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Abstract

Public good games reflect the common conflict between group interest and self interest:

While collaborative projects depend on joint efforts of all participants, each individual

performs best by free-riding on the others’ contributions. In this thesis I use evolutionary

game dynamics to study the interplay of cooperation and incentives. I demonstrate that

rewards may act as a catalyst for individual contributions, while punishment is needed

to maintain mutual cooperation. In this process, reputation plays a key role: It helps to

mitigate the second-order free-rider problem and prevents subjects from being spiteful. In

contrast to previous studies, I do not find that punishment can promote any behaviour (as

long as deviations from that norm are punished). Instead, sanctions are targeted at non-

cooperators only, and lead to stable cooperation.

Furthermore, this thesis provides some mathematical tools for the study of public good

games with incentives. It extends the theory of role games and it introduces a modified

replicator dynamcis that allows to investigate the consequences of local competition. Un-

der this local replicator dynamics, even dominated strategies may prevail if they lead to

a relative payoff advantage – which can be considered as a basic model for the evolution

of spite.
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Introduction

I find it useful to distinguish between two different branches of evolutionary game the-

ory. The first branch has its focus on evolution itself and the relevant question under this

perspective are:

How can we describe learning processes in strategic environments mathematically?

What can we say about the properties of such learning rules?

Research articles that have dealt with this kind of questions include the papers on fictitious

play (Robinson, 1951), the best response dynamics (Matsui, 1992) and the replicator

dynamics (Taylor and Jonker, 1978). In recent years, researchers are also increasingly

interested in the converse type of problem:

Are there learning rules that have a specific property?

Typical examples include the question whether learning processes for sequential games can

lead to the backward induction solution (for a positive answer see Hart, 2002) or whether

there is a reasonable evolutionary dynamics that leads to the extinction of dominated

strategies (for a negative answer, see Hofbauer and Sandholm, in press).

The second approach has its focus on the application of evolutionary game theory to

relevant economic or biological settings. One of the pioneering research articles of this

kind is also considered to be the birth of evolutionary game theory: The logic of animal

conflict of Maynard Smith and Price (1973) provides a rationale for ritual fighting in deers.

Maybe the most popular application of evolutionary game theory deals with the evolution

of cooperation (Axelrod, 1984), considering the following type of questions:

Why do we find so much cooperation in nature?

Which mechanisms enhance individual cooperativeness?

The first question is motivated by several empirical findings: Vampire bats regurgitate

blood to one another to increase the conspecific’s chances of survival (Wilkinson, 1984)

and in cleaning symbioses, host fishes refrain from eating their cleaner fishes even if clean-

ing is over (see Trivers, 1971). Since evolutionary forces are predicted to select against

altruistic traits, scientists are interested in the mechanisms that uphold cooperation (see

for example Nowak, 2006b).
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The title of the thesis suggests that this monograph belongs to the second category of

evolutionary game theory and indeed, Chapter 2 and 4 investigate the question whether

positive and negative incentives can promote cooperative behaviour. However, in order

to respond to these questions, I needed to develop some mathematical tools that rather

belong to the first branch of evolutionary game theory and these tools are presented as

Chapter 1 and 3. At first sight, Chapter 5 seems to be a bit out of place because it neither

deals with the evolution of cooperation, nor does it provide a mathematical framework to

respond to such questions. Instead, this chapter emerged as a product of my research on

this thesis. When I tried to apply standard tools of evolutionary game theory to public

good games with incentives, I got several counterintuitive results that left me puzzled.

Chapter 5 is my attempt to resolve this puzzle.

Replicator dynamics
of role games

Chapter 1

Local replicator dynamics

Chapter 3

Mathematical tools Application to public good
games with incentives

Incentives and opportunism

Chapter 2

Cooperation and punishment
in non−anonymous societies

Chapter 4

Equilibrium notions and
framing effects

Chapter 5

Figure 1: A schematic overview of the thesis

Public good games with incentives

Microeconomics defines public goods as goods that are nonrival and non-excludable. Due

to non-rivalry, the consumption of the good by one individual does not affect the consump-

tion possibilities of all others and due to non-excludability, no one can be precluded from

using the good. Especially because of the latter property, public goods are vulnerable to

the free-rider problem: Since non-contributors cannot be excluded, there is no incentive
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to engage in the provision of public goods. This may lead to the overuse of common re-

sources such as fishing grounds (Hardin, 1968), to delayed actions against climate change

(e.g. Milinski et al., 2006) or to non-compliance to social norms (see Fehr and Gächter,

2000).

In order to test these predictions in the laboratory, behavioural economists have de-

signed a simple experimental situation that mimics the incentive structure of public goods.

Before the experiment starts, each of the four participants is endowed with a starting cap-

ital C. Then the subjects may decide anonymously which amount of their money they

want to spend to a public pool, knowing that all contributions to the pool are doubled

and shared equally among the participants. A theoretical analysis of this decision problem

is straightforward: If the contributions of a player are denoted by xi, then the player’s

payoff πi can be calculated as

πi = C − xi +
1

4

4∑
k=1

2xk (1)

The optimal strategy of a player depends on the player’s target function. A player i aiming

to maximize the group payoff
∑

j=1 πj may compute

∂

∂xi

(∑
j=1

πj
)
= 1 > 0. (2)

Therefore, the group optimum is attained if all players contribute their full starting capital

C to the public pool (in which case all players obtain a payoff of 2C). On the other hand,

a player aiming to maximize the individual payoff πi needs to calculate

∂πi
∂xi

= −1/2 < 0. (3)

Consequently, the individual optimum is attained if the player withholds all contributions.

However, in a group of self-interested subjects, each player only yields the starting capital

C instead of the pareto efficient outcome of 2C. Public good games thus describe a

situation where individual interests are at odds with group welfare – a social dilemma.

In the laboratory, the result of such a game may be affected by a variety of parameters

(for a survey, see Ledyard, 1995): In fact, contributions depend on the starting capital,

group size, communication possibilities, whether the public pool is doubled or tripled or

on the (economic) education and gender of the participants. As a robust finding, most of

the subjects start by contributing around half of their endowment; however, if the public
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good game is repeated for several rounds, the players learn to behave selfishly. In the last

round, 73% of all players contribute nothing (see Fehr and Schmidt, 1999).

Such a negative outcome can be prevented if contributions are incentivized. Indeed, if

we assume that contributors yield subsidies that are proportional to their contributions,

we obtain the following payoff function:

πi = C − (1− r)xi +
1

4

4∑
k=1

2xk, (4)

where r denotes the subsidy rate. According to this modified payoff function, self-

interested individuals will contribute their full endowment if

∂πi
∂xi

= r − 1/2 > 0. (5)

Incentives thus may solve the social dilemma; however, without proper institutions pro-

viding these subsidies, it is unclear how such an incentive scheme can be implemented. In

a path-breaking experiment, Fehr and Gächter (2000) have shown that no exterior insti-

tution is needed, since subjects seem to be able to govern themselves. In this experiment,

players had the opportunity to punish their co-players after the public good game. It was

shown that players are willing to punish free-riders even if any personal long-run benefit

for the punisher is excluded by the experimental design. As a consequence, contributions

to the public good were significantly higher if sanctioning mechanisms were available.

From a game-theoretic perspective, this result is puzzling: Since punishment is costly,

there is no obvious incentive for the punisher to engage in retribution. A theoretical model

of the co-evolution of cooperation and punishment must therefore explain:

1) Which mechanisms ensure the maintenance of a punishment regime?

This question addresses a second-order free-rider problem: Since a sanctioning mechanism

is costly, but beneficial for the group as a whole, it is a public good by itself. How

can players be incentivized to engage in the punishment of free-riders? This problem is

intensified in groups that fully consist of free-riders:

2) Which mechanisms promote the implementation of a punishment regime

in a population of free-riders?
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Finally, it needs to be clarified how a punishment regime can be controlled since several

experiments indicate that a non-negligible fraction of subjects abuse sanctioning opportu-

nities for spite (see, for example Herrmann et al., 2008; Nikiforakis, 2008).

3) Which mechanisms prevent the evolution of anti-social punishment?

In the last ten years, several evolutionary explanations for the emergence of punishment

have been proposed – a short (and non-representative) survey is shown in Tab. 1. While

there are numerous mechanisms that guarantee the fixation of punishment, it seems to be

more difficult to identify mechanisms that allow the initial implementation of a sanction-

ing regime. Most surprisingly, there is only one study (Rand et al., 2010) that allows for

anti-social punishment, and there the co-evolution of cooperation and punishment is fully

suppressed if subjects have the opportunity to be spiteful.

It is the aim of this thesis to demonstrate how non-anonymity can resolve all these

three questions. In the model presented in Chapter 2 and Chapter 4, individuals adapt

to the reputation of their co-players and learn to cooperate against punishers. This in

turn provides an incentive to engage in costly punishment when necessary. It is shown in

Chapter 2 that in a population of non-cooperators, rewards may promote the emergence of

an efficient punishment regime when punishment alone cannot establish stable cooperation.

In Chapter 4 we investigate how reputation can prevent subjects from abusing sanctions

for spite and anti-social punishment.

In order to simplify the analysis, we consider public good games between two players

only. Such games can be represented as a role game, where players may have different

actions depending on their respective role in the current interaction. Role games are for-

mally introduced in Chapter 1, where we also discuss the basic properties of the replicator

dynamics of such games. Chapter 3 investigates the influence of local competition on the

evolution of strategies. For this reason we derive a modified replicator dynamics, assuming

that players interact in finite groups of size N . According to this local replicator dynamics,

dominated strategies do not necessarily go extinct. Instead, a dominated strategy may

spread among the population if it gives a relative advantage to the focal player. One may

therefore interpret the local replicator dynamics as a model for the evolution of spite.

When I applied the Moran process (Nowak et al., 2004) to public good games with

incentives, I noticed a remarkable framing effect: Adding a new strategy to a game may

affect the game’s result even if this new strategy is identical to a strategy that was already
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Article Mechanism promoting
the invasion of
punishment

Mechanism promoting
the fixation of
punishment

Antisocial
punishment
included?

Boyd and Richerson (1992)
Punishment allows the evolution of co-
operation (or anything else) in sizeable
groups

In repeated interactions,
punishment may invade if
it makes the co-players

more cooperative

Higher-order punishment Not explicitly

Gintis (2000)
Strong reciprocity and human sociality

Punishment cannot invade
when rare

Cooperative groups play
more rounds of the PGG
and hence obtain a higher

payoff

No

Sigmund et al. (2001)
Reward and Punishment

Punishment cannot invade
when rare

Due to reputation,
subjects are more likely to

cooperate against
punishers

No

Boyd et al. (2003)
The evolution of altruistic punishment

Punishment cannot invade
when sufficiently rare
(within their group)

Group selection:
Cooperative groups are
more likely to replace

other groups

No

Gardner and West (2004a)
Cooperation and punishment, espe-
cially in humans

Punishment can invade if
there is a correlation

between punishment and
received cooperation

Punishment is stable if
there is a correlation

between punishment and
received cooperation

No

Fowler (2005)
Altruistic punishment and the origin
of cooperation

Voluntary participation Second-order punishment No

Nakamaru and Iwasa (2006)
The coevolution of altruism and pun-
ishment: Role of the selfish punisher

In finite populations,
severe punishment leads to

a relative fitness
advantage

In finite populations,
severe punishment leads to

a relative fitness
advantage

No

Hauert et al. (2007)
Via freedom to coercion: The emer-
gence of costly punishment

Voluntary participation Due to stochastic
fluctuations, no strategy is

stable

No

Eldakar and Wilson (2008)
Selfishness as second-order altruism

Punishment cannot invade
when rare

Coexistence of
non-punishing cooperators
and punishing defectors in

finite groups

No

Boyd et al. (2010)
Coordinated punishment of defectors
sustains cooperation and can prolifer-
ate when rare

Only possible if there is
some assortment in group

formation

Punishers coordinate their
activities, punishment

costs decrease
overproportionally with
the number of punishers

No

Rand et al. (2010)
Anti-social punishment can prevent
the co-evolution of punishment and co-
operation

Punishment cannot invade Punishment is not stable Yes

Table 1: A short history of evolutionary models on the co-evolution of cooperation
and punishment
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available to the players. Chapter 5 discusses solution concepts with this kind of fram-

ing effect and gives an unexpected condition for such inconsistencies: If a game-theoretic

solution concept depends differentiably on the payoffs, then it also depends on the repre-

sentation of the game.
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Chapter 1

The replicator dynamics of role

games

Abstract

In a role game, two players interact in an asymmetric game with both players having equal

chance to be the row-player or the column-player. After reviewing previous results on role

games and their replicator dynamics, we proceed by analyzing the special case where

the row-player can choose among three pure actions and the column-player among two.

We identify cases where the dynamics degenerates to the dynamics of a reduced game,

but we also give a numerical example where the system exhibits non-trivial cycles and

where strategies are sustained in the population that are not part of any Nash equilibrium

of the game. In addition, we prove a general result for mixed equilibria in non-generic

two-player games: If the row-player randomizes between k pure actions, then so does the

column-player.

17
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1.1 Introduction

In game theory, it is common to distinguish between symmetric and asymmetric games.

In symmetric games, players are assumed to be undistinguishable and all agents have the

same set of available strategies and face the same monetary consequences, as for example

in the prisoner’s dilemma. In asymmetric games, on the other hand, strategies and feasible

payoffs may differ across agents. For example, traders have different strategies than their

customers, and the possible payoffs of a hunting predator differ from the payoffs of its

prey.

Role games are somewhat between these two categories (Gaunersdorfer et al., 1991;

Hofbauer and Sigmund, 1998; Berger, 2001). While the actual game itself (the so-called

base game) is generally asymmetric and the payoffs and strategies depend on the player’s

role in the game, it is assumed that each player has equal chances to act in a given role,

making the interaction implicitly symmetric. For example, in online trading systems such

as ebay, a subject may be in the role of the seller at one time and in the role of the buyer

at another time. Similarly, in innerspecific territory conflicts (Maynard Smith, 1982),

an animal may sometimes be in the role of the owner and sometimes in the role of the

intruder. In such games, players can condition their strategies on their present role.

The prime example for a role game is the ultimatum game (Güth et al., 1982), which

was one of the first experimental games demonstrating the irrelevance of backward in-

duction in human decision making. The protocol of the ultimatum game assumes that

subjects are assigned in pairs. In each pair, one of the subjects is randomly determined

to be in the role of the proposer, whereas the other subject is in the role of the respon-

der. The proposer is asked to make an offer how to split a certain amount of money

between them. The responder can then either accept this split or reject it, in which case

both subjects obtain nothing. Although payoff-maximizing responders should accept any

positive amount, offers below 20 % of the total are frequently rejected (see for example

Camerer and Fehr, 2006). There have been several evolutionary approaches to rationalize

this outcome. Nowak et al. (2000) interpret this result as the subject’s attempt to build

up a strict reputation (which can be beneficial in future encounters). Such a behaviour

is, of course, ill-suited for the anonymous conditions in the laboratory, but it might have

played an important role in our evolutionary history. Gale et al. (1995) explain the devi-

ation from backward induction by introducing noise in the decision making process.1 If

1Note, however, that only Nowak et al. (2000) treat the ultimatum game as a role game where players
may find themselves in both roles. Gale et al. (1995), on the other hand, interpret the game as an asym-
metric game with two distinct populations, a population of proposers and and a population of responders.
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responders are more often subject to noise, then replicator dynamics can lead to a Nash

equilibrium that predicts zero-offers to be rejected.

The replicator dynamics of role games was also used to explain cooperative behaviour

under the presence of incentives (Sigmund et al., 2001; De Silva and Sigmund, 2009).

In these studies, the player in the role of the donor needs to decide whether or not to

transfer a benefit b to the recipient (at own costs c). If the donor refuses to cooperate, the

recipient may engage in punishment, by reducing the donor’s payoffs by some amount β.

Recently, this cooperation game was extended to include the possibility of rewards (Hilbe

and Sigmund, 2010). This additional option increases the recipient’s strategy space and

therefore requires to study the dynamics of higher dimensional systems. It is therefore the

aim of this chapter to extend the general theory of role games. As a special case, we study

the dynamics of games where one player may choose among two actions (for example, to

cooperate or to defect) and where the other player can choose among three actions (to

punish a defector, to reward a cooperator or to do nothing). We find that in most cases,

the replicator dynamics of such a role game degenerates to a game of lower dimension

(where at least one pure action of the subjects is never used). However, we also give a

numerical example for a game where all actions persist in the population, even those that

are not part of any Nash equilibrium of the game.

Parts of our analysis of role games will somewhat resemble the studies of Cressman

et al. (2000) and Chamberland and Cressman (2000) on the dynamics of games with two

independent decisions. In their model, two subjects play one of two possible symmetric

games against each other, with nature determining randomly which game they play. While

the players in role games condition their actions on their present role in an asymmetric

game, the subjects in Cressman et al. (2000) and Chamberland and Cressman (2000)

can condition their strategies on the symmetric game that was chosen by nature. The

mathematical treatment of these two distinct approaches is quite similiar and we will

transfer some of their results to our setting.

The remainder of this chapter is organized as follows: In the next section, we introduce

role games formally and study their Nash equilibria. As a corollary, we prove that equilibria

for asymmetric games require the two players to randomize between the same number of

strategies. Thereafter, in Section 1.3, we define the replicator equation of a role game

and establish some properties of the resulting dynamics. These results are then applied

to the case of 2 × 2-games (Section 1.4) and 3 × 2-games (Section 1.5). In Section 1.6,

we generalize the replicator equation to study the effect of recombination and in the last

section, we give a brief discussion of our results.
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1.2 Role games and equilibrium behaviour

Role games can be described as follows: Before the game starts, one of the two players

is randomly determined to be the row-player, whereas the other player is determined to

be the column-player. Thereafter, both subjects play a simultaneous game, which will

be called the base game. The row-player may choose an action among the finite set

{e1, . . . , em} and the column-player may choose among the finite set {f1, . . . , fn}. Then,

depending on their respective choices, each player yields a payoff that is given by the

following bimatrix (A,B). As usual, the first entry in the bimatrix denotes the payoff of

the row-player, whereas the second entry gives the payoff for the column-player.
f1 . . . fn

e1 (a11, b11) . . . (a1n, b1n)
...

...
. . .

...

em (am1, bm1) . . . (amn, bmn)

 (1.1)

In the base game, players are allowed to randomize between their pure actions. Let p ∈ ∆m

denote a probability vector, where pi is the probability that the row-player chooses the

pure action ei. Let q ∈ ∆n be the corresponding probability vector for the column-player.

In this case, the row-player’s payoff can be calculated as p ·Aq, whereas the column-player

obtains p ·Bq.

In the role game, each player needs to specify how to act in each role. Therefore, a

pure strategy of the role game is a pair [ei, fj ]. A mixed strategy for the role game is

represented by a matrix (xij) ∈ ∆mn. There is a natural correspondence between mixed

strategies x in the role game and pairs of mixed actions [p(x), q(x)] in the base game, by

defining pi(x) =
∑n

j xij and qj(x) =
∑m

i xij . This means that p(x) and q(x) are just the

marginal probabilities of x. Of course, this correspondence is not injective; however, it can

be easily seen that the correspondence is surjective, for example by defining xij = pi · qj .
In order to specify payoffs for the role game, we assume that each player has equal chance

to be in one of the two roles. Then, a subject with strategy x, interacting with a co-player

with strategy y yields the payoff

π(x, y) :=
1

2
p(x) ·Aq(y) +

1

2
p(y) ·Bq(x). (1.2)

In the special case that both players use pure strategies, x = [ei, fj ] and y = [ek, fl],
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expression (1.2) simplifies to

πij,kl :=
1

2
ail +

1

2
bkj . (1.3)

In this section, we want to examine equilibrium behaviour in role games. It is well-

known that the Nash equilibria of a role game are strongly related to the Nash equilibria

of the underlying base game (see for example Berger (2001)). The proof of the following

Proposition follows the lines of Sigmund (2010).

Proposition 1 (Nash equilibria in role games)

The mixed strategy x̂ is a symmetric Nash equilibrium of the role game if and only if

[p̂, q̂] = [p(x̂), q(x̂)] is a Nash equilibrium of the base game.

Proof. Suppose x̂ is a symmetric Nash equilibrium of the role game. This means that

π(y, x) ≤ π(x, x) for all y ∈ ∆mn. By Eq. (1.2) this implies

p(y) ·Aq̂ + p̂ ·Bq(y) ≤ p̂ ·Aq̂ + p̂ ·Bq̂ for all y ∈ ∆mn (1.4)

Because the map y 7→ [p(y), q(y)] is surjective, it follows that

p ·Aq̂ + p̂ ·Bq ≤ p̂ ·Aq̂ + p̂ ·Bq̂ for all p ∈ ∆m, q ∈ ∆n (1.5)

For p = p̂, this yields

p̂ ·Bq ≤ p̂ ·Bq̂ for all q ∈ ∆n, (1.6)

whereas q = q̂ leads to

p ·Aq̂ ≤ p̂ ·Aq̂ for all p ∈ ∆m. (1.7)

Hence, p̂ is a best reply to q̂ in the underlying base game, and vice versa. To show the

converse direction, suppose that x̂ is not a symmetric Nash equilibrium of the role game.

This means that there is a y ∈ ∆mn such that π(y, x) > π(x, x), or again by Eq. (1.2):

p(y) ·Aq̂ + p̂ ·Bq(y) > p̂ ·Aq̂ + p̂ ·Bq̂ (1.8)

In this case, it follows that either p(y) ·Aq̂ > p̂ ·Aq̂ or that p̂ ·Bq(y) > p̂ ·Bq̂, which proves

that [p̂, q̂] is not a Nash equilibrium of the underlying base game.

This Proposition can be used to prove existence of Nash equilibria for general 2-player

games. For example, in Sigmund (2010) it is shown that every symmetric 2-player game has

a symmetric equilibrium. If this result is applied to a role game it follows by Proposition 1,
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that also the (potentially asymmetric) base game has a Nash equilibrium.

We next want to study under which conditions we may expect Nash equilibria where

both players make use of all their strategies. For a vector v we write v > 0 if all entries

vi > 0. Furthermore, we say that a game (A,B) is generic if the rows of A and the

columns of B are linearly independent. It is easily seen that the set of generic games

has full measure with respect to the Lebesgue measure on Rmn × Rmn. The following

Proposition is, to the best of my knowledge, new.

Proposition 2 (A necessary condition for a Nash equilibrium with full support)

Let [p̂, q̂] ∈ ∆m×∆n be a Nash equilibrium for a generic game (A,B). If p̂ > 0 and q̂ > 0

then m = n.2

Proof. Assume to the contrary that (without loss of generality) m > n. Because [p̂, q̂] is

a Nash equilibrium with full support, it follows that each of the row-player’s strategies

yields the same payoff:

(Aq̂)i − (Aq̂)1 =

n∑
l=1

(ail − a1l) · q̂l = 0 for all 2 ≤ i ≤ m. (1.9)

Together with the condition
∑n

l=1 q̂l = 1, Eqs. (1.9) form a system of m linear equations in

n unknowns. Since the rows of A are linearly independent, this system has no solution.

Both previous Propositions together imply that, generically, a role game can only have

an equilibrium in the interior of the state space if the underlying base game is square.

Note that the converse result to Proposition 2 is also true: If m = n, then the set of games

(A,B) with an interior equilibrium has positive Lebesgue measure. Indeed, the base game

(Â,−ÂT ), with âij = 1 if j− i = 1 mod n and âij = 0 otherwise, has a unique equilibrium

(p̂, p̂), where p̂ = (1/n, . . . , 1/n). By continuity, also games (A,B) that are in a sufficiently

small neighborhood of (Â,−ÂT ) have an equilibrium in the interior of the state space.

Furthermore, we have the following corollary.

Corollary 3 (On the number of strategies supported by mixed equilibria)

Consider a generic two-player game (A,B). If, in equilibrium, the row-player mixes be-

2It seems to me that this result is a game-theoretic analogon to the exclusion principle from population
ecology (see, for example Hofbauer and Sigmund, 1998). Consider a situation where m different species
feed from n different resources. According to the exclusion principle there is no equilibrium with m > n.
Such a principle can be deduced from the Lotka-Volterra equations and the proof is in fact similar to the
proof we give for this Proposition.
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tween k pure strategies, then so does the column-player.

Proof. Follows immediately by the previous Proposition by considering the reduced game

(Ã, B̃), which originates from (A,B) by deleting all rows and columns that are not played

in equilibrium.

1.3 Replicator dynamics for role games

In the remainder of this chapter, we follow the evolutionary interpretation of game the-

ory. We consider an infinite population of individuals, playing a role game (A,B). Each

member of the population is assumed to play a pure strategy. Under this interpretation,

xij denotes the fraction of players who use the strategy [ei, fj ]. As before, we denote the

marginal distributions by p(x) and q(x), that is pi(x) =
∑n

j xij denotes the fraction of

ei-players in the population, whereas qj(x) =
∑m

i xij gives the fraction of fj-players. If

x = (xij) is the current state of the population, then the expected payoff for a player with

strategy [ei, fj ] becomes

πij = πij(x) =
∑
k,l

πij,kl · xkl =
1

2

(
Aq(x)

)
i
+

1

2

(
p(x)TB

)
j
. (1.10)

Summing up over all strategies yields the following average payoff of the whole population:

π̄ = π̄(x) =
∑
i,j

πij · xij =
1

2
· p(x)T (A+B)q(x) (1.11)

We assume that the evolution of the system is governed by the replicator dynamics (Taylor

and Jonker, 1978; Zeeman, 1980). That is, we assume that the growth rate of strategy

[ei, fj ] is proportional to the payoff differential πij − π̄. Thus, we consider the ordinary

differential equation (ODE)

ẋij = xij · [πij − π̄] . (1.12)

The analytical properties of ODE (1.12) are well understood, standard references are

Weibull (1995), Hofbauer and Sigmund (1998) and Hofbauer and Sigmund (2003). The

following Lemma is a straightforward application of these known results to our specific

setting:
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Lemma 4 (Some analytical properties of the replicator dynamics for role games)

For a role game (A,B), let x(t) be a solution of the replicator equation.

(i) If the row-player’s strategy ei is dominated, then pi(t) → 0 (i.e., xij(t) → 0 for all

j). Analogously, if the column-player’s strategy fj is dominated, then qj(t) → 0.

(ii) If (A,B) is generic and m ̸= n, then all orbits starting in the interior of the state

space ∆mn converge to the boundary.

(iii) Adding a constant c to a column of A or to a row of B does not alter the dynamics.

Proof. (i) If ei is dominated then there is a strategy ek such that ail < akl for all l. It

follows that

˙(
xij
xkj

)
=

xij
xkj

· [πij − πkj ] =
xij
xkj

·

[
n∑
l

ail − akl
2

ql

]
≤ 0, (1.13)

with equality if and only if xij = 0. This proves that xij(t)/xkj(t) → 0 monotonically,

and since xkj(t) is bounded, the result follows.

(ii) According to Hofbauer and Sigmund (1998), all orbits x(t) converge to the boundary

if there is no rest point in int(∆mn). Because rest points in the interior are Nash

equilibria, the result follows from Proposition 2.

(iii) Adding a constant c to each entry of the j-th column of A increases the payoff of all

players uniformly by cqj(x), and thus leaves the payoff differential πij−π̄ unchanged.

We next want to study the geometry of the state space under replicator dynamics.

Thereby, we closely follow the approach of Cressman et al. (2000). First, we note that for

any initial population x(0) ∈ int(∆mn),

Zij =
x11 · xij
x1j · xi1

(1.14)

is an invariant of motion for all 1 ≤ i ≤ m and 1 ≤ j ≤ n. Indeed, by deriving expression

(1.14), we obtain

Żij = Zij · [π11 + πij − π1j − πi1]

= Zij ·
∑

k,l(a1l + bk1 + ail + bkj − a1l − bkj − ail − bk1)/2 · xkl = 0.
(1.15)

Furthermore, for 1 < i ≤ m and 1 < j ≤ n, all Zij are independent: Given the frequencies

in the first row x1l and in the first column xk1, each Zij uniquely determines the value
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of xij . Therefore, if we fix an ordered set Z of (m − 1)(n − 1) initial conditions, Z ={
Zij > 0

∣∣ 1 < i ≤ m, 1 < j ≤ n
}
, then WZ ⊂ ∆mn is an invariant submanifold, where

WZ =
{
x ∈ int(∆mn)

∣∣ x1jxi1 = Zijx11xij , Zij ∈ Z
}
. (1.16)

Thus, the interior of the state space ∆mn foliates into (n+m− 2)–dimensional manifolds

invariant under (1.12). Next we define a map Φ that gives the marginal distributions for

each x ∈ WZ , that is Φ : WZ → int(∆m ×∆n) is given by Φ(x) = (p(x), q(x)). Without a

proof, we mention the following result from Cressman et al. (2000):

Proposition 5 (Geometry of the state space)

Φ is a diffeomorphism, implying that each invariant submanifold WZ is diffeomorph to

int(∆m ×∆n).

In particular, it follows that if there is an ordered set Ẑ such that WẐ contains a rest

point of Eq. (1.12), then all manifolds WZ contain such a rest point. In the case where all

Zij = 1, we obtain the Wright manifold

W1 =
{
x ∈ int(∆mn)

∣∣ x1jxi1 = x11xij , 1 < i ≤ m, 1 < j ≤ n
}
. (1.17)

On the Wright manifold, the decisions in the two roles are statistically independent, xij =

pi(x) · qj(x). In this case, if the strategy [ei, fj ] becomes extinct and if the fraction of

players using ei is bounded away from zero, then qj(x) → 0. This result can be extended

to all manifolds WZ :

Lemma 6 (Extinction Lemma)

Let x(t) be a solution of the replicator equation on some manifold WZ . Suppose there is

an ε > 0 such that for all t we have qj
(
x(t)

)
> ε for some j. Then xij(t) → 0 if and only

if pi
(
x(t)

)
→ 0.

Proof. Because xij ≤ pi(x), the ”if”-direction is trivial. To show the converse direction,

we renumber the strategies such that i = 1 and j = 1. Let

z := min
{
Zkl

∣∣1 ≤ k ≤ m, 1 ≤ j ≤ n
}
> 0. (1.18)

By Eq. (1.14), we have x11xkl = Zklx1lxk1 for all k, l. Summing up over 1 ≤ k ≤ m and



26 CHAPTER 1. THE REPLICATOR DYNAMICS OF ROLE GAMES

1 ≤ j ≤ n thus leads to

x11 =
∑
k,l

Zklx1lxk1 ≥ z · p1q1. (1.19)

Because z · q1 is bounded away from zero, the result follows.

In the following sections, we apply these results to give a classification of two special

cases. We start by reviewing the case of 2×2-games (see also Gaunersdorfer et al. (1991);

Hofbauer and Sigmund (1998); Berger (2001)) and then we proceed to 3× 2-games.

1.4 The replicator dynamics of 2× 2 games

In the simplest case, each player has two pure actions in the base game. The state space

of the corresponding role game takes the form of a tetrahedron and each invariant sub-

manifold

WZ =
{
x ∈ int(∆4)

∣∣ x12x21 = Z · x11x22, Z > 0
}

(1.20)

is diffeomorph to a square (see Fig. 1.1). Without loss of generality (see lemma 4iii) we

may assume that the game (A,B) has the following payoff matrix:(
( 0 , 0 ) ( 0 , b12)

(a21, 0 ) (a22, b22)

)
(1.21)

Note that this payoff matrix is chosen such that the first strategy, [e1, f1] obtains a constant

payoff of zero. Depending on the values a21, a22, b12 and b22, we can distinguish between

three different scenarios:

(1) Dominance: If a21a22 > 0 or if b12b22 > 0, then one of the pure actions in the base

game is dominated. By lemma 4i, replicator dynamics leads to the extinction of this

action and the game degenerates to a 2 × 1 game. In this case, there is a unique

strategy [ei, fj ] that is globally stable (see Fig. 1.2i, 1.2ii).

If both, a21a22 < 0 and b12b22 < 0, then the underlying base game has a unique Nash

equilibrium (p̂, q̂) in the interior of the state space, where

p̂ =
1

b22 − b12
·
(
b22,−b12

)
, q̂ =

1

a22 − a21
·
(
a22,−a21

)
. (1.22)
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Figure 1.1: The state space of a role game involving the four strategies [e1, f1],
[e1, f2], [e2, f1] and [e2, f2]. The corners of the three-dimensional simplex correspond
to the homogeneous populations using that strategy, the interior points denote mixed
populations. For each initial state, the evolution of the system is restricted to a
two-dimensional saddle-like manifold that can be represented by a square.

i) Dominance D1 ii) Dominance D2 iii) Bistability B iv) Cyclic case C
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Figure 1.2: Possible scenarios for the replicator dynamics of 2×2 role games. i) All
orbits converge monotonically to the only undominated strategy [e2, f2]. ii) Replicator
dynamics leads to the extinction of f1, leading to [e2, f2] thereafter. iii) There are
two evolutionarily stable strategies and an unstable equilibrium in the interior. iv)
Depending on the manifold WZ , orbits are periodic, converge to the fixed point or
converge to the boundary. All graphs show the dynamics on the Wright manifold,
Z = 1.

Therefore, for the corresponding role game there is a unique interior Nash equilibrium x̂Z

on each invariant manifold WZ which can be written as

x̂Z =
1

(a22 − a21)(b22 − b12)
·

(
a22b22 + λZ −a21b22 − λZ

−a22b12 − λZ a21b12 + λZ

)
, (1.23)
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where the parameter λZ is chosen such that x̂Z ∈ WZ . Note that λZ = 0 implies that x̂z

is on the Wright-manifold. If there is such an interior equilibrium, we have the following

two additional scenarios:

(2) Bistability: If a21b12 > 0, then the interior fixed point x̂ is a saddle and each orbit

converges to one of the two asymptotically stable fixed-points at the boundary,

see Fig. 1.2iii.

(3) Cyclic case: If a21b12 < 0, then the interior fixed point x̂ is a focus and there is

no fixed point at the boundary. The asymptotic behaviour of the system depends

on the initial conditions. On the Wright-manifold W1 all orbits are periodic and

x̂ is stable but not asymptotically stable (Fig. 1.2iv). For Z > 1 the fixed point

is a spiral sink whereas for Z < 1, orbits converge to the heteroclinic cycle at the

boundary (or vice versa), see Gaunersdorfer et al. (1991).

For the cyclic case it will prove useful to determine an expression for the time averages

of the orbits. If the orbits do not converge to the boundary, such an expression can be

derived easily (see also Hofbauer and Sigmund, 1998, for an analogous expression in the

case of the Lotka-Volterra equation).

Proposition 7 (Time averages of interior orbits)

Consider a base game (A,B) with a unique Nash equilibrium [p̂, q̂] in the interior of the

state space ∆n×∆n. Let x(t) be a solution of the replicator equation for the corresponding

role game. If there is an ε such that xij(t) > ε for all i, j and t, then

lim
τ→∞

1

τ

∫ τ

0
p
(
x(t)

)
dt = p̂ (1.24a)

lim
τ→∞

1

τ

∫ τ

0
q
(
x(t)

)
dt = q̂ (1.24b)

Proof. Let us first rewrite the replicator equation (1.12) as (log xij )̇ = πij(x) − π̄(x).

Integration from 0 to τ and division by τ leads to

log xij(τ)− log xij(0)

τ
=

1

τ

∫ τ

0

(
πij
(
x(t)

)
− π̄

(
x(t)

))
dt ∀i, j ∀τ. (1.25)

Since xij is bounded away from zero, we may pass to the limit τ → ∞,

0 = lim
τ→∞

1

τ

∫ τ

0

(
πij
(
x(t)

)
− π̄

(
x(t)

))
dt ∀i, j. (1.26)
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In particular, because we may normalize payoffs such that π11
(
x(t)

)
= 0 for all t, we may

conclude that

lim
τ→∞

1

τ

∫ τ

0
π̄
(
x(t)

)
dt = 0. (1.27)

Eq. (1.26) thus implies that

lim
τ→∞

1

τ

∫ τ

0
πij
(
x(t)

)
dt = lim

τ→∞

1

τ

∫ τ

0
πkl
(
x(t)

)
dt ∀i, j, k, l, (1.28)

which is, due to the linearity of payoffs according to (1.10), equivalent to(
Aq̄
)
i

=
(
Aq̄
)
k(

p̄TB
)
j

=
(
p̄TB

)
l

∀i, j, k, l (1.29)

where p̄ = limτ→∞
1
τ

∫ τ
0 p
(
x(t)

)
dt and q̄ = limτ→∞

1
τ

∫ τ
0 q
(
x(t)

)
dt. Eqs. (1.29) are exactly

the conditions for Nash equilibria and since x(t) is bounded away from zero, it follows

that (p̄, q̄) ∈ int(∆n ×∆n). Therefore, p̄ = p̂ and q̄ = q̂.

However, in the case that orbits converge to a heteroclinic cycle, we cannot expect to

obtain similar expressions for the time averages. In fact, as shown in Gaunersdorfer (1992)

and Sigmund (1992), the time averages fail to converge to a single point because the time

that an orbit spends near a fixed point increases exponentially for such orbits. Instead the

accumulation points of the time averages form a polygon, as described in Gaunersdorfer

(1992). We will return to this point in the following section.

1.5 The replicator dynamics of 3× 2 games

For m = 3 and n = 2, the interior of the state space ∆6 foliates into the 3–dimensional

invariant manifolds

WZ =
{
x ∈ int(∆6)

∣∣ x12x21 = Z22 · x11x22, x12x31 = Z32 · x11x32, Z22, Z32 > 0
}

(1.30)

By Proposition 5, each WZ is diffeomorph to int(∆3 × ∆2) and the invariant manifolds

can be represented by a prism (see Fig. 1.3). The boundary of the prism consists of three

squares (which correspond to the case where one of the row-player’s strategies is absent,

that is we have a 2 × 2–game) and of two triangles (which correspond to the case where
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one of the two column-player’s strategies is absent in the population). By lemma 4ii,

generically there is no fixed point in the interior of this prism and all orbits converge to

the boundary. Without loss of generality, we suppose that the payoff matrix is given by ( 0 , 0 ) ( 0 , b12)

(a21, 0 ) (a22, b22)

(a31, 0 ) (a32, b32)

 (1.31)

The dynamics at the edges of the prism depends on the relative magnitudes of the aij and

on the signs of the bij , respectively (as depicted in Fig. 1.3).
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Figure 1.3: The invariant manifolds WK can be represented by a prism. The corners
of this prism correspond to homogenous populations [ei, fj ] and the boundary surfaces
correspond to 2 × 2–games and 3 × 1–games, respectively. Each arrow depicts an
inequality for the payoff values; the present example represents a game with a31 <
a21 < 0, 0 < a22 < a32 and b12 < 0, b22 > 0, b32 > 0.

We characterize the dynamics of 3×2 role games by considering all possible combinations

for the directions at the edges. With respect to the actions of the column-player, f1 and

f2, we may distinguish between two cases:

(i) One of the column-player’s actions is dominated (in which case we may assume that

the dominated action is f1, that is b12, b22, b32 > 0). Furthermore, possibly after

renumbering of the strategies of the row-player, we may assume that a31 < a21 < 0.

This case is depicted in Fig. 1.4a. For the remaining payoff values a12 = 0, a22

and a32 (which determine the orientation of the back triangle), there are 3! possible

orderings, leading to 6 possible subcases.

(ii) If none of the column-player’s actions is dominated, we may assume that b12 < 0

whereas b22 > 0 and b32 > 0, see Fig. 1.4b–d. For the front triangle, there are – up

to symmetry – three possible orientations. Because of the 6 possible orientations of
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(a) (b) (c) (d)

Figure 1.4: Possible orientations of the prism. There are two main cases: Either
all arrows that are not part of a triangle point in the same direction, or one of the
three arrows points in the opposite direction. In the first case, we may assume that
the front triangle is oriented as in (a), whereas in the second case there are, up to
symmetry, 3 different orientations of the front triangle (b-d).

the back triangle, this yields 18 possible subcases.

Overall, this leads to 24 different cases and a rough classification is shown in Fig. 1.5.

In 21 of the 24 cases, at least one of the actions in the base game is dominated and the

3×2-game degenerates to a game with lower dimension. In particular, in the cases (a)–(o),

any orbit starting in int(∆3×∆2) converges to a uniquely determined vertex of the prism.

In the cases (p)–(r), every orbit in the interior converges to a boundary face with bistable

competition. Therefore, almost all orbits are attracted by one of the two asymptotically

stable vertices. Eventually, in the cases (s)–(u), every inner orbit converges to a unique

boundary face with cyclic behaviour.

Let us now turn to the non-degenerated cases without dominated strategies. In the first

such case (see Fig. 1.5v) we have a bistable competition between two evolutionarily stable

strategies, [e1, f1] and [e3, f2]. In the other two cases, Fig. 1.5w,x, we need to determine

the stability of boundary faces with cyclic orbits. Let us therefore fix an invariant manifold

WZ and denote by F i the corresponding boundary face where the row-player’s strategy ei

is absent, that is F i = bd(WZ) ∩ {pi(x) = 0}. Graphically, Fi corresponds to the square

opposite to the ei-edge. In order to determine the stability of such a boundary face, we

call F i saturated if

lim
τ→∞

1

τ

∫ τ

0
πij
(
x(t)

)
dt < lim

τ→∞

1

τ

∫ τ

0
π̄
(
x(t)

)
dt (1.32)

for all j and all orbits x(t) ∈ int(F i). Condition (1.32) ensures that the absent strategy

ei yields a lower long-run payoff than the residents for any initial population in int(F i).

The following proposition establishes a relation between the stability of a boundary face

F i and the stability of fixed points x̂i ∈ int(F i) :
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There is a dominated fi.
a) D1D1D1 b) D1D1D2 c) D2D1D2

d) D2D2D2 e) D2D2D1 f) D1D2D1

g) D2D2D1 h) D2D2D2 i) D2D2D1

There is a dominated
ei and the remaining
2×2-game has a unique
globally stable equilib-
rium.

j) D2D2D1 k) D2BD1 l) D2CD1

m) D2D2D2 n) D2BD2 o) CD2D2

Figure 1.5: A classification of 3×2 role games (Part 1): The 15 cases where one pure
strategy, which is marked by a black circle, is globally stable. The letters D1, D2, B
and C denote the dynamics on the 2× 2-boundary-faces (Dominance, bistability and
cycles, see Fig. 1.2).
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There is a dominated
ei and the remaining
2 × 2-game exhibits
bistable competition.

p) BD2D2 q) D2BD1 r) BBD1

There is a dominated
ei and the remaining
2 × 2-game exhibits
evolutionary cycles.

s) CD2D1 t) CD2D2 u) CCD1

There is no dominated
strategy.

v) Bistability
BBD2

w) Two Cycles
CCD2

x) ESS vs. Cycle
CBD2

Figure 1.5: A classification of 3× 2 role games (Part 2).

Proposition 8 (A condition for saturated boundary faces)

Suppose there is a unique fixed point x̂i ∈ int(F i). If x̂i is a (Lyapunov) stable Nash

equilibrium, then F i is saturated.

Proof. Follows immediately from Proposition 7.

In particular, it follows for the cases of Fig. 1.5w,x, that orbits starting sufficiently

close to a cyclic boundary face Fi will eventually converge to F i if the corresponding fixed

point x̂i is a stable Nash equilibrium. However, the previous proposition does not make a

statement about boundary faces F i with heteroclinic orbits. In such a case, the following
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numerical example suggests that the dynamics may be non-trivial:3

Example 9 (The case of unstable fixed points)

Consider the following game M (which is of the type depicted as Fig. 1.5w) with initial

population x0:

M =

 0, 0 0,−0.18

0.23, 0 −0.09, 0.96

0.92, 0 −0.37, 0.27

 , x0 =

 0.26 0.5

0.06 0.14

0.02 0.02

 (1.33)

Plugging the values of x0 into expression (1.14) leads to Z22 ≈ 0.82 and Z32 ≈ 1.92. The

respective fixed points on the boundary surfaces can be calculated according to Eq. (1.23):

x̂2 ≈

 0.14 0.46

0 0

0.15 0.25

 , x̂3 ≈

 0.24 0.60

0.04 0.12

0 0

 (1.34)

None of these fixed points is stable and orbits on F 2 and F 3 converge to the boundary.

By the index theorem (see Hofbauer and Sigmund, 1998), only one of the fixed points

is saturated (i.e., transversally stable) and a straightforward calculation verifies that this

unique Nash equilibrium is x̂3 (Both absent strategies [e3, f1] and [e3, f2] yield the payoff

−0.0072 < 0). Although the initial population x0 is close to the saturated fixed point

x̂3, simulations suggest that the orbit does not converge to F 3; instead e3 is regularly

reintroduced, (see Fig. 1.6). We will further discuss the cause and the consequences of

these non-trivial oscillations in the last section.

1.6 Recombination

Classical replicator dynamics does not introduce new strategies (see Hofbauer and Sig-

mund, 1998). For example, [e1, f1] remains absent if it is not played in the initial popu-

lation even if both pure actions e1 and f1 exist (e.g. if the initial population consists of

[e1, f2] and [e2, f1] players). In this section we introduce recombination, thereby extending

3In general, one needs to be cautious with numerical simulations of heteroclinic cycles, where orbits
converge to the boundary and the relevant fractions xij(t) may well fall below the machine epsilon εM .
However, in this case, the results seem to be sufficiently robust to be worth presenting.
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Figure 1.6: Numerical simulations for the game M without stable fixed points. The
blue orbit shows the solution of the replicator equation over a time interval of 20,000
units, the red orbit gives the state of the population for the last 5% of this time
interval (which must not be confused with a limit cycle). Note that the dynamics
suggests that none of the pure actions ei or fj goes extinct.

the work of Gaunersdorfer et al. (1991).

We consider a general m × 2 role game (A,B) with the actions e1,. . . , em for the

row-player and the actions f1 and f2 for the column-player. Now we modify the replicator

dynamics (1.12) by adding recombination:

ẋij = xij ·
[
πij − π̄

]
− ρDij . (1.35)

Here ρ > 0 is the recombination fraction and Dij := xij − pi(x) · qj(x) is the linkage

disequilibrium (In an infinitesimal time interval of length ∆t, the combination [ei, fj ] is

broken up with probability ρxij∆t, and formed anew with probability ρpi(x) · qj(x)∆t).

Proposition 10 (Convergence to the Wright manifold)

Under the modified replicator equation (1.35), all orbits starting in the interior of the state

space converge to the Wright manifold. On this manifold, the modified and the classical

replicator dynamics coincide.

Proof. In order to simplify notation we write Zk for the expressions Zk2 defined by (1.14).

We will show Z2 → 1 under the modified replicator dynamics (1.35); all other Zk follow

by a symmetry argument. We have

Ż2

Z2
= −ρ ·

[
D11/x11 +D22/x22 −D12/x12 −D21/x21

]
(1.36)
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It is easy to see that

D11/x11 = 1− p1q1
x11

= 1− (x11+···+x1n)(x11+x21)
x11

=

= 1− x11 − · · · − x1n − x21 − x12x21
x11

− · · · − x1nx21
x11

=

= x22 + · · ·+ x2n − 1
Z2

x22 − · · · − 1
Zn

x2n =

= (1− 1/Z2)x22 + (1− 1/Z3)x23 + · · ·+ (1− 1/Zn)x2n,

(1.37)

hence

D11/x11 =
∑n

k=1(1−
Z1
Zk

)x2k (1.38)

and analogously

D12/x12 =
∑n

k=1(1−
Z2
Zk

)x2k

D22/x22 =
∑n

k=1(1−
Zk
Z2

)x1k

D21/x21 =
∑n

k=1(1−
Zk
Z1

)x1k

(1.39)

Plugging these identities into Eq. (1.36) yields

Ż2

Z2
= −ρ(Z2 − 1)[

n∑
k=1

(
x2k
Zk

+
x1kZk

Z1Z2
)] = −ρ(Z2 − 1)[p1

x21
x11

+ p2
x12
x22

], (1.40)

which shows that Z2 (and therefore all Zk) converge to 1 monotonically. In this case it

follows from Eqs. (1.38) and (1.39) that Dij → 0.

1.7 Discussion

In this introductory chapter, we have given an overview of the equilibria and the replicator

dynamics of role games. In particular, we have seen that away from the Wright manifold,

role games can induce non-trivial evolutionary oscillations. A similarly peculiar result has

been previously reported by Chamberland and Cressman (2000), who were investigating

a symmetric game with payoff matrix:

A =

 0 6 −4

−4 0 4

2 −2 0

 . (1.41)
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For this 3× 3-base game of rock-scissors-paper type, all orbits of the replicator dynamics

converge to the unique fixed point in the interior. However, for the corresponding role

game (A,AT ), the set of Nash equilibria is unstable. Or, as interpreted by Sandholm

(2006): If players observe commonly the toss of a coin before the game begins, then the

long-run dynamics differs from a game without such a coin toss.

To understand this counterintuitive result, it is important to recall that the replicator

dynamics of a role game promotes strategies that yield a high aggregate payoff. Even if the

row-player’s strategy ei performs well taken by itself, the fraction of ei-players does not

necessarily increase. Instead, if ei-players tend to use an inferior strategy fj in the role of

the column-player (which is, of course, only possible away from the Wright-manifold), then

pi(x) may decrease. Therefore, the dynamics and the stability of fixed points does not

only depend on the game itself but in general also on correlations in the initial population.

Chamberland and Cressman (2000) offer three possible resolutions to avoid these in-

consistencies. The first suggestion is to restrict attention to the dynamics on the Wright-

manifold. The authors consider this restriction as problematic: In a population of in-

dependent individuals, each playing a pure strategy, there is no reason to assume that

strategy choices are uncorrelated (however, see our convergence result if we allow re-

combination). Secondly, they propose to consider evolutionarily stable strategies (ESS)

instead of Nash equilibria because in the case of ESS, inconsistencies can be excluded

(see Cressman et al., 2000, and note that game (1.41) does not have an ESS). As their

last resolution, Chamberland and Cressman (2000) question the applicability of replicator

dynamics (or any aggregate monotonic selection dynamics) to games with two indepen-

dent decisions. Instead, they suggest to use subgame monotone selection dynamics, where

pi(x)/pk(x) increases if and only if ei yields a higher payoff than ek.

This requirement is fulfilled if we assume that strategy revisions for the two roles of

the base game occur independently:

ṗi = pi ·
[
(Aq)i − pTAq

]
q̇j = qj ·

[
(pTB)j − pTBq

] (1.42)

However, one can easily verify that such a dynamics is equivalent to the replicator dynamics

of the corresponding role game, restricted to the Wright-manifold:

ṗi(x) =
∑n

j=1 xij
[
πij(x)− π̄(x)

]
=

∑n
j=1 pi(x)qj(x)

[
1
2

(
Aq(x)

)
i
+ 1

2

(
p(x)TB

)
j
− 1

2 · p(x)T (A+B)q(x)
]

= 1
2pi(x) ·

[(
Aq(x)

)
i
− p(x)TAq(x)

]
.

(1.43)
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An analogous calculation holds for q̇j(x). In the following applications we will therefore

mostly focus on the dynamics on the Wright-manifold.



Chapter 2

Incentives and Opportunism:

From the carrot to the stick

Abstract

Cooperation in public good games is greatly promoted by positive and negative incentives.

In this paper, we use evolutionary game dynamics to study the evolution of opportunism

(the readiness to be swayed by incentives) and the evolution of trust (the propensity to

cooperate in the absence of information on the co-players). If both positive and nega-

tive incentives are available, evolution leads to a population where defectors are punished

and players cooperate, except when they can get away with defection. Rewarding behav-

ior does not become fixed, but can play an essential role in catalyzing the emergence of

cooperation, especially if the information level is low.

39
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2.1 Introduction

Social dilemmas are obstacles to the evolution of cooperation. Examples such as the Pris-

oner’s Dilemma show that self-interested motives can dictate self-defeating moves, and

thus suppress cooperation. Positive and negative incentives (the carrot and the stick)

can both induce cooperation in a population of self-regarding agents (see e.g. Olson, 1965;

Ostrom and Walker, 2003; Sigmund, 2007). The provision of such incentives is costly, how-

ever, and therefore raises a second-order social dilemma. This issue has been addressed

in many papers, particularly for the case of negative incentives. We mention for exam-

ple Yamagishi (1986); Boyd and Richerson (1992); Fehr and Gächter (2002); Walker and

Halloran (2004); Bowles and Gintis (2004); Gardner and West (2004a); Nakamaru and

Iwasa (2006); Sefton et al. (2007); Carpenter (2007); Lehmann et al. (2007a); Kiyonari

and Barclay (2008).

It is easily seen that the efficiency of the two types of incentives relies on contrasting

and even complementary circumstances. Indeed, if most players cooperate, then it will

be costly to reward them all, while punishing the few defections will be cheap: often, the

mere threat of a sanction suffices (Boyd et al., 2003; Gächter et al., 2008). On the other

hand, if most players defect, then punishing them all will be a costly enterprise, while

rewarding the few cooperators will be cheap. Obviously, therefore, the best policy for

turning a population of defectors into a population of cooperators would be, first, to use

the carrot, and at some later point, the stick.

In the absence of a proper institution to implement such a policy, members of the

population can take the job onto themselves. But what is their incentive to do so? It

pays only if the threat of a punishment, or the promise of a reward, should turn a co-

player from a defector into a cooperator. Hence, the co-players must be opportunistic,

i.e., prone to be swayed by incentives. In order to impress a co-player, the threat (or

promise) of an incentive must be sufficiently credible. In the following model, we shall

assume that the credibility is provided by the players’ reputation, i.e. by their history,

and thus assume several rounds of the game, not necessarily with the same partner (see

e.g. Sigmund et al., 2001; Fehr and Fischbacher, 2003; Barclay, 2006). Credibility could

alternatively be provided by a verbal commitment, for example. Since mere talk is cheap,

however, such commitments need to be convincing; ultimately, they must be backed up

by actions, and hence again rely on reputation. Whether a player obtains information

about the co-players’ previous actions from direct experience, or from witnessing them

at a distance, or hearing about them through gossip, can be left open at this stage. In
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particular, we do not assume repeated rounds between the same two players, but do not

exclude them either. Basically, the carrot or the stick will be applied after the cooperation,

or defection, and hence are forms of targeted reciprocation (while conversely, of course,

the promise to return good with good and bad with bad, can act as an incentive).

In the following, we present a simple game theoretic model to analyze the evolution of

opportunism, and to stress the smooth interplay of positive and negative incentives. The

model is based on a previous paper (Sigmund et al., 2001), which analyses punishment

and reward separately and which presumes opportunistic agents. Here, we show how such

opportunistic agents evolve via social learning, and how first rewards, then punishment

lead to a society dominated by players who cooperate, except when they expect that they

can get away with defection. Rewards will not become stably established; but they can

play an essential role in the transition to cooperation, especially if the information level

is below a specific threshold. Whenever the benefit-to-cost ratio for the reward is larger

than one, the eventual demise of rewarders is surprising, since a homogeneous population

of rewarding cooperators would obtain a higher payoff than a homogeneous population of

punishing cooperators. We first analyze the model by means of the replicator dynamics,

then by means of a stochastic learning model based on the Moran process. Thus both

finite populations and the limiting case of infinite populations will be covered. In the

discussion, we study the role of errors, compare our results with experiments and point

out the need to consider a wider role for incentives.

2.2 The model

Each round of the game consists of two stages, a helping stage and an incentive stage.

Individuals in the population are randomly paired. A dice decides who is in the role of

the (potential) Donor, and who is Recipient. In the first stage, Donors may transfer a

benefit b to their Recipients, at their own cost c, or they may refuse to do so. These two

alternatives are denoted by C (for cooperation) resp. D (for defection). In the second

stage, Recipients can reward their Donors, or punish them, or refuse to react. If rewarded,

Donors receive an amount β; if punished, they must part with that amount β; in both

cases, Recipients must pay an amount γ, since both rewarding and punishing is costly.

As usual, we assume that c < b, as well as c < β and γ < b. Using the same parameter

values β and γ for both types of incentives is done for convenience only: basically, all that

matters are the inequalities. They ensure that Donors are better off by choosing C, if their
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Recipients use an incentive; and that in the case of rewards, both players have a positive

payoff. But material interests speak against using incentives, since they are costly; and in

the absence of incentives, helping behavior will not evolve.

The four possible moves for the second stage will be denoted by N, to do nothing;

P, to punish defection; R, to reward cooperation; and I, to provide for both types of

incentives, i.e. to punish defection and to reward cooperation. For the first stage, next to

the two unconditional moves AllC, to always cooperate, and AllD, to always defect, we

also consider the opportunistic move: namely to defect except if prodded by an incentive.

We shall, however, assume that information about the co-player may be incomplete. Let µ

denote the probability to know whether the co-player provides an incentive or not, and set

µ̄ = 1− µ. We consider two types of opportunists, who act differently under uncertainty:

players of type OC defect only if they know that their co-player provides no incentive,

and players of type OD defect except if they know that an incentive will be delivered.

Hence in the absence of information, OC players play C and OD-players D. This yields

sixteen strategies, each given by a pair [i, j], with i ∈ MD := {AllC,OC,OD,AllD}
specifying how the player acts as a Donor and j ∈ MR := {N,P,R, I} how the player acts

as Recipient. If player I is Donor and player II Recipient, the pair (pI , pII) of their payoff

values is determined by their moves in the corresponding roles. Hence we can describe

these pairs by a 4× 4 matrix (a[ij], b[ij]), see Tab. 2.1.

∗ N P R I

AllC (−c, b) (−c, b) (β − c, b− γ) (β − c, b− γ)
OC (−µ̄c, µ̄b) (−c, b) (β − c, b− γ) (β − c, b− γ)
OD (0, 0) (−µc− µ̄β, µb− µ̄γ) (µ(β − c), µ(b− γ)) (−(1− 2µ)β − µc, µb− γ)
AllD (0, 0) (−β,−γ) (0, 0) (−β,−γ)

Table 2.1: Payoffs for the helping game with punishment.

This specifies the payoff values for the corresponding symmetrized game, which is

given by a 16 × 16-matrix. A player using [i, j] against a player using [k, l] is with equal

probability in the role of the Donor or the Recipient and hence obtains as payoff (a[i,l] +

b[k,j])/2. The state of the population x = (x[i,j]) is given by the frequencies of the 16

strategies.

There exist a wealth of possible evolutionary dynamics, describing how the frequencies

of the strategies change with time under the influence of social learning (Hofbauer and

Sigmund, 1998). We shall consider only one updating mechanism, but stress that the
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results hold in many other cases too. For the learning rule, we shall use the familiar Moran-

like ’death-birth’ process (Nowak, 2006a): we thus assume that occasionally, players can

update their strategy by copying the strategy of a ’model’, i.e., a player chosen at random

with a probability which is proportional to that player’s fitness. This fitness in turn is

assumed to be a convex combination (1 − s)B + sP , where B is a ’baseline fitness’ (the

same for all players), P is the payoff (which depends on the model’s strategy, and the state

of the population), and 0 ≤ s ≤ 1 measures the ’strenght of selection’, i.e. the importance

of the game for overall fitness. (We shall always assume s small enough to avoid negative

fitness values). This learning rule corresponds to a Markov process. The rate for switching

from strategy [k, l] to strategy [i, j] is (1− s)B + sP[i,j], independently of [k, l].

2.2.1 Large populations

The learning rule leads, in the limiting case of an infinitely large population, to the repli-

cator equation for the relative frequencies x[ij]: the growth rate of any strategy is given

by the difference between its payoff and the average payoff in the population (Hofbauer

and Sigmund, 1998). This yields an ordinary differential equation which can be analyzed

in a relatively straightforward way, despite being 15-dimensional.

Let us first note that I is weakly dominated by P, in the sense that I-players never do

better, and sometimes less well, than P-players. Hence, no state where all the strategies

are played can be stationary. The population always evolves towards a region where at

least one strategy is missing. Furthermore, AllC is weakly dominated by OC, and All

D by OD. This allows to reduce the dynamics to lower dimensional cases. Of particular

relevance are the states where only two strategies are present, and where these two strate-

gies prescribe the same move in one of the two stages of the game. The outcome of such

pairwise contests is mostly independent of the parameter values, with three exceptions:

(i) In a homogeneous OC-population, R dominates N if and only if µ >
γ

b
.

(ii) In a homogeneous OD-population, P dominates N if and only if µ >
γ

b+ γ
.

(iii) In a homogeneous OD-population, P dominates R if and only if µ > 1/2.

In each case, it is easy to understand why higher reputation will have the correspond-

ing effect. Owing to our assumption γ < b, all these thresholds for µ lie in the open

interval (0,1).



44 CHAPTER 2. INCENTIVES AND OPPORTUNISM

One can obtain a good representation of the dynamics by looking at the situations

where there are two alternatives for the first stage (namely AllD and OC, or AllD and

OD, or OC and OD), and the three alternatives N, P and R for the second stage. In

each such case, the state space of the population can be visualized by a prism. Here,

each of its ’square faces’ stands for the set of all mixed populations with only four

strategies present. For instance, if the population consists only of the four strategies

[OC,N], [OC,R], [OD,N, ] and [OD,R], then the state corresponds to a point in the

three dimensional simplex spanned by the corresponding four monomorphic populations.

But since the double ratios x[ij]x[kl]/x[il]x[kj] are invariant under the replicator dynamics

(see Hofbauer and Sigmund, 1998, pp. 122-125), the state cannot leave the correspond-

ing two-dimensional surface, which may be represented by a square. For several pairs

of strategies (such as [OC,P] and [AllC,P], or [AllD,N] and [OD,N]), all populations

which are mixtures of the corresponding two strategies are stationary. There is no selec-

tive force favouring one strategy over the other. We shall assume that in this case, small

random shocks will cause the state to evolve through neutral drift. This implies that

evolution then leads ultimately to [OC,P], and hence to a homogeneous population which

stably cooperates in the most efficient way. Indeed, it is easy to see that no other strategy

can invade a monomorphic [OC,P]-population through selection. The only flaw is that

[AllC,P] can enter through neutral drift. Nevertheless, [OC,P] is a Nash equilibrium.

But how can [OC,P] get off the ground? Let us first consider what happens if the

possibility to play R, i.e. to reward a cooperative move, is excluded. The asocial strategy

[AllD,N] is stable. It can at best be invaded through neutral drift by [OD,N]. If

µ > γ/(b + γ), this can in turn be invaded by [OD,P], which then leads to [OC,P].

If µ is smaller, however, that path is precluded and the population would remain in an

un-cooperative state. It is in this case that the R-alternative plays an essential role.

By neutral drift, [AllD,R] can invade [AllD,N]. More importantly, [OD,R] dominates

[OD,N], [AllD,R] and [AllD,N]. From [OD,R], the way to [OC,R] and then to [OC,P]

is easy.

The essential step of that evolution occurs in the transition from OD to OC, when

players start cooperating by default, i.e., in the absence of information (see the third

column in Fig. 2.1). If the R-alternative is not available, then for small values of µ, the

population can be trapped in [OD,N]. But if the R-alternative can be used, it can switch

from [OD,N] to [OD,R]. In a population where the first move is either OD or OR, and

the second move either N or R, there is a (four-membered) Rock-Paper-Scissors cycle,

one strategy is superseded by the next. There exists a unique stationary state where these
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Figure 2.1: Dynamics of a population consisting of OC and AllD (left column),
AllD and OD (middle column) resp. OC and AllD (right column). Black points
represent Nash-equilibria, white points indicate unstable fixed points. The arrows on
the edges indicate the direction of the dynamics if all other strategies are absent. The
orange grid is the manifold that separates initial values with different asymptotic be-
haviour. The blue curves represent the typical dynamics for a given initial population.
Parameter values: b = 4, c = 1, β = γ = 2 and µ = 30% (hence γ

2b < µ < γ
γ+b ).

four alternatives are used. We show in the appendix that for µ < γ/2b, this stationary

state cannot be invaded by any strategy using P. But due to the Rock-Paper-Scissors

dynamics, it is inherently unstable. The population will eventually use mostly strategy

[OC,R]. There, the strategy [OC,P] can invade and become fixed.

In the competition between [OD,N] and [OC,P], the latter is dominant if and only if

µ > (c+γ)/(c+γ+b) (a condition which is independent of β). If not, then the competition

is bistable, meaning that neither strategy can invade a homogeneous population adopting

the other strategy. An equal mixture of both strategies converges to the pro-social strategy

[OC,P] if and only if µ(β − 2c − 2b − γ) < β − 2c − γ. In the case γ = β, this simply

reduces to µ > c/(c+ b). We thus obtain a full classification of the replicator dynamics in

terms of the parameter µ. The main bifurcation values are γ
2b < γ

b+γ < γ
b and 1

2 . These

can be arranged in two ways, depending on whether b < 2γ or not. But the basic outcome

is the same in both case (see Fig. 2.1 and the appendix).

It is possible to modify this model by additionally taking into account the recombina-

tion of the traits affecting the first and the second stage of the game. Indeed, recombination

does not only occur for genetic transmission of strategies, but also for social learning. A

modification of an argument from Gaunersdorfer et al. (1991) allows to show that in this

case, the double ratios x[ij]x[kl]/x[il]x[kj] converge to 1, so that the traits for the first and

the second stage of the game become statistically independent of each other. Hence the
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previous analysis still holds. In Lehmann et al. (2007b) and Lehmann and Rousset (2009)

it is shown, in contrast, that recombination greatly affects the outcome in a lattice and in

a finite population model without reputational effects.

2.2.2 Small mutation rates

In the case of a finite population of size M , the learning process corresponds to a Markov

chain on a state space which consists of the frequencies of all the strategies (which sum

up to M). The absorbing states correspond to the homogeneous populations: in such a

homogeneous population, imitation cannot introduce any change. If we add to the learning

process a ’mutation rate’ (or more precisely, an exploration rate), by assuming that players

can also adopt a strategy by chance, rather than imitation, then the corresponding process

is recurrent (a chain of transitions can lead from every state to every other) and it admits

a unique stationary distribution. This stationary distribution describes the frequencies

of the states in the long run. It is in general laborious to compute, since the number of

possible states grows polynomially in M . However, in the limiting case of a very small

exploration rate (the so-called adiabatic case), we can assume that the population is mostly

in a homogeneous state, and we can compute the transition probabilities between these

states (Nowak, 2006a). This limiting case is based on the assumption that the fate of

mutant (i.e., whether it will be eliminated or fixed in the population) is decided before

the next mutation occurs. We can confirm the results from the replicator dynamics. For

simplicity, we confine ourselves to the non-dominated strategies OC, OD, resp. N, P and

R; similar results can be obtained by considering the full strategy space.

In the stationary distribution, the population is dominated by the strategy [OC,P], but

for smaller values of µ, it needs the presence of the R-alternative to emerge. This becomes

particularly clear if one looks at the transition probabilities (see appendix). Except for

large values of µ, only the strategy [OD,R] can invade the asocial [OD,N] with a fixation

probability which is larger than the neutral fixation probability 1/M .

If [OC,P] dominates [OD,N], or when it fares best in an equal mixture of both

strategies, then it needs not the help of R-players to become the most frequent strategy in

the long run (i.e. in the stationary distribution). But for smaller values of µ, rewards are

essential. In Fig. 2.2, it is shown that that the existence of rewarding strategies allows the

social strategy [OC,P] to supersede the asocial [OD,N] even in cases in which the players

have hardly any information about their co-players. The time until the system leaves

[OD,N] is greatly reduced if rewarding is available (see Fig. 2.3). In the appendix it is

shown that the state [OC,P] is usually reached from [OC,R], while the strategy most likely
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Figure 2.2: Strategy selection in finite and infinite populations, depending on the
information parameter µ. The left column shows the outcome of a simulation of the
replicator equation for 1,000 randomly and independently chosen initial populations.
If only punishment is available to sway opportunistic behaviour then cooperative out-
comes become more likely if µ exceeds roughly 1/3 (in which case [OC,P] becomes
fixed). As soon as rewards are also allowed, punishment enforced cooperation be-
comes already predominant for µ > γ/2b = 1/4. Additionally, for smaller values of µ
the population may tend to cycle between the strategies [OC,R], [OC,N], [OD,N]
and [OD,R], represented by the orange line in the lower left graph.
The right column shows the stationary distribution of strategies in a finite popula-
tion. Again, whitout rewards a considerably higher information level µ is necessary to
promote punishment-enforced cooperation (either [OC,P] or [OD,P]; note that the
both opportunists become indistinguishable in the limit case of complete information
as they only differ in the way they play against unknown co-players). In finite pop-
ulations, rewarding states only act as a catalyzer for punishing populations; even for
small µ, the outcomes [OC,R] resp. [OD,R] are never most abundant.
Parameter values: b = 4, c = 1, β = γ = 2. For finite populations we used a popula-
tion size M = 100 and selection strength s = 1/10.
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Figure 2.3: Average number of necessary mutants until a population of [OD,N]
players is successfully invaded. Adding the possibility of rewards decreases the exit
time considerably (for µ = 0% it takes 500 mutations with rewards and almost 500,000
mutations without). As the information level increases, this catalytic effect of rewards
disappears. Parameter values: Population size M = 100, selection strength s = 1/10;
b = 4, c = 1, β = γ = 2.

to invade the asocial [OD,N] is [OD,R]. These outcomes are robust, and depend little

on the parameter choices. Moreover, they are barely affected by the mutation structure.

If, instead of assuming that all mutations are equally likely, we only allow for mutations

in the behavior in one of the two stages (i.e., no recombination between the corresponding

traits), the result is very similar. Apparently, if it is impossible to mutate directly from

[OD,N] to [OC,P], then the detour via [OD,P] works almost as well.

Even for the limiting case µ = 0 (no reputation effects), the role of rewards is strongly

noticeable. Without rewards, the stationary probability of the asocial strategy [OD,N] is

close to 100 percent; with the possibility of rewards, it is considerably reduced.

2.3 Discussion

We have analyzed a two-person, two-stages game. It is well-known that it corresponds to

a simplified version of the Ultimatum game (Güth et al., 1982), in the punishment case,

or of the Trust game (Berg et al., 1995), in the reward case (De Silva and Sigmund, 2009;

Sigmund, 2010). Similar results also hold for the N-person public good game with reward

and punishment (e.g. Hauert et al., 2004). However, the many-person game offers a wealth

of variants having an interest of their own (as, for instance, when players decide to mete

out punishment only if they have a majority on their side; see Boyd et al., 2010). In this

paper, we have opted for the simplest set-up and considered pairwise interactions only.
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In classical economic thought, positive and negative incentives have often been treated

on equal footing, so to speak (Olson, 1965). In evolutionary game theory, punishing is

studied much more frequently than rewarding. The relevance of positive incentives is

sometimes queried, on the ground that helping behavior makes only sense if there is an

asymmetry in resource level between donor and recipient. If A has a high pile of wood,

and B has no fuel, A can give some wood away at little cost, and provide a large benefit

to B. This is the cooperative act. Where is the positive incentive? It would be absurd to

imagine that B rewards A by returning the fuel. But B can reward A by donating some

other resource, such as food, or fire, which A is lacking.

In experimental economics, punishing behavior has been studied considerably more

often than rewarding behavior (Yamagishi, 1986; Fehr and Gächter, 2002; Barclay, 2006;

Dreber et al., 2008). In the last few years, there has been a substantial amount of empirical

work on the interplay of the two forms of incentives (Andreoni et al., 2003; Rockenbach

and Milinski, 2006; Sefton et al., 2007). The results, with two exceptions to be discussed

presently, confirm our theoretical conclusion: punishment is the more lasting factor, but

the combination of reward and punishment works best. This outcome is somewhat sur-

prising, because in most experiments, players are anonymous and know that they cannot

build up a reputation. One significant exception is the investigation, in Fehr and Fis-

chbacher (2003), of the Ultimatum game, which has essentially the same structure as our

two-stage game with punishment. In that case, the treatment without information on the

co-player’s past behavior yields a noticeably lower level of cooperation than the treatment

with information. Nevertheless, even in the no-information treatment, both the level of

cooperation (in the form of fair sharing) and of punishment (in the form of rejection of

small offers) are remarkably high.

A serious criticism of the model presented in this paper is thus that it does not seem to

account for the pro-social behavior shown by players who know that reputation-building is

impossible. We believe that this effect is due to a mal-adaptation. Our evolutionary past

has not prepared us to expect anonymity. In hunter-gatherer societies and in rural life, it is

not often that one can really be sure to be unobserved. Even in modern life, the long phase

of childhood is usually spent under the watchful eyes of parents, educators or age-peers.

Ingenious experiments uncover our tendency to over-react to the slightest cues indicating

that somebody may be watching (for instance, the mere picture of an eye, see Haley and

Fessler (2005) and Bateson et al. (2006), or three dots representing eyes and mouth, see

Rigdon et al. (2009)). The idea of personal deities scrutinizing our behavior, which seems

to be almost universal, is probably a projection of this deep-seated conviction (Johnson
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and Bering, 2006). The concept of conscience was famously described, by Mencken, as

’the inner voice that warns us somebody may be looking’ (see Levin, 2009).

In several experimental papers, however, the role of reputation is very explicit. In

Rand et al. (2009), players are engaged in fifty rounds of the public good game with

incentives, always with the same three partners. Hence they know the past actions of

their co-players. In this case, we can be sure that µ > γ/b. Thus in a homogeneous

OC-population, R should dominate N. Moreover, as the leverage for both punishment

and reward is 1:3 in this experiment (as in many others), an [OC,R]-population obtains

a payoff b− c+ β− γ which is substantially larger than that of an [OC,P]-population. In

the experiment, rewarding performs indeed much better than punishing, and Rand et al.

conclude that ’Positive reciprocity should play a larger role than negative reciprocity in

maintaining public cooperation in repeated situations.’

Nevertheless, according to our model, P-players ought to invade. This seems counter-

intuitive. Punishers do not have to pay for an incentive (since everyone cooperates), but

they will nevertheless be rewarded, since they cooperate in the public goods stage. Thus

[OC,P] should take over, thereby lowering the average payoff. By contrast, in the repeated

game considered by Rand et al., it is clear that cooperative players who have not been

rewarded by their co-player in the previous round will feel cheated, and stop rewarding

that co-player. They will not be impressed by the fact that the co-player is still providing

an incentive by punishing defectors instead. In other words, in this experiment rewards

are not only seen as incentives, but as contributions in their own right, in a repeated

prisoner’s dilemma game. Players will reciprocate not only for the public goods behavior,

but for the ’mutual reward game’ too. In fact, if there had been two players only in the

experiment by Rand et al, it would reduce to a repeated prisoner’s dilemma game with

100 rounds.

This aspect is not covered in our model, where the incentives are only triggered by the

behavior in the public goods stage, but not by previous incentives. In particular, rewarding

behavior cannot be rewarded, and fines do not elicit counter-punishment. This facilitates

the analysis of incentives as instruments for promoting cooperation, but it obscures the

fact that in real life, incentives have to be viewed as economic exchanges in their own

right.

A similar experiment as in Rand et al. was studied by Milinski et al. (2002), where

essentially the public goods rounds alternate with an indirect reciprocity game (see also

Panchanathan and Boyd, 2004). Helping, in such an indirect reciprocity game, is a form

of reward. In Milinski’s experiment, punishment was not allowed, but in Rockenbach and
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Figure 2.4: Stationary distribution in the case of ”cheap” incentives. If γ < β, a
homogeneous population of rewarding cooperators would obtain the maximum payoff.
While cooperation can easily be established, players clearly prefer to use the stick
instead of the carrot. Thus, there is only a marginal difference to the case with
γ = β (Fig. 2.2, right column). Parameter values: Population size M = 100, selection
strength s = 1/10; b = 4, c = 1, β = 2, γ = 3/4.

Milinski (2006), both types of incentives could be used. Groups were rearranged between

rounds, as players could decide whether to leave or to stay. Players knew each other’s past

behavior in the previous public goods rounds and the indirect reciprocity rounds (but not

their punishing behavior). It was thus possible to acquire a reputation as a rewarder,

but not as a punisher. This treatment usually led to a very cooperative outcome, with

punishment focused on the worst cheaters, and a significant interaction between reward

and punishment.

In our numerical examples, we have usually assumed γ = β, but stress that this does

not affect the basic outcome (see Fig. 2.4 for the case γ < β). In most experiments,

the leverage of the incentive is assumed to be stronger. Clearly, this encourages the

Recipients to use incentives (Carpenter, 2007; Egas and Riedl, 2008; Vyrastekova and van

Soest, 2008). But it has been shown (Carpenter, 2007; Sefton et al., 2007) that many

are willing to punish exploiters even if it reduces their own account by as much as that

of the punished player. In the Trust game, it is also usually assumed that the second

stage is a zero-sum game. In most of the (relatively few) experiments on rewarding, the

leverage is 1:1 (Walker and Halloran, 2004; Sefton et al., 2007); in Rockenbach and Milinski

(2006) and Rand et al. (2009) it is 1:3. In Vyrastekova and van Soest (2008), it is shown

that increasing this leverage makes rewarding more efficient. In our view, it is natural

to assume a high benefit-to-cost ratio in the first stage (the occasion for a public good

game is precisely the situation when mutual help is needed), but it is less essential that

a high leverage also applies in the second stage. Punishment, for instance, can be very
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costly it the other player retaliates, as seems quite natural to expect (at least in pairwise

interactions; in N-person games, sanctions can be inexpensive if the majority punishes a

single cheater).

For the sake of simplicity, we have not considered the probability of errors in imple-

mentation. But it can be checked in a straightforward way that the results are essentially

unchanged if we assume that with a small probability ϵ > 0, an intended donation fails

(either due to a mistake of the player, or to unfavorable conditions). The other type

of errors in implementation (namely helping without wanting it) seems considerably less

plausible. We note that in a homogeneous [OC,P]-population, usually there is no need

to punish co-players, and hence no way of building up a reputation as a punisher. But if

errors in implementation occur, there will be opportunities for punishers to reveal their

true colours. In Sigmund (2010), it is shown that if there are sufficiently many rounds of

the game, occasional errors will provide enough opportunities for building up a reputation.
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A Classification of the dynamics in large populations

Let us first analyze a reduced system where all donors are opportunists and where recip-

ients either reward cooperators, punish non-cooperators or do not provide any incentive.

Hence we consider the following extract of the payoff matrix:

∗ N P R

OC (−µ̄c, µ̄b) (−c, b) (β − c, b− γ)
OD (0, 0) (−µc− µ̄β, µb− µ̄γ) (µ(β − c), µ(b− γ))

Table 2.2: Payoff matrix for the strategies OC, OD, respectively N, P and R.

From this payoff matrix we may draw the following conclusions:

(i) In a homogeneous OC population, P always dominates N and R. Additionally, an

R player obtains a higher payoff than an N player if and only if b− γ > µ̄b, i.e. iff

µ > γ/b (2.1)

(ii) Similarly, in a homogeneous OD population, N is always dominated by R. N is also

dominated by P iff µb− µ̄γ > 0, i.e. iff

µ > γ/(b+ γ) (2.2)

P also dominates R iff µb− µ̄γ > µ(b− γ), i.e. iff

µ > 1/2 (2.3)

(iii) If incentives are used (P or R), OC dominates OD; in the absence of incentives (N),

this relation is reversed.

In particular, it follows that N is strictly dominated by P if µ > γ/(b + γ). Iterated

elimination of strictly dominated strategies then leads to the conclusion that the only

possible outcome of the dynamics is [OC,P].

However, if µ < γ/(b + γ) we find a more interesting behaviour. There is a uniqe

fixed point M in the interior of the square spanned by the strategies [OC,N], [OC,R],

[OD,N] and [OD,R]. This fixed point is surrounded by spiralling orbits. The asymptotic
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behaviour of these orbits depends on the initial value of

ZNR :=
x[OC,N] · x[OD,R]

x[OC,R] · x[OD,N]
.

If ZNR(0) < 1 all orbits converge to the boundary of the square, whereas ZNR(0) > 1

implies that M is a global attractor. Finally, if ZNR(0) = 1, then M is surrounded by

periodic orbits (see Hofbauer and Sigmund, 1998). Independently of the initial condition,

a population in this fixed point M yield the payoff

µ
(
−b+ c− c2/β + b2/γ

)
,

whereas both absent strategies, [OC,P] and [OD,P] would obtain the payoff

−γ + µ
(
b+ c− c2/β + b2/γ

)
.

Hence, a population in M can be invaded by punishers if and only if

µ > γ/(2b). (2.4)

If we also allow for the strategies AllC and AllD we do not see any additional bifurcations

as the payoffs of these strategies do not depend on µ. Hence, the dynamics of the game

is fully described by the thresholds (2.1) - (2.4), which can be arranged in two possible

ways:

(i) If γ < b/2, we have γ
2b < γ

γ+b < γ
b < 1/2

(ii) Otherwise we obtain γ
2b < γ

γ+b < 1/2 < γ
b

However, both cases induce the same long-term dynamics (see also Fig. 2.5, which

depicts the borderline case γ = b/2): For any value of µ, a population consisting of OC

and AllD evolves either towards punishment enforced cooperation, [OC,P], or towards

a purely selfish regime, [AllD,N] resp. [AllD,R] (Fig. 2.5, first column). As AllD is

always weakly dominated by its opportunistic counterpart, OD might invade (Fig. 2.5,

second column). In this case the eventual outcome depends on the information level:

If µ > γ/(b + γ), [OC,P] mutants succeed in an OD population and lead to stable

cooperation, independently of the additional inequalities µ > 1/2 or µ > γ/b (Fig. 2.5,

last two graphs in the last column). For µ < γ/(b + γ), however, only the possibility

of rewards allows an OC minority to invade a homogeneous OD population, which may
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lead to oscillations between reward-driven cooperation and defection. If µ > γ/(2b) these

cycles are unstable and open the way for [OC,P] (Fig. 2.5, upper two graphs in the last

column).

µ < γ
2b

= 1/4

γ
2b

< µ < γ
γ+b

= 1/3

γ
γ+b

< µ < γ
b
= 1/2

µ > 1/2

Figure 2.5: Replicator dynamics for b = 4, c = 1, β = γ = 2 and µ = 15%, 30%, 45%
resp. µ = 60%. The arrows on the edges indicate the direction of the dynamics if all other
strategies are absent. Black points represent Nash-equilibria, white points indicate unstable
fixed points. The orange grid is the manifold that separates initial values with different
asymptotic behaviour (i.e., a separatrix). The blue curves represent the typical dynamics
for a given initial population.
Note that this choice of parameters implies γ/b = 1/2; therefore there occur two bifurcations
between the third and the fourth row (in the last row R dominates N in a homogeneous
OC population and P dominates R in a homogeneous OD population). The dynamics in
the interior of the prism, however, is the same no matter whether γ/b < 1/2 or γ/b > 1/2.
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B Numerical data for the case of small mutation rates

B.1 Transition probabilities

The transition probabilities for the adiabatic case are calculated according to Nowak

(2006a), see also Sigmund (2010). The following tables (aij) show the fixation probabilities

of a mutant i, invading a resident strategy j for different values of µ. For low information

rates, [OD,R] is the only strategy which can invade the asocial [OD,N] with a higher

probability than 1/M (the neutral fixation probability).

Parameter values: M = 100, s = 1/10, b = 4, c = 1, β = γ = 2.

µ = 10% [OC,N] [OC,R] [OC,P] [OD,N] [OD,R] [OD,P]

[OC,N] 0.010 0.162 0.001 0.000 0.068 0.204

[OC,R] 0.000 0.010 0.000 0.000 0.088 0.229

[OC,P] 0.041 0.202 0.010 0.000 0.014 0.085

[OD,N] 0.094 0.074 0.003 0.010 0.003 0.138

[OD,R] 0.000 0.000 0.000 0.023 0.010 0.158

[OD,P] 0.004 0.001 0.000 0.000 0.000 0.010

µ = 30% [OC,N] [OC,R] [OC,P] [OD,N] [OD,R] [OD,P]

[OC,N] 0.010 0.082 0.000 0.000 0.015 0.001

[OC,R] 0.000 0.010 0.000 0.005 0.069 0.078

[OC,P] 0.120 0.202 0.010 0.005 0.036 0.066

[OD,N] 0.073 0.018 0.000 0.010 0.002 0.022

[OD,R] 0.006 0.000 0.000 0.060 0.010 0.078

[OD,P] 0.177 0.049 0.000 0.004 0.000 0.010

µ = 50% [OC,N] [OC,R] [OC,P] [OD,N] [OD,R] [OD,P]

[OC,N] 0.010 0.011 0.000 0.000 0.000 0.000

[OC,R] 0.009 0.010 0.000 0.048 0.049 0.001

[OC,P] 0.201 0.202 0.010 0.071 0.072 0.047

[OD,N] 0.052 0.001 0.000 0.010 0.000 0.000

[OD,R] 0.051 0.000 0.000 0.100 0.010 0.009

[OD,P] 0.246 0.137 0.001 0.102 0.011 0.010
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B.2 Typcial transitions between states

For different information levels, the following table displays the distribution of strategies

which succeed in invading a homogeneous [OD,N] population. For small information levels

especially, [OD,R] is best at overcoming this asocial state. The table shows the result of

a simulation of the stochastic process with 107 mutations, population size M = 100,

selection strength s = 1/10, b = 4, c = 1, β = γ = 2.

[OC,N] [OC,R] [OC,P] [OD,N] [OD,R] [OD,P]

µ = 0% 0.000 0.001 0.000 − 0.999 0.000

µ = 10% 0.000 0.003 0.001 − 0.996 0.000

µ = 20% 0.000 0.017 0.011 − 0.970 0.002

µ = 30% 0.000 0.068 0.040 − 0.858 0.034

µ = 40% 0.000 0.191 0.191 − 0.381 0.238

The next table displays the distribution of strategies which immediately preceded a ho-

mogeneous [OC;P] populations. If there is little information about co-players, the state

of punishing cooperators is mostly reached via rewards (Simulation with 107 mutations,

M = 100, s = 1/10, b = 4, c = 1, β = γ = 2).

[OC,N] [OC,R] [OC,P] [OD,N] [OD,R] [OD,P]

µ = 0% 0.228 0.644 − 0.000 0.128 0.000

µ = 10% 0.394 0.457 − 0.002 0.144 0.004

µ = 20% 0.234 0.479 − 0.014 0.212 0.062

µ = 30% 0.098 0.419 − 0.018 0.211 0.254

µ = 40% 0.014 0.169 − 0.008 0.205 0.604
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Chapter 3

Local replicator dynamics: A

simple link between deterministic

and stochastic models of

evolutionary game theory

Abstract

Classical replicator dynamics assumes that individuals play their games and adopt new

strategies on a global level: Each player interacts with a representative sample of the pop-

ulation and if a strategy yields a payoff above the average, then it is expected to spread.

In this article we connect evolutionary models for infinite and finite populations: While

the population itself is infinite, interactions and reproduction occurs in random groups of

size N . Surprisingly, the resulting dynamics simplifies to the traditional replicator sys-

tem with a slightly modified payoff matrix. The qualitative results, however, mirror the

findings for finite populations, in which strategies are selected according to a probabilistic

Moran process. In particular we derive a one-third law that holds for any population size.

In this way, we show that the deterministic replicator equation in an infinite population

can be used to study the Moran process in a finite population and vice versa. We apply

the results to three examples to shed light on the evolution of cooperation in the iterated

prisoner’s dilemma, on risk aversion in coordination games and on the maintenance of

dominated strategies.

59
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3.1 Introduction

Evolutionary game theory is the appropriate mathematical framework whenever the fitness

of an individual does not only depend on its own phenotype but also on the composition of

the whole population (Maynard Smith, 1982; Nowak and Sigmund, 2004). Such biological

interdependencies are wide-spread. Game theoretic models help us to understand molec-

ular biological processes (Pfeiffer and Schuster, 2005), animal behaviour (Dugatkin and

Reeve, 1998) or plant growth (Falster and Westoby, 2003). Even the evolution of abstract

cultural entities, such as languages (Niyogi, 2006) or norms (Gintis et al., 2005) can be

captured with equations. In this way, mathematical arguments reveal the logic of indirect

speech (Pinker et al., 2008) as well as the origin of moral systems (Uchida and Sigmund,

2010).

The classical approach to evolutionary games is replicator dynamics (Taylor and Jonker,

1978; Hofbauer and Sigmund, 1998): When a certain strategy leads to a fitness above the

average, then this behaviour is expected to spread. More formally, suppose the individu-

als of a population can choose among n strategies. A player with strategy i, interacting

with a j-player, obtains a payoff aij . The relative frequency of i-individuals within the

population is denoted by xi. If we collect these frequencies to a vector x = (x1, . . . , xn)
T

and the payoffs to a matrix A = (aij), the expected fitness of strategy i can be written as

πi(x) := (Ax)i = ai1x1+ . . .+ainxn. Over the whole population, this results in an average

payoff of π̄(x) := x · Ax. According to the replicator equation, the fraction of i-players

grows whenever πi(x) exceeds π̄(x):

ẋi = xi · [(Ax)i − x ·Ax] (3.1)

The dot above xi on the left hand’s side denotes the time derivative, dxi/dt.

There are several reasons for the prominent role of replicator dynamics: Firstly, equa-

tion (3.1) is relatively simple and mathematically well understood (Hofbauer and Sigmund,

2003). It is equivalent to the famous Lotka-Volterra model in population ecology (Hof-

bauer, 1981). Additionally, there are beautiful connections between replicator dynamics

and the concepts of classical game theory (Fudenberg and Tirole, 1991; Weibull, 1995).

For example, if strategy i is dominated, meaning that there is another strategy which is al-

ways better, then replicator dynamics will lead to the extinction of i. Furthermore, strict

Nash equilibria, i.e. strategies that are optimal against themselves, are asymptotically

stable rest points of equation (3.1).
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The conceptual beauty of replicator dynamics has its price. To be valid, several con-

ditions have to be met: (i) The population is well mixed, meaning that any two players

interact with the same probability. (ii) Before reproduction, individuals play against a

representative sample of the population. (iii) Players may choose among a finite set of

strategies, and (iv) the population needs to be infinite.

The game-theoretical toolbox, however, is evolving too. In the last two decades there

have been several attempts to relax the above assumptions. Instead of considering well

mixed populations, various models explore games in which players only interact with

their neighbors on a lattice (Nowak and May, 1992; Durrett and Levin, 1994; Hauert and

Döbeli, 2004; Helbing and Yu, 2009) or on a random graph (Abramson and Kuperman,

2001; Lieberman et al., 2005; Ohtsuki et al., 2006; Lehmann et al., 2007a; Szabó and

Fáth, 2007; Santos et al., 2008). Additionally, some authors investigated the effect of a

non-representative sample of interaction partners (Sánchez and Cuesta, 2005; Roca et al.,

2006; Traulsen et al., 2007; Wölfing and Traulsen, 2009). The introduction of continuous

strategy spaces has led to adaptive dynamics theory (Hofbauer and Sigmund, 1994; Geritz

et al., 1998; Dieckmann et al., 2006).

To study the effect of finite populations, Nowak et al. (2004) consider a group of

N individuals who may choose among two strategies, R and M . Evolution takes place

according to a Moran process: In each time step, one randomly chosen individual dies. Its

place is filled with the copy of another member of the population, whereby players with a

high payoff have a better chance to be copied. The resulting dynamics is a stochastic birth-

death process. Evolutionary success is measured with fixation probabilities. For example,

in a state with R-types only, one may calculate the likelihood that one M -mutant can

invade and take over the whole population. If this probability ρM→R exceeds 1/N , then

selection favours M replacing R.

There are interesting connections between replicator dynamics and the Moran-process.

For example, in the limit of large populations, the diffusion approximation of the Moran-

process converges to a variant of the replicator equation (Traulsen et al., 2005). A more

subtle connection is called the one-third law (Taylor et al., 2004; Ohtsuki et al., 2007a;

Bomze and Pawlowitsch, 2008): Consider a game with payoff matrix

R M

R a b

M c d

(3.2)
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For a > c and d > b, replicator dynamics predicts that both pure strategies, R and

M , are evolutionarily stable. Additionally, there is an interior fixed point at x∗ = (a −
c)/(a − b − c + d), whereby x denotes the frequency of M -players. For large population

sizes N , it can be shown that selection favours M replacing R if this fixed point is below

one third, i.e.

ρM→R > 1/N ⇔ x∗ < 1/3. (3.3)

A similar result holds for risk dominance (Harsanyi and Selten, 1988): Strategy M has

the bigger basin of attraction if M has a higher chance to replace R than vice versa:

ρM→R > ρR→M ⇔ x∗ < 1/2. (3.4)

Even if replicator dynamics and the Moran process are closely related for large pop-

ulations, they can lead to very different conclusions if the population size N is small.

Dominated strategies may spread in finite populations (Taylor et al., 2004) and regimes

that are stable according to replicator dynamics may be invaded under the Moran process

and vice versa (Nowak et al., 2004). Therefore, several recent studies have compared the

dynamics in finite respectively infinite populations separately, e.g. Imhof et al. (2005) or

Hilbe and Sigmund (2010).

In this paper, we aim to connect both approaches: While the population itself is

infinite, individuals interact in randomly formed groups of size N . In each group, one

member may adopt the strategy of a co-player. Strategies that yield a high payoff are

more likely to be adopted. After reproduction, groups are formed anew. This scenario

was used by Nakamaru et al. (1997, 1998), Nakamaru and Iwasa (2006) and Rand et al.

(2010) to approximate games on a lattice, in which each player interacts with its N − 1

neighbors. Here we show that the resulting dynamics can be described by a modified

replicator equation. Instead of payoff matrix A, the modified matrix ÃN = A−(A+AT )/N

governs the evolutionary outcome. We refer to this modified system as the local replicator

dynamics. Despite its deterministic nature, the local replicator dynamics strongly mirrors

the findings for finite populations. We will show that there is a one-to-one map from

the fixation probabilities according to the Moran process to the fixed points of the local

replicator equation. In particular the one-third rule holds for any population sizeN . Thus,

a simple transformation of the payoff matrix allows us to use classical replicator dynamics

to analyze games in finite populations.
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The remainder of this article is organized as follows: In Section 3.2 we derive the

local replicator equation and in Section 3.3 we discuss its properties. In Section 3.4, we

present three examples for the resulting dynamics: First, we show how the evolution of

cooperation in the iterated prisoner’s dilemma is influenced by the size of the group. Then

we provide a simple model for the emergence of risk aversion in a coordination game. In

the last example, we explain how dominated strategies can succeed in finite interaction

neighborhoods. In Section 3.5, we extend our model: Instead of considering a fixed N ,

we assume that the size of a given group is a random variable. Still, the dynamics can be

described with the local replicator equation by simply replacing N with a proper mean of

all possible group sizes. In Section 3.6, finally, we give a summary and discussion of our

results.

3.2 Derivation of the local replicator dynamics

We consider an infinite population whose individuals are randomly assigned to groups of

equal size. Within their groups, players engage in pairwise interactions that determine

the payoff of each individual. More specifically, let k be the number of possible strategies

and A = (aij) the payoff matrix. For a given group of size N , denote by ni the num-

ber of players with strategy i and by n⃗ = (n1, ..., nk) the vector of those numbers, with

|n⃗| := n1 + . . . + nk = N . If individuals interact with every other group member and

self-interactions are excluded, an individual with strategy i yields the average payoff

πi(n⃗) =
1

N − 1
[n1ai1 + . . .+ (ni − 1)aii + . . .+ nkaik] . (3.5)

After these interactions, one group member is chosen at random to compare its payoff

with another randomly chosen group member. We follow the update rule in Traulsen

et al. (2005, 2006a) and assume that an i-player adopts the role model’s strategy j with

probability

pij =
1

2
+

s

2

πj(n⃗)− πi(n⃗)

∆πmax
, (3.6)

where ∆πmax is the maximum possible payoff difference and 0 < s ≤ 1 measures

the strength of selection. For weak selection (s ≈ 0), a coin toss essentially determines

whether the role model is imitated; if the selection parameter approaches 1, this decision
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is increasingly biased towards the strategy with higher payoff. Since players are selected

randomly for the imitation process, this leads to an expected change in the number of

i-players of

∆ni =

k∑
j=1

ni

N

nj

N
(pji − pij) =

s

∆πmax

ni

N
[πi(n⃗)− π̄(n⃗)]. (3.7)

The term π̄(n⃗) denotes the average payoff of all players in the group, π̄(n⃗) =
∑k

j=1 njπj(n⃗)/N .

By using nj/N instead of nj/(N−1), we have implicitly assumed that players may imitate

themselves (as for example in Ohtsuki et al., 2006; Ohtsuki and Nowak, 2006). However,

if an individual chooses itself as role model, then nothing will change. Overall, this sim-

plification only changes the velocity of evolution but not its direction.

According to Eq. (3.7), the expected change of strategies within a certain group can be

described through a replicator equation with local frequencies ni/N . In order to calculate

the aggregate outcome, we have to sum up over all possible groups with |n⃗| = N . If

xi denotes the global frequency of strategy i and if groups are formed according to a

multinomial distribution, this results in the following equation for the expected change of

global strategy abundances,

ẋi =
∑

|n⃗|=N

N !

n1! ... nk!
xn1
1 · ... · xnk

n · ni

N

[
πi(n⃗)− π̄(n⃗)

]
, (3.8)

where the constant factor s/∆πmax has been ommited since it only affects the timescale of

evolution. We call Eq. (3.8) the local replicator dynamics of the system. In general, the

expression on the right hand’s side is laborious to compute: The polynomial has degree N

and the number of summands increases exponentially in the number of strategies k. As it

turns out, this expression can be simplified considerably:

Proposition 1 (A simple representation for the local replicator dynamics)

The local replicator dynamics (3.8) can be rewritten as

ẋi = xi ·
[
(Ãx)i − x · Ãx

]
, (3.9)

with Ã := A− A+AT

N . As usual, AT denotes the transposed payoff matrix.

Proof: See appendix.
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This representation of the local replicator equation can be interpreted by slightly re-

arranging the terms to

ẋi = xi ·
[
(Ax)i −

(N − 2) · xTAx+ (Ax)i + (ATx)i
N

]
, (3.10)

meaning that a player with strategy i still gets an expected payoff of (Ax)i. However,

being an i-player in a finite group of size N leads to a bias in the average payoff of the

group, on the one hand due to the own payoff (Ax)i and on the other hand due to the

expected influence on the others’ payoffs (ATx)i.

Consequently, there are two alternative mechanisms that promote the evolution of a

certain strategy under the local replicator dynamics: Strategy i may spread either because

it leads to a high own payoff (Ax)i, or because it leads the co-players to have a low payoff,

i.e. it decreases (ATx)i. In particular, it may pay off to be spiteful and to diminish the

fitness of other group members (see also Nowak et al., 2004). As group size increases, the

impact of spiteful behaviour disappears, since the own influence on the co-players’ payoffs

becomes negligible. In the limit of infinite group sizes, spite becomes completely irrelevant.

In this section we have derived the local replicator dynamics for an imitation process,

where individuals with higher payoff are imitated more often than others. One could also

investigate a model in which sucessful players produce more offspring; such an attempt is

shown in the appendix, leading to the same dynamics. Irrespective of its derivation, the

local replicator equation has interesting properties: It connects the results of the Moran

process in finite populations with the classical replicator dynamics in infinite populations.

This is shown in the next section.

3.3 Properties of the local replicator dynamics

Representation (3.9) makes it straightforward to derive the properties of the local repli-

cator dynamics: We only have to plug in the values of ÃN = A− (A+AT )/N , to transfer

the well-known results of the classical replicator equation (see, for example, in Hofbauer

and Sigmund, 1998). This is done in the following two propositions:
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Proposition 2 (Analytical properties of the local replicator equation)

(i) The simplex Sk =
{
(x1, ..., xk) : x1 + ...+ xk = 1

}
and all its subfaces are invariant

under the local replicator dynamics.

(ii) Quotient rule:
˙( xi
xj

)
= xi

xj
·
[
(N − 1)

(Ax)i−(Ax)j
N +

(AT x)j−(AT x)i
N

]
(iii) In the special case of N = 2, the values of the diagonal entries of A do not influence

the dynamics.

(iv) For zero sum games (i.e. if A = −AT ) or in the case of infinite group sizes (N →
∞), the local replicator equation coincides with the classical version.

In applications, it is often important to know which states can be stably established.

To this end, one considers a homogeneous population with strategy R, that is invaded by

a rare mutant with an alternative strategy M . If the evolutionary dynamics leads to the

extinction of any such mutant, then R is called evolutionarily stable or an ESS.

Proposition 3 (Evolutionary Stability)

Consider a game with 2 strategies and payoff matrix

R M

R a b

M c d

(3.11)

Let x denote the fraction of M -players in the population. Then the local replicator dynam-

ics can be written as

ẋ = x(1− x) ·
(
(N − 1)c− b− (N − 2)a

N
+

(N − 2)(a− b− c+ d)

N
x

)
. (3.12)

In particular, the resident strategy R is (strictly) evolutionarily stable, if

(N − 2)a+ b > (N − 1)c. (3.13)

Again, this proposition is simply an adapted version of the analogous result for clas-

sical replicator dynamics. Obviously, the above ESS-condition reduces to the usual Nash

condition a > c for infinite groups. For finite populations, however, several definitions have

been suggested to capture evolutionary stability, see Wild and Taylor (2004). The condi-

tion (N −2)a+ b > (N −1)c is included, for example, in the definitions of Maynard Smith

(1988) and Schaffer (1988). Nowak et al. (2004) suggest an additional ESS-criterion for

finite populations. Beside the above condition that rare mutants have a lower fitness than
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the resident type, they require the mutant strategy to have a fixation probability lower

than 1/N . When selection is weak (i.e. the impact of the payoff in the game has a small

effect on the reproductive success of a strategy), they find that this fixation probability is

approximately given by

ρM→R =
1

N
+

1

6N
(αN − β)s, (3.14)

with α = d + 2c − b − 2a and β = 2d + b + c − 4a. Again, s measures the strength of

selection. Approximation (3.14) is valid if Ns ≪ 1 and will be called the weak selection

fixation probability. The reverse probability ρR→M that a single R-mutant reaches fixation

in an otherwise homogeneous population of M -players can be derived with a symmetry

argument. Our next aim is to show that there is a strong connection between these fixation

probabilities and the local replicator dynamics.

Proposition 4 (One-third law)

Let A =

(
a b

c d

)
and ÃN = A− A+AT

N =

(
ã b̃

c̃ d̃

)
be payoff matrices for a game with

two strategies, R and M .

(i) The weak selection fixation probabilities of the Moran process with payoff matrix A

can be infered from the replicator dynamics of the game with matrix ÃN :

ρM→R = 1
N + D̃

2 (x̃
∗ − 1

3)s, ρR→M = 1
N + D̃

2 (
2
3 − x̃∗)s. (3.15)

Here, x̃∗ denotes the fixed point of the replicator equation, x̃∗ = (c̃− ã)/(c̃− ã− d̃+ b̃),

and D̃ denotes the denominator of x̃∗. In particular, for a bistable competition (ã > c̃

and d̃ > b̃), we recover the one-third law for any group size N :

ρM→R > 1/N ⇔ x̃∗ < 1/3

ρM→R > ρR→M ⇔ x̃∗ < 1/2
(3.16)

(ii) Conversely, if the replicator equation for the game with matrix ÃN has a fixed point

x̃∗ ∈ (0, 1), then it can be calculated using the weak selection fixation probabilities of

the Moran process for game A:

x̃∗ =
1

3

(
1 +

ρM→R − 1/N

ρM→R + ρR→M − 2/N

)
(3.17)

In this case, the dynamics is bistable if ρM→R + ρR→M < 2/N and it leads to coex-
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istence if ρM→R+ρR→M > 2/N . If there is no interior fixed point, the strategy with

larger fixation probability dominates the other.

Proof. (i) The formula for ρM→R is verified by a straight calculation: Inserting

ã =
N − 2

N
a, b̃ =

N − 1

N
b− 1

N
c, c̃ =

N − 1

N
c− 1

N
b and d̃ =

N − 2

N
d

into the right hand’s side leads to the same result as Eq. (3.14). The expression

for ρR→M follows from a symmetry argument, as the equilibrium frequency of R is

1− x̃∗ instead of x̃∗.

(ii) Adding up the two equations in (3.15) leads to the relation

D̃

2
s = 3 (ρM→R + ρR→M − 2/N) . (3.18)

Inserting this expression into the formula for ρM→R in (3.15) gives Eq. (3.17). Addi-

tionally, it follows that D̃ = c̃− ã− d̃+ b̃ has the same sign as ρM→R+ρR→M −2/N .

Since the fixed point x̃∗ ∈ (0, 1) exists if and only if (ã− c̃)(d̃− b̃) > 0, the inequality

ρM→R + ρR→M > 2/N is equivalent to c̃ > ã and b̃ > d̃, i.e. to coexistence under

replicator dynamics.

Simply speaking, and under the assumption of weak selection, this means playing a

game A in a finite population of size N is the same as playing the game ÃN in an infinite

population. As soon as one knows the evolutionary outcome in one regime, one can deduce

the results of the other. Thus one may use replicator dynamics to study the behaviour of

finite populations (by simply using the transformation A 7→ ÃN , see Fig. 3.1). Conversely,

the replicator dynamics of game ÃN can be examined by studying the finite population

dynamics of game A. As a consequence, we will see in examples that the local replicator

dynamics, despite having the form of the classical replicator system, mirrors the findings

in finite populations. In particular, dominated strategies can prevail.
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Figure 3.1: Connection between replicator dynamics and the Moran process. To
study the game A in a finite population, one may analyze the replicator dynamics of
game ÃN , which we have called the local replicator dynamics of A.

3.4 Examples for the local replicator dynamics

3.4.1 The iterated prisoner’s dilemma

In this section we apply our previous results to the iterated prisoner’s dilemma (Axelrod,

1984). Suppose that two players may independently decide whether to transfer a benefit

b at own costs c to the co-player or not (and b > c). Assume that this game is repeated

with a constant probability ω. We distinguish three strategies: All D always refuses

to help, whereas All C always cooperates. The strategy TFT (Tit for Tat) starts with

cooperation and imitates the co-player’s previous move in all subsequent rounds. Thus we

get the following average payoffs per round (for a detailed derivation see Sigmund, 2010):

A All C All D TFT

All C b− c −c b− c

All D b 0 b(1− ω)

TFT b− c −c(1− ω) b− c

Obviously, the selfish strategy All D is always evolutionarily stable. Because 0 < b − c,

all players in a population of defectors would be better off if everybody cooperated. All

C is unstable; but if the game lasts sufficiently long (ω > c/b), then TFT can resist the
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All D All C

TFT
N=2

All D All C

TFTN=4

All D All C

TFT
N=32

Figure 3.2: The iterated prisoner’s dilemma for different group sizes. If N = 2,
then any player will adopt the All D strategy in the long run: As both other
strategies perform worse than All D in the direct competition, they will usually
adopt the co-player’s strategy if this co-player is a defector. Increasing group size N
diminishes this dilemma. As a consequence, cooperation in the iterated prisoner’s
dilemma is most likely to evolve in large populations (Parameter values: b = 3, c = 1
and ω = 2/3).

invasion of All D. However, to study the effect of playing in local groups of size N , we

have to consider the modified matrix ÃN which is up to a factor 1/N :

ÃN All C All D TFT

All C (N − 2)(b− c) −(N − 1)c− b (N − 2)(b− c)

All D (N − 2)b 0 (1− ω)
[
(N − 1)b+ c

]
TFT (N − 2)(b− c) −(1− ω)

[
(N − 1)c+ b

]
(N − 2)(b− c)

According to the local replicator equation, TFT is stable against invasion of defectors if

and only if

(1− ω)
[
(N − 1)b+ c

]
< (N − 2)(b− c). (3.19)

Therefore, even if the game is frequently repeated (ω close to 1), TFT might be unstable

if its interaction neighborhood N is small (note that TFT is never stable for N = 2, see

Fig. 3.2).

3.4.2 Risk aversion in a coordination game

Experiments indicate that people tend to risk-averse decisions (Kahnemann and Tversky,

1979; Holt and Laury, 2002; Platt and Huettel, 2008): A bird in the hand is worth two in
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the bush. As we will see, local replicator dynamics promotes risk-aversion in coordination

games. Consider the following stag hunt game (with r > 0):

A =

(
1 + r 0

r 1

)

Obviously this game has two pure Nash-equilibria. Owing to the higher variance of the

payoffs of the first strategy, we will interpret the first strategy as risk-prone and the second

as risk-averse. As the sum of each row is 1 + r, rational players are exactly indifferent

if they know that their co-player chooses each strategy with probability 1/2. Therefore

classical replicator dynamics predicts equal basins of attraction. However, for the local

replicator dynamics we compute

ÃN =
1

N

(
(N − 2)(1 + r) −r

(N − 1)r N − 2

)
.

According to this matrix, the risk-averse strategy dominates the risk-prone strategy if

r > N − 2 and it has the bigger basin of attraction for r ≤ N − 2. Hence the local

replicator dynamics has a clear bias towards the emergence of risk-averse strategies. The

intution behind this result is as follows: Individuals can only imitate a different strategy,

if both types of players are present in the group. Therefore a successful strategy has to

perform well in mixed groups, i.e., it has to yield a notable payoff against any co-player.

Overall, this effect may promote the emergence of risk-aversion, although a homogeneous

population of risk-prone subjects would yield the highest possible welfare.

In general, coordination to the risk-prone equilibrium is only partly observed in exper-

iments (see, for example Straub, 1995; Friedman, 1996; Battalio et al., 2001) and human

behaviour in coordination games seems to be very sensitive on details of the experimental

setup. For example, Cooper et al. (1990) have shown that even the presence of a third,

dominated strategy can alter the decisions of the subjects considerably.

3.4.3 The dominance paradox

Consider a cooperation game with payoffs

A =

 C D

C 2 + r 1

D 1 + r 0
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Obviously, there is no social dilemma as the cooperative strategy dominates defective

motives. Replicator dynamics thus predicts a stable population with the highest possible

payoff, 2 + r. However, this result may be overturned for the local replicator equation:

ÃN =
1

N

(
(N − 2)(2 + r) N − 2− r

N − 2 + (N − 1)r 0

)

According to this matrix, the defective strategy dominates cooperation for r > N −
2. Although this result seems highly counterintuitive, it is a direct consequence of the

assumed locality of interaction and replication. To see this, consider the case r = 8,

N = 4, for which the (original) payoff matrix becomes

A =

(
10 1

9 0

)

If a group consists of cooperators only, everybody yields a payoff of 10; however, there

is no defector in this group who could adopt this highly profitable strategy. In a group

consisting of one defector and three cooperators, the average defector’s payoff sums up

to πD = 9, compared to a cooperator’s payoff of πC = (10 + 10 + 1)/3 = 7. As players

imitate strategies with higher payoffs, it is likely that a cooperator of this group dies and

is substituted by a defector. Similarly, groups with 2 resp. 3 defectors lead to payoffs

πD = 6 and πC = 4, resp. to πD = 3 and πC = 1. Having this in mind, the paradoxical

emergence of defection becomes unsurprising.

It is important to note that this paradox is not restricted to the local replicator dynam-

ics. Instead it is a general phenomenon for payoff-dependent imitation processes in finite

populations. To see this, we calculate the weak selection fixation probabilities under the

Moran process according to Eq. (3.14) and find (for N = 4, r = 8 and selection strength

s = 0.1):

ρD→C = 0.357 > 1/4

ρC→D = 0.192 < 1/4
(3.20)

Hence, imitation processes in finite populations might induce social dilemmas where the

payoff matrix itself does not reveal any problematic issue at first sight. Note that this

example holds for any population size N as long as r > N − 2.
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3.5 Variable group sizes

So far we have assumed that all groups are of the same size. Now we focus on variable

group sizes instead and consider N as a random variable. Hence, in any moment of time

there may be groups of different size. The population is well-mixed in the sense, that any

player has the same probability to become a member of a given group, i.e. the average

frequency of strategy i in a group does neither depend on the group size N nor on the

strategy of the co-players. Within any group, strategy updating occurs as described in

the previous sections. In particular, we assume for the moment that in every group there

is exactly one player who updates its strategy. The group size N is distributed according

to the probability mass function f(N). We exclude atomic groups of one player only, i.e.

f(1) = 0. Let ν be the harmonic mean of the group sizes N , i.e. ν :=
(∑∞

N=1 f(N)/N
)−1

.

Then we get the following generalization for random group sizes:

Proposition 5 (Local replicator dynamics for variable group sizes)

Consider a well-mixed population of players, engaged in pairwise interactions within groups

of random size N . If ν < ∞, then the local replicator equation is given by

ẋi = xi ·
[
(Ãνx)i − x · Ãνx

]
. (3.21)

Proof. Due to Proposition 1 and our assumptions, the local replicator equation of the

system is given by

ẋi =
∞∑

N=2

xi

[
(ÃNx)i − x · ÃNx

]
· f(N), (3.22)

which can be rewritten as

ẋi =
∑∞

N=2 xi

[((
A− A+AT

N

)
x
)
i
− x ·

(
A− A+AT

N

)
x
]
· f(N)

= xi [(Ax)i − x ·Ax] +
∑∞

N=2 xi

[(
−A+AT

N x
)
i
+ x · A+AT

N x
]
· f(N)

= xi [(Ax)i − x ·Ax]− xi
[((

A+AT
)
x
)
i
− x ·

(
A+AT

)
x
]∑∞

N=2 f(N)/N

= xi [(Ax)i − x ·Ax]− xi

[(
A+AT

ν x
)
i
− x · A+AT

ν x
]

= xi ·
[
(Ãνx)i − x · Ãνx

]
.
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To obtain this result, we have assumed that exactly one player per group is allowed to

imitate others. As a consequence, a given player in a large group is less likely to update

its strategy than a player in a small group. Alternatively we could also consider a scenario

where each player is equally likely to compare its payoff with others, implying that larger

groups have on average more updating events. A straightforward adaption of the proof

then shows that the harmonic mean needs to be replaced by the arithmetic mean, i.e. in

this case we have ν =
∑∞

N=1Nf(N).

Note that while N had to be an integer, ν may be any positive real number with ν ≥ 2.

As a consequence, we may use derivatives to study the effect of group size on the dynamics

of the system. For example, by calculating ∂x̃∗/∂ν, we may quantify the influence of ν on

equilibrium frequencies.

3.6 Discussion

Instead of the traditional assumption of a well-mixed and infinite population, we have stud-

ied a process in which individuals interact and update their strategies in randomly formed

finite groups. On the one hand, such a setting can be interpreted as the mean-field approx-

imation of a game on a lattice, where each player is connected with its N − 1 neighbors

only (as for example in Nakamaru and Iwasa, 2006; Rand et al., 2010). On the other hand,

similar procedures are used to test human behaviour in laboratory experiments, e.g. the

stranger protocol in Fehr and Gächter (2000) or the control treatment in Traulsen et al.

(2010). We have shown that this process can be modelled through a replicator dynamics

with a slightly modified payoff matrix.

Recent models for the evolution of cooperation in so-called public good games rather

use a different setup. Typically, individuals are assumed to interact in randomly formed

groups, but strategy updating occurs on a global level (e.g in Brandt et al., 2006; Boyd

et al., 2010), leading to classical replicator dynamics. For models of cultural learning, such

a setting can be problematic: While individuals may be able to assess the performance of

their everyday interaction partners, it remains unclear why they compare themselves with

an abstract population average or with random role models they have never encountered

before. From this perspective, local updating seems to be more intuitive. Related issues

for games on graphs are discussed in Ohtsuki et al. (2007b,c).

Irrespective of its derivation, we have shown that local replicator dynamics connects

the Moran process with the classical replicator equation. In the frequently considered case
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of weak selection, any 2x2 game A that is played in a finite population of N players can be

treated as if it was game ÃN , played in an infinite population. In this way, local replicator

dynamics provides a comfortable tool to study games in finite populations, especially if

the game under consideration allows more than two strategies. Although there has been

much effort to extend the Moran process to general nxn games (e.g. Fudenberg and Imhof,

2006; Antal et al., 2009; Tarnita et al., 2009), these generalizations typically require the

specification of mutation rates between strategies. Local replicator dynamics, on the other

hand, is immediately defined for any number of strategies and does not involve mutation.

It is important to note, however, that we have focused on games that are played pairwise.

Instead one could also consider games where more than two players are involved. Such

systems show a fascinating behaviour; at the same time they are highly complex. A

first important step to explore such multi-player games is made by Gokhale and Traulsen

(2010).

The modified matrix that we have studied, ÃN = A− (A+AT )/N , was also obtained

by Lessard (2005) and Lessard and Ladret (2007), who generalized the finite population

results of Nowak et al. (2004). Instead of focusing on interactions between two pure strate-

gies, R and M , they allowed mixed strategies pR and pM (i.e., strategies that randomize

between several pure strategies). For the Moran process they found that selection opposes

pM replacing pR for every pM ̸= pR close enough to pR if and only if pR is evolutionarily

stable for the game with payoff matrix ÃN (with respect to the replicator dynamics). This

can be regarded as another clue for the strong relationship between the game A in a finite

population and the game ÃN in an infinite population.

Interestingly, also games that are played on a graph can be represented by a modi-

fied replicator equation (Ohtsuki and Nowak, 2006; Ohtsuki et al., 2007c,b; Ohtsuki and

Nowak, 2008; Nowak et al., 2010). There it is typically assumed that players only interact

with their direct neighbors. According to birth-death updating, individuals with a high

payoff are likely to reproduce. The offspring replaces a randomly chosen neighbor. If

each player is surrounded by N neighbors, then Ohtsuki and Nowak (2006) find that the

dynamics follows a replicator equation with a modified payoff matrix A + B, where B

encapsulates the impact of the population structure. The entries of B are given by the

formula

bij :=
aii + aij − aji − ajj

N − 2
. (3.23)

To compare this result with our findings, we multiply the modified matrix ÃN with the

constant factor N/(N − 2) (which only affects the timescale of the dynamics). With this
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trick we can write the modified matrix for the local replicator dynamics as the sum of the

payoff matrix A and a structure matrix B with

bij :=
aij − aji
N − 2

. (3.24)

Thus we get the same structure matrix B, up to the diagonal terms aii and ajj . As Ohtsuki

and Nowak (2006) point out, these terms characterize the effect of assortativeness. In our

model we have assumed a well-mixed population and groups that are formed anew after

each updating event; hence the diagonal terms are missing in the matrix transformation

for the local replicator dynamics. It remains an interesting endeavour, however, to find a

general rule under which conditions games in structured population can be described with

a modified replicator equation.

Since the correction term in the definition of ÃN is of order 1/N , local replicator

dynamics only results in a minor correction if players interact with a large sample of the

population. However, for small groups there can be considerable differences, compared to

the classical replicator dynamics. As we have seen, imitation processes in finite populations

may lead to the evolution of dominated strategies. In particular, for the payoff matrix

A =

 C D

C 10 1

D 9 0

 ,

a homogeneous population of defectors is evolutionarily stable if the population size N is

small. This result may be attributed to spite: Playing D instead of C implies a small cost

for oneself, but harms a cooperative co-player considerably. Overall, this may transform a

win-win situation into a lose-lose situation. However, if this game is played in the labora-

tory, I would rather predict a cooperative equilibrium, as not only the whole population

benefits from switching to cooperation but also each player individually. This raises the

question whether the local replicator equation (and equivalently, the Moran process) are

good approximations on human strategy updating (for an interesting experiment on that

issue see Traulsen et al., 2010). The dominance paradox, as described above, relies on the

assumption that individuals blindly copy the strategy of co-players with a higher payoff,

irrespective of the consequences this might have on the own future payoff. Personally, I

believe that individuals have more foresight when they opt for a new strategy. Human

strategy updating involves imitation and calculation and if evolutionary models should

also account for cultural learning, then the game theoretical toolbox has to evolve further.
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A An alternative derivation of the local replicator equation

Local replicator dynamics can also be derived from a birth-death process, instead of im-

itation updating. Again, we assume that players interact within groups of size N . After

those interactions, one player of each group is chosen to reproduce, proportional to its

fitness. The offspring replaces a randomly chosen member of the same group.

If di(n⃗) denotes the probability that a player with strategy i is chosen to die and

bj(n⃗) is the corresponding probability that an individual with stratey j is born, then the

expected change of players with strategy i within this group n⃗ is is given by

∆ni =
(
1− di(n⃗)

)
· bi(n⃗)− di(n⃗) ·

(
1− bi(n⃗)

)
= bi(n⃗)− di(n⃗). (3.25)

The birth probability of an individual depends on its fitness fi(n⃗), which is a sum of

baseline fitness (normalized to 1) and the payoff of this strategy,

fi(n⃗) = 1 + sπi(n⃗). (3.26)

Hence, if f̄(n⃗) denotes the average fitness in the group, i.e. f̄i(n⃗) =
(
n1f1(n⃗) + . . . +

nkfk(n⃗)
)
/N , the birth probability is given by

bi(n⃗) =
nifi(n⃗)

Nf(n⃗)
. (3.27)

We note that
∑k

i=1 bi(n⃗) = 1. Players die randomly, irrespective of their payoff, and

therefore we may write the death probability as di(n⃗) =
ni
N . Thus, we may conclude that

∆ni = bi(n⃗)− di(n⃗) =
ni

N

fi(n⃗)− f̄(n⃗)

f̄(n⃗)
=

ni

N

[
πi(n⃗)− π̄(n⃗)

]
· s+O(s2) (3.28)

Again, we have to sum up these expected changes within one group over all possible groups

of size |n⃗| = N . In the limit of weak selection, this reproduces the local replicator equation

in the form of Eq. (3.8):

ẋi =
∑

|n⃗|=N

N !

n1! ... nk!
xn1
1 · ... · xnk

n · ni

N

[
πi(n⃗)− π̄(n⃗)

]
. (3.29)
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B Proof of Proposition 1

Proposition 1 (A simple representation for the local replicator dynamics)

The local replicator dynamics (3.29) can be rewritten as

ẋi = xi ·
[
(Ãx)i − x · Ãx

]
,

with ÃN = A− A+AT

N .

Proof. First we note that the local replicator equation (3.29) can be written as

ẋi =
∑

|n⃗| = N

ni ≥ 1

N !
n1! ... nk!

xn1
1 . . . xnk

n · ni
N

[
πi(n⃗)− π̄(n⃗)

]

= xi·
∑

|n⃗| = N

ni ≥ 1

(N−1)!
n1!...(ni−1)!...nk!

xn1
1 . . . xni−1

i . . . xnk
n

[
πi(n⃗)− π̄(n⃗)

]

= xi·
∑

|n⃗|=N−1

(N−1)!
n1!...ni!...nk!

xn1
1 . . . xni

i . . . xnk
n

[
πi(n⃗+i)− π̄(n⃗+i)

]
(3.30)

In the last line, the symbol n⃗+i denotes a group with ni+1 players with strategy i and nj

players with strategy j ̸= i. Accordingly, the last sum is taken over all possible co-players

of an i-player (i.e., over all possible groups with |n⃗| = N − 1 players), while the first

sum was taken over all possible groups with N individuals. If individuals play against

everybody else in their group, but not against themeselves, the corresponding average

payoffs are given by:

πi(n⃗+i) = 1
N−1

(
ai1n1 + ...+ aiini + ...+ aiknk

)
=
∑k

l=1 ail ·
nl

N−1

πj(n⃗+i) = 1
N−1

(
aj1n1 + ...+ aji(ni + 1) + ...+ ajj(nj − 1)...+ aiknk

)
=

aji−ajj
N−1 +

∑k
l=1 ajl ·

nl
N−1 for j ̸= i, nj > 0

π̄(n⃗+i) = 1
N

(
n1π1(n⃗+i) + ...+ (ni + 1)πi(n⃗+i) + ...+ nkπk(n⃗+i)

)
= πi(n⃗+i)

N +
∑k

j=1 πj(n⃗+i)
nj

N

=
∑k

l=1
ailnl

N(N−1) +
∑k

l,j=1
ajlnlnj

N(N−1) +
∑k

j=1
ajinj

N(N−1) −
∑k

j=1
ajjnj

N(N−1)



80 CHAPTER 3. LOCAL REPLICATOR DYNAMICS

Owing to the properties of the multinomial distribuition, we have

∑
|n⃗|=N−1

(N − 1)!

n1!...nk!
xn1
1 . . . xnk

n · nj = (N − 1)xj

∑
|n⃗|=N−1

(N − 1)!

n1!...nk!
xn1
1 . . . xnk

n · n2
j = (N − 1)(N − 2)x2j + (N − 1)xj

∑
|n⃗|=N−1

(N − 1)!

n1!...nk!
xn1
1 . . . xnk

n · njnl = (N − 1)(N − 2)xjxl for j ̸= l.

(3.31)

Thus we obtain, due to the linearity of the payoffs:

∑
|n⃗|=N−1

(N−1)!
n1!...nk!

xn1
1 . . . xnk

n · πi(n⃗+i) =
∑

|n⃗|=N−1

(N−1)!
n1!...nk!

xn1
1 . . . xnk

n ·
(∑k

j=1 aij ·
nj

N−1

)
=
∑k

j=1
aij
N−1

( ∑
|n⃗|=N−1

(N−1)!
n1!...nk!

xn1
1 . . . xnk

n · nj

)
=
∑k

l=1 aijxj =
(
Ax
)
i

(3.32)

Analogously we may derive

∑
|n⃗|=N−1

(N−1)!
n1!...nk!

xn1
1 . . . xnk

n · π̄(n⃗+i) = N−2
N

∑k
l,j=1 xlaljxj +

1
N

∑k
j=1 aijxj +

1
N

∑k
j=1 ajixj

= N−2
N · xTAx+ 1

N

(
Ax
)
i
+ 1

N

(
ATx

)
i

(3.33)

Eventually we obtain

ẋi = xi ·
[(
Ax
)
i
− N−2

N · xTAx− 1
N

(
Ax
)
i
− 1

N

(
ATx

)
i

]
= xi ·

[
(Ãx)i − xT Ãx

]
. (3.34)



Chapter 4

Evolution of cooperation and

punishment in non-anonymous

societies

Abstract

Empirical evidence suggests that the mere opportunity to punish others can act as cata-

lyst for cooperative behaviour. It has been argued that humans are equipped with a taste

for punishment, but what is the evolutionary cause for such a taste? Moreover, recent

experiments reveal a problematic side of retribution. A non-negligible fraction of subjects

abuse sanctioning opportunities to engage in spiteful acts (which can harm cooperators,

or everyone) or in revenge (as a response to being punished). Most evolutionary models

neglect these issues, but recently it has been shown that the co-evolution of punishment

and cooperation is dampened, or fully suppressed, if spiteful actions are available. Here we

present a simple game-theoretic approach to show that these negative results hinge on the

unrealistic yet common assumption of anonymous interactions. In our model, individuals

adapt to the reputation of their co-players and learn to behave opportunistically, by coop-

erating against players who punish defectors but saving the cooperation costs otherwise.

This in turn provides an incentive to engage in costly punishment without being spiteful.

To unfold this positive effect, sanctions must neither be too soft nor too severe. Between

these two extremes, punishment is targeted at noncooperators only, and leads to stable

cooperation. These findings are in line with theories that emphasize the strategic role of

emotions: In non-anonymous societies, anger or vengefulness may partly have evolved to

serve as a credible signal to bystanders.

81
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4.1 Introduction

Behavioural experiments provide overwhelming evidence that many people are willing to

engage in punishment (Fehr and Gächter, 2002; de Quervain et al., 2004; Rockenbach and

Milinski, 2006; Henrich et al., 2006; Egas and Riedl, 2008; Ostrom et al., 1992). Subjects

punish non-cooperators even if the punishment is costly and even if any direct or indirect

personal benefit for the punisher is excluded. Although such experiments are typically

run in completely anonymous environments, reputation effects may play a subtle role.

The mere picture of an eye (Haley and Fessler, 2005) or the physical presence of the ex-

perimenter (Kurzban et al., 2007) can affect the participants’ behaviour, often making

them more cooperative or increasing their willingness to punish non-cooperators. It has

been shown that players in the ultimatum game reject unfair offers even when this deci-

sion increases rather than decreases inequity (Yamagishi et al., 2009). While this finding is

counterintuitive under the anonymous conditions of the laboratory, the subjects’ behaviour

may be perfectly adapted to the conditions of everyday life, where reputation plays a key

role. Emotions such as anger and vengefulness seem to act as a commitment device; they

help to credibly demonstrate that one is not willing to accept unfair treatments (Frank,

1988).

However, previous research on the co-evolution of cooperation and punishment gives

little weight to reputation. Instead, most evolutionary models tend to mimic the imper-

sonal conditions in the laboratory (Fowler, 2005; Nakamaru and Iwasa, 2006; Lehmann

et al., 2007b; Eldakar and Wilson, 2008; Sigmund et al., 2010; Janssen and Bushman, 2008;

Rand et al., 2010). In these models, punishment acts by reducing the non-cooperators’

payoffs, thereby preventing the evolutionary spread of defection. We call this the payoff

mechanism of punishment. In a recent study, Rand et al. (2010) argue that the payoff

mechanism alone cannot maintain cooperation. Indeed, the same conditions that favour

punishment may also promote the evolution of spite, once this possibility is considered.

In our model, punishment does not only affect payoffs, but also the reputation of a player.

Being known as a person who is willing to pay a cost to take revenge on non-cooperators

may be of advantage in future interactions. As we will show, it is this reputation mecha-

nism that socializes punishment, keeping spite and antisocial punishment at bay.
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4.2 The model

We consider the following pairwise game with two stages (see also Sigmund et al., 2001).

Before the game starts, a coin toss determines which player is in the role of the donor

and which one is in the role of the recipient. In the subsequent helping stage, donors

may transfer a benefit b to their recipients, at their own cost c, or they may refuse to

do so. These two alternatives are denoted by C (for cooperation) and D (for defection),

respectively. We make the standard assumption that cooperation is the efficient outcome,

b > c. Then, in the punishment stage, recipients decide whether or not to punish the

donor. Depending on the outcome of the helping stage, there are four possible reactions:

Punishing defectors only (denoted by P for social punishment), punishing cooperators

only (A for antisocial punishment), punishing everybody (S for spiteful punishment) or

nobody (N). If punished, donors have to pay a fine β whereas the recipient is charged

an amount γ. Because sanctions are costly, immediate self-interest speaks against either

form of punishment.

In order to incorporate reputation, we assume that donors know their co-player’s strat-

egy with an exogenous probability µ. Whether this information comes from previous en-

counters, from observation or gossip can be left open. We can therefore distinguish four

different types of donors: AllC-players always cooperate, whereas AllD-players never do

so, regardless of the opponent’s reputation. The third type of donor is the opportunistic

cooperator, OC . Donors with this strategy generally cooperate; but if they find out that

their co-player is not a social punisher P , they decide to save the costs of helping. Finally,

players with strategy OD are non-cooperative except they know they are interacting with

a P -recipient.

We use evolutionary dynamics to study the above game. There exists a wealth of pos-

sible dynamics and each specific choice may affect the result in subtle ways (Nowak et al.,

2010). The traditional approach is to consider a virtually infinite population of players.

Each individual acts according to its strategy [i, j], where i ∈ {AllC,OC , OD, AllD} pre-

scribes how to play in the role of a donor and j ∈ {P,N,A, S} prescribes how to react as a

recipient. Classical replicator dynamics(see ref. Sigmund, 2010) assumes that the fraction

of [i, j]-players, xij , evolves according to the following differential equation:

ẋij = xij · [πij − πe]. (4.1)

In this equation, πij denotes the average payoff of an [i, j]-player, whereas πe denotes the

mean payoff over the whole population. Replicator dynamics thus describes a situation
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where strategies that yield a payoff above the global average will spread among the pop-

ulation. However, global competition is an inappropriate model for the evolution of spite

(Gardner and West, 2004b). Instead, such antisocial behaviour can only emerge when

players compete locally and harming others gives a relative advantage to the focal player

(Rand et al., 2010). In order to allow for spite, we therefore assume that players interact

within small and randomly formed groups of size n+ 1. The dynamics of such a scenario

can be captured by the following adapted replicator equation (Hilbe, 2011):

ẋij = xij · [πij −
(n− 1)πe + πij + πT

ij

n+ 1
]. (4.2)

According to the local replicator dynamics (4.2), a strategy propagates if players adopting

this strategy yield a payoff above the group average. Being an [i, j]-player has an influence

on the mean group payoff for two reasons: On the one hand because there is at least one

individual with payoff πij . On the other hand the [i, j]-player affects its co-players’ payoffs

by an expected amount denoted by πT
ij . By taking these two biases into account we obtain

the above dynamics (see also appendix). The most important difference between (4.1) and

(4.2) is that the latter allows for spite: Under the local replicator dynamics, the frequency

xij increases either by rising the own payoff πij or by diminishing the others’ payoffs via

πT
ij . As group sizes become large, the impact of spite disappears.

4.3 Analysis and results

We first analyze under which conditions social punishment P is able to maintain coopera-

tion. Traditional analysis suggests that punishment acts as a deterrent if fines exceed the

costs of cooperation, β > c. However, players who compete locally also consider the effect

on the co-players’ payoffs and the respective condition becomes β > βmin = c+ (b+ γ)/n.

We can use this condition to eliminate dominated strategies. If β > βmin it is easy to

verify that opportunists, OC and OD, always perform better than their unconditional

counterparts AllC and AllD: Once information is available, it is optimal to adapt to the

co-player’s reputation. On the recipient’s side it is safe to reject antisocial-punishment A:

Because players react opportunistically, the reputation mechanism disfavours players who

punish cooperators. On the other hand, the payoff mechanism might promote antisocial

behaviour, if punishment is sufficiently harmful (that is, if β/n > γ). However, in this

case it is optimal to harm everybody and not cooperators only (Rand et al., 2010), leading
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Figure 4.1: Evolutionarily stable states (ESS) for the helping game with punishment.
We consider which strategies form a stable equilibrium of the evolutionary dynamics,
given that punishment is severe enough to act as a deterrent. Depending on the
parameters b and β there are four different scenarios: a) Low values of b and β allow
two stable states, either the welfare maximizing [OC ,P ] or the selfish [OD,N ]. b) If
punishment becomes more severe or if the benefit of cooperation rises then [OC ,P ]
is the only ESS. c) Increasing the fine even further destroys the stabilizing effect on
cooperation and no strategy is stable. d) For very large fines, spiteful punishment
takes over (compare these results with Fig. 4.2).
Parameters: c = γ = 1, µ = 20% and n = 4. For bigger group sizes n, area a and b
grow at the expense of area c and d since spite becomes too costly in large groups.

to spite instead of antisocial punishment.

Let us therefore consider a reduced system, with all donors being opportunists and

recipients being either of type P , N or S. Depending on the intensity of sanctions,

there are four possible evolutionary regimes (Fig. 4.1). A moderate level of benefits b and

comparably soft penalties β lead to bistability: If most of the individuals are not willing to

use sanctions initially, then the population will move to a selfish state without punishment

[OD,N ]. However, a population containing a certain baseline number of punishers is

able to maintain mutual cooperation, moving the state to [OC ,P ] (Fig. 4.2a). Note that

all players in a homogeneous [OC , P ] population cooperate, either by default or because

they anticipate that they would be punished otherwise. Increasing the fine β makes the

inferior equilibrium [OD,N ] disappear and the social [OC ,P ] population becomes globally

attracting. In this parameter region sanctions work best, leading to the optimal welfare

even if both, cooperation and punishment, are initially rare (Fig. 4.2b). A further increase

of β destroys the positive effect of punishment, resulting either in instability (Fig. 4.2c)

or spite (Fig. 4.2d). Here, sanctions cannot maintain cooperation since it is no longer

guaranteed that only selfish individuals are punished. Antisocial behaviour can invade.

To verify this outcome also for the full strategy set and for other evolutionary dy-
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β > βmin

β < n(γ − µ
µ̄
b)− µ

µ̄
c

β > n(γ − µ
µ̄
b)− µ

µ̄
c

β < n(γ + µb) + µc

β > n(γ + µb) + µc

β < n(γ + b) + c
β > n(γ + b) + c

Figure 4.2: Evolutionary dynamics for the four different parameter regions. For each
set of parameters, the strategy space can be represented by a prism. The corners of
the prism mark homogeneous populations, whereas points in the interior correspond
to mixed populations. Blue orbits indicate the dynamics for a given initial population.
a) Both equilibria, [OC , P ] and [OD, N ] are stable. The orange grid separates ini-
tial populations that converge to the social state [OC , P ] from those that move to
the inferior equilibrium [OD, N ]. b) [OC , P ] is globally stable. c) Spiteful punishers
can invade a homogeneous [OC , P ] population, making punishment enforced coop-
eration unstable. The dynamics exhibits cycles between cooperation and defection,
respectively between spite and social punishment. d) Recipients become fully spite-
ful, moving the population to the detrimental [OD, S] equilibrium.
Parameters: c = γ = 1, b = 3/2, µ = 20%, µ̄ = 1− µ = 80%, n = 4 and a) β = 2 b)
β = 5 c) β = 8 d) β = 12.

namics, we have run computer simulations that implement the well-known Moran process

(Nowak et al., 2004). We obtain similar results: When reputation effects are sufficiently

strong, opportunism soon takes over, which in turn promotes the evolution of social pun-

ishment (Fig. 4.3). In the end, a homogeneous population of [OC ,P ] players evolves. These

simulation results are largely independent of the exact modelling of selection (how players

switch to strategies with higher payoffs) and mutation (how they experiment with new

strategies). For a detailed discussion of the influence of the parameters, we refer to the

appendix.

4.4 Discussion

Previous evolutionary models cannot explain why individuals learn to deal responsibly

with sanctions. Instead, it is either presumed that punishment is targeted at defectors

only (Boyd et al., 2003; Gardner and West, 2004a; Fowler, 2005; Nakamaru and Iwasa,
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Figure 4.3: Co-evolution of cooperation and punishment over time. A typical
individual-based simulation run of the Moran process shows that opportunists soon
dominate the population (upper graph), which in turn promotes the steady evolution
of social punishment P (lower graph). When the fraction of social punishers exceeds
a certain threshold it pays off to cooperate when in doubt, favouring OC over OD in
the long run.
Parameters: c = γ = 1, b = 4, β = 3, µ = 30% and population size 160. In each
time step, one individual was selected to imitate another player of the population
and updating occurred according to the so-called Fermi-rule with medium selection
strength, s = 0.5 (see appendix).

2006; Lehmann et al., 2007b; Eldakar and Wilson, 2008; Sigmund et al., 2010; Boyd et al.,

2010), or it is predicted that evolution leads to non-punishing defectors (if β < γn) or spite

(if β > γn), respectively (Rand et al., 2010). Here we have shown that reputation can re-

solve this puzzle. Under non-anonymity, there is little appeal in harming those who help. If

targeted punishment evolves, then it is systematically directed at non-cooperators. Hence,

we also contradict the popular ”folk theorem” that any behaviour, even if abstruse, can

become a common norm as long as deviations are punished (Boyd and Richerson, 1992).

Opportunistic individuals will stop to impose sanctions on pro-social activities, simply

because it is in their own interest to let cooperative outcomes evolve.

As we have shown, opportunism emerges automatically if individuals are able to evalu-

ate the reputation of their opponents. Of course this implies some cognitive requirements

on the subjects: They have to monitor their co-players and need to process and remember

this information properly. For humans, this does not seem to be too restrictive. For ex-

ample, subjects in laboratory experiments show an enhanced memory for faces of cheaters
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(Mealey et al., 1996) and although not tested empirically, one may expect similar results

for punishers. Moreover, it is well-known that humans anticipate the importance of repu-

tation and therefore behave differently when being observed (Seemmann et al., 2004). But

also in some animal species, individuals are able to distinguish each other’s type and to

behave accordingly, as reported in studies of indirect reciprocity - for example for cleaner

fishes (Bshary and Grutter, 2006) or for great apes (Russel et al., 2008).

The model that we have proposed is admittedly minimalistic, assuming pairwise in-

teractions and neglecting the possibility of errors. Both assumptions are made to allow

an intuitive analysis and do not qualitatively affect the results. It seems to be a more

serious shortcoming that the model does not incorporate the possibility of retaliation. Es-

pecially in non-anonymous societies it may pay to engage in counter-punishment, thereby

demonstrating that one does not accept opposition. However, a way to address this issue

without increasing the complexity of the model is to ask whether individuals are still will-

ing to punish others, even if counter-punishment is a sure event (that is, even if γ = β).

Surprisingly, we find that counter-punishment prevents spite but still allows for social

punishment. Intuitively, individuals engage in costly vendettas only if this yields some

positive return in form of increased cooperation in future.

Interesting effects are to be expected if we relax the assumption of exogenous infor-

mation and if we consider reputation as a strategic variable. In many circumstances,

subjects may have the choice between explicit and subtle forms of punishment. While

explicit penalties serve as a signal to bystanders, more inconspicuous sanctions minimize

the risk of retaliation. Both emergence and form of punishment are important issues that

can only be understood if their reputational implications are taken into account.
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A Calculation of the payoffs

We have considered the following four strategies for recipients:

P Social punishment (to punish defectors only)

N No punishment (to punish nobody)

A Anti-social punishment (to punish cooperators only)

S Spite (to punish everybody)

Furthermore, we have distinguished between four different strategies for donors:

AllC Unconditional cooperators

OC Opportunistic cooperators (they generally cooperate, except they know they

are not interacting with a P -recipient)

OD Opportunistic defectors (they generally refuse to cooperate, except they know

they are interacting with a P -recipient)

AllD Unconditional defectors

With this specification of the strategies, it is straightforward to calculate the payoff for each

player. For example, consider an OC-donor who encounters an N -recipient. With proba-

bility µ, the donor knows that the recipient does not punish others, in which case it is safe

to refuse cooperation. In the other case, if the donor does not know the recipient’s strategy,

OC-donors cooperate by default (which happens with probability µ̄ := 1−µ). In total, this

yields an average payoff of−µ̄c for theOC-donor and µ̄b for theN -recipient. Repeating this

computation for all other strategy pairs yields the following bimatrix (A,B) = (aij , bij).

In this bimatrix, the first entry denotes the payoff of the donor whereas the second entry

denotes the corresponding payoff of the recipient:

∗ P N A S

AllC
(
− c, b

) (
− c, b

) (
− c− β, b− γ

) (
− c− β, b− γ

)
OC

(
− c, b

) (
− µ̄c, µ̄b

) (
− µ̄(c+ β), µ̄(b− γ)

) (
− µ̄c− β, µ̄b− γ

)
OD

(
− µc− µ̄β, µb− µ̄γ

) (
0, 0
) (

0, 0)
(
− β,−γ

)
AllD

(
− β,−γ

) (
0, 0
) (

0, 0)
(
− β,−γ

)
Table 4.1: Payoff matrix for the helping game with punishment

Each individual acts according to its strategy [i, j], where i ∈ {AllC, OC , OD, AllD}
prescribes how to play in the role of a donor and j ∈ {P, N, A, S} prescribes how to react

as a recipient. We assume that individuals have an equal chance to be the donor or the

recipient in a given interaction. Consequently, a player with strategy [i, j] who encounters
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an opponent [k, l] obtains on average

πij,kl := (ail + bkj)/2. (4.3)

B Analysis of the local replicator dynamics

We consider an infinite population and denote the fraction of players with strategy [i, j] by

xij . Of course, all these frequencies add up to one,
∑

i,j xij = 1. We assume that players

interact in finite groups. Groups are formed randomly and each individual plays against

every other group member. In this case, the expected (normalized) payoff of a player with

strategy [i, j] can be calculated as:

πij :=
∑
k,l

xkl · πij,kl. (4.4)

Furthermore, we compute the average payoff of the whole population by summing up over

all individual payoffs, yielding:

πe :=
∑
i,j

xij · πij (4.5)

Classical replicator dynamics asserts that a strategy [i, j] spreads whenever it leads to a

payoff above the global average, that is if πij exceeds πe. However, replicator dynamics

cannot explain why individuals engage in spiteful acts. Spiteful subjects pay a cost (de-

creasing their own payoff) to harm others; but since competition is global and because

the population is arbitrarily large, a spiteful subject has a negligible impact on the mean

payoff of the population. Global competition is therefore an inappropriate model for the

evolution of spite. Thus we consider the case where players compete locally, assuming

that a strategy spreads if its payoff is above the group average. Being an [i, j]-player in

a finite group affects the mean payoff of the group for two reasons: On the one hand,

there is at least one player that obtains a payoff πij . On the other hand, all other group

members play at least once against an [i, j]-player, leading to an expected influence on the

co-players’ payoffs of

πT
ij :=

∑
k,l

xkl · πkl,ij . (4.6)
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Taking these two effects into account, the average payoff of a group containing at least

one [i, j]-player and n randomly chosen other group members is given by

n− 1

n+ 1
πe +

1

n+ 1
πij +

1

n+ 1
πT
ij (4.7)

Overall, the assumption of local competition leads to a modified replicator dynamics. The

time evolution of xij is governed by the following equation:

ẋij = xij

[
πij −

n− 1

n+ 1
πe − 1

n+ 1
πij −

1

n+ 1
πT
ij

]
. (4.8)

For a detailed discussion of the analytical properties of this differential equation, we refer

the reader to Hilbe (2011). There it is also shown that a homogeneous population is

evolutionarily stable with respect to the local replicator dynamics, if and only if it is

stable with respect to the viability model of Nakamaru and Iwasa (2006). This allows us

to compare our results under non-anonymity with the results of Rand et al. (2010).

It is possible to simplify Eq. (4.8). Denote by A = (aij) the matrix that contains

the donor’s payoffs and by B = (bij) the corresponding matrix for the recipient’s payoffs.

Next we define the two modified payoff matrices

Ã = A− A+B
n+1

B̃ = B − A+B
n+1

(4.9)

and compute modified payoffs π̃ij resp. π̃e according to Eqs. (4.3) – (4.5). Then a

straightforward calculation (presented at the end of this section) shows that the local

replicator dynamics (4.8) is equivalent to

ẋij = xij [π̃ij − π̃e]. (4.10)

Consequently, the local replicator equation can be written in the form of a classical repli-

cator equation. The system evolves as if the payoffs were given by Ã and B̃.

Elimination of dominated strategies

When we apply the transformation (4.9) to the helping game with punishment, we obtain

– up to a factor 1/(n+1) – the modified payoff matrices Ã and B̃ in (4.13a) resp. (4.13b).

In order to simplify the further analysis, we first eliminate dominated strategies. By

considering the donor’s modified payoffs in (4.13a) we see that OC always gets, at least,
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the payoff of AllC. The dominance relation is not that clear if it comes to the two defective

strategies AllD and OD. According to (4.13a), AllD is weakly dominated by OD if

−µnc− µ̄nβ − µb+ µ̄γ > −nβ + γ. (4.11)

This condition is met if punishment is sufficiently severe, i.e. if β exceeds the threshold

βmin := (γ + b)/n+ c. (4.12)

For large group sizes the condition β > βmin simplifies to β > c. On the other hand, if

β < βmin, unconditional defection dominates all other strategies. Hence we interpret βmin

as the minimum fine to act as a deterrent.

Modified payoffs for a donor (row player)

Ã P N A S

AllC −nc− b −nc− b −nc− nβ − b+ γ −nc− nβ − b+ γ

OC −nc− b µ̄(−nc− b) µ̄(−nc− nβ − b+ γ) −µ̄nc− nβ − µ̄b+ γ

OD −µnc− µ̄nβ − µb+ µ̄γ 0 0 −nβ + γ

AllD −nβ + γ 0 0 −nβ + γ

(4.13a)

Modified payoffs for a recipient (column player)

B̃ P N A S

AllC nb+ c nb+ c nb− nγ + β + c nb− nγ + β + c

OC nb+ c µ̄(nb+ c) µ̄(nb− nγ + β + c) µ̄nb− nγ + µ̄c+ β

OD µnb− µ̄nγ + µc+ µ̄β 0 0 β − nγ

AllD β − nγ 0 0 β − nγ

(4.13b)

On the recipient’s side, it is safe to eliminate the anti-social punishment strategy A.

According to (4.13b), A is weakly dominated by N if nγ > β and weakly dominated by S

whenever nγ < β.
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Evolutionarily stable strategies

Following the observations in the last section we restrict our attention to a system with all

donors being opportunists and all recipients being either of type P , N or S. Our next aim

is to calculate all evolutionarily stable states (ESS) of the reduced system. A homogeneous

population is called evolutionarily stable if rare mutants have a strictly lower payoff than

the residents. Since by (4.3) the payoff of a strategy [i, j] is a linear combination of the

payoff as a donor and the payoff as a recipient, strategy [i, j] is an ESS if and only if it is

componentwise stable (that is, neither an [i, l]-mutant nor a [k, j]-mutant can invade).

Let us first consider when [OC ,P ] is evolutionarily stable. According to (4.13a), [OD,P ]

always has a lower payoff than [OC ,P ], provided that β > βmin. According to (4.13b),

[OC , P ] can be invaded by [OC ,S] if

nb+ c < µ̄nb− nγ + µ̄c+ β. (4.14)

Rearranging the terms leads to the conclusion that [OC ,P ] is evolutionarily stable if the

punishment fines are in the interval βmin < β < n(γ+µb)+µc. With similar computations

for all other strategies we get a list of possible ESS, see Tab. 4.2.

The conditions in Tab. 4.2 are presented as Fig. 4.1 in the main text. Note that the

thresholds in the right column of Tab. 4.2 can be ordered as

n(γ − µ/µ̄b)− µ/µ̄c ≤ n(γ + µb) + µc ≤ n(γ + b) + c (4.15)

We can use these conditions to discuss the influence of the parameters. Let us start with

the group size n. An increasing group size increases all thresholds in the right column

of Tab. 4.2 and therefore shifts all boundary lines in Fig. 4.1 to the right, except for the

line for β = βmin. In effect, this leads to an increase of the areas a and b, at the expense

of areas c and d. In the limit n → ∞, which corresponds to the result of the classical

replicator equation, areas c and d disappear completely. In this case, either [OC , P ] is the

unique ESS (if γ < µ/µ̄b) or there are two ESS, namely [OC , P ] and [OD, N ] (if γ > µ/µ̄b).

Spiteful behaviour has vanished, since the costs of a spiteful punisher increase linearly in

n, whereas the detrimental effect on the co-players remains γ. If groups are sufficiently

large, it becomes too expensive to be spiteful. Similarly we can explore the effect of all

other parameters; the results are presented in Tab. 4.3.
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Strategy [i, j]
Donor’s strategy i

is stable if
Recipient’s strategy j

is stable if

Cooperation through punishment [OC , P ] β > βmin β < n(γ + µb) + µc

Defection through laissez-faire [OD, N ] β > βmin β < n(γ − µ/µ̄b)− µ/µ̄c

Defection through spite [OD, S] β > βmin β > n(γ + b) + c

Table 4.2: Conditions for evolutionary stability

Parameter Influence on the dynamics

Group size n Bigger group sizes diminish spiteful behaviour. Areas a and b
increase on the expense of c and d.

Information level µ The higher the information level, the more it pays off to punish
defectors to get opportunistic donors to cooperate. Hence area b
increases on the expense of a and c, whereas d remains unchanged.

Costs of cooperation c Increasing costs shift all areas to the right, i.e. it takes higher fines
β to guarantee the same outcome.

Costs of punishing γ Increasing punishing fees reduce the danger of spiteful punishment,
shifting c and d to the right. Additionally, individuals may tend to
avoid the costs γ completely, i.e. area a increases on the expense
of b.

Table 4.3: Influence of the parameters. Bold letters refer to the respective parameter
regions in Fig. 4.1 of the main text.

Analysis of the global dynamics

In the previous section we have identified the stable states of the dynamics. Once an

ESS is reached, the population will stay there. In this section we study the evolution

of populations that are not yet in such a stable state. As it turns out, also the global

dynamics can be classified by means of the conditions in Tab. 4.2. In the following we

assume that punishment is severe enough to act as a deterrent, β > βmin.

If we first consider the case that β < n(γ+µb)+µc, then it follows from payoff matrix

(4.13b) that S is dominated by P . Indeed, [OC , P ] yields a higher payoff than [OC , S]
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and also [OD, P ] performs better than [OD, S]. Therefore, replicator dynamics leads to

the extinction of spite (see Hofbauer and Sigmund, 1998). In the Figures 4.2a and 4.2b of

the main text, this is graphically indicated by the arrows pointing from S to P for both

possible roles as a donor. On the remaining plane spanned by [OC ,P ], [OC ,N ], [OD,N ] and

[OD,P ], there is either a bistable competition (Fig. 4.2a) or punishment enforced sociality

is globally attracting (Fig. 4.2b).

The other case, in which β > n(γ+µb)+µc, can be treated similarly. For this parameter

region, the recipient’s strategy N is dominated by S and all evolutionary trajectories ap-

proach the plane that is spanned by [OC ,P ], [OC ,S], [OD,S] and [OD,P ]. There, we either

observe cyclic behaviour (Fig. 4.2c) or convergence to the detrimental [OD,S]-equilibrium

(Fig. 4.2d). The cyclic case is particularly interesting: [OC ,P ]-societies can be subverted

by spiteful individuals with strategy [OC ,S]. But without the specific punishment of defec-

tion, the population evolves towards a state in which individuals defect by default, using

strategy [OD,S]. In this situation, however, it pays off to care for a strict reputation to

guarantee the cooperation of the co-players and [OD ,P ] evolves. As soon as a sufficient

number of individuals switches to social punishment P , it is cheaper to cooperate when

in doubt, leading back to [OC ,P ]. Depending on initial conditions, this results either in

infinite heteroclinic cycles or it eventually leads to a stable mixture of these four strategies

(Gaunersdorfer et al., 1991).

The case of counter-punishment

Experiments indicate that the option to punish others may lead to long and costly vendet-

tas between players (Nikiforakis, 2008; Denant-Boemont et al., 2007; Herrmann et al.,

2008). The option to retaliate punishment is not explicitly included in our model. A possi-

ble way to address this issue is to add a third stage to the game in which donors may choose

whether or not to punish their recipients. Such an additional counter-punishment-stage

allows for a wealth of new strategies and leads to a considerable increase in complexity.

However, a basic way to incorporate counter-punishment is to assume that punishment

is equally costly for both parties. This assumption models a situation in which counter-

punishment is a sure event. If γ = β, the minimum fine that acts as a deterrent (given by

Eq. (4.12)) becomes

βmin =
nc+ b

n− 1
. (4.16)

Only if fines exceed this threshold, it is optimal to cooperate in a population of social

punishers, P . Again, the condition β > βmin simplifies to the traditional condition β > c
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Strategy [i, j]
Donor’s strategy i

is stable if
Recipient’s strategy j

is stable if

Cooperation through punishment [OC , P ] β > βmin Always

Defection through laissez-faire [OD, N ] β > βmin β > µ
µ̄(n−1) (nb+ c)

Table 4.4: Conditions for evolutionary stability if γ = β.

Case µ ≤ 1
n+1 Case µ > 1
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Figure 4.4: Evolutionary stability in the case of γ = β. The left graph depicts
the case of low information (µ = 15%), where both [OC , P ] and [OD, N ] are stable if
β > βmin. The right graph describes the case of high information (µ = 60%); here
we can find an area where [OC , P ] is the only ESS. Other parameter values: c = 1,
n = 4.

for large group sizes. The respective conditions for evolutionary stability in the case

of γ = β are given in Tab. 4.4. Surprisingly, while counter-punishment still allows for a

stable [OC , P ]-population, the spiteful state [OD, S] becomes unstable. Intuitively, spiteful

punishment can only evolve because of the payoff mechanism, that is if punishment is more

costly for the target than it is for oneself. If counter-punishment is a sure event, then spite

loses its evolutionary advantage.

Fig. 4.4 presents the conditions for evolutionary stability in a β− b−diagram. We can

distinguish between two cases: If µ ≤ 1/(n+1) (i.e. if on average there is no player whose

reputation is known), then the area where [OD, N ] is an ESS coincides with the area where

[OC , P ] is an ESS. Only if µ > 1
n+1 these two areas differ. The more information about the

co-player’s strategy is available, the more easily a population evolves towards the social

[OC , P ]-state.
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Local versus classical replicator dynamics

It remains to show that the two representations for the local replicator equation, (4.8)

and (4.10), are equivalent. More specifically, we need to prove that the local replicator

dynamics for the game with payoff matrices A and B coincides with the classical replicator

dynamics for the game with modified payoff matrices Ã = A − (A + B)/(n + 1) and

B̃ = B − (A+B)/(n+ 1).

First, we calculate the modified payoff of a player with strategy [i, j] against a co-player

using strategy [k, l]:

π̃ij,kl =
ãil+b̃kj

2

=

(
ail−

ail+bil
n+1

)
+
(
bkj−

akj+bkj
n+1

)
2

=
ail+bkj

2 − ail+bkj
2(n+1) −

akj+bil
2(n+1)

= πij,kl − 1
n+1πij,kl −

1
n+1πkl,ij

(4.17)

Summing up over all possible co-players [k, l] thus leads to

π̃ij =
∑

k,l π̃ij,kl · xkl
=
∑

k,l πij,kl · xkl −
∑

k,l
1

n+1πij,kl · xkl −
∑

k,l
1

n+1πkl,ij · xkl
= πij − 1

n+1πij −
1

n+1π
T
ij

(4.18)

For the average payoff in the population we finally sum up over all strategies [i, j], leading

to
π̃e =

∑
i,j π̃ij · xij

=
∑

i,j πij · xij −
∑

i,j
1

n+1πij · xij −
∑

i,j
1

n+1π
T
ij · xij

= πe − 1
n+1π

e − 1
n+1π

e.

(4.19)

Hence we indeed end up with

xij [π̃ij − π̃e] = xij

[
πij −

n− 1

n+ 1
πe − 1

n+ 1
πij −

1

n+ 1
πT
ij

]
, (4.20)

which proves that the two representations for the local replicator dynamics, (4.8) and

(4.10), are equivalent.
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C Numerical simulations

The previous analysis suggests that under appropriate conditions, opportunism is able to

socialize punishment, which in turn promotes the evolution of cooperation. In order to

verify this prediction, we have run extensive numerical simulations. The protocol of the

simulations follows the lines of the well-known Moran process (Nowak et al., 2004). We

consider a finite population of size n = 160. Each individual of the population plays a

strategy [i, j] with i ∈ {AllC, OC , OD, AllD} and j ∈ {P, N, A, S}. In the initial pop-

ulation all 16 strategies are equally abundant: Each strategy is played by 10 individuals.

We assume that every individual plays against any other member of the population and

thereby obtains a payoff that is specified by (4.3) and (4.4).

Afterwards, an evolutionary strategy updating process takes place. Two players, say x

and y with payoffs πx and πy, are chosen randomly. Player x adopts the strategy of player

y with a probability that is an increasing function of the payoff difference πy − πx. A

frequently used parametrization of this transition probability px→y is the so-called Fermi-

rule (Blume, 1993; Szabó and Toke, 1998; Traulsen et al., 2006b):

px→y =
1

1 + exp [−s(πy − πx)]
(4.21)

The parameter s ≥ 0 denotes the imitation strength: For small s, a coin toss essentially

decides whether or not to imitate the role model. In the other limit s → ∞, player x

always imitates co-players that have a higher payoff. These two limits are usually referred

to as the case of weak and of strong selection, respectively.

Additionally we allow for mutations. In each time step, there is a positive probability

m > 0 that one member of the population is chosen randomly. This member is then

allowed to switch to a different strategy, with each of the 16 strategies having an equal

chance to be selected. In the numerical simulations we have assumed a mutation rate

m = 0.001.

We have presented a typical simulation run as Fig. 4.3 of the main text, showing the

first 10, 000 time steps of the stochastic process. Additionally, we may calculate with which

frequency a given strategy is played in the long run. For this reason, we have simulated

the above selection-mutation process over a period of 2·109 time steps (i.e., each of the 160

individuals may implement more than 107 strategy changes). Fig. 4.5 shows the resulting

average frequencies as a function of the selection strength s. We can roughly distinguish

between three different scenarios:
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Figure 4.5: Long-run frequencies for the Moran process with mutations. The left
graph shows which strategies are selected by the donors, whereas the right graph
presents the strategy choices of the recipients. Parameter values: c = γ = 1, b = 4,
β = 3, µ = 30%, m = 0.001 and population size 160.

(i) If selection is strong (s ≫ 1), then nearly all of the donors are opportunistic coop-

erators, whereas almost all recipients are social punishers.

(ii) For medium selection strength, (s ≈ 1), we still find that social punishment is the

most abundant strategy among recipients. For donors, we find a stable coexistence

of unconditional cooperators and opportunistic cooperators. In a population with-

out defectors, both strategies, AllC and OC , perform equally well. However, due to

mutations, a minority of defectors may persist in the population. In such a mixed

population, OC has a slight payoff advantage compared to AllC, but the selection

pressure is not strong enough to eliminate AllC completely. On average, the pop-

ulation consists to 2/3 of opportunistic cooperators and to 1/3 of unconditional

altruists.

(iii) Only if selection is weak (s ≪ 1) and game payoffs play a subordinate role on the

strategies that are played, cooperation falls behind: In such a case, all strategies

are played with almost equal shares, but only one out of four of the recipients’

strategies supports cooperation (namely P), whereas the other three actions N, A

and S implicitly promote defection.
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The influence of the parameters b, c, γ, β and µ on the results of the Moran process is

similar to their impact on the local replicator dynamics and we therefore omit a detailed

analysis. The mutation rate m has only a minor influence on the long-run frequencies as

long as mutations are sufficiently rare (m ≪ 1). High mutation rates lead to a situation

where all strategies are almost equally abundant; in this case, the results mirror the

findings that we have obtained for weak selection (s ≪ 1).

Overall, the results of the numerical simulations strongly support our analytical con-

clusions from the previous sections. If players have the opportunity to gain a reputation,

then social punishment is predominant among the population. This in turn promotes the

evolution of cooperation, provided that neither selection is too weak nor that mutations

are too frequent.



Chapter 5

A short note on equilibrium

notions and framing effects

Abstract

Empirical evidence suggests that the Nash equilibrium leads to inaccurate predictions of

human behaviour in a vast set of games. This observation has promoted the development

of new solution concepts like the quantal response equilibrium (QRE, see McKelvey and

Palfrey, 1995) or evolutionary equilibria that are based on the long-run performance of a

strategy (Antal et al., 2009; Ohtsuki, 2010). However, it is well-known that the QRE is

subject to framing effects: Duplicating a strategy affects the equilibrium predictions. Here

we show that the above mentioned evolutionary equilibria exhibit the same inconsistency.

Furthermore, we prove that such framing effects are inevitable if a game theoretic solution

concept depends differentiably on the payoffs. As a consequence, we argue that differen-

tiable equilibrium notions, while being of great help in analyzing well-specified games, are

unsuitable for theoretical modeling, where it is not clear which payoff matrix gives the

true representation of an economic interaction.

101
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5.1 Introduction

For any class of games, static or dynamic, with complete or incomplete information, it

is a simple task to create an example where the Nash equilibrium mispredicts human

behaviour, as shown for example in Goeree and Holt (2001). This holds true even for

the most simple games with only one rationalizable equilibrium, like in the traveler’s

dilemma introduced by Basu (1994). Suppose that two travelers, returning home from

their vacation, discover that the airline has lost their luggage. The airline asks both trav-

elers independently to make claims for compensation and, in order to prevent excessive

claims, determines that only the lower of both amounts will be paid. Additionally, it is

announced that if the claims are different, the person with the lower claim obtains some

reward R > 1, whereas the same amount R will be deducted from the other traveler’s re-

imbursement as a penalty. In case that only claims between $180 and $300 are accepted,

the Nash prediction is straightforward: In order to rake in the reward, it is always optimal

to undercut the co-player’s claim by one dollar. Consequently, the lower bound of $180

is the unique equilibrium. While this analysis holds true for any R > 1, simple intuition

suggests that subjects in the laboratory may try to coordinate on a higher claim if R is

comparably low.1 Indeed, this intuition is confirmed by experiments: For R = 5, around

80 % of the subjects opt for the maximum claim; only if R is sufficiently increased, claims

approach the Nash equilibrium outcome (Goeree and Holt, 2001). Seemingly, subjects in

these experiments do not strictly stick to best responses and do not necessarily eliminate

dominated strategies.

These observations are the starting point for several alternative equilibrium notions. In

this article we will review two distinct examples, the quantal response equilibrium (QRE)

of McKelvey and Palfrey (1995) and the evolutionary equilibrium described in Ohtsuki

(2010). Instead of considering traditional steplike best response correspondences, these

equilibrium notions assume that strategy choices are positively but imperfectly related

to payoffs.2 As a consequence, also dominated strategies may be played from time to

time, which in turn may affect equilibrium behaviour. Ironically, because these alternative

1As Kaushik Basu (1994) puts it, the strategy pair (”large”, ”large”) is a Nash equilibrium in ill-

defined categories; if a player is told that the other player will choose a large number and if the reward

R is neglectable, then the best reply is to choose a large number as well. This explanation bears some

similarity with the examples in Camerer and Fehr (2006), who describe under which conditions a minority

of irrational agents can trigger a majority of rational individuals to mimic the minority’s behaviour.
2The same idea has also been applied to some learning models, for example smooth fictitious play, see

Fudenberg and Levine (1998).
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equilibrium notions allow a more realistic description of human behaviour, they also have

a serious drawback: These equilibrium notions themselves are subject to framing effects.

Different representations of the same economic situation result in different predictions. In

particular, giving a strategy a second alias may affect the position of the equilibrium.

We proceed as follows: In the next section, we review the QRE and the evolutionary

equilibrium described in Ohtsuki (2010). We show how two seemingly equivalent games

can lead to diametrically opposed equilibrium predictions. While such framing effects

are well-known in the case of the QRE, they have not been previously reported for the

evolutionary equilibria. In Section 5.3 we give an unexpected sufficient condition for

such framing effects: If an equilibrium concept depends differentiably on the payoffs then

inconsistencies are inevitable.3 As a consequence it is argued in Section 5.4 that the QRE

and other differentiable equilibrium notions, although being of great help in analyzing

already specified strategic games, might be unsuitable for doing theory, where the true

representation of an economic problem is far from being clear.

5.2 Examples of equilibrium notions with framing effects

5.2.1 The quantal response equilibrium

The QRE was introduced by Richard D. McKelvey and Thomas R. Palfrey, first for games

in normal form (1995) and later also for extensive form games (1998). Goeree et al.

(2005) provide an axiomatic foundation. Since then, this concept was applied to various

economic settings, including the traveler’s dilemma (Capra et al., 1999) or coordination

games (Anderson et al., 2001). Typically, the QRE outplays the Nash equilibrium by far

when it comes to predict human behaviour in laboratory experiments.4 Remarkably, the

QRE can also be used to estimate the rationality of the subjects (McKelvey and Palfrey,

1995) and to which extent they believe in their co-player’s rationality (Weizsäcker, 2003).

For our purposes, it will be sufficient to consider the simplest case, a finite normal

form game between two players. The R-player chooses a row of the matrix M =
(
akl, bkl

)
,

3Roughly speaking, differentiability means that small changes of the payoffs lead to a small and pre-
dictable change of the equilibrium. Note that the Nash equilibrium concept does not satisfy this condition,
since small changes in the payoffs may completely change the best response correspondences.

4The overwhelming success is illustrated by the following quote of Camerer et al. (2004): Quantal
response equilibrium, a statistical generalization of Nash, almost always explains the deviations from Nash
and should replace Nash as the static benchmark to which other models are routinely compared.
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whereas the C-player chooses a column. As usual, players are allowed to randomize

between their pure actions; we denote by pR and pC the respective mixed strategy vectors.

For each player K ∈ {R,C}, we denote by uKi the expected payoff of K’s pure action i,

which of course depends on the co-player’s strategy p−K , that is uKi = uKi (p−K). A main

aspect of the QRE is that choice probabilities are positively but imperfectly related to

payoffs. According to the most commonly used parametrization of the QRE, the logit

rule, the probability to play action i is determined by the following stochastic reaction

function σ:

pKi = σ(uKi ) =
exp(λ · uKi )∑
j exp(λ · uKj )

(5.1)

The sum in the denominator ensures that the probabilities sum up to one. The pa-

rameter λ can be interpreted as a measure of rationality: λ = 0 means that actions are

chosen randomly from the set of possible alternatives, whereas for large λ the choice is

increasingly biased towards the strategy with the highest payoff. Note that as long as

λ < ∞, even dominated strategies get a positive weight. For analyzing data, the param-

eter λ is typically estimated using the maximum likelihood method. A logit equilibrium

is then defined as a fixed point of the map σ: A pair of mixed strategies p̂ = (p̂R, p̂C)

is an equilibrium if for both players K ∈ {R,C} and all their strategies i the following

condition holds:

p̂Ki = σ
(
uKi (p̂−K)

)
. (5.2)

Such equilibria always exist but need not to be unique. As λ goes to infinity, logit

equilibria approach Nash equilibria. Furthermore, the graph of all fixed points p̂ contains a

unique branch, starting at the centroid of the strategy simplex for λ = 0 and converging to

a unique Nash equilibrium as λ approaches infinity, implying that the logit equilibrium can

be applied to the problem of equilibrium selection. Since the stochastic reaction function

σ depends differentiably on the payoffs for λ < ∞, by the implicit function theorem the

same holds true for each branch of the graph of the logit equilibria.5

Let us illustrate the logit equilibrium with an example taken from Goeree and Holt

(2001). Consider the following coordination game in which players receive $1.80 for co-

ordinating on the high equilibrium and $0.90 if they coordinate on the low equilibrium.

Additionally, the column-player has an outside option that guarantees a safe payoff of

5As we will see in Section 5.3, the smooth dependence on the payoffs plays a key role. It is valid not
only for the logit equilibrium but for the QRE in general, since stochastic reaction functions are generally
assumed to be differentiable, see McKelvey and Palfrey (1995) resp. Goeree et al. (2005).
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Figure 5.1: The unique branch of the logit equilibrium for the coordination game
with one, respectively with two outside options (x = 160). a) In the game with one
outside option, the value of x is small enough to enable subjects to coordinate on the
high equilibrium. b) However, if the problem is represented differently, splitting the
safe option in two, players are predicted to coordinate on the low equilibrium.

$0.40:

L H S

L 90, 90 0, 0 x, 40

H 0, 0 180, 180 0, 40

This game has two pure Nash equilibria, (H,H) and (L,L), and the safe option is never

part of an equilibrium. Nevertheless, as shown in Goeree and Holt (2004), the outside

option has a deciding influence on coordination behaviour in behavioural experiments.

In particular, the exact value of x controls which strategies are chosen, with sufficiently

low values of x preferring the (H,H) equilibrium. Such an effect is correctly predicted

by the logit equilibrium but not by the Nash equilibrium, see Fig. 5.1a for an example

with x = 160: The unique branch of the logit equilibrium, starting in the center for λ = 0

converges to the high equilibrium in the limit of rational agents, λ → ∞. To illustrate that

the QRE is subject to framing effects, we consider the same game, but with the second

player having two (identical) outside options:

L H S1 S2

L 90, 90 0, 0 x, 40 x, 40

H 0, 0 180, 180 0, 40 0, 40

(5.3)

While this additional strategy has no effect on the Nash equilibria, it alters the set

of logit equilibria (Fig. 5.1b): Giving the outside option a second name leads the logit

equilibrium to select the low instead of the high equilibrium. Thus, the prediction of the
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logit equilibrium depends sensitively on the exact formulation of the alternatively possible

strategies.6

5.2.2 Evolutionary equilibria

Ohtsuki (2010) considers the following model of an evolutionary dynamics for an asym-

metric game: There are two populations, a population R of row-players and a population

C of column-players, with population size NR resp. NC . Each player in R chooses a row i

of the matrix M = (akl, bkl) ∈ Rmn, whereas each player in C chooses a column j. Then,

every subject in population R plays against every subject in the other population, leading

to the payoffs uRi and uCj , respectively. Subsequently, the fitness fi of a player with strat-

egy i is defined by an exponential transformation of its payoff, i.e. fK
i = exp(δuKi ) with

K ∈ {R,C}. The factor δ measures the importance of the game for the fitness of a player

and is usually called the strength of selection. If δ → 0, each agent has approximately the

same fitness, a case which is termed the weak selection limit.

After those interactions, one subject (of any of the two populations) is chosen at

random. This agent is allowed to change its strategy by imitating the strategy of another

player of the same population. It is assumed that strategies with higher fitness are more

likely to be adopted. More specifically, if NR
k denotes the current number of row-players

with strategy k, then the probability that a randomly chosen row-player imitates an agent

with strategy i is given by

pRi =
NR

i fR
i∑

k N
R
k fR

k

. (5.5)

Additionally, one allows mutations: With probability u, the agent does not imitate others,

but chooses randomly any of the available strategies.

6In the above example one might argue that the inconsistency can be avoided if identical columns
are omitted by definition. However, if the game is marginally modified such that there are no identical
columns, elimination of the additional column seems unjustified:

L H S1 S2

L 90, 90 0, 0 x, 40 x+ ε, 40
H 0, 0 180, 180 0, 40 0, 40

(5.4)

More fundamentally, it is typically not the subjects who construct payoff matrices to help them with their
decisions, but it is the researcher who uses such tools to describe the decision maker’s behaviour. How
should one decide which matrix gives the true representation of the decision problem? Similarly, to adapt
the argumentation of Kohlberg and Mertens (1986) on a related issue, elementary transformations, [like
giving a column a second alias], are irrelevant for correct decision making: after all, the transformed matrix
is just a different representation of the same decision problem, and decision theory should not be misled
by representation effects. To hold the opposite point of view is to admit that decision theory is useless in
real-life applications, where problems present themselves without a special formalism.
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Overall, this evolutionary dynamics results in a stochastic selection-mutation process

without absorbing states. In some special cases, it is possible to explicitly calculate the

invariant distribution of the process. One important case is the limit of weak selection, in

which the fitness of each individual is largely independent of its payoff in the game. As

a consequence, each strategy for population R is approximately played with probability

1/m, only slightly truncated by a term φi, which reflects the impact of the respective

strategy. If both populations are of equal size this term is, up to a multiplicative constant,

given by

φi = āi − ā, (5.6)

where āi denotes the average of all feasible payoffs for a player with strategy i, that is

āi =
∑

j aij/n, and ā denotes the average of all feasible payoffs for individuals in population

R, ā =
∑

i,j aij/(mn).7 Since this mutation-selection process does not settle down on any

stable state, the deviation terms φi take the role of the major characteristic of the system.

It is said that selection favors strategy i if φi is positive (Nowak, 2006a). Furthermore,

one may compare two different strategies with each other: Antal et al. (2009) call strategy

i more abundant than strategy k if φi > φk. In effect, this approach allows a ranking of

the strategies - based on the long run performance of each strategy in the above described

evolutionary process.

However, it is easy to show that this evolutionary equilibrium exhibits the same framing

effects as the QRE. In fact, calculating φ for the example in the previous section (for

x = 60) yields φR
L = −5 and φR

H = 5 in the case of representation (5.3), respectively

φR
L = 3.75 and φR

H = −3.75 in the case of representation (5.4). Hence, neither does the

absolute value of φR
L allow a consistent assessment across the different treatments, nor is

the order of H and L left invariant. In the case of weak selection and uniform mutations,

one can easily determine the reason for this inconsistency: While in the first representation,

the outside option is played by roughly 1/3 of all column-players, this fraction increases

to approximately 1/2 of the C-population if there are two outside options, which in turn

encourages row-players to choose strategy L.

7This expression for φi resembles the well-known replicator dynamics, where it is assumed that the
frequency of players with strategy i increases if the payoff ui exceeds the average payoff in the population
ū (see, for example Weibull, 1995). However, while the payoffs ui and ū may vary over time, depending
on the current state of population, the term φi is constant and does only depend on the payoff matrix.
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5.3 An Impossibility Result

Let us turn to the question whether it is possible to construct other equilibrium notions

(or other parametrizations of the QRE, respectively more general evolutionary equilibria)

that avoid the inconsistencies shown in the previous section. For simplicity, we focus on

two-player normal form games and identify each game Γ with its payoff matrix. For this

reason, denote by M =
{
(aij , bij) : aij , bij ∈ R

}
the set of all payoff matrices for normal

form games, and let Mk ⊂ M be the set of all payoff matrices that have exactly k rows

(i.e., that admit k pure strategies for the row-player).

Definition 1 (Assessment formula)

A game theoretic assessment is a function f : Mk → Rk.

One may interpret each entry of f(M) as the predicted equilibrium frequencies for the

row-player in the normal form game defined by the payoff matrix M .8 In particular, note

that the above definition of game theoretic assessments includes the logit equilibrium p̂

and the evolutionary assessment φ from the previous section.

In order to exclude framing effects, we demand that equivalent representations of a

game lead to the same assessments. Up to a renumbering of the strategies of the column-

player, we say that two matrices M, M̂ ∈ Mk are equivalent if they result in the same

matrix after deleting all columns that are a copy of a previous column. More formally,

M ∼ M̂ if for all columns j of M there is a column l in M̂ such that (aij , bij) = (âil, b̂il)

for all rows i (and vice versa, for all columns l in M̂ there is such a column j in M).

Obviously, this defines an equivalence relation on the set Mk for all k.

Definition 2 (Consistent assessment formulas)

Fix a k ≥ 2. An assessment formula f : Mk → Rk is called consistent if it has the

following properties:

(i) Non-manipulability: If M,K ∈ Mk and K ∼ M then f(K) = f(M).9

(ii) Validity: If the row-player’s strategy i is strictly dominated, then i cannot be optimal,

fi(M) < maxj fj(M).

8In this case one can restrict the image of the game theoretic assessment to the unit simplex ∆k instead
of Rk. Since equilibria need not to be unique, this interpretation requires that for each game one particular
equilibrium is selected out of the set of possible equilibria.

9A similar condition can be found, for example, in Milnor’s famous work on games against nature, see
Milnor (1951).
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Non-manipulability means that a consistent assessment is well-defined with respect to

the above equivalence relation, i.e. it respects that two matrices M, M̂ with M ∼ M̂

represent the same game. Validity excludes constant assessment formulas from being

considered. After these preparations, we are able to formulate the main result:

Theorem 3 (An impossibility theorem)

There is no assessment formula that is both, consistent and differentiable.

Proof. We show the case k = 2: Suppose there is such a consistent and differentiable

assessment f and consider the arbitrary but fixed matrix

M =

[
(a11, b11) (a12, b12)

(a21, b21) (a22, b22)

]
.

Let ∂f/∂αij denote the marginal change of the assessment if the row-player’s payoff in

the i-th row and the jth column is varied. The idea of the proof is as follows: Non-

manipulability implies that all partial derivatives ∂f/∂αij(M) are zero, which suggests

that the value of f(M) is independent of the values of aij . This in turn contradicts

validity. To show that the derivatives equal zero, we define the two matrices

M1(t) =

[
(a11 + t, b11) (a12, b12)

(a21, b21) (a22, b22)

]
and

M2(t) =

[
(a11 + t, b11) (a11 + t, b11) (a11 + t, b11) (a12, b12)

(a21, b21) (a21, b21) (a21, b21) (a22, b22)

]
.

M2(t) is obtained from M1(t) by doubling the first column two times. Note that M1(0) =

M . Next we define two functions that measure how the respective strategy assessments

vary with t, i.e. we define ui : R → Rk with ui(t) = f
(
Mi(t)

)
for i = 1, 2. Since

M1(t) ∼ M2(t) for all t, non-manipulability implies that u1(t) = u2(t). In particular,

the derivatives for t = 0 coincide:

u′1(0) =
∂f

∂α11
(M) =

∂f

∂α11

(
M2(0)

)
+

∂f

∂α12

(
M2(0)

)
+

∂f

∂α13

(
M2(0)

)
= u′2(0). (5.7)

Therefore, since we want to show ∂f/∂α11(M) = 0, we have to compute the expression

on the right hand’s side of (5.7). For this reason, we define two new matrices:



110 CHAPTER 5. EQUILIBRIUM NOTIONS AND FRAMING EFFECTS

M3(t) =

[
(a11, b11) (a11, b11) (a11 + t, b11) (a12, b12)

(a21, b21) (a21, b21) (a21, b21) (a22, b22)

]
and

M4(t) =

[
(a11, b11) (a11 + t, b11) (a11 + t, b11) (a12, b12)

(a21, b21) (a21, b21) (a21, b21) (a22, b22)

]
.

Note that these two matrices have the same reduced normal form and hence are equivalent.

Additionally, they fulfill M3(0) = M4(0) = M2(0). If we again define functions ui(t) =

f
(
Mi(t)

)
for i = 3, 4, we may conclude that

u′3(0) =
∂f

∂α13

(
M2(0)

)
=

∂f

∂α12

(
M2(0)

)
+

∂f

∂α13

(
M2(0)

)
= u′4(0), (5.8)

and therefore ∂f/∂α12

(
M2(0)

)
= 0. With a similar calculation one can show that the other

two expressions on the right hand’s side of (5.7) , ∂f/∂α11

(
M2(0)

)
and ∂f/∂α13

(
M2(0)

)
,

vanish as well. Therefore, we indeed end up with ∂f/∂α11(M) = 0. A symmetry argument

then immediately implies that ∂f/∂αij(M) = 0 for all i and j. As a consequence, the

assessment f(M) does not vary in the row-player’s payoffs, which leads to a contradiction

with the validity of the assessment.

Therefore, we must conclude that there is no reasonable equilibrium concept that is

both, non-manipulable and smooth. If we interpret the value of fi(M) slightly differently,

as an indicator of the performance of strategy i, then the previous theorem states that is

impossible to measure the success of a strategy with a differentiable formula.10

In particular, the inconsistencies of the evolutionary assessment φ cannot be simply

attributed to the assumption of weak selection. Even in the case of some positive but finite

selection pressure δ, the stationary distribution in Ohtsuki (2010) depends differentiably

on the entries of the payoff matrix.

5.4 Discussion

Explaining human behaviour with game theoretic models faces at least two difficulties.

Firstly, the modeller does usually not know the exact subjective utilities of the agents;

10Note that the above theorem is sharp in the sense that there exist assessment formulas that are con-
sistent and (Lipschitz-)continuous. As an example, consider the assessment that assigns to each strategy i
its maximum attainable payoff, fi(M) = maxj aij .
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instead there might be only some rough estimates. In order to obtain robust results, one

might therefore require that the output of the model depends differentiably on the input

data. Secondly, in order to set up the model, the researcher needs to choose one specific

description of reality, out of many alternatively possible descriptions. One such choice

might entail, for example, to determine whether a certain player has only one outside

option or several similar options. In the best case - if the methods are consistent in the

sense defined above - the exact representation of the game does not affect the qualitative

results.

However, as we have shown, the two requirements of consistency and differentiability

are incompatible. If the results of a game theoretic equilibrium notion depend differen-

tiably on the payoffs, then these results also depend on the representation. In this sense,

solution concepts for games in strategic form are necessarily imperfect. Therefore any game

theoretic concept that can be applied to normal form games faces the choice whether it

violates one requirement or the other. The matrix presented as Tab. 5.1 attempts to give

an overview over some choices that were made. It classifies some popular game theoretic

tools according to whether they violate the smooth dependence on payoffs condition or the

non-manipulability condition. Of course, such a list is notoriously incomplete and each

cell of this matrix might contain several other elements - with the exception of the cell

that corresponds to the differentiable and consistent concepts.

A natural question is then to ask which of the two requirements is the more indis-

pensable one. Differentiable equilibrium notions, and in particular the QRE, are quite

successful in predicting human behaviour for normal form games - once it is known which

representation of the game the subjects choose. In laboratory experiments this is certainly

no problem, since it may be assumed that the players’ internal model of the game is close

to the instructions that are provided by the experimenter (in particular it is likely that

all subjects have a similar internal representation). From a behavioural point of view,

the framing effects presented in the previous sections even seem to be a desirable feature

- after all it is well documented that humans are subject to framing effects as well.11

Psychologically, it is not unreasonable to expect that a duplication of the outside option

increases the number of L players in game (5.3). The outside options may act as a coor-

dination device: Because both options point to the low equilibrium, this equilibrium may

be interpreted as a focal point (Schelling, 1960).

However, if it comes to explain human behaviour in the field it is not at all clear how

11For the related question whether subjects in dynamic games play differently if confronted with different
game trees that represent formally equivalent games, see McKelvey and Palfrey (1998).
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Differentiable concepts Non-differentiable concepts

C
on

si
st
en
t
co
n
ce
p
ts

Nash equilibrium (Nash, 1950)

Refinements of the Nash equilibrium

Perfect equilibrium (Selten, 1975)
Proper equilibrium (Myerson, 1978)

Approaches that apply the Nash equilib-
rium to transformed utilities

Fairness model of Fehr and Schmidt (1999)

Learning processes for which Nash equilib-
ria are rest points

Fictitious play (Brown, 1951)
Replicator dynamics (Taylor and
Jonker, 1978)
Best response dynamics (Gilboa and
Matsui, 1991)

In
co
n
si
st
en
t
co
n
ce
p
ts

Behavioural equilibrium notions

QRE (McKelvey and Palfrey, 1995)
Level-k reasoning model (Stahl and Wil-
son, 1995)
Noisy introspection (Goeree and Holt, 2004)

Smooth learning processes

Exponential fictitious play (Fudenberg and
Levine, 1998)

Long run equilibria for evolutionary
processes with uniform mutations and
smooth selection

Moran process (Antal et al., 2009; Ohtsuki,
2010)

Long run equilibria for evolutionary pro-
cesses with uniform mutations and best-
reply selection

Moran process with strong selection (Fu-
denberg et al., 2006)

Table 5.1: A classification of game theoretic concepts
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individuals perceive their interactions, let alone that these perceptions are comparable

across subjects. For theoretical modeling, the above described framing effects are unde-

sirable (or even dangerous). If an equilibrium concept leads to predictions that depend on

the representation of the game (which is chosen by the modeler himself), then the results

will be somewhat arbitrary in the best case and manipulable in the worst.

A possible solution to avoid framing effects in differentiable equilibrium notions is

to consider the equivalence class of a game. That is, instead of calculating the logit

equilibrium p̂λ(M) of a game M one may calculate the set of possible logit equilibria

p̂λ([M ]) for all games that are equivalent to M ,

[M ] =
{
M̂ ∈ Mk

∣∣ M̂ ∼ M
}
. (5.9)

However, in this case, the logit equilibrium loses its ability to select a unique Nash equi-

librium in the limit of rational agents, λ → ∞. Instead, most of the Nash equilibria of

a game M (including all strict Nash equilibria) are predictable by the unique branch of

p̂λ(M̂) - if only the game is appropriately framed. Therefore, it seems to me that the

solution concept of the Nash equilibrium is (almost, see Selten, 1975; Myerson, 1978) as

good as it gets.
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S. Gächter, E. Renner, and M. Sefton. The long-run benefits of punishment. Science, 322:

1510–1512, 2008.

J. Gale, K. G. Binmore, and L. Samuelson. Learning to be imperfect: The ultimatum

game. Games Econ. Behav., 8:56–90, 1995.

A. Gardner and S. A. West. Cooperation and punishment, especially in humans. Am.

Nat., 164:753–764, 2004a.

A. Gardner and S. A. West. Spite and the scale of competition. J. Evol. Biol., 17:

1195–1203, 2004b.

A. Gaunersdorfer. Time averages for heteroclinic attractors. SIAM J. Appl. Math., 52:

1476–1489, 1992.



BIBLIOGRAPHY 119

A. Gaunersdorfer, J. Hofbauer, and K. Sigmund. On the dynamics of asymmetric games.

Theor. Popul. Biol., 39:354–357, 1991.
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Zusammenfassung

Public good games dienen als Modell für den Konflikt zwischen Allgemeinwohl und in-

dividuellem Vorteil: Während der Erfolg eines gemeinschaftlichen Projekts oft vom Ein-

satz aller Beteiligten abhängt, kann für den Einzelnen der Anreiz zum Trittbrettfahren

bestehen. In dieser Dissertation untersuche ich das Zusammenspiel von Kooperation und

Anreizsystemen mit Hilfe der evolutionären Spieltheorie. Es wird gezeigt, dass Belohnun-

gen zwar individuelle Kooperation anstoßen können, dass aber Bestrafungsmöglichkeiten

notwendig sind um die Zusammenarbeit aufrechtzuerhalten. Dabei liefert die individu-

elle Reputation der Spieler einen Anreiz, die Einhaltung von Normen zu überwachen

und Abweichungen zu sanktionieren. Im Gegensatz zu früheren Studien werden Bestra-

fungsmechanismen jedoch nicht zur Stabilisierung von beliebigen Normen und Verhal-

tensvorschriften verwendet. Stattdessen werden Sanktionen gezielt dazu eingesetzt um

die soziale Wohlfahrt zu verbessern.

In dieser Dissertation stelle ich auch einige mathematische Werkzeuge und methodische

Konzepte vor, die bei der Untersuchung von public good games hilfreich sind. Dazu wird

die Theorie der Rollenspiele erweitert und eine modifizierte Replikatorgleichung eingeführt.

Unter dieser lokalen Replikatordynamik können sich selbst dominierte Strategien durch-

setzen, falls diese zu einem relativen Vorteil führen.
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