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Introduction

In this thesis we are concerned with the orbit closure problem for algebras that arises
in algebraic transformation group theory. The general linear group GL(V') over a field
K acts on the vector space V* ® V* ® V, the space of K-algebra structures, by the
change of basis. For two K-algebra structures A and p we say that u is a degeneration
of A if p lies in the orbit closure of A with respect to the Zariski-topology. For this
we write A\ —>qeg it. The orbit closure problem in this form is about the classification
of all degenerations of a certain algebra structure of a fixed dimension. This problem
also depends on a complete classification of the corresponding algebra structures.
Both problems are highly complicated even in small dimensions (see for example
[21]).

Thereby the choice of the field K is essential. If K = C the orbit closures of the
Zariski topology and the standard topology coincide. Therefore, in the past, mainly
degenerations over C were investigated. For Lie algebras we have classifications of
degenerations over C up to dimension four and for nilpotent ones up to dimension six
(18], [57]). Moreover in case that the field K is C the notion of a degeneration is equal
to that of a contraction. Lie algebra contractions are primarily studied in physics and
have a much longer history than degenerations. They are also easier to compute since
contractions are always defined via the standard topology. Furthermore contractions
have been studied over the fields R and C ([46]).

It is reasonable that with increasing dimension the difficulty of determining the
orbit closure of an algebra increases too. To decide wether an algebra lies in the
orbit closure of an other one is mainly based on methods coming from invariant
theory, algebraic group theory, and algebraic geometry. Important concepts are the
notions of invariance and semi-invariance. We call an R-valued and semi-continuous
function on the set of all K-algebra structures a semi-invariant if it is constant
on the orbit of an algebra and either increasing or decreasing in its closure. For
example the dimension of the orbit space is a semi-invariant. This follows from
Borel’s Closed-Orbit-Lemma (Theorem 5.10), which is also the starting point for a
lot of considerations with respective to the orbit closure problem for algebras. It says
that in the orbit closure of a given algebra only orbits with strictly smaller dimenion
can be contained. Conversely, we call a polynomial function an invariant of an
algebra if it vanishes on the whole orbit of this algebra. Regarding the definition of
the Zariski topology this polynomial function has to vanish also on the orbit closure
of this algebra. An example of this invariant is commutativity. So if we have a
degeneration A — 4, B and A is commutative then also B is commutative.

During the work on this thesis the existence problem for degenerations, i. e., the
question if for two arbitrary algebras it can always be decided if one is lying in the
orbit closure of the other, was solved by Popov in greater generality (see Subsec-
tion 1.1.4). In his article [50] he presents an algorithm which solves the question of
existence for degenerations by means of a finite number of effectively feasible opera-
tions. However, even in dimension two the algorithm yields a system of over hundreds



iv Introduction

of millions linear equations in hundreds of millions variables. Hence in determining
the orbit closure of a certain algebra one still depends on finding new semi-invariants
and invariants.

The main result in this work is the classification of all degenerations of Novikov
algebras over C in dimension three. Such algebras form a subclass of left-symmetric
algebras, so called pre-Lie algebras. Approaching this we also give the complete
classification of 2-dimensional pre-Lie algebras.

In chapter one we begin with the basic definitions that are necessary to study
degenerations. We touch the very interesting field of one-parameter subgroup degen-
erations and therein one of the oldest questions in contraction theory. That is, if every
contraction (or degeneration over C) can be realized by a generalized Inonii - Wigner
contraction. We continue with some first statements about degenerations which are
mostly derived from facts established in the theory of linear algebraic groups. The
main result in this section is an application of Borels Closed-Orbit-Lemma which will
be of great importance in all classifictions in chapter 4. It says that the dimension
of the subspace of derivations of an algebra has to increase strictly in the orbit clo-
sure of this algebra. We close this introductory chapter with a disscusion of Popovs
article ([50]) where he presents an algorithm that solves the the existence problem
for degenerations. We show, however, that this algorithm is useless to classify de-
generations. In the following two sections we give overviews about contractions and
deformations. The notion contraction is rather used in physical literature where it
originally first appeared. Inonii - Wigner contractions and Saletan contractions are
important examples in the early development of this subject. For this reason and
because they serve as a good source to get a first impression what a degeneration can
look like we treat these two examples in greater detail. At the end of this chapter we
give a brief discussion about deformation theory. Although deformations are a very
interesting and important object to study we will keep this section short for they are
not considered anywhere else in this thesis.

In chapter two we introduce pre-Lie and Novikov algebras and some of their prop-
erties. We begin to motivate the notion of a pre-Lie algebra by showing its close
relationship to Lie algebras and the geometric analogon of affine structures on Lie
groups. More precisely, we can identify a left-symmetric structure on a Lie alge-
bra with a left-invariant affine structure on a Lie group. In the following we give
a treatment of an important subclass of pre-Lie algebras, namely Novikov algebras.
Novikov algebras were studied in [5] in form of Poisson brackets of hydrodynamic
type. Refering back to this article E. Zelmanov gave some substantial results on the
structure of Novikov algebras. For example, over an algebraically closed field of char-
acteristic zero every simple Novikov algebra is a field. We continue with some crucial
definitions with respect to pre-Lie algebras that turn out to be semi-invariants. We
adapt the notions of upper and lower central, and derived series from Lie algebra
theory (see [13]). Moreover we briefly touch some of the notions of a radical one can
have for pre-Lie algebras. In the last section of this chapter we work out some tech-
nical material concerning the left-regular representation of an algebra. Specifically
we present correspondences between certain restrictions on the structure constants
and their effect on the left-multiplication operator of an algebra. We will need this
in the next chapter as a technical tool in the proof of Theorem 3.8.

In chapter three we present the methods we will use for the classifications in chap-
ter 4 of this work. The first section is concerned with the preservation of structural



properties when we pass from the orbit of an algebra to its closure. We show that one
can shift degeneration diagrams from lower dimensions up to higher ones by adding
ideals. Furthermore it is proved that structures as subalgebras, ideals and factors
are preserved under a degeneration. The main result in this section is the following
(Theorem 3.8). If the algebra A degenerates to the algebra B then there exists an
ideal J C B such that every factor A/l by an ideal I C A degenerates to the factor
B/J. This is a very interesting result on its own, but even more it is of good use for
classifying degenerations. Another crucial relation between Lie algebra and pre-Lie
algebra degeneration is that every pre-Lie algebra degeneration induces a degenera-
tion of its associated Lie algebras. In the next section we treat semi-invariants. We
begin by transfering most of the known semi-invariants from the Lie algebra case and
generalize them to the pre-Lie algebra case. Furthermore we show that the notions
we introduced in chapter 2 indeed lead to new semi-invariants. Finally we generalize
the notion of an («, 3,7)-derivation in the way that we take certain equations in a
linear operator and show that the vector space of solutions for this operator is a semi-
invariant (Theorem 3.44). We close this chapter with a treatment on invariants of
degenerations. The aim of this section is to generalize the well known &, ,-invariant
for Lie algebras to pre-Lie algebras. We show in Lemma 3.50 that every polynomial
in conjugation invariant forms defines an invariant.

Chapter 4 contains the main results of this thesis. At the beginning we present the
classification of all pre-Lie algebras in dimension two. This is surprisingly compli-
cated. For example in dimension two there are only two non-isomorphic Lie algebras.
However, we have already infinitely many 2-dimensional pre-Lie algebras. Hence, the
classification of degenerations of 2-dimensional pre-Lie algebras is indeed non-trivial.
Out of this result we get all degenerations of 2-dimensional Novikov algebras as a
corollary. In dimension three we have infinitely many Lie algebras too. The classifica-
tion of 3-dimensional Novikov algebras is highly complicated. For our considerations
we took a list of these algebras presented in [9] by D. Burde. To solve the orbit closure
problem for 3-dimensional Novikov algebras we need to extend our tools from chap-
ter 3 by methods that are adjusted to specific algebras. For example we construct
equations in the structure constants that are zero on the whole orbit of a certain
algebra. By definition of the Zariski topology this equations have to be satisfied by
every algebra in the closure.

At the very end of this work we provide preliminaries from algebraic geometry,
tables for all orbit closures, tables of semi-invariants, and algorithms we used for our
calculations.
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1 Contractions, degenerations,
and deformations in algebra and
physics

In this introductory chapter we present the basic definitions that are associated with
the notion of a degeneration. We continue with some first examples and statements,
which have its origins in the theory of linear algebraic groups. At the end of the
first section we discuss a result of V. Popov. In the following two sections we give
overviews about contractions and deformations.

1.1 Degenerations

We always assume that the field K is algebraically closed and of characteristic zero.

For preliminaries from algebraic geometry we refer to appendix A.

1.1.1 Definition of a degeneration

Let A € Alg,(K) be an algebra law. The general linear group acts on Alg, (K) by the
change of bases:

(g-N(z.y) = g(Mg™'z.97"y))
with g € GL,(K) and x,y € V, the underlying vector space of an algebra. We denote

by O(X) the orbit under this action, and by O()\) the orbit closure with respect to
the Zariski topology.

Definition 1.1. Let A\, u € Alg, (K) be two algebra laws. We say that A degenerates
to p, if 4 € O(N). This is denoted by A —geg pt. If € O(X), which means that
A = i, then the degeneration is called non-proper.

Remark 1.2. Let two n-dimensional algebras A and B be endowed with the laws A
and p, respectively. If X —4es 1t we frequently use the expression that the algebra A
degenerates to the algebra B. In doing so we simply refer back to the fact that we
have a degeneration between the corresponding multiplication structures o and .

Example 1.3. Every law A € Alg, (C) degenerates to the abelian law Ao, given by
the trivial multiplication. In this sense any degeneration to an abelian algebra is
called trivial.

Let g, =t 1, € GL,(C(¢)).! We have

(g M, y) =t Nt ty) = tA(2,y),

! Accordingly to subsection 1.2.2 we denote by I,, the identity matrix of an n-dimensional vector
space.
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and hence lim;_,o(g; - \)(x,y) = 0, the abelian law.

Example 1.4. Let K = C. Because of Borel’s closed orbit lemma (Theorem 5.10)
the orbit closures of the standard topology and those of the Zariski topology on
Alg,,(C) coincide. The orbit closure of a structure A € Alg, (C) is then formed by
the convergence of {g. - A\} as ¢ — +0, where {g.} is a series of matrices in GL,(C).

This special case of a degeneration is (particularly in the physical literature) often
referred to as a contraction over C. Because of its importance in physics and for the
development of the studies of orbit closures we devote the next section to contractions.

An analogous viewpoint in the theory of obit closures is the following characteri-
zation given by Grunewald and O’Halloran [33| for Lie algebras.

Theorem 1.5. Let A\ and p be n-dimensional Lie algebras over the field K. The
Lie algebra p is a degeneration of X if and only if there is a discrete valuation K-
algebra A with residue field K whose quotient field 1L 1s finitely generated over K of
transcendence degree one, and there exists an n-dimensional Lie algebra s over A
such that

paQL=A®L

and
pa @K =p.

With this characterization example 1.3 can be recovered in the following way: Let
A be an arbitrary Lie algebra law, A = K][t]; be the polynomial ring localized at
the prime ideal (t), and let us = tA. Then X is K(¢)-isomorphic to pu4 via the
isomorphism ¢t 1, and us4 ® K is equal to \g, the abelian law.

1.1.2 One parameter subgroup degeneration

The matrix g;, which was used in example 1.3, is the special case of a so called
one-parameter subgroup degeneration.?

Definition 1.6. Let g : K* — GL,,(K), ¢ +— ¢; be a group homomorphism such that
p = limy_o g - A, then A —4ee p¢ is called a one-parameter subgroup degeneration.
Furthermore we call g(K*) C GL,(K) a one-parameter subgroup.

One-parameter subgroups classify a special kind of degenerations. Before we can
make a statement in this direction, we need the following definition.

Definition 1.7. A filtration on an algebra with underlying vector space V' is a nested
sequence of subspaces
Ve DV DOWDO VD

such that V; - V; C V;;. For every filtration on V' there can be associated a graded
algebra W, defined as follows. Let W = @,., Vi/Vi41 and for x € V;,y € V}, define

T-y=7-Y € Viyj/Vigjs1-

We note the following theorem, see [32].

ZAbbreviated by 1-PSG degeneration.
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Theorem 1.8. If A —qee it via a one-parameter subgroup P(t), then u is the asso-
ciated graded Lie algebra given by the filtration on X induced by P(t). Conversely,
if o is the associated graded Lie algebra given by some filtration on X\, then p is a
degeneration of X\ via a one-parameter subgroup.

As a special case of a 1-PSG degeneration we have the following definition.

Definition 1.9. Let u € Alg,(C) be a degeneration over C of the algebra structure
A € Alg,(C). We call g = lim._,,9g. - A a generalized Inénii - Wigner-contraction®
(shortly IW-contaction) if there exist matrices M, N € GL,(C), which do not depend
on ¢, such that the matrix g. can be represented in the form g. = Md.N where

d. = diag(e™, ..., &%) for some a, ..., a, € R. The n-tuple of exponents (o, ..., a,)
is called the signature of the IW-contraction A — p.

All degenerations over C that arise in the physical literature are generalized ITW-
contractions. Under these circumstances it is natural to ask if there are any exceptions
at all? This question has a long history (|63], [64]) and it was even believed that every
degeneration over C can be represented by a generalized IW-contraction. However, by
Burde ([14], [17]) we now know that the contrary is true. Considering characteristical
nilpotent Lie algebras, which do possess only nilpotent derivations, we obtain an
example of algebras that admit no poper gradings. Regarding Theorem 1.8 any 1-
PSG degeneration to a characteristical nilpotent Lie algebra cannot be equivalent?
to a generalized IW-contraction. In fact such degenerations do exist for Lie algebras
with dimensions higher than 7, as was shown in [17]. Since there it was still an
open question wether universality of generalized IW-contractions fails for dimensions
less than 7. What we do know is that for Lie algebras of dimension up to 3 every
degeneration over C is equivalent to a generalized IW-contraction. Nevertheless the
following result was proved by D.R. Popovych and R.O. Popovych in [52]:°

Theorem 1.10. There exists one and only one degeneration of complex 4-dimensional
Lie algebras which is not equivalent to a generalized IW-contraction.

Therefore we have a lowest-dimensioal example on the non-universality of general-
ized IW-contractions.

However, if we restrict ourselves to the subclass of 1-PSG degenerations we do
have equivalence to the class of generalized IW-contractions. This was shown by
D.R. Popovych and R.O. Popovych in [51]:

Theorem 1.11. Any 1-PSG degeneration over C is equivalent to a generalized TW-
contraction.

Remark 1.12. In [51] this Theorem is formulated for contractions rather than for
degenerations and proved for the ground fields R and C.

3The name generalized Indnii - Wigner-contraction was first used by Doebner and Melsheimer in
[34]. There seems to be no item for this special kind of a 1-PSG degeneration in the algebraic
literature, for which reason we take the existing notion of generalized IW-contractions used in
physics.

4For the exact definition of equivalence we refer to Definition 1.23 in the next section.

5In this paper the term contraction is used instead of degeneration; both of which are equal because
of Example 1.4.
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Even more is true; we can restrict the values of the signature of a generalized
IW-contraction from R to Z with out loss of generality (|51]):

Theorem 1.13. Any generalized IW-contraction performed by a degeneration matriz
ge = MdA.N is equivalent to a IW-contraction with integer signature (and the same
associated matrices M and N ).

1.1.3 First statements about degenerations

Let GG be an algebraic group acting on a variety X, then every irreducible component
of X contains the orbit closures of all its elements. In the language of degenerations
this means, that for an irreducible component C' of Alg, (K) with A € C' it follows,

that O(\) C C.
Definition 1.14. An algebra law A is called rigid, if O()\) is open in Alg,,(K).

In this case O(\) defines an irreducible component of Alg, (K). Because the number
of irreducible components in each dimension is finite, the number of rigid algebras in
a fixed dimension is also finite.

Lemma 1.15. Let g € Lie,(K) be semisimple, then g is rigid.

Proof. See |47, p. 285]. A Lie algebra is semisimple if and only if its Killing form
is nondegenerate. This is an open condition. O

The identification of all K-algebra structures as a subvariety of K™ gives us the
possibility of developing a whole bunch of methods related to algebraic geometry and
the theory of algebraic groups. Borels Closed-Orbit-Lemma builds the starting point
for further considerations. The most important consequence of this lemma in the
context of degeneration is the following theorem. Although this is a standard result,
a complete proof is hard to find in literature. So we treat the proof here in detail.

Theorem 1.16. Let A =4, B for A, B € Alg,(K). Then the following two inequal-
ities hold:
dim O(A) > dim O(B)

dim Der(A) < dim Der(B)

Proof. Because of Borels Closed-Orbit-Lemma the first inequality follows at once.
For the second one we consider the dimension formula ([41, p. 65]) for an algebraic
group G acting on an affine variety W. For every point x € W we have

dim G = dim O(z) + dim G,

where G, is the isotropy group of z. In the case G = GL,,(K) and A € Alg, (K), the
stabilizer G4 is exactly Aut(A). As an algebraic subgroup of GL,(K), the tangent
space (or Lie algebra) of Aut(A) is exactly the algebra of derivations (|37], p. 82). Us-
ing the fact that GL,, (K) contains no singular points, the dimension of any subvariety
equals to that of its tangent space. Hence we find that n? = dim O(A) + dim Der(A)
and therefore dim Der(A) < dim Der(B). O

Another result, that can be generalized to arbitrary algebras over an algebraically
closed field, inspired by [32], is the following.
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Theorem 1.17. Let A, and Ay be two algebras over the field C, A, degenerating
to Ag. Let C be a Zariski closed B-stable subset in Alg, (C), where B is a Borel
subgroup of a reductive algebraic group G over C. If there exists a representative of
the isomorphism class of Ay lying in C, then there exists a representative of Ay lying

i C.

Proof. Let A\ be a representative of A; lying in C' and )y some representative of
Ag. With respect to the Iwasawa decomposition we can write G as K B, with K being
a compact subgroup of G. Therefore, assuming Ao € G - A1, we have \y € K - B - \;.
Because of the compactness of K it follows that \g € K - B - A\;. According to the
hypothesis that C' is a closed B-stable set, we conclude that \q € K - C, for which
reason we can find a k € K such that k=1 - \g € C. O

The theorem says the following: Let there be given a certain property of an algebra
A. If all algebras that share this property form a closed and B-stable set, then every
degeneration of A must also have this property.

Example 1.18. Take one of the two defining laws of a Lie algebra over C, the
jacobian identity. This condition defines a Zariski closed set in Alg, (C). It is trivially
B-stable, because it is already G-stable. Therefore any degeneration of a Lie algebra
is again a Lie algebra. Of course there are more subtle examples where this method
comes to play, as one can see in chapter three.

1.1.4 Discussion of a result of Popov

Let K be an algebraically closed field of arbitrary characteristic. Let G be a connected
linear algebraic group and let M be a finite dimensional algebraic G-module. Denote
by G- x and G -y the G-orbits for two points z and y in M.

During the work for this thesis an article appeared ([50]) in which V. L. Popov
formulates the following question:

How can one find out whether or not the orbit G -y lies in
the Zariski closure of the orbit G- x in V¥

This question is referred to as the orbit closure problem in algebraic transformation
group theory in its most general form. Choosing special properties for the algebraic
group GG and its module M results therefore in different applications of algebraic
transformation group theory. As an important special case we have the following.
Let V be a finite dimensional vector space over K. Here we specify the characteristic
of the ground field K to be zero. Let G = GL(V) and M = V*@V*® V. The points
of M are exactly all structures of K-algebras on the vector space V. If A and p are
points in M, Popov’s question means to find out whether or not \ degenerates to pu.

In [50] a constructive method is presented that answers the orbit closure problem
in general by means of a finite number of effectively feasible operations. This con-
struction results in a finite system of linear equations (in finitely many variables),
which’s inconsistency is equivalent to the inclusion G -y C G - 2. Moreover [50] pro-
vides an algorithm that determines the orbit closure of an arbitrary linear subvariety
L of M by the zero set of a finite system of polynomial functions ¢y, ..., ¢, on M.
However, this algorithm is based on the computation of a Grobner basis that contains
the functions ¢y, ...,q, as a part of its elements. As a consequence this algorithm
has lack of efficiency than the constructive method mentioned before.
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Regarding the orbit closure problem in the case of degenerations one might be
tempted to use these techniques for a classification as the one in chapter 4 of this
thesis. However, even in dimension two the constructive method (which is the faster

one) yields:®
52

T
) Y ;,R — 2558620845
= 7!
coefficients in -
4 3)l
3 U3 07624595,
, 34!
7=0

variables.

In conclusion, this algorithm is not executable since it is impossible” to cope with
that huge number of variables and coefficients that arise in the programming proce-
dure.

1.2 Contractions

1.2.1 The general definition of a contraction

Let g be an n-dimensional Lie algebra with underlying vector space V over a field
K = R,C. We denote by [-,-] the Lie bracket of the algebra g and suppose the
dimension n to be finite.

Let U: (0,1] — GL(V) be a continuous map and denote the image of an element
e € (0,1] under U by U.. The map U induces a parametrized family of Lie algebras
g. = (V,[-,]¢), which are isomorphic to g, in the following way:

[z, y]e = U7 ([Ux(2), U(y)])
for all z,y € V.

Definition 1.19. If for all z,y € V there exists the limit

. _ . —1 .
dim [z, y]. = lim U ([U:(2), U(y)]) = [, ylo
then [z,ylo is a well-defined Lie bracket. In this case the Lie algebra go = (V, [+, ‘]o)
is called a one-parametric continuous contraction (or simply contraction) of the Lie
algebra g. The procedure that yields the algebra gy in the above explained way from
the given Lie algebra g is also called a contraction and abbreviated by g —con go-

Remark 1.20. In contrary to the definition of a degeneration the basis change is
undertaken by the right action of GL,,(K) on g. This is a usual convention in physics
and therefore we use it wherever the term contraction appears.

Let (e1,...,e,) be a basis of the vector space V. We write the bracket of the
Lie algebra g in this basis by [e;, e;] = Y p_; ¢};ex. The collection of the numbers
cfj € k is called the vector of structure constants and determines the Lie algebra g

6This and the following number was obtained by D. Burde via private communications.
"We mean impossible regarding the processing speed of computers at the moment.
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completely. So if we fix a basis of the underlying vector space V' of a Lie algebra g
the image of the map U lies in GL,(K) and the limit condition of Definition 1.19 is
then equivalent to requiring the existence of the limit

: -1 k _. k
EIEEO(Us)ii’(Ue)jj’(Ue )k’kcz‘j = Co,ij
for all ', 5/, k" € {1,...,n}. Therefore the numbers c’&ij define the vector of structure

constants of the Lie algebra g,.

Definition 1.21. Let [z,y]o := lim. o U ([U.(2), U-(y)]) be a contraction of the
Lie algebra g = (V, [+, ]) to the Lie algebra go = (V, [, -]o). We call € the contraction
parameter and the matrix-valued function U, the contraction matrix of the contrac-
tion g —con Yo-

Remark 1.22. As mentioned in the previous section, the concept of a contraction
can be generalized to arbitrary algebraically closed fields in terms of orbit closures
in the variety of Lie algebras. A contraction defined in this way is often referred to
as a degeneration.

We call a contraction g —.,, go trivial if gy is abelian and proper if gy is not
isomorphic to g.

Definition 1.23. Two contractions g —con go and g’ —con g are called (weakly)
equivalent if the algebras g and gy are isomorphic to g’ and g, respectively.

Weak equivalence doesn’t take improper contractions into account. We can there-
fore focus on the existence problem of a contraction. A notion that emphasises the
different ways a contraction can be constructed, is that of strong equivalence.

Definition 1.24. Two contractions from g to gy performed by the contraction ma-
trices U, and U., respectively, are called strongly equivalent if there exist ¢ € (0, 1],
mappings G: (0,9] — Aut(g) and G’: (0,0] — Aut(go) and a continuous mono-
tonic function ¢: (0,6] — (0, 1] with lim._,49 () = 0, such that U! = G.U,)GL,
e € (0,9].

In the next two subsections we give two important examples of a contraction, where
the contraction matrices are of a very simple type.

1.2.2 Indnii - Wigner contractions

The study of contractions due to E. Inonii and E. P. Wigner was initiated by a problem
concerning the representations of certian Lie groups. When E. In6nii determined the
unitary irreducible representations of the Galilei group, it was not clear how this
representations were related to physical properties as this is the case for the Poincare
group ([65]). Both groups can be understood as the algebraic structures defining
non-relativistic and relativistic mechanics. Inonii’s and Wigner’s idea was to look at
the limit of the Poincare group with the velocity of light approaching infinity. This
leads to a description of the Galilean group as a limiting case of the Poincare group.
We will present the mathematical formalism that underlies a group contraction. To
write this overview we used [31], [38], and the original papers by Inénii and Wigner
[65] and [66].



8 1 Contractions, degenerations, and deformations in algebra and physics

Let g = (V,[,+]) and go = (V,[-,"]o) be two n-dimensional Lie algebras where
g —con 80 We consider the contraction matrix U, to depend linearly on the contrac-
tion parameter ¢ and therefore we can write

UE:U0+€W

where Uy and W are n xn matrices not dependend on €. Furthermore we assume that
there exist matrices M, N € GL,(K) such that the matrix U. can be transformed to
the special diagonal form MU.N~! = diag(1+ca, ..., 1+¢a,¢,...,c) =: D.. Without
loss of generality we can set @ = 0 and therefore, by these linear transformations, it
is possible to write the matrix U, in the form

(I, 0
UE_(O Efn_d)

where I; is the identity matrix for an d-dimensional vector space, namely:

1 0 0
Io=10 -. 0| € GLd(K)
0 0 1

In view of the last considerations we will work with the following definition:

Definition 1.25. A contraction with respect to a transformation matrix U, of the
form

U. = diag(1,...,1,¢,...,¢)
is called an Inonii - Wigner contraction (or shortly IW-contraction).

An IW-contraction is therefore completely characterized by the dimension of the
eigenspace V) to the eigenvalue 1 of the contraction matrix U.. Let (eq,...,e,)
be a basis of the underlying vector space V' of the Lie algebras g and go,. We set
V =V1 @V, and dim V] =: d. Necessarily dim V. = n — d, which is the dimension of
the eigenspace V. to the eigenvalue € of the contraction matrix U.. We denote by c
and c . the structure constants of g and gg, respectively. The brackets of g and go
are then related in the following way:

Ucles,) =es, for 1<k<d

Uc(ey,) =ceey, for 1< k<n—d.

We take the relations above for the transformation U, to calculate the new algebra
structure explicitely:

d 1 —d
[65i7 68]']0 6517 653 E Cs, sJ g E 5133
n—d
Sr Sr
[esﬂ etj] esw et =€ E Cs it €s, T+ § :C itj €srs

ler,, e0,]0 = %[er, e0)] = €7 E cttesr+€g €yl s,
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Now, if we let ¢ — 0, the only convergence problem occurs for cﬁ:sj. The only way
for the limit lim._o ¢f;(e) = &) to exist, is that o5, =0 for all r with 1 <r < d.
This means that the first d basis vectors {ej,...es} span a subalgebra of g. We
then say that the operation of a IW-contraction is undertaken with respect to this
subalgebra. We can also see that the vector space V] is a subalgebra of the contracted
Lie algebra go. Moreover, as ¢ — 0 the product on V. vanishes completely and
therefore defines an abelian ideal of gg.

Finally we summarize these observations in the following Theorem by Inénii and
Wigner ([66]), stated in its original wording.®

Theorem 1.26. Fvery Lie group can be contracted with respect to any of its contin-
uous subrgoups and only with respect to these. The contracted infinitesimal elements
form an abelian invariant subgroup of the contracted group. The subgroup S with
restect to which the contraction was undertaken is isomorphic with the factor group
of this invariant subgroup. Conversely, the existence of an abelian invariant subgroup
and the possibility to choose from each of its cosets an element so that these form
a subgroup S, is a necessary condition for the possibility to obtain the group from
another group by contraction.

1.2.3 Saletan contractions

In the last subsection we observed contractions linear in one parameter, that are
dependend on the choice of a basis. From a historical point of view, the next step
towards degeneration theory was to get rid of that dependence. A base-free approach
to contraction theory was first introduced by E. J. Saletan ([54]). In our exposition
we shall follow closely his treatment.”

Definition 1.27. Let g = (V,[—, —]) and go = (V,[—, —]o) be two n-dimensional Lie
algebras where g —o, go. Let U. be the matrix that performs this contraction, i. e.:

[z, ylo = im U U (x), U-(y)].

If the contraction matrix U, depends linearily on the parameter £ we shall speak of
a Saletan contraction.

For the beginning we analyze what special forms a contraction matrix U(e) can
have.!Y Let Uy be singular, so Uy annihilates a vector subspace V; of V. Therefore we
have a decomposition V = V; @ Vi, with Uy(V1) = 0. In the same way U, annihilates
a vector subspace of Uy(V) for which reason we get V = V, @ Vs, with UZ(V3) = 0.
Clearly dimg Up(V) > dimg UZ(V'). Repeating this argument we arrive at a subspace
V,, of V for which V = V,, ® V,,, with UJ*(V,,) = 0, and UJ*(V)) = Uy (V) for all
j € N. This construction can be regarded as a special form of Fitting’s Lemma (|53,
p. 82]). Restricted to V,, the matrix U, is a faithful map, even as ¢ — 0. Referring to
this we shall denote the subspace V;, with the above condition by V. On the other
hand Uy is singular on the complement V,, which shall therefore be denoted by Vs,
so we have V = Vp @ V.

8The item contraction in the following Theorem of course means Inénii - Wigner contraction.

In contrary to group contractions studied by Inénii and Wigner we are here only interested in
contractions of the Lie algebra.

10The contraction is supposed to be non-trivial.
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We now return to the contraction of a Lie algebra by a matrix U. depending
linearily on a contraction parameter €. Because of this linearity we are able to
compute the inverse of Uy on Vi explicitely and derive contraction criteria from that.
Following Saletans approach we set without loss of generality U; = I, (the idetity
matrix in GL,(K)) , yielding

U.=V+ecW=¢el,+(1—¢)Uy and

1
Ut = Ok + Up)~"

where 6 = ;=-. We notice that ¢ — 0 implies 6 — 0. With this settings the Saletan
contraction takes the form

[, ylo := li_r)r(l)(l — &) (6L, + Ug) (01, + Up) (), (61, + Up)(y)]-

We proceed by computing the inverses with respect to the projections to Ve and V.
Because Uy is faithful on Vy we have

(61, +Up) ' = U, (U + 1) on Vi
It follows that on Vr the matrix U acts as an isomorphism:

ll_I)I(l)(l - 8)(5In + U0)71[<5]n + Uo)(l’), (6In + Uo)(:y)} — Ual[Uo(JI), Uo(y)] on VF

On the subspace Vg the matrix Uy becomes singular for which reason the inverse and
hence the above expression don’t exist. Instead we use a series expansion:

Ui 1=, U
-1 _ g1 ZO0N-1 _ =~ h'AY
(0L, + Uo) ™ =01 (Ln + ) 52( )" on Vs,
where m is the lowest power of Uy which annihilates V. The following straightforward
calculation demonstrates the advantage of this expansion:

[ify?/]o = hm Ua_l[Ua(x)a Ua(y)] =

1
lim Z S0 (8L ] + 8l00(), 5] + T, Uofo)] + [Ui(a), U] =

[Uo(x), y] + [z, Uo(y)] — Uo([z, y])

1 U U§ 2

(5 =5 T 5 )(Uo(@), Uo(y)] = Uo([Uo(2), y]) = Uo([z, Uo(y)]) + Ua ([, ).
The whole computation is understood to be taken just on the subspace Vs. More-
over, from the formula of the Saletan contraction it can be seen, that we dropped the
term (1 — ¢). However, this doesn’t change the result of the limit process. Back
to the equation above, we remark that this limit exists if and only if the term
[Uo(), Us(y)] — Uo([Uo(), y]) — Up([x, Uo(y)]) + UZ([z,y]) vanishes on Vs. We sum-

marize our observations in the following Theorem.

Theorem 1.28. Let g and gy be two finite dimensional Lie algebras with underlying
vectorspace V. Let Uy be a singular matrixz such that for subspaces Vi and Vg of V
the conditions Uy(Vs) = 0, Ug(Vr) = Vi, and V = Vi & Vs are satisfied. Then g
contractes to go by a Saletan contraction via the matrices U,, lim._,o U, =: Uy, if and
only if

[Uo(@), Uo ()] — Uo([Uo(2), ) — Un([, Uo()]) + Us ([, y]) =0 on V.
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The next Proposition is a crucial tool for the following Theorems. The proofs for
both statements can be found in [54].

Proposition 1.29. The contraction criterion of the last Theorem can be replaced by
the following, for all p,q > 1:

(UG (x), U ()] = U ((Ug (), y]) = UG ([, Ug()]) + U™ ([2,5]) =0 on V.

As a consequence this equation also gives a mecessary and sufficient condition for a
Saletan contraction to exist.

We finally arrive at the two main Theorems, the first one is similar to that of the
Inonii - Wigner contraction theory.

Theorem 1.30. Let g and gy be two finite dimensional Lie algebras, gy a Saletan
contraction of g via U.. The following statements hold:

1. The subspace Uy(V') of V is a subalgebra of g.

2. The subspace Vi of V' is an invariant and solvable subalgebra of g.

Theorem 1.31. Let g be a finite dimensional Lie algebra. If g contractes to some Lie
algebra by a Saletan contraction via U,, then it also contractes to some Lie algebra via
U* for all k € N. We abbreviate this by g := Ul - g := lim._o(UF) " {UF (), UF(y)].
With this definition the following statement holds:

Uk - g0 = g+,

1.3 Deformations

In this section we shall give a short overview of the concept of an algebraic deforma-
tion, how it developed and how it is related to a degeneration. As a source for this
section served the articles [43], [27], and [49].

In [40] Kodaira and Spencer introduced the concept of local and infinitesimal defor-
mations of a complex analytic structure. They showed that infinitesimal deformations
can be parametrized by related cohomology groups. Afterwards, in [42] Kuranishi es-
tablished the deformation theory of compact complex structures. Based on the facts
about deformation theory of analytic structures Artin and Schlessinger developed the
deformation theory of algebraic manifolds (|2| and [55], 1986). Deformations of ar-
bitrary rings and associative algebras were first studied by Gerstenhaber in [29] and
[30] (1964 - 1974). Also in the work of Gerstenhaber, cohomology plays an important
role. Finally, we want to remark that concerning the theory of deformations of Lie
algebras Nijenhuis and Richardson have to be mentioned. In their work ([48]) they
consider some general problems of this field.

A first definition introduced by Gerstenhaber and now referred to as a formal
deformation, in the case of Lie algebras, is given as follows.

Definition 1.32. Let o be a Lie algebra over an arbitrary field K. A formal defor-
mation of y is a one-parameter family of Lie algebras p; in V ® k[[t]] over the formal
power series ring kl[[t]]:

[y = o + o1 + 20 + .

where ; € Hom(A?V, V).
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A first and rather trivial relation between degenerations and formal deformations
is the followng: Consider u; to be a formal deformation of p, which is given by a
convergent power series in ¢, then i is a degeneration of | ., O ().

Remark 1.33. Other than in degeneration theory where we presumed the underlying
vector space to be finite dimensional we explicitely allow the vector space to be infinite
dimensional in the case of deformations. In fact, deformations of infinite dimensional
Lie algebras have been intensively studied (see [25] and [26]), in particular because
of the various applications in physics.

To prove a more substantial connection between deformations and degenerations
we need a more general definition. For this let A be a local finite dimensional algebra
over K and let ;9 be a Lie algebra with underlying vector space V over K.*! If 4 is
a Lie algebra over A, then any morphism f: A — B defines a Lie algebra ps ®4 B.

Definition 1.34. Let A be a local finite dimensional algebra over K. A deformation
of a Lie algebra ug is a Lie algebra 4 over A on V ®gk A such that

A ®a k= po,
where the tensor product is given by the residue map A — A/m4 = k.

The last definition is a natural generalization of Gerstenhabers concept of a formal
deformation. In fact, we can regard a formal deformation as a Lie algebra over the
quotient field k((¢)) rather than as a family of Lie algebra structures. Replacing the
field k((¢)) by a parameterring A yields the term of a deformation, sometimes also
referred to as a global deformation (see [43]).

Definition 1.35. Let the two Lie algebras pus and p/, be deformations of the Lie
algebra po parametrized by A. The deformations are called equivalent if there is a Lie
algebra isomorphism p4 = /4 which induces the indentity map on . A deformation
14 of ug is called trivial if it is equivalent to pg ® A.

Using Theorem 1.5 one can prove the following statement.

Theorem 1.36. Let jo and py be two finite dimensional Lie algebras. If py degen-
erates to g then py is a non-trivial deformation of py.

Remark 1.37. The converse of the above theorem is not true. To see this we
consider the 3-dimensional Lie algebra g given by the multiplication laws [e, es] = ey,
le1,e3] = [e2,e3] = 0 and the family of Lie algebras h(a) given by the brackets
[e1, €2] = €1, [e2, €3] = —a, and [eq, e3] = 0. For any two distinct parameters «; and
ay with ag - ag # 1, the Lie algebras h(ay) and h(az) are not isomorphic. It can be
shown that the family h(«) is a deformation family of g, but g is not a degeneration
of any Lie algebra h(«) with a # 1.

Although not every deformation leads to a degeneration there is an important
subclass of deformations which does. These are the so called jump deformations,
first introduced by Gerstenhaber in [30].

11 As mentioned in Remark 1.33 this vector space need not to be finite dimensional.
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Definition 1.38. A formal deformation yu; of the Lie algebra pg is called a jump
deformation if there exists a power series @, € GL,(K((s,?))) in two variables

D=1+ spi(t) + s20a(t) + ...

where each ¢; is a series whose coefficients are K-linear maps V' — V such that!?

Hatsyie = Pot - pug-

The condition ji(144)¢ = Py - 1y of the last definition implies that a jump deforma-
tion obtained by a convergent power series defines a degeneration.

For an overview about the relation of deformations and Hochschild cohomology we
refer to [22].

12The action of GL,(K((s,t))) is supposed to be the basis change.






2 Pre-Lie and Novikov algebras

All algebras in this thesis are assumed to be finite-dimensional.

In this chapter we introduce all algebraic properties of a pre-Lie algebra that are
needed in chapter 3 of this thesis. These properties will turn out to be so called semi-
invariants. Moreover we explain how the notion pre-Lie algebra was motivated and
how it is connected to geometric properties of Lie groups.! In the following section
we present a subclass of pre-Lie algebras, the so called Novikov algebras, in which
we are mostly interested in chapter 4 of this work.

2.1 Left-invariant affine structures on Lie groups
and pre-Lie algebras

Let K be a field of characteristic zero. Specifically in this section we allow the ground
field to be arbitrary (with respect to the algebraic closure). Later on, because of
certain limit processes, we restrict ourselves to algebraically closed fields.

Definition 2.1. Let A be a finite dimensional vector space over K endowed with a
K-bilinear product A x A — A that satisfies the condition

v (y-2)—(r-y)-z=y-(v-2)—(y-x) =2

for all z,y,2 € A. Then (A,-) is called a left-symmetric or (left-) pre-Lie algebra.?
Defining [z, y] := x-y—y -z, the algebra A becomes a Lie algebra, denoted by g4 and
called the associated Lie algebra to A. Conversely we say that a Lie algebra g admits
a pre-Lie or left-symmetric structure if there exists a K-bilinear product g x g — g
that is left-symmetric and satisfies the condition

[zyl=z-y—y-x
for all x,y € g.

In view of this definition it is very natural to ask the existence question, namely
if every Lie algebra admits an affine structure. Indeed, for solvable Lie groups this
question was posed by Milnor in 1977 (|[44]) and unsolved till the year 1992, when
Yves Benoist (|7]) gave a negative answer by providing a counterexample.

Let GG be a connected and simply connected Lie group with Lie algebra g. We have
the following statement, see [11].

!The treatment of this subsection follows [11].

2Qriginally, pre-Lie algebras were defined to be right-symmetric. In our case, however, we assume
pre-Lie algebras always to be left-symmetric. That’s why we omit the prefix “left “throughout
the text.
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Proposition 2.2. There is a canonical one-to-one correspondence between the class
of left-invariant affine structures on G and the class of affine structures on the Lie
algebra g, up to suitable equivalence.

Milnor asked in [44]:

“Does every solvable Lie group G admit a complete left-invariant affine structure, or
equivalently, does the universal covering group G operate simply transitively by
affine transformations of R¥?”

In [12], [15], and [16] there has been constructed a whole family of counterexamples:

Theorem 2.3. There are filiform nilpotent Lie groups of dimension 10 < n < 13
which do not admit any left-invariant affine structure. Any filiform nilpotent Lie
group of dimension n < 9 admits a left-invariant affine structure.

2.2 Novikov algebras

Novikov algebras arise in many context in mathematics and physics. Among other
things they came up in [5] studying Poisson brackets of hydrodynamic type, at which
one of the authors they were named after.

Definition 2.4. A pre-Lie algebra A is called a Novikov algebra, if it satisfies the
following identity (right-commutativity):

(@-y)-z=(x-2)-y,
for all z,y, z € A.

Like in the case of associative, commutative and Lie algebras we can express the left
symmetry and the right-commutativity in terms of the structure constants. Therefore
the sets of pre-Lie and Novikov algebra laws define subvarieties of Alg,, (K), which
we will denote by preLie, (K), and Nov, (K), respectively. The polynomials in the
structure constants representing the left-symmetry take the form:

n

I m I m I m I m\ __
E (Cijclk — CipCyp — CjCpp T+ Cik:cjl) =0.
=1

These polynomials together with the following polynomial identities determine the
set of Novikov structures: .

Z(Céjcﬁl - Cékcﬁ) = 0.

1=1
Both sets of equations must hold for 1 < i, 5, k,m < n.

Consider an n-dimensional algebra A (it will be a pre-Lie algebra in most parts of
this text) defined over an algebraically closed field K of characteristic 0. The maps
LA(z) and R%(z) denote the left respectively right multiplication by an element
x € A. In sections where we consider left and right multiplications in different
algebras it is important to indicate in which algebra the multiplications are taken.
For this we use the upper index of LA(x) and R4 (z).

We define the various terms of nilpotency associated to a pre-Lie algebra:
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Definition 2.5. Let A be a pre-Lie algebra over an algebraically closed field of
characteristic zero. We consider the subspace R4 = {RA(z) | x € A} of Endg(A).
The algebra A is called right-nilpotent if R% := (R4(zy)---R*(x,))x = 0 for some
n > 1.

In the same way we consider the subspace Ly = {L*(x) | x € A} of Endg(A). The
algebra A is called left-nilpotent if L% := (LA(x) - - - LA(z,,))x = 0 for some n > 1.

Furthermore a pre-Lie algebra is called nilpotent if the subalgebra generated by all
left- and right multiplications by all elements x € A is nilpotent. That means that
there exists a natural number n such that any bracketing of n elements in A is zero.

By right-commutativity the sum of two right-nilpotent ideals I; and I of A is
again a right-nilpotent ideal of A. Therefore, in a Novikov algebra A there exists a
largest right-nilpotent ideal N(A) of A.

Due to the work of E. I. Zel'manov we have very substantial results about simple
Novikov algebras and the decomposition of the factor algebra A/N(A) into the direct
sum of ideals. In what follows we give a short overview concerning the results of
his note [67]. We suppose that the ground field K is algebraically closed and of
characteristic zero.

Proposition 2.6. Let A be a Novikov algebra then its quotient algebra A/N(A) is a
direct sum of fields.

Corollary 2.7. Let A be a Novikov algebra then A either contains a non-zero ideal
with zero multiplication or is associative.

Definition 2.8. Let A be a pre-Lie algebra. If for any two elements a and b in A we
have a-b = 0 we call the algebra A abelian. We call a pre-Lie algebra A commutative
ifa-b=>5-aforall a,be A.

Remark 2.9. We shall carefully distinct between the notions of an abelian pre-
Lie algebra and a commutative pre-Lie algebra. The latter holds if and only if the
associated Lie algebra is abelian, whereas a commutative pre-Lie algebra needs not
to be abelian.

The main result of [67] follows now from Proposition 2.6 and Corollary 2.7.

Theorem 2.10. A simple Novikov algebra over an algebraically closed field of char-
acteristic zero 1s a field.

We have a generalization of Proposition 2.6 where the field K is not necessarily
algebraically closed.

Proposition 2.11. Let A be a Novikov algebra over a field of characteristic zero then
A is decomposable into the direct sum of ideals A = @, A;, where each summand is
either right-nilpotent or A;/N(A;) is a field.

Whenever a power by an element occurs, the multiplication is supposed to be taken
from the right. That means z! := (R4(z))"(z).
We start our study of right-nilpotency with the following example.

Example 2.12. Consider the two-dimensional Novikov algebra with basis (eq, es)
and multiplication table (e; - ey = —e;).> This algebra is right-nilpotent but not
nilpotent.

3This algebra corresponds to the algebra B3(0) in the subsection 4.1.1.
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Zel'manov established the following result for Novikov algebras over an algebraically
closed field of characteristic zero (|67]).

Proposition 2.13. Let A be a Novikov algebra. If A is right-nilpotent then its square
A? is nilpotent.

For arbitrary characteristic A. S. Dzhumadil’daev and K. M. Tulenbaev ([23])
showed the following:

Theorem 2.14. Let A be a Novikov algebra over a field of characteristic p such that
2" =0 forallz € A. If p=0 for p > n then A? is nilpotent with index of nilpotency
not more than n.

But even more is true as V. T. Filippov showed in [28]:

Theorem 2.15. Let A be a pre-Lie algebra over a field of characteristic zero, in
which (L*4(x))! =0 for some | € N. Then A is left-nilpotent.

Remark 2.16. We note that the converse statement of the above Theorem for right-
nilpotency can easily be verified. Indeed, because the right-multiplication operators
commute any power of a nilpotent operator is again nilpotent.

2.3 Ideals and series of pre-Lie and Novikov
algebras

The term ideal means two-sided ideal all over this section.

2.3.1 Ideals of pre-Lie and Novikov algebras defined via the
associated Lie algebra

Because to any pre-Lie algebra we can associate a Lie algebra, there are some defini-
tions in Lie algebra theory that carry over to the pre-Lie case. The following terms
for pre-Lie algebras are motivated by [13].

Definition 2.17. Let A be a pre-Lie algebra. Denote by
A0 .4 AD .= QX) = [A0=D, A0-1)
the terms of the derived series of A. Furthermore let
N(A) =n(ga) =A n(A) =n(ga) = [A n-1(A)]
denote the terms of the lower central series of A and we define by
Ay =0 Z(gaa,_,,) = An/Ao-)
the terms of the upper central series.

Lemma 2.18. Let A be a Novikov algebra then the subspaces AD, ~v/(A), and A
are ideals of A for all | € N.

Furthermore the following is true ([13]):
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Lemma 2.19. Let A be a Novikov algebra. Then we have:

Vi1 (A) - vj41(A) T Yirjs1(A)
for all 1,7 > 0.

We proceed with a couple of structural properties of Novikov algebras which all
can be found with proofs in [13]. We start with two Jacobi-like identities.

Proposition 2.20. Let (A, -) be a Novikov algebra. Then we have, for all x,y, z € A:
[z,y]- 2+ 1ly,2] -+ [z,2] Yy =0,
x-ly,z)+y-lz,2]+ 2z [z,y] =0.
Using these two identities the following statements can be proved.

Lemma 2.21. Let I and J be two ideals in a Novikov algebra A. Then I - J and
[1,J] are again two-sided ideals in A.

Lemma 2.22. Let (A, -) be a Novikov algebra, then Z(ga)-[A, Al = [A, A]-Z(ga) = 0.
Corollary 2.23. Let A be a Novikov algebra, then Z(ga4) is an ideal of A.

Unfortunately, the notations AV, 4;(A) and Ay don’t give any further information
about a possible degeneration of some pre-Lie algebras A and B, as we will see later.
In order, to get a more substantial assertion about the structure of a pre-Lie algebra,
one has to define the above series using the multiplication of the pre-Lie algebra itself.

2.3.2 Ideals of pre-Lie and Novikov algebras defined via the
algebra product itself

Definition 2.24. Let A be a pre-Lie algebra. We make the following definitions:
6W(A) == 60"D(A) - sV (A), with 69(A) := A,
§'(A) == A-571(A), with 6°(A) := A,
0(A):=08_1(A) - A, with §(A) := A.

Remark 2.25. Let A be a pre-Lie algebra then the subspaces 0;(A) define ideals of
Afor all I € N (see [23, p. 885]).

For Novikov algebras we can establish the following results:

Lemma 2.26. Let A be a Novikov algebra then the subspaces 6;(A), §8'(A), and 5O (A)
are ideals of A for all |l € N.

Proof. The statement of remark 2.25 is in particular true for Novikov algebras.
We prove that 6'(A) is a right ideal of A by induction over [. Clearly A? is an ideal
of A so the case [ = 1 is done. Now suppose that the hypothesis is true for [ — 1. By
right-commutativity we have:

SUA) - A=(A-6"YA) A= (A A)-5A) C A-51(A) = &'(A).
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Evidently, 0'(A) is a left ideal and therefore an ideal of A.

To show that §¢)(A) is an ideal we apply induction on [ again. We know from the
case | = 1 above that A2 = §(A) is an ideal of A. We now suppose that 6=V (A)
is an ideal of A and deduce by the law of left-symmetry that §@)(A) is a left ideal of
A:

A- (5(”(/1) —A- ((5(1‘1)(A) . (5(1‘1)(A))
= (A0 (A)) - 80D (A) + 60D (A) - (A- 6D (A) — (5470(4) - 4) -5 (4)
C 6U(A) - 64D (A) = 60 (A).

By right-commutativity we see that §¢)(A) is also a right ideal of A:

5(1)(/1) A= (5(171)(14) . 5(171)(14 ) A=
= (0UV(A) - A) -6V (A) c 6D(A) -6 (A) = 6D (A).

Hence, 600 (A) is an ideal of A. O
Definition 2.27. We define the center of a pre-Lie algebra as
Z(A)={z€A|lz-y=y-z=0Vy € A}.
Because of the last Lemma we are now able to give the following definition.
Definition 2.28. Let A be a Novikov algebra. We call the chain of ideals
(5(0)(A) 5 (5(1)(A) SRS (5(1)(A) DEEE

the derived series of A. Similar to the Lie case we call the following two chains of
ideals

50(A)Ddl(A)D...D(gl(A)D_,_
6o(A) D6 (A) D - D§(A) D ---

the lower left- and right-central series, respectively. Finally we define ¢ (A) implicitly
by Z(A/5(l_1)(A)) = (5(1)(14)/5(1_1)(14) s with 5(0)(A) := 0 and denote by

00)(A) Comy(A) C--- Cop(A) C -
the upper central series of A.

Clearly 61)(A) = Z(A), which is an abelian ideal and contained in the center of
the associated Lie algebra.

Remark 2.29. Let A be a finite dimensional pre-Lie algebra. We call A solvable, if
6§D (A) = 0 for some I € N. We see that A is left- resp. right-nilpotent, if &;(A) = 0
resp. 0'(A) = 0 with [ € N,



2.4 The radical of a pre-Lie algebra 21

2.4 The radical of a pre-Lie algebra

Different from Lie algebra theory there is possibly more than one way of defining the
radical of a pre-Lie algebra. This observation is based on the fact that for pre-Lie
algebras left and right ideals need not to coincide. Usually the radical should be a
2-sided ideal in the algebra. Therefore we start with a definition, that is motivated
by Lie algebra theory.

Definition 2.30. Let A be a finite dimensional pre-Lie algebra. We denote by sol(A)
the maximal solvable ideal in A and call it the solvable radical. Furthermore let nil(A)
be the maximal left-nilpotent ideal in A. We call it the left-nilpotent radical of A.

Remark 2.31. The ideals sol(A) and nil(A) are unique, since the sum of two solvable
(left-nilpotent) ideals in A are again solvable (left-nilpotent). We have

nil(A) C sol(A). For a proof of these statements we refer to [11] and the citations
given therein.

In addition let us consider the symmetric bilinear form s on A definded by
s(a,y) = tr R ()R (y).

Another way of associating a radical to the pre-Lie algebra A is by the kernel of
the form s:

At :=kers={ac A|s(a,b)=0Vbec A}.

Finally we give a somewhat different but perhaps more comprehensive definition
of a radical. Before we can do so, we need the concept of completeness.

Definition 2.32. A pre-Lie algebra A is called complete if for every = € A, the linear
transformation Id4 +RA(z) : A — A is bijective.

Due to the work of D. Segal (|60]) we have the following result.

Theorem 2.33. Let A be a finite-dimensional pre-Lie algebra over a field K of char-
acteristic zero. Then the following conditions are equivalent:

1. A is complete, i. e. Ida +R™A(z) is bijective for all x € A.

2. The linear transformation R*(x) has no eigenvalue in K\ {0} for all x € A.
3. A is right nil, meaning R (x) is nilpotent for all x € A.

4. tr(RA(z)) = 0 for all v € A.

We remark, that point four of the last Theorem is in practice probably the easiest
way of deciding whether an algebra is complete or not. Now we are able to give a
definition of a radical, which is due to Koszul, see [35].

Definition 2.34. Let A be a pre-Lie algebra and T(A) = {z € A | trR4(z) = 0}.
The largest left ideal of A contained in T'(A) is called the radical of A and is denoted
by rad(A).
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It was remarked by Helmstetter (|35]) that rad(A) need not to be a 2-sided ideal in
general. He constructed a pre-Lie algebra B = End(A) @ A with an arbitrary pre-Lie
algebra A by defining a product

(f7 a)(gvb> = (fg + [L(a’)vg]7a b+ f(b) +g(a>>

for a,b € A and f,g € End(A). If A is not complete then rad(B) = 0. If A is
complete and not abelian then rad(B) is not a 2-sided ideal in A.

The reason why we introduced all these different definitions is because they all
define semi-invariants with respect to degeneration. Moreover we have the following
relation ([19]).

Theorem 2.35. Let A be a finite-dimensional pre-Lie algebra over C. Then we have

nil(A) C rad(A) C A+ C T(A).

2.5 The left-multiplication operator L4 (x)

The map L4 (z) : A — Ais linear and can therefore be written as a matrix by choosing
a fixed basis. The map L : A — Endg(A) that associates to each element = € A its
left multiplication is an algebra representation of A. If not mentioned otherwise we
will always regard L*(z) as a matrix in M, (K). Furthermore this representation, and
hence the matrix L#(z) determines the algebra structure of A completely. Indeed, let
(é1,...,e,) be a basis of the algebra A. An element z € A can therefore be written
by x = Zk rrer. We want to see how the structure constants refer to the matrix
LA(z) and therefore compute L*(e;):

We have LA(z) = 7" | ;1.4(e;) and so L*(z) takes the form:

D TiCH Dy TiChy

L (x) = : - :
Do TiCh D Tich,

In what follows we identify some useful structural properties of the algebra A

within the matrix L*(z). The reason for this is, that in most cases it is easier to
work with L#(z) rather than with methods using structure constants.

Definition 2.36. Denote by M, ,(K) the ring of matrices with s rows and ¢ columns.
Let the projection maps p;, ¢, : M (K) — M;_,:(K) be defined by

Pr(mijicics = (Mij)icico—r

QT(mij)1<i<8 = (mz‘j)r+1<z<s

with 1 < j < t. We can also say that the map ¢, cuts off the first r rows from a
matrix M = (m;;), while p, cuts off the last r rows from a matrix M = (m;;).
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Now, consider a d-dimensional vector subspace W of the algebra A generated by
the first d basis vectors. The subspace W formed by the last n — d basis vectors
completes W to yield A = W @ W as a vector space. An element in A shall now
be given by x @ T, where 2 € W and T € W. Regarding this decomposition we can
write L4(z) in terms of block matrices. We make the following definitions:

R:=p, (L2 ®T)|w) € Mgq(K)
S = pp_aL 2z ®T)|57) € Myp_a(K)
T = qu(L*(z & T)|w) € My_qa(K)
U= qu(L(z @ 7)) € My—an-a(K)

Proposition 2.37. With the considerations made above the left multiplication of an
element x T in A takes the form:

LAz ®7) = (? 5)

Proof. The proof will be examined for R, the other cases are similar. The block
matrix of LA(z @ T) formed by the first d rows and columns is defined by the value
of the basis vectors e; for 1 < i < d. Applying L (x @ T) to e; gives the i-th column
of LA(x @ 7). The projection map p,_4 takes the first d components of this vector.
O

(2.1)

We are now able to proceed with the following Lemma.

a basis of

Lemma 2.38. Let A be an algebra of dimension n. Let (eq,...,e,) be
= (?5) from

A and W = (eq,...,eq)x. Consider the decomposition LA (x & T)
Proposition 2.37. The following statements are equivalent:

1. The subspace W generates a subalgebra of A.
2. The structure constants c- are zero for 1 <i,j <d <k < n.

3. The block T is independent of x.

Proof. (2) < (3): Regarding the basis (ey,...,e,) we can write an element of A
by 1 ®T = Z?Zl Ti€; ® Y144y Tiei- The direct sum used for elements shall indicate
that = and T refer to two different subspaces, namely W and W. With this notation
we evaluate LA (z © T) at e;:

L .T@I szez e D szez €]
i=d+1
_ ka 11'@ Zlek D Z’L d+1 ZZ 1f1 flek forl l < d,
Sl e Ticher © 2 a1 2 Ticher  ford +1 <1
(2.2)

From this we can immediately deduce that cfj =0for1 <i,j<d<k<nifand
only if ¢4(L*(x @ T)|w) is independent of x.
(1) < (2): A subspace W is a subalgebra if and only if for any two basis vectors
ei,e; € W the product e; - ¢; lies again in WW. By definition of the structure constants
this is the case if and only if cfj =0for1<s,7<d<k<n. O
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basis of

Lemma 2.39. Let A be an algebra of dimension n. Let (e, ... ) ea
= (&5) from

A and I := {ey,...,eq)x. Consider the decomposition LA(z @
Proposition 2.37. The following statements are equivalent:

1. The subspace I generates an ideal of A.

2. The structure constants cfj are zero for L <i<d<k<n
and 1 < j<d<k<n.

3. The block U 1is independent of x and T = 0.

Proof. (1) < (2): In addition to a subalgebra a subspace I of A is a two-sided
ideal if and only if for any e; € I and e; € A the products e; - e; and e, - ¢; lie again
in I. In terms of structure constants this condition can be written by cfj = 0 for
I1<i<d<k<nandl1<j<d<k<n.

(2) < (3): In view of equation (2.2) we have

LA(JZ@E)(Q) _ z;ik 1%65%@2? d+1 Zldc lfcflek fOI‘l [ < d?
Zz 1 21 Ticher ® D d+1 Zk | Tichey ford +1 <1
(2.3)
We see that in the above equation for [ < d no basis vector e, with & higher than
d appears. This is equivalent to [ is a left ideal or T" = 0. Conversely, if T =
qa(LA(x & T)|w) = 0 then % has to be zero for | < d and d + 1 < k. Similar, like in

the case for a subalgebra I is a right ideal if and only if U is independent of x. O

As a direct consequence of the proofs of Lemma 2.38 and Lemma 2.39 we note:

Corollary 2.40. Let A be an algebra of dimension n. Let (eq,...,e,) be a basis
of A and I := {eq,...,eq)x. Consider the decomposition L (z ) = (£7) from
Proposition 2.37. We have the following statements:

1. The subspace I generates a left ideal of A if and only +f T = 0.

2. The subspace I generates a right ideal of A if and only if U is independent of
x.



3 Semi-invariants of degenerations

We refer for this chapter to the various definitions made in chapter 2. The ground
field K is always supposed to be C, except otherwise noted.

In this chapter we present methods to gain information about whether a given pre-
Lie algebra degenerates to another one or not. Like this was done in the Lie algebra
case (see for example [46], [18] and [32]), one tries to associate certain quantities to an
algebra, that transfer algebraic properties. If these carry over within the degeneration
process, we can restrict the possible degenerations by filtering out those structures
which share the same algebraic properties. Such quantities will be called invariants.
Unfortunately, most of the quantities, for which there can be made an assertion under
degeneration, we find that they perform inequality rather than equality. Nevertheless
they play an important role in the theory of degenerations and are called semi-
invariants. The aim of this chapter is to generalize the existing invariants and semi-
invariant for Lie algebras to pre-Lie algebras if this is possible. Furthermore we add
new results and demonstrate the close relationship between Lie algebra and pre-Lie
algebra degeneration.

3.1 Getting new degenerations from old one

Definition 3.1. Let {A;}, i € I be a family of pre-Lie algebras. We take the direct
sum of vector spaces:
A=P A

el
Let x,y € A where x = (z;) and y = (y;). We define x -y := (z; - ;). In this way A
becomes a pre-Lie algebra, called the direct sum of the pre-Lie algebras A;.

Lemma 3.2. Let A and B be two n-dimensional pre-Lie algebras with A —4eq B.
Furthermore let C' and D be two d-dimensional pre-Lie algebras with C' —4eg D, then

AEBC—)degB@D.

Proof. By definition of the direct sum the left multiplication by an element x &
in A ® C can be written as follows:

Leen)(yey) =(eeT) (yoy) =c yoT -7=L")() & L@)[@)
If we write this left multiplication in form of a matrix, we get

LAEBC(I EBT) — LA(QZ) D LC(§> = (LAO('T) LCO(E)>

Now, by assumption there exist matrices g. and h. with L(z) = lim._,0 g. - L*(z)
and LP(Z) = lim._,o h. - LY(Z). We define G. := (% ;). Then it follows that the
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inverse of the matrix G, is formed by the inverse of the matrices g. and h.. Therefore
we have!

. A(g= (e <!
ll_I}(l)Ge'( ( )@LC _ll_%(g()s )(L e ())LC(hgl(@))(go hgl)
ELA x))gs 0
= lim (* " hacost @)
A xX
_ }:E%(QSL ( e LC ))
B(

( ? DO(E)) = LB( ) & LD@)

In conclusion we have proved that A ® C —4., B ® D with degeneration matrix G..
O

Corollary 3.3. Let A and B be two n-dimensional pre-Lie algebras with A — 4oy B.
For an arbitrary d-dimensional pre-Lie algebra C' the direct sum A & C' degenerates
to B® C. In particular we have A @ C? —4eq B ® C? where A® C? is the (n + d)-
dimensional pre-Lie algebra formed by adding a d-dimensional abelian component.

Remark 3.4. This corollary enables us to shift a degeneration diagram from an
arbitrary dimension to any higher dimension. We will explicitely use this technique
in chapter 4 of this work by classifying all degenerations of 3-dimensional Novikov
algebras with associated abelian Lie algebra.

The following Lemma was established for complex Leibniz algebras in [1].

Lemma 3.5. Let A be a pre-Lie algebra of dimension n that contains an element,
which does not generate a one-dimensional subalgebra of A. Then A —qeq B®C" 2,
where B s a two-dimensional non-abelian nilpotent pre-Lie algebra.

Proof. Let x € A be nonzero. Because = doesn’t generate a one-dimensional
subalgebra of A, we have x - x = y with x and y linearily independent. Therefore
x and y can be included in a basis of A: e; = z, es = y, e3...e,. By setting
giler) = t7ley and gi(e;) = t72%; (2 < i < n) for g¢ € GL,(C(¢)), we obtain a
degeneration A —qe, B @ C"2, where by subsection 4.1.1%, B is a non-abelian,
nilpotent pre-Lie algebra that is unique up to isomorphism. O

3.1.1 Degenerations of quotients

Proposition 3.6. Let A and B be two n-dimensional algebras over the field C. If
A —qeg B and I is a left respectively right ideal of A then there exists a left respectively
right ideal J of B, which is as a subalgebra a degeneration of I. As a consequence
any two-sided ideal in A degenerates to a two-sided ideal in B. In particular every
subalgebra of A degenerates to a subalgebra of B.

Proof. We perform a change of bases so that the ideal I is generated by the
first d := dimc [ basis vectors. We denote this new algebra by A and again I :=
(e1,...,eq) C A. By Theorem 1.17 every degeneration can be accomplished by

'We remark that a central dot behind a matrix denotes the action of basis change by this matrix.
If there is no dot we have the ordinary matrix multiplication.
2The algebra B is isomorphic to the algebra Us in the notation of subsection 4.1.1.
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the orbit closure with an upper triangular matrix B. followed by an appropriate
isomorphism. Because every upper triangular matrix stabalizes a subspace of the
form (eq,...,eq) for 1 < d < n, we have:

A:=B.(B-Y(I)- B-(A)) ¢ B.(I- A) ¢ B.(I) C I and

«(BZ'(A)- B-Y(I)) € Bo(A-1) € Bo(I) C I,

for a left respectively right ideal I of A. What we get is a sequence of isomorphic
ideals, formed by the first dim I basis vectors, that converges as the parameter ¢
approaches zero:

ToA:=liml-.AcCIand
e—0

E~OI::limg'EICI.
e—0

The same argument can be applied for the degeneration of subalgebras. O

Remark 3.7. Every ideal is an algebra and therefore we can find for d := dim [ a
matrix G. € GL4(C) that degenerates an ideal of A to one in B. In fact, we will
show by the next Theorem that this degeneration of ideals is so to say “embedded”
in the corresponding degeneration of algebras.

The following theorem has already been formulated and proved for Lie algebras by
Roman Popovych. A draft of the paper in which this theorem appears reached the
author via private communications.

Theorem 3.8. Let A and B be n-dimesional algebras defined over the field C and
suppose that A —qeg B. Let

oclhchc---Ccl,CA

be a nested sequence of left respectively right ideals of A then there exists a nested
sequence
ochcCchCc---CJ,CB

of right respectively left ideals of B such that for 1 < i < m there exists a degeneration
I; —aeg Ji- If moreover all ideals are supposed to be two-sided then there exists for
all i and j with 1 <1 < j <m a degeneration I;/I; —qeg Jj/J;.

Proof. The first statement concerning the degeneration of a nested sequence of
right or left ideals follows from Proposition 3.6 via induction over m € N.

The second statement concering the degeneration of factors is a little bit more
complicated. Nevertheless we can again use induction for which it suffices to prove:

A/] _>deg B/J,

if A —4eg B and [ is an arbitrary two-sided ideal of A. The idea of our proof is
the following. From Proposition 3.6 we know that there exists an ideal J in B
such that I —4es J. Therefore the factor B/J also exists. Moreover for any to A
isomorphic algebra G. - A, G, being the degeneration matrix, we have ideals I. which
are isomorphic to I and hence A/l = G, - (A/I.). The result is a sequence of factors
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isomorphic to A/l that converges to B/J. What we have to do now is to find a
degeneration matrix that corresponds to this sequence.

So fix a basis (e1,...,e,) and let (cf;) be a point in Alg,(C). Consider the pro-
jection map 7 : Alg, (C) — Alg, ,(C) defined by n(c};) = (¢};)as1<ijhen. This map
describes formally the process of factoring out the first d basis vectors of an arbitrary
C-algebra and is a morphism of affine algebraic varieties. Of course, the resulting
vector of structure constants (cg)d+1<i7j7k<n defines a C-algebra if and only if the first
d basis vectors form an ideal of the algebra. That’s why we assume, without loss
of generality, that the ideal I is generated by (ei,...,eq). Let T := (e41,...,¢en)c,
which need not to be an ideal of A. As a vector space we now can decompose A by
A=1&1. In view of Lemma 2.39 we can describe the fact, that the first d basis

vectors generate an ideal, in terms of the left multiplication by an element x &7 € A,

reland T e l, by
W . (RS
L(x@x)—(o U

where R := p, (LA (z ®7)|1) € Mga(C), S := pp_a(LNz D T)|7) € My,_a(C), and
U = q(LA(2®7T)|7) € My_g,—a(C).? Notice that the (n —d) x (n — d)-block matrix
U does not depend on z.

Now, we rewrite the projection map 7 in terms of L*(z) for z € A. Therefore we define
the projections ¢ : A — I by 1(z) = Y nearr zker and o My, o (C) = My_g—a(C) by
¢ 1 (aij)i<ijon = (@ij)ari<ij<n- Hence, m(LA(x®7)) := o(LA(¢(z®7T))) corresponds
to the projection map 7 on the space of structure constants.

To prove the theorem we have to show that there exists a family of matrices {g.}
such that

m(L(a)) = limg. - 7(LA(@)).

By Theorem 1.17 we can assume that the degeneration matrix for A — 4., B has the

form G, = (g g), with C' € GL4(C). Note that the blocks C, D, and E also depend

on the degeneration parameter e. Setting (3) := (§ g)‘l(g), and

D:=-C'DE!
we calculate the basis change of L4 (x @ ¥) by G.:

Ge LYz ®7) = G.L (y 9 9)G.!
— (Cﬁcfl C(R7D+§E;1)+DUE*1)).
0 EUE!
where R := p, oLy ® Y1), S := puaLA(y ®7)|7), and U = q(LA(y © 7)|7).
As long as € > 0 the action of G. on Alg, (C) is an isomorphism. Therefore, as
can be seen by the above equation, the matrix G, leaves the subspace I invariant.
Furthermore the block EUE~! does not depend on y and hence not on z. Consulting
Theorem 1.17 again, we see that the subspace [ is still an ideal of G, - A.
Now, as A —geg B, the limit of G, - L4(x @ T) exists and so do the limits:
lim CRC™!,

e—0

lim C(RD+ SE ')+ DUE™),
E—>

lim EUE™".

e—0

3For the exact definitions of p,_q and gq we refer to section 2.5.
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As a consequence

lim EUE™"

e—0
does also not depend on z, which is beside ¢4(LP(z @ T)|;) = 0 a sufficient condition
for the subspace J := (e, ..., eq)c of B to generate an ideal of B. The structure of
J is given by lim._,o CRC~!. We can therefore consider 7(L?(z @ T)). Moreover the
limit of EUE~! is independent of the other blocks in the matrix representation of
LB(z ® ), which means that the projection m and lim commute. The calculation of
7(LP(x ® 7)) is done as follows:

7(LE(z © 7)) = lim (G, - LA(z & 7))

e—0
T TA(=
= lim o(G. - L7(T))
e—0
_ . A -
= ll_r}%E 7(L%(z & T)).
We see that if we choose g. = E the projection of L4(x @ T) degenerates to the
projection of LE(z @ 7). O

This Theorem has some immediate consequences for the orbit closure problem of
degenerations. It relates a degeneration in a certain dimension with degenerations
in lower dimension. The following Corollary demonstrates how the Theorem can be
used to classify degenerations.

Corollary 3.9. Let A,B € Alg,(C) and I be a d-dimensional ideal in A. If A/I
doesn’t degenerate to any (n — d)-dimensional C-algebra or I doesn’t degenerate to
any d-dimensional ideal of B, then A cannot degenerate to B.

As another consequence we get a statement that was already proved by C. Seeley
for Lie algebras.

Corollary 3.10. Let A, B € Alg,,(C) and A —qes B then
AJZ(A) =4 B/Z(B) & C?
where d := dim Z(B) — dim Z(A).

Proof. Without loss of generality we can assume that the centers of A and B are
formed by the very first basis vectors. Hence, with degeneration matrix g. we have
J =lim. ,0g. - Z(A) C Z(B) and

AJZ(A) —4eg B/ J.

The center of B/J is of dimension dim Z(B)—dim Z(A) =: d and clearly degenerates
to C. O

3.1.2 Degenerations related to associated structures

In the definition of section 2.1 we associated to a given pre-Lie algebra A a Lie algebra
g4. The degeneration of these two structures are related in the following way.
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Lemma 3.11. If A =4z B, then ga —raeg 95, for the associated Lie algebras.

Proof. Let (eq, ..., e,) be a basis of the underlying vectorspace. Denote the product
in A by e; - e; and that in B by e; * e;. The Lie products are then given by

leisejla=ei-ej—ej-e; and [e,ej]lp=¢€ xe; —ej*e;.
We have
lim g.([g9-" (1), 9" (e)]a) = lim g (g (e5) - 9" () — 9= (e5) - 9 (e3))
e—0 e—0

= lim g. (9= (e:) - 9= () — lim g (e;) - 9" (es)

e—0

=€, %€ —€j %€
= [ei, ¢5]B

O

Remark 3.12. This lemma will give us a useful tool to work with in chapter 4,
where we classify all possible degenerations of pre-Lie algebras with dimension two
and of Novikov algebras with dimension three. Considering the Hasse diagram of
orbit closures in a fixed dimension we see that pre-Lie algebra degenerations form
a refinement of Lie algebra degenerations. These diagrams for Lie algebras up to
dimension four have been studied well (for example [18], [46]).

We give another example which is in some sense dual to that of an associated Lie
algebra.

Definition 3.13. Let A be a pre-Lie algebra. We define an algebra structure asso-
ciated to A by LA(z) := L*A(x) + R%(z) and denote it by j.

Lemma 3.14. Let A and B be two pre-Lie algebras with A —qeg B. Thenja —deg i B-

Proof. The proof is similar to that of Lemma 3.11. O

Remark 3.15. If A happens to be an associative algebra the associated algebra j4
is a Jordan algebra. Other than in the case of special Jordan algebras we drop the
factor 1/2, for it makes computations easier here.

The argument used in Lemma 3.11 can be adapted for arbitrary associated struc-
tures.

In general for those structures we don’t have a full degeneration diagram like in
the Lie algebra case, but for practice this is not necessary.

3.2 Semi-invariants under degeneration

Like in the sections before we want to state our theorems for the most general class
of algebras, namely Alg, (C). Ouly in the cases where a special definition of pre-Lie
algebras is used, we restrict ourselves to that kind of algebras.

Definition 3.16. Let f: Alg,(C) — R be a function, that is semi-continuous. We
call this function a semi-invariant, if f is either increasing or decreasing with respect
to a degeneration. In other words, for all A, B € Alg, (C) with A —4., B we have

either f(A) < f(B) or f(A) > f(B).
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Definition 3.17. For an arbitrary algebra A let ab(A) be the maximal dimension of
an abelian subalgebra of A, where a subalgebra W C A is called abelian, if z -y =0
for all x,y € W. Furthermore we denote by ab}(A) the maximal dimension of an
abelian right ideal of A and by ab’(A) the maximal dimension of an abelian left ideal
of A. The maximal dimension of a two-sided abelian ideal is denoted by ab;(A).

To prove the next Lemma and the following Corollaries we use a technique of
Grunewald and O’Halloran |32 developed to classify degenerations of nilpotent Lie
algebras of dimension 5. We show that this method can be generalized for arbitrary
algebras defined over C.

Lemma 3.18. Let A, B € Alg,,(C). If A —qeg B, then ab(A) < ab(B).

Proof. Construct a subset A, of Alg, (C) in the following way:

A, ={A=()iju |y =0if n—2z+1<i,j<n} (3.1)
This set collects all C-algebras that contain an abelian subalgebra formed by the
last z basis vectors. Because every C-algebra A with ab(A) > z has a representative
in A,, this set describes formally all C-algebras A with ab(A) > z. The set A, is
clearly Zariski closed and B,,(C)-stable because of [32] (1.5). If W C A is an abelian
subalgebra of dimension z, we conclude by Theorem 1.17 that the algebra B lies in
GL, - A,. O

Corollary 3.19. Let A,B € Alg,(C) and A — 4oy B, then abj(A) < abj(B) and
abt(A) < abl(B).

Proof. We have to modify the set A, in the following way. Let
AR(Z):{A:(CZ)U’]Q’CU}C:O if 1<k§n—z+1<z<n},
AL(,Z):{A:(CZ)ZM =01 1<k<n—z+1<j<n}

The set Agr(z) collects all C-algebras, that contain a right ideal formed by the last z
basis vectors. The set Ay (z) does the same for left ideals. Let A, be as in the lemma

before. Because Ag(z) and Ap(z) are closed and B-stable, the sets Ag(z) N A, and
Ap(z) N A, are closed and B-stable and therefore Theorem 1.17 applies again. O

Corollary 3.20. Let A, B € Alg,,(C) and A —4eg B, then abj(A) < ab;(B).

Proof. We have ab;(A) = ab’(A) Nab’(A). As the intersection of two B-stable
sets, a two-sided ideal is again B-stable and it is closed by definition of the Zariski
topology. Hence, by Theorem 1.17 we are done. O

As an immediate consequence we get:

Corollary 3.21. Let A, B € prelie,(C) and A —4eg B. According to definition 2.17
we have dim AY > dim BY and dim v (A) > dim ,(B).

Proof. For a proof see [46]. O

Because of Lemma 3.11 the last Corollary and furthermore all invariants and semi-
invariants of Lie algebras associated to a pre-Lie algebra give no additional informa-
tion about a possible degeneration of two pre-Lie algebras.

Fortunately, we are able to show that out of series of pre-Lie algebras, as defined in
section 2.3, there also emerge new semi-invariants. To prove this we use a technique
introduced by Roman Popovych in [46] for Lie algebras.
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Proposition 3.22. Let C be the field of real or complex numbers and M,, € M,, ,(C),
p € N. Let (M,) be a sequence of matrices (parametrized by p) for which there exists
a componentwise limit lim, o M, =: My. If rank M, = r for all p € N, then
rank My < r.

Proof. We identify the space of all m x n matrices with C™”. The subset of all
matrices M € M, , with rank M < r is an algebraic subset of C™". O

Lemma 3.23. Let A and B be two n-dimensional pre-Lie algebras with A —qeg B.
Then dimA- A > dim B - B.

Proof. First, if A2 := A- A = A, then of course dim B?> < n = dim A = dim A2,
causing no contradiction with the hypothesis. So let us suppose that dim A% < n.
The key argument lies in the realization of dim A2 in terms of the structure constants.
For an exact language we write the structure constants by the algebra product, using
the dual vector space V*. So let (eq,...,e,) be a basis of the underlying vector space
V, then (e',...,e") is a basis of V*, where (¢',e;) = 65.* Under this notation we
can write cj; = (e*,e; - ;). By assumption, dim A < n, and therefore we can fix at
least one k, for which ¢; = 0 for 1 < ¢,j < n. Building up a matrix C' := (¢} )k,(i.j),
consisting of all structure constants, where the index k£ runs the row range and the
index pair (7, j) runs the column range, we see that the rank of this matrix corresponds

to dim A%. Moreover, C defines the algebra completely. It takes the form:

1 1 1 1 1 1
Cél e C%n Cgl e C%n e Cgl e an
iy €, C3 t+ Cyy tt Cpp ottt Chp

n n n 13 n n
Yy -+ O, €y o+ Cy, ottt Chp ottt Cop

Let X\ be a structure representing A. Assuming the existence of a degeneration,

we can find a sequence of algebra structures g, - A =: A, all isomorphic to A and
lim, o0 gp - A = Ao, where A represents B. Letting ¢}, = (e, \(e;, ¢;)) denote

the structure constants of \,, we define C), in the same way like C, but formed by
cy;; instead of ¢f;. Then, the degeneration A —4e, B can be reformulated by the
componentwise convergence of the matrices Cy: lim, .. C, =: Cy. In terms of the
structure constants we have cf . = (", A\(e;, €;)) = ¢f,; = (¥, Xo(es, €5)) as p — oo.

Clearly, rank C,, = rank C' =: r, and therefore, by Proposition 3.22 rank Cy < r,
ie. dim B? < dim A2 O

Corollary 3.24. Let A and B be two pre-Lie algebras with A —4es B, then
dim 6V(A) > dim 6" (B).

Proof. We can prove this corollary in a similar way as in Lemma 3.23. We can find
a matrices Cy for which rank C; = dim 6 (A). O

Corollary 3.25. Let A and B be two pre-Lie algebras with A —qe B. If A is
solvable, then so is B.

4The symbol 5;» denotes the Kronecker delta.
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Proof. If A is solvable, there exists a number m € N such that 60™(A) = 0. By
the last corollary we get dim 6™ (B) < dim §(™(A) = 0, so B is solvable. O

Lemma 3.26. Let A and B be two pre-Lie algebras with A —q4es B, then
dim 6'(A) > dim 6'(B) and dim 6;(A) > dim 6;(B).

Proof. We want to use the technique that was arranged in the proof of Lemma 3.23.
For our purposes here, we construct matrices C'~1(A), for which

rank C'~*(A) = dim 6'(A).

We can then use the argument of the convergence of minors, established in Proposi-
tion 3.22, again. The next few arguments are very technical, so we better examine
them step by step. First we treat the case §%(A). For this we calculate

n n
_ k _ k m
e -(e;-ej) =¢ E ciier = E CiiClkem
k=1 k,m=1

and therefore find that the rank of the matrix (3 _; ¢};¢c )m,.j,) 18 equal to dim §%(A).
Similar for 0*(A) we compute the matrix (3. _ cfi¢iRch,)p i), Which rank is
equal to dimd®(A). We can now see how those matrices can be built up in the
general case. Let [ be arbitrary and

n
1—1 L E : i1 J2 Ji—1
C (A) T ( C’Z1izcg3j1 to Ciljl_g)jl—lv(il 77777 il)7

J1yeeji—2=1

then dim 6'(A) = rank C'~1(A). The proof for dim &(A) is very similar. 0

Corollary 3.27. Let A and B be two pre-Lie algebras with A —qeq B. If A is right-
nilpotent, then also is B right-nilpotent. The same condition holds for left-nilpotency.

Proof. As in the case of solvability, if A is right-nilpotent we can find a number
m € N such that §™(A) = 0. Because of the last lemma we have

dimé™(B) < dimdé™(A) =0

and therefore B is right-nilpotent. The same argument holds for left-nilpotency. O

Definition 3.28. We call the following sets the left resp. right annihilator of a
pre-Lie algebra A:

Amm (M) ={x€Aly-2=0 Yye M}
Amp(M)={recA|lz-y=0 Vye M}
Lemma 3.29. Let A, B € prelie, (C) and A —4ey B. Then

dim Anng(A) < dim Anng(B) and dimAnng(A) < dim Anng(B).
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Proof. Let x € Annp(A) and x = Y7 je;. It follows that
€T = Z(Z xjcfj)ek =0
k=1 j=1

and therefore Z?zl mjcfj =0 for 1 <7,k < n. We can express this fact by a matrix
equation:

1 1 1

C%l 0%2 A C%TL xl

€1 Cop "7 Cogy L2

. o =0
n n n

Ch1 Cn2 " Cpp Tn

where the index j runs the column range and the index pair (i,k) in the structure
constant runs the row range. We can now say that an element x is contained in
Anny (A), exactly when it is in the kernel of the above matrix C. Using

dim Ann(A) = dimker C' = n* — rank C

and Proposition 3.22 we find that dim Anny(A) < dim Ann(B).

For the second identity we compute = -e; = > (37 x;¢j;)er, = 0 and find

2?21 xjcfi =0 for 1 <4,k < n. Therefore we just have to change the indices 7 and

j in the equation for Anny(A) and conclude that Anng(A) also defines the kernel of
a matrix consisting only of structure constants. O

Lemma 3.30. Let A, B € prelie,, (C) and A —4ee B. Then dim Z(A) < dim Z(B).

Proof. Refering to the proof of Lemma 3.18 we immediately see that the set of
structures with a center formed by the last z basis vectors, is a subset of A,. It is
therefore B-stable and of course closed. O

Corollary 3.31. Let A,B € prelie,(C) and A —qs B. Then dimdg(A) <
dim5(l)(B).

Proof. This proof is similar to that of Lemma 3.23 as can be seen in [46]. O

We recall the various definitions made about the radical of a pre-Lie algebra that
resulted in Theorem 2.35.

Theorem 3.32. Let A, B € preLie,,(C) and A —4e; B. Then the following relations
hold:

2. dlmC AJ‘ < dlm(c BJ‘.
3. dim¢rad(A) < dimg rad(B).

4. dim¢ nil(A) < dime nil(B).
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Proof. (1) According to our previous notation let

A, : = {A € preLie, (C) | tr(R*(e;)) = 0 if 1 <i < 2}
= {A € preLie,(C) | dimT(A) > z}.

Then A, is B, (C)-stable for some Borel subgroup B, (C) of GL,(C). Indeed, let
A€ A, and b € B,(C), so tr(b- R4(e;)) = tr(bRA(b1(e;))b71) = tr(RA(b7(ey))). If
1 < i < 2, which means that e; € T(A), then clearly b=!(e;) € T(A). We conclude
that tr(b- R4(e;)) = 0. Of course, A, is Zariski closed as its elements are roots of the
polynomials tr(R%(e;)) = 0. Theorem 1.17 applies and we are done.

(2) The dimension of the kernel of every bilinear form on A defines a semi-invariant.
(3) We can easily conclude this from point one. We have already seen that a maximal
ideal of a fixed dimension defines for itself a B-stable and Zariski closed set A;. As
an intersection of A, with Ay, the ideal rad(A) also defines such a set. Theorem 1.17.
applies again.

(4) The same argument as in (3) applies for left-nilpotency. O

3.2.1 Semi-invariants given by dimensions of certain vector
spaces

In this subsection we show that there are innumerable many possibilities for finding
semi-invariants by defining certain equations in linear operators. To motivate the
general procedure we start with two examples.

Definition 3.33. Let A be a pre-Lie algebra. Let o, 3,7 € C and define Der(, 5.,)(A)
to be the space of all D € End(A) satisfying

aD(z-y) = BD(x) -y + vz - D(y)
for all z,y € A. We call the elements D € Der(,3)(A4) (o, 3,7)-derivations.

The proof of the following Lemma can also be found in [6]. We bring it here once
more because we adapt the key argument for our main theorem in this subsection.

Lemma 3.34. Let A, B € preLie,(C). If A —qee B, then
dim Der(q 5. (A) < dim Der(, g.)(B)

for all o, 8, € C.

Proof. Let A\, u € preLie,, (C) represent A and B. Fix a basis (eq,...,e,) of the
underlying vector space. Then

lim (g o A)(es, ;) = ples ¢;)

e—0

for operators g. € GL,(C). For D € Der( 34 (A) we write D = (d;;)1<i,j<n. and
D(e;) = > -, diye;. We have e;-e; = 1, cfjek in A, with the structure constants
cj;. Since D is an (v, 3, 7)-derivation we have

n

Z(acéjdkl - ﬁcfjdzz‘ —chdy;) =0

=1
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for all 4, j, k. We can rewrite these n® equations as a matrix equation Md = 0 where d
is the vector formed by the columns of the matrix D = (d;;), and M is a n® xn* matrix
depending on ¢}; and «, 3, y. Thus we have ker(M) = Der(q,g,,)(A). If A degenerates
to B via g. we obtain a sequence of matrices M, with lim._,o M. = M, by compo-
nentwise convergence of the structure constants, where ker(My) = Der(, 5.)(B). Let
m be the rank of the matrix M. Then every submatrix of size (m + 1) x (m + 1)
has zero determinant. Because of the convergence the same is true for M. It follows
that rank(M) > rank(M,), or dim ker(M) < dim ker(Mp). O

This semi-invariant is also an important tool for determining the degenerations of
an algebra A. For Lie algebras it is not necessary to compute dim Der(,4)(A) for
all values of «, 8, € C, as was proved by Novotny and Hrivnak in [36].

Theorem 3.35. Let g be a Lie algebra. For any o, B,y € C there exists § € C such
that the subspace Der(, g)(g) is equal to some of the four spaces:

1. Der(50,0)(9)

2. Ders1,-1)(9)

3. Ders,1,0)(9)

4. Derg11)(9)-

Another important example motivated from Lie algebra theory is the following.

Definition 3.36. Let A be a pre-Lie algebra. A linear operator P € End¢(A) is
called a pre-derivation if there holds the following equation for all z,y, z € A:

Pz (y-2)) = (P(x)-(y-2)) + (@ (Py)-2)) + (- (y- P(2))).
The vector space of all pre-derivations of an algebra A is denoted by Pder(A).
Lemma 3.37. If A, B € Alg,(C) and A —4es B, then dim Pder(A) < dim Pder(B).

Proof. The proof follows as a special case from the next theorem. a

One thing that both examples have in common is the following. We are given
a product of a fixed number of elements in an algebra A with a certain kind of
bracketing. Moreover we have a linear operator, let’s say 7' € End(A), that permutes
its position within this product. We can now define a sum where each position of T’
in the product corresponds to summand with its own coefficient in C. Setting this
sum zero gives an equation in the operator 7. We are now going to formulate this
procedure in an exact way.

At first, we note that every operator T € End(A) may appear only once in

each product. Let p(zi,...,x,) denote an m-fold product in an arbitrary alge-
bra A given by the elements zy,...,x,, € A. For such a product there are exactly
b(m) = %(2;”__12) possiblities for bracketing types®. In everyone of those bracketings
an operator can take 2m — 1 positions, that is in front of every bracket and in front
of every factor. In terms of the left multiplication we can write p(z1,...,z,) as a
composition Cr, 1., (z1,...,2,) of m — 1 left multiplication operators.

®>Compare with [23].
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Example 3.38. One can find this example also in [23]. For m = 4 we have 5
bracketing types:®

x1 - (22 (T3 - 24)) = Ly, 0 Ly, 0 Ly, (24),

((xl . x2) . ]}3) Ty = LLLII(12>(Z‘3)(J}4),
(21 - @2) - (23 4) = Li, (20)(Las(24)),
(z1- (22 23)) T4 = LL, (L, (2s))(T4),

z1 - (29 23) - 24) = Lay (LL,, (a5) (T4))-

The following definition shall help us to indicate the exact position of the operator
T € End(A) in the product.

Definition 3.39. Let A € Alg,(C) and Cf,  r, ,(21,...,2) denote an m-fold
product in A with arbitrary bracketing. For T' € End(A) we define:

Wi(T)(CLl,.‘.,Lm_l(xla e ,xm)) = CLl,...,Lm_l(»Tla cee ,T(»’Ci), e 7$m)7

Pi(T)(CLl,...,Lm,l(%, ce 7xm)) = CLl,...,ToLi,...7Lm,1(xh ce 7xm)'

Definition 3.40. Let A € Alg,(C) and «;,5; € C for all 7. For a linear map
T € End(A) and an m-fold product Cp, . p.. ,(x1,...,2,) we define the following
function:

Zalﬂ-ﬁ CLL oL — 1<x17~--7 +Zﬁzpz CLL oL — 1($1,...,$m)).

Furthermore we define the following set:

Viap(A4) :=={T € End(A | forPmd Py — 0 for all @y, ..., 2 € A}

Cz ;L5 7am

The products C; run over all bracketing types, of which we got b(m) = %(27?:12)
many. Also note, that the o/s and ('s correspond to the products C;. For every
C; we therefore have other o/s and 's. The collection of all o/s and S’s, which are

associated to the various products, will be denoted by the index (@; () in Vias (4).

Clearly, the set V(;5,(A) is a vector subspace of End(A) and therefore of dimension
2

< ns.
Remark 3.41. The above definitions look a little bit complicated, but their motiva-
tion is very simple. As we contemplated in the introduction of this subsection, every
equation linear in an operator 7' € End(A) might define a new semi-invariant.” To
write down all the different terms that arise in an equation an operator can appear
in, we have to determine the position of the operator. In fact this is what we do in
the above definitions.

6The last bracket, surrounding the whole term, is ommited.
"That this is actually true follows from the next Theorem.
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To derive our previous special cases Der(,,5+)(A) and Pder(A) from this general-
ization we proceed with the following two examples.

Example 3.42. Let m = 2 then there exists only one kind of product, that is
Cu(r,y) = La(y) =z - .
The function fo(T') then takes the form:
fo(T) =aT(x) - y+ asx-T(y)+ 51T (z-y).
If we set oy = 3, ap = 7, and B = a, we see that for (@; 3) = (o, ag; —f1)
Viag) (A) = Der(a g (A).

Example 3.43. Let m = 3 and Cp, 1,(2,y,2) = Ly o Ly(2) = (z - (y - 2)). If we set
a; = —f1 =1 for all 7 and By = 0 then we have:

fo(T) = (T(x) - (y-2)) + (& (T(y) - 2)) + (z - (y - T(2))) = T(x - (y - 2)).

Setting all indices corresponding to the other products Cp, 1,(x,y, z) equal to zero
guarantees that no other product than Cy, 1,(x,y, 2) appears in the defining functions

of the set V(55 (A). For (@;3) = (1,1,1; —1,0) we then have:
Viap) (A) = Pder(A).

With the above definitions we can now formulate the main Theorem of this sub-
section.

Theorem 3.44. Let A, B € Alg,,(C). Suppose that A —4es B then

Proof. The proof of the statement follows closely the argument brought in
Lemma 3.34. Therefore we take the notation over from there. We only have to show
that there exists a matrix M such that ker M = dim V|5 3/(A) and M(d) = 0. For this
we compute the functions fo(7") on the basis (e1, ..., e,) and find that the resulting
equations are linear in the elements d;;. Hence we can isolate those dj;s and put the
remaining factor together to form an element in the matrix Ms. Summing over all
possible compositions C' we get the desired matrix M. O

Remark 3.45. We can generalize this Theorem even more. Take for example more
than one equation and the resulting set of zeros still defines a vector space, which
dimension is a semi-invariant. In the same way we can choose more than one operator
T, having a similar effect.

3.3 Invariants under degeneration

As we have seen, most of our semi-invariants are not of a strict kind, by means
of the relations < and >. Therefore, in most of our cases such arguments won’t
give as much restrictions for degenerations as desired. One of the potentially most
powerful concepts of showing that a certain degeneration is impossible, is that of
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an invariant. Here we want to reserve this notion for a polynomial in terms of the
structure constants which is zero on the whole orbit of an algebra. If this is the case
for an algebra A, the same polynomial has to be zero on the orbit closure m So,
if for any other algebra B this polynomial does not vanish, B cannot lie in the orbit
closure of A.

For example, commutativity is such an invariant. If L4(z) respectively R*(x) denotes
the left respectively right multiplication operator in End(A), then commutativity of
A means that the polynomial T'(z) = LA(z) — R4 (x) satisfies T'(x) = 0 for all z € A.
This is clearly a polynomial invariant on the orbit of A. Hence if A is commutative
and B is not, a degeneration A —4, B is impossible. Another operator identity is
T(x,y) = [LA(z), R4(y)] = LA(2)R4(y) — LA(y)RA(z) = 0, which means that the
algebra A is associative. The formal details are recorded in the following lemma,
which also can be found in [6].

Lemma 3.46. Let A and B be two K-algebras of dimension n, where K is a field
of characteristic zero. Let T(zy,...,3;) be a polynomial in LA (xy),... LA (x;) and
RA(x1),...,RA(xy), the left and right multiplications by the elements 1, ... x,. Sup-
pose that T'(xy,...,x;) =0 in A, but not in B, then B ¢ O(A).

Proof. Let p: A — A’ be an isomorphism of K-algebras. Then ¢(x-y) = ¢(x).¢(y)
implies

LAz) =po LY (o (@) o', Rz)=gpoRY(p '(z)op "

If a polynomial 7" in the left- and right multiplications of A vanishes, then the same is
true for the left- and right multiplications of all K-algebra structures in the GL,-orbit
representing A, since a base change just induces a conjugation of the operator poly-
nomial. It follows that the operator identity holds also for all K-algebra structures
in the orbit closure. This completes the proof. O

This lemma gives us already a huge number of possibilities how to construct in-
variants, because we have no restriction on the polynomial 7'(z). We will see in the
next chapter, that considering 7'(x) as a polynomial in linear combinations of all
quadratic monomials in L4(x), L4 (y), R4(z), and R%(y) solves the case of all orbit
closures of 2-dimensional pre-Lie algebras. Unfortunately, not all polynomials in the
structure constants can be expressed in form of operator identities, that only involve
left and right multiplication by an element of A. For example we have (see [47]):

Proposition 3.47. Let A be an algebra over C. Let
T q(a,y) = tr(L (2)?) - tr(LA (y)?) — ¢ - te(LA ()" o L (y)?)

with p and ¢ in N. If T, ,(x,y) =0 for all z,y € A then T, ,(z,y) =0 for all x,y € B

with B € O(A).*

Proof. Follows from the next Lemma. O

8By definition T}, 4 (7, y) involves the operators L (x) and L#(y) and is therefore dependend on the

choice of a basis. If we say that the expression T, 4(z,y) equals zero for an algebra B € O(A)
we mean that T}, ,(z,y) stays zero if we replace L*(z) by LZ(x).
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Definition 3.48. Consider A € Alg,(C). If the equations
Thq(w,y) = tr(LA(@)") - tr(LA(y)?) — ¢ tr(L(2)” o LA(y)?) = 0

have a unique solution in c¢ for all z,y € A, then the number c is called the &, .-
invariant of A. In this case we write ¢ =: €, ,(A).

Remark 3.49. As already indicated in the definition above the equations T, ,(z,y) =
0 need not to have a unique solution in ¢. Two different cases can occur. First, the
expression T}, ,(z,y) is dependend on x and y. Second, the trace of LA(z)?P o LA(y)¢
is zero for all z,y € A.

The important property for the sucessful completion of the last proof lies in the
fact that the linear form tr: End(V) — C is conjugation invariant. Similarly to
the Killing form in the case of Lie algebras, we can regard the trace as a bilinear
form by ¢(A, B) = tr(A - B). The matrices A and B would usually be the left and
right multiplication by an element of some algebra. We know that tr(AB) = tr(BA),
which is a sufficient condition for conjugation invariance. So, trying to generalize the
trace in this way, we can take an arbitrary linear form ¢ with

p(AB) = p(BA), (3-2)

which is equal to ¢([A, B]) = 0. This means, that searching for linear forms satisfying
the identity above is equal to looking for elements in (gl,/[gl,, gl,])*, hence one-
dimensional characters of gl,. Because [gl,,gl,] = sl, and gl,/sl, = {k - Id, €
End(V) | k£ € C*} we have ¢: C* — C* with ¢(c) = ac for a € C*. Computing
the trace under the projection map w: gl,, — gl,/sl, we find that tr(c) = n - ¢ and
therefore p(c) = « - tr(c) by rescaling « in a proper way. In conclusion, searching
for new degeneration invariants by looking for conjugation invariant linear forms on
End (V) fails, because modulo scalars the trace is the only form of this kind.

Lemma 3.50. Let A be an n-dimensional algebra over C with structure A and denote
by LA(z) resp. RA(x) the left resp. right multiplication with the element x € A. Let
©1, - - -, @ be conjugation invariant forms on End(A). Take polynomials hy, ..., h, €
kX1, Y1,..., X, Y] and f € k[Zy,...,Z,.]. Finally we define

s (10 20) = F (0 (B (LA (0), RAG), - T ), RA®))), -

o (hy (LA (21), RA(21), ..., LA(z,), RA(J;S))))
(3.3)

..........

Proof. For this proof we abbreviate
RLA @), RA (1), ..., LA (2,), RA(x,)) by A(LA(X), RA(X))

without loss of exactness. By hypothesis we have Tpn,  hoor,on (T1,...25) = 0
for all z,y € A. We note that L4 (z) = g o LA(g~'(x)) o g7! for an arbitrary
algebra A’ (with structure p) isomorphic to A via g € GL,(C). In the same way
RY(z) = goR4(g7"(2)) o ¢g~'. For a polynomial h in k[X,,Y1,...,X,,Y,] we have
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h(LA(X),RY (X)) = g - (LA(g~ (X)), R g~ (X))) - g~'. Thus, for a conjugation
invariant form ¢ we conclude that

p(A(LY(X),RY (X)) = (AL (g7 (X)), R* (g7 (X))

Now, we put those things together, to compute the identity T}ffl)l 7777 ho.

T gt (5 ) =
1(h (LA (X), RA(X))), -, o (e (LA(X), RA(X)))) =

/

Fer(a (L (g7 (X)), RY (971 CON), - o (e (L (97 (X)), R (97H(X))))) =
TJS,)}\I)17---,h7-7<P1 gor(gil(xﬁ? s gil(ms)) =0

-----

Now where we have a Zariski equation on the whole orbit of A, the identity

A
T.]E,h)l ..... Ry 015y ©r (xl? e 'IS)

even vanishes on the orbit closure of A by definition of the Zariski topology. O

Example 3.51. Taker = s = 1 and ¢ = tr. If we choose h(X,Y) =Y and f(Z) =Z
then the expression TJE?,‘Z)M(QJ) takes the from:

T (2) = tr(R4(2)).

Recalling Theorem 2.33 we see that if T}’Ah{(p(x) = 0 then A is complete. By the last

Lemma every 1 € O(A) is also complete.

Because of its importance for the classification of degenerations we note the con-
clusion of the last example seperately.

Corollary 3.52. Let A, B € Alg,(C) and A —qee B. If A is complete then also B
15 complete.

Example 3.53. We show that Lemma 3.50 is a generalization of Proposition 3.47.
For this set r = 3, s = 2 and p; = ¢ = tr for + = 1,2,3. We make the following
definitions:

h1<X17Y17X27}/2) — le’
hQ(Xla}/laX%}/Q> = ng
h3(X17}/17X27Yé) - XfXgu
(21,25, Z3) = Zy - Zy — cZs.

With these definitions we see that:

A

T30 o (@5 4) = Togl.).
Example 3.54. We will use the following invariant several times troughout the
classification in chapter 4. We set r =3, s =2 and ¢; = p =tr for : = 1,2,3. We
define the polynomials A and f by

hl(Xlu Y17 X27 }/2) = iflpv

h2<X1a }/17 X27 }/2) = }/2(17

h3<X17 Yia X27 YQ) - }/117}/2‘]7

f(Z1, 2y, Z3) = Zy - Zy — 1Z3.
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In conclusion we get
TV (2,y) = tr(RA(2)?) - (R4 (y)?) — - tr(RA(2)” o RA(y)?).

Similar to the case of Proposition 3.47 we can associate the complex number 7 to an
algebra A whenever it is defined, i. e. the equations T]E?,B’w(x, y) = 0 have a unique
solution in r for all x,y € A. If this is the case we call the number r € C the
R, q-invariant.

Remark 3.55. Let A be a pre-Lie algebra of arbitrary dimension for which the
associated Lie algebra g4 is abelian. Then €, ((A) = R, 4(A) for all p,q € N.



4 QOrbit closures of Novikov
algebras in dimension three

In this chapter we apply the methods we developed in the previous part to the case of
pre-Lie algebras of dimension < 2 and Novikov algebras of dimension three. We start
with the classification of all pre-Lie algebras of dimension < 2 and their degenerations.
This study is heavily based on the article [6], which gives a concise treatment of what
will be presented here in more detail. For the case of three dimensional Novikov
algebras the list presented in Burde: "The variety of complex Novikov algebras" (|9])
seems to be best to work with and will be sketched at the beginning of that part of
the chapter. In all what follows, we take over the notation for Novikov algebras in any
dimension from this article. We mention, that the classification of three dimensional
Novikov algebras one can also find in the literature ([4]). Both lists are equivalent.

4.1 Degenerations of pre-Lie algebras of dimension
less than two

Following this classification of pre-Lie algebras gives the guideline how to handle
the classification in case of degenerations more easily. Because of Lemma 3.11 a
degeneration of pre-Lie algebras is only possible, if there exists a degeneration of
the associated Lie algebras. Therefore it is best starting to find all degenerations of
pre-Lie algebras with the same associated Lie algebra. After that, we proceed with
classifying degenerations between classes of different associated Lie algebras.

As an introducing example we examine the case of 1-dimensional pre-Lie algebras,
all of which have the abelian complex Lie algebra C associated. Moreover, we remark
that in this case we even have just two algebra laws at all and so preLie, (C) equals
Alg,(C). Let e be a basis vector of C. There are two non-isomorphic pre-Lie algebras,
denoted by P, for the abelian pre-Lie algebra and P, for the algebra with product
e -e = e. Both of them are clearly Novikov too. Because every non-trivial algebra
degenerates to the abelian one (example 1.3), we immediately conclude for preLie, (C)
in form of the Hasse diagram:

P,

|

P

4.1.1 Classification of pre-Lie algebras of dimension 2

In dimension two there are two non-isomorphic Lie algebras, g; = C? and g = t5(C).
For g we can choose [e1,e5] = e; as a representative law. The classification of 2-
dimensional complex pre-Lie algebras is well known and can be found in [10]:
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U Products gu dim Der(U)
U1 - CQ 4
U2 €1-€1 = €1 CQ 1
U3 €1 €1 = €1,€E9 €y = €9 CQ 0
U4 €1 €y =€1,€E9 €1 = €7, C2 1
€9 - €9 = €9
U5 €9 - €9 = €1 CQ 2
Wi ( €9 €] = —€1,€9 €y = (UCy u(C) [lifa#—-1,2ifa=-1

a)
Wa(B) | e1-ex = Ber,ea-e1 = (B — 1)e, | t2(C) Litg#1,2if8=1
B#0 eg - ey = ey

W3 €9 €] — —€1,62 €y = €] — €2 'CQ((C) 1
W4 €1 €] — €9, €1 — —€1, tg(@)

€9+ €9 = —262
W5 61'62261,62'62:€1+€2 tg(@) 1

We exclude the value 0 for W5 (), because in this case W;(0) = W5(0). Every pre-Lie
algebra that has an abelian Lie algebra associated is commutative and associative and
so are Uy, ...,Us. From the list of pre-Lie algebras with Lie algebra vy(C), Wy(—1)
and W5 (1) are associative, where not one of those is commutative. This is also easy
to see, because any commutative pre-Lie algebra must have the abelian Lie algebra
associated. Furthermore we observe that W, is the only simple algebra here.

One of our goals in this section is, to get the Hasse diagram for complex Novikov
algebras of dimension two as a starting point for the 3-dimensional case. In addition,
the study of all orbit closures of two-dimensional pre-Lie algebras is very interesting
for itself. The pre-Lie algebras which are Novikov algebras are:

U17 U27 U37 U47 U57 WQ(B)BGC? W5

To complete our observations about the structural properties of 2-dimensional pre-

Lie algebras, we consider the invariants €, ,(A) for p,q € N. A short calculation

shows that €, ((Us) = €, ((W;5) =1, €, 4(Us) = €, o(W3) =2 for all p,¢ > 1, and
(@ + (=1)")(a? + (=1)9)

Coa(Wila)) = T (T (4.1)
CoaWa(B)) = “p*(ﬁi;%ﬂ_q -, (12)
6oy = ZTIEED (43)

The invariants €, 4(U) do not exist for the algebras Uy, Us, and Us.

4.1.2 Degenerations of pre-Lie algebras of dimension two

By following the classification process of degenerations we start with the most pow-
erful semi-invariant we have got, the orbit dimension or equally, the vector space
dimension of derivations. If we order the set of 2-dimensional pre-Lie algebras by
dim Der(\) we gain the following ordering, starting with the smallest dimension on
the left:!

Us, Wa; Us, Uy, W1 () az—1, Wa(B) g1, W3, W; Us, W1(=1), W(1); Us.

'In this ordering, algebras with a different orbit dimension are separated by a semicolon.
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A further refinement can be obtained by using the fact, that a pre-Lie algebra with
abelian Lie algebra cannot degenerate to a pre-Lie algebra with non-abelian Lie
algebra (see Lemma 3.11). We begin our study with those two algebras, which have
the largest orbit dimension.

Lemma 4.1. The orbit closure of Us in preliey(C) up to isomorphism consists only
of the following algebras:
U17 U27 U37 U47 U5’

Proof. Because of the remark above, the commutative algebra Us cannot degenerate
to a non-commutative algebra. Furthermore, if we look at the list where we ordered all
algebras by dim Der()) we find no restriction for Us. Indeed, we have Us —4ey Us by
g = (£Y) and Us —qeg Us with g; ' = (19). Finally, Us —qeg Us by g; ' = (27 2).
(Il

Lemma 4.2. The orbit closure of Wy in preLie,(C) up to isomorphism contains
exactly the following algebras:

UlJ U57 Wl(_2>7 W2(_]')7 W4

Proof. Like in the case of Us, the orbit dimension of Wy, which equals four, just
excludes Uz from lying in the orbit closure of W,. Therefore the list of possible
degenerations consists of the following algebras:

U17 U2a U57 Wl(OZ), WQ(B)) W3a W5'

The reason why W, cannot degenerate to Us, Uy, W5, W5 is because of the €, ,(\)-
invariant. For those algebras we have constant values for all p and ¢, namely
Cpa(lz) = € q(Ws) = 1, §,q(Us) = &, q(W3) = 2, while &, ((Wy) = %
depends on p and ¢. Computing the value for small p and ¢ we immediately find
Cia(Wy) = %, what would contradict a degeneration.

Now assume that Wy —4e; Wi(a). Comparing the €, (())-invariants for the alge-
bras W, and Wi («) yields, that the condition (o + 2)(2a:+ 1) = 0 must be satisfied.
The two solutions of this equation are the only possible values, for which a degener-
ation could be achieved. A short calculation shows that, indeed Wy —geg W1(—2) by
gt = (§ (1)) If we try to compute a matrix g, for Wy —geg W1(—1/2), our efforts will
fail. The reason for this is seen by Lemma 3.46. If x = x1e1 + 2262, Yy = Y161 + Yaeo

then the left and right-multiplications of W, are given by

—x 0 0 -z
LW4($> - < $12 —21'1)7 RW4<$) - (.fll'l —2.;1>7

- 0 0 —u
LWi(y) = (% RWi(y) = .
) ( Y1 —291> ’ ) vy —2y

Searching for quadratic operator identities T'(z,y) = 0 for all z,y € Wy, we find
that all T, s(z,y) = 0 for all r, s € C, where

Tz, y) = r(L7 (@)R™ (y) — LM (1)R(2)) + s(R(x)L" (y) — R(y)L" (2))
+®—3ﬂ@M@%LM@H+%W—2@BWLRWH
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For r = s = —2 we obtain
T(z,y) = [2L(z) — R(x), 2L(y) — R(y)] = 0.

On the other side, if we take this operator identity with the left and right-multiplications
of Wi(«) instead, we see that

T(z,y) = <8 (a+ 2)($2OZJ1 - 56192)) '

Hence only Wy —4ee W1(—2) is possible.
Next, assume that Wy —ge, Wa(83). We want to know for which values of § € C
a degeneration exists. We calculate the quadratic operator T, s(z,y) for W5(5) and

find:

T, (z,y) = (8 28+ 1)(35692 - xzyl)) '
Obviously we must have 8 = —1, in which case a degeneration exists by ¢; ' =
(fl//QQ 2) Finally Wy —4eg Us by g{1 = (2tt 3?2). O

Theorem 4.3. The orbit closures of preLiey(C) are given as follows.

A O\ \ O(\)
Us Uy, Uz, Uy, Us
W, Uy, Us, Wi(=2), Wa(-1)
Us Ui, Us
U, U, Us
Wi(a)az—1 Ui, Us
Wo(B) 21 Ui, Us
W3 Ur,Us, W1(—1)
W Uy, Us, W5(1)
Us Uy
Wi(—1) Uy
Wo(1) Uy

Proof. First of all, every pre-Lie algebra of dimension two degenerates to U; be-

cause of example 1.3. The orbit closures of Uz and U, have already been treated in
the two lemmas before. Next we conclude, that U, can only degenerate to commuta-
tive algebras of orbit dimension less than three, where we just have U; as an option.
Indeed, Uy —>geg Us by g; * = ({ _Ot). The same argument applies to Uy for which we
have Uy —>geg Us by g; - = ({ ?)
The orbit dimension of Wj(«a) with a # —1 equals three, hence possible algebras in
the closure are Us, W1(—1) and W5(1). There is a degeneration Wi(a)az—1 —>deg Us
by g; ' = ( : tz(C?H) ) One has to notice that the degenerations matrix becomes singu-
lar for the value o = —1, which fits to the fact that the degeneration W;(—1) —qeg Us
is excluded by orbit dimension.

For 3 # 0, 1 assume that W5(3) —geg W2(1). This assumption forces & 1 (W>(5)) =
€11 (Wa(1)), which yields

es-1°
B+ (28-172
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or equivalently S(8 — 1) = 0. Using the same argument W5(3) with 5 # —1 cannot
degenerate to Wi(—1). There are degenerations to Us for every 5 # 1 by

9" = (1 e@E-y)-
The algebra W3 degenerates to Us by g; ' = (t: 2 ), and to Wy (=1) by g; ' = (5'9).
Because €;1(WW3) = 2 and €;;(W5(1)) = 1, there is no degeneration from Wj to
Wa(1).
The algebra Ws5 degenerates to Us by g; ' = (t: 2 ), and to Wy(1) by

g9 =(d'1):
Comparing € 1(W5) = 1 with & 1(W31(—1)) = 2, we conclude that there is no degen-
eration from W5 to Wi(—1). All the remaining degenerations in the list follow from
transitivity. O

Corollary 4.4. The Hasse diagram of degenerations in preLiey(C) is given as follows.

Us W,
8 I B
Us Uy Wi(a)az Wa(8)sx1 W3 W

\ Uk ‘%Wl(in/ W}a)

e

Uy

Corollary 4.5. The Hasse diagram for degenerations of Novikov algebra structures
in prelie,y (C) is given as follows:

4.2 Classification of Novikov algebras in dimension
three

The Hasse diagram of all pre-Lie algebra degenerations gives a refinement of the
corresponding Hasse diagram for Lie algebras (Lemma 3.11). Because Novikov alge-
bras form a subclass of pre-Lie algebras this is especially true for the Hasse diagram
of all Novikov algebras. The next subsection lists all Lie algebras in dimension 3.
Afterwards we list all Novikov algebras in dimension three.
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4.2.1 Complex Lie algebras of dimension three

The classification of 3-dimensional Lie algebras is well known, see for example [46].

g Lie brackets
g =C° -
g2 = n3(C) le1, e2] = €3
ds = tg(C) D C [61, 62] = €9
g4 = t3(C) [e1, €] = e, [e1,e3] = €2 + €3
5(A) =t3.(C) | [e1,e2] = ea,e1,e3] = Aez, A € C\ {0}
g6 = sl»(C) le1, ea] = e3, |e1, e4] = —2ey, [eg, €3] = 2€9

The Lie algebras v3 ,(C) and t3 ,(C) are isomorphic if and only if p = A7, or p = A.
The isomorphisms ¢: t5,(C) = t31/,(C) are given by ¢(e1) = Ae1, p(e2) = e3 and

p(es) = es.
We consider the Hasse diagram of Lie algebra degenerations of dimension 3 ([46]).

96
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4.2.2 Classification of complex Novikov algebras of dimension
three

Now we classify all Novikov algebras (A, ) according to their associated Lie algebra
ga. In that sense, the diagram of Novikov algebras gives a refinement of the Lie
algebra diagram. To abbreviate the fact that a Novikov algebra has associated Lie
algebra g; = C? we speak of an A-class Novikov algebra or of a Novikov algebra of
type A. Every algebra of this type is clearly commutative and in addition associative.
Indeed, left-symmetry can be rewritten in the form:

[yl z2=2-(y-2)—y-(x-2).

If the associated Lie algebra is now abelian, the left-multiplication operators of the
Novikov algebra commute. Therefore

(z-y)z2—2-(y-2)=(-2)-y—y-(x-2)=[y 22 =0.

The classification of those algebras can be found for example in [3]. Similar we call a
Novikov algebra with associated Lie algebra gs of type B. Further on, with increasing
number of the index we sign to every Lie algebra a letter in alphabetical order. The
list ends with the F-class Novikov algebras, having gs(\) as their associated Lie
algebras. If we want to emphasize the parameter A that is associated to a specific
E-class algebra we sometimes write £(\).? We also mention that we treat the classes
E(—1) and E(1) separately in our classification. There is no Novikov structure with
Lie algebra sly(C). This notation turns out to be very handy and is due to Burde
(19]). From there we also took the list of all 3-dimensional Novikov algebras that is
given below. For a complete classification of all Novikov algebras published in an
article we refer to [4]. Both classifications are equivalent.

Remark 4.6. The following table includes all non-isomorphic Novikov algebras of
dimension three. We mention that there are non-trivial isomorphisms for only two
families of Novikov algebras. We have Bs(8) = B;(f) if and only if 5 € {5,1 — 8}
and Ey (o) 2 E, 5(@) if and only if (X, @) € {(\,a), (+,9)}.

2Moreover we warn that this )\ is written in the lower index of the algebras in class E.
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A Products g4 dim Der(A)
Al - C3 9
A2 €3 - €3 — €3 C3 4
Ag €9+ €9 = €9, €3 €3 = €3 CS 1
A4 €1 €1 = €1, €2 €3 = €9, CS 0
€3 - €3 — €3
A5 €9 - €9 = €1 CB 5
A6 €9+ €9 = €1, €3 €3 = €3 (C5 2
A7 €1+ € = €1, €2°-€1 = €7, (C3 2
€9+ €9 = €9
Ag €1+ € = €1, €2-€1 = €7, (C3 1
€9+ €9 = €9, €3 €3 = €3
Ag €9+ €3 = €1, €3 €2 = €1 (Cg 4
AlO €9 - €3 = €1, €3 €2 = €7, (C3 3
€3 - €3 = €9
All €1+ €3 = €1, €2 €3 = €9, (C3 4
€3-€1 = €1, €3 €3 = €2,
€3 - €3 — €3
A12 €1 €3 = €1, €2 €3 = €7, C3 2

€2 - €3 = €2, €3 €1 = €1,
€3 €3 = €2, €363 = €3

Bl €€ =¢€1, €1 €y = € + es, Il3<(C) 2
€1°€3=¢€3, €261 = €9,
€3 €1 = €3
BQ €1 €1 = €1, €1 - €3 = €9 + €3, ng((C) 1

€1 €3 = €3, €2 €1 = €2,
€2 €2 = €3, €3 €1 — €3

B3 €1 ey = %63, €y €1 = —%63, n3(C) 4
€9 - €9 = €3
B4(Oé> €1 €y = (€3, €9+ €1 = (Oé — 1)63, n:;((C) 3
€9+ €y = €1
Bs(B) e1- ey = fPez, ex-e1 = (B —1)es n3(C) 4,8 # %
B=x+1y r<1/2 6,0 =3
Cl €161 = —e1 + €, €3 - €] = —€9, ‘CQ((C) e C 1
€3 - €3 = €3
Cg €161 = —e1 + e, €1 €3 = —e3, ‘CQ(C) e C 2
€9 - €1 = —€9, €3+€1 = —€3
03 €1-€e1 = —€1 + e, €3] = —€2 'CQ((C) e C 2
C4 €1 €1 = €3, €1 - €3 = €9 tQ(C) D C 2
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A Products 04 dim Der(A)
Cs(a) e1-e1 = e, e -6 = (a+ 1)eg, 1 (C)aC 2,a#0,—1
€9+ €1 = ey 3,aa=0,—-1
CG(B) e1-ep = ey, e;-ep = (5 + 1)62, t2((c) ®C LB #-1
ey e; = fey, e3- €3 =e3 2,8=-1
Cz(v) e1-e1 =yeq, e -ex = (v + 1)eg, u(C)oC 2,v# -1
v #0 €1 - e3 =yes, €y €1 = Yes, 3,7v=-—1
€3 €1 = €3
D1 e1-e; = —e; + €3, €1 + €3 = €9, tg((C) 2
€2 €] = —€2, €3°-€] = —€3
Dy () e1-e1 = aeq, e1-es = (a+ 1)eg, t3(C) 2, a0 # —1
e1-e3=es+ (a+ 1)es, es-e1 = ey, 3,a=—1
€3 €1 = Qe3
Ei \(a) e1 e =aep, e1-e3=(a+ 1)ey, 3., (C) 2, A #£ 1,
a#—1,-)\
A#0 e1-e3 = (a+ Nes, e -e1 = aes, JANELa=—-\
€3 - e; = qes 3IAN#ELa=—-1
4 N=1a#—1
6,bA=1,a=—
E27>\ €1-€e1 = —e;+ e, €163 = ()\ — 1)63, tg’)\(C) 2, A 7é 1
)\#O €9 - €1 = —€9, €3+ €1 = —€3 4,/\:1
E3 €161 = —%61 + €3, €1 + €9 = %62, 'Cgé((C) 1
€163 = €2, €2 € = —%€2,
63'61262—563
E4 €161 = —€6 + €9, €1+ €3 = —%63, 'Cgé(C) 1
€2 €1 = —€2, €3-€] = —€3,
€3+ €3 — €9
E5(ﬁ) €161 = 561, €1 €y = (ﬁ + 1)62, '%é(@) 1,ﬁ 7é —1
61'632(54‘%)63, ez - €1 = fey, 2,0=-1
e3-e; = fBes, e3-e3 = e
E6 €1 €1 = —%el, €1 €y = %62, 'Cgé((C) 2
€163 = €2, €2 €1 = —%€2,
63'61262—563
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4.3 Degenerations of the classes A, D, and E(1)

Before we start we mention that all degenerations and non-degenerations are collected
in tables in Appendix B. They have proved to be very handy in getting a quick
overview of the orbit closure of a certain algebra.

Concerning the Hasse diagrams we remark that only algebras that are involved
in a degeneration can occur. We use this convention to make the diagrams more
readable.

4.3.1 Degenerations of Novikov algebras with abelian Lie
algebra

Proposition 4.7. The Hasse diagram of all 3-dimensional Novikov algebras with
abelian Lie algebra, that arise from a 2-dimensional Novikov algebra by adding a
1-dimensional ideal, 1s given as follows.

Ay

A

Proof. This Proposition is an immediate consequence of Corollary 3.3. We recall
Corollary 4.5 and consider the following correspondences of algebras

Ai=U,0C, Ay=U, @ Py,
Ay =Us ®&C, A3=Uy ® Ps,
A3 =Us®C, Ay=Us®D Py,
As =Us ®C, Ag=Us®D Ps,
A, =U,®C, As=U;® Ps.

O

Proposition 4.8. The orbit closures of all complete algebras with abelian Lie algebra
are given by the following diagram

A Ag As Ay
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Proof. Because of Corollary 3.52 only degenerations to other complete algebras are
possible. By transitivity we have Ajg —qeg As together with:

1 0 0
Ag —qeg As by ¢ = | O % 0] and
0 5% 1
t 00
AlO —7deg AQ by gt = 0t 0
001

O

Proposition 4.9. The orbit closures of all 3-dimensional Novikov algebras with as-
soctated abelian Lie algebra are listed in the table below.

4 0(4) \ O(4)

Al —

As Ay, As

Az | Ay, Az, A5, Ag, A7, Ag, Aro
Ay Ap, Ao, Az Asy oo Ao
As Ay

As Ar, Az, As, Ag, Arg

A7 Ay, As, Ag, Aro

Ag | A1, Ao, As, Ag, Az, Ag,y .o Ao
Ag Ay, As

Ao Ay, As, Ag

An Ar, As

Ara Ay, As, Ag, Aro, A

Proof. A lot of possible degenerations are excluded by Theorem 1.16. We therefore
order the algebras of class A by their dimensions of the orbit space:®

A4; As;As; A67A7>A12§ A10; A2,A97A11; A5; Ay

If we consider this ordering all algebras can only degenerate from the left to the right,
so we derive that for the algebras Ay, Ag, and A;; it is impossible to degenerate to
any other algebra than A; (and trivially A;). We have already seen that Ay —geg As
by Proposition 4.7 and Ag —4cs A5 by Proposition 4.8. We also have

=1

t4

1
All —7deg AS by gt = 0
0

= - O
)

The complete orbit closure of the algebra Aiq is given by Proposition 4.8. We go
on with the algebras Ag, A7, and Aj5. All these algebras degenerate to A;y and by

3The dimensions of the orbit space decrease from the left to the right. Algebras with different
orbit dimensions are separated by a semicolon.
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transitivity to Ag and As:

-t 1 %
Ag —aeg Aroby ge =1 0 1 tlz )

0 0 1

L& 5
A7 —aeg Aoby g = |t & 2|, and

0 0 1

—it 0 —3
Al —aeg Aobyge = 0 1 3

0O —it O

In addition we have a degeneration from A5 to Ay; by:

1 00
Atz —dgeg A1 by ¢ = | 0 % 0
0 01

To show that there are no other degenerations for the algebras Ag, A7, and Ay we
use the €, (-invariant. We have:

Cpq(A2) = €, (As) = 1,
Cpq(A7) =2, and
Coa(Ann) = €y (A1) = 3.

Therefore Ag can’t degenerate to A;q, neither does A; to Ay or Aqy, and also for Ao
a degeneration to A, is impossible.

The orbit closure of the algebra Aj is nearly determined by Proposition 4.7. We
only have to notice all the other degenerations which are already given by transitivity
and the fact that Az has a non-trivial center, whereas A;; doesn’t. Therefore As can’t
degenerate to Ay; by Lemma 3.30. By transitivity a degeneration from Az to Ajs is
also impossible.

There exist degenerations Ag —ges Ag and Ag —geg A7 by Proposition 4.7, fur-
thermore:

1 =1 1

2 t2

Ag —geg A12 by gr = | 0 —% %
0 1 0

Finally we mention Proposition 4.7 once more to see that the algebra A, degener-
ates to every algebra in class A. This completes the proof. O

Corollary 4.10. The Hasse diagram of all commutative and associative Novikov
algebras is given as follows.
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4.3.2 Degenerations of Novikov algebras with Lie algebra g,

Proposition 4.11. The possible orbit closures of all 3-dimensional Novikov algebras
with associated Lie algebra g4 are listed in the table below.

D | O(D) \ O(D)
D1 DQ(—l)
Do(—1) -
DQ(Oé)a;Ao,—l -

The Hasse diagram consists of only one non-trivial degeneration.

D,

|

Dy(-1)
Proof. In matters of orbit dimension there can only be degenerations from D; and
Ds(t)az—1 to Do(—1). In case of a degeneration Da(a)qz—1 —>deg D2(—1), necessarily
(a” + 20 + 1)7) (a + 2(a + 1))
€ q(D2()) = T T
aPte + 2(a+ 1)pta
has to be equal to 1 for all p, ¢ € N. Setting p = ¢ = 1 leads to the condition

602 +8a+2=0.

Therefore € 1(Da(ar)) = 1 only for a = —1, —1. While o = —1 was already excluded
at the beginning, €, 4(Ds(—3)) 1s Clearly a non constant function in p and ¢. For
example we have €59(Dy(—2)) = 5L, There is a degeneration

3
1 00
D, —7deg D2<_1) by gt_l =10 ¢t 0]. O
0 0 ¢
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4.3.3 Degenerations of Novikov algebras with Lie algebra g;(1)

Proposition 4.12. The orbit closures of all 3-dimensional Novikov algebras with
associated Lie algebra gs(1) are listed in the table below.

E O(E) \ O(E)
E11(0) —
Ey1(—-1) —
El,l(()é)a;éo,fl -
Es Eyi(—1)

The Hasse diagram consists of only one proper degeneration.

Esq

|

El,l(_l)

Proof. Regarding the dimension of derivations, the only possible degenerations are
El,l(a)a?g_l, Eg’l —7deg E171(—1). FiI’St, suppose that El,l(a)ogé—l —7deg E171(—1). In
this case we must have

(a? +2(a + 1)P)(a? 4+ 2(a + 1)9)
aPte + 2(a + 1)pta)

Coq(Eri(a)ar—1) = =1=¢C,4(E11(-1)).

This is the same condition for «, that we had in the previous section. Therefore we
conlude that there are no proper degenerations for any a. Finally, we find

0
0
1

O+ O

1
E2,1 _>deg El,l(_l) by gt_l = 0
0

4.3.4 Degenerations of Novikov algebras with Lie algebras g,
and g

Proposition 4.13. The commutative and associative Novikov algebras Ag and Aig
don’t lie in any orbit closure of the Novikov algebras Dy and Ds(a) for any o € C.

Proof. To prove this proposition we use the technique developed in Theorem 3.8.
Due to Proposition 3.6 we know that ideals have to be preserved under degeneration.
If we look at the algebra D; we find a two-dimensional right ideal spanned by the
basis vectors e, and e3. Searching for a possible degeneration, Theorem 3.8 suggests
to shift this ideal by a change of basis to form the first two basis vectors. We obtain
such an isomorphic algebra D := g - Dy by

S
I
=N
o= o
oo~
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The multiplication laws of E are then given by
(€1-€3=—ey,e9- €3 =—€9,e3-€3=e€1 —e3, and e3 - €1 = e€3).
The matrix representation of DNl is then given as follows:

N 0 O T3 — X1
LDl (ZE) = | T3 0 —XT2
0 0 —T3

We now see? that (eq, es) spans a two-dimensional ideal of D;. Clearly,
GL,(C) - D; = GL,(C) - D,

and from Theorem 1.17 we know that the orbit closure of any algebra up to an
isomorphism can be done with an upper triangular matrix B, € B, (C((¢))):

by by b3
Ba = 0 b4 b5 y
0 0 bs

where the coefficients b; for 1 < ¢ < 6 are dependent of the degeneration parameter
£.
We know that every algebra in the closure has to be isomorphic to some alge-

bra in B,(C) - D;. What we are going to do is to determine the orbit B,(C) - D,
in terms of the left-multiplication operators LB»(©)P1(z) that depend on the coeffi-
cients by, ..., bs. Because over the field of complex numbers the orbit closures of the
Zariski topology coincides with the closures of the standard topology (Example 1.4),
the process of orbit closure leads to the componentwise convergence of the matrices
LB Dl( ). Hence, due to the convergence of every coefficient in LP(C )-D1 () we can
hopefully derive some assertions with respect to the limits of the coefficients b;. In
fact, because of the special way the coefficients b, ...,bs are arranged in the left-
multiplication of an arbitrary algebra in B,,(C) - E we can write the set B,(C) - 51
as the union of two disjoint subsets. We finally show that the algebras Ay and A
don’t lie in any of these two subsets.

This is done in the following way: We first compute the left-multiplication of an
arbitrary algebra in the B,,(C)-orbit

03(51) = B,(C )

The left-multiplication by an element z € B ((C) 1 is given by the left-multiplication
of the basis vectors: LP»(©P1(z) = 3% 4, 1B Di(e;). We have

N 00 —¢
Loy =10 0 0o |,
00 0
N 0 0
Lo (ey) = [0 0 —¢ |,
00 0
— fl f2 f3
Lo (e = | fu f5 fo |,
0 0 —

4Compare with Lemma 2.39.
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where
— by o by Dibababsbatbibs
fl - b1b6af2 - b1b4b6’f3 == b1b4b§ ,
= 2o = b2 — =babstbobs
Ji= b1b67f5 = b’ and fg = .

Likewise, for the right-multiplication operator RB+(©)D1(z) = SO 2;RB(©)-D1(¢,)
we have

ROB(bvl)(el) _

ROB(E)<€2) —

SO O O oo
SO O O oo
(]

ROSP(eg) = | 00— fo

Now, regarding a degeneration exists, for lim._, é only two things can happen.
First, the limit of é is non-zero under which circumstance the right-multiplication

RB(©)-Dr (x) by an arbitrary element x € lim._,¢ B - E, understood as an operator is
invertible. This property is an isomorphism invariant, hence every algebra in the orbit
closure of Dy has this property. The operators R4?(x) and R*19(x) are not invertible,
for which reason a degeneration with lim._, i # 0 can’t lead to the algebras Ay and
A].O'

Second, the limit lim,_, % equals zero. In this case LP»

(C)'E(xlel + x9e3) = 0 so

(€1, eq) defines the right-annihilator of any algebra in the closure of D, undertaken
by an upper triangular matrix with the above condition on bg. As can easily be
seen the algebras Ag and A;y don’t have a two-dimensional right-annihilator and so
a degeneration with lim._,q % = (0 can’t yield the algebras Ay and Aj.

In conclusion, we decomposed the closure B, (C) - D, into two components, which
are obviously disjoint. We took the isomorphy classes of those components and
showed that the algebras Ag and A;y don’t lie in any of this classes. Therefore the
algebras Ag and Ap( can’t lie in the orbit closure of the algebra D;.

For Dy(ar)ax0 a similar argument can be carried out. A basis change with the same
matrix g as above leads to the same conditions for a degeneration. In the case where
a = 0 the situation changes just a little bit. Now, any algebra in the orbit closure
will be complete, but fortunately it will also have a two-dimensional right-annihilator.
Therefore a degeneration from Ds(«) for any a € C to Ag or Ay is impossible. O

Remark 4.14. We are going to use the argument we developed in the last proposition
several times throughout this chapter. It is always useable when the B, (C)-orbit
decomposes into a subset consisting only of non-complete algebras and a subset of
algebras with a 2-dimensional right-annihilator. We will demonstrate this procedure
once more in Proposition 4.18 but from there on we will simply refer back to this
proposition so we don’t have to bring the whole argument again.
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Lemma 4.15. The orbit closures of all 3-dimensional Novikov algebras with asso-
ciated Lie algebra g4 to Novikov algebras with associated Lie algebra g, are given as
follows.

D O(D)

D, Ay, As

D5 (0) Ay, As
Dy(—1) Aq, As
DQ(Oé)a;Ao,—1 Ah A5

Including the degenerations we already got, the Hasse diagram looks as follows.

D4 (0) D, Dy ()arz0,-1

Dy(—1)

As

Ay

Proof. Regarding the dimensions of derivations and Proposition 4.13 only the
following algebras can possibly lie in the orbit closure of a Novikov algebra from class
D:

A17 A27 A5a All'

The only exeption to mention here is Ay for Dy(—1). The invariant €, (A1) = 3
prevents Aj; from lying in any orbit closure in this case here. Because €, (D;) =1
a degeneration from D; to Ay is excluded at once. For Aq; lying in the orbit closure
of Dy(cr) the equation

(o? +2(a+ 1)) (0 + 2(a + 1)7)
aPta + 2((1 + 1)p+q

=3

would have a solution for some «. Instead, this is not possible for any o € C.

Moreover Dy(cr)a—1 cannot degenerate to A, because of the €, (-invariant again.
To exclude a degeneration from D; and Dy(—1) to Ay we use Lemma 3.14. If we
can show that degenerations of the associated algebras jp, and jp,—1) to ja, are
impossible, then degenerations of the corresponding Novikov algebras are impossible
too. Therefore we compute:

Coa(in1) = Cpaliny(-1) = = (+_22();+13pl(é<—_21‘;:+_q2(_1)q)7

Q:p,q(jAz) =1L

Clearly the first of the above expressions is a non-constant function in p and ¢ and
hence we are done.

Although we could use standard methods to exclude a degeneration from Dy(—1)
to Ag and Ajp we proof it by («, 3,7)-derivations to demonstrate an application of
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Lemma 3.34. For this we compute the dimensions of the vectorspaces
Der(1,1,0)(A) = {D € End(A) | D(z - y) = D(x) - y}:

dim Del"(LLo) (DQ(—l)) = 5,
dim Der(l’l,o) (Ag) = 3,
dim DeI'(LLo) (Alo) =3.

As Lemma 3.34 says, these dimensions have to equal or increase within the orbit
closure. Our computation shows us, that the contrary is the case.

The only non-trivial degenerations from class D to class A concern the algebra As.
We note first that we have degenerations from D; and Dy(—1) to Az by transitiv-
ity. To anticipate the statements of Lemma 4.16 and Lemma 4.17 we remark that
Es1 —deg As and Dy(—1) —>qeg Eo 1. Therefore we can build the sequence:

Dl _>deg DQ(_l) _>deg E2,1 _>deg A5-
Furthermore we have a degeneration from Ds(a)az—1 to As by the matrix

a4+l
2

gt =

o o

10
t 0
01

One has to notice, that because of the parameter « there are infinitely many algebras
and therefore infinitely many degenerations. We see that in this degeneration matrix
a can take any value except o = —1. a

4.3.5 Degenerations of Novikov algebras with Lie algebras
g5(1) and g

Lemma 4.16. The orbit closures of all 3-dimensional Novikov algebras with associ-
ated Lie algebra gs(1) to Novikov algebras with associated Lie algebra g1 are listed in
the table below.

£ |0®
El,l(_l) Al

ELl(a)a#—l Ay, As

Ey Ay, As

Including the degenerations we already got, the Hasse diagram looks as follows.

El,l(Oé) E2,1

—
/11

As

1(=1)

Ay
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Proof. Because of the small orbit dimensions of the algebras of type E, the classi-
fication of degenerations from this class to the A-class is an easy matter. We know
that every Novikov algebra degenerates to the trivial algebra A;. The algebras that
could contain Ajs in their orbit closure are E ;(«) and FEs ;. Both is possible:

o+l t 0
t2
Ei1(a) —deg As by gt_l = 0 > 0],
0 0 1
E2,1 _>deg AS by 9 = 0 n 0] .
0 0 1

4.3.6 Degenerations of Novikov algebras with Lie algebras g,
and gs(1)

Lemma 4.17. The orbit closures of all 3-dimensional Novikov algebras with asso-

ciated Lie algebra g4 to Novikov algebras with associated Lie algebra gs(1) are as
follows.

b | om
D, Ei11(—-1), Esq
Dg(—l) El,l(_1)7E2,1

Dy(a)az—1 By (o)

Including the degenerations we already got, the Hasse diagram looks as follows.

D, Do) a1
Dy(-1)

Es Ei1(0)az1
Ei1(=1)

Proof. The dimension of derivations are of no use here, because the orbit dimension
of any algebra in class F is less than the orbit dimension of every algebra of class
D. Fortunately the €, (-invariant is doing all the work. Suppose that Dy(a)az—1
degenerates to [ 1. In this case we must have

(@ 4+ 2(a + 1)7) (e + 2(or + 1)7)
aPta + Q(Q + 1)p+q

Q:p,q(DQ(OOa#—l) = =1= Q:p,q(EQ,l)-

This case has already been treated in section 3.4 and 3.5, where we saw, that the
above equation only holds for the values a = —1, —%. Further on we found that for
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o = —3 the value of €, (D) is not constant for p and ¢, for which reason Dy(—1) is
the only possibility for a degeneration. Indeed, we have

1 0 0
Dy(—1) —qeg E21 by g: = tiz t 0
0 t* 1

To exclude degenerations from Ds(a)q.—1 to Ey1(®)ax—1 for o # & we have to use the
computer. Furthermore, transitivity forces Dy(—1) —qeg £1,1(—1). For the algebra
E;1(—1) we have

Cpa(Eri(—1)) = €pq(Ern) =1

hence Dy(cr)qz—1 cannot degenerate to £y 1(—1) as well. There are infinitely many
proper degenerations, that can’t be reached by transitivity:

1 00
Dy(—1) —bdeg Ea1bygs= | % t 0], and
0 t* 1

DQ(a)a;éfl —7deg E1,1<a)a;éfl by gt =

o O =
S+ O
— o O

4.4 Degenerations of the classes A, B, and D

4.4.1 Degenerations of Novikov algebras with Lie algebra g

Proposition 4.18. The Novikov algebra By degenerates properly within the class B
only to the algebras B4(0) and Bs(0) = Bs(1).

Proof. Because dimO(B;) < dim O(B;) the algebra B; cannot degenerate to
By. To exclude a degeneration from B; to B3 we use a similar argument as in
Proposition 4.13.> We change the basis of B; by the matrix

g:

_— o O
O = O
o O =

In terms of the left-multiplication operator the new algebra, which we will denote by
By, then takes the form

_ T3 T3 T
LBI (ZL’) = 0 rs T2 |,
0 0 xT3

where © € A. We form the orbit closure again with an upper triangular matrix

by by b3
B‘s = 0 b4 b5
0 0 bs

5See Remark 4.14.
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and conclude that every algebra in it must satisfy

0

LBE.Bl (ZE1€1 + ZL‘Q@Q) =

o O

0
0 —=z2
0

We see that for by — oo we have dim Anng(B;) = 2 # 1 = dim Anng(B3). Because
dim Anng (B4(«)) = dim Anng(B5(5)) =1

for all a, 5 # 0 the algebras By()az0 and Bs(3)sxo cannot lie in this specific orbit
closure (taken with bg — oco) of the algebra B; too.

The condition 1im% # 0 forces that only non-complete algebras can lie in this
closure, which is not the case for the algebras Bs, By(«), and B;(3) for all «, 5 € C.
We indeed have a degeneration by

1 0
Bl —7deg B4(O) by gt = 0 0
0

3 t

and to Bs(0) = B;(1) by transitivity (which follows from the next Proposition). O

Proposition 4.19. The Novikov algebra By(«) degenerates to the Novikov algebra
Bs(B) if and only if a =3 or a =1— .

Proof. Similar like in the proposition before we bring the left-multiplication oper-
ator of By(«) in upper triangular form by:

g:

O = O
— o O
o O =

and denote the new algebra by E;(oz). We then take the orbit closure by an arbitrary
upper triangular matrix

bl (8) bg (5) bg (5)
Be = 0 b4<€) b5(€)
0 0 bﬁ(&?)

All the b}s and thus B. are dependend of the degeneration parameter €. The resulting
left-multiplication operator for any algebra in the B,,(C)-closure then takes the form

N 0 (a—1DAzz alzy+ ((1 —2a) \p + v)xs
LOB(B4(a))(x) —1lo 0 Exs
0 0 0

where \ = #(b?(s), = 228, v = 258, and ¢ = 2‘2‘8 By the same matrix ¢ as

above the left-multiplication operator of Bs() can be brought to upper triangular
form denoted by L2 (z):

_ 0 (B—1)zs Py
L@ ()= [0 0 0
0 0 0
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So if the algebra Bs(3) would lie in the orbit closure of By(a) we would have an

isomorphism h € GL,(C) sending LB;(B)(x) to LOB(BZ(O‘))(I). By the Bruhat decom-
position (|56, p. 74]) we know that every matrix h € GL,(C) can be written in the
form h = B PBsy, where By, B, € B,,(C) and P is a permutation matrix. Hence we
have

h- Bs(8) € Op(Bi(a)) ¢ (B1PBy) - Bs(f) € Op(Ba(a))
& P (By- Bs(B)) € Op(Ba(a)).

Because the matrices LO(P1(@)(z) and LO#(P5(9)(z) are in upper triangular form
the permutation matrix P must leave L7759 () in upper triangular form. Besides
the unity matrix [, there is only one permutation matrix that keeps Bs - E;(ﬁ) in
that way, namely:

1 0 0
P=10 0 1
010

In other words we have decomposed the orbit closure of By(«) into:

GL,(C) - Bi(a) = GL,(C) - By(a) = GL,(C) - B,(C) - Bu(a)
= B.(C)(1, U P)B,(C) - B,(C) - B/Z(O‘)
= B,(C) - /B:L(O‘) UB,(C) - P-B,(C) - EL(O‘)

The question if E;(ﬁ) € GL,(C) - E(a) therefore leads to the question if

B.(C) - B5(8) N (Bu(C) - Ba(a) U P -B,(C) - Bi(a)) # .

We will answer this question in the following way. First of all we have to see what
the B,,(C)-orbit of Bs(f3) looks like. Let B € B, (C) be an upper triangular matrix
(that is not dependend of a degeneration parameter):

bi by bs
B = 0 b4 b5
0 0 b
_ 0 (B—1)eors Bows+ (1 —2B)oTxs
B- 15 (@)= [0 0 0
0 0 0

where o = IZ—})G, T = Z—Z Now, on the whole B, (C)-orbit of /BZ(a) the following

polynomial function is zero:
f(ij) = (a— 1)X213 - aX:%}Q'

We write for this fact f(B,(C) - Bs(a)) = 0. By definition of the Zariski topology
this polynomial function has to be zero for every algebra in the B,,(C)-orbit closure

of E(a). However, for the B,,(C)-orbit of §5(6) we have:

F(B.(C) - B5(B)) = o((a —1)8 — a(B —1)).
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Hence, f(B,(C) - E;(ﬁ)) = 0 if and only if 25 = %, which has a solution in 3 if
and only if a = . -
In the same way as before, assuming B, (C) - B;() having nonzero intersection

with P - B,(C) - /B;(Oé) we must have f(B,(C) - /BZ(B)) = 0 where

FXE5) = (a = 1) X5 — aXp.
Now the parameters o and (3 have to satisfy %5 = %, which can be done if and
only if & = 1 — 5. We see that the solutions for one « correspond to the isomorphic
algebras Bjs(a) and Bs(1 — «). We indeed have degenerations

t 00

By(or) —qeg Bs(a) by ¢ = [0 t 0O

0 01
(|
Remark 4.20. Similar like for the €, j-invariant we can associate to the B,,(C)-orbit
of E(a) the invariant ¢y := % = —2 whenever it is defined.® Every algebra that

lies in this orbit must have the same value for z—%i By f(B,(C) - E(a)) = 0 we can
32

also associate an invariant to the set P - (B, (C) - By(c)). We denote it by cf = %

23

Lemma 4.21. The orbit closures of all 3-dimensional Novikov algebras with associ-
ated Lie algebra go are as follows.

B O(B) \ O(B)
By B4(0), B5(0)
BQ BlaB37B4(a)7BS(B)
B3 B5(%)
By(a) Bs(a)
B4(%) B37B5(%)
B5() -
The Hasse diagram of all Novikov algebras with associated Lie algebra go looks as
follows.
By
By
a=0
By(a)
N
a:% a:ﬁ\
Bs Bs(8)
Bs(3)

5We mean that there is no division by zero.
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Proof. We start our proof with the algebras By(«). As we have seen in the
last proposition we can decompose the orbit closure of By(a) for every o € C into

B,(C) - E(a) UB,(C)-P-B,(C) - B;(oz). We can therefore find all algebras that can
possibly lie in the orbit closure of By(ar) by computing the invariants ¢; and ¢;. For’

B3z we have ¢y = ¢y = —1 which forces o = % and indeed
t 00

B4(%) —7deg Bg by g = 010

0 0 t

The classification of all degenerations By(®) —qeg B5(f) was already treated in

Proposition 4.19 and B,(«) cannot degenerate to B; and By because of the orbit
dimension.

The algebras Bs(f) have a very similar structure like By(«). The quotient %
32

defines an invariant on B - Bs(3) again. For Er,(%) we have % = —1 and so B =
32
%, yielding only the trivial degeneration. All the other possible degenerations are
excluded by the dimensions of the orbits.
Regarding the orbit dimensions the algebra B3 can only degenerate to B5(%), which

is also possible by the invariant % Indeed, we have Bs —qeg B5(%) by
32

t 0 0
gt: t2 ]_ O
00

The algebra By degenerates to every algebra in class B. We list the corresponding
degeneration matrices:

1 0 0
By —qeg B1 by g¢ = | 0 % 0],
0 0 %
1 1
FooE
By —7deg B3 by g = = 0 0 )
11 9 _1
4t5 t4 o
&~ 0
By —deg Ba() by gr = % 0 0 | for a #0,
=0 &
t% 0 0
By —aeg Bs(B) by gi= [ %7 & 0
BO-) o 1

5

o~
(S

at

The degeneration By —4eg B4(0) is done by transitivity. The orbit closure of the
algebra B in the class B has already been studied in Proposition 4.18. This completes
the proof. O

"The algebra E is isomorphic to B3 with the isomorphism g from Proposition 4.19, where the
left-multiplication operator is then given in an upper triangular form.
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4.4.2 Degenerations of Novikov algebras with Lie algebras g,
and go

Lemma 4.22. The orbit closures of all 3-dimensional Novikov algebras with associ-
ated Lie algebra g4 to Novikov algebras with associated Lie algebra go are as follows.

0), B
Dy(—=1) | B4(0), Bs(
Dy(a)az—1 | Ba(0), B

Including the degenerations we already got, the Hasse diagram looks as follows.

D5 (0) D, Do () az0,-1
Dy(—1)

B4(0)

Bs(0)

Proof. Regarding the dimensions of the vectorspace of derivations the only possible
algebras in an orbit closure of a D-class algebra are:

Bs, By(«), Bs(B).

The same technique, which we derived in Proposition 4.13 applies here too, be-
cause the algebras Bs, By(a), B5(3) are all complete and have a 1-dimensional right-
annihilator (except for @« = f = 0). Indeed we have degenerations D; —geg B4(0)
and Dy(a)ax—1 —>deg Ba(0) by

11 1 1+at? 1 _ (+at?)?

Tt Rz . (a+1)t ¢ ) (a+1)2¢3
gt = 0 1 _11_t_2 and gt = 0 _% 0

00 3 0 0 1

4.4.3 Degenerations of Novikov algebras with Lie algebras g
and g
Lemma 4.23. The orbit closures of all Novikov algebras of dimension three with

associated Lie algebra go to Novikov algebras with associated Lie algebra g, are as
follows.
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B 0(B)
Bl Ah A57 All
BZ A17A57A97A107A117A12
B3 A1, AB
B4(Oé) Al, A5
B5( )/57% Ay, As
Bs(3) -

Proof. Because we will use transitivity several times in this proof we begin with
the orbit closure of the algebra Bs(). For 8 = 3 the orbit dimension is too small
for any A-class algebra to lie in that closure. For arbitrary 3 not equal to % we can
only have B5(8) —deq A5 which indeed is true by:

1 L 2

2 28—1
a=10 1 0
0 0 t3

The algebra Bs has the same orbit dimension as the algebra B5(6)B7% and so it
can also degenerate only to As. This is done by the matrix

1 0 ¢
gt:OtQO
0 0 ¢

Now we look at the algebras By(a)). We immediately see that by transitivity for all
o #  the algebras By(c) degenerate to As because Bs(8) does for every § # 3 and
By(a) —raeg Bs(a) for all a. But also for v = § we get a degeneration by transitivity
because B4(%) —deg B3 —deg As. Regarding the orbit dimensions, the only algebras
left that can possibly lie in the orbit closure of By(«) are As, Ao, and Aj;. As a
consequence of Lemma 3.50 and in particular example 3.51, the complete algebra
B,(a) cannot degenerate to Ay and Ay by Corollary 3.52. The algebra Ag can also
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not lie in the orbit closure of the algebra By(«) because of the same argument brought
in Proposition 4.19. We know (Remark 4.20) that the quotient

«

¢r(Ba(a)) =

a—1

is a B-invariant whenever it is defined. For Ay we must have
cr(Ba(a)) = cf(Ag) = cp(Ag) = 1,

yielding %5 = 1 which is impossible except for the values o = 0,1. But in this
cases the structure constants ci; and ci,, respectively, are zero and therefore define
invariants by themselves.®

The algebra B, degenerates to the algebra A5 by:

2

0 0 ¢
gs = 0t O
10 0

and by transitivity to As, Ag, Ajp and Aj;. We compute the invariant €, (B2) = 3.
Because €, ,(A2) = €, 4(4) =1 and &€, (A7) = 2 it is impossible for the algebras
Ag, Ag, and A7 to lie in the orbit closure of By. The algebra B, cannot degenerate
to the algebras As, A4, and Ag because their orbit dimensions are to high.

Finally, the algebra B; degenerates to the algebra A;; by:

00 t
a=1010
100

and by transitivity to As. Regarding orbit dimensions again we see that the only
possible algebras in the orbit closure of B; are A,, Ag, and A;q. We have

€p,q(Bl) =3 7& 1= Q:P»Q(A?)‘

Therefore the algebra B; does not degenerate to the algebra A,. The algebras Ag
and Aj( are complete and so the same argument as in Proposition 4.18 can be carried
out. O

4.5 Degenerations of the classes A, B, and E(-1)

4.5.1 Degenerations of Novikov algebras with Lie algebra
g5(—1)
Lemma 4.24. There are no proper degenerations for Novikov algebras with associated

Lie algebra g5(—1).

Proof. There are no proper degenerations from F; _;(1) and E; _;(—1) to any other
algebra because of the orbit dimensions. The algebras E; _;(a) with a # %1 can

8In fact we have the Zariski equations c; = 0 and ci, = 0 which are, as one could say, of the most
simple form.
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only have the algebras E; _1(1) and E; _;(—1) in their closure. Both is impossible
because of the invariant €, ((Ey _1(«)):

0"+ (a+ 17+ (0 = IP][a” + (a +1)" + (a = 1)1
CoalBrala)) = artd + (a + 1)pta 4 (a — 1)pte ’
(14+2P)(1 + 29)
1+2rte 7
(=17 + (=2)")(=1)? + (=2)7)
(—1)pta + (—2)pta '

Cpa(Er1(1)) =

Coq(Br1(=1)) =

We want to decide wether Ey _;(a) degenerates to £y _;(1) and therefore compute the
values of the above invariants for p = ¢ = 1. In this case the equality €, ((E) —1(a)) =
Cpq(E1,-1(1)) holds if and only if a = £1, but we already excluded these two cases.
The same is true for the algebra F; _1(1) and so for every « the set

O(E1,1(a)) \ O(E1—1(a))

contains no algebra with associated Lie algebra gs(—1).
The algebra Fs _; cannot contain the algebras E) () in its closure except for
a = 1. But also for these values a degeneration is impossible because €, ((Es 1) =

1, whereas €, ((E1,-1(1)) and €, ((E; _1(—1)) are non-constant funcions in p and g.
O

4.5.2 Degenerations of Novikov algebras with Lie algebra
g5(—1) and go
Lemma 4.25. The orbit closures of all 3-dimensional Novikov algebras with asso-

ciated Lie algebra g5(—1) to Novikov algebras with associated Lie algebra go are as
follows.

FE O E)

El,,l(l) B5(0)

El’,l(—l) B5(O)
By 1(@)azs1 | Ba(0), B5(0)
Esy 4 B4(0), B5(0)

Including the degenerations we already got, the Hasse diagram looks as follows.

E1,—1(Oé) Ez,—l

ol o

E; (1) Ei_1(—1) By(0

\ )
B5(0)
Proof. An algebra with associated Lie algebra gs(—1) cannot degenerate to the

Novikov algebras B; and Bs because of the orbit dimensions. The algebras £y _;(«)
cannot degenerate to the algebras Bs, By(@) (@ # 0), and Bs(5) (5 # 0) because of
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an argument first brought in Proposition 4.13. We frequently used similar techniques
over the last few sections and therefore we will not explain the whole procedure in
detail once again. An algebra in the orbit closure of the algebra E; _;(«a) either is not
complete or has a two-dimensional right annihilator. Both conditions do not hold for
By(@) for all @ except @ = 0. We indeed have E; _i(a) —qeg Ba(0) by:

1
" (ar1)2 1 0
gt = % 0 0 )
1 a—1 1
(a+1)t3 2t

and Ey _1(a) —deg B5(0) by transitivity. For the special cases Ey _1(1) and Ey _;(—1)
the same argument holds to exclude a degeneration to Bs and B;(8) (8 # 0). A

degeneration to By(@) is not possible for any @ because of the orbit dimension.
Nevertheless we have E; _1(1), By _1(—1) —geg B5(0) by:

0 1 0
g=1%+ 0 0
0 —= 1

This degeneration matrix even performs E; _1(a) —geg B5(0) for every a.

It is left to determine the orbit closure of 5 ;. Concerning a degeneration to
Bs, By(a) (a # 0), and Bs(8) (8 # 0) a similar argument as for £ _;(«) can be
carried out. Therefore a degeneration to these algebras is not possible. We have
E2,71 _>deg B4(0) by

0 % 0
gt = % 0 of,
A1 9
3 2t3
and Fy 1 —deg B5(0) by transitivity. Hence, we are done. O

4.5.3 Degenerations of Novikov algebras with Lie algebra
g5(—1) and g4

Lemma 4.26. The orbit closures of all 3-dimensional Novikov algebras with asso-
ciated Lie algebra gs5(—1) to Novikov algebras with associated Lie algebra g1 are as
follows.

E O(E)
E;_4(1) Ay, As
B (1) | A A,
Ei_1(a)azs1 | A1, As
FEy Ay, As

Including the degenerations we already got, the Hasse diagram looks as follows.?

9We remark that in this diagram the algebras with associated Lie algebra gs(—1) are not ordered
by orbit dimension.
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Proof. We order the algebras of class E and class A by orbit dimensions. As an
overview we give a table where for the algebras on the left we list all algebras that
can possibly lie in the orbit closure on the right.

E | O(E)
E1,71<04)a7éi17 E2,71 Ay, Ay, As, Ag, Ao, A
El,—1(1>7E1,—1(_1) A17A27A57A97A11

We start our proof with the algebra E; _;(«). For every algebra in the orbit closure
of By _1(«) it is true that it has a two-dimensional right annihilator or is incomplete
by a method worked out in Proposition 4.13. Both is not the case for the algebras
Ag and Ay, so these algebras can’t lie in the closure of E; _;(a). From Lemma 4.24
we know that €, ((E; _1(«)) is a non-constant function in p and ¢ for any a, whereas
Crq(A2) = 1 and €, (A1) = 3, which are both constant in p and ¢. Hence, a
degeneration from E; _;(a) to Ay and Ay is impossible. We have degenerations
Ey _1(a) —qeg A5 for any a # 1 by

L0 _(afll)t2
=10 0 %
01 0
and E1’71<1) —7deg A5 by
1 —5 0
gi = 0 0 %2
0 1 3

The algebras that can possibly lie in the orbit closure of Ey_; are the same as
the ones for E; _;(a). We exclude a degeneration to A, and Ay in the same way
as before, namely by the invariant €, (E2_1). Furthermore, the algebra E;_; has
a 2-dimensional left annihilator. Because dim Annj(Ag) = dim Anny(A;p) = 1 a
degeneration from Ey _; to Ag and Ay is impossible by Lemma 3.29. We once again
have a degeneration Ey _; —qeg As by

gt

I
S O =
— O O
O + =T~

This completes the proof. O
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4.6 Degenerations of the classes A, B, and C

4.6.1 Degenerations of Novikov algebras with Lie algebra g;

Proposition 4.27. The orbit closures of the Novikov algebras Cg() are listed in the
table below.

c | 0(0)\0(©)
Cs(0) Cy, C5(0)
Co(—1) | C5(—1),C7(—1)
Cs(5) C5(8), Cr(v)

Proof. The algebra with the lowest orbit dimension is Cg(—1). All the other
algebras Cg(f) have the same orbit dimension and so the only possible degenerations
are from Cg(f) with 8 # —1 to Cg(—1).

We start our proof with the special case Cg(0). We compute the dimension of
the first element in the derived series of Cg(0) and find dim §V(Cs(0)) = 2. From
Corollary 3.24 we know that the dimension of every element in the derived series has
to be equal or smaller in the orbit closure. Therefore we immediately exclude the
algebras Cy, Cy, Cs(0) -1, and C7(7y), for all v, of lying in the orbit closure of Cg(0).
They all have dim §®) = 3 for all [ > 1. Moreover, for the algebras Cs, Cs(0)azo the
dimension of 6 equals 2 for all [ > 1, which would contradict dim§?(Cs(0)) = 1
for all [ > 2 in case of a degeneration. The only algebras that remain are C; and
C5(0). We have Cg(0) —geg C5(0) as a special case of Cg(r) —rdeg C5(x), which we
will treat later, and

Cs(0) —qeg Cy by g: =

B e =
= I )
T~ O

The next special case is Cg(—1). Because of the orbit dimension only degenera-
tions to the algebras C5(0),C5(—1), and C7(—1) are possible. Looking for quadratic
operator identities T'(z,y) = 0 for all x,y € Cg(—1) we find among others that
T (x) = 0, where

T(x) := L(z)? — L(x)R(x).

Because of Lemma 3.46 this identity has to vanish for every algebra in the orbit
closure. In the case of C5(0) we have!?

0 0 0
750 (x) = | —m120 23 0
0 0 0

A degeneration is therefore impossible. For Cg(—1) —geg C5(—1) we again refer to
the case Cg(a) —geg Cs(r), which is coming soon. There is also a degeneration
C@(—l) —deg 07(—1) by

0
1
0

gt =

SO
= O O

10We set = Z?Zl x;e; and for y likewise.
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Finally we consider the case Cg(3) for every 5 # 0, —1. The algebras C; and Cs(0)
do not lie in the orbit closure of Cg(5) for any 8 € C by reasons of the respective
orbit dimensions. To show that all the other algebras of class C' are also not lying in
the orbit closure of any C4(/3) we use the following quadratic operator identity:

L(z)* — L(z)R(z)

— %R(x)L(x) +

%R(w)?

We have S (x) = 0 for every 8 # 0,—1. Hence, for all algebras C in the orbit
closure of Cg(3) we must have S¢(z) = 0. Instead we have

B g1 0 00 B
SC(I‘) = T —T1T2 JJ% 0 for C' = 02, 037 C4, C@(—l),
0 0 0
G_af 0 00
SO (g) = 5 —rze 22 0],
0 0 0
5 0 0 0
807(7)(]7) = T’Y —T1T2 ZE% 0
0 0 0

We see that the operator identity S(z) equals zero for Cs(«) and C7 () if and only if
a = (8 and v = 3, respectively. Indeed, in these cases we have degenerations for all

b eC:

100
Co(B) —deg C5(B) by ¢ = [0 1 0] and
001
1 00
Cﬁ(ﬁ) —7deg 07(5) by g; = 05 1 (1)
_ 2 0 1
t t

O

Lemma 4.28. The orbit closures of all 3-dimensional Novikov algebras with associ-
ated Lie algebra gs are listed in the table below.

C O(C)\ O(C)
Cy Cs,C3,C5(—1),Cs(—1),C7(—1)
Cz 07(_1>
03 05(_1)
Cy C5(0)
05(0) -
C5(—1)
Cs(a) -

Cs(0) C4, C5(0)
Ce(—1) C5(—1),C7(-1)
Cs(B) Cs5(8),Cz(7)
C7(=1) -
Cz(v) -
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Proof. We order all the algebras of class C' by their orbit dimensions, beginning
with the highest on the left:

C1,Cs(B)pzr—1;  C2,C3,Cy, Cs()azo,-1,Co(—1), Cr(7)y2-1;  C5(0),Cs5(—1), C7(—1).

Because of transitivity arguments we begin with the algebras C5 and C'3. Considering
the orbit dimensions the algebra Cy can only degenerate to the algebras C5(0), C5(—1)
and C7(—1). However, only a degeneration to C7(—1) is possible because the €, -
invariant of Cy equals two, but for C5(0) and Cs5(—1) it equals one. The degeneration
matrix for Cy —geg C7(—1) is given by

0
0
1

S+ O

1
g=10
0

A similar situation arises for the algebra C5 which has the same orbit dimension
as Cy. This time a degeneration to C7(—1) is impossible because of

Cpq(Cs) =1# 2=, 4(C7(-1)).
Assuming C7 —geg C3 a degeneration Cy —geg C5(0) is impossible by transitivity
with C5(0) ¢ O(C}). We will prove this assumption immediately. Finally we have
1 00

03 —7deg 05(—1) by gy = 0t O
0 01

Now, regarding orbit dimensions, the algebra C; can’t degenerate to Cg(3) for any
B # —1. For the value § = —1 and the algebras Cy and C3 we have degenerations:

1 00

Cl _>deg 02 by gt =

C1 —raeg C3 by g¢ =

O O R =D
S+~ = O ok =
S+ O O == O

1
Cl —deg 06(_1) by gt = 0

Like in the Proposition before we look at the operator identity TC(x) = 0 which
holds for every C' € O(C}), where

T(x) = L(z)* — L(z)R(x).

On the other hand one can easily compute that

0 0 0
TC“(x): —x129 x7 0
0 0 0
0 0 0
T () = | —(a+ Dagas (a+1)2? 0],
0 0
0 0 0
TC7(7)(J;): —(Py—i—l)xﬁﬁg (’Y‘i‘l)x% 0
0 0 0
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We see that only in the cases C5(—1) and C7(—1) the operator identity T'(z) = 0
is consistent with respect to a degeneration. In fact we have C; —geq C5(—1) and
C1 —deg C7(—1) by transitivity with C7 —geg C2, C2 —deg Cr(—1), and C5 —geg
C5(—1).

Because of dim O(C,) = 7 we only have to check possible degenerations from C,
to C5(0), C5(—1) and C7(—1). The algebra C, has the same €, ,-invariant as Cs and
so we are done for C7(—1). While a degeneration to C5(—1) is impossible by

dim 6 (Cy) = 0 % 2 = dim 6P (C5(—1))

using Corollary 3.21, we have

C4 —7deg C'5(0) by gt =

o O =
O = O
+~ O O

The next orbit closures we study are that of the algebras Cs(«). We have two
special cases, namely C5(0) and C5(—1). Both of them can’t degenerate to any algebra
in class C' because their orbit dimensions are to small. For our further considerations
we therefore exclude the values a = 0, —1 when we speak about C5(«). Yet we still
have to show that Cs(«) can’t degenerate to C5(0) or C5(—1). To see this we compute

(Ol = (T
Cq(C5(0)) = €, 4(C5(—1)) = 1.

If we calculate the first expression for the values p = ¢ = 1 we find that €, 1(C5(a)) =
1 if and only if @ = 0, —1. Furthermore (by Example 3.54)

Rpa(Cs(a) =2 # 3 =R, ((C7(7)),

for every oo and v not equal to zero. Hence, there are no proper degenerations from
Cs(«) to any other algebra in class C.

The same statement as for Cs(«) is also true for C7(y). We use the same arguments
as before and are therefore done. O

, and

Corollary 4.29. The Hasse diagram of all 3-dimensional Novikov algebras with as-
sociated Lie algebra gs is given as follows.

Cs(0) Cs(B) ) Cy
P I
C, Cs(a) C7(7) Cs Cs(—1) Cs
i N
C5(0) Cs(—1) C7(—1)

4.6.2 Degenerations of Novikov algebras with Lie algebras g3
and g

Proposition 4.30. The orbit closures of the algebras Cs(«) in class B are given as
follows.
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¢ 0(C)
C5(0) B5(0)
Cs(—1) B;
C5(—1) B5(0)
05(04)017&0’,%7,1 By(—a), Bs(—a)

Proof. All the algebras Cs(a) with arbitrary o € C cannot degenerate to the
algebras By and B, because of their orbit dimensions.

We want to know what degenerations are possible from the algebra Cs(«) with a
fixed a € C to the algebras Bs(3). Therefor we consider the following polynomials:

fi (xfy) = xéﬂ%s. - m§2x§3 oo+ 1)@32 x%B)zv
fQ(xfy) = x§1$%3 - x%1x§3 oo+ 1)@31 x%3)27
f3(xfy) = xglx% - x?lx?ﬁ ala + 1)@21 $?2)2‘

The corresponding polynomial functions fi, fo, and f3 in the 27 variables xfj with
i,J,k =1,2,3 are defined on the affine variety Alg;(C).!" Now, by computations one
can show that the functions fi, fo, and f3 are zero on the whole orbit of C5(«). By
definition of the Zariski topolo%y the corresponding equations must hold on the orbit
closure of Cs(a). Let (cj;);% " be the vector of structure constants of the algebra

Bs(5). In this notation, if we would have Bj(5) € O(Cs(«)) then the following
equations must hold:
Ay =0 for 1=1,2,3.

ij,k
This is true for f; and f5, however we have:

(i) = B(B—1) — afa + 1),

This equation is zero if and only if 3 = —a or § = 1+a. These two different solutions
for B correspond to the isomorphic algebras Bs(—a) = Bs(1 4+ «). By transitivity,
using Proposition 4.19, we can exclude a degeneration to the algebras By(a) with
a # —a, 1 + « as well. Finally there are the following degenerations:

1
T (at1)t2 L0
Cs(0) —deg Ba(—a) by g, = 2 0 0 for all a # 0, —1,
1-2a 1
(a+Dat® ¢ 1

and therefore by transitivity, using Lemma 4.21 we have 05(—%) —deg B3 and
05(&) —deg B5(—C¥).

Nevertheless Cs(«) cannot degenerate to the algebra By(a + 1) because of the
following equation:

f4($§j) = Oé(fféﬂg?, - xé3x§2) + (a+ 1)(90339532 955355%3)-

This equation is again zero on the whole orbit of C5(a), however for!? E(a) we have

Bi(a _
f4((ci€])w4k( )) = —a.

H'We wrote the arguments :c . with upper and lower indices to emphasize that the values we

consider here are given by vectors of structure constants. In this sense the indices of :c - and c
correspond, which makes an evaluation at the point (c? ;)ig,k much more easier.
12We defined the algebra By(a) in Proposition 4.19.
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For the algebra B; we have'® f3(Bs) = —1 — a(a+1). This leads to a = —1 as only
solution.

For the special cases @ = 0,—1 we can’t have degenerations from Cj(a) to the
algebras By(@) for any & because of their orbit dimensions. Furthermore the same
is true for the algebras Bs and Bs(3) for all 5 # 0. We use the dimension of the
left-annihilator to see this:

dim Anny(C5(0)) = dim Anny (Cs5(—1)) = 2
dim Anny(B3) = dim Anny(B5(8)) =1 for all # 0, 1.

We know that the dimension of the left-annihilator has to increase with respect to a
degeneration (Lemma 3.29). However, to B;(0) = Bs(1) degenerations do exist:

C5<O) _>deg B5<1) = B5(0) by g =

1
t
0
0
1
t
Cs5(—1) —aeg B5(0) = Bs(1) by g, = (0
0

O

Remark 4.31. In the last proof it would have been sufficient to take only the poly-
nomial f3 to exclude a degeneration from Cj(a) to Bs(8) for all 5 # —a,1 + a.
However, there are algebras isomorphic to B;(3) for which f3 is zero. The system of
equations { f1, f2, f3} will always be non-zero for some f; in the orbit of Bs(3) with
b # —a,1+a.

Lemma 4.32. All possible degenerations of 3-dimensional Novikov algebras with as-
sociated Lie algebra gz to Novikov algebras with associated Lie algebra go are listed
in the table below.

C O(C)
Cl BS: B4(a>7 BS(B)
Cy B4(0), B5(0)
03 B4(1)7 B5(1>
Cy B4(0), B5(0)
Cs(0) B5(0
05(—%) BS; B4(%)7 B5(%)
Cs(-1) B5(0)
C5(Oé>a7£07_%7_1 By(—a), Bs(—a)
06(0) B37 B4(Oé>’ B5(6)
Cs(—1) Bs(0)
06(5)[3;&0,—1 Bs, B4(CY)> BS(@)
C7(-1) B5(0)
C7(7)yz0,-1 B4(0), B5(0)

BWe write fi(A) for the polynomial funcion applied to the vector of structure constants of the
algebra A.
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Proof. For the algebras in class C' we treat all the orbit closures that lie in class B
consecutively. Before we start doing so we remark that regarding orbit dimensions
only the following degenerations to the algebras B; and B, are possible. Namely
C1 —aeg B1 and Cg(8)p£—1 —rdeg B1. We treat these cases first, so we can then focus
on degenerations to the algebras Bs, By(a), and Bs(f3) only.

To exclude degenerations from C; and Cg(0) to B; we use Lemma 3.50 and the
fact that

det L () = det L (2) = 0

for all x € C) and © € Cg(0), respectively. This is a Zariski closed condition
which does not hold for the algebra B; since det LZ!(e;) = 1. Degenerations from
Cs(B)p2—1,0 to By are also impossible because the quadratic operator identities

T(r) = L*(x) — L(z)R(z) — TR(m)L(x)
are zero for all § # —1,0 and
1 0 0 0
TBl(a;):B 0 0 0] #0.

T1Te w2 0

Now we start our study of degenerations from algebras in class C' to algebras in
class B step by step. We begin with C5 for reasons of transitivity. The argument of
Proposition 4.13 excludes a degeneration to Bz, By(a) for all a # 0, and Bs(f3) for
all 5 # 0. For the exceptional values o = 5 = 0 we have degenerations:

z @ 0
Cy —qeg Bs(0) by o= ¢ 1 0],
0 -4 1

and Cy —qeg B5(0) by transitivity.

The algebra C3 has only the algebras By(1) and Bs(1) in its closure. To see this we
use dim Anny (C3) which equals two. By Lemma 3.29 we know that for every algebra
in O(Cs) the dimension of the left-annihilator has to be equal or higher than that
of C5. Beneath the algebras { B3, Bs(«), B5(/)} this is only possible for the algebras
By(1) and Bj(1) for which we have indeed degenerations

0 % 0
CQ —7deg B4<1) by gt = % 0 0 )
bk

and C3 —>qeg Bs(1) by transitivity.

Now we continue with the algebra C. By Lemma 4.28 we know that C'; degenerates
to Cy and C5. Therefore we have C) —geg Ba(0), B4(1). Moreover we can find
degenerations for all the other values of a # 0,1

0 & 0
Cl %deg B4(Oé> by gt = %1 01 O
a3 T B ala—1)83

By Proposition 4.19 and transitivity there are degenerations from C; to B3 and Bs(5)
for every € C.
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The situation for the algebra Cj is slightly different than that for C5. We now
regard the dimension of the right-annihilator, which equals two for Cy. We use again
Lemma 3.29 to exclude degenerations to the algebras Bs, By(a) for all a # 0, and
Bs () for all g # 0, which all have right-annihilators with dimension equal to one.
We however have degenerations:

00 %
Cy —7deg B4(O) by gt = % 0 01,
by

and Cy —geg B5(0) by transitivity.
Considering the family of algebras Cs(/5)s2—1 we can find, for now, only degener-
ations for the values § # —1, —a:

1 1 0
(ﬁ1+1>t2
Cs(B) —aeg Ba(a) by g; = 3 0 0 :
_a—B+1 1 1
a(B+1)t3 t  alat+p)ts

where a must not be equal to 0. Additionally we have the following:

1 1+ t3—54<x
T 0 2(fztt
Cﬁ(_a> —7deg B4(Oé) by gt = 0 0 2 )
2a(1—2a) 1
+3

(o= 1) (141 Bt

where o can’t take the values 0 and 1. There is only one value of « that is not
covered by the last two degeneration matrices, namely o« = 0. However, also in this
case degenerations are possible for all g # —1:

1 1
3 0 —B)r
OG(B) —7deg B4(O> by gt = 1 0 0
t+,§+l 1 1
(B+D)(t+1)t1 (1+t)(t-p)t

In conclusion we have Cg(8)p2—1 —deg Ba(e) for all @ € C. Hence, by transitivity
with B4(%) —7deg Bs and B4(a) —7deg B5(Oé) we have Cﬁ(ﬁ)ﬂ¢_1 —7deg B37B5(B) for
all g e C.

For the exceptional value = —1 we can’t have degenerations to Bz, By(«a) for all
a € C, and Bs(j3) for all B # 0, because of the following dimensions of vector spaces:

dim Der(y 1,0)(Cs(—1 )) =5,
dim Der(y 1 0)(B3) =
dim Der(y,1,0)(Ba (v )) 3if o # 5
dim Der(j 1, 0)(B4( ) =
dim Der (1 1 0)(B5(B)) = 3 if 3#0,1.
To lie in the orbit closure of C(—1) an algebra B has to satisfy dim Der( 10)(B) = 5

by Lemma 3.34. This is not valid for either of these algebras except Bs(1) = B5(0)
for which we indeed have a degeneration

06<_1) 7 deg B5(1) by g =

— = O
]
=Rl
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Finally we consider the family of algebras C7(7y) where 7 # 0 by definition. We
start with the special case C7(—1) which has a different orbit dimension as C7 () for
any v other than —1. Using this fact we derive that C7(—1) cannot degenerate to
By(«) for any o € C. By transitivity a degeneration to Bs is also impossible. Next
we compute the following dimensions

dim Dery 1,0)(B5(3)) = 3 for all 5 # 0,1 and
dim Dery 1,0)(C7(— 1)) 5.

Therefore, by Lemma 3.34, we have no degenerations from C7(—1) to Bs(f) except

C?(_1> %deg B5(1) = B5<O) by gt =

S O+l
— - O

0
0
1

For the algebras C;() with v # 0, —1 the exact same argument as for the algebra
C5 holds. We have a degenerations

“opoe L0
C7(77) —deg B4(0) by g = ;1 01 0
EETCEs Y
and C7(v) —deg B5(0) by transitivity. O

Corollary 4.33. The Hasse diagram of all 3-dimensional Novikov algebras with as-
sociated Lie algebras g3 and g is given as follows.

Cs(B)pz-1
B=0 B:ai

05(06)#0,71

4.6.3 Degenerations of Novikov algebras with Lie algebras g3
and g,

Proposition 4.34. The orbit closures of the algebras Cs(a) in class A are given as
follows.

¢ | 0(©)
C5(0) | AL A;
C5(—1) Ay, As
05(04)a7é0,—1 Ay, As
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Proof. We show that degenerations from Cj(«) to Ay, Ag, and Aj; are impossible
for every a € C. After this we conclude with transitivity that degenerations to any
other algebras than A; and A; are impossible too. We begin with the algebras A,
and Ay, for which the R, j-invariant equals one and three, respectively. We have
Rpq(Cs(r)) = 2 for all & # 0 which contradicts a degeneration for those algebras.
For the value a = 0 we find dim C5(0)? = 0, whereas dim A2 = 1 and dim A%, = 3.
Hence a degeneration is impossible by Lemma 3.23.

The algebra Ag can’t lie in the orbit closure of C5(«) for any «. To see this we
regard the polynomials f1, f2, and f5 from Proposition 4.30. We have fg((cf])f;gk) =1

Finally we have degenerations from Cs(«) to As for every a because of Proposi-
tion 4.30 and Lemma 4.23. a

Lemma 4.35. All possible degenerations of 3-dimensional Novikov algebras with as-
sociated Lie algebra gz to Novikov algebras with associated Lie algebra g, are listed
in the table below.

C 0(C)
C Ay, A, As, Ag, Ag, Aro
CQ A17 A5
C3 Ay, As
Cy Ay, As
O5(CY) Al,A5
Cs(—1) Aq, As, As
06(5)%&*1 A17A27A5,A67A97A10
C7(7)20 Ay, As

Proof. A lot of possible degenerations are excluded by the dimensions of the orbit
space. As an overview we give a table where for the algebras on the left we list all
algebras that can possibly lie in the orbit closure on the right.

C | 0(C)
Cs(0), C1, Cs(B) p£—1 Ay, Ay, As, Ag, A7, Ag, Avo, Arr, Arg
Cy, C3,Cy, Cs()az0,-1, Co(—1), C7(77) 20,1 Ay, Ag, As, Ag, Ay, Ay
C5(0), C5(=1),C7(—1) Ay, Ay, As, Ay, A

We start our proof with the algebra (. From the table above we conclude that
degenerations to the algebras As, Ay, and Ag are impossible. Also A;; can’t lie
in the orbit closure of C;. Indeed, det L (x) = 0 for all z € C; and because of
Lemma 3.50 this must hold for every algebra in the orbit closure of C';. However, for
the algebra A;; we have det L411(e3) = 1. By transitivity the algebra A5 can’t lie
in the orbit closure of the algebra '} as well. Furthermore there is no degeneration
to the algebra A;. To see this we use Theorem 3.8 and its corollary. The third
basis vector ez generates a 1-dimensional ideal in C}. Therefore we can take the
factor C/(es) which is isomorphic to the 2-dimensional Novikov algebra W;. By
Corollary 3.9 we know that in case we have a degeneration C —qee A7 there must
exist a 1-dimensional ideal I in A; such that

01/<€3> = W5 —7deg A7/I
There are exactly two 1-dimensional ideals in A7, namely (e;) and (e3). We have

A7/<61> = U2 and A7/<€3> = U4.
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However, by Corollary 4.5 neither Us nor Uy lies in the orbit closure of W5. Hence a
degeneration of C to A7 is impossible. Finally we have

0 % 0
Cy —7deg AG by gt = % 0 0
0 0 1

and by transitivity C —qeg A2, As, Ag, Atp.

We continue with the orbit closure of the algebra C5, which can only degenerate to
the algebras A, A5, Ag, Aig, and A;;. We consider the €, j-invariants of the algebras
Cy, Ay, and Ayy: €, 4(C2) =2, €,4(Az) =1, and €, (A1) = 3. Therefore a degen-
eration from C5 to Ay and Aj; is impossible. Furthermore, by the same argument
worked out in Proposition 4.13 the algebra C5 can’t degenerate to the algebras Ag
and Ajp. We use transitivity regarding Cy —geg B4(0) —geg A5 (Lemma 4.46 and
Lemma 4.23) to conclude that Cy —geq As.

By the above diagram the algebra C3 can’t degenerate to the algebras As, Ay,
Ag, A7, Ag, and Aj. We exclude degenerations to the algebras Ag and Ajq by the
dimension of the left-annihilator. We have dim Anny(C3) = 2, but dim Anny(Ag) =
dim Anny(Ay9) = 1 which contradicts Lemma 3.29 in case of a degeneration. It is
easily seen by the 9, j-invariants that there are no degenerations to the algebras A,
and Aj;. We have R, ((Cs) = 2, Ry q(A2) = 1, and R, 4(A11) = 3. A degeneration
from C5 to As is accomplished by transitivity via Cs —geg B5(1) —>deg As-

The orbit dimension of the algebra C is the same as for C3. Therefore we have
the same algebras that possibly lie in the orbit closure of C, as for C3. We start
with the algebra Ay and consider this time the dimension of the right-annihilator
dim Anng(Ag) = 1. Conversely, we have dim Anng(Cy) = 2 which would contradict
a degeneration. By transitivity Ao can’t lie in the orbit closure of Cy as well. To
exclude degenerations to the algebras A; and A;; we regard Corollary 3.21 and com-
pute dim §®(Cy) = 0, dim 6@ (A4;) = 1, and dim 6 (A};) = 3. Like in the case of
(5 there is a degeneration to A; by transitivity.

We already treated the case C5(«a) in Proposition 4.34 and therefore continue with
the orbit closures of the algebras Cs(3). In this case we have two exceptional values
for 5, namely 8 = 0, —1. The cases § # 0, —1 and § = 0 are nearly the same. For
these we will show that degenerations to A; and A;; are impossible and so are, by
transitivity, degenerations to Az, Ay, Ag, and Ajs. For this we regard the factor
of Cs(B) by the 1-dimensional ideal (e3): Cs(8)/(es) which is isomorphic to the 2-
dimensional algebra Ws(—7) via ( 9 (1)) However, we have only the following factors
by 1-dimensional ideals for the algebras A; and Ay;:

Az /(e1) 2 Uy
Az/(es) = Uy
A11/<k’161 + k'262> = U4 for all k?l, ]’CQ e C.
From Corollary 4.5 we know that W5(/3) does neither degenerate to U, nor to Uy if

and only if § # —1. This shows that a degeneration from C4(5) to A7 and Ay is
impossible for every § # —1. Nevertheless there are the following degenerations for

all B # —1:

10
Co(B) aeg As by ge=| —% 0 0
0 1
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and Cs(f) —raeq A2, As, Ag, Ajg by transitivity using Corollary 4.10.

Now we study the case 3 = —1. Tt is immediately seen that det LY (z) = 0 for
every x € Cg(—1) which is a Zariski-closed condition on Alg,(C). Hence Cs(—1) can’t
degenerate to A;;. The same is true for Ay, if we regard the following dimensions:

dim Der(l,m) (06<_1)) = 5,
dim Der(m,o) (Ag) =3.
)

By Lemma 3.34 the dimension of Der 1,0)(Cs(—1)) has to increase. Hence the algebra
Ag can’t lie in the orbit closure of the algebra Cg(—1).

A non-degeneration to the algebras Ag and Ay, excludes already all algebras, except
Ay, Ay, and As, of lying in the orbit closure of Cg(—1). We indeed have a degeneration

0
Co(—1) —=qeg A2 by g = | 0
-1

O = O
O O+l

and therefore by transitivity Cs(—1) —>deg As-

Finally we observe the closures of the algebras C7 () for all v # 0 in class A. The
R, q-invariant of C7(7y) equals three for which reason a degeneration to the algebra
A, is impossble by R, ((Az) = 1. In order to exclude a degeneration to the algebra
A;; we have to show that

(297 + (v + D)2y + (v +1)9)
2979+ (y + 1P

€p,q(c7('7)) =

can’t take the value three for some p and ¢ in N. This can easily be shown with
a computer. Moreover a degeneration to Ag is impossible because of an argument
brought in Proposition 4.13. By transitivity, no algebras except A; and As can lie
in the orbit closure of C7(y). We have C7(7) —deg A5 —deg A1 by transitivity with
C7(7) —deg B5(0) —qeg A5 for all nonzero v € C. This completes the proof. a

Corollary 4.36. The Hasse diagram of all 3-dimensional Novikov algebras with as-
sociated Lie algebras g3 and g1 is given as follows. Lack of space forced us to omit
the restrictions a,y # 0, —1 for the algebras Cs(a) and Cr(7y).

/Cl Cs(0) Co(8)s0,-1 y
CQ/KCJJ'S\AGX@ . Cs(a),C7(7)
RN |
C7(—1) C5(—1) Ao C5(0)
Ao Ag
As

Ay
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4.7 Degenerations of the classes A, B, and E()\)

We have already treated the special classes E(1) and E(—1) in the sections 4.3 and
4.5. Therefore, in this section it is always assumed that the parameter A can’t take
the values +1. Sometimes we don’t mention this restriction in the text.

4.7.1 Degenerations of Novikov algebras with Lie algebra g;()\)

Proposition 4.37. For a given A € C the algebra I, ) degenerates properly only to
the algebra Ey \(—1) within class E(X).

Proof. Regarding orbit dimensions, the algebras Ej ) can possibly degenerate only

to the algebras E; 3(—1) and E; 5(—A). To restrict these possibilities a little bit more
we introduce a polynomial identity, linear in the structure constants. We set:

where rj; € C for all i, 7,k = 1,2,3. We write F'(E,)) to evaluate the function F at

the point (05)52,;*, the vector of structure constants of the algebra Fs . If we want

to have F' zero on the whole GL3(C)-orbit of the algebra Es ), we have to solve the
equation
F(g-E») =0,

in the coefficients Tfj € C, where g € GL3(C). For X\ # 2 this solution is given by the
relations

7"%1 = 7’:1))1 = 7’:1))2 = 7‘%3 = 7’%1 = 7’%1 = 7’32 = 7"%3 = 7’31 = 7”%2 = 7”%3 = 7”§3 =0,

7"%2 = %7’%17 7"?3 = 37’%1 - AT%Q? 7’%1 = %rim 7’31 = 7”%1 - 7"%2

7"32 = 7"%2 + T%l? 7’33 = 7‘}37 7";3 = 37’}2 +(3 = )‘)7’%1: 7"%1 = ﬁ(%%g + 7”}3)

7”31 = _27”%1 + )‘T%m 7"?2,2 = 7"%3 - 7“%3 + Téla 7"?3;2 = _27“%2 + (A= 2)7“%17 7°§3 = 7“%3 + 7“?1,1~

If we take the polynomial function F' with these values for rfj we find that
F(E 5(a) = 3251+ a+ aX + A)ris.
So if the algebra E 5(a) would lie in the orbit closure of Es, we must have'
l+a+ar+A=0

for some a, A € C. If we set o = —1 we get A\ = X and for a = —\ we get A = %,
corresponding to the isomorphic algebras F; 5(—1) = EL%(_/\)‘ Indeed there are
degenerations

O+ O
— o O

1
E2,>\ _>deg El,)x(_l) by g¢ = 0
0

O

14The solutions for the equation F(g- E2 2 = 0 leads to the same condition as for the general case.
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Remark 4.38. In the next proposition and in the following lemma we are confronted
with the situation of using the €, ,-invariant frequently. On the one hand we are lucky
that it is definable in the most cases, on the other hand, however, because of the
various parameters that occur especially in this class we obtain highly complicated
identities when we compare these invariants. It seems to be no other way of using
the computer to solve the equations that arise when we compare the &, j-invariants
of two different algebras. To keep the proofs at a readable level we are forced to
abbreviate the arguments and present only the outcome of our calculations. As far
as it is possible we give the algorithms in the appendix.

Proposition 4.39. For a given § € C the algebra Es([3) degenerates properly only

1

to the algebra E, 1(8) within class E(X), except for the value f = —5 where we have
2

E5<—%) —>deg E6.

Proof. There are two special values for § € C which we want to treat seperately.

These are § = —%, —1. We start with the case g = —%. Using the €, ,-invariant
we find that there is only one possible degeneration to the algebras F; »(«), namely:

E5(—3) —deg El,%(_%)' This degeneration indeed exists and is a special case of
E5(8) —raeg £y,1(8), what we will show later. Neither of the algebras E, 5 with A #£ 2

can lie in the orbit closure of the algebra E5(—%) because of the €, j-invariant again.
Unfortunately we have
Qtp,q(ES(_%)) = € q(En2).

We use Theorem 3.8 to show that a degeneration doesn’t exist for the value A = 2 too.
Therefor we regard the factor E5(—3)/(e2) which is isomorphic to the 2-dimensional
Novikov algebra W5(1). We remember that for the algebra W5(1) we have only trivial
and improper degenerations (Corollary 4.5). However, there is no 1-dimensional ideal
in the algebra E,, that has a factor which is abelian or isomorphic to W5(1). Hence,
by the above mentioned theorem a degeneration from E5(—%) to Ly is impossible.
The algebras E3, Fy, and E5(5) for every § € C other than —% are immediately
excluded of lying in the orbit closure of E5(—%) by reasons of orbit dimension. The
¢y q-invariant applies once more, preventing the algebra Ej5(—1) of lying in the orbit
closure of E5(—3). We finally have

T2

1 0 0

Es5(—3) —aeg Es by g: = —1% —t 0
= 0 1
t

Regarding orbit dimensions the algebra E5(—1) cannot degenerate to any algebras
except By 5(—1) and E;5(—)). The €, -invariant excludes degenerations for all
values of A € C except A = 1 for F, 5(—1) and A = 2 for F, 5(—\). Considering
Elé(—l) = E12(—2) we have only one degeneration for the algebra F;5(—1), which
is a special case of E5(8) —deq Elé(ﬁ).

The orbit dimension of the algebra E5(/) equals that of E5(—3) for every 8 # —1
for which reason we exclude a degeneration to the algebras Es, F4, and Es5(3) for
every [ # —1 at once. It is easily seen that the €, ,-invariant prevents the algebras
F5(—1) and Ej of lying in the orbit closure of E5(3) for every 5 # —1.

We now want to know for which pairs (A\,«a) € C? the algebra Ej () lies in
the orbit closure of the algebra F5(f). Because of the three parameters A\, «, 5 € C
involved this is a difficult question. To answer it we use a combination of two methods:
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1. A poynomial F(z};) = Zij,k:l r; - xf; that defines a Zariski-equation on the
orbit of E5(5).

2. The €, j-invariant.

The values of the coefficients r}; such that F'(E5(3)) = 0 are listed in the appendix.

1@ o find that!®

Evaluating the function F' at the point (c w>w .

1
F(Ei (o)) = %2%“) 11y for all B # . and

1
F(Eia(a) =14+ 3a+ ) -rél for 8 = —5

In both cases F(E1 () = 0 if and only if a = 25(1 + A). We set for these values

CLi(E5(8)) = Ca(Bia(3A(L+N)))
and derive the following three solutions in A:
1. Every A€ Cwith 1 = A4+ X2 #£0if = -2
2. A= 3 where 5+ 128 + 124 # 0, and
3. A =2 where 5+ 128 + 123% # 0.

The first solution was already checked when we classified the orbit closures of the
algebra E5(—3). The second solution enables the algebra E, 1 (6) of lying in the orbit

closure O(E5(5)). Finally the third solution corresponds to the algebra Ej 2(25).
Regarding E 1 (B) = E12(28) we have only the following degeneration:

E5(8) —7deg E (ﬁ) by g; =

o O =
S+ O
—_— o O

Finally we want to show that neither of the algebras Ejs , lies in the orbit closure
of the algebra E5(8) for every 5 € C. To see this we use the polynomial F' we

Es x.

introduced before and evaluate it at the point (c;); %

F(Epy) = -2 . ply for all B # —3 and

F(Eyp) = (A=2) -7} for f= -1,

We already investigated the orbit closures of the algebra E5(—3) for which reason
we shall continue with the general case. The polynomial F' applied to the structure
constants of the algebra Fs ) equals zero if and only if A = 3;526 and so we set

C11(E5(8)) = Cra(E,y _si2s).

28

This equation has the solutions § = —%, —1 which correspond to the two special
values of 8 we have treated at the beginning of this proof. a

5For the sake of completeness we mention the case 8 = —% once again here.
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Lemma 4.40. All degenerations of 3-dimensional Novikov algebras with associated
Lie algebra gs(\) are listed in the table below.

E O(FE)
E17)\<Oé) —
A#£0,+1
N —1, -\
Eya(—1)
Eia(=)) -
Es Ei\(—-1)
A#£0,+1
Es E1,2(—1), FEs9, Eg
E, El,%(_l)vEQ,%v E5(—1)
E5<5)5¢—%,—1 EL%(ﬁ)
E5(—3) E15(=1), Es
E5<_1) E1,%(_1)
E()' ELQ(—l)

Proof. A lot of possible degenerations can be excluded by the dimensions of the
orbit spaces. We therefore order the algebras in class E(\) by their orbit dimension,
beginning with the highest on the left:

Es, Ey, E5(8)pr—1; Eix(@)az—1-x, Eox, E5(—1), Es;  Eix(—1), E1A(—A).

In this ordering, by Theorem 1.16, degenerations can go only from the left to the
right. In fact all non-degenerations in this proof can be handled by the dimensions of
the orbit space or the &, j-invariant. However, as already explained in Remark 4.38
this has to be done in a computational way. Nevertheless we give a list of all the
¢, q-invariants in use:

_ (@4 @+ 1P+ (@ + A (et + (ot 17+ (o + \))
Ea(Era(a)) = aPtd 4 (o 4 1)PHa 4 (a + \)pHa ’
(AP +A=1)P)( N+ (A —1)7)

\P+a 4+ ()\ — 1)p+q ’
_ _ ()P A= D=1+ (A = 1)9)
Cpq(L2p) = Cpq(Era(—1)) = (—1)pta + (A — 1)pta )

_ _ _ ()P D)+ 1)
Cp,01<E3) - Cp,q<E5(_1/2>> - Q:p,q(E(i) - (—1)rta +1 J
(/2P +1)((1/2) +1)

Cpq(Ea) = Cpq(E5(—1)) = (1/2)P+a + 1 )
(BP+ B+ 17+ (B+1/2)P)(B7+ (B+1)7 + (B + 1/2)7)
prta + (B + 1)Pte 4 (B + 1/2)pte '

CpalE1A(=A)) =

Qp,q<E5(6)) =
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We are therefore done by listing all the degenerations in this class:

£ 00
E3 —4eg Eo2 by g: = (0 0 1.
0t 0
1 00
E3 —7deg EG by gt = 0t 0 )
0 0 ¢t
1 00
Ey —deg EQ,l by g; = (O 1 0],
i 00 1
1 0 0
Ey —qeg Es(—1) by go= [0 ¢* 0,
t 0 ¢t
1 00
E5(8) —ace £y 1 () by g = (0 t 0],
0 01
1 00
Es —vaeg By 1 (=) by go= {0 1 0
00 !

The degenerations E3 —qeg E1o(—1) = El,%(_%) and Ej —deg El’%(—l) >~ F)o(—2)
follow by transitivity. O

Corollary 4.41. The Hasse diagram of all 3-dimensional Novikov algebras with as-
sociated Lie algebra gs(\) is given as follows.

E5(—3) E; E, E5(B)pz—1.1
Pt 2
Eq Es 5 E5(—-1) Eya(a)
k £ /
El,'(_l)

4.7.2 Degenerations of Novikov algebras with Lie algebras
g5(\) and g

Proposition 4.42. The orbit closures of the algebras Es(B) in class B are given as
follows.

E | O(E)
Es(—3) Bs, Bs(8)
E5(—1) By(1), Bs(1)

Es(B a?ﬁ_% . By, By(@), Bs(3)

Proof. By Lemma 4.40 we know that E5(—3) —aeg Ee. Furthermore, in the next
Lemma we prove that Eg —geg Bs, B5(3) for all § € C. By transitivity we have
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E5(—1) —daeg Bs, B5(B3) for all 8 € C. The algebra Es(—3) doesn’t degenerate to the
algebra By(@) for any a. To see this we consider the factor of E5(—3) by the ideal
(e9) which is the 2-dimensional Novikov algebra W5(1). There exists only a single 1-
dimensional ideal in By(@), namely (e3). Its factor is given by By(@)/(es) = Us which
does not lie in the orbit closure of the algebra W5(1) by Corollary 4.5. Therefore, by
Theorem 3.8 a degeneration from E5(—3) to Ba(@) is impossible for all a.

Next we show that a degeneration from E5(—1) to Bs(f) for all § # 0,1 is impos-
sible. We consider the following set of polynomials:

S (xfg) = xézxés - 57552%:1).37
k

fQ(xij) = x%ﬂ%s - 1‘%1%337

fS(xZ) = x%ﬂ?z - x?ﬁxgz-
Now, by computations one can show that the functions f;, fs, and f3 are zero on
the whole orbit of E5(—1). By definition of the Zariski topology the corresponding
equations must hold on the orbit closure of E5(—1). In this notation, if Bs(/5) would
lie in O(FE5(—1)) the functions f; for [ = 1,2,3 need to be zero at the vector of

structure constants of B5(f). Instead we have

fs(Bs(B)) = B(B —1).
We find that only for the values 8 = 0,1 the above set of polynomials would be
consistent with respect to a degeneration. However, regarding the polynomial

k 1.2 1.2
f4($ij) = T33L3g9 — T39T33

which is zero on the whole orbit of Fs(—1), we find'® that f,(B4(0)) = 1. Hence a
degeneration from F5(—1) to By(0) is impossible. Nevertheless we have

z 0 1
E5(_1) —7deg B4(1> by gt = % 0 (2)
0 —5 %

and by transitivity E5(—1) —qeg Bs(1) = B5(0). Also by transitivity degenerations of
E5(—1) to the algebras B and By(@) for all & # 0,1 are impossible by Lemma 4.21.

Finally we treat the case F5(3) with 5 # —%, —1. There are the following degen-
erations for all & # 0:

N 0 1
e
E5(8) —deg Ba(@) by g¢ = 8 e ) 0 0
a— 1~ 2
(2B 35+ 26+ 1)t 3§

Furthermore we have:

2 0 1
(2,(31+1)t2
ES(ﬁ) _>deg B4<O) by gt = T 0 0
—2(28+1)+4t 2 2
(B+1)(26+1)2t3 t

and by transitivity with Lemma 4.21 we get E5(3) —aeg Bz and E5(3) —>deg Bs(p)
for all g € C. u

16The algebra By() was introduced in Proposition 4.19.
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Lemma 4.43. All possible degenerations of 3-dimensional Novikov algebras with as-
sociated Lie algebra gs(\) to Novikov algebras with associated Lie algebra gy are listed
in the table below.

E O(E)
EL)\(O!) B4(0), B5(0)
AA£0,+1
aF# —1,—-X\
Eia(=1) Bs(0)
Era(=\) B5(0)
Eax B.(0), Bs(0)
A0, +1
[ By, Ba(6), Bs(B)
E By, By(a), Bs(5)
55(5)57&_%7_1 Bs, By(@), Bs()
Es(—3) Bs, Bs(3)
Es(—1) Bs, B4(1), B5(1)

Proof. Because of the orbit dimension neither of the algebras in class £ can degen-
erate to By and Bs except the algebras E3, E4, and E5(3) for f # —1 which all can
possibly have B; in their closure. We show first that this can’t happen so we have
only to take degenerations to the algebras Bs, B4(&), and Bs(3) into account. The
orbit closures of the algebras E5(f3) have already been studied in Proposition 4.42.

For Fs and E4 we consider the €, j-invariants

(=DP+ D=7+ 1)

Cpq(Ls) = Cpq(Ey) = (—1)pta + 1

=2 for p and g even.

Because of €, ((B;) = 3 for all p, ¢ € N and Proposition 3.47 a degeneration to B is
impossible.

We start the study of degenerations from class E to B now case for case, beginning
with the family of algebras F; )(a) where A # 0, £1. We have different orbit dimen-
sions for the values a = —1, —\, which prevents the algebras B,(&) for every a € C
of lying in the closure. However, this is the only difference between this exceptional
values and the general case. Degenerations from Ej )(a), A # 0,=£1, to B, By(@)
for all @ # 0, and Bs(B3) for all 3 # 0 are excluded by the argument brought in
Proposition 4.13. There are degenerations for all A £ 0,£1 and o = —1, —X:

1 1 0

(a+1)t2
EyA(@) —deg Ba(0) by g = %1 (1) 0
T et DN (=1t 1

and Ej )(a) —qeg B5(0) by transitivity. We additionally have for all A # 1:

1 0 0
t

E1)(—1) —deg Bs(1) and Ej \(—A) —deg Bs(1) by ¢ = [ 0 1 0
0 —oom |

Algebras of tlle family_EgyA cannot degenerate to the algebras Bj, By(a) for all
a # 0, and Bs(p) for all § # 0, for any A € C. Like in the case of the family E; »(«)
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this is because of a similar argument brought in Proposition 4.13. However we have
degenerations for all A # 1:

1 1 0

oD 2
Ey\ —rdeg Ba(0) by g, = 2 0 0
0 L 1

-3

and Es \ —qeg B5(0) by transitivity.
For the algebra E all possible degenerations do exist:

0 0 %
Es —q4eg Ba(@) by g1 = % 0 0 for all & # 0 and
00 %
E3 —vqeg Bs(0) by s =+ 0 0
=1 4
3 3

In view of Lemma 4.21 we have E3 —4e; B5() and E3 —4e, B3 by transitivity.
For the algebra Ej the same situation as for the algebra E3 occurs:

2 l1—a
t2 att
Ey —vaeg Ba(@) by gp = | 1 0 0 for all & # 0, 1,
0 2(&71) 1/ 1—«
t3 atb
2 o0 4
Ey —deg B4(0) by g = % 0 0], and
2 2
0 —piw @
2 0 1
By —deg Bi) by g =1 0 0
0 —t 2
2 t

Again, using Lemma 4.21 we have E3 —4e; B5(3) and E3 —4e; B3 by transitivity.
Finally we look at the algebra Fs. This time a degeneration to any of the algebras
By(@) is impossible because of the following argument. We know that F5(—1/2) — geg
Es by Lemma 4.40. If a degeneration from Eg to By(@) for some & would exist,
transitivity forces F5(—1/2) degenerating to By(@) for the same a. However, this is
impossible by Proposition 4.42. Nevertheless we have the following degenerations:

0 0 1
Es —7deg Bs by gt = % 0 0],
2 1 2
2 2 ot
0 0 1
Eq —vaeg Bs(B) by gp= (¢ 0 0 for all 5 # 0, and
B
0 % 7
0 0 1
E4 —deg B4(1) by g = % 0 0
01 2
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Corollary 4.44. The Hasse diagram of all 3-dimensional Novikov algebras with as-
sociated Lie algebra gs(\) and go is given as follows. For a better readability we
omitted in this diagram the restrictions on X and « for the algebras Ey \(«) and Es y.

E5(—%> E3 E, E5<B)ﬂ;£—%,—1

4.7.3 Degenerations of Novikov algebras with Lie algebras
g5(\) and g;

Proposition 4.45. The orbit closures of the algebras Es(f) in class A are given as
follows.

E | O(B)
Es5(—3) Ar, As, Ag
Eg,(-l) A17A5

E5(6 a#—%,—l A17A57A97A10

Proof. We consider the R, -invariant of the algebra E5(5) which equals 3 for every
p € C. On the other hand R, ((As) = R, (A7) = 1 and hence a degeneration from
E5(B) to As and Az is impossible for any g € C. By transitivity using Corollary 4.10
we find that degenerations to the algebras As, A4, Ag, and Ag are impossible too.

We regard the €, j-invariant of A;; which is equal to 3 and therefore can’t coincide
with €, ((E5(8)) for every 8 € C. This prevents Ay, and by transitivity Ay, of lying
in the orbit closure of E5(3) for every g € C.

However, for all § # —%, —1 we have the following:

2 1

E5(8) —deg Aro by g: = ~T=2Re 0 1
1 0 0
t
We first treat the exceptional value 5 = —31. A degeneration from E5(—3) to Ajg

is indeed impossible. To see this we regard Theorem 3.8. Looking for 1-dimensional
ideals in E5(—3) we find that E5(—3)/(es) = Wa(1). The only ideal in Ay, however,
is (e1) with the factor A;g/(e1) = Us. The algebra W5(1) does not degenerate to the
algebra Us as can be seen by Corollary 4.5 and so E5(—%) does not degenerate to
Aqg. Nevertheless we have a degeneration:

E5(—%) —rdeg Ag by g1 =
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Finally we regard the case § = —1. We consider the following polynomials:

k
fi (%) = 95%23353 - 335255:1«;37
f2(xfj) = 953133%3 - 33%155:2«;37
f3<$fj) = x?ﬂél - 33?19532
It is true, as one might check with a computer, that f;(E5(—1)) =0 for i = 1,2,3.17
So these three functions have to be zero on the whole orbit closure. However, for the
algebras Ag and A,y we have:

f3(A9> = f3(A10) =1.

This makes a degeneration from E5(—1) to Ag and Ajp impossible and completes the
proof. O

Lemma 4.46. All degenerations of 3-dimensional Novikov algebras with associated
Lie algebra g5(\) to Novikov algebras with associated Lie algebra go are listed in the
table below.

E O(E)
Ei ) () Ay, As
A% 0,41
FEs Ay, As
A#£0,+1
ES A17A57A97A10
E4 A17 A57 A97 AIO
E5(6>ﬁ7é_17_% Al’A57A97A10
E5(_%) AlaA57A9
Es(—1) Ay, As
E6 A17A57A9

Proof. We will organize this proof a little bit different than the others before.
Because of Corollary 4.10 every algebra of class A with orbit dimension higher than
five degenerates to at least one of the algebras A,, Ag, and Aq;. If we can show that
a given algebra of class F has neither of these three algebras in its closure, then a
degeneration to any other algebra of class A is impossible by transitivity. Therefore
we will start in each case with the algebras Ay, Ag, and Ay;.

First of all, we remark that every algebra of class F has the algebra A; in its
closure using transitivity. This is because every algebra of class B except B5(%) has
As in its closure (Lemma 4.23) and furthermore every algebra of class E degenerates
to some algebra of class B (Lemma 4.43).

Second, not one of the E-class algebras has A, and A7 in its closure. The 2R -
invariant of every E-class algebra equals three, whereas MR, ((A2) = Rpq(47) = 1,
making degenerations impossible. Using the transitivity argument from the beginning
of the proof we immediately find that also A3, A4, Ag, and Ag can’t lie in the orbit
closure of any FE-class algebra.

1"We write fi(A) for the polynomial funcion applied to the vector of structure constants of the
algebra A.
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Moreover there are no degenerations of any FE-class algebras to A;;. To see this
we use the €, j-invariant of A;; which equals three and therefore is constant with
respect to the parameters p and ¢. This value can’t be taken by the &, ,-invariant of
any F-class algebra as one can easily show by computations. By transitivity again,
we can exclude degenerations from class E to Ajs.

In conclusion we have degenerations from any F-class algebra to As (and trivially
to Ay), whereas there are no degenerations to the algebras As, A4, Ag, A7, As, A1,
and Ajs. We have two algebras left that can possibly lie in the orbit closure of some
FE-class algebra, namely Ag and A, for which we note Ay —geg Ag.

The algebra Ag can’t lie in the closure of any Ej \(«) and any Es ) because of an
argument similar to that of Proposition 4.13. By transitivity neither algebra of the
families £ \(a) and Es )\ can have Ay in its closure.

We have the following degenerations for the algebras F3 and FEj:

0 % 0
E3 —deg Ao by ¢ =10 0 tiz )
% 0 O
1
0 s 0
Ey =g Aobyge=| = 0 %],
- 0 0
V2t

and Es, By —qeg Ag by transitivity.

The orbit closures of the algebras Fs5() have already been studied in Proposi-
tion 4.45 so we continue with the algebra Fg. We have a degeneration

010

E6_>degA9bygt: (1) 0 1
= 0
t

However, there is no degeneration from FEg to Ajg. We consider Eg/(e3) which is
isomorphic to the 2-dimensional Novikov algebra Ws(1). With respect to Corol-
lary 4.5 the algebra W5(1) can only degenerate to Uy, the abelian algebra in dimen-
sion two. In Ajq there exists only a single 1-dimensional ideal, namely (e;). We
have Ayo/(e1) = Us and therefore, by Theorem 3.8, a degeneration from Eg to Ajg is
impossible. O

Corollary 4.47. The Hasse diagram of all 3-dimensional Novikov algebras with as-
sociated Lie algebra gs(\) and g1 is given as follows. In this diagram we omitted
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degenerations within the classes.

e
[

Bzr—11

Ei\(—-1)



5 Appendix

A Preliminaries from algebraic geometry

In this subsection we shall give a short overview of some basic concepts from al-
gebraic geometry necessary for the definition of a degeneration. This exposition is
not supposed to be a selfcontained introduction to algebraic geometry. In fact it’s a
collection of the most important terms, to make the reading more comfortable.

Definition 5.1. The set K" = K x - - - x K (n-times) will be called affine n-space and
denoted by A. For the purposes in this work it sufficies to consider affine varieties,
by which we mean subsets of A" defined by the common zeros of a finite collection
of polynomials.

Definition 5.2. Defining closed sets to be the affine varieties we can establish a
topology on A", called the Zariski topology.

For the correspondence between closed sets and ideals, and the notion of the coor-
dinate ring we refer to [37].

Example 5.3. Let A be an n-dimensional (not necessarily associative) algebra over
an algebraically closed field K. Let (ej,...,e,) be a basis of the underlying vector
space, then e; - e; = Y, cliey, defines a vector (cf;) € K", which is called the
representing vector of structure constants of the algebra A. In this way, the set
of all algebra structures becomes an affine subvariety of K", denoted by Alg,(K).
Relations like commutativity, associativity, skew-symmetry, and the Jacobi identity
can be expressed by polynomials in the structure constants and therefore define
subvarieties Comm,,(K), Assoc,(K), and Lie,(K) of Alg,(K). The perspective of
identifying an algebra structure with a point in K™, allows us to study Alg, (K) and
its various subvarieties in terms of algebraic geometry.

Definition 5.4. Let X be a topological space. Then X is said to be irreducible if X
cannot be written as a union of two proper, non-empty, closed subsets of X.

If X is a noetherian topological space, then it can be shown that X has only finitely
many maximal irreducible subspaces, which are called the irreducible components or
simply components (if the meaning is clear).

Definition 5.5. Let X be an irreducible variety, then the dimension dim X of X as a
variety is defined to be the transcendence degree over K of the quotient field K(X) of
the coordinate ring K[X]. If X is not irreducible, splitting up into X = X;U---UX,,,
we define dim X := max dim Xj.

We consider the notion of the tangent space of a variety X to be given (see [§]).
A point z € X is called simple if the dimension of the tangent space in the point x
equals the dimension of X as a variety. A variety X is called smooth if every point
x € X is simple.
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Definition 5.6. Let GG be a variety endowed with the structure of a group. Consider
the two maps p: G x G — G and +: G — G, where pu(z,y) = vy and (z) =z~ If
i and ¢ are morphisms of varieties, we call G an algebraic group.

Example 5.7. The most important example of an algebraic group in our case here is
that of the general linear group GL,(K). In fact, GL,(C) and some of its subgroups
are the only algebraic groups we need for our calculations in chapter four of this work.
This is one of the reasons why we restricted ourselves to affine varieties, although we
gave the definition of an algebraic group in a more general form.

Definition 5.8. Let GG be an algebraic group and X a variety. We say that G acts
on X morphically or regularly if G acts on X as a group via ¢: G x X — X such
that ¢ is a morphism of varieties. We denote by Og(z) (or simply O(x)) the orbit of
the point x € X.

Example 5.9. If we choose G to be the general linear group GL,(K) acting on
the affine variety Alg,,(K) the orbit of a point A € Alg, (K) consists of all algebras
isomorphic to A.

A very important result for studying degenerations is the so called Borel’s closed
orbit lemma, which can be found in [8, p. 53|.

Theorem 5.10. Let G be an algebraic group acting morphically on a non-empty
variety V. Then every orbit is a smooth variety which is open in its closure in V. Its
boundary is a union of orbits of strictly lower dimension. In particular, orbits with
minimal dimension are closed.

B Tables of orbit closures

We give tables that summarize wether a degeneration is possible or not. In the latter
case an abbreviation will indicate what kind of argument was used to exclude that
degeneration. This provides a comfortable tool to point out and trail back a certain
method more quickly. Legend of the diagram:

— ...a degeneration exists.

—¢ ...a degeneration exists by transitivity.

t ...a degeneration is impossible by transitivity.

d ...a degeneration is impossible because of the dimension of the derivation space.

n ...adegeneration is impossible because of the dimensions of the lower central series
or the derived series.

¢ ...a degeneration is impossible because of the &, j-invariant.
r ...a degeneration is impossible because of the R, 4-invariant.

Ann ...adegeneration is impossible because of the dimension of the annihilator (left,
right or both).
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FT ...a degeneration is impossible because of Theorem 3.8 (factor theorem).
J ...a degeneration is impossible of because Lemma 3.14.

f ...a degeneration is impossible of because the argument brought in Proposi-
tion 4.13.

td ...adegeneration is impossible of because the dimension of an («, 3, v)-derivation.

bi ...a degeneration is impossible because of the argument brought in Proposi-
tion 4.19.

op ...a degeneration is impossible because of quadratic operator identities.

z ...a degeneration is impossible because of a polynomial identity in the structure
constants (Zariski-equation).

det ...adegeneration is impossible because the determinant defines a Zariski-equation.

Degenerations of Novikov algebras with Lie algebra g;

’ —aeg A1 Ay Az Ay A5 As A A Ay Ay A Ap ‘
Ay - d d d d d d d d d d d
Ay - = d d d d d d d d d d
Az - = = d = = = d = = n n
Ay T e T T S S I S S
As - d d d — d d d d d d
Ag - = d d = = d d — — c d
Aq —  c d d —= d — d —=; — c d
Ag — = d d =y = = = =y = >y =
Ay - d d d —= d d d — d d d
Aqp — ¢ d d —; d d d — = c d
A - d d d — d d d d — d
Aio —  c d d —; d d d — = = =

Degenerations of Novikov algebras with Lie algebra g,

| —deg Dy Dy(0) Dy(—1) Dy(@)azo—1 |
Dy — d — d
D4 (0) d — n n
Dy(—1) d d — d
Doy()azo-—1 d d c —
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Degenerations of Novikov algebras with Lie algebra g;(1)

5 Appendix

’ —deg El,l(o) El,l(—l) El,l(a)a;éo,fl Esq ‘
E11(0) — n d d
Ei.(-1) d — d d
Ei1(0)az0,-1 d c — d
Esq d — d —

Degenerations of Novikov algebras with Lie algebra g, and g,

| —deg Al Ay Az Ay A5 As A Ay Ay Ay Al Ay
) =~  d d — d d d [ J ¢ d
Ds(0) ~ ¢ d d > d d d [ [ ¢ d
Da(—1) = d d = d d d td d ¢ d
DQ(@)a;éo’_l — C d d — d d d f f C d

Degenerations of Novikov algebras with Lie algebra g;(1) and

g1
’ “7deg Ay Ay A3 Ay As As Ar As Ay A An Ap ‘
E1,1(0) - d d d — d d d d d d d
Ey1(-1) -+ d d d d d d d d d d d
E171(Oz)a7g07_1 — d d d — d d d d d d d
Es - d d d — d d d d d d d

Degenerations of Novikov algebras with Lie algebra g, and

g5(1)
’ —deg Ei1(0) Ei1(—-1) Eii(a) Ervi(@)aza FEan ‘
D, c —>¢ c —>¢
D5 (0) — c c c c
Dy(—1) c — c c —
Dy (at)ax0,-1 c c — c c
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Degenerations of Novikov algebras with Lie algebra g

| —deg B By Bs By0) By(@)azo Bs(0) Bs(8)s0 |

B, — d — f — —
By - = = — — — —7
B3 d d — d d d —
B4(%) d d — d d bi —
B4(a)a7% d d td d —o=a —a=j —f

d d d d biaa biaa —f
Bs(5) d d d d d d —f

Degenerations of Novikov algebras with Lie algebra g, and g

| —deg B By Bs Biy(0) Bi(a)azo Bs5(0) Bs(8)szo |
D, d d f / —* /
D,(0) d d f - / —rt /
Dy(—1) d d f — d — f
Dy()azo,—1 d d f — f —t f

Degenerations of Novikov algebras with Lie algebra g, and g,

’ —daeg A1 Ay A3 Ay A5 Ag Ar Ag Ay A An Ap ‘
B - ¢ d d —; d d d f f — d
By — ¢ d d —, ¢ c d —¢ = = —
Bs - d d d — d d d d d d d
Bya) - ¢ d d —, d d d f d c d
B5(%) - d d d d d d d d d d d
Bsp) - d d d — d d d d d d d

Degenerations of Novikov algebras with Lie algebra g;(—1)

’ —deg By (1) B a(=1) B 1(@)apsr Fo ‘
£y (1) — d d d
E;_4(-1) d — d d
Elﬁ_l(a)a#ﬂ C C — d
Es 4 c c d —
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Degenerations of Novikov algebras with Lie algebra g;(—1) and
g1

| —deg Al Ay Ay Ay A As A Ay Ay A A A
E; (1) - ¢ d d — d d d Ann d c d
E, _4(-1) - ¢ d d — d d d Ann d c d
Ei_1(@)agss — ¢ d d — d d d Ann Ann ¢ d
Brs S ¢ d d S d d d f f ¢ 4

Degenerations of Novikov algebras with Lie algebra g;(—1) and
g2

’ —deg By By Bs Bya) Bs(8)szo ‘
By (1) d d f f f
By 1(—1) d d f f f
E1 _1(01)a7g:|:1 d d f —a=0 —)BZO
fa;éo f,é;éo
FEy 4 d d [ —az1 g
fa;él fB 1

Degenerations of Novikov algebras with Lie algebra g;

’—>deg Cy Cy C3 Cy C5(0) C5(—1) Cs(a) Cg(0) Co(—=1) Cg(B) Cr(—1) 07(7)‘
Ch — — — op op —y op d — d —y op
Cy d - d d ¢ c d d d d — d
Cs d d — d t — d d d d c d
Cy d d d — — n d d d d c d
Cs50)0) d d d d — d d d d d d d
Cs(-1) d d d d d — d d d d d d
Cs(a) d d d d ¢ c — d d d n d
Cs(0) d n n — — n n — n d n n
Ce(=1) d d d d op — d d — d — d
Cs(B) d op op op op op  —a—p d op  —p_p  OD  ——p
OPazs dpzp P28
C:(=1) d d d d d d d d d — d
Ciyv) d d d d ¢ c d d d d c —
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Degenerations of Novikov algebras with Lie algebra g3 and g,

’ —7deg Ay Ay Ay Ay Ay A A As Ay Ay An Ap ‘
C - = d d —; — FS d —; —; det t
Cy — c t t — t t t f t c t
Cs — t t —; ot t t Ann t n t
Cy — n t t — ot t t Ann t n t
500 — n t t — t t t td t t
Cs(-1) — r t t — t t t td t t
Cs(a) — ¢ t t — t t ot z t n t
Cs(0) S t = = n t = = on t
C%(——l) - = t t — t t t td t det t
Cs(B) — =, t t = — FS t =, =, FS t
Ci(-1) — ¢ t t —, t t t td t ¢ t
C:(v)  — t ot - t f t ¢t

=" B, By Bs By(@) Bs(8)
Cy op d - —rt
Cy d d f —a=0 —,=0
Jazo f5.20
Cg d d AHHL —a=1 —>B:0
laz1 (Anng )50
04 d d AI]I]R —a=0 _>B:()
(Anng)azo  (Anng)zz
C5(0) d d Anng d =0
(Anng)z4
Cs(—1) d d Anng d —5=0
(Annyg )z
05(04) d d —¢ —a=-a —f=—a
Zat—a RB4—a
C%(O) n d — — —t
Ce(-1) d d td td (—=+)5=0
tdgzo
Cs(B) op d  — — —rt
Cr(-1) d d ¢ d =0
tdB 0
Cr(v)  d d  f —a=0 =0
Jazo f5.20
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Degenerations of Novikov algebras with Lie algebra g;()\)

[ —deg E5(@) E\z(=1) E\a(=N) Eyx Es Ey E5(B) Es(—1/2) Es(—1) Es|
Ei () —9= c c d d d d d d d
AF#0,+£1 d;;
AF—1,—A
Ei A\ (—1) d — 3= d d d d d d d d
d5.2)
Ei (=) d d — 3= d d d d d d d
3z
Es » d — 3= —5.1  —x=y d d d d d d
Es c — 32 —5.1 = — d d d c —
Cx£2 O1 Cx#£2
Ey c —5_1 —3—2 3o d — d d — c
i O#1 Cx#£2 Cx+£2
E5(8) —>?\‘ff z+c z4c  z4+c d d —pp d c c
=3
B#—5—1 2+c70 dgzs
E5(—1/2) c — 32 —5o1 FSs., d d  d — c —
Cx#£2 Cx#£1 Cx#£2
Es(—1) d —5_1 —32 d d d d d — d
O£ Ca#2
Eg c —3—2 —5_1 d d d d d d —
C)\752 C)\yﬁl

Degenerations of Novikov algebras with Lie algebra g;(\) and
g1

’ “7deg Ay Ay A3 Ay A5 As Ar As Ay A A Ap ‘
Eia(o) - r t t = t d t f t c t
Eia(—1) - r t t — t d t f t ¢ t
IANES)) - r t t = t d t f t ¢
Eyx(AA0,£1) — r t t —, t d t f t ¢ t
Es — t t — ot c t = — c t
E, — t t —, ot r t = — c t
E5(8)pz-1 - r t t = t r t -y = ¢ t
E5(—1/2) - r t t = t r t = FS ¢ t
Es(—1) - r t t = t c t =z z c t
Es — t t = t d t — FS ¢ t
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Degenerations of Novikov algebras with Lie algebra g;(\) and
g2

’ —deg B Bg Bg B4(55) B5(5) ‘

Ei \(a) d d t  —a=0 —tj—o
A#£0,£1 Jazo1 [0
A#—1,—)\
EiA(—1) d d t d —5=0
JB20
Ei A (=N) d d t d —5=0
JB20
Fo ) d d t d —5—0
A#0,+1 Jazon  [fazo
E3 C d _>t — _>t
E4 C d —t — —t
Es(Blpgr  FS d = = —
Es(-1/2) FS d — FS —
E5(—1) d d t —>a:1 %t
g1 B0
Eg d d — 13 —

C Tables of semi-invariants

| A dimAnng(A) dimAnn,(4) dimAnn(4) |

A, 3 3 3
A, 2 9 2
As 1 1 1
A, 0 0 0
As 2 2 2
Ag 1 1 1
A, 1 1 1
Ag 0 0 0
Ag 1 1 1
A 1 1 1
Ap 0 0 0
Ao 0 0 0
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dim Anng(B) dimAnng(B) dim Ann(B) |

| B

SO 4 = —~H = N —~ -

OSSO 4 4 N —~ N —~ -

OSSO 4 N ~H 4 N~ -

A~~~ N
O = 3O~
S e e e N
— N o F < F 0 10 10

MR MR MX

dim Anng(C) dimAnn,(C) dim Ann(C) |

| C

OO = oo

N = N~ NN A A HO AOD

SO N 4 N 4O 4 OO O

[\ I~ B LI T B T B To BN RN = N R S

sl uU0

dim Anng(D) dim Anng, (D) dim Ann(D) |

| D

o O O O

— — O

o oo

dim Anng(E) dimAnng(E) dimAnn(E) |

E

o O OO

AN~ O AN

SN OO

—_—

Ey1(-1)
FEy1(0

B
E21

o oo O

— — O

oo oo

—_—

E;_1(-1)

El,fl (1

E1,71<
E2 —1
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| E dim Anng(F) dimAnng(E) dimAnn(E) |
Eirn(—-1) 0 1 0
Eia(=)) 0 1 0
E1(0) 2 1 0
Eix(a) 0 0 0
By 0 1 0
Ej 0 1 0
Ey 0 1 0
Bs(~1) 0 1 0
Es(—3) 0 0 0
E5(0) 1 1 0
E5(B) 0 0 0
Eg 0 1 0

D Algorithms and computations

All computations were arranged with the program Wolfram Mathematica 7.

Algorithm to calculate a degeneration matrix

We used the following algorithm to calculate a certain degeneration matrix. Thereby
the input [z corresponds to the left-multiplication operator of the basis vector e;.

g = {{gl, g2, g3}, {g4, g5, g6}, {g7, g8, g9}}
(x A 4 Novikov dim 3 x*)

11 = {{1, 0, 0}, {0, 0, 0}, {0, 0, O}}
12 = {{0, 0, 0}, {0, 1, 0}, {0, 0, 03}
13 = {{0, 0, 0}, {0, 0, 0}, {0, 0, 13}

Clear(i, j, k, 1, pl
p = {11, 12, 13}

ml = Transpose[{g. (Sum[

Inverselg] [[k]11[[1]]x

Inversel[g] [[1]] [[1]] Tramsposelpl[k]1][[11], {1, 1, 3}, {k, 1,
3}1), g.(Sum[
Inverselg] [[k]1][[1]]*

Inversel[g] [[11]1[[2]] Tramnsposelpl[k]1I[[11]1, {1, 1, 3}, {k, 1,
3}1), g. (Suml

Inverselgl] [[k]11[[1]]x

Inversel[g] [[1]1]1[[3]] Transposelpl[kI1I[[11], {1, 1, 3}, {k, 1,
331}

M1 = {{FullSimplify[mi[[111[[111], FullSimplify[mi[[111[[2]1],
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FullSimplify[mi[[1]1]1[[311]1}, {FullSimplify[mi[[2]]1[[1]1]1],
FullSimplify[mi[[2]1][[2]1]1],

FullSimplify[m1[[2]1]1[[3]11]1}, {FullSimplify[m1[[31]1[[1]11],
FullSimplify[m1[[3]1[[2]1]1], FullSimplify[m1[[311L[[3]11]1}}

m2 = Transpose[{g.Sum[

Inverselg] [[k1][[2]]*

Inversel[g] [[11]1[[1]] Transposelpl[k]111C[111, {1, 1, 3}, {k, 1,
3}, g.Sum[

Inverselg] [[k]11[[2]]*

Inverse[g] [[1]11[[2]] Transposelpl[[k]11[[11], {1, 1, 3}, {k, 1,
3}1, g.Sum[
Inverselg] [[k1][[2]1]*

Inverse[g] [[11]1[[3]] TransposelplC(k]J1C[11], {1, 1, 3}, {k, 1,
331}

M2 = {{FullSimplify[m2[[11]1[[1]]1], FullSimplify[m2[[1]]1[[2]1]],
FullSimplify[m2[[1]11[[3]11]1}, {FullSimplify[m2[[2]1]1[[11]],
FullSimplify[m2[[2]][[2]1]],

FullSimplify[m2[[2]1]1[[3]111}, {FullSimplify[m2[[3]1]1[[1]1]],
FullSimplify[m2[[3]1]1[[2]1]1], FullSimplify[m2[[3]1]1L[[3]11]1}%}

m3 = Transpose[{g.Sum[

Inverselg] [[k1]1[[3]1]*

Inverse[g] [[11]1[[1]] TransposelplC(k]1J1C[11], {1, 1, 3}, {k, 1,
3}, g.Sum[

Inverselg] [[k]1][[3]1]*

Inversel[g] [[11]1[[2]] Transposelpl[k]11C[111, {1, 1, 3}, {k, 1,
3}1, g.Sum[
Inverselg] [[k]1[[3]]*

Inverse[g] [[1]11[[3]] Transposelpl([k]11[[11], {1, 1, 3}, {k, 1,
3}1}]

M3 = {{FullSimplify[m3[[1]]1[[1]]1], FullSimplify[m3[[1]1]1[[2]1]],
FullSimplify[m3[[1]][[3]111}, {FullSimplify[m3[[2]1]1[[1]]1],
FullSimplify[m3[[2]][[2]1]],

FullSimplify[m3[[2]][[3]111}, {FullSimplify[m3[[3]1]1[[1]]1],
FullSimplify[m3[[3]11[[2]1]1], FullSimplify[m3[[3]]1[[3111}}

Algorithm to calculate the derivations of an algebra

If we run the following program we get the space Der(, ;) (A4).
M=A{{a, b, ¢}, {d, e, £}, {g, h, j}}
(* Novikov A_4 *)

11 = {{1, o, o}, {0, 0, 0}, {0, O, O}}
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12

{0, 0, 0}, {0, 1, 0}, {0, 0, O}}

13

{{0, o, 0o}, {0, 0, 0}, {0, 0, 1}}

equl = r *M.11 == t* 11.M + s*(axll + d*12 + gx13)

equ2 = r*M.12 == t*12.M + s*(b*1l + e*12 + hx*13)

equ3 = r*M.13 == t*13.M + s*x(cx1l + f*12 + j*13)

Reduce[{equl, equ2, equ3}, {a, b, ¢, d, e, f, g, h, j, r, t}]

Algorithm to calculate the polynomial identities linear in the
structure constants

We used the following program in section 4.7 several times to compute polynomial
identities in the structure constants of the form

3

iaj¢k

We have to mention that in this program the input of the functions li[1], 1i|2], 1i[3]
usually consists of an algebra with which a basis change was undertaken. For this

basis change we used the matrix ¢ = {{¢1, 92,93},{94, 95,96}, {97, 98,90} }- That’s
why we solve with the “reduce”-command in the variables g, ..., gg.

1i[1]
1i[2]
1i[3]

{{0, o, o}, {0, 0, o}, {0, O, 0}}
{0, 0, 1}, {0, 0, 0}, {0, O, O}}
{0, 1, 0}, {0, 0, 0}, {0, O, O}}

Function[1i[#]]

t
I

Function [t [#1] [[#3]1]1[[#2]1]]

B
Il

F

Sum[r[i] [j] k1*wli, j, k1, {i, 1, 3}, {j, 1, 3}, {k, 1, 3}]

Reduce [CoefficientList[
Numerator [Together[F1], {gl, g2, g3, g4, gb, g6, g7, g8, g9}] ==

0, {r[1101101], r[110110[2], r[1101103]1, r[11[210[1], r[1]1[2]1[2],
r[1102]1[3], r(11031[041]1, r[11031[2], r[110310[3]1, r[2]1[11[1],
r(2]1[1102], r[2]1[11[3], r[2]1[2]1[1], r[2]1[2]1[2], r[2][2][3],
r[2][3]1[1], r[2](3]1[2], r[2]1(3]1(3], r(3]1[11[1], r[3]1[1][2],
r[31[1103], r(31[2]1[1]1, r(3]1[2]1[2], r[3]1[2]1[3], r[31[3][1],
r[3]1[3]1[2], r[3]1[3]1[3]}]

Furthermore we used the functions ¢ and w to compute Zariski-equations. In this
notation we have for example (Proposition 4.30):
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equl = wl[2, 3, 1]1*w[3, 2, 1] - w[2, 2, 1]1*w[3, 3, 1] -
a (a+1) w3, 2, 11 - wl2, 3, 11)"2

equ2 = wl[1, 3, 2]*w([3, 1, 2] - w[1, 1, 2]*w[3, 3, 2] -
a (a+ 1) w[3, 1, 2] - w[1, 3, 2])~2

equ3d = w[2, 1, 3]*w[l, 2, 3] - w[2, 2, 3]*w[l, 1, 3] -
a (a+1) w[2, 1, 3] - wl1l, 2, 3])"2

Lists of the coefficients frf’j

We list here the solution of the equation F(g - E5(3)) = 0 in r}; that occured in

Proposition 4.39.

rl1][1][2]
r[1]1[1][3]
r[1][2][3]

O O O O

r[1][3][2] =
= r[1][2][2]

r[1]1[3][3]
r[2][1][2]
r[2][1][3]
r(2] [2][1]
r[2] [2] [2]
r[2] [2][3]
r[2][3][1]
r[2][3][2]
r[2][3][3]
r(3][1][2]
r[3]1[1][3]
r[3]1[2][1]
r[3][2][2]
r[3][2][3]
r[3]1[3][1]
r[3][3][2]
r[3]1[3][3]

r[1][1]1[1]
0
0

= r[1][2][1]
= 0

0
r[1]1[3]1[1]
r[2][1]1[1]

=0
= r[1][1][1]

0
r[3]1[1]1[1]
rl1][2][1]
0
0
r[1]1[3][1]

rl1][2][2]

r(2] [1][1]

r[1][2][2]

r[3]1[1]1[1]



Bibliography

[1] S. Albeverio, B.A. Omirov, 1.S. Rakhimov: Varieties of Complex Nilpotent
Leibniz Algebras of Dimension Less than Five. Comm. of Algebra, 33(5)
(2005), 1575-1585.

[2] M. Artin: Algebraization of formal moduli I. Global Analysis, Princeton Univ.
Press, Princeton, N. J., and Tokyo Univ. Press, Tokyo (1969), 21-71.

[3] H. C. Baehr, A. Dimakis, F. Mueller-Hoissen: Differential calculi on commu-
tative algebras. J. Phys. A 28 (1995), no. 11, 3197-3222.

[4] C. Bai, D. Meng: The classification of Novikov algebras in low dimension. J.
Phys. A: Math. Gen. 34 (2001), 1581-1594.

[5] A. A. Balinski and S. P. Novikov: Poisson brackets of hydrodynamic type,
Frobenius algebras and Lie algebras. Sov. Math. Dokl. 32 (1985), 228-231.

[6] T. Benes, D. Burde: Degenerations of pre-Lie algebras. Journal of Mathemat-
ical Physics 50, 112102 (2009).

[7] Y. Benoist: Une nilvariété non affine. J. Differential Geom. 41 (1995), 21-52.

[8] A. Borel: Linear Algebraic Groups. Graduate Texts in Mathematics, 126,
Springer-Verlag, New York (1991), 1-288.

[9] D. Burde: The variety of complex Novikov algebras. preprint

[10] D. Burde: Linkssymmetrische Algebren und linkssymmetrische Strukturen auf
Lie Algebren. Dissertation, Bonner Mathematische Schriften 244 (1992), 1-65.

[11] D. Burde: Left-symmetric algebras, or pre-Lie algebras in geometry and
physics.

[12] D. Burde: Left-invariant affine structures on nilpotent Lie groups. Habilitation
thesis, Diisseldorf (1999).

[13] D. Burde, K. Dekimpe, K. Vercammen: Novikov algebras and Novikov struc-
tures on Lie algebras. Linear Algebra and its Appl. 429, No. 1, 31-41 (2008).

[14] D. Burde: Degenerations of 7-dimensional Lie algebras. Comm. in algebra 33
No. 4 (2005), 1259-1277.

[15] D. Burde: Affine structures on nilmanifolds. Int. J. of Math. 7 (1996), 599-616.

[16] D. Burde, F. Grunewald: Modules for certain Lie algebras of mazimal class.
J. Pure Appl. Math. 99 (1995), 239-254.



112

[17]

18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

26]

27]

28

[29]

[30]

[31]

32]

33]

[34]

Bibliography

D. Burde: Degenerations of nilpotent Lie algebras. J. Lie Theory 9 (1999),
193-202.

D. Burde, C. Steinhoff: Classification of orbit closures of 4-dimensional com-
plex Lie algebras. J. Algebra 214 (1999), 729-739.

K.S. Chang, H. Kim, H. Lee: On radicals of a left-symmetric algebra. Com-
mun. Algebra 27 No. 7 (1999), 3161-3175.

W. A. de Graaf: Classification of nilpotent associative algebras of small di-
mensions. arXiv:1009.5339v1, 1-10.

S. Cicalo, W. A. de Graaf, C. Schneider: Siz-dimensional nilpotent Lie alge-
bras. arXiv:1011.0361v1, 1-25.

M. Doubek, M. Markl, P. Zima: Deformation Theory (Lecture Notes).
Archivum Mathematicum (Brno), Tomus 42 (2007), 333-371.

A. S. Dzhumadil’daev, K. M. Tulenbaev: Engel theorem for Novikov algebras.
Comm. in Algebra 34 (2006), 883-888.

A. Fialowski: On the classification of graded Lie algebras with two generators.
Vestn. Mosk. Univ., Ser. 1-2 (1983), 62-64. (Translation: Moscow Univ.Math.
Bulletin, 38, No. 2, 76-79.)

A. Fialowski: Deformations of nilpotent Kac-Moody algebras. Studia Sci.
Math. Hung. 19 (1984), 465-483.

A. Fialowski: Deformations of Lie algebras. Mat. Sbornyik USSR 127(169),
No. 4(8) (1985), 476-482. (Translation: Vol. 55, No. 2 (1986), 467-473.)

A. Fialowski, J. O’Halloran: A comparison of deformations and orbit closure.
Comm. in algebra 18(12) (1990), 4121-4140.

V. T. Filippov: On Right Symmetric and Novikov Nil-Algebras of Bounded
Index. Mathematical Notes 70, No. 2 (2001), 258-263.

M. Gerstenhaber: On the deformations of rings and algebras. Ann. of Math.
79 (1964), 59-103.

M. Gerstenhaber: On the deformations of rings and algebras IV. Ann. of
Math. 99 (1974), 257-276.

R. Gilmore: Lie Groups, Lie Algebras, and Some of Their Applications Wiley-
Interscience Publ. (1974), 587 pages.

F. Grunewald, J. O’Halloran: Varieties of nilpotent Lie algebras of dimension
less than siz. J. Algebra 112 (1988), 315-325.

F. Grunewald, J. O’Halloran: A Characterization of Orbit Closure and its
Application. J. Algebra 116 (1988), 163-175.

G. C. Hegerfeldt: Some properties of a class of generalized Inini - Wigner-
contractions. Nuovo Cimento A (10) 51 (1967), 439-447.



Bibliography 113

[35]

[36]

[37]

38]

[39]

[40]

[41]

42]

[43]

[44]

[45]

|46]

[47]

48]

[49]

[50]

[51]

J. Helmstetter: Radical d’une algébre symétrique a gauche. Ann. Inst. Fourier
29 (1979), 17-35.

P. Novotny, J. Hrivnak: On («, ,7)-derivations of Lie algebras and corre-
sponding invariant functions. J. of Geometry and Physics, 58 (2008), 208-217.

J. E. Humphreys: Linear Algebraic Groups. Graduate Texts in Mathematics,
21, Springer-Verlag, New York (1981), 1-253.

Y. S. Kim, M. E. Noz: Theory and Applications of the Poincare Group. D.
Reidel Publ. Comp., Dordrecht, Holland (1986), 1-331.

A. A. Kirillov, Yu. A. Neretin: The variety A, of n-dimensional Lie algebra
structures. Amer. Math. Soc. Transl. (2) Vol. 137, 1987.

K. Kodaira, D.C. Spencer: On deformations of complex analytic structures
I-1I. Ann. of Math. (2) 67 (1958), 328-466.

H. Kraft: Geometrische Methoden in der Invariantentheorie. Aspekte der
Mathematik, Vieweg Verlag (1984), 308 pages.

M. Kuranishi: On deformations of compact complex structures. Proc. Inter-
national Congress Math. (Stockholm 1962), Inst. Mittag-Leffler, Djarsholm
(1963), 357-3509.

A. Makhlouf: A Comparison of Deformation and Geometric Study of the
Variety of Associative Algebras. Int. J. of Math. and Math. Sciences, Vol.
2007, 24 pages.

J. Milnor: On fundamental groups of complete affinely flat manifolds. Ad-
vances in Math. 25 (1977), 178-187.

D. Mumford: Geometric Invariant Theory. Ergebn. Math. Bd. 34, Springer
Verlag, Berlin, 1965.

M. Nesterenko and R.O. Popovych: Contractions of low-dimensional Lie al-
gebras. J. Math. Phys. 47, 123515, (2006), 45 pages.

Yu. A. Neretin: An Estimate of the number of parameters defining an n-
dimensional algebra. Math. USSR Izvestiya, Vol. 30 (1988), No. 2.

A. Nijenhuis, R. W. Richardson: Deformations of Lie algebra structures. J.
Math. Mech. 17 (1967), 89-105.

Oberwolfach Reports: Deformations and contractions in mathematics and
physics. OWR 3 (2006), 119-186.

V. L. Popov: Two orbits: When is one in the closure of the other? Proc.
Steklov Math. Inst., Vol. 264 (2009), 146-158.

D.R. Popovych and R.O. Popovych: Equivalence of diagonal contractions to
generalized IW-contractions with integer exponents. Linear Algebra Appl. 431
(2009), 1096-1104.



114

52|

[53]

[54]

[55]

[56]

[57]

58]
[59]

[60]

[61]

[62]

[63]

[64]

[65]

|66]

67]

Bibliography

D.R. Popovych and R.O. Popovych: Lowest-dimensional example on non-
universality of generalized Inéni- Wigner contractions. J. Algebra 324 (2010),
2742-2756.

D. J.S. Robinson: A Course in the Theory of Groups. Graduate Texts in
Mathematics, 80, Springer-Verlag, New York (1996), 1-499.

E. J. Saletan: Contraction of Lie Groups. Journal of Mathematical Physics 2
(1961), 1-21.

M. Schlessinger: Functors of Artin Rings. Trans. Amer. Math. Soc. 130
(1968), 208-222.

J. C. Jantzen, J. Schwermer: Algebra. Springer-Verlag Berlin Heidelberg
(2006).

C. Seeley: Degenerations of 6-dimensional Lie algebras over C. Comm. in Alg.
18 (1990), 3493-3505.

C. Seeley: Degeneration of central quotients. Arch. Math. 56 (1991), 236-241.

C. Seeley: T-dimensional nilpotent Lie algebras. Trans. Am. Math. Soc. 335
(1993), 479-496.

D. Segal: The structure of complete left-symmetric algebras. Math. Ann. 293
(1992), 569-578.

I. E. Segal: A class of operator algebras which are determined by groups. Duke
Math. Journal 18 (1951), 221-265.

C. Steinhoff: Klassifikation und Degeneration von Lie-Algebren. Diplomarbeit,
Heinrich-Heine-Universitaet Duesseldorf (1997).

E. Weimar-Woods: The three-dimensional real Lie algebras and their contrac-
tions. J. Math. Phys. 32, (1991), 2028-2033.

E. Weimar-Woods: Contractions, generalized Inoni - Wigner contractions and
deformations of finite dimensional Lie algebras. Rev. Math. Phys. 12, (2000),
1505-1529.

E. P. Wigner, Ann. of Math. 40, 149 (1939).

E.P. Wigner, E. Inénii: On the contraction of groups and their representations.
Proc. Nat-Acad. Sci 39 (1953), 510-524.

E. I. Zel'manov: On a class of local translation invariant Lie algebras. Soviet
Math. Dokl. Vol. 35 No. 1 (1987), 216-218.



Curriculum Vitae

Personliche Daten

Name Thomas Benes

Geburtstag, Ort 21.01.1982, St. Polten

Nationalitdt osterreichisch

e-mail thomas.benes@univie.ac.at

Ausbildung

Allgemeine Schulpflicht Franz-Jonas Volkschule (St. Polten), 1988 - 1992

Schiller-Gymnasium (St. Pélten), 1992 - 1996
Real Gymnasium
mit naturwissenschaftlichen  Schiller-Gymnasium (St. Polten), 1996 - 2000
Schwerpunkt Reifepriifung am 08.06.2000

Diplomstudium Universitat Wien (Wien), 2000 - 2006
der Mathematik und Physik Diplompriifung Mathematik am 12.09.2006

Doktoratstudium Universitidt Wien (Wien), 2006 - 2011
der Mathematik

Wissenschaftliche Tatigkeiten

Wissenschaftsassistent IK-Projekt, Differentialgeometrie und Lie Gruppen
Projektmitarbeiter FWEF-Projekt, Geometric structures on Lie groups
Publikationen

T. Benes: Fin Verschwindungssatz in der Kohomologietheorie arithmetischer Grup-
pen, Diplomarbeit, Wien 2006.

T. Benes, D. Burde: Degenerations of pre-Lie algebras, J. of Math. Physics 50
(2009).

T. Benes: Degenerations of Lie algebras and pre-Lie algebras, Doktorarbeit, Wien
2011.



116 Bibliography

Abstract

In this thesis we are concerned with the orbit closure problem for algebras in algebraic
transformation group theory. The general linear group GL(V') over a field K acts on
the vector space V* ®@ V* ® V, the space of K-algebra structures, by the change of
basis. For two K-algebra structures A\ and p we say that p is a degeneration of A if u
lies in the orbit closure of A with respect to the Zariski topology. For this we write
A —deg 1. The orbit closure problem in this form is about the classification of all
degenerations of a certain algebra structure in a fixed dimension.

The main result in this work is the classification of all degenerations of Novikov
algebras over C in dimension three. Such algebras form a subclass of left-symmetric
algebras, so called pre-Lie algebras. Approaching this we also give the complete
classification of 2-dimensional pre-Lie algebras. This is surprisingly complicated. For
example in dimension two there are only two non-isomorphic Lie algebras. However,
we have already infinitely many 2-dimensional pre-Lie algebras. Both classifications
turn out to be very extensive.

To reach these goals we generalize and enlarge methods that were applied in the
case of Lie algebra degenerations. For example the €, j-invariant and semi-invariants
like the dimension of the center of an algebra are of that kind. Thereby we establish
semi-invariants that are characteristic for the type of pre-Lie and Novikov algebras.
Furthermore we bring new results that show the relation between degenerations in
different dimensions. A substantial statement in this direction is that in case of
a degeneration of two given algebras A —4e, B also all factors A/I formed by an
arbitrary ideal I C A have to degenerate to corresponding factors of the algebra B.

Zusammenfassung

In dieser Arbeit beschiiftigen wir uns mit dem Orbitabschlussproblem fiir Algebren
in der Theorie der algebraischen Transformationsgruppen. Die allgemeine lineare
Gruppe GL(V) iiber einem Korper K operiert auf dem Vektorraum V*@V*®V, dem
Raum aller K-Algebra-Strukturen, durch Basiswechsel. Liegt beziiglich der Zariski-
Topologie eine K-Algebra-Struktur p im Orbitabschluss einer K-Algebra-Struktur
A so spricht man von einer Degeneration A —q4o . Das Orbitabschlussproblem
in dieser Form stellt die Frage nach der Klassifikation aller Degenerationen einer
bestimmten Algebra-Struktur in einer fixen Dimension.

In der vorliegenden Arbeit werden alle Degenerationen von Novikovalgebren iiber C
in der Dimension drei klassifiziert. Jene Algebren bilden eine Unterklasse linkssym-
metrischer Algebren, sogenannter pre-Liealgebren, deren sdmtliche Degenerationen
wir in der Dimension zwei bestimmen. Uberraschenderweise ist dies bereits sehr
aufwendig. Gibt es in dieser Dimension lediglich zwei nicht isomorphe Liealgebren
so haben wir unendlich viele nicht isomorphe 2-dimensionale pre-Liealgebren. We-
gen der grofsen Anzahl an Algebren und damit verbunden eine noch grofere Anzahl
moglicher Degenerationen haben sich beide Klassifikationen als dufserst umfangreich
erwiesen.

Um diese Ziele zu erreichen werden bekannte Methoden zum Studium von Liealgebra-
Degenerationen auf die Klasse der pre-Liealgebren verallgemeinert und erweitert. Bei
diesen handelt es sich beispielsweise um die €, (-Invariante und um Semi-Invarianten
wie etwa die Dimension des Zentrums einer Algebra. Weiters werden Semi-Invarianten
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eingefiihrt, die speziell auf den Fall von pre-Lie- bzw. Novikov-Algebren anwendbar
sind. Dariiber hinaus werden neue Resultate bewiesen, welche Degenerationen un-
terschiedlicher Dimension in Zusammenhang setzen. Es konnte beispielsweise gezeigt
werden, dass im Falle einer Degeneration zweier gegebener Algebren A —4., B auch
alle Faktoren A/I mit einem beliebigen Ideal I C A gegen entsprechende Faktoren
der Algebra B degenerieren miissen.



