
MASTERARBEIT

Titel der Masterarbeit

REMUS

-

A REstful Marketplace for Unified Services

Verfasser

Ralph Vigne, Bakk.rer.soc.oec. BA

angestrebter akademischer Grad

Diplom Ingenieur (Dipl.-Ing.)

Wien, 2011

Studienkennzahl lt. Studienblatt: A 066 926
Studienrichtung lt. Studienbuchblatt: Masterstudium Wirtschaftsinformatik
Betreuer: Univ.-Prof. Dipl.-Ing. Dr. techn. Erich Schikuta

Eidesstattliche Erklärung

Hiermit versichere ich, die vorliegende Arbeit selbstständig verfasst und keine anderen als
die angegebenen Quellen und Hilfsmittel benutzt sowie die Zitate deutlich kenntlich gemacht
zu haben.

Wien, den 15. Juni 2011

Unterschrift:

Ralph VIGNE

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Statement . 3

1.3 Justification . 4

1.4 Structure of the Thesis . 4

1.5 Definition of Terms . 6

2 Related Work 9

2.1 Marketplace/Repository . 9

2.2 Categorization of Workflow Adaption . 11

2.3 Similar Concepts . 12

3 Requirements and Architecture 15

3.1 System Analysis . 15

3.2 System Architecture . 21

4 Repository 29

4.1 Demonstrator: Application Domain ‘Cinema’ 31

4.2 Class Level . 31

4.3 Instance Level . 39

4.4 RESTful API . 41

5 Controlflow Description 53

5.1 Demonstrator: Class and Instance Level Operations 53

5.2 Context Elements . 55

5.3 Call Statement . 56

5.4 Manipulate Statement . 65

5.5 Choose - Alternative - Otherwise Statement 66

5.6 Groups and Conditions . 67

5.7 Loop Statement . 68

5.8 Parallel - Branch Statement . 68

5.9 Critical Statement . 69

6 Injection Service 71

6.1 Demonstrator: Service Injection . 71

6.2 Interface . 73

6.3 Injection Algorithm . 75

7 Injection Handler 87
7.1 Interface . 87
7.2 Algorithm . 91
7.3 Adapting the CPEE Activity Handler . 93

8 The Mobile Client - An Example Implementation 97
8.1 Architecture and Deployment . 98
8.2 Real World Example: Book Tickets for a Movie 103
8.3 Wallet . 103
8.4 Worklist . 107

9 Conclusion 113
9.1 Contributions . 113
9.2 Further research . 115
9.3 Lessons Learned . 115

A Abstract 129
A.1 English . 129
A.2 Deutsch . 130

B Curriculum Vitae 131

Chapter 1

Introduction

1.1 Motivation

Over the last decades outsourcing of certain tasks within a business process has become a
broadly used technique to allow companies to focus on their core businesses. Greaver [1, p.
4ff] extracted 20 reasons for this behavior by doing a survey over a broad sample of companies.
Out of these twenty, we1 name five principal reasons which were targeted in this thesis.

� Enhance effectiveness.

� Increase flexibility.

� Obtain new expertise and technology.

� Reduce investments and generate cash by transferring assets to provider.

� Turn fix costs into variable costs (pay-per-use).

Stricker et al. [2, p. 1] argued that efficient outsourcing and subcontracting still leads to
higher profits by “[. . .] letting others do what they do better and/or cheaper”. Schubert et
al. [3] made a more IT/Cloud focused analysis and stated that outsourcing allows companies
to . . .

� . . . gain more flexibility when reacting to external influences.

� . . . reduce the amount of capital needed to explore new business areas.

� . . . reduce the carbon footprint by using more efficient resources and improve their
workload.

Among other things these are the reasons why companies are organizing their businesses into
cross-organizational business processes and using workflow management systems (WfMS)
(see e.g. [4, 5, 6, 7]). Beyond WfMS, outsourcing and distribution also influences new
software development. Today’s enterprise application software (EAS) also needs to consider
distribution and interoperability aspects. Therefore a raising attention to the ‘Software as a

1Usage of Active Voice in this Thesis: In this thesis I use the “we” to express the active cooperation
within the research group “Workflow Systems and Technologies”, however this thesis has been solely created
by myself, and all unique contributions are clearly outlined in Section 9.1.

1

Service’ (SaaS) and ‘Service Oriented Architecture’ (SOA) approaches can be observed over
the last years.

Some companies developed business models focusing completely on providing services that
other companies may outsource and therefore started a new market. This business concept
origins in the idea of Portals (e.g. for booking a flight) and led to multi-layered cross-
organizational business workflows [8, 9]. eBusiness Grids were created to act as a market
place for such services. But latest investigations [3, p. 44ff] showed that these eBusiness
Grids are going to be superseded by SaaS Clouds, and therefore reaching their next level.
The main reasons for this according to Schubert et al. are:

� Cloud developments are driven by the industry instead of the scientific community and
therefore have a sustainable business model (see also [10, 11, 3]).

� Clouds are designed to be very scalable, therefore are more suitable for throughput
focused systems, and thus avoid availability problems.

� Participating service or resource vendors are allowed to keep their own interfaces be-
cause Clouds are designed to handle heterogeneity.

Jha et al. [11] further explain why it is necessary for a system, which is intended to act
as a market place for services, to provide two different kinds of services: (1) high level
services, which offer a more powerful service and aggregate the interfaces and combine the
execution of a number of (2) low level services for simpler usage. They further state that
multi-layered infrastructures can be realized better by using Clouds than Grids because of
their higher abstraction level.

Because target platforms of these markets shift from Grid to Cloud infrastructures the
need for new systems to utilize them is created. According to Schubert et al. [3, p. 45] the
development of such systems is one of today’s upcoming challenges. They identified one of
Europe’s main opportunities in the ‘Cloud movement’ in the further investigation of concepts
and systems for a ‘free market of IT services’ based on resources and services offered via
Cloud infrastructures on a global market.

Schubert et al. further states that one of the main characteristics of these markets is that the
costs are shifted from Capital Expenditure (CAPEX) to Operational Expenditure
(OPEX) and resulting in lowered entry and exit barriers. By shifting the costs to OPEX
the investment for entering a market is reduced which in turn lowers also possible losses
if the business fails. This leads to a higher number of participants and therefore to more
competition (see M. E. Porter [12] for economic details). Due to the lower enter and exit
barriers and high competition these markets are also high innovative resulting in many newly
developed ideas. An example for this relation is of course the many different ‘App Stores’
which emerged throughout the Web in the last few years. Two successful examples are the
stores from Apple [13, 14] and Google [15, 16]. Both benefit from their easy-to-use and
pay-on-demand strategy with low barriers.

Based on a literature study we identified that currently there is a big shift from Grids to
Clouds taking place (see e.g. [3, 11]). Therefore new systems and concepts are needed to
offer (IT) services and resources on a global market (e.g. [1, 2, 3, 8]). In order to
fulfill market requirements these new systems exploit advantages and new features/concepts
of Clouds.

2

While above we focused on outsourcing, which is a business-to-business (B2B) application,
we map the concept on business-to-consumer (B2C) applications. As mentioned by
Jha et al. [11] systems should provide services on different levels. In this thesis this concept
is extended by building business cases around services and offering them within application
domains. The vision is to create a system that provides different application domains (e.g.
Cinema tickets, Computing resources, . . .) and allow consumers to include them into their
own processes. The application domains contain services which are selected by the user at
runtime as they offer identical abstract functionality. The resulting interchangeability is equal
to market transparency and thus enhances competition between vendors within an application
domain and therefore leads to better service conditions for customers. It is further envisioned
to trade these application domains and business processes like other web services.
Similar to the mentioned App Stores (e.g. Apple, Google) anybody should be allowed to
create application domains, extend them with own and external services and offer them to
other users.

In order to proof the feasibility of the above described concepts a prototype implementation
consisting of two main parts has been created. First, the Repository which manages and
provides information about the application domains and services. It offers access via a simple
RESTful-API. Second, an Injection Service which inserts information into the users process
on-demand during its execution. In order to utilize the services in the Repository additionally
a smart phone application was developed.

1.2 Problem Statement

Today a lot of similar but heterogeneous services are provided over the web. In order to use
them in an interchangeable/arbitrary way and execute/provide them within Cloud infras-
tructures, the following problems have to be solved:

� Using services within a business process, without knowing the service interface, has to
be compensated by complex controlflows, which makes it difficult to comprehend
the original intend of the process. Further more maintenance (design-time) costs for
processes are directly related to the complexity, which additionally increases costs.

� Whenever services evolve, business process using them, have to be also changed. This
leads to very high business process maintenance costs for customers and to very com-
plex and expensive update strategies for service vendors and/or customers.

� In order to support vendor autonomy and support the reuse of existing services
when developing new business cases, it is beneficial to describe services in multiple-level
(abstract/concrete) as proposed by Jha et al. [11].

� When a lot of similar services are offered, a way to explore the differences between
them is needed. In order for the user to select particular services at run-time, services
have to expose a common set of properties to support the decision-making.

3

1.3 Justification

A strong economic interest in using Cloud infrastructures for outsourcing is stated in many
of today’s publications (e.g. [1, 2, 3, 8]).

One reason is that companies want to cooperate with other companies (outsource) to be
able to offer their products/services at predictable prices. But because cooperating with other
companies means that their business processes become cross-organizational and therefore
more complex, systems assisting execution and maintenance of theses processes are
needed.

It may also be in the interest of many companies to keep parts of their business processes
in private in order to protect a valuable business asset, i.e. process logic. Therefore
it is important that each vendor may decide on its own how much information about the
business process of a service is provided to its customers. Vendors can keep their autonomy
by providing an abstract description for their services. Thus when changing the concrete
service interface costumers are not affected as long as the abstract description is updated.

Because competition on a transparent market usually increases quality and decreases
prices (market equilibrium) a common marketplace for such services is desirable.

In this marketplace each vendor describes the offered service according to a common abstract
schema to make the services comparable for the customers. Based on this description
customers decide which services/vendors fit best for them. The motivation for this is to allow
customers process engines to decide automatically at run-time which service to use,
using the properties schemas and service descriptions of each offered service.

Typically whenever a service is used by a customers process engine, additional components
(i.e brokers, semantic matchers) are employed to match service calls to heterogeneous service
interfaces. In order to avoid this middle layer the approach presented in this thesis proposes
services to be described by a microflow, representing the protocol to interact with it, which
can be injected directly into the controlflows of customers processes. Doing so provides the
costumers process engine with all information needed to interact autonomously with the cho-
sen service(s), and therefore does not depend on any additional software components
or service.

The overall goal of this thesis is to show that the explicit use of concepts provided by
Cloud infrastructures like e.g. scalability, heterogeneity can lead to higher resource effi-
ciency, reliability and cost reduction.

1.4 Structure of the Thesis

So far we have argued why we have written this thesis by educing new trends and economic
interests in this field (Section 1.1). We continued with an explanation of what we contribute
to this field by naming problems addressed within this work (Section 1.2) and justify why
we intend to solve them (Section 1.3). We close this chapter with a Definition of Terms
(Section 1.5) to get a common understanding of the important concepts used within this
thesis.

4

In the next Chapter (Chapter 2) we give an overview about today’s publications and systems
similar to our implementation. Because our system consists of different components we
divided this chapter into different parts. The first part (Section 2.1) covers the Repository,
the second part (Section 2.2) shows different approaches related to Workflow Adaption
and the third part (Section 2.3) consists of a detailed discussion of two systems similar to
ours (namely ACE-flow and Adaptive Pegasus). We discuss several aspects of today’s
research and systems by extracting their basic ideas and compare them to our approach for
each component.

Chapter 3 focuses on educing the Requirements and the resulting Architecture for a sys-
tem meeting the goals derived in the Problem Statement (Section 1.2) and Related Work
(Chapter 2). We start with discussing our Analysis (Section 3.1) of each service/component
included in our system and relate it to requested features and concepts from above. After the
purpose of each service/component is cleared we combine them by defining the deployment of
and the interaction between these services/components. At the end of this section the overall
Architecture (Section 3.2) and all involved service/components of the system are defined.

Chapter 4 focus completely on the Repository for Services. At the beginning we further
detail the architecture of our Repository by introducing the included Resources and Levels.
In succession we show how they are interrelated. Next is the definition of an example (namely
the Cinemas Example) which we will use as a running example through out this whole
work (Section 4.1). Using always the same example allows us to explain each component
with familiar parameters and operations and therefore makes it easier to understand. Using
this example we start explaining what information is stored and provided at Class Level
(see Section 4.2). We discuss in detail what Class Level Operations, Schemas for Input
and Output Parameters, Templates, Properties and Service Schemas are and how they are
defined. This leads directly to the Instance Level (see Section 4.3) where we show what
information about a particular service is stored and how it is structured. An explanation of
the RESTful API (see Section 4.4) showing how to find resources and to maintain the data
finishes this chapter.

Chapter 5 is dedicated to the language we developed for our prototype implementation to
describe the different microflows provided by the Repository. We start introducing it with an
example for a class level microflow (Section 5.1.1) and an instance level microflow (Section
5.1.2), both related with the familiar Cinema example. Context elements are covered
in Section 5.2. A comprehensive discussion about the Call statement is given in Section
5.3. An excursus covering the syntax of a Call statement in CPEE syntax is given
in Section 5.3.4. The Manipulate, Choose - Alternative, Groups and Conditions,
Loops, Parallel - Branch and Critical statements are explained in the Sections 5.4 - 5.9.

Chapter 6 introduces the Injection Service we developed for our system. We start with a
step-by-step Example illustrating what happens during an injection in Section 6.1. After the
desired overall functionality is cleared we continue with explaining the implemented Interface
of the service in Section 6.2. A detailed discussion about the general Algorithm (Section 6.3)
and how and why Loops must be treated differently (Section 6.3.2) finishes this chapter. For
better understanding of the algorithm this chapter provides pseudo-code listings and XML
snippets additional to a comprehensive description of the included operations and elements.

Chapter 7 focuses on the component called Injection Handler. This component is intended
to coordinate injections for a WEE/CPEE instance. Whenever a call causes an injection it

5

registers itself at the Injection Handler using the Interface described in Section 7.1. We will
explain this interface in detail and cover every message which is sent to or received from it.
Next we introduction the Algorithm (Section 7.2) developed for this component to work
the way we need it to fit in our overall system. Finally we discuss what Adaptions to the
CPEE Activity Handler we made in Section 7.3 to support run-time service selection by
Injection Calls.

Last thing we show is an implementation of a Mobile Client to illustrate our concept
(Chapter 8). We start with describing the overall Architecture and Deployment of
the involved components in Section 8.1. This section further explains how and when all
components interact together. Next is to extend the familiar Cinemas example to make it
more usable for the real world (Section 8.2). A detailed discussion of the implemented Wallet
component is covered by Section 8.3. We explain how the user is able to define and store
personal preferences inside it. We finish this chapter with an explanation of the Worklist
(Section 8.4) we implemented for our client application. A description of its RESTful API
and the protocol it follows are the main parts of this section.

We finish with a Conclusion (Chapter 9) over this work. We will discuss what we Con-
tributed (Section 9.1) to this field by writing this thesis and what Future Research (Sec-
tion 9.2) will be. At the very end we recap about what (personal) lessons we have learned
over the time of writing this thesis (Section 9.3).

1.5 Definition of Terms

In this section we provide definitions about how we understand and use certain terms and
concepts in the context of this work to get a common understanding.

Lewis et al. stated ”We define business processes as a set of logically related tasks per-
formed to achieve a defined business outcome.” [17, p. 100] To the technical representation of
such a business process we will further refer to with workflow/controlflow (description).

A definition of Cloud we highly agree with is made by Schubert et al. [3]: ”[. . .], we can define
a ‘Cloud’ is an elastic execution environment of resources involving multiple stakeholders
and providing a metered service at multiple granularities for a specified level of quality (of
service).”

Heterogeneity is defined by the Oxford Dictionary [18] as ”diverse in character or content”
and therefore often used to describe the diversification of resources in Cloud infrastructures
(e.g. [3, 19, 20, 11]). In the context of this thesis we understand heterogeneity the same way
and use it to refer to diverse service interfaces (e.g. parameters and interaction protocols).

Fox et al. combined the understanding of business processes and services executed in a Cloud
environment and defined workflows in the Grid context as follows: ”The automation of
the processes, which involves the orchestration of a set of Grid services, agents and actors
that must be combined together to solve a problem or to define a new service.” [21, p. 2]

According to Greaver [1, p. 3] ”Outsourcing is the act of transferring some of an organiza-
tion’s recurring internal activities and decision rights to outside providers, as set forth in a
contract. [. . .] As a matter of practice, not only are the activities transferred, but the factors
of production and decisions right often are, too. Factors of production are the resources

6

that make the activities occur and include people, facilities, equipment technology, and other
assets. Decision rights are the responsibilities for making decisions over certain elements of
the activities transferred.” During the execution time of this business process the consumer
creates one virtual organization with each of the involved providers.

Virtual Organizations are a time-limited cooperation between one or more business part-
ners. These cooperations are built and dismantled dynamically and a reaction of the compa-
nies to rapidly evolving markets. In a virtual organization each business partner offers one
or more services (of his core business) to support the business process of its customer. We
based this definition on the one given by Grefen et al. [6]. They further reused their defi-
nition of virtual organizations to define workflow support in virtual organizations by
the means that the management systems in different organizations must be linked to manage
cross-organizational processes.

Software as a Service (SaaS) Clouds, according to Schubert et al. [3] are identified
by ”[. . .], offering implementations of specific business functions and business processes that
are provided with specific Cloud capabilities, i.e. they provide applications/services using a
Cloud infrastructure or platform, rather than providing Cloud features themselves.”

An inter-organizational workflow, according to Stricker et al. [2] is defined as a workflow
where ”[. . .] part of the work is executed outside the company’s boundaries.”

The term Microflow has its origin in the field of network protocols where Nichols et al. [22]
defined it as follows: ”A single instance of an application-to-application flow of packets which
is identified by source address, destination address, protocol id, and source port, destination
port (where applicable).” It was than redefined for Business Process management (BPM)
by Lambros et al. [23, p. 24]: ”Microflows can be used to implement operations of Web
services that require coordination of a set of business components. The microflow would
describe the sequence of actions to be taken to perform the business function provided by the
operation.” We differ from this definition insofar that we see a microflow as the way an offered
service or resource of a particular vendor can be used, allowing all kind of controlflow
structures instead of sequences only. Also is our definition of a microflow stated on a higher
abstraction level because we describe a piece of business logic/use case instead of a service
interface.

As third-party/external services we understand such services or resources that are offered
from an external vendor, traded via a market and used within a workflow process. Vendors
follow by the implementation of their service(s) the SaaS approach to make them easy-to-use
for their costumers.

We define an Injection as the extension/adaption of an existing program with parts provided
by third-party/external sources. Doing so at run-time allows to adapt the software dynam-
ically depending on its actual state. Based on this we use the term Microflow Injection
to describe the extension of a business process with microflows defining the interaction with
third-party/external services. Because we do this at run-time, this technique is strongly re-
lated to Adaptive Workflow Execution Engines as they allow to change the controlflow
during process execution.

7

Late Binding is defined by G. Joeris [24] as follows “The decision is taken at run-time,
which process definition of a task definition is used to perform a task (late binding).” We
therefore refer to this concept whenever the controlflow of a business process is extended at
run-time with a microflow.

Representational State Transfer (REST) introduced by Fielding [25] is an architectural
style that describes how a client and server communicate with each other and how information
will be provided. Summarized it is a HTTP-based communication where the client initiates
a request to a server which processes it and responds the result. Requests are generally built
around the transfer of representations of resources.

As an Application domain we see a number of services or resources which are capable to
achieve the same pre-defined goal. Each service or resource within an application domain
must be completely interchangeable for the consumer.

Whenever we refer to context elements/variable we address objects placed in the execution
context of a business process. They can be read and written by all activities in the controlflow
and also from the outside using the RESTful API.

8

Chapter 2

Related Work

In this section we discuss research related with this field to get a deeper understanding of the
concepts behind it. Further do we discuss already implemented systems and compare them
to our approach.

The first part deals with different concepts of service repositories/marketplaces. We give a
detailed discussion about the techniques used by these implementations and discuss them in
relation to our approach. The next part focuses on the categorization of adaptions performed
on workflow descriptions. We further discuss in which and why our approach fits into different
categories and what defines them. In the last part we discuss our approach in relation to
implementations using similar concepts as we do, namely ACE-flow [2] and Adaptive Pegasus
[26]. We summarize this comparison in Table 2.2 at the end of this chapter.

2.1 Marketplace/Repository

This section is also published in Vigne et al. [27].

A repository always manages metadata related to services. As pointed out in [28, 29] meta-
data management covers the following topics:

1. Distribution, uniformity of access.

2. Metadata should be accessible using service-oriented protocols.

3. Management of the metadata life-cycle.

4. Granular and uniform access control to metadata.

Comparing the above mentioned concepts the marketplace covers the topics 1, 2 and 4. As
described in this thesis, vendor maintained metadata (instance level) is available through the
RESTful API. A common, reliable schema for the metadata is accessible at class level. The
topic Management of metadata life-cycle is not covered by the marketplace. The client needs
to take care about this by itself, e.g. using the techniques associated with ATOM feeds.

Bernstein et al. [30] pointed out that a repository should store information about the de-
scription of objects and the location of objects. They further stated that the most important

9

aspect of a repository is a simple interface to interact with it. We came to the same con-
clusion and therefore provide a resource oriented and RESTful API. It allows customers to
request ATOM feeds, listing the provided resources and further to request the schemas and
microflows describing each resource.

Additionally Jha et al. [11] claimed that a system, which is intended to act as a marketplace
for services, must provide two different kinds of services: (1) high level services, which offer
a more powerful service and aggregate the interfaces and combine the execution of a number
of (2) low level services for simpler elaboration. The usage of high level services is typical
for Cloud computing scenarios. Our service marketplace closely resembles this by providing
class and instance level.

D
iscoveryG

roups

N
ested G

roups

Attributes

Brow
se Pattern

D
rill-D

ow
n Pattern

UDDI

Yes

Implicit

Yes

1

n

UDDI + OWL-S

Yes

Explicit

Yes

1

n

Marketplace

Yes

Explicit

Yes

1

m

Invocation Pattern

Yes Yes Yes

B
in

d
in

g

Interface U
nification Pattern

Focused Item
WSDL

Service

Client

WSDL

Service

Client/Server

abstract definition

Use-Case

Server
D
escription Language

Know
ledge About Item

 U
sage

Client Client Server

S
election

Attributes Semantics Usage

Based on

Table 2.1: Comparison: UDDI vs. UDDI +
OWL-S vs. The Repository

A common technique to explore services
provided over the web is UDDI [31]. In
UDDI it is possible to register services in
different categories depending on the sup-
ported business. Customers searching for
services can request three different types of
information about them:

White Pages: include vendor data
e.g. address, name, . . .

Yellow Pages: represent the indus-
trial categories using taxonomies like
SIC [32], NAICS [33], UNSPSC [34],
. . .

Green Pages: include technical infor-
mation about the service usage e.g.
SOAP interface [35], WSDL [36], . . .

But as stated by Blake et al. [37] most
of the resources consumed by UDDI are
used for message parsing and transmis-
sions. UDDI’s weakness is, that it is just
a flat list of services. Finding similar ser-
vices depends on semantic annotations on
the actual services. A detailed discussion
about the feasibility of UDDI in the con-
text of service repositories is given in Vigne
et al. [38].

Our approach also shares many goals with OWL-S [39]. OWL-S is used to bring semantic
annotations to UDDI. Instead of simple querying for service parameters, it allows for so-
phisticated matchmaking. It furthermore provides a process model that describes how to
use a service to achieve certain goals. It as well provides information for the actual execu-
tion. In Tab. 2.1 we compare the concepts of UDDI, UDDI extended with OWL-S and the
Marketplace.

All three concepts allow for service groups, whereas nested groups (tree structure) are only
implicit in UDDI (by creatively using additional parameters). All three techniques support

10

annotation of attributes to services. These attributes can be used when specifying a query.
The browse pattern refers to returning a compact service list without all the details. The
marketplace only differs from the other two solutions in the format of the returned data
(ATOM). The drill-down pattern refers to returning detailed information for actual ser-
vices. As the marketplace ensures the technical compatibility of all possible services, no
services have to be excluded for technical reasons. Thus it returns potentially more services
(n 6 m, see Tab. 2.1 for details). The invocation pattern is supported by all three solutions.
Service Selection holds the biggest conceptual difference between the three techniques. The
marketplace focuses on “usage” or “use cases” instead of services (functionality first, services
later), all services associated with a functionality fully support the use case. Interface uni-
fication means that different services with slightly different syntactic properties are to be
used. Whereas for UDDI this has to be ensured by the client, an OWL-S enabled repository
delivers information how a client may transform and invoke a service. For an example imple-
mentation of OWL-S see Srinivasan et al. [40]. With the marketplace this is not necessary,
as both the transformation and invocation is contained in the microflow. By knowledge
about the item usage we express that for the first two approaches information is returned
that has to be analyzed, before calling an actual service. As the marketplace is focused on
use cases, this step is not necessary.

2.2 Categorization of Workflow Adaption

Han et al. [41] defined several different categories for workflow adaptions. They identified
four different levels where adaptions can influence the workflow structure:

1. Domain: Adaption of a workflow system to changing business context.

2. Process: Model evolution and ad-hoc changes to model instances.

3. Resource: Adjustments at Components & Interfaces, Human resources, Data-related
adaption.

4. Infrastructure: System re-configuration.

Our approach performs adaptions at the second and the third level. Because we change ad-hoc
the binding of resources and tasks within a process (from a logical perspective), it is covered
by the third level (Resources). But because we see resources as a microflow describing how
to interact with them, our approach is also covered by the second level (Process) because
we ad-hoc change the controlflow description of an instance from a technical perspective.

They continue by identifying different mechanisms for adaptive workflow systems (see [41]
for details). According to their definition our approach is clearly in line with what they
called Open-point approach. They identify this type by the explicit definition of points
where changes may be performed. Because we deal with activities which dynamically
bind resources in form of microflows, resulting always in an adaption of the controlflow, they
represent these points.

11

2.3 Similar Concepts

The first system we discuss is introduced by Stricker et al. and named ACE-flow [2]. Similar
to our system ACE-flow is designed to allow the usage of external services/resources within a
business process and supports the late binding approach to allow service selection at run-time.

When in ACE-flow the execution engine requests a service of a particular type the so called
Trader System performs the negotiation and selection of a particular service without in-
cluding the execution engine. To do so the execution engine must provide all parameters
needed to select and execute the requested service into this request. After a service is se-
lected the Trader System also initiates the execution of the selected service. When the vendor
service finished its execution it returns the results to the Trader system which forwards it to
the execution engine.

ACE-flow handles a number of things differently than we do. In the following we will explain
the advantages/disadvantages of our approach compared to ACE-flow.

In ACE-flow the negotiation with the different service vendors is kept outside the busi-
ness process and performed autonomously by the Trader System. This keeps the process
structure more simple than ours, where the microflow covering the negotiation with a ser-
vice/resource is injected into the business process for each of them separately. On the other
hand, from the perspective of the execution engine and process mining, it is more comprehen-
sive to have all these microflows at hand for later analysis. Same holds for service execution.
When the Trader System of ACE-flow requests the execution of a service, no information
about its execution or interface is included into the business process. Although there are
log files, the information is not as easy accessible as it is when the information is included
into the controlflow of the business process. An advantage of such a Trader System, if all
information for the service call is included in the request, is, that it can select services
where the interfaces fit to the available information (See also Martin et al. [39] for
binding services with UDDI/OWL-S). For example, if one parameter is missing the Trader
System can select services which will also work without this particular parameter. In our
approach we require each service to have a similar interface or is at least capable of trans-
forming the provided data to fit for its own interface. This makes our approach a little less
flexible than ACE-flow. The major advantage of our system is that, in contrast to ACE-flow,
we do not need a component working in the middle like ACE-flow’s Trader System.
When the workflow execution requests information from our Repository it receives all mi-
croflows of each fitting service. After this the workflow execution engine is able to negotiate
with and execute external services on its own. We prefer this approach because of its sim-
pler system architecture and the lower resource usage/dependency. In our loosely-coupled
system each component is stateless, allowing to make best use of the principles coming with
Cloud infrastructures. An other major difference is that in our system each instance of a
business process is allowed to use its own service/component to select the best service at
run-time. In ACE-flow these functionality is included directly into the Trader System which
makes it (a) less flexible and/or (b) extends the parameter set with parameters related to the
preferences-function. We argue that these parameters should not be included into an actual
service request as they are not directly related to it. Also does using own services to perform
this selection allows to react faster and more efficient to external influences and to adjust the
preferences-function for each process instance individually.

12

The second system we discuss is Pegasus. This system is also intended to execute workflow
processes and use dynamic resources during the execution. As Lee et al. [26] explains, it can
use any kind of registry to locate available resources. In the example implementation they
use the Globus Replica Location Service (RLS) [42] as a service/resource repository and
the Directed Acyclic Graph Manager (DAGMan) [43] as execution engine. The concept
of Pegasus is that before the execution of a workflow process starts, the abstract workflow
(high-level description) is compiled into a concrete workflow. During this compilation
requested services/resources in the abstract workflow are mapped to virtual resources
from the RLS. After the compilation the concrete workflow is executed by the DAGMan.
During the execution the DAGMan delegates tasks to defined virtual services/resources in
RLS which are executed by fitting available services/resources at the time. Because the RLS
includes a Jobmanager, it has the ability to allocate all available services/resources at a time
and dynamically change them to provide the optimal execution of the delegated task. After
the services/resources finished execution the results are given back to the RLS which passes
them on to the DAGMan. What Lee et al. [26] did by extending Pegasus to Adaptive
Pegasus is that they observe the queuing time of the different virtual resources in the RLS
(using the Jobmanager), and if there is a significant change they request a new compilation
from Pegasus. As Pegasus takes the updated information into account this leads to a better
overall performance of the workflow. Using this technique they gain a similar behavior to
native late binding approaches, without loosing the advantage of the workflow optimization.

Similar to ACE-flow, Pegasus does not include any information about the actual services/re-
sources into the workflow description. What Pegasus makes different to ACE-flow and our
approach is, that it optimizes the description of the virtual resources and the con-
crete workflow by analyzing the whole abstract workflow to gain a better overall perfor-
mance. While our approach binds services/resources exactly at the time they are needed
(late binding), Pegasus binds them at compile time (early binding), although they are virtual
at this time. Its concept to by-pass the problems coming with early binding is to perform
re-compilations if there are significant changes in the infrastructure observed. As Pegasus
is designed for scientific applications using Grid infrastructures, which are usually
more predictable (Jobmanager provides information about queuing time) and homogeneous
(resource clusters) than services/resources offered via a market this approach aims for a differ-
ent goal than ours in this specific domain. But similar to ACE-flow, an additional component
(RLS/Jobmanager) to the execution engine is needed to execute the external service/resource
calls. So Pegasus is, like ACE-flow, different at this point from our approach.

In Table 2.2 we summarize the differences and similarities of our approach to the two intro-
duced systems.

13

ACE-Flow Adaptive Pegasus Marketplace

Interface Unification
(Interface Transformation)

Service Selection
(Scope)

Parameter Complexity

Service Binding
(Binding Approach)

Service
Execution/Interaction

Target Environment
(Main Application)

NO
(Trader System

performs semantic match)

NO
(RLS covers interface

transformation)

YES
(Interface transformation

included in Microflow)

Service Parameters +
Selection Parameters

Service Parameters Service Parameters

Trader System
(System)

Jobmanager
(System)

Selection Service
(Process/Instance)

Indirect
(early)

Indirect
(early, simulating late

using virtual resources)

Direct
(late)

Trader System RLS Execution Engine

Workflow Optimization NO YES NO

Intermediary Components
during Service Execution

Trader System
RLS,

Jobmanager NONE

Clouds
(Business

Workflows)

Grids
(Scientific
Workflows)

Clouds
(Business

Workflows)

Table 2.2: Comparison: ACE-Flow - Adaptive Pegasus - Marketplace

14

Chapter 3

Requirements and Architecture

In this section we educe the requirements for our prototype implementation. To meet the
goals and concepts defined so far (see Section 1.2 and 2 for details) we discuss (a) the con-
sidered functionality in the overall architecture and (b) what each involved software compo-
nent/service provides. In the end we define how the components must interact to provide the
requested overall functionality to proof our concept.

3.1 System Analysis

First: How to make use of the concepts provided by Cloud infrastructures? Scalability
and reliability aspects are among others in the center of such systems. We try to meet
scalability aspects by a Service Oriented Architecture (SOA) design. Loosely coupled
components acting together as one system allow to distribute and replicate them easily over
different resources. To build such a system we need to implement handler components
which take care of the coordination and distribution of certain other components. Using such
handler components allows additionally to switch to a different component if one fails. This
fits also for reliability issues of our system. Because of the chosen SOA design we identify
the following components our system must consist of:

1. a workflow execution engine (WEE/CPEE, see Section 3.1.1)

2. a repository of services (see Chapter 4)

3. a component coordinating and delegating workflow adaptions (see Chapter 7)

4. a component performing the actual workflow adaption (see Chapter 6)

A detailed description of the interaction between these components and how we are going to
deploy them is given in Section 3.2.

3.1.1 The Workflow Execution Engine (WEE)

We decided to use the WEE [44, 45] as our target execution engine because of its lightweight
design and good customizability. It was designed for Cloud infrastructures, which makes
it suitable for our system. The capability to handle controlflow changes during run-time

15

allows us to inject the services microflows directly into the controlflow and therefore de-
creases design-time process complexity and increases flexibility for service vendors.
To achieve our goal we needed to customize the Activity Handler of the WEE, which is in
charge for the actual service requests, to enable a few things additionally to default supported
REST calls.

� Enable SOAP (Simple Service Access Protocol) calls by creating the envelopes and
extracting the result.

� Registers the WEE instance for workflow adaptions at the according component and
stops process execution.

� Provide all necessary information about the execution instance to enable a proper in-
jection of microflows.

� Extend its return value/object with a status code indicating how the execution of
an activity finished. This is similar to the HTTP-status codes (see HTTP Protocol
definition [46]).

Details about these adaptions are given in Section 7.3.

3.1.2 The Repository of Services

In our system the Repository is used to store and organize services for later use within business
processes. To filter services depending on their properties, it additionally has to provide a way
to annotate them. The heterogeneous environment of Clouds must be considered when the
language used for service description is designed. It further supports easy client application
development by providing additional necessary information for them via a RESTful API.
Finally a way to maintain the stored information must be provided.

Organizational Aspects and Service Filtering

As already elaborated by Blake et al. [37] most resources are consumed by message parsing
and transmission when using UDDI [31]. They also show a strong performance decrease for
repositories with a high rate of changes because they need to find the differences since the
last request. We use ATOM feeds [47] to provide organizational information in a RESTful
way using the URI to differ between them. We assume server-side version control is not
necessary, because ATOM feeds include information about the last update of entries, it is
well supported to implement a version control on the client side.

According to Jha et al. [11] a multi-layered architecture is needed which we will achieve by
organizing the repository in different layers. In respect to this demand and out of
usability and flexibility reasons we define the following requirements:

� A layer representing an application domain, which we further refer to as class level,
providing the domain interface is needed. The interface contains . . .

– . . . a properties schema for the included services.

– . . . at least one operation that can be executed. Each is described by a microflow
including calls to actual service operations or class level operations within the same

16

application domain. By supporting the aggregation of class level operations we
can easily create operations with different granularity.

– . . . service schemas a vendor can validate his description against. Each of these
schemas contains a list of properties needed to be filled and operations needed to
be provided.

� A layer where the actual services are defined. We further refer to it as instance level.
At this level each service defines . . .

– . . . service operations defining all transitions defined in the Workflow Activity
Model (WAMO) [48, 49] using microflows including actual service calls. Each
operation used within any class level operation of the application domain has to
be defined this way.

– . . . values for all defined properties in the schema provided at the according class
level.

� For better granularity within an application domain we define one more layer placed
between the other two. We are further referring to this layer as subclass level. Its
purpose is purely organizational and provides no more technical information about its
services than already provided by its class level. It allows vendors to narrow down their
set of services and increase query accuracy for customers leading to less bandwidth
consumption.

All member services must fulfill the scheme of the application domain in means of providing
the operations (including parameters) used within the class level operations and defined
properties. To avoid inconsistencies between the schema for the domain/services and to
reduce the maintaining effort, a way to generate them automatically on demand is needed.
Further must be guaranteed that each service is validated against the according schema when
it is registered or updated. Doing so ensures that only valid data is provided by the Repository
and all services within the same application domain can be used arbitrary.

A schema for service filtering is proposed by Sirin et al. [50, p. 44] which states three
different levels:

1. The service profile describes what functionality a particular service provides (e.g.
yellow-pages of UDDI). We realize this with the already introduced application domains
and properties in the Repository.

2. The process model describes how this functionality is provided and how much control
the customer of the service has in terms of granularity (e.g. the process model of
BPEL4WS [51]). This is realized with the class and instance level microflows provided
by the Repository.

3. The grounding defines the protocol an agent needs to support when interacting with
the requested service (e.g. WSDL [52] mapping). As part of the microflow each call to
a service provides information about the requested protocol, but it is up to the WEE
to implement it. Therefore we came up with the already described extensions for the
WEE’s Activity Handler.

We further need to consider a way of selecting services depending on their properties. As
we excluded SLA negotiation explicitly from this prototype implementation, we perform the

17

selection during the actual injection and/or within an explicit service. To do so, a way to
define service constraints within the business process must be provided. These constraints
should be capable to refer to fix-values or context elements and compare them using any
supported operation with the properties (only leave nodes) given in a Xpath-styled syntax
[53].

Heterogeneity Aspects: Parameter Transformations and Microflows

Because Cloud infrastructures include heterogeneous resources we must provide a way to
describe services and how to interact with them in a unified way. First we split services into
two parts: (1) their interfaces containing in- and output parameters and (2) the microflows
describing the way to interact with them. This concept is also implemented by UDDI/OWL-S
(see Martin et al. [39] and Section 2.1 for details).

Our idea is that similar services may need and produce similar data but they may have
different names, types and formats and some may need less and other more information than
provided by the according business process. We face this problem by defining one common
interface for each application domain named class interface. This interface should include
enough information to fit for most of the available services.

If the class interface is given:

� A service expects some parameters included in the class interface under different names.
Therefore we must provide a way to rename parameters.

� A service expects some parameters included in the class interface but with a differ-
ent data type. Therefore we must provide a way to define and change types of
parameters.

� A service expects some parameters included in the class interface in a different format
e.g. a date string in UTC format instead of ISO 8601. Therefore we must provide a
way to define and change parameter formats.

� A service expects parameters that are not included in the class interface. Therefore
we must support to define a service call using different parameters than the class
interface. If a service expects less it must be possible to use only a subset of the
class interface for the actual call. If a service expects the parameters/information
provided in a different form e.g. a date string is provided but separate day, month
and year strings are expected, it must be supported to split or aggregate them. Last if
a service expects more information then provided, it must be possible to use fix (static)
values or the value of a context element from its own scope for undefined parameters.

Providing this also allows to react to changes of a particular service interface. Service
vendors can freely change their interfaces the way they want to as long as they provide a de-
scription how to transform it back to the class interface. A system providing this parameter
transformation satisfies most of the heterogeneity aspects according to interfaces.

Further do we need to solve heterogeneity issues according to the services microflow.
Because interacting with services may be very complex (microflows) and it could be that a
vendor realizes a given functionality using more then one service we need . . .

18

� . . . a general way to describe how to use them.

� . . . to consider that using or providing services and their microflows is always a security
issue. As stated by Grefen et al. [6] protecting valuable knowledge of a business
process is very important. Therefore a system must allow service providers to confine
the granularity of their exposed microflows (e.g. offering only one proxy service instead
of offering all necessary services and parameter transformations directly) and allow
customers to decide individually if a provided controlflow meets their security policy
(see e.g. Alam et al. [54] for process security issues and approaches).

� . . . to make intense use of the capabilities provided by adaptive WEEs. The possibility
to simply inject the services microflow into the original business process should be
exploited.

Because our system targets highly innovative markets we further support the rapid creation
of new class level operations. It therefore has to provide a way to reuse operations at different
levels in more than one class level operation.

Injecting the services microflows directly into the original process meets a lot of the flexibility
and some security aspects demanded by such a system.

Finally we provide a way for each vendor to define its own microflows for different transitions
within a business process. As defined by Eder et al. [49] in their WAMO model, microflows
for the following transitions are needed: (1) Execute, (2) Compensate, (3) Undo, (4) Redo,
(5) Suspend and (6) Abort.

Even if repair strategies are beyond the focus of this thesis we want to consider it for
our prototype implementation because they are tightly connected to this field.

Client Application Development

To allow easy usage of the Repository within a client application we need to provide . . .

� . . . support for annotating parameters with multi-lingual captions.

� . . . a schema for input and output parameters, aggregated overall included activities,
by the API.

� . . . an API which is easy to understand and use.

� . . . schemas to validate the generated data against.

Using this data allows client applications to automatically create UIs for different appli-
cation domains. Further is it easier for developers to implement applications if the system
sticks to widely supported standards e.g. ATOM-feeds [47], XML Schemas [55], XPath [53].

Maintenance

An API to maintain information stored in the Repository has to be implemented. Because
we want the interface to be very simple we decided to implement a CRUD (Create, Read,
Update and Delete) interface [25] which is often used together with RESTful applications.
This further implies that only HTTP parameters, methods and status codes are used to

19

communicate with the different services/resources within the Repository. Providing this
methods on all three levels of the repository allows to completely maintain the data stored
in the Repository.

3.1.3 Injection Handler

To make full use of the scalability and reliability concepts provided by Clouds, our system
needs a component that delegates the actual microflow injections to different Injection Ser-
vices. Further is it possible that e.g. in a parallel branch of a business process two or more
injections needed to be performed at the same time. The Injection Handler component han-
dles all pending injections for a process instance and ensures that they are performed the right
way. It will do this by delegating each pending injection including all needed information
e.g. position, controlflow description to any available Injection Services. After all injections
are performed correctly it has to update the controlflow description of the process instance
and restart its execution. Additionally is the notification concept provided by the WEE used
to begin its job only when it is in the right state e.g. the execution of the process must be
properly stopped to perform any injections.

3.1.4 Injection Service

The component which is in charge for the actual injection must also be designed in a way
to allow the use of Cloud concepts. Designing it as a RESTful service will have the desired
effect as RESTful components are stateless and therefore easy redistributable (reliability
and scalability demands) within Cloud infrastructures. Further does the targeted WEE also
provide a RESTful API (see Stuermer [45] for details) and therefore fit together perfectly.

The Injection Service will perform the actual microflow injection when it is delegated to it
by the Injection Handler. Whenever an injection is performed, the following things must be
considered:

� The injection algorithm of the service needs to differ between class level and instance
level injections.

� Whenever an injection is performed context elements and a microflow are included.
Context elements are identified and referenced by their name and instructions included
in the microflow by their ID. Therefore the algorithm must ensure that no naming/ID
conflicts result of an injection.

� Context elements must be created before the injected controlflow begins and removed
after it has ended.

� Class level injections have to take care about calls to external services which also ma-
nipulate context elements, e.g. the “Call - Manipulate Statement” described in Section
6.3.1.

� Instance level injections should inject each service in its own branch of a parallel state-
ment to produce an efficient controlflow. Further has it to store results and properties
of injected services for later use in a context element which allows to relate them to its
original service.

20

� If constraints are defined within the original call statement they have to be evaluated
during an instance level injection.

� It has to be able to resolve injections placed within a loop.

Because we allow each repository to have its own syntax/language, we need a way to trans-
form this syntax/language into the WEEs controlflow description syntax. The broad sup-
port within different programming languages and platforms makes XSL stylesheet transforma-
tions [56] the right decision. Further is the block-based structure (XML) of the WEE/CPEE’s
controlflow description easy to parse using XSLT .

3.2 System Architecture

This section gives an explanation of our system architecture. By explaining stepwise what
happens when and where during an injection (see Figure 3.1) we show how the components
interact and what information is exchanged. Further will we discuss how we deploy the
components and what goal we achieve by it. Details about the components interfaces and
their algorithm are given in the according chapters, later in this thesis.

3.2.1 Excursus: The CPEE

While this system was implemented and the thesis written, the WEE (implemented by G.
Stuermer) was extended with a RESTful interface and notification model. This extended
version is named Cloud Process Execution Engine (CPEE). The CPEE is available
at http://www.pri.univie.ac.at/workgroups/wee/. We give a short outline about the
provided API and notification model for the purpose of understanding how our system utilizes
it.

� The API includes, along other functions, a function to . . .

– . . . read/update the controlflow of the process execution.

– . . . read/update the actual position of the process execution.

– . . . create/read/update/delete data elements and endpoints.

– . . . start/stop the execution of the process.

� Further does a notification model allow components, providing a RESTful interface, to
subscribe for different events. Among others we name three events which are used by
our system:

– Syncing After is sent whenever the execution of an activity is finished. This event
is part of a voting system provided by the CPEE which allows each registered
component to vote if the execution of the process instance should continue by
responding true or false.

– Stopped is sent whenever the execution of a process instance is stopped.

– Description Changed is sent whenever the process description of an instance is
changed. This event is used by our client implementation described in Chapter 8.

21

http://www.pri.univie.ac.at/workgroups/wee/

Whenever an activity has to be executed or the WEE needs to interact with outside compo-
nents it uses a so called Handlerwrapper. We focus only on the part used to execute activities
and therefore refer to it as Activity Handler. In Chapter 7.3 we explain in details the way
we adapted it to enable the here described behavior.

For further information about the CPEE check for upcoming publications from J. Mangler
et al. about Cloud based process execution.

3.2.2 Deployment

As stated above scalability and reliability are two of the main concepts of Cloud infras-
tructures. We already made clear that our targeted WEE was designed to be distribute over
such one. Therefore we do not give any details about how it is done and just assume that it
is (for details see [44, 45]). Because our system focus only on one process instance at a time
we see only one instance (expressed by a single cloud) of the WEE/CPEE in Figure 3.1.
Further provides our prototype system only one instance of an Injection Handler which is
defined within the call statement. Like for the WEE, that’s why only one Injection Handler is
shown. In an evolved version of our prototype implementation will be more than one Injection
Handler for the whole system and be selected during the execution by the Activity Han-
dler. We will do so to gain the requested reliability and scalability effects. In this version we
did not implement this for the purpose of simplicity and the strong correlation to the target
system [57]. All other components can be freely distributed and replicated (expressed by a
bunch of clouds) within a Cloud infrastructure to fulfill scalability (throughput) demands.
The Injection Handler can select whatever Injection Service it decides to use at runtime.
Further can each Injection Service use any of the available Repositories. As we will explain
later (see Section 5.3.3 for details) is the Repository already defined by an URI within the
business process, but the Repository itself is because of its RESTful design easily deployable
over any number of servers using e.g. Apache’s Load Balancer [58].

With this SOA based architecture and the strict use of HTTP-based protocols our system
allows to be distributed over many different resources. Also that’s why many of today’s
distribution and load balancing strategies can be used. For a detailed discussion about
different scaling and distribution strategies see Teo and Ayani [57]. Further is it possible to
allocate resources in time of high workload to reach the desired throughput. Also the other
way around by deallocating resources in times of low workload for cost reduction works too.

3.2.3 The Interaction Between the Components

As explained in the previous section our system consists of loosely-coupled services interacting
together (SOA design). This section shows how the involved services/components interact
together when an injection needs to be performed. To understand our system it is important
to know when which service interacts with others and who they are.

We do so by giving a step by step example of what happens when an activity is supposed to
use services from the Repository, causing an injection when executed by the CPEE instance
(see Figure 3.1). As said above, whenever an activity needs to be executed, the CPEE
instance uses the Activity Handler. That’s why this is the origin of our example.

22

CPEE

c

c
m

c
c

c
m

c

c

c
m

c

c

c
m

c

c

c
m

c

c

c
m

c

Repository

Injection Services Injection Handler

Services
(REST, Soap)

AH

c

c
i

c

m

1

2

3

5

4

Figure 3.1: Architectural Outline

Step One: The Activity
Handler registers the CPEE
instance for an injection at the
Injection Handler. For details
see Figure 3.2.

Step Two: When the CPEE
instance is in the right state
the Injection Handler dele-
gates each pending injection
to any available Injection Ser-
vice. For details see Figure
3.3.

Step Three: The Injection
Service looks up the Repos-
itory to get the needed in-
formation to perform the re-
quested injection. For details
see Figure 3.4.

Step Four: When all injec-
tions are finished correctly the
Injection Service updates the controlflow and execution positions of the CPEE instance. For
details see Figure 3.5.

Step Five: When the CPEE instance continues with the execution of the process the newly
injected microflows, describing how to interact with the former requested services, are exe-
cuted.

Step One: Preparing an Injection

Whenever the Activity Handler (AH) executes an activity supposed to use services from a
repository, the AH and the Injection Handler (IH) interact as follows (see Figure 3.2).

(1) The AH registers the CPEE instance for an injection at the actual execution position
using the IH at the provided URI2.

(1a) The IH registers itself for the Syncing After event at the requested CPEE
instance (if it not already is). The CPEE instance responds a notification-key and
a secret for message encryption if the registration is accepted.

After the CPEE instance accepted the registration the IH responds to the AH that
it takes care of the requested injection. Now the AH interrupts the execution of this

2In our prototype implementation we provide the particular URI of the IH within each activity statement.
In respect to Cloud concepts the particular URI should be chosen at run-time by the AH or some other
resource managing service/component of the infrastructure. If there are more then one IH used for one CPEE
instance, they must consist of merging strategies to guarantee that the changes from each of them are in the
final version of the controlflow.

23

activity immediately. If a manipulate-block is defined by the activity it will not be
executed here3.

Injection Handler CPEE
Instance AH

11a

2

33a

2a Delete Syncing After

2b Register Stopped

Delete Stopped

Registration Request

Registration Response

Syncing After Notification

Execution Response

Stopped Notification

Register Syncing After

Figure 3.2: Step One: Interaction between Ac-
tivity Handler and Injection Handler

(2) The CPEE instance informs the
IH whenever an activity is finished.
It awaits a response if it is allowed to
continue because of the prior registra-
tion for this event.

(2a) The IH removes the regis-
tration for the Syncing After
event if the causing activity was
registered for an injection.

(2b) If the causing activity is
registered at the IH, it registers
itself for the Stopped event at
the CPEE instance. Again the
CPEE instance responds a key
and a secret for message encryp-
tion.

After this two requests are done, it re-
sponds false to the notification caus-
ing the CPEE instance to stop the
execution as soon as possible. If the
causing activity is not registered at
the IH it responds true allowing the
CPEE instance to continue with its
execution.

(3) The CPEE instance notifies the IH about the state change because of the prior
registration for this event. If the new state is Stopped the IH starts performing the
injections for the instance.

(3a) The IH removes the registration for the Stopped event.

Now the IH delegates the actual injection to any Injection Services as described in the next
section.

Step Two: Collecting Instance Information and Delegating Injections

Now the instance is in the state Stopped which means that no activity is executed at the
moment and changes to data elements, endpoints and the controlflow can be performed. The
Injection Handler (IH) processes now the injection queue, where all registered injections
for a CPEE instance are stored, by delegating them to Injection Services (IS) (see Figure
3.3).

3In Section 6.3 we give a detailed discussion why this behavior is important for our approach.

24

Injection Service Injection Handler CPEE - Instance

1

3

2

Controlflow

Execution Positions

Delegation

Figure 3.3: Step Two: Collecting Instance Informa-
tion and Delegating Injections

(1) The IH start with re-
questing the processes con-
trolflow from the CPEE in-
stance. This description is
used to apply all changes
caused by service injection.

(2) The IH requests the
actual execution posi-
tions from the CPEE
instance. Because of par-
allel branches there can be
more than one execution
position at a time within a
CPEE instance. To ensure
that no position is lost or
wrong they also need to
be considered during the
injection.

(3) The IH processes one pending injection after the other by delegating them to an
IS (Step Three - Section 3.2.3). The response consists of the adapted controlflow and
updated execution positions after the particular injection was performed.

How the results are used and transferred into the CPEE instance is explained below in Section
“Step Four: Updating and Restarting the Instance” (3.2.3). We continue with describing
what components are involved during the actual injection.

Step Three: Injection

The Injection Service (IS) is in charge to perform the actual injection delegated to it at Step
Two. To do this properly it needs information from the CPEE instance, the Repository and
the Injection Handler (IH) (see Figure 3.4).

(1) First the Endpoint of the activity causing the injection is requested from the CPEE
instance by the IS. Because in the controlflow only symbolic names for endpoints and
data elements are provided, their actual value must be requested from the CPEE instance
whenever such one is needed.

(2) The IS requests the microflows provided at the endpoint received in (1). If it is an
injection at class Level the according microflow is requested. If it is supposed to inject
instance level microflows the whole sub-tree, starting at the provided endpoint, is parsed
and the description of each service is requested separately.

(3) If constraints, defined in the controlflow, are pointing to context elements instead
of fix values the IS must additionally request them from the CPEE instance. Again every
context element is requested separately.

(4) The IS requests the actual execution positions from the IH to ensure that each
position is set correctly after the injection. It uses the IH instead of the CPEE instance

25

Repository CPEE - Instance Injection HandlerInjection Service

Endpoint1

Delegation Request

Delegation Response

Microflow(s) 2

Context Elements3

Execution Positions4

Figure 3.4: Step Three: Injection

because the execution positions provided by the CPEE instance may be outdated because
of prior performed injections.

After the injection is finished the resulting controlflow and the updated execution positions
are responded to the IH.

Step Four: Updating and Restarting the Instance

After the last injection in the queue was performed, the final version of the controlflow
(including all injected microflows) is responded. Further is it now decided where the updated
execution positions for the re-start of the CPEE instance are. Before the execution of the
initial process can be continued by the CPEE instance the Injection Handler (IH) needs to
update it (see Figure 3.5).

(1) The IH replaces the initial controlflow of the CPEE instance with the one derived
by the injections.

(2) The IH replaces the initial execution positions within the controlflow of the CPEE
instance with the updated ones for the updated controlflow.

(3) The IH sends a Start request to the CPEE instance triggering the resumption of
the process execution.

26

Injection Handler CPEE - Instance

1

2

Controlflow

Execution Positions

3 Restart

Figure 3.5: Step Four: Updating and Restarting the CPEE instance

Step Five: Using Injected Services

After all injections are done the original controlflow is now extended with information about
how to interact with the external services requested from the Repository. Using this technique
allows the CPEE instance to continue with the execution of the process without needing any
further components than the external services them self. The Activity Handler of the CPEE
instance takes care of the communication with the services in a RESTful or SOAP-based way
and stores the results within context elements for further use.

27

Chapter 4

Repository

Jha et al. [11] proposed that a repository for services should consist of two layers. While they
focused mainly on functional aspects of a repository we additionally considered organizational
aspects resulting in the additional level(s) in the middle (they could be more than one). We
use them to group services with common properties together, similar to the classification levels
(Segment, Family, Class, . . .) of the UNSPSC [34] code used by UDDI. Further do they allow
to consider only a subtree of the Repository and therefore save bandwidth and computing
time when exploring it. Further do we provide a RESTful API to use and maintain the
Repository. We will explain how we implemented it in the following sections of this chapter.

An earlier version of this repository was already published by Vigne et al. [38]. Although
our vision has evolved over time it still shares some main principles with this prior version.
Further will some concepts and ideas of the Repository be published in Vigne et al. [27].

Classname

operations

Operationname

templates

Call

Subclassname

Instancename

Class Level Instance LevelSubclass LevelRoot

service-schema

/

properties

input output

Dynamic Resource

Static Resource

(1:n)

(1:1)

Figure 4.1: Structure of the Repository

Figure 4.1 shows the three levels and the resources provided by each of them. We further
explain that the Repository is organized in a strictly hierarchical manner. The idea is that
the class level defines how the interfaces of its instance level must look like. This concept
allows us to use services within an application domain in an arbitrary and interchangeable

29

way. We will explain later why the subclass level is not relevant for the interfaces and its
intention.

We implemented this structure using directories in a file system. Each resource is represented
by a directory including its sub-resources which again are directories. Class level resources
and instance level resources include also a file with definitions in their directory. The content
of these two files is explained in the next two sections.

Our reasons for using the file system instead of a database are mainly portability and
performance. Because the anatomy of data we are dealing with is very small, it can be
handled quite well by a file system and a web server. Both were initially intended to serve
files in an efficient way. Additionally, databases are not available at all platforms we target
with our design (mobile devices) or will have different interfaces and therefore decreasing
portability. As we explained when describing the architecture of our system and the benefits
of the SOA design, are we intending to use built-in functionality of Web Servers [58] (e.g.
load balancing).

In Figure 4.1 the following resources are illustrated semi-transparent to indicate that they
are inherited from their parent resource:

A list of operations and the according class level microflows are provided on each of
the three layers. We decided to do so in order to increase flexibility of the Repository.
If the Repository is distributed over different servers with different URIs it may be hard
to find the parent of a resource because our system provides only data about its child
resources but not about its parent resources (for details see the ATOM definition [47]).
But if each layer provides a list with the defined class level operations this is not a
problem anymore.

Templates are the second data provided on more than one level. As they are part of
the class level microflows they are provided as sub-resources of the operation they are
defined in (see Figure 4.1). We use templates to support the possibility of defining
multiple interfaces (target platforms and languages) to interact with the user. We only
support their definition at class level to prevent service vendors to collect additional
data from the user not included in the interface. We see instance level microflows as
completely autonomous without the need of any additional data than provided by the
interface or created/defined within the microflow.

As information about operations and templates are defined at class level we do not want to
give a detailed explanation here and refer to Section 4.2 where the definition and structure
of them is explained in detail.

The reason why we left out the subclass level in our above explanations is that this level
has a purely organizational purpose and does not add any further definitions to its successors.
Although properties can be defined (see Section 4.2.4) we wanted an additional possibility
to divide services into separate partitions. We only show one subclass level but our system
supports to define more than one. This way the granularity inside the Repository can be
adjusted.

30

4.1 Demonstrator: Application Domain ‘Cinema’

search search & book book

call class
search

select
show

call class
book

perform
search

perform
book

Figure 4.2: BPMN: Operations Defined at Application
Domain

We define an application domain
named Cinemas. This domain is
intended to include services of cine-
mas providing operations to search
for a movie and to book tickets for
their shows. Further do we pro-
vide an additional operation named
search & book at class level. It
searches for a movie over all reg-
istered services, let the user select
a particular show and finally book
tickets for the selected show. There-
fore we must aggregate the search

operations of all cinemas within the
provided path of the Repository, call
an external resource for the selection
and finally call the book operation
of the selected cinema. Figure 4.2
illustrates this interrelation between
the operations using BPMN [59].

Further do we define that each
cinema must provide a number of
properties for their services. They
have to include a block named ad-
dress and an other one named ven-
dor. Address must include data for
street, zip-code, city and state. This allows costumers to search for a e.g. a movie in a par-
ticular city or a zip code range using property constraints. The vendor block include contact
data about the vendor like its name, phone number email and homepage URI.

We explain how to define the application domain (class level) in order to achieve this func-
tionality and provide snippets of its definition file over different Listings. We will also discuss
what data (structure) a cinema must provide (instance level) to register for it.

4.2 Class Level

At class level we define class level operations (including templates) using microflows and
the properties schema for the application domain. Based on these microflows and the
properties schema a schema for services and input and output parameter schemas
are created. Each service (instance level) within this class must fulfill the provided schemas.

31

4.2.1 Class Level Operations

We already cleared that our system provides the definition for various class level operations
for each class. A List of all Provided Operations is provided for their further exploration.
We decided to use the XML standard for this purpose.

Listing 4.1 shows an example of operations defined for a class. Each operation is represented
by an element named operation. These elements provide the operation name using the
attribute name which is used whenever the operation is referenced. This is (a) when the
definition of the operation is requested and (b) when the operation is referenced by a call
statement. The attribute short provides a short description of the operation.

LISTING 4.1: Generated List of All Provided Operations for Example 4.1

1 <ope ra t i on s xmlns=”http :// r e s cue . org /ns/domain/0.2”>
2 <operat i on name=”search ” shor t=”search f o r a v a l i a b l e shows”/>
3 <operat i on name=”search and book ” shor t=”search f o r shows , s e l e c t show and

book t i c k e t s ”/>
4 <operat i on name=”book” shor t=”book t i c k e t s f o r a g iven show and cinema”/>
5 </operat ions>

Its intent is to allow customers to get a quick idea of the provided operations of an application
domain with one request. It should be noted that this list is generated on demand by parsing
the definition file of the application domain and therefore must not be maintained explicitly.

Each of these class level operations represent a microflow describing how the instance level
operations are used. They make use of different operations provided by the registered ser-
vices within the application domain. Using these service operations allows to create new
functionality (based on the functionality provided by the services) and offer it as one service
operation. Because Conallen defined that ”Web applications implement business logic, and
its use changes the state of the business (as captured by system).” [60, p. 1] we state that
these microflows are capable to provide similar functionality like web applications in terms
of offering complex interrelated service functionality.

Operations can only be defined within an operations element (see Listing 4.2 line 1) and are
identified by an operation element. Each operation defines its name and a short description
of its functionality using attributes. Because the operation name is also used as an ID it
must be unique within an application domain. Further is these data used to generate the
List of all Provided Operations (see Listing 4.1). Lines 2, 11 and 31 are examples for
the definition of an operation.

Each operation may define its own context elements including context-variables (line 12)
and endpoints (line 15). Context elements must be defined before the execute block. A
detailed explanation about the definition of context elements is given in Section 5.2. The
injection algorithm (see Section 6.3 about prefixing IDs) ensures that references to context
elements within a microflow stay valid and do not conflict with other context elements.

The injection-ready microflow has to be defined within the execute element (see line 19).
The microflow itself is defined using all the controlflow statements described in Chapter 5.
Finally the namespace attribute of an operation element ensures that only valid controlflow
is provided (details about XML Namespaces can be found at [61]).

32

LISTING 4.2: Definition of Class Level Operations for Example 4.1

1 <operat ions>
2 <operat i on name=”search ” shor t=”search f o r a v a l i a b l e shows” xmlns =”...”>
3 <execute>
4 . . .
5 <c a l l id=”per fo rm search ” endpoint=”re sour ce path ” s e r v i c e−operat i on=”

search”>
6 . . .
7 </c a l l >
8 . . .
9 </execute>

10 </operat ion>
11 <operat i on name=”search and book ” shor t=”search f o r shows , s e l e c t show and

book t i c k e t s ” xmlns =”...”>
12 <context−v a r i a b l e s>
13 . . .
14 </context−v a r i a b l e s>
15 <endpoints>
16 . . .
17 </endpoints>
18 . . .
19 <execute>
20 <c a l l id=” c a l l f i n d ” endpoint=”re sourc e path ” s e r v i c e−operat i on=”search

”>
21 . . .
22 </c a l l >
23 <c a l l id=”p e r f o r m s e l e c t ” endpoint=” s e l e c t o r s e r v i c e ” endpoint−type=”

out s id e ” http−method=”post ” i n f o=”true ” de fau l t−tp l−name=”mobile ”
de fau l t−tp l−lang=”en”>

24 . . .
25 </c a l l >
26 <c a l l id=”c a l l b o o k ” endpoint=”se l e c t ed c in ema ” s e r v i c e−operat i on=”book

”>
27 . . .
28 </c a l l >
29 </execute>
30 </operat ion>
31 <operat i on name=”book” shor t=”book t i c k e t s f o r a g iven show and cinema”

xmlns =”...”>
32 <execute>
33 <c a l l id=”perform book ” endpoint=”re sour ce path ” s e r v i c e−operat i on=”

book”>
34 . . .
35 </c a l l >
36 </execute>
37 </operat ion>
38 </operat ions>

For a better understanding of how the data within the Repository is interrelated we give a
short explanation of the three different types of calls at this level. For a detailed discussion
about these statement see Section 5.3.3.

1. A call to an other class level operation is shown at line 20 and 26. This allows to
build even more class level operations by reusing already defined ones and combining
them with other calls within a new microflow. Using this type of calls allows us to
realize the method search & book from the cinema example. More details about how
this kind of calls is handled during an injection is given in Section 6.3.

33

2. A call to an instance level operation (for details see Section 4.3) uses an operation
defined at instance level (see line 5 and 33). These operations can be identified by
defining a call referring to them self4. In our example these are the operations named
search and book.

3. A call to an external resource is shown in line 23. These can address any resources
providing a RESTful or SOAP interface. We use this one to realize the user selection
in our example. These operations are identified by a different set of attributes than the
other two. We will discuss them later in Section 5.3.

4.2.2 Input and Output Parameters Schema

Each operation defines a set of parameters and endpoints taken as input and a set of param-
eters it responds as output. These sets of parameters represent the exact data each service
at instance level can expect to receive and hast to deliver. How this data is handled within
microflows is explained in Chapter 5.

Because each parameter can be referenced more than one time, their names have to be unique
within one class level microflow. This allows to use input parameters for different instance
level operation calls and to assign output parameters in different branches of the microflow.
The designer has to ensure that each output parameter has a valid value at the end of it by
design. Further must the schema generation algorithm consider that we support more than
one class and instance level operation calls within one microflow. This may lead to definitions
where output parameters of an operation call are reused as input for successive operation calls
and therefore the input parameter must not be given by the referring call statement and the
output parameter is, in our definition, not part of the output schema.

We decided to use the Relax NG (RNG) schema standard [62] to describe these interfaces. We
support XML Schema data types [55] for parameter type definitions. Further is the creation
of complex data structure, by nesting elements as defined by RNG schemas, supported.

LISTING 4.3: Generated Input Parameter Schema for Example 4.1

1 <rng : grammar xmlns : datatypeLibrary = ” . . . ” xmlns : rng =”...”>
2 <rng : s t a r t>
3 <rng : element xmlns : rng = ” . . . ” name=”a d d i t i o n a l e n d p o i n t s”>
4 <rng : element xmlns : d = ” . . . ” name=” s e l e c t o r s e r v i c e ”>
5 <d : capt ion xml : lang=”en”>Used at c a l l (s) : p e r f o r m s e l e c t </d : caption>
6 </rng : element>
7 </rng : element>
8 <rng : element xmlns : rng = ” . . . ” name=”input−message”>
9 <rng : element xmlns : rng = ” . . . ” xmlns : d = ” . . . ” name=” t i t l e ”>

10 <d : capt ion xml : lang=”en”>Movie t i t l e </d : caption>
11 <d : capt ion xml : lang=”de”>F i l m t i t e l </d : caption>
12 <rng : data type=”s t r i n g ”/>
13 </rng : element>
14 <rng : element xmlns : rng = ” . . . ” xmlns : d = ” . . . ” name=”date”>
15 <d : capt ion xml : lang=”en”>Date</d : caption>
16 <d : capt ion xml : lang=”de”>Datum</d : caption>
17 <rng : data type=”date”/>
18 </rng : element>

4While we decided to do so, to gain better syntactical flexibility when defining new operations, we gave
up the support for recursions within microflows at this level.

34

19 </rng : element>
20 </rng : s t a r t>
21 </rng : grammar>

Listing 4.3 gives an example how such a schema for input parameters may look like. It
consists mainly of two parts:

Additional Endpoints defined within the microflow are listed first (lines 3 - 7: element
additional endpoints). As explained in Section 5.3 we allow the definition of end-
points referring to input parameters by adding the attribute endpoint-type=‘outside’
to the statement. This allows the user to use his own service during the execution.
An example for that could be that within a microflow a decision has to be made and
therefore a call to a service of the user is defined e.g. selecting the particular show in
our example. Providing the endpoint as a parameter allows to change it from call to
call and therefore increases flexibility and re-usability of the operations. Of course this
data is only generated for input schemas.

Parameters are the second part of the schema (lines 8 - 19). Depending on what it
represents this element is named input-message or output-message. Each parameter
consists of a data type defined within the element data (line 12 and 17) and supporting
XML Schema data types and one or more caption elements (line 10,11 and 15,16). The
caption elements are representing data for generic UI generation in different languages
specified by the lang attribute. The schema can be used to (a) validate data sent to
and received from the class level operations and therefore acting as a guideline how to
use them in other applications and (b) generating UIs either for data input from the
user or presenting the results to the user in client applications.

We derive this schema by parsing the microflow of the requested operation. If the input
schema is requested all parameters and endpoints defined as input are collected. Also we
need to collect all parameters defined as output to build the differential by removing each
input that is also named as an output. We do not consider the order of the parameters
because we already defined that their names must be unique within one class level operation.
At last the resulting set of input parameters and additional endpoints is transformed into
an RNG schema. It works similar when the output schema is requested. The difference
is that additional endpoints are not considered this time and that the input parameters are
stripped from the set of output parameters if their names match. The applied algorithm is
illustrated in pseudo-code at Listing 4.4.

LISTING 4.4: Algorithm for Parameter Generation in Pseudo-Code

1 # C o l l e c t i n g input data
2 ADD a l l inputs r e f e r r i n g to a message−parameter to $ inputs
3 ADD a l l v a r i a b l e s r e f e r r i n g to an input−parameter to $ inputs
4
5 # C o l l e c t i n g output data
6 ADD a l l outputs r e f e r r i n g to a message−parameter to $outputs
7 ADD a l l v a r i a b l e s r e f e r r i n g to an output−parameter to $outputs
8
9 IF r e q u e s t e d r e s o u r c e == ’ input ’

10 EACH $ input IN $ inputs
11 DELETE $ input IF $ input i s in $output
12 END
13
14 # C o l l e c t i n g a d d i t i o n a l endpoints

35

15 ADD a l l endpoints with ’ type = outs ide ’ to $ inputs
16 RETURN $ inputs
17 ELSE
18 EACH $output IN $outputs
19 DELETE $output IF $output i s in $ input
20 END
21 RETURN $outputs
22 END

4.2.3 Templates

We already explained that calls to external resources are allowed within class level microflows.
We support two different kinds of such resources:

Data centered: Interfaces of such resources are implemented to compute the parameter
definition (see Section 4.2.2) of the activity in the microflow.

UI centered: These resources only provide functionality to display pre-defined user
interfaces and do not (necessarily) take any care about the parameters defined in the
interface.

Data centered resources can operate using only the parameter definition of the call state-
ment. These resources compute them either in an automated way to create the response
like classical services do or build a customized UI for the user like e.g. rich workflow client
implementations. All necessary information for UI building is included in the parameter def-
inition in form of their type, occurrence and multilingual captions (details see Section 5.3.1).
Implementing such resources includes the advantage that data and UI information can be
used to built a rich and customized UI fitting perfectly into the existing environment. The
disadvantage of these resources is that whenever the interface of a call statement is changed
the implementation of the resource may need to be adapted too.

UI centered resources, as we understand them, know how to use the information provided
within templates. They do not care about the parameter definition of the call statement be-
cause all this information is included in the provided (UI) template. One example for such a
resource is a web browser using XSLT to transform the parameters into HTML. Because the
resulting HTML-form also includes ranges for valid values of the response parameters there
is no need for the browser to care about them. The advantage of using this implementation
style is that there is no need to adapt the resource when an interface is changed, given that
the templates are changed synchronous to the interface. Disadvantages of such resources are
that the layout and design of the UI may not fit well into an existing software environment.
Although our system provides a way to define more than one template for a call statement,
differing between target device and language, it still may be suboptimal for a some environ-
ments. Also has the customer no influence on the definition of these templates because they
are defined at class level (application domain). For an example of such an implementation
see the Worklist introduced in Section 8.4.

LISTING 4.5: Structure of a Template Definition

1 <templates>
2 <x s l t name=”mobile ” xml : lang=”en”>
3 <x s l : s t y l e s h e e t v e r s i on =”1.0” xmlns : x s l =”...”>
4 <x s l : output method=”html”/>

36

5 <x s l : template match=”/”>
6 <html>
7 <head>
8 <s c r i p t type=”text / j a v a s c r i p t ” s r c =”...”/>
9 <s c r i p t type=”text / j a v a s c r i p t”>

10 func t i on s e n d s e l e c t i o n (data , c a l l b a c k) {
11 . . .
12 }
13 </s c r i p t >
14 </head>
15 <body>
16 <t ab l e border=”1”>
17 <x s l : apply−templates s e l e c t =”//show”/>
18 </table>
19 </body>
20 </html>
21 </x s l : template>
22
23 <x s l : template match=”//show”>
24 <tr><td><tab le>
25 <tr><td>Cinema:</td><td><x s l : value−o f s e l e c t =”c inema ur i”/></td></tr>
26 . . .
27 <tr><td co l span=”2”><x s l : e lement name=”input”>
28 <x s l : a t t r i b u t e name=”type”>button</x s l : a t t r i bu t e>
29 <x s l : a t t r i b u t e name=”value”>Se l e c t </x s l : a t t r i bu t e>
30 <x s l : a t t r i b u t e name=”onCl ick”>JavaScr ipt : s e n d s e l e c t i o n ({
31 ’ show id ’ : ’< x s l : value−o f s e l e c t =”show id ”/> ’ ,
32 . . .
33 } , ’< x s l : value−o f s e l e c t =”$ ins tance−u r i ”/>/ c a l l b a c k s/<x s l : value−o f

s e l e c t =”$ca l lback−id ”/> ’) ;
34 </x s l : a t t r i bu t e>
35 </x s l : element></td></tr>
36 </table></td></tr>
37 </x s l : template>
38 </x s l : s t y l e s h e e t >
39 </xs l t>
40
41 <x s l t name=”mobile ” xml : lang=”de”>
42 . . .
43 </xs l t>
44 </templates>

A template has always to be defined within the call statement it is used for (see Listing 4.5).
Its declaration must be inside an templates element which is used to group many them
together. Within this element more template elements are allowed. Each template element
represents one template for this call statement. They define a name attribute and a lang
attribute. The combination of these two must be unique within a call because it acts as
an ID for the templates. Within a template element the whole instruction set of XSLT is
allowed. The input parameters of the call statement are provided as XSLT variables and
can therefore be used directly within the stylesheet.

In the example (Section 4.1) we define such templates in the operation search & book to let
the user select one show, tickets should be booked for (see Listing 4.5). We use templates to
interact with the user in our client implementation.

37

4.2.4 Properties Schema

Figure 4.1 also shows properties as a resource of the class level. Our idea when implementing
them was to provide a way to query services within a class during the execution of the
controlflow and allow the controlflow designer to define that only services which fulfill some
properties should be considered in the execution. Therefore we needed a way to define
which properties must be provided by all services. We faced this problem with an RNG
schema which defines what properties are provided. This schema allows to define exactly
what information can be used for constraint elements (details see Section 5.3.2) and what
information vendors must provide. The definition of them must be within a properties

element at the beginning of the definition file. An example for such an definition is given in
Listing 4.6.

LISTING 4.6: Properties Schema Provided for Example 4.1

1 <rng : grammar xmlns : datatypeLibrary = ” . . . ” xmlns : rng =”...”>
2 <rng : s t a r t>
3 <p r o p e r t i e s xmlns = ” . . . ” xmlns : rng = ” . . . ” xmlns : d=”...”>
4 <rng : element name=”address”>
5 <d : capt ion xml : lang=”en”>Address</d : caption>
6 <d : capt ion xml : lang=”de”>Adresse</d : caption>
7 <rng : element name=”s t r e e t ”>
8 <d : capt ion xml : lang=”en”>Street </d : caption>
9 <d : capt ion xml : lang=”de”>Strasze </d : caption>

10 <rng : data type=”s t r i n g ”/>
11 </rng : element>
12 . . .
13 </rng : element>
14 </p rope r t i e s>
15 </rng : s t a r t>
16 </rng : grammar>

Whenever a service registers for a class it is validated that the properties section of the
service definition fulfills this schema. Because the whole set of instructions provided by RNG
is allowed, complex structures can be defined too.

4.2.5 Service Schema

Each application domain provides a schema it validates all member services against. Second is
this schema a guideline helping new vendors to describe their service the way it is expected by
the Repository. We already mentioned before that this schema is generated by the Repository
by transforming the class level definitions. The schema consists mainly of three parts.

A properties schema: This is the same schema as provided by the properties schema
(Listing 4.6). The reason why this is provided here a second time is to have a complete
scheme to validate service descriptions (see Section 4.3) against. How the properties
schema is mixed into the service schema is shown in listing 4.7 at the lines 4 - 10.

List of service operations: This schema is generated by parsing all class level microflows
and checking each call statement if it refers to an instance level operation. If it does
it is added to the schema if it has not already been. Using this algorithm educes only
the service (instance level) operations needed, independent from how often they are
referenced or how complex the class level operations are interrelated. The result is a

38

list with operations which must at least be defined at instance level. To support the
set of transitions defined by Eder et al. [49] we expect each service to give a separate
microflow for each of them. All transitions are listed between line 13 - 18 in Listing 4.7.
As expressed by the ref element, each microflow can use the whole set of controlflow
statements. (see Chapter 5 for details).

Controlflow-code: In order to provide a complete schema to validate instance level
description against, the controlflow schema needs to be included. We dedicated the
whole Chapter 5 to it and will therefore not discuss it here.

LISTING 4.7: Generated Service Schema for Example 4.1
1 <grammar xmlns = ” . . . ” xmlns : s = ” . . . ” xmlns : f low = ” . . . ” xmlns : rng = ” . . . ” xmlns :

domain = ” . . . ” datatypeLibrary =”...”>
2 <s ta r t>
3 <element name=”s : s e r v i c e−d e s c r i p t i o n”>
4 <element name=”s : p r o p e r t i e s”>
5 <element name=”s : address”>
6 <element name=”s : s t r e e t ”>
7 <rng : data xmlns = ” . . . ” type=”s t r i n g ”/>
8 </element>
9 . . .

10 </element>
11 <element name=”s : ope ra t i on s”>
12 <element name=”s : search”>
13 <element name=”s : execute”>< r e f name=”cont ro l f l ow−code”/></element>
14 <element name=”s : compensate”>< r e f name=”cont ro l f l ow−code”/></

element>
15 <element name=”s : undo”>< r e f name=”cont ro l f l ow−code”/></element>
16 <element name=”s : redo”>< r e f name=”cont ro l f l ow−code”/></element>
17 <element name=”s : suspend”>< r e f name=”cont ro l f l ow−code”/></element>
18 <element name=”s : abort”>< r e f name=”cont ro l f l ow−code”/></element>
19 </element>
20 <element name=”s : book”>
21 . . .
22 </element>
23 </element>
24 </element>
25 </s ta r t>
26 <d e f i n e name=”cont ro l f l ow−code”>
27 . . .
28 </de f ine>
29 </grammar>

4.3 Instance Level

Now that we have cleared what data is defined at class level and how the instance level
schema is generated we discuss how instance level descriptions are defined. The intend of
this layer is to describe the interaction with a particular service and its properties in a way
to make it usable for our system.

As explained in the section above the instance level definitions must validate against a schema
provided at class level (see Section 4.2.5 for details). This schema includes the instance level
operations and properties each service must provide. Listing 4.8 shows the structure of such
an instance level description generated for the example introduced in Section 4.1.

39

LISTING 4.8: Definition of a Service (Instance Level) for Example 4.1

1 <?xml ve r s i on =”1.0”?>
2
3 <s e r v i c e−d e s c r i p t i o n xmlns=”http :// r e s cue . org /ns/ s e r v i c e /0 .2”
4 xmlns : x s l=”http ://www. w3 . org /1999/XSL/Transform”>
5 <p r o p e r t i e s xmlns=”http :// r e s cue . org /ns/ p r o p e r t i e s /0.2”>
6 <adress>
7 <s t r e e t >Ignaz−Kooeck S t r a s s e 1</ s t r e e t >
8 . . .
9 </adress>

10 . . .
11 </p rope r t i e s>
12 <ope ra t i on s xmlns=”http :// r e s cue . org /ns/ c o n t r o l f l o w /0.2”>
13 <search>
14 <endpoints>
15 . . .
16 </endpoints>
17 <context−v a r i a b l e s>
18 . . .
19 </context−v a r i a b l e s>
20 <execute>
21 . . .
22 </execute>
23 <compensate>
24 . . .
25 <compensate/>
26 <undo>
27 . . .
28 <undo/>
29 <redo>
30 . . .
31 <redo/>
32 <suspend>
33 . . .
34 <suspend/>
35 <abort>
36 . . .
37 <abort/>
38 </search>
39 <book>
40 . . .
41 </book>
42 </operat ions>
43 </s e r v i c e−d e s c r i p t i o n>

Lines 5 - 11 define the properties of the service. According to the provided schema they
must be placed within an properties element. The structure (RNG) and its data (XML
Schema data types) as defined at class level, are instanced here by each service. It is important
that our system ensures that only valid data is provided because it may be later referenced
by constraints in the customers business process (see Section 5.3.2).

The second block that must be provided are the instance level operations (lines 12 -43).
It includes one operation block for each instance level operation referenced within any class
level microflow (e.g. line 13 and 39). Within the definition of an instance level operation it
is allowed to define context elements used within the following microflows. Context elements

40

include endpoints and context-variables5. They can be referenced by their name what
is the reason why each name must be unique within its block. After the context elements,
all microflows used for different service transitions are defined (lines 20 - 37). The
transitions defined by Eder et al. [49] are namely: (1) execute, (2) compensate, (3) undo,
(4) redo, (5) suspend and (6) abort. During our injection we use only the microflow defined
within the execute element. Microflows defined within the other transition elements may be
used by e.g. an external repair services to set the actual service back into a valid state again.

Each of this instance level microflows may use the whole set of controlflow instructions (see
Chapter 5). At this level all calls are of the type external resource because here the WEE
interacts directly with the resources/services provided by the vendor.

4.4 RESTful API

This section focuses on the API provided by the Repository. First the APIs implemented
functionality to request data about application domains and services is explained. Second we
discuss the APIs functionality to maintain these data. Both APIs are designed in a strictly
RESTful way and therefore using only HTTP-methods, HTTP-parameters and HTTP-status
codes. Resources are requested using URIs and query parameters. All interaction with it
is designed in a completely stateless way meaning that no further request of a resource
influences the following or is influenced by the prior one. Before we explain how to interact
with the Repository in details we give a short overview about the techniques used by this
implementation.

We already mentioned above that we sticked to the CRUD-methods (Create, Read, Update,
Delete) for the design of the API. The HTTP-methods related to them are:

POST to create resources within the Repository.

GET to request resources from the Repository.

PUT to update resources within the Repository.

DELETE to delete resources from the Repository.

These methods are implemented by resources identified by URIs. As we already explained
in Figure 4.1 we differ between dynamic and static resources. A dynamic resource has no
structural predefined name. It is just defined that some resources at a given level represent
a particular class. Further must each resource of this class provide the same predefined
functionality. Only thing that is not predefined is the name which is why we refer to them
as dynamic resources. The second type are the static resources. For this kind of resources
everything is predefined. It is exactly defined where these resources are, how they are named
and what functionality they provide. In the following section we will give examples referring
to resources within the Repository.

To avoid misunderstandings we define our notation right here. We begin with defining repo:

uri as a symbol for the URI of the Repositories root resource. Whenever we refer to
a dynamic resource we will use curly-brackets to indicate that the name is only symbolic.

5The context elements are kind of global for the transitions. We argue that for an arbitrary use of the
services, each transition must be executable with the same set of data.

41

repo:uri
repo:uri

E.g. when we refer to the List of Operations from any class we target a resources like this
repo:uri/{class}/operations. /{class} is the symbol for any class within the Repository
starting at repo:uri. Figure 4.1 shows that each class resource provides a sub-resource named
/operations providing a list with operations defined for the particular resource targeted by
repo:uri/{class}.

Out of all HTTP-status codes [46] the Repository implements only a subset. In the
following we give a short explanation of the ones used within the implementation.

200 OK: Indicates that everything worked as expected. Our implementation provides no
further information about what exactly happened. It could be the response for e.g. a
data request or a resource update.

201 Created: Indicates that a new resource was created successfully. It is responded
when a HTTP POST-request was successfully executed to create a resource e.g. a class,
a subclass or an instance.

404 Resource not Found: Indicates that the requested resource was not found. This
happens when (a) the URI points to resources not included in the resource-tree or (b)
when a schema is requested but the data for generating it was not found e.g. properties
schema or the input parameter schemas for a class level operation which is not defined.

409 Conflict: Indicates that the requested operation could not be executed because of a
conflict with IDs. The Repository responds it when a new resource should be created
or an existing one should be renamed with/to a name that is already used by an other
resource at the requested level.

410 Gone: Indicates that the requested resource is no longer available at this Repository
and that no re-direct information is defined. This HTTP-status code is often used by
feed-libraries to keep their local data up-to-date. We use it to allow clients implementing
a caching mechanism for a subset of data and to keep them up-to-date. The Repository
responds it when the URI has the correct format but the resource data could not be
found.

415 Unsupported Media Type: Indicates that the requested operation is not per-
formed because the supplied data did not validate. The Repository responds this when-
ever a resource should be created or updated and the supplied data did not validate
against the according schema.

500 Internal Server Error: Indicates that something went wrong. This should not be
responded by the Repository but if it happens it is embarrassing because something
went awfully wrong in our implementation.

HTTP supports two different types of parameters which can be either query parameters or
body parameters (see HTTP/1.1: Protocol Parameters [63] for details). In our implemen-
tation we use query parameters if the data is short. Whenever a potential large piece of data
must be sent to the Repository e.g. a class or instance description, body parameters of the
mime-type text/xml are used.

Figure 4.3 gives an overview about the supported functionality by each resource of the Repos-
itory. It shows what HTTP-method and HTTP-parameter combination is needed for their
execution and what response can be expected.

42

repo:uri/{class}/operations
/{class}
repo:uri
/operations
repo:uri/{class}

Call

Class Instance

Subclass

Operation

operations

Get Input Schema
HTTP-Method:
Parameters:
Response:

GET
input
input-schema

Get Output Schema
HTTP-Method:
Parameters:
Response:

GET
output
output-schema

Get Operation Microflow
HTTP-Method:
Parameters:
Response:

GET
none
description

Get List of Subclasses
HTTP-Method:
Parameters:
Response:

GET
none
ATOM-feed

Create Subclass
HTTP-Method:
Parameters:
Response:

POST
subgroup-name
Status: 201

Get Properties
HTTP-Method:
Parameters:
Response:

GET
properties
schema

Get Service Schema
HTTP-Method:
Parameters:
Response:

GET
service-schema
schema

Rename Class
HTTP-Method:
Parameters:
Response:

PUT
new-name
Status: 200

Delete Class
HTTP-Method:
Parameters:
Response:

DELETE
none
Status: 200

Get Templates
HTTP-Method:
Parameters:
Response:

GET
none
XSLT

Get List of Instances
HTTP-Method:
Parameters:
Response:

GET
none
ATOM-feed

Create Instance
HTTP-Method:
Parameters:
Response:

POST
name,description
Status: 201

Rename Subclass
HTTP-Method:
Parameters:
Response:

PUT
new-name
Status: 200

Delete Subclass
HTTP-Method:
Parameters:
Response:

DELETE
none
Status: 200

Get Instance Description
HTTP-Method:
Parameters:
Response:

GET
none
description

Update Instance
HTTP-Method:
Parameters:
Response:

PUT
description
Status: 201

Rename Instance
HTTP-Method:
Parameters:
Response:

PUT
new-name
Status: 200

Delete Instance
HTTP-Method:
Parameters:
Response:

DELETE
none
Status: 200

Get List of Operations
HTTP-Method:
Parameters:
Response:

GET
none
XML

HTTP - Client

Repository

root-node

Get List of Classes
HTTP-Method:
Parameters:
Response:

GET
none
ATOM-feed

Create Class
HTTP-Method:
Parameters:
Response:

POST
name,description
Status: 201

Figure 4.3: RESTful API of the Repository

43

4.4.1 Finding Resources

The Repository provides lists of Contained Sub-Resources. These are responded at the
root-node, Class and Subclass resources (see Figure 4.3) to a HTTP GET request with no
parameters.

We give some examples how the URIs, where this information is provided at, may look like.
We assume that the Repository holds a class named Cinemas which itself holds three sub-
classes named Arthouse, Multiplex and Drive-In. Further is the root-node of our Repository
accessible at repo:uri.

1. A list of all provided classes can be received by making an HTTP GET-request at
repo:uri.

2. A list of all subclasses of the class Cinemas is responded to a HTTP GET-request at
repo:uri/Cinemas.

3. A list of all services within the subclass Arthouse is the response to a HTTP GET-
request at repo:uri/Cinemas/Arthouse.

ATOM-feeds allow a number of attributes and elements helping subscribers to filter and
manage information (for details see Atom: The standard in syndication [47]) which come
in handy when developing a client application for our Repository. Further do we find a
wide support within today’s programming languages and web browsers for these feeds what
also benefits client development. These are the two main reasons why we decided to use
ATOM-feeds for our implementation.

A stripped example how such an ATOM-feed, provided at class level by the Repository and
therefore representing a list of subclasses, could look like is given in the listing below (Listing
4.9). We do not use all of the supported elements of an ATOM-feed and will therefore list
only the one we actually used below.

title: In our implementation this element provides the URI of the requested resource.

updated: Provides the date when the data within this resource was last changed6.

generator: Provides the root-node URI of the Repository.

id: As an unique ID for the provided feed we again use the Repository URI extended with
the path to the requested resource.

link: Is used by browsers to identify the kind of data they are dealing with. This is
similar to the mime-type attribute of HTTP-parameters. In this case it is applica-
tion/atom+xml. See Listing 4.9 line 6 for an example.

entry: Each represents one child resource (lines 16 - 24 in Listing 4.9). Each one of them
consists of the following elements:

title: This element represents the name of the referenced resource.

6Information about the last change of data can be very helpful to implement caching techniques within
client applications. We explained above that we provide no version control within the Repository. Compared
to UDDI we therefore save computing resources and bandwidth (as explained by Blake et al. [37]) but support
similar functionality in client applications making use of this attribute.

44

repo:uri
repo:uri
repo:uri/Cinemas
repo:uri/Cinemas/Arthouse

author: Supports a lot of elements but we only use the name element to name the
creator of the referenced element.

id: Again we use the URI of the referenced resource as an unique ID.

link: The URI where further information about the referenced resource can be re-
quested and its name.

updated: The date when data within the referenced resource or the element itself
was last changed.

LISTING 4.9: ATOM-feed Representing List of Classes

1 <f e ed xmlns=”http ://www. w3 . org /2005/Atom”>
2 <t i t l e >R e s o u r c e l i s t at repo : u r i /Cinemas</ t i t l e >
3 <updated>2010−09−12T22:16:33+02:00</ updated>
4 <generato r u r i=”repo : u r i”>RESCUE</generator>
5 <id>repo : u r i /Cinemas/</id>
6 < l i n k type=”a p p l i c a t i o n /atom+xml” r e l =” s e l f ” h r e f=”repo : u r i /Cinemas/”/>
7 <schema>
8 <operat i on name=”search ” h r e f=”repo : u r i /Cinemas/ ope ra t i on s / search”>
9 <message type=”input ” h r e f=”repo : u r i /Cinemas/ ope ra t i on s / search ? input”/>

10 <message type=”output ” h r e f=”repo : u r i /Cinemas/ ope ra t i on s / search ? output
”/>

11 </operat ion>
12 . . .
13 <p r o p e r t i e s h r e f=”repo : u r i /Cinemas? p r o p e r t i e s ”/>
14 <s e r v i c e h r e f=”repo : u r i /Cinemas? s e r v i c e−schema”/>
15 </schema>
16 <entry>
17 <t i t l e >Arthouse</ t i t l e >
18 <author>
19 <name>RESCUEv0.2</name>
20 </author>
21 <id>repo : u r i /Cinemas/ Arthouse/</id>
22 < l i n k h r e f=”repo : u r i /Cinemas/ Arthouse/”>Arthouse</l ink>
23 <updated>2010−08−15T11:39:00+02:00</ updated>
24 </entry>
25 . . .
26 </feed>

We extended the ATOM-feed schema with a Repository specific element named schema (see
Listing 4.9 lines 7 - 15). At class level and below information about the provided operations
of a class is provided within this element.

Operation elements represents a supported operation of this particular class. There may
be one or more of these elements for one class. The operation name is defined in the
attribute name. The attribute href points to the URI providing the class level microflow
of it. This elements have two child elements both named message.

Input-Message: Message elements with the type attributes value input provide an
URI to the schema of the input parameters using the href attribute.

Output-Message: Message elements with the type attributes value output provide
an URI to the schema of the output parameters using the href attribute.

Properties elements provide the URI of the properties schema of the class using the
attribute href.

45

Service elements provide the URI where the service-schema for this class can be requested
using the href attribute.

Our idea, when implementing this extension to the ATOM-feed schema, is to provide infor-
mation about the class of the requested resource. This allows easy usage of the Repository
within client applications and also to browse the Repository using a standard web browser.
As long as a resource at class level or below is requested the Repository provides information
where all according data of it can be found. It additionally allows a further distribution of
the data in a Cloud infrastructure as explained in Section 3.2.2.

4.4.2 Accessing and Maintaining Resources

In this section we describe the functionality provided by our implementation to access and
maintain the stored data using the RESTful API. Figure 4.1 shows the provided resources
and how they are structured while Figure 4.3 shows methods and messages implemented by
each of them.

Resource: Root-Node (/)

Represents the access point to the Repository. We assume that the Repository is
reachable at repo:uri which is used as a symbol for e.g. http://localhost:9290/

groups.

Get List of Classes - Message: Provides an ATOM-feed where all classes stored
within the Repository are listed. See Listing 4.9 for further examples.

HTTP-Method: GET

Parameters: none

Response Parameter: ATOM-feed

HTTP-Status: 200 (OK)

Create Class - Message: Creates a new class within the Repository.

HTTP-Method: POST

Parameters:

1. group-name: defines the name of the new class

2. domain-description: defines the class level description as discussed in Sec-
tion 4.2 for the new class

Response Parameter: none

HTTP-Status: 201 (Created), 409 (Naming Conflict), 415 (Invalid Description)

Resource: Class

Represents a particular class stored within the Repository. In our example these re-
sources are reachable at repo:uri/{class}.

46

repo:uri
http://localhost:9290/groups
http://localhost:9290/groups
repo:uri/{class}

Get List of Subclasses - Message: Provides an ATOM-feed with all subclasses
registered for the particular class. For further examples see Listing 4.9.

HTTP-Method: GET

Parameters: none

Response Parameter: ATOM-feed

HTTP-Status: 200 (OK), 410 (Gone)

Create Subclass - Message: Registers a new subclass within the class targeted by
the URI.

HTTP-Method: POST

Parameters:

1. subclass-name: the name of the new subclass

Response Parameter: none

HTTP-Status: 201 (Created), 4097 (Naming Conflict)

Get Properties - Message: Requests the RNG schema for properties of the class
targeted by the URI8. See Section 4.2.4 for details.

HTTP-Method: GET

Parameters:

1. properties: NIL-value

Response Parameter:

1. schema: representing the requested RNG schema

HTTP-Status: 200 (OK), 410 (Gone)

Get Service Schema - Message: Provides the schema each new service (instance)
description will be validated against9. For details see Section 4.2.5.

HTTP-Method: GET

7Status code 409 is also used if the class to register is not found. We see this as a conflict in the provided
name and therefore use 409 instead of 410 (Gone) or 404 (Not Found).

8In Figure 4.1 we show these resources as part of the resource tree which is not completely accurate.
Because a query parameter is needed to request them using the class resources they are technically not
explicit resources. But they provide a discrete set of data (see Section 4.2.4) and because of their complexity
we argue that they are independent resources even if they are not accessible by their own URI. Our reason
why we implemented it as it is, is that this way we avoid naming restrictions for resources, keep the responded
data narrow and provide an easy understandable API.

9We argue the same way as we did before (see Get Properties - Message) why in Figure 4.1 these are
shown as explicit resources.

47

Parameters:

1. service-schema: NIL-value

Response Parameter:

1. schema: representing the requested RNG schema

HTTP-Status: 200 (OK), 410 (Gone)

Rename Class - Message: Renames the class targeted by the URI.

HTTP-Method: PUT

Parameters:

1. new-name: the new name of the class

Response Parameter: none

HTTP-Status: 200 (OK), 409 (Naming Conflict), 410 (Gone)

Delete Class - Message: Deletes the class and all its sub-resources targeted by the
URI.

HTTP-Method: DELETE

Parameters: none

Response Parameter: none

HTTP-Status: 200 (OK), 410 (Gone)

Resource: Operations

As Figure 4.1 shows, this resource is provided beyond all three levels of the Repository
and represents the set of supported class level operations of the referenced resource. It
is accessible at repo:uri/{class}/operations. See Section 4.2.1 for details.

Get List of Operations - Message: Provides XML data representing a list of all
implemented operations for the targeted class. Listing 4.1 gives a full example of such
an XML.

HTTP-Method: GET

Parameters: none

Response Parameter:

1. xml: representing the XML list of all supported operations

HTTP-Status: 200 (OK), 410 (Gone)

Resource: Operation

Each of this resources represents one particular operation implemented for the class
provided in the URI. They can always be found as an sub-resource of the operation

48

repo:uri/{class}/operations

resource within the Repository and therefore are provided at all three levels of it (see
Figure 4.1). A detailed explanation of these resources is given in Section 4.2.1. They
are accessible at uri:repo/{class}/operation/{operation}.

Get Operation Workflow - Message: Requests the microflow definition of the
operation targeted by the URI. In Chapter 5 and Section 4.2.1 we will discuss of what
elements such microflows are composed.

HTTP-Method: GET

Parameters: none

Response Parameter:

1. class-level-workflow: representing the description of the class level mi-
croflow

HTTP-Status: 200 (OK), 410 (Gone)

Get Input Schema - Message: Requests the RNG schema of the input parame-
ters10. For details about this schema see Section 4.2.2. An example of such a schema
is given in Listing 4.3.

HTTP-Method: GET

Parameters:

1. input: NIL-value

Response Parameter:

1. schema: representing the requested RNG schema

HTTP-Status: 200 (OK), 40411 (Not found), 410 (Gone)

Get Output Schema - Message: Requests the output parameter RNG schema12.
Details about this schema are given in Section 4.2.2.

HTTP-Method: GET

Parameters:

1. output: NIL-value

Response Parameter:

1. schema: representing the requested RNG schema

HTTP-Status: 200 (OK), 40413 (Not found), 410 (Gone)

10In Figure 4.1 we show these resources as part of the resource tree what is technically wrong. Like above
(see Get Properties - Message) we argue that this is still a proper definition.

11We also use 404 to indicate that for the requested class level operation no input parameters were found.
12In Figure 4.1 we show these resources as part of the resource tree what is technically wrong. Like above

(see Get Properties - Message) we argue that this is still a proper definition.
13We also use 404 to indicate that for the requested class level operation no output parameters were found.

49

uri:repo/{class}/operation/{operation}

Resource: Call

This resources represent the templates defined for a particular call in a par-
ticular class level operation. We discussed this kind of resources in Sec-
tion 4.2.3 using an example. As shown in Figure 4.1 these resources
are provided as sub-resources of templates. They can therefore be ac-
cessed at repo:uri/{class}/operations/{operation}/templates/{call},
repo:uri/{class}/{subclass}/operations/{operation}/templates/{call}

and at repo:uri/{class}/{subclass}/{instance}/operations/{operation}/

templates/{call}. All three URIs target the same resource.

Get Templates - Message: Requesting the defined XSL stylesheet for a call within
a class level operation. The class level operation, the call ID and the class are named
within the URI.

HTTP-Method: GET

Parameters: none

Response Parameter:

1. templates:representing all XSL templates defined for the requested call

HTTP-Status: 200 (OK), 40414 (Not Found), 410 (Gone)

Resource: Subclass

These resources are representing particular subclasses. As shown in Figure 4.1 they
can always be found as sub-resources of class elements and therefore are accessible at
repo:uri/{class}/{subclass}.

Get List of Instances - Message: Provides a list with all registered instances for
the targeted subclass of the URI.

HTTP-Method: GET

Parameters: none

Response Parameter:

1. ATOM-feed: representing information about the class and a list with all reg-
istered services (instances) beyond this URI

HTTP-Status: 200 (OK), 410 (Gone)

Create Instance - Message: Defines a new instance within the subclass targeted
by the URI. We discussed instances in details in Section 4.3.

HTTP-Method: POST

14We also use 404 to indicate that although the requested class level operation was found, no call with the
provided ID was found and therefore no templates could be provided. If the call was found but no templates
were defined our implementation responds 200 with an empty templates-element. See Listing 4.5 for details.

50

repo:uri/{class}/operations/{operation}/templates/{call}
repo:uri/{class}/{subclass}/operations/{operation}/templates/{call}
repo:uri/{class}/{subclass}/{instance}/operations/{operation}/templates/{call}
repo:uri/{class}/{subclass}/{instance}/operations/{operation}/templates/{call}
repo:uri/{class}/{subclass}

Parameters:

1. service-name: defines the name of the new service (instance)

2. service-description: defines the instance level description as described in
Section 4.3 for the new service

Response Parameter: none

HTTP-Status: 201 (Created), 40915 (Naming Conflict), 415 (Invalid Description)

Rename Subclass - Message: Renames the subclass targeted by the URI.

HTTP-Method: PUT

Parameters:

1. new-name: the new name of the subclass

Response Parameter: none

HTTP-Status: 200 (OK), 409 (Naming Conflict), 410 (Gone)

Delete Subclass - Message: Deletes the targeted subclass and all its included ser-
vices (instances).

HTTP-Method: DELETE

Parameters: none

Response Parameter: none

HTTP-Status: 200 (OK), 410 (Gone)

Resource: Instance

These resources are representing particular instances (services) within a class and sub-
class. What data is provided at this level was discussed in Section 4.3. These resources
are accessible at the URI repo:uri/{class}/{subclass}/{instance}.

Get Instance Description - Message: Requests the microflow definition and the
properties of the service targeted by the URI. In Chapter 5 we will discuss what elements
are allowed within these microflows.

HTTP-Method: GET

Parameters: none

Response Parameter:

1. instance-level-workflow: representing the description of the instance level
microflow and the properties of of the requested service

HTTP-Status: 200 (OK), 410 (Gone)

15Status code 409 is also used if the class or subclass to register is not found. We see this as a conflict in
the provided name and therefore use 409 instead of 410 (Gone) or 404 (Not Found).

51

repo:uri/{class}/{subclass}/{instance}

Update Instance - Message: Updates the definition of the instance targeted by
the URI. It replaces its instance level microflow and its properties definition with the
new ones provided with the request.

HTTP-Method: PUT

Parameters:

1. service-description: representing the new description of the instance

Response Parameter: none

HTTP-Status: 200 (OK), 410 (Gone), 415 (Invalid Description)

Rename Instance - Message:

HTTP-Method: PUT

Parameters:

1. new-name: defining the new name of the service (instance)

Response Parameter: none

HTTP-Status: 200 (OK), 409 (Naming Conflict), 410 (Gone)

Delete Instance - Message: Deletes the targeted instance.

HTTP-Method: DELETE

Parameters: none

Response Parameter: none

HTTP-Status: 200 (OK), 410 (Gone)

52

Chapter 5

Controlflow Description

This chapter focuses on the elements allowed within microflows. The defined instructions are
inspired by the CPEE syntax (see Stuermer [45]) but are represented in XML and extended
with composition specific attributes. Using BPEL [51] would also be possible, but to work
with our approach it need to be extended with composition specific concepts too. We will
discuss in detail what possibilities workflow designer have to define the different microflows at
class level and at instance level. For better understanding we will illustrate the use of different
statements using the Cinemas example (see Section 5.1). We start with explaining how data
elements and endpoints can be defined (see Section 5.2). After we cleared this we will focus
on how to call actual services (see Section 5.3). We explain how the input parameters are
defined and how the execution results are provided in Section 5.3.1. We further show how
the properties, which each service must define, are used to select a subset out of them using
constraints in Section 5.3.2. Next thing we discuss are the different kinds of calls that emerge
out of our design. They are discussed in detail in Section 5.3.3. At this point we give a short
excursus about how calls are defined using CPEE syntax (see Section 5.3.4). How the already
mentioned UI templates can be defined is explained in Section 5.3.5. What the purpose of a
manipulate element is, is in the focus of Section 5.4. Decisions in the controlflow can be made
using choose - alternative - otherwise statements as explained in Section 5.5. How conditions
can be defined and grouped together is explained in Section 5.6. Loops are supported within
microflows and therefore explained in Section 5.7. To allow the parallel execution of different
branches we provide the parallel - branch statement which is explained in Section 5.8. Last
statement explained is the critical statement (see Section 5.9). It is used to ensure that, in a
parallel - branch at a time only statements included in the critical block are executed.

5.1 Demonstrator: Class and Instance Level Operations

We use the example defined above in Section 4.1 to illustrate how to use the controlflow
statements explained in this section. We defined that each service within this application
domain provides at least the instance level operations search to search for shows of a par-
ticular movie and the operation book to book tickets for a particular show. To realize the
defined class level operation named search and book we show how to re-use the class level
operation associated to the instance level operations search and book. Figure 4.2 illustrates
the interrelation of the defined class level operations for the application domain Cinemas.

53

5.1.1 Class Level Operation: Search and Book

With this operation we provide the possibility for customers to search over all registered
cinemas (within the requested URI) for a particular movie16, select a show and book tickets
for it.

se
ar

ch
 &

b
o
o
k (1) search

for movie
(2)

select show

(3) book
ticket

Figure 5.1: BPMN: Operation Search & Book

The controlflow we used to implement this operation is illustrated in Figure 5.1 and explained
below:

1. Call the search operation from each cinema fulfilling the defined constraints.

2. Let the user select a show to book. To support data centered and UI centered clients
we additionally provide templates for this activity.

3. Book tickets for the selected show using the operation book from the selected cinema.

5.1.2 Instance Level Operation: Search

Each service in this class provides at least the two operations search and book. To keep
the example simple we only describe the operation search and how it is implemented by
one of our real world cinemas we elaborated during the implementation of the prototype. Its
microflow is illustrated in Figure 5.2. Here we give a step-wise explanation of it.

1. Transform input parameters to fit for the services interface.

2. Request FilmInfo using the provided title and date parameters.

3. Parse result of FilmInfo request and generate FimlmInfo - Array (transform FilmInfo).

4. For each Film from FilmInfo.

(a) Get FilmID from FlimInfo - Array and request information according to the ID
(request FilmInfo).

(b) Extract information about each show from the response and add the information
to the output data (add data to output parameter).

16BPMN uses a Hand sign in the upper right corner to indicate a so called manual task. Because in our
example the task (2) select show has to be performed by a user we decided to use this symbol for this task.

54

5.2 Context Elements

Cinema (SOAP)
Instance Level

S
O

A
P

 C
in

e
m

a
 S

e
rv

ic
e FilmList

Request

(2) req.
FilmList

(4b) add data
to Output

(1) transform
Input

(4a) req.
FilmInfo

FilmInfo
Request

FilmInfo
Resp.

FilmInfo
Resp.

(4) more
FilmList
entries?

(3) transform
FilmList

Figure 5.2: BPMN: An Example
SOAP Service of a Cinema

In this section we show how workflow designers can
define context variables to store information for later
use and endpoints (resource URIs) used by call state-
ments within a controlflow.

These definitions must be placed first behind the
declaration element of the according operation. (e.g.
operation search in Listing 5.1). First thing defined
are the context variables. They are placed within an
context-variables element (e.g. Listing 5.1 line 2).
We differ between three declaration types:

Empty Variable: When a variable is declared
for later use without defining anything about its
type or content (e.g. Listing 5.1 line 3).

Initialized Variable: When a variable with an
initialization value is defined. The designer does
not define anything about the type of the vari-
able. In our implementation this means that the
type of the variable is assigned according to the
Java Script Object Notation (JSON) [64] stan-
dard. The value of the variable is defined be-
tween its opening and closing tags. An example
is given in Listing 5.1 line 4.

Typed Variable: This variables are defined di-
rectly by the designer using the class attribute.
The value of the class attribute represents the
exact definition of an variable in means of type
and value. This kind of declaration bypasses the
JSON interpretation and therefore allows the de-
signer to specify a certain class (e.g. Listing 5.1
line 5). Further is it possible to use class oper-
ations provided by the underlying programming language. For example the operation
today provided by the class Date (Listing 5.1 line 6) or the definition of the New Year’s
Eve (line 7) using the factory operation civil.

LISTING 5.1: Definition of Context Elements

1 <search>
2 <context−v a r i a b l e s>
3 < f i l m i d />
4 <hall number>not a v a i l a b l e </hall number>
5 < f i l m i d s c l a s s=”Array . new”/>
6 <today c l a s s=”Date . today”/>
7 <new years eve c l a s s =”Date . c i v i l (’ 2 0 1 0 ’ , ’ 1 2 ’ , ’ 3 1 ’ , ITALY)”/>
8 </context−v a r i a b l e s>
9 <endpoints>

10 <s e l e c t ed c in ema/>
11 <wsdl>http :// some . cinema . org / on l ine−t i c k e t s ?WSDL</wsdl>

55

12 <s o a p s e r v i c e >http :// some . cinema . org / on l ine−t i c k e t s </s o a p s e r v i c e >
13 </endpoints>
14 <execute>
15 . . .
16 </execute>
17 . . .
18 </search>

Second thing that is declared are endpoints. In our understanding each service has a
particular endpoint representing its URI. Designer can define an empty endpoint (Listing
5.1 line 10) if the particular service is not known at design-time but referenced within the
controlflow. An example use case for empty endpoints is the operation Search & Book, where
the particular cinema is selected at run-time but the call of the operation book is defined at
design-time. Doing so allows the designer to fulfill semantic constraints of the controlflow
(e.g. each call must have an endpoint) and allows to set the particular value at run-time.
If the service is already known at design-time (e.g. most calls at instance level) the URI is
written between the opening and closing tags of the element (lines 11 and 12). Only calls to
SOAP services need additionally the URI of the according WSDL (see Web Service Definition
Language [52] for details). Because it represents an URI it is defined as an endpoint even if
it does not directly address a service.

5.3 Call Statement

Whenever a resource is used within a controlflow it is referenced to it by a call statement.
Every call statement mainly consists of three parts: (1) Parameters defining the input and
the results of a call (see Section 5.3.1), (2) Service Constraints allowing to define a query
for service selection at design-time (see Section 5.3.2) and (3) Templates allowing for UI
definition within the service description (see Section 5.3.5). Further do we differ between
three different types of calls which are discussed in Section 5.3.3.

5.3.1 Parameters

Whenever an external resource or an other service operation in the repository is called it is
very likely that some values (input parameters) are needed by it to provide the expected func-
tionality. Further may it provide some information after the execution (output parameters /
result object) to the caller.

In Listing 5.2 we show how this information is defined during the design-time. We differ
parameters at two dimensions: first is the direction defining if it is an input (line 4 - 13) for
or output (lines 16 - 23) of the call. Second is the scope of the parameter. Here the designer
defines if the parameter is a pass-through from or to an other operation and therefore part
of a message (lines 4 and 16) or if it is an intermediate value and therefore only locally
stored and accessible (lines 12 and 23).

LISTING 5.2: Definition of Input and Output Parameters

1 <c a l l id = ” . . . ” . . . >
2
3 <!−− Input parameter (message) −−>
4 <input name = ” . . . ” message−parameter =”...”>

56

5 <rng : element name=”...”>
6 <domain : capt ion xml : lang=”en ”>...</domain : capt ion>
7 . . .
8 <rng : data type =”...”/>
9 </rng : element>

10 </input>
11
12 <!−− Input parameter (l o c a l) −−>
13 <input name = ” . . . ” v a r i a b l e =”...”/>
14
15 <!−− Output parameter (message) −−>
16 <output name = ” . . . ” message−parameter =”...”>
17 <rng : element name=”...”>
18 <rng : data type =”...”/>
19 </rng : element>
20 </output>
21
22 <!−− Output parameter (l o c a l) −−>
23 <output name = ” . . . ” v a r i a b l e =”...”/>
24
25 </c a l l >

The listing also shows that each parameter defines its structure and type of the elements. This
way it is possible to implement parameters of a complex type. The structure is describe using
RNG schema language and supports the whole instruction set (e.g. optional, zeroOrMore,
. . .). Exposing this definitions through the class level schemas allows developers to predict
exactly how the input or output of a call looks like and therefore can easily implement the
interface into their own application or service.

Input Parameters

Each defined input parameter is transmitted to the targeted resource under the name defined
in the attribute name. Depending on the type of the call (see Section 5.3.4 for details) the
parameters are either part of the HTTP-message or packed into an SOAP envelope. The
needed functionality to build these SOAP envelopes is implemented in the Activity Handler
described in Section 7.3.1.

The source of the parameter is defined in the second attribute. If the attribute is of the type
message-parameter its origin is in the incoming message of the operation. When parameters
are declared this way no local copy of them is used and also no transformation is performed
on their value. The second type of input declaration uses the attribute variable to define
the source of the input. This type is used when the value is provided directly within the
scope of the operation. This could either be as an result of a prior call or the outcome of a
transformation (see Section 5.4 for details).

Additional Endpoints

As we already explained, some operations may need endpoints provided by the caller (user/de-
signer or other operation) to work properly. In our example the operation Serach & Book

needs to know which resource/service is used to select the particular show (provided by

57

the user/designer) and which cinema was selected (provided by this operation) to book the
tickets.

LISTING 5.3: Definition of Additional Endpoints as Input Parameter

1 <c a l l id =”. .” endpoint = ” . . . ” endpoint−type=”out s id e ” http−method = ” . . . ” i n f o
= ” . . . ” . . . >

2 . . .
3 </c a l l >

We define these endpoints by using the endpoint-type attribute in the call statement. Valid
values for this attribute are outside which defines that the endpoint is found in the scope of
the calling controlflow. If the attribute is not set or the value of it is inside the referenced
endpoint is declared in the actual scope of the operation.

Output Parameters

Similar to the input parameters of a call statement there maybe output parameters too. We
already showed in Listing 5.2 how they are defined. The name and the type of each parameter
is declared the same way as input parameters. Because these parameters may also be of a
complex type (similar to input parameters) they are again described using RNG schemas.
Additionally to the declared variables and message-parameters each call adds one special
variable to the result called status. If the HTTP-status of a call to an external service/re-
source or an instance level call should be directly included into the status parameter of the
output-message, a message-parameter named status, defining the attribute type = ‘status’,
must be defined. If the status code should not be the result of a HTTP-call (REST or SOAP)
it is possible to set its value using manipulate statements referring the message-parameter
status. See Listing 5.11 for an example.

5.3.2 Service Constraints

We already mentioned that we support the definition of constraints related to the service
selection within an operation. It gives the process designer the possibility to narrow the set
of services used within an operation and helps to save bandwidth and computing resources.
Further can it be used to avoid legal issues e.g. restrictions of countries where an operation
is provided.

LISTING 5.4: Definition of Service Constraints

1 <c a l l id = ” . . . ” endpoint = ” . . . ” . . . >
2 <c o n s t r a i n t s>
3 <c o n s t r a i n t xpath=”adre s s / c i t y ” comparator=”==” v a r i a b l e=”c i t y ”/>
4 <c o n s t r a i n t xpath=”adre s s / z ip ” comparator=”&l t ; ” va lue =”1900”/>
5 </c o n s t r a i n t s>
6 . . .
7 </c a l l >

Listing 5.4 shows that constraints must be defined within a constraints element. Within
this element constraint elements can be combined as logic expression using group elements
(see Section 5.6 for details). Within a constraint element the following attributes are used to
specify it:

58

1. The xpath attribute is used to specify the element within the services properties to be
validated. Our system supports all functions provided by the XML Path Language
(XPATH) specification [53].

2. The comparator attribute allows to specify how the referenced values are compared
against each other. At this point all symbols defined in the underlying programming
language are supported. For our prototype implementation this is the Ruby program-
ming language [65] which allows to use the methods defined for the referenced properties
after it is parsed by JSON.

3. The variable/value attributes define the value the property is compared with. Our
implementation allows the designer to define a static value using the value attribute
or refer to a variable within the local scope using the variable attribute. Using the
variable attribute allows the designer to define a dynamic service selection depending
on former user input or results of other calls. E.g. the actual workload of different
resources provided within a Cloud infrastructure like in Adaptive Pegasus [26].

If constraint elements are not defined within a group element they are automatically connected
by an logical and. They behave similar to the conditions described in Section 5.6.

5.3.3 Types

.

When a controlflow is executed three different types of calls may occur. First there may be
calls referring to an other operation provided by the same resource like we do in the operation
Search & Book when we use the operation search at the beginning. This causes our system
to inject the search microflow into the actual one. Second will be a call referring to an
resource outside the scope of the repository (external). This may be resources provided by
the user like the call to the resource selecting a particular show in our example (see Figure
5.1: (2) select show). These two types may occur within class level microflows. Last are calls
referring to actual services of the vendors like the search operation of a particular cinema in
our example. These type of calls is only allowed within instance level microflows and defined
by the vendor of the service.

Class Level: Injection Call

An injection call is performed whenever a call results in the injection of a microflow. This
happens when the execution of an operation from a certain application domain within the
Repository is requested.

LISTING 5.5: Definition of an Injection Call

1 <c a l l id=”exec s ea r ch ” endpoint=”re sour c e path ” s e r v i c e−operat i on=”serach”>
2 <input name = ” . . . ” . . . />
3 <output name = ” . . . ” . . . />
4 </c a l l >

An injection call is identified by the attribute service-operation which refers to the name
of the requested operation in the repository located at the URI defined in the attribute
endpoint. Listing 5.5 shows how the operation Search & Book includes the operation search

59

provided by the same application domain. The endpoint resource path indicates that
the same resources as referenced by the parent operation should be used e.g. repo:url/

Cinemas/Arthouse. We use this keyword to pass endpoints automatically from the initial
call statement to its succeeding microflows in a transparent way. Using this allows the designer
of the class level microflow referring to the initial value of the defined endpoint.

5.3.4 Excursus: Injection Call in CPEE Syntax

Because our prototype is intended to cooperate with the already mentioned CPEE execution
engine there must also be an pendant to the injection call in CPEE syntax. We do not want
to explain this syntax in details but an example of such one should be enough to get a basic
understanding of these type of calls.

LISTING 5.6: Definition of an Injection Call using CPEE Syntax

1 <c a l l id=”exec s ea r ch ” endpoint=”s e r v i c e s ”>
2 <c o n s t r a i n t s>
3 . . .
4 </c o n s t r a i n t s>
5 <parameters>
6 <i n fo>true</in fo>
7 <s e r v i c e >
8 <s e r v i c e o p e r a t i o n >”search”</ s e r v i c e o p e r a t i o n >
9 < i n j e c t i o n h a n d l e r >endpoints . i n j e c t i o n h a n d l e r </ i n j e c t i o n h a n d l e r >

10 <count>0</count>
11 </s e r v i c e >
12 <add i t i ona l endpo in t s>
13 <s e l e c t o r s e r v i c e >” s e l e c t ”</ s e l e c t o r s e r v i c e >
14 </add i t i ona l endpo in t s>
15 <parameters>
16 <t i t l e >context . t i t l e </ t i t l e >
17 <date>context . date</date>
18 </parameters>
19 </parameters>
20 <manipulate output=”r e s u l t ”>
21 i f r e s u l t [0] [’ s tatus ’] == 200
22 context . re servat ion number = r e s u l t [0] . va lue (’ r e s e r v a t i o n i d ’)
23 context . s e l e c t ed c in ema = CGI : : unescapeHTML(”#{ p r o p e r t i e s . va lue (’

perform book ’) [0] . va lue (’ name ’) }”)
24 end
25 </manipulate>
26 </c a l l >

Constraints: They are defined and work the same way as they do when defined within
the repository. See Section 5.6 for details.

Service - Block: These block includes the requested service-operation which is similar
to the attribute service-operation explained in Class Level Injection Calls. Because an
URI of an Injection Handler is only needed here and not within the Repository there
is no pendant to the injection handler element there. This endpoint refers to the
Injection Handler that will be used when this injection is performed. For details on the
Injection Handler see Section 7. The count element indicates the number of services
that must at least have finished before the execution continues when the actual services
are executed in parallel. This value will be used for the wait attribute of an parallel

60

repo:url/Cinemas/Arthouse
repo:url/Cinemas/Arthouse

element (see Section 5.8 for details). Because this restriction should only be used when
designing actual applications (not class level microflows) it exclusively available for the
CPEE call statement. It will be used if e.g. the execution should continue if two out of
all matching services, regardless which or how many they were, finished their execution.

Additional Endpoints - Block: This block provides URI for the endpoints referenced
within the according microflow description. It is important that each of these provides
the URI of an feasible service. For details on the topic of additional endpoints see
Section 5.3.1. How a list of the required endpoints can be requested is explained in
Section 4.2.2.

Parameters - Block: In CPEE syntax this indicates that all elements included in this
block are provided as parameters to the service call. Within this block each parameter
named in the input schema (see Section 4.2.2) must be defined as element with the
name from the schema. Its value is represented in the context of the element. As the
CPEE supports Ruby code at this level context variables are accessed using the prefix
context. (see line 15 and 16 in Listing 5.6) and endpoints are accessed by prefixing
endpoints. (see Listing 5.6 line 9). If the value of the parameter is directly written into
the call statement it allows all instructions that Ruby allows too e.g. String, Integer,
Class instantiation, . . .

Manipulate Block: This block allows to access the output message of the call using Ruby
syntax. The output attribute specifies the name representing the result object. Again
the CPEE uses arrays for this purpose. Each element of this array represents a key/value
Class (e.g. Hash Class) implementing the structure defined for the output-message. We
further extended this class with the function value(String name) to allow to access
the first entry with the provided name within all sub resources of the Hash (see Sections
4.2.2 and 5.3.1 for further details). An example how to use this function is given in
Listing 5.6 line 22 where the parameter reservation id is requested from the result
object / output-message. Additional to the result object there is an properties object
provided. This object provides all properties defined for this application domain (see
Section 4.2.4 for details) of all executed services. Services that were not included in
the execution because they are not within the resource path or their properties did
not fit are not included. Again this object is type of our extended Hash Class. An
example for using the properties object is given in Listing 5.6 line 23 where the property
vendor/name of the cinema used for the call perform book is requested.

Class Level: External Call

An external call is used to perform calls to resources unknown (external) by the Repository.
Usually this type of calls is used for user specific resources during the execution. That’s
why these type of calls can be identified in class level by defining the attribute endpoint-
type=‘outside’ meaning that its value is defined in the input-message of the initial call.

61

LISTING 5.7: Definition of an External Call

1 <c a l l id=” e x e c s e l e c t ” endpoint=” s e l e c t o r ” endpoint−type=”out s id e ” http−
method=”post ” i n f o=”true ” de fau l t−tp l−name=”mobile ” de fau l t−tp l−lang=”en”>

2 <input name = ” . . . ” . . . />
3 <output name = ” . . . ” v a r i a b l e =”...”/>
4 . . .
5 </c a l l >

As shown in Listing 5.7 the definition further includes the following attributes:

1. http-method: This attribute defines which HTTP-method is used for the request. Valid
values are: GET, POST, PUT, DELETE

2. info: This attribute defines if information about the execution engine and its state are
provided as parameters. This information is of use when user specific resources want to
interact with the execution engine. Valid values are true and false. If the attribute is
set to true the following parameters are added by the Activity Handler automatically:

(a) call-instance-uri: Provides the URI of the associated execution instance.

(b) call-activity: Provides the ID of the associated call.

(c) call-endpoint: Provides the value of the endpoint attribute defined for the call.

(d) call-lay17: Provides the number of the lay defined for the actual call.

(e) call-oid: This is the original ID of the associated call. It is only provided if the
call has been transformed or injected at least one time before its execution.

3. default-tpl-name/default-tpl-lang: Defines which of the UI templates, defined within this
call, is used as default if no other template is defined by the caller using the tpl-name

and tpl-lang parameters.

Instance Level: Native Call

Native calls are only defined within instance level microflows and refer strictly to resources
provided by the vendor responsible for it. Because each vendor service must work with only
the information defined in the according injection call we do not allow the definition of UI
templates here. Therefore a native call consists mainly of input and output parameters.
These parameters differ in their definition from the already introduced ones in Section 5.3.1
as they define more technical details like the parameter type of an HTTP-response.

So far we assumed that each call is based on plain HTTP (REST) as protocol because they
were all addressed to our/from the Repository but at this level we additionally support SOAP
calls. We explain in the next two paragraphs how each of them is defined.

REST Calls: These type of call provides an attribute named http-method additionally to
the attributes ID, which has to be unique within the microflow, and endpoint, which again
provides the URI of the referenced resource. An example definition of such a call is given in
Listing 5.8.

17Lays are used to differ between calls executed in a parallel - loop - branch construction. See CPEE papers
for details.

62

If the referenced HTTP-method is GET the input parameters are treated as query parame-
ters. Any other valid HTTP-method has its input parameters treated as body parameters
within the request. As stated by Fielding [25] do RESTful resources (supporting the CRUD
paradigm) work this way as they usually do not expect large input data by GET-requests.
The name attribute specifies the name of the parameter. The order of them is the same as
the order of their definition. As second attribute the already known message-parameter
or value attributes are valid. An example of a parameter definition is given in Listing 5.8
line 2.

Output parameters define the target they are stored in (message-parameter or variable) as
explained in Section 5.3.1. But if they are part of a native call they define additionally a type
attribute which can be simple (for query parameters) or complex (for body parameters)
(see Listing 5.8 line 3) and therefore over-ruling the defaults described above. If the value of
this attribute is status the HTTP-status code of the response is assigned to the parameter
(see Listing 5.8 line 4). Last the name of the referenced parameter has to be given in the name
attribute. As requesting resources like HTML pages often results in one response parameter
without a name it is allowed to define one output parameter without a name. If this is the
case the first parameter of the response parameter set will be assigned.

LISTING 5.8: Definition of a Native REST Call

1 <c a l l id=”Programm” endpoint=”s e r v i c e ” http−method=”get”>
2 <input name=”. .” . . . / >
3 <output v a r i a b l e=”response ” name=”” type=”complex”/>
4 <output message−parameter=”s t a t u s ” type=”s t a t u s ”/>
5 </c a l l >

SOAP Calls: This type of calls can be identified by the soap-operation and wsdl attribute
in their definition. The soap-operation attribute refers to the requested operation in the
WSDL (see Web Service Definition Language [36] for details). The location of the WSDL is
defined within the endpoint referenced in the wsdl attribute. Listing 5.9 shows an example
definition of such a call.

Input parameters are defined in the usual way. Packing the parameters into an SOAP enve-
lope, as it is necessary for SOAP calls, happens in the Activity Handler (see Section 7.3.1 for
details).

Output parameters define their target as already explained by naming either a message-
parameter or a variable in the according attributes. Additionally the parameters define either
the type attribute or a pair of name / namespace attributes. The type attribute for SOAP
parameters only allows the value status to refer to the return status of the operation. Because
SOAP provides a numeric status only within error-messages (see faultcode in [35] for details)
it is set to NIL if the execution was without any error. Other values are not needed because
of the way SOAP handles parameters (see SOAP Specifications [35] for further information).
The name attribute of an SOAP parameter represents an XPATH query referring to the
desired data in the response message. Because this response message usually consists of
different namespaces, defining different parts of the SOAP message, the namespace attribute
defines the target namespace (tns) which is used to identify the result parameters of the
SOAP service within the message. Listing 5.9 line 3 gives an example for the definition of a
SOAP output parameter.

63

LISTING 5.9: Definition of a Native Soap Call

1 <c a l l id=”Fi lmInfo ” endpoint=”s o a p s e r v i c e ” soap−operat i on=”Fi lmInfo ” wsdl=”
wsdl”>

2 <input name = ” . . . ” . . . / >
3 <output v a r i a b l e=”soap re sponse ” name=”descendant : : tns : F i lmInfoResu l t ”

namespace=”http :// s i t e c . at / S e r v i c e ”/>
4 <output message−parameter=”s t a t u s ” type=”s t a t u s ”/>
5 </c a l l >

5.3.5 UI Templates

User Interface (UI) Templates are used to define an UI within a call statement. We imple-
mented this to provide a way for designers of class level microflows to request some user
interaction. Applications using such a class level microflow can either display the UI directly
(like our Worklist described in Section 8.4) or parse the data and use it as a basis to generate
their own interface. The definition of them is provided by the repository as explicit re-
sources and can be requested at repo:uri/{class}/{subclass}/{instance}/operations/
{operation}/templates/{call}.

The XML data that should be transformed by the XSL transformation must be provided
by the input parameter called data. For an example how to access data provided by this
parameter from within the template see Listing 5.10. Every other input parameter is added
to the XSLT stylesheet as a variable. They can be referenced using its name with a leading
$-sign (as defined in the XSLT standard [56], e.g. $instance-uri). Additionally we add a few
parameters to the XSLT which are of use most of the time (see also the description of the
info attribute in Section 5.3.4).

instance-uri: In our implementation each CPEE instance can be addressed as RESTful
resource using this URI. We provide this to let the user of the template know which
instance is affected by it. See Listing 5.10 line 33 for an usage example.

oid: OID stands for original ID and holds the value originally given in the ID attribute
of the call statement providing the template.

activity: This variable provides the actual ID of the call responsible for the execution of
the template. As we explain in Chapter 7 this must not be the same as initially defined
in the Repository.

callback-id: When the interaction with the user is finished the CPEE has to be informed.
Therefore we provide by this variable an URI to post the data to. See List. 5.10 line
33 for an usage example.

LISTING 5.10: Definition of an UI Template

1 <templates>
2 <x s l t name=”mobile ” xml : lang=”en”>
3 <x s l : s t y l e s h e e t v e r s i on =”1.0” xmlns : x s l =”...”>
4 <x s l : output method=”html”/>
5 <x s l : template match=”/”>
6 <html>
7 <head>
8 <s c r i p t type=”text / j a v a s c r i p t ” s r c =”...”/>
9 <s c r i p t type=”text / j a v a s c r i p t”>

10 func t i on s e n d s e l e c t i o n (data , c a l l b a c k) {

64

repo:uri/{class}/{subclass}/{instance}/operations/{operation}/templates/{call}
repo:uri/{class}/{subclass}/{instance}/operations/{operation}/templates/{call}

11 . . .
12 }
13 </s c r i p t >
14 </head>
15 <body>
16 <t ab l e border=”1”>
17 <x s l : apply−templates s e l e c t =”//show”/>
18 </table>
19 </body>
20 </html>
21 </x s l : template>
22
23 <x s l : template match=”//show”>
24 <tr><td><tab le>
25 <tr><td>Cinema:</td><td><x s l : value−o f s e l e c t =”c inema ur i”/></td></tr>
26 . . .
27 <tr><td co l span=”2”><x s l : e lement name=”input”>
28 <x s l : a t t r i b u t e name=”type”>button</x s l : a t t r i bu t e>
29 <x s l : a t t r i b u t e name=”value”>Se l e c t </x s l : a t t r i bu t e>
30 <x s l : a t t r i b u t e name=”onCl ick”>JavaScr ipt : s e n d s e l e c t i o n ({
31 ’ show id ’ : ’< x s l : value−o f s e l e c t =”show id ”/> ’ ,
32 . . .
33 } , ’< x s l : value−o f s e l e c t =”$ ins tance−u r i ”/>/ c a l l b a c k s/<x s l : value−o f

s e l e c t =”$ca l lback−id ”/> ’) ;
34 </x s l : a t t r i bu t e>
35 </x s l : element></td></tr>
36 </table></td></tr>
37 </x s l : template>
38 </x s l : s t y l e s h e e t >
39 </xs l t>
40
41 <x s l t name=”mobile ” xml : lang=”de”>
42 . . .
43 </xs l t>
44 </templates>

In Section 8.4 we given detailed examples how UI templates are properly used within a
business process or class level microflow.

5.4 Manipulate Statement

Each manipulate statement consists of two major parts. First there is the declaration of
context elements (Listing 5.11 lines 2 - 13). Second is some programming code in a language
the execution engine is able to execute. In the case of our prototype implementation (using the
CPEE) this is Ruby code [65]. Declaring variable elements within a manipulate statement
ensures that, when the programming code is executed, the defined variables have the same
value as the referenced context elements and when the execution is finished, the value of
the variables is copied back to the context elements. Doing so allows us to have transparent
access to the context elements of the execution environment within a programming language
and therefore allows way more complex and efficient code.

Generally we differ between four types of context elements. Each of them has its own decla-
ration:

65

Local variables: This links the referenced context variable (context attribute) to the
programming variable referenced in the attribute local. (See Listing 5.11 line 3)

Local Endpoints: This links the endpoint referenced in the attribute endpoint to the
programming variable referenced in the attribute local. (See Listing 5.11 line 5)

Input-Message Parameters: This refers to a parameter in the input message of the
operation. Because input message-parameters are read-only the changes in the pro-
gramming variable are not copied back to it. The attribute input-parameter defines
which parameter of the message is linked to the programming variable referenced in the
attribute local. See Listing 5.11 line 7 for an example.

Output-Message Parameters: This allows to generate parameters for the operations
output-message. To be in line with the general definition of output parameters it is
necessary to define also multi-lingual captions and the type of the parameter. Such
statements link the parameter referenced in the attribute output-parameter to the local
variable referenced in the attribute local. See List. 5.11 lines 9 - 13 for an example.

LISTING 5.11: Example of a Manipulate Statement

1 <manipulate id=”merge r e su l t”>
2 <!−− Re f e r r i ng to a l o c a l v a r i a b l e −−>
3 <v a r i a b l e context=” l i s t o f d a t a ” l o c a l =” l s t ”/>
4 <!−− Re f e r r i ng to a l o c a l enpoint −−>
5 <v a r i a b l e endpoint=”se l e c t ed c in ema ” l o c a l =”s e l e p ”/>
6 <!−− Re f e r r i ng to an input−message parameter −−>
7 <v a r i a b l e input−parameter=” t i t l e ” l o c a l =”m o v i e t i t l e ”/>
8 <!−− Def in ing an output−message parameter −−>
9 <v a r i a b l e output−parameter=”s t a t u s ” l o c a l =”s t a t”>

10 <rng : element name=”s t a t u s”>
11 <rng : data type=”p o s i t i v e I n t e g e r ”/>
12 </rng : element>
13 </var i ab l e>
14
15 # Some Programing Code i s de f ined here
16 </manipulate>

5.5 Choose - Alternative - Otherwise Statement

The Choose - Alternative - Otherwise Statement provides a way to define conditional paths
within the controlflow. Supporting these statements allows controlflow designers to define
that some parts of the microflow are only executed if some conditions are fulfilled. How these
conditions are defined is discussed in Section 5.6. Listing 5.12 shows an example with one
alternative path and a default path. The statement begins with the opening choose element.
Child elements of it can only be one or more alternative elements and one otherwise

element. When the execution comes to a choose it continues all paths where the conditions
are fulfilled. If no alternative matches it chooses the otherwise path. The execution continues
after every chosen path has finished its execution.

66

LISTING 5.12: Example for a Choose - Alternative - Otherwise Statement

1 <choose>
2 <a l t e r n a t i v e >
3 <!−− Some condt ions are de f ined here −−>
4 . . .
5 </a l t e r n a t i v e >
6 <!−− Here could be more a l t e r n a t i v e e lements −−>
7 <otherwise>
8 . . .
9 </otherwise>

10 </choose>

5.6 Groups and Conditions

As already mentioned is it possible to connect two or more conditions (similar to service
constraints explained in Section 5.3.2) together as logical expressions using group elements.
Listing 5.13 shows in the second example (lines 5 - 10) that it is possible to nest group
elements. The first group element defines that the conditions are connected by a logical or,
meaning that the result of the first condition or the overall result of the second group must
be true. The second group element uses a logical and as connector what means that both
conditions must result to true to make the whole group true. If two or more conditions are
defined outside of any group element they are handled like they were within an and-connected
group element.

Each group element consists of two or more condition elements. These elements defines
actual logical expressions which are resolved at runtime. As shown in Listing 5.13 each
condition element consists of three attributes:

1. The test attribute (left-hand operator) defines against which context variable the test
should be executed. Because only context variables are allowed here any other object
(e.g. endpoints, message-parameters, . . .) must be assigned to a context variable in a
prior manipulate statement.

2. The comparator attribute defines which method18 of the referenced object in the test
attribute is executed during the test. We use this concept also in our implementation
and therefore gain high flexibility when it comes to comparison. Every comparison
method supported by the referenced object can be used for this attribute. As shown in
the second example we use the includes method of a String object to test if the movie
title contains the strings ‘IMAX’ and ‘3D’. (see Listing 5.13 line 8 and 9)

3. The variable/value attribute (right-hand operator) declares against what value or vari-
able the test will be executed. It is important to ensure that the defined comparison
method of the left-hand operator supports the value of the right-hand operator other-
wise the test result may be wrong or the execution fails.

18In Ruby every comparison results in the execution of an object-method, e.g. a == b is resolved in
a.==(b).

67

LISTING 5.13: Example for Conditions and Groups

1 <!−− Check i f the re was at l e a s t one show found −−>
2 <cond i t i on t e s t=”number of shows ” comparator=”> ; ” va lue=”0”/>
3
4 <!−− Check i f p r i c e i s low enough or the show i s in 3D and IMAX −−>
5 <group connector=”or”>
6 <cond i t i on t e s t=”p r i c e ” comparator=”&l t ; ” v a r i a b l e=”max spending”/>
7 <group connector=”and”>
8 <cond i t i on t e s t=” t i t l e ” comparator=”i n c l u d e s ” value=”3D”/>
9 <cond i t i on t e s t=” t i t l e ” comparator=”i n c l u d e s ” value=”IMAX”/>

10 </group>
11 </group>

5.7 Loop Statement

This statement allows the designer to implement a while-loop19 within the microflow. In
our controlflow language we do not support do-while-loops. A loop is indicated by a loop

element followed by condition and group elements (see Section 5.6 for details).

This kind of loops is also known as head-driven loop. Conditions can be defined as already
explained in Section 5.6.

LISTING 5.14: Example for a Loop Statement

1 <loop>
2 <!−− Condit ions and Groups are de f ined here −−>
3 <cond i t i on t e s t=”loop count ” comparator=”&l t ; ” va lue=”5”/>
4 . . .
5 </loop>

In the example above the controlflow inside the loop element will be executed as long as the
context variable loop count is lower than five.

5.8 Parallel - Branch Statement

This statement allows designers to define paths that are executed in parallel. It is defined
by a parallel element which includes at least one parallel branch element as child. The
parallel element supports one attribute named wait. The value of this attribute defines how
many branches have at least to be finished before the execution continues after the parallel
element. If this attribute is not present or its value is zero the execution does not continue
before every branch is finished. Inside these parallel branch elements the different paths
are defined allowing all controlflow statements.

19In while-loops the condition is resolved before the path inside the loop is executed in contrast to the
do-while loop where it is resolved after the execution. Do-While loops are only supported by the CPEE using
the post test - attribute instead of the pre test attribute.

68

LISTING 5.15: Example for a Parallel - Branch Statement
1 <p a r a l l e l wait=”1”>
2 <p a r a l l e l b r a n c h >
3 <!−− Path One −−>
4 </p a r a l l e l b r a n c h >
5 <p a r a l l e l b r a n c h >
6 <!−− Path two −−>
7 </p a r a l l e l b r a n c h >
8 </p a r a l l e l >
9

10 <c a l l id=”a f t e r ” . . . />

In the example above the call statement with the id after is not executed until at least one
branch finished its execution as indicated by wait=‘1’.

5.9 Critical Statement

This statement allows the designer to define groups of statements that are executed exclusively
at a time. To interconnect different critical elements we provide the attribute named ID.
The value of this attribute indicates which elements are interconnected and therefore not
executed simultaneously.

LISTING 5.16: Example for a Critical Statement
1 <p a r a l l e l wait=”1”>
2 <p a r a l l e l b r a n c h >
3 <!−− Some statements −−>
4 < c r i t i c a l id=”myCr i t i ca l”>
5 <!−− Exc lus ive statements −−>
6 </ c r i t i c a l >
7 <!−− Some statements −−>
8 </p a r a l l e l b r a n c h >
9 <p a r a l l e l b r a n c h >

10 <!−− Some other statements −−>
11 < c r i t i c a l id=”myCr i t i ca l”>
12 <!−− Other e x c l u s i v e statements −−>
13 </ c r i t i c a l >
14 <!−− Some other statements −−>
15 </p a r a l l e l b r a n c h >
16 </p a r a l l e l >
17
18 < c r i t i c a l id=”myCr i t i ca l”>
19 <!−− More e x c l u s i v e statements −−>
20 </ c r i t i c a l >

The example above shows how it can be ensured that a group of interrelated variables is
always consistent even if they are written in two different branches. As the wait attribute of
the parallel element indicates the execution continues after the first branch has finished.
We further assume that after the parallel statement the context variables, set in one of the
branches, are used. By grouping them also into a critical element with the same ID as
the other two we ensure that even if the remaining branch access the variables at the time
the controlflow reads them, the execution waits till the branch as left the critical block and
therefore guarantee that the variables are always consistent in the means of being all set in
the same branch.

69

Chapter 6

Injection Service

This chapter focuses on the component which is in charge of injecting class and instance
level microflows provided by the Repository (see Chapter 4) into a business process without
interfering with the original intend of the process. We start this chapter with a detailed step-
by-step example (Section 6.1) illustrating what happens during an injection using the Cinema
example (see Section 4.1 for details about the example). Section 6.2 gives a detailed discussion
about the provided RESTful interface of this service. It explains what HTTP-messages are
computed and how possible responses may look like. In the next section (Section 6.3) we
discuss the algorithm developed to inject class level and instance level microflows in respect
to correctness criteria and without interfering with the original intent of the process. We
introduce our implementation (Section 6.3.1) using pseudo-code listings and XML snippets.
With a detailed discussion about the operations and elements, used by our algorithm, we give
a comprehensive explanation of the overall functionality. This section ends with a discussion
about why and how loops are treated in a special way (Section 6.3.2).

6.1 Demonstrator: Service Injection

In this section we use the Cinemas example (see Section 4.1) to illustrate how our Injection
Service works. As described by the example the operation search & book is provided within
the Cinema domain. We will show in the following step-by-step introduction how the con-
trolflow is changed when this operation is referenced within a controlflow named Book Movie
Tickets.

Figures 6.1 - 6.4 use BPMN notation. As BPMN was not designed for adaptive workflow
systems it lacks of some concepts. Therefore we extend/refine the BPMN notation:

1. Injection Calls: Activities including a rescue-ring in the lower right corner represent
injection calls. Activities of this type cause always a change of the controlflow.

2. Generated Activities: Activities that are derived by the injection algorithm in re-
spect to correctness criteria are marked with a script roll in the lower right corner. In
BPMN these activities are called Scripts meaning that they are autonomous from any
external service and usually for maintenance of the instance. This is very similar to our

71

Perform
Search & Book

Manipulate

B
o
o
k

M
o
v
ie

Ti
ck

e
ts

Injection Handler

In
it

ia
l
P
ro

ce
ss

Figure 6.1: Step 1: Initial Process Using the Operation Search & Book

usage with the difference that we additionally indicate that these activities were not
define by the designer or the user.

3. ‘Call - Manipulate’ Statements: The CPEE supports call activities with an included
manipulate statement to process the result object of a service call. We represent such
statements by activities including a sub-activity called Manipulate in the lower left
corner. Sub-activities are a concept which is included in the BPMN notation but we
want to explicit explain it here to avoid misunderstandings.

Step One: Figure 6.1 shows the initial controlflow Book Movie Tickets20. The process
designer only defined that the operation search & book should be executed whenever this
process is instantiated and executed by a user.

As the message notation indicates this activity communicates only with the Injection Han-
dler. When it is executed it registers the execution instance by the Injection Handler by
requesting the injection of the controlflow represented by the operation search & book from
the Repository.

Step Two: Figure 6.2 shows how the controlflow looks like after the class level injection
of the search & book microflow has finished. The newly injected controlflow starts directly
behind the derived Create Objects activity. In the top lane21 can also be seen that the
Manipulate statement, derived from the initial Perform Search & Book activity, is placed
directly after the newly injected microflow and the clean-up statement of it at the very end.
The execution position after the injection was performed is after Perform Search & Book.

When the execution comes to the activity Call Find it again requests the injection of a
microflow provided by the Repository from an Injection Handler. This time the requested
microflow is represented by the class level operation Find in the domain Cinema. As we
explained already does our system supports the definition of nested class level operations
which is shown here.

20To avoid unnecessary complexity within the diagrams we left out activities related to input data collection
our result presentation in our example. See Section 8.2 for a more real world example definition.

21In BPMN lanes are a way to visualize different aspects/views of one process instance within one diagram.
They are not to be confounded with pools which indicate an other process instance.

72

Manipulate from
'Search & Book'

B
o
o
k

M
o
v
ie

 T
ic

ke
ts Perform

'Search & Book'
Remove Objects

of
'Search & Book'

Call Find

Manipulate

Call Book

Manipulate

Merge ResultsCreate Objects
for

'Search & Book'

Injection Handler

In
it

ia
l
P
ro

ce
ss

C
la

ss
 L

e
v
e
l
-

'S
e
a
rc

h
 &

 B
o
o
k'

Injection Handler

Figure 6.2: Step 2: Class Level Microflow of the Operation Search was Injected

Step Three: Figure 6.3 shows how the controlflow looks after the class level microflow of
the operation Find was injected. Again, the new microflow is presented in its own new lane
starting with the according Create Objects activity. Also are the Manipulate statement and
the clean-up statement of it positioned directly after the new microflow. After the injection
is finished the actual execution position is set to after Call Find.

When the execution reaches the activity Perform Search it again requests an injection from
the Injection Handler. This time the instance level microflows of the operation Find from all
matching services at the given endpoint will be injected.

Step Four: In Figure 6.4 the instance level microflows of two matching services are added
(represented by an activity with a + at the bottom denoting a sub-process). Again they
are in an own lane. As defined, each service is represented by a separate branch within a
parallel statement22 starting with the Create Objects statement and closed with the clean-up
statement. In contrast to class level microflows, all manipulate statements needed to compute
the results of the service call must be placed directly into the microflow allowing the clean-up
to happen directly at the end of it. The actual execution position is set after Perform Search
when the injection is finished. Further, as indicated by the message flow, do instance level
microflows only communicate with their associated services and do not include the Repository
anymore.

6.2 Interface

In our architecture only the Injection Handler (see Chapter 7) starts an interaction with an
Injection Service. Whenever the Injection Handler requests an Injection Service it delegates
a particular injection to it (in Figure 3.1 this is represented by Step Two) and expects the
adapted controlflow description as result. To do so, the Injection Service expects the following
input-message included in an HTTP POST-request:

22The parallel branches are merged using a Complex Merge symbol as defined by BPMN, because not
every branch must necessarily be finished before the execution continues. See the count attribute of the call
statement in Section 5.3.4 for details.

73

Manipulate from
'Call Find'

Remove Objects
of

'Call Find'

B
o
o
k

M
o
v
ie

 T
ic

ke
ts

C
la

ss
 L

e
v
e
l
-

'C
a
ll

Fi
n
d
' Create Objects

for
'Call Find'

Perform Search

Manipulate

Injection Handler Injection Handler

Manipulate from
'Search & Book'

Perform
'Search & Book'

Remove Objects
of

'Search & Book'

Call Find Call 'Book'

Manipulate

Merge ResultsCreate Objects
for

'Search & Book'

In
it

ia
l
P
ro

ce
ss

C
la

ss
 L

e
v
e
l
-

'S
e
a
rc

h
 &

 B
o
o
k'

Figure 6.3: Step 3: Class Level Microflow of the Operation Find was Injected

Create Objects for
Apollo Cinema

Service

Create Objects for
... Cinema

Service

Controlflow from
Apollo Cinema

Service

Controlflow from
... Cinema

Service

Remove Objects
of

Apollo Cinema
Service

Remove Objects
of

... Cinema
Service

B
o
o
k

M
o
v
ie

 T
ic

ke
ts

... ServiceApollo Service

In
st

a
n
ce

 L
e
v
e
l
-

e
a
ch

 m
a
tc

h
in

g

S
e
rv

ic
e
 r

e
p
re

se
n
ts

 o
n
e
 b

ra
n
ch

Injection Handler

Manipulate from
'Perform Search'

Manipulate from
'Call Find'

Remove Objects
of

'Call Find'

C
la

ss
 L

e
v
e
l
-

'C
a
ll

Fi
n
d
' Create Objects

for
'Call Find'

Perform Search

Manipulate from
'Search & Book'

Perform
'Search & Book'

Remove Objects
of

'Search & Book'

Call Find Call Book

Manipulate

Merge ResultsCreate Objects
for

'Search & Book'

In
it

ia
l
P
ro

ce
ss

C
la

ss
 L

e
v
e
l
-

'S
e
a
rc

h
 &

 B
o
o
k'

Figure 6.4: Step 4: Instance Level Microflow of Two Cinemas was Injected

74

� position represents the ID of the call statement causing the actual injection.

� instance represents the URI of the CPEE instance related to this injection.

� handler represents the URI of the Injection Handler responsible for this/these injec-
tion(s).

� description represents the XML representation of the whole controlflow in CPEE
syntax.

If all this information is provided the Injection Service is able to perform the requested
injection and to request some additional data, which may be needed during the injection,
from the CPEE instance. If the injection was done without errors it responds the HTTP-
status code 200 and a message consisting of two parameters:

Positions: This parameter provides all new positions (IDs of the controlflow statements)
where the execution of the controlflow must continue. Because the CPEE supports parallel
execution and therefore more than one branch could be affected by an injection, there may
be more than one position included in the result. That’s why we provide the new positions
as a XML.

LISTING 6.1: Example of XML Positions Responded by an Injection Service

1 <p o s i t i o n s >
2 <a1 new=”a1 1”>a f t e r </a1>
3 <a2 new=”a2 1”>at</a2>
4 </p o s i t i o n s >

As shown in Listing 6.1 each position is provided as a separate element. The name of the
element is the ID of the original position in the controlflow and the attribute new provides the
new ID for it. The content of the element is either after or at and indicating if the execution
should start after the referenced element or at the referenced element. It is explained in
Section 6.3 why and how IDs of controlflow statements are changed and how it is decided if
the execution should be continued at the new ID or after it.

Description: This parameter provides the actual controlflow description in CPEE syntax.
This description represents the result of the injection algorithm after the delegated injection
was performed.

If the injection was not performed as expected it will return an empty message and the HTTP-
status code 501 to indicate to the Injection Handler that something unexpected happened
and the injection was not performed at all or incomplete.

6.3 Injection Algorithm

As we already described in Section 4.2 and 4.3 our Repository provides information at two
different levels. Each level represents different aspects of a service and therefore have to
be computed accurate within the algorithm of the Injection Service. Injecting microflows
into the controlflow of a CPEE instance is our approach to allow process designer to use
services provided by the Repository in a transparent and arbitrary way. We argue that
injecting the according microflows directly into the controlflow during run-time creates the
benefit of providing all information about its execution within one instance. This further

75

allows for simpler algorithm when external operations are performed on business processes
e.g. synchronization or repair because no other instances must be considered. It further
enables run-time optimization of the controlflow as described by Schikuta et al. [66] using
the A* algorithm.

Whenever an injection is performed it is important . . .

1. . . . not to interfere with the original intend of the process.

2. . . . that changes are only performed in parts of the process that are not already exe-
cuted. A more comprehensive definition is included in Rinderle et al. [67]. Within loop
statements (for details see Section 6.3.2) these criteria is discussed in detail.

3. . . . that all information about the injection is added into the controlflow to allow ana-
lyzing it afterwards.

4. . . . to guarantee that each ID (controlflow statement, context variable, endpoint) is
unique and all references to them are kept in sync.

5. . . . that all matching services are executed in parallel. We argue that a process designer,
not defining one particular service, wants each matching service to be executed in
parallel. If not all services need to be finished the designer can use the count element
when defining the call. For details about this attribute see Section 5.3.4 and Listing
5.6.

6.3.1 Implementation

In the following we explain the injection algorithm. We explain how we meet the so far
elaborated requirements by (1) giving a listing in pseudo-code showing how it is implemented,
(2) a detailed explanation of the major operations and elements of the algorithm and (3) an
XML example of the controlflow description before and after an injection was performed.
The message flow during an injection is presented in Figure 3.4.

Pseudo-Code Listings

LISTING 6.2: Main Method of the Injection Algorithm in Pseudo-Code

1 DEFINE i n j e c t i o n ($pos i t i on , $ instanceURI , $handler , $de s c r i p t i on , $p o s i t i o n s)
2 GET endpoint from $ instanceURI f o r $p o s i t i o n in to $endpoint
3 $group = CREATE group element and s e t a t t r i b u t e s
4
5 IF i n j e c t i o n i s on Class Leve l
6 $microf low = GET c l a s s l e v e l micro f low from $endpoint
7 SET accord ing URIs with in $microf low
8 IF NOT $p o s i t i o n with in a loop statement
9 $createNode , $removeNode = i n j e c t c l a s s l e v e l ($microf low , $pos i t i on ,

$group)
10 SET $p o s i t i o n to ’ a f t e r ’ with in $p o s i t i o n s
11 END
12 ELSE
13 $ p a r a l l e l = CREATE p a r a l l e l statement
14 IF NOT $p o s i t i o n with in a loop statement
15 i n s t a n c e l e v e l i n j e c t i o n ($p a r a l l e l , $pos i t i on , $endpoint)

76

16 SET $p o s i t i o n to ’ a f t e r ’ with in $p o s i t i o n s
17 END
18 END
19
20 # S p e c i a l treatment o f i n j e c t i o n s performed with in a loop (Sec t i on 6 . 3 . 2)
21 #===
22 IF $p o s i t i o n with in a loop statement
23 $loopCopy = Copy elements with in loop statement
24 UPDATE $p o s i t i o n and check i f other $p o s i t i o n s are a f f e c t e d
25 UPDATE IDs in $loopCopy
26 IF $p o s i t i o n s t i l l wi th in a loop statement
27 ADD $loopCopy be f o r e loop element in $d e s c r i p t i o n
28 RETURN i n j e c t i o n ($pos i t i on , $ instanceURI , $handler , $de s c r i p t i on ,

$p o s i t i o n s)
29 END
30
31 $create , $remove = c l a s s l e v e l i n j e c t i o n ($microf low , $pos i t i on , $group)

IF i n j e c t i o n i s on Class Level
32 i n s t a n c e l e v e l i n j e c t i o n ($p a r a l l e l , $endpoint , $pos i t i on , $d e s c r i p t i o n)

IF NOT i n j e c t i o n i s on Class Leve l
33 ADD $loopCopy be f o r e loop element in $d e s c r i p t i o n
34 END
35 #===
36
37 IF $p o s i t i o n has manipulate b lock
38 $manipulateBlock = SPLIT manipulate b lock from $p o s i t i o n
39 ADD $manipulateBlock and s e t a t t r i b u t e s a f t e r $group
40 END
41
42 IF i n j e c t i o n i s on Class Leve l
43 ADD $ c r ea t e at f i r s t p o s i t i o n in to $group
44 ADD $remove a f t e r $manipulateBlock or $group
45 END
46
47 $d e s c r i p t i o n = TRANSFORM($d e s c r i p t i o n)
48 RETURN $pos i t i on s , $d e s c r i p t i o n
49 END

In Listing 6.2 we show the main method of the injection algorithm. Lines 5 -11 cover most of
the behavior when a class level injection - outside any loop statement - is performed. Lines
12 - 18 do the same only for an instance level injection outside of any loop. As both cases
are implemented in their own method (see Listing 6.3 and 6.4) they can be handled very
short here. Lines 22 - 36 cover the specifics of injections performed within a loop statement.
We discuss the special treatment of such an injection in detail in Section 6.3.2. In short, the
desired behavior is to enroll (see line 28) all loop statements if they include an injection. We
implemented this by using a recursive call of the main method after (a) the actual loop was
enrolled and (b) there is still (at least) one more outer loop present. Lines 38 - 41 perform
the splitting of a Call - Manipulate statement into two separate nodes. To do so it adds the
manipulate block into the controlflow description after the injected microflow. Lines 43 - 46
are performed if a class level injection happens and inject the Create Objects and the Remove
Objects derived from the class level microflow at their proper positions. At the end (line
48) the newly created controlflow description is transformed into the syntax of the targeted
execution system. After the transformation is done the updated execution positions and the
new (transformed) controlflow description are returned to the Injection Handler (line 48).

77

LISTING 6.3: Class Level Method of the Injection Algorithm in Pseudo-Code

1 DEFINE c l a s s l e v e l i n j e c t i o n ($microf low , $pos i t i on , $group)
2 UPDATE a t t r i b u t e s e . g . IDs , r e f e r e n c e s in $microf low
3 INJECT $microf low a f t e r $p o s i t i o n in to $d e s c r i p t i o n
4 RESOLVE message−parameters
5 $ c r ea t e = CREATE ’ Create Objects ’ statement
6 $remove = CREATE ’Remove Objects ’ statement
7 RETURN $create , $remove
8 END

Listing 6.3 illustrates how a class level microflow is prepared for an injection and actually
injected. At the beginning the nodes Create Object and Remove Objected are created. These
two statements are automatically generated on the basis of the class level microflow by search-
ing for the definition of context elements. When the algorithm resolves message-parameters
and outside endpoints it replaces these references with the names of the actual context
elements derived from the call statements of the actual controlflow description. Because at
this point the algorithm can not identify the actual position of the Create Objects and Re-
move Objects statements, it returns them back to the main method which injects them later
when their proper position can be defined.

LISTING 6.4: Instance Level Method of the Injection Algorithm in Pseudo-Code

1 DEFINE i n s t a n c e l e v e l i n j e c t i o n ($p a r a l l e l , $endpoint , $pos i t i on , $desc)
2 $ s e r v i c e s = GET a l l s e r v i c e s from $endpoint
3 FILTER OUT $ s e r v i c e s o f s e r v i c e s not matching the c o n s t r a i n t s
4 $ p a r a l l e l = CREATE p a r a l l e l statement
5 EACH $ s e r v i c e IN $ s e r v i c e s
6 $ c r ea t e = CREATE ’ Create Objects ’ statement
7 $remove = CREATE ’Remove Objects ’ statement
8 $branch = CREATE branch element
9 ADD $ c r ea t e f i r s t to $branch

10 ADD microf low o f $ s e r v i c e second to $branch
11 ADD $remove l a s t to $branch
12 INJECT $branch in to $ p a r a l l e l
13 END
14 ADD $branch in to $desc
15 END

Listing 6.4 represents the algorithm used for instance level injections. It starts by requesting
all services from the Repository offered at the provided URI ($endpoint). How this is done
and what messages are exchanged is described in Section 4.4. In the next step, all services
not matching the defined constraints are filtered out. As we already explained, each instance
level microflow is injected into its own branch of a Parallel - Branch statement. The Create
Objects and Remove Objects statements are derived similar as they are at class level. But
because at instance level it is defined that they are at the beginning/end of the injected
microflow they are already added at this point.

Operations and Elements

Split ‘Call - Manipulate’ Statements: The CPEE support so called Call - Manipulate
Statements. These statements are, as the name already indicates, a call statement with
an embedded manipulate block. These are necessary in the CPEE controlflow description
to compute the result object of a call statement as they are only accessible within these
manipulate blocks (see Stuermer [45] for details). Because in our system each call referring

78

to a service stores the explicit defined output parameters in an intermediated context variable
(see Section 5.3.1 for details) we do not have this restriction. But as we inject into controlflows
represented in CPEE syntax we must consider them in our algorithm. To inject the referenced
microflow of these statements we need to split them. First is the original call statement
without the manipulate block. Second is the manipulate block using the context attribute
to access the result object of the injected microflow and the properties attribute to access
the properties of the used services. Both values are defined in the group element described
below. To identify these manipulate statements they are additionally marked with an output
attribute providing the value result. An example for such a manipulate statement is given in
Listing 6.6 at line 18. Splitting Call - Manipulate Statements this way allows our Injection
Service (a) to inject microflows between the call and the newly created manipulate statement
(which is its intended position as it logically represents a service call) and (b) access the
result of the microflow as it was a native service call.

Group Element: This element is generated each time an injection changes something in
the process. It is added directly after the call statement (if it is not within a loop - details
see Section 6.3.2) causing the injection (see Section 6.2 input parameter position). The
group element holds a number of attributes to store information about its actual injection.
See Listing 6.6 line 11 for an example of a class level injection and Listing 6.7 line 3 for an
instance level example.

Type: This attribute indicates during what situation it was created. If this represents
the value injection it was created because of an injection outside a loop. If it represents
loop as value its creation was caused by an injection inside a loop. See Section 6.3.2 for
details to this case.

Cycle: This attribute is only set in combination with the attribute type = ’loop’. It
indicates the iteration number of the according loop statement it represents23.

Serviceoperation: Represents the name of the injected service operation within this
group element. This string must have leading and ending quotes.

Source: Provides the ID of the call statement causing this injection.

Result: Provides the name of the context variable representing the result object.

Properties: Provides the name of the context variable representing the properties of
each selected service.

Constraints: These elements represent an exact copy of the constraints defined within the
call statement causing the injection. We copy them first after the group element to have
all information for this injection within one element. This way the injection algorithm only
has to parse its ancestors for considerable information and not the whole controlflow during
follow-up injections. Compare Listings 6.5 and 6.6 for an example.

Data Elements: In Section 5.2 we introduced the possibilities provided to define local
variables and endpoints within a microflow. During the injection it must be guaranteed that
these names are unique within the whole controlflow. We do so by prefixing all names with the

23We use index-origin zero for counting the loop iterations.

79

ID of the causing call statement. Renaming these elements implies further that all references
to them must be updated too to stay in sync. Also references to message-parameters, which
were unknown until now, must be updated to refer to the proper context elements. Same is
for endpoint references which are defined using the attribute type = ’outside’.

‘Parallel - Branch’ Statement: As we argued above, we assume that each service in the
Repository, fulfilling the defined constraints, should be used in parallel. This is the reason why
we create a parallel element whenever an instance level injection is going to be performed
(see Listing 6.7 line 5). Each matching service is injected in its own parallel branch element.

Injecting the Microflow: At this point the controlflow description is extended with the
referenced microflow(s). It has to be considered that all IDs must be unique. That’s why we
prefix each ID with the ID of the causing call statement.

‘Create Objects’ Activity: To support context elements defined within the to be injected
microflow(s) our algorithm creates a manipulate statement first after the group element.
This statement covers all instructions necessary to create the defined context variables and
endpoints for the injected microflow. Doing so allows to provide each microflow its own local
scope of context elements. To make it easier to identify automatically generated statements
they are marked with the attribute generated = ’true’. See Listing 6.6 line 15 for an example.
If the injection is on instance level the properties of each service are added to the properties
object. The properties object is referenced by the properties attribute of the according
element (see 6.7 line 11) together with the result object referenced by the context attribute.
Our system creates a Hash object where each property of the included services is stored.
They are structured as defined in the properties schema (see Section 4.2.4 for details) using
nested Hashes. Doing so allows the designer to know exactly what properties each involved
service had at the time of execution and use them for further processing.

‘Remove Objects’ Activity: This is the clean-up of the microflows execution context.
Each context element created by the Create Objects statement will be removed from the
execution context because they are, by definition, not longer accessible. As we explained
above, local context elements are only known and accessible by the microflow who defines
it and all information intended to be used by subsequent controlflow statements outside the
microflow is stored within the result object (output-message). To make it easier to identify
automatically generated statements they are marked with the attribute generated = ’true’.
See Listing 6.6 line 19 for an example.

Depending on the causing call statement (with or without a manipulate block) it is the first or
the second statement after the group element is closed. If the injection was caused by a Call
- Manipulate Statement the clean-up can only be performed after the according manipulate
statement was executed. As this manipulate statement is consistently not included in the
group element the clean-up statement is also placed outside the group element. That’s why
the relative position of the clean-up statement depends on the causing call statement.

80

Transformation Into Target Systems Syntax: As we already mentioned does the In-
jection Service transform the resulted controlflow description into the syntax of targeted
workflow execution engine. Doing so allows that one repository can be used by different
workflow execution engines. Each engine only needs to provide a XSLT stylesheet that can
be used by the Injection Service to perform the transformation. By using XSLT stylesheets we
provide a very flexible and easy-to-use way to integrate workflow execution engines supporting
different syntax styles into our architecture. This fits well into the heterogeneity demands of
Cloud based systems. Our prototype implementation provides one of these XSLT stylesheets
to transform microflows provided by the Repository into CPEE syntax.

XML Representation of the Controlflow

Listing 6.5 represents a controlflow description causing an injection by referring to the class
level operation named search and book (line 11) of the application domain Cinemas. See also
Figure 4.2 for a BPMN diagram of the controlflow descriptions designed for this operation.
All three XML listings are presented in CPEE syntax.

LISTING 6.5: Controlflow Description Causing an Injection
1 <c a l l id=”a01” endpoint=”s e r v i c e s ”>
2 <c o n s t r a i n t s>
3 <c o n s t r a i n t xpath=”adre s s / c i t y ” comparator=”==” v a r i a b l e=”c i t y ”/>
4 </c o n s t r a i n t s>
5 <parameters>
6 <s e r v i c e >
7 <s e r v i c e o p e r a t i o n >”search and book”</ s e r v i c e o p e r a t i o n >
8 < i n j e c t i o n h a n d l e r >endpoints . i n j e c t i o n h a n d l e r </ i n j e c t i o n h a n d l e r >
9 <wait>0</wait>

10 </s e r v i c e >
11 <t i t l e > . . .</ t i t l e >
12 . . .
13 </parameters>
14 <manipulate output=”r e s u l t ”>...</ manipulate>
15 </c a l l >

Listing 6.6 represents the controlflow after the injection of the operation search and book

was performed. The Create Object (line 15) and Remove Object (line 19) are placed at their
proper positions and the split of the Call - Manipulate Statement in Listing 6.5 resulted in
the call statement in line 1 and the manipulate statement in line 18. The group element in
line 11 defines the result and properties object used by all further injected microflows within
it. It further includes a copy of the the constraint elements (line 12 -14) defined by the initial
call (line 2 -4).

LISTING 6.6: Controlflow Description After a Class Level Injection was Performed
1 <c a l l id=”a01” endpoint=”s e r v i c e s ”>
2 <c o n s t r a i n t s>
3 <c o n s t r a i n t xpath=”adre s s / c i t y ” comparator=”==” v a r i a b l e=”c i t y ”/>
4 </c o n s t r a i n t s>
5 <parameters > . . .</ parameters>
6 </c a l l >
7
8 <!−− After the i n j e c t i o n , execut ion cont inues here −−>
9 <!−− Group element caused by c a l l ”a01” −−>

10

81

11 <group type=” i n j e c t i o n ” s e r v i c e o p e r a t i o n =”’ search and book ’ ” source=”a01”
r e s u l t=”context . r e s u l t a 0 1 ” p r o p e r t i e s=”context . r e s u l t a 0 1 [’ p r ope r t i e s ’]”>

12 <c o n s t r a i n t s>
13 <c o n s t r a i n t xpath=”adre s s / c i t y ” comparator=”==” v a r i a b l e=”c i t y ”/>
14 </c o n s t r a i n t s>
15 <manipulate generated=”true ” id=”c r e a t e o b j e c t s f o r a 0 1 ”>...</ manipulate>
16 <!−− Contro l f low o f the c l a s s l e v e l opera t i on ’ search and book ’ −−>
17 </group>
18 <manipulate output=”r e s u l t ” id=”manipulate from a01 ” context=”context .

r e s u l t a 0 1 ” p r o p e r t i e s=”context . r e s u l t a 0 1 [’ p r ope r t i e s ’] ” > . . . </ manipulate>
19 <manipulate generated=”true ” id=”remove ob j e c t s o f a01 ”>...</ manipulate>

Listing 6.7 shows how the controlflow looks like after the injection of the instance level oper-
ation search, caused by the class level operation perform search of the Cinemas domain,
happened. Line 5 shows the parallel element including the branch elements for each matching
service. Line 8 and line 10 represent the Create Object and Remove Object statements for
instance level microflows of the Apollo service. The manipulate block of the initial call (line
1) is placed in line 15 and the clean-up statement at the very end of the controlflow in line
16.

LISTING 6.7: Controlflow Description After an Instance Level Injection was Performed

1 <c a l l id=”a 0 1 c a l l f i n d p e r f o r m s e a r c h ” endpoint=” s e r v i c e s ” o id=”
per fo rm search ”>...</ c a l l >

2 <!−− Group element caused by c a l l ” a 0 1 c a l l f i n d p e r f o r m s e a r c h ” −−>
3 <group type=” i n j e c t i o n ” s e r v i c e o p e r a t i o n =”’ search ’ ” source=”

a 0 1 c a l l f i n d p e r f o r m s e a r c h ” p r o p e r t i e s=”context . r e s u l t a 0 1 [’ p r ope r t i e s
’] [’ c a l l f i n d ’] [’ per form search ’]”>

4 <!−− Al l matching s e r v i c e s from the r e p o s i t o r y are executed in p a r a l l e l −−>
5 <p a r a l l e l generated=”true”>
6 <!−− Branch f o r Apol lo Cinema s e r v i c e −−>
7 <p a r a l l e l b r a n c h generated=”true”>
8 <manipulate generated=”true ” id=” c r e a t e o b j e c t s f o r a 0 1 [. . .] Apo l lo

”>...</ manipulate>
9 <!−− Contro l f l ow o f the in s t ance l e v e l opera t i on ’ search ’ from the

Apol lo Cinema s e r v i c e −−>
10 <manipulate generated=”true ” id=”r e m o v e o b j e c t s o f a 0 1 [. . .] Apo l lo

”>...</ manipulate>
11 </p a r a l l e l b r a n c h >
12 <!−− Branches f o r a l l other matching s e r v i c e s −−>
13 </p a r a l l e l >
14 </group>
15 <manipulate output=”r e s u l t ” id=”

m a n i p u l a t e f r o m a 0 1 c a l l f i n d p e r f o r m s e a r c h ” context=”context .
r e s u l t a 0 1 c a l l f i n d ” p r o p e r t i e s=”context . r e s u l t a 0 1 [’ p r ope r t i e s ’] [’
c a l l f i n d ’]” > . . . </ manipulate>

16 <manipulate generated=”true ” id=”r e m o v e o b j e c t s o f a 0 1 c a l l f i n d p e r f o r m
”>...</ manipulate>

6.3.2 Exception: Loop

As we already explained in Section 5.7 the controlflow description supports loop statements.
In contrast to all other statements, where the injection is done by changing the original
controlflow only in the area within the call statement, injection calls within loop statements
affect a wider range of the controlflow.

82

For example: Within a loop statement an injection is performed and the controlflow is
changed as described above, meaning that the call statement is directly resolved using the
information provided by the Repository. This results in a situation where successive iterations
of this loop will not execute the original controlflow what interferes with its original intend.

As these example illustrates, a special strategy for controlflow changes/injections within loop
statements is needed. The aim of this strategy is that each iteration of a loop can be
changed for its own without interfering with its original controlflow. If this is guaranteed
all injections can be handled like there is no loop at all.

Rinderle et al. [68] states that their approach to handle loops in adaptive WfMS is ”[. . .] to
logically treat loop structures as being equivalent to respective linear sequences.” Based on
this idea we came up with using loop unrolling techniques for controlflows. Loop unrolling
origins in compiler building as part of the so called Loop transformations applied by
compilers on program code. Bacon et al. [69] describes in section 6.1.3 that ”Unrolling
replicates the body of a loop some number of times called the unrolling factor (u) and iterates
step u instead of step 1.” This means that compilers are allowed to copy the body of the loop
one after another (unrolling) as many times as the loop would have been iterated (compilers
must of course be able to predict this value to do so). While compilers do this at compile-
time to speed up the execution time of the resulting program because sequences are faster to
execute than loops, we do this at run-time to have separated controlflow parts representing
the loop body of each iteration. Into this loop bodies we are allowed to inject as described
above because we are no longer interfering with the next iteration of the loop.

As mentioned before our algorithm respects the correctness criteria educed by Rinderle et
al. [67]. One of these criteria, namely the Comprehensive compliance criterion (7),
states that changes within loops are allowed, as long as they are traceable and do not lead
to a situation conflicting with other criteria or ends up executing controlflow that has been
executed before (within the same iteration). The algorithm described here fulfills all of this
criteria.

To achieve this behavior our run-time strategy for loop unrolling looks like this:

1. Change Do-While-Loop statements into While-Loop statements by transforming its con-
dition and changing the attribute from post test to pre test.

2. Copy the controlflow inside the loop statement directly before the loop statement.
This way the copy of the actual iteration is always positioned directly before the loop
statement.

3. Update the execution position to the call statement in the replicated loop body before
the loop.

4. If the actual position is still within a loop statement (nested loop construction) start
again at (1), otherwise continue with (5).

5. Perform injection.

A pseudo-code description of this strategy is given in Listing 6.2 lines 23 - 36. Line 29
represent the fourth step (start again) using a recursion to resolve nested loop constructions.

83

Start
Activity

End
Activity

Activity
A1

Perform
A2

Actual Position

Figure 6.5: Loop Before Injection

Start
Activity

End
Activity

Activity
A1

Perform
A2

Activity
A1_0

Perform
A2_0

CF of
A2_0

Iteration No. 1 - Including Injection A2

Actual Position

Figure 6.6: Loop After Injection

Example of an Injection Within a Loop Statement

Figure 6.5 shows a controlflow including a loop. Within this loop one activity (Activity A1)
and one injection (Perform A2) are defined.

When the activity Perform A2 is activated it starts the injection procedure, which according
to our algorithm does the following:

1. Create the group element (see Listing 6.8 for details) first before the loop and insert
A1 and A2 into it. Change the IDs of the inserted activities using the iteration number
of the loop (represented by the cycle attribute) as postfix.

2. Set the actual execution position to at A2 0 (Intermediate Position).

3. No more loop statements are found at the Intermediate Position and the injection
of A2 0 can be performed (see Listing 6.2 line 29 for details), resulting in the injection
of Activity CF of A2 0 and the change of the execution position to after A2 0 (Actual
Position).

Although we change the Actual Position (after A2 0) in Figure 6.6 technically before the
Previous Position (at A2) we argue that this is still in line with the correctness criteria
defined by Rinderle et al. because no controlflow that has already been executed before is
executed again. If we enter the loop again (depending on the defined condition) it will be
an other iteration of it and therefore has not been executed before. Also did we not need to
take care about any context elements because no elements only accessible (scoping) within
the loop are allowed (in contrast to many programming languages). Also is it intended that
changes within context elements of prior iterations influence successive iterations.

As already mentioned above unrolling a loop also uses a group element to mark the according
changes in the controlflow. The group element includes the attributes type = ’loop’ and
cycle representing the number of the according iteration starting at zero. In XML it looks
something like this:

84

LISTING 6.8: CPEE Syntax of the Controlflow Shown in Figure 6.6

1 <c a l l id=”Star t Act i v i ty ” . . . > . . . </ c a l l >
2 <group type=”loop ” c y c l e =”0” source=”Perform A2”>
3 <c a l l id=”Act i v i ty A1 0” . . . > . . . </ c a l l >
4 <c a l l id=”Perform A2 0” . . . > . . . </ c a l l >
5 <!−− Contro l f l ow repre s ented by ’CF o f A2 0 ’ −−>
6 </group>
7 <loop p r e t e s t =”...”>
8 <c a l l id=”Act i v i ty A1” . . > . . . </ c a l l >
9 <c a l l id=”Perform A2” . . . > . . . </ c a l l >

10 </loop>
11 <c a l l id=”End Act iv i ty ” . . . > . . . </ c a l l >

85

Chapter 7

Injection Handler

The Injection Handler is used to distribute injections defined in business processes executed by
the CPEE. As shown in Figure 3.2 and Figure 3.4 this component links CPEE instances with
Injection Services. We start this chapter with a discussion about the provided interface and
the supported messages. We additionally give a short explanation of the CPEE’s notification
model as it is strongly related to the implementation of this component. Afterwards we discuss
the functionality this component has to provide to fit into our overall system architecture.
Because this component is strongly related to the CPEE’s Activity Handler we discuss how
we adapted it to cooperate with the Injection Handler at the end of this Section.

7.1 Interface

Like all the other components involved in our system the Injection Handler provides a REST-
ful interface too. In the following section we will explain what messages are exchanged when
an injection is requested by a business process. Because this component is intended to link
CPEE instances to Injection Services it has to provide two interfaces: (1) The interface used
to interact with the CPEE including the Activity Handler component of the CPEE (for de-
tails about the Activity Handler see Chapter 7.3). (2) The interface used to interact with
Injection Services which is described in detail in Section 6.2.

The following messages are exchanged between the CPEE - Activity Handler and the Injection
Handler when an injection is requested (see also Figure 3.2 for an illustration of this protocol).

Registration Request/Response: Whenever the CPEE executes an injection call
the Activity Handler sends this message to the Injection Handler. Each call pro-
vides the URI of the Injection Handler it wants use. The URI is provided by the
injection handler parameter. (see Listing 5.6 for details).

HTTP-Method: POST

Parameters:

1. activity: provides the ID of the call statement causing the injection

2. instance: provides the URI of the CPEE instance (http://cpee:uri) the
activity is part of.

87

http://cpee:uri

Response Parameter: none

HTTP-Status: 200 (OK), 501 (Internal Error)

Subscribe ‘Syncing After’: As we mentioned in Section 3.2.1 the CPEE provides
functionality to subscribe for certain events of an instance. This message is used to
subscribe the Injection Handler for Syncing After events of an instance by sending
it to http://cpee:uri/notifications/subscriptions. If a service is registered for
such an event it will be notified by an HTTP-message each time these events occurs.

HTTP-Method: POST

Parameters24:

1. uri: provides the URI where the notification should be sent to. Providing
this parameter explicit allows services to subscribe other services then them
self for notifications about certain events. Second is the parameter called

2. topic: indicates a group of events provided by the CPEE. Because we want
to subscribe for the Syncing After event its value is running.

3. votes: indicates what particular event, out of the group indicated by the
parameter named topic, is requested. For this subscription its value is sync-
ing after.

Response Parameter:

1. key: identifies the new subscription and must be provided again when the
Injection Handler wants to delete it.

HTTP-Status: 200 (OK), 501 (Internal Error)

‘Syncing After’ Notification: As the names suggest, this message is sent to all sub-
scribed services by the CPEE if a Syncing After event occurred. The Syncing After

event indicates that the execution of an activity has finished and the CPEE awaits a
reply if it is allowed to continue with the execution (replying true) or not (replying
false). How this technique is used by the Injection Handler is explained in the next
Section.

HTTP-Method: POST

Parameters:

1. vote: represents the event, in our case syncing after.

2. topic: represents the topic of the event. For syncing after it is running.

3. notification: provides detailed information about the event like e.g. the
ID of the activity causing the notification or the URI of the according CPEE
instance.

24According to the CPEE security mechanism there are some more parameters. As this security system is
beyond the focus of this thesis they are only mentioned to give a comprehensive description of the message.

88

http://cpee:uri/notifications/subscriptions

Response Parameter:

1. continue: indicates if the execution should continue (value is true) or if it
should stop the execution (value is false).

HTTP-Status: 200 (OK), 501 (Internal Error)

Delete ‘Syncing After’ Subscription: This message requests the deletion of the ref-
erenced subscription from the CPEE. After this message was computed no more event
notifications, belonging to this particular subscription, will be sent. This message is
sent to http://cpee:uri/notifications/subscriptions/{key} where {key} repre-
sents the key of the particular subscription received during its creation.

HTTP-Method: DELETE

Parameters25: none

Response Parameter: none

HTTP-Status: 200 (OK), 501 (Internal Error)

Subscribe ‘Stop’ Notification: Similar to the way services can subscribe for Syncing

After notifications they can also subscribe for Stop events. This event informs sub-
scribers that the according instance is now in the state stopped26.

HTTP-Method: POST

Parameters27:

1. url: provides the URI of the subscriber. Again this must not be the same
service initiating the subscription. Second parameter is named

2. topic: indicates the group of events the subscription belongs to. In this
situation its value is properties/state.

3. events: indicates the particular event for this subscription. In this situation
is the value change.

Response Parameter:

1. key: identifies the new subscription and must be provided again when the
Injection Handler wants to delete it.

HTTP-Status: 200 (OK), 501 (Internal Error)

‘Stop’ Notification: This message informs the subscriber that the according instance has
properly stopped and therefore changes from the outside can be applied. Therefore the
Injection Handler can start with delegating pending injections to the Injection Services
and applying the resulting controlflow changes on the instance.

25According to the CPEE security mechanism there are some more parameters. As this security system is
beyond the focus of the thesis they are only mentioned to give a comprehensive description of the message.

26Values of an instance (e.g. controlflow description, context elements, . . .) can only be changed from
outside when it is in the state stopped.

27According to the CPEE security mechanism there are some more parameters. As this security system is
beyond the focus of the thesis they are only mentioned to give a comprehensive description of the message.

89

http://cpee:uri/notifications/subscriptions/{key}

HTTP-Method: POST

Parameters:

1. event: indicates the event related to this notification. In this situation its
value is change.

2. topic: provides the topic associated to the event which in our case is prop-
erties/state.

3. notification: provides information about the instance causing the notifica-
tion like e.g. the URI of the instance or the new state of it (in this situation
it must provide the value stopped).

Response Parameter: none

HTTP-Status: 200 (OK), 501 (Internal Error)

Delete ‘Stop’ Subscription: This message looks the same like the Delete ‘Syncing
After’ Subscription message. Again the key used in the URI must belong to the proper
subscription.

The messages the Injection Handler exchanges with the CPEE after the injection was per-
formed successfully are (see Figure 3.5 for illustration of this protocol):

Set Controlflow: This message is used to set a new/changed controlflow description for
the CPEE instance. We use it to update the controlflow description with the one where
the microflows of the registered injections are included.

HTTP-Method: POST

Parameters:

1. description: providing the new controlflow. Its XML description (CPEE
syntax) must be inside a description element. The target URI of the
message is the URI of the CPEE instance (http://cpee:uri) followed by
/properties/values/description.

Response Parameter: none

HTTP-Status: 200 (OK), 501 (Internal Error)

Set Positions: This message is used to set/update the execution positions where the
CPEE will continue after the restart of the instance. The XML structure consists of
a root element named positions where each child element represents the ID of the
statement where the position is set to and the value of the element represent either at
if the execution should continue with the referenced statement or after if the execution
should continue after it. The target URI of the message is the URI of the CPEE instance
(http://cpee:uri) followed by properties/values/positions.

LISTING 7.1: Positions in the WEE/CPEE XML Structure

1 <p o s i t i o n s >
2 <a1>a f t e r </a1>
3 <a2 0>at</a2 0>
4 </p o s i t i o n s >

90

http://cpee:uri
/properties/values/description
http://cpee:uri
properties/values/positions

HTTP-Method: POST

Parameters:

1. content: represents the actual execution positions in XML format.

Response Parameter: none

HTTP-Status: 200 (OK), 501 (Internal Error)

Restart Execution: This message is used to restart the referenced CPEE instance.
Its target URI is the URI of the CPEE instance (http://cpee:uri) followed by
properties/values/state.

HTTP-Method: POST

Parameters:

1. value: indicating the state it should go to. In this case the value of the
parameter must be running to request the instance to change its state to
running.

Response Parameter: none

HTTP-Status: 200 (OK), 501 (Internal Error)

All communication the Injection Handler has with the CPEE instances is covered by these
messages. In the next section we will show how and when the messages are exchanged what
the desired behavior is.

7.2 Algorithm

In this section we explain how the Injection Handler actually works. We already described the
interface in the section above and explain now how they are intended to use. As we explained
in Section 3.2.3 the Injection Handler interacts with the Activity Handler of the CPEE and
the Injection Services. As Figures 3.2 - 3.5 illustrate, the algorithm of the Injection Handler
consists of the following major parts:

1. Receiving an injection request.

2. Receiving a Syncing After notification.

3. Receiving a Stopped notification.

4. Delegating the injections.

5. Restarting the CPEE instance.

In the following Listings (Listing 7.2 - 7.4) we give a more technical description of the imple-
mentation of our algorithm.

91

http://cpee:uri
properties/values/state

LISTING 7.2: Injection Handler: Receiving Injection Request (Pseudo-Code)

1 # Rece iv ing an i n j e c t i o n reques t from $ i n s tance f o r $ i n j e c t i o n C a l l
2
3 IF $ i n s tance NOT in $pend i ng In j e c t i on s
4 CREATE $mutex FOR $ i n s tance
5 USE $mutex
6 $key = SUBSCRIBE f o r ’ Sync ing After ’ at $ i n s tance
7 ADD $ ins tance , $a c t i v i t y , $mutex , $key , $ s t a t e =’ s ta r t ’ TO

$pend i ng In j e c t i on s
8 END
9 END

10
11 RETURN i n j e c t i o n response

Listing 7.2 creates a Mutex in line 4. A Mutex is an implementation of a semaphore and is
used to handle exclusive access to shared resources. This access control is needed because the
CPEE allows only to subscribe for events at the level of instances and therefore the Injection
Handler may receive also notifications about activities not related to an injection. Further is
the Injection Handler implemented as a web service and therefore designed to handle multiple
requests at a time. To protect the Injection Handler from multiple requests from the same
instance we use a Mutex to ‘lock’ access to the injection queue (in the following Listings
this variable is called $pendingInjections). Doing so allows the Injection Handler to compute
one request of an instance at a time without changes in the injection queue and therefore
guarantees a consistent state of it.

For example, when an instance processes multiple branches each branch throws an event
when an activity is finished. If the injection queue would not be locked by a semaphore the
Injection Handler would, if the timing is right, registers itself more than one time for Syncing
After or Stopped resulting in inconsistent behavior of the whole system.

LISTING 7.3: Injection Handler: Receiving ’Syncing After’ Notification (Pseudo-Code)

1 # Rece iv ing a ’ Syncing After ’ n o t i f i c a t i o n from $ i n s tance
2 $mutex = $pend i ng In j e c t i on s [$ i n s tance] [: mutex]
3
4 USE $mutex
5 IF in $pend i ng In j e c t i on s [$ i n s tance] i s $ a c t i v i t y inc luded
6 IF $pend i ng In j e c t i on s [$ i n s tance] [s t a t e] == ’ s ta r t ’
7 UN SUBSCRIBE ’ Syncing After ’ us ing $pend i ng In j e c t i on s [$ i n s tance] [key]
8 $key = SUBSCRIBE ’ Stopped ’ at $ i n s tance
9 $pend i ng In j e c t i on s [$ i n s tance] [key] = $key

10 END
11 RETURN ’ cont inue=f a l s e ’ # Forces execut ion to stop as soon as p o s s i b l e
12 END
13 RETURN ’ cont inue=true ’ # Allow execut ion to cont inue
14 END

In Listing 7.3 line 4 we use the Mutex created in Listing 7.2 for the according instance. Line 6
introduces the state property which is used to indicate in which state (from the perspective
of the Injection Handler) the instance is. The following states are used in our implementation:

1. Start: Indicates that at least one injection was requested for this instance and that
the subscription for Syncing After was already done successfully.

2. Active: Indicates that at least one activity, registered for an injection, has finished
and the instance was already informed to stop as soon as possible and the subscription

92

for the Stopped event is already done.

3. Finished: Indicates that the registration phase for new injections for this instance is
finished.

We use this different states to coordinate all subscriptions and registrations of events and
activities for a CPEE instance. For that reason they are also included in the Mutex.

LISTING 7.4: Injection Handler: Receiving ’Stopped’ Notification (Pseudo-Code)

1 # Rece iv ing ’ Stopped ’ n o t i f i c a t i o n from $ i n s tance
2
3 UN SUBSCRIBE ’ Stopped ’ us ing $pend i ng In j e c t i on s [$ i n s tance] [key]
4 $pend i ng In j e c t i on s [$ i n s tance] [s t a t e] == ’ f i n i s h e d ’
5
6 $p o s i t i o n s = GET p o s i t i o n s from $ i n s tance
7 $d e s c r i p t i o n = GET c o n t r o l f l o w d e s c r i p t i o n from $ i n s tance
8
9 FOR EACH $p o s i t i o n IN $pend i ng In j e c t i on s [$ i n s tance] [a c t i v i t i e s] DO

10 $de s c r i p t i on , $newPos it ions DELEGATE INJECTION to I n j e c t i o n S e r v i c e
11 UPDATE $p o s i t i o n s IF $newPos it ions inc luded in $p o s i t i o n s
12 END
13
14 DELETE $ i n s tance FROM $pend i ng In j e c t i on s
15
16 UPDATE d e s c r i p t i o n with $d e s c r i p t i o n at $ i n s tance
17 UPDATE p o s i t i o n s with $p o s i t i o n s at $ i n s tance
18 RESTART $ i n s tance

Listing 7.4 does not use the Mutex anymore because at this point in execution the instance is
completely stopped and therefore incapable of sending any notifications. While the injection
for each position is delegated it is important to know that the iterated list of positions is
always updated with the results of the Injection Service. This covers the case if an injection
changes the position of an other pending injection. By doing so it would not be forgotten and
performed at the proper position (e.g. during Loop unrolling - see Section 6.3.2 for details).

7.3 Adapting the CPEE Activity Handler

As explained in Section 3.2 and discussed in details by G. Stuermer’s [45] the WEE/CPEE
implements a component called Handler Wrapper/Activity Handler to interact with services
referenced by call statements. The original implementation focuses on using RESTful services
which are already known at design-time and therefore restricts it in these two aspects. To use
our Repository the way it is intended to be used these two restrictions had to be abrogated
as we additionally support . . .

1. . . . SOAP calls.

2. . . . dynamic service selection at run-time.

The next two sections give an explanation how we extended the Activity Handler component
of the WEE/CPEE to meet our requests28.

28There is one more extension we implemented into the Activity Handler which focuses on providing user
interfaces within CPEE call statements. But as this extension is strongly related to our client implementation
we decided to explain it there. See Section 8 for details about this extension

93

7.3.1 SOAP Calls

As described in Section 5.3.4 we can define calls to SOAP services using the soap-operation
and wsdl attributes (see Listing 5.9 for an example). As it is the job of the Activity Handler to
perform the actual service call it must be able to handle SOAP calls and all related parameter
transformations. We did this by extending the implementation of the Activity Handler to
behave differently if the soap-operation attribute is present in the parameter set of the call
statement. In Listing 7.5 we show the implementation of the part responsible for SOAP calls
in pseudo-code.

LISTING 7.5: Implementation of SOAP Call Extension in Pseudo-Code

1 DEFINE a c t i v i t y h a n d l e ($passthrough , $parameters)
2
3 . . . # Here i s the o r i g i n a l implementation o f the Act i v i ty Handler
4
5 IF $parameters i n c lude ’ soap−operat ion ’
6 GET wsdl from $parameters [’ wsdl ’] i n t o $wsdl
7 $enve lope = CREATE SOAP enve lope us ing $parameters [’ parameters ’]
8 $ re sponse = CALL $endpoint us ing $enve lope # Perform SOAP c a l l
9 IF $ re sponse i n c l u d e s SOAP:FAULT # Cal l f a i l e d

10 RETURN message from $ re sponse [’SOAP:FAULT’]
11 ELSE # Cal l s u c c e s s f u l
12 RETURN $ re sponse [’SOAP:BODY’]
13 END
14 END
15 . . . # Here i s the o r i g i n a l implementation o f the Act i v i ty Handler
16 END

At line 7 in Listing 7.5 a SOAP envelope, according to the SOAP specifications [35], is created.
According to this specification each parameter is provided inside its own element where the
name of the element represents the parameter name and the text of the element is the value
of the parameter e.g. <numberOfSeats>5</numberOfSeats>. At line 8 the actual service
call is performed. The HTTP-method POST is used for it as it is the standard method for
SOAP services. In line 10 the error message received from the service is returned if an error
happened during the execution.

Usually SOAP services return expressive error messages including a detailed description of
the reason why the execution failed. In our implementation this messages is forwarded to the
result object provided by the instance level microflow. Doing so allows the service provider
to define proper reactions depending on the error and using the status parameter provided
by it. Because SOAP services, unlike RESTful services, do not use the HTTP-status code it
is necessary to set it inside the instance level microflow manually. If the call was successfully
executed the body part of the response message is included in the result object.

As in our implementation, output parameters must be referenced explicit in the microflow,
the assignment of the according body elements to the context variables can be generated
automatically during the transformation of the controlflow description. Details about this
parameter definition are given in Section 5.3.4. The actual assignment of their values to the
context elements is done, like for any other call, in an automatically generated manipulate
block.

94

7.3.2 Injection Calls

While we implement the functionality needed to handle injection calls, we first need to weaken
the concept that the endpoint provided by the call statement is the endpoint of the requested
service. As we already discussed in Chapter 7 is - in the case of an injection call - the Injection
Handler requested instead of the Repository, as the endpoint would suggest.

We do so by using the parameter named injection handler instead of the endpoint if the
parameter set includes a parameter named service. After the registration for an injection has
been performed successfully, the Activity Handler raises an Wee::Signal::SkipManipulate

error to prevent the WEE/CPEE from - if present - executing the manipulate block. Because
after each activity, subscribed resources are allowed to vote if the execution should continue,
this guarantees that the split of the Call - Manipulate statements (see Section 6.3.1 for details)
do not lead to a situation where controlflow code is executed twice. Further is the attribute
info of the call statement (see Section 5.3.4 for details) resolved here because the required
information e.g. call-endpoint, call-lay, . . . is best accessible at this point.

Listing 7.6 shows the relevant parts of the implementation in pseudo-code.

LISTING 7.6: Implementation of Injection Call Extension in Pseudo-Code

1 DEFINE a c t i v i t y h a n d l e ($passthrough , $parameters)
2
3 . . . # Here i s the o r i g i n a l implementation o f the Act i v i ty Handler
4
5 IF $parameters [’ in fo ’] == ’ true ’
6 ADD i n f o abut the execut ion in s t anc e and i t s parameters to $parameters
7 END
8
9 IF $parameters i n c lude ’ s e r v i c e ’

10 REGISTER f o r an i n j e c t i o n at the URI provided by $parameters [’ s e r v i c e ’] [’
i n j e c t i o n h a n d l e r ’]

11 RAISE Wee : : S i gna l : : SkipManipulate e r r o r
12 END
13
14 . . . # Here i s the o r i g i n a l implementation o f the Act i v i ty Handler
15 END

95

Chapter 8

The Mobile Client - An Example
Implementation

Figure 8.1: Screenshot: Client Ap-
plication

In this chapter we focus on the client implementation
we developed to illustrate the concepts described so
far. To gain high flexibility in terms of platforms
we decided to implement a web application. Using
HTML5 technologies (i.e. WebSockets [70], Local
Storage [36], . . .) combined with JavaScript allows
to build rich web applications running in state-of-the-
art web browsers. These techniques are also broadly
supported on operating systems for mobile devices like
e.g. Apple’s iOS or Google’s Android. We further used
on the jQTouch Framework [71] to make the web ap-
plication look like a native one e.g. page transitions
and user interface design. Although our concept is
based on web technologies we argue that it can still
be seen as a native one because all implemented com-
ponents can be executed directly on the device. There
are two possible ways to install the software on a mo-
bile device:

First: On most mobile devices, installing system ser-
vices and self-written software is only possible if it is
rooted. We do not want to give any details about how
to root a mobile device , but afterwards it is pos-
sible to execute Ruby applications and therefore also
the CPEE, the Repository and the Worklist. With
the client stored locally, all needed components are accessible directly on the mobile device
resulting in similar security issues and speed as native applications.

Second: To make it distributable over different markets (e.g. Google Apps Marketplace
[15], Apple - App Store [13]) and installable like native applications, different frameworks,
wrapping these kind of projects into a native application, supporting different platforms, are
available e.g. PhoneGap [72].

97

We start this chapter with an introduction of the overall architecture of the client. After we
introduced the general functionality of our client implementation we make a little extension
to our Cinemas example to make it more usable in the real world. With the resulting business
process we explain the usage of the client using screenshots of our implementation in action.

In order to execute the example we need a worklist to interact with the user which is de-
scribed later in this chapter. We further explain the algorithm we use to identify activities
interacting with the user and activities interacting with the Repository and how we store this
information in the client application. The further usage of this information is implemented in
the Wallet allowing the user to define personal preferences for each business process. These
preferences are divided in user inputs (predefined values) and service endpoints by exploring
the Repository.

A discussion about the functionality of the Worklist and its interface is given at the end of
this chapter. We further give a detailed explanation about how the Worklist uses templates
defined with the activities.

8.1 Architecture and Deployment

In Figure 8.2 we illustrate what components are installed locally on the mobile device by
grouping them together. These are namely the already introduced CPEE, the Repository,
the Injection Service and the Injection Handler. To derive the needed functionality for the
client application we additionally implemented the Worklist component which is described
in detail later in this Chapter and the client itself.

Outside this group are resources which may be used by the client during some operations.
These are business processes that can be imported over the web into the local client (including
templates referenced within them) and services registered in the Repository.

As Figure 8.2 illustrates the interaction of the components is as follows:

1. Import Process Description and Templates from the Web

2. Adapt Injection Requests by Browsing the Repository

3. Initiate an Execution

4. Monitor the Execution Instance

5. Execute the Business Process

6. Register Worklist Task

7. Request Associated Template

8. Request Worklist Task Data

In the following section we will discuss each of this points in detail and show how we imple-
mented the desired functionality.

98

CPEE, Injection Service,
Injection Handler, Repository

Client
Application

Worklist

Services
(REST, SOAP)

Processes &
Templates

1

2

3

4

5

6 8

7

Figure 8.2: Architecture and Deployment of the Client Implementation

8.1.1 Import Process Description and Templates from the Web

To execute business processes locally on the client they need to be defined first. As we did not
implement a process designer for mobile devices so far we need to import these descriptions
from somewhere else. Therefore we support importing process descriptions in CPEE syntax
using HTTP GET requests. The server hosting these definitions may be running locally on
the mobile devices or somewhere in the web29.

Whenever such a process description is imported the client parses it for (a) call statements
referring to templates (see Listing 5.7 for an example) and (b) call statements referring to
services (see Listing 5.6 for an example) from any Repository. All explored activities are
added into the Wallet of the application. The Wallet is used to store the personal preferences
of the user i.e. input data requested by templates and the services used from the Repository.
For details about the Wallet see Section 8.3.

8.1.2 Adapt Injection Requests by Browsing the Repository

We describe this functionality later in this chapter (see Section 8.3) and will therefore not
discuss it here.

29If the web server is not locally on the device it must support Cross-Origin Resource Sharing [73]. This
technique allows client-side requests of resources from other domains then itself.

99

8.1.3 Initiate an Execution

When the user has defined all preferences in the Wallet a new execution instance of this
process description is created. Our client implementation does this by using the RESTful
API provided by the CPEE. A short description how a new instance can be created and
initialized is given in Listing 8.1 in pseudo-code syntax.

LISTING 8.1: Create and Initialize a new WEE/CPEE Instance

1 $ i n s t a n c e u r i = CREATE new in s tanc e us ing HTTP POST at the WEE/CPEE root URI
2 LOAD $p r o c e s s d e s c r i p t i o n FROM l o c a l S t o r a g e
3
4 # Loading the Process Desc r ip t i on with parameter
5 SET trans fo rmat ion property at $ i n s t a n c e u r i / p r o p e r t i e s / va lue s
6 Name : property Value : t rans fo rmat ion
7 us ing HTTP POST in $p r o c e s s d e s c r i p t i o n
8
9 INITIALIZE $ i n s t a n c e u r i / p r o p e r t i e s / va lue s with parameters

10 Name : endpoints Value : FIND ’ endpoints ’ in $p r o c e s s d e s c r i p t i o n
11 Name : handlerwrapper Value : FIND ’ handlerwrapper ’ in $p r o c e s s d e s c r i p t i o n
12 Name : data−e lements Value : FIND ’ data−elements ’ in $p r o c e s s d e s c r i p t i o n
13 Name : d e s c r i p t i o n Value : FIND ’ d e s c r i p t i o n ’ in $p r o c e s s d e s c r i p t i o n
14 us ing HTTP POST

If all these operations are executed without an error (HTTP-status code 200 is returned) the
user is allowed to start the execution by sending running at cpee:uri/properties/values/
state using the HTTP-method PUT.

8.1.4 Monitor the Execution Instance

After the execution is started by the user the client application starts to monitor the properties
of the execution instance. The CPEE therefore allows other applications to subscribe them
self for certain events. Whenever an event occurs the CPEE uses a WebSocket [70] connection,
which was established during the subscription, to inform other applications about it. We
already described this functionality during the implementation of our Injection Handler and
in the excursus about the WEE/CPEE (see Section 3.2.1 for details). Our client application
uses this functionality to get informed about . . .

1. . . . changes of the instance state e.g. ready, running, finished, . . .

2. . . . changes of the controlflow description. As our business processes include activi-
ties resulting in the injection of microflows from the Repository we need to parse the
controlflow description every time it is changed to update the locally stored list of ac-
tivities (requesting user interaction) with their ID ’s. This is partly the same operation
as performed when a process description is imported.

3. . . . changes of the actual position of the process execution. We use this position to check
if an interaction with the user is requested by the actual activity.

Because not all of today’s mobile devices support WebSockets we implemented a fall-back
where the client application polls the properties of the instance (state, position, description)
regularly. This is not as resource efficient as WebSockets but it is better than a complete fail.
We further strongly believe that this problem will be solved in the near future as to our best

100

cpee:uri/properties/values/state
cpee:uri/properties/values/state

Figure 8.3: Screenshot: Monitoring the
Execution Instance

Figure 8.4: Screenshot: Example Worklist
Task Data Request

101

knowledge all upcoming mobile devices will support WebSockets. To avoid wasting resources
the user can define the polling interval individually. If, for example, the user knows that a
long-running process is executed the polling interval can be raised to high numbers, or even
better, the user leaves the monitoring screen of the process. If this screen is accessed again
later the client reconnects to this instance and starts monitoring again. This way valuable
resources like processing power and therefore battery life can be saved.

We already mentioned that we check if the actual activity requests user interaction every time
a position change is recognized. If this is the case, the application offers the user to open the
request from the worklist. We use the API provided by the Worklist, which is described in
Section 8.4.1, to realize this functionality. Figure 8.3 shows a screenshot of the monitoring
screen where the activity collect input requests some user interaction.

8.1.5 Execute Business Process

Because of all injections happened during the process execution so far the CPEE is able to
execute actual services. We discussed this already in detail in Section 7 and will therefore
not do this here again.

8.1.6 Register Worklist Task

In Section 5.3.4 and 4.2.3 we explained what possibilities are offered to associate templates to
external calls. Whenever such an activity is executed the CPEE posts the included informa-
tion to the Worklist to register this activity at it. Our implementation of the Worklist is able
to compute these provided information and create worklist entries out of it. How this is done
is described in Section 8.4. The CPEE gets a callback response from the Worklist causing
the CPEE to wait for the actual response (using the provided callback-id introduced in
Section 4.2.3).

8.1.7 Request Associated Templates

The Worklist has to request the template definitions (XSLT stylesheets) associated with the
registered task to provide its user interfaces. It does this at the time a client application
requests this data. Details about the implementation of the Worklist are given in Section 8.4
and will therefore not be discussed here.

8.1.8 Request Worklist Task Data

When the client application gets informed about a position change event it checks local
data if the actual execution position is registered as an activity requesting user interaction.
If this is the case the client application offers the task to the user. In Figure 8.3 we show at
the bottom of the screen how the user gets informed about such an activity.

102

The client application is now using the API of the Worklist (see Section 8.4.1 for de-
tails) to request the data (mainly the HTML representation) of the activity. Knowing
the worklist-uri, the activity-id, the template-id, the preferred language and the
platform enables the client application to request the right data from the worklist. The
HTML representation of such a worklist entry is shown in Figure 8.4.

8.2 Real World Example: Book Tickets for a Movie

To make the example of booking a movie, we used so far, more like a real world case we
added two activities requesting user interaction. First is the activity collect input which
requests from the user to enter a Title, a Date and a City. With this information we call the
operation search and book from the Cinema domain inside our Repository by the activity
a01. While the values of Title and Date are provided as parameters to a01 (see section 5.3.1
for details on input parameters) the value of City is used inside a service constraint (see
section5.3.2 for details about service constraints) for it.

B
o
o
k

T
ic

ke
ts

fo
r

a
M

ov
ie

collect_Input confirma01

Figure 8.5: BPMN: Book Tickets for a Movie Process

After the operation has finished we added the activity called confirm. The purpose of it is
to summarize the results of a01 for confirmation of the user. In contrast to collect input

this activity does not provide any inputs for the process but requests parameters from it.

8.3 Wallet

To support the user by storing personal preferences according to locally stored business
processes we implemented the Wallet. The Wallet allows the user to define (a) default values
for different inputs defined within referenced templates and (b) refine the set of services used
by activities injecting microflows from the Repository. Storing this preferences locally allows
to re-use them each time the business process is executed. This saves the user time and allows
to further personalize the business process.

In the following we will explain how we derive the data used by the Wallet from the process
description during its import. Next we introduce how the user can define personal preferences
for input data and the injected services. At last will we show how this data is used during
the execution of such a business process.

103

8.3.1 Deriving Data from Process Descriptions

Whenever a new business process is imported by the client application its description is
parsed for activities . . .

1. . . . requesting user interaction.

2. . . . causing an injection.

Activities requesting user interaction are those call elements which define a template

element within their definition. This kind of activities can be found in the original process
description (which are the ones stored within the Wallet and focused here) or inside class
level microflows30 injected from the Repository (which are not stored inside the Wallet and
therefore discussed in Section 8.1.4).

As we deal only with process descriptions in the CPEE syntax each of these activities defines
an uri element and a name element inside its templates element31.

The client application uses this information to request the input templates provided at uri.
It identifies the referenced stylesheet using the attributes name and platform. The value for
the attribute name must be the same as provided by the element name and the platform must
match with the locally stored value for the platform of the device (e.g. iPhone).

Now the client application searches each remaining template (which only differ in the xml:lang
attribute defining its language e.g. EN = English, DE = German) separately. It searches
for input elements which are not of the type = ‘hidden|button’. Each of these elements
provide an attribute named id which is further used to identify the input in the context of
the according activity. They further provide a caption attribute which represents the caption
for the language of the stylesheet used inside the Wallet. The optional value attribute defines
the default value for this input used inside the Wallet for this language. We think that it is
useful to have default values for inputs in a language sensitive context as it allows different
default values for different languages, e.g. Vienna (EN), Wien (DE) for the name of the city.

After all the inputs for each provided language are found they are stored locally on the client.
Each entry provides information about the activity it is defined in, the template name it is
defined in and its caption and value for each supported language.

Activities causing an injection are the second kind of activities the client application
searches for when a new business process is imported32. In CPEE syntax these call elements
can be identified by defining a service element inside their definition (see Listing 5.6 for an
example). The client application stores the value of the endpoint element referenced by the

30The reason why we decided against supporting class level inputs inside the Wallet is that activities inside
a class level microflow change without being noticed by the client application. Out of the same reason it is
not possible to define any personal preferences for these activities as we do not store information about class
level information any longer then the execution of the process takes.

31This is also the case for activities defined within a class level microflow as the language used inside the
Repository is transformed into the syntax used by the CPEE during the injection.

32We do only parse the original process description because any injection caused by an already injected
class level microflow is not allowed to be changed as this may interfere with the original intend of the class
level microflow.

104

attribute endpoint from the identified call element. This value is used later to guarantee
that the user is unable to extend the scope of the endpoint when browsing the Repository.

8.3.2 Setting Personal Preferences

After all necessary information about a business process is educed during its import the user
has the possibility to personalize it. As shown in Figure 8.6 the Wallet provides each identified
activity to be changed. It divides the collected information in (a) activities related to user
interactions and (b) activities related to injections. In our example these are collect input,
confirm and a01. See Figure 8.5 for a BPMN representation of this process.

User Interaction

Each entry leads to an activity identified to request some user interaction. These activities
are represented by a set of inputs derived during the import of the according business process
(see Section 8.3.1 for details). Each input is presented with its caption and the actual value
provided by the defined language of the device (see Section 5.3.5 for details). If the template,
the inputs are derived from, defines some default values these default values are stored in the
Wallet upon its first use. The user has the possibility to change the value for each input.
Doing so allows defining of personal preferences for each process separately. If the user does
not want to define a preference for a particular input he/she can remove the entry. Entries
not defined in the Wallet must be entered by the user each time the activity is executed.
If an entry is removed from the Wallet it disappears in all supported languages. Figure 8.7
shows an example of how the Wallet for a particular activity may look like.

Service Injection

The client application parses each business process during its import for activities causing an
injection. Our client application allows the user the narrow the set of services used during the
execution by browsing the Repository starting at the URI originally defined in the business
process. We argue that narrowing does not interfere with the original intend of the business
process because there can be no services included that are not also in the original set. We
implemented this by storing the initial value of each service reference and forbid the user to
browser beyond this URI by disabling the Parent Resource entry in the UI if the original
value is reached. In Figure 8.8 we give an example how browsing the Repository looks.

By going through the different resources defined within the Repository the user can choose
which one to use for this process. We realize this by parsing the ATOM feed described in
Section 4.4.1 to show the user all resources defined at the requested endpoint.

If the user reaches the instance level of the Repository all properties defined in the properties
schema (see Section 4.2.4) are presented. The client uses the caption defined for the according
language and the actual values from the service description (see Section 4.3 for details). How
such a presentation looks is shown in Figure 8.9.

The URI of the chosen resource is set as the value of the according endpoint in the process
description. Because of this they do not have to be considered during an execution any more.

105

Figure 8.6: Screenshot: Wallet
Overview

Figure 8.7: Screenshot: Setting
Preferences for an User Interaction

Figure 8.8: Screenshot: Browsing
the Repository

Figure 8.9: Screenshot: Properties
of a Service within the Repository

106

As shown in Figure 8.2 we use a Repository which is present on the device. We decided to do
so because each user is able to define his/her own set of services in this personal Repository.
If the data of this personal Repository is automatically synced with public repositories33

using e.g. a scheduled syncing job or maintained manually by the user itself depends on the
preferences of the user.

8.3.3 Using the Wallet during the Process Execution

During the execution of a business process our client application recognizes activities request-
ing a user interaction. We already explained that it requests the actual task data from the
Worklist, which is a piece of HTML. Whenever the client application loads such a piece of
HTML it parses it for all defined intput elements and checks if their id attribute is defined
in the Wallet for this process. If this is the case, it sets the values of the input according to
the value defined in the Wallet for the selected language and disables to edit it in the HTML
form. If the id is not found inside the Wallet the user must enter a value before the execution
can be continued.

We implemented it this way to provide as much privacy for the user as possible. When all
data is stored locally on the mobile device, and the Wallet can not be parsed directly from
activities, the data of the user are safe from unauthorized access.

8.4 Worklist

This section focuses on the Worklist we implemented for our client application. As shown in
Figure 8.2 the Worklist is designed to collect pending tasks from different CPEE instances
(6) and make the desired XSL transformation (7) if a client requests task data (8). We will
introduce therefore the API we implemented for CPEE instances to register worklist tasks and
for clients to request these data. We will further introduce the protocol our implementation
follows and how the Worklist is kept up-to-date about already completed tasks.

8.4.1 RESTful API

The API consists mainly of two parts: (1) operations provided for the CPEE to register
tasks in the worklist and to inform the Worklist about their completion and (2) operations
provided for clients to request data about a particular task.

Interaction with WEE/CPEE instances consists of two messages. The first is used
to register a task in the worklist. We already described in Section 5.3.4 the info attribute
and what its purpose is. This attribute is used here to additionally provide the needed
information about execution instance with the call. Listing 8.2 gives an example of how a
call to the Worklist may look like.

33 Because the data provided by the Repository is standardized, it is possible to create a Federation of
Clouds (see e.g. [19, 74, 75]). Doing so will enable users to collect the data imported into their personal
Repository from many different Repositories over the web.

107

LISTING 8.2: Example of a Call Registering in the Worklist

1 <c a l l id=”conf i rm ” endpoint=”w o r k l i s t”>
2 <parameters>
3 <method>post</method>
4 <i n fo>true</in fo>
5 <templates>
6 <ur i >’ http :// gus . lan / input−forms / cinemas . xs l ’</ ur i>
7 <name>’Cinemas−Output ’</name>
8 <lang >’EN’</ lang>
9 </templates>

10 <parameters>
11 <t i t l e >data . s e l e c t e d t i t l e </ t i t l e >
12 <date>data . s e l e c t e d d a t e </date>
13 <time>data . s t a r t i n g t i m e </time>
14 <ha l l>data . ha l l </ha l l>
15 <r e s n r>data . reservat ion number </re s n r>
16 <cinema>data . s e l e c t ed c inema </cinema>
17 </parameters>
18 </parameters>
19 </c a l l >

The content of the templates element is moved into the parameters section, by the Activity
Handler, and then renamed as follows:

� uri is moved to templates-uri

� name is moved to templates-name

� lang is moved to template-lang

This is useful because now we handle information about the associated templates like any
other parameter defined inside the parameters element (see Section 7.3 for details about the
parameter handling).

For its RESTful API, the Worklist implements the following messages at the root URI, e.g.
http://worklist:uri.

‘Register Task’ - Message: Is used to register an activity at the Worklist to be executed
by a user.

HTTP-Method: POST

Parameters: There are at least the parameters caused by the info parameter which
are namely call-instance-uri, call-activity, call-endpoint, call-lay,

call-oid and as well parameters resulting from the definition of a template which
are namely templates-uri, templates-name, template-lang. It is possible
that there is any number of additional parameters if they are defined inside the
parameters element of the call statement.

Response Parameter: none

HTTP-Status: 201 (Created)

‘Syncing After’ Notification: This notification is sent by the CPEE every time an
activity is finished. Its purpose is to keep the list of pending tasks up-to-date inside the
Worklist. Whenever this notification is sent the Worklist checks if the related activity
is registered and removes the according entry.

108

http://worklist:uri

HTTP-Method: POST

Parameters: Three query parameters. First is the

1. vote: representing the event which is in our case syncing after

2. topic: representing the topic of the event. For syncing after it is running

3. notification: provides detailed information about the event like e.g. the
ID of the activity causing the notification or the URI of the according CPEE
instance

Response Parameter: Query parameter name continue indicating if the execution
should continue (value is true) or if it should stop the execution (value is false).

HTTP-Status: 200 (OK), 501 (Internal Error)

For the client there is only one message defined which allows to request the specified task
data from the Worklist.

‘Request Worklist Task Data’ - Message: This message is used by client applications
to request specific task data for an activity depending on the language and the platform.

HTTP-Method: GET

Parameters:

1. instance: represents the URI of the instance the requested task belongs too

2. activity: refers to the id of the activity causing this worklist task

3. name: defines the name of the template that should be used together with
this worklist task

4. lang and platform: further specify the template that will be used for the
transformation of the task data.

Response Parameter:

1. html: represents the resulted HTML code of the transformation

HTTP-Status: 200 (OK), 501 (Internal Error)

8.4.2 Worklist Interaction Protocol

In this Section we discuss how we realized the protocol of our worklist implementation. In
Figure 8.10 we give an overview about the interaction between the client application, the
Worklist and the CPEE instance if an activity requests user interaction.

1. Register Worklist Task: When an activity inside the business process refers to the
Worklist it uses the Register Worklist Task - Message. Using all the provided parameters
the Worklist is able to add the activity to the list of pending worklist tasks. It further stores
all provided parameter to make them available later in the requested XSLT stylesheet. All
tasks in this list are offered to client applications at http://worklist:uri using the Request
Worklist Data - Message. If all this is done, the Worklist subscribes it self for Syncing After

109

http://worklist:uri

Client Application Worklist CPEE - Instance

1 Register Worklist Task

Callback-ID

1a Register Syncing After

4 Remove Worklist Task

Syncing After Notification

4a Remove Syncing After

3 Respond User Inputs

Templates

2 Request HTML Form

Template Identifier

HTML Form

2a Request Template

Figure 8.10: Interaction Between Client and Worklist

events of the instance. This way the Worklist gets later informed (see Step 4) when an entry
can be removed from the list.

2. Request HTML Form: If the client application finds a pending activity in the Worklist
because of the execution position it requests the data from the Worklist using the Request
Worklist Data - Message. When such a request is sent to the Worklist it checks if the activity
is registered in the list of pending tasks. If this is the case, it requests the associated XSLT
stylsheets of the activity. After it identified the particular stylesheet by checking the name,
xml:lang and platform attributes it start the transformation. All provided parameters, expect
the one named data, are copied into XSLT stylssheet by defining them as xsl:variable

and making them accessible during the transformation. In our example the confirm activity
makes use (beyond the parameters related to the info attribute) of this possibility (see Listing
8.2 for an example). If a parameter named data was provided with the registration the
transformation is performed on this data. For example the activity called perform select

inside the microflow of search and book (see Listing 8.3) provides an XML data structure
using the parameter data. When a client requests its task data the provided XML data ist
used for the transformation.

LISTING 8.3: Example of a Call Defining the Data Parameter
1 <c a l l id=”p e r f o r m s e l e c t ” endpoint=” s e l e c t o r s e r v i c e ” endpoint−type=”out s id e ”

http−method=”post ” i n f o=”true ” de fau l t−tp l−name=”mobile ” de fau l t−tp l−lang
=”en”>

2 <templates> . . . </templates>
3 <input name=”data ” v a r i a b l e=” l i s t m e r g e ”/>
4 <output name=”show id ” v a r i a b l e=”show id”/>
5 <output name=”t a r g e t ” v a r i a b l e=”endpoint”/>
6 <output message−parameter=”s t a t u s ” type=”s t a t u s ”/>
7 <output name=”m o v i e t i t l e ” message−parameter=”m o v i e t i t l e ”> . . . </output>
8 </c a l l >

110

After the transformation is done the Worklist responds the result of the transformation to
the client application. In our implementation the templates are designed to generate HTML
output which can be directly displayed by our application.

3. Respond User Inputs: Using the XSLT variable $instance-uri and $callback-id

makes the template to respond directly to the CPEE. This allows the client application to
be independent of the Worklist. It is on behalf of the template designer that the message
sent by them fits the interface of the according activity in the process description. Listing
8.4 gives an example how such a callback in HTML may look like using JavaScript.

LISTING 8.4: Example of a JavaScript CallBack

1 <s c r i p t type=”text / j a v a s c r i p t”>
2 func t i on send () {
3 var c a l l b a c k = ’< x s l : value−o f s e l e c t =”$ ins tance−u r i ”/>/ c a l l b a c k s/<x s l :

value−o f s e l e c t =”$ca l lback−id ”/> ’ ;
4 $. a jax ({
5 u r l : ca l lback ,
6 type : ’ put ’ ,
7 dataType : ’ text ’ ,
8 data :{ ’ t i t l e ’ : $(’# t i t l e ’) . va l () , ’ date ’ : $(’# date ’) . va l () , ’ c i ty ’ : $

(’# c i ty ’) . va l () } ,
9 s u c c e s s : f unc t i on (r e s) {

10 jQT . goBack () ;
11 } ,
12 e r r o r : f unc t i on () { a l e r t (’ Unable to send data to CPEE in s tance at ’ +

c a l l b a c k) ;}
13 }) ;
14 }
15 </s c r i p t >

In line 3 the XSLT variables $instance-uri and $callback-id are referenced.

4. Remove Worklist Task: If the Worklist receives a ‘Syncing After’ Notification it
checks if the activity was registered as a worklist task. If this was the case, it removes it from
the list, because it has already finished its execution successfully. After this it removes its
subscription for Syncing After events related to this activity. In either cases the Worklist
responds the parameter continue with the value true to such requests allowing the CPEE
to continue with the execution of the process.

111

Chapter 9

Conclusion

This chapter points out four major results we educed in this thesis and during the implemen-
tation of the prototype system. The scope of our contribution to the field is discussed at the
beginning. We continue with a discussion of aspects we did not cover in this thesis although
they may influence future work. We finish with things we have learned during the creation
of this thesis about The Life, The Universe and Everything.

9.1 Contributions

1. A scalable and flexible service marketplace.

2. An algorithm to use the marketplace together with adaptive workflow execution engines.

3. A language to describe service interaction in the context of the marketplace.

4. A prototype implementation of the overall system including a client for mobile devices.

9.1.1 A Scalable and Flexible Service Marketplace

This section is also presented in Vigne et al.[27].

In this thesis we presented the structure of a scalable and flexible service marketplace/reposi-
tory. The marketplace is realized by providing high level use-cases represented by microflows
(class level operations), as well as low level microflows (instance level operations) that de-
scribe the interaction between the high level use-cases and actual services. Additionally the
marketplace provides a set of properties for the selection / filtering of services (constraints).

As the presented marketplace contains no active functionality, but instead concentrates on the
multi-level description of services it is a business enabler, but not a gateway or bottleneck.
The feasibility of the marketplace (and its implementation) was shown by including real
world services, in our case a diverse set of cinema services exposing searching and booking
functionality.

113

9.1.2 An Algorithm to use the Marketplace

The system introduced in this thesis includes a component responsible for injecting the mi-
croflows provided by the market, namely the Injection Service. Because injections include
significant changes to the structure of the process, the algorithm was developed in respect to
workflow correctness criteria defined by Rinderle et al. [67]. These criteria ensure that the
process structure and the execution positions stay valid after changes have been made.

We took the concept of loop-unrolling [69], which origins in compiler building, to ensure that
(a) each iteration of the loop is executed according to the original controlflow and therefore
unaffected by any former injections and (b) the correctness criteria are not violated.

9.1.3 A Language to Describe Service Interaction

In this thesis we introduced a language to describe microflows, provided by the market, for
service interaction.

During the design of the language we focused on providing functionality (a) need for adaptive
workflow system by following the Open-point approach and (b) to describe services in a simple
and comprehensive way to be used by customers. The introduced language to describe the
microflow covers all statements and context elements introduced by Stuermer [45] and is
extended with statements and concepts needed to design ‘injectable’ microflows (process
snippets) e.g. message-parameter, constraints, . . .

We further provide RNG schemas to validate service descriptions against (general controlflow
and application domain specific) to ensure data quality and support service provider and client
developer.

Our language covers statements to describe class level interfaces, e.g. properties schema, class
level operations and also instance level interfaces like e.g. properties instantiation, transitions
(see Eder et al. [49]).

9.1.4 A Prototype Implementation

To show that our introduced design and concepts work, we implemented a prototype system.
The design sticks strictly to the SOA and REST paradigms and is therefore very flexible.
Further does the extensive use of standards like XML or ATOM-feeds enable a wide support
for different programming languages.

The marketplace and all other components required by our system benefit from the SOA
design (loosely coupled services), making the overall system very scalable. The interfaces
are designed to be RESTful, which makes them very easy to use. Further does the HTTP-
protocol allow to use them from a number of different clients (e.g. browsers) and allows for
easy application development.

The introduced client application is designed for mobile devices and uses state-of-the-art
web-technologies e.g. WebSockets, LocalStorage, . . . To allow the client to interact with the
user we implemented a worklist component for it.

114

9.2 Further research

With the incarnation of the marketplace as a basis we will concentrate on elaborating more
real world use-cases and provide for flexible integration of secure payment (see Mangler et al.
[76]), SLA information and SLA negotiation mechanisms (using WS-Agreements [77]) into
the marketplace.

In respect to actual research about Federations of Clouds (e.g. [19, 74, 75]) we will elabo-
rate techniques, allowing to use services provided by different marketplaces in a transparent
way. Using our standardized language and RESTful API as a base, matching algorithms for
resources (application domains, subgroups, . . .) and schemas provided by it are needed.

Different strategies when selecting a service can be achieved and implemented very well with
our system. We envision a generic preferences function implemented as a service which is
able to decide domain-independent which service best fits the current needs of user.

In the end, we envision a generic Service Store, similar to Apple’s App Store [13] or Google’s
Apps Marketplace [15] based on the introduced concepts. Therefore, additional to the aspects
mentioned above, we will further research about utilizing the marketplace(s) within client
applications for different mobile devices.

9.3 Lessons Learned

9.3.1 Technical Skills

� The idea behind REST: How/Why to use it the right way.

� XSLT stylesheets: How and when they work and when not.

� The principles of Cloud computing/infrastructures: strengths and weaknesses.

� Programming in Ruby and web technologies (HTML5, JavaScript, SVG).

� Writing papers/thesis using LaTex.

� Designing message based architectures.

9.3.2 Publications Related to this Thesis

A Structured Marketplace for Arbitrary Services
Ralph Vigne and Juergen Manlger and Erich Schickuta and Stefanie Rinderle-Ma
to apprear in: Future Generation Computing Systems (2011)

A RESTful Repository To Store Services For Simple Workflows
Vigne, Ralph and Mangler, Jürgen and Schikuta, Erich and Witzany, Christoph
In: Austrian Grid Symposium, 2009-09-28, Linz (2009)

115

9.3.3 Personal Experiences

� Two and a half years is a very long time for one master thesis (way to long) - but I
really enjoyed it!.

� Things can always be done better on second try.

� My English has improved a lot - imagine how bad it must have been before.

� Working in a great team makes for great fun!

116

“I may not have gone where I intended to go, but I think I have ended up
where I needed to be.”

Douglas Adams

Bibliography

[1] M. F. Greaver, Strategic outsourcing: a structured approach to outsourcing decisions and
initiatives. AMACOM Div American Mgmt Assn, 1999.

[2] C. Stricker, S. Riboni, M. Kradolfer, and J. Taylor, “Market-based workflow management
for supply chains of services,” in hicss, p. 6022, 2000.

[3] L. Schubert, K. Jeffery, and B. Neidecker-Lutz, “The future of cloud computing,” tech.
rep., European Commision: Information Society and Media, 2010.

[4] D. Hollingsworth et al., “Workflow management coalition: The workflow reference
model,” Workflow Management Coalition, 1993.

[5] D. Wodtke, J. Wei\ssenfels, G. Weikum, and A. K. Dittrich, “The mentor project:
Steps toward enterprise-wide workflow management,” in Proceedings of the International
Conference on Data Engineering, p. 556–565, 1996.

[6] P. Grefen, K. Aberer, H. Ludwig, and Y. Hoffner, “CrossFlow: cross-organizational
workflow management for service outsourcing in dynamic virtual enterprises.,” IEEE
Data Engineering Bulletin, vol. 24, p. 52–57, 2001.

[7] J. Yu and R. Buyya, “A taxonomy of workflow management systems for grid computing,”
Journal of Grid Computing, vol. 3, no. 3, p. 171–200, 2005.

[8] R. Buyya, C. S. Yeo, and S. Venugopal, “Market-oriented cloud computing: Vision,
hype, and reality for delivering it services as computing utilities,” in High Performance
Computing and Communications, 2008. HPCC ’08. 10th IEEE International Conference
on, 2008.

[9] F. Rosenberg, F. Curbera, M. J. Duftler, and R. Khalaf, “Composing restful services and
collaborative workflows: A lightweight approach,” IEEE Internet Computing, p. 24–31,
2008.

[10] R. Buyya, D. Abramson, and J. Giddy, “A case for economy grid architecture for service
oriented grid computing,” in 10th Heterogeneous Computing Workshop, 2001.

[11] S. Jha, A. Merzky, and G. Fox, “Using clouds to provide grids with higher levels of ab-
straction and explicit support for usage modes,” Concurrency and Computation: Prac-
tice and Experience, 2009.

[12] M. E. Porter, “Competitive strategy,” Measuring Business Excellence, vol. 1, no. 2,
p. 12–17, 1993.

119

[13] “Apple - iPhone - learn about apps available on the app store.”
http://www.apple.com/iphone/apps-for-iphone/. [Last access: 26.08.2010].

[14] “Apple - app store - buy, download, and install apps made for mac..”
http://www.apple.com/mac/app-store/. [Last access: 02.03.2011].

[15] “Google apps marketplace.” https://www.google.com/enterprise/marketplace/?pli=1.
[Last access: 02.03.2011].

[16] “Home - android market.” https://market.android.com/. [Last access: 02.03.2011].

[17] M. Lewis and N. Slack, Operations management. Routledge, 2003.

[18] “Definition of heterogeneous from oxford dictionaries online.”
http://oxforddictionaries.com/definition/heterogeneous#m en gb0375710.007. [Last
access: 13.06.2011].

[19] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner, “A break in the clouds:
towards a cloud definition,” SIGCOMM Comput. Commun. Rev., vol. 39, no. 1, pp. 50–
55, 2009.

[20] I. Foster, C. Kesselman, and S. Tuecke, “The anatomy of the grid: Enabling scalable
virtual organizations,” International Journal of High Performance Computing Applica-
tions, vol. 15, no. 3, p. 200, 2001.

[21] G. C. Fox and D. Gannon, Workflow in grid systems. Citeseer, 2006.

[22] K. Nichols, D. L. Black, S. Blake, and F. Baker, “Definition of the differentiated services
field (DS field) in the IPv4 and IPv6 headers.” http://tools.ietf.org/html/rfc2474, Dec.
1998. [Last access: 03.08.2010].

[23] P. Lambros, M. T. Schmidt, and C. Zentner, “Combine business process management
technology and business services to implement complex web services,” IBM Corporation,
2001.

[24] G. Joeris, “Defining flexible workflow execution behaviors,” Enterprise-wide and Cross-
enterprise Workflow Management: Concepts, Systems, Applications, vol. 24, p. 49–55.

[25] R. T. Fielding, Architectural styles and the design of network-based software architec-
tures. PhD thesis, University of California, 2000.

[26] K. Lee, N. W. Paton, R. Sakellariou, E. Deelman, A. A. Fernandes, and G. Mehta,
“Adaptive workflow processing and execution in pegasus,” Concurrency and Computa-
tion: Practice and Experience, vol. 21, no. 16, p. 1965–1981, 2009.

[27] R. Vigne, J. Manlger, E. Schickuta, and S. Rinderle-Ma, “A structured marketplace for
arbitrary services,” to apprear in: Future generation Computing Systems, 2011.

[28] O. Corcho, P. Alper, P. Missier, S. Bechhofer, and C. Goble, “Grid metadata manage-
ment: requirements and architecture,” in Proceedings of the 8th IEEE/ACM Interna-
tional Conference on Grid Computing, p. 97–104, 2007.

[29] P. Missier, P. Alper, O. Corcho, I. Dunlop, and C. Goble, “Requirements and services
for metadata management,” IEEE Internet Computing, vol. 11, no. 5, p. 17–25, 2007.

[30] P. A. Bernstein and U. Dayal, “An overview of repository technology,” in Proceedings of
the International Conference on Very Large Data Bases, p. 705–705, INSTITUTE OF
ELECTRICAL & ELECTRONICS ENGINEERS (IEEE), 1994.

[31] L. Clement, A. Hately, C. von Riegen, T. Rogers, et al., “UDDI version 3.0. 2.”
http://www.uddi.org/pubs/uddi v3.htm, 2004. [Last access: 02.08.2010].

[32] “CF SIC code list.” http://www.sec.gov/info/edgar/siccodes.htm. [Last access:
11.05.2011].

[33] “NAICS main page.” http://www.census.gov/eos/www/naics/. [Last access:
11.05.2011].

[34] “UNSPSC homepage.” http://www.unspsc.org/. [Last access: 11.05.2011].

[35] “SOAP specifications.” http://www.w3.org/TR/soap/. [Last access: 05.08.2010].

[36] “Web storage.” http://dev.w3.org/html5/webstorage/. [Last access: 05.04.2011].

[37] M. B. Blake, A. L. Sliva, M. zur Muehlen, and J. V. Nickerson, “Binding now or bind-
ing later: The performance of uddi registries,” in 40th Annual Hawaii International
Conference on System Sciences, 2007. HICSS 2007, p. 171c–171c, 2007.

[38] R. Vigne, J. Mangler, E. Schikuta, and C. Witzany, “A RESTful repository to store
services for simple workflows,” in Austrian Grid, National Symposium, (Linz, Austria),
p. 1, OCG, Sept. 2009.

[39] D. Martin, M. Burstein, D. Mcdermott, S. Mcilraith, M. Paolucci, K. Sycara, D. L.
Mcguinness, E. Sirin, and N. Srinivasan, “Bringing semantics to web services with owl-
s,” World Wide Web, vol. 10, no. 3, p. 243–277, 2007.

[40] N. Srinivasan, M. Paolucci, and K. Sycara, “An efficient algorithm for OWL-S based
semantic search in UDDI,” Semantic Web Services and Web Process Composition,
p. 96–110, 2005.

[41] Y. Han, A. Sheth, and C. Bussler, “A taxonomy of adaptive workflow management,”
in Workshop of the 1998 ACM Conference on Computer Supported Cooperative Work,
1998.

[42] A. Chervenak, E. Deelman, I. Foster, L. Guy, W. Hoschek, A. Iamnitchi, C. Kesselman,
P. Kunszt, M. Ripeanu, B. Schwartzkopf, et al., “Giggle: A framework for constructing
scalable replica location services,” in Proceedings of the 2002 ACM/IEEE conference on
Supercomputing, 2002.

[43] J. Frey, T. Tannenbaum, M. Livny, I. Foster, and S. Tuecke, “Condor-G: a computa-
tion management agent for multi-institutional grids,” Cluster Computing, vol. 5, no. 3,
p. 237–246, 2002.

[44] G. Stuermer, J. Mangler, E. Schikuta, and C. Witzany, “Network based execution of
dynamic workflows in grid and cloud based environments,” in Austrian Grid, National
Symposium, (Linz, Austria), OCG, Sept. 2009.

[45] G. Stürmer, An architectur of a workflow execution engine to enable network based exe-
cution of dynamic workflows. Masterthesis, University of Vienna, 2010.

[46] “HTTP/1.1: status code definitions.” http://www.w3.org/Protocols/rfc2616/rfc2616-
sec10.html. [Last access: 09.10.2010].

[47] R. Sayre, “Atom: The standard in syndication,” IEEE Internet Computing, vol. 9, no. 4,
pp. 71–78, 2005.

[48] J. Eder and W. Liebhart, “The workflow activity model WAMO,” in 3rd International
Conference on Cooperative Information Systems, 1995.

[49] J. Eder, J. Mangler, E. Mussi, and B. Pernici, “Using stateful activities to facilitate
monitoring and repair in workflow choreographies,” in Proceedings of the 2009 Congress
on Services - I, pp. 219–226, IEEE Computer Society, 2009.

[50] E. Sirin, B. Parsia, and J. Hendler, “Filtering and selecting semantic web services with
interactive composition techniques,” IEEE Intelligent Systems, p. 42–49, 2004.

[51] R. Khalaf, N. Mukhi, and S. Weerawarana, “Service-oriented composition in
BPEL4WS,” WWW (Alternate Paper Tracks), 2003.

[52] “Web service definition language (WSDL).” http://www.w3.org/TR/wsdl. [Last access:
05.08.2010].

[53] “XML schema part 2: Datatypes second edition.” http://www.w3.org/TR/xmlschema-
2/. [Last access: 08.09.2010].

[54] M. Alam, M. Nauman, X. Zhang, T. Ali, and P. C. Hung, “Behavioral attestation for
business processes,” in Web Services, IEEE International Conference on, (Los Alamitos,
CA, USA), pp. 343–350, IEEE Computer Society, 2009.

[55] “XML path language (XPath).” http://www.w3.org/TR/xpath/. [Last access:
09.12.2010].

[56] “XSL transformations (XSLT).” http://www.w3.org/TR/xslt.

[57] Y. M. Teo and R. Ayani, “Comparison of load balancing strategies on cluster-based web
servers,” Simulation, vol. 77, no. 5-6, p. 185, 2001.

[58] “Apache HTTP server - load balancer.” http://httpd.apache.org/docs/2.1/mod/mod proxy balancer.html.
[Last access: 31.08.2010].

[59] S. A. White, “Introduction to BPMN,” IBM Cooperation, p. 2008–029, 2004.

[60] J. Conallen, “Modeling web application architectures with UML,” Communications of
the ACM, vol. 42, no. 10, p. 63–70, 1999.

[61] T. Bray, D. Hollander, and A. Layman, “Namespaces in XML,” 1999.

[62] “Relax NG home page.” http://www.relaxng.org/. [Last access: 05.08.2010].

[63] “HTTP/1.1: protocol parameters.” http://www.w3.org/Protocols/rfc2616/rfc2616-
sec3.html. [Last access: 09.03.2011].

[64] “JSON.” http://www.json.org/. [Last access: 29.10.2010].

[65] “Ruby programming language.” http://www.ruby-lang.org/en/. [Last access:
11.04.2011].

[66] E. Schikuta, H. Wanek, and I. U. Haq, “Grid workflow optimization regarding dynami-
cally changing resources and conditions,” Concurrency and Computation: Practice and
Experience, vol. 20, no. 15, p. 1837–1849, 2008.

[67] S. Rinderle, M. Reichert, and P. Dadam, “Correctness criteria for dynamic changes in
workflow systems – a survey.,” Data and Knowledge Engineering, vol. 50, no. 1, p. 9–34,
2004.

[68] S. Rinderle, M. Reichert, and P. Dadam, “Flexible support of team processes by adaptive
workflow systems.,” Distributed and Parallel Databases, vol. 16, no. 1, p. 91–116, 2004.

[69] D. F. Bacon, S. L. Graham, and O. J. Sharp, “Compiler transformations for high-
performance computing,” ACM Computing Surveys (CSUR), vol. 26, no. 4, p. 345–420,
1994.

[70] “The WebSocket API.” http://dev.w3.org/html5/websockets/. [Last access: 05.04.2011].

[71] “jQTouch — jQuery plugin for mobile web development.” http://jqtouch.com/. [Last
access: 05.04.2011].

[72] “PhoneGap.” http://www.phonegap.com/. [Last access: 15.06.2011].

[73] “Cross-Origin resource sharing.” http://www.w3.org/TR/cors/. [Last access:
05.04.2011].

[74] R. Ranjan and R. Buyya, “Decentralized overlay for federation of enterprise clouds,”
Arxiv preprint arXiv:0811.2563, 2008.

[75] R. Buyya, R. Ranjan, and R. Calheiros, “Intercloud: Utility-oriented federation of cloud
computing environments for scaling of application services,” Algorithms and Architec-
tures for Parallel Processing, p. 13–31, 2010.

[76] J. Mangler, C. Witzany, O. Jorns, E. Schikuta, H. Wanek, and I. U. Haq, “Mobile gSET
- secure business workflows for Mobile-Grid clients,” Concurrency and Computation:
Practice and Experience, vol. 9999, no. 9999, p. n/a, 2009.

[77] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, T. Nakata, J. Pruyne,
J. Rofrano, S. Tuecke, and M. Xu, “Web services agreement specification (WS-
Agreement),” in Global Grid Forum, 2004.

List of Figures

3.1 Architectural Outline . 23
3.2 Step One: Interaction between Activity Handler and Injection Handler 24
3.3 Step Two: Collecting Instance Information and Delegating Injections 25
3.4 Step Three: Injection . 26
3.5 Step Four: Updating and Restarting the CPEE instance 27

4.1 Structure of the Repository . 29
4.2 BPMN: Operations Defined at Application Domain 31
4.3 RESTful API of the Repository . 43

5.1 BPMN: Operation Search & Book . 54
5.2 BPMN: An Example SOAP Service of a Cinema 55

6.1 Step 1: Initial Process Using the Operation Search & Book 72
6.2 Step 2: Class Level Microflow of the Operation Search was Injected 73
6.3 Step 3: Class Level Microflow of the Operation Find was Injected 74
6.4 Step 4: Instance Level Microflow of Two Cinemas was Injected 74
6.5 Loop Before Injection . 84
6.6 Loop After Injection . 84

8.1 Screenshot: Client Application . 97
8.2 Architecture and Deployment of the Client Implementation 99
8.3 Screenshot: Monitoring the Execution Instance 101
8.4 Screenshot: Example Worklist Task Data Request 101
8.5 BPMN: Book Tickets for a Movie Process . 103
8.6 Screenshot: Wallet Overview . 106
8.7 Screenshot: Setting Preferences for an User Interaction 106
8.8 Screenshot: Browsing the Repository . 106
8.9 Screenshot: Properties of a Service within the Repository 106
8.10 Interaction Between Client and Worklist . 110

125

Listings

4.1 Generated List of All Provided Operations for Example 4.1 32

4.2 Definition of Class Level Operations for Example 4.1 33

4.3 Generated Input Parameter Schema for Example 4.1 34

4.4 Algorithm for Parameter Generation in Pseudo-Code 35

4.5 Structure of a Template Definition . 36

4.6 Properties Schema Provided for Example 4.1 38

4.7 Generated Service Schema for Example 4.1 39

4.8 Definition of a Service (Instance Level) for Example 4.1 40

4.9 ATOM-feed Representing List of Classes . 45

5.1 Definition of Context Elements . 55

5.2 Definition of Input and Output Parameters 56

5.3 Definition of Additional Endpoints as Input Parameter 58

5.4 Definition of Service Constraints . 58

5.5 Definition of an Injection Call . 59

5.6 Definition of an Injection Call using CPEE Syntax 60

5.7 Definition of an External Call . 62

5.8 Definition of a Native REST Call . 63

5.9 Definition of a Native Soap Call . 64

5.10 Definition of an UI Template . 64

5.11 Example of a Manipulate Statement . 66

5.12 Example for a Choose - Alternative - Otherwise Statement 67

5.13 Example for Conditions and Groups . 68

5.14 Example for a Loop Statement . 68

5.15 Example for a Parallel - Branch Statement 69

5.16 Example for a Critical Statement . 69

6.1 Example of XML Positions Responded by an Injection Service 75

6.2 Main Method of the Injection Algorithm in Pseudo-Code 76

6.3 Class Level Method of the Injection Algorithm in Pseudo-Code 77

6.4 Instance Level Method of the Injection Algorithm in Pseudo-Code 78

6.5 Controlflow Description Causing an Injection 81

6.6 Controlflow Description After a Class Level Injection was Performed 81

6.7 Controlflow Description After an Instance Level Injection was Performed . . . 82

6.8 CPEE Syntax of the Controlflow Shown in Figure 6.6 84

7.1 Positions in the WEE/CPEE XML Structure 90

7.2 Injection Handler: Receiving Injection Request (Pseudo-Code) 92

7.3 Injection Handler: Receiving ’Syncing After’ Notification (Pseudo-Code) . . . 92

7.4 Injection Handler: Receiving ’Stopped’ Notification (Pseudo-Code) 93

127

7.5 Implementation of SOAP Call Extension in Pseudo-Code 94
7.6 Implementation of Injection Call Extension in Pseudo-Code 95
8.1 Create and Initialize a new WEE/CPEE Instance 100
8.2 Example of a Call Registering in the Worklist 108
8.3 Example of a Call Defining the Data Parameter 110
8.4 Example of a JavaScript CallBack . 111

Appendix A

Abstract

A.1 English

Today’s companies more and more embrace the utilization of inter-organizational services as
part of their internal business processes. The benefit from this outsourcing is manifold, rang-
ing from lower maintenance burden to predictable cost. One problem is, that for companies
in order to not bind themselves to a single service provider, they have to ensure that the
services they consume are interchangeable. Therefore a marketplace for services, based in a
common set of rules, that allows companies to stay flexible when selecting business partners
is needed.

In this thesis we introduce a hybrid process and service repository acting as a base for such a
marketplace. Organizing services into different application domains with a common interface
allows easy usage of the provided services for the customers, while the support of interface
transformation within service description keeps the vendors flexible. We further introduce a
prototype system demonstrating how to use this information on in combination with adaptive
workflow execution engine and Cloud infrastructures as a base. To proof the feasibility of
the introduced concepts, a mobile client executing a real-world example is introduced.

129

A.2 Deutsch

Heutige Unternehmen verwenden mehr und mehr inter-organisationale/externe Services in-
nerhalb ihrer internen Geschäftsprozesse. Die Vorteile dieses Service-Outsourcings sind
vielfältig, und reichen von geringeren Wartungsaufwand bis zu Kostenvorhersage. Jedoch
müssen Unternehmen, um sich nicht an einen einzelnen Anbieter zu binden, dafür sorgen,
dass die verwendeten Services austauschbar sind. Um diese gewünschte Flexibilität bei der
Serviceauswahl zu unterstützen ist ein Markplatz für Services, welcher auf einer gemeinsamen
Menge von Regel aufbaut, nötig.

In dieser Arbeit stellen wir ein hybrides Prozess und Service Verzeichnis vor, welches als Basis
für solch einen Marktplatz verwendet werden kann. Die Einteilung in unterschiedliche An-
wendungsdomänen mit gemeinsamen Schnittstellen unterstützt Kunden bei der Nutzung der
angebotenen Services. Die Möglichkeit innerhalb der Servicebeschreibungen die Schnittstel-
len/Parameter zu transformieren erlaubt es Anbietern flexibel mit ihren Services umzuge-
hen. Weiter stellen wir in dieser Arbeit einen Prototyp vor, welcher demonstriert, wie diese
Information in Kombination mit adaptiven Workflowsystemen innerhalb von Cloud - Infras-
trukturen verwendet werden kann. Um die Umsetzbarkeit der vorgestellten Konzepte zu
zeigen wird eine Anwendung für mobile Geräte vorgestellt, welche ein reales Beispiel unter
Einbeziehung des Marktplatzes ausführt.

Appendix B

Curriculum Vitae

Ralph Vigne

Geboren am: 16. Mai 1980
Geboren in: Krems a. d. Donau

Ausbildung

Bakkalaureatsstudium Wirtschaftsinformatik 2003 - 2007
Bachelorstudium Politikwissenschaft 2005 - 2010
Masterstudium Wirtschaftsinformatik 2007 - 2011

Publikationen

A Structured Marketplace for Arbitrary Services
Ralph Vigne and Juergen Manlger and Erich Schickuta and Stefanie Rinderle-Ma
to apprear in: Future generation Computing Systems (2011)

A RESTful Repository To Store Services For Simple Workflows
Vigne, Ralph and Mangler, Jürgen and Schikuta, Erich and Witzany, Christoph
In: Austrian Grid Symposium, 2009-09-28, Linz (2009)

A Heuristic Query Optimization Approach for Heterogeneous Environments
Beran, Peter and Mach , Werner and Vigne, Ralph and Mangler, Jürgen and Schikuta, Erich
In: The 10th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing, 2010-05-27, Melbourne, Victoria, Australia (2010)

131

	Introduction
	Motivation
	Problem Statement
	Justification
	Structure of the Thesis
	Definition of Terms

	Related Work
	Marketplace/Repository
	Categorization of Workflow Adaption
	Similar Concepts

	Requirements and Architecture
	System Analysis
	System Architecture

	Repository
	Demonstrator: Application Domain `Cinema'
	Class Level
	Instance Level
	RESTful API

	Controlflow Description
	Demonstrator: Class and Instance Level Operations
	Context Elements
	Call Statement
	Manipulate Statement
	Choose - Alternative - Otherwise Statement
	Groups and Conditions
	Loop Statement
	Parallel - Branch Statement
	Critical Statement

	Injection Service
	Demonstrator: Service Injection
	Interface
	Injection Algorithm

	Injection Handler
	Interface
	Algorithm
	Adapting the CPEE Activity Handler

	The Mobile Client - An Example Implementation
	Architecture and Deployment
	Real World Example: Book Tickets for a Movie
	Wallet
	Worklist

	Conclusion
	Contributions
	Further research
	Lessons Learned

	Abstract
	English
	Deutsch

	Curriculum Vitae

