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“I believe in intuition and inspiration. Imagination is more important than knowledge. 

For knowledge is limited, whereas imagination embraces the entire world, stimulating 

progress, giving birth to evolution. It is, strictly speaking, a real factor in scientific 

research.” 

Albert Einstein 
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1.1. Summary 
 

Mitochondria are double membrane-bound organelles controlling several essential cellular 

processes like ATP production, apoptosis, ion homeostasis, volume control, and many other 

metabolic pathways. To fulfill these functions, mitochondria establish an inside negative 

membrane potential (Δψ) across the inner membrane, which is maintained by the ejection of 

H+ by redox pumps of the electron transport chain. In presence of high abundance of K+ and 

other cellular cations like Na+ and Li+, the inside negative Δψ is a strong driving force for an 

inwardly directed ion flux. To maintain mitochondrial ion homeostasis and osmolarity, excess 

cation fluxes have to be counteracted by cation/proton antiporters, as proposed half a century 

ago by Nobel laureate Peter Mitchell. Solid data showed that the Mdm38p/Letm1 family of 

single membrane spanning, inner mitochondrial membrane proteins is essential for 

mitochondrial K+/H+ exchange. Deletion of yeast MDM38 results in a severe respiratory 

growth defect, mitochondrial K+ overload, almost abolished mitochondrial K+/H+ exchange 

activities, depolarization of the mitochondrial membrane, drastic mitochondrial swelling, and 

fragmentation of the mitochondrial reticulum. Though a role of MDM38 in controlling 

mitochondrial K+/H+ exchange is undoubted, the molecular identity of the exchanger per se 

still remains elusive.  

In this research project we focused on the characterization of proteins involved in 

mitochondrial cation/proton exchange, ultimately aiming at the identification of the actual 

mitochondrial K+/H+ exchanger. 

In a genome-wide screen for multicopy suppressors of the mdm38∆ mutant, we identified the 

Mdm38p homolog Mrs7p and the unrelated Ydl183cp as strong suppressors of impaired 

mitochondrial K+/H+ exchange. Triple deletion mutants exhibited completely abolished K+/H+ 

exchange, reduced cellular viability, and autophagic degradation of defective mitochondria.  

Moreover, both suppressors and Mdm38p were shown to be components of high molecular 

weight protein complexes. Accordingly, we established a working hypothesis based on the 

idea of Mdm38p functioning as an auxiliary protein directly interacting with the unknown 

K+/H+ exchanger. By biochemical analyses based on affinity chromatography, we identified 

the putative interaction partners of Mdm38p: the essential mitochondrial chaperon Ssc1p and 

the ergosterol biosynthetic enzyme Erg5p. However, we failed to identify a protein with 

several transmembrane helices as expected features for the K+/H+ exchanger. Nevertheless, 

we provide strong evidence for a direct link between membrane sterol composition, 

mitochondrial ion homeostasis, membrane fusion, and cellular viability. Contrary to our initial 
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consideration, data presented here strongly suggest that Mdm38p itself may represent the 

exchanger. This would be the first known exchanger containing a single membrane spanning 

helix. 

In a second approach, we performed a genome-wide synthetic genetic array analysis of the 

mdm38∆ mutant, and identified six suppressor mutants restoring respiratory growth and 

mitochondrial morphology in the double mutant. Currently we can only speculate how these 

suppressors, with various cellular functions in transcriptional regulation or cytoskeletal 

organization, may restore the growth and morphology phenotype. Based on these findings 

there are exciting experiments ahead. 
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1.2. Zusammenfassung 
 

Mitochondrien sind von einer Doppelmembran umschlossene Organellen, die verschiedene 

essentielle Zellprozesse kontrollieren, wie etwa ATP-Produktion, Apoptose, 

Ionenhomöostase, Volumenkontrolle und viele weitere Stoffwechselwege. Um diese 

Funktionen zu erfüllen, erzeugen Mitochondrien ein Membranpotential (Δψ) an der inneren 

Membran. Aufgrund des Ausstoßes von H+ durch Redoxpumpen der Elektronentransportkette, 

wird dieses Membranpotential, welches innen negative ist, aufrecht erhalten. In Anwesenheit 

von hohen Mengen an K+ und anderen zellulären Kationen wie Na+ und Li+, bewirkt das 

innen negative Δψ einen starken Ioneneinstrom. Um die mitochondriale Ionenhomöostase und 

Osmolarität aufrecht zu erhalten, muß diesem Ionenüberschuss mittels Kationen/Protonen 

Austauschern entgegengewirkt werden, wie es von Nobelpreisträger Peter Mitchell vor einem 

halben Jahrhundert vorgeschlagen wurde. Bisherige Daten konnten eindeutig zeigen, dass die 

Mdm38p/Letm1 Familie - Proteine der inneren Mitochondrienmembran mit einer 

Transmembranhelix - für den mitochondrialen K+/H+ Austausch essentiell ist. Die Deletion 

des MDM38 Gens in der Hefe führt zu schwerwiegendem atmungsdefekten Wachstum, 

mitochondrialer K+ Überladung, fast vollständig fehlender K+/H+ Austausch-Aktivität, 

Depolarisation der Mitochondrienmembran, sowie starker Schwellung und Fragmentierung 

des mitochondrialen Netzwerkes. Obwohl eine tragende Funktion von MDM38 in der 

Kontrolle des mitochondrialen K+/H+ Austausches nicht bezweifelt werden kann, ist die 

molekulare Identität des eigentlichen Austauschers weiterhin unbekannt.  

In diesem Forschungsprojekt konzentrierten wir uns auf die Charakterisierung von Proteinen, 

welche im mitochondrialen Kationen/Protonen Austausch involviert sind, mit dem 

letztendlichen Ziel der Identifizierung des tatsächlichen mitochondrialen K+/H+ Austauschers. 

In einer genomweiten Suche nach Überexpressions-Suppressoren der mdm38∆ Mutante 

identifizierten wir Mrs7p, ein Mdm38p homologes Protein, sowie das nicht verwandte Protein 

Ydl183cp, als starke Suppressoren des beeinträchtigten mitochondrialen K+/H+ Austausches. 

Dreifach deletierte Mutanten besaßen keinerlei K+/H+ Austausch-Aktivität und zeigten 

reduzierte zelluläre Lebensfähigkeit sowie autophagischen Abbau defekter Mitochondrien. 

Desweiteren sind Mdm38p und beide Suppressoren Komponenten von hochmolekularen 

Proteinkomplexen. Demzufolge entwickelten wir eine Arbeitshypothese, basierend auf der 

Idee, dass Mdm38p als ein Hilfsprotein direkt mit dem unbekannten K+/H+ Austauscher 

interagiert. Durch biochemische Analysen mithilfe von Affinitätschromatographie 

identifizierten wir mögliche Interaktionspartner von Mdm38p: das essentielle mitochondriale 
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Chaperonprotein Ssc1p und das Ergosterol biosynthetische Enzym Erg5p. Hingegen gelang es 

uns nicht ein Protein mit mehreren Transmembranhelices zu identifizieren, was einem 

erwarteten Merkmal eines K+/H+ Austauschers entsprechen würde. Nichtsdestotrotz legen 

unsere Resultate einen engen Zusammenhang zwischen der Membransterol-

Zusammensetzung, mitochondrialer Ionenhomöstase, Membranfusion und zellulärer 

Lebensfähigkeit nahe. Entgegen unserer ursprünglichen Annahme, sprechen die hier 

gezeigten Daten stark dafür, dass Mdm38p selbst den gesuchten Austauscher darstellt. Dies 

wäre der erste bekannte Austauscher mit nur einer Transmembranhelix. 

In einem zweiten Ansatz führten wir eine genomweite synthetisch-genetische Analyse der 

mdm38∆ Mutante durch. Dabei identifizierten wir sechs Suppressormutanten, die das 

atmungsabhängige Wachstum und die mitochondriale Morphologie in der Doppelmutante 

wiederherstellten. Momentan können wir nur darüber spekulieren wie diese Suppressoren, 

welche in verschiedenen zellulären Funktionen – von transkriptioneller Regulation bis zu 

zytoskelettaler Organisation – involviert sind, den Wachstums- und Morphologie-Phänotyp 

wiederherstellen. Basierend auf diesen Erkenntnissen liegen spannende Experimente vor uns. 
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2. Introduction 
 

Mitochondria are double-membraned subcellular organelles that have kept part of their own 

genome, reflective of their endosymbiotic origin. They are present in all eukaryotic cells, 

except mature erythrocytes. The most prominent mitochondrial function is to supply the cell 

with energy in the form of ATP. The central role of mitochondria in this process is the 

conversion of pyruvate, the end product of glycolysis, into acetyl CoA followed by ATP 

synthesis via the citric acid cycle (also known as tricarboxylic acid cycle or Krebs cycle) and 

oxidative phosphorylation. Furthermore, mitochondria are critical for a series of other 

processes including metabolic biosynthesis, cell signaling, cell death decisions, as well as ion 

buffering and storing functions (Arino et al., 2010; Bernardi, 1999; Butow & Avadhani, 2004; 

Danial & Korsmeyer, 2004; McBride et al., 2006; Szabadkai & Duchen, 2008).  

  

2.1. Mitochondrial morphology 
 

Mitochondria are highly dynamic organelles exhibiting a complex and plastic morphology. In 

several species and cell types, mitochondria do not exist as individual, distinct subcellular 

compartments, but form networks of elongated, interconnected tubules frequently changing 

size and shape (Bereiter-Hahn & Voth, 1994; Egner et al., 2002; Hoffmann & Avers, 1973; 

Yoon et al., 2007). Moreover, association with microtubules and actin filaments allows 

movement of mitochondria along cytoskeletal tracks (Bereiter-Hahn & Voth, 1994; Ligon & 

Steward, 2000; Nunnari et al., 1997; Romagnoli et al., 2007). Several studies during recent 

years revealed that mitochondrial morphology and network connectivity is regulated by two 

opposing events, fission and fusion, which are critical for mitochondrial function (Bleazard et 

al., 1999; Chan, 2006; Sesaki & Jensen, 1999). The fact that most fission and fusion proteins 

are conserved from yeast up to human (Legros et al., 2002; Malka et al., 2005) underscores 

the importance of mechanisms regulating mitochondrial integrity and functionality. Moreover, 

disturbances in mitochondrial fission and fusion were shown to be implicated in apoptosis by 

the release of cytochrome c (Karbowski & Youle, 2003; Lee et al., 2004; Olichon et al., 2003) 

and to be involved in neuromuscular and neurodegenerative diseases (Alexander et al., 2000; 

Baloh et al., 2007; Chen & Chan, 2009; Shy, 2004; Song et al., 2011).   
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Mitochondria are bound by two membranes which differ in their lipid and protein 

composition (Zinser et al., 1991). The outer mitochondrial membrane (OMM) contains 

integral membrane proteins forming beta-barrel pores called porins, also known as VDAC 

(voltage-dependent anion channel). Mitochondrial porins show a similar architecture as the 

outer membrane porins of Gram-negative bacteria and permit passive diffusion of 

nucleosides, sugars, ions, and other solutes up to a size of ~ 600 Da (Menze et al., 2005; 

Nikaido & Rosenberg, 1983; Zeth & Thein, 2010). Accordingly, the OMM does not represent 

a barrier for the exchange of cations between the cytosol and the intermembrane space.  

 

                                          
 

Figure 1: Schematic representation of the mitochondrial structure 

Figure adapted from http://micro.magnet.fsu.edu/ 

 

 

In contrast to the OMM, the inner mitochondrial membrane (IMM) is highly folded into 

cristae (Figure 1), thereby dramatically increasing its surface (Garlid & Paucek, 2003). 

Moreover, the IMM contains high amounts of cardiolipin, a lipid typically found in bacterial 

plasma membranes (Schagger, 2002). Importantly, the IMM is highly impermeable to 

virtually all molecules and ions, which enter the mitochondrial matrix mostly via integral 

membrane transporters. This impermeability is an essential necessity for the establishment of 

a charge separation at the IMM, and maintaining the electrochemical gradient built by the 

proton pumps of the electron transport chain (Bernardi, 1999). 
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2.2. Mitochondrial ion homeostasis and volume control 
 

Proton ejection together with the low passive permeability of the IMM results in the 

formation of a pH gradient (ΔpH) of about 0.3 units and an inside negative membrane 

potential (Δψ) of approximately -180 mV (Garlid & Paucek, 2003). In combination, this 

proton electrochemical gradient (Δp), also known as proton motive force, provides the energy 

needed for various essential mitochondrial processes, like the import of nuclear encoded 

proteins, ion transport and ATP synthesis by the F0/F1 ATPase (Bernardi, 1999). 

Although the establishment of an electrochemical gradient is indispensable for mitochondrial 

energy conservation, it simultaneously creates the problem of maintaining ion homeostasis 

and volume control. The inside negative Δψ highly favors matrix cation accumulation, either 

by transporter mediated uptake or diffusive cation influx (Garlid & Paucek, 2003). In the case 

of K+, which has a high cytosolic concentration of ~ 150 mM, the electrochemical equilibrium 

inside mitochondria would be reached at 150 M according to the Nernst equation (Azzone et 

al., 1977; Bernardi, 1999). In contrast to the low permeability of the IMM to ions and protons, 

it is highly permeable to water (Garlid & Paucek, 2003). Thus, changes of mitochondrial 

cation concentration caused by net uptake or loss of K+, which moves together with water, 

subsequently lead to osmotic swelling or shrinkage of the organelle (Bernardi, 1999). Facing 

the high intracellular concentration of K+ and Na+, fluxes of these osmotically active cations 

have to be tightly regulated to maintain mitochondrial osmolarity and to avoid rupture of the 

organelle due to excessive swelling. Accordingly, already in 1961 Peter Mitchell postulated 

the existence of cation/proton antiporters that permit the electroneutral extrusion of cations 

out of the matrix, driven by the electrochemical proton gradient (Mitchell, 1961; Mitchell, 

1966).   

On the one hand, a direct demonstration of electroneutral cation/proton exchange was 

complicated by the existence of additional transport systems for cations and protons in the 

IMM. On the other hand, researchers took advantage of the use of ionophores and their 

substrate specific transport properties. Moreover, determination of cation transport based on 

changed light scattering of isolated mitochondria upon volume change (passive swelling) 

turned out to be a valuable tool for various transport assays (Azzone et al., 1976; Blondin et 

al., 1969). 
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2.3. Mitochondrial cation/proton exchange 
 

Initial experiments to clarify the existence of mitochondrial cation/proton exchange systems 

were performed with isolated, non-respiring mammalian mitochondria in presence of isotonic 

potassium acetate (KOAc) and sodium acetate (NaOAc) media (Mitchell & Moyle, 1969). 

Due to the high permeability of the IMM to water and also to the protonated form of acetic 

acid (HAc), exchangers were expected to catalyze matrix accumulation of K+ or Na+ in 

exchange for H+ and to cause mitochondrial swelling, which can be followed by decreased 

absorbance (Azzone et al., 1976; Bernardi, 1999; Blondin et al., 1969). Interestingly, 

mitochondria treated with NaOAc exhibited fast swelling, whereas incubation in KOAc 

resulted only in marginal swelling. Addition of the exogenous electroneutral K+/H+ exchanger 

nigericin, which specifically acts on the IMM (Kovac et al., 1982a), caused fast swelling in 

KOAc-based medium (Figure 2). In contrast, yeast mitochondria were found to swell in 

presence of both KOAc and NaOAc, suggesting that mammalian mitochondria possess an 

active Na+/H+ exchanger and additionally a latent or inactive K+/H+ exchange system, 

whereas yeast is supposed to have only an unspecific mitochondrial cation/proton exchanger 

(Cockrell, 1973; Douglas & Cockrell, 1974; Nakashima & Garlid, 1982; Welihinda et al., 

1993).  

 

Figure 2: Nigericin (Nig)-induced K+ fluxes in acetate medium 

The electroneutral K+/H+ exchanger nigericin causes fast swelling of non-respiring mitochondria. K+ 

uptake is followed by rapid diffusion of acetic acid (HAc), resulting in KOAc accumulation and 

swelling due to water influx. The mitochondrial volume increase can be followed by decreased light 

scattering. Figure adapted from (Bernardi, 1999). 

K+
Nig

Ac- + H+ 

H+ + Ac-               HAc 

Nig

swelling

time
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Importantly, mitochondrial swelling only occurs if K+ and H+ fluxes are coupled. Addition of 

either the protonophore carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) or the 

K+- specific ionophore valinomycin alone does not cause swelling, as charge compensation is 

inhibited due to the low permeability of the IMM to K+ and H+. Only upon addition of both 

ionophores fast swelling takes place (Figure 3), similar to nigericin-treated mitochondria 

(Azzone et al., 1976; Bernardi, 1999; Douglas & Cockrell, 1974; Mitchell & Moyle, 1969). 

 

 
 

 

Figure 3: Passive swelling is dependent on coupled K+ and H+ fluxes 

Addition of the protonophore FCCP or the K+ ionophore valinomycin (Val) alone does not cause 

swelling of deenergized mitochondria due to the low permeability of the IMM to ions. Fast swelling is 

only observed after addition of both ionophores which causes a process of electroneutral K+/H+ 

exchange, resulting in net uptake of KOAc. Figure adapted from (Bernardi, 1999). 

 

Principally, swelling experiments proved successful to confirm the presence of mitochondrial 

cation/proton exchange systems. However, in contrast to the Na+/H+ exchanger, existence of 

the K+/H+ exchanger was questioned due to its low activity. Subsequent studies revealed that 

the K+/H+ exchanger has to be activated by depletion of the mitochondrial matrix for divalent 

cations. Treatment of mitochondria with the Me2+/2H+ exchanger A-23187 (Reed & Lardy, 

1972) and EDTA highly increased KOAc-induced mitochondrial swelling. Initially, this 

finding suggested a direct contribution of A-23187 to K+ transport, but additional studies 

showed that activation of K+/H+ exchange was likely caused by extrusion of matrix Mg2+ 

(Azzone et al., 1978; Dordick et al., 1980; Duszynski & Wojtczak, 1977). 

K+

Ac- + H+ 

              HAc 

swelling 

time 

             FCCP 

              Val 

              FCCP 

             Val              FCCP 

             Val 
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Figure 4: Mitochondrial K+/H+ exchange is electroneutral and activated by matrix Me2+ 

depletion 

Under low K+ conditions, valinomycin treatment of energized mitochondria causes K+ influx driven by 

the inside negative Δψ. The outside K+ concentration ([K+]o) decreases to a new steady-state. Addition 

of A-23187 activates the K+/H+ exchanger (KHE), causing K+ efflux until a new steady-state 

establishes that cannot be changed by further addition of A-23187. In contrast, subsequent treatment 

with valinomycin or nigericin causes K+ influx and efflux, respectively. ETC, electron transport chain; 

Figure adapted from (Bernardi, 1999; Dordick et al., 1980).   

 

Anyway, these experiments could not answer the question if K+ and H+ fluxes were mediated 

by the proposed electroneutral K+/H+ exchanger or by coupled uniport processes as shown in 

Figure 2 and 3, respectively. This was finally accomplished by a swelling experiment using 

energized mitochondria (Figure 4). Addition of valinomycin under conditions of low K+ leads 

to K+ accumulation, driven by the inside negative Δψ, until outside K+ has reached a new 

steady-state concentration. Treatment with A-23187 causes net K+ efflux until a new steady-

state is reached, which is reflective of K+ influx upon valinomycin treatment and K+ efflux 

driven by the activated K+/H+ exchanger. This steady-state cannot be disturbed by subsequent 

addition of A-23187, suggesting that A-23187 does not transport K+. In contrast, further K+ 

efflux and uptake is provoked by nigericin and valinomycin treatment, respectively. Together, 

these findings clearly show that A-23187 activated an endogenous, electroneutral K+/H+ 

exchanger facilitating K+ extrusion against the K+ electrochemical gradient (Bernardi, 1999; 

Dordick et al., 1980; Shi et al., 1980). 
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2.4. The molecular identity of the mitochondrial cation/proton 

exchangers 
 

Today it is generally accepted that mammalian mitochondria possess two distinct 

cation/proton exchange systems (Nakashima & Garlid, 1982), a Na+ (Li+)-specific Na+/H+ 

antiporter (Mitchell & Moyle, 1969) that does not transport K+, Rb+ or Cs+, and an unspecific 

cation/proton exchanger transporting all alkali cations (Na+, K+, Li+, Rb+ and Cs+). 

Considering the high cytosolic concentration of K+, this unspecific antiporter primarily 

exchanges K+ for H+ and therefore is designated as a K+/H+ antiporter (Garlid & Paucek, 

2003). Although the transport properties of both systems have been extensively studied, the 

molecular identity of the respective proteins is still unclear.  

Studies aiming at the identification of the exchanger proteins were highly supported by the 

use of pharmacological inhibitors. The Na+/H+ exchanger was found to be reversibly inhibited 

by amiloride analogs (Brierley et al., 1989). In contrast, the K+/H+ exchanger is reversibly 

inhibited by amphiphilic amines (e.g. quinine, propranolol) and irreversibly inhibited by 

dicyclohexylcarbodiimide (DCCD) after matrix Mg2+ depletion (Beavis & Garlid, 1990; 

Brierley et al., 1994). Although DCCD, a carboxylic group interacting compound, cannot be 

considered a K+/H+ exchanger-specific inhibitor, binding of radiolabeled DCCD enabled 

purification of an 82 kDa protein from mammalian mitochondria (DiResta et al., 1986; Martin 

et al., 1984). When reconstituted into liposomes, this protein exhibited transport properties 

expected for the K+/H+ exchanger and was inhibited with quinine and DCCD (Li et al., 1990). 

However, identification of the corresponding gene encoding this protein failed.  

Results on the molecular nature of the mammalian mitochondrial Na+/H+ exchanger are still 

controversial and their interpretation is complicated by the presence of various protein 

isoforms and cell type-specific expression patterns. Initially, Na+/H+ exchange activity was 

attributed to a partially purified and liposome reconstituted 59 kDa protein (Garlid et al., 

1991). Later, human Nhe6 was reported to function as the Na+-specific mitochondrial Na+/H+ 

exchanger (Nass et al., 1997; Numata et al., 1998). However, subsequent studies showed that 

Nhe6 rather represents an endosomal Na+/H+ exchanger (Brett et al., 2002; Ohgaki et al., 

2010). Finally, mammalian Nha2, which shows sequence homology to the Escherichia coli 

Na+/H+ exchanger NhaA (Brett et al., 2005a), was characterized as a Na+/H+ exchanger 

exhibiting subcellular localization at the plasma membrane, mitochondria, late endosomes, 

and lysosomes, dependent on the cell type investigated (Battaglino et al., 2008; Fuster et al., 

2008; Hofstetter et al., 2010; Xiang et al., 2007). Clearly, further studies will be needed to 
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unequivocally elucidate the identity of the mammalian Na+-specific mitochondrial Na+/H+ 

exchanger.  

As mentioned above, swelling experiments suggest that yeast mitochondria possess only an 

unspecific mitochondrial cation/proton exchanger, transporting all alkali metal cations 

(Welihinda et al., 1993), whose identity still remains to be determined. Surprisingly, 

mitochondrial Na+/H+ exchange was initially assigned to Nhx1p, which shows sequence 

homology to human Nhe6. Yeast cells deleted for NHX1 exhibited abolished uptake of 22Na+ 

from acetate medium (Numata et al., 1998). Besides Na+, Nhx1p is supposed to mediate the 

transport of Rb+, K+ and Li+ (Brett et al., 2005a; Kinclova-Zimmermannova et al., 2004; Nass 

et al., 1997; Quintero et al., 2000). However, several studies confirmed that Nhx1p localized 

to the membranes of late endosomes, similarly to human Nhe6, and not to mitochondria 

(Bowers et al., 2000; Brett et al., 2005b; Nass & Rao, 1998). 

 

2.5. Regulation of mitochondrial K+/H+ exchange 
 

An active mitochondrial K+/H+ exchanger, constitutively mediating cation efflux driven by 

the proton electrochemical gradient, causes the problem of membrane potential dissipation. 

Therefore, it is rather conceivable that the exchanger is regulated. Supported by the finding 

that depletion of divalent cations in the mitochondrial matrix upon treatment with A-23187 

induced K+ efflux, Garlid proposed the ‘Mg2+ Carrier Break Hypothesis’ (Dordick et al., 

1980; Garlid, 1980; Shi et al., 1980). Accordingly, matrix Mg2+, whose concentration is 

relatively stable, would function as a concentration-dependent and reversible inhibitor of the 

K+/H+ exchanger. Water influx following cation uptake increases the matrix volume, thereby 

reducing the inhibitor concentration by dilution. Furthermore, electroneutral K+ efflux would 

be induced by anions capable of forming complexes with divalent cations, like citrate and 

phosphate (Garlid, 1980). Thus, increased matrix anion content, caused by net uptake of salts, 

would complex Mg2+ and in concert with matrix swelling release the K+/H+ exchanger from 

Mg2+ inhibition and thereby activate K+ efflux (Garlid, 1980; Garlid & Paucek, 2003). 

Although it has been clearly shown that the K+/H+ exchanger is inhibited by Mg2+ (Beavis & 

Garlid, 1990; DiResta et al., 1986; Froschauer et al., 2005; Nakashima et al., 1982), the role 

of Mg2+ in the Carrier Break Hypothesis as a matrix volume sensor has been questioned. 

Changed matrix Mg2+ concentration following different swelling conditions was determined 

by direct measurement using the Mg2+-sensitive fluorescent dye mag-fura-2. The low 

reduction of the matrix Mg2+ concentration was suggested to be incompatible with a function    
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of Mg2+ in volume control and regulation of the K+/H+ exchanger (Jung & Brierley, 1999). 

Additionally, the authors showed that the K+/H+ exchanger is also inhibited by matrix Ca2+ 

and considered different regulatory mechanisms. Changes in the matrix protein concentration 

may affect kinases or phosphatases that regulate the exchanger (Minton et al., 1992). 

Alternatively, mechanical signals evoked by a stronger contact of the IMM and OMM upon 

swelling may be involved in regulation (Hoffmann & Dunham, 1995; Jung & Brierley, 1999). 

Finally, the K+/H+ exchanger is allosterically inhibited by matrix protons. As a result, activity 

of the exchanger increases with alkaline pH (Beavis & Garlid, 1990; Brierley et al., 1991; 

Garlid & Paucek, 2003; Nakashima & Garlid, 1982). 

 

2.6. Mitochondrial K+/H+ exchange involves the LETM1/YOL027C 

gene family 
 

Recent studies characterized the first known proteins involved in mitochondrial K+/H+ 

exchange and volume control, namely yeast Mdm38p/Mkh1p and Mrs7p as well as their 

human homolog Letm1. They are members of a new family of evolutionary conserved 

eukaryotic proteins. They are encoded in the nucleus and localize to the mitochondrial inner 

membrane. These proteins exhibit an overall sequence homology of ~ 40%, highly conserved 

in the region of the predicted single transmembrane helix (Frazier et al., 2006; Nowikovsky et 

al., 2004; Zotova et al., 2010). All three proteins are supposed to contain C-terminal coiled 

coils, whereas Letm1 is predicted to additionally contain two EF-hand Ca2+-binding domains 

(Endele et al., 1999). 

 

2.6.1. YOL027C/MDM38/MKH1 
 

Yeast YOL027C/MDM38/MKH1 encodes a ~ 65 kDa protein originally identified to be 

involved in maintenance of mitochondrial morphology (Dimmer et al., 2002). Moreover, 

MDM38 was shown to be a multicopy suppressor of cells deleted for the yeast IMM Mg2+ 

transporter MRS2 (Kolisek et al., 2003; Nowikovsky et al., 2004; Waldherr et al., 1993), and 

deletion of both genes resulted in synthetic lethality on non-fermentable carbon sources and 

loss of mitochondrial DNA (Nowikovsky et al., 2004). Mutants deleted for MDM38 exhibit a 

severe growth defect on non-fermentable carbon sources and contain a highly fragmented 

mitochondrial reticulum. Involvement of MDM38 in mitochondrial ion homeostasis was 

initially suggested by the finding that mdm38∆ mitochondria appeared to be heavily swollen, 
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devoid of the cristae structures, displayed severely reduced Δψ, and increased K+ 

accumulation (Nowikovsky et al., 2004; Nowikovsky et al., 2007). These features are 

consistent with defective mitochondrial K+/H+ exchange previously described (Garlid & 

Paucek, 2003). Remarkably, addition of the K+/H+ ionophore nigericin restored all 

mitochondrial functions and respiratory growth of mdm38∆ cells, suggesting a direct role of 

Mdm38p in mitochondrial K+/H+ exchange (Nowikovsky et al., 2004; Nowikovsky et al., 

2007). 

Mitochondria lacking Mdm38p are refractory to KOAc-induced swelling and are already 

swollen prior the measurement. Thus, direct measurement of ion fluxes was performed with 

submitochondrial particles (SMPs) with entrapped K+- and H+-sensitive fluorescent dyes 

potassium-binding benzofuran isophthalate (PBFI) and 2,7-bis(carboxyethyl)-5,6-

carboxyfluorescein (BCECF), respectively. Electroneutral exchange of K+, Na+, and Li+ for 

H+, driven by their concentration gradients and sensitive to DCCD, quinine and Mg2+, was 

observed in wild-type SMPs in accordance with the transport properties expected for the 

unspecific K+/H+ exchanger. In contrast, electroneutral cation/H+ exchange in SMPs prepared 

from mdm38∆ mitochondria was almost completely abolished but could be restored by 

addition of nigericin (Froschauer et al., 2005). 

Interestingly, disturbed K+ homeostasis in mdm38∆ cells resulted not only in mitochondrial 

dysfunction and fragmentation but also influenced vacuolar morphology. Vacuoles exhibited 

membrane indentations and close association with swollen mitochondria (Nowikovsky et al., 

2007), followed by vacuolar uptake and mitophagy, the autophagic degradation of damaged 

mitochondria (Goldman et al., 2010; Lemasters, 2005; Priault et al., 2005). 

Despite the unambiguous evidence for a direct contribution of Mdm38p to mitochondrial 

K+/H+ exchange, additional functions of this protein were recently proposed. Mdm38p was 

reported to be associated with mitochondrial ribosomes and newly synthesized mitochondrial 

proteins. Mitochondria of mdm38∆ cells exhibited reduced amounts of respiratory chain 

complexes III and IV and several mitochondrial encoded proteins. Accordingly, Mdm38p was 

suggested to be involved in mitochondrial protein export and regulation of mitochondrial 

translation (Bauerschmitt et al., 2010; Frazier et al., 2006). 

Reduced levels of mitochondrial encoded proteins upon deletion of MDM38 were confirmed 

in our laboratory. Importantly, addition of nigericin completely restored the protein levels. 

Moreover, doxycycline-induced shut-off of MDM38 revealed that the amounts of 

mitochondrially translated proteins remained unchanged for more than 25 h after reduction of 

Mdm38p below the level of detection (Nowikovsky et al., 2007). On the contrary, loss of 

K+/H+ exchange, reduction of Δψ, as well as swelling and fragmentation of the mitochondrial 



Introduction 

 15

reticulum were shown to be immediate events upon deletion of MDM38. These findings 

strongly suggest that the changed pattern of mitochondrial encoded proteins is secondary to 

the loss of K+/H+ exchange (Nowikovsky et al., 2007). 

 

2.6.2. YPR125W/MRS7/YLH47 
 

The second member of the protein family present in yeast is YPR125W (MRS7/YLH47). It is a 

homolog of MDM38 and was identified as a multicopy suppressor of mrs2∆ mutant cells 

(Waldherr et al., 1993). Deletion of MRS7 causes only a marginal growth defect on non-

fermentable carbon sources but does not influence the mitochondrial morphology (personal 

observations). However, multicopy expression of MRS7 restores K+/H+ exchange and 

mitochondrial dysfunctions of mdm38∆ mutant cells, suggesting functional homology of both 

proteins (Nowikovsky et al., 2004; Zotova et al., 2010). Similar to Mdm38p, Mrs7p was 

found to interact with mitochondrial ribosomal proteins. Moreover, Mrs7p was reported to co-

purify with protein A-tagged Mdm38p and vice versa (Frazier et al., 2006).  

 

2.6.3. LETM1 
 

Letm1 (leucine zipper-EF-hand containing transmembrane protein 1) is the ~ 83 kDa human 

homolog of Mdm38p and Mrs7p and has been implicated in the hereditary Wolf-Hirschhorn 

syndrome (WHS), which is caused by hemizygous deletion of several genes located on the 

distal short arm of chromosome 4 (4p16.3) (Zollino et al., 2003). WHS is characterized by a 

series of neuromuscular symptoms, including severe growth and mental retardation, loss of 

muscular tone, congenital heart defects, hypertelorism, microcephaly, speech problems and 

epilepsy (Bergemann et al., 2005). Interestingly, seizures, which represent the most life-

threatening consequence of the full WHS phenotype, were found to be invariably associated 

with deletion of LETM1. The extent of the chromosomal deletion directly influences the 

combinations and severity of the clinical hallmarks observed in different patients (Endele et 

al., 1999; Schlickum et al., 2004).  

Consequences of knock-down of LETM1 appeared to be in accordance with phenotypic 

effects resulting from deletion of yeast MDM38. Reduced levels of Letm1 in mammalian cells 

caused mitochondrial swelling and fragmentation independent of Drp1, the mitochondrial 

fission factor, as well as caspase-independent necrotic cell death (Dimmer et al., 2008). 

Mitochondrial respiration, respiratory chain assembly, and the membrane potential appeared 
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unaffected, likely due to maintenance of these functions by the action of residual Letm1. 

Importantly, mitochondrial morphology was restored by nigericin (Dimmer et al., 2008) and 

overexpression of LETM1 in human and C. elegans cells resulted in condensed mitochondrial 

matrices, swollen cristae, and reduced membrane potential (Hasegawa & van der Bliek, 

2007), suggesting involvement of Letm1 in mitochondrial K+ and volume homeostasis. 

Similar to mammalian cells, LETM1 knock-down in C. elegans and D. melanogaster caused 

mitochondrial swelling, followed by mitophagy observed in D. melanogaster S2 cells. 

Moreover, Letm1 was shown to be essential for normal larval development and neuronal 

function of C. elegans and D. melanogaster (Hasegawa & van der Bliek, 2007; McQuibban et 

al., 2010). Most importantly, human and fly LETM1 encode functional homologs of yeast 

MDM38, restoring respiratory growth and K+/H+ exchange activity of mdm38∆ mutant cells 

(Froschauer et al., 2005; McQuibban et al., 2010; Nowikovsky et al., 2004; Zotova et al., 

2010).  

The presence of coiled coils in all K+/H+ exchange family members points to possible homo- 

or hetero-oligomerization of these proteins. Indeed, Letm1 was shown to self-interact and to 

be part of several high molecular weight protein complexes of unknown composition 

(Dimmer et al., 2008; Hasegawa & van der Bliek, 2007). Furthermore, Letm1 was reported to 

interact with the mitochondrial ribosomal protein Mrpl36 (Piao et al., 2009) and the 

mitochondrial AAA-ATPase Bcs1L, which was shown to influence Letm1 complex formation 

(Tamai et al., 2008). Possible involvement of Letm1 in seizures of WHS patients was 

supported by the presence of EF-hand Ca2+-binding domains (Endele et al., 1999), as 

disturbed Ca2+ homeostasis often correlates with neurodegenerative disorders (Biessels & 

Gispen, 1996; Burgess et al., 1997; Lim et al., 2008). However, the Letm1 EF-hands exhibit 

low affinity for divalent cations, suggesting that they may bind matrix Mg2+, which inhibits 

the K+/H+ exchanger, rather than Ca2+ (Endele et al., 1999; Nakashima et al., 1982). 

Very recently, Jiang et al. performed a genome-wide Drosophila RNAi screen to identify 

genes involved in mitochondrial Ca2+ transport. Knock-down of LETM1 caused reduced 

mitochondrial Ca2+ uptake and functional assays performed with liposome reconstituted 

human Letm1 led the authors to the conclusion that Letm1 represents a mitochondrial Ca2+/H+ 

exchanger mediating electrogenic, Ruthenium Red sensitive Ca2+ uptake into mitochondria at 

nanomolar cytosolic Ca2+ concentrations (Jiang et al., 2009). These findings are in contrast to 

the conclusive data that indicate involvement of Letm1 in K+/H+ exchange and challenge 

current concepts on mitochondrial Ca2+ transport. In view of our own and previous results, we 

critically discuss the report of Jiang et al. in our recent publication (Zotova et al., 2010) and 

this thesis. 
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2.6.4. HCCR-1/LETMD1 
 

Sequence alignments revealed that LETM1 has a human homolog. HCCR-1 (human cervical 

cancer oncogene 1)/LETMD1 (Letm1 domain containing 1) encodes a mitochondrial protein 

containing a domain homologous to Letm1, reaching from position 75 to 346 (Cho et al., 

2007; Zotova et al., 2010). HCCR-1 was reported to be overexpressed in various human 

cancers, including leukemia, lymphoma, and carcinomas of the breast, kidney, ovary, 

stomach, colon, and uterine cervix, and to function as a negative regulator of the p53 tumor 

suppressor (Ko et al., 2003). Moreover, mice transgenic for HCCR-1 developed breast 

cancers and metastasis (Ko et al., 2004), and uncontrolled expression of HCCR-1 was 

suggested to trigger tumorigenesis by mitochondrial dysfunction resulting in suppression of 

UVC- and staurosporine-induced apoptosis (Cho et al., 2007). Recently, HCCR-1 was also 

found to induce epithelial-to-mesenchymal transition (EMT) and mesenchymal-to-epithelial 

transition (MET) in human and mouse, respectively and expression of HCCR-1 was detected 

during embryonic kidney development. Thus, HCCR-1 was proposed to be a regulatory factor 

of epithelia or mesenchyme morphogenesis during cancer development (Ha et al., 2010). 

 

2.7. Mitochondrial autophagy - Mitophagy 
 

Autophagy refers to the process of degradation of cellular components, such as cytosol, 

protein aggregates and organelles. It is induced under stress conditions like nutrient limitation, 

but is also required for cellular growth and development. Furthermore it is involved in 

pathogen elimination and serves the function of a quality control mechanism by the selective 

removal of damaged organelles (Abeliovich & Klionsky, 2001; Gutierrez et al., 2004; Huang 

& Klionsky, 2002). 

Cytosolic cargo degraded by autophagy is either engulfed by the so called isolation 

membrane, a double-membrane structure forming the autophagosome, which then fuses with 

a vacuole/lysosome (Macroautophagy), or the components are directly taken up by 

lysosomal/vacuolar pinocytosis (Microautophagy) (Nakatogawa et al., 2009; Yang & 

Klionsky, 2010). Accordingly, mitophagy denotes the selective degradation of mitochondria 

by autophagy (Figure 5) (Goldman et al., 2010; Lemasters, 2005; Youle & Narendra, 2011). 

Mitochondria may be removed due to adjustment to changing metabolic conditions and 

requirements or as a consequence of dysfunction of the organelle. Interestingly, elimination of 

yeast mitochondria preferentially occurs by micromitophagy, whereas in higher eukaryotes 



Introduction 

 18

macromitophagy seems to be predominant (Tolkovsky, 2009). Importantly, in yeast and 

mammalian cells mitophagy follows mitochondrial fission (Nowikovsky et al., 2007; Twig et 

al., 2008). Also reduced mitochondrial membrane potential (Δψ) seems to trigger mitophagy, 

although it is not essential (Tolkovsky, 2009). 

 

Figure 5: Schematic representation of mitochondrial autophagy 
Mitochondria are either directly taken up by vacuolar/lysosomal pinocytosis (Micromitophagy) or 

engulfed by the autophagosome, which subsequently fuses with the vacuole/lysosome 

(Macromitophagy). Figure adapted from http://en.wikipedia.org/wiki/File:Macro-micro-autophagy.gif 

 

Knowledge about the molecular mechanisms regulating mitophagy in yeast and mammalian 

cells is still scarce. However, new data are emerging. In yeast, several proteins are known to 

participate in mitophagy. The OMM protein Uth1p and the mitochondrial type 2C protein 

phosphatase (PP2C) Aup1p were shown to be required for mitophagy upon nutrient changes 

(Kissova et al., 2004) and in stationary phase (Tal et al., 2007), respectively. Furthermore, 

genome wide screens identified several genes involved in mitochondrial degradation (Kanki 

et al., 2010) and the OMM protein Atg32p was shown to be required for selective mitophagy 

(Kanki et al., 2009; Okamoto et al., 2009). Mitochondria are believed to be directed to an 

autophagosome by interaction of Atg32p with Atg11p, which itself binds to autophagosome-
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associated Atg8p (Okamoto et al., 2009). Alternatively, Atg32p-bound Atg11p may recruit 

mitochondria to the vacuole where micromitophagic uptake occurs (Kanki et al., 2009; Youle 

& Narendra, 2011). 

In mammalian cells, also functional mitochondria are removed during developmental 

processes. The OMM protein NIP3-like protein X (NIX) was reported to be required for 

mitophagy during the maturation of reticulocytes to red blood cells. NIX directly interacts 

with the autophagosome-associated mammalian Atg8p homolog LC3 and GABA receptor-

associated protein (GABARAP), a LC3 homolog (Novak et al., 2009; Schwarten et al., 2009). 

Also the UNC51-like kinase 1 (Ulk1) and Atg7 are involved in this process (Kundu et al., 

2008; Zhang et al., 2009). Damaged mammalian mitochondria are removed by a mitophagy 

pathway that is linked to Parkinson's disease. When mitochondria lose Δψ, the PINK1 

(PTEN-induced putative kinase protein 1) kinase accumulates on the OMM and recruits the 

cytosolic E3 ubiquitin ligase parkin which ubiquitylates OMM proteins, like mitofusins (Gegg 

et al., 2010; Narendra et al., 2010; Vives-Bauza et al., 2010). As mitofusins mediate 

mitochondrial fusion (Legros et al., 2002), their degradation may promote mitochondrial 

fragmentation and mitophagy (Tanaka et al., 2010). Several mutations in parkin impaired 

mitophagy in Parkinson's disease patients (Lee et al., 2010) and PINK1 mutations caused 

defective parkin recruitment and parkin-induced mitophagy (Geisler et al., 2010; Youle & 

Narendra, 2011). Additionally, increased mitophagy is suspected to be involved in 

Alzheimer’s disease (Moreira et al., 2007; Santos et al., 2010).  

Recently, disruption of the mitochondrial K+/H+ exchange system was shown to trigger 

mitophagy in yeast cells (Nowikovsky et al., 2007; Zotova et al., 2010) and in Drosophila 

melanogaster after knock-down of LETM1 (McQuibban et al., 2010). Moreover, 

developmental lethality in LETM1-depleted Drosophila larvae was proposed to be the result 

of deregulated mitophagy (McQuibban et al., 2010). Taken together, these findings contribute 

to the elucidation of the regulatory mechanisms of mitophagy and the causes of 

neurodegenerative diseases. 
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3. Materials and Methods 
 

3.1. Materials 
 

3.1.1. Table 1: Yeast strains used in this study 
 
Strain                                                    Genotype                                                             Source 
 
BY4741                  MAT a; his3Δ1; leu2Δ0; met15Δ0; ura3Δ0                             Euroscarf   

BYmdm38∆             MAT a; his3Δ1; leu2Δ0; met15Δ0; ura3Δ0; mdm38::HIS5    this study 

BYdeletion strains  MAT a; his3Δ1; leu2Δ0; met15Δ0; ura3Δ0; orf::KANMX4   Euroscarf 

BY7092                  MAT α; can1:: STE2pr-HIS5; lyp1Δ; his3Δ1; leu2Δ0;           Boone C. 

                                ura3Δ0; met15Δ0; LYS2 

BY7092mdm38∆       MAT α; can1:: STE2pr-HIS5; lyp1Δ; his3Δ1; leu2Δ0;         this study 

                                ura3Δ0; met15Δ0; LYS2; mdm38::URA3 

BYmdm38∆erg5∆     MAT a; can1:: STE2pr-HIS5; lyp1Δ; his3Δ1; leu2Δ0;          this study 

                                ura3Δ0; met15Δ0; LYS2; mdm38::URA3; erg5::KANMX4 

BYmdm38∆erg6∆     MAT a; can1:: STE2pr-HIS5; lyp1Δ; his3Δ1; leu2Δ0;           this study 

                                ura3Δ0; met15Δ0; LYS2; mdm38::URA3; erg6::KANMX4 

BYmdm38∆ygr026w∆   MAT a; can1:: STE2pr-HIS5; lyp1Δ; his3Δ1; leu2Δ0;           this study 

                                ura3Δ0; met15Δ0; LYS2; mdm38::URA3; ygr026w::KANMX4 

BYmdm38∆ldb16∆   MAT a; can1:: STE2pr-HIS5; lyp1Δ; his3Δ1; leu2Δ0;          this study 

                                ura3Δ0; met15Δ0; LYS2; mdm38::URA3; ldb16::KANMX4 

BYmdm38∆hof1∆     MAT a; can1:: STE2pr-HIS5; lyp1Δ; his3Δ1; leu2Δ0;           this study 

                               ura3Δ0; met15Δ0; LYS2; mdm38::URA3; hof1::KANMX4  

BYmdm38∆rxt2∆      MAT a; can1:: STE2pr-HIS5; lyp1Δ; his3Δ1; leu2Δ0;           this study   

                               ura3Δ0; met15Δ0; LYS2; mdm38::URA3; rxt2::KANMX4 

BYmdm38∆rtf1∆      MAT a; can1:: STE2pr-HIS5; lyp1Δ; his3Δ1; leu2Δ0;          this study   

                               ura3Δ0; met15Δ0; LYS2; mdm38::URA3; rtf1::KANMX4 

BYmdm38∆ssn8∆    MAT a; can1:: STE2pr-HIS5; lyp1Δ; his3Δ1; leu2Δ0;    this study 

                               ura3Δ0; met15Δ0; LYS2; mdm38::URA3; ssn8::KANMX4 

BYmdm38∆ctk1∆     MAT a; can1:: STE2pr-HIS5; lyp1Δ; his3Δ1; leu2Δ0;           this study 

                               ura3Δ0; met15Δ0; LYS2; mdm38::URA3; ctk1::KANMX4 
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DBY747                          MAT a his3-Δ1; leu2-3,-112; trp1-289; ura3-52      ATCC 204659  

DBYmdm38∆           MAT a his3-Δ1; leu2-3,-112;                  (Nowikovsky et al., 2004) 

                               trp1-289; ura3-52; mdm38::HIS3 

DBYmrs2∆   MAT a his3-Δ1; leu2-3,-112; (Wiesenberger et al., 1992) 

                                             trp1-289; ura3-52; mrs2::HIS3 

DBY-MDM38-HIS-TAPa    MAT a his3-Δ1; leu2-3,-112; trp1-289; ura3-52;             this study 

                                             MDM38-HIS-TAP-TRP1 

DBY-MDM38-HIS             MAT a his3-Δ1; leu2-3,-112; trp1-289; ura3-52;             this study 

                                             MDM38-HIS-TRP1 

DBY-MDM38-Strep            MAT a his3-Δ1; leu2-3,-112; trp1-289; ura3-52;             this study 

                                             MDM38-Strep-TRP1 

DBY-MDM38-OSb       MAT a his3-Δ1; leu2-3,-112; trp1-289; ura3-52;             this study 

                                             MDM38-One-Strep-TRP1 
 

a TAP, tandem affinity purification  

b OS, One-Strep  

 

3.1.2. Table 2: Plasmids and oligonucleotides used in this study 
 
Plasmid                                                                                                                             Source 
 

YCplac22  (Gietz & Sugino, 1988) 

YCp22-MDM38-OSHc                                                                                                  this study 

YCp22-MRS2-OSH                                                                                                       this study 

pBS1479  (Rigaut et al., 1999) 

pBS1479-OS  this study 

pYX142-mtGFPd  (Westermann & Neupert, 2000) 

pSG634  (Partridge et al., 1991) 

pUG72  (Gueldener et al., 2002) 

 

Oligonucleotide                                                                                                             Sequence 
 
MDM38-Del-fw          5’ - CTA TCT CTA TCA CTA CAG ATA ATA TAC TAA TAT      

GTT GAA TTT CGC ATC CTG ACG CTG CAG GTC GAC - 3’  
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MDM38-Del-rev  5’- TAG TTT TTT TCT TAG GCT TTG ATC TAA TAT CAA TCT 

TTC TTA ATG ACA TAG GCC ACT AGT GGA TCT G - 3’ 

MDM38-HIS-TAP-fw  5’ - TAC CTC CCA TTC CGG CCG ATC AAG CTG CGA AGA 

CTT TTG TCA TTA AGA AAG ATC ATC ACC ATC ACC ATC 

ACT CCA TGG AAA AGA GAA G - 3’ 

MDM38-HIS-TAP-rev  5’-CCT GAT GTA CTC ACA TTT CCA TCT GGT GAG GAT 

GGA GGT GGA GAC GTC GTA GAC ATG GAA CCC TGT TTA 

CGA CTC ACT ATA GGG -3’ 

MDM38-HIS-fw  5’- TTC CGG CCG ATC AAG CTG CGA AGA CTT TTG TCA 

TTA AGA AAG ATC ATC ACC ATC ACC ATC ACT GAT CCA 

TGG AAA AGA GAA G -3’ 

MDM38-Strep-fw  5’CAT TCC GGC CGA TCA AGC TGC GAA GAC TTT TGT CAT 

TAA GAA AGA TTG GAG CCA CCC GCA GTT CGA AAA ATG 

ATC CAT GGA AAA GAG AAG -3’ 

OS tag  5’ - GGA TCC GAG AAT TTG TAT TTT CAG GGT TGG AGC 

CAC CCG CAG TTC GAG AAA GGT GGA GGT TCC GGA GGT 

GGA TCG GGA GGT AGC GCT TGG AGC CAC CCG CAG TTC 

GAA AAA TAA TGA GAA TTC CTG CAG GGA TCC - 3’ 

OSH tag  5’ - CTG CAG GAG AAT TTG TAT TTT CAG GGT TGG AGC 

CAC CCG CAG TTC GAG AAA GGT GGA GGT TCC GGA GGT 

GGA TCG GGA GGT AGC GCT TGG AGC CAC CCG CAG TTC 

GAA AAA AGA GGC TCC CAT CAC CAT CAC CAT CAC TAA 

TGA GGA TCC GCG GCC GC - 3’ 

MDM38-OS-fw  5’ - CAT TCC GGC CGA TCA AGC TGC GAA GAC TTT TGT 

CAT TAA GAA AGA TGA GAA TTT GTA TTT TCA GG - 3’ 

   MDM38-OSH-fw     5’ - CGG GAT CCA ACG ATC ACC AAA GCA TTA GCA ACC - 3’ 

MDM38-OSH-rev    5’- ATA GTC GAC TCA GTG ATG GTG ATG GTG ATG CGA 

TCC TCT TTT TTC GAA CTG CGG GTG GCT CCA AGC -3’ 

MRS2-OSH-fw    5’- TAG AGC TCG ATC GAC CAG CAG CTT GTA TAC C - 3’ 

MRS2-OSH-rev    5’- TAA GTC GAC ATT TTT CTT GTC TTC TAT CAA CC - 3’ 
 

c OSH, One-Strep-HIS 
d mtGFP, mitochondrial matrix-targeted GFP 
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3.1.3. Media 
 

YPD 
1% yeast extract, 2% peptone, 2% dextrose; 

YPD was supplemented with 15 µg/ml valinomycin (Sigma-Aldrich) when indicated. 

 

YPG 

1% yeast extract, 2% peptone, 3% glycerol; 

YPG was supplemented with 7.5 µg/ml valinomycin (Sigma-Aldrich) when indicated. 

 

YPdG 

1% yeast extract, 2% peptone, 0.1% dextrose, 3% glycerol; 

 

YPEG 

1% yeast extract, 2% peptone, 3% ethanol, 3% glycerol; 

 

 

Enriched sporulation medium 

Per liter: 10g potassium acetate, 1g yeast extract, 0.5g glucose, 0.1g amino acids supplement 

mixture, 50 mg G418; 

 

Amino acids supplement mixture: 

 

3g adenine 
 

2g uracil 
 

2g inositol 
 

0.2g para-amino 
benzoic acid 

2g alanine  2g arginine 2g asparagines 2g aspartic acid 

2g cysteine  2g glutamic acid 2g glutamine 2g glycine 

2g histidine  2g isoleucine 10g leucine 2g lysine 

2g methionine  2g phenylalanine 2g proline 2g serine 

2g threonine  2g tryptophan 2g tyrosine 2g valine 
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Synthetic minimal medium 

0.67% yeast nitrogen base including ammonium sulfate, 2% glucose, or 2% galactose, or 2% 

galactose and 1% raffinose, and amino acids as required; 

When G418 (200µg/ml final concentration) was added, monosodium glutamic acid (1g/l, 

Sigma-Aldrich) was used as a nitrogen source instead of ammonium sulfate, which impedes 

the function of G418. 10 mM 3-Amino-1,2,4-triazole (3-AT, Sigma-Aldrich) was 

supplemented when appropriate. 

 

3.1.4. Chemicals and antibodies 
 

FM4-64  (Molecular Probes) 

Disuccinimidyl suberate (DSS)       (Thermo Fisher Scientific) 

Triton X-100 (Sigma-Aldrich) 

Complete mini protease inhibitor mixture  (Roche Applied Science) 

Monosodium glutamic acid  (Sigma-Aldrich) 

Amino-1,2,4-triazole (3-AT)  (Sigma-Aldrich) 

 

Anti-His antibody  (Quiagen) 

Anti-Strep antibody  (Quiagen) 

Anti-protein A (PAP) antibody  (Sigma-Aldrich) 

Anti-calmodulin binding peptide (CBP) antibody         (Immunology Consultants Laboratory) 

HRP-conjugated goat anti-mouse IgG (Promega) 

HRP-conjugated goat anti-rabbit IgG  (Promega) 

 

3.1.5. Affinity resins 
 

IgG Sepharose 6 fast flow  (GE Healthcare) 

Calmodulin affinity resin  (Stratagene) 

Ni-NTA Superflow resin  (Qiagen) 

Strep-Tactin Superflow (Qiagen) 
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3.2. Methods 
 

3.2.1. Gene disruption 

 

The haploid deletion strains BYmdm38∆ and BY7092mdm38∆ were constructed according to 

the one step gene replacement protocol (Wach et al., 1994). Parental strains BY4741 and 

BY7092 were deleted for the MDM38 ORF by homologous recombination with a HIS5 

disruption cassette PCR-amplified from plasmid pSG634 and a URA3 cassette PCR-amplified 

from plasmid pUG72, respectively. For both gene disruptions the primers MDM38-Del-fw 

and MDM38-Del-rev (Table 1) were used. All double mutants were obtained by crossing of 

strain BY7092mdm38∆ with single mutants of the Euroscarf deletion strain library and 

sporulation of the diploids. 

 

3.2.2. Chromosomal tagging and plasmid construction 
 

All chromosomally integrated affinity tags were C-terminally fused to MDM38 by 

homologous recombination in strain DBY747. The HIS-TAP tag was PCR-amplified together 

with the TRP1 selection marker from plasmid pBS1479 using the primer pair MDM38-HIS-

TAP-fw and MDM38-HIS-TAP-rev (Table 2). To fuse the 6xHIS and the Strep tag in-frame 

with MDM38, the respective forward primers MDM38-HIS-fw and MDM38-Strep-fw were 

used. The reverse primer MDM38-HIS-TAP-rev served to PCR-amplify cassettes for both 

tags containing the TRP1 selection marker from plasmid pBS1479. Chromosomal integration 

of the One-strep (OS) tag was performed as described previously (Zotova et al., 2010). 

Briefly, the synthesized OS sequence was cloned into BamHI-linearized plasmid pBS1479 

(pBS1479-OS) and PCR-amplified together with the TRP1 marker using the primer pair 

MDM38-OS-fw and MDM38-HIS-TAP-rev. All chromosomal integrations were verified by 

analytical PCR. 

Plasmid-based One-Strep-HIS (OSH)-tagged MDM38 was created by addition of the 6xHIS 

tag to OS-tagged MDM38 by PCR-amplification from chromosomal DNA of strain DBY-

MDM38-OS using the primer pair MDM38-OSH-fw and MDM38-OSH-rev. The resulting 

PCR product, including the endogenous promoter of MDM38, was cloned into the 

BamHI/SalI-linearized centromeric plasmid YCplac22, thereby creating the construct YCp22-

MDM38-OSH. As a control, the OSH tag was also fused to MRS2, which encodes an IMM 

Mg2+ channel (Kolisek et al., 2003). The complete OSH tag was synthesized (Eurofins MWG 
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GmbH) and cloned into PstI/NotI-linearized YCplac22. The MRS2 ORF including its 

endogenous promoter was PCR-amplified and cloned into SacI/SalI-linearized YCplac22 

containing the OSH tag, thereby creating the construct YCp22-MRS2-OSH. 

 

3.2.3. Mitochondrial isolation 
 

Yeast strains were grown overnight in YPD medium and harvested at early stationary phase. 

Mitochondria were isolated as described previously (Zinser & Daum, 1995) and resuspended 

in breaking buffer (250 mM Sucrose, 10 mM Tris-HCl pH 7.4). The average yield of crude 

mitochondria isolated from DBY strains was about 400 mg/12 liters of culture (~ 120 g cells). 

Isolation from BY strains resulted in a yield of only ~ 20% compared to DBY strains. 

Mitochondria were either processed immediately or stored at -80°C until use. 

 

3.2.4. Protein precipitation and immunoblotting 
 

Proteins were precipitated with TCA (12% final concentration) for 15 min on ice. Subsequent 

washings of the precipitate were performed using 90% acetone. Protein extracts were 

dissolved by boiling in SDS-loading buffer, separated on a 12% SDS-polyacrylamide gel, 

transferred to a PVDF membrane, and immunodetected. Immunoblotting was performed in 

TBS-Tween plus 2.5% dry milk with the desired antibodies. The proteins were visualized by 

using the SuperSignal West Pico system (Pierce, Rockford, Illinois). 

 

3.2.5. Blue native electrophoresis 
 

Protein samples were supplemented with a 0.25 volume of sample buffer (500 mM 

aminocaproic acid, 5% Serva blue G) and analyzed on a 5-18% linear polyacrylamide 

gradient gel as described elsewhere (Schagger et al., 1994). Proteins were transferred to a 

PVDF membrane followed by immunodetection with the desired antibodies. 

 

3.2.6. Chemical cross-linking 
 

Mitochondrial extracts (50-90 µg total protein) were supplemented with breaking buffer (BB, 

0.6M Sorbitol, 20 mM Tris-HCl, pH 7.4) and the amine-reactive cross-linker disuccinimidyl 

suberate (DSS) at increasing concentrations (0.1-0.5 mM) in a total reaction volume of 
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100 µl. Probes were incubated on ice (30 - 45 min) and the reaction was quenched by adding 

5 µl of 100 mM N-ethylmaleimic acid (10 min on ice). Cross-linking was performed in 

presence of protease inhibitor mixture. Samples were TCA precipitated, supplemented with 

SDS-loading buffer, heated (5 min, 65°C), and subjected to SDS-PAGE followed by 

immunodetection against the 6xHIS epitope of HIS-TAP-tagged Mdm38p. 

 

3.2.7. Protein A affinity purification  
 

Protein A affinity purification was performed according to (Puig et al., 2001). Mitochondria 

isolated from strain DBY-MDM38-HIS-TAP (~ 200 mg total protein) were solubilized in 

IPP150 buffer (10 mM Tris-HCl pH 8.0, 150 mM NaCl) containing 1.2% Triton X-100 (TX-

100) for 30 min on ice. The suspension was subjected to a clarifying spin (30 min at 45.000 g) 

to get rid of insoluble debris. About 1 ml of IgG Sepharose beads were equilibrated with 

IPP150 buffer and transferred to a 10 ml Poly-Prep Chromatography Column (Bio-Rad). The 

mitochondrial extract was added to the beads and incubated under rotation for 2 h at 4°C. 

Unbound material was removed by gravity flow and the beads were washed with two column 

volumes of IPP150 buffer containing 0.8% TX-100 and one volume of TEV cleavage buffer 

(10 mM Tris-HCl pH 8.0, 150 mM NaCl, 0.8% TX-100, 0.5 mM EDTA, 1 mM DTT). 

Cleavage was performed in presence of 50 units AcTEV protease (Invitrogen) for 2 h at 16°C. 

Residual bound proteins were eluted with 0.1 M glycine buffer, pH 3. To increase cleavage 

efficiency, 100 units of TEV protease were used for 2 h at 28°C and the TX-100 

concentration of the TEV cleavage buffer was reduced to 0.1%. Eluted proteins, flow through 

and wash fractions were TCA precipitated, subjected to SDS-PAGE, and immunodetected 

with an antibody directed against CBP. 

 

3.2.8. CBP affinity purification 
 

Mitochondria isolated from strain DBY-MDM38-HIS-TAP (~ 200 mg total protein) were 

solubilized in IPP150 calmodulin binding buffer (10 mM β-mercaptoethanol, 10 mM Tris-

HCl pH 8.0, 150 mM NaCl, 1 mM magnesium acetate, 1 mM imidazole, 2 mM CaCl2, 1.2% 

TX-100) and the clarified protein extracts were incubated with ~ 1 ml equilibrated calmodulin 

affinity resin in a Poly-Prep Chromatography Column in presence 0.8% TX-100 for 2 h at 

4°C. After washing with two column volumes of binding buffer, proteins were eluted in 5 

fractions of 200 µl IPP150 elution buffer (10 mM β-mercaptoethanol, 10 mM Tris-HCl pH 
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8.0, 150 mM NaCl, 1 mM magnesium acetate, 1 mM imidazole, 2-4 mM EGTA, 0.8% TX-

100). Residual bound proteins were eluted with 0.1 M glycine buffer, pH 3. Eluted proteins 

were TCA precipitated, subjected to SDS-PAGE and immunodetected with an antibody 

directed against CBP. 

 

3.2.9. CBP - protein A tandem affinity purification (TAP) 
 

CBP affinity purification was performed exactly as described above. All IPP150 elution 

fractions were combined (~ 1 ml), supplemented with 4 ml of IPP150 buffer (10 mM Tris-

HCl pH 8.0, 150 mM NaCl, 0.8% TX-100) containing ~ 1 ml of IgG Sepharose beads and 

protease inhibitor mixture. Protein A affinity purification was performed as described above 

and bound proteins were eluted with 0.1 M glycine buffer, pH 3. Flow through, wash fractions 

and eluted proteins were TCA precipitated, subjected to SDS-PAGE and immunodetected 

with an anti-CBP antibody. 

 

3.2.10. Ni-NTA affinity purification 
 

Ni-NTA affinity purification was exactly performed as described elsewhere (Zotova et al., 

2010). 

 

3.2.11. Ni-NTA - CBP TAP 
 

Ni-NTA affinity purification was performed as previously described (Zotova et al., 2010). 

Elution fractions were combined and supplemented with 4 elution volumes of modified 

calmodulin binding buffer (10 mM β-mercaptoethanol, 10 mM Tris-HCl pH 7.8, 50 mM 

NaCl, 1 mM magnesium acetate, 2 mM CaCl2, 0.6% TX-100) containing ~ 1 ml equilibrated 

calmodulin affinity resin in a Poly-Prep Chromatography Column. CBP affinity purification 

was performed as described above and bound proteins were eluted with modified elution 

buffer (10 mM β-mercaptoethanol, 10 mM Tris-HCl pH 7.8, 50 mM NaCl, 1 mM magnesium 

acetate, 4 mM EGTA, 0.6% TX-100). In the reverse order, elution fractions after CBP 

purification were supplemented with 4 elution volumes of Ni-NTA Hi 50 binding buffer (10 

mM Tris-HCl, pH 7.8, 50 mM NaCl, 20 mM imidazole, 0.6% TX-100) containing ~ 0.5 ml 

Ni-NTA Superflow resin and Ni-NTA affinity purification was performed. All steps were 

done in presence of protease inhibitor mixture. Elution fractions were directly used for Blue 
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native electrophoresis followed by immunodetection with antibodies directed against the 

6xHIS epitope or protein A. 

 

3.2.12. Strep affinity chromatography 
 

Strep affinity chromatography was exactly performed as described elsewhere (Zotova et al., 

2010). 

 

3.2.13. Ni-NTA - Strep TAP 
 

Mitochondria containing OSH-tagged Mdm38p or Mrs2p (~ 800 mg total protein) were used. 

Ni-NTA affinity purification was exactly performed as previously described (Zotova et al., 

2010). Elution fractions were combined and supplemented with 4 elution volumes of Strep 50 

binding buffer (100 mM Tris-HCl, pH 7.8, 50mM NaCl, 0.6% TX-100) containing ~ 0.5 ml 

Strep-Tactin Superflow resin. Strep affinity chromatography was exactly performed as 

described elsewhere (Zotova et al., 2010). In the reverse order, elution fractions after Strep 

affinity chromatography were supplemented with 4 elution volumes of Hi 50 binding buffer 

and Ni-NTA affinity purification was performed. All steps were done in presence of protease 

inhibitor mixture. Elution fractions were either directly used for Blue native electrophoresis 

followed by immunodetection with antibodies directed against the Strep epitope, or eluted 

proteins were TCA precipitated, separated by SDS-PAGE, and detected by Coomassie 

staining.  

Control experiments for all affinity purifications described were performed with mitochondria 

isolated from untagged wild-type cells or strains carrying empty plasmids. 

 

3.2.14. Size exclusion chromatography (SEC) 
 

Crude mitochondria isolated from strain DBY-MDM38-HIS-TAP (~ 500 mg total protein) 

were solubilized as described for Ni-NTA affinity purification (Zotova et al., 2010) and the 

suspension was subjected to a clarifying spin (30 min at 45.000 g). To mimic the elution 

conditions after Ni-NTA affinity chromatography, the supernatant was supplemented with 

200 mM imidazole and the TX-100 concentration was reduced to 0.6% by dilution with Ni-

NTA elution buffer. Solubilized proteins were subjected to SEC using a 26/60 Superdex 200 

column (Amersham) and the elution volume was collected in 1.5 ml fractions. 
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3.2.15. Mass spectrometry 
 

Protein samples cut out from Blue native polyacrylamide gels were analyzed at our in-house 

mass spectrometry facility (Max F. Perutz Laboratories, Vienna, Austria), using a LTQ 

Orbitrap Velos ETD mass spectrometer (Thermo Fisher Scientific) and Scaffold 3 software 

(Proteome Software, Inc., Portland, OR) for protein identification. Coomassie stained samples 

cut out from SDS-polyacrylamide gels were analyzed at the BSRC mass spectrometry and 

proteomics facility (University of St. Andrews, United Kingdom), using a 4800 MALDI 

TOF/TOF mass spectrometer (Applied Biosystems) and Mascot software (Perkins et al., 

1999).  

 

3.2.16. Fluorescence microscopy 
 

Yeast cells were grown to early logarithmic phase in synthetic minimal medium containing 

galactose, glucose, or galactose and raffinose as carbon sources. Mitochondrial morphology 

was visualized by expression of mitochondrial matrix-targeted GFP from plasmid pYX142-

mtGFP (Westermann & Neupert, 2000). Vacuoles were stained with FM4-64 (10µM final 

concentration). Shown are representative fluorescence microscopy images of living cells 

without fixation, as well as respective differential interference contrast (DIC) images to 

observe cell morphology. Images were captured with equivalent exposures using a Zeiss 

Axioplan 2 fluorescence microscope with an AxioCam MRc5 CCD camera using AxioVision 

4.8.1 software (Carl Zeiss, Oberkochen, Germany). Grayscale images were processed with 

Photoshop CS3 (Adobe, San Jose, CA).  

 

3.2.17. Potassium acetate (KOAc)-induced swelling of isolated mitochondria 
 

The light scattering method was used to measure the mitochondrial K+/H+ exchange activity. 

Swelling of isolated mitochondria was recorded with a Hitachi U-2000 spectrophotometer as 

previously described (Nowikovsky et al., 2004). Briefly, mitochondria were prepared from 

BY4741 wild-type, mdm38∆, erg5∆, erg6∆, mdm38∆erg5∆, and mdm38∆erg6∆ mutant cells, 

resuspended in 0.6 M sorbitol buffer pH 7.4 to a final protein concentration of 10 mg/ml. 

Mitochondria were incubated 5 min with antimycin A (5 µM) prior to measurement to block 

the respiratory chain. To deplete mitochondria of endogenous Mg2+, the 4-bromo-calcium 

ionophore A-23187 (0.5 µM) and EDTA (10 mM) were added prior to KOAc treatment. After 
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addition of mitochondria to swelling buffer (55 mM KOAc, 5 mM TES, 0.1 mM EGTA, and 

0.1 mM EDTA) in cuvettes, swelling of mitochondria was measured as a decrease of OD540 

immediately thereafter. To inhibit swelling, the K+/H+ exchange inhibitor quinine (200 µM) 

was added to A-23187/EDTA-treated mitochondria prior to measurement. 

 

3.2.18. Synthetic genetic array (SGA) analysis  
 

SGA analysis was developed as an efficient approach for the systematic construction of 

double mutants and the analysis of functional relationships between genes and pathways 

(Tong et al., 2001; Tong & Boone, 2006). By robotic colony manipulation a query mutation is 

crossed to a non-essential deletion mutant library and the haploid double mutant progeny is 

obtained by sporulation of the resulting diploid strains.  

The MATα query strain BY7092 was deleted for MDM38 by homologous recombination with 

a URA3 cassette PCR-amplified from plasmid pUG72 (see also chapter 3.2.1.). Importantly, 

strain BY7092 carries the reporter STE2pr-HIS5 which is only expressed in MATa cells and 

allows growth on medium lacking histidine. Using a Singer RoToR HDA bench top robot, the 

BY7092mdm38∆ strain was crossed to the ordered Euroscarf deletion library of ~ 4900 

haploid mutant strains (MATa; xxxΔ::KANMX4; 96 (12x8) strains per plate). Each of these 

strains was deleted for one non-essential gene using the dominant selectable marker 

KANMX4 (Winzeler et al., 1999), which confers resistance to geneticin (G418). 

Heterozygous diploid strains were selected by pinning of crossed cells to synthetic minimal 

medium lacking uracil and containing 200 µg/ml G418 (SD – URA + GEN). To induce 

sporulation, diploid cells were transferred to solid enriched sporulation medium (see also 

chapter 3.1.3.) and incubated for 10-12 days at room temperature. To select for haploid 

double mutant progeny, spores were pinned to synthetic minimal medium lacking uracil and 

histidine and containing G418 (SD - URA - HIS + GEN). This medium allows for selective 

germination of MATa haploid double mutant meiotic progeny, as these cells express the 

STE2pr-HIS5 reporter. To increase stringency of STE2pr-HIS5 reporter expression and 

haploid double mutant selection, SD - URA - HIS + GEN plates were supplemented with 10 

mM 3-Amino-1,2,4-triazole (3-AT), a competitive inhibitor of the HIS5 gene product. To 

confirm correctness of the double mutant progeny and marker segregation, random tetrad 

dissection was performed using the Singer MSM system 300 micromanipulator. 
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Defects of the mitochondrial K�/H� exchanger (KHE) result
in increased matrix K� content, swelling, and autophagic decay
of the organelle.Wehave previously identified the yeastMdm38
and its human homologue LETM1, the candidate gene for sei-
zures in Wolf-Hirschhorn syndrome, as essential components
of the KHE. In a genome-wide screen formulticopy suppressors
of the pet� (reduced growth on nonfermentable substrate) phe-
notype of mdm38� mutants, we now characterized the mito-
chondrial carriers PIC2 andMRS3 asmoderate suppressors and
MRS7 and YDL183c as strong suppressors. Like Mdm38p,
Mrs7p and Ydl183cp are mitochondrial inner membrane pro-
teins and constituents of �500-kDa protein complexes. Triple
mutant strains (mdm38� mrs7� ydl183c�) exhibit a remark-
ably stronger pet� phenotype than mdm38� and a general
growth reduction. They totally lack KHE activity, show a dra-
matic drop of mitochondrial membrane potential, and heavy
fragmentation of mitochondria and vacuoles. Nigericin, an
ionophore with KHE activity, fully restores growth of the triple
mutant, indicating that loss of KHE activity is the underlying
cause of its phenotype. Mdm38p or overexpression of Mrs7p,
Ydl183cp, or LETM1 in the triple mutant rescues growth and
KHE activity. A LETM1humanhomologue,HCCR-1/LETMD1,
described as an oncogene, partially suppresses the yeast triple
mutant phenotype. Based on these results, we propose that
Ydl183p and the Mdm38p homologues Mrs7p, LETM1, and
HCCR-1 are involved in the formation of an active KHE system.

The high, inside negative membrane potential (��) of mito-
chondria favors uptake of cations through the inner mitochon-
drial membrane. Potassium is an osmotically active ion and the
most abundant cation in the cytosol and in the mitochondrial

matrix. The uncontrolled influx of K� into mitochondria
causes an increase of osmotic pressure of the organelles and
their swelling. The presence of K�/H� exchangers in mito-
chondria which, driven by the inside-directed pH gradient,
extrude excess K� from mitochondria was already postulated
in the 1960s byMitchell (1). Although the KHE4 has been stud-
ied extensively by physiological methods, its molecular identity
remained obscure. Recently, our studies identified Mdm38/
LETM1 as major players of this extrusion system (2–4).
Phenotypic analyses ofmdm38� are consistent with the loss

of KHE activity (4). These included increased matrix K� con-
tent, swelling, and fragmentation of mitochondria, reduced
mitochondrial��, as well as reduced growth of cells on nonfer-
mentable substrate. Further tests involving submitochondrial
innermembrane particles (SMPs) confirmed the near total lack
of KHE activity (2). Addition of the synthetic KHE nigericin to
mdm38� cells restored all mitochondrial functions, including
growth on nonfermentable substrates,��, morphology, andKHE
activity (4, 5). This result strongly supported the conclusion that
Mdm38 acts as an essential regulator or subunit of themitochon-
drial KHE, because it is unlikely that a proteinwith only one trans-
membrane domain likeMdm38 forms the KHE itself.
Mdm38p is conserved in all eukaryotic organisms. The

human homologue, LETM1, has been implicated in the Wolf-
Hirschhorn syndrome (6). The yeast Saccharomyces cerevisiae
encodes a homologue, YPR125w. YPR125w had initially been
identified as a multicopy suppressor of mutants lacking the
mitochondrial Mg2� transporterMRS2 and was namedMRS7
(7). YPR125w/MRS7, also named YLH47 for yeast LETM1
homologue of 47 kDa (6), encodes a protein located in mito-
chondria (4, 8). Although disruption ofMRS7 has a weak phe-
notype, its overexpression restores growth ofmdm38� strains,
showing a functional homology to Mdm38p (4). The human
genome also encodes a secondmember of theMdm38/LETM1
family, named HCCR-1 or LETMD1, which was found to be
overexpressed in various human cancer cells (9).
Here, we characterize the role of four yeast multicopy sup-

pressors of mdm38� as well as of LETM1 and HCCR-1 with
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respect to their potential to restore K�/H� exchange activ-
ity. We find that like Mdm38p, Mrs7p and Ydl183cp are part
of a large mitochondrial KHE protein complex. We discuss
its putative composition and analyze the additive effects
resulting from the triple deletion of MDM38, MRS7, and
YDL183c.

EXPERIMENTAL PROCEDURES

Yeast Strains and Growth Media—The S. cerevisiae strains
W303 (ATCC accession number 2012239) and DBY747
(ATCC accession number 204659) were used as wild type.
W303 mdm38::HIS3 termed mdm38� was described previ-
ously (4). W303 cells were grown in YPD (yeast extract, bacto
peptone, 2% dextrose), YPG (2% glycerol) or YPGal (yeast
extract, bacto peptone, 2% galactose) media as indicated. YPG
plates were supplemented with 2 �M nigericin when indicated.
Synthetic minimal media (S-Gal, synthetic medium containing
2% galactose, or SD, synthetic medium with 2% dextrose, 2%
glucose) were supplemented with amino acids and bases when
appropriate.
Genomically tagged versions ofMDM38 andMRS7 were con-

structed by homologous recombination. The TAP tag and the
selectionmarkerTRP1-KLwere amplifiedbyPCR fromthe vector
pBS1479 (10). The following primers were used to create a C-ter-
minally tagged versionofMDM38withHis6 and theTAP tag con-
sisting of two immunoglobulin binding domains of protein A and
the calmodulin-binding peptide:MDM38HisTAPfw, 5�-TACCT-
CCCATTCCGGCCGATCAAGCTGCGAAGACTTTTGTCA-
TTAAGAAAGATCATCACCATCACCATCACTCCATGGA-
AAAGAGAAG-3�; MDM38HisTAPrev, 5�-CCTGATGTA-
CTCACATTTCCATCTGGTGAGGATGGAGGTGGAGA-
CGTCGTAGACATGGAACCCTGTTTACGACTCACTA-
TAGGG-3�. For tagging MRS7 with His6 and TAP tag, the
following primers were used: MRS7HisTAPfw, 5�-AACCG-
CATGACACCAAGCCTATCGGAGAAGCCGCTGCCAT-
CAAAGAGAAGCATCACCATCACCATCACTCCATGG-
AAAAGAGAAG-3�; MRS7HisTAPrev, 5�-TAGACACTCT-
ATTCTTTGAGTAATTTTGAGGGAGAGCAGCAATG-
ATTAACTACGACTCACTATAGGG-3�.
To create chromosomal, C-terminally His6-tagged versions of

MDM38 and MRS7, the following forward primers were used:
MDM38Hisfw, 5�-TTCCGGCCGATCAAGCTGCGAAGACT-
TTTGTCATTAAGAAAGATCATCACCATCACCATCACT-
GATCCATGGAAAAGAGAAG-3�; MRS7Hisfw, 5�-CGCATG-
ACACCAAGCCTATCGGAGAAGCCGCTGCCATCAAAGA-
GAAGCATCACCATCACCATCACTAATCCATGGAAAAG-
AGAAG-3�.MDM38HisTAPrev andMRS7HisTAPrev served as
reverse primers, respectively. To create chromosomal, C-termi-
nally One-STrEP (11)-tagged versions ofMDM38 andMRS7, the
One-STrEP sequence (based on the plasmid pEXPR-IBA103, IBA
BioTAGnology) was synthesized (Eurofins MWG GmbH) and
cloned into the BamHI-linearized pBS1479 plasmid. Chromo-
somal integration was performed using the forward primers:
MDM38OneSTrEPfw, 5�-CATTCCGGCCGATCAAGCTGCG-
AAGACTTTTGTCATTAAGAAAGATGAGAATTTGTATT-
TTCAGG-3�, and MRS7OneSTrEPfw 5�-GCATGACACCAA-
GCCTATCGGAGAAGCCGCTGCCATCAAAGAGAAGG-

AGAATTTGTATTTTCAGG-3�. MDM38HisTAPrev and
MRS7HisTAPrev served as reverse primers, respectively.
Multicopy Suppressor Screen—The mdm38� mutant strain

was transformed with 1 �g of genomic library (constructed in
YEp181, a 2-�m plasmid marked with LEU2, gift of Juraj
Gregan and Kim Nasmith, IMP, Vienna, Austria). Transfor-
mants growing on SD�leu plates were replica-plated on YPG
plates and incubated at 37 °C. Three hundred ninety six positive
putative candidates were selected and classified into strong or
weak suppressors. To confirm that the suppression was plas-
mid-borne, the plasmids were recovered, amplified in Esche-
richia coli, used for retransformation of W303 mdm38�, and
tested for growth on YPG plates at 37 °C. Confirmed plasmids
were then analyzed by restriction digestion patterns to elimi-
nate self-complementation, and the inserts of selected plasmids
were sequenced byVBC-Biotech ServicesGmbH. The suppres-
sor plasmids contained multiple ORFs. Individual ORFs were
subcloned and tested for their ability to suppress the growth
phenotype. The individual plasmids containing PIC2, MRS3,
MRS7, or YDL183c were used in all experiments if not other-
wise indicated.
Gene Deletions—Deletion of the genes was performed

according to the one-step replacement protocol (12). The
MRS7 ORF was disrupted from the start to the stop codon by
replacement with the KANMX4 disruption cassette, which was
amplified with the primers 5�-TAGGTTCGAGTAAAGAAA-
ATTTCATAAAGAAATCAACAAGACACACGTACGCTG-
CAGCTCGAC-3� and 5�-GCGGAGAGTGTATCGTGCGG-
TTTAATGGGCCAGGTGAAAACTGGGATCGATGAATT-
CGAGCTCG-3�. To delete YDL183c in W303, the whole ORF
was replaced with a URA3 disruption cassette flanked by loxP
sites, using the primers 5�-CATCGATAGAATCATTTTATC-
ACAATACCAAAACTT-3� and 5�-CTCAGGAATACCTGT-
TATGTATATTTACATGAGATA-3�. Following verification
of the correct gene replacement using analytical PCR (12), the
selection marker was removed with the CRE recombinase con-
taining vector pSH63 (13). YDL183c deletion in DBY747 was
performed by replacement with the LEU2 disruption cassette,
using the primers 5�-TCACAATACCAAAACTTCATCCGG-
TGTATTTTAGATTAAAGCGTACGCTGCAGGTCGAC-3�
and 5�-ACCTGTTATGTATATTTACATGAGATAGTGGA-
CAATCTACATAGGCCACTAGTGGATCTG-3�. Double and
triple deletion strains were obtained in W303 by crossing
and sporulation of the diploids or in DBY747 by stepwise
disruptions.
Plasmid Constructs—To provide MRS7, MDM38, and

YDL183cwith aC-terminalGFP tag, the entire respectiveORFs
were cloned into the centromeric vector pUG35 (14). MRS7
coding sequence was amplified by PCR from YEp351-MRS7
plasmid (7) with the 5� primer 5�-ACAAGAATTCATGCT-
GAAATACAGGTC-3� and the 3� primer 5�-ACATGTCGAC-
CTTCTCTTTGATGGC-3� (EcoRI and SalI sites are under-
lined) and cloned into the EcoRI/SalI sites of the plasmid
pUG35 carrying the methionine promoter. To clone YDL183c
into the pUG35 plasmid, the entire ORF sequence was ampli-
fied by PCR from W303 genomic DNA by use of 5� primer
5�-CGGGATCCATGATACGTTCAATATTTATACCGC-3�
and 3� primer 5�-GCGTCGACAATTTTGTTTTTCTCTT-
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GAGATTTCG-3� introducing the underlined BamHI and SalI
restriction sites. The amplified fragment was cloned into the
BamHI- and SalI-linearized pUG35 plasmid. A C-terminally
GFP-tagged version of the entireORFMDM38was obtained by
cloning MDM38 in pUG35 by use of the forward primer
5�-TAATATGGATCCATGTTGAATTTCGCATCAAGAGCG-
3� and the reverse primer 5�-AATATCTATCGATCT-
TAATGACAAAAGTCTTCGC-3� (BamHI and ClaI sites
underlined).
To express YDL183c from its own promoter and in fusion

with the triple HA epitope at the C-terminal end, the entire
ORF and its flanking region, including 217 nucleotides
upstream of the ATG, were amplified from W303 genomic
DNA with the primers 5�-CTTGAGCTCGGATGGATG-
GACTTGACGGC-3� and 5�-GCGTCGACCAATTTGTTTT-
TCTCTTGAGATTTCC-3� and inserted in the SacI/SalI sites
of the YCp33-HA vector. The vectors YCp33-MDM38-HA and
Yep351-MDM38-HA expressingMdm38p under the control of
its native promoter and pVTU103-LETM1-HA expressing the
human LETM1 from the ADH promoter were described previ-
ously (4). To express HCCR-1 in yeast, the entire ORF was
amplified from MGC IRAT human (Invitrogen 6009854) with
the forward primer 5�-AACGGGATCCCGGATGGCGCTCT-
CCAGGGTGTG-3� and the reverse primer 5�-CATGCTCGA-
GTCAGTGGTGGTGGTGGTGGTGGCGCCTTGTCCCA-
AGGTAGT-3� digested with BamHI and XhoI and inserted in
the pVTU103 vector.
Isolation and Subfractionation of Mitochondria—Yeast

mitochondria used for ion-flux measurements were isolated
from cells growing overnight to stationary phase. For all other
experiments, cells were grown to A600 � 1. Mitochondrial iso-
lation and mitoplast preparation were done as described previ-
ously (15). Protein extraction with sodium carbonate was per-
formed according to Ref. 16 followed by protein precipitation
with trichloroacetic acid and Western blotting analysis. Pro-
teinase K protection experiments were performed as described
previously (17). Resuspended mitoplasts were incubated in the
presence or absence of proteinaseK as indicated for 20min, and
the proteinase K reaction was inactivated with 1 �M phenyl-
methylsulfonyl fluoride, and the proteins were trichloroacetic
acid-precipitated. 50�g of protein were loaded in each lane of a
12.5% SDS-PAGE, transferred onto polyvinylidene difluoride
membrane, and immunoblotted in Tris-buffered saline/Tween
plus 2.5%drymilkwith the antibodies against the following:HA
(laboratory stock; hexokinase-1 (Biotrend); F1�, Tim44, and
Yme1 (generous gifts of Gottfried Schatz, Hans van der Spek,
andTomFox, respectively). The proteinswere visualized by use
of the SuperSignalTM West Pico system (Pierce).
Blue Native PAGE—Proteins of isolated mitochondria were

solubilized as indicated with 1.2% n-dodecyl-D-maltoside or
Triton X-100, and after a clarifying spin, 200 �g of proteins (25
�l) per lane were separated by BN-PAGE according to Ref. 18
on 5–18% polyacrylamide gradient gels. Following electro-
phoresis, wet blotting to polyvinylidene difluoride membrane
was performed for 1 h at 100 V. Protein complexes were
detected by immune decoration. The calibration standards
(Amersham Biosciences) used in the BN-PAGE were bovine thy-
roglobulin (669 kDa), horse spleen apoferritin (440 kDa), bovine

liver catalase (232 kDa), bovine heart lactate dehydrogenase (140
kDa), and bovine serum albuminmonomer (67 kDa).
Affinity Chromatography—180 mg of isolated mitochondria

were used for standard protein purification. Isolatedmitochon-
dria were adjusted to a concentration of 20 mg/ml. For affinity
chromatography using Ni-NTA Superflow resin (Qiagen),
mitochondria were solubilized with 1.2% Triton X-100 on ice
for 30 min in Hi 50 buffer (10 mM Tris-HCl, pH 7.8, 50 mM

NaCl, 20 mM imidazole, protease inhibitor mixture (Complete
Mini, Roche Applied Science)). After centrifugation at
43,000� g for 30min (4 °C) to removenonsolubilizedmitochon-
drial debris, the Triton concentration of the supernatant was
reducedto1%byadditionofHi50buffer.Ni-NTASuperflowresin
(Qiagen)waswashed two timeswith10mlofHi50buffer contain-
ing1%TritonX-100.Theclarifiedsupernatantwas incubatedwith
the resin for 30 min under gentle shaking and loaded on a Poly-
Prepchromatographycolumn(Bio-Rad).Thecolumnwaswashed
twicewith15mlofHi50Washbuffer1 (0.8%TritonX-100,20mM

imidazole) and twice with 15 ml of Hi 50 Wash buffer 2 (0.6%
Triton X-100, 30 mM imidazole). Finally, bound proteins were
eluted with Hi 50 Elution buffer (10 mM Tris-HCl, pH 7.8, 50 mM

NaCl, 200mM imidazole, 0.6%TritonX-100 and, unless otherwise
stated, complete protease inhibitor mixture).
For streptavidin affinity chromatography using Strep-Tactin

Superflow (Qiagen), mitochondria were solubilized with 1.2%
Triton X-100 in Strep 50 buffer (100 mM Tris-HCl, pH 7.8, 50
mMNaCl, protease inhibitormixture). All other steps were per-
formed as described for the Ni-NTA chromatography except
that Strep-Tactin Superflow (Qiagen) was used as affinity resin,
and bound proteinswere elutedwith Strep 50 buffer with a final
concentration of 2.5 mM D-desthiobiotin.
All purification steps were performed at 4 °C. Control experi-

ments were performed for each affinity chromatography with
untagged or untransformed DBY747 wild-type or mdm38�
strains. Two-dimensional gel electrophoresis was performed as
described previously (19). Anti-His antibody was purchased from
Qiagen, and anti-Mdm38 was generously provided by P. Rehling.
Coimmunoprecipitation (CoIP)—UltraLink immobilized

protein A, covalently bound to HA antiserum with the cross-
linker, was kindly provided byA. Pichler. Isolatedmitochondria
(2 mg of protein) expressing YEp-MDM38-HA (70 kDa) and
either pUG-MDM38-GPF (92 kDa), YDL183-GFP (64 kDa), or
AIF-GFP (68 kDa) were solubilized for 30 min in RIPA buffer
(50 mM Tris, pH 7.4, 150 mM NaCl, 1% Nonidet P-40, 0.5%
sodium deoxycholate, 0.1% SDS containing 1.2% n-dodecyl-D-
maltoside (Sigma)) and protease inhibitor mixture (complete
Mini, Roche Applied Science) plus 1 mM phenylmethylsulfonyl
fluoride and, after a clarifying spin, incubated under rotation
for 1 h with 10 �l of the HA-coupled beads, washed four times
in RIPA buffer, and eluted in Laemmli buffer. Proteins were
separated on 12.5% SDS-PAGE, transferred, and analyzed by
immunoblotting with GFP (Roche Applied Science) and HA
(laboratory stock) antibodies.
Measurements of the Mitochondrial Membrane Potential—

The membrane potential of isolated mitochondria was
recorded in an LS 55 fluorescence spectrometer (PerkinElmer
Life Sciences) bymonitoring the fluorescence of 5,5�,6,6�-tetra-
chloro-1,1,3,3�-tetraethylbenzimidazolylcarbocyanine iodide
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(Molecular Probes) according to Ref. 20. Measurements were
carried out in breaking buffer (0.6 M sorbitol, 10 mM Tris-HCl,
pH 7.4). For calibration, aliquots of the same preparation were
hyperpolarized with 1 �M nigericin (Sigma) and depolarized
with 1 �M carbonyl cyanide p-trifluoromethoxyphenylhydrazone
(Sigma) in breaking buffer. The reading after addition of nigericin
was set as 100% and that after carbonyl cyanide p-trifluorome-
thoxyphenylhydrazone as 0%. The values were linearized, and the
relative membrane potential was calculated using y � kx � d.
K�/H� Exchange Measurements in SMPs—Preparations of

SMPs and loading with the K�- and H�-sensitive fluorescent
dyes potassium-binding benzofuran isophthalate (PBFI) and
BCECF (both Invitrogen) were made as described previously
(2). SMPs were treated with 1 �M antimycin A and 1 �M oligo-
mycin prior to measurements. To determine the kinetics of K�

andH� transport across themembrane, 150mMKClwas added
to the SMPs. When indicated, incubation of SMPs with 10 �M

nigericin (Sigma) was done at room temperature for 5 min
before the measurements. All measurements were repeated at
least three times with different preparations of SMPs.
Confocal Microscopy—The plasmids pHS72 (TOM72-YFP)

(21) and pYX232-mtGFP (22) were gifts from H. Sesaki and B.
Westermann, respectively, and served to label mitochondria.
Alternatively, mitochondria were labeled withMitotracker Red
(100 nM). Vacuoles were stainedwith FM4-64 in a final concen-
tration of 10 �M (Molecular Probes). Microscopy settings were
used as described previously (5).
Electron Microscopy—Cells were harvested at logarithmic

growth phase (A600 � 1). Cryofixation, freeze substitution, thin
sectioning, and image acquisition were performed as described
previously (5).

RESULTS

PIC2, MRS3, MRS7, and a Novel Gene YDL183c Act as Mul-
ticopy Suppressors of mdm38�—Absence of Mdm38p in yeast
cells (mdm38� mutants) results in reduced growth on nonfer-
mentable substrate (pet� phenotype) (4). According to our pre-
vious data, the antibiotic nigericin, a KHE ionophore, acts as a
multivalent suppressor of the mdm38� deletion phenotype. It
restores cell growth onnonfermentable substrate, KHEactivity,
and �� and reverts matrix swelling and fragmentation of mito-
chondria (5).
To identify proteins substituting similarly for the function of

MDM38, we have screened a yeast genomic library and selected
suppressor genes that, being overexpressed, restored growth of
mdm38� onnonfermentable substrate (Fig. 1). Among the sup-
pressors, we found three previously described genes, PIC2,
MRS3, andMRS7, encoding mitochondrial proteins. PIC2 and
MRS3 encode mitochondrial carrier proteins involved in Pi
transport and Fe2� accumulation, respectively (23, 24). MRS7
encodes a functional homologue of Mdm38p, located in the
inner membrane of mitochondria, with a weak deletion pheno-
type depending on the strain (7, 8). Additionally, we found one
not yet characterized gene, YDL183c.
Up-regulation of Pic2, Mrs3, Mrs7, Ydl183c, or Human

LETM1 Increases the Mitochondrial Membrane Potential of
mdm38�—�� was found to be moderately reduced in
ydl183c� or mrs7� and substantially impaired in mdm38�

mitochondria. Having determined that overexpression of
Pic2p, Mrs3p, Mrs7p, and Ydl183cp rescued the nonfermenta-
tive cellular growth ofmdm38�, we asked whether this positive
growth effect also correlated with a rise of the mitochondrial
�� of themdm38�mutant. Although��was slightly increased
upon overexpression of Pic2p and more significantly upon
overexpression ofMrs3p inmdm38�, overexpression ofMrs7p
and Ydl183cp in the mutant restored �� close to the wild-type
levels (Table 1).
Mitochondrial Morphology Is Restored upon Overexpression

of the Suppressor Genes in mdm38�—Next, we investigated
whether high copy expression of the suppressor genes reversed
the fragmentation ofmdm38� mitochondria. For this purpose,
mdm38� cells expressing a GFP targeted to the mitochondrial
matrix and a vector with or without the suppressor genes were
observed under the confocal microscope. Mitochondria from
mdm38� cells transformed with the empty vector appeared
fragmented into large unconnected spheres (Fig. 2a). Com-
pared with wild-type cells, mdm38� cells displayed wild-type-
like elongated tubular mitochondria in only about 3% of the
population. Mutantmdm38� cells overexpressing PIC2 exhib-
ited a heterogeneous mixture of spherical and tubular mito-
chondria, indicating a partial reversion of the phenotype (Fig.
2c). Overexpression of MRS3, YDL183c, or MRS7 resulted in a
tubularmitochondrial network (Fig. 2,d–f, respectively, andTable
2) similar to thatdisplayedbywild-typecells (Fig.2b).Thepercent-
age of elongated tubular mitochondria was shifted to almost 80%
upon overexpression of Pic2 and to about 95% whenMrs3, Mrs7,
or Ydl183c was overexpressed (Table 2).
YDL183c Is a Strong Suppressor for Mitochondrial KHE

Activity in mdm38�—Because swelling, depolarization, and
fragmentation of mdm38� mitochondria result from loss of
mitochondrial KHE activity and mitochondrial K� overload
(5), we next asked whether overexpression of the suppressor
genes restored the mitochondrial defects by modulating the
KHE activity.

FIGURE 1. Multicopy suppressors and their growth effects on mdm38�.
Effects of YDL183c, PIC2, MRS3, and MRS7 on the nonfermentative growth of
mdm38� cells are shown. W303 mdm38� mutant cells containing an empty
vector or a vector overexpressing YDL183c, PIC2, MRS3, or MRS7 and wild-type
(WT) cells were spotted onto YPD or YPG plates and grown at 28 °C for 3 or 5
days, respectively.
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We have developed a method to measure the KHE activity
across the mitochondrial inner membrane using SMPs with
entrapped K�- and H�-sensitive fluorescent dyes PBFI and
BCECF (2). This approach allows controlling internal and
external ion milieus at will and recording of both proton
and potassium fluxes. As shown previously and here in Fig. 3,

SMPs prepared from wild-type mitochondria exhibited rapid,
reciprocal translocation of K� and H� driven by concentration
gradients of either. In contrast, SMPs from mdm38� failed to
exhibit changes in [H�], and those in [K�] were drastically
reduced.Nigericin restoredK� andH� translocation inmutant
SMPs to the wild-type level (Fig. 3B) (3).
SMPs were then prepared from mdm38� mitochondria

overexpressing the respective suppressors (Fig. 3A). Overex-
pression of the phosphate carrier Pic2p showed a mild increase
inK� fluxes and a stronger increase inH� fluxes (Fig. 3A, round
dotted line). Interestingly, when K2HPO4 was used as K� salt
instead of KCl, K� fluxes were not significantly re-established,
whereas H� fluxes reached wild-type levels (data not shown),
which are consistent with the role of Pic2 as PO4

�/H� trans-
porter (23). Overexpression of Mrs3p poorly restored the K�

and H� fluxes (Fig. 3A, black broken line). However, overex-
pression of Ydl183cp restored the K� andH� exchange activity
to a wild-type level, as did overexpression of Mrs7p, the yeast
Mdm38p homologue (Fig. 3A, black solid line and gray square
dotted line, respectively) or addition of nigericin. These results
confirmed that, in contrast to Pic2p or Mrs3p, Ydl183cp, like
Mrs7p, can fully substitute for Mdm38p in providing mito-
chondria with KHE activity.
Ydl183cp Is an Integral Mitochondrial Protein—YDL183c

encodes a protein of 320 amino acids with a molecular mass of
about 37 kDa. The computer programs DAS and TMPRED
(available on line) predict one transmembrane domain (196–
212 amino acids) and a potential N-terminalmitochondrial tar-
geting sequence. Homologues are found in fungi and in some
green plants like Arabidopsis thaliana (At1g53760 accession
numberQ6NQN0). These proteins share one conserved putative
transmembrane domain rich in proline residues (Fig. 4A). Except
for the presence of a proline-rich putative transmembrane
domain, there was no obvious sequence similarity between
Ydl183cp and proteins of theMdm38p/LETM1 family.
To determine the cellular localization of Ydl183c, cells

expressing the fusion protein Ydl183c-GFP from theMET pro-
moter encoded on the centromeric plasmid pUG35 were
stained with Mito Tracker Red. Fluorescence confocal micros-
copy revealed the colocalization of GFP and red fluorescence,
indicating the mitochondrial localization of Ydl183-GFP (Fig.
4B). To confirm these data, biochemical studies were per-
formed with cells expressing the low copy vector encoding
Ydl183cp from its own promoter and C-terminally tagged with
the triple hemagglutinin (HA) epitope. Cell fractionation and
immunoblotting showed Ydl183c-HA protein to cofractionate
with a mitochondrial protein (Porin1, Por1p), whereas the
cytosolic protein hexokinase 1 (Hxk1p) was detected in the
post-mitochondrial fraction, excluding the possibility of cross-

FIGURE 2. Mitochondrial morphology in function of overexpression of
the proteins Pic2, Mrs3, Mrs7, or Ydl183c in W303 mdm38� mutant cells.
Mitochondrial morphology of cells cotransformed with a mitochondrial
matrix targeted GFP (pYX232-mtGFP) and the vector without (a) or with the
following suppressor genes: PIC2 (c), MRS3 (d), YDL183c (f), and MRS7 (e) were
compared with wild-type (WT) cells (b). Cells were grown in galactose-con-
taining medium and analyzed by differential interference contrast (Nomarski)
and confocal fluorescence microscopy.

TABLE 1
Relative �� of mdm38� (�) and mdm38� mrs7� ydl183c� (���) mutants in function of the overexpressed suppressor genes
The relative �� of mitochondria are expressed in % relatively to hyperpolarization of the probe with nigericin. ND, no data.

Strains
Vectors

Empty PIC2 MRS3 MRS7 YDL183 MDM38 LETM1

� 48 62 � 3.4 85 � 2.7 98 � 3 92 � 6 95 � 6 ND

��� 17 � 2 ND ND 89 � 3.3 78.6 � 3.3 62.3 � 3.4 82.3 � 5.2

TABLE 2
Mitochondrial morphology of W303 mdm38D cells in function of the
overexpressed suppressor gene
Strains were grown overnight, and mitochondrial morphology was visualized by
detection of the expression of the mitochondrial targeted matrix GFP under fluo-
rescence microscopy. Cells were counted with hidden identity.

Strain Total cells % cells with
fragmented mitochondria

Wild type 602 2.6 � 1.6
mdm38� 680 89.0 � 5.8
mdm38��(MRS7)n 1660 7.3 � 2.6
mdm38��(PIC2)n 870 20.3 � 4
mdm38��(MRS3)n 1126 10.6 � 6.3
mdm38��(YDL183c)n 1040 7.7 � 3.8
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contamination of cytoplasmic and mitochondrial fractions
(Fig. 4C, panel a). Fractionation of mitochondria into pellet
and supernatant upon alkaline sodium carbonate treatment
released the membrane-associated � subunit of the F1-ATPase
(F1�) almost entirely into the supernatant, whereas the mem-
brane protein Por1p was retained in the pellet fraction contain-
ing integral proteins. Ydl183c-HA was found in the membrane
pellet (Fig. 4C, panel b, lane P). However, in contrast to Por1p,
Ydl183c-HA was also partially found in the soluble fraction
(Fig. 4C, panel b, lane SN). These results indicated that
Ydl183cp is inserted into one of the mitochondrial membranes
where it can be partly released by alkaline treatment.
For further determination of the topology of Ydl183cp, intact

mitochondria were first treated with or without proteinase K.
Ydl183cp was not degraded upon addition of proteinase K (data
not shown). Mitoplasts were prepared by osmotic swelling and
rupture of the mitochondria. Mitoplasts containing the inner
membrane were treated with proteinase K (Fig. 4C, panel c). To
control the intactness of mitoplasts, the topology of known pro-
teins was also tested. Tim44p, a matrix-sided protein of the inner
membrane, remainedprotected fromproteinaseK, indicating that
themitoplastswere intact. Incontrast,Yme1p,an innermitochon-
drial membrane protein partially exposed to the outside of mito-
plasts, was accessible to proteinase K indicating that the outer
membrane was disrupted. The C-terminally tagged Ydl183cpwas
resistant to40�g/mlproteinaseK,whereas it becameaccessible to
higher proteinase K concentrations. Proteinase K at 120 �g/ml
degraded most of Ydl183-HA without generating proteolytic
C-terminal fragments. When mitoplast were lysed with Triton
X-100 and then treatedwith proteinaseK, the proteinwas entirely
degraded. Altogether, although alkaline extraction released some
of the protein, these results qualify Ydl183p as an integral protein
of the inner mitochondrial membrane, with a Cout (facing the
intermembrane space) topology. Degradation of Ydl183c-HA
occurred only in presence of high concentrations of proteinase K
as compared with Yme1, either because it is shielded by other
proteinsorYdl183cp is intrinsicallymoreresistant toproteinaseK.
Synthetic Growth Effect of Triple Disruptions of MDM38,

MRS7, and YDL183c—The W303 and DBY ydl183c� dis-
ruptant strain showed reduced growth on nonfermentable car-
bon sources (YPG) at high temperature (37 °C) (data not
shown). Reduced growth on nonfermentable substrate was also
reported by Volckaert et al. (25) for a FY ydl183c� mutant at
30 °C and 37 °C. The double disruptants ydl183c� mrs7�
exhibited a mild growth reduction on nonfermentable sub-

FIGURE 3. KHE activity of mdm38� SMPs in the function of the suppressors
Pic2, Mrs3, Mrs7, and Ydl183c. Submitochondrial inner membrane particles
were prepared from wild-type and mdm38� mutant cells with entrapped
K�-sensitive PBFI or H�-sensitive BCECF. Ratios of K�-bound or H�-bound to
-unbound dyes were recorded at 25 °C at resting conditions and upon the addi-
tion of 150 mM KCl. A, shown are the effects on K� and H� fluxes in SMPs upon
overexpression of the suppressor genes in W303 mdm38�. SMPs were prepared
from mitochondria of wild type (WT) (black thin dashed line) or mutant mdm38�
cellscarryingtheemptyplasmid(gray solid)or thesuppressorplasmidcontaining
the genes PIC2 (black dotted line), MRS3 (black bold dashed line), MRS7 (gray square
dotted line), or YDL183c (black solid line). B, increase of [K�]i and [H�]i observed in
SMPs from DBY wild-type (black dashed line), single mutant mdm38 (gray dashed
line), or triple mutant mdm38� mrs7� ydl183c� (black thin solid line) in the
absenceofnigericinormdm38(gray bold solid line)and mdm38�mrs7�ydl183c�
(black bold solid line) in the presence of nigericin.
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strate at 16 and 28 °C (data not shown). Double disruptants
mdm38� mrs7� in W303 or DBY747 essentially showed the
same phenotype as the single mutantmdm38� at 28 or 35.5 °C,
whereas a slight growth improvement was detected on YPG at
16 °C (Fig. 5A). Growth of mdm38� ydl183c� double mutants
was reduced on YPG at 16 °C (Fig. 5A). Importantly, the triple
deletion mutant mdm38� mrs7� ydl183c� resulted in syn-

thetic phenotypes. Growth on non-
fermentable substrates was virtually
absent, and the DBY747 triple
mutant strain also displayed a sig-
nificant growth reduction on YPD
plates at 28 and 35.5 °C (Fig. 5,A and
B), consistent with a serious dis-
turbance in mitochondrial func-
tion(s) essential for cell viability.
Growth of the triple mutant on

YPD and YPG was largely restored
upon expression of MDM38 or
overexpression of either MRS7,
YDL183c, or human LETM1 (Fig.
5B). In comparison, overexpression
of PIC2 in the triplemutant resulted
in no growth improvement, and
overexpression of MRS3 rescued
the nonfermentable growth of the
triplemutant only at 37 °Cbut not at
16 °C (data not shown).
Addition of nigericin, an electro-

neutral KHE ionophore, efficiently
restored growth of the triplemutant
mdm38� mrs7� ydl183c� on glyc-
erol at 16 and 28 °C (Fig. 5C). This
finding is important because it sug-
gests that the growth defects on fer-
mentable and nonfermentable sub-
strates were essentially due to a lack
of KHE activity.
Given the strong homology of the

yeast proteinsMrs7 andMdm38,we
searched for human homologous
proteins of LETM1. A BLAST
search of the human protein data
base revealed a protein containing
a LETM1 domain and named
LETMD1 or HCCR-1. The sequence
alignment ofMrs7,Mdm38, LETM1,
and HCCR-1 shows the conserved
domains as highlighted (Fig. 6A). The
recent work of Kim and co-work-
ers (9, 26) showed that HCCR-1
was overexpressed in various
human cancers and might func-
tion as a negative regulator of the
p53 tumor suppressor. Having
shown that overexpression of
LETM1 from the ADH promoter
restored growth of the triple

mutant, we tested the suppression capacity of HCCR-1
expressed under the same promoter. Overexpression of
HCCR-1 restored fermentative growth of the triple mutant
to wild-type levels at 28 and 37 °C and nonfermentative
growth on YPG at 28 °C (Fig. 6B). However, growth was only
poorly increased on YPG at 16 °C and not at all at 37 °C (data
not shown). As described previously, HCCR-1 was charac-

FIGURE 4. Ydl183cp is a component of the mitochondrial inner membrane. A, Ydl183cp is a member of a
novel protein family. Homologous proteins were identified by a BLAST search. A sequence alignment (Clust-
alW) of Ydl183cp and its homologues in A. thaliana (A.t.) and Neurospora crassa (N.c.) is shown here. Identical
amino acids are highlighted in black and similar amino acids in gray. The putative potential N-terminal mito-
chondrial targeting sequence is marked with a dotted bar and the putative transmembrane domain with a solid
bar. B, localization of the Ydl183c-GFP fusion protein analyzed under confocal microscopy. W303 cells express-
ing C-terminally GFP-tagged YDL183c gene were grown to log phase in galactose containing medium at 28 °C.
Mitochondria are labeled with MitoTracker red chloromethyl-X-rosamine. C, subcellular and submitochondrial
localization of Ydl183cp. Panel a, W303 cells expressing the Ydl183c-HA fusion protein (YCp-YDL183c-HA, 42
kDa) were grown to log phase in galactose-containing medium. Protoplasts were homogenized and separated
into total cell (T), mitochondrial (M), and post-mitochondrial (C) fractions. Equal amounts of protein of subcel-
lular fractions were subjected to SDS-PAGE, and immunodetection with antisera against the HA tag, Hxk1p and
Por1p, was performed. Panel b, crude mitochondria (2 mg of protein) were treated with 0.1 M Na2CO3 and
fractionated by centrifugation at 100,000 � g into pellet (P) and supernatant (SN). Both fractions (100 �g of
protein/lane) were subjected to SDS-PAGE and immunoblotted with antisera against HA, Por1p, and F1�. Panel
c, mitoplasts prepared by osmotic shock were separated into supernatant containing the inter-membrane
space and pellet. Mitoplasts were aliquoted in equal amounts and incubated with or without proteinase K as
indicated. Samples were analyzed by SDS-PAGE and immunoblotted with antisera against the HA tag and
against mitochondrial proteins of the inner membrane Tim44p and Yme1p.
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terized as a mitochondrial protein (26). We verified its sub-
cellular localization when heterologously expressed in yeast.
Cell fractionation of wild-type (data not shown) and
mdm38� mrs7� ydl183� triple mutant cells expressing
HCCR-1-His and Western blotting analysis revealed that
HCCR-1 was detected as a protein of 35 kDa in the total and
mitochondrial fractions (Fig. 6C). Por1p was also recovered
in total and mitochondrial fractions and Hxk1p in total and
cytoplasmic fractions. Accordingly, in yeast HCCR-1-His

was exclusively found in mito-
chondria, although in significantly
less abundant amounts than Por1p
(Fig. 6C).
Severe Loss of the Mitochondrial

Membrane Potential in the Ab-
sence of Mrs7p, Ydl183cp, and
Mdm38p—Most importantly, the
mitochondrial �� was dramatically
reduced in the triple mutant
mdm38� mrs7� ydl183c� (Table
1). We tested if overexpression of
the individual suppressors also
restored the mitochondrial �� in
the triple mutant mdm38� mrs7�
ydl183c�.We found that expression
of Mdm38p and overexpression of
Mrs7p or Ydl183cp restored the
reduced�� of the triple mutant to a
reasonable level (Table 1), a result
comparable with that observed after
overexpression of human LETM1.
These findings suggest that cellular
growth and increase of mitochon-
drial �� are mechanistically linked.
Dramatic Changes of Organelle

Morphology in mdm38� mrs7�
ydl183c� Cells—In addition to
growth impairment and profound
depolarization, the triple deletion
mutant mdm38� mrs7� ydl183c�
differed most strikingly from the
mdm38� single deletion mutant in
its organellar morphology. Confocal
microscopic analysis of triple mutant
cells expressing the mitochondrial
matrix-targetedGFPshowed thatmi-
tochondria appeared fragmented in
spherical units, were less numerous
than in the single mdm38� mutant,
and were somewhat clumped to-
gether. Furthermore, costaining of
cells with the specific vacuole dye
FM4-64 consistently showed a mul-
tiple lobed morphology of the vacu-
oles (Fig. 7A). To look into the struc-
ture of the organelles at higher
resolution, electronmicroscopywas
performed. Remarkably, numerous

vesicles were visible in each section, all looking almost alike in
size and electron density. The recognition of single or double
vesicle-surrounding membranes was the only morphological
criterion to discriminate between mitochondrial and vacuolar
vesicles. Yet a distinction of the organelles was not always pos-
sible (Fig. 7B, panels a and b, right panels). Surprisingly, a large
number of cells showed vesicular mitochondria containing
undefined material suggesting either internalized membranes
or paracrystalline structures (Fig. 7B, panel b, right panel).Most

FIGURE 5. Deletion growth phenotypes. A, serial dilutions of DBY. mdm38�, mdm38� mrs7�, mdm38�
ydl183c�, and mdm38� mrs7� ydl183c� mutants were spotted onto YDP and YPG and incubated at the indi-
cated temperatures. Growth on 28, 35.5, and 16 °C was observed after 3, 5, and 8 days, respectively. B, DBY
wild-type (WT) and mdm38� mrs7� ydl183c� triple mutant cells expressing an empty control vector (pUG35) or
YCp33-MDM38-HA, pUG35-MRS7-GFP, pUG35-YDL183c-GFP, or pVT-U-LETM1-HA. Serial dilutions were spot-
ted onto YPD and YPG plates and incubated for 10 days at 16 °C or 3 or 5 days at 28 and 37 °C on YDP or YPG,
respectively. C, effect of nigericin on the nonfermentative growth of DBY747 mdm38� single, mdm38�mrs7�,
mdm38�ydl183c� double, and mdm38� mrs7� ydl183c� triple mutant cells. Serial dilutions of the wild-type
and mutant cells were spotted onto YPD and YPG plates containing (�) or not (�) 2 �M nigericin and incubated
10 days at 16 °C and 5 days at 28 °C.
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importantly, wild-type-like morphology of the cells was
restored upon addition of nigericin (Fig. 7B, panel c) with rever-
sion of mitochondria from swollen, fragmented, and electron-
transparent to condensed, elongated, and electron-dense
organelles. This key finding links themorphological phenotype
of the triplemutant to a defect of K� homeostasis, which can be
compensated by nigericin.
For better discrimination of the origin of the visualized

organelles, we used a mitochondrial YFP targeted to the outer
membrane (pHS72) and the vacuolar stain FM4-64. Confocal
microscopy showed stained wild-type mitochondria and vacu-
oles as clearly distinct organelles (Fig. 7C, panels a–d). In con-
trast, triple mutant cells exhibited widely overlapping fluores-
cence of FM4-64 (vacuoles) and YFP directed to the outer
mitochondrial membrane (Fig. 7C, panels e–h), indicative of
the colocalization of both organelle markers that occurs in
mitophagy (27).
Mitochondrial KHE Is Totally Absent in the Triple Deletion

Strain mdm38� mrs7� ydl183c�—Remarkably, SMPs from
the triple mutant mdm38� mrs7� ydl183c� failed to exhibit
H� fluxes, and most importantly, residual K� fluxes observed

in themdm38� singlemutant SMPs
were fully eliminated in the triple
mutant (Fig. 3B). However, KHE
was fully active in ydl183c� and
moderately reduced in mrs7� (data
not shown). Consistent with data
reported above on cell growth and
��, disruption of all three genes had
additive effects on the KHE activity.
However, preincubation of the
mdm38� mrs7� ydl183c� SMPs
with nigericin led to the activation
of the K� and H� transport across
the SMPs membrane, although not
to full wild-type levels (Fig. 3B).
K� and H� flux measurements

carried out in triple mutant SMPs
revealed efficient restoration of
activities by Mdm38p expressed
from a single copy vector, whereas
its homologue Mrs7p required ex-
pression from a multicopy vector
(Fig. 8, B, black solid line, and A,
black square dotted line, respec-
tively). Overexpression of Ydl183cp
also restored some of the K�/H�

fluxes in the triple mutant but not
fully (Fig. 8A, black broken line).
Finally, overexpression of the
human homologue of Mdm38p,
LETM1 in the triple mutant strains,
restored most of the KHE activity
(Fig. 8B, gray solid line).
Ydl183cp, Mrs7p, and Mdm38p

Form High Molecular Weight Com-
plexes—The genetic data presented
here support the notion that

Mdm38, Mrs7, and Ydl183c proteins are functionally equiva-
lent in contributing to the formation of an active KHE. All three
proteins are single-pass transmembrane proteins and thus are
unlikely to form an exchanger without self-association or with-
out association with other yet unidentified proteins (homo- or
hetero-oligomerization, respectively). To address the question
of whether the proteins were part of high molecular weight
complexes, we first performed chemical cross-linking.We used
crudemitochondria expressingMdm38p or Ydl183cp in cross-
linking experiments using disuccinimidyl suberate at increas-
ing concentrations. Based on the electrophoretic mobility of
the cross-linked products, our data confirmed that Mdm38p
and Ydl183cp were part of large protein complexes (sup-
plemental material). To improve the molecular weight size res-
olution of the complexes, we performedBN-gel electrophoresis
followed by immunodetection. Mitochondria were isolated
from DBY wild-type strains expressing chromosomally tagged
Mdm38-His or Mrs7-His or extra-chromosomal Ydl183-GFP
from the pUG vector. Isolated mitochondria were solubilized
with mild detergents and separated on nondenaturing gels
prior to Western blotting and immunodetection. Probing with

FIGURE 6. Suppression effect of human HCCR-1. A, sequence alignments of Mdm38, Mrs7, Letm1, and
HCCR-1. ClustalW alignments of the amino acid sequences over the homologous regions are shown. Identities
are highlighted in black and similarities in gray. Amino acid residues identical over all four sequences are in
boldface and boxed. Bar is over the transmembrane domain. B, growth effect of HCCR-1 expression in yeast
triple mdm38� mrs7� ydl183� mutants (���). Wild-type (WT) and triple mutant cells expressing pVTU103 with
or without HCCR-1 were spotted onto SD�ura, YPD, and YPG plates and grown at the indicated temperatures
for 6, 3, and 6 days, respectively. C, subcellular localization of HCCR-1 in yeast. Yeast triple mdm38� mrs7�
ydl183� mutants (���) expressing HCCR-1 were fractionated into total (T), mitochondrial (M), and post-mito-
chondrial (C) fractions, and Western blotting was performed.
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the anti-His antibody revealed that Mdm38-His (�67 kDa)
migrated at�500,	232, and	140 kDa (Fig. 9A, left panel). Of
note, Mdm38-His was detected in protein complexes of the
same molecular weights irrespective of the presence of Mrs7p
orYdl183cp (data not shown). Furthermore,Mrs7-His (53 kDa)
appeared in three bands around �500 kDa and an additional
band of 
232 kDa (Fig. 9B, lane 1). BN-PAGE analysis of solu-
bilizedmitochondria expressing Ydl183-GFP yielded a product
of an apparent molecular mass of about 67 kDa, which corre-
sponds to its molecular weight as GFP-taggedmonomer and to
additional bands of 	232 kDa, representing YDL183GFP-con-
taining complexes. However, in the background of a mutant
mdm38� strain, Ydl183-GFP partly shifted to a major band of
�500 kDa (Fig. 9C).
Next, we affinity-purified the chromosomally His-tagged

Mdm38p andMrs7p. The proteins were bound to the resin and
eluted from the columnprior to analysis on BN-PAGE. Surpris-
ingly, despite changing the experimental conditions such as the
incubation times with the Ni-NTA beads or using different
detergents or NaCl concentrations, the eluted Mdm38-His
exclusively appeared as a single band of a molecular mass
slightly smaller than 232 kDa (Fig. 9A,middle panel). This was
an unexpected result. To find out if the protein complex of
�500 kDa containing the His-tagged Mdm38p as detected on
BN prior affinity purification had become inaccessible to the
columnpossibly because it was hidden by additional proteins of
the larger complex, we decided to affinity-purifyMdm38 fused to
the One-STrEP tag. This tag containing a linker regionmakes the
tagged component of a protein complex more accessible to the
column. In fact, using the chromosomal One-STtrEP-tagged ver-
sion ofMDM38, the purifiedMdm38pwas recoveredwithin high
molecular complexes ranging between �500 and 	 600 kDa in
addition to the complex of 	232 kDa (Fig. 9A, right panel).
Affinity chromatography of solubilized mitochondria chro-

mosomally expressing Mrs7-His followed by BN-PAGE recov-
ered Mrs7-His within three complexes of 	140, 
232, and
between 440 and 669 kDa as seen in Fig. 9B, left panel, lane 2.
Similar results were obtained using Mrs7OneStrep instead of
Mrs7His (Fig. 9, right panel). In the next step, we solubilized
mitochondria from chromosomally Mrs7-His-tagged cells
coexpressing either YCp-Mdm38-HA or YCp-Ydl183-HA.
Mitochondrial expression ofMdm38-HA andYdl183c-HAwas
confirmed byWestern blotting (data not shown). Affinity puri-
fication followed by BN-PAGE and Western blotting analyses,
including immunodetection with anti-His and HA antibodies,
was performed. Although the anti-His antibody recognized
Mrs7-His, neither Mdm38-HA nor Ydl183-HA was detectable
when the eluted fractions were probed with the anti-HA anti-

body, excluding a direct interaction of Mrs7-His and
Mdm38-HA or Mrs7-His and Ydl183-HA (Fig. 10, A and C,
respectively). Second dimension SDS-PAGE confirmed that
Mdm38-HA was not part of the Mrs7-His complex (Fig. 10B,
right panel). Taken together, our experiments did not suggest
any direct interaction between Mdm38-HA and Mrs7-His.
These results are in contrast to data reported previously by

Frazier et al. (8), indicating a direct interaction of a protein
A-tagged Mdm38 with numerous other mitochondrial pro-
teins, including Mrs7p. In fact, when we used a strain express-
ing the Mrs7 protein C-terminally tagged with a His fused to
protein A (Mrs7-His-TAP), we found that Mdm38 coeluted
with Mrs7-His-TAP in the �232-kDa complex (Fig. 11, B and
C). However, a direct interaction between Mrs7-His-TAP and
Ydl183c was not detectable (Fig. 10C).We askedwhether the tags
affected the suppression of the mutant phenotype. Mrs7-His or
Mrs7-His-TAP was introduced into the mdm38� mutant, and
nonfermentative growthwas tested.We found thatmdm38� cells
expressing Mrs7-His-TAP did not grow as well as Mrs7-His or
wild-type cells (Fig. 11D). Thus, these data altogether suggest that
Mrs7p andMdm38p are not interacting directly.
We used CoIP to ask whether Mdm38 homo- or hetero-

oligomerizes with Ydl183cp. Mdm38 self-oligomerization was
confirmed by CoIP experiments performed on mdm38� cells
coexpressingMdm38-HA (72 kDa) andMdm38-GFP (92 kDa).
Although Mdm38-HA was successfully bound to HA-coated
protein A beads, only Mdm38-GFP was pulled down, and
Ydl183c-GFP did not copurify in the proteinA-bound fractions
like Aif-GFP serving as negative control (Fig. 12).

DISCUSSION

We previously characterized Mdm38p as a mitochondrial
protein essential for KHE activity (2, 4). Because this protein
has only one transmembrane domain, it appears unlikely to be
solely responsible for the KHE process. To explore the possible
existence of additional proteins involved inKHE,we carried out
a genome-wide suppressor screen.
We identified themitochondrial carriers Pic2p andMrs3p as

weak suppressors. Their overexpression rescued the growth
defect of mdm38�. We showed that mitochondrial morphol-
ogy ofmdm38�was restored to wild-type upon overexpression
of PIC2 andMRS3. However, inmdm38� SMPs, KHE was not
seen after overexpression of Pic2p and was only marginally
restored by Mrs3p. Because overexpression of Pic2p, a Pi car-
rier, had no effect on mitochondrial K� fluxes in mdm38�
mitochondria and resulted in a marginal increase of the mito-
chondrial��, we hypothesize that a contribution to�� above a
threshold is sufficient to heal the growth and morphology phe-

FIGURE 7. Mitochondrial and vacuolar morphology in absence of Mdm38p, Mrs7p, and Ydl183cp. Cells were grown to logarithmic phase in galactose (A
and B)- or galactose- and raffinose (C)-containing medium. Shown are representative fluorescent and electron microscopy images. A, confocal microscopy
analysis of W303 wild-type cells (a), isogenic mdm38� (b) and isogenic mdm38� mrs7� ydl183c� triple mutant cells (c) expressing the mitochondrial matrix
targeted GFP. Vacuoles were stained with FM4-64. B, electron micrographs of mdm38� mrs7� ydl183c� cells. Panels a and b show the organellar ultrastructure
of the triple mutant grown as described above. Whole cells are shown in right panels. The cells display mitochondria with aberrant morphologies (details
showing mitochondria are in the left panels). Panel c shows the organellar ultrastucture of cells from the same culture to which nigericin (2 nM) has been added
for the last growth generation. Right panel, whole cells; left panel, mitochondrion after nigericin treatment. Bar, 200 nm (left panels) and 1 �m (right panels).
C, confocal microscopy analysis of wild-type cells (panels a– d) and mdm38� mrs7� ydl183c� cells (panels e– h) expressing the mitochondrial targeted YFP
(panels a and e) to the outer membrane (pHS72). Vacuoles are indicated by FM4-64 (panels b and f). Merged fluorescence is shown in panels c and g. The yellow
fluorescence detected indicates the colocalization of mitochondria and vacuoles. Differential interference contrast microscopy of wild-type (panel d) and
mdm38� mrs7� ydl183c� (panel h) cells is shown.
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notype. Alternatively, Pic2pmight act indirectly bymodulating
proton fluxes ormitochondrial pH.Overexpression ofMrs3p, a
Fe2� carrier, increased the mitochondrial �� and moderately
the KHE. Deletion of MRS3 had no effect on KHE, and mrs3�
mdm38� mutants remained without synthetic phenotype,5
excluding a role ofMrs3p as theKHE.These findings suggest an
indirect role of Mrs3p on the KHE activity. In fact, several ions
have been stated to play a direct or indirect role in mitochon-
drial K� homeostasis (28–31).
The suppressor screen also identified two additional genes,

MRS7 and the novel gene YDL183c encoding an unknown pro-
tein, whichwere found to restore both growth andKHE activity
of mdm38� mutant cells. Although Mdm38p and Mrs7p are
phylogenetically related, Ydl183cp is likely not related to them.
Each of these proteins contains a single transmembrane
domain and appears to be part of a high molecular weight pro-
tein complex. They are functionally redundant in establishing a
functional KHE in mitochondria.
In contrast toMdm38p, absence of eitherMrs7p or Ydl183cp

alone or in combination did not seriously affect the growth of
yeast cells. Yet the triplemutantmdm38�mrs7� ydl183c� had
a dramatically stronger negative growth phenotype than the
singlemdm38� mutant or double mutants. This mutant com-
pletely failed to grow on respiratory substrates and exhibited a
strain- and temperature-dependent reduced growth on fer-
mentable substrates. This synthetic phenotype of the triple
mutant indicates the following: (i) all three proteins are func-
tionally expressed in yeast; (ii) loss of all three proteins dramat-
ically impairs mitochondrial volume homeostasis through a
disturbance that can be rescued by nigericin; and (iii) impaired
volume homeostasis causes mitochondrial dysfunction affect-
ing cell vitality as indicated by the reduction in growth on fer-
mentable substrates.
Overexpression ofMrs7p or Ydl183cp fully compensated the

growth defects of themdm38� single and themdm38� mrs7�
ydl183c� triple disruptant. Accordingly, either protein could
fully substitute for Mdm38p when expressed at high abun-
dance. Addition of the exogenous KHE nigericin equally com-
pensated for the growth defect ofmdm38� single as well as for
the even stronger growth defects of the triplemutant. This find-
ing supports the conclusion that the triple mutant growth phe-
notype is essentially due to a lack of KHE activity.
This important point was proved by a direct test for KHE

activity on innermembrane SMPs, a system that entirely avoids
any interference of osmotically swollen mutant mitochondria.

5 G. Wiesenberger and K. Nowikovsky, unpublished data.

FIGURE 8. KHE activity of mdm38� mrs7� ydl183c � SMPs. [K�]-driven
changes of [K�]i and [H�]i in submitochondrial inner-membrane particles
prepared from wild-type and mdm38� mrs7� ydl183c� mutant cells with
entrapped K�-sensitive PBFI or H�-sensitive BCECF were recorded as
described in Fig. 3. A, effect of overexpression of Mrs7p (black square dotted
line) or Ydl183cp (black thin dashed line) on [K�]-driven changes of [K�]i and
[H�]i in DBY triple mutant mdm38� mrs7� ydl183c� SMPs (black solid line) in
comparison with wild-type SMPs (black dotted line). B, effect of Mdm38p
(expressed from YCp33, bold black solid line) or LETM1 (expressed from pVTU-
(bold gray solid line) on [K�]-driven changes of [K�]i and [H�]i in DBY mdm38�
mrs7� ydl183c� SMPs (black thin solid line) in comparison with wild-type
SMPs (bold square dotted line).
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A comparison between single and triple mutants clearly
revealed that the singlemdm38�mutant retained aminor KHE
activity, whereas the triple mutant totally lacked this activity.
Thus, single and triple mutants most likely differ only in the

degree to which they have lost KHE activity. These data corre-
late well with the reduction in growth of the single and triple
mutants. However, mild reduction in KHE activity detected in
single mutants mrs7� and ydl183c� indicates that expression
of Mrs7p and/or Ydl183p is necessary for full KHE activity in
wild-type cells. Yet the physiological effects of mrs7� or
ydl183c�mutations are tooweak to result in reduced growth of
mutant cells. In assays performed on the single mdm38�
mutant, overexpression of Ydl183cp or Mrs7 could equally
restore transmitochondrial K�/H� fluxes, like Mdm38p or
LETM1. However, in the triple mutantmdm38� mrs7� ydl183c,
Ydl183cp restored the mitochondrial KHE to a lesser extent than
Mdm38p Mrs7p, or LETM1, most likely resulting from a less
abundant expression of Ydl183c as compared with Mdm38 or
Mrs7 (shown in supplemental Fig. S4). Taken together, these
results indicate thatMdm38p,Mrs7p, andYdl183cp are function-
ally redundant, but onlyMdm38p is essential.
Mitochondrial depolarization in the mutants and its rescue

by expression of either Mdm38p or Mrs7p or Ydl183cp corre-
lated with loss and recovery of KHE activity, respectively, and
with cell growth that was mildly affected on YPG when �� fell
below60%ofwild-type values and increasinglymorewith lower
values. The lowest �� values observed in the triple mutant also
affected growth on fermentable substrate, indicating that
essential functions of mitochondria, possibly protein import,
were affected. The loss of�� inmitochondria of the disruptants
may be a direct consequence of the absence of H� fluxes into
the mitochondria in exchange for the efflux of K� rather than
an additional effect resulting from the K� accumulation and
swelling of mitochondria.
Total loss ofKHEactivity of the triplemutantwas accompanied

by more dramatic changes in organelle morphology than in the
single mdm38� mutant. Both mitochondria and vacuoles
appeared to be heavily fragmented and were shown to frequently
colocalize, suggesting intense mitophagy. Notably, hyperosmotic
stress has been reported to result in significant changes of the vac-
uole morphology of wild-type cells. In fact, the one to three large
vacuoles usually present in wild-type cells underwent fragmenta-
tion to numerous smaller multilobe vacuoles (32). Interestingly,
treatmentof triplemutant cellswith theK�/H� ionophorenigeri-
cin efficiently reversed swelling and restored a near normal mito-
chondrial network. As this involves the mitochondrial fusion (33,
34), we assume that proteins regulating the fusion activity are not
affected by the absence of Mdm38, Mrs7, and Ydl183c. Vacuolar
fragmentation was efficiently reverted together with re-establish-
ingmitochondrialKHEactivitybynigericin (datanot shown).This
raises the question of how the loss of KHE and swelling of mito-
chondria cause fragmentation of the vacuole. In sum, this study
provides strong evidence for a role of all three proteins in contrib-
uting to an active mitochondrial KHE.
Agenome-wide screen inDrosophilaS2cells recently identified

LETM1 as strongly affecting mitochondrial Ca2� and H�

homoeostasis. Absence of LETM1 resulted in reducedmitochon-
drialCa2�uptake in situ, a finding that led the authors to conclude
that Letm1 is the mitochondrial Ca2�/H� antiporter (35). This
conclusion is puzzling, because down-regulationof themitochon-
drial Ca2�/H� exchanger would rather have been expected to
result in decreased Ca2� efflux and therefore in increased mito-

FIGURE 9. Mdm38p, Mrs7p, and Ydl183cp are part of a high molecular
weight complex. A, DBY chromosomally Mdm38-His-tagged mitochondria
were solubilized with 1.2% Triton X-100. Left panel, one part of the prepara-
tion was immediately separated on BN-PAGE. The anti-His antibody recog-
nized three protein complexes of �500, 	232, and 	 40 kDa. Middle panel,
other part of the same preparation was used for a further step involving nick-
el-affinity chromatography. Mdm38-His was recovered as part of a complex
of 	232 kDa. Right panel shows Mdm38-STrEP after STrEP-affinity chroma-
tography elution separated on BN-PAGE. The anti-STrEP antibody recognized
the complexes of 	232 and 
440 kDa. M, marker. B, DBY mitochondria
expressing the chromosomally His-tagged Mrs7 were solubilized as in A and
analyzed by BN-PAGE (left panel, lane 1), and parallel fractions were used for
further isolation of a Mrs7-His complex by affinity chromatography (left panel,
lane 2). Solubilized mitochondrial proteins and elution fractions from the
affinity purification were separated on the same BN gel, transferred to a com-
mon membrane for Western blotting, and probed with an antiserum against
His. DBY mitochondria expressing the chromosomal Mrs7-STrEP were solubi-
lized, affinity-purified, and recovered in complexes of 	140, 
232, and 
440
kDa. C, mitochondria expressing pUG-YDL183c-GFP in different backgrounds
as follows: wild-type (lane 1) or mdm38� (lane 2) were solubilized with 1.2%
n-dodecyl �-D-maltoside. Equal amounts of proteins were separated on BN-
PAGE and immunoblotted with an antibody against GFP.
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chondrial Ca2� accumulation, because mitochondrial cation/H�

antiporters protect cells from mitochondrial cation overload by
mediating cation efflux from energized mitochondria (1). Jiang et
al. (35) also found that reconstitution of LETM1 in liposomes cat-
alyzed Ruthenium red-sensitive Ca2�/H� exchange, which raises
further questions since decades of work onmitochondria indicate

that Ca2�/H� exchange is insensitive to Ruthenium red (36). Pre-
vious evidence that LETM1 is essential for mitochondrial K�/H�

exchange is compelling (4, 5, 37), and the present study demon-
strated that LETM1 fully restores mitochondrial KHE activity of
the yeast triple mutant mdm38� mrs7� ydl183c like the exoge-
nous bona fideKHE nigericin.We believe that further studies will

FIGURE 10. Interaction of Mrs7-His with Mdm38-HA and YDL183c-HA. A, affinity chromatography and preparative BN-PAGE of solubilized mitochon-
dria coexpressing chromosomally His-tagged Mrs7 and extra-chromosomal YCp-Mdm38-HA in different backgrounds as follows: wild-type (WT) (lanes
1 and 2) and mdm38� (lanes 3–5). 120 �l (lanes 1, 3, and 5) and 60 �l (lanes 2 and 4) of the eluted fractions were applied to the same gel. Lanes 1– 4 were
probed with an antibody against His. Lane 5 served for the additional immunodetection with an antibody against HA. M, marker. B, second dimension
SDS-PAGE of lane 3. Left panel, the antibody against His recognizes a product of �55 kDa corresponding to Mrs7-His. The signal is in perfect agreement
with the signals of the first dimension (BN-PAGE). Right panel, immunodetection with anti-HA antibody of the same blot after mild stripping. C, affinity
chromatography and BN-PAGE of solubilized mitochondria coexpressing chromosomally His-tagged Mrs7 (lanes 1 and 3) or His-TAP-tagged Mrs7
(lanes 2 and 4) and extra-chromosomal Ydl183-HA (lanes 1– 4). Lanes 1 and 2 and lanes 3 and 4 were probed with antibodies against HA and His,
respectively.

Novel Players in Mitochondrial KHE

14412 JOURNAL OF BIOLOGICAL CHEMISTRY VOLUME 285 • NUMBER 19 • MAY 7, 2010

 at V
ienna U

niversity Library, on S
eptem

ber 29, 2010
w

w
w

.jbc.org
D

ow
nloaded from

 
http://www.jbc.org/content/suppl/2010/03/02/M109.059956.DC1.html
Supplemental Material can be found at:

http://www.jbc.org/


be needed to clarify whether the highly conserved LETM1 pro-
teins exert different cation-specific functions in different eukary-
otic organisms or rather disturbances ofmitochondrial K� home-
ostasis can secondarily affect mitochondrial cation transport.
Relevant to this discussion, we have shown that yeast mitochon-
dria depleted ofMdm38p display a considerably reduced influx of
Mg2� and Ca2� resulting from decreasedmitochondrial �� (4).

Human LETM1 has previously been shown to be part of a
complex of about 550 kDa by CoIP of GFP- and HA-tagged
isomers (38). Rehling and co-workers (8) reported an interac-
tion of Mdm38-protein A with various proteins, including
numerousmitochondrial ribosomal proteins andMrs7p. In our
hands, hetero-oligomerization ofMrs7pwithMdm38pwas not

FIGURE 11. Interaction of Mdm38p with Mrs7-His and Mrs7-His-TAP. A, affinity chromatography and BN-PAGE of solubilized DBY mitochondria expressing
either chromosomally His-tagged or His-TAP-tagged Mrs7. Eluted fractions 1–2 containing Mrs7-His were applied on lanes 1 and 2 and 5 and 6 and eluted
fractions 1–2 containing Mrs7-His-TAP on lanes 3 and 4 and 7 and 8. BN-PAGE was performed and followed by immunostaining with an antibody against
His (lanes 1– 4) and Mdm38p (lanes 5– 8). M, marker. B, preparative affinity chromatography and BN-PAGE of DBY mitochondria expressing chromo-
somally Mrs7-His-TAP prior to second dimension SDS-PAGE. The membrane was first incubated with an anti-His primary antibody (lane 1). Thereafter,
the blot was mildly stripped and reincubated with an antibody against Mdm38p (lane 2). C, second dimension SDS-PAGE. Left panel, the blot was probed
with the anti His antibody. Right panel, same blot probed with the anti Mdm38p antibody after mild stripping of the membrane. D, suppression effect
of Mrs7-His and Mrs7-His-TAP in mdm38�. DBY wild type (WT) with YEp112 empty and mdm38� with YEp112 empty, MRS7-His, or MRS7-His-TAP were
grown overnight. Serial dilutions were spotted onto YPD and YPG plates and incubated at the indicated temperatures.

FIGURE 12. CoIP of isolated mdm38� mitochondria coexpressing YEp-
MDM38-HA (72 kDa) and pUG-MDM38-GFP (92 kDa) (A), YDL183-GFP (65
kDa) (B), or AIF-GFP (68 kDa) (C). F, flow-through fraction; B, HA-coated
protein A-bound fraction.
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detected unless Mrs7p was fused to a tag, including protein A
and calmodulin-binding protein.
We have shown that the Mdm38p, Mrs7p, and Ydl183cp

form oligomers. Data provided here confirmed that Mdm38p
self-dimerizes in mitochondria. However, it may hetero-
oligomerize also with a yet unknown protein as suggested by
BN and affinity chromatography data. Mdm38p appeared as
part of high molecular complexes of �140, 232, and 500 kDa.
Ydl183cp appeared as part of protein complexes with variable
molecular sizes depending on the presence or absence of
Mdm38p. Remarkably, in the absence ofMdm38p, Ydl183-GFP
appeared as part of a complex of�500 kDa. In any case, a direct
interaction between Ydl183cp and Mdm38p was not found
according to the CoIP experiments performed in this work.
Furthermore, Mrs7 was shown to be part of several protein
complexes, including a complex of�500 kDa, independently of
the presence or absence ofMdm38p. Thus, data presented here
exclude a direct interaction between Mrs7p and Mdm38p or
Ydl183cp. Altogether, the three proteins may act as cofactors
interacting with a so far unidentified KHE, which in their
absence would be completely inactive. This would be reminis-
cent of what has been observed for plasma membrane cation
exchangers, where the exchanger is regulated by essential
cofactors (39, 40).Wepropose that eitherMdm38porMrs7p or
Ydl183cp bind to a yet unknown protein or protein complex to
activate theKHE activity. Although the composition of the 500-
kDa complex and the molecular mechanisms through which
Mdm38p,Mrs7p, and Ydl183cpmodulate KHE activity remain
to be elucidated, this study has identified intriguing newplayers
that are amenable to further genetic analysis.
Finally, we included here for the first time a human gene,

HCCR-1, which has been shown to play a role in cancer devel-
opment (34). Furthermore, HCCR-1 shows sequence homolo-
gies to LETM1.We suggest a related role of HCCR1 to LETM1.
Discrepancies in the quality as suppressor might result from its
weak expression in yeast. Further studieswill be required to test
the direct role of HCCR-1 in the KHE.
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Supplemental Data 

Fig 1 

Left: Cross-linking of the Mdm38-His containing sub-complexes. W303 mdm38Δ cells were 

transformed with pYES-MDM38-His and grown to log phase. Mitochondria were isolated in presence 

of protease inhibitors and treated with DSS (Disuccinimidyl suberate) in increasing concentration as 

indicated, separated on SDS PAGE and immunoblotted with a His antibody. Asterisk indicates the 

monomers, white arrowheads the dimmers, black arrowheads a possible dimer-complex containing an 

unknown protein of approximately 35 kDa. 

Right: Chemical cross-linking experiments were performed as above. After addition of the cross-

linker, the samples (100 µg protein) were incubated on ice for 30’, thereafter trichloroacetic acid 

(TCA) precipitated, resolved in 20 µl of the loading dye (5 µl NuPage® LDS Sample Buffer 4x, 2 µl 

NuPage® Reducing Agent 10x and deionized water) according to the manual of the kit. The lanes 

were loaded with 10 µl of the solution and the gel was run for 1 hour at 150 V using the buffers 

provided with the kit. After running the gel was wet blotted in a standard tank blot apparatus. The 

membrane was then subjected to standard western blotting using primary α–HIS antibody. White 

arrowhead point to a complex also present without crosslinker possibly resulting from disulfide 

bridges. 

 

Fig 2 

W303 strain co-expressing Mdm38-Myc and Ydl183-GFP. Cross-linked mitochondrial protein 

extractions were separated on a SDS PAGE and immunodecorated first with the antiserum recognizing 

the Myc-tag and after membrane stripping with the antiserum to GFP. Black arrowheads point to the 

high molecular weight complex. 

 

Fig 3 

Since the cross-link products possibly correlate with the size of homodimers or trimers of Mdm38p we 

investigated whether Mdm38p interacts in vivo with itself.. For this purpose a split-YFP system was 

used and Mdm38p was expressed in frame with the first 1-173 nt or the last 155-238 nt of YFP. The 

complementation of YFP in cells transformed with both constructs was visualized under confocal 
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microscopy. Cells carrying both vectors exhibited YFP fluorescence, indicative of the intramolecular 

complementation of the YFP molecule. Mitotracker Ros staining of the cells showed the mitochondrial 

localization of theMdm38 homodimers. 

Material, methods and reference to Figure 3 

 MDM38 was cloned in frame with YFP 1-173 or YFP 155-238, by amplification of the entire ORF 

without stop codon using the primers 5´TAATATGAGCTCATGTTGAATTTCGCATCAAGAGCG3´ 

and 5´ATATGTCGACATCTTTCTTAATGACAAAAGTCTTCG3´ introducing the underlined SacI 

and SalI restriction sites and inserting the digested fragments into the SacI-SalI digested plasmids 

pSCMF-143 and pSCMF-144 (1) (both kindly provided by Michael Frohman). For cloning into the 

yeast low-copy vector pUG35, the fragment containing MDM38 in frame with YFP1-173 was 

amplified with primers 

5´GATACAATTCTATTACCCCCATCCATACTCTAGAACTAGTGGATCATGTTGAATTTCGCA

TCAAGAGC3´ and 5´  GGCGTGAATGTAAGCGTGACATAACTAATTACATGACTCGACCAGT 

TACTGCGCCAGTTCCTTTTTCAGAGC3´. To clone the fragment containing MDM38 in frame 

with YFP 155-238 into the vector pUG23, the latter described forward primer and the minus primer 

5´GGCGTGAATGTAAGCGTGACATAACTAATTACATGACTCGACCAGTTACTTGTA were 

used. These amplified MDM38-YFP1-173 and MDM38-YFP155-238 versions were in vivo ligated in 

W303 wild-type cells of opposite mating type into the XbaI-HpaI digested pUG35 and the HincII 

digested pUG23 vectors, respectively. The haploid transformants were tested for self-fluorescence 

prior crossing.  

 

Fig 4 

To compare the protein expression levels of Mdm38, Mrs7 and Ydl183 expressed from different 

promoters and plasmids, whole cells expressing the indicated tagged proteins were grown overnight to 

same OD. Same amount of cells were TCA precipitated. Same protein concentrations were applied on 

SDS PAGE and immunoblotted as indicated. Left blot was exposed 30 seconds, right blot 3 minutes. 
 
 
1. Choi, S. Y., Huang, P., Jenkins, G. M., Chan, D. C., Schiller, J., and Frohman, M. A. 

(2006) Nat Cell Biol 8, 1255-1262 
 
 

 at V
ienna U

niversity Library, on S
eptem

ber 29, 2010
w

w
w

.jbc.org
D

ow
nloaded from

 

http://www.jbc.org/content/suppl/2010/03/02/M109.059956.DC1.html
Supplemental Material can be found at:

http://www.jbc.org/


                                    0           1            3     mM DSS

170

130

100

72

55

*

                                  0      0.5    1       3        mM DSS

171

117

268
232

∗

Supplemental Fig 1

460

71

 0        0.5     1         0        0.5     1      DSS

+ YDL-GFP                   + emptyGFP

α Myc α GFP

170 kDa--
130

100

65

170 kDa--
130

+ YDL-GFP                   + emptyGFP

 0        0.5     1         0        0.5     1      DSS

Supplemental Fig 2

Nomarski                         Mitotracker Ros                       YFP                                    Overlay

Supplemental Fig 3

 at V
ienna U

niversity Library, on S
eptem

ber 29, 2010
w

w
w

.jbc.org
D

ow
nloaded from

 

http://www.jbc.org/content/suppl/2010/03/02/M109.059956.DC1.html
Supplemental Material can be found at:

http://www.jbc.org/


1     2     3       4      5        6          7      8  1      2       3       4      5        6          7        8

1 YCp22-Ydl183-HA
2 YEp 112Ydl183-HA
3 Mrs7-His (chromosomal)
4 YCp22Mrs7-His
5 YEp112Mrs7-His
6 Mdm38-His (chromosomal)
7 pUG35-Ydl183-GFP
8 YCp22 Mdm38-HA

α Hxk1p

α HA                            α His α  GFP   α HA

35

55

70

100

55
α Hxk1p

α HA                            α His α  GFP    α HA

Supplemental Fig 4

 at V
ienna U

niversity Library, on S
eptem

ber 29, 2010
w

w
w

.jbc.org
D

ow
nloaded from

 

http://www.jbc.org/content/suppl/2010/03/02/M109.059956.DC1.html
Supplemental Material can be found at:

http://www.jbc.org/


Results 

 53

5. Results 
 

5.1. Working hypothesis – Mdm38p/Mkh1p is an essential 

interaction partner of the mitochondrial K+/H+ exchanger 
 

Very recently, we showed that Mdm38p is capable to homo-dimerize and was found to be 

part of protein complexes of ~ 200 and ~ 550 kDa (Zotova et al., 2010). Similarly, human 

Letm1 was shown to self-interact and to form protein complexes of a molecular weight of ~ 

300 and between 500 and 600 kDa (Dimmer et al., 2008; Hasegawa & van der Bliek, 2007; 

Tamai et al., 2008). These data suggest that Mdm38p forms the high molecular weight 

complex either by homo-oligomerization or by association with other yet unidentified 

proteins. According to the Saccharomyces Genome Database (SGD) (http://genome-

www.stanford.edu/Saccharomyces/), all so far described yeast cation exchange proteins, as well 

as members of the mammalian Na+/H+ exchange family (Yun et al., 1995), are predicted to 

contain eight to twelve transmembrane spanning helices. Furthermore, homo-dimerization of 

yeast and mammalian Na+/H+ antiporters was shown to be crucial for their function 

(Fafournoux et al., 1994; Hisamitsu et al., 2006; Mitsui et al., 2005). Since Mdm38p/Letm1 

have only one transmembrane helix and show no appreciable homology to any known cation 

exchanger, formation of the K+/H+ exchanger by homo-oligomerization of these proteins 

would represent a new family of cation/proton exchangers.  

However, the more realistic hypothesis suggests that Mdm38p/Letm1 proteins act as auxiliary 

components of the so far unidentified K+/H+ exchanger (Figure 6). This would be in 

accordance with previous evidence that the plasma membrane Na+/H+ exchangers are 

regulated by essential interaction partners (Lehoux et al., 2001; Pang et al., 2001; Weinman et 

al., 2005). 
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Figure 6: Schematic representation of our working hypothesis 

The inside negative membrane potential (Δψ) is the driving force for the influx of cations into the 

mitochondrial matrix. This influx is compensated by an electroneutral exchange process of cations 

against protons, driven by the yet unknown K+/H+ exchanger. Mdm38p is an essential factor of this 

exchange process. It is also part of a ~ 550 kDa protein complex, possibly in a dimeric conformation 

(Zotova et al., 2010). We propose that Mdm38p directly interacts with the K+/H+ exchanger, thereby 

forming the protein complex. By affinity chromatography of tagged variants of Mdm38p we will try to 

co-purify the exchanger and other putatively interacting proteins. IMS, intermembrane space; IMM, 

inner mitochondrial membrane. 

 

5.2. Mdm38p complex purification strategy   
 

Based on our working hypothesis of Mdm38p being an essential regulatory protein directly 

interacting with the mitochondrial K+/H+ exchanger, we decided to purify the Mdm38p 

complex by affinity chromatography, aiming at co-purifying the K+/H+ exchanger. The 

purification strategy is schematically explained in Figure 7. Experiments were performed with 

chromosomally tagged or low-copy (centromeric) plasmid encoded variants of MDM38 to 
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assure physiological protein levels, thus avoiding the negative dominant effects of MDM38 

overexpression (our data) and reducing the risk of identifying false-positive protein-protein 

interactions. 

 

 

Figure 7: Flow chart of Mdm38p purification strategy 

Whole mitochondria from yeast strains expressing different versions of tagged MDM38 are prepared. 

The Mdm38p complex residing in the inner mitochondrial membrane is solubilized using different 

detergents. Subsequent purification steps of the Mdm38p complex are performed by affinity 

chromatography. Purified proteins are then applied either to denaturing SDS-PAGE or Blue native 

electrophoresis, thereby preserving the protein complex composition. Proteins are detected by Western 

blotting and Coomassie staining. Interesting protein bands not appearing in the control fractions are 

subjected to mass spectrometry (MS) for identification.  
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5.3. Tandem Affinity Purification (TAP) of chromosomally tagged 

Mdm38p 
 

In search of a method fulfilling our requirements for rapid purification of a protein complex 

composed of proteins expressed at their natural level, we decided to use the protein A – CBP 

(calmodulin binding peptide) TAP method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Schematic overview of the protein A – CBP TAP method 

TAP-tagged proteins solubilized from mitochondrial membranes are purified in two steps together 

with interacting complex partners. Elution of proteins by TEV protease cleavage in the first step and 

EGTA in the second step allows native purification of protein complexes. In principle, the method can 

also be performed in the reverse order. TEV, Tobacco Etch Virus; Figure copyright: Elsevier Global 

Rights Dep. 
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This affinity purification strategy (Figure 8) was developed as a general procedure for protein 

complex purification (Puig et al., 2001). Since Mdm38p contains an N-terminal mitochondrial 

targeting sequence, the affinity tag had to be fused C-terminally to the protein. The detailed 

tagging procedure is described in the Materials and Methods section. To allow for an 

additional purification step or to replace one of the TAP steps if necessary, we introduced a 

6xHIS tag between Mdm38p and the TAP tag (Figure 9A). 

 

 

 

Figure 9: Growth phenotype of yeast strain DBY747 bearing HIS-TAP-tagged MDM38 

A. Schematic representation of chromosomally HIS-TAP-tagged MDM38. The affinity tag was 

introduced C-terminally in-frame with the MDM38 ORF by homologous recombination of PCR 

fragments amplified from plasmid pBS1479 (see Materials and Methods). 

B. Overnight cultures of yeast strains DBY747wt, DBYmdm38Δ and DBY-MDM38-HIS-TAP grown 

in YPD were adjusted to OD600 = 1. Ten-fold serial dilutions were incubated at 28°C for three days on 

YPD plates and for four days on YPdG, YPG, and YPEG plates. 
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5.3.1. The HIS-TAP tag does not disturb Mdm38p function and complex 

formation 
 

One limitation of affinity purification could be the affinity tag itself. Fusion of the tag to the 

protein of interest may interfere with protein folding and function or sterically hinder protein-

protein interactions. Given the size of the HIS-TAP tag (~ 22 kDa), we first had to evaluate 

possible negative effects on Mdm38p function. 

Therefore, serial dilutions of wild-type strain DBY747, the isogenic mutant strain 

DBYmdm38Δ, and cells bearing chromosomally HIS-TAP-tagged MDM38 (DBY-MDM38-

HIS-TAP) were spotted on fermentable (YPD) and non-fermentable media (YPG, YPdG, and 

YPEG) and incubated at 28°C (Figure 9B). DBY-MDM38-HIS-TAP exhibited the same 

growth on YPD and YPG as the wild-type, whereas DBYmdm38Δ showed a severe growth 

defect on non fermentable substrates, as expected, thus indicating that the HIS-TAP tag did 

not interfere with the correct function of Mdm38p. 

Next, we had to confirm the presence of the Mdm38p complex in the strain DBY-MDM38-

HIS-TAP before affinity purification. For this purpose we isolated whole mitochondria 

bearing Mdm38-HIS-TAP. Proteins were solubilized using 1.2% TX-100 and separated by 

Blue native electrophoresis on a 5-18% polyacrylamide gradient gel immediately thereafter. 

After transfer to a PVDF membrane, the antibody directed against the 6xHIS epitope 

recognized Mdm38p as part of a complex between 440 and 669 kDa (Figure 10), indicative of 

a normal complex formation in presence of Mdm38-HIS-TAP. 

 

5.3.2. Chemical cross-linking of Mdm38-HIS-TAP 
 

Although we intended to purify the complex under native conditions to keep the Mdm38p 

complex intact, we sought to stabilize the complex and to avoid loss of possible binding 

partners by chemical cross-linking. We reasoned that cross-linking would also allow us to 

purify the complex under denaturing conditions. Among several reagents tested, only amine-

reactive disuccinimidyl suberate (DSS) showed significant cross-linking of Mdm38p. DSS is 

based on N-hydroxysuccinimide ester (NHS ester) and allows irreversible conjugation of 

primary amines. 
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Figure 10: Blue native electrophoresis of the Mdm38p high molecular weight complex 

Whole mitochondria isolated from strain DBY747 expressing chromosomally HIS-TAP-tagged 

MDM38 were solubilized using 1.2% TX-100 and indicated protein amounts were loaded and 

separated on a native 5-18% polyacrylamide gradient gel. Proteins were transferred to a PVDF 

membrane and Mdm38p was detected in a ~ 550 kDa complex by immunodetection of the 6xHIS 

epitope. M, protein marker.  

 

First cross-linking experiments were performed with whole mitochondria isolated from strain 

DBY747 expressing chromosomally HIS-TAP-tagged MDM38. Mitochondria were 

supplemented with increasing concentrations of DSS in presence of breaking buffer at 

indicated protein concentrations (Figure 11A). 

Samples were precipitated using trichloroacetic acid (TCA), applied to SDS-PAGE and 

analyzed by immunodetection of Mdm38-HIS-TAP with an antibody directed against 6xHIS.  
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Figure 11: Chemical cross-linking of Mdm38p 

A. Mitochondria were isolated from strain DBY747 expressing chromosomally HIS-TAP-tagged 

MDM38 in presence of protease inhibitors and treated with amine-reactive disuccinimidyl suberate 

(DSS) in breaking buffer (BB) for 30 min on ice at indicated concentrations. Proteins were 

trichloroacetic acid (TCA) precipitated, separated by SDS-PAGE, and immunodetected with an 

antibody directed against the 6xHIS epitope. 

B. Chemical cross-linking experiments were performed as described above, with the exception that 

after addition of DSS the samples were incubated on ice for 45 min and three individual samples were 

combined after TCA precipitation (right panel) prior to SDS-PAGE and Western blotting. Mdm38-

HIS-TAP was detected in its monomeric and putative dimeric conformation (black arrows; bottom 

and top, respectively) and as part of undefined cross-link products (black arrowheads). 

C. Mitochondria were solubilized with 1.2% TX-100 for 30 min on ice and centrifuged prior to DSS 

treatment of the supernatant (SN).  

D. Mitochondrial samples (80µg) were supplemented with DSS and TX-100 or SDS at the same time 

and incubated on ice for 45 min. Thereafter, samples were centrifuged, five pellet (P) and supernatant 

(SN) fractions were TCA precipitated, combined and analyzed by SDS-PAGE and immunodetection 

of the 6xHIS epitope. 
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Best results were obtained with 80 µg protein treated with 0.5 mM DSS, although cross-

linking was rather inefficient under these conditions. Therefore we increased incubation  times  

to 45 min which considerably increased yield of cross-linked proteins (Figure 11B). Mdm38-

HIS-TAP was detected in its monomeric and apparently dimeric conformation (black arrows; 

bottom and top, respectively), as well as part of undefined intermediate and higher order 

cross-link products (black arrowheads), suggesting the presence of additional proteins in the 

complex. 

To reduce possible contaminations and false-positive interactions caused by cross-linking of 

whole mitochondria, we tried to cross-link Mdm38-HIS-TAP after solubilization using 1.2% 

TX-100. Unfortunately, all our attempts failed (Figure 11C). Also variation of buffer 

conditions, cross-linking reagents and concentrations did not prove successful (data not 

shown). When DSS and detergents (TX-100 or SDS) were added to mitochondria at the same 

time cross-linking principally worked, but Western blot signals appeared as smears rather than 

individual bands (Figure 11D), making evaluation of cross-linking difficult. Therefore we 

decided to purify the Mdm38-HIS-TAP complex after cross-linking whole mitochondria. 

Initial cross-link experiments were typically performed in small reaction volumes (100 µl). 

Since we planned to use 200 mg of crude mitochondria for purifications, we tried to increase 

cross-link reaction volumes. Unexpectedly, cross-linking failed when the volumes exceeded 

0.5 ml, although DSS to protein ratios were kept constant. Due to these experimental 

limitations we performed affinity purification of the Mdm38p complex without prior cross-

linking. 

 

5.3.3. Protein A affinity purification of Mdm38-HIS-TAP 
 

Before starting protein A – CBP TAP, we first optimized the individual TAP steps and 

determined their purification efficiency. After solubilization of mitochondria isolated from 

strain DBY-MDM38-HIS-TAP with 1.2% TX-100, protein extracts were incubated with IgG 

Sepharose beads and incubated for 2 h at 4°C. Unbound proteins were eluted by gravity flow 

and beads were washed with two column volumes of solubilization buffer. Bound proteins 

were eluted by TEV protease cleavage performed at 16°C in presence of 0.8% TX-100. To 

elute residual bound proteins, beads were treated with 0.1 M glycine buffer, pH 3 (see 

Materials and Methods for details).  
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Figure 12: Protein A is not cleavable by TEV protease from HIS-TAP-tagged Mdm38p 

A. Protein A affinity chromatography was performed with mitochondria from strain DBY747 

expressing chromosomally HIS-TAP-tagged MDM38, solubilized with 1.2% TX-100 (see Materials 

and Methods). After binding of Mdm38-HIS-TAP to IgG beads and washing steps (Wash 1 and 2), 

TEV protease cleavage was performed in presence of 0.8% TX-100 at 16°C to elute proteins (TEV 

cleav.). Residual bound proteins were eluted with 0.1 M glycine buffer, pH 3 (Eluate). Fractions of 

each purification step were TCA precipitated, subjected to SDS-PAGE, and immunodetected with an 

antibody directed against CBP. Mdm38p is marked by a black arrowhead. TEV cleavage failed, since 

Mdm38p was not detected in lane 1. FT, flow-through; CBP, calmodulin binding peptide. 

B. Protein A affinity chromatography was performed as described in A, with the difference that the 

TX-100 concentration was stepwise reduced to a final concentration of 0.1% during TEV cleavage, 

which was performed at 16°C and 28°C. Again, TEV cleavage failed under all tested conditions. LC, 

loading control. 
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Equal amounts of each fraction were TCA precipitated, subjected to SDS-PAGE and 

immunodetected with an antibody directed against the calmodulin binding peptide (Figure 

12A). Surprisingly, Mdm38p could not be detected in the TEV cleavage fraction (lane 1). 

Binding to IgG beads was successful, as the flow through and washing fractions contained 

only marginal amounts of Mdm38-HIS-TAP. Since Mdm38p was only eluted after glycine 

treatment (black arrowhead), TEV cleavage obviously failed under these conditions. Further 

increasing TEV protease concentration did not improve cleavage (data not shown). Additional 

bands visible above the Mdm38-HIS-TAP monomer in lane 2 may result from bound IgG 

molecules. 

To determine if TX-100 interfered with TEV cleavage efficiency, we reduced the TX-100 

concentration during the washing steps to 0.1%. Cleavage was also performed at 28°C to 

increase the protease activity (Figure 12B). Unfortunately, TEV cleavage failed under all 

tested conditions, suggesting inaccessibility of the TEV cleavage site.  

 

5.3.4. CBP affinity purification of Mdm38-HIS-TAP 
 

Solubilized protein extracts of mitochondria isolated from strain DBY-MDM38-HIS-TAP 

were incubated with calmodulin affinity resin in presence of 2 mM calcium for 2 h at 4°C. 

After washing, bound proteins were eluted with elution buffer containing EGTA. Residual 

bound proteins were eluted with 0.1 M glycine buffer, pH 3. Equal amounts of each elution 

fraction were TCA precipitated, subjected to SDS-PAGE and immunodetected with an 

antibody directed against CBP. In presence of 2 mM EGTA elution was rather inefficient, 

given by detection of Mdm38-HIS-TAP in several elution fractions (Figure 13, left panel). 

Elution with 4 mM EGTA resulted in a markedly higher protein concentration within early 

elution fractions, although some protein still remained bound to the calmodulin beads 

(Glycine lane, right panel).  
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Figure 13: CBP affinity chromatography of HIS-TAP-tagged Mdm38p 

Mitochondria isolated from strain DBY747 expressing chromosomally HIS-TAP-tagged MDM38 

were solubilized using 1.2% TX-100. After binding to calmodulin beads and washing steps, bound 

proteins were eluted with elution buffer containing 2 mM EGTA (left panel). To concentrate purified 

proteins in the elution fractions, EGTA concentration was increased to 4 mM (right panel). Residual 

bound proteins were eluted with 0.1 M glycine buffer, pH 3 (Glycine). Individual elution fractions (E) 

were TCA precipitated, subjected to SDS-PAGE, and immunoblotted with an anti-CBP antibody. 

 

5.3.5. CBP – protein A TAP of Mdm38-HIS-TAP 
 

Since elution of Mdm38p upon TEV protease cleavage was not possible, we performed TAP 

in the reverse order. CBP - protein A TAP was accomplished according to the individual 

purification steps described before. After CBP purification, proteins were eluted in presence 

of 4 mM EGTA and the first three elution fractions were used for subsequent protein A 

affinity chromatography. Thereafter proteins were eluted with glycine buffer, allowing only 

denaturing SDS-PAGE for protein detection. Eluted proteins were TCA precipitated, Western 

blotted and Mdm38-HIS-TAP was successfully immunodetected with an antibody directed 

against CBP (Figure 14). However, the protein concentration was too low to be detected by 

Coomassie staining (data not shown). This may result from protein loss during binding and 

washing steps and from incomplete elution. Furthermore, purification under these conditions 

is problematic, since the presence of the Mdm38p complex after CBP – protein A TAP cannot 

be verified by Blue native electrophoresis.   
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Figure 14: CBP – protein A TAP of Mdm38-HIS-TAP 

DBY747 mitochondria expressing chromosomally HIS-TAP-tagged MDM38 were subjected to TAP. 

Since the protein A tag could not be removed by TEV protease cleavage (Fig. 7), tandem purification 

was performed in the reverse order. After solubilization using 1.2% TX-100, CBP purification and 

EGTA elution of bound proteins was carried out and the collected fractions were applied to IgG 

chromatography. Purified proteins were eluted with 0.1 M glycine buffer, pH 3 (ProtA Eluate). 

Individual fractions were TCA precipitated, subjected to SDS-PAGE, and immunoblotted with an 

antibody against CBP. FT, flow-through.  

 

5.3.6. Ni-NTA - CBP tandem affinity purification of Mdm38-HIS-TAP 
 

To overcome the limitations of CBP - protein A TAP, we replaced the protein A step by Ni-

NTA affinity chromatography using the present 6xHIS tag. We initially tested the individual 

purification steps for their protein binding capacity. For CBP affinity chromatography 

mitochondria isolated from strain DBY-MDM38-HIS-TAP were treated as described in 

chapter 5.3.4. For Ni-NTA affinity chromatography solubilized protein extracts were 

incubated with Ni-NTA Superflow resin for 30 min at 4°C. After washing, proteins were 

eluted in presence of 200 mM imidazole (see Materials and Methods for details).   

To verify the presence of the Mdm38p complex after elution, we performed Blue native 

electrophoresis. Equal amounts of the first three elution fractions were loaded on a native 5-

18% polyacrylamide gradient gel. Proteins were transferred to a PVDF membrane and 

Mdm38-HIS-TAP was detected by immunoblotting with antibodies either directed against the 

6xHIS or the protein A epitope (Figure 15, left and right panel, respectively).  
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Figure 15: Ni-NTA - CBP affinity chromatography of HIS-TAP-tagged Mdm38p  

Mitochondria from strain DBY747 expressing chromosomally HIS-TAP-tagged MDM38 were 

isolated. Proteins were solubilized using 1.2% TX-100 and subjected to Ni-NTA or CBP affinity 

chromatography under native conditions (see Materials and Methods). After purification, elution 

fractions (E1-E3) were separated by Blue native electrophoresis, transferred to a PVDF membrane, 

and immunodetected with an antibody directed against the 6xHIS epitope (left panel) and protein A 

(PAP-Ab., right panel). Both antibodies detected Mdm38p as part of a complex of ~ 230 kDa, whereas 

the protein A antibody additionally recognized Mdm38p below 140 kDa. Ni-NTA, nickel-

nitrilotriacetic acid; M, protein marker. 
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Mdm38-HIS-TAP was not detected in any of the elution fractions obtained from CBP affinity 

chromatography. In contrast, Ni-NTA purification recovered Mdm38-HIS-TAP as part of two 

protein complexes, suggesting a much higher protein binding capacity of the Ni-NTA 

Superflow resin compared to calmodulin beads. Interestingly, the anti-HIS antibody 

recognized a complex of ~ 230 kDa corresponding to the putative Mdm38-HIS-TAP dimer 

(left panel), whereas the anti-protein A antibody detected an additional complex below 140 

kDa, likely representing the Mdm38-HIS-TAP monomer (right panel), although hetero-

oligomerization with additional proteins can not be excluded. Resolution of the Western blot 

signals did not allow a clear evaluation if the ~ 230 kDa complex consisted of two individual 

complexes larger and smaller than 230 kDa. The fact that the anti-HIS antibody did not 

recognize the complex below 140 kDa strongly suggests that the HIS epitope of the Mdm38-

HIS-TAP monomer is not accessible. However, neither antibody recognized the ~ 550 kDa 

Mdm38p complex detected prior to affinity chromatography (Figure 10). Similar results were 

obtained after TAP in the order Ni-NTA followed by CBP purification, whereas TAP in the 

reverse order completely failed to recover Mdm38-HIS-TAP (data not shown). Despite 

changing buffer conditions including detergent concentration and ionic strength or incubation 

time with the beads, the ~ 550 kDa complex remained undetectable after Ni-NTA - CBP 

tandem purification.  

These findings may either result from dissociation of the complex during the purification 

procedure or inaccessibility of Mdm38-HIS-TAP, possibly caused by steric hindrance due to 

association of additional proteins, or by special folding and orientation of Mdm38p within the 

~ 550 kDa complex.  

 

5.3.7. Size exclusion chromatography (SEC) of Mdm38-HIS-TAP 
 

To determine the stability of the ~ 550 kDa Mdm38p complex, we performed SEC of crude 

mitochondrial extracts containing Mdm38-HIS-TAP. SEC was developed to separate 

molecules in solution based on their size (Lathe & Ruthven, 1955). The methodological 

principle is shown in Figure 16.   
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Figure 16: Size exclusion chromatography (SEC) 

Schematic representation of the protein separation principle of SEC. Figure adapted from 

http://en.wikipedia.org. 

 

Crude mitochondria isolated from strain DBY-MDM38-HIS-TAP were solubilized with 1.2% 

TX-100. To mimic the elution conditions after Ni-NTA affinity chromatography, the protein 

extract was supplemented with 200 mM imidazole and the TX-100 concentration was reduced 

to 0.6% by dilution with elution buffer (see Materials and Methods for details). Thereafter the 

protein solution was subjected to SEC using a 26/60 Superdex 200 column (Amersham). 

The elution profile showed that the main protein part eluted in two broad peaks, indicated as 

pool 1 and 2 in Figure 17. The intact Mdm38p complex was expected to be collected in 

subfraction Fr1 of pool 1, corresponding to a molecular weight between ~ 500 and ~ 650 kDa. 
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Figure 17: SEC chromatogram of crude mitochondrial extract containing Mdm38-HIS-TAP 

DBY747 mitochondria expressing chromosomally HIS-TAP-tagged MDM38 were solubilized using 

1.2% TX-100. Afterwards the supernatant was adjusted to conditions mimicking elution after Ni-NTA 

purification and loaded on a 26/60 Superdex 200 column. Most proteins eluted in two broad peaks, 

designated as pool 1 and 2 and subdivided into fractions Fr1 and Fr2. The indicated legend on the right 

refers to the molecular weight range of each pool and subfraction. mAU, milliampere units. 

 

5.3.8. The Mdm38p complex is intact after SEC 
 

To determine which pool contained most of Mdm38-HIS-TAP, we used equal amounts of 

both pools for Ni-NTA affinity purification. The first four elution fractions of each pool were 

TCA precipitated and subjected to SDS-PAGE. Mdm38-HIS-TAP was detected by 
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immunoblotting with an antibody directed against the 6xHIS epitope. The predominant part of 

Mdm38p was detected in pool 1 (Figure 18A, black arrowheads). Additional bands represent 

Mdm38p degradation caused by precipitation as well as some unspecific signals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18: The Mdm38p high molecular weight complex is intact after SEC 

A. After SEC, equal amounts of pool 1 and 2 were used for Ni-NTA affinity chromatography. Elution 

fractions (E1-E4) were TCA precipitated, subjected to SDS-PAGE and probed with an antibody 

against 6xHIS. The major part of HIS-TAP-tagged Mdm38p was detected in pool 1 (Mdm38-HIS-

TAP is indicated by black arrowheads). 

B. Directly after SEC, equal amounts of elution fractions (Fr 1 and 2) of pool 1 and 2 were TCA 

precipitated, subjected to SDS-PAGE, and immunodetected against 6xHIS. The major part of HIS-

TAP-tagged Mdm38p was detected in elution fraction Fr 1 of pool 1, representing the subfraction 

containing proteins of a molecular weight between ~ 500 and ~ 650 kDa. 
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Due to the high protein concentration of Mdm38-HIS-TAP present in the elution fractions, we 

also TCA precipitated equal amounts of the subfractions of both pools directly after SEC and 

performed Western blots as described before. Results clearly show that most of Mdm38p was 

eluted in subfraction Fr 1 of pool 1 (Figure 18B).  Although we can not exclude dissociation 

of the Mdm38p complex during Blue native electrophoresis, these results suggest that the ~ 

550 kDa complex was intact after affinity purification.  

 

5.4. Single–step HIS and Strep affinity purification of 

chromosomally tagged Mdm38p  
 

Based on these results we concluded: (i) Ni-NTA affinity chromatography was by far the 

most efficient method for purification of Mdm38p; (ii) the ~ 550 kDa Mdm38p complex is 

most likely stable enough to endure the purification procedure; and (iii) the nature of the 

affinity tag seems to be important for accessibility and detection of Mdm38p. We decided to 

optimize the Ni-NTA purification and also performed Strep affinity chromatography to reduce 

contamination by endogenous proteins, since the 6xHIS sequence, in contrast to the Strep 

sequence, naturally occurs within some yeast proteins. Finally, we tested the One-Strep tag, a 

novel affinity tag especially developed for purification of not easily accessible protein 

complexes (Junttila et al., 2005). 

 

5.4.1. Affinity chromatography using One-Strep-tagged Mdm38p allows 

recovery of the high molecular weight complex 
 

Since the 6xHIS epitope of the HIS-TAP-tagged Mdm38p monomer was not accessible to the 

anti-HIS antibody after Blue native electrophoresis (Figure 15), we speculated that this may 

be due to the localization of the HIS tag between Mdm38p and the bulky TAP tag. To avoid 

possible steric hindrance of the HIS tag, we created a strain bearing a C-terminal fusion of 

6xHIS with MDM38. Additionally, we also chromosomally fused the eight-residue Strep tag 

and the so called One-Strep tag, which is composed of two Strep tags separated by a flexible 

linker region (Figure 19). This latter tag should enhance binding affinity and purification yield 

of the fusion protein due to the tandem arrangement of two Strep tags. Furthermore, the linker 

region increases accessibility of the tagged component of a protein complex to the affinity 

resin (Junttila et al., 2005). The tagging procedure is described in detail in the Materials and 

Methods section. 
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Figure 19: PCR-based genomic tagging of MDM38  

Schematic representation of chromosomally HIS-, Strep-, and One-Strep-tagged MDM38. Affinity 

tags were introduced C-terminally in-frame with the MDM38 ORF into strain DBY747 by 

homologous recombination of PCR fragments amplified from plasmid pBS1479 (see Materials and 

Methods). L, linker. 

 

DBY747 mitochondria expressing chromosomally HIS-, Strep- or One-Strep-tagged MDM38 

were solubilized with 1.2% TX-100. Extracts containing Mdm38-HIS were subjected to Ni-

NTA affinity chromatography as described in chapter 5.3.6. for HIS-TAP-tagged Mdm38p. 

Strep- and One-Strep-tagged Mdm38p was purified by Strep affinity chromatography under 

identical conditions. Solubilized extracts were incubated with Strep-Tactin Superflow for 30 

min at 4°C and purified proteins were eluted in presence of 2.5 mM D-desthiobiotin (see 

Materials and Methods for details). 

The first two elution fractions were used for Blue native electrophoresis and after transfer to a 

PVDF membrane Mdm38p was detected by probing with antibodies directed against the 

6xHIS or the Strep epitopes (Figure 20). Interestingly, Mdm38-HIS was detected as part of a 

complex larger than 140 and smaller than 232 kDa corresponding to a putative Mdm38-HIS 

dimer (left panel), suggesting that simple removal of the TAP tag did not increase 

accessibility of the ~ 550 kDa complex.  

Purification of Mdm38-Strep resulted in recovery of Mdm38p in a complex of similar size as 

shown for Mdm38-HIS. Only a minor part was detected as a complex of unknown 

composition slightly below 140 kDa (middle panel).  
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Figure 20: Affinity chromatography using One-Strep-tagged Mdm38p 

Mitochondria isolated from strain DBY747 expressing chromosomally HIS-, Strep-, or One-Strep-

tagged MDM38 were solubilized using 1.2% TX-100. The supernatant containing HIS-tagged 

Mdm38p was subjected to Ni-NTA affinity chromatography. Strep- and One-Strep-tagged Mdm38p 

was subjected to Strep affinity purification under identical conditions. After purification, elution 

fractions (E1-E2) were separated by Blue native electrophoresis on a native 5-18% polyacrylamide 

gradient gel, transferred to a PVDF membrane and immunoblotted against the 6xHIS epitope (left 

panel) and the Strep epitopes (middle and right panel). HIS-, Strep-, and One-Strep-tagged Mdm38p 

was detected between 140 and 232 kDa, only Mdm38-One-Strep was additionally recovered as part of 

a complex between 440 and 669 kDa (white asterisk, right panel). 

 

Finally, also One-Strep-tagged Mdm38p was detected between 140 and 232 kDa (right 

panel), but most importantly, only Mdm38-One-Strep was additionally recovered as part of a 

complex with a molecular weight between 440 and 669 kDa (indicated by white asterisk). 

These experiments showed that the One-Strep tag was crucial for successful purification of 

the high molecular weight complex. Since monomeric Mdm38p was not detected in either 

case, independently of the fused tag, most of Mdm38p seems to be incorporated in higher 

order complexes under physiological conditions. 
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5.4.2. Purity of single-step affinity chromatography is limited 

 

Since the One-Strep tag was principally designed to purify proteins in a single step, we 

determined the efficiency and yield of the Mdm38-One-Strep purification.  

Mitochondria of strains DBY-MDM38-OS and DBY747wt were isolated and Strep affinity 

purification was performed exactly as described above. The first two elution fractions were 

combined, TCA precipitated, and subjected to SDS-PAGE. Proteins were visualized by 

Coomassie staining and Mdm38-One-Strep was detected by probing with an antibody directed 

against the Strep epitope (Figure 21, left and right panel, respectively). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21: TCA precipitation of Mdm38-One-Strep elution fractions    

After Strep affinity purification of One-Strep-tagged Mdm38p, elution fractions containing the highest 

amount of the Mdm38p protein complex were combined, TCA precipitated and subjected to SDS-

PAGE (Mdm38). To assess purification efficiency and purity, wild-type mitochondria were processed 

identically (WT). Proteins were detected by Coomassie staining and immunodetection with an 

antibody directed against the Strep epitope. Black arrow indicates full length Mdm38-One-Strep.  
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Western blot signals point to a strong degradation of Mdm38p, possibly caused by TCA 

precipitation. Nevertheless, enrichment of Mdm38-One-Strep was efficient enough to be 

visualized by Coomassie staining (black arrow indicates full length Mdm38-One-Strep). 

However, the single-step purification was obviously not capable to remove most of the 

contaminating proteins, as many protein bands present in the Mdm38 elution fraction also 

appeared in the wild-type control fraction (Figure 21, left panel). 

The mass spectrometry analysis of the Coomassie band representing full length Mdm38-One-

Strep confirmed this observation, as besides Mdm38p dozens of proteins were detected within 

the sample (data not shown). Therefore, we decided to analyze the ~ 550 kDa Mdm38p 

complex directly from the Blue native gel, as electrophoresis itself acts as a second 

purification step. 

 

5.4.3. Mass spectrometry (MS) analysis of the Mdm38-One-Strep complex 

 

Strep affinity chromatography and Blue native electrophoresis of DBY747 mitochondria 

expressing One-Strep-tagged MDM38 and of wild-type mitochondria was performed exactly 

as described in chapter 5.4.1. The presence of the ~ 550 kDa complex after purification was 

confirmed by immunodetection (data not shown). A gel piece containing the Mdm38-One-

Strep complex was cut out from the Blue native gel based on Western blot signals. A control 

sample was also cut out at the same position in the wild-type lane (as schematically shown in 

Figure 7).  

The gel pieces were analyzed by MS and protein hits of both samples were compared. In total, 

55 and 86 proteins were detected in the Mdm38p complex and wild-type sample, respectively. 

Besides Mdm38p, six other proteins were only detected in the Mdm38p complex sample (see 

Table 3) and 48 proteins were present in both gel pieces. 

Of those 48 proteins, 18 were components of ribosomal subunits. Therefore, the three 

ribosomal proteins detected in the Mdm38p complex sample likely represent contaminations. 

The other proteins identified are Ygr026wp, Ssc1p, and Erg5p. Ygr026wp is an 

uncharacterized protein localized to the cell periphery (Huh et al., 2003). Ssc1p is an essential 

mitochondrial Hsp70 family ATPase, involved in protein import across the inner 

mitochondrial membrane and in protein folding in the mitochondrial matrix (Kang et al., 

1990; Liu et al., 2001). Finally, Erg5p is a cytochrome P450 enzyme facilitating the 

penultimate step in ergosterol biosynthesis (Kelly et al., 1995; Skaggs et al., 1996). 
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Facing the relatively high number of proteins present after single-step purification, we 

decided to employ TAP, using a combination of Ni-NTA and Strep affinity chromatography, 

to increase the purity of our preparations and to confirm our preliminary results. 

 

Table 3: Proteins identified by MS analysis of the Mdm38-One-Strep protein complex 

The table contains the seven genes encoding the proteins only present in the Mdm38-One-Strep 

sample and not in the wild-type control sample. The score in the table represents the Mascot score of 

the sequenced peptides. The right column gives a brief description of the protein’s function according 

to the Saccharomyces Genome Database (SGD) (http://genome-www.stanford.edu/Saccharomyces/). 

 

5.5. Ni-NTA – Strep TAP of vector expressed Mdm38p 
 

For Ni-NTA – Strep TAP of Mdm38p we created a vector construct expressing One-Strep-

HIS (OSH)-tagged MDM38. For this purpose we C-terminally fused the 6xHIS tag to One-

Strep-tagged MDM38 by PCR amplification from chromosomal DNA of strain DBY-

MDM38-OS. The PCR product was then cloned into the centromeric plasmid YCplac22 (see 

Materials and Methods for details). A schematic representation of the vector construct is 

shown in Figure 22A. 
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5.5.1. OSH-tagged Mdm38p restores the respiratory growth defect of 

mdm38Δ mutant cells 
 

To test for correct function of OSH-tagged Mdm38p, the ability to complement the 

respiratory growth defect of mdm38Δ mutant cells was investigated. Therefore, serial 

dilutions of wild-type strain DBY747 and the isogenic mutant strain DBYmdm38Δ bearing 

the empty plasmid YCplac22 or expressing OSH-tagged MDM38 (YCp22-MDM38-OSH) 

were spotted on fermentable (YPD) and non-fermentable media (YPG, YPdG, and YPEG) 

and incubated at 28°C (Figure 22B).  

 

Figure 22: Ni-NTA - Strep TAP construct 

A. OSH-tagged MDM38 was PCR-amplified from chromosomal DNA of strain DBY747 bearing One-

Strep-tagged MDM38 (DBY-MDM38-OS) and cloned into the centromeric plasmid YCplac22 (see 

Materials and Methods for details). OSH, One-Strep-HIS. 

B. Overnight cultures of yeast strains DBY747wt and DBYmdm38Δ carrying the empty YCplac22 

vector or expressing OSH-tagged MDM38 (YCp22-MDM38-OSH) were adjusted to OD600 = 1, ten-

fold serial dilutions were incubated at 28°C for two days on YPD plates and for four days on YPdG, 

YPG, and YPEG plates. Reduced growth of the mdm38Δ mutant strain on non-fermentable media was 

completely restored upon expression of OSH-tagged MDM38.  
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In contrast to the respiratory deficient mutant strain DBYmdm38Δ carrying the empty 

plasmid, expression of OSH-tagged Mdm38p completely restored growth on non-fermentable 

media, suggesting normal function of tagged Mdm38p. 

 

5.5.2. The Mdm38p complex is intact after Ni-NTA – Strep TAP 
 

For Ni-NTA – Strep TAP mitochondria were isolated from strains DBY747wt carrying the 

empty YCplac22 plasmid and DBYmdm38Δ expressing OSH-tagged MDM38 from plasmid 

YCp22-MDM38-OSH. Mitochondria were treated exactly as described for single-step 

purifications. In order to optimize the purification efficiency, solubilized protein extracts were 

first subjected to Ni-NTA affinity chromatography and then to Strep affinity chromatography, 

as well as vice versa (see Materials and Methods for details).  

To verify the presence of the Mdm38p complex after TAP, eluted proteins were subjected to 

Blue native electrophoresis and immunodetected with an antibody directed against the Strep 

epitope (Figure 23). Interestingly, the Mdm38 protein yield and migration varied and 

correlated with the order of purification steps. In fact, Mdm38-OSH was exclusively detected 

as part of a high molecular weight complex ranging between 440 and 669 kDa, in addition to 

the smaller complex with a molecular weight between 140 and 232 kDa, when Ni-NTA 

preceded the Strep purification. The opposite order of purification steps yielded less Mdm38p 

and resulted in recovery of only the smaller Mdm38p complex ranging between 140 and 232 

kDa (Figure 23). Thus, detection of the Mdm38p complex likely failed because of protein loss 

during Strep purification, caused by the lower protein binding capacity of Strep-Tactin 

Superflow as compared to Ni-NTA Superflow resin. However, although the majority of 

Mdm38p was recovered as part of the smaller complex, Ni-NTA – Strep TAP allowed for 

purification of the intact ~ 550 kDa Mdm38p complex. 
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Figure 23: TAP of OSH-tagged Mdm38p 

Mitochondria isolated from strains DBY747wt and DBYmdm38Δ expressing OSH-tagged MDM38 

from plasmid YCp22-MDM38-OSH were solubilized using 1.2% TX-100. The clarified supernatants 

were first subjected to Ni-NTA affinity chromatography and then to Strep affinity chromatography 

(HIS-Strep Purif.) or vice versa (Strep-HIS Purif.). Elution fractions (E1-E2) were separated by Blue 

native electrophoresis on a 5-18% polyacrylamide gradient gel, transferred to a PVDF membrane, and 

probed with an antibody directed against the Strep epitope. Only after HIS-Strep affinity 

chromatography Mdm38-OSH was recovered as part of a complex between 440 and 669 kDa.  
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5.5.3. Ssc1p and Erg5p co-elute with Mdm38-OSH after Ni-NTA – Strep 

TAP 
 

To confirm the co-purification of the proteins detected by MS analysis of the Mdm38p 

complex directly from the Blue Native gel (chapter 5.4.3., Table 3), we repeated TAP in the 

order Ni-NTA followed by Strep purification exactly as described above. To compare the 

purity of the preparation with single-step purification (see Figure 21), the first two elution 

fractions were TCA precipitated, separated by SDS-PAGE, and the gel was stained with 

Coomassie Brilliant Blue. As controls, DBY747 wild-type mitochondria carrying the empty 

YCplac22 plasmid and mitochondria isolated from strain DBYmrs2Δ expressing OSH-tagged 

MRS2 from plasmid YCp22-MRS2-OSH were processed identically (Figure 24). Mrs2p, 

which is a mitochondrial inner membrane Mg2+ channel, was used to identify possible 

mitochondria-specific contaminations remaining after purification.  

The protein band patterns of all purifications were compared. Bands present in all three lanes 

were judged as contaminating proteins. Surprisingly, the Mrs2-OSH and wild-type patterns 

were identical, only the protein amounts differed in some cases (e.g. bands between 40 and 55 

kDa). Mrs2p-OSH (~ 64 kDa) was also not detectable by Coomassie staining, probably 

because of suboptimal purification conditions for Mrs2p. More importantly, only four protein 

bands were solely found in the Mdm38-OSH lane (indicated by black arrows). These were cut 

out and analyzed by MS. As expected, the uppermost band was identified as Mdm38p and the 

lowest band turned out to be a degradation product of Mdm38p, similar to what we observed 

after single-step Strep purification of Mdm38-One-Strep (Figure 21). 

The two protein bands in between were identified as Ssc1p and Erg5p, thereby confirming our 

first MS results (Table 3). The other four proteins previously detected by MS, Ygr026wp, 

Rps4Bp, Rps12p, and Rpl21Ap, were not found after TAP, suggesting that they indeed were 

contaminations or their interaction with Mdm38p was too weak to endure the second 

purification step. 
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Figure 24: Ssc1p and Erg5p co-elute with Mdm38-OSH after Ni-NTA - Strep TAP  

Ni-NTA - Strep TAP was performed with DBY747wt mitochondria and mitochondria isolated from 

strains DBYmdm38Δ and DBYmrs2Δ expressing OSH-tagged MDM38 or MRS2 from plasmid 

YCplac22, respectively. The first two elution fractions were combined, TCA precipitated, separated by 

SDS-PAGE, and proteins were detected by Coomassie staining. Four protein bands only present in the 

Mdm38-OSH lane but not in the control lanes were cut out and analyzed by MS (indicated by black 

arrows). deg., degraded. 

 

5.6. Ergosterol and mitochondrial K+/H+ exchange 
 

Previously, in a genome-wide screen aiming at identifying mutants which are resistant or 

highly sensitive to the K+ ionophore valinomycin, we obtained a series of ergosterol genes, 

suggesting a role in the control of cellular K+ (Aleschko M., manuscript in preparation). We 

therefore decided to focus on the ergosterol genes and to investigate their potential connection 

to Mdm38p and mitochondrial K+/H+ exchange. 
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Figure 25: Ergosterol synthesis pathway 

Flow chart of the oxygen-dependent steps of ergosterol synthesis in S. cerevisiae. Red arrows point to 

the steps involving ERG5 and ERG6. On the right, oxygen (and NADPH) stoichiometries of the 

reactions catalyzed are indicated. ACAT (ARE1,2), acyl-CoA sterol acyl transferases. Figure adapted 

from (Rosenfeld & Beauvoit, 2003).  
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5.6.1. Synthetic growth defects of BYmdm38∆erg5∆ and BYmdm38∆erg6∆ 

double mutant strains 
 

Figure 25 gives an overview of the post-squalene pathway of ergosterol biosynthesis. The 

highest amounts of ergosterol are found in the plasma membrane, secretory vesicles, and lipid 

particles, where it is stored. In addition it is also present in lower amounts in other cellular 

compartments, like the vacuolar membrane or the inner mitochondrial membrane (Zinser et 

al., 1991; Zinser et al., 1993).  

We first investigated the phenotypic effects of erg5Δ single mutant and mdm38Δerg5Δ 

double mutant cells to depict whether the double deletion would have a synthetic phenotype, 

caused by a genetic interaction where two mutations in combination result in significantly 

enhanced defects than either alone (Guarente, 1993). Since we had also found erg6Δ in our 

valinomycin screen, we tested the synthetic phenotypes of erg6Δ and mdm38Δ and monitored 

the growth of all strains in presence of valinomycin. Of note, Erg6p was found to be 

associated with mitochondrial membranes (Bailey & Parks, 1975; Zahedi et al., 2006) and is 

involved in maintenance of mitochondrial morphology (Dimmer et al., 2002). The synthesis 

steps involving Erg5p and Erg6p are indicated in Figure 25 (red arrows). 

To monitor the cellular growth, serial dilutions of the wild-type and mutant strains were 

spotted onto YPD, YPG, and YPEG plates with or without valinomycin, a K+ ionophore 

specifically facilitating transmitochondrial K+ influx (Kovac et al., 1982a). On glucose 

medium the wild-type and single mutant strains showed normal growth, whereas addition of 

15 µg/ml valinomycin only affected growth of mdm38∆ cells, as already shown (Nowikovsky 

K., PhD thesis, 2004). In contrast, both double mutant strains exhibited a synthetic growth 

defect even without valinomycin, and in presence of the ionophore growth was almost 

completely blocked (Figure 26A).  

On non-fermentable carbon sources (YPG, YPEG) wild-type and erg5∆ cells showed 

comparable growth, whereas mdm38∆ and erg6∆ cells exhibited a clear growth defect. 

However, growth of both double mutant strains was completely inhibited even without 

valinomycin. In line with our findings (Aleschko M., in preparation), in presence of 7.5 µg/ml 

valinomycin the erg6∆ mutant exhibited resistance to the ionophore and it was the only strain 

still able to grow (Figure 26B). Additionally, we investigated the growth phenotype of the 

ygr026w∆ mutant and tested synthetic effects of the double mutant mdm38∆ygr026w∆. 

However, growth of ygr026w∆ and mdm38∆ygr026w∆ cells was similar to the wild-type and 

the mdm38∆ mutant, respectively (data not shown). 
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Figure 26: Synthetic growth defect observed upon deletion of ERG5 and ERG6 in combination 

with the mdm38∆ mutant strain.  
Ten-fold serial dilutions of wild-type strain BY4741, isogenic mutants mdm38∆, erg5∆, erg6∆, and 

double mutants mdm38∆erg5∆ and mdm38∆erg6∆ were incubated at 28°C for two days on YPD and 

three days on YPD supplemented with 15 µg/ml valinomycin (YPD + Val, panel A), for three days on 

YPG and YPEG plates (panel B), and for six days on YPG plates supplemented with 7.5 µg/ml 

valinomycin (YPG + Val, panel B).   

   

5.6.2. Aberrant mitochondrial and vacuolar morphology in the absence of 

MDM38, ERG5, and ERG6 
 

Considering the respiratory growth deficiency and the pronounced sensitivity to valinomycin, 

especially of the double mutant strains, we monitored the mitochondrial and vacuolar 

morphology of the single and double mutants under fluorescence microscopy. Organellar 

morphology was visualized by labeling mitochondria with GFP (pYX142-mtGFP 

(Westermann & Neupert, 2000)) and co-staining of vacuoles with FM4-64. 
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When grown in synthetic minimal medium containing galactose, wild-type and erg5∆ cells 

displayed a branched tubular mitochondrial network (Figure 27A, panel a and c, respectively). 

In contrast, mitochondria of the mdm38∆ mutant appeared as fragmented, spherical units and 

cells of strain erg6∆ displayed an intact mitochondrial reticulum, somewhat less branched 

(Figure 27A, panel b and d, respectively). 
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Figure 27: Mitochondrial and vacuolar morphology in absence of MDM38, ERG5, and ERG6 

Cells were grown in synthetic minimal medium containing galactose (A), glucose (B), or galactose 

and raffinose (C) as carbon sources. Mitochondrial morphology was visualized by expression of 

mitochondrial matrix-targeted GFP from plasmid pYX142-mtGFP (Westermann & Neupert, 2000). 

Vacuoles were stained with FM4-64. Shown are representative fluorescence microscopy images of 

live cells and respective DIC images. 

A. Microscopical analysis of wild-type strain BY4741 (a) and isogenic mutants mdm38∆ (b), erg5∆ 

(c), and erg6∆ (d).  

B. Microscopical analysis of wild-type strain BY4741 (a) and isogenic mutants mdm38∆ (b), 

mdm38∆erg5∆ (c), and mdm38∆erg6∆ (d). White arrows indicate association of mitochondria and 

vacuoles (panel d). 

C. Microscopical analysis of double mutant strains mdm38∆erg5∆ (a), and mdm38∆erg6∆ (b). DIC, 

differential interference contrast. 

 

The vacuolar morphology of wild-type and mdm38∆ cells appeared normal, characterized by 

one to three individual vacuoles present per cell (Figure 27A, panel a and b, respectively). In 

contrast, erg5∆ and erg6∆ cells exhibited highly fragmented vacuoles (Figure 27A, panel c 

and d, respectively), which is consistent with previous reports (Jones et al., 2010; Kato & 

Wickner, 2001). Since mdm38∆erg5∆ and mdm38∆erg6∆ double mutants were lethal on non-
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fermentable carbon sources and exhibited reduced growth even on rich medium (YPD), we 

analyzed the organellar morphology of these cells grown in presence of glucose. 

Vacuoles and mitochondria of wild-type cells appeared normal, although network branching 

of mitochondria was less pronounced (Figure 27B, panel a), likely caused by the medium, as 

glucose is known to repress mitochondrial biogenesis and protein synthesis (Ulery et al., 

1994; Visser et al., 1995). Vacuoles of the mdm38∆ mutant showed wild-type morphology 

and the mitochondrial reticulum appeared partly fragmented (Figure 27B, panel b). 

Interestingly, vacuoles of the mdm38∆erg6∆ double mutant also exhibited normal 

morphology (Figure 27B, panel c) and vacuoles of strain mdm38∆erg5∆ were only partly 

fragmented (Figure 27B, panel d), confirming an influence of the carbon source on the 

organellar morphology. Importantly, mitochondria of both double mutants appeared 

fragmented in spherical units and their colocalization with vacuolar membranes was 

frequently observed (Figure 27B, panel d, white arrows).  

These observations somehow resemble the morphology we observed in the triple mutant 

strain mdm38∆mrs7∆ ydl183c∆, which showed similar organellar abnormalities (see (Zotova 

et al., 2010) figure 7). Moreover, the mdm38∆mrs7∆ ydl183c∆ triple mutant cells grown in 

presence of galactose exhibited strong colocalization of mitochondrial and vacuolar markers, 

indicative of mitophagy, the autophagic degradation of mitochondria inside vacuoles 

(Lemasters, 2005; Tolkovsky, 2009; Youle & Narendra, 2011). 

To enable growth of the mdm38∆erg5∆ and mdm38∆erg6∆ double mutant strains in presence 

of galactose, the synthetic minimal medium was supplemented with the fermentable sugar 

raffinose, which does not repress mitochondrial respiration. 

Double mutant vacuoles and mitochondria appeared completely fragmented and 

mitochondrial spheres were even less numerous as compared to double mutant cells grown in 

glucose medium (Figure 22C, panel a and b). However, none of the double mutant strains 

showed any colocalization of mitochondrial and vacuolar markers, suggesting that mitophagy 

was not ongoing. 

Based on co-purification of Erg5p with Mdm38p and strong evidence for a genetic interaction 

of the proteins as described above, we investigated if the ~ 550 kDa Mdm38p complex 

retained its size in the erg5∆ mutant. Therefore, we expressed OSH-tagged MDM38 from 

plasmid YCp22-MDM38-OSH in strains BYmdm38∆ and BYerg5∆, isolated mitochondria 

and performed Ni-NTA - Strep TAP, as the Mdm38p complex was not detectable after Blue 

native electrophoresis of solubilized whole mitochondria (data not shown). Unfortunately, we 

failed to detect the high molecular weight complex and only recovered the smaller complex 

ranging between 140 and 232 kDa for both strains (data not shown). This was likely caused 
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by the lower quality and small amount of mitochondria isolated from the BY strains (~ 20% 

compared to DBY, see Materials and Methods). Thus, for future studies an erg5∆ mutant 

should be generated in the DBY background to answer this question. 

 

5.6.3. KOAc-induced mitochondrial swelling 
 

Treatment of mitochondria with hypoosmotic potassium acetate (KOAc) results in rapid 

swelling of the organelle, reflective of K+/H+ exchange activity across the inner mitochondrial 

membrane (Bernardi, 1999; Garlid et al., 1986; Welihinda et al., 1993). Incubation of non-

respiring mitochondria in KOAc causes rapid uptake of the protonated form of acetic acid 

(HAc). Deprotonation of HAc in the mitochondrial matrix activates the K+/H+ exchange 

system. This results in the net accumulation of potassium acetate, water uptake, and swelling 

of the organelle, which can be observed as a decrease in light absorbance of mitochondrial 

suspensions at 540 nm (Bernardi, 1999; Garlid et al., 1986; Garlid & Paucek, 2003). 

Prior to measurement, proton pumping by the respiratory chain was blocked by addition of the 

Complex III inhibitor antimycin A and mitochondria were depleted of endogenous Mg2+, a 

known inhibitor of the K+/H+ exchanger (Garlid, 1980), by addition of the divalent cation 

ionophore A-23187 and EDTA. 

BY4741 wild-type as well as erg5∆ mitochondria showed rapid swelling upon addition of 

KOAc (Figure 28A). In contrast, mdm38∆ mutant mitochondria exhibited severely reduced 

swelling compared to wild-type mitochondria, consistent with previous findings (Nowikovsky 

et al., 2004). As expected, mdm38∆erg5∆ and mdm38∆erg6∆ double mutant mitochondria 

completely failed to swell. Surprisingly, erg6∆ mitochondria exhibited only marginal 

swelling, suggesting disturbed K+/H+ exchange activity or otherwise abnormal membrane 

behaviour. Absence of mitochondrial K+/H+ exchange causes swelling of the organelle prior 

to its isolation, as demonstrated by the reduced absorbance levels at resting conditions (Figure 

28A and B). However, this was not the case for erg6∆ mitochondria, which also did not 

appear swollen under fluorescence microscopy (see figure 27A, panel D), suggesting that 

impaired K+/H+ exchange was not the cause of absent swelling of erg6∆ mitochondria. In 

presence of quinine, a known inhibitor of the K+/H+ exchanger (Brierley et al., 1984) 

mitochondria became refractory to swelling, indicating that the monitored swelling was 

caused by the K+/H+ exchange activity (Figure 28B). 

 

 



Results 

 90

 

 

Figure 28: KOAc-induced swelling of mitochondria 

Mitochondria were prepared from BY4741 wild-type, mdm38∆, erg5∆, erg6∆, mdm38∆erg5∆, and 

mdm38∆erg6∆ mutant cells, resuspended in 0.6 M sorbitol buffer, and incubated with antimycin A 

prior to measurement to block proton pumping. To deplete mitochondria of endogenous Mg2+, the 4-

bromo-calcium ionophore A-23187 and EDTA were added prior to KOAc treatment. After addition of 

mitochondria to the swelling buffer in cuvettes, swelling of mitochondria was measured as a decrease 

of OD540 immediately thereafter (panel A). To confirm that the observed swelling was caused by the 

K+/H+ exchange activity, the K+/H+ exchange inhibitor quinine was added to A-23187/EDTA-treated 

mitochondria prior to measurement (panel B).  
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5.7. Synthetic genetic array (SGA) analysis 
 

SGA analysis was developed as an efficient approach for the systematic construction of 

double mutants (Tong et al., 2001; Tong & Boone, 2006).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29: Synthetic genetic array (SGA) analysis 

Schematic representation of the steps involved in SGA analysis. A query deletion mutant (mdm38∆) is 

systematically crossed to a non-essential deletion mutant library (xxx∆, ~ 4900 strains) by robotic 

colony manipulation. The resulting diploids are then sporulated and the haploid double mutant 

progeny is obtained by a series of selection platings (see Materials and Methods for details). Double 

mutant colonies are screened visually for aberrant growth. Figure adapted from (Tong et al., 2001). 
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By robotic colony manipulation a query mutant strain is crossed to the Euroscarf non-essential 

deletion mutant library (Winzeler et al., 1999). Figure 29 gives an overview of the individual 

steps involved in double mutant construction (see also Materials and Methods for a detailed 

description). 

By using this genetic approach, which permits the revelation of functional relationships 

between genes and pathways, we aimed at the identification of synthetic lethal and synthetic 

suppressive interactions of the mdm38∆ mutant strain.  

 

5.7.1. Synthetic lethal screen 
 

Synthetic lethality occurs when the combination of two mutations, neither by itself lethal, 

leads to inviable double mutant meiotic progeny (Guarente, 1993; Novick et al., 1989). 

Synthetic lethal genetic interactions have been extensively studied to identify genes involved 

in related functions or compensatory pathways (Boone et al., 2007; Mani et al., 2008). 

We first deleted MDM38 in the haploid MATα starting strain BY7092 by homologous 

recombination with a URA3 disruption cassette. The resulting BY7092mdm38∆ mutant was 

crossed to the ordered array of geneticin resistant deletion mutants of the opposite mating 

type, MATa. For an easy selection of the double mutant meiotic progeny after sporulation of 

the resulting diploids, the BY7092mdm38∆ strain carries the STE2pr-HIS5 reporter, which is 

only expressed in haploid MATa cells (Daniel et al., 2006; Tong et al., 2001). This permits 

selection of MATa haploid double mutants on minimal medium lacking uracil and histidine 

and containing geneticin (SD - URA - HIS + GEN). Moreover, this avoids contamination with 

diploid cells accidentally carried over by robotic colony plating or resulting from conjugation 

of meiotic progeny, as these cells are not viable on media lacking histidine. The growth rate 

of the haploid double mutant strains is monitored by visual observation or image analysis of 

colony size. 

After screening of the mdm38∆ mutant against ~ 4900 viable deletion strains, we scored 57 

potential synthetic lethal interactions. In order to exclude that the lethality was caused by 

impaired mating or sporulation and to confirm that the haploid double mutants were inviable, 

we first had to determine the mating and sporulation efficiency. Unfortunately, 33 diploids of 

the 57 candidates did not sporulate and the residual 24 mutant strains failed to conjugate with 

BY7092mdm38∆, as they turned out to be already diploid within the library. Furthermore, 

expression of the STE2pr-HIS5 reporter seemed to not be tightly controlled: when the 

BY7092mdm38∆ query mutant is crossed to the mdm38∆ mutant within the deletion strain 

library, homozygous diploid mdm38∆ cells are obtained but haploid double mutants cannot 
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form. Accordingly, these diploid cells should fail to grow on double mutant selective SD - 

URA - HIS + GEN plates. However, we observed growth of these cells, indicative of leaky 

HIS5 expression in diploid cells carried over during robotic colony plating.  

 

Table 4: 3-Amino-1,2,4-triazole (3-AT) – sensitive mutant strains 

List of 28 genes causing lethality to 10 mM 3-AT when deleted in combination with the mdm38∆ 

mutant strain. References for these genes can be found at YPD (www.proteome.com/) or the 

Saccharomyces Genome Database (SGD) (http://genome-www.stanford.edu/Saccharomyces/).  
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Thus, the leaky expression of the reporter could possibly be the reason, why we did not detect 

synthetic lethal interactions (Singh et al., 2009). To increase stringency of the HIS5 reporter 

expression and haploid double mutant selection, we repeated the screen and selected the 

haploid double mutants on SD - URA - HIS + GEN plates supplemented with 10 mM 3-

Amino-1,2,4-triazole (3-AT), a competitive inhibitor of the HIS5 gene product and thereby of 

leaky reporter expression (Daniel et al., 2006).  

Under these conditions, homozygous diploid mdm38∆ mutants failed to grow, thus 

confirming the inhibitory effect of 3-AT. Furthermore, we identified 32 additional synthetic 

lethal candidates. However, four of them did not grow because of impaired sporulation. In 

order to confirm that the lethal interactions of the remaining 28 double mutants were correct, 

random tetrad dissection was performed for all 28 strains. Surprisingly, in each case the 

haploid double mutants were viable. When these 28 haploid double mutants were grown on 

SD - URA - HIS + GEN medium containing or lacking 10 mM 3-AT, all double mutants were 

inviable on plates supplemented with 3-AT (data not shown), suggesting increased sensitivity 

to this chemical. Table 4 gives an overview of these 28 genes. Other double mutants were 

viable in presence of up to 100 mM 3-AT (data not shown). Thus, under these experimental 

conditions we could not identify any mdm38∆ synthetic lethal interactions. 

 

5.7.2. Synthetic suppression screen 
 

As a second approach based on SGA analysis, we aimed at identifying synthetic suppressors 

of the mdm38∆ strain. These are mutants that suppress the mdm38∆ mutation phenotype 

(Guarente, 1993). Screening for genetic suppressors has the potential to identify genes 

involved in pathways which need to be counteracted by mitochondrial K+/H+ exchange, like 

inwardly directed cation transporters.  

To detect suppressor strains, all haploid double mutant strains obtained by the SGA approach 

were plated on YPG medium, incubated at 16, 28, and 35.5 °C, and screened for improved 

growth. In the first round, growth of 86 strains was judged to be improved by visual 

observation (data not shown). These strains were picked, plated in serial dilutions for a more 

precise evaluation of growth, and incubated under the same conditions as before. After this 

second round, 32 strains remained as suppressor candidates (data not shown). To confirm the 

suppression effect of the double mutation and to exclude a contamination with heterozygous 

diploid cells, random tetrad dissection of all 32 strains was performed and the resulting double 

mutants were spotted again on YPG medium. Only six double mutants remained with a 
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growth comparable to the wild-type, independently of the incubation temperature (Figure 30, 

panel A and B). 

 

 

 

 

Figure 30: Synthetic suppression of the mdm38∆ respiratory growth defect 

Ten-fold serial dilutions of wild-type strain BY7092 and mutant strains mdm38∆, mdm38∆ldb16∆, 

mdm38∆hof1∆, mdm38∆rxt2∆, mdm38∆rtf1∆, mdm38∆ssn8∆, and mdm38∆ctk1∆ were incubated on 

YPD plates (panel A) at 16, 28, and 35.5°C for 4, 2, and 3 days, respectively. On YPG plates (panel 

B) cells were incubated at 16, 28, and 35.5°C for 6, 3, and 4 days, respectively.   
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Table 5 gives a description of the six genes suppressing the mdm38∆ respiratory growth 

defect when deleted in combination with the mdm38∆ strain. Surprisingly, three of those, 

CTK1 (Hampsey & Kinzy, 2007; Rother & Strasser, 2007), SSN8 (Balciunas & Ronne, 1995; 

Kuchin et al., 1995), and RTF1 (Mueller & Jaehning, 2002; Stolinski et al., 1997), are 

involved in transcriptional regulation, either by modulation of RNA polymerase II directly or 

of associated factors. 

 

Table 5: Synthetic suppression of the mdm38∆ mutant phenotype 

List of the six genes suppressing the mdm38∆ respiratory growth defect when deleted in combination 

with the mdm38∆ strain. The right column gives a brief description of the gene’s function according to 

the Saccharomyces Genome Database (SGD) (http://genome-www.stanford.edu/Saccharomyces/). 
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RXT2 is part of a histone deacetylase complex (Colina & Young, 2005) and involved in cell 

fusion (Entian et al., 1999). In contrast, HOF1 is involved in cell division and cytoskeletal 

organization (Lippincott & Li, 1998; Naqvi et al., 2001) and LDB16 encodes a protein of 

unknown function, detected in mitochondria and lipid particles (Reinders et al., 2006; Wagner 

et al., 2009).  

We decided to focus on LDB16, HOF1, and RXT2, reasoning that the suppressor effect of 

RTF1, SSN8, and CTK1 may be caused by secondary effects mediated by changes in 

transcription of their target genes. 

 

5.7.3. Double mutant strains exhibit a restored mitochondrial network  
 

We first compared the cellular growth of the synthetic suppressive double mutants and the 

respective single mutant strains. Cells were spotted in serial dilutions onto YPD and non-

fermentable carbon sources to assess possible respiratory defects of the single deletion strains. 

Mutants lacking HOF1 or RXT2 showed slightly reduced growth on all media compared to 

their respective double mutant strains (Figure 31). In contrast, ldb16∆ and mdm38∆ldb16∆ 

cells showed identical growth on all media, which was indistinguishable from the wild-type. 

 

 

Figure 31: Comparison of growth phenotypes of synthetic suppressive single and double mutants 

Ten-fold serial dilutions of wild-type strain BY7092 and mutant strains mdm38∆, ldb16∆, 

mdm38∆ldb16∆, hof1∆, mdm38∆hof1∆, rxt2∆, and mdm38∆rxt2∆ were incubated at 28°C for two 

days on YPD plates and for three days on YPG and YPEG plates. 
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Next we assessed the mitochondrial morphology of the synthetic suppressors in single and 

double mutant strains under fluorescence microscopy of cells expressing a mitochondrial 

matrix-targeted GFP. Cells were cultivated in synthetic minimal medium containing galactose 

as a carbon source. First, the mitochondrial shape of the single mutant strains ldb16∆, hof1∆, 

and rxt2∆ was compared to BY7092 wild-type and mdm38∆ mutant cells. 

As expected, wild-type cells exhibited a tubular and branched mitochondrial network, while 

mdm38∆ mitochondria appeared heavily fragmented (Figure 32A). Mitochondria of ldb16∆ 

cells were organized in a dense, highly branched network, whereas hof1∆ and rxt2∆ 

mitochondria formed elongated but somewhat disorganized and less branched networks 

(Figure 32A), likely correlating with the slight growth defect observed on non-fermentable 

carbon sources. 

We subsequently investigated the mitochondrial shape of the double mutant strains 

mdm38∆ldb16∆, mdm38∆hof1∆, and mdm38∆rxt2∆. Strikingly, all three double mutant 

strains exhibited branched tubular mitochondrial networks, comparable to wild-type cells 

(Figure 32B). This suggests that deletion of LDB16, HOF1, or RXT2 in combination with the 

mdm38∆ strain causes suppression of the respiratory growth deficiency by restoration of 

mitochondrial function and morphology by so far unknown mechanisms.  
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Figure 32: Mitochondrial morphology of synthetic suppressive single and double mutant strains  

Wild-type strain BY7092 and mutant strains mdm38∆, ldb16∆, hof1∆, rxt2∆ (panel A), 

mdm38∆ldb16∆, mdm38∆hof1∆, and mdm38∆rxt2∆ (panel B) were grown to logarithmic phase in 

synthetic minimal medium containing galactose as a carbon source. Mitochondrial morphology was 

visualized by expression of mitochondrial matrix-targeted GFP from plasmid pYX142-mtGFP 

(Westermann & Neupert, 2000). Shown are representative fluorescence microscopy images of live 

cells as well as respective DIC images. 
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6. Discussion 

 

Mitochondria establish an inside negative membrane potential (Δψ) which favors the uptake 

of cations across the inner membrane, including K+, the most abundant cellular cation. As 

postulated by Nobel Price winner Peter Mitchell (Mitchell, 1961; Mitchell, 1966) and well 

accepted since then (DiResta et al., 1986; Dordick et al., 1980; Froschauer et al., 2005; Garlid 

et al., 1986), mitochondria need a cation/proton antiporter system to counteract excess cation 

influx, thereby maintaining their integrity and the matrix ion and volume homeostasis. 

However, the molecular identity of the mitochondrial K+/H+ antiporter remained unknown 

until recently, when the yeast Mdm38p and its human homolog Letm1 have been identified as 

essential components thereof (Froschauer et al., 2005; McQuibban et al., 2010; Nowikovsky 

et al., 2007; Zotova et al., 2010). In the study presented here and in line with previous data on 

hLetm1 (Dimmer et al., 2008; Hasegawa & van der Bliek, 2007; Tamai et al., 2008), we 

found that Mdm38p is part of a high molecular weight protein complex of unknown 

composition (see (Zotova et al., 2010) and Figure 10). 

The fact that Mdm38p is a single membrane spanning protein and other exchangers contain 

up to twelve membrane spanning helices (Wakabayashi et al., 2000), suggested that Mdm38p 

may act as an essential auxiliary protein of the unknown K+/H+ exchanger rather than forming 

the antiporter itself. By the use of affinity chromatography we aimed at pulling down the 

exchanger together with Mdm38p (see Figures 6 and 7). Data collected here showed that 

Mdm38p interacts with Ssc1p, an essential mitochondrial chaperone protein involved in 

protein import across the inner mitochondrial membrane and in protein folding in the 

mitochondrial matrix (Kang et al., 1990; Liu et al., 2001), and with Erg5p, a cytochrome 

P450 enzyme facilitating the penultimate step in ergosterol biosynthesis (Kelly et al., 1995; 

Skaggs et al., 1996). Furthermore, we analyzed the additive effects resulting from double 

deletion of MDM38 and ERG5 or ERG6 on mitochondrial and vacuolar morphology, as well 

as on K+/H+ exchange activity.  

Unexpectedly, by applying affinity chromatography we could not identify any obvious protein 

candidates with a role as a mitochondrial K+/H+ exchanger. These results strongly suggest that 

Mdm38p may be the exchanger per se. Although this would be the first case of a single 

membrane spanning antiporter, this possibility is supported by strong evidence for homo-

oligomerization of Mdm38p (Zotova et al., 2010). 
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In a second approach, a genome-wide synthetic genetic array analysis, we identified six 

synthetic suppressive interactions of the mdm38∆ mutant strain, characterized by restored 

respiratory growth and mitochondrial morphology of six double mutant strains. Functionally, 

these suppressor mutants are involved in different cellular processes, ranging from 

transcriptional regulation to cell fusion and cytoskeletal organization (Table 5). So far it is not 

clear if these mutations directly contribute to functional restoration of mdm38∆ mitochondria 

or if the suppression is caused by secondary effects. However, our findings represent the basis 

for uncovering new connections between these processes and mitochondrial cation 

homeostasis. 

 

6.1. Interaction partners of Mdm38p 
 

A previous study reported that the protein A-tagged Mdm38p interacted with a series of 

mitochondrial ribosomal proteins and its yeast homolog Mrs7p (Frazier et al., 2006). Here we 

characterized Mrs7p as a multicopy suppressor of the mdm38∆ mutant strain (Zotova et al., 

2010). By use of Blue native electrophoresis and second dimension SDS-PAGE we showed 

that Mdm38p only hetero-oligomerized with TAP-tagged Mrs7p, whereas Mdm38p is able to 

homo-oligomerize (Zotova et al., 2010). Since the bulky TAP tag reduced suppression 

efficiency of Mrs7p (see (Zotova et al., 2010), Figure 11), this suggests that the observed 

interaction may represent a compensatory mechanism by which one protein supports the 

function of another. Alternatively, TAP-tagged Mrs7p may interact with Mdm38p, however 

causing less efficient function than self-interacting Mdm38p. 

Furthermore, we showed that both Mdm38p and Mrs7p are part of high molecular weight 

complexes of similar size (see (Zotova et al., 2010), Figures 9), but do not reside in the same 

complex. Accordingly, deletion of MRS7 and also of a second strong suppressor, YDL183C 

(MKR1), did not influence the size of the Mdm38p complex as depicted by Blue native 

electrophoresis (data not shown), making direct interaction unlikely. Therefore, we 

investigated the molecular composition of the Mdm38p complex by affinity chromatography 

followed by mass spectrometry.  

 

6.2. Ssc1p and Erg5p co-purify with Mdm38p 
 

Intensive testing of various affinity tags resulted in the purification of the ~ 550 kDa Mdm38p 

complex, which was only possible by the use of the One-Strep tag, two tandemly arranged 
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Strep peptides specially designed for the purification of challenging protein complexes 

(Junttila et al., 2005). Also Ni-NTA – Strep TAP of OSH-tagged Mdm38p allowed for 

recovery of the protein complex, although the predominant part of Mdm38p was detected in 

its putative dimeric conformation (Figure 23), likely caused by dissociation of the complex 

during purification. However, size exclusion chromatography showed that the majority of 

Mdm38p was organized into the high molecular weight complex (Figures 17 and 18), 

suggesting that this protein state represents the native conformation of Mdm38p in vivo. 

Mass spectrometry analysis of proteins co-purified with OSH-tagged Mdm38p revealed 

physical association with two proteins, Ssc1p and Erg5p. Ssc1p (mtHsp70p) is an essential 

mitochondrial Hsp70 family ATPase, acting as a chaperone protein involved in protein import 

across the inner mitochondrial membrane and in protein folding in the mitochondrial matrix 

(Kang et al., 1990; Liu et al., 2001).  

Ssc1p itself was shown to be important for correct mitochondrial morphology, as conditional 

inactivation of the protein caused aggregation of the mitochondrial network (Kawai et al., 

2001). Moreover, a genome-wide high throughput synthetic genetic array study revealed a 

negative genetic interaction of SSC1 and MDM38, characterized by a more severe fitness 

defect of the double mutant strain compared to the expected additive effects of the combined 

single mutations (Costanzo et al., 2010). However, although these findings support our results 

indicating a putative interaction of Ssc1p and Mdm38p, there is so far no evidence for a direct 

involvement of Ssc1p in mitochondrial ion homeostasis or K+/H+ exchange. Co-purification 

of Ssc1p with Mdm38p could therefore result from protein interaction during the import into 

and folding of Mdm38p inside mitochondria, without the necessity of involvement of both 

proteins in related processes and functions. This possibility is further supported by the finding 

that deletion of MDM38 did not influence mitochondrial protein import (Frazier et al., 2006). 

Nevertheless, direct measurement of K+/H+ exchange could be performed with mitochondria 

isolated from conditional ssc1Δ mutants, as deletion of SSC1 is lethal. 

The second identified interaction candidate Erg5p, a C-22 sterol desaturase which facilitates 

the penultimate step in ergosterol biosynthesis (Lees et al., 1995), attracted our interest due to 

the following reasons: (i) ergosterol, which is the yeast counterpart of cholesterol in 

mammalian cells, plays an important role in membrane fluidity and permeability and 

membrane sterols were shown to influence the activity of cation transporters (Aguilera et al., 

2006; Benz & Cros, 1978; Deng et al., 2009; Vemuri & Philipson, 1989) and membrane-

bound enzymes, like the mitochondrial ATPase (Cobon & Haslam, 1973); (ii) enzymes 

involved in ergosterol synthesis were found to be associated with mitochondrial membranes 
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(Bailey & Parks, 1975; Zahedi et al., 2006) and to be essential for maintenance of the 

mitochondrial morphology (Altmann & Westermann, 2005); and (iii) microarray experiments 

performed with the mdm38Δ mutant strain revealed upregulation of genes involved in the 

ergosterol synthesis pathway (Nowikovsky K., unpublished data). 

Interaction of Mdm38p with mitochondrial ribosomal proteins, as reported by Rehling and co-

workers (Frazier et al., 2006), was not observed in our hands. Human Letm1 was previously 

shown to interact with the AAA-ATPase Bcs1L, which influenced Letm1 complex assembly 

(Tamai et al., 2008). Yeast encodes a homologues protein, Bcs1p, which is involved in the 

assembly of complex III of the mitochondrial respiratory chain (Conte et al., 2010; Cruciat et 

al., 1999). However, also Bcs1p was not co-purified with Mdm38p under our experimental 

conditions.  

These discrepancies may either result from varying genetic backgrounds of the strains and 

different purification strategies used, or from diverse binding partners of Letm1 and Mdm38p 

in human and yeast, respectively. 

  

6.3. Genetic interaction of MDM38, ERG5, and ERG6 
 

To reveal possible genetic interactions of MDM38, ERG5, and ERG6 we compared cellular 

growth of single and double mutant strains cultivated on fermentable (YPD) and non-

fermentable (YPG, YPEG) media and under the influence of the potassium ionophore 

valinomycin (Figure 26), which specifically mediates potassium influx across the inner 

mitochondrial membrane (Kovac et al., 1982a). Although Erg6p, a delta(24)-sterol C-

methyltransferase converting zymosterol to fecosterol (Gaber et al., 1989; Lees et al., 1995), 

was not co-purified with Mdm38p, it was investigated since previous studies related its 

function with maintenance of mitochondrial morphology and cellular ion permeability 

(Dimmer et al., 2002; Welihinda et al., 1994). 

Both double mutant strains, mdm38∆erg5∆ and mdm38∆erg6∆, exhibited highly increased 

sensitivity to valinomycin compared to the single mutants. Moreover, on YPD or YPG, 

reduced fitness of the double mutants was observed as compared to single mutant strains, 

suggesting direct genetic interactions of Mdm38p, Erg5p, and Erg6p. Interestingly, erg5∆ 

mutant cells grew like wild-type cells. In contrast, erg6∆ cells exhibited a respiratory growth 

defect on non-fermentable media. Enzymes involved in the late steps of ergosterol 

biosynthesis were shown to be able to use improperly modified precursors as substrates and 

their disruption usually does not inhibit the ergosterol pathway (Daum et al., 1998; Heese-
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Peck et al., 2002). The growth defect of erg6∆ mutants was therefore more likely caused by a 

role of Erg6p in an earlier step of the ergosterol biosynthesis than Erg5p, affecting more 

seriously the sterol composition and thus impairing mitochondrial function. Furthermore, 

erg6∆ cells exhibited an increased tolerance to valinomycin. Of note, erg6∆ mutants were 

also found to be hypersensitive to Na+ and Li+ (Welihinda et al., 1994) and to various small 

lipophilic drugs (Emter et al., 2002). As proposed by the authors, increased Na+ and Li+ 

uptake of erg6∆ cells may result from functionally altered cation transporters caused by a 

disturbed membrane sterol composition, as membrane sterols were shown to influence the 

activity of cation transporters (Benz & Cros, 1978; Deng et al., 2009). Accordingly, Mdm38p 

would require Erg6p to function as a K+/H+ exchanger, to insert into the membrane, or to 

regulate the unknown exchanger. Alternatively, the unknown antiporter itself requires Erg6p 

to insert into the membrane or to exchange K+ against H+ and hence Mdm38p can hardly 

control the antiporter.  

On the other hand, resistance to the lipophilic ionophore valinomycin cannot be completely 

explained. It has been shown previously that changes in the membrane sterol composition 

significantly influence the membrane response to ionophores (Kovac et al., 1982a; Kovac et 

al., 1982b). However, it is not clear how erg6∆ cells establish sensitivity to some lipophilic 

drugs and resistance to others. It is possible that the altered plasma membrane lipid 

composition either inhibits the cellular uptake of drugs larger than a certain molecular mass. 

Given that valinomycin is thought to specifically act on the mitochondrial inner membrane 

(Kovac et al., 1982a), we may propose that the intercalation of the ionophore within the 

mitochondrial membrane is disturbed. 

 

6.4. Disturbed mitochondrial and vacuolar morphology upon 

deletion of MDM38, ERG5, and ERG6 
 

Based on the severe respiratory growth defect of mdm38∆erg5∆ and mdm38∆erg6∆ double 

mutant strains, we determined their mitochondrial and vacuolar morphology by fluorescence 

microscopy of cells expressing the mitochondrial matrix-targeted GFP and co-stained with the 

specific vacuole dye FM4-64. 

Both single mutant strains, erg5∆ and erg6∆, exhibited an intact mitochondrial reticulum but 

highly fragmented vacuoles when grown in galactose containing medium (Figure 27A). 

Similar vacuolar fragmentation was observed for both double mutant strains, although the 

multiple lobed vacuolar appearance was less pronounced in glucose medium (Figure 27B and 
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C), suggesting organellar morphology to be dependent on the provided carbon source. 

Vacuolar fragmentation in ergosterol mutants was already reported previously. Ergosterol was 

found to be important in the initial priming step of vacuolar fusion, thus disturbing this 

process when absent (Jones et al., 2010; Kato & Wickner, 2001). Strikingly, mitochondria of 

mdm38∆erg5∆ and mdm38∆erg6∆ cells appeared completely fragmented irrespectively of the 

carbon source provided (Figure 27B and C), consistent with the reduced cellular viability 

caused by the disturbance of essential mitochondrial functions. 

The organellar morphology of the mdm38∆erg5∆ and mdm38∆erg6∆ double mutant strains 

appeared similar to the triple mutant strain mdm38∆mrs7∆ ydl183c∆. Triple mutant cells 

exhibited reduced viability, completely abolished K+/H+ exchange activity, and highly 

fragmented and colocalizing vacuoles and mitochondria, indicative of mitophagic degradation 

of dysfunctional mitochondria (Zotova et al., 2010). Association of fragmented mitochondria 

and vacuoles was also observed in mdm38∆erg5∆ and mdm38∆erg6∆ cells (Figure 27B). 

However, although the organelles seemed to be in close contact, we never observed any 

overlapping fluorescence of the organellar markers, suggesting that mitophagy was blocked. 

Given the crucial role of ergosterol in fusion events for vacuoles, peroxisomes (Boukh-Viner 

et al., 2005) or the plasma membrane during yeast mating (Jin et al., 2008), it seems plausible 

that mitophagy was blocked in the double mutants, because engulfment and uptake of 

mitochondria would require membrane fusion of vacuoles. 

 

6.5. Ergosterol and mitochondrial K+/H+ exchange 
 

According to the observed physical and genetic interaction of Mdm38p with the ergosterol 

enzymes, we determined the K+/H+ exchange activity of the single and double mutant strains 

by KOAc-induced mitochondrial swelling. 

Deletion of MDM38 causes severely reduced mitochondrial swelling compared to the wild-

type, indicative of impaired mitochondrial K+/H+ exchange (Figure 28 and (Nowikovsky et 

al., 2004; Nowikovsky et al., 2007)). Swelling of double mutant mitochondria of strains 

mdm38∆erg5∆ and mdm38∆erg6∆ was completely abolished, which is consistent with the 

synthetic phenotypic effects described above. Mitochondria of erg5∆ mutant cells exhibited 

wild-type swelling. In contrast, swelling of erg6∆ mitochondria was almost completely 

abolished. Absence of mitochondrial K+/H+ exchange leads to steadily increasing 

concentrations of matrix cations followed by an imbalance of osmotic pressure caused by 

subsequent water influx. Swelling of the mitochondria can be detected photometrically as a 
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reduced absorbance level. However, erg6∆ mitochondria were not swollen prior hypoosmotic 

KOAc treatment as detected by high initial light absorbance, and moreover, the mitochondrial 

reticulum of erg6∆ cells appeared intact under fluorescence microscopy (Figure 27A and 

28A). These data are hard to reconcile with increased membrane fluidity suggested to be 

caused by ergosterol imbalance (Mukhopadhyay et al., 2004; Sharma, 2006). Therefore we 

rather propose that reduced K+/H+ exchange activity seen in erg6∆ mitochondria is caused by 

an overload of matrix Mg2+ still remaining in isolated mitochondria, resulting from less or 

improper membrane insertion of the divalent cation ionophore A-23187. This hypothesis 

would be in line with the valinomycin resistance of erg6∆ cells and the reduced KOAc-

induced mitochondrial swelling observed in absence of A-23187 (Nowikovsky et al., 2004). 

However, experimental evidence should be provided in future work. 

Based on our results, the synthetic defects caused by double deletion of MDM38 and ERG5 or 

ERG6 seem to be the consequence of several cellular alterations elicited by a disturbed 

membrane lipid composition. First, loss of membrane ergosterol was shown to increase 

cellular cation uptake in yeast (Welihinda et al., 1994), suggesting that an altered membrane 

lipid composition causes an increased cytosolic cation concentration, followed by enhanced 

cation influx into cellular organelles. This may also explain the enhanced mitochondrial 

defect of the mdm38∆erg5∆ and mdm38∆erg6∆ double mutant strains. Second, ergosterol and 

cholesterol are not only needed for the regulation of membrane fusion and fluidity, but they 

also contribute to membrane organization by the formation of detergent-resistant plasma 

membrane domains called lipid rafts (Pike, 2009; Stradalova et al., 2009), which were shown 

to be involved in cell signaling (Simons & Toomre, 2000) and endocytic protein turnover 

(Grossmann et al., 2008; Walther et al., 2006). Moreover, several cation transport proteins 

were found to be associated with lipid rafts, like the yeast plasma membrane Na+/H+ 

antiporter Nha1p (Dodelet-Devillers et al., 2009; Mitsui et al., 2009), and their function 

depends on the composition of their membrane lipid environment (Vemuri & Philipson, 

1989). This raises the challenging question if changed membrane sterol contents directly 

affect mitochondrial ion homeostasis by modulating cation transporter activity. Interestingly, 

reduction of cholesterol in rat liver lysosomes caused increased fluidity and permeability of 

the membrane to potassium and protons, presumably provoked by the action of a lysosomal 

K+/H+ exchanger (Deng et al., 2009). Furthermore, treatment of yeast cells with inhibitors of 

ergosterol synthesis caused increased K+/H+ exchange across the plasma membrane 

(Calahorra et al., 2010). Finally, ergosterol biosynthesis itself appears to be linked to cation 
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homeostasis, as Erg6p was found to be inhibited by mitochondrial potassium accumulation 

(Bailey & Parks, 1975). 

Taken together, our data represent the first direct correlation of mitochondrial K+/H+ 

exchange and membrane sterol composition for the maintenance of mitochondrial 

morphology, cation homeostasis, and cellular viability. However, it remains to be determined 

how ergosterol exactly affects Mdm38p and thereby mitochondrial function.  

 

6.6. Synthetic genetic array analysis 

 

We initially aimed at identifying synthetic lethal interactions of the mdm38∆ strain, thereby 

revealing genes involved in related functions or compensatory pathways of the mitochondrial 

K+/H+ exchange system. 

Surprisingly, we failed to identify any synthetic lethal interactions of mdm38∆. Synthetic 

lethality of the double mutant strains mdm38∆cdc73∆ and mdm38∆chs1∆, as reported by two 

individual SGA screens (Lesage et al., 2005; Tong et al., 2004), was not observed in our 

assay. Recently, we found that the inner mitochondrial membrane proteins Mrs7p and 

Ydl183cp/Mkr1p restored K+/H+ exchange when overexpressed in mdm38∆ cells, but deletion 

of all three genes resulted only in synthetic sickness, not lethality (Zotova et al., 2010). 

Together, this suggests an essential function of Mdm38p in K+/H+ exchange, apparently not 

completely compensated by functionally redundant proteins in its absence.  

Subsequently, we investigated possible synthetic suppressive interactions of mdm38∆, 

characterized by restored growth of double mutants due to deletion of genes involved in 

processes acting contrary to K+/H+ exchange, like cation import. We identified six double 

mutant strains exhibiting restored respiratory growth comparable to the wild-type (Figure 30 

and 31). Three of those six genes deleted in the mdm38∆ background, CTK1, SSN8, and 

RTF1, were reported to be involved in transcriptional regulation (Table 5). Thus, synthetic 

suppression may be the secondary consequence of changed transcription of several unknown 

target genes. Therefore, we focused on the three residual genes (Table 5) which are of 

unknown function (LDB16), involved in cytokinesis (HOF1), and in histone modification and 

cell fusion (RXT2). By fluorescence microscopy we observed that the mdm38∆ldb16∆, 

mdm38∆hof1∆, and mdm38∆rxt2∆ double mutant strains exhibited a restored branched 

mitochondrial reticulum (Figure 32B).  

Currently, we can only hypothesize on the mechanisms underlying the suppressive effects 

exhibited by the double mutant strains. Based on cellular growth (Figure 31), suppression 
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observed for mdm38∆ldb16∆ cells may result from a dominant effect of LDB16 deletion, as 

growth of the double mutant strain was identical to the ldb16∆ single mutant. In contrast, 

suppression of mdm38∆hof1∆ and mdm38∆rxt2∆ may be the consequence of deletion of both 

genes, as the double mutants exhibited better growth than either single mutant. Cells deleted 

for LDB16, whose gene product was detected in lipid particles and mitochondria (Reinders et 

al., 2006; Wagner et al., 2009), were reported to be sensitive to Ni2+ (Bishop et al., 2007), but 

so far there is no clear evidence that any of the genes found by SGA analysis is involved in 

cation transport. In our recent publication we characterized multicopy suppressors of the 

mdm38∆ strain. Two of those suppressors, the Pi carrier Pic2p and the Fe2+ carrier Mrs3p, 

were shown to be not directly involved in K+/H+ exchange but to increase the mitochondrial 

membrane potential (Δψ), thereby possibly restoring mitochondrial morphology and 

respiratory growth of the mdm38∆ mutant (Zotova et al., 2010). Hence, synthetic suppression 

of the double mutant strains may originate from similar indirect effects on mitochondrial Δψ 

or K+ homeostasis, which will require further investigation for their revelation.  

 

6.7. Is Mdm38p the mitochondrial K+/H+ exchanger? 
 

According to previous studies and our own results, we established a working hypothesis based 

on the idea of Mdm38p functioning as an essential regulatory protein directly interacting with 

the so far unknown K+/H+ exchanger. To uncover the molecular identity of the antiporter, we 

performed affinity chromatography analyses of Mdm38p followed by mass spectrometry of 

co-purified proteins. Interestingly, we found the essential mitochondrial chaperon Ssc1p and 

the ergosterol biosynthetic enzyme Erg5p as interaction partners of Mdm38p, but failed to 

identify potential candidates serving as the K+/H+ exchanger.  

This suggests two possible explanations. Either Mdm38p indeed is a regulatory component of 

the K+/H+ exchanger which was not identified due to dissociation from the protein complex 

during purification, or Mdm38p itself forms the exchanger, apparently by homo-

oligomerization. Facing our presented data and extensive efforts to identify the antiporter, we 

tend to support the latter possibility although this would be in contrast to our initial 

consideration. However, based on SDS-PAGE migration of OSH-tagged Mdm38p (~ 80 kDa, 

Figure 24), which is slightly higher than its predicted molecular weight (~ 75 kDa), the 

Mdm38p complex (~ 550 kDa, Figure 23) may consist of a ‘core’ Mdm38p hexamer bound to 

its interaction partners, although size determination of protein complexes based on size 

exclusion chromatography and Blue native electrophoresis is not fully reliable. 
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A recent publication of Jiang et al. (Jiang et al., 2009) reports that a genome-wide siRNA 

screen in Drosophila S2 cells identified Letm1 as the mitochondrial Ca2+/H+ exchanger. 

Knockdown of Letm1 caused decreased mitochondrial Ca2+ uptake and H+ efflux. 

Reconstitution of Letm1 in liposomes and uptake assays led the authors to the conclusion that 

Letm1 is an electrogenic mitochondrial Ca2+/H+ exchanger rather than the electroneutral 

K+/H+ exchanger. 

These findings are very surprising, especially considering that the function of the Ca2+/H+ 

exchanger is to mediate Ca2+ efflux in order to avoid mitochondrial calcification (Gunter et 

al., 2000; Mitchell, 1966). In yeast, mdm38∆ mitochondria also exhibited reduced Ca2+ and 

Mg2+ influx, which was shown to be the cause of a decreased Δψ following absent K+/H+ 

exchange (Nowikovsky et al., 2004). Finally, Jiang et al. reported that the Ca2+ fluxes 

mediated by Letm1 were Ruthenium Red sensitive. This is not in accord with the consensus 

that the Ca2+/H+ exchanger is insensitive to this inhibitor (Bernardi, 1999). 

However, Letm1 was shown to restore yeast mitochondrial K+/H+ exchange as efficiently as 

the exogenous K+/H+ exchanger nigericin (Froschauer et al., 2005; Nowikovsky et al., 2004; 

Zotova et al., 2010), suggesting a role of Letm1 in mitochondrial cation efflux. Interestingly, 

the mammalian mitochondrial K+/H+ exchanger, a ~ 82 kDa protein whose molecular identity 

still remains unknown, was functionally reconstituted into liposomes (Kakar et al., 1989; Li et 

al., 1990) and strikingly almost matches the molecular weight of Letm1 (~ 83 kDa).  

These controversial results raise the question if Mdm38p and Letm1 are involved in different 

cation transport processes in yeast and higher eukaryotes, or if the observed effect on 

mitochondrial Ca2+ transport is the consequence of a disturbed K+ homeostasis. However, a 

coupled exchange of Ca2+ for K+ by the action of a mitochondrial Ca2+/K+ antiporter (Selwyn 

et al., 1970) has already been ruled out, as Ca2+ influx into mitochondria was not found to be 

followed by K+ efflux (Puskin et al., 1976). 

In order to answer these challenging questions, we started to bacterially overexpress Letm1 

for affinity purification, reconstitution into liposomes, and direct ion flux measurements 

(collaboration with Dr. Cesare Indiveri, University of Calabria, Italy). Thereby we hope to 

unravel possible K+/H+ exchange properties of Letm1 and, together with our results presented 

in this study, to contribute to a better understanding of the complex topic of cellular and 

organellar cation homeostasis. 
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7. Abbreviations 
 

Δψ   Mitochondrial membrane potential 

Δp    Proton electrochemical gradient   

ΔpH     pH gradient 

[K+]o    Outside K+ concentration 

3-AT    3-Amino-1,2,4-triazole 

ACAT    Acyl-CoA sterol acyl transferases 

BCECF        2,7-bis(carboxyethyl)-5,6-carboxyfluorescein 

CBP  Calmodulin binding peptide 

DCCD      Dicyclohexylcarbodiimide 

DIC  Differential interference contrast 

DSS     Disuccinimidyl suberate 

EMT    Epithelial-to-mesenchymal transition  

ETC  Electron transport chain 

FCCP                  Carbonyl cyanide p-trifluoromethoxyphenylhydrazone 

HAc    Acetic acid 

HRP    Horse radish peroxidase 

IMM  Inner mitochondrial membrane 

IMS   Intermembrane space 

KHE   K+/H+ exchanger 

KOAc  Potassium acetate 

mAU   Milliampere units 

MET     Mesenchymal-to-epithelial transition 

MS   Mass spectrometry 

mtGFP   Mitochondrial matrix-targeted GFP 

NaOAc   Sodium acetate 

NHS    N-hydroxysuccinimide 

Nig   Nigericin 

Ni-NTA   Nickel-nitrilotriacetic acid 

OMM  Outer mitochondrial membrane 

OS    One-Strep 

OSH    One-Strep-HIS 
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PAP  Anti-protein A antibody   

PBFI      Potassium-binding benzofuran isophthalate  

SEC   Size exclusion chromatography 

SGA   Synthetic genetic array 

SGD  Saccharomyces Genome Database  

SMP     Submitochondrial particles  

TAP   Tandem affinity purification 

TCA   Trichloroacetic acid 

TEV  Tobacco Etch Virus 

TX-100  Triton X-100 

Val   Valinomycin 

VDAC  Voltage-dependent anion channel 

WHS         Wolf-Hirschhorn syndrome 
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