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ABSTRACT

This thesis describes an approach to provide ewdédhat the LIDA (Learning Intelligent Distributiofigent)
cognitive architecture models basic human cognipirecesses. The computational LIDA architecturetscpsses
are correlated with neural processes and its paramseare adjusted using brain-related evidence. Moglel is
also extended by an invariant feature detectioredagsual object recognition system, and a novienéibnal
mechanism based on a model of the locus coerulemsrepinephrine system in the brain, to facilitate
computational modeling of a wider range of cogmititasks than was possible before. Three LIDA-based
cognitive software agents are also described amdpaned with human behavioral data, modeling thriéeknt
psychological paradigms: a simple reaction time exkpent, a perceptual continuity experiment andisual
attentional blink task. The thesis shows that thi®A:based agents are capable of accurately reprotubuman
data, and argues in favor of psychological - amdmost cases, also neuroscientific — plausibilityhe LIDA
cognitive architecture, based on the correlatioritefmechanisms to processes in the human braohpased on
the successfully reproduced behavioral data fallmegurally out of the same computational modelngsdhe
same parameter set.
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1. Introduction

1. INTRODUCTION

1.1 Overview

The main goal of this work was the adjustment ef thDA (Learning Intelligent Distribution Agent) gaitive

architecture’s parameters to neuroscientificallgugible values using LIDA-based cognitive softwagents.
These agents perform psychological experiments reghlts similar to human subjects, using the spanameter
set. Thus, they substantiate the LIDA model's hlgpees about human cognition - since reproducirgriaty of

different human behaviors using the same mechaaiginthe same parameter set strengthens the playsibi
said mechanism modeling human cognition (Madl e2&i11).

Novel results of this work include an adjusted p@eter set (which results in LIDA’s processes wogkin
comparable time frames to their neural counterparsge Sections 2 and 4), a novel conceptual nuafdiie
attentional blink based on the LIDA model (Sectinthe three cognitive software agents — perfogsimple
reaction time, perceptual continuity, and atterdloblink experiments — (Section 4), and a robustuai
perception module for the LIDA model (Section 3).

This thesis is structured in the following way. @t 1 will introduce the LIDA cognitive architeats and
compare it with other biologically inspired apprbas to model human cognition. Section 2 will ddsegome of
the areas and processes in the human brain thaspond to LIDA’s modules and phases, and will itigte

timing of the action-perception cycle in LIDA and the brain. Sections 3 will describe the two ctigei
software agents using simple non-visual (abstrpeteption that have been developed in the comtexhis

thesis, detail their implementations, and comphedr tbehavior with human subject data. In Sectipa fovel
vision model for LIDA is described and evaluatedct®n 5 describes the attentional blink phenomepaots
forth a novel LIDA-based model to explain it, anetalls the implementation and the performance adgnitive

software agent performing this experiment. Seddiovill summarize the results and conclude thisithes

1.2 The LIDA Cognitive Architecture

Cognitive architectures, such as LIDA (or ACT-R,|IEPetc. — see Section 1.3), attempt to approxiroagmitive
processes and to mirror the structure of cognitiggtems of autonomous agents, such as humanglérimented
computationally, they can act as a control systensbftware agents - or for robots - and attempprimuce
behaviors mirroring those of humans (Franklin, 2008 put it in the words of (Sun, 2007):

A cognitive architecture is a broadly-scoped, damgé&neric computational cognitive model, capturing
the essential structure and process of the mindyetaused for a broad, multiple-level multiple-domai
analysis of behavior.

Cognitive architectures play a major role in cogeitscience due to their usefulness in providintaited and
verifiable explanations for cognitive processes amgroviding hypotheses that can guide ongoingassh
(Madl et al., 2011; Sun, 2007; Anderson et al.,7)99

LIDA (Learning Intelligent Distribution Agent) is aognitive architecture based primarily on Baark9§8)
Global Workspace Theory (GWT), which suggests tkistence of a fleeting memory capacity that enables
access between brain functions that are othervéparate. The global workspace can be thought ¢f.as
theater of mental functioning. Consciousness is thétaphor resembles a bright spot on the stagmmediate
memory, directed there by a spotlight of attentimaer executive guidance. Only the bright spotoisscious,
while the rest of the theater is dark and unconseio(Baars, 2005) The hypothesized primary functional
purpose of functional consciousness is to integgai@vide access, and coordinate the functioningeo§ large
numbers of specialized networks that otherwiseaipeautonomously.
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1. Introduction

Apart from GWT, LIDA is also compatible with a nuetbof theories in psychology and neuroscience (Mdl
al., 2011), including situated (embodied) cognitfdtarela et al., 1991, Glenberg & Robertson, 20p@fceptual
symbol systems (Barsalou, 1999), working memorydfiedey & Hitch, 1974), memory by affordances
(Glenberg, 1997), long-term working memory (EricsgoKintsch, 1995), transient episodic memory (Cagw
2002), and Sloman’s H-CogAff cognitive architect(®oman, 1999).

The LIDA model puts forth a number of hypothesehicly are compatible with current neuroscience metea
(Franklin, 2008). The following hypotheses are mogiortant for the scope of this thesis:

e The Cognitive Cycle Hypothesis
According to the LIDA model, human cognition is qatised of multiple, cascading cycles of perception,
attending and action selection (see Section 1.B@s& cycles are comparable to the action-perception
cycles in neuroscience (Baars & Franklin, 2007 egRran, 2002; Fuster, 2002; Halgren et al., 2002) and
consist of multiple modules, described in Sectidn 1

» The Consciousness is Discrete Hypothesis
Functional consciousness is hypothesized to bealésin the LIDA model‘conscious events occur as a
sequence of discrete, coherent episodes separateguite short periods of no conscious content”
(Franklin et al., 2005).Similar to the frames of a movie, the ‘frames’aainsciousness are discrete but
are experienced as being continuodadl et al., 2011).

e The Theta-Gamma Coupling Hypothesis
Functional consciousness is hypothesized to bétéded by large-scale theta-gamma synchronization
the brain (see the next section for details). ThUBA's cognitive cycles have to occur approximgtat
theta rates.

* The LC-NE Hypothesis
Observed attentional deficits that occur short fiemaes after conscious processing of a stimulus {e.
the Attentional Blink) are hypothesized to be doetrefractory-like period in the locus coeruleL€)
after a target has been perceived. The LC has ibggitated in facilitating attentional enhancemeht
targets through release of norepinephrine (NE) idespread cortical projection areas. The LC's
refractory-like period is implemented in the Attient Codelet Module activation (see Section 5).

The first three hypotheses have been put forthregfag. Franklin et al., 2008), and the agenteliged in the
scope of this thesis attempt to strengthen thera.la$t hypothesis (the LC-NE hypothesis), as wetha model

of the attentional blink based on it, are put fartithis work for the first time in connection withe LIDA model
(although the LC-NE system has been used in maglalitentional phenomena before, these models were
significantly less comprehensive than the LIDA medeee Section 5).

Since LIDA is the first comprehensive cognitive ldtecture claiming to provide neuroscientificalllapsible
explanations - and partly implemented computationatiels - of some aspects of consciousness (sd@rsec
1.4), some explanations of which processes in thm lare modeled are necessary. These neuronagses will
be described in Section 2.

When talking about LIDA, theonceptualand thecomputationalLIDA models have to be distinguished. The
conceptualLIDA model partially specifies the adaptive algbms modeling processes in the brain based on the
Global Workspace Theory (Baars & Franklin, 2009)d &ncludes explanations for a broader range ohitivg
phenomena - such as, for example, a self systertmgRarthy & Franklin, 2011). TheomputationalLIDA
model completely specifies and implements thesegases and algorithms. In this thesis, we will oon the
computationaLIDA model.
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1. Introduction

The conceptual LIDA model can be argued to be bicklly plausible, since it is based largely onnesugientific
theories (Baars & Franklin, 2009; Goertzel et 2010). However, the biological plausibility of soroé the
computational parts of the agents described invtbik is unclear, or even doubtful:

« Some of the mechanisms of the first two cognitigfivgare agents, especially their low-level peraapti
and action mechanisms, have not been implementedriauroscientifically realistic way, since their
respective environments are extremely simple. Bhspecially true of the sensation of the envirentn
which instead of using a model of human vision ardgs an abstract feature detector (See Section 3).

» The third cognitive software agent does use anriantfeature detection-based vision model. However
even though the feature detection mechanism and pdreeptual representations are based on
neuroscientific theories, the features used arexipécted in a biologically plausible way; scalesition,
and rotation invariance are ensured based on autemygsion algorithm (Section 4).

For these reasons, | am only aiming fieychologicablausibility instead of full neuroscientific pldbasity in the
agent implementations. See Section 1.5 for thenatestructure of the LIDA cognitive cycle, and Sec 3 for a
description of the computational implementation.

1.3 Comparison with other Cognitive Architectures

The number of proposed cognitive architecturesdslarge to exhaustively describe in the scopéhisf thesis.
For this comparison, | will focus on well-known abiblogically plausible architectures that have paoational
implementations (based on Goertzel et al. (201803} will provide only short descriptions for therpose of
conceptual comparison with the LIDA model. Modébattare neurally implausible or have not (yet) smow
evidence of being capable of higher-level cognitte@abilities are described only superficially iter to not
exceed the scope of this thesis. More comprehemneiiiews can be found in (Goertzel et al., 201@) ian(Duch
et al., 2008); and (Gluck & Pew, 2005) as well\@srfion et al., 2010) contain descriptions and eat&uas of a
large number of cognitive architectures.

Figure 1 below provides an overview about the Igally inspired cognitive architectures which wile
summarized here, grouped into symbolic (a paraditating that minds manipulate symbols represergsmgcts

of the world or themselves), emergent (a subsyroldiradigm simulating aspects of brain functiomchsas, for
example, neural networks) and hybrid approachemlfaing subsystems operating according to these two
paradigms) (Goertzel et al., 2010).

Cognitive Architectures

Symbolic Emergent Hybrid
Soar (Laird et al | 1987) HTM (Hawkins & Blakeslee, 2005) CLARION (Sun & Zhang, 2004)
EPIC (Anderson & Matessa, 1997) DeSTIN (Arel et al., 2000) DUAL (Nestor & Kokinov, 2004)
ICARUS (Langley & Choi, 2006) IBCA (OReilly et al., 1999) LIDA (Franklin et al.. 2005)

ACT-R (Anderson et al., 1997)

Figure 1. Biologically-inspired cognitive architeates.
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1. Introduction

1.3.1 Symbolic Cognitive Architectures

Soar (Laird et al., 1987) an&PIC (Executive-Process/Interactive Control - AndergoiMatessa (1997)) are
symbolic and production-rule based cognitive asddtiires inspired by human cognitive mechanismdagitng
biological plausibility. The symbolic architectut€éARUS (Langley & Choi, 2006) contains mental structures
grounded in perception and action; knowledge iscifipd in reactive skills. However, it does not eelb
biological plausibility either; and some of its oitiyve mechanisms are not sufficiently implemengeancurrent
processing, attention, dealing with uncertaintydpé@zel et al., 2010).

ACT-R (Adaptive Control of Thought — Rational, Anderseh al. (1997)), similarly to Soar, follows a
production-rule based approach and is primarilytsylin. It utilizes two types of memory: declaratineemory,
encoding factual knowledge about the world, ancc@daral memory, containing procedural knowledgéehim
form of IF-THEN rules. The general usefulness @st chunks and production rules is stored in cdiamest
structures reflecting previous usage (which hasstade researchers to categorize ACT-R as a hybgditive
architecture, despite it being primarily symboliDuch et al. (2008)).

Apart from memory, the central components of ACTaRe perceptual-motor modules interfacing with the
environment, buffers, and a central pattern mattdrgoroductions (matching, selecting and execugir@duction
rules). This central module is hypothesized to espond to the basal ganglia in the brain. Othetaterly
proposed neural correlates include the occipitaliali cortices for the visual module, the motor eorand the
cerebellum for the motor module, the temporal labé the hippocampus for the declarative memory teoald
various prefrontal and parietal areas for the baff&CT-R has been used to replicate a large nurober
psychological experiments (Anderson et al., 2004).

1.3.2 Emergent Cognitive Architectures

A problem common to most purely emergent approachdbat while they seem to perform well in pattern
recognition and associative learning, no one hasbgen able to show that they are capable of hitgved
cognitive functions (e.g. reasoning, language) (&@eket al. 2010). For this reason, these appreselill only
be briefly summarized here.

HTM (Hierarchical Temporal Memory) (Hawkins & Blakes]e005) is a pattern recognition approach based on
a combination of a model of the cortex and anieidif intelligence algorithmDeSTIN (Deep SpatioTemporal
Inference Network) (Arel et al., 2009) is a similpattern recognition mechanism, which also contains
hierarchical networks dealing with action and reinément. Both have so far only been used for wisio
processing.

IBCA (Integrated Biologically based Cognitive Architeet) (O'Reilly et al., 1999) is a neural networksbd
model of distributed information processing in thin, aiming to model especially the posterior &mahtal
cortices and the hippocampus. It has been usedriples psychophysical experiments but has not (egn
shown to be able to model higher level cognitivecpsses like reasoning or subgoaling (Goertzél,2G10).

1.3.3 Hybrid Cognitive Architectures
Hybrid architectures attempt to make use of theaathges of both the symbolic and the emergent jgpmably
combining subsystems of both paradigms.

CLARION (Sun & Zhang, 2004) incorporates explicit (symbpks well as implicit (subsymbolic) knowledge
through its four memory modules: the action-cemteseibsystem (regulating actions), non-action-cedter
subsystem (maintaining general declarative knovédgdgnotivational subsystem (providing motivationr fo
action), and metacognitive subsystem (monitorind dimecting the operations of the other subsystefath
module has a localist-distributed representatiotplieit knowledge) and a connectionist distributeelction
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1. Introduction

(implicit knowledge). Implicit knowledge in the coectionist parts (e.g. multi-layer perceptron neks) is
learned via reinforced or supervised learning, evlgikplicit knowledge is acquired from these netwoirk a
bottom-up fashion — although top-down learningl$® gossible (Duch et al., 2008). CLARION was shdwive
able to reproduce large amounts of psychologica (Bun & Zhang, 2004).

DUAL (Nestor & Kokinov, 2004) is a cognitive architeunspired by Minsky’s (1988) Society of Mind and
acts upon perceived stimuli using a large numbeniofo-agents. These agents represent facts imhdic way,
using micro-frames. However, they also have adgtivaevels, and they spread activation to neighigpegents —
thus, they are components of a connectionist né&twégents communicate via learned links and cas form
coalitions representing concepts or episodes. ThAlDframework has been used to model cognitive fioms
such as perception or analogy (Goertzel et al.0R0fowever, it is not clear whether and how theteay will be
able to model high-level functions such as delitiensor reasoning.

Finally, the LIDA model is also a hybrid system as it combines coctir@st networks (e.g. the Perceptual
Associative Memory or the Procedural Memory — whiciwever operate on a higher than neuronal levit w
symbolic processing throughout the cognitive cyebgplained in more detail in the following sectipsse also
(Franklin et al., 2005; Franklin et al., 2007; Hdim & Patterson, 2006; or Baars & Franklin, 2009).

The greatest advantages of the LIDA cognitive aechire in comparison to the previously describgut@aches
are its comprehensive account for a wide rangeoghitive processes, a formal explanation for fori

consciousness based on modern neuroscience, dnghtbiological plausibility (Baars & Franklin, 20). Other
advantages include a large variety of learning raeigms, including constructivist procedural leagn{Rranklin

& Patterson, 2006) as well as support for higheellemulti-cyclic cognitive processes such as aghbition,

voluntary action, and automatization (Franklin le2@07) and non-routine problem solving (Frankdiral. 2007;
Negatu et al., in press).

Disadvantages of the LIDA model compared to somthefmore developed architectures (e.g. ACT-R)uihel
that the computational implementation is still irvery early stage (the first beta version was ssdan June
2011), thus not all parts of the conceptual modeliacorporated yet; also, no appropriate bioldgigalausible
visual system has been implemented (although ali§iedpobject recognition system based on invaritgature
detection was developed in the scope of this woske-Section 4). Another aspect that has beenizeiti is that
some higher-level cognitive processes, while conely defined (see e.g. Franklin (2008)), are aractly
specified nor implemented yet (e.g. language maeiag).

1.4 Consciousness in the LIDA Model and in the Brain

Unlike implementations of other cognitive architeets described in the previous section, LIDA ageais be
said to be functionally conscious, as argued beldawever, the LIDA model does not account for, expl or
implement phenomenal consciousness or qualia (thrertt scientific understanding thereof does nenesuffice
for a complete conceptual explanation). Self-canssmess is not computationally implemented eitakénough
the model includes conceptual approaches for gie@ (Ramamurthy & Franklin, 2011). Thus we sfwallis on
functional consciousness in this work. For a dismrsof various types of consciousness, see (BIb285).

As mentioned above, the LIDA model is based onglbbal workspace theory of consciousness (Baai&3)19
which suggests the existence of a fleeting memapacity that enables access between brain fundi@tsare
otherwise separate. The global workspace theory 588N be thought of as “... a theater of mental fioning.
Consciousness in this metaphor resembles a brighitan the stage of immediate memory, directedetlbgra

" Sections marked with an asterisk have been pu@diblefore in (Madl et al., 2011)
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1. Introduction

spotlight of attention under executive guidancely@ine bright spot is conscious, while the restraf theater is
dark and unconscious” (Baars, 2005). In case of@gnconsciousness, the stage corresponds to tiserye
projection areas of the cortex, its activation amgneither from senses or from internal sourceserAdtconscious
sensory content is established, it is distributed tdecentralized “audience” of expert networksngjtin the

darkened theater. Thus, the primary functional psepof consciousness is to integrate, provide aceedl

coordinate the functioning of very large numberspécialized networks that otherwise operate amoosly. In

the neuroscientific study of consciousness, thésidf consciousness having an integrative fundiis proven
very useful, and is supported by much recent edeéBaars, 2005; Tononi, 2004; Dehaene, 2008)dlseethe
Results section).

Figure 2. Theta-gamma coupling.Three gamma cycles are sequentially “embedded” theda cycle. (A),(B),
and (C) depict the temporal activity pattern ofdérdifferent neuronal assemblies oscillating in g@mma
range. Each is phase-locked to the underlyingathvbythm with a different phase offset, as indidabg the

dashed lines. This type of coupling is known asefamplitude coupling, because the amplitude natidal of

each gamma pattern is locked to a particular phafsihe theta pattern (S). From (Strain et al., 2010

In LIDA, every cognitive cycle can have only a dmgonscious “frame” (content) at a time, a hypseihe
compatible with recent neuroscientific publicationghich view consciousness as large-scale phase
synchronization of neuronal activity (DoesburgleR809; Strain et al., 2010; Buzsaki, 2006; Vasdlal., 2001).

In this view, the complex rearrangement of neu@dybations across widespread and diverse cortagibns,
which is required for consciousness, is accomplishg oscillatory dynamics; specifically, by thetargma
coupling between the neural populations (see Figure

Performing cognitive tasks modulates oscillatorgitbractivity in various frequency bands, includibgth the
theta (4-7 Hz) and gamma (30-150Hz) bands. Gammd-phase synchrony (Figure 3) has been associdtied w
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1. Introduction

perceptual binding and awareness. Numerous sthdies observed the occurrence of gamma activityreolce
with perceptual (Freeman, 1999; Gray & Singer, 1389well as long-term (Osipova et al., 2006) adking-
memory-related (Buzséaki, 2006) object representatiGynchronized gamma-band oscillatory activity hiso
been shown to play an important role in the codihghort-term memory information (Siegel et al.020Schack

et al., 2002; Lisman & Idiart, 1995). Moreover, mtation of gamma activity has been demonstrated in
attentional selection (Jensen et al., 2007; TdHandry et al., 2005; Tiitinen et al., 1993), anchgdrlocked
gamma synchrony between ascending and descenditensyin a sensorimotor task (Buzsaki, 2006). Mainy
these studies have observed that activity acrd&seatit cortical columns representing the percéptroobject is
gamma synchronized (e.g. (Gray & Singer, 1989))usThthe neuronal ensembles responsible for various
cognitive processes involved in the processing pé@ept, taking place during a cognitive cyclegrape at and
are integrated by an internal oscillation frequeimcthe gamma band.

INAARAMNY

Phase Difference

i

0—

Figure 3. Phase synchrony between two oscillations.

The upper part shows two oscillations (in red aheely and the lower part their phase-differencestie two
gray areas framed by dotted lines the oscillatians highly phase synchronous and the phase diffeseiare
low. Such phase-synchrony in the gamma band has fire@osed to be responsible for perceptual bindfog
example, cortical columns representing the sameablgire gamma synchronized)

The construction of such gamma-synchronous neursérables has been claimed to be governed by theta-
rhythms (Doesburg et al., 2009; Canolty et al., @00 his might be the integration mechanism reqlificr
consciousness: in this view, consciousness emdrges large-scale functional integration of thesangea-
synchronous ensembles that form and dissolve dhéta frequency band (Doesburg et al., 2009).

Only one perceptual experience can be contained Bingle phase of theta-modulated gamma-synchrony
(Doesburg et al., 2009), consistently with therdttemal blink ((Shapiro et al., 1997), see alsolRessection) and
other studies of perceptual synchrony (Rodriguealet1999). This indicates that these phases néhspny
define discrete ‘frames’ of consciousness, whichthie LIDA model, correspond to cognitive cyclesadbs,
2009; Strain et al., 2010). An approximate loweretilimit for a single cognitive cycle can already deeduced
from this hypothesis. Since each cycle is concemiéida single conscious content, and a new consaiontent
requires theta-gamma synchronization, consciousegging in the cognitive cycles has to occur datretes (4-7
Hz). Therefore cognitive cycles have to take astldg40-250ms. However, since cognitive cycles @atade as
long as they preserve the seriality of consciousrtegy could take longer than that (see Resuttiosg.

An important hypothesis of the LIDA model is theateteness of consciousness. Humans can only heingla
conscious content at a time, and there are sheakbrbetween these periods of consciousness. mwdtds of
Franklin et al. (2005), “conscious events occuaaequence of discrete, coherent episodes sepdmatgdite
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short periods of no conscious content” (see alsm(Rullen & Koch, 2003)) - similar to the framesaomovie,
the ‘frames’ of consciousness are discrete bueaperienced as being continuous (although thisoggak not
entirely accurate).

This view is consistent with the idea of conscimsmemerging from theta-gamma coupling. Gammalatery
neural ensembles are synchronized as well as desynized at theta rates. The transient periods of
desynchronization, also called phase scatterirftgcteunconscious processing in the brain, thuddites each
‘frame’ of (conscious) perceptual experience” (Omgg et al., 2009). These periods of desynchroizdiave
also been observed, and pointed out, to play ainotbe transition from one cognitive content tmther by
(Rodriguez et al., 1999; Van Rullen & Thorpe, 200hpmpson & Varela, 2001; Doesburg et al., 2008fdRa

et al., 2009). (For more neuroscientific resultsutlconsciousness see Section 2 below). In psyghoBtroud
(1967) was one of the first authors to proposedba of discrete frames or ‘moments’ underlyingssmousness.
His ‘Discrete Moment Hypothesis’ included two imfaort underlying assumptions: a) a complete lossnu-
order information within one conscious ‘moment’'dan) a distinct and non-overlapping set of percémt&ach
‘moment’. This strict view of discrete conscioushiéss been regarded with some skepticism. Alld@68), for
instance, has conducted experiments on phenomiemataneity, which seem to contradict the Discrigiement
Hypothesis — they are, however, compatible with AsDconsciousness model, as can be seen from thdtfRes
section, in which we replicated the data from Aftfmexperiment using a LIDA-based agent.

In the LIDA model, single conscious episodes aeerdite but, contrary to Stroud’s (1967) view, netassarily
distinct — a current conscious ‘moment’ can contancepts from a previous moment. Whether or nadlder
percept remains conscious depends on how longeipdht it has been perceived, and on attentiondukation —
percepts that are subjectively important and a#tdrid can persist longer in consciousness.

1. 2. 3.

Y
Present

duration of perceptual moment
(one conscious 'frame')

— ———— — —

_— = — —

1. 2. 3. A

Present

Figure 4. Schematic comparison of the Discrete Mamélypothesis (top) and LIDA’s discrete consciousse
hypothesis (bottom)The colored frames represent the temporal conssaif a perceptual moment or conscious
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1. Introduction

‘frame’, and the black rectangles symbolize incampercepts. In LIDA, important percepts from presio
conscious ‘frames’ can remain conscious (rectantgéisof the dashed lines in the colored framethia bottom
picture).

To improve our earlier movie analogy, the ‘framektonsciousness in the LIDA model could be comgpdoea
movie shown on a phosphor-based electronic di@&yT): although the frames are discrete, new imagethe
screen contain past information (see Figure 4wAwill see in Section 3.3, this approach resotthesempirical
contradictions of the Discrete Moment Hypothesis.

Since our timing model was largely derived from mesgientific experiments, some tools and technighese
experiments might use, and the reasons we preftrnese the results of some experiments over gthkaild be
described.

Electroencephalography (EEG) records electricavigictfrom neural field generators using severaotlodes
placed on the scalp surface. Recent research dpatmEnon aspects of this electrical activity tiloeked to

events, i.e. event-related potentials (ERP), whiictur in preparation of or in response to disc(etrnal or

external) events. We have used EEG experimentaltseBecause EEG has great temporal resolutiontben
order of milliseconds), and a large number of EE&ults are available. Disadvantages of EEG ateiitspatial

resolution (typically 2 — 3cm in surface tangentakctions) and the fact that it only measuresaptic activity

from superficial cortical layers (Nunez & Sriniveas 2005).

Transcranial magnetic stimulation (TMS) experimeirtgolve stimulating the brain using induced electr
currents, which trigger action potentials in theunoms in the current field, disrupting ongoing braictivity
(causing temporary “virtual lesions”). We also udddS experiments because TMS resolutions are veogdg
(temporal resolution on the order of millisecorgjzatial resolution on the order of a few millimstedlepending
on the coil shape). Disadvantages of TMS are tipo#sibility to determine exactly how much areafisded by
these induced currents. Also, TMS cannot stimuleggons deeper than the cortex without stimulatirggcortex.

The most exact technique measuring brain actigitysing depth electrode and subdural grid recosdibgpth
electrode recordings are mostly performed on arsraatl clinical patients. Subdural grid recordirgsq called
electrocorticograms or ECoG), involving the placofgelectrodes directly on the brain surface, ass linvasive
and have spatial resolution somewhere between ddetirodes and EEG. These techniques provide tiet m
exact and reliable data, but they require surgedycannot be used in healthy humans (Buzsaki, 2006)

The reason we have not used experiments relyiradysoh functional magnetic resonance imaging (fMéRl)a is
that this technique measures blood oxygen levalsjtaakes several minutes for the bloodstreamctive brain
areas to become oxygenated (Van der Zwaag e089) 2which is well outside our time scale.

A more complete and detailed review of non-invadivain imaging techniques can be found in (Shibasak
2008).

1.5 The LIDA Cognitive Cycle’

Autonomous agents (Franklin & Graesser, 1997) owjtk their changing environment by their continupus
cyclic chores of 'perceive-understand-act'. LIDA&gnitive cycle (Franklin et al., 2005) is the &df refined
cognitive processes (starting after sensation amlihg with action) that bring about the appropriattion for
specific situation. As Franklin and Baars (2009} pu“A cognitive cycle can be thought of as a moment of
cognition - a cognitive moment; higher-level commitprocesses are composed of many of these aagnitcles,
each a cognitive atorhThis metaphor is to say that the steps in a itivgncycle correspond to the various sub-
atomic particles in an atom.
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1. Introduction

Since the LIDA architecture is composed of sevepalcialized mechanisms, a continual process thestesahe
functional interaction among the various componégatessential. The cognitive cycle as such is aratilve,
cyclical, continually active process that bringsoatbthe interplay among the various componentshef t
architecture. The steps of cognitive cycle are showFigure 5 and will be described below. It ispontant to
point out the asynchrony of the LIDA cognitive aycCycles can cascade as long as they presergertaéty of
consciousness. Furthermore, the components ofaipeitove cycle described below should not be seegedial
stages of information processing. The componentsrat@ asynchronously - although coordinated, each
component has its own internal mechanism and age@dmponents receiving inputs from others are not
triggered by those inputs, but rather run contimlpat their specified frequencies of operatione($ethods
section).

s L .
Internal Stifnulus / -
3 = Transient i

Sy Declarative
External St mulus Episodic [ Gonsolidation! B =.Memory
e/

Memory

A 3. Cue
3.Cue 3,Local
Epifodic Associations 8 Local

Environment

Associations

Perceptual f Attention
Associative Codelets

Perceptual
Learning

Attentional
Learning

Understanding

Action Selection

‘ ‘ﬂ,_qo’ = sy l ‘
Selection Memory Worleace
(Behavior Net) . 6&7 Instantiate (Scheme Net) ’

. ; emes - Procedural

Learning

Figure 5. The LIDA cognitive cycle, and the duratis of the perception, understanding and action pkas
(Modified from Baars & Franklin (2009))

During each cognitive cycle the LIDA agent, be utmban, animal or artificial, first senses its enmireent and
tries to recognize familiar objects, individuals; €erception phase). It then associates pereggtsmemories
and other percepts and decides what portion ofsihisition is most in need of attention (undersitagngbhase).
Broadcasting this portion (bringing it to consciness) enables the agent to choose a number ofhsctio
applicable for the current situation and to setbetaction best serving its goals (action selegtibase), and to
finally execute the selected action. The cognitiyele has the following components:

1) Perception Sensory stimuli, external or internal, are reediand interpreted by perception producing the
beginnings of meaning.
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2. The Timing of the Cognitive Cycle*

2) Percept to preconscious bufferThe percept, including some of the data plusiikaning, as well as possible
relational structures, is stored in the preconsciouffers of LIDA's working memory (workspace). Tgonary
structures are built.

3) Local associations.Using the incoming percept and the residual cdstefi working memory, including
emotional content, as cues, local associationsaarematically retrieved from transient episodic roeynand
from declarative memory, and stored in long-ternmkivay memory.

4) Competition for consciousness Attention codelets view long-term working memond bring novel,
relevant, urgent, or insistent events to consciessn

5) Conscious broadcast A coalition of codelets, typically an attentiomdelet and its covey of related
informational content, gains access to the globatkepace and has its content broadcast conscioliblys
consciousness solves the relevancy problem initegyuesources.

6) Recruitment of resources Relevant schemes in Procedural Memory respontthéoconscious broadcast.
These are typically schemes (underlain by behasialelets) whose context is relevant to informafiorthe
conscious broadcast. Thus consciousness solveslévancy problem in recruiting resources.

7) Setting goal context hierarchy The recruited schemes use the contents of cams@ss, including
feelings/emotions, to instantiate new goal contdagtarchies (copies of themselves) into the Act8eiection
system), bind their variables, and increase thaivation. Other, environmental, conditions detarenivhich of
the earlier behaviors (goal contexts) also recear@ble binding and/or additional activation.

8) Action chosen The Action Selection module chooses a single \iehgscheme, goal context), from a just
instantiated behavior stream or possibly from aiptesly active stream. Each selection of a behavidudes the
generation of an expectation codelet (see thegieg).

9) Action taken. The execution of a behavior (goal context) resintthe behavior codelets performing their
specialized tasks, having external or internal eqaences, or both. LIDA is taking an action. Thingocodelets
also include at least one expectation codelet whkasseit is to monitor the action, bringing to coiesisness any
failure in the expected results.

As shown in Figure 5, multiple learning mechaniswesinitiated following the broadcast of conscicostent. In
the perceptual associative memory learning of netities and associations, and the reinforcemertldfones
occur, events are encoded in the Transient Epidddinory, and new schemes may be learned and olirseh
reinforced in Procedural Memory; in all of the leiag processes, the conscious content determinatis/ko be
learned. LIDA’s modules are described in more diéaSection 3. For more information about the LiD#odel
and its cognitive cycle see (Franklin et al., 20B&ars & Franklin, 2009).

2. THE TIMING OF THE COGNITIVE CYCLE

2.1 Overview

As mentioned above, cognition in autonomous ag@renklin & Graesser, 1997), whether artificialjraal or
human, can be thought of as consisting of repeptgdeption-understanding-action cycles. In thesdesy
actions can be external (effecting changes in theirenment) or internal (effecting changes in ingdr
representations or processes). Similarly, percépit@mation can come from external (from sensassgg the
environment) or internal sources. Complex tasks megyire many of these cycles before an exterrnaracan
be taken.

Figure 6 below shows such a cognitive cycle, iniclgdts three sub-processes. For the durationhese sub-
processes, see Figure 7.
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Understanding J
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Figure 6. The three phases of the LIDA cognitiveats.

A stimulus comes in from the environment via tinse® The perception sub-process includes obtathieglata,

detecting features, and recognizing objects, caiegoand events. The understanding sub-processidesl
making sense of the perceived information and setethe most relevant, urgent or novel informatiarich is

included in the conscious broadcast (the agentnly @onsciously aware of the contents of this boaat).

Finally, the action selection sub-process seldutsaction best serving the agent’s goals, basethertonscious
broadcast contents.

The understanding phase in this cognitive cyclfreéguently called ‘cognition’ in other cognitive mels (e.g.
(Anderson et al., 2004; Meyer & Kieras, 1997))LIDA, the term ‘understanding’ is more appropridEcause
the integration of percepts, the building of asatiens (with memories and with other percepts) asskssments
of subjective significance that take place durinig phase all contribute to a representation alsiinal model
(stored in temporary memory, the workspace) whichast described as the agents current understpaoflits
immediately perceived environment (see Introdugtiém other cognitive models, such as ACT-R or ERl@&
cognition phase includes the matching, selectiahea®cution of production rules (Anderson et d&104£ Meyer
& Kieras, 1997).

Figure 7 shows our hypothesized durations for thlemocesses of the cognitive cycle in humans. fdwet
subsections will describe neural equivalents okehsub-processes and provide supporting evidencénéo
indicated durations. The indicated ranges shouldbeotaken as precise and definite values; rathes are
working estimates derived from recent evidence.

It should be pointed out that the experiments oitlvithese durations are based used very simplagetnd
stimuli, and in most cases, they did not involvemmogy recall. For tasks involving the use of memdhg time
from stimulus presentation to action execution barsignificantly longer than the times indicatedeh@ealy et
al., 2003). However, for most simple tasks, dughi large extent of consistency between thesetseand
various psychological and neuroscientific experitagfsee below), we believe that the indicated dumatof
these processes accurately reflect some of theot@dnproperties of human cognition.
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Perception ' ActionSelection
(P=80-100 ms) Understanding  (A=60-110 ms)
A A
: : Conscious broadcast\;E \l
to=0ms t,=to+P t.=ty+C t=t.+A
Stimulus onset Action
~ — chosen

——
Unconscious processing (C=200-280ms)

N _/
Cognitive cycle duration (D=260-390 ms)

Figure 7. The timing of a single cognitive cycl&#he perception sub-process is estimated to takeDPEE®ms,
the time until conscious processing C=200-280ms,attion selection sub-process A=60-110ms, ancetiiee
cognitive cycle is hypothesized to take D=260-390ms

2.2 Perception
The perception process includes obtaining data ftben environment via sensors, detecting featuraed, a
recognizing more abstract entities such as objevtnts and categories.

In humans, perceptual information can come frorfedéht sensory modalities. The most researchegarithps
most complex modality (judging from the size oftaal areas associated with its processing) isadiparception
(Bear et al., 2007).

Visual perception starts with an image of the amvinent on the photoreceptive cells of the retinhickv
produces neural impulses that are transmitted atbagretinofugal projection to the visual cortexhigh is
located in the occipital lobe, where most of thecpissing of visual information takes place (Bea.e2007).

We have estimated the duration of the perceptioegss in humans for simple tasks to be approximatethe
range of P = 80 — 100ms (see Figure 6). For instaan experiment by Liu et al. (2009), performethgs
intracranial electrodes in epilepsy patients, heasvm that object category information can be dedofilem
neural activity in the occipital lobe as early @0rs poststimulus. This is consistent with EEG erpents
trying to temporally localize object-selective braictivity, most of which found that the P100 ERiMnponent
(90 — 115ms post stimulus) is already associatéd @bject information (Schendan & Lucia, 2010)isltalso
consistent with the result of various studies ofuail processing which have determined that a dtisnul
presentation time of 100ms is sufficient for redammy traits and properties (Willis & Todorov, 2008gam et
al., 2010). Finally, this duration was also indézhby TMS experiments investigating in which timage TMS
interferences with the visual system can impedéwisSuch experiments found that the range of getat
impairment was between 80 and 100ms, and that TiSférence after 100ms had little to no effectvimual
perception (Stewart et al., 2001; Walsh & Cowe\98)9

This perceptual duration seems to provide an apitepupper limit for the perception process inggah since
information from other modalities is processed fhiis trange or even faster in the human brain. Famge,
auditory (and somatosensory) event related respansthe sensory cortices can commence in less 30ars
(Lakatos et al., 2007), and the entire auditoryraletepresentation can be built during the N1 siagel00ms
(Besle et al., 2008; Naatanen & Winkler, 1999).
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2.3 Cognitive Processing and Consciousness

According to the LIDA model and GWT (see Sectionadnajor functional role of consciousness is &irittiute

important perceptual information to different, sipéized brain areas. (Novel Hypothesis 5 in (Franldt al.,

2005)) It is possible to derive a way to measuee g¢fapsed time between the sensing of a stimuldsitan
becoming a conscious event from this hypothesisodscious processing of the stimulus appears tmdre

localized in sensory areas (e.g. the visual coftewisual stimuli), meaning that these areas hnechighest
activity in the unconscious processing stage. doasgrocessing can be said to start at the mooteet brain
areas, for example those involved in decision n@kiaction selection (e.g. pre-frontal areas, s section),
become highly active — this information can bedstifrom fast brain imaging techniques.

There are experimental indications that this distion of information, termed the conscious broati¢Baars &
Franklin, 2009) commences about 200-280ms postkisr(Figure 6).

For substantiating the claim of when conscious gssinig starts, comparisons of conscious and nosenrs
processing of the same stimulus are sometimes Uibede are a number of such neuroscientific expartsthat
yield useful timing results from this point of viewaillard et al. (2009) have conducted an intnaietaEEG
experiment using a visual masking procedure, perifog trials with and without conscious visibility masked
words (with and without showing a mask very shogfier presenting the word), concluding that comsei
processing takes place 200 — 300ms post stimultlerGtudies using EEG and also using a maskedlvisu
paradigm indicated conscious processing to comman2&0ms (Del Cul et al., 2007; Sergent et al052@see
also the survey about conscious and unconsciousegsing in (Dehaene, 2008) ). An MEG study using a
different visual paradigm (subjects had to decideetiver a cue — a faint circular grating — has hmesent or
absent during stimulus presentation) concluded 24paost stimulus as the onset of awareness-relatidtya
(Wyart & Tallon-Baudry, 2008). A different MEG studjielded similar results, for both auditory andual
conscious perception of novel words (Marinkovialet 2003).

Another approach to determining the onset of canscprocessing is by calculating the amount ofatgaimma
phase synchrony from brain oscillatory data (se#i@e1).

A binocular rivalry experiment using EEG recordiragmducted by Doesburg et al. (2009) provides stigp
evidence for this hypothesis. Doesburg et al. failmadl gamma-oscillatory networks across the bifaimed and
dissolved at the theta frequency band, are timkelddo perceptual switching (they are time-lockedvhich of
the two stimuli the subject is aware of). On a séaiagram of their results they could identifettimes in
which the subject was aware of one or the othenudtis, signified by high levels of theta-gamma ghas
synchronization. The resulting time until one o€ thtimuli became conscious was 260-380ms (the texhpo
distance between the subject being consciouslyewhthe first and then the second stimulus).Theetotime
limit is consistent with a previous experiment Ihe tsame authors (Doesburg et al., 2008), whichrebde
maximal phase synchrony 220-280ms post stimulus. dtso consistent with the iEEG, EEG and MEG issid
described above.

The so called “Visual Awareness Negativity” (VANGN ERP component defined by the difference between
ERPs to conscious versus unconscious stimuli, faksavell into these time ranges, since the paWvAN that is
affected by attentional selection occurs at 208612 (Koivisto et al., 2009).

Finally, all the results above are to some extensistent with the time frame of the attentionahlb(Sergent et
al., 2005; Shapiro et al., 1997). In attentionahlokexperiments, two masked visual stimuli are enésd in short
succession. For short stimulus onset asynchrathiegdentification of the first target hinders tihetection of the
second target (although the second target is easin if the temporal distance between the twoetsaris
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increased). The worst identification performancethaf second stimulus has been observed at delagbaft
225ms between the onsets of the two stimuli (Sbagtial., 1997), which is consistent with the LIDppothesis
that there can be only one conscious content incogmitive cycle (Franklin et al., 2005; Baars &afklin,
2009). This idea is also described by Doesburd, eivho write that after one period of phase syoofration (of
the subject being conscious of a stimulus), degymdhation is required before the next period of
synchronization; and that during one period of fyonization the subject can be conscious of onky stimulus
(Doesburg et al., 2009).

It should be pointed out that for determining theet of the conscious broadcast, only the lowertinaif the
times determined by these experiments are releGounitive processes after the times indicatedhigyupper
limits in these experimental results presumablyuide action selection processes (see next secfitigrefore,
the time range of the conscious broadcast indicaté&dgure 7 has been determined by taking intamantonly
the lower limits of these results: the smallest tnredgreatest lower limit.

Summarizing, consciousness seems to involve large-dntegration of different brain areas throudiage
coupling, and widespread distribution of sensoffgrimation. In simple trials, conscious processias heen
estimated to commence C = 200-280ms post stimakesigure 7).

2.4 Action Selection / Decision Making

There are several brain circuits involved in acsetection, the most relevant being the prefroctaiex, the pre-
supplementary motor area (preSMA), the supplemgmtentor area (SMA) and the primary motor cortex JM1
Information from the first three areas convergeshenprimary motor cortex (see Figure 8), whichaexes motor
commands by transmitting them to the spinal cord rmmuscles (Haggard, 2008). There can be two clasfses
inputs to M1, voluntary and stimulus-driven inputs.

—SMA Premotor —

/ M1 cortex M1 S

Parietal cortex

Intraparietal

Prefrontal sulcus

cortex

Basal ganglia

Figure 8. Major brain areas involved in action salon. The left panel shows the brain areas involved when
making voluntary actions; the right panel, objecieated (stimulus driven) actions. From (Haggar@08)
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The first key input comes into the M1 from the poetal cortex by way of the basal ganglia and treSMA -
see the left panel in Figure 8. This circuit is disghen making voluntary actions (preSMA activatiars
stronger for voluntary actions than for stimulugsen actions).

The second input plays a role in the immediate wdtisxdependent guidance of actions and is projetttddl
from the lateral part of the premotor cortex, whigteives its input from the internal representetiin the
parietal lobe, which in turn are built from infortitm from the sensory cortices (although this dir@lso
contributes to voluntary behavior) (Haggard, 2008ge the right panel in Figure 8.

The action selection process begins with receitfrggconscious broadcast (Figures 5 and 6), andviesdawo
stages:

» the selection of a number of actions that are apble, depending on the current situation, i.ectirgent
of the conscious broadcast (represented by theeBuoal Memory module in LIDA) and

» the selection of the best available action, i.e.abtion that best serves the goals of the ageptegsented
by the Action Selection module in LIDA).

This separation of action selection into two staggsalso been observed in the brain. The braimbég prepare
several actions in parallel while collecting eviderior selecting between them (Cisek & Kalaska,02@&hadlen
et al.,, 2008). For example, in visually guided nmueat, the first stage involves a reciprocally intemected
network of areas in the posterior parietal and ahutbntal cortex, converting sensory informatiamtoi
parameters of potential actions. Each area caresept information that is simultaneously pertinenseveral
potential actions. There is a competition betwdwsé potential actions, corresponding to stagentantioned
above, which is influenced by a variety of braiaas, most importantly the basal ganglia and thieqmial cortex
(for more details see (Cisek & Kalaska, 2010)).

There are few experimental results concerning thratibn of the action selection process; some @fitlshall be
reviewed below.

In an experiment conducted by Nachev et al. (2083jects were asked to either follow a specificvemoent
plan or to choose freely between two alternativesam oculomotor change-of-plan task. After freeicho
subjects could be asked to continue their plarogapidly change it. Directed trials in which suttgefailed to
change their planned saccade had latencies 107mdigm) shorter than trials where the plan changs wa
successful, indicating that the process of selgdaidifferent action took 107ms.

Taylor et al. (2007) have used TMS to interferenviite SMA activity, which disrupted subjects’ decisiwhether
they should respond with their left or right haifdapplied in the time window between 180 and 3008isce
awareness of a stimulus is a prerequisite of ma&ignscious decision, the time until the consclmesdcast
(200-270ms, see previous section) can be subtréwiedthis window, yielding 20-90ms as the duratadrthe
action selection process.

Philiastides et al. (2006) conducted an EEG expmrtmvhere subjects had to do a perceptual decisiking
task, deciding whether there was a face in the shatimulus (faces in the stimuli had different camee levels).
They found brain activity strongly correlated withe subjects’ decision 300ms post stimulus. Theso al
identified a component at 220ms the strength ottvkiystematically increased with task difficulty,which they
have assigned the top-down influence of attentighidh is consistent with other experiments dealwith
attention and consciousness). Subtracting theséimves yields an action selection duration of 80ms.

Van Rullen and Thorpe (2001) have also conductedEBG experiment involving a go / no go task with
presented visual stimuli (depicting vehicles omaads). Resulting median reaction times were ar@B@ims, but

-16/59 -



2. The Timing of the Cognitive Cycle*

they also showed that categorization could be paed above chance after 250ms (which thereforetitotes
the start of the decision process) — implying aatan of ~100ms for decision making (action setetti

An MEG experiment by Bauer et al. (2009), requirsudpjects to perform a simple reaction time tasinél high
gamma band activity between 200 and 250ms poststdrand suggested a role of this oscillatory agtiin
crossmodal integration, consistently with the comss broadcast times described in Section 1.4.his t
experiment, average reaction times were 279.1nmstr&uing the lower bound of high gamma activitynfr the
reaction time yields 79.1ms required for both thledtion of an action and its execution. It is impnot to point
out that reaction time experiments measuring achadbr responses include both the times of the itiwgreycle
sub-processes, and the time for motor executiomncfwik not included in the described cognitive eyclThe time
of the propagation of action potentials, from theton cortex to evoking hand muscle responses, takesit
20ms (motor response was evoked 19-24ms after Tiutulation of the motor cortex in an experiment by
Capaday et al. (1991); which is consistent with @xenal conduction delays of motor neurons (Swadfow
Waxman, 2010) ). Motor execution can thereforedie ® take around 20ms. This time has to be scigldrom
the results of these mechanical reaction time éxats to obtain the cognitive cycle duration. Thhg action
selection part in the experiment of Bauer et al. loa said to take approximately 60ms.

In the neural action selection circuit describedva) we have included not only the selection ofaation, but
also the selection of the appropriate motor commexecuted by the motor cortex. These low-level moto
commands —information about which muscles or actadhave to be used to implement a specific actiane
stored in the Sensory-Motor Memory component inltHeA model and are chosen after the action sedacti
process. Choosing the exact low-level motor commande takes a short amount of time in additiothétime
taken for action selection. For example, when aqein a restaurant is faced with the decision hdreto reach
for a glass of wine or a glass of water, his orthr@in needs to decide first (select the action) #wen choose a
low-level motor command (i.e. choose which musbiage to be flexed to reach and grasp the corrassyl The
Sensory-Motor Memory has not yet been computatipmaplemented in LIDA; however, for the simple age
described below, this does not make a difference.

Summarizing, the process of action selection oisttet making has been indicated to take 60-110nes& times
constitute a lower range for the action selectiaration in humans, since they were obtained inistudsing
very simple settings — action selection may veryl vede longer if the task is more complex. (Thar&0lower
boundary that has been deducted from the Taylaolygflaylor et al., 2007) has been disregarded lsecilis an
outlier compared to the results of other studies).

2.5 Comparison with Psychological Reaction Time

Adding up the durations of the cognitive processestioned above yields a total duration of 260-390an a
single cognitive cycle (Figure 7). This is on theder of most reaction time experiments from psyobpl
(although slightly longer than most simple reactiimne experiments and slightly shorter than mosticgh task
experiments).

The reaction times of young adults has been praptisée in the range of 190-220ms (Kosinski & Cumgsi
1999). Results from this and other reaction timpeeixnents include the time taken for motor exeaytishich
was not included in our discussion of the cognitiyele above, and can be said to be around 20rap(s®ious
section). The time of the propagation of actioneptials, from the motor cortex to evoking hand nfeisc
responses, takes about 20ms (motor response wkscke¥8-24ms after TMS stimulation of the motor errin
an experiment by Capaday et al. (1991); which isistent with the axonal conduction delays of maturons
(Swadlow & Waxman, 2010)). Subtracting this deldne cognitive cycle duration in these experimerts be
inferred to be around 170-200ms, which is compardbl the lower limit of the cognitive cycle duratio
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described. For choice tasks, reaction times arthénrange 356-400ms if there are two choices (Fa&l
Rouder, 1998), which is very close to the uppeitlohthe proposed cognitive cycle duration.

For more substantial reaction time data, and a moneplete survey of reaction time experiments, (kly et
al., 2003).

2.6 Comparison of the Cognitive Cycle’s Timing with otter Cognitive Models

Adding up the durations of the cognitive processestioned above yields a total duration of 260-390an a
single cognitive cycle (Figure 7) (see also thexdditained from the LIDA Reaction Time Agent in &at 3.2).
This is on the order of most reaction time expentagrom psychology (although slightly longer thianost
simple reaction time experiments and slightly strotttan most choice task experiments).

The reaction times of young adults has been praptisde in the range of 190-220ms (Kosinski & Cumgsi
1999). Results from this and other reaction timpeeixnents include the time taken for motor exeaytishich
was not included in our discussion of the cognitiyele above, and can be said to be around 20ragp(s&ious
section). The time of the propagation of actioneptials, from the motor cortex to evoking hand nfeisc
responses, takes about 20ms (motor response wkscke¥8-24ms after TMS stimulation of the motor errin
an experiment by Capaday et al. (1991); which isistent with the axonal conduction delays of maturons
(Swadlow & Waxman, 2010)). Subtracting this deldne cognitive cycle duration in these experimets be
inferred to be around 170-200ms, which is compardbl the lower limit of the cognitive cycle duratio
described. For choice tasks, reaction times arthénrange 356-400ms if there are two choices (Fa&l
Rouder, 1998), which is very close to the uppeitlohthe proposed cognitive cycle duration.

For more substantial reaction time data, and a oneplete survey of reaction time experiments, (kkmly et
al., 2003).
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Figure 9. A comparison of the phase timings in LIDACT-R and MHP

3. NON-VISUAL COGNITIVE SOFTWARE AGENTS

3.1 Overview
A computational framework of the cognitive cyclesdebed in the introduction has been partially iempénted
(CCRG, 2011).

We have developed two autonomous software agesedban this framework, the LIDA Reaction Time (LRT)
agent, performing a simple reaction time experimant the LIDA Allport Agent, replicating a psychbgical
experiment regarding the continuity of consciousrments’ (see Section 3).
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3.2 The LIDA Reaction Time Agent

The first implementation, the LRT agent, repeatgaisforms a reaction time experiment in a simpkrenment
consisting of a light (which can be red or greamy a button (which the agent has to press aslguskpossible
when the light turns green). Figure 10 below corga screenshot of the LRT agent. A descriptiohaf the
LIDA computational model was adjusted for this sfiedask, as well as a list of parameters tunedittéhe

described empirical data, can be found in Section 3

2] [E=1 [Eon =)
File Edit Panels Help
| startiPause |RUNNING] Quit | [ Ticks mode || Ada ticss o] Ticks Scale (ms) ==t} > [150
Last Action |[RTSense | PAMTable | PerceptualBuffer | PAM | PAM Tasks |
[light red] =
Start trial
(bution false] |L || "¢ refresh
Current Score =
____________________ 0 . Node Activation Base Activation Threshold
- 0 | lredigm 0.95 0.0
last reaction time 313
reenlight 0.0 0.0 05
avg reaction time(30) 283 Jereenia
Manual
| Toggle I
Reset
[ LogPanel | Properties | Task Panel | TaskQueue Panel
Logger: [6LOBAL [~| Logging level [mro - Clear log
0000000044 :0000000000 :INFO  -lidaframework gui LidaGui -» LidaGU! started

Figure 10. A screenshot of the LIDA Reaction Timegént. The left top panel contains information about the
environment (whether the light is red or green arftether the button is pressed) and statistics abfmiagent’s
performance (the last and the average reaction Jtinie right top panel contains internal informati¢gshown
here: the contents of PAM, i.e. the PAM nodesHerréd and the green light, and their activations).

Figure 11 below shows the LRT agent’'s performanche simple reaction time task over 30 trials.cas be
seen from this figure, the cognitive cycle durasiarf the LRT agent (283 ms) are comparable to jludec
durations inferred from the reaction times of adwlimans (200ms according to (Kosinski & Cummin@99;
see also discussion in the Decision Making / Act®8mlection subsection), although slightly largeine Tmain
reason for humans being faster at such experineiie effects of temporal expectation (which haisyet been
implemented in LIDA). Humans seem to engage cdrtcdion circuits (inferior parietal and premotaeas)
prior to perceiving the stimulus (Coull & Nobre,), and can thus reduce the time required fooadelection
after stimulus presentation. Still, the reactiomes of humans and of the LRT agent are compardbée (
difference is around 40%).
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Figure 11. A histogram of the LRT agent’s performea at the reaction time task.he blue bars represent the
reaction time in single trials. The figure shows3@trials; the average reaction time is 283ms. dhshed blue
line is LRT's average reaction time; the dottedchkldine represents human reaction time (200ms,Dsmmsion
Making / Action Selection subsection)

3.3 The LIDA Allport Agent ~

Allport (1968) has conducted an experiment comgatimo competing consciousness timing models. Stsoud
(1967) Discrete Moment Hypothesis, states that @onsness is comprised of distinct and non-oveitapp
conscious ‘moments’, within which all time-ordefarmation is lost, while the Continuous (Travelingpment
Hypothesis considers conscious ‘moments’ to coomegdpto continuously moving segments of the incoming
sensory information.

Allport's results clearly contradict the strict Diste Moment Hypothesis. LIDA’s discrete consciasmn
mechanism, however, is consistent with this emglitwidence.

We have successfully replicated Allport’s experitnemmputationally with three goals in mind:

» to show that our discrete consciousness model.dbaseneuroscientific evidence, does not contradict
empirical data - unlike the Discrete Moment Hypasikdsee also the section “LIDA and Consciousness”
above),

e to strengthen the claim that LIDA’'s GWT-based cimssness mechanism models human functional
consciousnesgote: in an artificial agent we refer to functibiansciousness (Franklin (2003)), rather
than phenomenal consciousness), and

» to substantiate the plausibility of the timing paeders proposed in this paper by showing the siityila
of the LIDA Allport agent’s behaviour and timing aotual human data.

In Allport's experiment, subjects were seated ionfrof an oscilloscope screen, which displayed reylsi
horizontal line, appearing in one of 12 positions the screen. This line rapidly changed positiommyvimg
upward. Upon reaching the topmost position, theestmwas left blank for the same duration as thettiok while
traversing all 12 positions, and then the line appe again on the bottom position — see Figuretli® fame
visual effect could have been achieved if the liad moved over the whole screen in 24 positionswith the
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bottom half of the screen covered). The rate gfstey, and thus the cycle timg,(was controlled by the subject.
At very large cycle times, subjects could see thgls line jumping from position to position. Updecreasing,
they reported seeing multiple lines, moving togetid a specific cycle time S and below, subjeaparted
seeing a stationary array of 12 lines flickeringymchrony (see Figure 11 below).

1.7>8S 2.1=8S
Visible Line
10— — 1 —
2= == . 2
3 —F—Consciously  3—
4 — perceived "trail" *

LLLLLLLI

=
N
1
2
N

Figure 12. The display and conscious percept inpiit's experiment.t denotes the total cycle time. At cycle
timest >S, subjects could see multiple lines moving togretleft panel). Ati=S, subjects saw all lines
simultaneously and perceived no movement (righepan

The subjects had to arrive at the cycle time S,raviibey did not perceive any movement on the scrien
separate trials subjects first decreased the tiynke from a very high value (slow to fast), andrthiecreased it
from a very low value, at which all lines were se#multaneously (fast to slow). Both times wereoreed for
each subject. These times were then compared foréléctions of the two hypotheses about conscigasn

According to the Discrete Moment Hypothesis, tremeetwo cycle times at which all 12 lines appedsdmn the
screen: at=S, at which the complete cycle falls within on@sgious ‘moment’, and atS/2, at which conscious
‘moments’ containing all lines and no lines altéengand thus the condition of no movement beinggieed is
met) — see Figure 13 below. The cycle time at wisighjects will stop, perceiving no movement, wili$ be S
when decreasing and S/2 when increasingA significant difference between these two cdoda is predicted.

The Continuous Moment Hypothesis predicts that ssgige events are perceived to be simultaneousenvben
and as long as, they fall within the temporal caists of the conscious ‘moment’. Thus, since thitigon for

determining S was not only momentary simultaneity fierpetual absence of perceived movement, ttarde
only one cycle time S at which this criterion istrfeee Figure 13). There should be no differendesdoen trials
decreasing or increasing

In (Allport, 1968), twelve subjects performed twarsions of this experiment under both conditions:
A) the half screen experiment described above, with
1. decreasing the cycle time until no movement wasgieed
2. increasing the cycle time; and
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Figure 13. The predictions of Stroud’s (1955) Diste Moment Hypothesis for the Allport experimerithere
are two cycle times at which no movement is peedefeS andr=S/2). Depending on whether the subjects have
to increase or decrease the cycle time, they shentmunter one or the other. A difference of S/gréslicted
between the two trial types.

B) the full screen version of the experiment (whee1R positions were distributed over the entireescrand
the line immediately appeared again on the bottdrthe screen after reaching the end of the cycle,
without delay)

1. decreasing the cycle time and
2. increasing the cycle time.

Table 1 displays the resulting cycle times averagest all subjectsdata from Allport, (1968) It is clear that the
difference between increasing and decreasing tigalsot significant (and certainly not close to )SA&hich
contradicts Stroud’s Discrete Moment Hypothesis.

Cycle timeg [ms] | 1. (decreasing)| 2. (increasing)
Human subjectg
A (half screen) | 95,5 ©=16,0) 81,4 ¢=14,6)
B (full screen’ | 86,2 0=12,5 70,7 0=8,1
Table 1. Average cycle times at which subjectsriti perceive movement in Allport’'s experimgim=12. ¢
denotes the standard deviation. Data from Allp&a6g8))

The results from the simulation of these experimlecdnditions by the LIDA Allport agent are shownTiable 2
below. The data matches Allport’s results — thererily one cycle time threshold S at which the agees not
perceive any motion. Despite the high standardadievis of Allport's data, and the as yet impre@seémates of
LIDA’s internal parameters, it can be seen frons thkperiment that the timing data of the Allporenigis
comparable to human performance.

Cycle timeg [ms] | 1. (decreasing)| 2. (increasing)
LIDA Allport agent

A (half screen) | 96 96
B (full screen) | 84 84
Table 2. The LIDA Allport agent’s cycle times at weh the agent did not perceive movemént12)
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3.4 Methods

3.4.1 The Implemented Cognitive Cycle

Both agents are based on the almost completelyemmghted computational LIDA framework, which prodde
extendable basic implementations for all modulethinLIDA cognitive cycle (Figure 4). These implantegions
have been extended to allow the agents to perfloein tespective experiments; and the default tingiagameters
have been adjusted to fit the empirical evidenseideed above.

To illustrate how the agents’ implementations wavk, shall describe in this section what happereach of the
modules of the LIDA cognitive cycle outlined in thdroduction; specifically:

1. Sensory Memory

2. Perceptual Associative Memory
(the 2 modules above are part of Perceptionphase)

3. Workspace
4. Attention Codelets

5. Global Workspace
(the 3 modules above are part of thederstandingphase)

6. Procedural Memory
7. Action Selection

Sensory-Motor Memory
(the 3 modules above are part of thetionSelectionphase)

There are two additional modules in LIDA's cogniticycle (Transient Episodic Memory and Declarative
Memory) which will be omitted here since they aat required in these experiments.

For this simple domain, no visual image proces$ingecessary. The environment class, which contairts
controls the sensory stimulus (and the buttonispected periodically by thBensory Memorymodule. The
LRT agent’s sensory stimulus consists of a singte (or green) light, while the Allport agent’s he3 distinct
lines which may or may not be alight.

Simple feature detectors monitor their respectiekel$ in the Sensory Memory, and activate relearceptual
Associative Memory (PAM) nodes if they find corresponding sensory ddtais is comparable to the human
visual system, which also makes use of featurecttete— for example, V1 contains neurons that ansitive to
features such as orientation, direction and spatial temporal frequency, and V4 neurons are seasit
geometric shapes (Bear et al., 2007). In the LRangghe single color-sensitive feature detectdivaies the
PAM node representing a red light or a green lighpending on Sensory Memory contents. In the Allagent,
there are 12 feature detectors sensitive to tkespactive lines, which activate one of the tweks&pective PAM
nodes upon sensing their line.

Next, the percept (consisting of the identified PAlMdes) is moved into the&/orkspace which constitutes
LIDA's preconscious buffers of working memory. THRT agent does not use episodic memory, but intBé
model, episodic memory contents would be retriceethe Workspace as well (from the Transient Episadd
Declarative Memories), cued by the percept.

According to Global Workspace Theory, on which LID#& based, conscious contents reside in a memory
capacity that enables access between brain fusctiat are otherwise separate (see IntroductiorIDA, this
memory capacity is th&lobal Workspace and its role is enabling the Procedural Memorg #me Action

-23/59 -



3. Non-Visual Cognitive Software Agents*

Selection access to the most urgent/novel/releVémtkspace contents. These contents are transferredhe
Global Workspace bpttention Codelets(codelets are special purpose mini-agents implésdegs a small piece
of code running on a separate thread). These dedetik for their specific concerns in the Workspand, upon
finding it, copy it to the Global Workspace.

An agent is consciously awaref an object, represented by PAM nodes, the motthexse nodes become part of
the conscious broadcast (after winning the compatiégainst other contents of the Global Workspace)

Finally, an appropriate action is selected basethercontents in the broadcast. This selectiorerfopmed by
two components in LIDA. The first componentAsocedural Memory, from which all behaviours applicable in
the current situation are chosen. In the LRT agentyell as in the Allport agent, there are twosfizle behaviors
(pushing the button, and releasing the button/doiotling). Note that behaviors could be more comglbey
could include many actions) in a more complex donadiapplication.

The second componentAgtion Selection in which the action best serving the agent's goaelected. In the
agents described here, this process is trivialneesin all possible states of the environment thigrenly one
applicable action, the Procedural Memory alwaysdgi®@nly one action, which only has to be forwartdgdhe
Action Selection component (without competition vibegn actions) to theSensory-Motor Memory for
execution. This selected action is then executethénenvironment (e.g. the button is pressed). Sihgle
mechanism responsible for this could be called_RR€ agent’s “actuator”.

3.4.2 Parameters

As do other computational architectures modelingnd@mn, LIDA contains a multitude of internal paraters
that have to be adjusted for a computational agetihg as subject in the replication of an expenim&uch
parameters may include decay rates for variousstggenemory, a threshold above which a percepteat i
becomes part of the current percept, or a parantieé¢mmakes action selection more goal-orientekerathan
opportunistic. The ultimate goal is a tuned setindérnal parameters whose values remain constaehveh
number of disparate datasets are reproduced. Stuhed parameter set assures the accuracy andnessfof
the model. Inability to find such a tuned paramstgtrshould warn that the model needs revision.pétrgcular
parameters that resist such tuning will point redeers to modules and processes within the modglrteed
revision. This parameter tuning provides a metpic dssessing the quality of a cognitive model dmsis for
understanding the cognitive processes responsiblbé behavior of the agent.

Successfully accomplishing this goal will providebstantial evidence of the accuracy and usefulnégke

conceptual cognitive model. Cognitive hypothesemfthe model can then be tested by experimentshwitinan
subjects to see if their data is predicted by mgmirtificial subjects in the same experimentalaions. If so, we
will have shown the ability of the theoretical mbtiepredict as well as to explain.

The timing parameters described in this sectionadiest step in the direction of a well-tuned paeter set for
the LIDA model.

Each module in LIDA has a specific task (see modigscriptions above) that has to be executed st tewe
every cognitive cycle. The module tasks are rua arallel and asynchronous fashion - like the hubrain,
which does not use sequential information proceséint, rather, local neural circuits which rurparallel.

In the computational framework, all of these modiasks are executed periodically to implement th2AL
cognitive cycle. The execution intervals are goeeriby ‘ticks’ parameters. These parameters govermoiv
many ‘ticks’ (simulated milliseconds) a particutask will be executed.
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Adjusting these ‘ticks’ parameters, so that thangs of the resulting LIDA cognitive cycle becomanparable
with the timings of the human action-perceptionleyand, thus, neuroscientifically plausible) wae tmain
purpose of the development of the LRT agent.

The most important parameters resulting from thasameter adjustment are listed in Table 3 belowis It
important to point out that the modules correspogdd these parameters do not run in a serial nmantiee
LIDA model aims for the highest possible asynchroflye only points in the cognitive cycle where sy is
enforced are the conscious broadcast and the asmiection process (the selection of a behaviorardy start
when the contents of the global workspace becomsaious).

Parameter name Value
[ms]

1. Sensory Memory Tic} 20

2. Feature Detect(Ticks 30

3. AttentionCodele Ticks 200

4. NoBroadcastOccurrir Triggel 20C

5. ProceduralMemo Ticks 11C

Table 3. The LRT Agent’s most important timing pameters.

The first parameter governs how often the contefitthe Sensory Memory are updated, i.e. how often t
environment is sampled. This would be a domain iipgearameter that must be found anew for eachA.ID
controlled agent implemented.

The second parameter controls how often featurectiet codelets are run, detecting features depgratirtheir
specialization. Feature detection is very rapithen LRT agent, as in humans. V1 neuron responsadas start
at 30ms — (Huang & Paradiso, 2008; Kirchner et2009). Also, a presentation time of 20ms is resplifor
simple go/no go classification for visual stimul{Fhorpe et al., 1996). In other experiments, 3@as required
— (Martinez-Conde et al., 2006). This is also cstesit with V1 firing rates, which peak at aboutstikes per
second (Heeger et al., 2000). In the LRT agentethee only two Feature Detectors, which detectther of the
light stimulus (one for red and one for green). bpietecting their corresponding light stimulus,sthéeature
Detectors pass activation to the corresponding s)\ad¢he Perceptual Associative Memory. If theation of
the updated PAM node exceeds a specific threshiodah a copy of this node is instantiated in the k§pace
(LIDA's preconscious working memory).

The next important timing parameter (number 3 ibl&a3) governs how often the attention codeletsrare
Attention codelets are mini-agents that have thpgae of bringing novel, relevant, urgent, or itesis events to
consciousness (i.e. bringing instantiations ofrtikeiresponding PAM nodes, or other Workspace ttras, to
the Global Workspace). Since we have argued tlabttset of conscious processing in humans stagbatt
200ms (see Results), this parameter was set tedhis. It is important to point out that the cdnss broadcast
can have multiple triggers. In more complex domaih® broadcast is triggered whenever the cumeativ
activations of the coalitions built by Structureiling Codelets exceed a specific threshold. Treadicast can
also be triggered if a single coalition exceedstlarothreshold. Both of these thresholds can berpreted as
contents judged novel or important enough beingudind to consciousness. Finally, a broadcast is sent
automatically if too much time has passed sincelake broadcast has commenced. The idea is to dahew
conscious processing of less important informationases when there is no current novel or vitaiportant
content in the Global Workspace (instead of anreléd unconscious period that would last until onenore
coalitions exceed the activation threshold agdihe time at which this trigger is activated, meaduirom the
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onset of the last conscious broadcast, is conttddieParameter 4 (NoBroadCastOccuring Trigger)wasl set to
200ms, the onset of conscious processing in huraansell.

In the domain of the LRT agent, there is only g&rcoalition in the global workspace (containingAM node
representing a red or a green light). A conscicusdicast is automatically triggered whenever thivation of
this coalition exceeds a specific threshold. Tmeirtg parameters of the Attention Codelet, and thafsthe
perception process, have been chosen in a waghidroadcast happens in the range of 200 — 280Gmsange
for the onset of consciousness in humans — se@dpeitive Processing and Consciousness Section).

The final parameter (number 5 in Table 3) govehesftequency of the process that leads to the tgmteof an
action. The ‘ProceduralMemory Ticks' parameter colsthow often the set of actions that are appleat the
current situation is retrieved and the actual betibn selected. This parameter has been set tod, e upper
limit of the duration of action selection (see ReguAs in humans, the duration of the action i@ phase will
depend on task complexity (especially, on the nundfeavailable actions). Since the implementatidrnthe
Procedural Memory and the Action Selection comptsanLIDA are still being worked on, the interrihings
of this action selection phase have not yet beéerméned. But both of these processes have toduheeuled at
intervals longer than the internal processing tihey require, to avoid bottlenecks, which is whyapaeter 5 has
been set to the upper limit of the action selectdaomation described in the Results section. Incineent LRT
agent implementation, these processes take a wry amount of time; and are rescheduled periolgica
intervals indicated by parameter 5 in Table 3. fature agents, an improved action selection meshaiased
on (Maes, 1989) is in development, which will inm®lthe use of triggers (triggering the selectiortha best
action, for example, if at least one of the applieaactions has activation above a specific thiehinstead of
periodic action selection.

Figure 10 in the previous section shows a diagréamhe resulting reaction times of 30 trials perfedrby the
LRT agent. For the results of the Allport agent 3eble 4 and the previous section. Although setthgse
parameters and pointing out consistent results chatsprove either the cognitive cycle hypothesesther
correctness of our timings, this parameter adjustrhas to be done as a prerequisite of buildingenoomplex
LIDA agents, because the cognitive cycles will htoveun at a speed comparable to human cognitigkesyf we
expect them to model human cognition (or an aspesteof). If a number of such LIDA agents, replicgt
different psychological experiments and thus foogsin different aspects of human cognition, wouldrate in
time frames consistent with the human brain (withoeadjustments of internal parameters), this would
considerably increase the plausibility of the LIRrchitecture as a model of human cognition.

4. VISUAL PERCEPTION FOR LIDA AGENTS

4.1 Vision in LIDA

Visual object recognition in the brain is facilidt by the ventral pathway — area V1 (which contai@grons
sensitive to direction, orientation and other fead), area V2, area V4 (containing neurons semsitivcolor and
shape), the inferior temporal cortex or area ITe@dy containing object category information) (ketual., 2009)
and the prefrontal cortex (PFC) (Serre et al., 2qBear et al., 2007) (see Section 5.3.1 for a noamplete
account for the visual system). A majority of vispaocessing in the brain probably happens in aftee/ard

fashion, due to the low latencies (Liu et al., 2088d the neural pathways across the involved stgggrre et al.,
2007). For this reason, the model described hdtdogis on feedforward object recognition.

The two modules involved in visual perception ie tHHDA model are the Sensory Memory and the Peusgpt
Associative Memory (See Section 1.5). The concéftl2A model proposes a feature detection mechanism
which is functionally similar to feature sensitimeurons and neuronal ensembles in the visual esr{igladl et
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al.,, 2011; M€all et al., 2010). High-level object recognition capabilities arise froms@sations an
combinations of various lodevel feature detectors receptive to simple vidaatures, which observe a buf
containing raw visual data from the environm~ the Sensory Memory and, upon sensing their respect
features, pass activation to connected PAM nod&d Rodes above a specific threshold (if enough uiesd
associated with that PAM node could be found) eacth working memory and, subsequently, ciousness,
and can be considered in action selection (D’'Metlal., 2006

This theoretical mechanism has been implementgutantice for actual image recognition tasks ingbepe o
this thesis, since there is no prior implementatafnobject recogition working on visual environmel
representations in the computational LIDA modehét time

4.2 Invariant Feature Extraction

For a robust visual object recognition system wugkon natural images, scale and position invariancihe
detection of imagdeatures is vital. In the brain areas concernedh wisual processing, there is an increa:
amount of such invariance across the ventral patHweam V1 to IT — while V1 feature detector neurons .
mostly sensitive to simple features such as lirggrents in various orientations, V4 neurons can beiseado
geometric shapew blobs (Serre et al., 20CBear et al., 2007).

In this visual system implementation | have decittedse scale and position invariant features etdathby the
SURF (Speeded pJRobust Features) algorithm (Bay et al., 2008)is pproach extracts features basec
Hessian matrices basically, the areas in the image with the greatesiunt of brightness chan¢— and it can be
said that such an approach is not biologicallusible. However, this approachimplemented in the Sensory
Memory, as described belowinterfaces with the rest of the LIDA moc which is argued to be biologically
plausible elsewhere (Baars & Franklin, 2009; Baarfsranklin, 2007; Franklin et al., .05; Madl et al., 2011);
and has the advantages that it is robust, perfdrerasugh to be used in software agents or robotsahtime,
and last but not least, it was possible to implenirethe time constraints on this the

> dx
¥ lax|
2 dy
2 layl

v= (3 de, 2o dy, 2 |de|, 2 |dyl)

Figure 14.Features extracted by SURF. Tc two imagesontain small squares marking the locations of Sl
features (at areas in the image with maximum Hesditerminants. Notethe features can describe regions
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various sizes, which is not shown here). Matchiegtures are highlighted in redBottom: SURF feature
descriptors.v is the representation of one of the 4x4 subregiohan interest point. The bar charts above
visualize the components\ofthe summed-up Haar wavelet responses) for vatiguess of brightness functions.
(The bottom two images were taken from (Bay e2@08))

As stated above, SURF extracts features based ssidttematrices — SURF features are blob-like sirastat
locations where the Hessian determinant (a squateixrof second-order partial derivatives of théghimmess
function which represents the image) is maximuny(&gzal., 2008).

The SURF algorithm computes descriptor vectorsefach identified feature in the image. These desgrip
vectors describe the distribution of the intensibyntent in a window around the interest point (feat with a
specific size, which is split into smaller 4x4 seipns. Each subregion is represented by summeldaap
wavelet responses (maximum second order derivatofeshe brightness function) of that region — the
representation containing of the sum in x and galions and the sums of the absolutes in x andegtitins of
the wavelet responses (see Figure 14). Thus, firesentation of each subregion contains 4 valueseSach
interest point describes 4x4 subregions, the oveesicriptor of an interest point is a vector conitey 64 values
(16 subregions representations) (Bay et al., 2008).

Descriptor vectors can be used to find correspaniiterest points in different images. (Bay et 2008) propose
nearest neighbor distance ratio matching, in wiidchevery point P in image A, the nearest and sgéqomarest
point in image B are found (the “nearest” point, bé¢jng the one with the minimum Euclidian distatacehe
descriptor vector of point P). If the ratio of Eidéhn distances of the nearest and second neatestst points to
the interest point P is less than 0.7, then poiof Mhage B is said to match point P of image A.

4.3 SURF-based Visual Object Recognition in LIDA

The first step in the proposed object recognitigstemm is the pre-processing of the input image \8ithRF,
which yields a number of descriptor vectors. Teigldone in the Sensory Memory, and the extractetbreare
put into an additional layer called the SURF Ve@pace (see Figure 15). This layer contains thepotetional
representation of a discrete 64 dimensional spsineg the description vectors consist of 64 valueaititioned
into a fixed number of hypercubes in which imaderiast points can be stored. This makes it poskiblfeature
detectors to observe a fixed area, instead of hatondo an iterative matching for every input imagith
O(c * n * m) complexity (n being the number of feads that the system is looking out for, m the neinmdf
features in the input image, and c the constapsstquired to calculate whether two features match

The original nearest neighbor distance ratio matgls$ similar to nearest neighbor matching (poimh&ches
point N if N is the nearest neighbor of P and theirclidian distance is smaller than a threshold bt

additionally penalizes points having many similaatames, which improves precision (Mikolajczyk & $uH,

2005).

If these points are stored in a data structure avilee closest neighbors can be retrieved rapibly,nhatching
algorithm can be simplified. In the case of neanesghbor matching, only those points within a hgpéere with
radius T have to be iterated through and the neamast retrieved. This strategy can also be usedchéarest
neighbor distance ratio matching of interest pointthe SURF Vector Space, because this matchiategly is
similar to simple nearest neighbor matching (Mikatgk & Schmid, 2005) and also because of the idigtion

of points (the interest points derived from a sénighage tend to gather closely around a few pdirters in the
vector space).

Thus, the feature detectors really have to obserweontents of hyperspheres instead of hypercimbesler to
determine whether their region of the Vector Spamdains a relevant feature (see the white doftetes in
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Zebra PAM Node

PAM

Feature detectors

SURF Vector Space

Sensory Memory

Figure 15. SURF-based visual object recognition ngifeature detectorsNew images arrive in the Sensory
Memory through appropriate visual sensors, are ppepcessed by SURF, and the resulting interesttpane
copied into the appropriate locations in the SUR&cMr Space. Feature detectors are periodicallycking
their corresponding area in the space and passvatitin to all PAM nodes (concepts) connected tontlifean
input image feature is present in that area. (Thttdm two features are unobserved by feature datedt
The small stars represent the locations of featimethe Vector Space (red stars correspond to feain the
input image, blue stars to features that the featlgtectors are looking out for). The cubes shostitjmas in the
Vector Space which are observed by feature deteclidre white dotted circles denote the radius adoeach
observed feature that has to be checked by itareatetector for matching interest points.

Figure 15, which represent these hyperspheres théeked). However, the computational implememntatiba
discrete, partitioned hyperspace with non-overlagartitions which cover the entire space is @agsible with
hypercubical partitions. For this reason, each ufeatdetector observes not only the hypercube ttsat i
corresponding interest point is located in, bubasljacent hypercubes (because of the chosen catigmat
representation, this can be done in computatiomhidap and rapid way). The sizes of the partitigrelhcubes in
the SURF Vector Space have been chosen in a wagxamize the probability that matching featureslacated

in the hypercube directly observed by feature detecand thus to minimize the time a feature detereeds to
check for matches.

All feature detectors finding a matching interesinp derived from the input image in the SURF Vecipace
pass a specific amount of activation to their gponding PAM node. This passed activation dependsoov
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prevalent the feature the detector is looking outifas been in the training set. For featureshtha¢ been present
in every training image (pertaining to the conceggiresented by the PAM node), the passed activaibigh,
while for features that were found only in a singlege in the training set, this activation is viy.

This mechanism reliably leads to the PAM node regméng the object in the input image to receivehlghest
amount of activation (see next section), provideat the input image is similar enough to the imaigethe
training set.

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
. s

Prominent Object Node
(Car)

>
<
a

Figure 16. PAM Structure.The Perceptual Associative Memory contains featietectors for every feature in
the training set images, which observe the SURRdvespace. If they find matching points there, thags
activation to their parent PAM nodes (here, the @arAirplane node). The node representing the pnami
object in the input image will be the node recaivthe highest amount of activation (determinedHsy MAX
node in the top of the figure). Some features am@roon to multiple objects (which is the reason ey
activation of the Airplane node is not zero)

In the current implementation, the feature detectoe set up during a training phase (but theydcaslwell be
learned online). A number of PAM nodes are setramfa pre-defined list of objects, and correspogdiaining
image folders are read and processed by SURF. tedtaderest points are cross-compared and theirapgnce
in the training set determined. Using this prevedevalue and the descriptor vector, feature deteet@ added to
PAM for every interest point, connected to the appate hypercube in the vector space using therigésr
vector, and set to pass an appropriate amountightion using the prevalence.

This addition of PAM nodes and feature detectordct@lso occur during on-line learning. For examplben
the agent is presented with an image of a nhoveluangcognized object, it could spawn a new PAM nod¢he
unknown object category and set up feature deteéborit as described above (with the exceptioprefzalence
values — all feature detectors would have to gassame activation).
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4.4 Performance andComparison

To evaluate the performance of this visual objeciognition system, a subset of the CalTech imaggbea¢
(Fergus et al., 2003) was usddhis database contains 1074 images of airplanésf irhiages of ca, and 450
images of faces (amongst others); taken underrdiffdlighting conditions, different angles and wilfferent
backgrounds (see Figure 1Fpr each of these three categories, 100 imagessetzeted at random and usec
training sets. The maining images were used for test

Figure 17. Sample images from the Caltech datab.

The following table contains the recognition raaé&IDA’s SURF-based object recognition system, compare
Fergus et al.’s (2003) systeas a benchmai

Category SURF-based object recognition Benchmark

Airplanes 88,8 % 90,2 %
Cars 84,0 % 84,8 %
Faces 87,1 % 96,4 %

Table 4 Recognition rates of the proposed object recoigmitsystemThe benchmark numbers werken from
(Fergus et al., 2003). The displayed percentagegraie positive rates (the amounts of correcthyomtzec
images from the total number of images of the retspecategory

As can be seen from Table this SURI-based object recognition systgrarforms comparably to, but slight
worsethan, the benchmark. However, unlike the benchnthdse recognition rates were obtained without
prefprocessing of the images (for example, Fergus. dli@ded images to ensure that all of them wening the
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same way). It also has to be pointed out that i@inihg set was created entirely at random. Itkisly that the
system could achieve higher recognition rates withe representative training sets.

The following table contains further informationcaib the system’s performance on the Caltech image s

True positive raté N -

Category o False positive rate | Specificity Balanced accuracy
(Sensitivity)

Airplanes (n=974) | 0.88¢ 0.11¢ 0.881 0.90:

Cars (n=1055 0.84( 0.02: 0.977 0.90¢

Face: (n=350) 0.8711 0.06: 0.937 0.90¢

Table 5. Recognition performance on the Caltech igeadatabasel00 training images were used for each of
the three categories; the rest of the images (mgwsed for testing.

5. THE ATTENTIONAL BLINK IN THE LIDA MODEL

5.1 Introduction

The attentional blink (AB) refers to the impairmémiconsciously perceiving the second of two tesgeesented
in close temporal proximity (200 — 500ms). In aageresentation of a number of nontargets andwloetargets,
subjects can almost always accurately report thetfirget (even is the presentation time is shasually around
100ms), but often fail to report the second taifgéis presented in short succession (see Figdje

During the past two decades of research on theaARimber of related phenomena and effects weralfmame
of which are hard to explain using traditional miedef attention. No theory or model explaining afl the
empirical findings related to the AB has yet beeunid (Dux & Marois, 2009). Here we will introduceLBDA-
based explanation of the AB, and a cognitive saftvegent reproducing data obtained from human stshj®ur
approach aims a) to provide a more comprehensplaeation based on a cognitive architecture, eneasipg a
wide range of cognitive processes, not just atteali selection; and b) to account for and explaimerempirical
findings than previously published models.

Before describing the model in Section 5.3, a numdfefindings and phenomena obtained under differen
experimental conditions shall be described. Thely vé used to compare existing models of the AB Hral
LIDA based model. A good model should account faide range of findings.

5.2 Paradigms and Phenomena

The basic and most commonly used attentional kgaadigm consists of the Rapid Visual Serial Priegiem

(RSVP) of a stream of characters at a rate of atiBuitems/second, consisting of digits (distractorsnon-

targets) and two target letters (called T1 and (THun & Potter, 1995; Martens & Wyble, 2010). Seljeare
instructed to identify the letters in the streand &o report them after the presentation of theastrésee also
Section 5.4 for a more detailed description ofsaual attentional blink paradigm).

sensitivity + specificity 0.5 % true positives 0.5 % true negatives

2 " true positives + false negatives = true negatives + false positives

I halanced accuracy =

e number of true positives o number of true negatives
sensitivity = specificity =

number of true positives + number of false negatives number of true negatives + number of false positives
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Figure 18. The basic attentional blink paradigna) A series of characters is presented in rapidcession. The
subject is instructed to notice and report the tetters (targets) in the stream of digits (non-tetg). b) The
percentage of correctly reported T1 (blue line)ddhe percentage of correctly reported T2 fromlgriahere T1
was correctly reported (red line). Subjects ofteit fo report T2 when it is presented within 20056 to T1
(this drop in accuracy is called the attentionainli). If T2 is presented immediately after T1 amside of about
100ms, both targets can be reported accuratelys Paradoxical finding is referred to as lag-1 spayi(“lag”
refers to the sequential distance between T1 and(Adapted from Martens & Wyble, 2010)

The AB seems to constitute a central limitationtloem human attentional capacity and can be obseénvadyreat
majority of subjects and across a wide range cdigigms, types of target identification, and modzdifMartens
& Wyble, 2010) — for example, with symbols (ChunP&tter, 1995), words (Barnard et al., 2004), tacttimuli
(Hillstrom et al., 2002) and pictures (Evans & Brmean, 2005; Potter et al., 2010). Apart from insighto the
limits of attention, the latter paradigm also pd®s information about feature binding in picturéedgon. Potter
et al. (2010) used this picture detection paradigishow that picture identification must occur i in the first
~100 ms (or in Stage 1 of two-stage explanationh®fAB, see below), and does not occur throughbihding
of initially unbound features at a later processtage, as suggested by Evans & Treisman (200S)fiftlding is
consistent with recent intracranial recordings daipital and inferior temporal areas, which cancbeelated to
object categories after about 100ms (Liu et al092D

Brain related evidence has shown that during antadk, both targets are processed at least perdigptua
regardless of conscious reportability — at leasffittst 150ms of neural activity exhibits a norrpattern (Martens
& Wyble, 2010). EEG studies have revealed the mpbiysiological activity that correlates to the ABhe N2pc
ERP component (Event-Related Potential, brain igtdirectly resulting from and time locked to anstilus),
occurring about 200ms poststimulus and associatddthe allocation of attention to targets, is sggsed at
short temporal distances between T2 and T1. Alstrjdls where T2 cannot be perceived becausepiteisented
shortly after T1, the P3 component — associateld widrking memory consolidation — is not elicitedgiens &
Wyble, 2010; Dux & Marois, 2009). Furthermore, &Rl study conducted by Marois et al. (2004) showed
parahippocampal place area activations (associeitbdhigh-level scene representations) even in camscious
T2 targets. The above evidence implies that the haB to occur at a later stage of processing (kzn
perceptual recognition, and after 150ms).
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Apart from this evidence about attentional proaggst which is accounted for by almost all modelshaf AB
(Dux & Marois, 2009) —, a number of other empirifiatlings will be briefly reviewed here. For morengplete
reviews of the attentional blink and related firgfinsee (Martens & Wyble, 2010) and (Dux & Mar@e809).
Section 5.3 will describe how the LIDA-based modah explain these findings, and Section 5.4 withpare
this model to previously published models of the. AB

1) Lag-1 sparing. Paradoxically, T2 can be reported with high accuigresented shortly after T1 (about
100ms after T1) (Martens & Wyble, 2010).

2) Spread lag-1 sparingMultiple targets can be reported as long as theyeesented in immediate succession
- Olivers et al. (2007) observed that target repastre accurate even for four successive targets.

3) Posttarget intrusion. Varying the experimental conditions revealed that attentional blink only occurs if
T2 is backward masked (Giesbrecht & Di Lollo, 1998jten, this mask or distractor succeeding T2 lman
reported even if T2 cannot, implying that the distor somehow interferes with the reporting of tiuget
(Chun, 1997).

4) Whole report attenuates the AB.The accuracy of reporting stimuli is high when satg are asked to report
all stimuli (whole report). However, a significamtcuracy drop at lags 2 — 4 (an attentional bliifice, see
Figure 18) can be observed for the same stimuliesece if subjects are required to report only targdts in
the sequence (Potter et al., 2008).

5) Increasing T2 salience attenuates the ABIf the salience of the second target is increa®ed. it is
presented in a different color), it can be reportedte accurately, although an AB effect can sélidbserved.
The same can be observed if salience is increasdmbth targets (Shih & Reeves, 2007; Martens & Wybl
2010).

6) Task-irrelevant cognitive load attenuates the ABIf the stimuli are presented together with a baskgd
field of moving or flickering dots, much smalleroghs in accuracy are observed at AB-relevant lager{é et
al., 2006). The AB is also attenuated if subjectsasked to listen to task-irrelevant music orkrabout their
holiday (Olivers & Nieuwenhuis, 2005).

7) Using target-similar distractors increases the AB.The AB magnitude can be increased by making the
distractors more similar to the targets (for exampln attentional blink while recognizing colorexttér
targets in a letter stream is stronger than rezoggpithe same targets in a stream of digits) (Dud@theart,
2005; Dux & Marois, 2009).

8) Target Confusion. Theorder targets were presented in is often confugetemporally adjacent targets (i.e.
during lag-1 or spread lag-1 sparin@}hun, 1997; Dux & Marois, 2009)

9) AB without T1 masking. Although T2 masking is necessary to obtain an #iteal blink, recent studies
found that there is an (attenuated) blink evenlifif unmasked (i.e. if there is no distractor betw&1 and
T2) (Nieuwenstein et al., 2009).

10) T2 cueing attenuates ABPresenting a distractor that is similar to thgearcategory preceding T2 decreases
the AB magnitude (e.g. if the targets are redigtie a stream of white digits, presenting a regit diefore T2
increased the probability that T2 is perceived camssly) (Nieuwenstein et al., 2005).

5.3 Attention in LIDA

The attentional mechanism is implemented by twoomapmponents of the computational LIDA model, the
Attention Codelets Module and the Global Workspisloelule. Attention Codelets form coalitions usindeséed
portions of the perceptual scene, selecting the omgent, novel, or important percepts and movhmnt to the
Global Workspace. Each of these coalitions ha®edtactivation value which depends on bottom-uiersay
(coming from early perceptual processes) as wetbpgown importance (added by the Attention Codaled
reflecting urgency or importance). The coalitionsee into a competition for consciousness, andiimeer — the
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one with the highest activation — enters the canscibroadcast, is available for action selection @an be
reported consciously (see also Section 1 for a rdetailed description of LIDA’'s modules, cognitiggcle, and
consciousness mechanism).

We will focus on visual attention in this secti®gince most experiments mentioned above have useghlvi
stimuli, and since the computational agent impletaiion also uses a visual paradigm. The followinlgsgctions
will explain which areas and processes are assacwith attention in the brain (5.3.1), and detaiv LIDA can
provide a neuroscientifically plausible accounttfue attentional blink (5.3.2).

5.3.1 Neuronal Correlates

The human visual system seems to utilize two difieprocessing streams: ttiersal pathway (going to parietal
areas), called “where/how” stream since it impletaespatial vision, and theentral pathway (going to the
temporal cortex), called “what” stream since it dphizes in object recognition (Itti, 2003). BotH these
pathways are implicated in visual attention, cdmtiing to the selection of what and where to attend

Figure 19. Brain areas involved in selecting “whatind “where” to attend.The ventral “What” pathway goes
from V1 (striate cortex) to VLPFC (ventrolaterakgfiontal cortex) via IT and is concerned mainlyhagbject
recognition, and the dorsal “where/how” pathway gdeom V1 to DLPFC (dorsolateral prefrontal cortesa
PPC (posterior parietal cortex). Arrows represéoward as well as reciprocal connections. Fronti (2003)

Two types of attentional control can be distingeshbottom-up or stimulus-driven attention, whishlargely
unconscious and driven by specific attributes apatures of the input image; and top-down or volynta
attention, which is largely specified by behavidgmals or task demands.

Bottom-up salience is mainly based on low-levetdess - more specifically, feature contrast (natlabsolute
feature strength) (Itti, 2005). This kind of lowsd feature selectivity is exhibited by the lateganiculate

nucleus and visual cortices (V1-V4, sensitive tiemted edges, combinations of features, and ircéise of V4,

color) (Serences & Yantis, 2006). Even in the Jiscartices, an effect of voluntary attention haserme
demonstrated, although it has been found thatdlaive influence of top-down attention is very lanvthese

areas, and only becomes comparable to the effédiottom-up attention further along the visual msging

pathways (PPC) (Silver et al., 2005).

The following cortical areas play a role in top-doattentional control. The visually selective regiof the PPC
(posterior parietal cortex) — the intraparietakcssl| (IPS) in humans and lateral intraparietal 8ré) in primates
-, which contain coarse representations of spai@igraphy, and are also involved in controlling @yovements
(saccades) and directing them towards targetshik drea, neuronal activity correlated with theuwnbary
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allocation of attention can be observed, and leadgeater target stimulus selectivity based orialplacation
and/or salience (Knudsen, 2007; Serences & Ya2i86). The frontal eye field (FEF) in the pre-frantortex is
involved in saccade control as well, but has alsenbshown to play a role in representing the ctilcaus of
attention (Serences & Yantis, 2006) — FEF neur@mshe covertly selective to targets even when easlcis
planned in a different direction (Yuan et al., 2POBinally, when a particular stimulus is attendedand
conscious, neurons representing the target in sgr@eas, in the PPC and in the PFC exhibit synihed
discharges in the gamma band (Knudsen, 2007; Dogstbal, 2009 — see also Section 1.3).

Some subcortical structures have also been showayoa role in top-down attention. The superiollicalus

(SC), like FEF, mediates both overt saccades amdrtahifts of attention (Serences & Yantis, 200@pre

specifically, corollary discharges associated weijle saccades occur in the superior colliculus angdqmate to
the FEF, via the mediodorsal thalamic nucleus, gttt the locations of visual receptive fields &R before
each saccade (Knudsen, 2007).

Recently, the locus coeruleus (LC) — norepineph(iig&) — system has been shown to influence top-down
attentional selection (Sara, 2009; Warren et &8l092 Nieuwenhuis et al., 2005). LC neurons exhilkteased
activity during the processing of motivationallylieat targets, leading to the release of NE in wjead cortical
projection areas, among others in the forebrailis Fttreased NE presence increases the respotysdfiliarget
neurons, enhancing signal detection and stabilizinteural representation in the face of noise tarfierence.
Thus, LC activity can facilitate the processingaofarget stimulus (Cohen et al., 2004; Ashton-J&&3ohen,
2005; Warren et al., 2009; Nieuwenhuis et al., 2005

2.5 1
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Figure 20. Peri-event time histograms (PETHSs) fortgpical individual monkey LC neuron in response to
various events during performance of the signal éetion task accumulated over 100 sweeps of activity. Note
the increased activity during target processingrglad). Adapted from (Ashton-Jones & Cohen, 2005)

Shortly after target processing, there is a langeeiase of LC neuronal activity (top panel in Feggaf). The LC
is autoinhibitory — increased activity during targeocessing is followed by a period of reducedvagtand thus
reduced NE release. Non-target stimuli do not telgignificant changes in LC activity (middle panel)
Interestingly, tonic LC activity levels were sigidintly higher when the animal was less focusedhentask

-36/59 -



5. The Attentional Blink in the LIDA Model

(bottom panel), but there was also a much smallget-locked phasic response in this case. Betahjipthese
elevated LC activity levels have led to more fregufalse alarm errors (Ashton-Jones et al., 1999).

These properties of the LC-NE system play a keg molLIDA'’s attentional blink model, as can be séeithe
next section.

5.3.2 A LIDA-based Attentional Blink Model

As mentioned above, the major components implemeritip-down attention in the LIDA model are the k&b
Workspace Module and the Attention Codelet Modae(Section 1.5 and Figure 5 for a descriptiomefiDA
cognitive cycle). Bottom-up attentional controlless relevant for the modeled RSVP paradigm, bulds
accounted for by the LIDA model by earlier procegsistages in the cognitive cycle. Feature detectors
(corresponding to feature-sensitive neurons invikaal cortices — see also Section 4) pass adivab their
corresponding Perceptual Associative Memory (PAMQles, which represent objects (or categories, entsy
(McCall et al., 2010) and could correspond to neat@nsembles in the inferior temporal cortex, Whiontains
object category information (Liu et al., 2009). THesulting activation of PAM nodes will depend &ie number
of relevant and identified features, as well asstileence of those features (e.g. specialized featetectors could
pass large amounts of activation when observingghtdoflashing light, such as a fire alarm).

As already mentioned above, the Attenion Codeletdii® contains Attention Codelets, which create itioak
from important or relevant percepts in the Globarkgpace. The resulting coalition will have an\atibn value
that depends on four factors: a) the activationshef percepts it contains, b) the base level aaiveof the
Attention Codelet, ¢) the modulatory activationttod Attention Codelet Module and d) a matchingdaon how
well the percept matches the pattern that the @bdelooking out for. It should be noted that twenputational
implementation of the LIDA Attentional Blink ageatso contains a fifth factor, e) stochastic noishich is
added to account for extraneous, uncorrelatedeaffexctivity (Knudsen, 2007; Nieuwenhuis et alQ20

The first factor corresponds to bottom-up salieimcthe brain, as described above. The second fatterbase
level activation, depends on how useful the Codestbeen in the past and facilitates attenti@aahing.

The third factor contributing to the activationafalitions in the Global Workspace is the modubataetivation
of the Attention Codelet Module. It has been prggbmany times in attention literature that humaeardional
processing is limited for targets presented in tshoccession — observable, among others, in antiattel blink
paradigm -, presumably because of a suppressi@tteritional enhancement of subsequent stimuli duttie
processing of a target (Wyble et al., 2009; OlivrMeeter, 2008; Nieuwenhuis et al., 2005). The matbry
activation reflects this mechanism, and regulaten@ional enhancement of stimuli by increasinglecreasing
the activation of coalitions in the Global Workspadhe most probable neural counterpart of thisileggry
activity is the locus coeruleus (LC), which can a&mte target processing through the release of ima@mrine in
the forebrain, as described in the previous se¢ti@nactivity was proposed to play a role in thieational blink
by Nieuwenhuis et al. (2005)). Similarly to LC nenractivity, the Attentional Codelet Module actieat at first
strongly increases upon processing a relevant poiitant target, which is followed by a period oivlactivation
which is similar to the posttarget refractory-likeitoinhibition exhibited by the LC (see Figure 2ir fa
comparison of LC activity and the Attention CoddWidule activation).

Finally, the fourth parameter influencing coalitiactivation is a matching factor which is basechow well the
percept in a coalition matches the pattern soughthke Attentional Codelet that creates the coalitidhis
accounts for the finding that in some cases, ngatarare attended to and reported instead of thetsaif they
are similar or share a common salient feature @& iCox, 1997; Bichot & Schall, 1999; Martens & Wgh
2010) although with less probability and less galemeuronal activation (Duncan et al., 1997).
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Figure 21. LC activity, Attentional Blink performace, and the Attention Codelet Module activatiol) The
background graph shows a PETH of a monkey LC neduoimg target processing (see Figure 20). The laer
gray curve shows attentional blink T2 accuraciethatrespective lags (a gray point at 0.1s corresjsato lag-1,
etc.). The crossed-out P3 refers to the absentteed?3 ERP during the blink, i.e. during the perimtween 0.2
and 0.5s where T2 accuracies are the lowest —thattethis period also coincides with the minimumadTivity.

LIDA’s attentional mechanism can provide a formabriputational, see Section 5.4) explanation for the
attentional blink and related findings. Two majeasons are proposed to account for the performdirge at
intervals of 200ms — 500ms between the two tar@es Figure 21): a) the posttarget refractory{ikeod of the
Attention Codelet Module activation, which leadseéduced target activations after ~200ms, and dyibcrete,
competitive conscious broadcast mechanism (se@8ect).

For the current description, an RSVP attentionadkbpparadigm with images is assumed (similarlytte study
conducted on human subjects in Potter et al. (3018)imuli are presented to the LIDA agent at te i&f one
image every 107ms. The agent’s task is to repeogetaimages pertaining to a specific target (irs tbase,
vehicles), which means that there are at least Attention Codelets, looking out for targets (vea&)l and
distractors, respectively. This is also the panadigsed for the implementation of the LIDA AttentbrBlink
agent (see Section 5.4).

If only a single target is presented, that targetdded to a coalition by the Target Attention Qetievill win the
competition for consciousness since there is ngtthiat could compete with the coalition, and camrdrsciously
reported (see also the description of the LIDA ¢thgmcycle in Section 1.5).

If two targets are presented in an RSVP of imagdsgal, without a distractor, both targets arecpied in the
first 200ms — before the refractory-like periodtioé Attention Codelet Module — and they are bottieddto a
target coalition by an Attention Codelet lookingt dar targets. Target Attention Codelets have Sigantly

higher base level activation than Distractor AttemtCodelets. Thus they will win the conscious blicsst and
can be reported consciously. Possible subsequegetsaare also added to the target coalition bysémee
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Figure 22. The attentional blink at lag 2I'n and Dn refers to targets and distractors, resipety. The vertical
black lines intersecting with the timeline on t@present the approximate borders of LIDA cognitiyeles.
Attention Codelet 1 is looking out for targets, attention Codelet 2 for distractors, adding thenCboalitions
in the Global Workspace. The coalitions have to et for consciousness, and the one with the highes
activation is broadcast consciously. The reasonatent fails to report T2 is that in the secondritige cycle,
Coalition 2 (containing the distractors) wins thenepetition for consciousness.

Attention Codelet, which adjusts the coalition aation based on the factors described above arkdeoprevious
coalition activation — this accounts for the sprial sparing effect.

At lag 2, the second target cannot be reportedcionmsly because a coalition containing distracteiss the
competition for consciousness instead of T2 (semrEi 22). The reason for the low activation of tamget
coalition is the low Attention Codelet Module aetiion at this point in time (due to the refracttike period, see
Figure 21). D2 is added to the distractor coalitigrthe Distractor Attention Codelet, and the d@ali activation
is updated. The distractor coalition is also mohdawith a lower Attention Codelet Module activatidut will

come out with a higher activation because a) depgnah the timing of the presentation, the Attentidodelet
Module activation might be higher at the point thistractor is perceived than at the point whenttrget is
perceived, and b) since the distractor coalitiors weeated upon perceiving D1, at which point thaliton

activation was higher (0.4 in Figure 22, due tohlgh AttentionCodelet Module activation at thatrp

-39/59 -



5. The Attentional Blink in the LIDA Model

The situation is similar at lag 3, although theyédrcoalition will have a higher activation in teesases since the
Attention Codelet Module will have regenerated sahés activation (see Figure 21). Distractorslstill win
the competition for consciousness sometimes — tihehasticity arising from the small random addittonthe
coalition activation — which causes a low accuracy.

At lag 4, the Attention Codelet Module has beeraresl to its initial level of activation, and T2rche reported
with a high level of accuracy again (the T2 accyraclag 4 approximately equals T2 accuracy atllag this
paradigm, see Potter et al. (2010)).

LIDA’s attentional mechanism accounts for all o€ thttentional blink-related phenomena describe8dation
5.1:

1) and 2) Lag-1 sparing and spread lag-1 sparingSee explanation above.

3) Posttarget intrusion. During the blink, the distractor succeeding TZbpftan be consciously reported even if
T2 itself cannot (see Figure 22).

4) Whole report attenuates the AB.In case of an instruction to report the entire R®¢Buence, a different
Attentional Codelet would be required, which woaidve every presented image into the Global Workspac
and into the same coalition — every image wouldliarget. Thus, for short RSVP sequences, evergeéma
could be reported and no AB could be observechéfdequence is too long, activation decay could tea
“forgetting” of the first images. There is alsoimit on how much information the Workspace and@tebal
Workspace can hold, although this limit has notnbgeantitatively determined yet).

5) Increasing T2 salience attenuates the ABncreased T2 bottom-up salience leads to a higbvation of
the PAM node representing T2 and thus to a targeliton with a higher activation, which increasbs
probability that T2 wins the competition for cormgsness.

6) Task-irrelevant cognitive load attenuates the ABSubject less focused on a task exhibit higherlsegt
tonic LC activity (see lowest panel of Figure 2@hich can explain this phenomenon. In experimental
conditions in which moving dots are presented adotive target, and in conditions where the subject i
instructed to think about something else (see @e&i2), subjects are less focused on the AB takkrefore
their AttentionCodelet Module Activation (modelingC activity) is higher before a target, and theseai
much smaller post-target activation drop, which ewik possible to almost always report T2 accuyateh
accordance with behavioral AB experiments with rdiied subjects (Arend et al.,, 2006; Olivers &
Nieuwenhuis, 2005).

7) Using target-similar distractors increases the AB(for example, an attentional blink while recogngin
colored letter targets in a letter stream is steortjan recognizing the same targets in a streaaiga$). T2
performance in case of target-similar distract@peshds on the Target Attention Codelet; specificdlbw
target percepts are selected based on the Codisletight content” template. In the example, thexa@la be a
Distractor Attention Codelet and two Target AttentiCodelets, one looking out for colored stimuld ame
looking out for letters. Both of these codelets ldoadd to the activation of a coalition containiegl targets
(stimuli that are letters and are colored), buhsti only possessing one of these properties waildd be
added to a coalition. Such a coalition would havenger activation than distractors (since Targiérition
Codelets have more base activation than Distractmtelets) and have an increased probability to thvn
competition for consciousness against real targets.

8) Target Confusion. Targets presented temporally adjacently in theesaognitive cycle (e.g. during lag-1
sparing) land in the same coalition. Since coalgido not contain ordering information, the temporder
of the two targets is unknown to the agent. Thisld@ccount for the target confusion effect. Howev®
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exact computational mechanism has been implemgredor reproducing how human subjects “guess
(often incorrectly, see (Chun, 1997; Dux & Mard@809)) the first target in such a case.

9) AB without T1 masking. There is still an AB effect without T1 mask sirtbe AB in this model is due to a)
the refractory-like period of the Attention Codédldbddule and b) intrusion of the post-T2 distracamd does
not depend on the post-T1 distractor (unlike sofrthemodels described in the next section)

10) T2 cueing attenuates AB.This has a similar reason to finding 8), TargehfOsion. As described above, if
targets are defined by multiple properties, theme raultiple Attention Codelets watching out for dshe
properties. If a distractor that shares one or mbthese properties with the target is perceiitad,put into a
coalition and receives activation from one or mofehese Target Attention Codelets. It also sefsthuf
temporary increase in Attention Codelet Module vation (see Figure 22), which leads to an increased
activation for targets presented in the next ~2Q0easling to an attenuated AB effect.

5.3.3 Comparison with other Attentional Blink Models

This section will briefly summarize other atten@ibiblink models which have been formally implemengteased

on (Dux & Marois, 2009), which contains a more dethreview of these models, and other, purely tégcal
models not described here). The first six descriimedels are connectionist (neural network-basegjogehes
(gated auto-associator, CODAM, LC-NE, global wodep model, boost & bounce and eSTST), while the las
two are mathematical (attention cascade modelsgmibolic (threaded cognition model), respectively.

The Gated auto-associator modelChartier et al. (2004) predicts that stimuli aralaated via two networks,
with one performing number identification and fewglithis information into a working memory, and drest
comparing the stimulus color with the target instians. There is also an attentional gate whictertd@hes
which stimuli can enter into the working memory.isTlgate opens when a target is identified, but s
inhibited during the encoding of a target into wogkmemory and thus does not admit subsequentttadgeing
this period, which leads to the AB.

The Corollary discharge of attention movement mode(CODAM) (Fragopanagos et al., 2005) proposes that
stimuli go through an input and object map modulé are subsequently stored in working memory. Aated
inverse model controller (IMC) boosts items in tigect map so they can enter the working memorgwever,
the IMC is suppressed by a monitor module compattiggcurrent item with the current target repressaor
during target item processing. At short lags, tigedt representation the monitor is comparing vatistill T1
even if T2 is presented, therefore T2 doesn’t emtgking memory, giving rise to the AB.

The Locus coeruleus—norepinephrine model (LC-NEJNieuwenhuis et al., 2005), similarly to the LID/ded
model detailed in the previous section, proposes the AB reflects the activation dynamics of tleus
coeruleus. Nieuwenhuis et al.’s model consists bEhavior network that is made up of input, detegtiand
decision layers; and the LC network adjusting tekdvior network’s gain. Following the LC’s phasésponse to
a target, it is suppressed and unable to facilgatesequent target detection.

The global workspace model of the attentional blinkby Dehaene et al. (2003), like LIDA, is based oe th
Global Workspace Theory (Baars, 2005). The maiaddare an all-or-none mechanic - that only one itam
enter consciousness at a time -, and that iteras rfeuronal ensembles) that are conscious are leapéb
inhibiting other items, which leads to the AB.

The Boost and bounce theory(Olivers & Meeter, 2008), unlike the previously delsed models, does not
depend on capacity limits. It has two stages, sgngpoocessing and working memory. Perceived items
activation strengths are influenced by stimuli egming before or after them due to backward/forwaesking.
The working memory maintains task instructionsretancoded representations where items have ing&ed to

a response. It also employs a filter enhancing stéimat match the target description and inhibiibegns that
don’t — it inhibits items before T1 and enhance$bmosts” T1, which can thus enter working memdfyl 2 is
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presented temporally close, it will also receivbamst. Distractors cause a strong but transienpregpion of
subsequent stimuli, thus causing the AB.

The Episodic simultaneous type/serial token model (eSSIT) (Bowman & Wyble, 2007) is also a two-stage
connectionist model, predicting that all stimuli an RSVP are identified in a conceptual stage €&typ
representation). If a stimulus is also a targeis ittentionally enhanced by a transiently triggeblaster, and
subsequently have their identity information bouada “token” in working memory which contains epgn
information (e.g. relative position in the RSVResim). After a target has been enhanced, the biasteppressed
until the target is bound to its token — therebysiag the AB.

The attention cascade mode{Shih, 2008) is a mathematical model that doesclai neural plausibility but
explains the attentional blink with fewer paramstdran the models described above. According triudel,
stimuli are initially processed among one of twamhels: a mandatory pathway and a bottom-up salienc
pathway. Stimuli in the mandatory pathway activedaeceptual representations that are passed ingvighpral
sensory buffer, and can trigger an attentional miménd be enhanced if they match a target temtaléowing
this enhancement, the target is consolidated asdepainto the decision processor (within workingrmogy).
Stimuli with strong bottom-up salience can alsggder an attentional window and enter directly ithte decision
processor along the bottom-up salience pathway.

The threaded cognition model(Taatgen et al., 2009) is loosely based on the RC{Rnderson et al., 2004)
cognitive architecture, hypothesizing cognitioncmmprise of multiple processes that are threadesldin a
single processor. According to this model, targetiection is held offline during the encoding of adiditional
target in working memory. Thus, T2 detection is pagsed at short lags because T1 consolidatiotillis s
underway — except for adjacent targets (e.g. laget which the system overrides this suppression.

LIDA | eSTST | Attention | Threaded | Gated Auto-| CODAM LC-NE Global Boost and
(Bovmm & | Cascade | cognition | Associator Workspace | Bounce
Wyble, (Shih, 2008) | (Tastesn ot | (Chartiar =t al, | (Fragopamams | (Nisuwsnhubs | Dapgana st al | (Olivars &

| AB related phenomenon 2007) Al 2009) 2004) stal, 2005) | etal.2003) | o3 Meater, 2008
Accounts for non-reported stimuli under- )

v v v v * v v v v
going postperceptual processing
Lag-1 sparing v v v v v v v v v
Spreading the sparing v v v v * ® x ® v
Posttarget intrusion v v v v v v v v *
Whole report attenuates the AB v v v v * * * ® ®
Increasing T2 salience attenuates the AB v * v x * x x v x
Task-irrelevant cognitive load attenuates

v * * * * % v % %
the AB
Using target-similar distractors increases .

v v v v ® v * * v
the AB
Target confusion v'* v x x * x x *x x
AB without T1 masking v v’ v ® *® ® v v’ ®
T2 cueing attenuates AB v v v v * v v ® x

Table 6. A comparison of formal models of the attiemal blink, with respect to their ability to account for the
AB-related phenomena described above. Green chemtksmdenote phenomena that are accounted for
conceptually by the model in that column.
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Table 6 above attempts to compare the large nuoftfermal models of the attentional blink by indicg their

ability to account for the AB related findings apdenomena described above. The columns are soytdukb
number of findings accounted for. As can be seem fthis table, the LIDA-based attentional blink rabis able

to account for the most findings from the modeishiould be noted that green check marks denoteophena
that can be conceptually accounted for — someesetihave not been explicitly modeled (yet).

5.4 The LIDA Attentional Blink Agent

To show that LIDA’s attention model can model huniehavior, the attentional blink experiment condddby
Potter et al. (2010) has been reproduced with aAtbB@sed cognitive software agent. In this paradigahjects
were shown a written description of the target gaite
(e.g. dinner food, bird, or fruit), and subsequerdl
rapid serial visual presentation of eight color
photographs, consisting of six distractors and tavget
pictures. The first target, T1 appeared in sergaitpn
107ms 2 or 3, and the second target, T2, followed atlldgfter

/IO?m.v. Figure 23 illustrates this paradigm. After all iresg

B {o7ms were presented, subjects were instructed to gige th
/ names of the target objects (not their categorybhan
dinner food 600ms order of presentation in their own time.
/ﬂlms Human performance averaged over the 72 trials that

Figure 23. The visual attentional blink paradigm Fi o5
reproduced by the LIDA Attentional Blink Agent. igure 2o.

(From Potter et al. (2010)) The LIDA Attentional Blink Agent operates in a very
similar environment. Instead of taking random pietufrom Google Images, we used the Caltech imagehdse
(Fergus et al., 2003) — see Figure 17 in Sectidrfet. a few example images. Vehicles were the targtegory
that the agent had to report; target images coaldars or airplanes. Faces were used as distriatdges to
allow for easy discrimination. Figure 24 contairsceeenshot of the agent and its environment.

The task instructions were predefined in the agetihe form of two Attention Codelets, one of whishlected
targets, bringing them to the Global Workspace, thedother selecting distractors (see Figure 2Rénprevious
section). There were also predefined behavior sekeim the Procedural Memory for reporting the terdwy
pressing buttons (one for each of the target caiegjoand one for no target perceived, see Figdje\®hile it
would also be possible in the conceptual modeksorl such task settings (D'Mello et al., 2006),coocrete
computational implementation for task learning exa&t the moment.

The LIDA Attentional Blink (AB) Agent, like the Redon Time and Allport Agents, is based on the
computational LIDA framework — thus, it's cognitiegcle works in the same way, as described in Gedi4.1.

To avoid redundancy, only those processing stadgshvdiffer significantly from these agents shadl described
here.

The Sensory Memory periodically inspects the Emuiment, and copies the current image into a visufieh It
also pre-processes the image data using the SURRFithin, extracts features, and copies them intoSHRF
Vector Space layer (see Section 4). Feature Deteptriodically inspect this vector space and patisation to
their parent PAM node. In the example displayeHigure 24, most feature detectors associated Wéhairplane
node would find their feature, leading to the corf@AM node obtaining the highest activation - althh some
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Figure 24. The LIDA Allport Agent, and its simplengironment. The top panel contains a screenshot of the
agent’s graphical user interface, with the sensogmory pixel layer (top left) and the perceptuaaasative
memory node activations (top right). The airplas@érceived since the airplane node has the higiatation
(note that this does not automatically mean thatgb becomes conscious). The bottom panel illtetridne
simple environment that the agent operates in. gea screen which displays eight images in thpd serial
visual presentation paradigm (bottom left), ancethbuttons. The agent selects an appropriate ati@sed on
the incoming image and presses the “Airplane” batibit consciously perceives an airplane, the “Chutton if
it consciously perceives a car and the “Distractdatitton if the percept entering consciousness igad of the
target category.

feature detectors associated with the car andrfades will also find a feature and pass activatimthe wrong
object node, since features can be ambiguous.

Upon exceeding its threshold, the identified naledpied into the Workspace (this takes approxiipd@oms,
see Section 3 for the timing of the processes dexthere). Attentional Codelets inspecting the K§pace try to
locate their sought content and to move it to theb@ Workspace as a new coalition — in this examthe
Target Attention Codelet would identify the targeide, create a new coalition based primarily onatttesation
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6. Conclusion

of the node, the modulatory activation of the Afieem Codelet Module, and the Codelet’'s base adtivafsee
Section 5.3.2 and Figure 22), and put this coalitido the Global Workspace. Assuming that thiditioa is the

one with the highest activation (e.g. if it is tfirst target presented, or the second but preseattéay-1), it will

win the competition for consciousness and be bmstdto the Procedural Memory Module. Of the schemes
present in the Procedural Memory, the one reprieggttie behavior to press the “airplane” buttonl weceive

the most activation (since it's context or precdiodi best matches the conscious percepts). Thiaviahwill be
instantiated in the Action Selection module, anel &ation to press the button will be selected. Thus agent
will indicate that it consciously perceived an &ne.

Figure 25 contains the performance of the LIDA Atienal Blink Agent (reporting accuracies at lag2 and 4),
and compares it to the performance of human sushject
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B0 | 80 “,*’4 ,’,‘ 1
.70 ol = e 1
7] .60 60 - \.\\ /",’ -
[} = “ L
L .50 £ sof L 1
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Figure 25. Comparison of human performance and thdDA Attentional Blink Agent’s performance in a
visual attentional blink paradigmThe y axis displays the percentage of correcthoreed second targets (T2),
conditional on the first target (T1) being reportedrrectly. The x axis represents the time betwibentwo
targets. Left panel adapted from (Potter et al.1@0

6. CONCLUSION
This work presented an attempt to increase thesiildity of the LIDA model, i.e. to substantiateetitlaim that
LIDA accurately models basic human cognitive preessusing mechanisms similar to the human brain.

Subprocesses in LIDA's cognitive cycle were comedawith processes in the brain (Section 2), thieiings
estimated based on recent neuroscientific evidemmmbconverted into parameters for the LIDA model.

Based on the LIDA computational framework and oesth parameters, three cognitive software agents wer
developed in order to substantiate the LIDA modglthe LIDA Reaction Time Agent, b) the LIDA Allpor
Agent, and c) the LIDA Attentional Blink Agent (s&ections 3 and 5). Facilitating the developmenthete
agents, two new models were developed, implememtedadded to LIDA’s implementation: a) a vision rabd
based on invariant feature detection (Section @, @ a model of attention and its deficits basedh® locus
coeruleus — norepinephrine (LC-NE) system (Sediijon
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Apart from showing that the mechanisms put forthLHYA can indeed lead to agents behaving compartbly
humans in three different psychological paradigosng the same framework and the same set of pteesje
the developed software agents strengthened LIDApImhypotheses in the following way (see Sectighfar
an explanation of these hypotheses):

The Cognitive Cycle Hypothesis

All three agents contributed to showing that hurmagnition can be comprised of cognitive cyclesat th
these cycles might be the building blocks or “atbofscognition. The LIDA Reaction Time Agent and
the LIDA Attentional Blink Agent both performed mlogical experiments in comparable timeframes
(and, in the case of the attentional blink, wittmparable accuracies) to human subjects, showirtgatha
perception-action cycle in LIDA takes approximately long as in humans. The LIDA Allport Agent
showed that the time boundaries of functional cionsness are very similar in LIDA agents and in
humans. Furthermore, the mechanisms the agent$ouagive at these behaviors were detailed and
shown to correlate to neural mechanisms (See $e8tior the LRT and Allport Agents, and Section 5
for the Attentional Blink Agent.)

The Consciousness is Discrete Hypothesis

The LIDA Allport Agent’s behavior in a perceptualrtinuity task has shown that a discrete functional
consciousness paradigm can accurately model hurmemimental data (Section 3).

The Theta-Gamma Coupling Hypothesis

This hypothesis was mainly based on consciousresgsarch in neuroscience. The time-frames of the
theta-gamma synchronous phases in the brain asstemt with the time frames of conscious broadcast
in the LIDA-based cognitive software agents. Howetkis is not a hypothesis that can be proven by
computational modeling. Section 1.4 presented gtriorain related evidence derived from published
experiments.

The LC-NE Hypothesis based on attention research and on a previqughjished (and much less
comprehensive) model of the attentional blink. THhBA Attentional Blink agent and the fact thatst’
behavioral performance matches human behavior; elsas the ability of the model to conceptually
account for most of the findings associated with dttentional blink (unlike previously publishedrfal
models of the attentional blink) as well as newlaa provide evidence for its plausibility (seect®m

5).

In order to claim that LIDA accurately models thentan brain with reasonable plausibility, a muchewichnge
of experimental evidence from cognitive softwarergtg performing different high-level cognitive taskould be
required. This work only presents an initial effortthat direction. Further steps could include elod) a much
larger range of psychological experiments, as wsllreproducing human behavior in embodied, realdwor
settings. A possible approach for this latter paiotld be the development of an embodied agentessfudly
performing the “Cognitive Decathlon” (Mueller et,a2007), a kind of simplified, behavioral Turingst, and
comparing its behavior to human children. In thd,em cognitive model inferior to human cogniti@nalaim it
has fully succeeded in accounting for all cognifivecesses — at some points, cognitive architextuiléneed to
pass the real Turing test (Turing, 1950) and a Metang test (Sloman, 2008) to show it is capalildman
level cognition and meta-cognition; although evas iinost modern approaches are still very far away being
able to pass the Turing test (Floridi et al., 200%)wever, despite this fact, it is my strong befiat if human-
level machine intelligence becomes possible inftitere, cognitive modeling will be the most impartaool
leading science to that achievement.
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8. APPENDIX A —GERMAN ABSTRACT / DEUTSCHE ZUSAMMENFASSUNG

Anpassung und Verifizierung einer psychologisch plasiblen kognitiven Architektur
unter Verwendung von LIDA-basierten kognitiven Softvare-Agenten

LIDA (Learning Intelligent Distribution Agent) istine biologisch inspirierte, partiell Computer-irpientierte
kognitive Architektur mit dem Ziel, menschliche Kution zu modellieren und zu erklaren (Baars & kimm
2009). Um einige Vorhersagen von LIDA zu verifigar wurden drei auf LIDA basierende Software-Agente
entwickelt, die psychologische Experimente ausfiihrifire interne Parameter wurden angepasst und ihr
Verhalten mit dem menschlicher Versuchspersonegiieben.

Ein visuelles Objekterkennungssystem, das auf demrBen invarianter Merkmale basiert, und ein nayer
Aufmerksamkeitsmechanismus, der auf dem Locus Gaesu Noradrenalin System basiert, wurden zusétzli
entwickelt, um das LIDA-Modell weiterzufiihren unihe groRere Bandbreite an Experimenten modellieren
kénnen.

Da LIDA neurowissenschaftliche Prozesse auf hoHeenE modelliert, war es mdglich, LIDA-Module mit
neuralen Korrelaten in Beziehung zu setzen. Newserischaftliche Ergebnisse mit hoher zeitlicheddsuihg,
verbunden mit dieser Zuordnung zu neuralen Komalatvurden benitzt, um die internen Parameter des
computergestitzten LIDA-Systems anzupassen. Dievaad-Agenten, die auf diesem angepassten Modell de
Kognition basieren, verhalten sich ahnlich wie nohtishe Versuchspersonen in psychologischen Experiem

und liefern vergleichbare Daten. Dabei wurden diearafeter ausschlieBlich auf Grund von
neurowissenschaftlichen Daten bestimmt, ohne dasrgwmentelle Paradigma zu verdndern. Dies erhéét di
Plausibilitat des LIDA-Modells und seiner zugruridgénden Hypothesen.

Drei kognitive Software-Agenten, basierend auf deartiell Computer-implementierten LIDA-System, werd
entwickelt, um LIDAs Hypothesen zu starken undRligusibilitat zu erhéhen, dass LIDA menschliche iKtgn
modellieren kann.

Der erste Software-Agent fuhrt einfache Reaktioitszperimente aus. Das Hauptziel ist, die Parameter
verschiedener Zeitablaufe, die aus neurowisserntfichah Daten gewonnen wurden, zu verifizieren. Bgent
operiert in einer simplen Umgebung, die aus einéchtteiz (rot oder griin) und einem Schalter (dedrgjekt
wird, wenn das Licht griin wird) besteht.

Der zweite Agent fuhrt ein psychologisches Experitnéurch, das zuerst von Allport (1968) vorgescaiag
wurde. Die Intention dieses Experiments ist es,Al{tbHypothese zu starken, dass Bewusstsein diglknstetig)

ist. Im Besonderen erlaubt dieses Experiment deql¥ieh der ‘Discrete Moment Hypothesis’ — die ligsdass
Bewusstsein aus distinkten und nicht Uberlappermsmssten ‘Momenten’ besteht, in denen keine Zgitd
Ordnungsinformationen vorhanden sind— und der ‘idaptus Moment Hypothesis’, die bewusste ‘Moments’ a
zusammenhéngende und sich in Bewegung befindengme®¢e von eintreffender sensorischer Information
sieht.
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In dem originalen psychologischen Experiment ensthaine horizontale Linie in einer von 12 Posigonauf
einem Bildschirm, auf den die Versuchsperson hlibk¢ Linie &ndert ihre Position sehr schnell urgvbgt sich
nach oben. Wenn der obere Bildschirmrand erreistitlieginnt die Linie wieder in der untersten Rosit
Abhangig von der Zyklusdauer (also der Geschwirgligkin der sich die Linie bewegt), nehmen die
Versuchspersonen bewusst entweder eine einzigenoelerere Linien wahr; unter einer gewissen Zyklusda
sogar alle Linien auf einmal. In diesem Fall kargink Bewegung mehr wahrgenommen werden. Dieses
Experiment wurde hier verwendet, um zu zeigen, ddB#\s Modell von diskreten Bewusstseinsabschnitten
plausibel ist und dass die zeitlichen Beschranknngiees bewussten ‘Fensters’ der Erfahrung ein&ALI
Software-Agenten jenen von menschlichen Versuckspen gleichen.

Der dritte Softwareagent modelliert das Aufmerksaitgblinzeln in einem Rapid Serial Visual Presdotat
(RSVP) — Paradigma, um LIDA’s Hypothesen tber Aukaamkeit zu starken und au3erdem um LIDA in einem
komplexeren Experiment, das auch Bilderkennung e, zu testen. In diesem Paradigma werden dem
Agenten 8 davor nicht gesehen Bilder in schnelleigé prasentiert (fir deren Kategorie die Bilderkamy
jedoch im Voraus trainiert wurde), in denen er zwielrelevante Bilder durch das Driicken eines eitan
Knopfes identifizieren muss. Bei solchen Experiraargind menschliche Versuchspersonen des Oftefféhign
das zweite zielrelevante Bild bewusst wahrzunehmemn es sehr schnell nach dem ersten prasentieit-w
dieser Effekt wird Aufmerksamkeitsblinzeln genarir Agent, der dieses Experiment reproduziertdigsg mit
einer Erkennungsrate, die mit menschlichen Ergeknisergleichbar ist; und ist fahig, im Vordergristehende
Objekte in Bildern zu erkennen. Der Grund fur dashNBewusstwerden des zweiten zielrelevanten Biloei
schneller Prasentation ist hauptsachlich ein Aufsemnkeits-Mechanismus, der auf dem Locus Coerueus
Noradrenalin System im Gehirn beruht und von demuéet wird, bei der Verstarkung von relevanterzBpten
durch die Ausschittung von Noradrenalin im GehinedRolle zu spielen; und der nach dem Verarbeians
relevanten Perzepts einer Refraktarperiode untéewast. LIDA’s existierendes Aufmerksamkeitsmodeltd
durch ein Modell von diesem Mechanismus erweitedamit menschliches Verhalten beim
Aufmerksamkeitsblinzeln reproduziert werden kann.

Ein visueller Objekterkennungsalgorithmus wurdehaestwickelt um diese Aufgabe durchfiihren zu kdnmizn
LIDA zuvor keine implementierte visuelle Wahrnehrguimatte. Dieses visuelle System basiert auf inaggie
Merkmalsextraktion und hat das Ziel, plausibel einsind gleichzeitig eine hohe Erkennungsrate eeictren.
Nachdem prominente Merkmale im Bild von einem Bgimmsalgorithmus gefunden wurden, wird ein
Merkmalsraum erstellt und die gefundenen Merkmaigefiigt. Eine grof3e Anzahl von Detektoren, ahndehn
Merkmalsdetektoren im visuellen Cortex, Uberprifdan Merkmalsraum und aktivieren entsprechende
Wahrnehmungsreprasentationen, falls genlgend m#ediRepréasentation verknipfte Detektoren ihr Matkm
lokalisieren konnen. AnschlieRend kann diese Wdlmmgsreprasentation ins Bewusstsein eindringereured
Aktion auslosen, falls die Aufmerksamkeit des Agentauf sie gerichtet ist und falls sie eine bestienm
Aktivierungsschwelle Uiberschreitet.

Alle drei beschriebenen kognitiven Softwareagentgarhalten sich vergleichbar zu menschlichen
Versuchspersonen, und tun dies basierend auf deems&lodel und mit denselben Parametern. Dies erdiéht
Plausibilitat des LIDA-Modells und stéarkt seine ¥fpesen. AuRerdem zeigt es die vielseitige Einsekeit des
Modells, und seine Erklarungskraft. SchlieBlichnikadieses plausible und detaillierte Computermodell
menschlicher Kognition in Zukunft empirisch veriéibare Hypothesen und Behauptungen hervorbringen u
dadurch zu neuen Erkenntnissen in der Kognitiorsamischaft fihren.
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