg of Ca2+ 

carrier and 10 g of oxalic acid were added. The pH was adjusted to 5 - 6 with 

aqueous ammonia and the suspension was heated to 70°C while stirring for 

30 minutes. After cooling the suspension was centrifuged. The precipitate was 

dissolved in a minimal amount of concentrated nitric acid and water was 
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added to obtain 8M dilution. Sr was separated from this solution with Sr-

Spec® resin according to our two-step procedure [20, 21]. 

 

The determination of 90Sr in bone samples using Empore TM Sr RAD disks 

 

As for the Sr•Spec procedure, 1 g of bone ash was dissolved in 10 mL of 8M 

HNO3 and 1 mg of Sr2+ (strontium nitrate) and 5 mg of Fe3+ carrier was added 

for chemical yield determination. The solution was refluxed for 3 hours, 

cooled, filtrated and evaporated to near dryness. Further sodium hydroxide 

and oxalic acid treatment is the same as described above for soil samples 

(sodium hydroxide treatment at pH=9 was applied to precipitate Pb2+ [26]). 

Finally, the 8M HNO3 solution was further diluted with water to achieve 2M 

HNO3 concentration. 

The 3M Empore Sr RAD disk was washed with 2mL of methanol and 

conditioned with 20 mL 2M HNO3. The 2M HNO3 sample solution was passed 

through the disk with a flow rate of less than 10 mL/min using a slight vacuum. 

After that the disk was rinsed with 20 mL of 2M nitric acid to remove Y3+. The 

disk was rinsed with 2 mL of 0.5M Na2EDTA (fraction discarded) and 90Sr was 

eluted from the disk using 8.25 mL of 0.5M Na2EDTA (pH=9-11). From this 

total 8.25 mL Sr-fraction, 0.25 mL were taken for determination of chemical 

yield by ICP-MS. The remaining 8 mL of the sample were mixed with 12 mL of 

liquid scintillation cocktail OptiPhase HiSafe™III and measured by LSC. 

During the whole filtration procedure air was not allowed to pass through the 

filter in order to prevent radon daughter entrapment on the disk [16]. The LLD 

for90Sr calculated according [22] was the same as for the two-steps procedure 

(6 Bq.kg-1 bone ash). 

The described procedure was verified using IAEA A-12, a bone ash reference 

sample.  
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Results and Discussion 

 

In soil samples the specific activities of 232Th and 238U were calculated through 

its daughter radionuclides (228Ac, 212Pb and 208Tl) and (214Pb, 214Bi and 226Ra) 

respectively. The world-wide median values published by UNSCEAR are 400, 

35 and 30 Bq.kg-1 for 40K, 238U and 232Th, respectively [27]. The specific 

activities of soils studied in this work are comparable to these median values: 

they lie in the range of 230-709 Bq.kg-1 for 40K, 15-45 Bq.kg-1 for 238U and 30-

46 Bq.kg-1 for 232Th. 

The main emphasis of our work was the determination of the activity 

concentrations of 90Sr and 137Cs in soil samples and of 90Sr in bones. The 

data of these anthropogenic nuclides were compared to the activity 

concentration of the naturally occurring 210Pb. 

Table 1 shows the soil results for the three nuclides of interest together with 

the 90Sr/137Cs ratio which can be used to identify the source of the 

contamination: for global fallout the ratio is 0.64 [27] (calculated for 2005), 

while for contaminations from the Chernobyl accident the values are between 

0.040 and 0.045. After the Chernobyl accident 90Sr/137Cs ratios in air filters 

from Austria were in the range 0.004 - 0.050 [28], in Munich a value of 0.009 

was found [29]. Experimental data indicate the 90Sr/137Cs ratio in soils being 

two times higher than in air filters [28], as the Chernobyl ratio is superimposed 

by the omnipresent higher global fallout ratio. In the struck regions of Austria 

the deposition of 90Sr from Chernobyl fallout was reported to be in the same 

range as the 90Sr deposition still present from the nuclear bomb testing [5, 30, 

31]. 

The activity levels of the global fallout nuclides show a correlation with the site 

altitude, as the nuclides are mainly washed out by wet precipitation, which is 

higher in the mountains. Principally the same is true for the deposition of 

Chernobyl fallout, but the regional variations are much larger in this case, as 

precipitation occurred only in some regions during the critical time-span when 

the radioactive cloud passed Austria.  
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All soil samples were taken from undisturbed pasture-land. From each sample 

site 4 cores were taken within a distance of a few meters and mixed well. It is 

well known from the literature that small scale variations of deposited activities 

up to a factor of 3 can be found [32, 33]. In all samples the maximum values 

for 90Sr and 137Cs were measured in the uppermost 4 cm of the core. The 

highest values were found on the Saualpe / Mirniger Alm with about 2000 

Bq.kg-1 137Cs and 160 Bq.kg-1 90Sr. On this mountain ridge rain was reported 

during the days after the Chernobyl accident. The corresponding 90Sr/137Cs 

ratio is 0.08-0.09, also clearly indicating a large contribution from Chernobyl 

(91-94%). On the other hand the lowest 90Sr and 137Cs values were measured 

in Kaltenegg (8 and 77 Bq.kg-1, respectively, with a ratio of 0.1); a few 

kilometers apart in Rettenegg the respective data were higher with a lower 
90Sr/137Cs ratio (0.05) indicating again a higher contribution from Chernobyl 

(96%), probably due to local rainfall. The samples from Mariapfarr generally 

showed lower activity levels in the surface layers together with clearly higher 
90Sr/137Cs ratios. Here the portion of nuclides from the global fallout is higher 

(54%) as after the Chernobyl accident the weather was dry. The Mariapfarr 

sampling sites were all on the southern slope of one specific mountain ridge in 

the Niedere Tauern, showing very clearly the site altitude dependence of the 

activity concentrations (see Fig. 1). Another activity / site altitude 

correspondence (with comparably higher activity concentrations) can be found 

for the sites in Carinthia with higher contributions from Chernobyl. 
210Pb, on the contrary, is a naturally occurring radionuclide and its content in 

soil depends on the bedrock from which the soil had been built up by 

weathering. All the samples stem from gneiss areas, therefore the variation of 

the activity concentrations is rather low (30-100 Bq.kg-1).  
90Sr and 210Pb activity concentrations were also measured in deer bone 

samples from various regions of Austria (see Tab. 2). Some values were 

adopted from earlier publications to give an overview of samples collected 

from sites covering a broad range of altitudes [6, 21]. Deer usually graze 

larger areas and therefore small scale variations of deposited 90Sr should be 

ruled out. Animals were collected from the sites where soil samples were 

available but also additional regions were investigated.  
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Two different methods were used for 90Sr determination (two steps method 

using Dowex for 210Pb separation and Sr purification with Sr Spec resin; and 

using 3M Empore Sr disk after removing of 210Pb by Fe(OH)3 co-precipitation). 

The data obtained from both methods were in good agreement (see Table 3). 

The Sr disks originally were developed for determination of 90Sr in liquid 

samples. In this work we successfully verified the applicability of this tool for 

the determination of 90Sr in bone samples using reference sample IAEA-A-12 

(certified value: 27.7 Bq.kg-1, 95% confidence interval: (19.2-32.1 Bq.kg-1) 

(Table 3). Using Sr disks reduced the chemical processing time for bone ash 

samples by more than a factor 2, since the separation step by “filtration” is 

much faster than by using a Sr-Spec column. 

In the recent investigation the highest 90Sr level was found in an animal from 

Mariapfarr (248 ± 17 Bq.kg-1ash, 1350 m a. s. l.) and the lowest value was 

observed in a sample from Petronell (18 ± 3 Bq.kg-1ash, 175 m a. s. l.) (210Pb 

levels in bone ash vary from 7 ± 2 Bq.kg-1 to 54 ± 6 Bq.kg-1). This corresponds 

to 114 and 9 Bq.kg-1 bone sample. In 2001-2002 90Sr contents from global 

weapons fallout and from Chernobyl fallout up to 117 Bq.kg-1 of animal bones 

were reported for site altitudes up to 427 m a.s.l. and about 400 Bq.kg-1 for 

Kaunertal (1700 m a.s.l.) [6], with a big gap for altitudes between 500 and 

1500 m a.s.l. Our recent data are clearly lower than the old ones, probably 

indicating that the bioavailability of 90Sr had decreased.  
90Sr activity concentrations in bone ash samples were compared to the data of 

the respective soil samples. Figure 2 shows the enrichment of 90Sr in bone 

ash samples compared to the soil samples (here we gave the values for the 

uppermost layer where in most cases the maximum concentrations were 

found as well as the fine roots of the feeding plants).  

The enrichment or transfer factor (ratio activity concentration in bone ash to 

that in soil) found was between 2 and 3.8 with the exception of Saualpe / 

Mirniger Alm, where it was only 1.2. These values are only a rough estimation, 

as number of samples was low and animals of different age were investigated 

(see below). 210Pb levels, on the other hand, were similar in animal bone ash 

and soil (transfer factor between 0.4 and 1.2). This reflects the fact that due to 

its chemical similarity with Ca 90Sr is more easily transported to the bones 

than 210Pb.  
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As the 90Sr content in soil rises with altitude, the same is expected also for the 
90Sr content in deer bones. This correlation, however, is masked by the fact 

that bones from animals of different age were investigated. The bones of older 

animals contain higher amounts of 90Sr per mass than bones of younger deer 

as 90Sr is accumulated over the years. This can be seen from the deer hunted 

in relatively small and well defined areas as in Mariapfarr 1 (1350 m a.s.l.) and 

in Bächental (1250 m a.s.l.) (see Fig. 3 and 4). The same pattern has already 

been published for Neuwaldegg (Vienna) [6]. The animals hunted in the 

Kaprun area, however, did not show a clear activity concentration / age 

correlation. This might be due to the fact that the Kaprun area is too large: the 

valley is about 15 km long, leading from lowlands up to mountains. Here the 

influence of different feeding plants and the altitude factor seems to be 

predominant. 

In Figure 5 the correlation of the 90Sr activity concentration in bone ash with 

the site altitude is shown. A line of best fit is drawn through the dots 

representing 3 year old animals. Older animals (up to 9 years) mostly also fit 

this line which might imply a saturation effect for the uptake. Data of younger 

deer (up to 1 year), however, was found clearly below the line, revealing the 

fact that the amount of accumulated 90Sr still was low.  

 

Conclusions 

 

The activity concentrations of anthropogenic (90Sr, 137Cs) and natural (238U, 
232Th, 40K, 210Pb) radionuclides were determined in soil samples from different 

regions in Austria. The calculated activity concentrations of 40K, 238U and 232Th 

were in the range of 230-709 Bq.kg-1 for 40K, 15-45 Bq.kg-1 for 238U and 30-46 

Bq.kg-1 for 232Th, well within the world average range reported by UNSCEAR. 

The anthropogenic 137Cs and 90Sr contamination is due to global fallout in the 

fifties and early sixties of the last century and to the Chernobyl accident. Part 

of the investigated sites was struck by rainfall when the Chernobyl cloud 

passed by which led to lower 90Sr/137Cs ratios compared to sites where the 

global fallout was predominant. Generally, a direct proportional correlation 



2. Results 

 68 

between the activity concentration of 90Sr and 137Cs in soil samples and site 

altitude was found.  

 Also the 90Sr content in deer bones corresponds with the site altitude. 

This correlation can be seen more clearly if only animals of the same age are 

considered, as the 90Sr content increases also with the age of the animal. 

Compared to older literature, our 90Sr values in deer bones were lower, 

probably indicating a decreased bioavailability of 90Sr bound to soil particles. 

 

For the first time, the Sr Rad disk method for 90Sr determinations was 

successfully applied to bone samples.  
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Figures caption 

 
Fig.1. 90Sr activity concentrations in upper soil layer in dependence of site altitude. 
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Fig. 2. Relationship between 90Sr activity concentrations in bone ash samples and 
appropriate soil surface from Mariapfarr. Top 2 cm soil layer was used for 
calculations. The values for bone ash are average values from Tab. 3.  
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Fig.3. Age dependence on 90Sr content in bone ash samples from Bächental region 
(1250 m a. s. l.). 
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Fig. 4. Age dependence on 90Sr content in bone ash samples from Mariapfarr region 
(1350 m. a. s. l.). 
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Fig. 5. Age and altitude dependence on 90Sr content in bone ash samples from 
different regions of Austria. 
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Tables and diagrams 

 
Table 1 Activity concentration of 210Pb, 90Sr and 137Cs in soil samples together with 
90Sr/137Cs isotopic ratios with 1σ uncertainties (reference date: 1st September 2005). 
Activity concentrations are calculated in Bq.kg-1 of air dried soil samples. 
 

Altitude 210Pb 90Sr 137Cs 90Sr/137Cs site 
 

soil depth 
(cm) (m a.s.l) A (Bq.kg-1) A (Bq.kg-1) A (Bq.kg-1)  

Rettenegg 0-2 cm 860 32  ± 3 21 ± 3 315 ± 18 0.067 ± 0.01 

 2-4 cm  39  ± 3 11 ± 3 304 ± 18 0.036 ± 0.01 

 4-6 cm  34  ± 3 11 ± 3 127 ± 7 0.087 0.024 

Kaltenegg 0-2 cm 1000 42  ± 4 8 ± 2 77 ± 3 0.104 ± 0.026 

 2-4 cm  37  ± 3 8 ± 2 78 ± 3 0.103 ± 0.026 

 4-6 cm  47  ± 5 8 ± 2 70 ± 2 0.114 ± 0.029 

Ossiacher Tauern 0-2 cm 680 38  ± 3 28 ± 3 340 ± 18 0.082 ± 0.01 

 2-4 cm  29  ± 3 19 ± 3 230 ± 17 0.083 ± 0.014 

 4-6 cm  32  ± 4 12 ± 2 107 ± 6 0.112 ± 0.025 

Saualpe 0-5 cm 1895 106  ± 7 173 ± 13 1800 ± 48 0.096 ± 0.008 
Mirniger Alm 

(Saualpe) 
0-2 cm 1530 41  ± 4 132 ± 10 1558 ± 44 0.085 ± 0.007 

 2-4 cm  29  ± 3 164 ± 12 2051 ± 50 0.08 ± 0.006 

 4-6 cm  14  ± 2 103 ± 7 1097 ± 30 0.094 ± 0.007 

Mariapfarr 1 0-2 cm 1340 47  ± 5 33 ± 4 112 ± 10 0.295 ± 0.044 

 2-4 cm  62  ± 5 33 ± 4 141 ± 7 0.234 ± 0.031 

 4-6 cm  36  ± 3 24 ± 4 109 ± 6 0.22 ± 0.039 

Mariapfarr 2 0-2 cm 1540 50  ± 5 70 ± 6 217 ± 13 0.323 ± 0.034 

 2-4 cm  32  ± 3 64 ± 6 247 ± 17 0.259 ± 0.03 

 4-6 cm  33  ± 3 66 ± 6 242 ± 17 0.273 ± 0.031 

Mariapfarr 3 0-2 cm 1786 83  ± 6 101 ± 7 849 ± 27 0.119 ± 0.009 

 2-4 cm  92  ± 6 53 ± 6 893 ± 30 0.059 ± 0.007 

 4-6 cm  31  ± 3 22 ± 3 424 ± 14 0.052 ± 0.007 
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Table 2 Activity concentrations of 210Pb and 90Sr in bone samples (in Bq.kg-1 of bone 
ash; in Bq.kg-1 of fresh bone) from different areas of Austria with 1σ uncertainties 
(reference date: 1st September 2005). 
 

    210Pb 90Sr 210Pb 90Sr 

site age sex Altitude 
A 

(Bq.kg-1) 
A 

(Bq.kg-1) 
A 

(Bq.kg-1) 
A 

(Bq.kg-1) 
 (years)  (m a. s. l.) Ash ash bone bone 

Nickelsdorf a 8-9 fem 150 7 ± 2 23 ± 3 3 ± 1 10 ± 3 
Nickelsdorf 6-7 m 150 7 ± 2 28 ± 3 3 ± 1 13 ± 3 
Petronell 5 m 175 10 ± 3 18 ± 3 5 ± 1 9 ± 2 

Wolkersdorf 8 fem 178 7 ± 2 24 ± 3 2 ± 1 8 ± 2 
Wien Sievering 3 fem 200 7 ± 2 18 ± 3 3 ± 1 9 ± 2 

Hollabrun 2 fem 236 32 ± 4 22 ± 3 16 ± 3 11 ± 3 
Neulengbach a 0.9 m 251 17 ± 3 50 ± 5 8 ± 2 24 ± 3 

Hadersdorf 4-5 fem 270 8 ± 2 21 ± 3 4 ± 1 10 ± 3 
Mannersdorf 6 fem 290 9 ± 2 58 ± 6 4 ± 1 23 ± 3 
Neuwaldegg a 6 fem 300 10 ± 3 75 ± 6 5 ± 1 34 ± 3 
Neuwaldegg 3 fem 300 16 ± 3 56 ± 6 8 ± 2 27 ± 3 
Neuwaldegg 1 m 300 10 ± 3 51 ± 5 4 ± 1 19 ± 3 
Neuwaldegg 3 fem 300 12 ± 3 59 ± 6 6 ± 2 28 ± 3 

Ternitz 8 fem 393 26 ± 3 53 ± 6 12 ± 3 24 ± 3 
St. Michael a 7-8 m 550 19 ± 3 64 ± 6 9 ± 2 29 ± 3 

Melk a ? ? 550 18 ± 3 67 ± 6 8 ± 2 31 ± 3 
Melk ? ? 550 16 ± 3 88 ± 6 7 ± 2 40 ± 4 
Melk ? ? 550 9 ± 2 78 ± 6 4 ± 1 35 ± 3 

Ossiacher Tauern 3 fem 680 20 ± 3 83 ± 6 9 ± 2 38 ± 4 
Rettenegg 2 m 860 37 ± 3 77 ± 6 17 ± 3 35 ± 3 

Treffning a ? fem 1100 35 ± 3 74 ± 6 16 ± 3 34 ± 3 

Liezen 0.75 fem 1100 19 ± 3 83 ± 6 9 ± 2 39 ± 4 
Liezen 7-8 fem 1100 20 ± 3 114 ± 8 9 ± 2 53 ± 5 

Mirnock a 6 fem 1200 35 ± 3 197 ± 13 16 ± 3 89 ± 6 
Bächental 1 fem 1250 12 ± 3 78 ± 6 5 ± 1 35 ± 3 
Bächental 3 fem 1250 14 ± 3 118 ± 8 6 ± 2 54 ± 5 
Bächental 0.75 fem 1250 8 ± 2 67 ± 6 4 ± 1 31 ± 3 
Bächental 3 fem 1250 20 ± 3 110 ± 8 9 ± 2 50 ± 5 
Bächental 0.5 m 1250 10 ± 3 47 ± 5 4 ± 1 21 ± 3 
Bächental 0,75 fem 1250 11 ± 3 67 ± 6 5 ± 1 30 ± 3 
Mariapfarr 3 m 1350 54 ± 6 161 ± 12 25 ± 3 74 ± 6 
Mariapfarr 0.75 m 1350 41 ± 4 98 ± 7 18 ± 3 44 ± 4 

Mariapfarr a ? ? 1350 51 ± 5 248 ± 17 24 ± 3 114 ± 7 
Mariapfarr 1.75 m 1350 51 ± 5 98 ± 7 23 ± 3 44 ± 4 
Mariapfarr 0.75 m 1350 41 ± 4 100 ± 7 19 ± 3 46 ± 5 
Mariapfarr 0.75 ? 1350 41± 4 98 ± 7 18 ± 3 44 ± 4 
Mariapfarr 3 ? 1350 51 ± 5 163 ± 12 23 ± 3 74 ± 6 
Mariapfarr 3 ? 1350 51 ± 5 159 ± 11 23 ± 3 71 ± 6 
Kaprun a 0.8 m 780 21 ± 3 117 ± 8 9 ± 2 53 ± 6 
Kaprun 1 0.75 fem 800 14 ± 3 73 ± 6 6 ± 2 33 ± 3 
Kaprun 2 1 m 1000 11 ± 3 110 ± 8 5 ± 1 50 ± 5 
Kaprun 2 1 fem 1000 13 ± 3 100 ± 7 6 ± 2 45 ± 5 
Kaprun 2 3 fem 1000 41 ± 4 153 ± 11 19 ± 3 70 ± 6 
Kaprun 3 1 fem 1200 40 ± 4 129 ± 10 18 ± 3 59 ± 6 
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Kaprun 3 0.75 fem 1200 36 ± 3 111 ± 8 16 ± 3 51 ± 5 
Kaprun 4 0.8 fem 1488 16 ± 3 126 ± 10 7 ± 2 55 ± 6 
Kaprun 4  fem 1488 42 ± 4 142± 11 19 ± 3 65 ± 6 

Mirniger Alm 1 m 1530 18 ± 3 158 ± 11 8 ± 2 71 ± 6 
Gastein b 9 fem 1630 n.m. n.m. n.m. 268 ± 17 

Kaunertal b 7 fem 1770 n.m. n.m. 15 ± 3 375 ± 17 

 
 

a - values adopted from previously published work [21]  
b - values adopted from previously published work [6]  
fem - female    
m - male 
? – unknown 
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Table 3 Activity concentrations of 90Sr in bone ash determined by two steps method 

and by Sr Empore disk with 1σ errors (reference date: 1st September 2005). Activity 

concentrations are calculated in Bq.kg-1 of bone ash. 

 
90Sr 

two-step method 

90Sr 
Sr Empore disk 

sample 
 A (Bq.kg-1) A (Bq.kg-1) 

IAEA-A-12 29.8 ± 1.8 31.2 ± 2.5 
Rettenegg/Kaltenegg 76.1 ± 5.2 78.5 ± 6.7 

Ossiacher Tauern 81.7 ± 7.5 83.9 ± 11.1 
Mirniger Alm 160.3 ± 12.1 157.6 ± 15.1 
Mariapfarr 1, a 159.2 ± 10.1 162.9 ± 12.1 
Mariapfarr 1, b 97.5 ± 7.7 98.5 ± 10.1 
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2.3.1 Supplementary investigations 
 

In Chapter 2.3 (Monitoring of radionuclides in soil and bone samples) it 

was mentioned that specific activities of studied soils lie in the range of 30-46 

Bq.kg-1 for 232Th, 15-45 Bq.kg-1 for 238U and 230-709 Bq.kg-1 for 40K. These 

results are listed in Table 4. Aditionally, the soil sample from the middle part of 

Slovakia (Prievidza) was also investigated and added to the Table 4. 

 

Table 4. The activity concentrations of 228Ac, 212Pb and 208Tl (232Th daughter products) and 
214Pb, 214Bi and 226Ra (238U daughter products) in investigated soil samples with 

corresponding 1σ errors. 

 

 
   232Th series (Bq.kg-1)  238U series (Bq.kg-1) 

site 
 

Soil 
depth 
(cm) 

altitude 
(m.a.s.l.) 228Ac 212Pb 208Tl  214Pb 214Bi 226Ra 

Prievidza 0-2 cm 600 24 ± 2 25 ± 2 21 ± 2  14 ± 1 16 ± 1 16 ± 1 
Prievidza 2-4 cm  34 ± 3 36 ± 3 36 ± 3  16 ± 1 20 ±  2 17 ± 1 
Prievidza 4-6 cm  29 ± 2 29 ± 2 32 ± 3  17 ± 1 18 ±  1 20 ± 2 
Rettenegg 0-2 cm 860 46 ± 4 47 ± 4 45 ± 4  27 ± 2 30 ± 3 30 ±3 
Rettenegg 2-4 cm  38 ± 3 37 ± 3 41 ± 3  27 ± 2 31 ±  3 26 ± 2 
Rettenegg 4-6 cm  42 ± 3 45 ± 4 42 ± 3  34 ± 3 37 ±  3 32 ± 3 
Kaltenegg 0-2 cm 1000 46 ± 4 44 ± 4 46 ± 4  28 ± 2 29 ± 2 26 ± 2 
Kaltenegg 2-4 cm  48 ± 4 45 ± 4 46 ± 4  30 ± 3 32 ±  3 30 ± 3 
Kaltenegg 4-6 cm  43 ± 3 40 ± 3 46 ± 4  28 ± 2 32 ±  3 28 ± 2 

Ossiacher Tauern 0-2 cm 680 44 ± 4 48 ± 5 45 ± 4  37 ± 3 35 ± 3 38 ± 3 
Ossiacher Tauern 2-4 cm  40 ± 4 48 ± 5 45 ± 4  30 ± 3 32 ± 3 32 ± 3 
Ossiacher Tauern 4-6 cm  37 ± 3 39 ± 4 36 ± 3  29 ± 2 33 ± 3 32 ± 3 

Saualpe 0-5 cm 1895 35 ± 3 36 ± 3 36 ± 3  22 ± 2 23  ± 2 22 ± 2 
Mierniger Alm  0-2 cm 1530 44 ± 4 46 ± 4 45 ± 4  31 ± 3 31 ± 3 30 ± 3 

 2-4 cm  39 ± 4 41 ± 3 43 ± 4  25 ± 2 28 ± 2 28 ±2 

 4-6 cm  43 ± 4 46 ± 4 47 ± 4  36 ± 3 39 ± 4 36 ± 3  
Mariapfarr 1 0-2 cm 1340 36 ± 3 39 ± 4 37 ± 3  26 ± 2 23 ± 2 23 ± 2 

 2-4 cm  35 ± 3 33 ± 3 34 ± 3  28 ± 2 33 ± 3 27 ± 2  
 4-6 cm  31 ± 3 36 ± 3 31 ± 3  28 ± 2 27 ± 2 24 ± 2  

Mariapfarr 2 0-2 cm 1540 38 ± 3 39 ± 4 34 ± 3  32 ± 3 30 ± 3 33 ± 3 
 2-4 cm  33 ± 3 28 ± 2 28 ± 2  33 ± 3 28 ± 2 33 ± 3  
 4-6 cm  41 ± 3 37 ± 3 44 ± 4  30 ± 3 35 ± 3 31 ± 3  

Mariapfarr 3 0-2 cm 1786 37 ± 3 35 ± 3 38 ± 3  45 ± 4 45 ± 4 45 ± 4 
 2-4 cm  34 ± 3 37 ± 3 37 ± 3  34 ± 3 33 ± 3 32 ± 3  
 4-6 cm  33 ± 3 36 ± 3 34 ± 3  34 ± 3 31 ± 3 30 ± 3  
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From obtained specific activities of 40K, 238U and 232Th the absorbed dose 

rates in air (nGy.h-1) 1m above ground and annual effective dose rates 

outdoors (mSv.y-1) were calculated. The absorbed dose rates in air 1m above 

ground varies between 46 – 73 nGy.h-1 (the population-weighed value 

published by UNSCEAR is 60 nGy.h-1). The UNSCEAR report also published 

the range for absorbed dose rate in air in Austria (1980) to 20-150 nGy.h-

1(average value 43 nGy.h-1). The average value estimated in this work is 59 

nGy.h-1. According the UNSCEAR report, an outdoor occupancy factor of 0.2 

and a conversion coefficient of 0.7 Sv.Gy-1 were used. The annual effective 

dose (outdoors) was found to be between 0.05 - 0.08 mSv.y-1 with an average 

value of 0.07 mSv.y-1 (world-wide average: 0.07 mSv.y-1). The detailed results 

together with data obtained for soil from Prievidza are given in Table 5 and 

Table 6.  
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Table 5. The activity concentrations of 238U, 232Th and 40K (Bq.kg-1) in investigated 

soil samples with corresponding 1σ errors. 

 

site 
soil 

depth 
232Th 

232Th 
(mean) 

238U 
238U 

(mean) 
40K 

40K 
(mean) 

 (cm) Bq.kg-1 Bq.kg-1 Bq.kg-1 Bq.kg-1 Bq.kg-1 Bq.kg-1 
Prievidza 0-2 cm 23 ± 2 29 ± 3 15 ± 1 17 ± 1 571 ± 16 344 ± 18 

 2-4 cm 35 ± 3  18 ± 1  230 ± 10  
 4-6 cm 30 ± 3  18 ± 1  231 ± 10  

Rettenegg 0-2 cm 46 ± 4 43 ± 4 29 ± 2 30 ± 3 504 ± 19 513 ± 19 
 2-4 cm 39 ± 4  28 ± 2  500 ± 18  
 4-6 cm 43 ± 4  34 ± 3  534 ± 19  

Kaltenegg 0-2 cm 45 ± 4 45 ± 4 28 ± 2 29 ± 2 494 ± 17 500 ± 18 
 2-4 cm 46 ± 4  31 ± 3  495 ± 17  
 4-6 cm 43 ± 4  29 ± 2  510 ± 19  

Ossiacher Tauern 0-2 cm 46 ± 4 42 ± 4 37 ± 3 33 ± 3  347 ± 18 344 ± 17 
 2-4 cm 44 ± 4  31 ± 3  382 ± 18  
 4-6 cm 37 ± 3  31 ± 3  302 ± 16  

Saualpe 0-5 cm 36 ± 3 36 ± 3 22 ± 2 22 ± 2 263 ± 15  263 ± 15 
MiIrniger Alm 0-2 cm 45 ± 4 44 ± 4 31 ± 3 32 ± 3 239 ± 17 281 ± 16 

 2-4 cm 41 ± 3  27 ± 2  274 ± 16  
 4-6 cm 45 ± 4  37 ± 3  329 ± 16  

Mariapfarr 1 0-2 cm 37 ± 3 35 ± 3 24 ± 2 26 ± 2 628  ± 20 650 ± 20 
 2-4 cm 34 ± 3  29 ± 2  709 ± 21  
 4-6 cm 33 ± 3  26 ± 2  612 ± 18  

Mariapfarr 2 0-2 cm 37 ± 3 36 ± 3 32 ± 3 32 ± 3 434  ± 17 467 ± 17 
 2-4 cm 30 ± 3  31 ± 3  523 ± 19  
 4-6 cm 41 ± 3  32 ± 3  445 ± 17  

Mariapfarr 3 0-2 cm 37± 3 36 ± 3 45 ± 4 37 ± 3 671 ± 21 517 ± 18 
 2-4 cm 36 ± 3  33 ± 3  448 ± 17  
 4-6 cm 34 ± 3  32 ± 3  428 ± 17  
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Table 6. Calculated absorbed dose rates in air 1m above ground (nGy.h-1) and the 

annual effective dose rates outdoors (mSv.y-1). 

 

  

Absorbed 
 dose rate  
(nGy.h-1) 

Absorbed 
dose rate 
(nGy.h-1) 

Annual 
effective dose 

Annual 
effective 

dose 
site 

 
 

soil 
depth  
(cm) 

1m above 
 ground 

 

1m above 
 ground 
 (mean) 

(mSv.y-1) 
outdoors 

 

(mSv.y-1) 
outdoors 
(mean) 

Prievidza  0-2 cm 47 42 0.057 0.051 
 2-4 cm 41  0.051  
 4-6 cm 38   0.046  

Rettenegg 0-2 cm 65 63 0.079 0.078 
 2-4 cm 59  0.073  
 4-6 cm 66  0.081  

Kaltenegg 0-2 cm 63 64 0.077 0.078 
 2-4 cm 65  0.08  
 4-6 cm 63   0.077  

Ossiacher Tauern 0-2 cm 61 57 0.074 0.07 
 2-4 cm 59  0.072  
 4-6 cm 51   0.063  

Saualpe 0-5 cm 46 46 0.056 0.056 
Mierniger Alm 0-2 cm 53 55 0.065 0.067 

 2-4 cm 51  0.062  
 4-6 cm 60   0.074  

Mariapfarr 1 0-2 cm 62 62 0.076 0.076 
 2-4 cm 65  0.079  
 4-6 cm 60  0.072  

Mariapfarr 2 0-2 cm 57 58 0.069 0.071 
 2-4 cm 56  0.069  
 4-6 cm 60  0.074  

Mariapfarr 3 0-2 cm 73 62 0.089 0.075 
 2-4 cm 57  0.07  
 4-6 cm 55   0.067  

 

The activity concentrations of 137Cs, 90Sr and 210Pb in soil sample from 

Slovakia (Table 7) were determinated according the procedures described in 

section 2.3. 

 

Table 7. Activity concentration of 210Pb, 90Sr and 137Cs in soil samples together with 90Sr/137Cs 

isotopic ratios with 1σ uncertainties (reference date: 1 st September 2005). Activity 

concentrations are calculated in Bq.kg-1 of air dried soil samples. 

 

altitude 210Pb 90Sr 137Cs 90Sr/137Cs site 
 

soil depth 
(cm) (m. a. s. l) A (Bq.kg-1) A (Bq.kg-1) A (Bq.kg-1)  

Prievidza 0-2 cm 600 18  ± 2 3 ± 1 9 ± 4 0.333 ± 0.19  
 2-4 cm  21  ± 2 1 ± 1 4  ± 2 0.250 ± 0.28  
 4-6 cm  18  ± 2 2 ± 1 6  ±2 0.333 ± 0.19  
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The activity concentrations of 90Sr and 210Pb were determinated in two bone 

samples from Prievidza (Table 8). For this purpose the two-step procedure 

and Empore disks were used (experimental part described in section 2.3). 

 

Table 8. Activity concentrations of 90Sr in bone sample from Slovakia determined by two steps 

method and by Sr Empore disk together with activity concentration of 210Pb with 1σ errors 

(reference date: 1st September 2005). Activity concentrations are calculated in Bq.kg-1 of bone 

ash. 

 

   

90Sr/two-steps 
method 

90Sr/Empore 
disk 

210Pb/two-steps 
method site 

 hunted sex age A (Bq.kg-1) A (Bq.kg-1) A (Bq.kg-1) 

Prievidza 6.2.2008 male 4 Y 28.3 ± 3.1 29.4 ± 4.8 14.5 ± 5.3 

Prievidza 6.2.2008 female 3 Y 19.4 ± 3.2 17.7 ± 2.7 18.7 ± 4.7 
 

The teeth of my son Peter Walla were studied for 90Sr content. The short Sr 

Spec method (section 2.3) was used. Peter Walla was born on 4th April 2003 

in Handlova (Slovakia) and since 2005 he has lived in Vienna (Austria).  The 

teeth were collected from September to November 2009. The activity 

concentration of 90Sr was found to be 27.9 ± 2.9 Bq.kg-1 (reference date: 1st 

September 2005). 
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2.4 Fast determination of Po-210 in urine by LSC as a means 
to estimate deliberate poisioning 

 

Wallner G, Schönhofer F, Wallova G, Steger F (Okt. 2010) accepted for 

publication in LSC 2010, Advances in Liquin Scintillation Spectrometry, 6-10 

September 2010, Paris, France,  Radiocarbon, Tuscon 
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FAST DETERMINATION OF Po-210 IN URINE BY LSC AS A 
MEANS TO ESTIMATE DELIBERATE POISIONING 

 

Gabriele Wallner (1), Franz Schönhofer (2), Gabriela Wallova (1), Ferdinand 

Steger (3) 

 

(1) Institut für Anorganische Chemie, Universität Wien, Währinger Str. 42, A-

1090 Vienna, Austria 

(2) BMLFUW – Radiation Protection Department – retired, present address: 

Habicherg. 31/7, A-1160 Vienna, Austria  

(3) NES – Nuclear Engineering Seibersdorf – retired, present address: Anton 

Baumgartnerstraße 44/A4/223, A-1230 Vienna, Austria 

 

 

Abstract 

 

Calculations show that in case of allegedly poisoning a Po-210 body burden 

leading to the death of the victim (about 1-3 GBq) should be easily detectable 

from the urine excretion because the activity concentration is probably 

between 0.07 and 0.7 Bq/mL. Such activity levels can be detected easily via 

LSC without any chemical separation within a very short time – less than a 

few hours. Due to its similar α-energy Pu-239 would interfere with the Po-210 

measurement. We investigated the possibility of determining the Po-210 body 

burden by measuring it in simulated urine samples by liquid scintillation 

counting. For separation of Po from other radionuclides (especially Pu) we 

present three very quick methods using the Po extractive LSC cocktail 

POLEX®, the resin Sr·Spec® and the Sr Rad Disk®: all three extract Po with 

an efficiency of more than 90%, while Pu is not extracted into POLEX® and 

retained neither on the Sr·Spec® column nor on the Sr Rad Disk®. 
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Introduction 

 

Po-210, a decay product of U-238, was discovered in Paris by Marie and 

Pierre Curie in the year 1898 and was named in honour of Marie´s home 

country Poland. With a half life of 138 days, it decays by α-emission to the 

stable lead isotope Pb-206. 

 

Although it is extremely rare in nature (its concentration is only about 0.1mg/t 

of uranium ore) Po-210 can be found in higher concentrations in drinking 

water from wells or in mineral water (a few mBq/L up to ~100 mBq/L (Isam 

Salih et al. 2002). Originally radon and its daughter products were explicitly 

excluded in the EC Drinking Water Directive (1998), but then for Po-210 in 

drinking water a reference maximum concentration of 0.1 Bq/L was given in 

the EC Recommendation K (2001). Likewise it is present in seawater and it is 

well known that especially shellfish accumulate Po-210. So the main portion of 

dose to the populations living near Mururoa and Fangataufa in the South 

Pacific is due to natural Po-210 incorporated via the traditional food and not, 

as one might suspect, due to former French nuclear tests (IAEA 1999). The 

same is true for people living in Cumbria (UK) near the Sellafield nuclear 

installation (McDonald et al. 1986) or near the La Hague (F) reprocessing 

plant (Beutier et al. 2000). E. Holm (1994) reported that the dose to the 

population from Po-210 originating from the consumption of fish from the 

Baltic Sea is similar to that of Cs-137, even after the Chernobyl accident. For 

Canadians of aboriginal origin Po-210 is contributing 57 to 72% of the total 

accumulated intake. This is due almost entirely to the ingestion pathway and 

to one particular food chain (lichen – reindeer – humans) (Tracy 1993). 

 

Besides water and food, also other consumer products widely used contain 

Po-210, sometimes in not negligible concentrations and quantities. Po-210 is 

used in static eliminators, dust removers and spark plugs as well as in 

portable Po(Be) neutron sources (in former times it was also used in short 

lived isotope batteries and as atomic bomb triggers). Last but not least the 
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abundance of Po-210 in tobacco and subsequently in cigarette smoke should 

not be forgotten. Dalheimer et al. (2007) recently reported a daily urinary 

excretion median value of 3.5 mBq/d for non-smokers and 6.6 mBq/d for 

smokers. 

 

Artificially, Po-210 is produced by neutron activation of bismuth (Bi-209 is 

quasi-stable with a half-life of 1.9·1019 a). The activation product Bi-210 is a 

β-emitter with a half-life of 5 days and decays to Po-210. The worldwide 

production is estimated to about 100 g per year. 

 

Po-210 is extremely radiotoxic if incorporated (inhaled or ingested). The ICRP 

model (ICRP, 1993) and also a more recent model by Leggett and Eckerman 

(2001) assume that about 10% of the intake is absorbed into blood. According 

to the current model for the systemic behaviour after uptake to blood given in 

the above cited publications it is widely distributed in soft tissues but with 

higher than average concentrations in kidneys, liver, spleen and bone marrow. 

Its biological half-life is supposed to be about 50 days in all organs. Combined 

with the physical half-life of 138 days this leads to an effective retention half-

time in the body of 37 days with one third of the excretion going to urine (in 

the first few days after intake the predominant excretion route is faeces). As in 

vivo measurements with external gamma ray detectors are not possible due to 

the very low photon emission probability of Po-210, the only practicable proof 

of incorporation is via measurement of excretion samples. Although there is 

more activity present in a daily sample of faeces, urine measurements are 

preferred since chemical procedures for Po extraction are much easier with 

urine samples. 

 

According to a literature search there seems to be one case known, when a 

Japanese researcher at Marie Curie´s lab was poisoned due to his work with 

Po-210 and a second case in Russia, when a worker accidently inhaled an 

aerosol of Po-210 (Perkins 2007). Both persons died as a consequence. In 

November 2006 mass media informed about the allegedly poisoning of Mr. 

Alexander Litvinenko in London with at that time still unknown poisioning 

agent. The first idea of a thallium poisoning had to be abandoned soon 
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because with modern analytical equipment it is extremely easy to confirm any 

incorporated thallium within very short time. Secondly radioactive thallium was 

suspected. Thallium-201 is widely used in nuclear medicine, but since it is a 

gamma-emitter the amount needed to kill a person would be incredibly high. 

Anyway, urine samples did not show any gamma-contaminations. The third 

guess was that he might have been poisoned with Po-210. In a retrospective 

view it is surprising that urine samples were not checked for alpha-emitters 

because it would have been an easy task with the equipment usually available 

in hospitals (as e.g. liquid scintillation counters).  

 

In this paper we present a very quick method to determine clearly elevated 

Po-210 levels in urine samples by liquid scintillation counting (LSC). This 

means that only very little or no handling of the sample is necessary, and that 

the result is available within a few hours latest. For the definite identification of 

the alpha-emitter as Po-210 we describe 3 short extraction methods. 

 

Methods and results 

 

In Li et al. (2008) an absorbed dose of 5 Gy to red marrow, 6 Gy to kidneys 

and 8 Gy to liver were applied as organ lethal doses to estimate the possible 

Po-210 intake of Mr. Litvinenko. By using the ICRP model and the model by 

Leggett and Eckerman (2001) they calculated administered amounts of 27 to 

1,408 MBq, corresponding to 0.2 to 8.5 µg of Po-210. This is consistent with 

the estimates of Harrison et al. (2007), who concluded that 0.1-0.3 GBq or 

more absorbed to blood would be fatal for an adult male. Assuming 10% 

absorption to blood, this corresponds to an ingestion of 1-3 GBq. The daily 

urinary excretions after acute ingestion of 1 Bq of Po-210 calculated following 

the ICRP (1993) model and that of Leggett and Eckman (2001) are between 

1·10-4 and 1·10-3 Bq/d (Li et al. 2008), giving 105-106 Bq of Po-210 in the 

daily urine after ingestion of 1 GBq. The excretion rate stays rather constant 

after two days until about 100 days after intake. This prevents the 

determination of the date of the poisoning, but enables the estimation of the 

administered amount of Po-210 over a longer time period. Assuming a daily 
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urine excretion of 1500 mL gives us a Po-210 activity concentration in urine of 

67 to 670 Bq/mL. Even an intake of 1 MBq Po-210 (non lethal and not acutely 

detrimental) causing a urine concentration of 0.067 to 0.67 Bq/mL (or 4 to 40 

dpm/mL) is easily accessible to modern counting techniques. 

 

Direct measurement of α-emitters in urine 

 

A very quick estimate of the order of magnitude of activity concentration of 

any α-emitter in urine in the case of poisoning is possible by a direct LSC 

measurement. Using a Quantulus®1220 low-level counter (Wallac Oy, 

Finland, now Perkin Elmer) with pulse-shape analysis enables to differentiate 

quantitatively between α- and β-emitters. The counting efficiency for alphas is 

very close to 100% and almost independent of the quench level. The 

background in the respective region is 0.4 cpm, corresponding to 0.007 Bq 

per sample. After dilution of 1-3 mL of urine 1:1 with distilled water (to reduce 

the colouring) and mixing with 18-14 mL of the scintillation cocktail HiSafe®III 

(Perkin Elmer) the sample is measured. A reasonably accurate result is 

available after a counting time of 10 to 100 min. 

 

While other α-emitters can be ruled out by the shape of their spectrum (double 

peaks for uranium and thorium) or by their energies (besides their use as a 

poison being very unlikely), the only thinkable interference for a possible 

(criminal or terroristic) radionuclide attack is Pu-239. Its decay energy of 5.16 

MeV is very close to that of Po-210 (5.30 MeV) and hence these two nuclides 

cannot be distinguished by LSC. Therefore a separation procedure is 

necessary to distinguish the alpha emissions between polonium and 

plutonium. 

The most common technique for Po-210 determination in environmental 

samples is auto-deposition on a Cu or Ag planchette followed by α-

spectrometry (WHO 1966). However, processing the sample needs a few 

hours and this seems to be too long in a case of emergency. Another well 

known method is the extraction of Po into the extractive cocktail POLEX® (to 

separate it from Pb-210 and eventually also from Bi-210) and measurement 
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by LSC (McDowell and McDowell 1991, Wallner 1997, Wallner and Irlweck 

1997, Katzlberger et al. 2001, Wallner et al. 2002). Especially for small 

samples the chemical procedure can be done in about 10 min. Also available 

in many labs are Sr·Spec® resin (Triskem company) and Sr Rad disks® (3M 

Empore), a solid phase extraction resin and a membrane loaded with a crown 

ether. It is well known that Sr·Spec®resin (originally developed for strontium 

separation by Horwitz et al. 1991, 1992) can also be used for Pb-210 and Po-

210 extraction (Vajda et al. 1997, Vrecek et al. 2004, Kim et al. 2009). We 

investigated also the Sr Rad disks® in this respect and found it suitable for Po 

separation as well. After elution of the polonium from the resin or the 

membrane the subsequent Po-210 measurement is again done by LSC. 

 

Po-210 extraction by POLEX® 

 

All separation experiments were done in three steps: first the procedure for a 

complete separation of Po from the urine matrix was developed (step 1) and 

then the behaviour of plutonium under these conditions was investigated (step 

2). A “mixed” sample was prepared for the final test (step 3): a urine sample 

(usually 1 mL) was spiked with 0.6 Bq Po-210 and 0.8 Bq Pu-239. We give 

here the procedure for the double-spiked sample. 

 

The sample (usually 1 mL) was diluted 1:1 with distilled water, and then the 

resulting volume was doubled by adding conc. phosphoric acid. This mixture 

was shaken with 2 mL of POLEX® and after 10 min waiting for phase 

separation an aliquot of the POLEX® phase was measured by LSC.  

 

The extraction efficiency for polonium was at least 95%. The blank value was 

0.02 cpm (corresponding to 0.3 mBq per sample), lower than with the direct 

method (because the cocktail volume is much smaller and a pure organic 

phase is measured), provided the used phosphoric acid had been carefully 

selected with respect to its Pb-210 content (Wallner 1998). Pu is not extracted 

from the aqueous phase under these conditions and can also be measured by 

LSC after mixing of the aqueous phase with HiSafe®III. 
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Po-210 extraction with Sr·Spec®resin 

 

We used the procedure of Vajda et al. (1997) for Po-210 separation from the 

urine matrix (step1). A second urine sample was spiked with Pu-239 and the 

rinsing solution was checked for plutonium recovery (step 2). The whole 

procedure is again given for the double-spiked sample (step 3). 

 

For conditioning, 3 g of the resin were soaked in distilled water for 1 hour, 

transferred to the column and rinsed with 50 mL of distilled water and 50 mL 

of 2M HCl (both saturated with n-octanol). The diluted urine was adjusted to 

2M HCl and loaded onto the column. The column was rinsed with 3 mL of 2M 

HCl, and in this first fraction 100% of the plutonium was found, as it is not 

retained on the resin. Subsequently Po-210 was rinsed in 3 fractions of 3 mL, 

5 mL and again 5 mL of 6M HNO3. Each fraction was mixed with HiSafe®III 

and measured by LSC: 42%, 53% and 5-6% of Po-210 were recovered. This 

means that at least 8 mL of eluant are necessary to achieve about 95% Po-

210 recovery. This amount of acid was evaporated to dry and the residue was 

then taken up into 2 mL of 2 M HNO3 and mixed with the LSC cocktail.  

 

With the resin already conditioned, the processing time is about half an hour. 

The achievable background is the same as with the direct measurement (0.4 

cpm). 

 

Po-210 extraction with Sr Rad Disk® 

 

The Sr Rad disk (3M Empore) is a membrane loaded with a crown ether 

(similar to Sr·Spec®resin) and is used like a filter to extract Sr (Seely et al. 

1998, Smith et al. 1996). As the chemistry involved seems to be similar to that 

of Sr·Spec®resin, we also investigated the membrane for Po-210 extraction.  
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The urine (1 mL) was diluted 1:1 with water, adjusted to 2M HCl, and 0.6 Bq 

Po-210 were added (step 1). After rinsing the Sr Rad disk with methanol and 

2M HCl the sample was slightly sucked through the membrane. With a sample 

acidity of 2M HCl, however, Po was only partially retained on the filter, but 

enhancing the acidity to 6M HCl resulted in 100% Po extraction yield. Then an 

equivalent sample with 0.8 Bq Pu-239 added was investigated (step 2).  In the 

filtrate about 50% of the plutonium was found, additional rinsing with 4 mL of 

6M HCl removed plutonium completely from the disk. A double-spiked sample 

(step 3) was processed as follows: after washing plutonium completely from 

the disk, Po-210 was eluted with 4 mL of basic 0.05M EDTA solution. The 

EDTA solution is mixed with HiSafe®III and measured by LSC.   

 

Here the processing time is again only about 10-15 min. The achievable 

background is the same as with the direct measurement (0.4 cpm). 

 

Conclusions 

 

Clearly, elevated Po-210 levels in urine samples after acute intake of about 1 

MBq Po-210 can be detected still after 120 days by liquid scintillation counting 

(LSC). In the case of deliberate poisoning the administered activity is 

expected in the order of 1 GBq, therefore the measurement of the excreted 

activity would be trivial. In a first test the urine sample can be measured by 

LSC directly without any pre-treatment. For the definite identification of the 

alpha-emitter as Po-210 (discrimination against Pu-239) we developed 3 short 

separation methods using the extractive cocktail Polex®, the Sr·Spec®resin 

and the Sr Rad disk®, respectively. Only very little handling of the sample is 

necessary, and the results are available within a few hours latest. Therefore 

these fast methods are well suited in emergency situations when 

measurements of incorporated activities are a prerequisite for further 

decisions. 
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3 Conclusion 
 

The main goal of this Thesis was to find a rapid, sensitive, cost-effective 

and reliable method for the separation and sequential determination of the 

man made radionuclide 90Sr and the naturally occurring radionuclide 210Pb in 

environmental samples. 

When determining 90Sr in environmental samples with higher 210Pb 

content some authors observed impurities in the beta spectra of 90Sr. In the 

initial stage of the work an extraction chromatography method based on the 

use of strontium selective resin composed of bis-t-butyl-cis-dicyclohexano-18-

crown-6 in 1-octanol (also called Sr▪Spec Resin) was studied. Here bone 

samples with known activities of the respective radionuclides were used. A 

sample was dissolved in 8M HNO3 medium and added to a column containing 

Sr-specific resin that retains Sr2+. Strontium was eluted from the column with 

distilled water. ICP-MS as well as LSC spectra confirmed that 210Pb was also 

eluted from the column together with 90Sr with distilled water when the original 

sample contained an excessive amount of Pb over Sr. So a separation step 

before loading the sample onto the Sr Spec column had to be applied to 

eliminate the 210Pb included in the sample. Several operations were tested in 

order to eliminate the 210Pb interferences. For this purpose a standard solution 

containing various cations was prepared from appropriate salts to 

simulate the mineral composition found in animal bones. Separation 

of Sr from Pb was examined via different anion-exchange columns. 

Finally, a two-steps procedure for the separation of 90Sr and 210Pb in animal 

bones and soil samples was successfully developed. The method comprises 

two sequential separations. In the first step, Pb was separated from Sr and 

other cations on Dowex 1 x 8 (100-200 mesh) column. Subsequentlly, 90Sr 

was purified on Sr•Spec resin: at first, Ca and the Ra isotopes were eluted 

with 3 M HNO3 and then Sr was eluted with distilled water. For soil samples, 

an additional precipitation step for Sr preconcentration is recommended 

before loading the sample onto Sr▪Spec resin. With this two-steps procedure 

pure 210Pb and 90Sr spectra can be achieved. Furthermore, this method was 

verified on the reference sample IAEA-135 as well as on a soil profile from an 
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Alpine region - Naßfeld near Bdgastein - recently measured in Seibersdorf 

laboratory. The results for the reference sample were in excellent agreement 

with certified values. The same holds true for the soil profile from Naßfeld. 

Reference material IAEA-A-12 (animal bone) and two reindeer samples from 

Russia were examined for Sr and Pb content using two-steps method for Sr 

and Pb determination and using faster i.e. one-step SrSpec procedure for Sr 

determination only. 90Sr results for the reference material IAEA-A-12 were 

within the 95% confidence interval of the certified value. Excellent agreement 

was found with old data gained by the “classical” method (90Sr separation 

using fuming nitric acid and 210Pb determination via 210Po). Ten bone samples 

of animals hunted in different regions of Austria were examined by two above 

mentioned methods (two-steps procedure, faster SrSpec procedure). In most 

cases there was good correspondence between the methods, only a few 

samples gave differing results. All spectra were confirmed as pure 90Sr 

spectra due to the ingrowing daughter nuclide 90Y. Although the single step 

extraction chromatographic method with Sr▪Spec (for Sr determination only) 

is faster, further in this work the use of two steps procedure was favoured 

because the 90Sr fraction is free from 210Pb impurities and the 210Pb activity 

concentration can be measured in a separate fraction. 

The main sources for anthropogenic radionuclides in the environment was 

the  global fallout from atmospheric weapons testing during the 1950s and 

1960s of the last century and releases from nuclear power plants and spent 

fuel reprocessing plants on a local scale. After the reactor accident at 

Chernobyl on April 26th, 1986, Austria and especially some of its alpine 

regions also received atmospheric deposition from this source. Soil samples 

from Austria can be expected to hold contributions both from weapons test 

fallout and the Chernobyl accident. While 137Cs is easily measured gamma 

spectrometrically and therefore sources of data exist, there is still a gap in the 

data with regard to 90Sr since its radiochemical analysis is time-consuming. 

Therefore, the 90Sr data from field studies after Chernobyl fallout are scarce 

and limited to lowland areas and are missing in the scale between 500 – 1700 

m site altitudes. This study should complete the data set of 90Sr activities for 

soil and bone samples to get a better understanding about the distribution of 

natural and anthropogenic radionuclides in environment. For this purpose also 
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the soil samples were examined for anthropogenic (90Sr, 137Cs) and natural 

(238U, 232Th, 40K, 210Pb) radionuclides. 

The soil samples were collected from the eastern part of the Alps in Styria 

(Rettenegg, 860 m; Kaltenegg, 1000 m), the southern part of the Central Alps 

in Carinthia (Ossiacher Tauern, 680 m; and Saualpe, 1895 m; a mountain 

ridge with Mirniger Alm, 1530 m, on its western slope) and from the Central 

Alps in Salzburg (Mariapfarr region, 1340 m; 1530 m and 1786 m). 

Additionally one sample from the midle part of Slovakia (Prievidza, 

600 m) was collected. The top 6 cm of the soil surface were taken for the 

analyses. The activity concentrations of anthropogenic 137Cs, and natural 40K, 
238U and 232Th in powdered soil samples were evaluated gamma 

spectrometrically. 238U and 232Th were determinated indirectly using daughters 

(226Ra, 214Pb, 214Bi) and (228Ac, 212Pb, 208Tl), respectively. 137Cs and 40K were 

determinated directly using their single gamma lines. From obtained specific 

activities of 40K, 238U and 232Th the absorbed dose rates in air (nGy.h-1) 1m 

above ground and annual effective dose rates outdoors using units mSv.y-1 

were calculated. The absorbed dose rates in air 1m above ground and annual 

effective dose rates outdoors for studied soils from Austria as well as for one 

sample from Slovakia were within the values published by UNSCEAR 

compilation. 

The next task was the determination of the activity concentrations of 90Sr 

and 137Cs in soil samples and of 90Sr in bones of deer animals hunted in 

appropriate regions. The data of these anthropogenic nuclides were 

compared to the activity concentration of the naturally occurring 210Pb. 90Sr 

and 210Pb content in soil samples was determined using a two-steps 

procedure where oxalate and hydroxide precipitations were provided. In this 

work the correlation between the activity concentration of 90Sr and 137Cs in soil 

samples and site altitude was studied. From the activity ratio 90Sr/137Cs the 

source of contamination (weapon tests fallout and/or reactor accident in 

Chernobyl) can be derived. 

The activity concentrations of the global fallout nuclides showed a 

correlation with the site altitude, as the nuclides are mainly washed out by wet 

precipitation, which is higher in the mountains. Principally the same holds true 

for the deposition of Chernobyl fallout, but the regional variations are much 



3. Conclusion 

 102 

larger in this case, as precipitation occurred only in some regions during the 

critical time-span when the radioactive cloud passed Austria. The highest 90Sr 

and 137Cs values were found on the Saualpe / Mirniger Alm, probably because 

of rain reported in this site during the days after the Chernobyl accident. The 

corresponding 90Sr/137Cs ratio (0.08-0.09) clearly indicates a large contribution 

from Chernobyl. The lowest 90Sr and 137Cs values were measured in 

Kaltenegg (with a ratio of 0.1); a few kilometers apart in Rettenegg the 

respective data were higher with a lower 90Sr/137Cs ratio (0.05) indicating 

again a higher contribution from Chernobyl, probably due to local rainfall. The 

samples from Mariapfarr generally showed lower activity levels in the surface 

layers together with clearly higher 90Sr/137Cs ratios. Here the portion of 

nuclides from the global fallout is higher since after the Chernobyl accident the 

weather was dry. The Mariapfarr sampling sites were all on the southern slope 

of one specific mountain ridge in the Niedere Tauern, showing very clearly the 

site altitude dependence of the activity concentrations. Another activity / site 

altitude correspondence (with comparably higher activity concentrations) can 

be found for the sites in Carinthia with higher contributions from Chernobyl. 
210Pb is a naturally occurring radionuclide and its content in soil 

depends on the geological conditions of appropriate region. All the 

samples stem from gneiss areas, therefore the variation of the 

activity concentrations is rather low (30-100 Bq.kg-1).  

Additional to soil profiles, bone samples of deer from the sites where 

the soils were collected and their 90Sr and 210Pb concentrations were 

measured. The animals stem from sites with altitudes between 150 and 1530 

m a.s.l.. 90Sr activity concentrations in bone ash samples were compared to 

the data of the respective soil samples to study the soil to bone transfer 

factors (ratio activity concentration in bone ash to that in soil) for 90Sr and 
210Pb. The transfer factor for 90Sr was found between 1.2 and 3.8. These 

values are only a rough estimation, as number of samples was low and 

animals of different age were investigated. 210Pb levels were similar in animal 

bone ash and soil (transfer factor between 0.4 and 1.2). This reflects the fact 

that due to its chemical similarity with Ca, 90Sr is more easily transported to 

the bones than 210Pb. Aditionally, desired values of 90Sr for all bone samples 
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examined during this work which were collected all over Austria were used to 

study dependence of animal age and site altitude to 90Sr content. 

Generally, a direct proportional correlation between the activity 

concentration of 90Sr and 137Cs in soil samples and site altitude was 

found. Also the 90Sr content in deer bones corresponds with the site 

altitude. The 90Sr values in deer bones are directly proportional to the values 

in the respective soil samples and also to the age of the animals. The 

activity concentration/altitude correlation can be seen more clearly if 

only animals of the same age are considered, as the 90Sr content 

increases also with the age of the animal. Compared to older 

literature, 90Sr values in deer bones presented in this work were 

lower, probably indicating a decreased bioavailability of 90Sr bound 

to soil particles.  

The 3M Empore Sr Rad disks were developed for 90Sr separations 

from liquid samples. In this work the simple procedure for determination of 
90Sr in bone samples using 3M Empore Sr Rad disks was investigated. After 

leaching of bone samples with concentrated nitric acid, hydroxide and oxalate 

precipitations were utilized followed by separation using disk. The applicability 

of the 3M Empore Sr Rad disk method to determine the 90Sr in bone samples 

was verified using reference sample IAEA-A-12 (bone ash).  

The soil sample from midle part of Slovakia (Prievidza, 600 m) showed 

lower 90Sr and 137Cs activity levels in the surface layers with clearly higher 
90Sr/137Cs ratios. The portion from Chernobyl fallout is aproximatelly 50 % due 

to the favourable weather during the days after the Chernobil accident. Two 

bone samples from this region were examined for 90Sr and 210Pb content. For 

this purpose the two-step procedure and Empore disks were used. Finally, the 

teeth of my son Peter Walla were investigated for 90Sr content. The short Sr 

Spec method was used because of limited amount of sample. Peter Walla 

was born on 4th April 2003 in Handlova (Slovakia). He lived the first 2 years of 

his life in the region where the soil and bone samples from Slovakia were 

collected. Since 2005 he has lived in Vienna (Austria). The teeth were 

collected in the period of September to November 2009. The activity 

concentration of 90Sr was found to be 27.9 ± 2.9 Bq.kg-1 (reference date: 1st 

September 2005).   
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 For the identification of an alpha-emitter as 210Po (discrimination 

against 239Pu) in urine samples three short separation methods using the 

extractive cocktail Polex®, the Sr·Spec®resin and the Sr Rad disk® were 

developed. All three methods extract Po with an efficiency of more than 90%, 

while Pu is not extracted into POLEX® and retained neither on the Sr·Spec® 

column nor on the Sr Rad Disk®. Only very little handling of the sample is 

necessary, and the results are available within a few hours latest. Therefore 

these fast methods are well suited in emergency situations when 

measurements of incorporated activities are a prerequisite for further 

decisions.  
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