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Abstract 
 

Streptococcus pneumoniae is a common human pathogen that causes a variety of life-

threatening invasive diseases such as pneumonia, bacteremia and meningitis. Despite the 

availability of licensed vaccines and antibiotic treatments, morbidity and mortality attributed to 

this bacterium remain significant in developing and developed countries. Due to increasing 

antibiotic resistance and limited efficacy of existing vaccines in at-risk populations, there is a 

need for new treatment strategies such as passive immunotherapy using human monoclonal 

antibodies (mAbs).  

In this study, three conserved antigens of S. pneumoniae – lipoteichoic acid (LTA), 

pneumococcal surface protein A (PspA) and pneumolysin (PLY) – were characterized for their 

suitability as targets for a mAb-based anti-infective therapy. 

Although isolation and purification procedures could be optimized for LTA from 

Streptococcus pyogenes, native LTA could not be extracted from S. pneumoniae in sufficient 

quantity and quality, thus limiting more in-depth studies of this antigen. 

Recombinant full-length PspA and PLY as well as domains thereof were expressed, 

purified and subsequently proven to be highly immunogenic in naïve C3H/HeN mice. These 

antisera were characterized in-depth in vitro: in surface staining and in ELISA, antibodies were 

shown to recognize PspA in a clade-specific manner. Polyclonal antibodies against Family 1 

PspA also reacted with other Proline-rich cell-surface proteins – presumably PspC – but not 

with Family 2 PspA.  

Consequently these antisera were tested in vivo by passive transfer and subsequent lethal 

challenge with different S. pneumoniae strains in mice. The results correlated with surface 

staining data: anti-PspA hyperimmune sera were only effective against pneumococci expressing 

homologous PspA but not against those with a heterologous variant. Anti-PLY sera were not 

fully protective although conferring prolonged survival. Interestingly the observed protection 

correlated with the level of inflammatory IL-6, induced in mice.  

Two in vitro assays exploiting the function of PLY were set up to allow a detailed 

characterization of selected antibodies: a Hemolysis-Inhibition Assay and an hTLR4-Reporter 

Assay. PLY-specific murine polyclonal and monoclonal antibodies reduced the hemolytic 

activity of PLY on erythrocytes and interfered with the activation of TLR4 through PLY. 
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Since human mAbs against PLY will be generated from B-cells based on the “Sindbis Virus 

Based Mammalian Cell Surface Display” technology, healthy human donors were identified based 

on their antibody titers in ELISA. In addition PMBC staining conditions that are required for the 

selection of antigen-specific memory B cells were optimized. 

In conclusion, a deeper insight into the mode of action of PspA- and PLY-specific 

antibodies could be gained with this work and analytical methods that are required for the 

selection and validation of human mAbs were developed. This way a basis for the development 

of a mAb-based therapy for the prevention and treatment of life-threatening pneumococcal 

diseases was established. 

  

Keywords: Streptococcus pneumoniae, monoclonal antibodies, LTA, PLY, PspA 
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Kurzfassung 
 

Streptococcus pneumoniae ist ein weitverbreiteter Erreger verschiedenster 

lebensbedrohlicher Krankheiten wie Pneumonien, Bakteriämien oder Meningitis. Obgleich 

lizensierte Impfstoffe und Antibiotika zur Verfügung stehen, bleibt die Morbidität und 

Mortalität, nicht nur in Entwicklungsländern, sondern auch in Industrieländern auf einem 

hohen Niveau. Aufgrund zunehmender Antibiotikaresistenzen und der suboptimalen 

Wirksamkeit verfügbarer Impfstoffe in Risikogruppen, steigt der Bedarf für neue Therapien, 

wie beispielsweise einer passiven Immunisierung mit monoklonalen Antikörpern.  

In dieser Arbeit wurden drei konservierte Antigene von S. pneumoniae – Lipoteichonsäure 

(LTA), pneumococcal surface protein A (PspA) und Pneumolysin (PLY) – auf ihre Eignung als 

Zielmoleküle für die Entwicklung einer anti-infektiösen Antikörper-Therapie hin untersucht.   

Obwohl die Isolierung und Reinigung nativer LTA für den Erreger Streptococcus pyogenes 

erfolgreich optimiert wurde, konnte LTA nicht in ausreichender Menge und Reinheit aus 

S. pneumoniae gewonnen und somit keine weiterführenden Studien mit diesem Antigen 

durchgeführt werden.  

Verschiedenste Konstrukte von PspA und PLY wurden rekombinant exprimiert, gereinigt 

und nachfolgend deren immunogene Wirkung in naïven C3H/HeN Mäusen demonstriert. Die 

gewonnenen Antiseren wurden in Folge genauestens in vitro analysiert. Oberflächenfärbungen 

lebender Pneumokokken zeigten, dass PspA spezifische Antikörper nicht alle PspA-Varianten 

detektieren konnten, sondern nur solche des selben PspA-Typs. Polyklonale Antikörper gegen 

Typ 1 PspA reagierten auch mit anderen Prolin-reichen Oberflächenproteinen, vermutlich 

PspC, jedoch nicht mit PspA Typ 2.  

Des weiteren wurden die generierten Antiseren in zuvor etablierten Mausmodellen durch 

passiven Transfer und nachfolgeneder letaler Infektion mit verschiedenen S. pneumoniae 

Stämmen auf ihre Wirksamkeit getestet. Die Ergebnisse korrelierten mit den Daten der 

Oberflächenfärbung: Anti-PspA Hyperimmunseren induzierten eine Protektion gegen 

Pneumokokken mit homologen jedoch nicht heterologen PspA. Anti-PLY Seren hingegen 

konnten keine vollständig protektive Wirkung erzielen, bewirkten jedoch eine erhöhte 

Überlebensrate. Die beobachtete Protektion korrelierte mit der Stärke der durch die Infektion 

induzierte inflammatorischen IL-6 Reaktion in den Tieren.  
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Im Hinblick auf die Wirkungsweise von PLY wurden zwei in vitro Analysen zur 

Antikörper-Charakterisierung entwickelt: ein Hämolyse-Inhibitions Assay und ein hTLR4-

Reporter Assay. Pneumolysin spezifische murine poly- und monoklonale Antikörper bewirkten 

eine Reduktion der hämolytischen Aktivität von PLY auf Erythrozyten und interferierten auch 

mit der Aktivierung von TLR4 durch PLY. 

Humane monoklonale Antikörper sollen in weiterer Folge aus humanen B-Zellen 

basierend auf der „Sindbis Virus Based Mammalian Cell Surface Display“ Technologie generiert 

werden. Zu diesem Zweck wurden gesunde Spender aufgrund ihres Antigen-spezifischen 

Titers im ELISA identifiziert. Zudem wurden die für die B-Zell-Selektion notwendigen PBMC-

Färbetechniken optimiert.  

Zusammenfassend demonstriert diese Arbeit einen vertiefenden Einblick in die 

Wirkungsweise von PspA und PLY-spezifischen Antikörpern sowie die Entwicklung von für 

die Selektion und Validierung humaner monoklonaler Antikörper notwendigen 

Analyseverfahren. Somit konnte die Grundlage für eine  Antikörper-basierende Therapie zur 

Prävention und Behandlung von lebensbedrohlichen Pneumokokkeninfektionen geschaffen 

werden.   

 

Schlagwörter: Steptococcus pneumoniae, monoklonale Antikörper, LTA, PLY, PspA 
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A - INTRODUCTION 

1 STREPTOCOCCUS PNEUMONIAE 

1.1 The Morphology of S. pneumoniae 

After its first isolation, identification and cultivation from human saliva, by 

G.M. Sternberg and L. Pasteur in 1880, S. pneumoniae was identified as one of the most 

prominent causes of bacterial-induced deaths worldwide to date. [1-3] 

S. pneumoniae, which is also called “pneumococcus”, is a Gram-positive, catalase-negative, 

round to lancet-shaped coccus with a diameter of 0.5 - 1.25 µm. Pneumococci mostly appear in 

pairs (diplococci, growing in chains, Figure 1-A), are not forming spores, are non-motile and are 

encapsulated by a polysaccharide capsule. [1, 4-5] 

S. pneumoniae can be cultivated on blood-agar plates under aerobic atmosphere 

supplemented with CO2, forming glistening colonies with approximately 1 mm in diameter. 

Alpha hemolysis – the breakdown of hemoglobin by pneumolysin (PLY) – of the blood leads to 

a transparent halo surrounding of the growing colonies (Figure 1-B). [1, 4-5] 
 

    

A                                 B 

 
Figure 1: The Morphology of S. pneumoniae. A. Scanning electron microscopy image of dividing cells.[6] B. 
Colonies growing on blood agar. [4] 

 

As pneumococci produce autolysin (LytA, an amidase cleaving N-acetylmuramoyl-

L-alanine in pneumococcal peptidoglycan [7]) the cells are disrupted and disintegrated causing 

killing of the entire culture when grown to stationary phase. The lysis due to autolysin also 

causes observable morphological changes of the colonies from initially plateau-type 

morphology to a collapse in the center after initiation of autolysis. [4, 8-9] 

With the exception of some isolates associated with conjunctivitis, most clinical isolates of 

S. pneumoniae are encapsulated by an approximately 200 to 400 nm thick polysaccharide 

capsule. The capsular polysaccharides give rise to more than 91 known pneumococcal 

serotypes: these major determinants of the pathogenicity of this microorganism inhibit 

complement deposition and also interfere with the detection of surface antigens through 
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antibodies and therefore protect pneumococci from opsonophagocytosis.[4, 10] Serotypes without 

a capsule are non-virulent and thus only colonize the nasopharynx but cannot transit efficiently 

from the luminal mucus to the epithelial surface. [4, 10] Each serotype typically includes a number 

of genetically divergent clones with different invasive disease potential. [11-13] Pneumococci can 

change their capsular thickness spontaneously, this phase-variation leads to a capsular switch 

from opaque (designed for survival in blood) to transparent (suited for colonization of the 

nasopharynx) colonies. [4, 14-16] 

Clinical studies showed that S. pneumoniae, as a naturally competent organism, can uptake 

foreign DNA – via bacterial intra- and inter-species gene transfer and phage transduction – and 

incorporate homologous sequences by transformation. This allows pneumococci to switch to 

serotypically distinct capsular types in vitro and in vivo, or leads to resistance against antibiotics. 

[7-8, 13] 

  

1.2 The Pathophysiology of S. pneumoniae 

Subsequent to the discovery in the late 19th century, S. pneumoniae was identified as 

causative agent of life-threatening invasive and non-invasive diseases in children (Figure 2) and 

elderly, in developing and developed countries. [1, 3-4]  

  

 

Figure 2: Pneumococcal Deaths in Children. The number of pneumococcal deaths per 100,000 children is 
depicted for children younger than 5 years (HIV-negative pneumococcal deaths only) published by the WHO. 
(modified from [17]) 
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Pneumococci inter alia induce conjunctivitis, community-acquired pneumonia (CAP), 

bacterial meningitis, bacteremia, otitis media, sinusitis, septic arthritis, osteomyelitis, peritonitis, 

tracheobronchitis, bronchitis, cellulitis, pericarditis, endocarditis and myositis. [3-4, 18] Bronchial 

pneumonia, involving the alveoli contiguous to the larger bronchioles of the bronchial tree, is 

most prevalent in infants, young children and aged adults whereas lobar pneumonia, involving 

all of a single lobe of the lungs – the entire area involved tends to become a consolidated mass – 

is most prevalent in younger adults. [4, 19]  

S. pneumoniae is spread from person-to-person by direct contact and can be carried 

without symptoms for weeks to months before it is cleared. The mucosal and systemic 

immunoglobulin response is mainly directed against the serotype-specific capsular 

polysaccharides but also against major cell-surface proteins such as pneumococcal surface 

protein A (PspA), which is discussed in more detail in the following chapters. [7, 20-22]  

As a typical extracellular bacterial pathogen, S. pneumoniae has to encounter mucus 

secretion minutes after entering the nasal cavity (exemplified in Figure 3 showing the progress 

of an infection from 30 minutes to 14 days post infection in mice [7]), adhere to host cells, 

replicate and escape clearance and/or phagocytosis . This is followed by manifesting infection 

via direct extension – in the upper and/or lower respiratory tract – lymphatic or hematogeneous 

spread – in the blood, peritoneum, cerebrospinal fluid, or joint fluid. Hereby the capsule 

enhances pneumococcal persistence by limiting mucus-mediated clearance. [4, 7, 10]  

 



A – INTRODUCTION 

 - 13 - 

 

Figure 3: Nasal Colonization by S. pneumoniae. The bacteria (in red) are detected using serotype-specific 
antisera and the animal tissue (blue) is stained using DAPI. a, 30 minutes, b, 1 day, c, 3 days and d, 14 days post 
infection . [7] 
 

1.3 Pneumococcal Infection and the Host Response in Human 

Compared to any other vaccine-preventable disease the infection with S. pneumoniae and 

the diseases associated with it, belong to the most frequent causes of death worldwide. [4, 7, 23-24] 

The more than 1.5 million deaths per annum occur mainly in the elderly and the very young, 

where the frequency of each serotype as well as the increasing antibiotic resistance varies from 

country to country. [4, 7, 23-24] This is exemplified in Figure 4, representing the most-recent 

situation in Austria in 2009. Interestingly, some serotypes are more prevalent in bacteremia 

whereas others are more associated with meningitis. [25] 
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Figure 4: Statistical Surveillance of S. pneumoniae. 303 invasive pneumococcal diseases were reported in 
Austria (2009) with a strong similarity of the age-related serotype distribution to the international picture (A). 
Highest numbers of invasive-diseases referred to at-risk populations, namely children and elderly (B). The numbers 
of disease-associated serotypes were depicted as:  28 serotypes in 80 isolates from sepsis-cases (C), 14 serotypes in 32 
isolates from meningitis-cases (D) and 32 serotypes in 110 isolates from cases of pneumonia/bacteremia (E). 
(modified from [25]) 

 

S. pneumoniae invasion of the nasopharyngeal lumen is followed by the influx of 

neutrophils one to three days later as host immune-response to the infection. [7, 26-27] 

The innate immune response is based on the recognition of highly conserved pathogen-

associated molecular patterns (PAMPs) of S. pneumoniae by Pathogen Recognition Receptors 

(PRRs) such as Toll-like receptors (TLRs) and NOD-like receptors (NLRs). [22, 28] This interaction 

induces cellular (i.e. dendritic cells, macrophages, neutrophils and monocytes) and humoral 

immune responses (complement cascades, chemokines, cytokines, C-reactive protein (CRP), 
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etc.). [22, 28]  Pneumococci are inter alia recognized by TLR2 (e.g. lipoteichoic acid (LTA) and 

peptidoglycan [29-36]), TLR4 (e.g. PLY [37-56]), TLR9 (endosomal, unmethylated CpG [57-59]) and by 

the activation of predominantly the classical (CRP bound to phosphorylcholine activates C1q) 

but also the alternative complement cascade [7, 60-62]. 

Whilst the innate immune response gives rise to an unspecific repertoire of host 

mechanisms recognizing and fighting certain classes of pathogens, the adaptive immunity 

represents a very specified and effective defensive-system in eukaryotes. [22, 28]  The time-delayed 

adaptive immune response is typically activated by innate immune mediators such as 

chemokines and cytokines, four to seven days post infection and induces immunologic 

memory. [22, 28] This level of host-defense is mainly based on the functionality of specific 

antibodies, recognizing bacterial surface antigens, thus activating the classical (IgM and IgG) or 

the alternative (IgA) pathway of complement activation. [22, 28]  Phagocytosis – after opsonization 

with serotype-specific antibodies and complement component C3b – leads to a host-mediated 

killing of pneumococci.  In addition to humoral immunity, CD4+ T-cells secreting interleukin-17 

(IL-17) are reported of being necessary for efficient pathogen clearance. [7, 27, 63-66]  The IgA1 

protease activity of S. pneumoniae diminishes the clearance by antibody until sufficient amounts 

of other (sub-)classes of specific antibodies have been generated or high levels of IgG are 

present. [67-70] 

S. pneumoniae is resistant to innate immune responses stimulated by itself which leads to 

clearance of other microbial species in the same niche. [71] For example the pneumococcal 

capsule reduces the complement deposition of iC3b on the bacterial surface and thus inhibits 

clearance of the pathogen by the host’s defense. [7, 72-74] 

 

2 PREVENTION AND TREATMENT OF S. PNEUMONIAE INFECTIONS 

2.1 State of the Art Vaccines Against Pneumococcal Infections 

Worldwide, several pneumococcal vaccines are in different stages of development, and 

three capsular polysaccharide (CPS) vaccines have already been in use in the last years: (i) 23-

valent purified CPS vaccine (Pneumovax®, Merck [75]), (ii) 13-valent CPS vaccine conjugated to 

diphteria CRM197 protein (Prevnar®, Wyeth/Pfizer [76]) and (iii) 10-valent CPS vaccine 

conjugated to protein D from H. influenzae (SynflorixTM, GSK [77]). 

CPS-based vaccines have a lower immunogenicity and require repeated immunizations, 

since polysaccharides do not induce T-cell mediated immunological memory, making them 
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unsuitable for use in young children and toddlers. The protein conjugated-polysaccharide 

vaccines induce enhanced immune response and memory, however just provide protection 

against a limited number of pneumococcal serotypes contained in the respective preparation. 

Therefore, these vaccines carry an inherent risk of replacement with evading serotypes, which 

are not included in the vaccines, or resistance due to serotype switching. [13, 78-82] 

There is a new generation of pneumococcal vaccines, based on non-polysaccharide 

antigens, hence common proteins such as pneumococcal surface adhesin A (PsaA, SP1650), 

pneumolysin (PLY, SP1923), pneumococcal surface protein A and C (PspA, SP0117 and PspC, 

SP2190) under development, which have an improved efficacy regarding the aforementioned 

drawbacks of existing vaccines. [13, 81-86] Currently, a recombinant-protein-based vaccine, 

containing PsaA, secreted 45 kD protein (PcsB or Usp45, SP2216) and serine/threonine protein 

kinase (StkP, SP1732), which are very well conserved in all pneumococcal serotypes, are 

immunogenic during pneumococcal infections and induce opsonophagocytic antibodies, is 

under development in Intercell’s IC47-program. [87-88] 

 

2.2 The History of the Prevention of Pneumococcal Infections 

Long before vaccination against the pneumococcus was established, the concomitant 

diseases associated with pneumococcal infections were attempted to be cured by bleeding, 

hydro- or oxygen-therapy or mechanical ventilation as well as administration of digitalis, 

morphine, quinine, strychnine or even alcohol. [1, 89-90] 

It was the German brothers Felix and Georg Klemperer who in 1891 achieved the first 

breakthrough by immunizing rabbits intraveneously (i.v.) with heat killed pneumococcal 

isolates. Passive transfer of these hyperimmune sera was shown to be protective against 

infection, which made their work instrumental for the definition of the humoral immune 

response, as it is known today. [1, 91] 

About 20 years after this discovery, vaccination with heat killed pneumococci was tested 

in clinical trials in African miners, where the finding of the existence of the different disease-

causing serotypes indicated a serotype specific protection. This subsequently led to the 

administration of a trivalent vaccine during World War I and serum therapy as treatment 

against pneumonia (Figure 5). [1, 92-94] 
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Figure 5: Advertisement for a Pneumococcal Serum Therapy in 1933. This antiserum was manufactured by 
the Lederle Laboratories, Inc. against S. pneumoniae induced type I pneumonia and was comparably expensive at 
that time. (modified from [94]) 

 

As these therapeutics were mostly based on hyperimmune sera from horse or rabbit, 

severe side-effects such as hypersensitivity or serum sickness arose. This and the advent of 

chemotherapeutics (e.g. sulphonamides and penicillin), which were considered as the ultimate 

therapy at this time, lead to the abolishment of serum-based therapies, until an emergence of 

penicillin- and multidrug-resistant pneumococci was realized in the 1970s. [1]  

Today, a worldwide trend of increasing penicillin-resistance (e.g. 14.3 % in North 

America[95], 16.7 % in Greece[96], more than 25 % in Burkina Faso[97] and 47 % in Northern African 

countries[98]) and multidrug-resistance (e.g. 30.1 % in North African countries[98] or 

approximately 33 % in Malawi[99]) is observed in S. pneumoniae isolates. In Austria (most recent 

data from 2009) this trend in antibacterial resistance was shown for 268 isolates to be as 

following: erythromycin/clarithromycin (15.30 %), penicillin (7.84 %), chloramphenicol (2.24 %) 

and tetracycline (1.12 %). [25] 

Therefore, next to putting huge efforts in the discovery of novel antibiotics, the 

development of vaccines, based on e.g. pneumococcal-polysaccharides or conserved antigens 
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was revived. [88, 100-101] Also, the recent focus on new therapeutic approaches based on fully 

human (monoclonal) antibodies promise alternative treatment options of pneumococcal 

infections in the future. [102-107] 

 

3 POTENTIAL PNEUMOCOCCAL ANTIGEN TARGETS FOR A mAb-BASED THERAPY 

3.1 Protein Virulence Factors and Cell-Surface Proteins of S. pneumoniae 

Many different pneumococcal cell surface components have been described and some of 

the most promising vaccine candidates among these are illustrated in Figure 6. Virulence 

factors, such as PLY, and cell-surface proteins, like choline-binding proteins, PspA, PspC, and 

LytA, but also the cell wall constituents wall teichoic acid (WTA) and LTA, are common to all 

serotypes of S. pneumoniae. [7, 24] 

  

 

Figure 6: Important Pneumococcal Virulence Factors. The virulence of S. pneumoniae is diversified due to 
virulence factors such as the capsule, the cell wall, choline-binding proteins, metal-binding proteins, surface 
proteins, LPXTG-anchored proteins and PLY.[7] 

 

It was shown that immunization with PiaA and PiuA (both divalent pneumococcal metal-

ion-binding lipoproteins) protected against invasive disease in mice [7]. LPXTG-anchored 

proteins such as neuraminidases are also present in S. pneumoniae. Naturally developed 

antibodies to PsaA are protective against colonization in mice, whereas the antibodies against 

PspA can reduce bacteremia and pneumonia. [7, 24] 
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3.2 Lipoteichoic acid (LTA) 

3.2.1 Structural Features of LTA 

The core of the pneumococcal cell wall consists of the murein (peptidoglycan) – a network 

of peptide-cross-linked glycan strands.[108] In many Gram-positive bacteria, teichoic acids - WTA 

and LTA in S. pneumoniae - are linked to and extend through these peptidoglycan layers, which 

inter alia allows the protein trafficking in pneumococci. [63, 108-109] 

The first description of teichoic acid (C-polysaccharide; re-named to WTA after the 

identification of the presence of ribitol phosphate and sugars [110-113] ) and LTA (F-antigen) lead 

to the differentiation based on their lipophilic character, hence their Forssmann antigenicity. [63, 

108, 114-118] 

Both, WTA and LTA, are common antigens in different pneumococcal serotypes 

(compared to capsular polysaccharides) and are expressed in similar amounts as murein in the 

cell wall, where approximately 90 % thereof are covalently linked to murein as WTA and 

approximately 10 % are anchored via lipid anchors as LTA to the glycolipids of the cytoplasmic 

membrane (Figure 7). [63, 108, 119-120] 

 

 

Figure 7: Schematic Drawing of the Gram-Positive Cell Wall Depicting WTA and LTA [120] 

 

The identical and highly complex chemical composition of the repeating units of WTA 

and LTA (Figure 8) as well as their decoration with choline, makes the pneumococcal teichoic 

acids unique compared to other species. Both were already chemically synthesized as smaller 

subunits as well as full-length structures, which will allow even more diversified possibilities 

for investigation e.g. in the course of vaccine development. [63, 112, 121-132] 
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Figure 8: The Structural Model for Pneumococcal LTA. The currently accepted model of pneumococcal LTA is 
depicted. At present more models, revising and confirming ascertained structural features, are suggested.  [127] 
 
 

The choline-decoration (phosphorylcholine, PCho) of WTA and LTA acts as an anchor for 

choline-binding proteins such as murein hydrolases (LytA, LytB and LytC), phosphorylcholine 

esterase (Pce), PspA and PspC, serves as a host-binding factor for e.g. CRP, myeloma proteins, 

the receptor of the platelet-activating factor (PAF) and is reported to act as a receptor for 

bacteriophages. [63, 128, 133-140] 

Compared to other pneumococcal and bacterial adhesins, that specifically bind to host 

cells, LTA is reported of allowing the adhesion and invasion of S. pneumoniae and other Gram-

positive bacteria with lower cell-type specificity. [63, 140-147] 

 

3.2.2 The Diverse Roles of LTA 

LTA is essential in Gram-positive bacteria, by shaping the physicochemical surface 

properties, for controlling the autolysin activity and biofilm formation and for positioning the 

cell division machinery. Further, LTA is a receptor for phages, induces the susceptibility and/or 

resistance to antimicrobial peptides and killing in e.g. neutrophil extracellular traps, plays a role 

in the maintenance of cation homeostasis (e.g. storage of magnesium) and serves as an 

attachment site for bacterial surface proteins. [119, 148-150] 
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Figure 9: The Several Roles of WTA and LTA in Gram-Positive Bacteria [150] 

 

The PCho moiety on LTA of S. pneumoniae is also present on several other respiratory 

pathogens (e.g. Neisseria spp., Haemophilus influenzae, Pseudomonas spp., Streptococcus agalactiae, 

Streptococcus pyogenes) and shares structural similarity to PAF, targeted in acute phases of 

inflammation by CRP and also activates the PAF-receptor, inducing inflammation and the 

release of tumor necrosis factor-alpha (TNF-α). [36, 63, 134, 138, 151-157] 

Pneumococcal cell wall components, and LTA activate the alternative pathway of 

complement activation upon binding to erythrocytes, hence recruit leukocytes and are also 

involved in the adherence of pneumococci during the host-pathogen interaction of the PCho 

and the PAF receptor on endothelial cells. LTA is further involved in the binding of classical C-

type lectins such as mannose binding lectin and L-ficolin, inducing the lectin pathway of 

complement activation. [63, 138, 150, 158-163] 

Pneumococcal LTA was shown to act as a synergistic PAMP in the course of host innate 

immune responses. Thus it is recognized via TLR2 and CD14 – which is amplified by 

endogenous TLR4 ligands – leading to: (i) loss of transepithelial resistance, (ii) activation of 

nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-κB), (iii) activation of p38 

mitogen-activated protein kinase (p38 MAPK), and (iv) signaling of transforming growth factor 

beta (TGF-β). [29-31, 33-36, 63] Recently pneumococcal LTA was reported to lead to a TLR2-dependent 

but TLR4-independent aggregation of platelets via activation of the 
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phosphoinositide 3-kinase/Ras-proximate-1 (PI3K/RAP1) pathway and induction of 

glycoprotein IIb/IIIa (GPIIb/IIIa), leading to thrombocytopenia in sepsis-patients. [164] 

Also LTA from other Gram-positive bacteria induces opsonization through specific 

antibodies and plays a role in the major histocompatibility complex (MHC) class II presentation 

of zwitter-ionic glycopolymers and the activation of CD4+ T-cells, leading to IL-10 expression. [29, 

31, 63, 150, 165-170] 

 

Figure 10: The Interactions of WTA and LTA with the Eukaryotic Host [150] 

 

3.2.3 The Potential of Anti-LTA-Antibodies  

In S. pneumoniae, LTA is a species common antigen, present in all strains, independent of 

the serotype, and shows multiple biological functions as elucidated in the previous sections.  

Therefore, antibodies against LTA would not only have opsonizing activity but also 

induce neutralizing effects by e.g. interfering with the TLR2 induced inflammation. LTA-specific 

antibodies were shown to protect against Staphylococcus aureus and Enterococcus faecalis but were 

detrimental in Staphylococcus epidermidis infections. [63, 171-172] Commercial intraveneous 

immunoglobulin containing anti-carbohydrate IgG antibodies (Sandoglobulin®, Privigen®, CSL 

Behring and Gamunex®, Talecris), was also reported to recognize pneumococcal LTA. [173] 
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3.3 Pneumococcal surface protein A (PspA, SP0117) 

3.3.1 Basic Structural Features of PspA 

Pneumococcal surface protein (PspA, SP0117) is an approximately 67-99 kDa highly 

immunogenic cell-surface protein of S. pneumoniae. This mosaic-gene encoded protein is highly 

variable but present on all pneumococcal strains characterized today, which makes it highly 

valuable as a potential vaccine antigen with broad effectiveness. [174-178]  

The protein was originally defined by its recognition of different epitopes of PspA by 

protective mouse mAbs. [179-180] PspA is non-covalently anchored to choline moieties of teichoic 

acids in the bacterial cell wall, via a highly conserved, C-terminal choline binding region (CBR) 

of ten 20-amino-acid repeats, which is similar in e.g. pneumococcal LytA and PspC. [174-175, 177, 180-

186] The CBR is followed by a slightly hydrophobic sequence of 17 amino-acids, ten 20-amino-

acid repeats, a flexible proline-rich (PR) domain which may span the cell wall, and the N-

terminal half, consisting of a signal peptide, and a highly charged, α-helical, anti-parallel, 

coiled-coil domain, which forms a heptad motif, and protrudes outside the capsule. [136-137, 176, 179, 

183-184, 187-192]  

 

Choline Binding DomainProline richCoiled-coil regionSP

clade defining 
region

non-proline 
block insertion

cell surface 
anchor  

Figure 11: Protein Structure of PspA. The signal peptide (SP) and the N-terminal coiled-coil region are separated 
from the C-terminal choline-binding domain by a Pro-rich region. (modified from [185, 193]) 

 

Due to an accumulation of mutations, the N-terminal half is variable in different strains, 

but is eliciting protection by its epitopes. For example, the full-length protein as well as the 

N-terminal half, the C-terminal 104 and the N-terminal 115 amino-acid repeats of the α-helical 

region were shown to induce protective immunity. [136, 176, 183-184, 190, 194-199]  

The PR-region, consisting of irregular repeats of Pro-residues every two to three amino 

acids, gives rise to sequence motifs such as PAPAP (interrupted by PKP) and PEKP, and is 

characteristic for PspA as well as for PspC (being structurally similar to PspA).  This region is 
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interrupted (in 56 % of all PspAs) by a highly conserved non-proline block (NPB) of 33 non-

proline-amino acids in about 90 % of pneumococci, where the proline-repeats impact the cross-

reactivity of anti-PspA antibodies.[136, 176, 193, 200-203] It was shown that the PR-region of the 

pneumococcal strain TIGR4 (serotype 4, Clade 3) is recognized by human antibodies which was 

confirmed by antibody-mediated protection against infection in mice.[24, 202, 204] Therefore, the 

unmasked PR and NPB epitopes are on the pneumococcal surface, accessible for mAbs, which 

were shown to be protective in mouse-challenge models [186, 202] 

 

3.3.2 The Families and Clades of PspA 

The clade-defining region (or B region), which is known to have cross-protective epitopes, 

is approximately located between amino acid 192 and 270 (based on the TIGR4 sequence), 

upstream of the PR-region. It was mapped by epitopes of protective mAbs and led to the 

identification of six clades (monophyletic groups differing in >20 % of their amino-acid 

sequences), which are further subdivided according to DNA- and protein sequence-similarity 

into three families: Family 1 consists of Clades 1 and 2, Family 2 of Clades 3 to 5 and Family 3 is 

equivalent to Clade 6 (Figure 12) [176, 183, 205]. It is noteworthy that more than 98 % of PspA-types 

found so far belong to Family 1 and 2. [176, 183] Epidemiologic studies - showing the variability of 

the PspA-family coverage in isolates - emphasize the importance of monitoring population-

based data during the development of vaccines and therapeutic approaches. [206-212] 

 

Figure 12: The Families and Clades of PspA. This cladogram was generated by mapping epitopes recognized by 
protective mAbs, thus identifying six clades which were further subdivided into three families.  [176] 
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3.3.3 The Functional Role of PspA 

Pneumococci require iron for growth and proliferation which they are capable of 

acquiring via PspA through binding to human lactoferrin (hLF) – an iron-sequestering 

glycoprotein in mucosal secretions, phagocytic cells, and serum during inflammation. Strains 

expressing PspA specifically bind to hLF via the C-terminal half of the α-helical domain. This 

leads to interference with host immune functions and to an increased acquisition of iron, 

whereas mutants lacking PspA were shown to be unable to bind to hLF. [176, 185, 213-215]  

Lactoferrin and its iron depleted form, apolactoferrin (ALF), are both bactericidal against 

pneumococci but are limited in their function, hence being blocked at their active sites, by PspA. 

In the case of hLF, PspA directly and specifically binds through its lactoferrin-binding domain 

to the N-lobe of hLF, inhibiting the penetration of the bacterial membrane by the bactericidal 

peptide. [216-217] 

Another role of PspA was found to be next to the inhibition of C3b deposition onto 

pneumococci, also the inhibitory effect to the formation of functional alternative pathway C3 

convertase. Thus a reduction of the pathogen-clearance by the complement-dependent host 

defense system and phagocytosis is mediated. This family independent, anti-complementary 

function of PspA just requires the surface accessibility as prerequisite for proper function. [176, 185, 

203, 218-219]  

 

3.3.4 The Role of PspA During Host-Infection 

PspA was shown to be expressed in vivo in mice and to elicit cross-reactive and cross-

protective antibodies against strains expressing different PspA-clades. [183, 220] The protein is 

known to be necessary for full virulence of pneumococci and for slowing down clearance. 

Immunization with PspA protects mice against fatal sepsis, bacteremia, lung infection and 

carriage.  [174, 176, 178, 180, 183, 203, 221-223]  

Healthy and diseased humans elicit clade cross-reactive antibodies to PspA, where strong 

immune responses develop during convalescence and highly effective T-cell mediated 

responses are elicited. [224-227]  

In vitro studies revealed a stimulatory effect of PspA together with other pneumococcal 

surface proteins on A549 cells, human neutrophils and hPBMCs by stimulating the extracellular 

signal-regulated kinase (ERK), nuclear factor of kappa light polypeptide gene enhancer in B-

cells inhibitor-alpha (IκB-α), c-Jun N-terminal kinase (JNK), nuclear factor-kappa B (NF-κB) and 
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p38 MAPK signaling cascades, hence the early cytokine (IL-6, IL-8) and chemokine (CCL2, 

CCL4 and CCL5) secretion. [228-230] 

 

3.3.5 Reported in vivo Efficacy of Anti-PspA-Antibodies  

Since PspA was discovered as a very potent antigen target, several studies, based on 

immunizations with DNA, proteins, peptides, etc. in active immunization and passive transfer 

models were conducted. A huge number of different application routes and adjuvants were 

already tested for their protective ability in several mouse strains and challenge-models. (Table 

1) [176, 183, 191, 197-198, 203, 231-248] 

The potential use of PspA as a vaccines component against S. pneumoniae is inter alia given 

due to its T-cell-dependent nature, hence an induction of immunogenicity in infants, presence 

in all strains, and relatively low production costs compared to existing polysaccharide 

vaccine. [183] 

 

Table 1:  Examples of the Most Promising Vaccination Approaches Based on PspA 
 

Antigen 
Comments Sources 

PspA-DNA 
(plasmid, 
truncated 
gene, etc.) 

» Pneumococcal clearance 24h post immunization 
» IgG1, IgG2a, IFN-γ, TNF-α, Th1 response 
» Cross-reactivity (Family 1 and Family 2),  
» Increased complement deposition 

[191, 231-234] 
 

PspA-
recombinant 
protein 

» Higher antibody-titers compared to DNA,  
» Strong antibody-binding to pneumococci, 
»  IL-4 secretion (Th2),  
» Immunization of healthy humans showed cross-reactive 

antibodies in vitro 
» Combination with PLY-mutant, PspC or ClpP or PspA-DNA: 

enhanced protection with complementing effects; 
» Increase of IgG2a even by parental immunization 

[183, 203, 233, 235-241] 
 

PspA-
recombinant 
protein + 
different 
adjuvants 

» Nontoxic A subunit mutant of cholera toxin (S61F) induces 
high levels of PspA-specific IgG and IgA in serum and CD4+ 
Th2-type cells 

» Lactobacillus casei: cross-reactive antibodies, IL-17 and IFN-γ 
secretion in lung and spleen, TNF-α in the respiratory tract 

» CTB-PspA’: protection against sepsis 
» IL-12: lung IgG2a mRNA levels, systemic and respiratory 

IgG1, IgG2a and IgA levels, OPK, increased 
» Low level LPS, whole cell Bordetella pertussis vaccine: 

protection against lethal respiratory challenge, high levels of 
systemic and mucosal IgG2a and IgA 

» Low level LPS, diphtheria-tetanus pertussis vaccine: 
induction of IgG2a, significant protection and survival 

» Loss of TLR4-function: protection against infection, clade 
cross-reactive and cross-protective antibodies induced 

[242-247] 
 

Passive 
Transfer of 
Sera 

» Mice protected when passive immunization with mouse, 
rabbit, monkey sera and human (phase I) sera  

[176, 197-198, 248] 
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3.4 Pneumolysin (PLY, SP1923) 

3.4.1 Basic Structural Features of PLY 

Pneumolysin (PLY, SP1923) is a cholesterol-dependent, cytoplasmic, thiol-activated 

cytolysin, which binds to cholesterol-containing membranes of eukaryotic cells. It is released by 

pneumococci and reported of being an essential virulence factor of S. pneumoniae. Sequence 

comparison of PLY indicates limited homology to human CRP and high sequence similarity to 

perfringolysin O, mitilysin and pseudopneumolysin. [13, 38, 63, 249-263] 
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Figure 13: The Structure of PLY. The crystal structure of PLY (A) is illustrated by the amino-acids giving rise to 
the four domains of this antigen (B). A schematic drawing represents the binding of the cell-binding domain 4 to the 
cholesterol-containing membrane (C-a), refolding of several domains (C-b) and the pore-formation (C-c). 
Reprojections obtained from cryo-electron microscopy show the 38-mer prepore (D) and the subsequently formed 
pore (E). Computational 3D-reconstructions illustrate the prepore (F) and pore (G) with the corresponding cross-
sections below each. (modified from [254, 281, 284]) 
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After its first description as a hemolysin in 1905, PLY – a 52.8 kDa (470 amino acid) large 

protein – was extensively investigated towards its toxic nature and the loss of toxicity due to 

binding of sterols and cholesterol. PLY shares a high inter-strain gene-conservation in different 

pneumococcal serotypes. The exact secretory pathway that leads to release of PLY is unknown 

to date but was shown to be independent of LytA, LytB and LytC activity. [63, 251, 264-276] 

The amino-acid sequence of PLY gives raise to four domains, where domain 4 and here 

especially Trp433 is known to be crucial for binding of PLY to cholesterol, the insertion into the 

eukaryotic cell membrane via β-hairpins and hence the formation of ring-shaped, oligomeric 

pores consisting of up to 44 monomers, leading to the formation of a transmembrane channel, 

lined by 176 β-strands (Figure 13). [63, 254, 277-283] 

 

3.4.2 The Functional Roles of PLY  

Next to its cytolytic, pore-forming ability which is described in the previous section, PLY 

exerts diverse functions in the context of bacterial pathogenesis and host response. 

It was shown that a ply knock out strain can be complemented by PLY-release from co-

infection with wild-type cells and that it has a critical role in acute sepsis in the early phases of 

pneumococcal infection. [63-64, 271, 285-286] ply mutant strains show slower growth during lung 

infection and give rise to chronic bacteremia (compared to wild-type cells which induce acute 

sepsis). [63-64, 286-289] The expression of PLY accelerates the pneumococcal transmission into the 

blood, although it is not required for successful pneumococcal colonization of the nasopharynx. 

[63-64, 289-291] 

Although complement-activation through PLY is important during lung infection, the 

cytotxicity of PLY becomes more crucial when the disease progresses towards a systemic 

infection. [50, 63-64, 292-293] 

Severe effects on host cells, in the early stages of a pneumococcal infection and during the 

subsequent progression towards pneumococcal bacteremia or meningitis, are often associated 

with the cytolytic activity of PLY. Sublytic concentrations block the proliferation of stimulated 

lymphocytes (i.e. reduced lymphokine and antibody expression), inhibition of the respiratory 

burst and a reduction of the migration capacity of cells of the human immune system such as 

PMNLs. [50, 63-64, 294-302] PLY induces the inhibition of cilia-beating (i.e. on the respiratory tract 

epithelium as well as ependymal lining of brain slices), damage of mitochondria (e.g. leading to 

neuronal cell death), irreversible damage of cochlear hair cells (i.e. sensorineural hearing loss), 
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permeabilization of the alveolar endothelium and/or the pulmonary endothelium as well as 

damage of lung tissue (e.g. due to the activation of PAF and downstream signaling pathways) 

and the blood brain barrier. [297, 303-317] 

PLY aids the evasion from human dendritic cells and leads to an activation of lung mast 

cells mediating pneumococcal killing. It is further reported, that sublytic concentrations of PLY 

induce a Src-kinase dependent, rapid microtubule bundling and stabilization. In addition PLY 

was reported to activate the two GTPases – Ras homology gene family member A (RhoA) and 

Ras-related C3 botulinum toxin substrate 1 (Rac1) – leading to actin remodeling (stress-fibers, 

filopodia and lamellopodia) which is reversible by using specific inhibitors and pre-incubation 

of PLY with cholesterol. [318-321] 

PLY and also its non-hemolytic mutant forms are reported of activating the classical 

pathway of complement activation as well as activating TLR4 as PAMPs, including the 

downstream-signaling via myeloid differentiation primary response gene 88 (MyD88) and ERK 

and subsequently the release of TNF-α, IL-1β, IL-6 and IL-17 leading to an inflammatory 

response. In addition to the activation of TLR4, PLY acts via NF-κB, the NLR family, pyrin 

domain containing 3 (NLRP3) inflammasome and MAPK signaling, inducing IL-1β, CCL (2, 4, 

5, and 8) and CXCL (8 and 10). PLY activates the nuclear factor of activated T-cells (NFAT) 

signaling pathway, induces caspase-1-dependent cytokines and leads to degradation of C3 in 

vitro and in vivo. Its role during infection and inflammation is further potentiated by (i) its 

induction of cellular phospholipase A2-activity which subsequently leads to pro-inflammatory 

and cytotoxic metabolites, (ii) the interferon-γ (IFN-γ) dependent induction of NO, (iii) the 

activation of intracellular oxygen radicals (i.e. reactive oxygen species, ROS) and (iv) the 

mobilization of matrix metalloproteinases (8 and 9) from neutrophils. [37-56, 300] 

It is further reported that the binding-ability of PLY to the Fc portion of IgG prevents the 

effective opsonophagocytosis and hence the killing of S. pneumoniae in vivo. [38, 63, 322-323] 

The immunization of mice with PLY, pneumolysoids (PLY-based toxoids with no or 

reduced hemolytic activity) and both being conjugated to capsular polysaccharides, or 

administered in combination with other antigens, repeatedly showed increased survival after 

challenge with different S. pneumoniae strains. Studies with ply mutant strains showed the 

essentiality of PLY as a pneumococcal virulence factor. [37, 63, 250, 272, 324-331] 
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3.4.3 Reported in vivo Efficacy of Anti-PLY-Antibodies  

As aforementioned, many studies were conducted using PLY in active immunization 

model in naïve Mus musculus, showing prolonged survival rates after challenge with 

S. pneumoniae. Affinity-purified pneumolysoid-specific human antibodies were shown to 

protect mice against invasive disease due to the toxin-neutralizing ability of the antibodies and 

not due to direct opsonization of pneumococcal cells.  [323] 

Humans are reported of exhibiting a PLY-specific antibody-response due to natural 

exposure to pneumococci, with increasing antibody-titers during infection. Patients are 

reportedly predisposed to pneumococcal pneumonia when lacking high levels of antibody. [332-

335] 

Purified human polyclonal antibodies, rat polyclonal IgG as well as hyperimmune serum 

targeting PLY showed protection against lethal challenge and other diseases such as 

pneumococcal keratitis in passive immunization models. [323, 332, 336-337] 

Several mAbs, that either inhibit pore-formation (e.g. PLY-4) or binding of the toxin to 

cells (e.g. PLY-5 and PLY-7), were generated, characterized and showed promising effects such 

as (i) the protection of ependymal cilia which are severely affected by PLY during meningitis, 

(ii) the protection of lung tissue which is profoundly affected during pneumococcal pneumonia, 

and (iii) a significant protection against a lethal intranasal (i.n.) challenge with pneumococci  

(with a synergistic effect when used in combination), which substantiates the usefulness of PLY 

specific mAbs for e.g. the use in adjunctive therapies with antibiotics. [284, 301, 313, 323, 338-340] 

 

4 MONOCLONAL ANTIBODIES – THE GOLDEN BULLET FOR FIGHTING INFECTIOUS DISEASES? 

4.1 Technologies for the Generation of mAbs 

Since the development of the first mAbs by Koehler and Milstein, where spleen cells of 

immunized hosts are fused with a cancer cell-line (e.g. myeloma), yielding a continuous cell-

culture secreting mAbs, several new and more effective technologies were established for the 

generation of highly specific mAbs. [28, 341-342] 

The major drawback of the original hybridoma technology is mainly the immunogenicity 

of rodent mAbs in humans. [94, 343] This problem was abolished when phage-display technologies 

were developed and the design of chimeric mouse-human antibodies, humanized mAbs or fully 

human mAbs, was implemented. [94, 344-348]  
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In the recent years, several new approaches such as the pre-selection of antigen-specific B-

cells based on their Ig-receptor [349], or the generation of heteromyeloma cell lines based 

peripheral blood lymphocytes of vaccinated humans [350]  were developed for the generation of 

fully human mAbs. Also the use of transgenic animals, expressing a complete repertoire of 

human immunoglobulins [351-352],  or conditionally immortalized cells expressing fully human 

mAbs controlled by a MHC-promoter [353], as well as the molecular cloning of functional 

immunoglobulin genes from single plasma cells for target-selective homologous 

recombination [354], were established. 

Today, display technologies based on phage-, ribosome-, microbial- and protein-DNA-

display not just allow the engineering and expression of fully human (monoclonal) antibodies 

from several libraries, but also the generation of antibody-fragments such as single-chain 

variable fragments (scFv). The cloning of these fragments allows the generation of constructs 

being more stable than Fv-fragments, where the antibody-specificity is still maintained.[355-368] 

 

Sindbis Virus Based Mammalian Cell Surface Display 

As the generation of fully human mAbs against the target antigens of this project is aimed 

to be based on a novel technology developed by Cytos Biotechnology AG [369], emphasis is put 

on this in the following.  

The technology is based on screening for antigen-specific memory B-cells from isolated 

hPBMCs, the generation of scFv-libraries, and selection by mammalian cell surface display via a 

Sindbis virus expression system (Figure 14).[369]  

Briefly, hPBMCs are isolated from healthy human blood donors, and subsequently sorted 

for antigen-specific human memory B-cells by means of fluorescence activated cell sorting 

(FACS) using fluorescently labeled antigens as bait (virus like particles fused to the antigen of 

interest; VLP-Ag). Following RNA isolation from memory B-cells, a scFv-library is generated, 

which is used to generate a high-titer Sindbis virus based expression-library. This virus-library 

is subsequently used for infection of baby hamster kidney (BHK) cells at a low multiplicity of 

infection (MOI), leading to a pool of infected cells expressing one specific antibody on each cell 

surface. After a single-cell sorting for cells expressing a functional antibody by FACS, a BHK- 

cell monolayer is generated, expression of gene-specific antibodies is verified, the variable 

regions (VRs) are cloned and the antibody is expressed in any desired format (e.g. scFv-Fc or 

IgG). [369] 
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Figure 14: Schematic of the Sindbis Virus Based Mammalian Cell Surface Display Technology. Fully 
human mAbs are generated using serum from healthy human blood donors (A), isolating hPBMCs (B) and sorting 
with antigen-coupled virus-like particles (C) for antigen-specific memory B-cells (D). Following the construction of 
a scFv-library (E) and a Sindbis virus-library (F), BHK-cells are infected (G) which is followed by single-cell sorting 
for antigen-specific BHK-cells (H). After successful virus-expension (I), the binding of gene-specific antibodies is 
validated (J) and antibodies are finally produced in the desired format (K). (modified from [369]) 
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4.2 The Potential of Antibody-Based Therapies 

The increasing emergence of penicillin- and multidrug-resistant S. pneumoniae strains and 

other bacterial species revives the idea of antibody-based therapies against infectious diseases. 

[348, 370-374]   

Hypersensitivity against antisera, which supported the abolishment of serum therapy 

when the antibiotic era arose in the 1930’s, is just one of the disadvantages associated with non-

human antibodies in therapy. In addition hyperimmune sera were reported to comprise 

hazards in transmission of infectious diseases, to show great lot-to-lot variations, and to imply 

low concentrations of specific antibodies. [370, 372, 375-376]  

In contrast to polyclonal antibodies, mAbs represent an exhaustless pool of homogenous 

antibodies with markedly higher specificity and therefore greater therapeutic efficacy. [370, 372, 375-

377] MAbs exhibit a greater uniformity, allow the combined use in therapy, and eliminate the risk 

of transmission of blood-borne infectious diseases due to the feasibility of the generation in 

vitro. [370, 372, 375-377] 

The main advantages for the use of mAbs in therapeutic settings are high pathogen 

specificity, enhancement of immune functions and favorable pharmacokinetics of this type of 

drug. [102, 370-372, 378-379] Native human IgG was shown to have a great pharmacokinetic profile 

(tissue penetration, half-life and host tolerance), which is even greater than pharmacokinetics 

observed for chimeric and humanized antibodies. [102, 370] 

Antibodies are part of the natural defense system and allow – due to somatic mutations 

and rearrangements – the specific targeting of antigens of theoretically all pathogens.[379]  MAbs 

therefore impair a versatile repertoire of functions such as inhibition of microbial attachment, 

agglutination, complement activation, opsonization, enhancing effects on host effector-cells, 

depletion of immune effectors, and toxin neutralization. Thus they have a great potential by 

directly targeting bacterial pathogens or neutralizing the toxic products of infection even at 

physiological extremes inter alia at low pH. [102, 370-372, 377] 

There are also drawbacks associated with mAbs such as high manufacturing costs, the 

immanent need of early and precise diagnostics, the requirement of systemic administration 

and the limited usefulness against mixed infections, which exacerbate the development of 

antibody-based therapies to date. [370, 372, 377] The given risk of microorganisms to adapt to 

antibodies over time, may require to target the mutated epitopes with other mAbs, an 

administration of mAb-cocktails, or even the aiming towards other conserved antigens. [102, 370, 377]    



A - INTRODUCTION 

- 34 - 

 Nevertheless, it was shown that a mAb-based therapy is even effective against brain 

infections such as meningococcal meningitis, as inflammation makes the blood-brain barrier 

permeable to pathogens. [370, 372] At present there are several antibody-based passive therapies, 

using murine, chimeric, humanized or fully human mAbs, approved by the FDA. This huge 

field of application from cancer-therapy, inhibition of transplant rejection, treatment of 

rheumatoid and autoimmune diseases, as well as the therapy of infectious diseases, emphasizes 

the great potential of mAbs in antibody-based therapies. [102, 368, 380-387] 
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B - AIMS OF THE STUDY 

Due to increasing antibiotic resistance and poor vaccine responses in at-risk populations 

new treatment strategies such as passive immunotherapy with human mAbs are under 

investigation. With respect to this, three conserved antigens of S. pneumoniae – LTA, PspA 

(SP0117) and PLY (SP1923) – were selected for in depth analyses. Consequently the specific 

aims of this project were to: 

a) express and purify PspA and PLY as well as domains thereof in recombinant form, 

b) generate hyperimmune sera against all target antigen-constructs in M. musculus 

c) determine the in vivo virulence of several pneumococcal strains in different routes of 

infection 

d) optimize purification, detection and quantification methods of LTA and to subsequently 

isolate and purify native LTA from different pneumococcal strains, 

e) perform complementary in vitro validations of all three target antigens, hence to assess the 

antigen binding in ELISA and Western blot analyses and to determine their accessibility 

to antibodies on the surface of distinct pneumococcal strains by flow cytometry, 

f) set-up and optimize cell-based functional assays to scrutinize the in vitro activity of the 

generated antibodies  

g) investigate the in vivo efficacy of the antigen-specific antibodies in various mouse models 

of infection and to correlate these findings with their in vitro activity  

h) optimize the staining conditions for the sorting of PLY-specific human B-cells  

i) identify healthy human donors for the isolation of memory B-cells by fluorescence 

activated cell sorting and for cloning and expression of human mAbs against all target 

antigens in vitro. 

 

In summary, the overall aim of the present study was to generate antibodies against the 

pneumococcal antigens – LTA, PspA and PLY – and to investigate the characteristics and 

potentials of both – the antigens and the antibodies – in vitro and in vivo and thus to obtain a 

substantial knowledge for their application spectrum as targets for human mAb development. 
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C - MATERIALS AND METHODS 

1 BACTERIA 

Table 2 represents an overview of S. pneumoniae wild-type strains used in the course of 

this project. Wild-type pneumococcal strains were grown in Todd Hewitt Broth supplemented 

with 0.5 % yeast extract (THY) or on blood-agar (Columbia agar supplemented with 5 % sheep 

blood, bioMérieux) at 37 °C and 5 % CO2. 

 

Table 2: S. pneumoniae Strains used in this Study. PspA family and clade type were determined by sequence 
analysis and grouping according to Hollingshead et al. [176] 

 

Strain Serotype 
PspA-
Family 

PspA-
Clade 

Origin 

D39 2 1 2 Peter Andrew; University of Leicester, UK 
A66.1 3 1 2 David Briles, University of Alabama, USA 
WU2 3 1 2 David Briles, University of Alabama, USA 
TIGR4 4 2 3 Birgitta Henriques-Normark, SMI, Sweden 
4D2341-94 4 2 3 Eddie Ades, CDC, USA 
PJ1324 6B 2 3 Birgitta Henriques-Normark, SMI, Sweden  
EF3030 19F 1 1 David Briles, University of Alabama, USA 

 

Gene deletion strains were generated in a previous study [24] and were cultured in media 

supplemented with 250 µg kanamycin per ml. 

 

Escherichia coli was cultured in LB-medium (PAA) or on LB-agar plates, both 

supplemented with the required antibiotics and incubated at 37 °C (150 rpm shaking in the case 

of liquid cultures). 

 

2 EUKARYOTIC CELL LINES 

HL-60 cells are myeloid and promyelocytic cells derived from a female patient with acute 

myeloid leukaemia and established as a cell line in 1977. [388] In culture, these cells are ovoid or 

round but occasionally express pseudopodia and are heterogenous in size (9 to 25 µm in 

diameter). HL-60 cells double every 24 h in an actively growing culture, although doubling time 

is about 72 h immediately after recovery from the frozen stock. The cells largely resemble 

promyelocytes, however they spontaneously and slowly differentiate into other cell types of 

granulocytic phenotype. [388] 
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HL-60 cells were cultured at 37 °C and 5 % CO2 in RPMI-1640 Medium (Sigma) 

supplemented with 20 % FCS, 1 % penicillin/streptomycin solution and 1 % L-glutamin. When 

the cells were approximately 80 % confluent they were diluted 1:5 in fresh medium.  

 

HEK-BlueTM hTLR4 (InvivoGen) cells are HEK293 cells, stably transfected with the human 

TLR4 gene and the co-receptors MD-2 and CD14. By stimulation of the receptor(s), an 

NF-κB/AP-1-induced transcription of secreted embryonic alkaline phosphatase (SEAP) is 

induced, which is followed by an expression-level dependent color change of QUANTI-BlueTM 

(InvivoGen) from pink to purple/blue. 

The cells were cultured at 37 °C and 5 % CO2 in DMEM-medium (GIBCO) supplemented 

with additives such as growth factors, antibiotics, antimycotics, etc., according to 

manufacturer’s instructions (InvivoGen; HEK-Blue-hTLR4- Technical Datasheet; page 1-3) 

 

3 ISOLATION AND PURIFICATION OF HUMAN PERIPHERAL BLOOD MONONUCLEAR CELLS AND 

RED BLOOD CELLS  

Human peripheral blood mononuclear cells (hPBMCs) and red blood cells (hRBCs) were 

isolated from freshly drawn blood under aseptic conditions. Blood was drawn using a 

Vacutainer® blood collection and Luer-Lock® set (Becton Dickinson, N° 367326 and N° 364902) 

and sodium-heparin blood-collection tubes (17 IU/ml; Becton Dickinson, N° 368480) according 

to general blood-collection standards. Blood from two tubes was diluted approximately 1:1 with 

DPBS and carefully layered on top of Lymphocyte-Separation Medium (LSM, LSM 1077, PAA) 

in 2:1 ratio without mixing the two phases. After centrifugation at 680 x g for 20 min and RT 

without brakes, the upper-most layer – containing the plasma and most of the platelets – was 

carefully removed and discarded. The hPBMCs were collected from the interphase without 

penetrating the LSM layer from above. The remaining LSM was removed and the hRBCs at the 

bottom of the tube were collected. The hPBMCs and the hRBCs were washed twice with DPBS – 

centrifugation at 420 x g for 10 min at RT without brakes – and then counted using a Neubauer-

chamber and Trypanblue life/dead-staining. 

The purified hRBCs were stored at 4 °C until further use, whereas the hPBMCs were re-

suspended in FCS with 10 % DMSO at 107 cells per ml and frozen at – 80 °C using a freezing 

container (Nalgene Cryo 1 °C Freezing Container). 
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4 GENERATION OF RECOMBINANT ANTIGENS 

All pneumococcal antigens were cloned into a pET28b+ vector, subsequently expressed in 

recombinant form with an N- or C-terminal penta-His-tag and purified via an immobilized 

metal ion affinity chromatography (IMAC). 

 

4.1 General DNA- and Protein- Methods 

Purification of gDNA from S. pneumoniae 

Genomic DNA (gDNA) was purified from pneumococcal strains grown in THY overnight 

using the “Wizard® Genomic DNA Purification Kit” (Promega), following the manufacturer’s 

protocol for Gram-positive bacteria (Technical Manual; page 16 ff). 

 

Agarose Gel Electrophoresis 

DNA was separated on agarose gels containing 1-2 % agarose (Invitrogen) in TAE-buffer 

(40 mM Tris-acetate, 1 mM EDTA, pH 8.3) and 0.5 µg/ml Ethidium bromide. All DNA-samples 

were mixed 1:6 with loading dye (Fermentas) and for size estimation a 1kb DNA ladder 

(GeneRulerTM, Fermentas) was used. Gels were run for 35 min at 130 V and scanned 

(AlphaDigiDocTM, RT). 

 

SDS-PAGE 

For the separation of proteins, polyacrylamide-gels (4-20 %, Tris glycine, PAGEr® Gold 

Precast Gels, 1 mm, Lonza) were loaded with samples, mixed 1:5 with sample buffer (Non-

Reducing Lane Marker Sample Buffer, ThermoScientific, supplemented with 1 mM DTT if 

required) and run in a Mini-PROTEAN II (BioRad) system for 45 min at 200 V in electrophoresis 

buffer (196 mM glycine, 0.1 % SDS in 50 mM Tris-HCl pH 8.3). Then the gels were either stained 

with Coomassie or used for Western blot analysis. The protein size was estimated using a 

prestained protein ladder (PageRulerTM Plus; Fermentas) 

For Coomassie Staining, gels were rinsed with dH2O post PAGE and subsequently stained 

using the SimplyBlueTM SafeStain (Invitrogen), which is based on the Coomassie® G-250 stain, 

according to the manufacturer’s instructions (Instructions Manual - SimplyBlueTM SafeStain, 

Invitrogen) 
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4.2 Generation of Bacterial Expression Hosts for Protein Expression 

Cloning of Constructs into the pET28b+ Vector 

Prior to cloning, the genes of interest were amplified by genomic PCR – using the Expand 

High Fidelity PCR System (Roche) according to manufacturer’s instructions, adding 2 mM MgCl2, 

200 µM dNTP-mix, 1 µM sense- and anti-sense primers  (Supplementary Table 1) and 1.75 U of 

Expand High Fidelity Enzyme Mix in DNase/RNase-free reagents. Following the DNA-

amplification using the standard PCR-cycling program – 95 °C for 5 min (1 cycle), 95 °C for 

30 sec, 52 °C for 30 sec, 72 °C for 60 sec (35 cycles), and 72 °C for 5 min; depending on the 

desired product, annealing temperature and extension times were adjusted – the amplicons and 

the vector were digested with appropriate restriction enzymes (according to manufacturer’s 

instructions, NEB), separated by agarose-gel electrophoresis and purified using the QIAquick 

Gel Extraction Kit (QIAGEN). The purified, linearized vector (pET28b+) and insert DNA were 

ligated overnight at 16 °C with T4 DNA-ligase (Invitrogen) according to manufacturer’s 

instructions. The ligated DNA was precipitated with 1 µl glycogen, 2.5 volumes of 100 % EtOH 

and 0.1 volume of 3 M NaAc for 10 min at - 80 °C, pelleted by centriguation at 15,000xg for 

10 min, washed three times with 70 % EtOH and finally dissolved in 5 µl dH2O before 

transformation into electro-competent DH5-α cells (ElectroMAXTM DH5-α-ETM, Invitrogen).  

Growing clones were subjected to colony-PCR using Taq-polymerase (Promega), 

applying reagents and buffers according to manufacturer’s instruction and following the 

standard PCR-program described before. The size of the amplicons was subsequently checked 

by agarose-gel electrophoresis. 

Transformants that were positive by colony-PCR were subjected to plasmid purification. 

The purified plasmids was subsequently digested using the appropriate restriction enzymes 

(according to manufacturer’s instructions, NEB) in order to verify the expected fragment sizes 

by agarose-gel electrophoresis. The insert from positive clones was confirmed by sequencing 

(MWG Biotech).  

Plasmids containing the desired inserts were transformed into chemically competent 

E. coli BL21-CodonPlus® Competent Cells (Stratagene) according to the manufacturer’s protocol.   
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4.3 Small-Scale Expression Analysis 

Single colonies of the BL21 transformants were used to inoculate 5 ml LB-medium 

supplemented with the appropriate antibiotics – dependent on E. coli host strain and the vector. 

The next day this culture was diluted 1:10 with fresh growth medium and incubated at 37 °C 

and 150 rpm for 90 min until the logarithmic growth phase was reached. Protein-expression 

was induced by addition of 0.1 mM IPTG and the culture was grown for another 3 h. 

2 ml of this culture were then harvested by centrifugation for 10 min at 15,000 x g. The 

pellet was lyzed in 200 µl BugBusterTM Protein Extraction Reagent (Novagen) for 20 min rotating. 

A 50 µl aliquot of the crude lysate (CL) was kept for further analyses and the remaining 

solution was centrifuged for 10 min at 15,000 x g. The supernatant (soluble fraction, SOL) was 

kept for analysis and the pellet was dissolved in 150 µl 8 M urea and 500 mM NaCl in 50 mM 

TrisHCl pH 8.0 (insoluble fraction, INSOL). 

4 µl of all three fractions (CL, SOL and INSOL) were analyzed for protein-expression by 

SDS-PAGE followed by Coomassie-staining and Western blot analysis (using anti-Penta-His as 

primary antibody). 

 

4.4 Large-Scale Expression and Purification of Recombinant Proteins 

Cultivation of Expression Cell Lines 

A 100 ml o/n-culture of the E. coli protein expression strain was prepared in 12.5 ml 

“pimped medium” and 87.5 ml LB medium supplemented with the appropriate antibiotics. 

Therefore, 1 liter of “pimped medium” was aseptically prepared by adding 10 g yeast extract, 

13.73 g D-glucose*H2O, 1.16 g KH2PO4, 6.27 g K2HPO4*3H2O, 2 % glycerol, 0.25 g MgSO4*7H2O, 

0.8 mg FeCl3*6H2O, 0.1 g CoCl2, 0.05 g CuCl2, 0.1 mg ZnCl2, 0.1 mg Na2MoO4*2H2O, 

0.025 mg H3BO4 and 5 µl HCl(cc) to 1000 ml LB medium (PAA).  

The o/n-culture was used to inoculate 2 liters of pre-warmed fermentation medium in a 

baffled flask which was incubated for 2 h at 37 °C and 150 rpm.  The protein production was 

induced by the addition of 0.1 mM IPTG and the culture was grown for another 4 h.  

The biomass was harvested by centrifugation (Beckman Avanti J-25) at 4 °C for 15 min at 

9000 x g. The pellet was washed by re-suspension in approximately 30 ml DPBS, centrifuged for 

15 min at 4000 rpm and stored at -20 °C until further use. 
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High-Pressure Homogenization (HPH) 

After thawing the biomass, it was diluted 1:5 to 1:30 in HPH-lysis buffer containing 

50 mM Tris-HCl pH 8.0, 500 mM NaCl and 0.1 % Triton X-100. Subsequently 1 mM DTT (if 

required) and protease inhibitors were added from a 100 x stock containing 1 mg/ml leupeptin, 

0.1 mg/ml pepstatin A, 0.5 mg/ml aprotinin, 4 mM bestatin, 1 mM E-64 and 100 mM EBSF in 

dH2O. 

The bacterial suspension was filled into the high-pressure homogenizer (HPH; Panda 2K; 

Niro Soavi) and lyzed in five cycles according to standard protocol (Intercell-Department for 

Protein Expression and Purification) which was followed by centrifugation at 4 °C for 15 min at 

9000 x g. 100 µl of sample were drawn after each step and analyzed for protein content by SDS-

PAGE and subsequent Coomassie-staining. The fraction containing the recombinant protein 

were kept and used for protein purification.  

 

Immobilized Metal Ion Affinity Chromatography (IMAC) 

Following the estimation of the amount of recombinant protein (post HPH), the soluble 

fraction was rotated over-night at 4 °C with the appropriate volume of washed and equilibrated 

Ni-sepharose (Amersham). This resin was then subjected to IMAC according to standard 

protocol (Intercell-Department for Protein Expression and Purification) and applying the 

following buffer-gradient (Table 3). All fractions were finally analyzed by means of SDS-PAGE 

and subsequent Coomassie-staining. The EA-fraction of the IMAC was dialyzed three-times 

against DPBS or buffer containing 50 mM Tris-HCl pH 8.0 and 150 mM NaCl at 4 °C using 

Spectra/Por® Dialysis Membranes with the appropriate molecular-weight cut-off (Spectrum 

Laboratories). 
 

Table 3: Gradient for IMAC-Purification of Recombinant Proteins. 
 

Purification 
Step 

Buffer 
Column 
Volumes  

FT o/n rotated Ni-sepharose resin  

W0 50mM Tris/HCl pH 8.0 + 500mM NaCl + 0,1% TX100 15 

WOTX 50mM Tris/HCl pH 8.0 + 500mM NaCl 10 

W20 20mM Imidazol in 50mM Tris/HCl pH 8.0 + 500mM NaCl 5 

W40 40mM Imidazol in 50mM Tris/HCl pH 8.0 + 500mM NaCl 5 

EA 250mM Imidazol in 50mM Tris/HCl pH 8.0 + 150mM NaCl 3 

EE 
250mM Imidazol in 50mM Tris/HCl pH 8.0 + denaturing  
agent (6M GuaHCl or 8M urea) + 500mM NaCl 

3 

N.B. in each step, except of EA, 1 mM DTT may be added if required 
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Removal of Endotoxin via Membrane-Filtration 

In order to remove bacterial lipopolysaccharide (LPS) from the recombinant proteins, the 

protein-solutions were filtered through Acrodisc® Units with MustangTM E Membranes (PALL) 

according to manufacturer’s instructions. Following the LPS-depletion, the content of endotoxin 

in the sample was determined using the Limulus Amebocyte Lysate (LAL) QCL-1000® Test (Lonza), 

according to manufacturer’s instructions. 

 

Qualification and Quantification of Purified Recombinant Proteins 

The purified recombinant protein was qualified by SDS-PAGE and subsequent 

Coomassie-staining and Western blot analysis using mouse anti-penta-His antibody (Quiagen) 

as primary antibody. For the quantification of the prepared protein a BCA Protein Assay (Pierce) 

was used according to manufacturer’s instructions. 

 

4.5 Coupling of Antigens to FluoSpheres® 

Fluorescent microspheres (Carboxylate-Modified, Amine-Modified or Sulfate and 

Aldehyde-Sulfate FluoSpheres®, Molecular Probes, Invitrogen) were coupled with 1 mg of the 

required protein according to manufacturer’s instructions (“Working with FluoSpheres® 

Fluorescent Microspheres”, page 1-5) and the coupling-success was checked by means of  SDS-

PAGE and subsequent Coomassie-staining. 

 

5 ISOLATION, PURIFICATION AND QUANTIFICATION OF LTA 

5.1 Small-Scale Optimization using LTA from S. pyogenes 

Hydrophobic Interaction Chromatography (HIC) 

In order to optimize the conditions for the HIC-based purification of pneumococcal 

LTA [126], 500 µl of Octyl SepharoseTM (GE Healthcare) were rotated over-night at 4 °C with 100 µg 

LTA from S. pyogenes (L 3140, SIGMA) in 0.1 M NH4Ac-buffer, pH 4.7 (HIC-buffer) with no, 5 % 

and 15 % n-propanol (SIGMA) added. The incubated resins were transferred into BioRad Micro 

Bio-Spin® Chromatography Columns (BioRad) and the S. pyogenes LTA was eluted using an 

n-propanol gradient from 0 % to 100 % in HIC-buffer. Thus the column-resin was briefly 

incubated with 500 µl of eluent and centrifuged at 4 x g for 1 min into a fresh collection tube. All 

fractions were stored at -20 °C until further use. 
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ELISA-Based Quantification using GAS-LTA Specific Antibodies 

100 µl of LTA from S. pyogenes (1 mg/ml) or 100 µl of each HIC-fraction (see previous 

section) were spiked with 0.1 M NaHCO3-buffer, pH 9.3 and used in 5-fold dilutions for over-

night coating of MaxiSorpTM plates (Nunc) at 4 °C. The next day, the coating solution was 

discarded and 100 µl of blocking buffer containing 2 % BSA in 1xDPBS were added per well 

and incubated for 1 h at room-temperature. The plates were washed three-times with 300 µl of 

0.1 % Tween®20 in DPBS (PBS-T) per well and incubated for 1 h at room-temperature with 50 µl 

of a 1:200 dilution of primary antibody (“Lipoteichoic Acid Antibody, Rabbit Polyclonal, 

anti-S. pyogenes, 18-783-77138”, GenWay) in 1 % BSA in DPBS (dilution buffer). After incubation, 

the plates were washed three-times with 300 µl of PBS-T per well and incubated for 1 h at room-

temperature  with 50 µl of a 1:1000 dilution of secondary antibody (“Anti-rabbit IgG, peroxidase-

linked species specific whole antibody (from donkey)”,AmershamBiosciences) in  dilution buffer. The 

plates were finally washed three-times in the “overflow”-mode with 300 µl of PBS-T per well. 

Following the light-protected incubation for 30 min at room-temperature, with 50 µl ABTS (2,2′-

Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid); SIGMA) per well, the OD405 was determined. 

 

5.2 Purification of LTA from S. pneumoniae 

Pneumococcal LTA was purified using an n-butanol extraction and subsequent 

hydrophobic interaction chromatography  (HIC) as described [126].  

 

Bacterial Culture 

The S. pneumoniae strains TIGR4 and PJ1324 (6B) were inoculated and grown in 100 ml of 

THY pre-culture until the end of the log-phase at 37 °C and 5 % CO2. 50 ml of this pre-culture 

were then used to inoculate 5 liters of fresh THY and bacteria were grown for 16-18 h at 37 °C 

and 5 % CO2 before harvesting by centrifugation at 4 °C for approximately 30 min at 4400 rpm. 

  

Cell Disruption and LTA-Isolation 

The pelleted bacterial biomass was re-suspended in 50 ml of 1 mM Tris-HCl, pH 8.0 and 

incubated for 1 h at 37 °C with 0.25 mg/ml lysozyme (SIGMA) to break up the cell wall. 

5 mM MgCl2 was then added to the solution, which was further incubated for 1 h at 37 °C with 

50 µg/ml RNAse A (Promega) and 10 µg/ml DNase I (Roche), followed by the addition of 

0.5 % SDS (SIGMA) and over-night incubation at 55 °C with 50 µg/ml ProteinaseK (Invitrogen). 
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After the denaturation of ProteinaseK for 10 min at 95 °C, 25 ml of 50 mM citrate-buffer, pH 4.7 

were added and the solution was sonicated twice for 5 min on ice. The bacterial lysate was 

mixed with an equal volume of n-butanol (Merck) under stirring for 20 min at room-

temperature. After centrifugation at 4 °C for 45 min at 17,200 x g the lower, aqueous phase was 

collected before an equal volume of fresh citrate-buffer was added to the solvent-phase for a 

second extraction as described. 

These steps were repeated and the three aqueous phases obtained were pooled, frozen at 

- 80°C and subsequently lyophilized. 

 

Hydrophobic Interaction Chromatography (HIC) 

The lyophilized LTA-extracts were re-suspended in 35 ml of chromatography start buffer 

containing 15 % n-propanol in 0.1 M NH4Ac-buffer, pH 4.7. After centrifugation at 4 °C for 

60 min at 26,900 x g, the supernatant was filtered through a 0.2 µm membrane filter. The filtrate 

was subjected to HIC with 54 ml Octyl SepharoseTM (GE Healthcare) using an ÄKTAexplorerTM 

(GE Healthcare) chromatography system. LTA was eluted using a linear gradient of 15-90 % 

n-propanol in 0.1 M NH4Ac-buffer, pH 4.7 and 5 ml fractions were automatically collected. 

 

Quantification based on the Phosphomolybdenum-Blue Reaction 

Post HIC, the fractions were screened for their phosphate content. High phosphate 

concentrations were expected in the flow-through fractions, representing DNA and proteins not 

bound to the chromatography column and in a second peak from later fractions that should 

contain LTA. [126] 

The phosphate determination is based on the formation of phosphomolybdenum blue 

from phosphate. 50 µl of a 0.65 mM phosphate standard (SIGMA) and 100 µl of each fraction 

were mixed with 200 µl ashing solution containing 2 M H2SO4 and 0.44 M HClO4. Following 

incubation in open glass vials (Hirschmann) for 2.5 h at 146 °C, 1 ml of reducing solution 

containing 3 mM ammonium molybdate, 0.25 M sodium acetate and 1 % ascorbic acid was 

added and the fractions were incubated for 2 h at 45 °C. The OD700 of 250 µl of each sample was 

subsequently measured. 
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PAGE-Based Quantification 

For the PAGE-based quantification of isolated and purified LTA form S. pyogenes and 

S. pneumoniae, 30-40 % Tris-Borate-EDTA gels (JULE Inc.) were pre-run at 4 °C for 20 min at 

100 V in running buffer containing 90 mM Tris, 80 mM boric acid and 2.6 mM EDTA, pH 8.3. 

LTA-fractions in loading dye – 2 mg/ml Orange G in 40 % sucrose or  4 mg/ml Xylene cyanol 

and 4 mg/ml Bromophenol blue in 40 % sucrose – were loaded and run over-night at 4 °C and 

100 V. 

Post PAGE, the gels were stained by a combined AlcianBlue (SIGMA) – Silver staining 

(BioRad) following the literature protocols [389-390] and the manufacturer’s instructions (BioRad 

Silver Stain) and were subsequently scanned (GS-800, Calibrated Densitometer, BioRad). 

Additionally, were some gels immediately fixed with 50 % MeOH and 10 % acetic acid 

after electrophoresis and subsequently just stained using the Bio-Rad Silver Stain kit (BioRad). 

 

As the precast gels from JULE Inc. were extremely fragile (e.g. ripping-off the slots when 

removing the comb or disrupting of the whole gel when placing the gel-cassette into the 

electrophoresis chamber, etc. happened very easily), 4-20 % Tris-Borate-EDTA gradient-gels 

(Lonza) were purchased and used as described. 

 

ELISA-Based Quantification using GAS-LTA Specific Antibodies 

The HIC fractions were screened for their LTA-content via an LTA-ELISA that was based 

on the initial setup but using (i) rabbit polyclonal antibody vs. LTA from S. pyogenes (1:200, 

GenWay, 18-783-77138) or (ii) mouse mAb vs. Gram Positive Bacteria (1:1000, GenWay, 20-511-

241416) and 1:1000 dilutions of the appropriate secondary antibodies conjugated to horse-

raddish peroxidase (HRP, rabbit anti-mouse-HRP (P0260), DAKO; donkey anti-rabbit-HRP 

(NA934), AmershamBiosciences) for a detection following the ABTS-staining protocol at OD405. 

 

LTA-Deacylation-Procedure 

For a more effective PAGE-based quantification and qualification of the LTA-purification, 

20 µg GAS-LTA (as an initial optimization step) and subsequently, 20 µl of isolated 

pneumococcal LTA were primarily chemically decayed (cdLTA) by a mild NH4OH-treatment 

(according to the original procedure [391]). This decay was followed by a limited HCl-hydrolysis 

where the cdLTA (1/2 of the remaining material; the other half was used for PAGE to check for 
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the success of the NH4OH treatment) and 20 µl of 2 M HCl were incubated at 80 °C for 0, 1, 5, 

and 10 min, followed by an immediate cooling step on ice, the removal of HCl by flushing with 

dry-air on ice and subsequent dissolving of the chemically decomposed LTA in 10 µl dH2O. 

Samples from all steps were subsequently subjected to LTA-PAGE and a combined Alcian Blue 

and Silver-staining.   

 

6 ANIMAL STUDIES 

6.1 Animal Guidelines – Tierversuchsantrag 

All animal-studies in M. musculus carried out during this project were approved 

according to Austrian guidelines (Tierversuchsgesetz BGBl. Nr. 501/1989) in the 

“Tierversuchsantrag N° 18 – Kapitel II”, “Tierversuchsantrag N° 27 – Kapitel I” and 

“Tierversuchsantrag N° 27- Kapitel III”.  

For all studies, female C3H/HeN mice were purchased from Harlan Winkelmann 

(Borchen, Germany) or Elevage Janvier (Le Genest Saint Isle, France) and used at the age of six 

to eight weeks with a body-weight of approximately 23 g. 

 

6.2 Generation of Hyperimmune Sera in M. musculus 

For the generation of hyperimmune sera (experiment-N°: CGI/LST3742 and LST3885; 

according to “Tierversuchsantrag-N° 18, Kapitel II”), female C3H/HeN mice (5 mice/group) were 

immunized subcutaneously (s.c.; flank) three times at two-week intervals with 50 µg of purified 

recombinant protein per mouse and immunization, formulated with ALUM (Aluminium 

Hydroxide Gel Adjuvant, Alhydrogel; Brenntag) or emulsified in CFA/IFA (Adjuvant Complete 

Freund (1st immunization) and Adjuvant Incomplete Freund (2nd and 3rd immunization), Difco 

Laboratories) after taking pre-immune sera one day before the first immunization. On day 35, 

mice were anesthetized with isofluran and terminally bled – retro-orbital plexus – for the 

collection of hyperimmune sera. 

 

6.3 Dose Finding Studies for Lethal Infection of M. musculus with Pneumococcal Strains 

For the determination of the optimal challenge dose of different S. pneumoniae strains, 

which were to be used via different application routes in passive-transfer and challenge models, 

naïve, female C3H/HeN mice (5 mice/group) were challenged with different bacterial cfu in 

DPBS – intraperetoneally (i.p., 100 µl/mouse), i.n. (40 µl/mouse), or i.v. (100 µl/mouse). The 
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challenge dose was confirmed by plating on blood agar and the survival of the mice was 

monitored for 15 days post challenge, being compared to appropriate control groups. Surviving 

mice were sacrificed on day 15 post challenge via cervical dislocation. 

(experiment-N°: GNA3876 and LST3898; according to “Tierversuchsantrag-N° 27, Kapitel III”) 

 

6.4 In vivo Efficacy Testing of Polyclonal Antibodies 

The in vivo efficacy of polyclonal antibodies, generated against several recombinant 

pneumococcal antigens, was tested in models of i.p. passive transfer of hyperimmune-sera and 

i.p., i.n., or i.v. lethal challenge with different pneumococcal strains. Therefore 10 µl of 

hyperimmune serum diluted in 490 µl DPBS were injected i.p. into groups of 5 naïve, female 

C3H/HeN mice followed by a lethal challenge 24 h post immunization. The challenge dose was 

confirmed by plating on blood agar and the survival of the mice was monitored for 15 days post 

challenge, being compared to appropriate control groups. Surviving mice were sacrificed on 

day 15 post challenge via cervical dislocation. 

 

7 IN VITRO ASSAYS 

7.1 Western Blot Analysis 

Following the SDS-PAGE, the separated proteins were transferred onto a nitrocellulose 

membrane (iBlot® Gel Transfer Stacks, Invitrogen) using a dry transfer system (iBlotTM Gel 

Transfer Device, Invitrogen), according to manufacturer’s instructions. After Ponceau-staining 

(Ponceau S solution, SIGMA) and quick-documentation, the membranes were destained and 

blocked – 1 h at room-temperature or over-night at 4 °C – with 5 % milk powder in DPBS. After 

a brief rinsing-step with 0.1 % Tween®20 in DPBS (PBS-T), the membranes were incubated for 

1 h at room-temperature with a 1:5000 dilution of primary antibody in 5 % milk, before the 

membranes were washed three-times with PBS-T for 10-15 min at room-temperature.  

Following incubation for 1 h at room-temperature with a 1:5000 dilution of secondary antibody 

(Peroxidase-conjugated AffiniPure F(ab’)2 fragment Goat anti-mouse IgG(H+L), Jackson Immuno 

Research) in DPBS, the membranes were washed four-times with PBS-T for 10-15 min at room-

temperature and once with DPBS for 5 min at room-temperature before the blots were 

developed (ChemiGlowTM, Alpha Innotech), according to manufacturer’s instructions, and 

analyzed (FluorChemTM SP, Alpha Innotech). 
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7.2 Enzyme Linked Immunosorbant Assay (ELISA)  

Determination of Serum-Antibody-Titers 

For the determination of serum-antibody-titers, each well of a MaxiSorpTM plate (NuncTM) 

was coated with 50 µl of a 1 µg/ml antigen-dilution in 0.1 M NaHCO3-buffer, pH 9.3 and 

incubated over-night at 4 °C. The next day, the coating solution was discarded and 100 µl of 

blocking buffer containing 2 % BSA in DPBS was added per well and incubated for 1 h at room-

temperature. After incubation, the plates were washed three-times with 300 µl of 0.1 % 

Tween®20 in DPBS (PBS-T) per well and incubated for 1 h at room-temperature with 50 µl of 

pre-diluted serum – 5-fold dilutions in 1 % BSA in DPBS (dilution buffer) – per well. After 

incubation, the plates were washed three-times with 300 µl of PBS-T and incubated for 1 h at 

room-temperature with 50 µl of pre-diluted secondary antibody (“Polyclonal Rabbit Anti-Mouse 

Immunoglobulins/HRP”, DAKO, 1:1,000 in dilution buffer, or “Goat Anti-Human IgG-HRP, 

SouthernBiotech, 1:4,000 in dilution buffer). The plates were finally washed three-times in the 

“overflow”-mode with 300 µl of PBS-T per well. Following the light-protected incubation for 

30 min at room-temperature, with 50 µl ABTS (SIGMA) per well, the OD405 was determined and 

the data were analyzed (Gen5TM, BioTek). 

 

Peptide ELISA 

For the determination of the peptide-recognition-profile of hyperimmune-sera generated 

against several PspA-constructs, pre-coated streptavidin-plates (NuncTM) were washed three-

times using 300 µl of 0.1 % Tween®20 in DPBS (PBS-T) per well and subsequently coated with 

100 µl of the appropriate peptides (1 µg/ml) in PBS-T and incubated over-night at 4 °C.  

The next day, the coating solution was discarded and 100 µl of blocking buffer containing 

2 % BSA in DPBS were added per well and incubated for 1 h at room-temperature. After 

incubation, the plates were washed three-times with 300 µl of PBS-T per well and incubated for 

1 h at room-temperature with 50 µl of pre-diluted serum – 5-fold dilutions in 1 % BSA in DPBS 

(dilution buffer) – per well. After incubation, the plates were washed three-times with 300 µl of 

PBS-T per well and incubated for 1 h at room-temperature with  50 µl of a 1:1000 dilution of 

secondary antibody (“Polyclonal Rabbit Anti-Mouse Immunoglobulins/HRP”, DAKO) in dilution 

buffer. The plates were finally washed three-times in the “overflow”-mode with 300 µl of PBS-T 

per well. Following the light-protected incubation for 30 min at room-temperature, with 50 µl 
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ABTS (SIGMA) per well, the OD405 was determined and the data were analyzed (Gen5TM, 

BioTek). 

 

IL-6 ELISA 

The IL-6 levels of pre- and hyperimmune-sera from M. musculus were determined using 

the “Mouse IL-6 ELISA Ready-SET-Go!®” kit (eBioscience) according to the manufacturer’s 

protocol (Technical Data Sheet “Mouse IL-6 ELISA Ready-Set-Go!®” ; page 1-6) and the data were 

analyzed (Gen5TM, BioTek). 

 

7.3 Surface Staining of Live Pneumococci 

For the surface staining and subsequent flow cytometric analysis, 5 ml THY over-night 

cultures of several S. pneumoniae strains were grown from glycerol stock at 37 °C and 5 % CO2. 

The next day, 10 ml of pre-warmed THY were inoculated with 0.5 ml of the over-night culture 

and the bacteria were grown to OD620 = 0.3. 2 ml of this culture were centrifuged at 4 °C for 

5 min at 1000 x g, the pellet was washed twice with 2 ml of 2 % BSA in HBSS and re-suspended. 

The bacterial cells were diluted to 5x105 cells in 100 µl of 2 % BSA in HBSS, added to a 96-well 

plate (U-bottom, NuncTM) and subsequently incubated at 4 °C for 45 min with primary antibody 

or serum. Following washing with 150 µl of 2 % BSA in HBSS per well and centrifugation at 

4 °C for 5 min at 1000 x g, the secondary antibody was added and incubated at 4 °C for 45 min 

in the dark. This was followed by another washing and centrifugation step, and an incubation 

at 4 °C for 10 min in the dark with 0.05 µl of SYTO®60 (Invitrogen) in 100 µl HBSS. After a final 

washing and centrifugation step, the cells were fixed over-night with 200 µl of 2 % para-

formaldehyde per well at 4 °C. The stained cells were measured (FC-500 Analyzer, 

BeckmanCoulter) and the data were evaluated (FCSExpress; DeNovoSoftware). 

 

7.4 Surface Staining of Eukaryotic Cells 

Several eukaryotic cells (HL-60, HEK 293T, hybridoma and hPBMCs) were used for 

surface-staining for flow-cytometric analyses according to the following protocol, which was 

slightly modified in some cases if required (see Results and Discussion where done). 

Briefly, the eukaryotic cells were washed in FACS-buffer containing 2 % FCS and 

0.01 % NaN3 in DPBS, centrifuged for 10 min at 1000 x g and diluted in FACS-buffer 

to 1x106 cells/ml.  1x105 cells/well were subsequently incubated with the required dilutions of 
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primary antibody or serum for 45 min, on ice, in the dark. Following centrifugation for 10 min 

at 1000 x g, the cells were washed with 150 µl of FACS-buffer and 100 µl of secondary antibody, 

diluted in FACS-buffer, were added and incubated for 45 min on ice, in the dark. After a final 

washing step with 150 µl of DPBS and centrifugation for 10 min at 1000 x g, the cells were re-

suspended in 200 µl of DPBS and subjected to flow-cytometric analysis (FC-500 Analyzer, 

BeckmanCoulter) and the data were evaluated (FCSExpress; DeNovoSoftware). 

  

7.5 Hemolysis-Inhibition Assay 

Purification of IgG from M. musculus Sera 

After thawing, heat-inactivation at 56 °C for 45 min and centrifugation at 4 °C for 5 min at 

full-speed, the mouse-sera were filtered through a 0.2 µm syringe filter (PALL). Following a 

dilution of 1:3 in Binding Buffer pH 5.0 (Pierce) the sera were loaded onto BioRad Micro Bio-

Spin® Chromatography Columns (BioRad), packed with washed – 10 column volumes of Binding 

Buffer pH 5.0 – “Ultralink Immobilized Protein G” (Pierce; gel capacity approx. 20 mg IgG/ml). 

After collecting the flow-through, the column was washed with 20 column volumes of Binding 

Buffer pH 5.0 before the bound IgG was eluted with 5 column volumes of Elution Buffer pH 2.5 

(Pierce) and immediately neutralized by adjusting the pH with 100 µl of 1 M Tris buffer pH 8.0 

per 1000 µl eluate. After two cycles of dialysis against DPBS, in a Slide-A-Lyzer® Dialysis 

Cassette (10,000 MWCO, Pierce), SDS-PAGE with subsequent Coomassie-staining was 

performed. 

 

Determination of the Hemolytic Unit [HU] of PLY 

The setup of the hemolysis (inhibition) assay is based on literature protocols [301, 392]  being 

modified regarding the following procedure. 

200 µl of freshly isolated hRBCs in DPBS (5x108 cells/ml) were incubated with 50 µl of a 

serial dilution series of PLY in triplicates for 1 h at 37 °C and constantly slow shaking. After a 

centrifugation step at 4 °C for 5 min at 4400 rpm, the supernatant was transferred into a 96-flat 

bottom plate (Nunc) and the OD541 was determined. Using dH2O as positive control (100 % 

hemolysis) and DPBS as blank (0 % hemolysis) as standards in triplicates, the hemolytic unit of 

PLY was calculated, where 1 HU was defined as the concentration of PLY required to induce 

50 % hemolysis of hRBCs. 
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The Optimized Hemolysis-Inhibition Assay 

After the HU of the recombinant PLY was determined (which should be determined for 

all isolations of hRBCs prior to the inhibition-assay), the hemolyis-inhibition assay was setup 

according to the following scheme (Figure 15). Briefly, several fold-dilutions of antibody (e.g. 

mAb or IgG from serum) were incubated with 2 HU of PLY for 1 h at 37 °C and constantly slow 

shaking before 200 µl of freshly isolated hRBCs (5x108 cells/ml in DPBS) were added and 

incubated for 1 h at 37 °C and constantly slow shaking. Following a centrifugation step at 4 °C 

for 5 min at 4400 rpm, the supernatant was transferred into a 96-flat bottom plate (Nunc), the 

OD541 was determined and the capacity of hemolysis-inhibition of the antibody was determined. 

 

Ab-dilution

37 °C, 1 hr

5E+08 RBCs/ml

Incubation

37 °C, 1 hr

Incubation

full speed, 
5 min

Centrifugation

.... free PLY

.... free antibody

.... PLY-Ab complex (i.e. neutralized PLY)

.... RBCs

λ=541nm

ddH2O … 100 % hemolysis

DPBS … 0% hemolysis
 

Figure 15: Schematic Representation of the Hemolysis-Inhibition Assay. (© Lukas Stulik) 
 

7.6 TLR4-Reporter Assay 

The TLR4-Reporter Assay was setup according to manufacturer’s instructions 

(InvivoGen) using 1x106  HEK-BlueTM hTLR4 cells/ml which were extremely carefully treated 

(e.g. no scraping, no trypsinization of the culture) in order to avoid stress-response and 

unspecific reporter-activation. Furthermore, just endotoxin (LPS) free reagents and qualified 

FCS (Gibco) were used in all assay-steps. 

For the quantification and assay-control, an E. coli LPS (K12, InvivoGen) standard-

calibration as well as unrelated antibodies and proteins, in the same buffer and the same LPS-

content as the recombinant PLY, were used in each assay.   
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D - RESULTS  

1 GENERATION OF RECOMBINANT PROTEINS 

In order to obtain the target antigens for this project, PspA (SP0117), PLY (SP1923) and 

subconstructs thereof were expressed in recombinant form with a C-terminal His-tag by 

XhoI/NcoI cloning into the pET28b+ expression vector. The whole protein and domains, that 

were shown to be the most protective and reactive regions in in vivo and in vitro settings in 

previous experiments, were used. 

 

1.1 Sequence Information and Designing of the Recombinant Constructs 

The expression and purification of recombinant PspA and several subconstructs thereof, 

was based on the PspA-sequences of the pneumococcal wild-type strains WU2 (PspA Family 1, 

Clade 2) and TIGR4 (PspA Family 2, Clade 3), as these two strains were shown to be 

representatives for two different PspA-clades within two different families [163].  

A

B

 
M31EESPQVVEKSSLEKKYEEAKAKADTAKKDYETAKKKAEDAQKKYEDDQKRTEEKARKEAEASQKLNDVALVVQNAY
KEYREVQNQRSKYKSDAEYQKKLTEVDSKIEKARKEQQDLQNKFNEVRAVVVPEPNALAETKKKAEEAKAEEKVAKRK
YDYATLKVALAKKEVEAKELEIEKLQYEISTLEQEVATAQHQVDNLKKLLAGADPDDGTEVIEAKLKKGEAELNAKQA
ELAKKQTELEKLLDSLDPEGKTQDELDKEAEEAELDKKADELQNKVADLEKEISNLEILLGGADPEDDTAALQNKLAA
KKAELAKKQTELEKLLDSLDPEGKTQDELDKEAEEAELDKKADELQNKVADLEKEISNLEILLGGADSEDDTAALQNK
LATKKAELEKTQKELDAALNELGPDGDEEETPAPAPQPEQPAPAPKPEQPAPAPKPEQPAPAPKPEQPAPAPKPEQPA
PAPKPEQPAKPEKPAEEPTQPEKPATPKTGWKQENGMWYFY538LEHHHHH* 

FL_WU2 
M31EESPVASQSKAEKDYDAAVKKSEAAKKAYEEAKKALEEAKVAQKKYEDDQKKTEEKAELEKEASEAIAKATEEVQQ
AYLAYQRASNKAEAAKMIEEAQRRENEARAKFTTIRTTMVVPEPEQLAETKKKAEEAKAKEPKLAKKAAEAKAKLEEA
EKKATEAKPQVDAEEVAPQAKIAELENQVHRLEQELKEIDESESEDYAKEGFRAPLQSKLDAKKAKLSKLEELSDKID
ELDAEIAKLEDQLKAVEENNNVEDYSTEGLEKTIAAKKTELEKTEADLKKAVNEPEKSAEEPSQPEKPAEEAPAPEQP
TEPTQPEKPAEETPAPKPEKPAEQPKAEKTDDQQAEEDYARRSEEEYNRLTQQQPPKAEKPAPAPQPEQPAPAPKTGW
KQENGMWYFYNTDGSMATGWLQNNGSWYYLNSNGAMATGWLQYNGSWYYLNANGAMATGWAKVNGSWYYLNANGSMAT
GWVKDGDTWYYLEASGAMKASQWFKVSDKWYYVNSNGAMATGWLQYNGSWYYLNANGAMATGWAKVNGSWYYLNANGS
MATGWVKDGDTWYYLEASGAMKASQWFKVSDKWYYVNGSGSLAVNTTVDGYTVNENGEWV635LEHHHHHH* 
 

 

Figure 16: Amino Acid Sequences of Recombinant PspA_FL_T4 (A) and PspA_FL_WU2 (B). The 
recombinant proteins PspA_FL_T4 and PspA_FL_WU2 cover the amino acid sequences (normal letters) 32 to 538 
(T4) and 32 to 635 (WU2) of the corresponding native proteins. All amino acids highlighted in gray originate from 
the pET28b+ vector backbone. 

 

The alignment of all published PspA-sequences [390] of different pneumococcal 

backgrounds indicated that both strains express PspA with a sequence variation within the 

clade-defining region (“B”) (Supplementary Figure 1) as described in the literature [163, 170, 193-199].   

Sequence alignments of the proline-rich regions (Supplementary Figure 2 and Supplementary 

Figure 3) further confirmed that just PspA from WU2 and not from TIGR4 contains the non-
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proline block within the proline-rich region (Supplementary Figure 3), which is described in 

literature as another fundamental difference of the two types of PspA. [124, 163, 180, 187-190]  

Recombinant PspA (SP0117) from S. pneumoniae strain TIGR4 (serotype 4; PspA Family 2, 

Clade 3) and WU2 (serotype 3; PspA Family 1, Clade 2) were designed with expected molecular 

weights of 56.5 kDa (corresponding to amino acids 32 to 538 (Figure 16-A) of the native protein) 

and 67.6 kDa (corresponding to amino acids 32 to 635 (Figure 16-B) of the native protein) 

respectively avoiding the hydrophobic C-terminal cell wall binding domain. 

For the determination of the in vivo and in vitro protective and functional characteristics, 

several subconstructs of PspA were also cloned and expressed in recombinant form from the 

S. pneumoniae TIGR4 and WU2 backgrounds (Figure 17). For each genetic background one 

construct comprising the proline-rich region, one covering the clade defining region (“B”) and 

one consisting of the immunodominant epitope of the clade defining region and the proline-rich 

region (see Figure 17 for details), was generated. 
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Figure 17: Recombinant Constructs of PspA (SP0117). Aligned to the native protein structure of PspA from 
S. pneumoniae TIGR4 (A), the generated recombinant protein constructs for TIGR4 (B) and WU2 (C) are 
indicated. Based on the low sequence similarity of WU2 to TIGR4, this figure just indicates the sizes of the WU2 
constructs, including the non-proline block insertion (pink box) and not the real positions thereof in the native 
protein structure. (modified from [185, 193]) 
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Likewise, PLY and variants thereof were expressed and purified in recombinant form 

only from the S. pneumoniae TIGR4 background as this protein is completely conserved across 

all pneumococcal strains (Figure 18). 

 

M1MANKAVNDFILAMNYDKKKLLTHQGESIENRFIKEGNQLPDEFVVIERKKRSLSTNTSDISVTATNDSRLYPGALL
VVDETLLENNPTLLAVDRAPMTYSIDLPGLASSDSFLQVEDPSNSSVRGAVNDLLAKWHQDYGQVNNVPA146RMQYEK
ITAHSMEQLKVKFGSDFEKTGNSLDIDFNSVHSGEKQIQIVNFKQIYYTVSVDAVKNPGDVFQDTVTVEDLKQRGISA
ERPLVYISSVAYGRQVYLKLETTSKSDEVEAAFEALIKGVKVAPQTEWKQILDNTEVKAVILGGDPSSGARVVTGKVD
MVEDLIQEGSRFTADHPGLPISYTTSFLRDNVVATFQNSTDYVETKVTAYR359NGDLLLDHSGAYVAQYYITWNELSY
DHQGKEVLTPKAWDRNGQDLTAHFTTSIPLKGNVRNLSVKIRECTGLAWEWWRTVYEKTDLPLVRKRTISIWGTTLYP
QVEDKVEND471LEHHHHH*  

Figure 18: Amino Acid Sequences of Recombinant PLY and Constructs Thereof. The recombinant protein 
PLY covers the full amino acid sequence 1 to 471 of the corresponding native protein. For PLD, the site of deletion 
of A146 is highlighted in red and the sequence for domain 4, which was deleted in PLYΔD4, is underlined. All 
amino acids highlighted in gray originate from the pET28b+ vector backbone. 

 

Thus the wild-type toxin (PLY, 52.9 kDa, corresponding to amino acids 1 to 471 of the 

native protein), as well as the mutant toxoids PLD (52.8 kDa, corresponding to amino acids 1 to 

471 of the native protein with a deletion of A146[393]) and PLYΔD4 (43.5 kDa, corresponding to 

amino acids 1 to 359 of the native protein, with the cell-binding domain 4 being deleted) were 

generated. 

 

1.2 Cloning and Protein Expression 

In the following the main steps for cloning and protein purification are outlined and 

exemplified on the procedure for the recombinant proteins PspA_B_T4 and PspA_FL_T4. The 

obtained quantitative and qualitative information for each recombinant protein generated are 

summarized at the end of this chapter (Table 4). 

After cloning of the insert-sequences into the expression vector pET28b+, the recombinant 

plasmid DNA was amplified in DH5α cells and subjected to colony PCR using T7 promoter and 

terminator specific primers in order to screen for positive clones (Figure 19). The colony PCR 

proves the expected fragment sizes and positive insertion of insert DNA into the  pET28b+ 

vector for several clones (lanes 1,4,7,8,10,12,14 and 15) and reveals negative clones (lanes 2, 3, 5, 

6, 9, 11 and 13) which were not further processed. 
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Figure 19: Colony PCR. Clones for PspA_B_T4 (lanes 1-7; expected insert size: 314 bp) and PspA_FL_T4 (lanes 
8-15; expected insert size: 2139 bp) were randomly picked and used as template in colony PCR with T7 promoter 
and terminator specific primers. Water was included as negative control (neg).  

 

The plasmid DNA from positive DH5α-clones was subsequently amplified, purified 

(Figure 20-A) and subjected to a double-restriction digest with XhoI and NcoI to reanalyze the 

successful DNA-insertion into the pET28b+ backbone by comparing the computationally 

expected fragment sizes and the fragment sizes obtained following the digest and agarose gel 

electrophoresis (Figure 20-B). 
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Figure 20: Plasmid Purification and Double-Restriction Digest. A. Successful plasmid purification was 
confirmed by agarose gel-electrophoresis for the recombinant plasmid DNA of PspA_B_T4 (lanes/clones 4, 7) and 
PspA_FL_T4 (lanes/clones 10, 12) B. Restriction digest of the plasmids the fragment size were analyzed on an 
agarose gel. The expected fragment sizes for the inserts were 314 bp for PspA_B_T4 and 2139 bp for PspA_FL_T4 
and 5368 bp for the pET28b+ backbone after the double digest. 

 

To indemnify the sequence-accuracy, positive plasmid DNA was finally sent for 

sequencing to MWG Biotech. 

The sequenced, insert-positive, plasmid DNA was further used to transform BL21(DE3) 

E. coli expression host cells. Following successful transformation, these cells were used for 

small-scale expression experiments via IPTG induction, hence the checking for the expression of 

the protein of interest in recombinant form. For this purpose the total bacterial lysate (t), 
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soluble (s) and insoluble (i) fractions were separated by SDS-PAGE and proteins were 

visualized by Coomassie-staining (Figure 21-A) and Western blot analysis (Figure 21-B). 
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Figure 21: Example for a Small Scale Expression - PspA_B_T4. The successful small scale expression of 
recombinant PspA_B_T4 was confirmed by Coomassie-staining (A) and Western blot analysis (B). The expected 
protein size of approximately 12 kDa is indicated by an arrow. 

 

Following a successful small-scale expression, the recombinant proteins were expressed 

on large scale and purified via IMAC using an imidazole gradient. Fractions were collected after 

each step and 5 µl of each were subjected to SDS-PAGE analysis in order to monitor the 

purification (Figure 22).  

 

M                 1       2        3        4         5       6        7

 

Figure 22: Monitoring of the IMAC-Purification. The purification success of PspA_B_T4 is exemplified, where 
the fractions of the IMAC-purification using an imidazole-gradient were analyzed via SDS-PAGE and subsequent 
Coomassie-staining (lanes 1-7). 

 



D – RESULTS 

 - 57 - 

The fractions containing the target protein, were subsequently pooled and dialyzed, 

centrifuged, filtered and subjected to SDS-PAGE and Coomassie-staining to analyze the protein 

quality (for an example see Figure 23). 
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Figure 23: Quality Control Post Dialysis. Purified PspA_B_T4 is shown as representative: First the protein was 
dialyzed (lane 1), then precipitated protein was removed by centrifugation and the remaining soluble fraction was 
loaded (lane 2) and filtered through a MustangE membrane to reduce the endotoxin content (lane 3). 

 

The concentration and endotoxin content were determined as summarized in Table 4 for 

all proteins that were expressed in the course of this study. 

 

Table 4: Overview of All Proteins Purified in Recombinant Form. 
 

Protein 
MW 

[kDa] 
pI Fraction 

Concentration 
[mg/ml] 

Endoxin (LPS) 
[EU/mg] 

PLY_WT 52.898 5.19 soluble 3.10 182 

PLY_MUT (= PLD; deletion of A146) 52.827 5.19 soluble 1.65 733 

PLYΔD4 43.513 5.68 soluble 1.14 167 

PspA_B_T4 11.391 4.22 soluble 0.52 97 

PspA_B_WU2 11.225 4.63 soluble 18.79 6 

PspA_Pro_T4 9.443 4.64 soluble 1.20 107 

PspA_Pro_WU2 11.192 4.38 soluble 3.00 3748 

PspA_Pro+partB_T4 12.662 4.81 soluble 1.91 106 

PspA_Pro+partB_WU2 13.619 4.58 soluble 6.00 3960 

PspA_FL_T4 56.468 4.75 soluble 2.81 502 

 

Solely the aimed expression of PspA_FL_WU2 was not successful, although the cloning 

into the expression vector was found to work as expected (data not shown). Thus, a new re-

construction and amplification of the sequence from the gDNA of WU2 as well as the cloning 



D – RESULTS 

- 58 - 

into different protein-expression hosts such as RosettaTM 2(DE3)pLysS cells might be useful in 

the future. 

 

2 GENERATION AND SCREENING OF MOUSE HYPERIMMUNE SERA 

For the generation of hyperimmune sera five mice per group were immunized with 

recombinant variants of PspA and PLY s.c.. Following terminal bleeding, the antibody titers 

(EC50) of individual mice were determined and compared to the corresponding pre-immune 

sera in ELISA-based screenings (exemplified in Figure 24). 
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Figure 24: Results of the Titer-Screening of Hyperimmune Sera. The serum screening of three mice immunized 
with PspA_B_T4 (CGI/LST3742 Group-N° 10) is exemplified by showing the obtained serum-titration graphs for 
pre- and hyperimmune-sera (A), the calculated log-curves thereof (B) and the results-table, indicating the EC50 
values (C). 

 

It was noted that during the immunization-procedure, mice of different groups died or 

had to be sacrificed after the second immunization on day 14 as some mice showed severe 

reactions (e.g. ventral position, pulmonary ventilation rates of 28 bpm, being catatonic, etc.). 

These observations, which were not consistent in-between both experiments, cannot be 

explained or traced back on any operational-errors being made.  
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None of the mice had pre-existing antibodies specific for the immunogens used and all 

surviving mice developed very high hyperimmune serum titers, hence were successfully 

immunized with the constructs applied (summarized in Supplementary Figure 4 to 

Supplementary Figure 6). 

 

3 THE IN VIVO VIRULENCE OF PNEUMOCOCCI IN MOUSE VIA DIFFERENT APPLICATION ROUTES  

The in vivo virulence of S. pneumoniae is not only dependent on the strain i.e. the genetic 

background but also on the routes of infection, thus for all strains that were subsequently used 

for passive immunization studies with polyclonal mouse antibodies, the LD90 (lethal dose 90) 

was determined in dose titration experiments – all dose-titrations carried out in the course of 

this project are summarized in Supplementary Table 10. 

It was previously determined that the strain PJ1324 (6B) was virulent when used i.p. but 

avirulent in an i.n. challenge (data not shown), and the results obtained for the i.v. dose-titration 

experiments indicate that the strain PJ1324 (6B) was not virulent in this setting (Figure 25-A).  

The highly virulent character of the S. pneumoniae D39 indicated by the high lethality in 

the i.v. and i.p. model (Figure 25-C and E) was also observed when using this strain in an i.p. 

lethal sepsis model with just 10 cfu – as discussed for the in vivo efficacy of anti-PspA and 

anti-PLY antibodies in the following chapters. As a lower challenge dose was not feasible this 

strain could not be used as challenge strain. 

The pneumococcal strains TIGR4 and WU2 were virulent in the chosen setting without 

being too lethal at higher challenge doses (Figure 25-B and D respectively). Hence, these strains 

were used in i.v. models of bacterial challenge (5x103 cfu/mouse for TIGR4 and 5x105 cfu/mouse 

for WU2) as representatives for Family 1 and 2 PspA strains in order to determine the in vivo 

efficacy of anti-PspA and anti-PLY polyclonal antibodies as discussed in the following chapters. 
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Figure 25: Dose Titration for the i.v. and i.p. Challenge with S. pneumoniae. The in vivo virulence was tested 
by infecting 5 mice per group with the strains PJ1324 (A), TIGR4 (B), D39 (C) and WU2 (D) i.v. and with the 
strain D39 (E) i.p.. The LD90 dose for each strain was determined by injecting four different challenge doses (cfu). 
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4 ANTIGEN SPECIFIC ASSAYS AND EXPERIMENTS 

4.1 Lipoteichoic acid (LTA) 

4.1.1 Optimization of the Purification and Quantification of LTA 

Optimization of the HIC-Purification Procedure 

In order to determine the optimal elution conditions for the hydrophobic interaction 

chromatography (HIC) with Octyl SepharoseTM for the purification of LTA from S. pneumoniae 

[126], commercially available, purified and quantified LTA from S. pyogenes (group A 

streptococcus; GAS) was used in a small scale experiment.  

For this purpose triplicates of GAS-LTA (100 µg each) were diluted in three different HIC 

starting buffers (0 %, 5 % and 15 % n-propanol added) and subjected to HIC-purification with 

an n-propanol gradient (0-100 %), before all fractions were subsequently screened for their LTA-

content via a GAS-LTA-specific ELISA.  

The ELISA read-outs (absorbance at OD405) for all three runs (Figure 26) indicate that all 

three starting-buffer-compositions are suitable for the purification of GAS-LTA by means of 

HIC. Furthermore the most quantitative elution was achieved using an n-propanol content of 

30-60 % (indicated by the red box in Figure 26).  
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Figure 26: ELISA-Read-Outs of the HIC-Optimization with GAS-LTA. The quantitative elution of 
GAS-LTA from the Octyl SepharoseTM resin was optimized using different compositions of starting buffer and an 
increasing n-propanol gradient. Eluted fractions were analyzed for their LTA-content by an LTA-specific ELISA. 

  

Based on these results, a HIC starting-buffer without n-propanol was selected for the re-

hydration of the lyophilized extracts of pneumococcal LTA, and a gently inclining n-propanol-
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gradient between 30 % and 70 % with higher fraction-numbers and lower fraction-volumes, was 

used in order to maximize the yield and quality for all HIC-runs. 

 

Optimization of the Quantification Procedure 

By applying the established HIC-purification protocol, LTA from the S. pneumoniae strains 

PJ1324 (6B) and TIGR4 was aimed to be purified in the course of eight different purification-

approaches.  

All fractions obtained from four different runs – exemplified by the chromatogram of run-

number 1 in Figure 27 – were subsequently screened for their phosphate content by means of 

the phosphomolybdenum-blue reaction described in the literature. [126] 

  

 

Figure 27: Chromatogram of a HIC-Run. The HIC-based purification of LTA was monitored by recording the 
absorbance at 260 nm (dark red) and 485 nm (blue), the conductivity (brown), the solvent-gradient-concentration 
(green) and the fraction number (red). This is exemplified by the chromatogram recorded for the purification of LTA 
from 500 ml of an over-night culture of the S. pneumoniae strain PJ1324 (6B). 

 

In order to quantify the purified pneumococcal LTA, a standard calibration using 

GAS-LTA (ranging from 1x100 mg/ml to 5.12x10-7 mg/ml LTA; exemplified in Figure 28) was 

established and included in each phosphomolybdenum-blue screening of the HIC fractions. 
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Figure 28: Standard Calibration for the Phosphomolybdenum-Blue Reaction. The standard calibration 
which was included in all detection approaches of pneumococcal LTA post HIC was set-up and used in a broad 
concentration-range between 1x100 mg/ml to 5.12x10-7 mg/ml of GAS-LTA. 
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Figure 29: Result for the Phosphomolybdenum-Blue Reaction of Pneumococcal LTA. The phosphate-
screening is exemplified for all HIC-fractions obtained from 500 ml of an o/n culture of the S. pneumoniae strain 
PJ1324 (6B). 

 

The fractions of all HIC-runs that were subjected to the phosphomolybdenum-blue 

reaction, showed the same picture as exemplified for run-number 1 in Figure 29. The high 

background and the low detection-efficiency were found to be independent of the culture 

volume – 500 ml to 10 L of o/n cultures were tested – and the S. pneumoniae strain used. 
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Although the phosphomolybdenum-blue based quantification method was described as 

relatively sensitive standard screening procedure during LTA isolation in the literature [126], the 

detection limit was above the concentration of pneumococcal LTA in the HIC fractions. Based 

on the calibration with GAS-LTA, a concentration below 100 µg/ml could not be detected with 

sufficient reliability thus it was concluded that this method was not suitable for the detection of 

pneumococcal LTA. 

In order to establish an alternative suitable LTA-detection method, an ELISA-based 

quantification approach using GAS-LTA-specific primary antibodies was set-up. For this 

purpose several LTA-specific antibodies were cross-titrated with different concentrations of 

GAS-LTA to determine their optimal working concentration (data not shown). The antibody 

with the highest sensitivity (Gram Positive Bacteria Antibody, Mouse Monoclonal IgG1 

Antibody, GenWay; working dilution of 1:200) was henceforth used for all ELISA-based LTA-

screenings.  The limit of detection for GAS-LTA was found to be 0.1 ng/ml at a 1:200 dilution of 

the primary antibody (data not shown). 

This ELISA-based detection – optimized and functional for GAS-LTA – was also shown to 

allow the detection of pneumococcal LTA in several purification approaches. An example for 

the purification of TIGR4-LTA is given in Figure 30.  
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Figure 30: ELISA-Based Screening of HIC-Fractions of Pneumococcal LTA. The ELISA-screening is 
exemplified for all HIC-fractions obtained from 10 L of an o/n culture of the S. pneumoniae strain TIGR4. 
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Finally, in order to optimize the qualification and quantification of isolated and purified 

pneumococcal LTA a PAGE-based separation with a subsequent, combined Alcian-Blue and 

silver-staining was investigated. 

For the initial set-up of this method, Tris-Borate-EDTA gels (30-40 %) were loaded and 

run with different concentrations of LTA from S. pyogenes before staining. As these precast gels 

were extremely fragile, the quality of the gels and therefore the results obtained therewith were 

not satisfactory (data not shown).  

Thus subsequently LTA from S. pyogenes was separated on Tris-Borate-EDTA gradient-

gels (4-20 %) loaded with two different loading dyes (native loading dye and 

OrangeG+sucrose), (Figure 31-A) and silver-stained without previous Alcian-Blue staining 

(Figure 31-B).  

 

1    2   3    4    5   6    7    8 1    2    3    4    5   6    7    8
A B

 

Figure 31: PAGE-Separation (A) and Silver Staining Approach (B) for GAS-LTA. The PAGE-based 
purification of LTA from S. pyogenes was carried out using a 4-20 % TBE-Gel without Alcian-Blue staining prior 
to silver-staining. Next to the GeneRuler 1kb DNA-Ladder (lane 1) and PageRuler Plus Prestained Protein Ladder 
(lane 2), GAS-LTA was loaded in three concentrations (10 µg, 1 µg and 0.1 µg) in native loading dye (lanes 3-5) 
and OrangeG+sucrose (lanes 6-8).  

 

The stained gel (Figure 31-B) showed that both loading dyes were suitable for loading of 

the gel but that the use of the native loading dye (lanes 3-5) led to a more band-like separation 

as described in the  literature [389, 394-395] - compared to the OrangeG+sucrose which led to cone-

like lanes (6-8).  Further can be observed that the detection-limit for GAS-LTA was reached 

when loading and separating 1 µg of this antigen, which is approximately 10,000-fold lower 

than achieved with the GAS-LTA specific ELISA described before. 

As a smear of the native GAS-LTA was visible after silver staining of the polyacrylamide 

gel (Figure 31-B), GAS-LTA (100 µg) was subjected to a literature-based deacylation procedure 

according to the published protocol [391]. This procedure should result in a banding pattern after 
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separating and visualizing different fractions of the chemically treated LTA via PAGE and 

silver-staining.  When evaluating the PAGE-gel post staining (data not shown), it was noted 

that no traces of any chemically decayed LTA were evident, although the markers and the 

native GAS-LTA-control showed the same profiles as in the initial setup (Figure 31). Therefore 

it was concluded that the apparent loss of LTA during the chemical treatments, possibly yields 

amounts of decayed LTA being lower than the detection limit of the PAGE and silver-staining. 

Alternatively the chemical treatment might have employed too harsh conditions that led to a 

total decomposition of the native LTA.  

Taken together the results obtained with the PAGE-based visualization of quite high 

amounts of GAS-LTA, were not promising with regards to further application of this procedure 

for the qualification and quantification of pneumococcal LTA. Thus, this approach was not 

followed up further in the course of this project. 

  

4.2 Pneumococcal surface protein A (PspA, SP0117) 

4.2.1 In vitro Assays using Polyclonal Antibodies Generated vs. PspA Constructs 

Peptide ELISA 

In order to determine if hyperimmune-sera generated against different recombinant 

PspA-constructs based on the S. pneumoniae strains WU2 and TIGR4 recognize linear epitopes of 

PspA, an ELISA using 25 aa long peptides covering the expressed PspA_FL variant from TIGR4 

with a 5 aa overlap was carried out. As controls, the recombinant proteins PspA_FL_T4 and 

PspA_Pro+PartB_WU2, purified polyclonal mouse IgG generated against  PspA_FL_T4 and a 

mouse mAb – 3G3E8E3 recognizing the PspA peptide 

IEKLQYEISTLEQEVATAQHQVDNLKKLLA (peptide N° 8) – were included. 

All hyperimmune-sera recognized the two recombinant protein-controls used (data not 

shown). The mAb- and IgG-controls bound to the peptides as expected, showing specific 

recognition of peptide N° 8 by mAb 3G3E8E3 and a broad recognition of multiple peptides, 

with strongest binding in the proline-rich region by the polyclonal IgGs. 

The data (Figure 32) indicate that hyperimmune sera against PspA_FL_T4, PspA_B_T4 

and PspA_Pro+PartB_T4 contain antibodies recognizing the majority of the peptides distributed 

over the whole sequence. These sera also recognized linear epitopes in the coiled-coil region. In 

general, hyperimmune sera against PspA_B_WU2 and PspA_Pro_WU2 showed only low 

reactivity with the peptides tested, likely based on the fact that the peptides were not generated 
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against the PspA-sequence of WU2 (PspA Family 1, Clade 2) but for TIGR4 (PspA Family 2, 

Clade 3). All other sera tested, showed a medium to high reactivity within different regions of 

PspA independent of the constructs sequence.  
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Figure 32: Results for the Peptide ELISA. The overlapping 25 aa long peptides were generated based on the 
amino-acid sequence of PspA from S. pneumoniae TIGR4. (A) Structural features of PspA and the antigen-
constructs used for the generation of the hyperimmune-sera are represented. (B) The peptide-recognition by the HI-
sera and the control antibodies used is depicted with the most strongly recognized regions highlighted in red.   

 

Surface-Staining of Live Pneumococci 

Hyperimmune-sera generated in experiment CGI/LST3742 were subsequently checked for 

their capability of recognizing PspA on the surface of different live S. pneumoniae strains by 

means of flow cytometry.  

The results (Table 5) suggest a clade-specific recognition of PspA on the pneumococcal 

surface, reflected by the strong surface staining signal of the TIGR4wt strain with 

hyperimmune-sera generated against the TIGR4 (PspA Family 2, Clade 3) constructs and D39wt 

with those against the WU2 (PspA Family 1, Clade 2) constructs respectively.  

The specific recognition of PspA on TIGR4wt was confirmed by the absence of staining on 

a TIGR4ΔPspA strain (lacking PspA expression) using the hyperimmune-sera generated against 

the recombinant TIGR4-constructs. In addition to that staining by anti-WU2-PspA antibodies 

was reduced on a TIGR4ΔPspC strain – lacking PspC but still presenting PspA on its surface.  
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Table 5: Results for the Surface Staining of Live S. pneumoniae using HI-Sera (CGI/LST3742). The 
recognition of different pneumococcal wild-type and mutant strains by hyperimmune-sera was compared to the 
corresponding pre-immune sera. Results are represented using a color-coding for positive recognition of not less 
than 49.5 % (+++), not less than 29.5 % (++), not less than 14.5 % (+) and less than 14.5 % (-). 

Serotype PspA-clade Serotype PspA-clade Serotype PspA-clade

4 3 4 - 4 3

HI-Serum ID Target Antigen

CGI/LST3742-N° 6 PspA_B_WU2

CGI/LST3742-N° 7 PspA_Pro_WU2

CGI/LST3742-N° 8 PspA_Pro+PartB_WU2

CGI/LST3742-N°  9 PspA_FL_T4

CGI/LST3742-N° 10 PspA_B_T4

CGI/LST3742-N° 11 PspA_Pro_T4

CGI/LST3742-N° 12 PspA_Pro+PartB_T4

Serotype PspA-clade Serotype PspA-clade Serotype PspA-clade

19F 1 19F - 2 2

Serum ID Target Antigen

CGI/LST3742-N° 6 PspA_B_WU2

CGI/LST3742-N° 7 PspA_Pro_WU2

CGI/LST3742-N° 8 PspA_Pro+PartB_WU2

CGI/LST3742-N°  9 PspA_FL_T4

CGI/LST3742-N° 10 PspA_B_T4

CGI/LST3742-N° 11 PspA_Pro_T4

CGI/LST3742-N° 12 PspA_Pro+PartB_T4
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4.2.2 In vivo Efficacy Testing of Polyclonal Antibodies Generated vs. PspA Constructs 

In order to assess the protective efficacy of hyperimmune-sera, generated against different 

PspA-constructs in the experiments CGI/LST3742 and LST3885, these were examined in passive 

immunizations studies in mice.  5 mice per group received polyclonal serum 24 h prior to a 

lethal bacterial challenge. Different S. pneumoniae strains – representing different serotypes and 

PspA clades – and challenge-routes were tested in the course of this study. 

The survival of the animals was monitored for 15 days post infection and data thus 

obtained were statistically evaluated using a Log-rank (Mantel-Cox) Test (data represented in 

Supplementary Table 12). Mice mock immunized with mouse pre-immune serum and PBS 

served as negative and PspA_FL polyclonal rabbit serum as positive control. 

In two experiments with i.p. challenge with strain PJ1324 (serotype 6B; PspA Family 2, 

Clade 3) (Figure 33) antisera generated against recombinant PspA_FL_T4, PspA_B_T4, 

PspA_B+Pro_T4 derived from the S. pneumoniae strain TIGR4 (serotype 4, PspA Family 2, 

Clade 3) showed a clade specific protection. Antibodies against the proline-rich region alone 
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(PspA_Pro_T4) were not fully protective and no cross-clade protection was obtained when 

using hyperimmune sera generated against the WU2-constructs (serotype 3; PspA Family 1, 

Clade 2). Although anti-PspA_Pro_T4 antibodies were not shown to be fully protective, 

statistical comparison with the mock-immunized PBS-control group indicated that all TIGR4-

constructs significantly prolonged the survival of the mice (p<0.01).  

 

LST3869
3.0x104 cfu PJ1324 (6B), i.p.

LST3872
1.06x104 cfu PJ1324 (6B), i.p.

0 2 4 6 8 10 12 14
0

20

40

60

80

100

Day

P
er

ce
n

t 
su

rv
iv

al

0 2 4 6 8 10 12 14
0

20

40

60

80

100

Day

P
er

ce
n

t 
su

rv
iv

al

 

Log-Rank (Mantel-Cox) 
vs. PBS Group

P-Value

LST3869 LST3872

** **

** **

** **

** **

**

PBS
mouse pre immune serum
PspA rabbit serum
PspA_FL_T4 HI-Serum

PspA_B+Pro_T4 HI-Serum
PspA_Pro_T4 HI-Serum
PspA_B_WU2 HI-Serum
PspA_B+Pro_WU2 HI-Serum
PspA_Pro_WU2 HI-serum

PspA_B_T4 HI-Serum

 

Figure 33: In vivo Efficacy of Polyclonal Anti-PspA Antibodies Against i.p. Challenge with the 

S. pneumoniae Strain PJ1324 (6B). The survival of individual mice was monitored for 15 days post challenge. All 
survival-curves were statistically compared to the mock-immunized PBS-control group, using the Log-rank 
(Mantel-Cox) test where p<0.01 is indicated with **. 

 

The in vivo efficacy of the hyperimmune sera was re-examined in an i.p. challenge model 

using the S. pneumoniae strain D39 (serotype 2, PspA Family 1, Clade 2) and anti-PspA_FL_T4 

serum – shown to be fully protective in all previous experiments – as the positive control. A 

clade-specific protection of 40 % with anti-PspA_B+Pro_WU2 serum was observed (Figure 34). 
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Further, some extent of cross-clade protection (20 %) was achieved with the hyperimmune-sera 

generated against PspA_FL_T4, PspA_B+Pro_T4 and PspA_Pro_T4. The positive control, anti-

PspA_FL_T4 serum, was not shown to be fully protective in the given setting and the statistical 

evaluation of the data-sets indicates no significant difference in the survival curve of any of the 

groups compared to the mock-immunized PBS-group.  
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Figure 34: In vivo Efficacy of Polyclonal Anti-PspA Antibodies Against i.p. Challenge with the 

S. pneumoniae Strain D39. The survival of individual mice was monitored for 15 days post challenge. All 
survival-curves were statistically compared to the mock-immunized PBS-control group, using the Log-rank 
(Mantel-Cox) test. 

  

The hyperimmune sera were subsequently tested in a more natural setting, hence their 

protective potential was examined in a lethal model of pneumonia using an i.n. infection with 

the pneumococcal strain A66.1 (serotype 3; PspA Family 2, Clade 3) which was shown to 

specifically induce pneumonia and no other related disease [396].  

In the experiment LST3897 (Figure 35, left graph) a cross-clade protection with anti-

PspA_Pro_T4 serum (20 %), but no protection against lethal challenge with any of the other 

hyperimmune sera used was observed. Both, the positive control (PspA rabbit serum) as well as 

the anti-PspA_Pro_T4 serum significantly prolonged the challenge-survival (p<0.01), compared 

to the mock-immunized group.   

As the amounts of remaining hyperimmune sera from the experiment CGI/LST3742 were 

not sufficient, the experiment LST3897 was repeated in the study LST3909 with another batch of 

hyperimmune sera generated with exactly the same antigen-preparations (LST3885).  

In this experiment LST3909 (Figure 35, right graph) a clade-specific protection using anti-

PspA_B_WU2 serum (60 %) and some extent of cross-clade protection with hyperimmune sera 
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raised against PspA_B+Pro_T4 (40 %), PspA_B_T4 (20 %) and PspA_Pro_T4 (20 %) was 

observed. Statistical analysis further indicated significant prolonged survival of the positive 

control PspA_FL polyclonal rabbit serum (p<0.01), anti-PspA_B_WU2 serum (p<0.01) and 

anti-PspA_Pro_WU2 serum (p<0.05), but no significant protection with any antibodies against 

the TIGR4-constructs. 
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Figure 35: In vivo Efficacy of Polyclonal Anti-PspA Antibodies Against i.n. Challenge with the 

S. pneumoniae Strain A66.1. The survival of individual mice was monitored for 15 days post challenge. All 
survival-curves were statistically compared to the mock-immunized PBS-control group, using the Log-rank 
(Mantel-Cox) test where p<0.01 (**) and p<0.05 (*) are indicated.  

 

Finally, in a different experimental setting, mice were infected i.v. in a lethal sepsis model 

with the strains TIGR4 (serotype 4, PspA Family 2, Clade 3) and WU2 (serotype 3, PspA Family 

1, Clade 2) using the optimized (LST3898) challenge-doses  of 5x103 cfu/mouse and 

5x105 cfu/mouse respectively.  
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The hyperimmune sera generated in LST3885 were not protective and did not induce a 

statistically significant prolonged survival against i.v. challenge with the strain TIGR4 (Figure 

36, left graph). Nonetheless after i.v. challenge with the strain WU2 (Figure 36, right graph) anti-

PspA_Pro_WU2 and anti-PspA_B+Pro_WU2 hyperimmune sera showed full protection with a 

p-value below 0.05 but antibodies against the B-region alone showed no effect.  
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Figure 36: In vivo Efficacy of Polyclonal Anti-PspA Antibodies Against i.v. Challenge with the 

S. pneumoniae Strains TIGR4 and WU2. The survival of individual mice was monitored for 15 days post 
challenge. All survival-curves were statistically compared to the mock-immunized PBS-control group, using the 
Log-rank (Mantel-Cox) test where p<0.05 is indicated with *. 

 

4.3 Pneumolysin (PLY, SP1923) 

4.3.1 In vivo Efficacy Testing of Polyclonal Antibodies Generated vs. PLY Constructs 

In order to determine the protective efficacy of hyperimmune-sera generated against PLY, 

PLD and PLYΔD4, these were tested in passive immunizations of C3H/HeN mice in the 

experiments CGI/LST3742 and LST3885. 5 mice per group received 10 µl of the PLY specific 
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serum each 24 h prior to lethal bacterial challenge with different S. pneumoniae strains and 

challenge-routes. 

In repeated i.p. challenge experiments anti-PLY and anti-PLD sera generated in 

CGI/LST3742 showed some protection against the pneumococcal strain PJ1324 (serotype 6B) 

(Figure 37). The protective potential of the polyclonal antibodies generated against PLY was 

elicited by challenge survivals of 0 % (CGI/LST3742-N°2), 20 % (CGI/LST3742-N°3 and 

CGI/LST3742-N°4) and 40 % (CGI/LST3742-N°1). As the observed protection differed between 

the groups, the IL-6 response of mice, immunized with these hyperimmune-sera, was 

determined 24 h post challenge (LST3872; data presented and discussed in 4.3.2). 

A statistically significant prolonged survival (p<0.05) was observed for two of the 

anti-PLY groups, namely CGI/LST3742-N°2 and CGI/LST3742-N°3. 40 % of the mice that 

received polyclonal antibodies against PLD survived, resulting in a significantly prolonged 

survival (p<0.05) compared to the mock-immunized PBS-control group.  

The commercially available mAb 1F11 also protected 40 % of the mice, giving rise to a 

statistically significant different survival curve (p<0.05) compared to the mock-immunized 

control.  

PspA_FL polyclonal rabbit serum, which was used as positive control in both 

experiments, was repeatedly shown to be fully protective and to significantly extend the 

challenge-survival (p<0.01) compared to the PBS-control group. 
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Figure 37: In vivo Efficacy of Polyclonal Anti-PLY Antibodies Against i.p. Challenge with the 

S. pneumoniae Strain PJ1324 (6B). The survival of individual mice was monitored for 15 days post challenge. All 
survival-curves were statistically compared to the mock-immunized PBS-control group, using the Log-rank 
(Mantel-Cox) test where p<0.01 (**) and p<0.05 (*) are indicated.  

 

Data generated for subsequent testing of the hyperimmune-sera in an i.p. challenge with 

the pneumococcal strain D39 also showed high virulence of the strain (previously discussed in 

4.2.2). Limited protection was only observed in one of the groups immunized with anti-PLY 

serum (CGI/LST3742-N°4; 20 % survival) and none of the sera was found to induce a 

statistically significant prolongation of the challenge-survival, compared to the mock-

immunized PBS-control group (Figure 38). 

The positive control – anti-PspA_FL_T4 mouse serum – was not protective in the given 

setting and the statistical evaluation of the data-sets indicates no significant difference in 

survival compared to the control-group. 
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Figure 38: In vivo Efficacy of Polyclonal Anti-PLY Antibodies Against i.p. Challenge with the 

S. pneumoniae Strain D39. The survival of individual mice was monitored for 15 days post challenge. All 
survival-curves were statistically compared to the mock-immunized PBS-control group, using the Log-rank 
(Mantel-Cox) test. 

 

In subsequent experiments, evaluating the protective potential of the polyclonal 

antibodies in a model of lethal pneumonia post i.n. infection with the pneumococcal strain 

A66.1 (serotype 3) no protection upon immunization with anti-PLY serum was observed 

(Figure 39). Neither antibodies generated against PLD, nor those generated against PLYΔD4 

were protective. Statistical analysis did not reveal any extended survival through 

administration of polyclonal antibodies compared to the mock-immunized control group. The 

positive control, PspA_FL polyclonal rabbit serum, was found to be protective and significantly 

prolonged survival (p<0.01). 
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Figure 39: In vivo Efficacy of Polyclonal Anti-PLY Antibodies Against i.n. Challenge with the 

S. pneumoniae Strain A66.1. The survival of individual mice was monitored for 15 days post challenge. All 
survival-curves were statistically compared to the mock-immunized PBS-control group, using the Log-rank 
(Mantel-Cox) test where p<0.01 is indicated with *. 

 

Finally, protection was studied in an i.v. lethal sepsis model using the pneumococcal 

strains TIGR4 (serotype 4) and WU2 (serotype 3). Enhanced protection was just observed 

against WU2-challenge (Figure 40, right graph) using anti-PLD (40 % survival) and 

anti-PLYΔD4 (60 % survival) sera generated in LST3885. As both negative control groups (PBS 

and mouse pre-immune serum) showed 20 % survival, the protection obtained for the group 

immunized with anti-PLY serum were not considered significant. Statistical analysis showed no 

significant difference between any of the groups challenged with TIGR4 but a significantly 

(p<0.05) prolonged survival of the positive control group challenged with WU2.  
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Figure 40:  In vivo Efficacy of Polyclonal Anti-PLY Antibodies Against i.v. Challenge with the 

S. pneumoniae Strains TIGR4 and WU2 The survival of individual mice was monitored for 15 days post 
challenge. All survival-curves were statistically compared to the mock-immunized PBS-control group, using the 
Log-rank (Mantel-Cox) test where p<0.05 is indicated with *. 
 

4.3.2 IL-6 ELISA 

As aforementioned, different levels of protection against a lethal challenge (i.p. with 

S. pneumoniae A66.1) between mice that were immunized i.p. with the same amounts of 

hyperimmune-sera generated against PLY (see data for LST3872 in the previous sections), were 

observed. Since PLY acts as a TLR4 agonist it was investigated if differences in the induced 

cytokine responses correlate with differences in survival. 

In preliminary studies, changes in the cytokine-profile of mice infected with 

pneumococcus were determined in serum 24 h post i.p. challenge using a multiplex bead array. 

Significantly increased IL-6 and IFN-γ levels were observed, but all other cytokines were found 

to be expressed below the detection limit (unpublished data). Therefore the inflammatory IL-6 

response of the mice (24 h post challenge) was determined by analyzing IL-6 levels in the serum 

in an ELISA-based assay and subsequent statistical comparison (t-test, 1-tailed, type 1) with the 
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corresponding pre-immune serum pools and the PBS control-group (LST3872-Group N°1). As 

animal health regulations did not permit to draw sufficient amounts of serum for analysis of 

single mice, pools of each group were tested (LST3872-Groups N° 4-6 and 13-16). 

All IL-6 ELISA read-out data used for the following statistical calculations are represented 

in the appendix section. 

The computed data (Figure 41 and Supplementary Table 15) indicate that, compared to 

the corresponding pre-immune sera, all groups except of the group immunized with 

hyperimmune-serum generated against PspA_FL_T4 (CGI/LST3742-N°9) showed a statistically 

significant increase (p<0.001) in the IL-6 response 24 h post challenge.  
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Figure 41: Results for the IL-6 ELISA. The concentration of IL-6 was determined in pooled pre-immune sera and 
pooled sera obtained 24 h post challenge. Results were statistically compared between the sera by means of a t-test 
(1-tailed, type 1) and significant fold-increases of p<0.001 are depicted as ***. 

 

Calculation of the average fold-changes in the IL-6 response and statistical analysis 

relative to the mock-immunized PBS-control group revealed that apart from one group 

(receiving hyperimmune-serum generated against PLY (CGI/LST3742-Group N°4)), all groups 

show statistically significant decreases in the IL-6 response compared to the control (Figure 42 

and Supplementary Table 15). 
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Figure 42: Statistical Comparison of Immunized Groups vs. PBS Control Group. The IL-6 response in the 
pooled sera obtained 24 h post challenge was statistically compared to the mock-immunized PBS-control group by 
means of a t-test (1-tailed, type 1), where p<0.001 (***) and p<0.01 (**) are indicated 

Consequently passive immunization with anti-PspA-FL_T4 antibodies was shown to fully 

inhibit the inflammatory IL-6 immune response, and thus to protect mice from lethal 

pneumococcal infection (Supplementary Table 15). This correlation between decreased IL-6 

response and the observed enhanced challenge-survival is also seen for groups immunized with 

mAb 1F11 (SantaCruz) and polyclonal anti-PLD antibodies.  

 

4.3.3 Setup of Cell Based Functional in vitro Assays 

Hemolysis-Inhibition Assay 

Since lead mAbs against PLY and constructs thereof should be primarily selected based 

on their efficacy in inhibiting PLY-induced lysis of hRBCs prior to further evaluation in animal 

models of protection and inflammation, a Hemolysis-Inhibition Assay was set-up in the course 

of this project. 

For the determination of one “Hemolytic Unit” [HU], which was defined as the amount of 

PLY being required and sufficient for the lysis of 50 % of hRBCs, freshly isolated hRBCs 

(5x108 cell/ml) were incubated with different concentrations of PLY. ddH2O and DPBS served as 

controls for 100 % and 0 % hemolysis respectively. After separation of cells and supernatant, the 

OD at 541 nm was measured and the % hemolysis was calculated in reference to the controls. 

Based on titration-curves as exemplified in Figure 43 one HU was determined for each batch of 

freshly isolated hRBCs. It should be noted that during the assay-setup it was observed that 

dependent on the quality of the isolated hRBCs, the HU varied significantly (data not shown). 
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Based on this it was concluded that the HU has to be determined for each batch of isolated 

hRBCs before the following inhibition assays, whose results strongly depend on the correct 

determination of the hemolytic unit. 
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Figure 43: Determination of the Hemolytic Unit. Freshly isolated hRBCs were titrated with different 
concentrations of PLY and PLD. For both the Hemolytic Unit was determined at 50 % hemolysis, which is 
indicated by the green lines.  

 

After determination of the HU, a hemolysis-inhibition assay was set-up (schematic 

representation in Figure 15). For this purpose different amounts of PLY representing 0.5, 1 or 2 

HU were incubated with commercially available PLY specific mAbs (1F11, SantaCruz and 

PLY-4, Abcam) in order to inhibit PLY induced release of hemoglobin. An unrelated mAb 

(IC-N°5, 5D12G4B8 PA-169-4) generated against a protein from Borrelia burgdorferi was used as 

the appropriate negative assay-control in all assays (data not shown).  

The molar ratios of PLY to mAb (PLY:mAb) at 50 % hemolysis with an antigen 

concentration of 1.6x10-3 mg/ml (corresponding to 3.0x10-8 mmol/ml; 2 HU) were 1:50.6 and 

1:135.3 for the mAbs 1F11 and PLY-4 respectively. Hence mAb 1F11 (SantaCruz) had an 

approximately 2.7-fold higher hemolysis-inhibition activity than the mAb PLY-4 (Abcam) 

(represented in Figure 44).  
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Figure 44: Hemolysis-Inhibition Assay using Commercial mAbs. Two commercially available mAbs - 1F11 
(SantaCruz) and PLY-4 (Abcam) - were titrated for their hemolysis-inhibition potential against different 
concentrations of PLY. 

 

The observed differences between the mAbs and the finding that the hemolysis of hRBCs 

by PLY can be fully inhibited, allowed the further establishment of the hemolysis-inhibition 

assay using the hyperimmune-sera generated in-house against PLY and constructs thereof. 

Thus, hyperimmune-sera generated against PLY and PLD (CGI/LST3742 Group-N° 1-5), 

the corresponding pre-sera, as well as a positive control mAb (1F11, SantaCruz) and a negative-

control pre- and hyperimmune-serum (CGI/LST3742 Group-N° 13) were used in an initial 

setup. The results obtained (Figure 45) indicate unspecific protection against the lysis of hRBCs 

by the sera, as also the pre-immune sera, as well as the unrelated-controls were protective 

against hemolysis. 
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Figure 45: Hemolysis-Inhibition Assay using Hyperimmune-Sera. The anti-sera generated against PLY (G1-
G4) and PLD (G5), the corresponding pre-immune sera, as well as a positive control mAb (1F11, SantaCruz) and a 
negative control pre- and hyperimmune-serum (G13) were tested in several dilutions for their hemolysis-inhibition 
potential of 2 HU of PLY. 

 

In a repeating experiment the sera were pre-incubated with PLY (1 µg/ml and 10 µg/ml) 

in order to inhibit the unspecific binding of serum-components and hence enhancing the 

specific protection-potential of the polyclonal antibodies. Differences between the groups (pre- 

and hyperimmune sera) as well as the expected results for the controls could now be observed 

(data not shown). Based on these findings and indicative data found in literature, it was 

concluded that inter alia the relatively high cholesterol-levels in the sera – typically 0.97 mg/ml 

serum in healthy, female C3H/HeN mice [397] – lead to a significant binding of PLY to cholesterol 

– PLY is characterized as cholesterol-binding protein [266] – and hence inhibit the function of 

PLY, thus inducing an antibody independent inhibition of hemolysis. 

To circumvent this, total IgG was purified from a hyperimmune-serum pool 

(CGI/LST3742 Group-N°4) that showed the highest PLY titer in ELISA (Figure 24), as well as the 
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corresponding pre-immune serum-pool and commercial serum from naïve mice (PAA), via a 

protein G column-purification.  

The purified IgGs were subsequently used for the setup of the hemolysis-inhibition assay 

as aimed before, using different concentrations of PLY. After removal of cholesterol and other 

serum-components by column-purification, no antibody-independent protection against the 

lysis of hRBCs remained, and a PLY-concentration dependent degree of hemolysis was 

observed (Figure 46).  
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Figure 46: Hemolysis-Inhibition Assay using Purified IgGs. Polyclonal IgGs against PLY (CGI/LST3742 
Group N°4), the positive-control mAb 1F11 (SantaCruz) as well as the negative-control, purified IgGs from naïve 
mouse serum (PAA), were titrated for their inhibitory potential of hemolysis induced by 8.0x10-4 mg/ml and 
1.6x10-3 mg/ml of PLY. 
 

The molar ratios of PLY to antibody (PLY:HI-IgG or PLY:mAb) at 50 % hemolysis with an 

initially-used antigen concentration of 1.6x10-3 mg/ml (corresponding to 3.0x10-8 mmol/ml; 

2 HU) were 1:3.9 and 1:51.2  for the purified IgGs (from CGI/LST3742-Group-N°4) and mAb 

1F11 (SantaCruz) respectively. Thus, the data obtained (Figure 46) allow the conclusion that the 

purified polyclonal IgGs generated against PLY are capable of inhibiting hemolysis, and are 

expressing an approximately 13.1-fold higher protection-potential than the commercial mAb 

1F11 (SantaCruz) used as a positive control. 
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TLR4-Reporter Assay 

In addition to their neutralizing activity on erythrocyte-hemolysis lead mAbs should also 

be capable to interfere with the PLY-induced activation of hTLR4. For this purpose, a “TLR4-

Reporter Assay” based on the downstream-signaling due to the activation of hTLR4 via MyD88, 

IκB and NFκB leading to the secretion of SEAP, was set-up using commercially available, stably 

transfected HEK-BlueTM hTLR4 cells (InvivoGen). 

In order to determine the optimal assay parameters, and to optimize the data-readout, an 

initial screening was set-up using different cell numbers for the assay. Therefore three different 

concentrations of HEK-BlueTM hTLR4 cells were incubated with varying concentrations of PLY, 

PLD and PLYΔD4. Dilutions of LPS (K12) from E. coli were used as positive-controls and 

dilutions of an unrelated recombinant protein from Borrelia burgdorferi, being in the same buffer 

and containing approximately the same amounts of LPS as the three PLY constructs, were used.  

In initial studies the reporter system was unintentionally activated in an unspecific 

manner due to standard pipetting of the cells during cultivation (data not shown). Therefore it 

is emphasized that the HEK-BlueTM hTLR4 cells have to be handled surpassingly careful, in 

order to avoid this unspecific activation.   

In subsequent experiments (Figure 47) PLY was found to induce killing of HEK-BlueTM 

cells when used in higher concentration ranges (indicated by the decay of the hTLR4 activation 

when using concentrations higher than 0.05 mg/ml of PLY, Figure 47-C). However, all three 

PLY-constructs were capable of activating the hTLR4 in the tested concentration range of 

2x10-2 mg/ml to 6.4x10-6 mg/ml (Figure 47-C to E).  

The optimal cell-number for the assay was determined: 1.25x106 cells/ml were too many 

and 5x105 cells/ml were too few cells, leading to unspecific or insufficient activation of the 

reporter-system respectively. The microscopy-based evaluation of the cell morphology during 

cultivation showed confluent cells in the wells containing 1.25x106 cells/ml and cells in bad 

shape in both settings (data not shown). Based on this it was concluded that the cell number for 

the assay is optimal at about 1x106 cells/ml where (i) the most sufficient activation of the 

reporter system was observed, (ii) the unspecific activation of the reporter-system was not 

determinable and (iii) the controls – LPS and unrelated recombinant protein –  gave the 

expected results (Figure 47). The slightly unspecific activation of the hTLR4-reporter system at 

high concentrations of unrelated protein (Figure 47-B), might arise from the LPS-content of the 
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protein-preparation. For screening purposes PLY would be used at a concentration of 

4x10-3 mg/ml where no toxin-independent activation is expected. 
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Figure 47: Initial Setup of the TLR4-Reporter Assay. For the optimization of the assay conditions, LPS (K12) 
from E. coli (A) and an unrelated recombinant protein from B. burgorferi (B) were used as positive- and negative-
assay controls. The assay was set-up for the determination of the activation capability of the hTLR4-activation by 
PLY (C), PLD (D) and PLYΔD4 (E) using three different concentrations of HEK-BlueTM hTLR4 cells. 

 

Finally, the inhibitory effects of the commercial mAb 1F11 (SantaCruz) and the purified, 

polyclonal IgGs generated against PLY (pooled hyperimmune-serum of CGI/LST3742 

Group-N°4) on the activation of the hTLR4-reporter system were assessed.  

Repeated experiments showed that both - mAb 1F11 and purified IgG – could inhibit the 

activation of hTLR4 through PLY and PLD in a concentration dependent manner (the results of 

one experiment are shown in Figure 48). 
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Figure 48: TLR4-Reporter Assay using Purified IgGs and the Commercial mAb 1F11. Different 
concentrations of mAb 1F11 ((A) and (B)) and purified, polyclonal IgGs ((C) and (D)) were tested for their 
inhibitory potential against the activation of hTLR4 by PLD ((A) and (C)) and PLY ((B) and (D)).  

 

Without the use of inhibitory antibodies, PLY and PLD – compared to LPS, which at a 

concentration of 8x10-5 mg/ml achieved 100 % hTLR4-activation – were found to induce cell-

killing and approximately 67 % activation of the hTLR4-reporter system respectively. 

Calculating the molar ratios of antigens to antibodies at 50 % hTLR4-activation – correlated to 

LPS being 100 % – with an initially-used antibody concentration of 2 µg/ml – corresponding to 

1.33x10-5 µmol/ml – resulted in ratios of 1:1.6 (PLY:mAb), 1:1.7 (PLY:HI-IgG), 1:6.9 (PLD:mAb) 

and 1:7.2 (PLD:HI-IgG).  Both – purified polyclonal IgG and the commercial mAb 1F11 – 

showed stronger inhibition of PLY than PLD. 

 

4.3.4 Flow Cytometric Approaches for the Optimization of Sorting-Conditions for Human B-Cells 

For the generation of human mAbs against PLY and other target antigens with the 

“Sindbis Virus Based Mammalian Cell Surface Display”, the staining conditions for eukaryotic cells 

needed optimization in order to use them subsequently for flow-cytometry based sorting of 

human B-cells.  

The major limitation of this approach is that PLY specifically binds to all cholesterol 

containing cell membranes, hence to all eukaryotic cells, leading to antigen independent 

positive results. Additionally the toxin-like character of PLY, causing cell-lysis, remains 

problematic. Therefore the use of mutated forms of the toxin – non-cytolytic PLD and PLYΔD4 

lacking the cell binding domain 4 – could circumvent the problems associated with the wild-
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type toxin. Due to patent restriction, PLD could not be used for the generation of human mAbs 

(Kirkham, et al.; “Mutant pneumolysin proteins” US-Patent N° 7,820,789; Mitchell, et al. “Novel 

Adjuvant Compounds”, US-Patent Application 20100166795) and as that the cell binding domain 

also represents an attractive mAb target the use of PLYΔD4 was also limited.  

Thus, the optimization of the sorting conditions for PLY-specific B-cells was explored by 

using different eukaryotic cells, such as HL-60, HEK-293T, hybridoma and hPBMCs, as well as 

applying several blocking-reagents and approaches. Recombinantly expressed and purified 

PLD and PLYΔD4, were used as controls for the staining-optimization with the wild-type toxin.  

Initially the cytolytic activity of PLY and PLD on HL-60 cells was evaluated and blocking 

was tested with the PLY-specific mAb 1F11 (SantaCruz). PLY and PLD bound to HL-60 cells in 

a concentration-dependent manner – represented for PLD (Figure 49-A).  PLY killed the cells 

even at low concentrations of approximately 2 µg/ml whereas PLD hardly affected cell viability 

at higher concentrations of up to 200 µg/ml (Figure 49-B). Even without a specific incubation 

step 1 µg/ml mAb 1F11 were capable to block the binding of PLY and PLD to HL-60 cells 

(Figure 49-B).  
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Figure 49: Binding Inhibition of PLY and PLD to HL-60 Cells using the mAb 1F11. A concentration-
dependent binding of both antigens – represented for PLD (A) – was evaluated by flow cytometry, where the 
concentration-dependent effects of the antigens only and in combination with the mAb 1F11 (SantaCruz) on the 
total cell-count were determined (B). 
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Subsequently, different blocking reagents namely FCS, AmphotericinB, cholesterol in 

100 % ethanol and a water soluble cholesterol-derivative were tested in different concentrations 

for their ability of blocking the PLY-specific signal (data not shown). In summary, it was found 

that none of the blocking reagents used was capable to inhibit the binding of PLY to eukaryotic 

cells completely. 

Therefore a peptide (Oxpholipin 11D, peptide-sequence: ECTGLAWEWWRT), reported of 

binding to cholesterol [398], and hence aimed to block the binding of PLY to the cells, was 

synthesized (ThinkPeptides) and tested. Oxopholipin 11D did not show any concentration-

dependent effects, but the signal was found to be slightly blocked when HL-60 cells were pre-

incubated with the peptide and PLD – pre-incubated with mAb 1F11 or HI-serum specific for 

PLY (CGI/LST3742-N°4) – being subsequently added (data not shown). But no complete 

blocking of the signal could be achieved with the peptide based approach. Possibly through 

binding of the mAb and the polyclonal antibodies in the HI-serum to the peptide as well as to 

PLY and/or PLD the observed blocking might have been false-positive, which was difficult to 

prove. 

In a final approach aiming to inhibit binding of PLY and PLD to HL-60 cells, both 

antigens were coupled to different FluoSpheres®. The coupling to all three FluoSpheres® tested 

was successful (data not shown). The amine-modified beads exhibit a concentration-dependent 

binding with an optimal range between 0.0063-0.0016 % beads per 100 µl (Figure 50). The pore-

forming ability of PLY, and hence the induction of the lysis of HL-60 cells was inhibited when 

the toxin was coupled to the FluoSpheres® (Figure 50-A). 
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Figure 50: Signal Blocking of PLY and PLD Coupled to Amine-Modified FluoSpheres®. The inhibition of the 
unspecific binding of PLY and PLD to HL-60cells was determined by coupling both antigens to amine-modified 
FluoSpheres® and evaluating the binding characteristics for bead-bound PLY (A) and PLD (B) by means of flow-
cytometry. 

 

The results obtained for the use of the blocking reagents, Oxpholipin 11D and the antigen-

coupled FluoSpheres® were subsequently checked with other eukaryotic cells than HL-60 cells, 

namely HEK-293T cells, hybridoma cells and isolated hPBMCs. All these approaches showed 

extremely low cell recovery when compared to HL-60 cells and hence no conclusion could be 

drawn at this stage (data not shown). 
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5 TITER–SCREENINGS OF SERA FROM HEALTHY HUMAN DONORS 

In order to find suitable sources for the isolation of hPBMCs and subsequent B-cell sorting 

as required for the generation of human mAbs based on the mammalian cell surface display 

technology, thirty-five healthy human blood-donors were screened for their serum-antibody 

titers against PspA and PLY and constructs thereof.  

For this purpose serum-dilutions (200-25,000-fold dilution) of each donor were tested in 

duplicates in ELISA-based screenings for antibodies against recombinant variants of PspA and 

PLY. Several high-titer donors were identified for each of the constructs tested (see Figure 51 

representing the results obtained for the 1:1000 serum dilutions and the Appendix for all data 

obtained), which suggests potential sources for the aimed isolation and purification of hPBMCs 

and antigen-specific B-cells. 
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Figure 51: Human Serum-Titer Screening for Target Antigens. In total 35 healthy donors were tested for their 
serum-titer against eight pneumococcal antigen-constructs. 
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E - DISCUSSION AND CONCLUSION 

The overall aim of the present study was to characterize three highly conserved and 

pneumococcal-specific target antigens – LTA, PspA and PLY – for their suitability as human 

mAb-based therapeutics. For this purpose these were expressed, purified and evaluated in vitro. 

Additionally the generation as well as the in-depth characterization of the in vitro functionality 

and in vivo efficacy of mouse polyclonal antibodies and human mAbs targeting the three 

antigens was envisaged. 

 

The advantage in targeting LTA compared to other surface polysaccharides of 

S. pneumoniae would be the conservation of its chemical composition across the whole species [63, 

108, 119-120] and interference with its complex biological nature e.g. interaction with host receptors 

or activation of inflammatory responses. [29-31, 33-36, 63, 128, 133-147, 150-170]  Additionally antibodies 

against the PCho moiety as well as active immunization with protein conjugates were found to 

be protective against some pneumococcal strains in mice. [399-403] However, surface exposure of 

LTA and thus accessibility to antibodies as well as beneficial effects of anti-LTA antibodies 

during pneumococcal disease are still controversial. [404-406]  

LTA was aimed to be isolated in its native form by means of an n-butanol extraction and 

subsequent HIC-purification from in vitro grown pneumococci. Therefore, this purification 

method described in the literature [126] was further optimized by successfully establishing buffer 

and gradient conditions for the elution of purified and commercially available LTA from 

S. pyogenes in pilot experiments.  

One major problem for the LTA purification posed the need for a suitable detection and 

quantification method. First, the literature based phosphomolybdenum-blue assay [126] based on 

the reactivity of the LTA-phosphate backbone was explored using purified LTA from GAS and 

HIC fractions containing pneumococcal LTA. It was found that the detection-limit of this assay 

was 100 µg/ml for LTA from GAS and that the background in the samples was high. Thus this 

method was not suitable to screen and select the fractions for further processing.  

As an alternative approach an ELISA based assay was set up. For this purpose several 

commercially available LTA-specific antibodies were screened and a mAb from GenWay 

detecting LTA from GAS at concentrations of 0.1 ng per ml at an antibody-dilution of 1:200 was 

selected. This antibody also showed reactivity with pneumococcal structures in the HIC 

fractions in several purification attempts, suggesting that this assay would be capable to detect 
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pneumococcal LTA in a fast and easy way. Nevertheless it is important to stress that the extent 

of the (cross-) reactivity of the used primary mAb – raised against intact Listeria monocytogenes – 

with pneumococcal LTA remains unknown. Antibodies specific for pneumococcal LTA would 

be the ideal solution but these are currently not commercially available.  It was attempted to 

generate hyperimmune-sera against pneumococcal LTA in house by immunizing mice with the 

pooled fractions from each of the main peaks from the HIC-run represented in Figure 30. 

However, none of the two groups raised detectable antibody titers against LTA (data not 

shown).  

It was also attempted to assess the quality of purified LTA in terms of purity by 

separation on PAGE and subsequent Alcian-Blue and silver staining. This was successful for 

purified LTA from GAS resulting in a band-like pattern as described in the literature [389, 394-395], 

but due to the high amounts required this was not followed up in the course of this project. 

In summary the isolation and purification of pneumococcal LTA require a profound 

knowledge in carbohydrate chemistry. Due to the time constraints of this project and low 

immunogenicity of the purified structures, LTA could not be followed up as a target. Future 

approaches could be based on MS/MS-analyses of the putatively purified LTA which will allow 

to gather full certainty about the isolated and purified product.  In addition it should be 

emphasized that pneumococcal LTA was already fully chemically synthesized and subjected to 

structural analyses and biological studies [129-130] which presents a potential source for 

collaboration in the future.  

 

The presence of PspA on all pneumococcal strains, its essentiality as virulence factor, and 

above all the effective protection against pneumococcal infections observed in animal models 

make PspA an attractive target for mAb development. [174-178, 180, 183, 186, 202-203, 221-223] 

The expression and purification of recombinant PspA and several subconstructs thereof, 

was based on the PspA-sequences of the pneumococcal wild-type strains WU2 (PspA Family 1, 

Clade 2) and TIGR4 (PspA Family 2, Clade 3), as representatives for the two major PspA- 

families [176]. That way the potential for cross-family-reactive antibodies should be most 

efficiently explored.  

Good antibody titers were raised by s.c. immunization which also recognized linear 

epitopes as determined by peptide ELISA. Primarily sera were screened for differences in 

surface staining on live pneumococci in order to correlate these findings with subsequent 
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protection in vivo. This would allow establishing a screening assay during human mAb 

development.  

Surface staining of the wild-type strains TIGR4 and D39 indicated a clade-specific 

recognition of PspA with antibodies generated against the TIGR4- and WU2-constructs 

respectively. Using a TIGR4ΔPspA strain showed cross-reactivity of the hyperimmune-sera 

generated against the recombinant WU2-constructs with another protein than PspA, as these 

sera showed the same profile on the TIGR4 wild-type and knock-out strain. This hypothesis is 

substantiated by data generated using a TIGR4ΔPspC strain, which suggest that the antibodies 

rather recognize PspC, another choline binding protein of pneumococci that also contains a 

proline-rich region. [202] 

The relatively low antibody binding to the strain EF3030 (PspA Family 1, Clade 1) by all 

hyperimmune-sera tested, indicated that independent of the background the antibodies were 

raised against, PspA was recognized in a very clade-specific manner. Thus, although reported 

in the literature [183, 220], no cross-clade reactivity was achieved for any of the generated and 

tested hyperimmune-sera. 

 

For in vivo efficacy testing of antibodies in several different mouse models – challenging with 

PJ1324 (6B), TIGR4, A66.1, D39 and WU2 in distinct application routes (i.n., i.p. and i.v.) – were 

employed.  

i.v. challenge with TIGR4 and i.p. challenge with D39 was found to be too lethal allowing 

no significant survival in any of the groups, even not those receiving the positive control – 

polyclonal anti-PspA_FL_T4 rabbit serum, thus this data were excluded from further analyses. 

This is in accordance with literature data that suggest difficulties in obtaining complete 

protection of mice challenged with serotypes 2 and 4 although immunized with the 

homologous PspA variant. [407] 

In a model of i.p. infection with a PspA Family 2 Clade 3 strain (PJ1324) a clade-specific 

protection was observed for the anti-PspA sera generated against TIGR4 variants. All antibodies 

generated against the TIGR4 constructs significantly protected mice with p-values below 0.01, 

whereas anti-WU2 sera showed no effect. Interestingly, antibodies against the proline-rich 

region could not protect mice from death consistently although recent reports indicated that the 

proline-rich region gave rise to cross-clade protection. [176, 193, 201-203, 232-233] 
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Upon i.v. challenge with a PspA Family 1 Clade 2 strain (WU2) only a clade-specific 

protection with anti-Pro_WU2 and anti-Pro+PartB_WU2 sera was observed with p-values 

below 0.05. Although no cross-clade protection was observed, a protective effect of the proline-

rich region was seen, which is in accordance to literature data. [176, 193, 201-203, 232-233] 

In i.n. challenge with a PspA Family 1 Clade 2 strain (A66.1) no consistent cross-clade 

protection was observed with the sera specific for the TIGR4 variants, except for the positive 

control rabbit serum against PspA. Whereas in one experiment antibodies against the proline-

rich region showed significant protection with a p-value below 0.01, in the other experiment – 

using a different hyperimmune serum batch – only antibodies against the WU2 constructs 

significantly protected in a clade-specific manner. As hyperimmune sera generated in different 

experiments – with the same protein batches and immunization protocol – had to be used for 

these studies, these were compared for in vitro differences. However, mice had no pre-existing 

antibodies against S. pneumoniae and hyperimmune sera did not show any differences in terms 

of recognition of PspA on the surface of live S. pneumoniae strains TIGR4 and A66.1 by means of 

a flow-cytometry based surface staining (data not shown). Therefore more in depth in vitro (e.g. 

OPK assays) and in vivo studies would be needed for the LST3885 hyperimmune sera in order 

to proof their protective-potential observed in initial studies.  

In conclusion, hyperimmune sera generated against the different PspA-constructs 

conferred a clade-specific protection against lethal challenge. Although indicated in the 

literature [176, 193, 201-203, 232-233], none of the PspA sera tested showed significant and consistent 

protection across PspA clades in any of the lethal challenge-models tested. Based on these data 

it is likely that a mAb-based therapy would require a cocktail of at least two different mAbs – 

one recognizing Family 1 PspA and another one reacting with Family 2 PspA – in order to cover 

all pneumococcal strains.  

In summary, surface staining data seemed to be predictable for the in vivo efficacy of the 

polyclonal antibodies against PspA: in vitro strains were stained in a clade-specific manner 

(Table 5) and also in vivo only the expected clade-specific protection was observed in several 

lethal challenge models.  

 

PLY is a cytotoxic, pore-forming antigen that is conserved across all pneumococcal strains 

and also shares a high degree of sequence similarity with cytolysins from other bacterial 

species. [13, 38, 63, 249-263, 277-283] The multiple roles during pneumococcal infection based on its toxic 
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nature –  e.g. the acceleration of bacterial transmission by the induction of tissue-damage and 

the inhibition of the proliferation of host immune cells [50, 63-64, 289-293] – and its manifold functions 

as an immunologic agonist – e.g. recognition and induction of inflammatory responses or 

interference with opsonophagocytosis [37-56, 63, 300, 322-323] – emphasize the potential of anti-PLY 

mAbs in adjunctive therapies. [284, 301, 313, 323, 338-340] 

Passive immunization studies with antibodies against PLY and PLD showed intermediate 

levels of protection only against i.p. challenge with a serotype 6B strain (PJ1324). In all other 

studies using different strains and challenge routes no significant and consistent protection was 

observed with anti-PLY and anti-PLD sera.  

Based on these findings and since it is expected that PLY-specific antibodies act primarily 

via interference with the inflammatory responses, the inflammatory IL-6 response – in pre-

immune sera and sera obtained 24 h post i.p. challenge of mice challenged with the strain A66.1 

– was determined in ELISA. A statistically significant (p<0.001) increase of IL-6 levels in all 

groups – except in the PspA positive control group – was observed 24 h post challenge. 

Comparison to the mock-immunized PBS-control group revealed that all groups – except the 

one receiving anti-PLY serum (CGI/LST3742-group N°4) – had a significantly reduced IL-6 

response. The inhibition of the inflammatory IL-6 immune-response in the group immunized 

with the PspA-construct also correlated to full protection of mice from lethal pneumococcal 

infection. This correlation was also seen for the groups immunized with a PLY-specific mAb 

and polyclonal anti-PLD antibodies. To obtain a more detailed picture of the induced cytokine-

response nonetheless would require a multiplex cytokine-profile. Thus in addition to the IL-6-

response also the determination and correlation of other inflammatory chemokines and 

cytokines such as macrophage inflammatory protein 2, IFN-γ, IL-5, IL-10, IL-12, IL13, monocyte 

chemoattractant protein 1/JE and TNF-α, as described for other mAb efficacy-screenings in the 

literature [408-412], might be necessary and useful in the future.  

Taken together it is concluded that, independent of the route of challenge and 

pneumococcal strain, the generated polyclonal antibodies against PLY, PLD and PLYΔD4 do 

not entail full protection against lethal challenge in the given settings. 

Lead mAbs against PLY were aimed to be primarily selected on their efficacy in cell-based 

functional in vitro assays prior to in vivo studies for their protective and anti-inflammatory 

functionality. For this purpose two assays – a Hemolysis-Inhibition Assay and an hTLR4-

Reporter Assay – were successfully setup and optimized for PLY-specific mouse mAbs and for 
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polyclonal mouse IgGs, generated against different PLY constructs and purified in the course of 

this project.  

Both assays were shown to work robust and yielded reproducible results. The Hemolysis-

Inhibition Assay revealed a significantly higher activity of purified polyclonal IgGs, compared 

to the mouse mAb 1F11. In contrast the results obtained for the mAb 1F11 suggest a stronger 

inhibitory potential for the hTLR4-activation than the polyclonal antibodies. The hTLR4-

Reporter Assay further indicated that both – purified polyclonal IgGs and the commercial mAb 

1F11 – inhibit the reporter-activation by PLY more powerful than the activation by PLD. This 

can be deduced from the fact that both antibodies were generated against the toxin and not the 

toxoid, hence possess a higher specificity against PLY. 

 

Since human mAbs against PLY are aimed to be generated with the “Sindbis Virus Based 

Mammalian Cell Surface Display” in the future, the staining-conditions for eukaryotic cells were 

optimized in order to allow subsequent FACS-based screenings of human memory B-cells. As 

the use of the mutant toxoids PLD and PLYΔD4 is limited by the loss of essential structural 

features as well as patent-protections thereof, the sorting conditions for the wild-type toxin 

were optimized by interfering with the specific binding of PLY to the cholesterol containing 

membranes of eukaryotic cells. The most promising results were obtained when coupling PLY 

to amine-modified FluoSpheres® in order to inhibit the pore-forming and cell-binding ability of 

the antigen. 

Although the bead-based blocking approach showed the most promising results, it was 

concluded that further optimizations of the assay parameters such as centrifugation-conditions, 

cell treatment, etc. will be required in order to obtain optimal conditions for the sorting of 

human memory B-cells in the future. 

 

Because of the need of finding suitable sources for hPBMC-isolation and subsequent 

memory B-cell sorting – which is the basis of the generation of human mAbs by the “Sindbis 

Virus Based Mammalian Cell Surface Display” – sera from thirty-five healthy human blood-donors 

were screened for their antigen-specific antibody-titers against different PLY- and PspA-

constructs. Summarizing several high-titer donors were identified for each of the constructs 

tested, which suggests potential sources for the prospective isolation of antigen-specific human 

memory B-cells. 
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Concluding, the differences that arose for all in vivo efficacy tests of polyclonal anti-PspA 

and anti-PLY antibodies suggest that more in-depth in vitro assays such as OPK would be 

required to compare the differences in the hyperimmune-serum batches. Furthermore future 

experiments should be set-up using a larger number of mice per group to strengthen the 

statistic read-out.  

In addition to this it will be essential to test higher immunization doses for all of the 

hyperimmune sera in mouse experiments, as the applied amount of approximately 100 µg of 

total IgG per 23 g body-weight just represents a screening dose, which might significantly differ 

from the dose used in therapeutic settings. This is exemplified by the only FDA-approved anti-

infective mAb (Palivizumab, brand-name Synagis®, MedImmune) that targets the respiratory 

syncytial virus (RSV) and is administered at doses of up to 15 mg per kilogram body-weight in 

humans, which reflects approximately 345 µg mAb per 23 g body-weight in mice. [413]  

 

In conclusion, this work demonstrates the successful expression, purification and in-depth 

in vitro and in vivo characterization of several constructs of the pneumococcal target antigens 

PspA and PLY and polyclonal mouse antibodies generated against each. For the third target 

antigen – LTA, which was shown to be difficult to be isolated and purified – several 

qualification and quantification approaches were accomplished and optimized. The 

foundations for the prospective generation of human mAbs – targeting different constructs of 

PspA and PLY – were successfully laid by identifying potential human blood-donors for the 

isolation of antigen-specific memory B-cells and by the optimization of the sorting-conditions 

for PLY in the course of this project. Two functional cell-based assays were effectively setup and 

optimized and are thus ready to be used for the in-depth characterization and primary 

screening for the functionality of human mAbs to be generated in the future. 
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A-1 TABLE OF ABBREVIATIONS 

 

Ab antibody 

ABTS 2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid 

BSA bovine serum albumin 

CD(14) cluster of differentiation (14) 

cfu colony forming unit 

dH2O distilled/ultrapure water 

DMEM-medium Dulbecco's modified Eagle's medium 

DMSO dimethyl sulfoxide 

DPBS Dulbecco’s phosphate buffered saline 

DTT dithiothreitol 

EDTA ethylenediaminetetraacetic acid 

ELISA enzyme-linked immunosorbant assay 

Fab antigen-binding fragment of an antibody 

FACS fluorescence activated cell sorting 

Fc crystallizable fragment of an antibody 

FCS fetal calf serum 

FL full-length 

GAS group A streptococcus, Streptococcus pyogenes 

gDNA genomic DNA 

HBSS Hank's Buffered Salt Solution 

HEK293 cells human embryonic kidney 293 cells 

HI (-serum) hyperimmune (-serum) 

HIC hydrophobic interaction chromatography 

His-tag histidine-tag 

HL-60 cell(s) human promyelocytic leukemia cell(s) 

hPBMC(s) human peripheral blood mononuclear cell(s) 

HPH high-pressure homogenization 

hRBC(s) human red blood cell(s) 

HRP horse-reddish peroxidase 
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HU hemolytic unit 

IFN-γ interferon-γ 

Ig (G) immunoglobulin (G) 

IL (-6) interleukin (-6) 

IMAC immobilized metal ion affinity chromatography 

i.n.  intranasal 

i.p. intraperitoneal 

IPTG isopropyl β-D-thiogalacto-pyranoside 

i.v. intravenous 

LB-medium Luria-Bertani medium 

LPS lipopolysaccharide 

LTA lipoteichoic acid 

mAb monoclonal antibody 

MHC major histocompatibility complex 

MWCO molecular weight cut-off 

MyD88 myeloid differentiation primary response gene (88) 

NCBI National Center for Biotechnology Information 

OD optical density 

o/n over night 

OPK opsonophagocytic killing 

PAGE polyacrylamide gel electrophoresis 

PAMP pathogen associated molecular pattern 

PBS phosphate buffered saline 

PBS-T phosphate buffered saline with 0.1 % TweenTM-20 

PCR polymerase chain reaction 

PLY pneumolysin 

PMNL(s) polymorphonuclear leukocyte(s) 

PR (-region) proline rich (-region) 

PspA pneumococcal surface protein A 

RPMI 1640-medium Rosswell Park Memorial Institute 1640-medium 

RT room temperature 

s.c. subcutaneous 
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scFV single-chain variable fragment 

SDS sodium dodecyl sulfate 

TAE-buffer Tris-acetate-EDTA buffer 

Taq polymerase polymerase from Thermus aquaticus 

Th1/2/17 T-helper cell type 1, 2 or 17 

THB Todd Hewitt Broth 

THY Todd Hewitt Broth with 0.5 % yeast extract 

TLR toll like receptor 

WTA wall teichoic acid 
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A-2 PRIMER SEQUENCES 

Supplementary Table 1: Overview of all Primers Used 
 
 

Primer ID Specification 5‘-Sequence-3‘ Orientation 

102 
pET 16b  
T7 promoter, in MCS 

TAATACGACTCACTATAGGG S 

103 
pET 16b  
T7 terminator, in MCS 

GCTAGTTATTGCTCAGCGG AS 

210-8769 Ply_wt/pet28b+ ATATATCCATGGCAAATAAAGCAGTAAATGACTTTATACTAG S 

210-8770 Ply_wt/pet28b+ ATATATCTCGAGGTCATTTTCTACCTTATCTTCTACCTGAGGATAG AS 

210-8771 Ply_mut/pet28b+ CATACTGCATTCTTGGGACATTATTGAC S 

210-8772 Ply_mut/pet28b+ GTCAATAATGTCCCAAGAATGCAGTATG AS 

210-8773 PspA_B_T4 ATATATCCATGGCTTTAGCAAAAAAACAAACAGAACTTGAAAAAC S 

210-8774 PspA_B_T4 ATATATCTCGAGTTCTTCTTCATCTCCATCAGGGCC AS 

210-8775 PspA_B_WU2 ATATATCCATGGCTCTCAAAGAGATTGATGAGTCTGAATCAG S 

210-8776 PspA_B_WU2 ATATATCTCGAGTTCTGGCTCATTAACTGCTTTCTTAAGG AS 

210-8779 PspA_FL_T4 ATATATCCATGGAAGAATCTCCACAAGTTGTCGAAAAATC S 

210-8780 PspA_FL_T4 ATATATCTCGAGAACCCATTCACCATTGGCATTGAC AS 

210-8781 PspA_FL_WU2 ATATATCCATGGAAGAATCTCCCGTAGCTAGTCAGTCTAAAGC S 

210-8782 PspA_FL_WU2 ATATATCTCGAGAACCCATTCACCGTTTTCATTGAC AS 

N.B.: S = sense; AS = anti-sense 

 

A-3 PROTEIN SEQUENCE ALIGNMENTS OF PspA FROM SEVERAL PNEUMOCOCCAL STRAINS 

 

Supplementary Figure 1: Sequence Alignments of the B-Region of PspA. The alignments were calculated 
using all protein-sequence information published for PspA from different S. pneumoniae strains by the NCBI, which 
are represented by the cladogram to the left of the alignments. The B-regions of PspA from TIGR4 (upper green box) 
and WU2 (lower green box) are indicated within the red boxes. (Sequence alignments by Wolfgang Schüler, 
Intercell AG) 
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Supplementary Figure 2: Sequence Alignments of the Pro-Rich Region of PspA (aa 1–180). The alignments 
were calculated using all protein-sequence information published for PspA from different S. pneumoniae strains by 
the NCBI, which are represented by the cladogram to the left of the alignments. The proline-rich regions of PspA 
from TIGR4 (upper green box) and WU2 (lower green box) are indicated. (Sequence alignments by Wolfgang 
Schüler, Intercell AG) 

 

 

Supplementary Figure 3: Sequence Alignments of the Pro-Rich Region of PspA (aa 180-335). The 
alignments were calculated using all protein-sequence information published for PspA from different S. pneumoniae 
strains by the NCBI, which are represented by the cladogram to the left of the alignments. The proline-rich regions 
of PspA from TIGR4 (upper green box) and WU2 (lower green box) are indicated. The red box highlights the non-
proline block within the proline-rich region of PspA from WU2. (Sequence alignments by Wolfgang Schüler, 
Intercell AG) 
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A-4 SERUM-SCREENINGS OF HUMAN BLOOD DONORS  

 

ELISA-Results for all Donors Screened: 

The tables in this section (Supplementary Table 2 to 

Supplementary Table 8) represent the results (OD405) obtained for all human donor sera 

screened in duplicates for the stated antigens. 

 

Supplementary Table 2: Results for the Human Serum-Titer Screening (Donor-N° 1 to 5) 
 

Antigen Dilution average stdev average stdev average stdev average stdev average stdev

200 0.514 0.013 1.108 0.034 0.421 0.067 0.962 0.023 0.924 0.001
1000 0.145 0.002 0.850 0.108 0.110 0.005 0.350 0.018 0.357 0.012
5000 0.038 0.013 0.327 0.071 0.025 0.004 0.110 0.019 0.090 0.002

25000 0.005 0.001 0.086 0.018 0.002 0.000 0.031 0.008 0.015 0.004

200 0.800 0.008 1.196 0.035 0.720 0.078 1.101 0.002 1.114 0.004
1000 0.235 0.006 1.116 0.019 0.214 0.026 0.537 0.003 0.588 0.017
5000 0.052 0.003 0.557 0.073 0.044 0.004 0.132 0.001 0.147 0.004

25000 0.008 0.004 0.208 0.052 0.007 0.002 0.029 0.003 0.027 0.000

200 0.486 0.083 1.004 0.037 0.653 0.062 0.772 0.026 0.796 0.027
1000 0.123 0.013 0.279 0.068 0.131 0.018 0.202 0.001 0.204 0.015
5000 0.017 0.001 0.031 0.008 0.018 0.002 0.036 0.000 0.035 0.002

25000 -0.004 0.005 0.000 0.009 -0.006 0.002 0.004 0.003 -0.003 0.001

200 0.624 0.039 0.889 0.065 0.999 0.040 0.936 0.011 1.031 0.009
1000 0.135 0.006 0.266 0.045 0.322 0.051 0.281 0.006 0.355 0.004
5000 0.020 0.000 0.053 0.006 0.062 0.018 0.050 0.000 0.063 0.002

25000 -0.003 0.003 0.009 0.001 0.002 0.005 0.008 0.004 0.005 0.001

200 0.867 0.081 1.111 0.114 0.942 0.013 1.135 0.109 0.980 0.000
1000 0.234 0.011 0.367 0.069 0.273 0.023 0.673 0.032 0.313 0.019
5000 0.042 0.001 0.068 0.016 0.051 0.008 0.174 0.018 0.062 0.004

25000 0.006 0.003 0.009 0.004 0.005 0.003 0.032 0.001 0.007 0.000

200 0.992 0.009 1.202 0.034 0.819 0.073 1.269 0.014 1.092 0.021
1000 0.275 0.013 0.505 0.125 0.201 0.011 0.639 0.023 0.507 0.036
5000 0.050 0.005 0.108 0.037 0.208 0.013 0.193 0.007 0.246 0.036

25000 0.032 0.037 0.020 0.002 0.136 0.019 0.050 0.047 0.153 0.013

200 0.888 0.026 1.012 0.033 0.833 0.038 1.165 0.013 0.900 0.058
1000 0.225 0.006 0.320 0.050 0.214 0.010 0.644 0.025 0.253 0.021
5000 0.050 0.005 0.063 0.008 0.044 0.006 0.167 0.013 0.056 0.008

25000 0.005 0.004 0.015 0.004 0.003 0.001 0.043 0.004 0.004 0.001

200 1.009 0.062 1.223 0.119 0.754 0.107 1.285 0.003 1.149 0.033
1000 0.343 0.073 0.598 0.042 0.344 0.010 0.590 0.016 0.640 0.042
5000 0.200 0.060 0.205 0.035 0.213 0.006 0.298 0.003 0.254 0.045

25000 0.107 0.139 0.019 0.005 0.172 0.009 0.020 0.003 0.095 0.079

PspA_Pro+PartB_T4

Pro+PartB_WU2

PspA_Pro_T4

PapA_Pro_WU2

Donor-N° 1 Donor-N° 2

Ply_mut

Ply_wt

PspA_B_T4

PspA_B_WU2

Donor-N° 3 Donor-N° 4 Donor-N° 5

 

Color-Code

OD405

>1

0.5-1

<0.5  
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Supplementary Table 3: Results for the Human Serum-Titer Screening (Donor-N° 6 to 10) 
 

Antigen Dilution average stdev average stdev average stdev average stdev average stdev

200 0.676 0.002 0.538 0.001 0.512 0.071 0.962 0.020 0.487 0.051
1000 0.215 0.021 0.183 0.018 0.146 0.027 0.404 0.005 0.137 0.022
5000 0.047 0.002 0.057 0.003 0.021 0.014 0.127 0.035 0.027 0.002

25000 0.010 0.001 0.012 0.001 0.016 0.004 0.019 0.001 0.002 0.002

200 1.048 0.007 0.777 0.006 0.951 0.072 1.162 0.030 0.759 0.049
1000 0.457 0.015 0.263 0.007 0.323 0.058 0.841 0.028 0.226 0.030
5000 0.101 0.013 0.065 0.001 0.065 0.009 0.242 0.005 0.047 0.006

25000 0.023 0.000 0.012 0.000 0.019 0.002 0.053 0.001 0.009 0.001

200 0.356 0.012 0.941 0.002 0.316 0.056 0.178 0.020 0.984 0.069
1000 0.056 0.004 0.269 0.008 0.055 0.007 0.025 0.000 0.271 0.043
5000 -0.001 0.001 0.047 0.001 0.004 0.001 -0.003 0.001 0.048 0.011

25000 -0.006 0.000 0.000 0.001 -0.004 0.001 -0.011 0.000 0.004 0.004

200 0.964 0.016 1.136 0.019 0.454 0.084 0.969 0.043 0.228 0.033
1000 0.292 0.005 0.582 0.018 0.078 0.016 0.271 0.001 0.042 0.008
5000 0.060 0.012 0.127 0.003 0.005 0.003 0.046 0.001 0.001 0.004

25000 0.007 0.000 0.020 0.002 0.001 0.001 0.000 0.001 -0.002 0.004

200 0.843 0.004 1.085 0.012 1.058 0.054 0.928 0.001 0.902 0.045
1000 0.230 0.010 0.408 0.002 0.406 0.056 0.256 0.002 0.245 0.031
5000 0.042 0.004 0.085 0.001 0.084 0.014 0.043 0.001 0.051 0.003

25000 0.007 0.001 0.012 0.001 0.020 0.006 0.003 0.000 0.254 0.308

200 1.176 0.044 1.135 0.040 0.748 0.114 1.116 0.035 1.001 0.036
1000 0.463 0.024 0.767 0.040 0.278 0.014 0.553 0.007 0.363 0.012
5000 0.143 0.032 0.308 0.018 0.154 0.012 0.210 0.037 0.144 0.006

25000 0.044 0.003 0.162 0.023 0.010 0.001 0.151 0.002 0.007 0.006

200 0.861 0.009 1.121 0.004 0.978 0.079 0.951 0.016 0.793 0.076
1000 0.238 0.005 0.387 0.001 0.267 0.045 0.243 0.001 0.193 0.030
5000 0.054 0.011 0.097 0.003 0.050 0.004 0.066 0.028 0.042 0.002

25000 0.013 0.005 0.017 0.004 0.013 0.008 0.005 0.002 0.008 0.000

200 1.178 0.004 1.167 0.039 0.669 0.097 1.081 0.002 0.995 0.042
1000 0.505 0.028 0.972 0.115 0.295 0.018 0.533 0.056 0.377 0.069
5000 0.265 0.006 0.358 0.010 0.203 0.040 0.224 0.009 0.186 0.097

25000 0.021 0.001 0.165 0.009 0.009 0.004 0.138 0.008 0.007 0.002

Ply_wt

Ply_mut

PspA_B_T4

PspA_B_WU2

PspA_Pro+PartB_T4

Pro+PartB_WU2

PspA_Pro_T4

PapA_Pro_WU2

Donor-N° 10Donor-N° 6 Donor-N° 7 Donor-N° 8 Donor-N° 9

 

Color-Code

OD405

>1

0.5-1

<0.5  
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Supplementary Table 4: Results for the Human Serum-Titer Screening (Donor-N° 11 to 15) 
 

Antigen Dilution average stdev average stdev average stdev average stdev average stdev

200 0.784 0.024 1.263 0.042 0.945 0.035 1.129 0.002 1.139 0.026
1000 0.225 0.021 1.117 0.016 0.356 0.002 0.731 0.138 0.937 0.014
5000 0.066 0.010 0.522 0.006 0.090 0.001 0.200 0.028 0.337 0.002

25000 0.009 0.004 0.127 0.005 0.032 0.002 0.038 0.005 0.095 0.008

200 1.043 0.007 1.175 0.028 0.897 0.030 1.070 0.003 1.164 0.021
1000 0.420 0.016 1.089 0.004 0.337 0.011 0.553 0.004 0.911 0.042
5000 0.097 0.000 0.523 0.028 0.078 0.004 0.142 0.004 0.364 0.001

25000 0.019 0.004 0.124 0.006 0.021 0.002 0.027 0.003 0.097 0.000

200 1.023 0.008 0.778 0.037 0.810 0.006 1.140 0.006 0.218 0.012
1000 0.257 0.013 0.178 0.008 0.235 0.022 0.669 0.019 0.065 0.001
5000 0.053 0.001 0.033 0.013 0.055 0.033 0.193 0.039 0.007 0.001

25000 0.003 0.002 -0.011 0.004 0.005 0.019 0.045 0.016 -0.012 0.001

200 0.880 0.074 1.147 0.055 0.915 0.045 1.027 0.006 0.515 0.023
1000 0.237 0.015 0.660 0.041 0.280 0.011 0.353 0.018 0.136 0.013
5000 0.067 0.016 0.228 0.052 0.057 0.003 0.139 0.094 0.033 0.016

25000 0.003 0.005 0.077 0.032 0.022 0.013 0.011 0.003 0.024 0.029

200 1.207 0.011 1.252 0.012 1.201 0.153 1.191 0.003 1.007 0.013
1000 0.654 0.048 1.245 0.170 0.568 0.139 0.889 0.003 0.462 0.018
5000 0.145 0.023 0.686 0.178 0.174 0.112 0.291 0.018 0.144 0.016

25000 0.035 0.019 0.289 0.210 0.087 0.078 0.097 0.058 0.088 0.025

200 1.220 0.011 1.166 0.017 1.279 0.144 1.131 0.004 0.794 0.039
1000 0.808 0.047 1.040 0.006 0.571 0.151 0.506 0.026 0.224 0.013
5000 0.194 0.026 0.340 0.001 0.095 0.016 0.119 0.017 0.042 0.001

25000 0.043 0.002 0.225 0.030 0.021 0.005 0.029 0.004 0.009 0.001

200 1.163 0.017 1.190 0.107 0.864 0.063 1.130 0.029 0.819 0.018
1000 0.589 0.036 1.043 0.117 0.252 0.001 0.753 0.017 0.254 0.016
5000 0.137 0.015 0.485 0.054 0.046 0.002 0.232 0.007 0.056 0.006

25000 0.032 0.004 0.130 0.024 0.033 0.018 0.053 0.001 0.021 0.001

200 1.179 0.057 1.233 0.007 0.998 0.018 1.049 0.011 0.724 0.019
1000 0.813 0.030 0.904 0.021 0.345 0.021 0.400 0.028 0.196 0.007
5000 0.260 0.071 0.247 0.016 0.081 0.001 0.110 0.014 0.046 0.003

25000 0.114 0.098 0.052 0.005 0.021 0.003 0.021 0.005 0.017 0.006

PspA_B_T4

PspA_B_WU2

PspA_Pro+PartB_T4

Pro+PartB_WU2
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Supplementary Table 5: Results for the Human Serum-Titer Screening (Donor-N° 16 to 20) 
 

Antigen Dilution average stdev average stdev average stdev average stdev average stdev

200 1.020 0.009 1.209 0.012 1.019 0.003 1.136 0.042 0.963 0.076
1000 0.419 0.030 1.073 0.018 0.554 0.003 0.717 0.033 0.426 0.059
5000 0.110 0.001 0.497 0.002 0.159 0.003 0.224 0.018 0.118 0.002

25000 0.020 0.002 0.127 0.002 0.034 0.001 0.069 0.001 0.024 0.000

200 1.055 0.003 1.184 0.013 1.069 0.015 1.118 0.073 1.125 0.049
1000 0.506 0.027 1.037 0.006 0.551 0.004 0.655 0.049 0.432 0.004
5000 0.126 0.001 0.242 0.330 0.142 0.003 0.188 0.016 0.102 0.003

25000 0.024 0.001 0.064 0.076 0.030 0.001 0.051 0.009 0.019 0.005

200 0.849 0.002 0.083 0.004 0.508 0.027 0.734 0.027 0.307 0.003
1000 0.207 0.008 0.019 0.005 0.112 0.001 0.220 0.016 0.066 0.003
5000 0.034 0.010 -0.016 0.001 0.021 0.013 0.056 0.006 0.007 0.004

25000 0.006 0.014 -0.021 0.000 -0.005 0.012 0.028 0.010 0.000 0.019

200 0.846 0.010 0.462 0.019 0.961 0.016 0.775 0.011 0.610 0.005
1000 0.248 0.008 0.139 0.009 0.297 0.016 0.255 0.013 0.146 0.004
5000 0.058 0.001 0.023 0.001 0.072 0.005 0.056 0.000 0.036 0.006

25000 0.027 0.004 0.002 0.002 0.024 0.011 0.013 0.003 0.008 0.002

200 0.898 0.019 1.074 0.006 1.030 0.206 1.111 0.047 1.179 0.005
1000 0.454 0.274 0.463 0.006 0.648 0.001 0.560 0.131 0.635 0.017
5000 0.067 0.017 0.120 0.008 0.121 0.093 0.146 0.029 0.171 0.023

25000 0.011 0.010 0.026 0.004 0.025 0.029 0.040 0.024 0.051 0.008

200 0.808 0.013 0.999 0.008 1.198 0.006 1.210 0.007 1.141 0.020
1000 0.143 0.006 0.368 0.005 0.680 0.028 0.906 0.011 0.428 0.030
5000 0.028 0.002 0.093 0.025 0.155 0.010 0.260 0.001 0.083 0.015

25000 0.001 0.006 0.031 0.004 0.041 0.006 0.069 0.003 0.014 0.002

200 0.757 0.022 1.019 0.053 1.130 0.004 1.120 0.039 0.993 0.014
1000 0.191 0.012 0.369 0.008 0.521 0.025 0.496 0.030 0.295 0.003
5000 0.079 0.034 0.077 0.001 0.134 0.011 0.113 0.008 0.062 0.001

25000 0.017 0.012 0.024 0.006 0.036 0.006 0.024 0.002 0.017 0.011

200 0.746 0.018 0.907 0.013 1.134 0.025 1.182 0.002 0.950 0.025
1000 0.155 0.001 0.298 0.006 0.512 0.031 0.721 0.005 0.227 0.011
5000 0.033 0.004 0.077 0.021 0.119 0.012 0.231 0.176 0.041 0.001

25000 0.004 0.003 0.066 0.057 0.023 0.001 0.134 0.170 0.006 0.001

PspA_Pro_T4

PapA_Pro_WU2

Ply_wt

Ply_mut

PspA_B_T4

PspA_B_WU2

PspA_Pro+PartB_T4
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Donor-N° 16 Donor-N° 20Donor-N° 17 Donor-N° 18 Donor-N° 19
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Supplementary Table 6: Results for the Human Serum-Titer Screening (Donor-N° 21 to 25) 
 

Antigen Dilution average stdev average stdev average stdev average stdev average stdev

200 1.149 0.021 0.782 0.256 0.844 0.039 0.627 0.238 1.139 0.025
1000 0.736 0.014 0.392 0.029 0.339 0.004 0.279 0.002 0.728 0.011
5000 0.233 0.012 0.124 0.010 0.090 0.001 0.082 0.004 0.221 0.005

25000 0.058 0.009 0.044 0.008 0.018 0.001 0.027 0.000 0.042 0.004

200 1.149 0.018 0.911 0.002 0.965 0.020 0.885 0.035 1.169 0.002
1000 0.735 0.001 0.372 0.066 0.361 0.021 0.328 0.003 0.710 0.004
5000 0.223 0.022 0.111 0.030 0.112 0.013 0.089 0.001 0.231 0.006

25000 0.057 0.006 0.028 0.008 0.016 0.004 0.023 0.001 0.043 0.004

200 0.586 0.030 0.659 0.057 0.602 0.031 0.690 0.238 0.487 0.005
1000 0.174 0.006 0.250 0.011 0.240 0.022 0.342 0.002 0.161 0.008
5000 0.042 0.006 0.086 0.008 0.075 0.020 0.145 0.004 0.047 0.008

25000 0.012 0.005 0.040 0.008 0.010 0.002 0.089 0.000 0.038 0.047

200 0.820 0.008 1.027 0.076 0.561 0.032 0.146 0.006 0.246 0.018
1000 0.249 0.011 0.434 0.032 0.164 0.007 0.049 0.011 0.066 0.002
5000 0.055 0.004 0.101 0.005 0.036 0.005 0.017 0.019 0.010 0.001

25000 0.011 0.008 0.023 0.004 0.005 0.001 -0.005 0.004 0.007 0.014

200 1.292 0.004 1.208 0.032 0.902 0.021 0.823 0.006 1.156 0.040
1000 1.093 0.040 0.670 0.015 0.400 0.004 0.309 0.003 0.707 0.009
5000 0.436 0.017 0.227 0.004 0.146 0.004 0.130 0.004 0.228 0.001

25000 0.152 0.001 0.104 0.003 0.083 0.004 0.086 0.008 0.100 0.001

200 1.195 0.021 1.088 0.016 0.645 0.037 0.776 0.023 1.097 0.004
1000 0.802 0.050 0.417 0.006 0.165 0.004 0.225 0.000 0.560 0.021
5000 0.230 0.006 0.085 0.002 0.037 0.001 0.042 0.004 0.134 0.004

25000 0.046 0.004 0.015 0.004 -0.001 0.004 -0.003 0.002 0.016 0.003

200 1.158 0.036 0.812 0.326 0.549 0.044 0.544 0.045 0.923 0.006
1000 0.833 0.026 0.415 0.016 0.192 0.003 0.142 0.001 0.430 0.010
5000 0.272 0.001 0.096 0.001 0.048 0.001 0.031 0.002 0.111 0.004

25000 0.063 0.008 0.024 0.001 0.010 0.001 0.007 0.000 0.021 0.001

200 1.058 0.055 1.079 0.029 0.397 0.003 0.786 0.013 0.689 0.004
1000 0.711 0.030 0.469 0.004 0.201 0.000 0.220 0.004 0.384 0.001
5000 0.199 0.003 0.089 0.004 0.034 0.001 0.035 0.004 0.086 0.004

25000 0.035 0.006 0.010 0.003 -0.009 0.001 -0.006 0.000 0.007 0.001

PspA_Pro+PartB_T4

Pro+PartB_WU2

PspA_Pro_T4

PapA_Pro_WU2

Ply_wt

Ply_mut
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Supplementary Table 7: Results for the Human Serum-Titer Screening (Donor-N° 26 to 30) 
 

Antigen Dilution average stdev average stdev average stdev average stdev average stdev

200 0.791 0.011 1.197 0.018 1.208 0.025 1.104 0.006 1.095 0.013
1000 0.291 0.003 0.890 0.022 1.076 0.011 0.588 0.006 0.498 0.016
5000 0.081 0.006 0.281 0.001 0.520 0.025 0.164 0.008 0.161 0.006

25000 0.026 0.011 0.059 0.004 0.135 0.008 0.028 0.002 0.036 0.000

200 0.806 0.003 1.185 0.021 1.195 0.008 1.136 0.004 1.105 0.018
1000 0.285 0.001 0.868 0.023 1.080 0.018 0.627 0.023 0.545 0.016
5000 0.086 0.010 0.281 0.003 0.567 0.041 0.187 0.016 0.152 0.002

25000 0.011 0.004 0.060 0.007 0.145 0.006 0.036 0.001 0.030 0.001

200 0.907 0.012 0.798 0.054 0.678 0.019 0.599 0.033 0.734 0.027
1000 0.272 0.008 0.290 0.004 0.173 0.002 0.198 0.002 0.220 0.016
5000 0.204 0.192 0.082 0.010 0.043 0.009 0.051 0.002 0.056 0.006

25000 0.012 0.005 0.019 0.006 0.001 0.000 0.015 0.017 0.028 0.010

200 0.670 0.000 0.528 0.019 0.775 0.008 0.890 0.024 0.560 0.008
1000 0.242 0.031 0.152 0.013 0.221 0.014 0.286 0.006 0.148 0.013
5000 0.059 0.012 0.029 0.002 0.057 0.007 0.064 0.007 0.040 0.010

25000 0.015 0.006 0.011 0.016 0.014 0.001 0.012 0.001 0.011 0.005

200 1.117 0.011 0.948 0.009 0.954 0.023 1.214 0.018 0.955 0.023
1000 0.455 0.001 0.393 0.011 0.332 0.006 0.837 0.004 0.352 0.006
5000 0.151 0.003 0.151 0.010 0.120 0.006 0.247 0.004 0.127 0.006

25000 0.075 0.001 0.077 0.005 0.066 0.002 0.092 0.006 0.068 0.001

200 0.837 0.021 0.822 0.027 0.820 0.000 1.168 0.005 0.907 0.023
1000 0.240 0.000 0.234 0.007 0.183 0.001 0.804 0.034 0.267 0.014
5000 0.047 0.008 0.043 0.003 0.026 0.003 0.235 0.010 0.060 0.020

25000 -0.005 0.002 -0.005 0.004 -0.010 0.001 0.041 0.006 -0.002 0.004

200 0.702 0.006 0.379 0.001 0.668 0.001 1.010 0.004 0.829 0.003
1000 0.187 0.008 0.134 0.004 0.172 0.016 0.570 0.021 0.256 0.012
5000 0.037 0.001 0.032 0.004 0.029 0.000 0.148 0.008 0.055 0.002

25000 0.009 0.001 0.005 0.000 0.006 0.000 0.030 0.003 0.013 0.000

200 0.673 0.004 0.388 0.001 0.746 0.033 0.919 0.007 0.836 0.010
1000 0.162 0.004 0.208 0.001 0.182 0.001 0.803 0.027 0.285 0.010
5000 0.041 0.020 0.053 0.005 0.021 0.003 0.245 0.016 0.071 0.001

25000 -0.010 0.000 -0.004 0.001 -0.009 0.001 0.055 0.003 -0.005 0.002

PspA_B_T4
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Supplementary Table 8: Results for the Human Serum-Titer Screening (Donor-N° 31 to 35) 
 

Antigen Dilution average stdev average stdev average stdev average stdev average stdev

200 1.168 0.030 1.217 0.013 1.202 0.060 0.876 0.053 1.112 0.105
1000 0.836 0.047 1.019 0.017 0.748 0.005 0.318 0.022 0.634 0.023
5000 0.306 0.005 0.398 0.018 0.233 0.017 0.096 0.006 0.186 0.011

25000 0.063 0.003 0.114 0.010 0.058 0.008 0.023 0.007 0.048 0.006

200 1.178 0.006 1.238 0.064 1.250 0.022 0.977 0.071 1.067 0.054
1000 0.870 0.016 1.105 0.062 0.929 0.033 0.395 0.013 0.845 0.011
5000 0.306 0.005 0.503 0.009 0.289 0.012 0.119 0.018 0.264 0.018

25000 0.067 0.001 0.130 0.004 0.076 0.008 0.016 0.002 0.075 0.030

200 1.072 0.033 0.445 0.045 0.982 0.028 0.427 0.001 0.543 0.009
1000 0.519 0.040 0.152 0.007 0.320 0.009 0.178 0.021 0.129 0.002
5000 0.234 0.091 0.047 0.011 0.066 0.000 0.073 0.021 0.023 0.000

25000 0.037 0.023 0.006 0.007 0.012 0.000 0.003 0.001 0.003 0.000

200 0.280 0.003 0.765 0.025 0.875 0.022 0.258 0.001 0.447 0.008
1000 0.073 0.004 0.308 0.025 0.262 0.004 0.055 0.002 0.115 0.004
5000 0.043 0.033 0.073 0.004 0.059 0.021 0.016 0.004 0.008 0.002

25000 0.009 0.000 0.019 0.006 0.004 0.005 0.005 0.013 -0.011 0.001

200 1.149 0.025 1.173 0.069 1.230 0.053 0.980 0.035 1.125 0.090
1000 0.731 0.020 0.734 0.035 1.014 0.005 0.453 0.007 0.552 0.004
5000 0.244 0.011 0.251 0.005 0.368 0.001 0.155 0.001 0.173 0.001

25000 0.087 0.001 0.095 0.004 0.128 0.001 0.071 0.000 0.079 0.002

200 0.988 0.012 1.190 0.080 1.186 0.083 1.134 0.025 1.091 0.032
1000 0.399 0.008 0.756 0.076 0.985 0.023 1.123 0.025 0.439 0.021
5000 0.084 0.005 0.207 0.024 0.318 0.024 0.665 0.054 0.091 0.011

25000 0.009 0.008 0.046 0.011 0.076 0.008 0.186 0.013 0.025 0.008

200 0.653 0.035 1.179 0.017 1.215 0.033 0.954 0.057 0.964 0.036
1000 0.323 0.004 0.708 0.008 0.902 0.041 0.365 0.000 0.376 0.018
5000 0.082 0.001 0.192 0.006 0.277 0.032 0.095 0.007 0.065 0.004

25000 0.018 0.001 0.026 0.000 0.046 0.007 0.001 0.002 -0.004 0.002

200 0.550 0.028 1.189 0.030 1.160 0.028 1.151 0.051 1.017 0.041
1000 0.358 0.006 0.749 0.026 0.863 0.087 1.135 0.027 0.362 0.019
5000 0.105 0.004 0.193 0.006 0.228 0.038 0.698 0.151 0.062 0.005

25000 0.014 0.011 0.035 0.005 0.043 0.010 0.116 0.006 0.000 0.001
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A-5 TITER-SCREENINGS OF MOUSE HYPERIMMUNE SERA 

 

Supplementary Table 9: Immunization Scheme for CGI/LST3742 and LST3885 
 

Immunization Group-N° Antigen 
Amount of Antigen 

per Injection 
[µg/mouse] 

Adjuvant 
N° of 

Surviving 
Mice 

1 PLY 10 CFA/IFA 5 

2 PLY 10 Alum 5 

3 PLY 50 CFA/IFA 5 

4 PLY 50 Alum 5 

5 PLD 50 Alum 5 

6 PspA_B_WU2 50 Alum 2 

7 PspA_Pro _WU2 50 Alum 5 

8 PspA_Pro+PartB _WU2 50 Alum 5 

9 PspA_FL_T4 50 Alum 5 

10 PspA_B_T4 50 Alum 5 

11 PspA_Pro_T4 50 Alum 5 

CGI/LST3742 

12 PspA_Pro+PartB_T4 50 Alum 5 

1 PLYΔD4 50 Alum 5 

2 PLD 50 Alum 5 

3 PspA_B_WU2 50 Alum 5 

4 PspA_Pro _WU2 50 Alum 3 

5 PspA_Pro+PartB _WU2 50 Alum 4 

6 PspA_FL_T4 50 Alum 5 

7 PspA_B_T4 50 Alum 5 

8 PspA_Pro_T4 50 Alum 5 

LST3885 

9 PspA_Pro+PartB_T4 50 Alum 4 

 

*

*** *

**
** *
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Supplementary Figure 4: EC50-Values for the Titer-Screening of all PLY-Groups. The results were 
statistically evaluated vs. pre-immune serum using a t-test (2-tailed, type 2) and the obtained values for 
p<0.001 (***), p<0.01 (**) and p<0.05 (*) are depicted. 



H– APPENDICES 

 A-14 

 

Pre
-S

er
um

Psp
A_B

_W
U2

Psp
A_P

ro
_W

U2

Psp
A_P

ro
+p

ar
tB

_W
U2

Psp
A_F

L_T
4

Psp
A_B

_T
4

Psp
A_P

ro
_T

4

Psp
A_P

ro
+p

ar
tB

_T
4

Psp
A_B

_W
U2

Psp
A_P

ro
_W

U2

Psp
A_P

ro
+p

ar
tB

_W
U2

Psp
A_F

L_T
4

Psp
A_B

_T
4

Psp
A_P

ro
_T

4

Psp
A_P

ro
+p

ar
tB

_T
4

1.0××××10 03

1.0××××10 04

1.0××××10 05

1.0××××10 06

E
C

50

**

*
*

***

** ** *** **
***

***

***

**

*

CGI/LST3742 LST3885

 

Supplementary Figure 5: EC50-Values for the Titer-Screening of all PspA-Groups. The results were 
statistically evaluated vs. pre-immune serum using a t-test (2-tailed, type 2) and the obtained values for 
p<0.001 (***), p<0.01 (**) and p<0.05 (*) are depicted. 
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Supplementary Figure 6: Statistical Comparison of Hyperimmune Serum Titers. The antibody-titers 
obtained by immunizing mice with the same constructs are compared for the experiments CGI/LST3742 and 
LST3885 by means of a t-test (2-tailed, type 2) and the obtained values for p<0.001 (***), p<0.01 (**) and p<0.05 (*) 
are depicted. 
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A-6 IN VIVO VIRULENCE OF DIFFERENT S. PNEUMONIAE STRAINS 

 

Supplementary Table 10: Overview of All Dose-Titrations with S. pneumoniae Strains 
 

 
 

  
Starting Bacterial Count 

[cfu] 

Experiment-N° 
S. pneumoniae 

Strain 
Route of 

Application 
Expected Real 

LST3869 D39 i.p. 1.00x106 1.01x106 

LST3898 PJ1324 (6B) i.v. 1.00x106 8.14x105 

LST3898 TIGR4 i.v. 1.00x106 1.58x106 

LST3898 D39 i.v. 1.00x105 7.24x104 

LST3898 WU2 i.v. 1.00x106 1.63x106 

 

A-7 SUMMARIZED DATA OF THE IN VIVO EFFICACY TESTING OF POLYCLONAL ANTIBODIES 

 

Experimental Setup 

 

Supplementary Table 11: Overview of All in vivo Efficacy Experiments with HI-Sera 
 

   
Starting Bacterial Count 

[cfu] 

Experiment-N° 
S. pneumoniae 

Strain 
Route of 

Application 
Expected Real 

LST3869 PJ1324 (6B) i.p. 1.0x104 3.0x104 

LST3872 PJ1324 (6B) i.p. 1.0x104 1.06x104 

LST3886 D39 i.p. 1.0x101 9.02x100 

LST3897 A66.1 i.n. 5.0x105 4.2x105 

LST3909 A66.1 i.n. 5.0x105 4.0x105 

LST3910 TIGR4 i.v. 5.0x103 6.0x103 

LST3911 WU2 i.v. 5.0x105 8.8x105 

 

Statistical Evaluation of Challenge Survival (Mantel-Cox) 

The tables in this section represent the calculated, statistical p-values (Log-rank 

(Mantel-Cox) test, using SE) in the course of challenge survival of each group tested against the 

mock-immunized PBS control-group used in each experiment. All statistical calculations were 

carried out using GraphPad Prism®, Version 5.01. 
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Supplementary Table 12: Log-Rank (Mantel-Cox) Test for the in vivo Efficacy of Polyclonal Anti-PspA 

Antibodies 
 

Log-rank (Mantel-Cox) Test, p-value  
vs. PBS Group  

 

Immunization with  

Serum vs. 
LST3869 LST3872 LST3886 LST3897 LST3909 LST3910 LST3911 

mouse pre-immune (neg. cntrl.) 0.6262 0.3173 1.0000 1.0000 0.5485 0.5258 0.5308 

PspA (rabbit) (pos. cntrl.) 0.0017 0.0023 n.d. 0.0016 0.0023 0.7955 0.0126 

PspA_FL_T4 0.0017 0.0023 0.3173 1.0000 0.5127 0.5571 0.5308 

PspA_B_T4 0.0017 0.0023 1.0000 0.2207 0.8527 0.4477 0.9141 

PspA_Pro+PartB_T4 0.0017 0.0023 0.3173 0.3532 0.0978 0.1729 0.1336 

PspA_Pro_T4 0.2289 0.0023 0.3173 0.0016 0.2055 0.4473 0.6015 

PspA_B_WU2 0.1151 0.0993 1.0000 0.0659 0.0023 0.1597 0.9141 

PspA_Pro+PartB_WU2 0.2666 0.0993 0.1336 0.1762 0.1573 0.2845 0.0126 

PspA_Pro_WU2 0.1151 0.3518 1.0000 0.3532 0.0179 0.3255 0.0126 

n.d.. … serum was not used in this experiment 

 

 

Supplementary Table 13: Log-Rank (Mantel-Cox) Test for the in vivo Efficacy of Polyclonal Anti-PLY 

Antibodies 
 

Log-rank (Mantel-Cox) Test, p-value  
vs. PBS Group  

 

Immunization with  

Serum vs. 
LST3869 LST3872 LST3886 LST3897 LST3909 LST3910 LST3911 

mouse pre-immune (neg. cntrl.) 0.6262 0.3173 1.0000 1.0000 0.5485 0.5258 0.5308 

PspA (rabbit) (pos. cntrl.) 0.0017 0.0023 n.d. 0.0016 0.0023 0.7955 0.0126 

mAb 1F11  (SantaCruz) n.d. 0.0179 n.d. n.d. n.d. n.d. n.d. 

PLY  (CGI/LST3742/N°1) n.d. 0.0993 1.0000 n.d. n.d. n.d. n.d. 

PLY  (CGI/LST3742/N°2) n.d. 0.0442 1.0000 n.d. n.d. n.d. n.d. 

PLY  (CGI/LST3742/N°3) 0.7914 0.0442 1.0000 0.3532 n.d. n.d. n.d . 

PLY  (CGI/LST3742/N°4) n.d. 0.0978 0.3173 n.d. 0.5127 0.2975 0.3707 

PLD  (CGI/LST3742/N°5) 0.0917 0.0528 1.0000 0.2207 n.d. n.d. n.d. 

PLYΔD4 (LST3885-N°1) n.d. n.d. n.d. 0.0719 0.3518 0.0889 0.0968 

PLD (LST3885-N°2) n.d. n.d. n.d. n.d. 0.8527 0.1729 0.1996 

n.d.. … serum was not used in this experiment 
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A-8 DATA READ-OUTS OF THE IL-6 ELISA 

The following tables (Supplementary Table 14 and Supplementary Table 15) represent the 

results of the IL-6 ELISA carried out in triplicates for determining differences in the cytokine 

response of naïve mice (pre) compared to mock-immunized mice and mice immunized with 

different hyperimmune-sera (d1). The quantification was facilitated by a standard-calibration 

using mouse IL-6 in different concentrations (data not shown).  

 

Supplementary Table 14: Results for the IL-6 ELISA 
 

Immunization 
Type 

of 
Serum 

Average 
Absorbance 
[λ=450 nm] 

Concentration 
of IL-6           
[pg/ml] 

Standard 
Deviation 

[pg/ml] 

pre 0.000 -86.12 -69.61 
PBS 

d1 2.058 11265.22 188.77 

pre 0.000 -84.28 -71.87 PspA_FL_T4; 
CGI/LST7342-N°9 d1 0.000 -86.12 -72.29 

pre -0.002 -95.31 -73.42 
mAb 1F11 

d1 0.565 3028.92 -16.65 

pre 0.001 -82.44 -70.88 PLY;         
CGI/LST7342-N°1 d1 1.422 7760.33 40.77 

pre 0.002 -71.41 -70.88 PLY;          
CGI/LST7342-N°1 d1 1.036 5629.08 14.57 

pre 0.001 -78.76 -70.88 PLY;          
CGI/LST7342-N°3 d1 1.070 5816.65 5.50 

pre -0.001 -91.64 -67.89 PLY;       
CGI/LST7342-N°4 d1 1.948 10660.23 -55.69 

pre -0.001 -89.80 -73.42 PLD;     
CGI/LST7342-N°5 d1 0.823 4455.89 -46.14 
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Supplementary Table 15: Results for the IL-6 ELISA and Correlation to Subsequent Challenge Survival. 

The computed fold-changes including the statistical comparisons carried out for the groups are illustrated.  
 

 

 

 

Immunization with 

Level of 
IL-6 
(24 h 

[pg/ml] 

Fold-
Increase 
vs. Pre-
Serum 

t-Test 
p-Value 
for Fold-
Increase 
vs. Pre-
Serum 

Fold-
Decrease 
vs. PBS-
Group 

t-Test 
p-Value 
for Fold-
Decrease 
vs. PBS-
Group 

Challenge 
Survival 
(Day 15) 

[%] 

PBS 11265.22 130.8 3.7E-04   0 

PspA_FL_T4; 
CGI/LST3742-N°9 

-86.1191 1.0 2.1E-01 130.8 3.9E-04 100 

mAb 1F11 (SantaCruz) 3028.924 31.8 2.5E-04 3.7 8.7E-04 40 

PLY; CGI/LST3742-N°1 7760.332 94.1 1.5E-04 1.5 2.8E-03 40 

PLY; CGI/LST3742-N°2 5629.084 78.8 1.7E-04 2.0 2.7E-03 0 

PLY, CGI/LST3742-N°3 5816.648 73.9 1.3E-04 1.9 2.5E-03 20 

PLY; CGI/LST3742-N°4 10660.23 116.3 3.3E-06 1.1 1.1E-01 20 

PLD; CGI/LST3742-N°5 4455.886 49.6 2.7E-05 2.5 1.2E-03 40 
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Abstract 
 

Streptococcus pneumoniae is a common human pathogen that causes a variety of life-

threatening invasive diseases such as pneumonia, bacteremia and meningitis. Despite the 

availability of licensed vaccines and antibiotic treatments, morbidity and mortality attributed to 

this bacterium remain significant in developing and developed countries. Due to increasing 

antibiotic resistance and limited efficacy of existing vaccines in at-risk populations, there is a 

need for new treatment strategies such as passive immunotherapy using human monoclonal 

antibodies (mAbs).  

In this study, three conserved antigens of S. pneumoniae – lipoteichoic acid (LTA), 

pneumococcal surface protein A (PspA) and pneumolysin (PLY) – were characterized for their 

suitability as targets for a mAb-based anti-infective therapy. 

Although isolation and purification procedures could be optimized for LTA from 

Streptococcus pyogenes, native LTA could not be extracted from S. pneumoniae in sufficient 

quantity and quality, thus limiting more in-depth studies of this antigen. 

Recombinant full-length PspA and PLY as well as domains thereof were expressed, 

purified and subsequently proven to be highly immunogenic in naïve C3H/HeN mice. These 

antisera were characterized in-depth in vitro: in surface staining and in ELISA, antibodies were 

shown to recognize PspA in a clade-specific manner. Polyclonal antibodies against Family 1 

PspA also reacted with other Proline-rich cell-surface proteins – presumably PspC – but not 

with Family 2 PspA.  

Consequently these antisera were tested in vivo by passive transfer and subsequent lethal 

challenge with different S. pneumoniae strains in mice. The results correlated with surface 

staining data: anti-PspA hyperimmune sera were only effective against pneumococci expressing 

homologous PspA but not against those with a heterologous variant. Anti-PLY sera were not 

fully protective although conferring prolonged survival. Interestingly the observed protection 

correlated with the level of inflammatory IL-6, induced in mice.  

Two in vitro assays exploiting the function of PLY were set up to allow a detailed 

characterization of selected antibodies: a Hemolysis-Inhibition Assay and an hTLR4-Reporter 

Assay. PLY-specific murine polyclonal and monoclonal antibodies reduced the hemolytic 

activity of PLY on erythrocytes and interfered with the activation of TLR4 through PLY. 
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Since human mAbs against PLY will be generated from B-cells based on the “Sindbis Virus 

Based Mammalian Cell Surface Display” technology, healthy human donors were identified based 

on their antibody titers in ELISA. In addition PMBC staining conditions that are required for the 

selection of antigen-specific memory B cells were optimized. 

In conclusion, a deeper insight into the mode of action of PspA- and PLY-specific 

antibodies could be gained with this work and analytical methods that are required for the 

selection and validation of human mAbs were developed. This way a basis for the development 

of a mAb-based therapy for the prevention and treatment of life-threatening pneumococcal 

diseases was established. 

  

Keywords: Streptococcus pneumoniae, monoclonal antibodies, LTA, PLY, PspA 
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Kurzfassung 
 

Streptococcus pneumoniae ist ein weitverbreiteter Erreger verschiedenster 

lebensbedrohlicher Krankheiten wie Pneumonien, Bakteriämien oder Meningitis. Obgleich 

lizensierte Impfstoffe und Antibiotika zur Verfügung stehen, bleibt die Morbidität und 

Mortalität, nicht nur in Entwicklungsländern, sondern auch in Industrieländern auf einem 

hohen Niveau. Aufgrund zunehmender Antibiotikaresistenzen und der suboptimalen 

Wirksamkeit verfügbarer Impfstoffe in Risikogruppen, steigt der Bedarf für neue Therapien, 

wie beispielsweise einer passiven Immunisierung mit monoklonalen Antikörpern.  

In dieser Arbeit wurden drei konservierte Antigene von S. pneumoniae – Lipoteichonsäure 

(LTA), pneumococcal surface protein A (PspA) und Pneumolysin (PLY) – auf ihre Eignung als 

Zielmoleküle für die Entwicklung einer anti-infektiösen Antikörper-Therapie hin untersucht.   

Obwohl die Isolierung und Reinigung nativer LTA für den Erreger Streptococcus pyogenes 

erfolgreich optimiert wurde, konnte LTA nicht in ausreichender Menge und Reinheit aus 

S. pneumoniae gewonnen und somit keine weiterführenden Studien mit diesem Antigen 

durchgeführt werden.  

Verschiedenste Konstrukte von PspA und PLY wurden rekombinant exprimiert, gereinigt 

und nachfolgend deren immunogene Wirkung in naïven C3H/HeN Mäusen demonstriert. Die 

gewonnenen Antiseren wurden in Folge genauestens in vitro analysiert. Oberflächenfärbungen 

lebender Pneumokokken zeigten, dass PspA spezifische Antikörper nicht alle PspA-Varianten 

detektieren konnten, sondern nur solche des selben PspA-Typs. Polyklonale Antikörper gegen 

Typ 1 PspA reagierten auch mit anderen Prolin-reichen Oberflächenproteinen, vermutlich 

PspC, jedoch nicht mit PspA Typ 2.  

Des weiteren wurden die generierten Antiseren in zuvor etablierten Mausmodellen durch 

passiven Transfer und nachfolgeneder letaler Infektion mit verschiedenen S. pneumoniae 

Stämmen auf ihre Wirksamkeit getestet. Die Ergebnisse korrelierten mit den Daten der 

Oberflächenfärbung: Anti-PspA Hyperimmunseren induzierten eine Protektion gegen 

Pneumokokken mit homologen jedoch nicht heterologen PspA. Anti-PLY Seren hingegen 

konnten keine vollständig protektive Wirkung erzielen, bewirkten jedoch eine erhöhte 

Überlebensrate. Die beobachtete Protektion korrelierte mit der Stärke der durch die Infektion 

induzierte inflammatorischen IL-6 Reaktion in den Tieren.  
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Im Hinblick auf die Wirkungsweise von PLY wurden zwei in vitro Analysen zur 

Antikörper-Charakterisierung entwickelt: ein Hämolyse-Inhibitions Assay und ein hTLR4-

Reporter Assay. Pneumolysin spezifische murine poly- und monoklonale Antikörper bewirkten 

eine Reduktion der hämolytischen Aktivität von PLY auf Erythrozyten und interferierten auch 

mit der Aktivierung von TLR4 durch PLY. 

Humane monoklonale Antikörper sollen in weiterer Folge aus humanen B-Zellen 

basierend auf der „Sindbis Virus Based Mammalian Cell Surface Display“ Technologie generiert 

werden. Zu diesem Zweck wurden gesunde Spender aufgrund ihres Antigen-spezifischen 

Titers im ELISA identifiziert. Zudem wurden die für die B-Zell-Selektion notwendigen PBMC-

Färbetechniken optimiert.  

Zusammenfassend demonstriert diese Arbeit einen vertiefenden Einblick in die 

Wirkungsweise von PspA und PLY-spezifischen Antikörpern sowie die Entwicklung von für 

die Selektion und Validierung humaner monoklonaler Antikörper notwendigen 

Analyseverfahren. Somit konnte die Grundlage für eine  Antikörper-basierende Therapie zur 

Prävention und Behandlung von lebensbedrohlichen Pneumokokkeninfektionen geschaffen 

werden.   

 

Schlagwörter: Steptococcus pneumoniae, monoklonale Antikörper, LTA, PLY, PspA 
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