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1.1 THE MEANING OF BIOLOGICAL LIFE 

To maintain its existence, each biological species, from a protozoan bacterium 

to the Balaenoptera musculus, also known as blue whale, has to carry its 

genetic information save and has to hand it to its progeny as error-free as 

possible. To recognise how one can fulfil this challenge, one has to take a closer 

look on the molecules, which are used by most life-forms on earth to carry their 

genetic information: the Deoxyribonucleic Acid (DNA) 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 1! Illustration of a double stranded DNA-molecule 

 with paired bases1: Adenin=Thymin, Guanine!Cytosine 

 

Each DNA strand consists of a periodic chain of a phosphate group linked to a 

deoxyribose molecule, which again is linked to a phosphate group and so on. 

Additionally each deoxyribose is connected with one of the 4 bases found in 

DNA: Adenine, Thymine, Guanine or Cytosine (shown in turquoise). One of 

these bases together with its associated sugar and a phosphate group is called 

nucleotide; hence a DNA strand is a periodic succession of 4 possible 

nucleotides.  

The bases themselves can form hydrogen bonds with their associate base (2 

bonds between Adenin and Thymin, 3 between Guanine and Cytosine) from 

another DNA strand, which leads to the known rope-ladder structure of an 

imagined untwisted DNA Molecule. In fact, the molecule forms a double helix 

that has a width of 2.37 nm and a length of 3.4 nm per 10 baispairs (bp). As 

                                                
1 Source: http://www.accessexcellence.org/RC/VL/GG/dna_molecule.php - 20.02.11 
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the human genome consists of about 3*109 bp, it gives a hypothetical 

variability of 43000000000 posibile sequences.  But in fact nearly 100% of the DNA 

sequence is equal in all humans, except of a few but important differences.  

Having the 4 bases in different order, the DNA acts as a long molecule coding 

for the construction and metabolism of each cell, and therefore for each 

organism. And due to the fact that our genomic information is stored in a 

double stranded helical molecule, in which each strand is complementary to the 

other one, the basic mechanism how cells can replicate their DNA to give one 

set of it to its progeny is quite easy to understand: 

 

 Figure 2! DNA Replication Fork2 

 

Each double-stranded DNA molecule becomes untwisted and separated for 

replication by specific enzymes (not shown) and then a new strand is added by 

a DNA dependent DNA polymerase (-> it uses a DNA strand as template, to 

form a new, complementary DNA strand) always from 5’ to 3’ (see figure 3). 

Due to that fact and the anti-parallel orientation of the two strands, one 

daughter strand can be synthesized continuously, but the other one has to be 

done fragment by fragment as an elongation of 150-200bp long Okazaki 

fragments that were synthesized before [1, 2] 

 

 

1.2 HOW CHEMISTRY BECOMES (MOLECULAR-) BIOLOGY 

Knowing how a double stranded molecule replicates itself is an important 

information for understanding life, but it does not tell anything about how an 

organism or even a single cell builds up itself and metabolises. Therefor one has 

to look in detail on the sequences in DNA and on the mechanism that translates 

it into the required function.  

                                                
2 Source: http://medical-dictionary.thefreedictionary.com/_/viewer.aspx?path=dorland&name=fork_replication.jpg - 
20.02.11 
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For DNA sequences to ‘express’ a function, they must be copied into ribonucleic 

acids (RNAs) using the DNA as a template. Not all DNA has a clear function. 

Some have, as far is known, no function at all, some act as regulatory 

sequences, some code for stable functional RNAs, while others code for 

messenger (m)RNAs, which are translated into proteins. A region in DNA, which 

codes for a distinct RNA molecule is called gene. The expression of genes is 

strictly regulated by different sequences on the DNA and by the involvement of 

many enzymes during the synthesis of RNA templated by a region of DNA. This 

process is called transcription. The information within a protein-coding gene is 

first transcribed to RNA by a DNA dependent RNA-polymerase, an enzyme 

complex that catalyses this reaction by using DNA as template to produce a 

complementary RNA. Then the information is translated from RNA to protein by 

an RNA-protein complex termed a ribosome. 

Proteins are the major components of our cells, which can act as structural, 

enzymatic or signal molecules. They consist of a periodic chain of 21 different 

amino acids that are assembled during translation where RNA is acting as 

template. 3 RNA nucleotides (a triplet) code for one amino acid. For example 

AAA codes for Lysine, AAU for Serine, GAC for Alanine and AAAAAUGACCAU for 

Lysine-Serine-Alanine-Histidine. A protein can have a length of 50 to 30 000 

amino acids, but even much shorter amino acid chains (peptides) can act as 

signal carrier [1, 2].  

 

Figure 3! The path from DNA to protein. The DNA is first transcribed to RNA, which is then 

translated into a protein. During transcription, the same complementary nucleotides are 

used as during DNA-replication, only Uracil rather than Thymidine is added to the emerging 
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RNA strand if there is an Adenine in the template DNA. During translation, 3 nucleotides of 

RNA code for one amino acid. 

1.3 TRANSCRIPTION 

The act of transcription is related in all organisms, but there are several 

differences between prokaryotes and eukaryotes. In prokaryotes, the RNA-

polymerase acts together with its detachable subunit "-factor that recognizes 

the site where transcription should start (promoter) [3]. In eukaryotes, many 

more ancillary factors are required to support the multisubunit RNA 

polymerases. Furthermore, there are 3 different types of RNA polymerase in 

eukaryotes [1]: 

Polymerase I: transcribes 5.8S-, 18S- and 28S-ribosomal RNAs 

Polymerase II: transcribes all protein coding genes and snoRNAs (plus some 

snRNA genes) 

Polymerase III: transcribes tRNA genes, some snRNA genes and 5S-

ribosomal RNA 

In eukaryotic cells, transcription starts with the recognition of the TATA-Box, a 

Thymine and Adenine rich sequence 25 base-pairs (bp) upstream from the start 

of the transcribed region, by the transcription factor (TF) TFIID. This factor 

contains a TATA-binging protein (TBP), which recognizes the TATA-Box and 

binds it. Subsequently, other TFs follow and finally recruit the RNA polymerase 

II (Pol II). The C-Terminal Domain (CTD) of the largest subunit has a 

tremendous effect on Pol II activity by recruiting and interacting with several 

transcription and RNA processing factors [4] (see below). It consists of tandem 

repeats of the heptapeptide sequence Tyr1–Ser2–Pro3–Thr4–Ser5–Pro6-Ser7. 

After Pol II has formed the preinitiation complex with several TFs (Figure 4), the 

Ser5 becomes phosphorylated by the cycline dependent kinase 7 (CDK7) 

subunit of TFIIH near the 5’-end of protein coding genes [5]. This is a signal to 

recruit the capping enzyme that adds the 5’-7-methylguanosine cap to the 

newly synthesized RNA [6]. For elongation of the new RNA strand of mRNAs the 

phosphorylation of Ser2 by the positive transcription elongation factor B (P-

TEFb) is an important event [7]. However, this is not the case for transcription 

of snRNA genes [8]. Finally Ser7 becomes phosphorylated, which appears to be 

important only for the functional 3’-processing of snRNAs [9]. 
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Figure 4! Simplified sketch of the initiation of transcription in eukaryotic cells. A) TBP on 

TFIID recognizes the TATA-Box on the DNA, binds it and causes a bend in the DNA (not 

shown). B) Bonded TFIID enables binding of TFIIA, TFIIB and other TFs including TFIIH. 

C) Polymerase II (Pol II) binds the TFs to form the preinitiation complex. D) TFIIH opens 

the double helix and phosphorylates the C-Terminal Domain (CTD) of the polymerase at 

the position Serine 5. This allows the polymerase to escape the promotor and an RNA is 

synthesized 5’ to 3’. 

 

A) 

B) 

C) 

D) 

E) 
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Whilst a new mRNA is synthesized during transcription elongation in the 

nucleus, it is being processed and prepared for transport into the cytoplasm 

where the translation into a protein takes place. All pol II-transcribed RNAs 

become 5’-7-methylguanosine capped right after the beginning of transcription. 

This cap is known to stabilise against exonucleases, promote transcription and 

splicing and plays a role in RNA 3’-end formation [10]. In mRNAs non-protein-

coding sequences of the RNA become spliced out (introns) and the remaining 

exons are linked together, and the 3’ end becomes poly-adenylated. This final 

poly-adenine tail (polyA-tail) protects the mature mRNA from degradation, 

promotes transport into the cytoplasm and plays an important role in 

translation [11]. Polyadenylation is directed by the polyadenylation signal found 

at the end of most protein-coding genes. 

In contrast, there is a population of mRNAs that lacks intronic regions and the 

polyA-tail. Some of them are small nuclear RNAs (snRNA) that are part of the 

spliceosome complex that is responsible for splicing. Those snRNAs do not have 

a polyA-tail and a gene-specific 3’-box that is located 9-19bp downstream of 

the coding region of the snRNA promotes correct processing of the 3’-end of the 

emerging RNA [12]. 

 

Figure 5! Comparison of a common protein-coding mRNA and a replication-

activated histone gene mRNA. A) Common mRNAs feature a 5’ 7-methyl-guanosin 

cap, Introns between their coding sequences that are spliced out during 

processing, and they are ending in a polyA-tail, which is added by a polyA-

polymerase. B) Replication-activated histone gene RNAs are 5’ capped as well, but 
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they lack Introns in their coding region and instead of a polyA-tail they end in a 

specific 3’ stem-loop that acts as processing signal. 

Another very special subset of mRNAs is the replication-activated histone 

mRNAs (Figure 5). These mRNAs lack introns and a polyA-tail, and their 3’-end 

is formed through endonucleolytic cleavage after a conserved ACCCA-sequence 

upstream of the histone downstream element (HDE). Just upstream of the HDE 

is a conserved stem-loop. This stem-loop is important for processing and 

stabilizing the 3’-end of the mRNA of replication-activated histone genes. It 

interacts with the stem-loop binding protein (SLBP) [13] that recognizes and 

binds the stem-loop and stabilizes interaction of U7 snRNP with the HDE, which 

is essential to process the mRNA at its 3’-end [13,14]. 

 

1.4 THE CELL CYCLE 

In metabolizing eukaryotic cells the cell cycle is divided into two major phases, 

interphase in which the cell grows, gathers nutrients, metabolizes and replicates 

its DNA, and the mitotic phase in which the cells divides into two. Interphase 

itself is divided into 3 phases: G1, S and G2 

G1 phase (G stands for gap) starts right after the previous cell division. During 

this phase the synthesis of many metabolites is realized, especially those 

needed for DNA replication. If there is a lack of some required nutrients, the cell 

stays arrested in G1 phase. In particular, the cyclins and their partners, the 

cyclin-depended kinases (CDK) are responsible for continuing the cell cycle. 

CDKs are only active when bound to a cyclin, and if so, they phosphorylate 

proteins important for progressing the cell cycle. If a cyclin is missing, which 

might be a signal for a problem, the cell will not enter the next phase [15]. For 

example, the cyclin D-cdk4/6 complex phosphorylates the Retinoblastoma-

protein (Rb) during early G1. Therefore Rb cannot bind and thus inhibit the 

transcription factor E2F anymore and several genes activated by E2F can be 

transcribed [16]. On the other hand, if Rb is in a hypophosphorylated state, it 

binds E2F and transcription cannot start [17]. In late G1 cyclin E-cdk2 

phosphorylates Rb and maintains the cell cycle [18]. This pathway also plays an 

important role in the life cycle of some DNA-viruses that depend on the host-

cell cycle and therefore try to activate transcription. SV40 virus or human 

papiloma virus (HPV) express oncoproteins (large T-antigen and E7) that bind 

Rb and thus activate transcription of genes they need for their own metabolism 

[19,20]. 
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If all G1 processes are completed correctly, the cell enters S phase (S stands 

for (DNA-) synthesis), in which DNA replication occurs. Here again, several 

cyclin-cdk interactions are jointly responsible for the progression of the cell 

cycle. But in S phase another important event takes place, the transcription of 

replication-dependent histone genes. As new DNA needs new packaging 

material (see chapter 1.5), right at the beginning of S phase new histones are 

synthesized [21]. Due to the high demand for histones during S phase, the 

genes encoding them are clustered and each cluster contains multiple copies of 

each of the five histones [22]. Hence a large number of copies of mRNAs can be 

produced within a relatively short time. 

When DNA is replicated error-free and chromatin is formed (see chapter 1.5) 

the cell enters G2. Here again several important proteins are synthesized, 

especially those required for mitosis, like microtubules. 

 Mitosis is usually the shortest of all phases and the DNA that was replicated in 

S phase is now separated and spilt into two cells. In addition, cell organelles 

like ribosomes, mitochondria or the Golgi apparatus are partitioned and the 

nucleus is degraded and reformed in each new cell. Mitosis itself is divided into 

five phases (see figure 6) and ends with cytokinesis where the cell finally 

becomes physically divided.  

 
Figure 6! The Cell Cycle and the phases of Mitosis. 

During prophase the chromosomes, always pairs of two sister-chromatids, are 

condensing in the nucleus and the spindle apparatus starts forming between the 
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two centromeres.  In prometaphase the nucleus breaks and the chromosomes 

can attach with the microtubules of the spindle apparatus. Afterwards, in 

metaphase, the chromosomes align at the equatorial layer of the cell, right 

between the two centromeres at the two poles of the cell. The chromatids then 

are separated in anaphase by being pulled in opposite directions to the poles. In 

telophase, new nuclei are formed around the chromosomes at the poles of the 

cell. At the same time as telophase starts, the cell is divided by a contractile 

ring that divides the cytoplasm of the cell in two cells, each with one set of 

chromosomes. This final process is called cytokinesis [1] 

The duration of each phase of the cell cycle can vary, depending on availability 

of nutrients, environmental conditions, cell type and intracellular issues. There 

is only one set of chromosomes in G1; in S it is doubled; in G2 there are two 

sets and during mitosis (M) the cell and the chromosomes are divided into two 

cells, each with one set of chromosomes. 

1.5 HISTONES 

As described before, the information on DNA is transcribed and translated by 

many different factors. But our genetic material is not just swimming around in 

the nuclei of our cells and randomly transcribed, it is systematically packed and 

sorted for several reasons, including saving space and building a structure that 

ensures that genes are transcribed only when needed. For that reason, DNA is 

wrapped around basic histone proteins. These protein-octamers consist of 2 

sets of 4 different proteins: H2A, H2B, H3 and H4. At first H2A/H2B and H3/H4 

form dimers. Then H3/H4 forms a tetramer with another H3/H4 dimer and 

H2A/H2B does the same with an identical partner. Finally two tetramers 

combine to an octamer that consists of 2xH2A-, 2xH2B-, 2xH3- and 2xH4-

molecules. 

The DNA wrapped around the histone-octamers forms nucleosomes. One 

nucleosome consists of a DNA string with a length of 147bp, which is wrapped 

1.65 times around a histone-octamer [23]. The nucleosomes are packed as well 

in another kind of structure, a fibre, and this again is structured in a higher 

order. All together, the DNA-Histone- and non-histone-protein complex is called 

chromatin. This is what our chromosomes are made of. 
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 Figure 7! Schematic sketch of 4 nucleosomes. 

Between two nucleosomes another type of histone can be placed to shorten the 

distance between them, histone H1. This is one way histones can significantly 

influence the accessibility of DNA. They can therefore act as a key player in 

transcriptional control. Condensed chromatin (heterochromatin) is 

predominately found in areas on the chromosome that are not transcribed, 

either never or for a certain time only.  For example, the second X-chromosome 

of women (they carry two X-chromosomes, whereas men have two different 

sex-chromosomes: X and Y) is silenced for the reason of dosage compensation 

through a complex mechanism that leads to heterochromatin formation and 

thus to a near complete stop of transcription on this chromosome [24].  

Another important factor in transcription is the amount and type of post-

translational modification of (in most cases) the N-terminal ends of histone 

proteins. 

 

1.6 HISTONE MODIFICATIONS 

We know that when our genetic material is handed down to a progeny, the 

sequence of DNA tells a lot about the prospective properties the offspring will 

gain. But there are biological characteristics that are not coded in the sequence 

of DNA. So where do they come from? There are two basic mechanisms: 

modifications of the DNA and modifications of the histones. The first ones do 

not change the sequence of the DNA (that would be a mutation), but the DNA is 

modified.  The best-studied modification is DNA-methylation. Here a simple 

methyl group is added by a DNA-methyltransferase to the 5th position of a 

cytosine and makes it to a 5-methyl-cytosine. DNA methylation is involved in 

many processes. Usually 5’ regulatory sequences of genes are not methylated, 

which helps keep the gene active. On the other hand, methylated regions may 

recruit proteins that bind 5-methyl-cytosine to promote gene silencing. This 

modification also plays roles in host-defence as most eukaryotic cell have 



  15 / 57 

methylated DNA and many parasites do not, meaning they can be recognized 

and degraded [25].  

There is a wider range of modifications of histone than DNA. They can be 

modified in several different ways and on many different positions and each has 

a particular meaning.  

 

 

Figure 8! Different kinds of histone modification on different positions. An activating mark 

for transcription is for example, the methylation on Lysine36 on histone H3 (H3K36me). 
Repressive marks would be H3K9meth or H4K20meth. 

 

Acetylation of lysine residues is normally a typical marker for active genes. The 

acetyl group neutralizes the positive charged histones, hence the negatively 

charged DNA (the phosphate group in its backbone is negative) is bound less 

strong so that for example TFs can reach it. The acetyl group is added by a 

histone acetyltransferase (HAT), and removed by histone deacetylase (HDAC). 

Mis-regulation of acetylation/deacetylation can lead to severe diseases like 

Rett-syndrome, where the TF MeCP2 is mutated and thus cannot bind 

methylated DNA to recruit a HDAC like normal [26]. People with Rett-syndrome 

have amongst other symptoms a high-grad cognitive disability and lose the 

ability of speech. 

Methylation of lysine residues for example can be a mark for active or repressed 

transcription, depending on the position of the lysine. Whereas a tri-methylation 

on lysine 36 on histone H3 (H3K36me3) is a well-known mark for a transcribed 

region, the same modification on lysine 9 (H3K9me) means the opposite [27]. 

But also the same modification on the same site may act in a different way 
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under different conditions. Thus the H3K36me has a negative effect on 

transcription when it is near a promotor region of DNA [28]. 

Ubiquitylation is a well-studied modification of proteins and it is best known for 

triggering degradation of them via the 26S proteosome when four or more 

entities are bond [29]. Ubiquitylation of histones on the other hand is a less 

well-studied modification compared to others. It is known that histone H2B can 

be ubiquitinated at lysine 120 in humans by RNF20/RNF40 and UbcH6 and in 

yeast by Rad6/Bre1, which enhances H3K4 and H3K79 di- and trimethylation 

[30, 31, 32]. In humans it is known that H2BK120ub is a mark for active 

transcription and elongation as well as for DNA repair [32, 33]. 
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2.1 GENERATION OF A CELL CYCLE PROFILE 

To investigate the regulation of replication-activated histone genes one has to 

consider many transcription and RNA processing factors, several locations 

within the cell and all these aspects are time-dependents. 

Replication-activated histone mRNAs are mainly produced during S phase of the 

cell cycle, as this is the time where they are required for forming new chromatin 

with newly synthesised DNA. Two of the key-players in the genesis of a 

functional replication-activated histone mRNA are stem-loop binding protein 

SLBP and U7 snRNP. U7 snRNAs are the shortest known Pol II transcripts and 

are located in cajal-bodies, small sub-organelles in the nucleus of the cell, 

which are arranged near the histone-gene clusters [34]. U7 snRNP binds with 

its complementary RNA-part to the 3’ end of the mRNA, the HDE sequence, and 

functions as processing factor. SLBP on the other hand binds the stem-loop 

structure just upstream of the HDE [34]. Both factors are part of the processing 

machinery, but not both of them are constantly available. SLBP is only 

produced at the end of G1 phase and rapidly degraded at the end of S phase, 

along with the bound mRNA [22, 35]. Thus, it was possible that a cell cycle 

dependent checkpoint is co-responsible for the termination of transcription 

elongation of those genes. This presumption is supported by previous research 

data that indicates that TF-dependent checkpoints can pause Pol II during 

elongation for different reasons [43]. To detect a checkpoint that regulates 

weather Pol II reads beyond the 3’ processing signal to produce poly(A) 

transcripts outside S phase, one needs cell populations that are in different 

phases of the cell cycle to compare the Pol II and histone occupancy of this 

genes. 

My method of choice to synchronise the cells was a double-thymidine block 

[36], a potent method to pause the cell cycle at the boarder between G1 and S 

phase due to a reversible inhibition of Pol II with thymidine. When mainly 

thymidine is available for the polymerase it does not start replication and the 

cell cycle is stopped at this point until the redundant thymidine is removed. As 

the cell cycle of each cell strain can differ, it was essential to first establish the 

cell cycle timing of the cells I was using. 
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2.2 CONTROL OF ELONGATION OF REPLICATION-ACTIVATED HISTONE GENES 

As mentioned before, the expression of human replication-activated histone 

genes and of some of their processing factors is tightly regulated through the 

cell cycle and is highest in S phase when newly-synthesized histones are 

required to form nucleosomes on newly-replicated DNA [22]. The transcripts 

are short and are not spliced. Furthermore, the 3’-end of the mRNAs for the 

replication-activated histones is non-polyadenylated and ends instead in a 3’ 

stem-loop (see figure 9) whose formation is directed by a gene-type specific 

processing element. A 

significant amount of 

regulation is implemented 

at the level of 3’-processing 

and post-transcriptionally 

[22], in particular through 

factors like SLBP, snRNP, 

NELF and CBC [22, 36]. Processing occurs after U7 snRNP has bond to the 

histone downstream element HDE and SLBP to the 3’ stem-loop. The snRNP 

contains 5 Sm- and 2 Sm-like proteins that contact the zinc-finger protein 

ZFP100, which again contacts SLBP. In addition, a cleavage-complex is 

recruited that contains the cleavage and polyadenylation specificity factor 

subunit 73 (CPSF73), which is responsible for endonucleolytic cleavage after the 

ACCCA-sequence upstream of the HDE [22]. 

However, all human replication-activated histone genes have a canonical 

polyadenylation signal located downstream from the S-phase-regulated 

processing signal, suggesting that polyadenylated message is made from the 

same genes outside S phase and that the switch to non-polyadenylated 

message may involve control of elongation of transcription. In support of this, 

the positive elongation factor, P-TEFb, is not needed for expression of these 

genes [8], while the negative elongation factor, NELF, has been implicated in 

their S phase regulation as it is knocked-down, the 3’-processing signal is not 

recognized anymore and polyadenylated mRNA is produced [37]. 

The aim of the project was to investigate whether there is a cell cycle 

dependent check-point on the level of transcription elongation of the human 

replication-activated histone genes, using synchronized cells, chromatin 

immunoprecipitation (ChIP) and reverse transcription PCR (see materials and 

Figure 9! Basic structure of a Replication-activated 

histone mRNA 
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methods). The amount of polymerase II at different sites of several histone- 

and some reference-genes (e.g. U2 or #-Actin) was investigated. In addition, 

the occupancy of histones on those genes was determined. Nucleosome 

occupancy is tightly linked to transcriptional activity and therefore a good co-

marker for a checkpoint. Furthermore, previous findings suggest a link between 

nucleosome occupancy and the transcription elongation properties of Pol II on 

the U2 snRNA and "-actin genes [43]. It was therefore interesting to investigate 

histone occupancy during the cell cycle as changes could indicate changes in 

transcription properties. I also tested the histone occupancy on the "-actin gene 

(ACTB) as preliminary experiments showed differences from previously-

published data [43]. The hypothesis that the amount of antibody used for the 

ChIP affects the results was tested. 

 

2.3 HISTONE H2B-UBIQUITYLATION CHIP-SEQUENCING 

Histone H2B-ubiquitylation is known to be a mark for transcribed regions in the 

human genome [33] and for being involved in methylation of histone H3 [38]. 

This mark and other known Histone modification marks that are involved in the 

regulation of transcriptional elongation like H3K36me3 were investigated on 

several genes. In addition, genome-wide H2Bub ChIP-sequencing was carried 

out. These studies were prompted by the finding of my group-member Hadeel 

Al-Rawaf that U2 snRNA genes, which have several similarities to replication-

activated histone genes including the lack of introns and poly(A)-tail, lack H2B-

monoubiquitilation. 
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3.1 CELL CYCLE SYNCHRONIZATION 

The assumption of a cell cycle dependent checkpoint on the level of 

transcription elongation lead to the need of synchronised cells to investigate 

differences between the phases, particularly between S and G1 phase. The 

double thymidine block method of cell synchronisation was optimised for our 

cells and a timetable was established to enable the cells to be collected at the 

desired time after that for experiments. 

A) 

 

B) 

  unsynch. ctrl. 0hr 5hr 10hr 
G1 65,4% 79,7% 10,2% 5,2% 
S 20,6% 11,4% 76,0% 8,6% 
G2 15,1% 9,1% 12,6% 86,2% 

 

C) 

 

Figure 10! A) Cell cycle synchronisation. Cells were arrested at the beginning of S phase 

by using a double thymidine block and cell synchrony was monitored by flow cytometry of 

propidium iodide stained cells. B) Ratio of cells in different phases after synchronization. 

Ratios were analyzed and calculated with FlowJo software. C) Sketch of a cell-cycle-timeline 

to show how long the used cells have to be incubated after they were blocked on the 

borderline between S / G1 to pick them in the phase of interest.  

The FACS analysis of the cell populations taken at different time points after the 

synchronisation confirms that up to 86% of the cells are synchronized and gives 
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a good overview of the cell cycle of the used cells. A signal at 200 in the FACS 

analysis means n=1, hence 400 means n=2. Between 200-400 shows a 

population in S phase. Right after the cells were synchronized and released into 

a new S phase, every 2-3 hours a sample was taken and analyzed. The times 

denoted in figure 10A show the time after releasing the cells into S phase. The 

results differs from earlier synchronization experiments with this type of cells 

that were synchronized with a double thymidine block [39] as they show a 

longer S and G2 phase, but a shorter G1 phase what leads to different starting 

points of these phases. Hence it seems that there are small but important 

differences in the cell cycle depending on on the cell conditions used. There are 

several reasons for these differences including differences in the media, 

incubation conditions, nutrition or the cell-splitting protocol. Thus, the results 

suggest that it is necessary to analyse the duration of the single phases for 

each cell type and protocol before using them for cell cycle experiments. Due to 

the successful outcome, the following Pol II ChIP and RT-PCR experiments could 

be performed with synchronised cells and the established protocol and time-

table for this cells are now available for synchronisation experiments for the 

group of Dr. Murphy at Oxford University.  
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3.2 CHIP-QRT-PCR AND RT-PCR 

3.2.1 HIST1H2BD seems not to be controlled on the Level of 

transcription elongation 

For ChIP experiments, the histone H2BD gene (HIST1H2BD) was selected as it 

had already been used by the group [9] and it was used in a previous paper 

investigating a similar problem [40]. Furthermore, it gave the highest and most 

reproducible signal for all tested genes. 

  

  

 

Figure 11! Top: ChIP with Pol II (left diagram) and H3 (right diagram) on HIST1H2BD with 

cells in S- or G1 phase. Bottom: RT PCR to compare the amount of mRNA in S and G1. Black 

bars show the signal with random primers (all mRNA) and the grey bars show the signal for 

polyadenylated mRNAs as only oligo(dT) primers were used. Below the positions of the 

probes on the gene can be located. The signals from multiple experiments were normalised 

relative to probe prom in S phase for Pol II-ChIP (average signal of that probe was 0.44% ± 

0,13% of the total input control  (TIC)) and to probe 3 in S phase for H3-ChIP (average 

signal of that probe was 2,1% ± 0,66% of the TIC). Future experiments would include a 

control polyadenylated RNA to compare the different approaches. Total mRNA in S Phase 

from probe 1 was twice as much as in G1. 

Neither Pol II- nor H3-ChIP on HIST1H2BD (histone H2BD gene) show evidence 

for a cell cycle dependent checkpoint, but it confirms a higher amount of Pol II 
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on the gene in S- than in G1 phase. The Poll II ChIP indicates that, contrary to 

the starting hypothesis, Pol II is still detectable after the 3’ processing signal  

(between probe 1 and 2) in S phase, whilst in G1 one sees a drop of Pol II after 

that signal. A checkpoint was expected near probe 2, but the signals were too 

near background at this point to come to any conclusion.  

The profile of the H3-ChIP shows histone H3 occupancy all over the gene except 

on the promotor region, but on probes 3 and 5 during S phase H3 occupancy is 

significantly increased. This is an interesting finding and indicates cell cycle-

specific regulation of H3 levels in these regions. It would be worth investigating 

the role of this difference between S and G1 phase.  

Due to low signals in the Pol II-ChIP downstream from the promoter it might be 

difficult to detect cell cycle-specific differences in transcription termination. For 

this reason, reverse transcriptase PCR (RT PCR) experiments were carried out 

to compare the H2BD mRNAs in S and G1 phase (Figure 11). The results are 

not easy to interpret as they show more polyadenylated mRNA than total mRNA 

on probe 5. The oligo(dT) primers might work more efficiently than the random 

primers, making the results difficult to interpret. However, the results suggest 

that there is more polyadenylated mRNA in G1, what supports the starting 

hypothesis. 

Investigation of expression of the histone H2BE gene proved to be impossible, 

as the gene does not seem to be transcribed at all since Pol II is only detectable 

at the promoter region of the gene (Figure 12). 

 
Figure 12! ChIP with Pol II on histone H2BE gene. The 

results indicate that this gene is not transcribed in S- or G1 

phase.  

Signals were normalised to probe 1 in S phase (the average signal of that probe 

was 0.5% ± 0,17% of the TIC). Probe 1 is on the promoter region, 2 within the 
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transcribed region, the probe at polyA corresponds to a predicted poly(A) signal 

right at the end of the transcribed region and 2nd polyA is 500bp downstream. 

Probes 3 and 4 are located 1 and 2kb downstream of the transcribed region. 

 
Figure 13! ChIP with Pol II on the U2 snRNA gene, whose 

expression is not expected to change between S and G1 

phases. The results confirm the comparable efficiency of the 

CHIP between the two samples (S and G1) 

To confirm that the different Pol II signals on the replication-activated histone 

genes in different phases do not derive from differences in the samples, the pol 

II levels on the U2 snRNA gene were determined since expression of this gene 

is not expected to be affected by the progression of the cell cycle. As seen in 

Figure 13, no significant difference is noted. 

 

3.2.2 The amount of anti-body used does not effect the histone 

profile of ChIP on ACTB 

The ChIP profile of H2B on ACTB and the results of qRT-PCR analysis revealed a 

different profile from that previously published [43]. The major difference was 

that the promotor proximal side is not cleared of histones in my experiments, 

whereas it was in the previous experiments. In particular, I found much higher 

H2B signals on probes A and B and a low but significant signal on probe 1 (see 

Figure 14). No reason could be found for this difference as the same protocol 

was followed. It is possible that some differences in media or cell culture 

conditions accounts for the differences. 
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Figure 14! ChIP of histone H2B on ACTB. 

Probe ex3 in the diagram is equivalent to 

probe 2, and int5 to probe 3. Probe “up” 

functions as a control and lies upstream of the 

promotor region. 

Another possibility is that different concentrations of antibody were used for 

the ChIP. To test this, I titrated the antibody. However, no significant 

difference could be found in the profile that would explain the different 

results from published data after testing a broad range of antibody 

concentrations [41] (Figure 15). The ratio of probes “upB” and “int5” differs, 

but not because of the higher amount of anti-body but because of the 

difference between the experiments. Within one experiment the profiles did 

not change significantly. 

  
Figure 15! In two approaches, increasing amounts of H2B anti-body were used for ChIP. 

In the first experiment 0.25!g, 1!g and 3!g whereas in the second one 3!g, 3!g in a 

sample diluted with more dilution buffer (see materials and methods) and 9!g.  

 
 

 



  28 / 57 

3.3 H2B-UBIQUITYLATION CHIP-SEQUENCING 

3.3.1 The way of blocking Staph A cells does not effect the histone 

profile of ChIP on U2 gene 

In contrast to the protein-coding ACTB gene, no H2B-monoubiquitination 

(H2Bub) can be detected on the U2 snRNA gene [42]. I confirmed this 

independently and also analysed the profile of H2Bub on the replication-

activated histone gene HIST1H2DB. The replication-activated histone genes 

have several similarities to snRNA genes, including the lack of introns and 

poly(A)-tail. It was therefore of interest to test whether the lack of H2Bub is 

also shared. 

As seen in Figure 17A, H2Bub is found on the HIST1H2BD gene. The 

promoter is cleared, but immediately downstream this histone mark peaks 

and then decreases slowly with the distance from the TSS.  

I thereafter decided to carry out genome-wide ChIP-sequencing for the 

H2Bub mark to be able to analyse this mark on all human genes as a 

foundation for further analysis. 

As the Staph A cells for the ChIP-sequencing cannot be blocked with herring 

sperm DNA as usual as it would be sequenced as well, the consequences of 

blocking with heparin or without blocking were investigated (Figure 16). The 

result does not show any major differences between the profiles except for 

an elevated signal of Pol II on probe ctcf for the sample that was not blocked. 

The Staph A cells used for the sample for H2Bub ChIP-seq were therefore not 

blocked at all. 

 
Figure 16! H2B and Pol II profiles on the U2 snRNA gene with different 

blocking conditions. Staph A cells for ChIP were blocked with herring sperm DNA 

(left), heparin (middle) or not blocked at all (right).  

 

 



  29 / 57 

3.3.2 H2Bub is cleared near the TSS and reaches its maximum about 

1.5kb downstream 

Before the genome-wide ChIP-sequencing could be accomplished, the 

procedure had to be optimised concerning purity and amount of DNA material 

submitted for sequencing. Finally, two high-grade ChIP samples were pooled 

together and submitted. Previous results [33] suggest a constant increase of 

this histone modification from -1kb till +2kb (according to the TSS). However, 

the authors normalised the H2Bub mark to H3 levels and transcriptional 

activity. The results of my genome-wide ChIP-seq show a bi-modal distribution 

with the minimum signal at the TSS, a small maximum at -1kb and a larger one 

at +1.5kb, followed by a gradual decrease downstream (Figure 19). Figures 17 

and 18 compare the results of the genome-wide H2Bub ChIP-seq with results of 

H2Bub ChIP - qRT-PCR analysis of HIST1H2BD and ACTB. These results confirm 

each other and show that the experiment worked successfully. 
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Figure 17! A) H2Bub ChIP with unsynchronised cells on H2BD gene analysed with qRT-PCR. Sample of probe 1 got lost and was not 

analysable B) Frame of the genome-wide H2Bub ChIP-seq to compare the results with “normal” ChIP above. Screenshot shows the region 

including probes prom, 1 and 2. C) As part B, but this frame shows the region including probes 4 and 5.  

A) 

B) 

C) 
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Figure 18A) H2B-ubiquitylation vs. H2B on "-Actin gene. Left diagram shows total ubiquitinated H2B, right it is divided by total H2B to give a 

relative result. B) Frame of the genome-wide H2Bub ChIP-seq to compare the results with “normal” ChIP above.  C) Position of the probes, 

whereas probe “2” is on the same position as probe “ex3”, and probe “3” as “int5”. Probes 2 and 3 seem to match other regions in the genome 

as well, and these may be pseudogenes.  

A) 

B) 

C) 
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Figure 19! ! Genome-wide distribution of mono-ubiquitinated H2B on significantly 

enriched genes in three different resolutions. X-axis shows the position relative to the 

gene (0=TSS), Y-axis shows the gained signal, hence the amount of H2Bub on a 

certain position. Analysis was accomplished by Dr. Martin Dienstbier, Oxford 

University. 
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4.1 DISCUSSION 

The cell cycle data presented here differs in some aspects from that published 

by Whitfield et al. 2002 [39]. Specifically, the duration of G2 differs, which 

alters the start time of Mitosis and G1 phase in the cells I used. My results 

indicate that my cells have a longer S and G2 phase, but a shorter G1 phase, 

keeping the total period of one cell cycle nearly the same. The double thymidine 

block method worked very well with our cells compared to other cell strains 

[43]. The technique is now available to the group of Dr. Murphy and will be a 

powerful tool to investigate cell cycle-dependent mechanisms affecting gene 

expression. 

Narita et al. published in 2007 [37] that the negative elongation factor, NELF 

and the cap binding complex, CBC are essential for proper 3’ processing in 

replication-activated histone genes. They showed an aberrant production of 

polyadenylated histone mRNAs if one of the two factors was absent and 

concluded that NELF, CBC and SLBP play major roles in 3’ processing. Our 

hypothesis was that in addition a cell cycle-dependent checkpoint at the level of 

transcription elongation regulates whether a polyadenylated or the canonical 

mRNA ending with a 3’ stem loop is produced.. 

Our experimental method was Pol II and histone H3/H2B ChIP. Unfortunately, 

the average transcription rate based on the presence of polymerase II is 

significantly lower on replication-activated histone genes than the reference U2 

snRNA and ACTB genes, making analysis difficult. This method therefore seems 

not to be sensitive enough to accurately measure small differences of Pol II on 

genes that are transcribed at low levels like HIST1H2BD or HIST1H2BE. These 

genes are transcribed at quite low levels in G1 phase in particular and testing 

the hypothesis further would require a different approach. For this reason, it 

was not possible to fully test the starting hypothesis. However, the results 

obtained suggest that there is no control at the level of transcription elongation. 

The results of RT-PCR on the H2BD gene do indicate that there is a difference in 

the amount of polyadenylated mRNA and non-polyadenylated mRNA at the 

different phases of the cell cycle. The RT-PCR results of RNA from S phase and 

G1 phase (Figure 11) indicate that the signal of the poly(dT) primers is higher 

than the signal or random primers on probe 5, which is most likely due to 
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different efficiency of these primers, which could tested using purified 

polyadenylated RNA. 

Unfortunately, the results of analysis of the histone H1 gene by ChIP were not 

reproducible and no conclusions could be drawn (see appendix). For this 

reason, I decided to concentrate on histone H2B genes. As the H2BE gene did  

not seem to be transcribed at all (Figure 12), I focused on the H2BD gene 

HIST1H2BD. 

The ChIP data of HIST1H2BD suggests that regulation occurs within the intronic 

region after the 3’ processing signal of that gene. This might indicate the 

presence of another transcription unit at that position. But more tests would 

have to be done to prove that hypothesis.  

An interesting outcome was that the amount of antibody for ChIP does not 

significantly affect result. It was expected that low amounts of antibody (-> all 

antibodies are bound to proteins but not all proteins are occupied) would 

predominantly lead to more differences between weak and strong signals, and 

that high amounts of antibody (-> not all anti-bodies are bound to proteins, but 

all proteins are occupied) would equalize that but lead to unspecific binding and 

thus to different profiles. However, the profiles were the same even though the 

ratio was 1:36 concerning the amount of antibody that was tested. 

The genome-wide ChIP-sequencing for H2Bub worked well after the parameters 

of DNA-blocking of Staph A cells and used amount of cells were optimized. 

Blocking could be important to prevent non-specific binding of DNA that is not 

of interest. However, the blocking method did not significantly affect the ChIP 

profiles. Whereas there is an elevation on one probe as seen in Figure 16, the 

other approaches do not show any difference. Finally, a sample with unblocked 

Staph A cells (only with protein) was submitted for sequencing. The ChIP-

sequencing generated a large amount of data that is still being mined in Dr 

Murphy’s laboratory. Initial analysis indicates that H2Bub is associated with the 

middle of genes and is lower at the beginning and end and may be a mark 

associated with elongating Pol II. Unlike the snRNA genes, which have no 

H2Bub, the replication-activated histone genes do have this mark, suggesting 

that elongation is controlled differently in these two gene types. 

Unfortunately no reason could be discovered why the H2B signal on ACTB was 

different from the one published by Egloff et al. 2009 [43], particularly since 
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the probes and procedures used were the same. As the experiment was 

repeated several times and my results were reproducible, I assume that the 

cells or their condition was different. 
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4.2 SUMMARY 

At the beginning of my work was the assumption that the transcription of 

replication-activated histone genes is not only regulated by various factor such 

as negative elongation factor NELF or cap binding complex CBC, but that there 

is a cell cycle dependent check-point at the level of transcription elongation that 

regulates whether polymerase II goes beyond the 3’ processing signal of these 

genes. Contrary to other protein coding genes, replication-activated histone 

genes end in a 3’ stem-loop instead of being polyadenylated. My ChIP/ RT-PCR 

results suggest that our hypothesis is not the case. However, more sensitive 

methods would be required to be conclusive. Unfortunately, the total 

transcription rate of the replication-activated histone genes was quite low 

compared to reference genes like the U2 snRNA gene or the ACTB gene, and it 

was hard to get evidence for significant differences of Pol II profiles on these 

genes depending on the cell cycle. In addition, other transcription factors and 

histone modification marks as H3K36me3 (see appendix) or H2Bub were 

investigated and gave interesting and novel results. Other genes might lie 

within that region studied and the histone occupancy and modifications marks 

may relate to these. The synchronisation of the cells by double thymidine 

blocking worked very well, providing novel data concerning the duration of the 

single cell cycle phases of the HeLa cells used and turned out to be a powerful 

tool for investigating cell cycle dependent factors. 

The second project was a genome-wide ChIP-sequencing of H2Bub, which is 

known to be positively linked with transcriptional activity. It worked very well 

after parameters for the ChIP were optimized. The result is promising as it 

shows a bi-modal distribution with its minimum at the transcription stat side. 

However, further analysis is beyond the scope of this thesis concerning data 

and time. 
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4.3 ZUSAMMENFASSUNG 

Am Beginn meiner Arbeit stand die Hypothese, dass die Transkription von 

replikationsabhängigen Histongenen nicht nur durch Faktoren wie dem 

negativen Elongationsfaktor NELF oder Cap-Bindekomplex CBC reguliert wird, 

sondern dass ein Zellzyklus abhängiger Checkpoint auf Ebene der 

transkriptionellen Elongation bestimmt, ob Polymerase II über das 3’ 

Prozessierungssignal dieser Gene hinaus lies oder nicht. Anders als andere 

proteinkodierende mRNAs enden jene von replikationsabhängigen Histongenen 

in einer 3’ Stamm-Schleifen-Struktur anstatt am 3’ Ende polyadenyliert zu sein. 

Meine Chromatin Immunopräzipitation und reverse-Transkriptase-PCR 

Ergebnisse bestätigen unsere vorangegangene Annahme nicht, allerdings 

bedürfte es sensitiverer Methoden um eine sichere Aussage treffen zu können. 

Leider war die generelle Transkriptionsrate der replikationsabhängigen 

Histongene relativ gering verglichen zu jener von Referenzgenen wie dem U2 

snRNA Gen und ACTB, folglich war es schwer Beweise für einen signifikanten 

Unterschied in den Pol II Profilen abhängig vom Zellzyklus zu finden. Zusätzlich 

wurden weitere Transkriptionsfaktoren und post-translationelle 

Histonmodifikationen wie H3K36me3 (siehe Appendix) oder H2B-

Monoubiquitinierung untersucht, allerdings bedarf es weiterer Analysen um eine 

genaue Aussage machen zu können. Andere Gene könnten in diesem Bereich 

liegen und auf Grund derer bestimmte Histonprofile und Modifikationen 

auftreten. Die Synchronisation der Zellen durch doppelten Thymidin Block selbst 

funktionierte ausgezeichnet, brachte neue Daten betreffend der Dauer der 

einzelnen Zellzyklus Phasen der verwendeten HeLa-Zellen und erwies sich als 

sehr gut Methode zur Untersuchung von Zellzyklus abhängigen Faktoren.  

Das zweite Projekt war eine genomweite ChIP-Sequenzierung von mono-

ubiquitiniertem H2B. Dies ist eine Histonmodifizierung die mit transkriptioneller 

Aktivität einhergeht. Die Ausführung funktionierte sehr gut nachdem Parameter 

der Immunopräzipitation optimiert wurden. Das Resultat ist sehr viel 

versprechend da es klar erkennbar eine bimodale Verteilung mit einem 

Minimum an der Startstelle der Transkription aufweist. Die komplette Analyse 

der Daten wird den Rahmen dieser Diplomarbeit in Bezug auf Zeit und Umfang 

allerdings leider sprengen. 
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5.1 CELL CULTURE 

If not mentioned differently, MEM and DMEM media supplemented with 10% 

fetal bovine serum (FBS), 1x penicillin/streptomycin and 1x L-glutamine (all by 

PAA) were used for cell culturing. To the PBS used for maintaining 

(washing/splitting) the cells 1mM EDTA was added. The cells that were used 

were HeLa cells [44] received from Dr. Clélia Laitem, Sir William Dunn School of 

Pathology, who was a postdoctoral fellow at the Lab of Dr. Shona Murphy 

during the time I accomplished my work.  

HeLa cells that had been grown to about 80% confluence in six 75cm2 flasks in 

MEM media were transferred to a 15ml falcon tube, centrifuged with 1000rpm 

for 10min, resuspended in 6ml mix composed of 90% FBS and 10% DMSO and 

then divided into 6 cryovials (1ml per vial). After that the cells were cooled on 

ice for about 2 hours and finally stored at -80°C. Approximately once a moth 

(maximum after 5 weeks) fresh cells from a vial were taken for cell culture.  

Cells were thawed at 37°C and then transferred into a 10cm flask with 10ml 

DMEM media and incubated over night at 37°C. On the following day cells were 

grown to about 100 percent confluence and split. Therefor the media was 

aspirated and cells were washed 3 times with PBS, then 2ml PBS+EDTA were 

added and incubated at 37°C for about 10min. After that, 8ml media were 

added and the cells divided into new flasks. The amount of cells that were 

transferred depended on the use, for maintaining cells were split about 1:10, 

for experiments for next day 1:5 thus they were about 60-80 percent confluent 

when harvested. 

5.2 G1/S PHASE CELL SYNCHRONIZATION USING DOUBLE THYMIDINE BLOCK 

This protocol [39] is designed to synchronize HeLa cells at the G1/S border. It 

will not work in cell lines with intact p53 apoptotic response. 

HeLa cells were cultured in DMEM media to about 40% confluence (2.5ml per 

well in a 6-well plate, 10ml in a 10cm dish). Thymidine that has been 

resuspended in PBS to a final concentration of 2mM in the media (37.5µl per 

well, 150µl per plate of 130mM thymidine) was added, hence the DNA 

replication cannot start as there is an overspill of thymidine, which inhibits the 

polymerase from incorporating other deoxynucleoside triphosphates (dNTPs). 

Then the culture was incubated at 37ºC for 19hrs. Afterwards DMEM media was 
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removed and cells washed 3x with PBS (without EDTA!). Then fresh media 

without thymidine was added and the cells were incubated for 9hrs at 37ºC. 

After that thymidine was added to the cell culture again to a final concentration 

of 2mM and incubated for another 16hrs. 

Finally cells were washed 3x with PBS and fresh media was added. At this point 

nearly all cells were at the borderline from G1/S phase and were “released” to 

progress through the cell cycle over the following ~15hrs. The cells should be 

uniform for about 1-2 cell divisions and then regain their asynchronous state. 

 

5.3 FACS ANALYSIS 

Fixing cells for FACS analysis 

Media was aspirated and cells were washed twice with PBS, then 10ml of PBS 

were added and incubated for 5min at 37°C. Afterwards the cells were carefully 

scraped off with a cell scraper or by slightly shaking the flask/dish and collected 

in a 15ml falcon tube. There the cells were centrifuged at 700g for 5min at 4°C. 

After discarding the supernatant 2ml of 79% EtOH were added and left for 

30min at 4°C. Then the cells were centrifuged again at 700g for 5min at 4°C. 

Supernatant was removed and cells were washed with 5ml cold PBS (without 

EDTA) and then centrifuged again as before. After supernatant was discarded, 

cell pellet was resuspended in 300!l PI-solution (0.1mg/ml Propidium iodide in 

PBS + 0.2mg/ml RNase A) and incubated for 35min at 37°C in the dark. 

Afterwards cells were centrifuged at 700g for 5min at room temperature (RT) 

and then resuspended in 300!l PBS and stored for a maximum of 18hr at 4°C in 

the dark. 

Propidium iodide intercalates with nucleic acid (DNA/RNA) not sequence specific 

and increases its fluorescence, hence it is distinguishable if a cell contains one 

or two sets of chromosomes (-> G1 or G2 phase) since doubled DNA/RNA 

means doubled fluorescence signal.  

Fluorescence activated cell sorting (FACS) analysis 
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5.4 CHROMATIN IMMUNOPRECIPITATION (CHIP) 

Solutions for ChIP: 

 Cell lysis buffer: 5mM PIPES pH 8.0, 85mM KCl, 0.5% NP40 

 Nuclei lysis buffer: 50mM Tris-Cl pH 8.1, 10mM EDTA, 1% SDS 

 IP dilution buffer: 0.01% SDS, 1.1% Triton X100, 1.2mM EDTA, 16.7 mM 

Tris-Cl pH 8.1, 167mM NaCl 

 1x dialysis buffer: 2mM DTA, 50mM Tris-Cl pH 8.0, 0.2% Sarkosyl 

 1x dialysis buffer (for monoclonal anti-bodies): 2mM DTA, 50mM Tris-Cl 

pH 8.0 

 IP wash buffer: 100mM Tris-Cl pH8.0, 500mM LiCl, 1% NP40, 1% 

deoxycholic acid 

 IP wash buffer (for monoclonal anti-bodies): 100mM Tris-Cl pH9.0, 

500mM LiCl, 1% NP40, 1% deoxycholic acid 

 Elution buffer: 50mM NaHCO3, 1% SDS 

 5x PK buffer:50mM Tris-Cl pH 7.5, 25mM EDTA, 1.25% SDS 

all in ddH2O 

 

Preparation of Staph A cells for ChIP: 

1 gram of lyophilized Staph A cells (Pansorbin" cells, stored at 4°C) were 

resuspended in 10ml dialysis buffer for monoclonal antibodies and centrifuged 

at 4000rpm for 30min at 4°C (in 15ml falcon). This step was repeated once and 

then cells were resuspended in a mixture of 4ml PBS + 1.2ml of SDS + 400!l #-

mercapto ethanol and boiled for 30min. Afterwards cells were centrifuged at 

10000rpm for 5min (in Eppendorf tubes) and the pellet washed with 500!l 1x 

dialysis buffer for monoclonal antibodies. This centrifuging/washing step was 

repeated once. Finally the cell pellets were resuspended in 400!l of dialysis 

buffer for monoclonal antibodies and divided into 90!l aliquots and stored at -

80°C.  

5.4.1 ChIP protocol: 

Staph A cells were prepared (for each plate one needs 50µl: 10µl to pre-clear 

the chromatin and 40µl for Immunoprecipitation [10µl for each sample]). 1 tube 

(90µl) of cells was thawed for approximately 10^8 cells that one begins with. 

10µl of herring sperm DNA (10mg/ml) and 10µl of BSA (10mg/ml) were added 
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to each tube of Staph A cells. Following Staph A cells have to be incubated on a 

rotating platform at 4C for at least 3 hours, over night is fine as well. 

Then HeLa cells were taken from 37°C and 270µl (for 10ml of media) of 

formaldehyde solution (37%) were added directly to tissue culture media (to a 

final concentration of 1%) for cross-linking the DNA with proteins like TFs, 

histones or polymerase. Afterwards adherent cells were incubated on shaking 

platform for 10 min at RT. 

  

 
 

 
 
 
 
 
 
 
 

 
 
 

 
Figure 20! Cross-link reaction of DNA and protein induced by formaldehyde. 

 
 

Cross linking reaction was stopped by adding glycine to a final concentration of 

125mM (625µl of 2M stock solution were added), then continued to shake at RT 

for 5 min. Afterwards the media was poured off and plates rinsed twice with 

cold 1x PBS. To scrape off the cells of the dishes, 1ml PBS was added and cells 

were transferred into an Eppendorf tube. Following they were centrifuged at 

1000 rpm for 5 min at 4C and washed once with 1x PBS (plus PMSF - 10µl per 

ml). The cell pellet was resuspended in 200µl (per plate) of Cell Lysis Buffer 

plus 4µl (per plate) of 50x stock protease inhibitor (one tablet in 1ml 

dH2O=50x) and incubated on ice for 20 min. After that the sample was 

centrifuged at 5000rpm for 5min at 4°C to pellet the nuclei. The nuclei were 

resuspended in 200µl (per plate) Nuclei Lysis Buffer plus same protease 

inhibitor as used before and incubate for 10 min on ice. To cut the DNA, 

chromatin was sonicated to an average length of 300bp while samples were 

kept on ice (Sonicator settings: amplitude 12 microns – 10 times for 10 sec – 

separated by 40 sec). Following the samples were centrifuged at 14000 rpm for 

10 min at 4C and supernatant taken and transferred to a new tube. 

Chromatin was pre-cleared by adding blocked Staph A cells. 10µl of pre-blocked 

Staph A cells for every 107 cells were used (10µl for each plate) and samples 
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were incubated on rotating platform for 15min at 4C and following centrifuged 

at 14000rpm for 5 min. Supernatant was transferred to a new tube and divided 

equally among the samples. Final volume of each sample was adjusted with IP 

dilution buffer plus protease inhibitor and phosphatase inhibitor if necessary. 

Samples volumes were between 250!l. After that 1!g of anti-body was added 

to each sample. 

Anti-Bodies: 

 anti-Pol II: rabbit N-20, lot# A1207 

 mock: normal rabbit IgG, sc-2027, lot# J2009, Santa Cruz 

 anti-ubiquitinated H2B: mouse monoclonal cat.: MM0029, lot# 

299040927, MEDIMABS 

 anti-H2B: $-1423 

 anti-ctcf: milipore" anti-ctcf, rabbit, lot# DAM 1682158 

 anti-H3K36meth3: rabbit polyclonal, lot# 65835 

 anti-H3: rabbit, lot# 65835, Abcam 

 anti-cdk9: rabbit, L-19 sc 7331, lot# c1704, goat IgG, Santa Cruz 

 

Samples were incubated with respective anti-bodies over night on rotating 

platform at 4°C. 

When a monoclonal anti-body was used, 1 !g of an appropriate secondary 

antibody was added and incubated for another 60min. Then 10µl of blocked 

Staph A cells were added to each sample and incubated on rotating platform at 

4C for 15 min. Then the samples were centrifuged for 3 min at 13000rpm and 

supernatant from the “mock” sample was saved as TIC to subsequently have a 

reference for evaluation of the amount of DNA with qRT-PCR. Afterwards the 

pellet was washed twice with 1.4ml of 1x dialysis buffer (for samples with 

monoclonal anti-body appropriate buffer was used) and four times with 1.4ml of 

IP Buffer (for samples with monoclonal anti-body appropriate buffer was used). 

For each wash, pellet was dissolved in 200µl of buffer and additional 200µl of 

buffer were taken to wash the pipette tip. Then an additional 1ml of buffer was 

added. After each wash, sample was centrifuged at 14000rpm for 3min at RT. 

After the last wash the sample was centrifuged once more and the last traces of 

buffer were removed. To elute AB/protein/DNA complexes, 150µl of IP elution 

buffer were added and (NOT ON ICE FROM NOW) shaken on a vortex for at 

least 15 min at setting “vortex 3”. After that, sample was centrifuged at 
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14000rpm for 3min and the supernatant transferred into a new tube. The 

elution was repeated once and both elutions combined in the same tube. The 

sample then was centrifuged at 14000rpm for 5 min to remove any traces of 

Staph A cells, and supernatant was transferred to a clean tube. After that 1µl 

RNase A (10mg/ml) and 5M NaCl were added to a final conc. of 0.3M. 50µl of 

TIC were taken and 250µl IP elution buffer plus 1µl of RNase A (10mg/ml) and 

5M NaCl to 0.3M) added. The sample then was incubated at 67ºC for 4-5 hours 

to reverse formaldehyde cross-links. To precipitate the DNA, 2 " volume of 

EtOH was added and left over night at -20°C. The following day, the sample 

was centrifuged at 14000rpm for 20 min at 4°C. Afterwards ethanol was 

removed and the pellet air-dried completely. After that each pellet was 

resuspended in 100µl of TE + 25µl of 5x PK buffer and 1.5µl PK. Finally the 

sample was incubated at 45ºC for 1-2 hours. 

To purify the DNA, the QIAquick PCR purification KIT 250 (QIAGEN) was used 

after protocol and finally the DNA was eluted with 50µl ddH2O. For analysis with 

qRT-PCR one 1!l of DNA was used. 

 

Figure 21! Schematic sketch of the functionality of chromatin immuneprecipitation (ChIP) 

with quantitative real time PCR (qRT-PCR) analysis. [A] After DNA has been cross-linked to 

associated proteins, it is sonicated to small fragments of about 600bp length but still linked 

to the proteins [B]. Afterwards specific anti-bodies (AB) against the specific protein-

domains are added and bind the DNA-Protein complex [C]. Afterwards Staph A cells are 

added which have the protein A on their surface that binds the Fc-region of the anti-bodies 

and hence separate the DNA-protein complex from other cell-components [D]. Then the 
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DNA-protein complex is eluted [F] and the cross-linking reversed [G], thus the DNA can be 

purified from other components [H] and be used for qRT-PCR analysis [I]. 

To prove the length of the sonicated DNA fragments, the “total input control” 

(TIC, see next page) was loaded on a 1% Agarose Gel: 

 

 

 

 

 

 

 

 

Figure 22! Control of sonication of ChIP DNA. TIC 1 

and TIC 2 are total input controls of two different 

ChIPs. Both show an average length of 300bp as 

requested.  

 

5.4.2 Measuring of DNA/RNA concentration and purity with NanoDrop 

For confirming the purity of RNA (see 5.6) or DNA, a NanoDrop ND-1000 with 

ND-1000 software (v 3.1.0) was used. Especially for the H2Bub ChIP-

sequencing sample the purity was of special interest. The 40!l ChIP-sequencing 

sample that was sent in had a concentration of 3.25ng/!l, hence 130ng of DNA 

were used. The 260/280 ratio, which gives a value for Protein or Phenol 

contamination, was 1.75, hence there was nearly no contamination of Protein 

(1.8 would be “pure”). The 260/230 ratio was 0.9 (ideal would be 1.8), which 

might be due to some EDTA residues. 

 

5.5 QUANTITATIVE REAL-TIME PCR (QRT-PCR) 
Samples, each consisting of 5!l SYBR-green, 3!l ddH2O, 1!l primer-mix (5!M 

each) and 1!l sample DNA, were heated up to 95°C for 15min, and then the 

following cycle was conduced: 

94°C for 15sec 
58°C for 20sec  x 42 
72°C for 25sec 

Finally the temperature was heated up to 99°C degree by degree to observe the 

meting temperature of the DNA fragments. The analysis was accomplished with 
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Rotor-Gene 6 software. The qRT-PCR device that was used was a Corbett 

Research RG-300. 

 

Primers used for qRT-PCR amplification: 

HIST1H1C gene 
Name of primer Sequence 5' - 3' 

H1 far upstream F TCAGGTGATCCGCCCCCGAG 

H1 far upstream R GGCTATTCCTCAGAGTGACAGGGT 

H1 @ poly A F GTCCTCGCATGACTACGGTTGC 

H1 @ poly A R CAGAGGGAACCATTAACGAAGGCC 

H1 0 F GGCTCTCCCTTGTTCCTTTATGATCTC 

H1 0 R GTGGTGGGGGGCTACAGACTTAAATC 

H1 1 F AATGAAGAGCATGAAGCCCGAGG 

H1 1 R AACTCGGGTACAAGTGGCAAAGC 

H1 2 F GCCAAAAGTGCTGCTAAGGCTGT 

H1 2 R AAGTAACAGGGCAGAACAAGAAAAGGC 

H1 3 F GTCTGGGATTTCGGACGCTTTCC 

H1 3 R GCTATTGCCGCTGTTGTGGCTG 

H1 4 F GAAGACAGAGGCAGGGAAGAAGG 

H1 4 R AGGGTGGCACGGGAGGAAGAAG 

 

HIST1H2BD gene 
Primer Name Sequence 5' - 3' 

H2B 0 F GTTATCCCTATCGAGTATGGCAGGC 

H2B 0 R GTTATGTGGCAGTAGTCTCCCCAAG 

H2B prom F ACCGCATCTATAAATGAACAGGGCC 

H2B prom R GTAGGTTCAGGCATCGTAGCGTT 

H2B 1 F CCGTCACCAAGTACACCAGTTCCA 

H2B 1 R TGGCTCTTAAAAGAGCCTTTGGGA 

H2B 2 F CTGAGCACGAAAGTGCACGC 

H2B 2 R AGTTCCGTGTTCAGCTCACATTGTC 

H2BD ctcf1 F CACTGCTGGGGAATGGATGATTGC 

H2BD ctcf1 R GACTCCAAACCTAGCCTCATCCATC 

H2BD ctcf2 F GTAAACTCAGAGCCAGGGACTTGG 

H2BD ctcf2 R CCTGGTCAGTTTCCACGGGTTGAG 

H2B 3 F CACCTCAACAAATTGCCACAGCTAA 

H2B 3 R CCGAAGTGCTGGGATTACAGGCA 
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H2B 4 F TAAGGCTGTTCCAGGCACATGGC 

H2B 4 R TGTGACAACTCAGTAGTGGCCTCTA 

H2B 5 F ACCGAGGGGAAGGAACTAAAGGTGT 

H2B 5 R CGTCCTGCCATCTTCTCATTCAG 

H2B 6 F GGCCTAAGCACTGATGTGGCTT 

H2B 6 R CCCTTAATTCAGATGCTGGAGGAGA 

HIST1H2BE gene 
HIST2HBE Primers Sequence 5' - 3' 

H2BE 1 F GAAAACGCAAGGTCCGCACACG 

H2BE 1 R GCCGGTTCAGGCATGGTAAGACAC 

H2BE 2 F AGAGGAGGTGGCAATGGTAGATCC 

H2BE 2 R CCTCTCCTTTAAGAGGGGAACACCA 

H2BE @polyA F GGAGCTGATGGCAGGGGTTTGAT 

H2BE @polyA R CATCCCCCAGATCAGAGGCACC 

2nd polyA F GGTGCACTGGGGCTGAAATAGTCT 

2nd polyA R AGGGCCTAGGACACTACCTGGC 

H2BE 3 F TGGTTTTGGGCTCCACCTGGGGA 

H2BE 3 R AGATGTCTGAGCAGGAGAAACGAT 

H2BE 4 F CCAGGCAGTGGATGGCATGGG 

H2BE 4 F CTGGCCTAATCCTGCAAGATCTGG 

ACTB gene 
Name of primer Sequence 5' - 3' 

1 F CCAATCAGCGTGCGCCGTTCCGA 

1 R GGTGTGGACGGGCGGCGGATC 

A F GGGCAACCGGCGGGGTCTTT 

A R ACGCAGTTAGCGCCCAAAGG 

B F CACAGCGCGCCCGGCTATTC 

B R AGCCAGCTCCCCTACCTGGT 

2 F CCCCATCGAGCACGGCATCGTC 

2 R CACCTGGGTCATCTTCTCGCGGT 

ex3 F GGCACCACACCTTCTACAATG 

ex3 R CGGCCACCAGAAGAGGTAGC 

int5 F GTGTCTTTCCTGCCTGAGCTG 

int5 R GAGGAGCAATGATCTGAGGAG 

3 F CATTGCTCCTCCTGAGCGCAAGTA 

3 R TTGCGGTGGACGATGGAGGGGCC 
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5.6 RNA ISOLATION 

For homogenization, cells were lysed direct in the culture dish by adding 1ml of 

TRIZOL® Reagent to a 3.5cm diameter dish and passing the cell lysate several 

times through a pipette. Then the homogenized samples were incubated for 

5min at 25ºC to permit the complete dissociation of nucleoprotein complexes 

and 0.2ml of chloroform per 1ml of TRIZOL Reagent were added. Afterwards 

tubes with samples were shaken vigorously by hand for 15 sec. and incubated 

for another 2-3min at 25°C. After that time, samples were centrifuged at 11500 

x g for 15min at 4ºC. The mixture was separated in a lower red phenol-

chloroform phase, an interphase, and a colourless upper aqueous phase. RNA 

remained exclusively in the aqueous phase. For precipitation of the RNA, the 

aqueous phase was transferred into a fresh tube and mixed with 0.5ml 

isopropyl alcohol and incubated at 25ºC for 10min. Afterwards samples were 

centrifuged at 11500 x g for 10min at 2-8º C. Then supernatant was removed 

and the pellet washed once with 75% EtOH, at least 1ml of EtOH per 1ml 

TRIZOL Reagent was used. The Sample then was mixed by vortexed and 

centrifuged at 7 000 x g for 5min at 4ºC. At the end of the procedure, RNA 

pellet was briefly air dried, but not completely, and dissolved in RNase-free H2O 

by passing the solution several times through a pipette and incubating for 

10min at 55-60º C.  As still some DNA might have been in the samples, 1 x 

DNAse buffer and 50 units of DNAse were added and incubated for 1hr at 37º C. 

Second extraction was performed by adding 100!l Phenol/Chloroform and 3M 

10!l NaOAc before vortexing the sample. Afterwards the sample was 

centrifuged for 5min at 7 000 x g. The RNA remained again in the aqueous 

phase, which was transferred into a fresh tube and 250!l (2.5 x of sample 

volume) of 100% EtOH were added to precipitate it. After that, the sample was 

centrifuged for 5min at 7 000 x g at 4ºC. Finally the pellet was air-dried (not 

completely) and resuspended it in 20!l RNase-free H2O. 

Reagents: 

TRIZOL® by Invitrogen: contains Phenol and guanidine thiocyanate. 

DNase I, RNase-free by Roche; 10 776 785 001 
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5.6.1 Reverse transcriptase PCR 

Using SuperScript™ III by invitrogene™ 

First–Strand cDNA Synthesis: 

For the first-strand cDNA synthesis, following components were added to a 

nuclease-free microcentrifuge tube: 1µl of oligo(dT)20 (50µM) or 50-250ng of 

random primers, depending on approach, 10pg-5µg total RNA (500ng), 1µl 

10mM dNTP Mix (10mM each), sterile and distilled water to 13µl. That mixture 

was heated to 65ºC for 5min and then incubated on ice for at least 1 min. 

Contents of the tube were collected by brief centrifugation and then in each 

sampke was added: 4µl 5x First-Strand buffer, 1µl 0.1 M DTT,1µl RNaseOUT™ 

Recombinant RNase Inhibitor (Cat. No. 107777-019, 40units/µl) and 1µl of SuperScript™ 

III RT (200units/µl). Then the sample was mixed by pipetting gently up and 

down. Samples with random primers were incubated at 25ºC for 5min, 

afterwards all samples were incubate at 55ºC for 45min. Finally increasing the 

temperature to 70ºC for 15min stopped the reaction, thus cDNA could be used 

as a template for amplification in PCR. 

 

PCR Reaction: 

5!l SYBR-green, 3!l ddH2O, 1!l primer-mix (5!M each) and 1!l cDNA were 

mixed. Afterwards the mixture was heated to 94ºC for 2min to denature, 

followed by  

94°C for 15sec 

58°C for 20sec   x 42 

72°C for 25sec 

Finally the temperature was heated up to 99°C degree by degree to observe the 

meting temperature of the DNA fragments. The analysis was accomplished with 

Rotor-Gene 6 software. The qRT-PCR device that was used was a Corbett 

Research RG-300. 
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APPENDIX 

 

 
Figure 14! Pol II ChIP on histone H1 gene. The three different experiments are shown 

separately as they show such different results.. The signal is given as percentage of the 

TIC. 

On histone H1 gene several ChIPs with Pol II anti-bodies were accomplished, 

but the results were not reproducible and differed each time. Even more 

approaches than the ones shown above were accomplished with different PCR 

programs and new probes. Due to no explanation could be found no further 

experiments were accomplished with that gene and finally HIST1H2BD was 

selected. 

 

 

Figure 15! Cyclin dependent kinase cdk9-ChIP on HIST1H2BD, #-Actin gene and U2 gene. 

The signal was too low in all experiments to present any results. 

A protein involved in transcription that was tried to look at was P-TEFp subunit 

cdk9. Unfortunately the signal was too weak to believe that the used anti-body 

actually worked. Also here it was not possible to repeat the experiment with the 

same result. But even if, the signals were too weak to trust them.  
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Figure 16! ChIP-qRT-PCR result of H3K36me3 and ctcf on HIST1H2BD. Probes ctcf1 and 

ctcf2 were assumed ctcf binding-sides, probe 3 was used as negative control.  

 

As tri-methylation of Lysine on position 36 on histone H3 is linked with positive 

transcription [45], it was interesting to see if this histone mark supports our 

thesis, but only far after the 3’processing signal the tri-methylation was 

detectable at low signal. 

Another protein of interest to ChIP was ctcf, which functions as an insulator 

protein that binds DNA and blocks transcriptional enhancers [46, 47]. Therefor 

2 possible sites on the gene that could act as recruiting signal for ctcf where 

searched and found and probe ctcf1 indeed showed presence of the protein, but 

exclusively in G1 phase and with a very low signal. Due to lack of time and no 

significant outcome no further experiments were accomplished with this protein. 
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