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Introduction

Time-frequency analysis (or Gabor analysis) is a modern branch of harmonic
analysis with applications, among others, in signal processing, audio engi-
neering, psychoacoustics as well as in theoretical physics and pure math-
ematics. As such, it is concerned with its own version of the basic general
idea of harmonic analysis, namely the decomposition of mathematical objects
(like functions) into parts that are in some sense more elementary or simpler
than the original object. In classical Fourier analysis, functions (or signals)
are decomposed and represented as superpositions of pure frequencies. This
is accomplished by using the Fourier transform, that can be interpreted as
giving the frequency distribution of the original function. In the Gabor case,
functions (or signals) are decomposed into pieces that are time-frequency
shifts of some given analyzing window function. The corresponding trans-
form is the short-time Fourier transform, which can be interpreted as giving
a time-frequency distribution of the transformed function. It is, however, not
the only time-frequency distribution that is in use. In quantum mechanics,
the Wigner distribution has been around for quite some time, its first ap-
pearance in [44]. It was later derived independently in [41] and [29]. In [43],
it is used in connection with questions of quantization. The Weyl calculus
associated with the Wigner distribution is used to analyze pseudodifferential
operators in [15], [21] and [24]. Further time-frequency methods are ap-
plied to pseudodifferential operaors in [34]. The Rihacek distribution plays a
prominent part in connection with the Kohn-Nirenberg correspondence, [27].
All these time-frequency distributions are very similar structurally, have sim-
ilar properties and lead to similar theories. It is therefore quite natural to
try to find a general framework into which the different distributions can be
integrated as particular cases. To provide such a framework is one of the aims
of this work. The class of bilinear time-frequency distributions introduced
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in the first chapter is sufficiently general to contain the short-time Fourier
transform, the Wigner and the Rihacek distributions as special cases. A
bilinear time-frequency distribution is a bilinear mapping

fg = TFA(f,9)(z,w) = FTu(f ©7)(z,w)
B /Rd<f DA (}))e " dy,

that is a coordinate transform with transformation matrix A followed by a
partial Fourier transform, applied to the tensor product of the functions f
and g.

Which properties carry over to the general distributions? Can one set up a
pseudodifferential calculus associated to a general time-frequency distribu-
tion that has similar properties as the Weyl calculus associated to the Wigner
distribution? Is it possible to identify necessary or sufficient conditions on
the distributions to guarantee nice behavior of the associated calculus? The
first part (chapters 1 and 2) tries to answer these questions. It turns out
that many time-frequency distributions allow a rich theory analogous to the
existing calculi, although some pathological cases must be discarded. A key
property seems to be right resp. left regularity of the transformation matrix
A, as defined in the first chapter.

The second part (chapter 2) is concerned with another type of pseudodifferen-
tial operator, namely time-frequency localization operators, first introduced
in [9] and [10]. These are multipliers for the short-time Fourier transform,
acting on a function f by

f = V;l(a Vi f) = //RM a(z,w) - Vo, f(z,w) M,Typs drdw.

The window functions @1, 5 are taken from some function space, that deter-
mines the mapping and boundedness properties of the operator. The function
a is called the symbol of the localization operator. The main result of this
part is to show a connection with the so-called Berezin transform, an ob-
ject that is of some importance in complex analysis. This connection gives
a powerful tool to examine the question how large the class of localization
operators (with symbols from some prescribed class, e.g. from L%(R??)) is
compared to larger classes of operators (e.g. the Hilbert-Schmidt class). Can
arbitrary operators be approximated by localization operators, and in what
topology? It turns out that in many cases the set of localization operators is



dense in a larger class of operators, with respect to either the norm topology
or the weak-* topology. There occurs an interesting phenomenon, however.
For symbols from, say, Lebesgue spaces LP(R??), the exponents 1 < p < 2
give stronger results than the exponents 2 < p < co. For symbols from mod-
ulation spaces, the situation is similar. In this regard, further results may be
possible in the future.

This work is structured as follows.

The first chapter introduces the notion of (generalized) bilinear time-frequency
distribution. This is a direct generalization of some well-known time-frequency
distributions that are in wide use in mathematics and physics, such as the
short-time Fourier transform (also called the Gabor transform) or the Wigner
distribution. Some basic properties of bilinear time-frequency distributions
are presented. These usually generalize the according properties of the short-
time Fourier transform. The time-frequency distributions considered can be
parametrized by real 2d x 2d coefficient matrices. Conditions on these ma-
trices yielding nicely behaved distributions, namely the notions of right resp.
left regularity, are identified and defined. T'wo important technical tools for
future use are provided, namely the covariance property and the so-called
'magic’ formula. Again, these generalize well-known formulas for the short-
time Fourier transform to the more general case of bilinear time-frequency
distributions. The former are contained in the latter as special cases.

In the second chapter, we present the pseudodifferential operator calculus
associated with bilinear time-frequency distributions. This is motivated by
the Kohn-Nirenberg correspondence (associated to the Rihacek distribution)
and the Weyl calculus (associated to the Wigner distribution) and generalizes
these for general bilinear time-frequency distributions. For a large class of
distributions, most of the desirable properties of the aforementioned classic
pseudodifferential calculi carry over to the more general situation. Well-
known mapping and Schatten class properties for the short-time Fourier
transform are proved in a more general setting. Particular importance is
given to various boundedness theorems on modulation spaces for pseudodif-
ferential operators associated to well-behaved bilinear time-frequency distri-
butions.

The third chapter is devoted to the study of time-frequency localization op-
erators. Well-known mapping properties of localization operators are sum-
marized in a unified framework. The connection to the Berezin transform is
shown and used to prove some new results on the density of the set of local-
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ization operators within larger spaces of operators with respect to different
topologies, e.g. the space of all bounded operators equipped with either the

norm topology or the weak-x topology.



Chapter 1

Bilinear Time-Frequency
Distributions

In this chapter, we define a particular class of general bilinear time-frequency
distributions that is the basic object of all our subsequent considerations. We
show that some well-known time-frequency distributions, like the short-time
Fourier transform or the Wigner distribution, can be subsumed under our
general framework. Moreover, many elementary properties enjoyed by the
aforementioned distributions have analogues in the general setting.

1.1 Definition

Definition 1.1.1 (Bilinear Time-Frequency Distribution). Let f, g € L*(R%)
and A = (41 412) € R*>2 with det A # 0. Define the bilinear time-
frequency distribution of f and g to be

TFA(f, 9) == F2Ta(f ®7).

In this definition, F5 denotes the partial Fourier transform of a function of
two wvariables with respect to the second wvartable, and T is the coordinate
transformation with matriz A.

If Ta(f ®7) is an integrable function with respect to the second variable over

11



12 CHAPTER 1. BILINEAR TIME-FREQUENCY DISTRIBUTIONS

R?, we can represent the partial Fourier transform as an integral:

TFA(f. 9) (. 0) = / (f © DA (E))e 2 dy

Rd

= . f(AlLI + A12y)g(A21m + A22y)6—27riw-y dy
R

for (z,w) € R?¢, This holds for example when f and g are Schwartz functions.

Important and well-known examples are

e Short-time Fourier transform:
V(f,g)(z,w) = ) FWyly — z)e ™Y dy = TFA(f, 9)(z, w)
R

with matrix A = (% 7). This is the basic time-frequency distribution
used in time-frequency analysis. For a short overview over the short-
time Fourier transform and its most basic properties see the appendix.

e Wigner distribution:

W(f,g)(z,w) = y flx+ %)g(fﬁ — %)6’2”‘“’ dy = TF4(f, 9)(z,w)

. . I i1
with matrix A = (1 r
2
time-frequency distribution in signal analysis. It was, however, first
introduced in 1932 by E. Wigner in a paper on quantum mechanics

([44]).

e a-Wigner distribution:

>. This is undoubtedly the most popular

Walf, 9)(z,w) = 9 fla+ (1 —a)y)glz —ay)e >™V dy

= TFa(f,9)(z,w)

with matrix 4 = (! (1__5])[) and « € (0,1). This is a (less symmetric)

variant of the Wigner distribution. The ordinary Wigner distribution
corresponds to the value a = %
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e Rihacek distribution:

R(f,9)(z,w) = f(z)§(w)

= [ J@gle —y)e e dy = TRa(f. g)(x,)

Na)Y
~~
&
N—
@

with matrix A = (] %).

e (Radar) ambiguity function:

AL = [+ Doty =) dy = TRa(L, ).

with matrix A = (72%1 1)'

13



14 CHAPTER 1. BILINEAR TIME-FREQUENCY DISTRIBUTIONS

1.2 Elementary Properties

After having defined the general bilinear time-frequency distributions in the
previous section, we are now going to examine some of their most basic
properties.

Theorem 1.2.1. If f,g € L?*(R%) and A € R*>2d with det A # 0, then
TF,(f,g) € LA(B2).

Proof. This is obvious, since the tensor product f ®g € L?(R?*?) and T4 and
F, are bounded linear operators from L?(R??) into itself. O

The set {TFA(f,9)| f,g € L*(RY)} is in fact a complete subset of L?*(R??),
i.e. its linear span is dense in L?(R??):

Theorem 1.2.2. Denote the set {TFA(f,g)| f,g € L*(R?)} C L?(R*?) by
S. If det A # 0, then
span(S) = L*(R*?),

i.e. S is a complete subset of L*(R??).

Proof. Assume F € L*(R??) such that

<F7 TFA<f7 g>> =0
for all f,g € L*(R?). We have to show that this implies ' = 0 in L?*(R?%).
Now
(F,TFA(f,9)) = (F, 32Ta(f @ 7))

= (TA%F, f®7)

=0
for all f,g € L*(R?) if and only if

T4F5F =0 in L*(R*),

since {f ®9| f,g € L*(RY)} C L?(R*) is a complete subset of L?(R?*?). But
this is equivalent to
F=0¢ L*R*),

since T4 and Fy are bounded invertible operators from L?*(R??) onto L?(RR?%).
[
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We can also show (with identical proof), that {TF4(e,, )| n,m € N} is a
complete subset of L?(R%*®), if (e,)en is an arbitrary orthonormal basis of
L*(R?) (because then the family (e, ® &, )nmen is an orthonormal basis of
L*(R??)). In Section 1.3 we will see that this set is actually an orthonormal
basis of L2(R??) itself.

Theorem 1.2.3. Let det A # 0. Then the bilinear mapping TF 4 : L*(R%) x
L*(RY) — L2(R*), (f,9) — TFA(f, g) is (jointly) continuous.

Proof. Let f,g, fu, gn € L2(RY), n.=1,2,..., with ||f, — f|| = 0 and
llgn — g|| — 0 for n — oo. Then

ITEA(S, 9) = TFA(fn, gn) | = [1F2Ta(f ©9) = FoTa(fn @ 70

=|Ta(f ®7) — Talfn @7Gn)ll (since Fy is unitary)
1
n n by L A.3.2
|th|||f®g fn @ Gl (by Lemma A.3.2)
and
1 fRT— @Gl <fRT—fRG|+f @ — o @G|
=1l lg = gull + If = full - lgnll
—_—— ——— =~
—0 —0 =gl
—0
for n — oo. ]

Theorem 1.2.4. If f,g € S(R?), then TFA(f, g) € S(R*?).

Proof. If f,g € S(RY), then the tensor product f ® g € S(R*), hence
TFA(f,9) = FoTa(f ® g) € S(R*¥) by Lemma A.3.5 and Lemma A.4.4,
respectively. ]

In the next theorem, certain bilinear time-frequency distributions are shown
to have a representation associated to the short-time Fourier transform, thus
having very similar (pleasant) properties.
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Theorem 1.2.5 (Representation). Let A = (41! 412) € R*24 yith det A #
0 and let both Ay and Asy be invertible matrices in R, Then the following
representation holds for all f,g € L*(R?), x,w € RY:

27ri(A’1‘2)_1w-A11:E

| det A12|

e

TFa(f, 9)(z,w) = (f. MaT.q) ,

with §(2) == g(AgpAjy 2) and

d= d(W) = (ATQ)ilw, C = C(.T) = (All — A12A521A21)$.

Proof. If Ajo and Ay are invertible, the functions f'(y) = f(A2y) and
d(y) = g(Axny) are well-defined and in L?*(R?) for f and g in L?*(R?). Then
f(Anx + Apy) = T_A;;Am:f/(y) and g(Agix + Agy) = T—A2_21A21xgl<y) are
in L%(R?) as well, so the integral

TFA(f7 g) (377 CL)) = f(AHQj + A12y)g(A21x + A22y)672ﬂ'iw-y dy
R4

makes sense pointwisely for all z,w € R? The stated representation now
follows from the change of variables z = A1z + Aj9y. O

Corollary 1.2.6. Under the assumptions of Theorem 1.2.5, TF 4(f, g)(z,w)
is a continuous function on R??,

Proof. Let z, — r and w, — w in R Put d(w) = (A%,) 'w and c(z) =
(A1 — A1pAs Agp)z as in Theorem 1.2.5, then d(w,) — d(w) and c(z,) —
c(x) for n — oo, since the functions d and ¢ are continuous. It follows that
M) Te(z,)g converges to MgTez)g in L*(RY). Finally, with Theorem
1.2.5, we conclude TFA(f, g9)(xn,wn) = TFA(f, 9)(z,w). O

Corollary 1.2.7. Under the assumptions of Theorem 1.2.5, the function
TFA(f, 9)(z,w) is bounded:

A1 Nlgl

TF <
ITEA(f, 9) (@, w)] < | det Aio|!/2 - | det Ago[/2

for all (z,w) € R*.
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Proof. We have

- |detA12|
191l = 1T apparp9ll = m” gll,

hence
271'1'(,4){2)_1(;}',411%

| det A12|

|||fH 191l

_ /1 [lgll
|det A12|1/2 . |d€t A22|1/2'

e

ITEA(S, 9) (2, )| = (f, MaT.q)

<
—yth

O

Corollary 1.2.8 (Riemann-Lebesgue). Under the assumptions of Theorem
1.2.5, TFA(f, g) vanishes at infinity, i.e.

lim |TFA(f, g)(z,w)| = 0.

|(z,w)|—o0

Proof. We have to show that

lim | <f, Md(w)Tc(m)§]> ’ =0.

|(907w)|—>oo
Let Q C R? be an arbitrary subset. Then
ML) | = | [ 507 e
/ |£(8)] - 1g(t — )| dt
= [ w1 —atas [ 1 lae -l
RA\Q

By the Cauchy-Schwarz Inequality, we get

| (f, MdT.g) | < (/ﬂ|f|2>é (/Q |Tc§|2>§+ (/Rdmlfﬁ)é (/Rdmmgl?);.
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Now let ¢ > 0 be given. Choose € C R? in such a way that €2 is compact
and both ([, |f[2)"* > (1—&)|lf] and (f,131?)"* > (1—2)|gll. (One could
use e.g. Q= Bp = {t € R¢: |[t| < r} for sufficiently large 7, the closed ball
with radius r.) Since 2 is compact, there exists a constant K > 0 depending
on f and g such that QN ¢+ Q = 0 for all ¢ € R? with |¢| > K. This yields

1/2 1/2 1/2 1/2
2 ~12 o 2 ~12 . A
</Q|f|) (/Q|Tcg|) —(/Q|f|) (/Cm|g|) <c-If1- 13l
and
1/2 1/2
(/ |f|2> (/ mm?) <c-1f1- 13l
RA\Q RA\Q

| (fs MaTeg) | < 2e - [IfI] - lgll

for any d and all |c| > K in R%.
Next observe that by Plancherel’s Formula and the canonical commutation
relation

(£ MTg) | = | (. AT ) | = | (£, TaMcg) | = | (Fo Mg ) |

SO

By the same argument as above we conclude that there exists a constant
K’ > 0 depending on f and ¢ such that

[{f, MaT.g) | < 221 f 1 - Mg =22 1£1 - 119

for any ¢ and all |d| > K’ in R
So we find that
| (fs MaTeg) | < 2e - ([ fI] - llgll

for all (c,d) € R* with |¢| > K or |d| > K’, that means outside the compact
set Bx X Brr C R*?. So

|(¢,d)]—o00

It remains to prove that |(z,w)| — oo implies |(¢(z),d(w))| — co. We have
|d(w)] = |(A}y)'w| — oo for |w| — oo if and only if (A},)~! is invertible,
and |c(z)| = |(A1 — A1pAy Agy)x| — oo for || — oo if and only if A, —
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A12A2_21A21 is invertible. The former is true by assumption, the latter follows

from
(ot ) = (o) (G )
and
_ Al A _ A11—A12A451 491 0
0 # det A = det (421 422) = det ((An—daian 0 )
= det(AH — A12A2_21A21) . det A227
therefore det(A;; — AjpAy Agp) # 0. O

Theorem 1.2.9. Suppose det Ay # 0, but det A1o = 0, i.e. the matriz A
is not invertible. Then TFs(f,g) is not necessarily a continuous function,
more precisely, there always exist functions f, g € L*(R?) such that TF4(f, g)
is not a continuous function on R?.

Proof. Choose an orthonormal basis vy,...,v; of ker Aj5 and extend it to
an orthonormal basis vy, ..., v, V41, ..,vq of R The matrix V consisting
of the vectors vy,...,v4 as columns is an orthogonal matrix. The vectors
Wiy = AU, ..., we = Ajgv, are linearly independent; extend this set of
vectors to a basis wy, ..., w;, w41, . .., wy of R The matrix formed with the
vectors wy, ..., wy as columns is denoted by W.

Now consider the orthogonal coordinate transformation y = Vz, y,z € R?.
This yields

d d d
Algy == AIQVZ == A12 E ZjU5 = E ZjA12Uj = E Z;W;
=1 =1 j=l+1

0

_ 0

— W * Zl41
Za

We can express the vector Az in terms of the basis wy, ..., wy:

d
Alll' = Wf = ijwj.

j=1
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Now let
fI: (T’1®7’2®...®7’d)<t):Tl(tl)'...'Td(td)

be a tensor product of arbitrary functions r1,...,rq € L*(R), set
fi=foWw™!

and let g € L'(RY) N L*(R?) be an arbitrary function. Note that under this
assumptions we always have f, g € L?(R?). Denoting

we calculate
Allx + A12y = W€ + WZ, = W(g + Z/),
therefore

f(Anz + Apy) = fW(E+2)) = f(E+7)

= Hrj(fj) T i+ ).

j=1+1

Using the substitution y = V z, we find

TFA(f, 9)(z,w) = / f(Anz + A1ay)g(Anz + Agay)e >™Y dy
Rd

= f(Allx + AIZVZ)Q(AQ:[ZL‘ + A22vz)e—27riw-‘/z dZ
R

l d
_ /R TIri@) - TT a6 + 2)g0harw + AzVaje >V az
j=1

j=l+1

l d
=[] ri&) /d 11 7i(& + 2)9(Anz + ApVz)e 2V dz.
j=1 R

j=i+1
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Resubstituting « for ¢ by the formula & = W1 A,z gives

TEA(f, 9)(z,w) = H(x)/ G(x,2)e 2™V w7 4y

Rd
= H(x)  F(z,w)
with
I
H(z) =[] ri(W Apz);),
=1
d
G(z,z) = < IT r(wv="Ane), + Zj)) - g(Aaix + ApV2)
Jj=l+1
and
F(r,w)= [ G(x,2)e 2™V (2.
R4

Observe that F(z,w) is well-defined since both Ags and V' are invertible and
hence G(x,z) is integrable with respect to z for all x € R% If we choose
g € S(RY) and ry,q,...,74 € S(R), it is not hard to see that F(z,w) is a
continuous function on R??. An appropriate choice ensures that F is not
identically zero. Choose a point (zg,wp) € R?*? with F(zg,wp) # 0. Since F
is continuous, F'(z,w) # 0 in a neighborhood of (zg,wp). Then, by a suitable
choice of functions r1,...,7 € L*(R), we clearly can achieve H(z) to be
uncontinuous at zp. But then TF4(f, g) cannot be continuous at (zg,wo),

because otherwise
_ TFA(fa g)(ZL‘, WO)
F(z,wp)

(in some neighborhood of z) would be continuous at xg, a contradiction. [J

H(x)

The above theorems and corollaries show the relevance of various assumptions
on the invertibility or noninvertibility of the submatrices A1, A2, Aoy and
Agy of A = (j“; ﬁ;i ). We will come across this phenomenon several times in
this work. In order to simplify terminology, we make a general definition.

Definition 1.2.10 (Left- and Right-Regularity). A matriz A = (ﬁ; ﬁ;i) €
R24%24 s called

o left-regular, if the submatrices Ay, As; € R are invertible;
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e right-regular, if the submatrices Aja, Ay € R4 are invertible.

The next theorem expresses a connection between right-regularity and left-
regularity that will be useful later.

Theorem 1.2.11. Let A = (4! 42) € R* pe invertible. Let B =

(g; g;;) = (A7Y)*. Then A is right-regular (respectively left-reqular) if and

only if B is left-reqular (respectively right-regular).

Proof. We show that A is right-regular if and only if B is left-regular. The
analogous statement where right-regular and left-regular are interchanged
follows from this by changing the roles of A and B (observe that if B =
(A71)*, then also A = (B71)*).

In order to simplify the notation, we write

A=(f9) and AT =C=(}2).

Since B = C* = (Si i ), B is left-regular if and only P and () are invertible.
Thus we have to show that U and V' are invertible if and only if P and @
are invertible.

Assume first that U and V are invertible. Then, since

CA=(R2)FPH =GN,
we have
PU+QV =0
and
PX +QY =1.

The former is equivalent to QV = —PU and Q = —PUV ~!; inserting this
in the latter yields PX — PUV ™YY = I, thus

P(X -UVY)=1. (%)
On the other hand, we also have

AC= (V) (r$) =G,
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hence

XP+UR=1
and

YP+VR=0.

Here the latter yields VR = —Y P and R = —V 'Y P, which upon inserting
into the former gives XP — UV Y P = I, thus

(X -UV'Y)P=1 (%)
The equalities (x) and (**) together show that P is invertible with inverse
P~ = X —UV~'Y, hence also Q = —PUV ™! is invertible.
For the opposite implication, assume P and () are invertible. Then it is not
hard to see that from

AC=(F9) () =N =(R2 (FP)=CA
it follows that
(o) (¥ =D =(%7) (o)
By what we have already shown, the invertibility of P* and Q* implies the

invertibility of U* and V*. Hence, P and @ invertible implies U and V
invertible.

Theorem 1.2.12 (Interchanging f and g). For f,g € L?*(RY) and A =

Aqr Ai2 2dx2d
<A21 A22) eR ’

TFa(g, f)(z,w) = TFp(f, 9)(z,w)
with B = (41 742) = (26)- A~ (§ %)
Proof. Observe that
Talg ® (2, y) = g(Anz + Aray) f(Anx + Agy)
= [(Azz + Axy)g(Anz + Apy) = Tp(f @ g)(z,y)
with B’ = (42 4*). It follows
TFA(g, )(@,0) = FoTalg & )@, w) = FoT5 (] @) (x,)
= FTp(f ®79)(z, —w) = FTp(f @ 7)(z,w)
with B = (4 ~42). =
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One may ask whether it is possible to consider also bilinear time-frequency
distributions defined by using the partial Fourier transform J; in the first
argument as opposed to our definition using F,. The following shows that
both formulations are essentially equivalent and that both definitions lead to
completely analogous theories.

In order to simplify the notation, we introduce:

Definition 1.2.13 (Flip). Let F(x,y) be a function on R*:. The flip oper-
ator is defined by

F(z,y) :== F(y,z),

i.e. interchanges the arguments x and y.

The flip operator is a specific coordinate transformation:

F(z,y) = F(y,z) = T;F(z,y)
with matrix I = (9 0.

Lemma 1.2.14. Let F' = F(x,y) € L*(R?*?). Then

?IF(€7y) = 3:2p<y7§)
Proof. Let F' € S(R*!). Then

FIF(E,y) = / F(x,y)e ™" dx

Rd

=/ F(y,x)e € dr = FoF(y, €).
Rd

Since S(R*¥) c L*(R*) is a dense subspace, the assertion holds for all f €
L?(R*?) by the standard density argument. O]

Lemma 1.2.15. Let f,g € L*(R?) and A = (41 412) € R with det A #
0. Then

F1TA(f @ 9)(& ) = FTs(f @9)(y,€) = FTs(f ©7)(&,y)

with B = (43 ) = A+ (95)-
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Proof. By the previous Lemma 1.2.14,

FTA @) = T2 (Taf ©9) (4:6)
where I denotes the permutation matrix (97). But

JiTa=Tr;=Tp,

which concludes the proof. ]

Theorem 1.2.16 (Fourier Transform of a Time-Frequency Distribution).
For f,g € L*(RY) and A = (4! 412) € R4,

—

with B= (242 411) = A- (% ]).

Proof. Assume again that f, g € S(RY). Then TF4(f,g) € S(R??) as well, by
Theorem 1.2.4. Using Fubini’s Theorem and the Fourier Inversion Formula,
we compute

TFA(f 9)(€.1) = / / FoTa(f @ §)(x, w)e 2 @E D gy,
R2d
:/ / FoTa(f @9)(z,w)e 2™ dw - e 2™ dy
R4 JRdA

— [ Talf 8D, e da

=FTa(f®@7)(& —n)
=5 T5(f @79)(-n,¢)

with B = A-(91) as in Lemma 1.2.15.
The last expression can also be written as

35273<f & ?)(—777 é) = SrQTB(f ® g) (777 f)

where B denotes the matrix

B-(d9)=A-(95)- (N =A4-(%%).
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1.3 Orthogonality Relation and Inversion
Formula

Bilinear time-frequency distributions take two functions as their arguments:
they map a pair of functions of d variables to a single function of 2d vari-
ables. In many situations, however, it is more convenient to take up another
viewpoint. One may consider one of the two functions as a window function,
a fixed parameter of the mapping and not a variable. That means instead of
looking at

TF, : L*(RY) x L*(RY) — L*(R*)
we now consider a mapping
TFA,g : LQ(Rd) - L2(R2d)v [ TFA,g(f) = TFA(fa 9)’

In this sense the function TF4 ,(f) can be thought of as a transformation
of f very much similar to other well-known integral transforms like e.g. the
Fourier transform.

In this section we will prove two important properties of such time-frequency
transformations, that are analogues of well-known properties enjoyed by the
Fourier transform. The first is the orthogonality relation for time-frequency
distributions, a counterpart of Parseval’s formula. In the presence of such
a formula there can usually be derived an inversion theorem that allows to
reconstruct the original function f from its time-frequency transformation

TFA,g(f)'

Theorem 1.3.1 (Orthogonality Relation). Let fi, fo, 91,92 € L*(R%) and
A € R?2d ith det A # 0. Then

1 —

<TFA(f1’gl)7TFA(f2592)> - \detA| <f17f2> <gl>gZ>-

Proof. Since F, is a unitary operator on L*(R??) and T4 is unitary up to a
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constant factor,

(TEA(f1,91), TEA(f2,92)) = (F2Ta(f1 ® G1), T2Ta(fo ® 92))
= (Ta(f1 ®71),Ta(f2 ® 52))

=e—<f1®m,fz®%>

= T3 Al fl’f2> <glag2>'

In particular we have

1

ITF g fll = Tdet A2 LFIF- Tlgll;

this shows that TF 4, is a multiple of an isometry on L?(R?).
If (€, )nen is an orthonormal basis of L?(R?), then

1 1

= m <€n7 ek) <€ma el> = 5n,k5m,l~

TF TF o
< A(enaem)7 A<6k76l)> ]det A’

Thus {TF (€, €m)| n,m € N} is an orthogonal family in L?(R??). By The-
orem 1.2.2) it is also a complete subset, hence (up to the constant factor
‘de—iA‘) an orthogonal basis for L?*(R??).

Next we prove an explicit formula for the adjoint of TF 4 4.

Theorem 1.3.2. The adjoint of the operator TF 4 4 is given by

TF),: L*(R*) — LA(RY), TFj H(z) = / JoF2H (z,y) - g(y) dy,

Rd

where C' denotes the matriz C = A"+ (1 9)).

Proof. For convenience, denote

/Rd TeFoH(z,y) - g(y) dy = h(x);
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note that if H € L*(R??), then by Fubini’s Theorem h(z) is defined for almost
all z € R? and h is a well-defined function in L*(R?).
Now let f € L*(R?) and H € L*(R??). Then

(TEagf, H) = (F2Ta(f @ 7), H) = (Ta(f ®7), I3 H) .
But 3 = TpF, with B =

(64
(Talf ®7), F5H) = (Ta(f ®79),TpToH) = (f ® g, Ta-1TpFaH)
<f®g>‘ICg:’2H>

) by Lemma A.4.2. This yields

with C = A"'B=A"1- (1 9).
Finally, by Fubini’s Theorem, we get

(F05.9c5H) = [| 7)) - TeTaH e, ) dudy
R

_/rdf( )/Rd(‘TC%H( y) - g(y) dy dx

= (f;h).
O

Now assume that A : L?(R?) — L*RY) is a bounded operator that is a
constant multiple of an isometry, i.e. ||Af|| = c- [|f] for all f € L*(R%).
There is the following canonical method for inverting A:

1
f=S5AAf  forall fe L*(RY).
c
The proof is very easy: we have
(A*Af,h)y = (Af, Ah)

for all f,h € L2(Rd). But by polarization,

(Af, Ah) Z C-||Af + CAR|J? (sum over the fourth roots of unity)

C41

=—§j<<sz+¢MP
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This yields
(A*Af ) = ¢ (f,h)
for all f,h € L?(R?), and therefore
AAf = Pf
for all f € L?(RY).

Slightly more general, we compute for bilinear time-frequency distributions:

(T4, TFayf,h) = (TFa f, TFa h) = (v, 9) (f 1)
for arbitrary f, h, g,y € L?(R?). This implies the following inversion formula:

e
f = WTFA:'YTFA’gf

for all f € L?(RY) (where we assume (7, g) # 0).

A more explicit version of this is presented in the next theorem.

Theorem 1.3.3 (Inversion Formula). Let A = (4! 412) € R*>2 be invert-
ible and right-reqular. Let g,y € L*(R?) be such that (g,7y) # 0. Then the
following inversion formula holds for all f € L*(R9):

_6271'1'(,4{2)_1(;}-,411&?

1
- TF My T divdo,
f 7 //R?d Aqnf(z,w) et Ap) d(w) T e(2)g dxdw

with §(2) = g(Ay A} 2) and

d(w) = (A7) 'w, c(z) = (A — A1 Ay Aoy,

as in Theorem 1.2.5. The integral is to be understood as a vector valued
integral in L*(RY), defined in a weak sense.

Proof. The statement is an immediate consequence of the representation for-
mula Theorem 1.2.5. Denote the function in L?(R¢) defined by the vector
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valued integral on the righthand side by f for the moment. Then by the
weak definition of vector valued integration, we have for all h € L?(RY)

TF QWZ(ATQ) UJA11$ M T R h d d
< L {g,7) //Rgd aof(,0)— et Ap)| (M) Te) g, h) dadw

TF e2mi(Aly) T tw- Az A T2 e
B 9,7 //de Aﬁf(m’w) |detA12| < y Vd(w) c(x)g> raw

)
= — TEFA~f(z,w)TF4 gh(z,w) dzdw.
(g7 g T (TN )

The orthogonality relation yields

1 _—
@T//Rz‘i TFA,'yf(ma(ﬂ)TFA’gh(x’w) drdw
1

< )
h);

since this is true for arbitrary h € L?(R?), we conclude f = f. O]

(TFa~f, TF 4 4h)

/\

Finally, we show a little result about a reproducing kernel property of the
image subspaces of the transforms TF 4 ,(L?(R%)).

Theorem 1.3.4 (Reproducing Kernel). Let g € L*(R?) \ {0} and A =
(ﬁ; 2;2) R2%%2 pe ipuertible and right-reqular. The image TF 4 4(L*(R?))
L%(R?®) of the transformation TF 4, : L*(R?) — L?(R*?) is a closed subspace
of L*(R?%) consisting of continuous functions. It is a reproducing kernel
Hilbert space. The kernel is given by

N

|det A| 2mi(Afy)~ lw-Apiz

Kff W, -
oo (0%) = T AT TP

TF 4,¢(Ma@)Te@)9)(2, w),

where §(2) = g(AgpALy 2) and

d= d((.d) = (ATQ)_l(JJ, Cc = C(.Z') = (All — A12A2_21A21).’B.

Proof. Since ||[TF4,f|| = || fll - llg]l, it is clear that the image of TF4, is
a closed subspace of L*(R?*?). By Corollary 1.2.6, TF 4 ,f is continuous for
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every f € L*(RY). In order to prove that TF 4 ,(L?(R%)) has a reproducing
kernel, we have to show that point evaluations are bounded linear functionals
on this space. Let (7g,wp) € R?? be arbitrary, then by the Representation
Theorem 1.2.5

1 -
’TFAgf<x07w0)‘ |d tA | |<f7 Md(wo)Tc(xo)g>|
1
= |d tA |||f|| HMd(wo c(:vo)gH
< 1
Now [ det Ay
G = g Aoy A1) || = LEC0 212
150 = Nzl = Lor g2l
SO

1
|TF a,9f (20, w0)| < m“f” | gll-

Using again the Representation Theorem 1.2.5 and the orthogonality relation,
it is easy to verify the reproducing property of the stated kernel

<TFA7gf7 Kx07w0> = TFA,gf(xoa WO)

for all (xg,wy) € R?? f € L?(R?), by direct calculation. O
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1.4 The Uncertainty Principle

The prototype of a qualitative uncertainty principle for the Fourier transform
is the following well-known theorem ([2], [1]).

Theorem 1.4.1 (Benedicks’ Theorem). Let f € LY(R?) be such that both
the sets

{z: f(z) # 0}
and
{¢: f)#0}
have finite Lebesgue measure. Then f = 0. O

This statement was subsequently extended to some of the classical time-
frequency distributions, in particular the short-time Fourier transform and
the Wigner distribution. This was done independently by several authors,
see [25], [26], [45]. A good survey is given in [18].

Theorem 1.4.2 ([25], [26], [45], [18]). Let f,g € L*(R?). Then the following
are equivalent:

1. The support of the short-time Fourier transform supp(V (f,g))
has finite Lebesgue measure.

2. The support of the Wigner distribution supp(W(f,g))
has finite Lebesque measure.

3. Fither f =0 or g =0. O

Since well-behaved generalized time-frequency distributions can be trans-
formed to short-time Fourier transforms by the Representation Theorem
1.2.5, we immediately have the analogous statement for such time-frequency
distributions:

Theorem 1.4.3 (Uncertainty Principle). Let f,g € L*(R%) and
A= (ﬁ;i 2;2) € R%>2d ith det A # 0 be right-reqular. If the support of
TFA(f, g) has finite Lebesque measure, then necessarily f =0 or g = 0.
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Proof. By Theorem 1.2.5, we have

1
ITEA(f.9) (@)l = raem - [ Mao Ten)|
= e VU e). dw)

with §(2) = g(A9A5,2) and c¢(x) = Cz, d(w) = Dw for some invertible
matrices C, D € R4 In particular, TF4(f,g)(z,w) # 0 if and only if
V(f,3)(Cx, Dw) # 0. But this implies that the support of TF4(f,g) has
finite measure if and only if the support of V(f,§) has finite measure. By
the preceding theorem, this is equivalent to either f or g being zero. Since
g = 0 if and only if g = 0, the theorem follows. ]
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1.5 Covariance Property

The covariance property is an important technical tool for the following. It
clarifies how general time-frequency distributions TF 4(f,g) behave under
time-frequency shifts of the functions f and g.

Theorem 1.5.1 (Covariance Property). Let f,g € L*(R%), u,v,n,v € R?
and A = (ﬁ; ﬁ;;) € R2¥>2d - Then the following covariance formula holds:

TFA<M7]Tuf7 M'yTvg) (Iv w) = GQWiU'SM( _PS>T((7;)TFA(]C, g)((l], w)
_ 627ria-5627ri(ac~p—w-s)TFA(f’ g> (ZL‘ —rw— O')
with
and s
(2)=A (%)= (i),
Proof. Observe that
TEA(M, T f, M\ T,g) = fTrﬂA(M( _@)T(g)f ® 7).

Using Lemma A.3.3 and Lemma A.4.3 yields

S8

FrTaM( 1Ty f @) = F2M(p)Ta(T(wyf @7),  with (5) = A ()

= M(S)T<2)3727A(T(g>f®§)
= M(S)T(g)fsz(g){IA(f@g)a with (%) :Ail(x)
= M(S)T(g)M(BS>T(6)?27A(f®§)7

with the canonical commutation relation, this simplifies to

TEAM, TS, M Tog) = 7" M o )Ty FaTalf © 7).

T
g



1.6. MARGINAL DENSITIES AND COHEN’S CLASS 35

1.6 Marginal Densities and Cohen’s Class

One possible way of thinking about joint time-frequency distributions is in
terms of quantum mechanics as a joint probability density of position and
momenentum for a particle whose state is described by the quantum mechan-
ical wave function f € L?(R3). In fact the quadratic Wigner distribution
W (f, f) was introduced with this idea in mind. This interpretation is, how-
ever, rather convenient heuristics than true in a strict mathematical sense.
The (quadratic) generalized time-frequency distributions that we consider
are sometimes lacking the most important features of a probability density
function, e.g.

1. correct marginal densities;
2. positivity.

The question arises whether for certain special choices of the matrix A some
or all of these requirements can be met.

Lemma 1.6.1 (Marginal Densities). Let f € S(RY). Then

[ TPACG. D) e = (A F )

and .
[ TPA ) e = e B T~ B)

with B = (' 512) = (A7)".

Proof. 1t f € S(R?) then TF4(f, f) € S(R*?). Using the Fourier Inversion
Formula, we find

)(ZL’, w>€2m‘0~w dw

)(,0)

[ TPa Do = [ imare
= F 1T Tu(f ®
= Ta(f ® f)(x,0)
= f(Anz)f(An ).

| =l



36 CHAPTER 1. BILINEAR TIME-FREQUENCY DISTRIBUTIONS

For the second part we proceed in a similar way:

/ TEA(f, f)(z,w) da::/ FoTa(f © F) (2, w)e 270 dy
Rd R .
=F1FTa4(f @ £)(0,w)

=T4(f ® £)(0,w).

Lemma A.2.4 shows

TAlF @ 1)0) = T T D0.0)
= T (Fo Do)

~ T (Fe How)

Q.

where h(z) = h(—z) denotes the usual Fourier involution.
Putting (A™')* = B = (g; g;z ), the last expression equals

1 —_—
det A| F(Braw) (= Byaw)

Ty (T N0,w) =

]

Theorem 1.6.2. Let A € R?¥24 pe of the form A = G]J(/V) for some
arbitrary matriz V € R¥>4. Then we have

[ TRAG D) e = @)

and

[ TR ) e = e

for all f € S(RY), z,w € R™

Proof. It A= (17}V) for some V € R, then |det A| = 1 since

det A =det (1 77V) =det ({ 1)) =17 (1)~
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One easily verifies that

(I I+V) . (I+V —V) — (I—H/ —V) . (I I+V) — (6

7)
I Vv I -1 I I IV I

SO
Al — (IJ}V —_Xj{) .
When we denote
B= (B =) = (" 5,
then obviously
A11=A21:I, By = =By = I;

the statement follows now from Lemma 1.6.1. O

There is a class of bilinear time-frequency distributions with particularly nice
properties that is closely related to the Wigner distribution and inherits many
of its desirable features. Cohen’s class consists of appropriately smoothed
versions of the quadratic Wigner distribution.

Definition 1.6.3 (Cohen’s Class). A time-frequency disribution Q(f,g) be-
longs to Cohen’s class if it satisfies a relation of the form

QU ) =WI(f,f)xo

for some distribution o € S'(R*®), where W(f, f) denotes the quadratic
Wigner distribution.

Without proof, we cite the following result, cf [17]:

Theorem 1.6.4. Suppose that a bilinear time-frequency distribution Q(f, g) €
LA(R?), f,g € L*(RY), is covariant, i.e.

Q(Mmef7 MwT’rf) = T(z,w)Q(fa f>7
and satisfies the weak continuity condition

QS 9)(0,0)] < e [lF] - llg

for some ¢ > 0 and all f,g € L*(RY). Then Q(f,g) belongs to Cohen’s
class. O
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With this sufficient condition, we can prove the following:

Theorem 1.6.5. The time-frequency representation TF o(f, g) belongs to Co-
hen’s class if the matriz A is of the form

A= (fBEiI)»

where B denotes any invertible matriz in R¥Y such that also B — I is in-
vertible.

Proof. In order to use the preceding theorem, we have to show, that the
stated condition on the matrix A implies covariance and weak continuity of
TF(f,g). The latter is clear from Corollary 1.2.7, since

A1~ gl
TF 0,0)] < '
ITE(f,9)(0,0)] < |det B2 - |det(I — B)[1/2

The former follows from the covariance formula of Theorem 1.5.1. We have

TFA(MnTufv MT]Tug> ({L’, w) = 627ria.sM( _pS)T(g)TFA<f7 g) ([E, (,d)

with
* I*n—I*
(5)=A (—nn> = (B*n—n(B—?)*n) = (97)
and
(5)=A7 ().
The inverse matrix A~! is given explicitely as
A= (I_IB i31) ’
which can be verified by direct computation. Therefore
(5) = ("7 5) G) = (U=Dmrbe) = (§).
Plugging this into the covariance formula above yields
TEA(M,Tof, MyTug)(w,w) = MoyT( oy TFA(f, 9) (2, w)
= (%)TFA(ﬁ 9)(z,w),

that is the property of covariance. O
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1.7 The ”Magic Formula”

In this section, we give a result that will prove to be an extremely useful
tool in the following. Several versions of this identity have appeared in the
literature, see e.g. [6] for the case of Rihacek distributions. The formula is
called "magic” since it constitutes the universal technical backbone of many
proofs in time-frequency analysis.

Theorem 1.7.1 (Magic Formula). Let f,g,¢,¢ € L*(R?), A= (Q; 1‘32) <
R2>2d qyith | det A| # 0, and z = (%), ( = (2)
Then

V(TFa(f.9), TFA($,¥)) (2,¢) = eV (f,6)(u,n)V(g,¢)(v,7),

where

and

Proof. We start on the right-hand side:

V(f,9)(w,n)V (e, ) (v,7) = (f, My Tug) (g, M, T,1))
= <TFA(f7 9)7 TFA(MnTu¢a MWTU¢>>

by the orthogonality relation Theorem 1.3.1.
The covariance formula Theorem 1.5.1 gives for the second term in the inner
product

TF4(M, Ty, M, T,0)) = 627”0'5]\/—’( 2T TFal9,¥),

with

and
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Inserting this in the inner product, we find

<TFA(f7 9)7 TFA(MUTu(bv MVva»
= <TFA(f, 9), 62”ig'sM( fS)T(g)TFA(¢,¢)>
— 27 (TR, (£, 9), M( o yT(7)TFa(6,0)) .

But this is just the same as

o 2mios <TFA(f, 9), M( _ps)T(g)TFA(gbﬂ ¢)>
= e TSV (TF 4(f, 9), TEa(6,9)((5), (£))-
The stated result now follows easily by identifying
z=(%)=(s)

and

[]

As an immediate application, we give two regularity results that will be
needed later.

Theorem 1.7.2. Let A € R*>% pe invertible and f,g € M*(R?). Then
TFa(f,g9) € MY(R*) and

ITEACS Dllarr < C -l - llgllar

for some constant C' > 0.

Proof. Let ® € S(R??). Then

ITEACS, 9)llare < C - [[Va(TEA(S, 9)) 1

Choose ® = TF4(p,p) € S(R*) for some ¢ € S(R?). Then the Magic
Formula 1.7.1 yields
Vo(TFA(f,9))(2,¢) = V(TFa(f, 9), TF (g, ¢))(2,¢)
=2V (f,0)(u,m)V (g, 0)(v,7)
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g _ A((I) —OI) 0 . g = B. 2
2 o (e ) g o)

The matrix B € R*¥*4? ig invertible, we have

| det B| = [det (A~ (§ %)) - [det ((§ ) - (A7)7)
= |det Al - | det (A1)
~ 1

with

Thus we may apply a linear coordinate transform to obtain

Vo (TFA(f, 9Dl = //R Va(TFA(f,)) (2, C)] dzdC
- //R V(£ 0) ()l - [V(g, @) (v,7)| dzd(

1
| et B //RM V(f, @) (w,m)| - [V(g, ) (v,7)] dudndvdy
=1

——

_ /R [V (f.) ()| dudy /R V(9. )(v,7)| dudy

= [V(f, o)l - 1V (g, 0)ll
< C -\ fllaar - llgllan

by Fubini’s Theorem. This yields the desired conclusion. O

The last result in this section is concerned with a local and global regular-
ity propery of bilinear time-frequency distributions that can be formulated
appropriately in terms of Wiener amalgam spaces, cf. appendix.

Theorem 1.7.3 (Local-Global Regularity Property). Let A € R??*2d pe
invertible and right-reqular. Denote B = (A™Y)*. Let f € MP(R?) and g €
MY(R?). Then TFA(f,g) belongs to the Wiener amalgam space W (FL*, LP)
and

ITEACS, Dllwerrey < C - [ fllar - llgllan

for all f € MP(R?) and g € M*(RY) (with some generic constant C > 0).
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Proof. As in the proof before, choose ® = TF4(p, ) € S(R?*?) for some
¢ € S(RY), ¢ a test function with compact support that generates a partition
of unity. The Wiener amalgam norm of TF4(f, g) is given by

1/p
ITEACS, 9w in) = (/ ITEA(f,9) - T.®5,, dz)

R2d

L —

— (/Rw I(TFA(f, g) - T.®)|, dz) 1/p

- (/de </de (TFA(f,g) - T.3)(C)] dg)p dz) 1p
_ </R (/R V(TFA(f, ), )(z,¢)| d c)p dz) p

- (/ﬂw (/de [V(TFa(f, 9), TE4(p, ¢))(z, Q|dC)p dz)l/p'

Using the Magic Formula 1.7.1, we find for the inner integral

/RQd|V(TFA(f7 9)7 TFA((pv 90))(27 C)| d¢
= [[ VUl Vel dade

with

_A A
(0) = (aitpas)

and

—A A
() = (Cealens)

The coordinate transform
—A A —A A
(3) = () = Caigisas) = (5, 762) (&) + (553)

resp.

) — Bl_llS?_Bl_lleZz o 0 B’1_11 s1 _31_1131222
( C ) - _ 721 —1 = a1 ( 3 ) + 1
2 Al s1+A; Az Az 0 At Az
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(whose tedious details are left to the reader) yields

//de V(@) G-IV (g, 9) (5) [dGudde
1

- \detA12| . \det B11|
s —A A;; w1 —81
Lo Ve (G ) dsds,
with
wy = (A — A12A§21A21)21

and
wy = (B2 — 31132_11322)22-

Note that if A is right-regular, then B is left-regular by Theorem 1.2.11, so
the coordinate transform is allowed.
If we denote

Fl(sla 82) = |V(fa 90)(817 32)|
and
F2(517 32) = ‘V(ga W)(_A22Af2151, leBﬂISQ)‘ = |(7RV(9><P))(SD 32)’
with invertible matrix

R— (7A22A1_21 0 > c R2dx2d

0 Bngfll

then the inner integral can be written as a convolution

/RMW(TFA(J”, 9), TFa(p,¢))(z,¢)] d¢

1
= ]det A12| . |det Bll| //RQd F1<51732) . FQ(U)I — 51, W2 — 82) d51d52
(Fl * F2> (wl,wg).

1
N ]detA12| . |detB11|
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Hence
ITFA(f,9) ||W(?L1,LP)

1 1/p
= |det Ay, - |det By (//RM | (Fy * Fy) (wy,ws)|P d21d22>
1

~ [ det Ap| - | det By
1
‘ | (Fy * F3) <(A“’A12A521A21)Z1> P dzydz "’
R2d ! 2 (Bi2—B11Bj;' Baz)2 1%~2 :

A similar argument as at the end of the proof of Corollary 1.2.8 shows that
both the matrices A;; — A12A2_21A21 and Bis — By 32_11322 are invertible with

det A
det(Ay — ApAy) Ayy) = ———
et(An 12455 A21) det Ay
and
det B
—_ 1 = -
det(Bi2 — Bi1By; Ba) det By

Another coordinate transform thus leads to

ITEACS, 9)llwzrr,Le)
|det A22| . |det 321| // 1/p
B Fy* F. P dwd
|det Ayo| - [det Byy| - |det A - | det B| o | (Fy * Fy) (wr, w2)|P dwidws
_ | det Ag| - [ det By |
| det A - | det By

|1 * Fyl| Lo

(note that det B = det (A™!)* = —=—). But now everything finally follows
from Young’s Inequality: obviously, we have F; € LP(R?*?) (since, by assum-
tion, f € MP(RY)) and Fy, € L*(R??) (since F, is a coordinate transform
of V(g,¢), which in turn is contained in L!(R??), because g € M'(R?) by

assumtion). Thus

Fy + Fy € LP(R*) x L*(R*) C LP(R*%)
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and

1B * Fallpe < || F1||e - || Foll o
=V (f,o)lle - 1TV (g, )| 2

1
=V (f, o)z - m”v(ga o)l

B |detA12| : |detB11|
= |V (f, )|l | det Ags| - | det By |

| det Apo| - | det By |
T | det Agy| - | det By |

£ lazz - 1lgllar-

Putting it all together, all the determinants cancel:

ITEACS, DllwerLreey < C- [ f e - llgllar,

which finishes the proof.

1V (g,9)]

45
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Chapter 2

Pseudodifferential Operators

2.1 DMotivation: Kohn-Nirenberg Correspon-
dence and Weyl Calculus

The calculus of pseudodifferential operators originated in 1965 with the work
of Kohn and Nirenberg, [27]. The fundamental idea is to generalize linear
partial differential operators in the following way. Assume

Af(x) =) aa(2)d" f(2)

laj<n

is a linear partial differential operator of order n, acting on f € S(R?). Here
a denotes a multiindex o = (ay,...,a4) € N¢ and the coefficient functions
a, are usually assumed to be C°°. Using the Fourier inversion formula, we
have

~

9*f(x) = /Rd @(w)e%iw'x dw = / (2miw)® f(w)e*™ dw,

R4

47
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hence

Af(x) =) aa(2)0f ()

laj<n

= Z aa(x)/ (QWiw)“A(w)e%i”'x dw

d
lal<n R

= /Rd ( Z aa(x)(27riw)°‘>]/”\(w)ez’””'x dw

laf<n
:/ oz, w) f(w)e*™* dw
Rd

with

o(r,w) = Y aq(z)(2riw)”

laj<n

the so-called symbol of the operator, a polynomial of degree n in w with the
coefficients being smooth functions in x. We extend this approach by allowing
as symbols much more general functions or even tempered distributions. This
leads to the following definition.

Definition 2.1.1 (Kohn-Nirenberg Correspondence). Let o € S'(R?*). The
Kohn-Nirenberg correspondence maps o to the operator o*V : S(R?) —
S'(RY) defined by

T fla) = [ ot (e g

for f € S(RY).

The distribution o is called the (Kohn-Nirenberg) symbol of the operator
ok,

We want to bring the methods of time-frequency analysis into play. As it
turns out, the Kohn-Nirenberg correspondence is closely connected with a
well-known bilinear time-frequency distribution, the Rihacek distribution.

Proposition 2.1.2. Let o € S'(R*?) and f,g € S(R?). Then

(" f,9) = (0, R(g, f))
with R(g, f)(z,w) the Rihacek distribution.
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Proof. If 0 € S(R?*), we can evaluate the integrals explicitly:

ety = [ ([ o 0T Q”if“ds)-mdx

Rd
// o(x,§) - ( Ye=2mi&e dEda
R2d
(0, R(g, )

The general case of a distributional symbol follows from this by the usual
density argument. ]

Observe that by the preceding proposition the mapping f — oV f from
S(RY) into S'(R?) is continuous (with respect to the weak+-topology on
S'(RY)). Indeed, if f, — f in S(R?), then for arbitrary g € S(R?Y) we
have R(g, f.) = R(g, f) in S(R*), thus (¢*V f,,, g) — (c"V [, g).

In the following, any linear mapping from S(R%) into &'(R?) that is continu-
ous with respect to the weakx-topology will be called a pseudodifferential

operator. This obviously includes linear continuous mappings from S(R9)
into S(R?).

There are several other ways for associating pseudodifferential operators with
distributional symbols. Probably the most prominent among these is the
Weyl calculus. This was originally devised as a quantization rule in mathe-
matical physics in the 1930s, cf. [43].

Definition 2.1.3 (Weyl Transform). Let 0 € S'(R*). The Weyl trans-
form maps o to the pseudodifferential operator " : S(R?) — S'(RY) defined

by
oV f(z) = / /R O ) Mepo Ty Meyo f () dudg
— / /R . 7 (&, u)e T, M f () dudé, f e SRY.
The distribution o is called the (Weyl) symbol of the operator oV

The Weyl transform 0" f of a Schwartz function f is a tempered distribution
acting on a Schwartz function ¢ in the sense of

(1) = [[ €T T g) dud
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Observe that
e—ﬂif-u <T—uM§f7 g> = 6—7rz'§~u <f7 M—gTu9>
= e—wzg'uv(f’ g) (U, _6)

is a Schwartz function on R* for f, g € S(R?). Thus the above is well defined
for tempered distributions o € &'(R??). In fact the following holds:

Proposition 2.1.4. Let 0 € §'(R*?) and f,g € S(RY). The action of the
pseudodifferential operator o' f on the Schwartz function g is given by

(" f.9) = (5. TFs(y. 1)),
with matriz B = (_%I I).

1
i1

Proof. We have

(" £.9) = (¢ u). e V(T 9)(w,—8) ).

A short calculation for the right hand expression yields

TV 08 = [ gt =) e
R4
Rd .
— [ ots- §>f<s oy

by the substitution s =t — 5. This last expression equals

[ 9t = 5 5)e 7 ds = TEulg, ), ) = TFaly. £)(6 ).

1
where B denotes the matrix < fII ﬁ), as claimed. ]
2

The preceding proposition gives again a close connection to time-frequency
analysis. This connection is even more striking, as seen in the following
proposition.
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Proposition 2.1.5. Let o € §'(R*) and f,g € S(R?). Then

(" f,9) = (o, W (g, 1))
with W (g, f)(z,w) the Wigner distribution.

Proof. We have o
(" f.9) = <8, TF (g, f)>

1
2! I). By Theorem 1.2.16,

with matrix B = ( 17 g

—_

TFB(.Q?f) - TFA(guf)
with B=A- (% ). Hence

This coordinate transformation gives precisely the Wigner distribution:
TFA(Q, f) = W(Q? f)7 thus

(" £.9) = (5. W(g. 1)) = (0. W (9. 1)

by Plancherel’s Theorem. O]

This representation proves in particular that o' : S(R?) — S'(R?) is in fact
a pseudodifferential operator in the sense defined above, i.e. continuous.

Thus we find that both presented classical pseudodifferential calculi can be
represented in a completely analogous fashion with bilinear time-frequency
distributions, the Kohn-Nirenberg correspondence with the Rihacek distri-
bution as

(c"Nf,g)=(0,R(g,f)),  f.g€SMRY,
the Weyl calculus with the Wigner distribution as

(Y f,9) = (0. W(g. ),  f.geSRY.



52 CHAPTER 2. PSEUDODIFFERENTIAL OPERATORS

The idea to generalize this to arbitrary bilinear time-frequency distributions
is very close at hand. This forms the content of the present chapter and will
be taken up in the next section.

We present just one more useful representation for the Weyl calculus. This
expression gives a rather explicit form of the associated operator.

/ /R oS Wm0~ g

for f € S(RY), o € S'(R*?).

Proposition 2.1.6.

Proof. Consider the Wigner distribution

Wig o) = [ oo+ D= D=y

The substitution t = x + ¥ yields

W (g, f)(z,w) = 2¢ / g(t)F (2 — et gy

R4
Now let g € S(R?). Then

(" f,9) = (0, W(g, f))

— // o(z,w) - (gd/ 9O f(2 — D™D 4t dde
R2d i
— /Rd (Qd //R% a(x,w)f(Qx _ t)€47ri(tfz).w dxdw) g_t)dt

by Fubini’s Theorem. We apply the substitution £ = 2z — ¢, i.e x = %, to
the inner integral to get

21 // o(z,w) f(2x — t)e*™ =2 dydw
R2d
N // o ; £ W) F(Qem 9 dedu
R2d
- [[ R wngencos e,
R2d
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An excellent account of the Weyl calculus and the theory of pseudodifferential
operators in textbook form can be found in Folland’s book [15]. Other good
sources for informations on pseudodifferential operators in the classic ”hard
analysis” style are the books by Hormander [23] and Shubin [36].
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2.2 Pseudodifferential Operators Associated
with Bilinear Time-Frequency Distribu-
tions

We begin our study of pseudodifferential operators with time-frequency meth-
ods. This approach has become more and more popular in recent years. On
the one hand, time-frequency distributions are naturally connected to the
classical pseudodifferential calculi, as we have seen in the preceding section.
Thus it seems equally natural to use time-frequency tools to analyse the
properties of pseudodifferential operators. On the other hand, the time-
frequency viewpoint seems to allow for avoiding some of the more technical
"hard analysis” parts of the classical machinery.

Our presentation relies heavily on some excellent expositions of time-frequen-
cy analysis and its application to pseudodifferential operators. First and
foremost, there has to be mentioned the book by Grochenig [17] and his
article [19], that served as a blueprint for almost everything that is to come.
Other inspiration was provided by [28].

Proposition 2.2.1. Let A = (4 412) € R*>2 pe invertible and o €
S'(R?%) be a tempered distribution.
The mapping f +— o f given by

(o"f.9) = (0, TFa(g. ),  f.g€SRY),

is well-defined, linear and continuous from S(R?) to S'(R?) (with the weaks-
topology).

Proof. Let f,g € S(RY). Then TF4(g, f) € S(R*) by Proposition 1.2.4,
hence the expression <0A f, g> = (0, TF a(g, f)) is well-defined. It is obviously
linear in f and conjugate linear in g. Thus for a fixed f € S(R?) the mapping
g <JA f, g> from S(R?) to C is conjugate linear. It is continuous, since if

gn — g in S(R?), then TF4(gn, f) = TFa(g, f) in S(R*?), hence

(0 f,9n) = (0, TF a(gn, [)) = (0, TFa(g, f)) = (o[, 9) -

Therefore o f € S'(R?).
Now if f, — f in S(R?), then we have for arbitrary fixed g € S(R?) that
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TFa(g, fn) = TF4(g, f) in S(R*?), which yields

(04 fn.g9) = (0. TF a(g, fa)) = (0, TFa(g. [)) = (o, 9).

hence o f,, — o2 f in the weakx-topology on &'(R¢). So the mapping f +
o f is indeed continuous from S(R?) to S'(R?), equipped with the weaksx-
topology. ]

Definition 2.2.2 (VDO Associated with a Bilinear Time-Frequency Distri-
bution). The pseudodifferential operator defined in the preceding proposition

ot SR = S'(RY), frotf
given by

<0Af,g> = (0,TF (g, f)), f,gES(}rd),JES'(RZd),

is called the pseudodifferential operator with symbol o associated
with the bilinear time-frequency distribution TF 4, or pseudodiffer-
ential operator with symbol o associated with A, for short.

We give some elementary properties.

Proposition 2.2.3 (Adjoint operator). Let o € S'(R*) and A = (4! 412) €
R24x2d pe jnyertible.

Then
G
with
T=0
and

B=(pime)=(an"a2) =00 4-(6%)
More explicitly:
(0, 9) = (f,7%g) = (B, [)

for all f,g € S(R?).
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Proof. Let f,g € S(R?) and B be given as above. We compute

TFB(fv g)(w,W) = f(BH:L‘ + Bmy)g(Ble + Bzzy)e—%riw-y dy
R4

f(AQLT/' - A22y)g<A11x — A12y)€*2ﬂiw-y dy
Rd

- /d g(AHx + A12y>f<A2117 + A22y)e2m'w~y dy
R

= /d g(Anx + Apy) f(Aaix + Axy)e 2wy dy
R

= TF4(g, f)(z,w).

Thus for 7 =7 we get
(7%, 1) = (1. TF5(/, 9))
_// 7(z,w) - TFp(f, 9)(z,w) dvdw
R2d

- //Rgd 7(z,w) - TFp(f, 9)(2,w) dzdw

/ /]Rm ) - TF a(g, f)(z,w) dvdw

(0, TFal(g, f))
= < 1.9).
]
C;)rdollary 2.2.4. Suppose A is of the form A = (§ ) with matrices U,V €
X
ﬂ;hen. o is self-adjoint for real symbols 0 = & € S'(R*?), i.e if o0 = T, then
ot = (o?)*.

Proof. Obviously, the matrix A = (ﬁ; ﬁéj ) is of the form (g ) if and only
if Aj; = Ag; and Ay = —Aj5. But this is equivalent to

(26)-A-(5 %) =A

Thus if 0 =7 € §'(R?*?), then 7 = ¢ and B = A in the above theorem and

so (04)* = 78 = g4 is self-adjoint. O
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We make a short Remark:

If the matrix A € R*»?? is invertible and of the form (¥ %, ) mentioned
above, then the matrices U,V € R%? are necessarily invertible themselves.
This follows from

det (4 %) =det (% 8) =27 (=) det U - det V # 0.

As an example, the Weyl calculus gives rise to pseudodifferential operators
1
that are self-adjoint for real symbols, since the matrix (j _211 1) of the Wigner

distribution satisfies the assumptions of Corollary 2.2.4. This nice property
is not shared by the Kohn-Nirenberg correspondence, since the matrix (f _OI)
of the Rihacek distribution does not have the required form.

In a certain sense that is made precise by the following theorem, all pseudod-
ifferential calculi associated with arbitrary invertible matrices A are equiva-
lent.

The first of the following representations is the well-known classical Schwartz
Kernel Theorem (cf. [22] or [16]), but stated for tempered distributions rather
than general ones. We will not give a proof of this special case but rather
refer the interested reader to [32], which goes back to [37], or the lecture notes
of Christoph Thiele, [38]. It can also be derived from the classical version
mentioned above.

Theorem 2.2.5 (Kernel theorem). Let T be a continuous linear operator
mapping S(R?) into S'(RY) (with the weak«-topology). Let A = (4! ﬁ;;) €
R24%24 be jnyertible.

Then there exist tempered distributions k,o, F € S'(R*) such that the fol-
lowing representations hold:

(a) as a (generalized) integral operator:
(Tf.g)=(k,gof),  fg€eSRY;

(b) as a pseudodifferential operator associated with the time-frequency dis-
tribution TF 4 with matriz A:

T = o*;

?
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(c) as a superposition of time-frequency shifts:

= // F(z,w) - M,T, drdw.
R2d

Proof. We skip (a) and proceed to (b).
Set 0 = FT 4k € S'(R??) with the tempered distribution & from (a). Then
(Tf,9)=(k,g®[)
= (F2Tuk, FoTa(g @ f))
= <0-7 TFA(.Q) f)>
=(o"f.9)
for all f,g € S(RY). So T = 0.

Finally, (c) is a special case of (b).
The vector-valued integral

_ // Fe,w) - MT, dedw
R2d

is interpreted in the weak sense to mean

(Tf,g) //Rd 2, w) - (M,T,f, g) dedw

//R (z,w) - V(g, f)(,w) dedw

(F,V(g.f))
for all f,g € S(RY). But V(g, f) = TFa(g, f) for the matrix A = ( % 7). So
simply choose F' = ¢# for this matrix A as in (b). O

Next we consider some mapping properties of the correspondence o — o*
from the symbol to the operator. We are particularly interested in the ques-
tion under what conditions o gives a bounded linear operator on L?(R?).
In the following theorems, we always assume that A = (f‘; ﬁ;i) € R%* is an

invertible matrix.

We begin with symbols in LP-spaces.
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Theorem 2.2.6. Let o € L*(R??). Let A be right-reqular.
Then o € B(L*(R?)) is a bounded operator on L*(RY) and

B _ o]z _
lo? B2 < [det(Ap)[V/2 - [ det(Ag)| /2

Proof. Let f,g € L?>(R%). Then

()| =1 [ oo TRl ) dode
< [[ ot [TFata. )0l dud

< llollzr - ITF (g, f)llze-

By assumption, A is right-regular, hence by Corollary 1.2.7,

A1 Mgl

TF s S '
ITEA(g, f)llLe < | det(A12)|1/2 - | det(Agy)|1/2

The estimate

ol

A
< ) )
|<U fag>| = |det(A12)]1/2 ] ]det(AQQ)\l/Q ||f|| ||g||

99

proves that o f € L*(R?) and o4 : L*(R?) — L?(R?) is bounded, and also

yields the norm estimate.

Theorem 2.2.7. Let 0 € L*(R?*?).
Then o € B(L*(R?)) is a bounded operator on L*(RY) and

A o]z
loZllzws < Ger apre:

Proof. We have

| <0Af7g> | = | <07 TFA(g7f)> |
<llollzz - [TF (g, f)ll 22

]
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by the Cauchy-Schwarz Inequality. Using Theorem 1.3.1 (or the remark
immediately following it), we continue

1
||C7||L2 : ||TFA(9, f)||L2 = HGHLQW : ||f|| : ||9||

This gives the desired conclusion. O

For symbols in modulation spaces, we can even prove some Schatten-class
properties. The following line of argument imitates the very elegant proof
found in [19] for the special case of the Kohn-Nirenberg correspondence.

Theorem 2.2.8 (Trace class for symbol in M1'). Let 0 € MY1(R??),
Then o € B(L*(RY)) is a bounded operator on L*(R%) and belongs to the
trace class 8*(L*(RY)) with

lolss < C - llo]lan

with some constant C' > 0 independent of o and of A.

Proof. Let 0 € MM (R?*?) = M'(R?*®) C L?(R?*?). The inversion formula for
the short-time Fourier transform implies that o can be written as a vector-
valued integral

o= //Rd Voo (z,C) - McT,® dzdC

with any ® € L?(R??).
Now observe that for all f,g € L*(R%)

<0Afvg> = <0-7 TFA(ga f)>
_ //R Vo (2, C) - (M.T.®, TF (g, f)) dedC

by the weak interpretation of the above integral.

The term (M:T.®, TF 4(g, f)) can be interpreted as ((M:T.®)*f,g), with
(M:T,®)" the pseudodifferential operator associated to the symbol M;T,® €
L?(R*?). Hence

(o%f.9) = / /R Voo (2,Q) - (McT-®)"f, g) dzdC.



2.2. WDOS ASSOCIATED WITH BILINEAR TF DISTRIBUTIONS 61

Thus
oAf= [[ | Vool Q)- (MT0)" f dedg
]R4d

as vector-valued integral in L?(R?). But this means that o4 can be written
as an operator-valued integral

o // Voo (z,¢) - (M:T,®)* dzdc,
RA4d

that is as a continuous weighted superposition of elementary operators of the
form (M:T,®)".

Let us look closer at these elementary building blocks of the integral. We
have

(MT.®)"f,g) = (MT.®, TF 4(g, f))
= V(TFA(ga f)7 CI))(Z, C)

Choose ® = TF4(p, ¢) with ¢ € L*(R?). Then the Magic Formula 1.7.1
yields

V(TFa(g, f), ®)(2,¢) = V(TFa(g, f), TFa(p, ¢))(z, )
= "2V (g, 9)(u,n)V (., 0)(v,7)
= 22 (f M T,p) (M, Tup, g)
with some u,v,~,n € R? depending continuously on z and (. This implies
(ML) f = 2752 (f, M, Tyi0) M, Top,
so the operator
(ML) s L2(RY) — LARY),  f o €255 (f, M, Typ) M, Tugp

is in fact a rank one operator, in particular a trace class operator. The trace
class norm is given by

[(MT @) |51 = (€222 (o, M, Top) My T s
= || (s, M\ Tp) My Tl
= [|M,Tup @ M, Typl|s:
= [MToell - | My T
= [lll”
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independently of (z, (). Thus

ol = / / Voo (z,¢) - (M T, ®)* dzd(
R4d

is an operator-valued integral in the space 8'(L*(R?)) of trace class operators.
For ¢ € M'(R??), we have Vpo € L*(R*), thus the integrand is absolutely
integrable with respect to the $!'-norm:

//R4d ”V<I>O'(Z7<) . (MCTZCI))AHSI dZdC
- /\/]R‘ld |V‘I>U(Za g)l ' ||(MCTZCI))A||51 dde

- //RM Voo (z,0)| - ||l dzd¢

= [Vaollz: - [l
< Cllell* - llollan
= C-loflan

with the constant C' depending only on ® resp. .
So finally o4 € 8'(L*(R?)) and

ol < [[ | War(z,0) - (MT.8) s ddg = O .

]

We also have the following generalization of a theorem that was first proved
for the Weyl calculus in [30].

Theorem 2.2.9 (Hilbert-Schmidt operator for symbol in M?). Ifo € M??(R?*) =
L3(R*), then we have o € 82, i.e. o® is a Hilbert-Schmidt operator. Fur-
thermore,

lols2 = | det A[Y* - flof|z2 < C - | det A2 - ||o][ a2

with some constant C' > 0 independent of o and of A.
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Proof. Let 0 € L*(R?). As a continuous pseudodifferential operator from
S(R?) to §'(RY), o4 can be represented by the Schwartz Kernel Theorem
2.2.5 as a (generalized) integral operator: there exists a tempered distribution
k € 8'(R*) such that

(o"f,9) = {0, TFa(g, )) = (kg @ f).
The distributional symbols ¢ and k are related by the formula
o = FT sk, or k= (IA713:2_10'.

Since F, (and F,') and T4 (and T,' = T41) are operators from L?(R??)
onto L?(R??), we conclude that k € L*(R??). But this implies that o* is in
fact a true integral operator:

(04f,9) = (k9@ f)
= //de k(z,w)g(x) f(w) dedw

_/Rd (/de;(x,w)f(w) dw)@dw

= (h, 9)

with
h(xz) = /Rd k(x,w)f(w)dw.

Thus o f(z) = h(z) and o : L*(R%) — L%(R?) is an integral operator with
kernel k € L?(R??), hence a Hilbert-Schmidt operator with norm

lotfls> = (K] >
= HTA—13F2_10HL2
1
T et A2 |
= | det A|Y2 - ||o]| 2

|55 ol

by Lemma A.3.2 and the fact that F; is unitary, Lemma A .4.2. ]
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2.3 Boundedness of Pseudodifferential Oper-
ators

We have seen in the preceeding section that pseudodifferential operators asso-
ciated with bilinear time-frequency distributions are especially well behaved
if the symbol is from a modulation space. This supports once more the folk-
loristic saying that modulation spaces are most perfectly suited for practicing
time-frequency analysis. Some more evidence for this view will be given by
the following theorem, which is the main result in this chapter.

Theorem 2.3.1 (Boundedness of WDOs). Let 0 € M°(R*) and A =
(4 412) € R*2 be invertible and left-regular.

Then the associated pseudodifferential operator o is bounded on all modula-
tion spaces MP4(R?), 1 < p,q < oo. In particular, o is bounded on L?(R?).
Furthermore, we have

||UA||B(MPﬂq)
1 1
|d€t Aglll/pl det B22|1/q | det All‘l/p’l det B12|1/q, '

< C-loflareen -

Proof. Set B = (g; g;;) = (A7Y*. By Proposition 1.2.11, A is left-regular
if and only if Ay; and Ay, are invertible if and only if B is right-regular if
and only if Bjs and By are invertible.

Let f,g € S(R?). Then

[0 f,9) | = (0. TF alg, /)|
= | (Vao, VaTF a(g, f)) |

for any ® € S(R??).
If 0 € M°1(R??), then Vpo € L°(R??), and Holder’s Inequality for mixed
norm spaces implies

| (Vao, VoTF (g, f)) | < [[Vaeo||per - [[VaTFA(g, f)llz1
< C o]y - ||V TFa(g, f)l| 1

with a constant C' depending on .
Choose @ to be equal to TF (¢, ) for some ¢ € S(R?), for instance ¢ a
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Gaussian. Then ® € S(R??).
With the help of the Magic Formula 1.7.1, we find

VoTF (g, f)(2,¢) = V(TFalg, f), TF a(, ¢)) (2, C)
= eV (g, 0)(u,n) - V() (v,7)

with
(M) =A-() = (maaee)
and
(1) =(55)-B-(4) = ().
Hence we continue

Vo TFa(g, fllLree = [V(TFalg, f), TFa(p, )| Lo

= sup ([ V(T D). TEAe o) )l )

CERQd

= sup // ©)(An12z1 — A12C2, Biaze + B11 ()|
R2d

§€R2d

AV (f, o) (A2121 — AaCa, — Baaza — Ba1(1)| dz1d2s.
Now denote by p’, ¢’ the conjugate exponents to p, ¢, respectively (i.e. such

that ]lJ + % =1 and % + & =1). Applying once more Hélder’s Inequality for
mixed norm spaces, we estimate

//R%\V(g, o) (w,n)| - [V (f, ) (v,7)| dz1dz

< ( [ ([ veownra)" d@)
- ( [ ([ voowopi)” dzz>

= IV(g, ) (w, )l o - [V (f,0)(0,7) | L0

1/¢'

1/q
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(with a slight abuse of notation). The two terms in the last line can be
estimated further:

IV(f, ) (0,9 Lra

- ( [ ([ voowapi)” dzz)

a/p
(/d ( ) \V(f,¢)(Ag121 — Apla, =Bz — Ba1(1) [P dzl) dzg>
Rd \JR

1 a/p 1/q
) (/Rd (M iy \V(f,¢)(s1, =Bz — Bai1(1) [P dsl) d22>
1 a/p 1/q
B W ' </]Rd ( o |V(f> @)(81, —Bayozy — B21C1)|p dsl) dzg)

1 1 q/p 1/q
. »y p
) | det Aoy [V/P | det Bys| Jga ( Rl V(@) (s1,52)] Sl) S

1
B | det Aoy|1/P - | det Bayo |1 AV, @) o

1
< 'C/- 7
= | det Ay |17 - | det Boy|V4 1/ || age.a

1/q

1/q

—
*

—
*

with the constant C’ depending only on ¢ and p,q. Note that in the lines
marked with (%) the coordinate changes are permitted since the matrices As;
and By are invertible by assumption.

In a completely analogous fashion, we find

1
V r < . C// . !l
H (g790>(u777)||LP T = |d€t Aﬂ’l/p/ K |det BlQ‘l/q/ Hg”Mp »d

with the constant C” depending only on ¢ and p/, ¢'.
Thus putting it all together, we have

[ (c"f,9)|

< C - ofaren - 1f [z , [P

| det Agl‘l/p| det B22|1/q | det A11|1/p'| det Blg|1/q,

with some generic constant C' that does not depend on f or g. By duality,
this proves that o4 extends to a bounded operator from MP9 to MP4. [
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With this theorem, we are finally able to strengthen considerably the Schat-
ten class results of the last section.

Theorem 2.3.2 (Schatten class for symbol in MP). Let 0 € MP(R?),
1<p<oo, and A = (‘2; 2‘;5) € R24x2d pe invertible and left-reqular.

Then the associated pseudodifferential operator o belongs to the Schatten
p-class on L*(R?), i.e. o € 8P(L*(RY)), and

lolse < C - llollazms,

where the constant C' > 0 depends only on A.

Proof. The result (together with the norm estimate) follows immediately
from Theorem 2.2.8 and Theorem 2.3.1 by using complex interpolation on
the spaces MP! = [M11 M1, and 8 = [8', B(L?)],. O

The following table summarizes this section’s results on the mapping prop-
erties of the correspondence o — ¢4 from symbols to associated pseudodif-
ferential operators with different matrices A.

’ Symbol \ Matrix A \ Operator % ‘
S'(R?) invtbl. DO S(RY) — S'(RY)
LY (R*?) invtbl., right-reg. B(L*(R%))
L*(R??) = M?(R*?) invtbl. 8*(L*(R?))
M(R*) invtbl. SY(L?(RY))
Moo (R?) invtbl., left-reg. | B(MP?),1<p< 0
MPY(rdd), 1 <p<oo | invtbl, left-reg. 8P(L?(RY))

Table 2.1: Pseudodifferential operators associated to A with different symbols
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Chapter 3

Time-Frequency Localization
Operators and the Berezin
Transform

3.1 Time-Frequency Localization Operators

Time-frequency localization operators in the form considered here were first
introduced and studied by Daubechies, [9], and Ramanathan and Topiwala,
[31]. They were used as a mathematical tool to extract specific features from
the time-frequency representation of a signal on phase space. In physics,
such operators had been around for quite a long time in connection with
questions of quantization, under the name ” anti-Wick operators” in the work
of Berezin, [3]. They had also appeared earlier in the theory of pseudodiffer-
ential operators, cf. [8]. See also the book [36] by Shubin.

The fundamental idea behind the concept of localization operator is that of
a multiplier for the short-time Fourier transform. Let f be a given func-
tion on R% a "signal” (whatever that may be). We perform an analysis by
a short-time Fourier transform with window ¢, to obtain a time-frequency
representation of f on phase space R? x R?. In order to extract interesting
parts of this representation, we may apply a time-frequency filtering proce-
dure by multiplying with a suitable "mask”, the so-called symbol, a function

69
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a on R? x R%. Finally, we do a synthesis by means of an adjoint short-time
Fourier transform (possibly with some other window ;) to get again a rep-
resentation of the filtered signal in the time domain. The whole process can
be summarized as follows:

f = Vs;kl(& ’ VSOZf) = //R;mi CL(I’,UJ) ' lef(.iE,W) MwTIQDQ d.Id(JJ

We will see shortly that this definition yields a class of pseudodifferential
operators with many interesting and nice properties, especially concerning
the boundedness on Hilbert space L?(R?) and Schatten class properties.

We start by making the above definition rigorous. Time-frequency local-
ization operators may be defined for many different classes of symbols and

windows. Most results in this section are well-known and may be found e.g.
in [4], [6] and [7].

We begin with the general case of tempered distributions as symbols. The
windows are then required to be Schwartz functions.

Definition 3.1.1 (Localization Operators as Pseudodifferential Operators).
Let a € S'(R*) and @1, 0, € S(RY). The localization operator with
symbol a and windows ¢4, @y is the pseudodifferential operator ALv%2 :
S(RY) — S'(R?) defined by

<Af“p2f7 g> = <CL, thzfv501g>

for f,g € S(RY).

The term on the r.h.s. is reasonably defined, since for f, g, o1, @2 € S(R?),
we have V,, f,V,,,g € S(R??) and in particular V,, fV,, g € S(R*¥). Further,
if f, converges to f in the topology of S(R?), then V,, f,, converges to V,, f
in S(R*), and V,, f,V,,, g converges to V,, fV,,,g. Therefore, (A91:¢2f, g) —
(Agr22f g} so the mapping A¥1¥2 : S(R?) — S'(R?) is continuous (with
respect to the usual metric topology in S(RY) and the weaks*-topology in
S'(RY)).

By the Kernel Theorem 2.2.5, we know that A?"¥2 can be written as a Weyl
operator " for an appropriate Weyl symbol o € §'(R??). We will derive an
explicit formula for . As a preparation, we will need two lemmata.
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Lemma 3.1.2 (Fourier Transform of a Wigner Distribution). Let f,g €
L*(RY). Then the Fourier transform of the cross Wigner distribution of f
and g can be expressed in terms of the short-time Fourier transform as

o —

W(f,9)(y,n) =e ™" -V(f,g)(—n,y),  for ally,neR"

Proof. The Wigner distribution W (f, g)(z,w) is just the generalized bilinear

1
Iir

time-frequency distribution TF4(f, ¢)(z,w) with matrix A = (I —ll)' By
2

Theorem 1.2.16, the Fourier transform of this bilinear distribution is given

by

—

TFA(f,9)(y,n) = TFB(f,9)(n, )

1
all
ir

with the matrix B=A- (% {) = ( ) Hence

W (£, 9)(y,m) = TF5(f, 9)(n,y)
/f——+t ( +t) e 2t

The substitution s =t — 7 yields

— Y f() g5 +1n)- o 2Ty ]
= ’””V(f,g)(—n,y)-
O

Lemma 3.1.3 (Fourier Transform of a Product of Short-Time Fourier Trans-
forms). Let f1, f2, 91,92 € L*(RY). The the following holds:

(V190 V(T2 92)) (.m) = V(i £2) (=) - Vign, 92) (=1,

for all y,n € R
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Proof. The Fourier transform yields

(Vo) - Va2 )

// V(fi,91)(z,w) - V(fa, g2)(x,w) - 2Ty ) o
R2d
= <V f17 91), (f27 g2) . 27r’i(..y+.,n)> '

Now

V(fa, g2)(z,w) - 2@yt

f2 (t)me—%riw-t dt - 62ﬁi(z'y+w"’7)
d
- / Jals + n)me_%w(HM ds - e2milzy+wn)
Rd

= / f2(8 -+ n)m€*2ﬂ'iw-s dS . eQﬂiw_y
R

= [T ) (6) TN T g (s — e 27 ds - e
R

= /I%d(MyTnfg)(S)(MyTngz)(s _ $)6—27riw~5 ds
= V(M Ty fo, My g0) (2, )

with the substitution ¢ = s + 7. Therefore

(V190 - V(For9)) :m)
= (V(f1,91), V(MyT—ana MyT—n92)>
= (f1, MyT—nf2> <917 MyT—ng2>
=V (f1, f2)(=n.y) - Vg1, 92) (=1, y)

by the orthogonality relation for the short-time Fourier transform. O

Now for the Weyl symbol of a localization operator.

Theorem 3.1.4 (Connection with the Weyl Calculus). Let a € S’'(R??) and
01,02 € S(RY). Then the localization operator A£1%2 possesses the Weyl
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symbol a * W (1, p2), where W (p1,pa) denotes the Wigner distribution of

©1, P2, in other words,
Aa<,01,$02 — UW

with
o =ax*xW(p, ) €S (R™).

Proof. Let o = ax W(p1,p2) € S'(R*). Let f,g € S(R?). Then

(™ f,9) = (o, W(g, [))
<G*W(901 902)7W(gaf)>

= (@ Wlerw) Wig D)

Parseval

_ <a,m~m)>

- <a,$—1(W(/<p1,\g02) : vﬁg,\f))> .

Parseval

Now by Lemma 3.1.2,

—

W (g, f)(y,n) =e ™V (g, f)(=n,y)

and
W(r, 22)(y. 1) = €V (o1, 2) (—11.9).
Hence
(W@Q) W(g, f ) ( (o1, 92) - V9, f))( y)
=3"< (fsp2) - V(g %))(y,n)
and

g (W(sol, p2) - W(g, f))
by Lemma 3.1.3. Thus

(" f.9) = (0. V(F.2) - Vig. o)
= (A7 1 9).

(Vo) Vig.e) (,w)
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As a general principle, if we restrict the class of symbols to some subset of
the tempered distributions, we may allow windows from a larger set than
the Schwartz functions. We consider first symbols in LP-spaces. In this case,
L?(R%) is a suitable class of windows.

Definition 3.1.5 (Localization Operators with Symbols in LP-Spaces). Let
a € LP(R*) and ¢y, 02 € L*(RY). The localization operator with sym-
bol a and windows 1,9y on L?(R?) is the bounded linear operator on
L*(RY) defined by

AZve2 f= V(0 Vi, f), f € L*(RY).

In order to make sense, this definition needs to be explained and interpreted
in an appropriate way.

Assume first that a € L>®(R??).

This yields indeed a bounded operator on L*(R%): V,,, and V¥ are bounded
operators from L?(RY) to L?(R??) and from L?(R?) to LQ(R‘}&) respectively,
and multiplication with a function in L°°(R??) is bounded L?(R?*?) — L%(R??).

We calculate
Az £ = [V, (a - Vi, I
<[V, llz2—r2 - llalloo - [[Vipa 2 r2 - 1| f]]
= [l - ll2ll - lalloo - [I£11,
so AZv#2 € B(L*(R?)) and [|AZ%2|| g2y < [[al] - lal| - |]al]oo-

The mapping A : L®(R?*) — B(L*(R%)), a — Aa := A% is a bounded
linear operator with ||Al|pe_pr2) < [e1]] - ||@2]]-

Next suppose that a € L*(R?%).

If po € L*(RY) and f € L*(RY), then V,f € L®(R*) and ||V, f|le <
I1fI] - lle2]], so V,, is a bounded linear operator from L?(R?Y) to L°°(R>?)
with operator norm ||V, ||z2—r~ < ||p2||. Multiplication with a function
in L'(R*") yields a function in L'(R*®), whereas V is the adjoint of V,,, :
L*(RY) — L>®(R?!) and is therefore bounded from L' — L? with operator
sorm V24 1112 = Vi llissi= < Il
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We estimate the operator norm of A%¥2:

AT I = 1IVE, (@ Vi, )]
< Ve ooz - lla- Vi, flh
< |IVallimsrz - lally - Ve, flloo
< leall - llzll - [lallx - [[£1];

hence again A£1%2 € B(L*(R?)) and ||AZ#2|pz2) < [lall - [lo2ll - lallr-

We denote the mapping from symbol to operator again by A : L*(R?*?) —
B(L*(R%)); the preceding estimate shows that also in this case A is a bounded
linear operator with || Al|1pr2) < |e1]] - [|@2]]-

Finally, assume a € LP(R??), 1 < p < oc.

In this case, we use interpolation. The mapping A is well-defined as an
operator from L'(R%*?) as well as from L>(R??) into the space B(L*(R%)).
On the subset L'(R%?) N L>*(R?*¥) the two definitions coincide. Using the
complex interpolation method on LP = [L', L]y, the mapping A may then
be extended to a bounded operator A : LP(R??) — B(L?(R%)) on each of the
intermediate spaces LP(R??) | 1 < p < co. The theorem yields the following
estimate for the norm:

1Al oo szz) < (el 2l (Hlenll - 2l - llall,
< [leall - ll@all - llallp,

where the constant 6 € [0, 1] depending on p cancels in the end. In this way
we can explain the localization operator A% also for symbols a € LP(R??)
as

A f = (Aa)(f),  fe LX(RY).

The preceding considerations give rise to the following

Corollary 3.1.6. Let a € LP(R*), 1 < p < oo, and o1, ps € L*(R?). The
localization operator A?V%% satisfies the norm estimate

1AZ-2 FI < Mlenll - Hleall - llallp - |1]]
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for all f € L*(R?). Equivalently,

AT 2 B2y < ll@all - [lpall - [lall,

and
[Allr L2y < lleall - [zl
O

In case of LP-symbols, we can prove even more than mere boundedness.
These operators satisfy certain compactness and Schatten p-class properties.

Lemma 3.1.7 (Compactness for Symbols with Compact Support). Let a €
L>®(R?) have compact support, i.e., there is a compact set K C R* such
that a(z,w) = 0 for (z,w) € R?*\ K almost everywhere. Let o1, ps € L*(R?).
Then the localization operator A?v¥2 € B(L*(RY)) is a compact operator on
L*(RY).

Proof. Denote by

M, : LA(R*) — L2(R*), F(z,w)— (M,F)(z,w) = a(z,w) - F(r,w)

the multiplication operator with the function a. Since a is bounded by as-
sumption, M, is a bounded operator. We have

P1,p2 __ *
AL = VX 0 M, 0V,

thus it suffices to show that M, oV, , is compact.

Let (fu)nen be a sequence in L?(R?) that converges weakly to zero, f,, — 0
for n — oco. We will show that A%*#2f, — 0 in the norm for n — oo.

To this end, consider a - V,, f,. Since a € L>(R*!) and V,, f, € L*(R*),
a- Vi, fn € L*(R*). The norm is given by

o Veshulle = [ ot ) - Voo ) P s
~ [[ latel Wt dee



3.1. TIME-FREQUENCY LOCALIZATION OPERATORS 7

We have for every (z,w) € K

|a(m,w)|2 ' |V¢2fn(m7w)|2
< Mallfe - [ {fu, MuToo) 2

-~

— 0
n—r oo

— 0,

n—o0

since f, —= 0, i.e. (fn,g) — 0 for every g € L*(R%).

Thus the integrand converges to zero pointwisely on K.

Furthermore, weakly convergent sequences are norm bounded, i.e., there is a
constant C' > 0 such that ||f,|| < C for every n € N. Thus

la(@, W) Vo ful@, w)[*
< lalZ - [leal* - || fal®
< % lallZ - [lgal®
€ L'(K)

is an integrable majorant over K independent of n.
Hence
Ha'v<,02an2_>O7 n — 0o,

by the Dominated Convergence Theorem, that means a -V, f, — 0 in

L*(R*%). But then also A?#* f, =V (a-V,,fn) = 0 in L*(R?). O

Theorem 3.1.8 (Compactness for LP-Symbols). Let a € LP(R?*?), 1 <p <
0, and Y1, P2 € L2<Rd>
Then the localization operator A?-%* € B(L*(R?)) is a compact operator on

L2(RY).

Proof. For every N € N, set
Ay = {(z,w) € R*|[a(z,w)| < N and ||(z,w)|| < N}.

We have Ay C Ay, for all N € N and UyenAy = R,
Now set
ay(z,w) = a(z,w) - Xay, N e N,

where x4, denotes the characteristic function of the set Ay. Then ay €
LP(R?*¥) N L>(R?*?) and has compact support. Thus the localization operator
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A¥1#2 is a compact operator by Lemma 3.1.7. Furthermore, ay — a in L?,
ie. limNﬁoo HCLN — CLHLp =0.
Now obviously

Aéol s02f A@l <P2f — Afi’;p;
for all f € L*(RY), thus
[|AZ1#2 — AD 22| g2y < [la — an]|e - [lea]] - [[02]| = 0

for N — oo, by Corollary 3.1.6. So A¥"¥2 is a uniform limit of compact
operators and therefore compact. O]

Theorem 3.1.9 (Schatten Class for LP-Symbols). If a € LP(R*), 1 <p <
o0, then A91%2 € 8P(L*(R?)), the Schatten p-class, and

1AZ 2 lse < llalle - [loa]] - [l2]]

Proof. From the discussion above resp. Corollary 3.1.6, we know that if
a € L®(R?*), then A¥¥2 € B(L*(RY)) = 8*°(L?(R?)) and

AT 2 |se = [AZV* || B2y < llallree - [loall - [[p2l-
That means that the mapping A : L™ — 8%, a — Aa = A?%? is bounded
linear with norm

A Lo soe < [epn]] - [l2]]-

Next consider a € L'(R??). To show that A?1#2 is a trace class operator we
use the criterion in Theorem A.7.9.

By Theorem 3.1.8, A?'¥2 is a compact operator.
Let (ex)ren be an arbitrary orthonormal basis of L?(IR%). Then

D (A ey, e) |

keN

_Z|<V* a - €k),€k>‘

keN

= Z | (@ Viyer, Vi ex) |
keN

= Z |/ a(x,w) - V(eg, p2)(z,w) - Ve, ¢1)(x,w) drdw|
keN VR

<X [ lalw)l Wiewga)aw)l - Vien o) o) dods,

keN
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Since all the integrands involved are nonnegative, we may change the order of
summation and integration by Fubini’s resp. Tonelli’s Theorem to continue

S [ Jate)l - IView o)) - IVess )] di

keN

- /R2d |a(z,w)| Z [V (ex, p2)(z,w)| - [V (ex, p1) (2, w)| drdw.

keN

Now, using the Cauchy-Schwarz Inequality,

> [Vier, p2) (@, w)| - [Vier, 1) (z,w)|

keN
1/2 1/2
< (Z IV(ek,wa)(%w)V) : (Z IV(ek,wl)(:v,W)F)

keN keN
1/2 1/2
_ (z e M) 12) . (z e M) |2)
keN keN
= ||Mwa902|| : ||Mwa901||
= ||<P2H : H901||

since (eg)ken is an orthonormal basis.
Hence

> (A #2e; 1) |

keN
< [ late.w)ldode gal - ol
= Jlallzs -l el
By Theorem A.7.9, we conclude
Aper & 81 (I2(RY)
and

14T llse = sup Y [{AF2ep,en) | < llallis - el - llall-

(er)ren ONB keN
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That is to say that the mapping A also satisfies A : L'(R??) — 8'(L*(R?))
with

[Allz1sst < [leall - [l
Finally, for a € LP(R?*?) we use again complex interpolation between Lebesgue

spaces LP on the one hand and Schatten p-classes 8P on the other hand. We
thus find that Aa = A?1¥2 € 87(L*(R?)) for a € LP(R?*?) with norm estimate

Ml sse < AL S0 - A5

= (leall - llal)” - (lenll - T < 2l)*="

= [loall - Iz
with [Ll, Loo]9 = Lp’ {81,800]9 = 8P,
So
AT 2 |lse = || Aallse < [[Allp—so - |lalle = [loal] - [[2]l - llal| e

]

Finally, we want to look at symbols taken from modulation spaces. We expect
once more that modulation spaces behave nicely as symbols for localization
operators, in view of the very definition of these operators in terms of time-
frequency analysis. The next two theorems show that modulation spaces
indeed meet our expectation. The modulation space M'(R?), Feichtinger’s
Algebra, turns out to be the appropriate window class.

Theorem 3.1.10 (Localization Operators with Symbols in Modulation Spaces).
If a € M>®R*) and ¢1,pa € MYRY), then A?2¥2 is a bounded opera-
tor on all the modulation spaces MP4(R?), 1 < p,q < oo, in particular on
L*(RY) = M?2*(RY). Furthermore,

| AZ || Barpay < C - allageon - [[rllar - |02l ar -

Proof. We know that A?1%2 = oW for 0 = a * W (g1, ¢2) by Theorem 3.1.4.
We will show that under the given assumptions we have o € M°!(R??) The
result then follows from Theorem 2.3.1 applied to the Weyl calculus (note that
the Weyl calculus is associated to the Wigner distribution, cf. Theorem 2.1.5;

1
this is the bilinear time-frequency distribution with the matrix (; _211 I),

2
which is left-regular, thus Theorem 2.3.1 is applicable).

In order to show o € M°1(R?*) we prove a
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Lemma 3.1.11 (Convolution Relations for Modulation Spaces I). We have
M>R?) « M'(RY) € M~ (R?)

and
1f * gllareer < C - [ fllare - [lgllar

for f € M>(R%) and g € M*(R?).

Proof. Let f € M*®(RY) and g € M*(R?). Let ¢ € S(RY) and ® = ¢p* ¢ €
S(RY).
Then

1 * gllares < C- [V (f % g)|zoen
=C / sup |V (f * g)(x,w)| dw.
R

d xeRd

We use the (easy to prove) identity

Viyh(z,w) = ™2™ (h x M, 3))(x)

for the short-time Fourier transform, where 9)(t) = ¢)(—t) denotes the usual
involution. Then

Vo (f * g)(z,w)| =

with help from Lemma A.2.6 and the commutativity of convolutions.
Thus for fixed w € R?

sup |V (f  g)(w,w)| = [|(f * M) * (g % M) || 1~

zER4
< Hf * Mw¢HL°" ’ Hg * ngbHLl
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by Young’s Inequality.
The first term can be estimated by

1f * Mod |z = sup |(f * M¢)(z)|

zcRd

= sup [Vy f(z,w)|

rcR4
< Vs fllee
< C | fllme

with C'= C(¢). So we find

/R sup Vo (f * 9)(z, )| dw

d xcRd

<C il [ llg* Moo e
R

=l [ [ Wagler)] dod
R JRR4

< C [ fllae - lgllan
< o0

with some generic constant C'.
This concludes the proof of the lemma. O

Now observe that W (g1, p2) € M (R?*?) since ¢y, 2 € M*(R?), by Theorem
1.7.2. Thus the lemma yields

a*xW(p1,p2) € MOO(]RM) % Ml(RQd) C Moo’l(RZd),
so the theorem follows. The norm bound comes from

[AZ12 | pearmay = [[(@ % W (@1, 02))" || B(arra)
< C - la*x W(p1, 92)|laree
< C-lallaree - [W (1, p2)[[an
< C-lallars - [[prllan - [[p2llan

by the respective estimates in Theorem 2.3.1, Lemma 3.1.11 and Theorem
1.7.2. ]
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Observe that MP>®(R?!) C M (R*) = M>(R?*) for all 1 < p < oo,
thus localization operators with symbols in MP>(R??) are well defined by
the preceding theorem. For these operators, the following Schatten class
property holds.

Theorem 3.1.12 (Schatten Class for MP>°-Symbols). If a € MP>(R??),
1 < p < oo, then A?v¥2 € 8P(L*(RY)), the Schatten p-class.

Proof. Assume first that a € M»*°(R*)). We will show that A¥2 €
8Y(L*(R?)) is a trace class operator.

Again, we use A¥1%2 = oW for ¢ = a x W(p1,92) by Theorem 3.1.4. By
Theorem 2.2.8, ¢V is trace class if 0 € M(R?*?). For ¢, p, € MY(R?), we
have W (i1, p2) € M1(R??) by Theorem 1.7.2. Hence the statement is proved
once we have shown the

Lemma 3.1.13 (Convolution Relations for Modulation Spaces II). We have
MY>(RY) « MY (RY) € MY (RY)

and
1 * gllar < C A fllarree - llgllar
for f € MY (R?) and g € M (R?).

Proof. The proof is very similar to the proof of Lemma 3.1.11.
Let f € MM>°(R?) and g € M'(RY). Let ¢ € S(RY) and ® = ¢ x ¢ € S(RY).
Then

If % gllan < C - |[Va(f * gl

=C- // Vo (f *g)(z,w)| drdw

:C'//de| (f % M) * (g % M) ()] dadew

completely analogous to the argument in Lemma 3.1.11.
Now for fixed w € R?

[ M.0) 5 (0 M) @) i = [+ Ma) (9 Mo

< Hf * Mw&HLl ’ Hg * MwQNSHLl
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by Young’s Inequality.
The first term yields

I Mol = [ 17+ M) @] da
= / Vo f(x,w|dx
R4

< sup |V f(x,w| dz
weRd JR4

= Vo fllzree
< C - fllaos

with a constant depending on ¢. We conclude

[ valt s )] dnce
R2
<l [l Ml do
R

= C il [ [ Waglow)lds
R4 JRR4

<[l -l

< o0

with some generic constant C'.
The lemma is thus proved. O

Therefore we have
axW(p1,p2) € Ml’oo(RM) * Ml(Rm) - Ml(RM)a

hence A?1¢2 € 8Y(L2(RY)) for a € M1>°(R?).

Now by the preceding Theorem 3.1.10, we also have A¥1¥2 € B(L*(R%)) =
8<(L*(RY)) for A € M*>>°(R*) = M>(R?*). By complex interpolation
between the Banach spaces M5 (R2?) and M°>>°(R??) on the one hand and
SYH(L*(R?)) and 8*(L*(RY)) = B(L*(R?)) on the other hand, we find that
Agre2 ¢ 8P(L2(R?)) for symbols a € MP>(R?*), as claimed. O
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Remark: A more general theorem on convolution relations between mod-
ulation spaces, that contains both lemmata used above in the proofs of the
last two theorems as special cases, can be found in [6]. In this context, also

[39] and [40] are of interest.

The following table summarizes this section’s results on the mapping prop-
erties of the correspondence A : a — A?:%? from symbols in different classes

to localization operators.

’ Symbol \ Windows \ Localization Operator ‘
S'(R*?) S(RY) UDO S(RY) — S'(R?)
L>(R*) L*(R?) B(L*(R))

LP(R?), 1 <p< oo L*(RY) SP(L?(R?))
Mo (R*) MYR?) | B(MP(RT)), 1 <p,q < 00
MPR(R*) 1 <p<oo| MYRY 8P(L*(RY))

Table 3.1: Localization operators with different symbols and windows
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3.2 The Berezin Transform

The Berezin transform is of great importance in complex analysis or more
precisely in the theory of Hilbert spaces of analytic functions, e.g. Bergman
spaces, see for example [20], or Hardy spaces, see for example [11]. It acts on
bounded operators on these spaces. Assume H is a Hilbert space consisting
of analytic functions on some open set {2 C C, which allows a reproducing
kernel, i.e. for every z € (), there is a K, € H such that f(z) = (f, k.)
for every f € H. Let T be a bounded operator on H. Then the Berezin
transform of T is the complex-valued function on 2 defined by

BT(2) = (Tk., k), z€Q.

We define an appropriate analogous version of the Berezin transform for our
purposes, acting on bounded operators on L?(R?).

Definition 3.2.1 (Berezin Transform). Let T € B(L*(RY)). Let @1, ¢ €
L*(RY). The Berezin transform B maps T to the function on R

BT(z) := (T7(2)ps, m(2)e1), z € R*,

Note that although the Berezin transform depends on the choice of the win-
dow functions 1, ¢, € L?(RY), we prefer to omit this dependence notation-
ally by simply writing B (rather than for example 5¢:¥2). This practice will
in general not lead to any confusion.

For convenience and further reference, we give a representation of BT that is
valid for operators that can be written as a strongly convergent series of rank
one operators. We will make frequent use of this formula in the following.

Lemma 3.2.2. Let T € B(L*(R%)) be of the following form: there exist
some orthonormal systems (gn)nen and (hp)nen in L2(RY) and a (necessarily
bounded) sequence of complex numbers (S, )nen Such that

Tf:ZSn-<f,gn>hn:ZSn-(hn®gn)(f)

neN neN

for every f € L32(RY) (where the series is required to converge in L*(RY) for

every f).
Then

BT('Z) = an ’ V@lhn(z> ’ V<P2gn<z>

neN
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for every z € R?4.

Proof. We compute

BT (z) = (T'm(2)pa, m(2) 1)

— <Z S - (T(2)02, Gn) Iin, 7T(Z%01>

- Z Sy - (T(2) @2, gn) * (i, T(2) 1)
neN
= " sn Vagn(2) - Vi ha(2).

]

Note that the assumptions of the lemma are in particular satisfied for opera-
tors belonging to some Schatten p-class, 1 < p < oo, since for these we have
the singular value decomposition

with (gn)nen, (An)nen orthonormal systems and (s, ),en the sequence of sin-
gular values, s, > 0 for all n € N and (s,,) € ¢° for T € 8?(L?*(R?)).

Theorem 3.2.3. The Berezin transform B defines a bounded linear operator
from B(L*(RY)) into the space Cy(R*)) C L>°(R??) of all bounded continuous
functions on R?*®, with norm estimate

1Bl 5(z2)-roe < llpall - llpall

Proof. The function BT'(z) is bounded, since

BT (2)| = [ {T'7(2)@2,m(2)¢1) |
< | TllB2 - 7 (2)eall - [I7 ()@l
= 1Tl - lleall - leall

for all z € R??, hence

IBT || e < [T Bz2) - ol - [l 2
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and thus
1Bl B2y < llall - [l2]]-

It is continuous since for arbitrary ¢ € L*(R?) the mapping z +— 7(2)yp is
continuous from R?? to L?(R%). O

Now consider the Berezin transform restricted to the set 8!(L?(R%)) of trace
class operators.

Theorem 3.2.4. The Berezin transform B is a bounded linear operator from
SY(LA(RY)) to L*(R??) with operator norm

1Blstr < floall - [l2]l-

Proof. Let T € 81(L?(R?)) be a trace class operator. Then T has a spectral
representation of the form

Tf=Y si{fio) e, feL*(RY,
K

with (gx)ken, (Ar)ken some orthonormal systems, and (s )ren the sequence of
singular values of T', s, > 0, >, . sk = ||T||s1 < oo. The series converges in
the norm of L*(R?). Using Lemma 3.2.2, we calculate

//Rm |BT'(2)|dz = //RM | zk:skvmhk(z)m| d
< //2d > sk Vi hie(2)Vioy gk (2)| dz
Rk
2 S [ Wl Wt

< sk IV hullraeay - Voo il 2(zee)
k

Cauchy-Schw.

= llenll - ligall - D s
k

= [leall - llo2ll - Tt < o0,

where Fubini’s Theorem and the Cauchy-Schwarz Inequality were used at
the indicated places. Hence BT € L'(R*?), and B : 8'(L?(R%)) — L'(R*) is
bounded with the stated norm estimate. O
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Once again, we use the preceding two Theorems 3.2.3 and 3.2.4 as the end-
points of a complex interpolation with LP = [L!, L>°]y and 8 = [8',8%], =
(8!, B(L?)]y and find the following theorem:

Theorem 3.2.5. Let 1 < p < 0.
The Berezin transform defines a bounded linear operator

B : 8"(L*(R?) — LP(R*)

with operator norm
[Bllsp—re < llell - [[ep2]]-

Proof. Complex interpolation yields the result and also the norm:

1Blse—rr < 1Bl - 1Bllgx", o
0 -0
< (||901|| ) ||902H) ) (H%H : ||S02||)1
= H%H ) H%H

]

If we assume ¢, 3 € M (R?) for the windows, we can considerably strengthen
Theorem 3.2.4.

Theorem 3.2.6. Let ¢, € MY (R?). Let T € $(L*(R%)). Then BT €
MY(R?%), and the operator B : 8*(L*(R%)) — M (R??) is bounded with norm
estimate

1B \[arr < C - llpallar - l@allar - [Tt
for all T € 8'(L*(R?)).

Proof. Assume T € 8'(RY).
By Lemma 3.2.2 we have

IBT()llar = 1Y 80 Vi hw(2) Vi gi(2) [l

neN

< s Vil (2)Vipo 91 (2) a1

neN
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where (sp)nen € €', 5, >0 for all n € N and ||T||s: = D", cn Sn-

Observe that L2(RY) = M?(R?) with equivalent norms. By Theorem 1.7.3,

both the functions V,,, h and V,,,gx, are in the Wiener amalgam space W (FL', L?)(R??).
Thus their product V,,, it V,, g is in the Wiener amalgam space W (FL', L')(R??) =
M*'(R2?), by the version of Hélder’s Inequality for amalgam spaces, with

norm

Vi, btV gicllarr < C - Vs it Vo gl lwr ity
< C - Vo hillwigr,zzy - Vs gellw g,z
< C - hiellarz -l llarn - [lgrllarz - (o2l arn
<O ez -l llarn - lgrllzz o2l an
— 7
< C - leallar - llpzllan

with a suitable generic constant C' > 0. So

BT (2)la <D sn - Vi ha(2) Vo gi(2) [l

neN
< Cerllar - llpallan - > s
neN
=C lellan - llezllar - [T
< 0.

So BT € M*(R??) and the theorem is proved. O

Some more mapping properties of the Berezin transform with windows in
M*(R?) will be shown in the next section, where additional tools will be at
our disposal.

The relevance of the Berezin transform comes from the following observation.

Theorem 3.2.7. Let T € $?(L*(R%), 1 < p < oo, and a € LI(R*), 1 <
q < oo, where p and q denote conjugate exponents % + % =1.
Then

(Aa,T) = {(a,BT) .

(Here the left brackets denote the 81-8° duality, whereas the right brackets
denote the L1-LP duality.)
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Proof. Consider the case T' € 8'(L*(R?)) and a € L>*(R?) first.
We have

(Aa,T) = (A2V#2,T)

= tr(T" o A¥1¥2), where tr denotes the trace,
= Z Yo APH¥2)e, )

neN
= (Af#2e,, Te,)

neN

for an arbitrary orthonormal basis (e, )nen of L?(R?) (all such bases yield the
same sum).
Now look at the singular value decomposition of T,

T = Zsk ., i) P,

with (s;) € ¢'. The orthonormal system (gi)x can be completed to an or-
thonormal basis (g, )nen of L?(R?). We obviously have Tg, = sphy for gp a
member of the original collection (g)x, whereas T'g,, = 0 for all g,, that were
joined to the original system (gx)x to form a complete basis. Thus, choosing
the orthonormal basis (g, )nen for (e, )nen above, we get

Z <Agl"p2en> Te,) = Z <A§1"p2gn7 Tgy,)

neN neN
=) (A2, Ty
k

=) (AL gy, sihi)
k

= s (A2 gy, )
k

The inner product can be written as

(AZv22 gy, hy) = < o1 (a- Vi gr), hk>
CL VGD2gk>V<P1hk>

// Vesth(2) - Vo) =
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Hence we find

(Aa,T) = Zsk // Voo G (2) - Vi hi(2) dz.
R2d

To justify a change of order of summation and integration, we have to check
the assumptions of Fubini’s Theorem:

Z//Rmsk | Vo gr(2)] - Vi ha(2)] dz
< Zsk -Nal| pee //2d Voo 0k (2)] - |V hie(2)| dz

>l Vil - Vi

Cduchy Schw.

lallzo - Wl - [lgell -llnll - 7] Ek: K

=1 =1
= llallz= - ll@all - llall - [T |5
< Q.

Thus Fubini’s Theorem is applicable and yields

Y- [ o) Vo) - VoG
://de“(Z)‘gsk"/@zgk(ﬁmdz

- / /de alz)- <Z sk + Vi hu(2) -m) dz
//de BT (z) d=

(a, BT)

in the sense of L>-L! duality, by Lemma 3.2.2.

Now consider the case T' € 8P(L*(R%)), a € LI(R*), with 1 < p,q < oo,
Sto=1

We cannot immediately repeat the above computation, since now Fubini’s
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Theorem is no longer allowed at the appropriate spot. However, if we re-
strict at first to operators T = S0 sp - (s, gi) by, of finite rank and functions
a € S(R*) C L1(R*?), the computation can be performed completely analo-
gously and yields

N
Zsk (A9, hk>

(Aa,T) =
k=1
N
=> s // 2) - Viygi(2) - Vo hie(2) dz
1 R2d
Fub. R2d
(a,BT) .

Now use the fact that S(R??) is dense in L(R??) for 1 < ¢ < co. So for every
a € LI(R??) there is a sequence (a,)nen in S(R?*?) that converges to a in the
Li-norm:

lim ||a, — al|r« = 0.

n—oo

Similarly, every Schatten p-class operator T' can be approximated in the
S8P-norm by a sequence (7T}, )men of finite rank operators:

Ty [T, — Tl = 0.
So
(Aa,T) = <A(li7rln an),li;LnTm>
= <li1£n(,4an),linrln Tm>
= Ln}nl (Aan, Trn)
= Ernrll (an, BT,,)
= <li£n an,lién(BTm)>
= (a,BT) ;

here we used the boundedness of the operators A : LP(R?}) — 89(L2(R?))
and B : 8P(L*(R%)) — LP(R??) and the joint continuity of the dual pairings
(o, 0) of 87 and 8 resp. L9 and LP. ]
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The following is then a simple corollary of Theorem 3.2.7.

Theorem 3.2.8. Let 1 < p < oo and q be the conjugate exponent with
l1<qg< andé—l—ézl.

The operator A : LY(R?*?) — 89(L*(RY)) is the Banach space adjoint of the
operator B : 8P(L*(RY)) — LP(R??), i.e. B* = A.

Proof. Note the dualities L¢(R??) = (LP(R??))* and 87(L*(R%)) = (87(L*(R%)))*
for 1 < p < oo (but not for p = oo, ¢ = 1!). If B : SP(L*(R%)) — Lr(R??),
then B* : 8P(L*(RY)))* — (LP(R?*))*, so B* : LI(R*) — 8¢(L*(RY)). The
adjoint of B is the uniquely defined operator B* such that

(BT, a) = (T, B*a)
for all T € 8P(L*(RY)) and all a € L9(R?*?). But by Theorem 3.2.7,
(BT, a) = (T, Aa)
for all T € 8P(L*(R?)) and all a € L9(R?*?). Hence
B = A.

]

If 1 < p < oo, then LP(R?*¥) and 87(L*(R?)) are reflexive spaces, thus in this
cases we also have

Theorem 3.2.9. Let 1 < p < oo and q be the conjugate exponent with
l<g< o and%—i—%:l.

The operator B : 8P(L*(RY)) — LP(R??) is the Banach space adjoint of the
operator A : LY(R??) — 89(L*(R%)), i.e. A* = B.

Proof. The statement is clear by the remark preceding the theorem about
the reflexivity of the involved spaces. m



3.3. AUXILIARY RESULTS 95

3.3 Auxiliary Results

In this section we present (partly without proofs) some results that will be
needed in the sequel.

First, we will need two other versions of the Kernel Theorem 2.2.5. The first
one concerns the particular case of Hilbert-Schmidt operators.

Theorem 3.3.1 (Kernel Theorem for Hilbert-Schmidt Operators). Let T’ €

8%(L*(RY)). Then there exists a unique kernel function o € L?*(R*?) such
that

(Tf.9) = (o, W(g,]))
for all f,g € L*(R%). (W (g, f) denotes the Wigner distribution of g and f.)

Proof. We first prove existence.
If T € 82(L?(R%)), then there exist orthonormal families (g, )nen and (g, )nen
in L?(R?) and a sequence (s, )nen in £2 such that

T = Z S (o, Gn) .

This implies that for all f, g € L*(R?)

(Tf,g) = <Z Sn (f2 9n) hn,g>
= Z Sn <f> gn> <hn7g>
=S s @G g @ T)

with the last inner product in L?(R??). The family (h, ®Jy )nen is orthogonal
in L?(R?%), thus the series

Z Sn(hn ® Gn)

n
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converges in L?(R??) to some function k € L?(R%*?), because (s,) € (2. We
conclude

(Tf.9) = (kg@T)
= (FTak, F:Talg® T))
= <3’27Ak; W(gv f)>

for A = (I o ) Denote F,T 4k by o, then obviously o € L?(IR??), since J

I -1r
and T, are unitary operators from L?(R??) onto L?*(R??), and

(Tf,9) = (o, W(g, f))

for all f,g € L*(RY).
Now assume that o, 7 € L?(R??) such that

(0. W(g, [)) = (1. W(g, [))
for all f,g € L*(R?). Then

<O'—T,W<g,f)>20

for all f,g € L*(RY). By Proposition 1.2.2, the set {W (g, f)| f,g € L*(R%)}
is a complete subset of L?(IR??), hence

o —7=0in L*(R*).
This shows uniqueness. O
The second one is a kernel theorem for modulation spaces. The proof can be
found for example in [17], Theorem 14.4.1, or in [13].

Theorem 3.3.2 (Kernel Theorem for Modulation Spaces). Let T : M*'(R?) —
M>=(R?) be a bounded linear operator. Then there exists a unique o €
M (R??) such that

(Tf,9) = (o, W(g, f))

for all f,g € MY (R?) (with W (g, f) the Wigner distribution of g and f).
]
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Using this theorem, we are now able to complement Theorem 3.2.6 and
prove some more mapping properties of the Berezin transform with windows
o1, 02 € M'(RY).

Theorem 3.3.3. Let 1,00 € MY(R?). Let T € B(L*(RY)). Then BT €
M1 (R*) and

IBT [|areen < C - llallagr - llpallar - 1T | 5ee2).
Proof. Since M*(RY) — M?*(R?) = L*(R?) — M>(R?) with continuous
embeddings, every T' € B(L?*(R?)) can be considered as a bounded operator

T : MY (RY) — M>(R%). By the Kernel Theorem 3.3.2, there is a unique
o € M*(R??) such that

(T'f,9) = (0. W(g,[))
for all f,g € M'(R?). In particular,

BT (z) = (T7(2)pa, m(2) 1)
= (o, W(m(2)pr, m(2)2))

for all z € R??. Now a short computation shows

W(r(2)p1, m(2)p2) = T.W (1, p2),

hence
(0, W(m(2)p1, m(2)p2)) = (0, TW (01, ¢2))
= [ otw) - Wlorza)to =) du
= (7 Wlpn ) ()
with

—_—

W (1, p2)(w) = W(ep1, p2)(—w)
the usual Fourier involution.
By Proposition 1.7.2, W (g1, ¢2) € M1(R?*?),if ¢y, 0 € M'(R?), thus Lemma
3.1.11 yields

BT c MOO<R2d> " M1<R2d> g MOO’I(R2d)

with the stated norm estimate. O]
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As usual, complex interpolation for
SP(L*(R7)) = [8'(L*(RY)), B(L*(R"))]s = [8'(L*(R7)), 8= (L*(R"))]s
and
MPAR) = [M(R™), M ()] = (MM R), M ()]
allows us to conclude the following

Corollary 3.3.4. Let 1,02 € MY(R?) and1 < p < oo. Then B : 8?(L*(R?)) —
MPY(R?Y) 4s a bounded operator with

IBT [|arer < C - lloallar - lleallar - [T [se
for all T € 8P(L*(RY)), with some fived constant C' > 0.

Proof. The endpoint results for the complex interpolation are given in The-
orem 3.2.6 and Theorem 3.3.3. 0

Next, we show a version of the famous theorem of Tauber. Whereas the
original result (with rather difficult proof) is concerned with functions in L!,
we content ourselves with proving the statement for the much more trivial
case of L? functions.

Theorem 3.3.5 (Tauberian Theorem for L*(RY)). Let f € L*(R?). Then
span{T, f| = € R} = L3(RY) if and only if f(w) # 0 for almost all w € RY.

Proof. The span of {T.f| z € R%} is dense in L?(R?) if and only if
(g, T.f) =0 for all z € R? implies g=0.

Now

.10 = [ o) T2
= [ ot TG = a

= [ ot Fe =
= (9% f)(2)
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with f (t) = f(—t) the Fourier involution.
Hence
(g, T.f) =0 for all z € R?

is equivalent to 3
(g% f)(2) =0 for all z € R,

which in turn is equivalent to

o~

G(w) - f(w) = 0 for almost all w € R?

by the Fourier convolution theorem.
Thus the span of {T, f| = € R?} is dense in L?(R?) if and only if

~

G(w) - f(w) = 0 for almost all w € R? implies g =0.
But this is clearly satisfied if and only if

f(w) # 0 for almost all w € R :

~
-~ ~

If f(w) # 0 almost everywhere, then g(w) - f(w) = 0 almost everywhere
implies g(w) = 0 almost everywhere, hence g = 0 in L?(R?) and so g = 0 in
L2(RY).

If, on the other hand, f(w) = 0 on a set of positive measure, then in particular
F(w) = 0 on a set A of positive finite measure, say 0 < |A| < 1. If we
choose g such that § = x4 € L?(R%), the characteristic function of A, then
Jw) - f(w) = gw) - f(w) = 0 for almost every w € R, but g # 0 and so
g # 0in L*(RY). O

For reference, we state the classic Tauberian Theorem for L' without proof.
Observe the slightly stronger condition f(w) # 0 for all (instead of almost
all) w in this case.

Theorem 3.3.6 (Classic Tauberian Theorem for L'(R?)). Let f € L'(R?).
Then span{T.f| z € Ri} = LY(R?) if and only if f(w) # 0 for all w € RY.
U

Finally, we will need an extension of the preceding theorem to the modula-
tion space M'(R?). It turns out that the classic Tauberian Theorem holds
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unchanged in the case M'(R?) C L'(R?). The proof (which is once more
not given) is based on very general statements about ideals in so-called Segal
algebras that can be found in the monograph [33] by Reiter. (Note that the
modulation space M*(R?Y) is a particular case of a Segal algebra in L'(R?).)

Theorem 3.3.7 (Tauberian Theorem for the Modulation Space M!(R?)).
Let f € MY (R?). Then the subspace span{T.f| z € RY} C M*(R?) spanned
by all the translates of f is dense in M*(R?) (with respect to the norm topology
induced by || - |ann) if and only if f(w) # 0 for all w € R%.

U
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3.4 Density Results

This section contains the main results of Chapter 3. We investigate the
possibility of approximating a given bounded linear operator on L?*(R?Y) by
localization operators. In particular, we are interested in conditions that
guarantee the density of the set of localization operators in different topolo-
gies.

In order to examine density properties of the set of localization operators
with symbols from various classes, we employ some well known results from
functional analysis, giving relations between properties of operators on Ba-
nach spaces and their adjoints on the respective dual spaces. Precisely, we
use the following facts (cf. [5]):

Let X,Y be Banach spaces and 7' : X — Y be a bounded operator. Its
(Banach space) adjoint operator be denoted by T* : Y* — X*.

e T is injective if and only if the range of T" is dense in Y with respect
to the norm topology on Y.

e T is injective if and only if the range of T is dense in X* with respect
to the weak™ topology on X*.

Since A and B are essentially adjoint to each other, the following question is
of considerable interest:
Under what conditions is the Berezin transform B a one-to-one operator?

Theorem 3.4.1. Let 1,95 € L?*(R?) and 1 < p < 2. Then the Berezin
transform B : 8P(L*(RY)) — LP(R??) is a one-to-one operator if and only if
V (o1, 92)(z,w) # 0 for almost all (z,w) € R,

Proof. It T € 8P(L*(R?)) and 1 < p < 2, then T € 8§*(L?(R?)) is a Hilbert-
Schmidt operator.
The Berezin transform B is one-to-one if and only if

BT =0 in LP(R*%) implies T = 0 in 8?(L*(R%)).

But BT = 0 in LP if and only if BT (z) = 0 for almost every z € R*® if and
only if BT(z) = 0 for every z € R? since BT is a continuous function by
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Theorem 3.2.3. So, equivalently, the Berezin transform B is one-to-one if and
only if

BT (z) = 0 for all z € R* implies T =0 in 8 (L*(R%)).
By the Kernel Theorem 3.3.1
BT(z) = (T'm(z)e2, m(2)¢1) = (o, W(m(2)er, m(2)@2)

for a uniquely determined function o € L?(R??). The injectivity of B is
therefore equivalent to the statement, that

(o, W (m(2)1, m(2)2)) = 0 for all z € R* implies o =0 in L*(R*).
Now for the Wigner distribution we easily verify by direct computation that
W<7T(Z)f> W(Z)g)(%w) = W(f> g)(l’ —ZL,W — ZQ) = TZW(fa g)(ft, W)

for all f,g € L*(R?), z = (21, 20) € R*® and (z,w) € R?%,
So

(o, W (7 (2)1, m(2)p2) = (o, T.W (1, p2)) = 0 for all z € R** implies o =0

if and only if the subspace spanned by the translates of W (¢1, 2) is dense
in L2(R?). But by Theorem 3.3.5 and Lemma 3.1.2 this is equivalent to

W, 92) (2, @) = €™V (1, 2) (—w, ) £ 0

for almost all (z,w) € R*, that means

V{1, pa2)(z,w) # 0

for almost all (z,w) € R, O

For the remaining values of p, note that the condition for injectivity is slightly
stronger.

Theorem 3.4.2. Let @1, 05 € MY (RY) and 2 < p < oco. Then the Berezin
transform B : 8P(L*(RY)) — LP(R??) is a one-to-one operator if and only if
V (e, p2)(z,w) # 0 for all (v,w) € R*,
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Proof. The proof is very similar to the preceding one. Again, we must show

that BT(z) = 0 for all 2 € R?*® implies T = 0 in 8?(L*(R?)) if and only

if V(p1,09)(z,w) # 0 for all (r,w) € R?*? Since M(RY) — M?(RY) =

L*(R?) — M®(R?) with continuous embeddings, every T" € 8P(L?(R%)) C

B(L*(R%)) can be considered as a bounded operator T" : M (R%) — M (R4).

By the Kernel Theorem 3.3.2, there is a unique o € M*(R??) such that
(Tf.9) = (o, W(g,]))

for all f,g € M'(R?). In particular,
BT'(z) = (T'm(2)p2, m(2)p1)
= (o, W(m(2)¢1, m(2)p2))
= <U7 TZW(9017902>>

for all z € R??. Hence the mapping B is one-to-one if and only if
(0, T.W (p1,02)) =0 for all z € R*  implies o =0 in M>°(R??)
(since this is equivalent to T' = 0 in 8P(L?(R%)), in B(L?*(R?)) and as operator
M*(RY) — M*(R%)). But this is in turn equivalent to the subspace
span{T. W (1, ) | z € R}

being dense in M*(R??), which, by the Tauberian Theorem 3.3.7, is equivalent
to W (w1, p2)(z,w) # 0 and thus V (1, @o)(z,w) # 0 for all (z,w) € R?4. O

The following example illustrates that the weaker condition V (1, ¢2)(z,w) #
0 only for almost all z,w € R? is in general not sufficient for the Berezin
transform to be one-to-one:
Assume that there are zp,wy € R? such that V (1, p2)(20,wp) = 0. Then
consider the bounded operator T = 7(xg,wy) = M, Ty, € B(L*(R?)). We
compute the Berezin transform (with z = (21, 22)):
BT'(z) = (T'm(21, 22) @2, (21, 22) 1)

= (7 (o, wo)T (21, 22) 2, (21, 22)p1)
27Fi(w0'21*$0'22) : <7T(Zl7 ZQ)TI'(.CU(), wO)@Qu 7T(217 22)901>
(o, Wo)p2, 1)

-V (i1, 02) (20, wo)

e

e27ri(wo-zl —x0-22)

— 627ri(w0-21 —xg-22)

0
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(where we have used the commutation relation Lemma A.2.3).
Thus BT = 0 € L*(R?), but T # 0 € B(L*(R%)), hence B is not one-to-one.

Now let us look at localization operators with symbols in L°°(R??), that is
Af192 = Aq for A : L®(R*) — B(L*(RY)).

We have the following negative result on density with respect to the norm
topology:

Theorem 3.4.3. The Fourier transform F € B(L*(R?)) is not contained in
the norm-closure of the range of A. In particular the set of all localization
operators with symbols in L°(R?*?) is not dense in B(L*(R?)) with respect to
the operator norm.

Proof. We will show that the Fourier transform F : L?(R¢) — L?*(R?) cannot
be approximated by localization operators with symbols in L°°(R??), that
means F & ran(A).

For f € L?(R?) we have

|Ff—AZ2fIP = IFIP + | AT £ = 2Re((f, A7 )
> |IFIP + 1422 P = 2 |(F, A2 )]
= IFIP + 1452 £I1* = 2|, Vi, (aVieu )|
= FI?+ 142522 17 = 2| (V.. fr Vi, ).
Now pick an arbitrary g € L?(R%), g # 0, and let f := M, T,,g. Observe

that || f]| = |lgl|| for any zg, wo, since the modulation operator M,, and
translation operator T}, are unitary. We will show that

lim |<V<P1 (Monﬂiog)v aV<P2 (MonﬂEog»‘ = lim |<v¢1f7 aV@2f>| =0.

o,wo—00 xQ,wo—00

Let € > 0 be given.
Choose R > 0 such that

S, Vel e = (0= )l

and

//[ V280 ) P s > (1= gl
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(Note that it is always possible to find such an R in view of the fact that
Vel = [feea Vg (@, w)|? dzdw = ||g||*||¢||* for arbitrary g, € L*(R).)
A time-frequency shift of g amounts to a translation of Vg in the time-
frequency plane (up to some phase factor of modulus 1), more precisely

‘V¢<Monl‘og)<x7W>’ - ‘V<pg<£l? — To, W — ("-)0)’
for all g, € L*(R?), z,w, zo,wo € RY. This yields

|V<,02 (Monl‘og)(:U7w)| = |V<ﬂzg(‘r — Lo, W — (.U())|
and

|V<,D1(MWOTCC09)("L‘7W)| = |V901<TUJ0M—360§])($7W)| - |V<p1g(x — Wo, W +IO)|'

—X0 0
a change of variable we have

Vo, MjT\xg z,w)|? dedw = Vo, 0(z, w)|? dedw
® 0 0 »
U. [~ R,R]2d

> (1—o)|lgll*llel”
= (1 = &)[| Moy Tuo 9| |01 |7

If we define U, := ( wo ) + [-R,R]?® and V. := (io) + [~ R, R]?* then by

and

J[ et Tagz P dedo = [[ - Weaglow) dods
Ve [—R,R]Qd

> (1=2)llgl*lleall”
= (1= )| My Ty g1 [lip2 >

By choosing g and wy large enough we can achieve U. N V. = (), so that
U. C R*\ V. and V. C R*\ U.. Then

/ / Vo (Mo o) (1, ) ddeo < / / Vi, (Mo Tong) (2, 0)|? devdas
RZd\UE

< &l| Moy Tao gl llepn1*

/ / Vipa (Mo Ty 9) (i, 0) P drdis < / / Vs (Mo Ty 9) (i, ) v
U. R2d\ V.
< ]| Moy Tong Pl 0212
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Writing M,,,T,,9 =: [ again, we conclude

(Ve f aVieu )| = I// Vo f (2, w)a(w,w)V,, [z, w) dzdw|
< [ Wadw ot )V .0 dos
<lalle [ VerF ) Vi o0
= HaHooUUE Veor [ Vi f| divdles

L IV dwdw]
s||a||oo{(//U€|vwf|2dwdw) (// Viu P o) "
(L, i) (ff wesasas)

. 1/2
< Halloo[llvwfll ( / [ . f|2dxdw>

X 1/2
([ Wadtdeds) ¥
RQd\UE

< lalle [I£1lall - VE 171 ol + VE 11 onll - 151 o]
= 2Jall lenll o2l 11 - V2
= Clgl?- V2

for all sufficiently large z¢ and wg, with C' = 2 ||a||« ||¢1]] ||¢2]|| independent
of xg, wy. Thus the claim

lim ‘<V§01fA7 aVSOZf)‘ =0.

xQ,wo—00

is proved.
For nonzero g € L?(R%) choose x¢, wy such that

—_

—

| (Vor (Masy Ty 9), @Vios (Mary T 9))| < Zll91I"-
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Then with f := M,,T,,g9 we have
1
> [lg|I> =2 =|lg]?
2 |lglI” =2 7llg]

1 2
=Sl

IFf = Agoe 1P = || FIP + 1A FIPP = 2V f aVi )]

since ||| = [/ = llgll = [|3. This shows

1
| F — Af“””ﬂp >—=>0

V2

for all @ € L°°(R??), which was to be proved. O

Note that virtually the same argument applies to any operator of the meta-
plectic representation, since these are exactly the operators that move the
time-frequency distribution of functions in L?(IR%) in phase space. So none
of these operators is contained in the norm-closure of ran(A) C B(L*(RY)).

However, the density of the set of localization operators with L°°-symbols
with respect to the weak™ topology can be characterized completely.

Theorem 3.4.4. Let A : L®(R*) — B(L*(R%)) and B : $'(L*(RY)) —
LY(R%?) be given as before.
The following conditions are equivalent:

1. ran(A) is weak* dense in B(L*(R?)).
2. The Berezin transform B is one-to-one on 8'.

3. The short-time Fourier transform of the windows @1, ps is nonzero al-
most everywhere, i.e. V (o1, 02)(z,w) # 0 for almost all (r,w) € R,

Proof. (1) < (2): follows from our remarks on functional analysis at the
beginning of the section, since A = B*.
(2) < (3): follows from Theorem 3.4.1. O
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Now consider A : LI(R?*?) — 84(L*(R?)) for 2 < ¢ < oo. Then B :
8(L*(R%)) — LP(R?*?), where 1 < p < 2 is the conjugate exponent de-
fined by the relation % + % = 1, is the adjoint of A by Theorem 3.2.9. Thus
in this case, the same reasoning as above yields a much stronger statement
about norm density.

Theorem 3.4.5. Let A : LIY(R*!) — 89(L*(R%)) with 2 < q¢ < oo and
B:8P(L*(RY)) — LP(R*) with } + 1 =1.
The following conditions are equivalent:

1. ran(A) is norm dense in 89(L*(R%)).

2. The Berezin transform B is one-to-one on 89.

3. The short-time Fourier transform of the windows @1, @9 s nonzero al-
most everywhere, i.e. V (1, p2)(z,w) # 0 for almost all (z,w) € R?®.

Proof. The proof is exactly the same as for the preceding theorem. O]

We emphasize the special case of p = ¢ = 2 in Theorem 3.4.5 as a corollary
on its own:

Corollary 3.4.6. Let @1, 05 € L?*(RY) such that V (o1, p9)(z,w) # 0 for
almost every (v, w) € R*,

Then the set {A?v¥2|a € L*(R*)} C 8%(L?(RY)) is norm dense in the space
8%(L*(R?)) of all Hilbert-Schmidt operators on L*(R?). O

Finally, for 1 < g < 2, the analogous statement follows using Theorem 3.4.2.
Theorem 3.4.7. Let 1,2 € MY (R?). Let A : LI1(R?*?) — 89(L?(RY)) with
1< q<2andB:8(L*(RY) — LP(R*) with % + % =1.
The following conditions are equivalent:

1. ran(A) is norm dense in 89(L?(R%)).

2. The Berezin transform B is one-to-one on 89.

3. The short-time Fourier transform of the windows 1, o is nonzero ev-
erywhere, i.e. V (o1, p2)(z,w) # 0 for all (v,w) € R*.



3.4. DENSITY RESULTS 109

Proof. The proof is again identical to the proof of Theorem 3.4.4, only with
Theorem 3.4.1 replaced by Theorem 3.4.2. [

The following lemma allows to extend the previous results to localization
operators with symbols in modulation spaces.

Lemma 3.4.8. The Lebesque spaces LP(R?) are continuously embedded into
the modulation spaces MP>(R?):

LP(RY) — MP>°(RY)

foralll <p < oo and
[ fllapee < C - | fllLe

for all f € LP(RY).

Proof. Let 1 < p < oo first.
Assume f, g € S(R?). Then

[ lazpoe < C - [[Vg fll e

1/p
=C - sup </ \ng(w,w)|pdw) :
weRd R4

Now observe that

Vo f () = / Fg(E — 2)e 2t

Rd

= f(s 4 z)g(s)e 2w (s+2) g
Rd

_ e—27riw~x . / g(S)f(S + l.>€727ri(7w)~s ds
R4

— p2miwa m

for all (z,w) € R*. Thus

1/p 1/p
sup ( Vo f(x,w)P d;z:) = sup ( \Vig(—z, —w)P d:c) .
Rd Rd

w€eRd weRd
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This last integral can be estimated by

. 1/p
( / / flt+a)e Q’W'tdt]pdx>
R4 R4
1/p
< [ ([t 1arapas) " a
R4 R4

= [Lwor ([ erora)”
= [ 101 1flur

= llgllze - 111 ze
< 00,

where we have used Minkowski’s Inequality for integrals. So

1/p
sup ([ Wasterde) < gl -1
R

weRd

and

[ fllagpee < C || flr
with a constant C' > 0 depending on g.
Thus the identity mapping f +— f from S(R?) into MP>°(R?) is continuous
with respect to the LP-norm and the MP**-norm. Therefore, it can be ex-
tended uniquely to a bounded linear embedding LP(R?) — MP>°(R?) by the
standard density argument, since S(R?) is dense in LP(R?) with respect to
the LP-norm.
For the case p = 0o, we compute directly

[fllaree < C-[Vafllze
=C- sup |Vyf(z,w)

(z,w)ER2

<C- sup | ft)g(t — x)e 2™ dt|
(z.w)eR?d  JRd

<C- sup |f(t) - g(t — )| dt

(z,w)ER2 JRE

< C-lgllpr - 11 fllze
<O fllze



3.4. DENSITY RESULTS 111
for all f € L°(RY). O

Since LP(R2?Y) C MP>(R??) obviously implies
{A7#2] a € LP(R*)} C {AL"%*| a € MP(R*)} C 8(L*(RY)),

we conclude that at least one of the implications of the above density re-
sults for localization operators with symbols in LP also holds for localization
operators with symbols in MP?*°. Thus we have

Theorem 3.4.9. Let ¢, € M'(RY) and A : M>(R*) — B(L*(R%)) be
given as before.

If the short-time Fourier transform of the windows @1, ps is nonzero almost
everywhere, i.e. V (o1, 92)(x,w) # 0 for almost all (z,w) € R??, then ran(A)
is weak™ dense in B(L*(RY)). O

Theorem 3.4.10. Let 1,05 € MY(R?) and A : M9>®(R?*?) — 8§9(L*(R%))
with 2 < g < o00.

If the short-time Fourier transform of the windows @1, ps is nonzero almost
everywhere, i.e. V(p1,¢2)(x,w) # 0 for almost all (z,w) € R*?, then ran(A)
is norm dense in 87(L*(RY)). O

Theorem 3.4.11. Let 1,0 € M'(RY) and A : M= (R*) — §9(L*(R%))
with 1 < q < 2.

If the short-time Fourier transform of the windows 1, o is nonzero every-
where, i.e. V(p1,02)(x,w) # 0 for all (z,w) € R*, then ran(A) is norm
dense in 8(L*(RY)). O
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Appendix

A.1 The Standard Density Argument

Lemma A.1.1. Let X, Y be Banach spaces, D C X a dense linear subspace,
andT : D —'Y a bounded linear map. Then T extends uniquely to a bounded
operator T:X =Y, ie TeLX,Y) and T(z) = T(x) for all z € D. We
have ||T||x—y = [|T][p-v-

Proof. The subspace D is dense in X, so for every x € X there is a sequence

(Zn)nen in D that converges to x: lim,, o ||, — x|| = 0. Define
Tz := lim Tx,.
n—o0

The limit on the r.h.s. exists, since the sequence (Tx,),en is a Cauchy
sequence in Y:

| Twn = Tam|| = 1T (20— 2m)Il < [[Tllpsyllzn — 2wl
——

eD

but ||z, —z,|| < e for n,m > N(e), since (z,,)nen converges and is therefore
a Cauchy sequence in X.

The limit is independent of the approximating sequence:

Assume = = lim,, o T, = lim,,_, ¥y, for two sequences (x,,)nen and (Y, )nen
in D. Consider the mixed sequence (z1,z1,...) = (21,1, Z2,Y2,...). Ob-
viously (z,)nen also converges to x, so lim, ., Tz, exists. The sequences
(Tzp)nen and (Ty,)nen are subsequences of (T'z,)nen and converge there-
fore to the same limit: lim, oo T2, = lim, oo Ty, (= lim, 0o T'z,). So

113
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T:X —Y is well defined.

The linearity of T is trivial:

Let z,y € X and a,b € C, then choose approximating sequences (2, ),en and
(Yn)nen in D for z and y, respectively, and find

T(ax +by) = lim T(az, + by,) = a lim Tz, + b lim Ty, = aTz + bTy.
n—oo n—oo

n—oo

Boundedness follows from

12|l = || lim Ta,|| = lim [|Ta,|| < ||T|lpsy lim [lz,]| = [Tl ooy,
n—oo n—oo n—oo

which shows | ’T| ’X%Y < ‘ |T‘ ‘Dﬁy.
Finally, for x € D one may choose the constant approximating sequence
(x1,29,...) = (x,z,...) in D, which yields

Tz = lim Tz = Tz,

n—oo

so Tx = T for all z € D, and obviously ||T||x-y > ||T||p—y, since T is an
extension of T
For uniqueness:
Suppose S : X — Y is another bounded extension of T, then for z € X
choose an approximating sequence (x,)neny in D with z = lim,, o x,. By
the continuity of S and the definition of 7" we have

Sz = lim S’xn = lim Tz, = T
n—oo n—oo

]

The standard density argument is most often applied in the situation of the
following corollary.

Corollary A.1.2. Let X and Y be Banach spaces, D C X a dense linear
subspace, and S : X — Y andT : X — 'Y bounded linear operators such that
Sx=Tx forallz € D. Then S=T.

Proof. The operator S — T is bounded on all of X and satisfies Sz — Tz =
(S—T)xr=0forall z € D, so S—T must be the unique bounded extension
of the restriction (S —T')|p = 0 of S — T to the subspace D. But the unique
bounded extension of the zero operator (on D) is again the zero operator (on

X). Therefore S — T = 0. O
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A.2 Time-Frequency Shifts

Definition A.2.1 (Translation, Modulation, Time-Frequency Shift). Let
u,v € R? and X\ = (u,v) € R*?. Define the following operators on L?(R%):
e Translation:
T, : L*(RY) — L*(RY),
f@) = Tuf(x) = flz —uw);
e Modulation:
M, : L*(R%) — L*(R%),
f(a) = M, f(z) := 2™ f(2);
e Time-frequency shift:
m(A) : L*(RY) — L*(R%),
F@) > 1) F(@) = 7w, 0) f(2) = MTLf(2) = 70 f (1 — ).

It is easy to see, that these are unitary operators on the Hilbert space L?(R?).

Lemma A.2.2 (Canonical Commutation Relation). Let (u,v) € R*.. Then

T, M, = e 2T U N T,

Proof.
T.M, f(x) = ™7 f(o — u) = 7™M, T, f(2)

for all f € L?(RY). O

An immediate corollary of this is the

Lemma A.2.3 (Commutation Relation for Time-Frequency Shifts). Let A =
(z,w), u = (u,n) € R*. Then

T(\)() = 7D () (A).
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Proof. Using Lemma A.2.2 twice, we find
T(N7m(p) = M,T, M,T,
= e ™M, M, T, T,
= e 2™\, M,T, T,
= e~2mieng2mivu g VLT,
= () ().

L]
Lemma A.2.4. The following formulas hold for all f € L*(R?) and u,v €
R¢:
Tuf - M—uf7
M,f =T,f,

Tuf(w) = (z —w)e 2@ gy = [ f(y)e 2mietv) gy
R4 Rd

= e [ e dy = M f(w)
R
and
va(W) — / e27riv-xf($)e—27riw-x dr = / f(x)e—%ri(W—v).x
R4 rd
= flw—v) =T, f(w).
Using these formulas and the commutation relation A.2.2 yields
MTf = T,T.f = TyM_f = ™" M_,T, .

Since S(R?) is a dense subspace of L?(R%), the formulas extend to all of
L?(R%) by the standard density argument A.1.1. O

Lemma A.2.5 (Strong Continuity of Time-Frequency Shifts). Let A\, =
(tn,vn) converge to X = (u,v) in R?*:. Then for any (fivred) f € L*(R%),
(M) f — T\ f in L2(RY).
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Proof. We first show that for fixed h € L?(R%), T, h — T,h and M, h —
M,h (i.e. the strong continuity of the unitary group of translations and the
unitary group of modulations, respectively). We calculate

My, b= M| = [ | h(x) — > h(z)|” da
R4
TV T (U —0)- 2
= g |e*7% (e (n=vyep () — hz))|” dx
wi(vn—v)-T 2
= g (e (n—v)w _ Dh(z)|” dx.

The integrand satisfies lim,,_,o |(€™0n)" — 1)h(x)’2 = ( pointwise for al-

most all z € RY, and |(e2m(on=)e — 1)h(x)‘2 < 4|h(x)|? for all n € N. The
Dominated Convergence Theorem is applicable and yields

lim ||M,,h — M,h||* = 0.
n—oo

So M,, h — M,h in L?(R?).
For the strong continuity of the translations, we observe

||Tunh - Tuh“ = ||(Tunh - Tuh)/\H
= H]\/Luniz - MfuiLH

by Parseval’s Formula and Lemma A.2.4. The latter, however, tends to zero
for n — oo, as shown above. So also T, h — T,h in L?(R%).
We conclude

[w(An) f =7 (M) fI = [| My, T, f — MT [
= ||MvnTunf - MvnTuf + MvnTuf - MvTufH
< |[|My, (T, f =TI + [[(My, — M) T f]
< [T f = Tuf |+ [[(M,,, — MTf]| — 0

~
—0 —0

for n — oo. O]

Another useful property is given by the
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Lemma A.2.6 (Convolution Relations). Let f, g € L*>(R%), z,w € R%. Then

and

(wa * ng)(t) = Mw(f * g)(t).
Proof. Compute
(Tocf * T:cg)(t) = R f(S - l')g(t — S 17) ds

= /. Fg(t —y —2x) dy

= ([ *g)(t - 22)

with a trivial substitution and

(wa % ng) (t) — / eZm’w-Sf(s)e27riw-(t—s)g<t _ S) ds

R4
= et [ f(s)g(t — s)ds
R4

= M, (f *g)(t).
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A.3 Linear Coordinate Transformations

Definition A.3.1 (Coordinate Transformation). Let A € R™?. Define the
coordinate transformation

Ta: f(x) = Taf(z) = f(Ax).

Lemma A.3.2. If det(A) # 0, the coordinate transformation T4 is an in-
vertible bounded linear operator of L*(R%) onto itself with inverse (T4)™! =

Ta-1 and adjoint (T4)* = @‘J’Aa. If |det(A)| =1, then T4 is unitary.

Proof. We have
J = J 2de = Az)|? d
[Tafll /Rd| af(z)|" dz /Rd|f( )|” d

1 2 _ 1 2
= T L O s = ]

by the change of variables formula, hence T is a bounded operator on L?*(R9)
for det(A) # 0 and an isometry for |det(A)| = 1. It is also invertible, since

Ta1Taf =TqTuf=f

for all f € L2(R%), so (T4)~! = T4-1. Finally, again by a change of variables,
we find

- 1 S
(Taf,g9) = Rdf(AJJ)g(flf) dx = Taet(A)] Rdf(y)g(A y) dy
1
- <f | \det<A>17A19>’
which proves (T4)* = @‘J’Aq. O

Lemma A.3.3 (Commutation Relations with Time-Frequency Shifts). Let
f e LA2RY) and A € R4 be invertible. Then for all z,w € R?

TA(Txf) = TA_lx(‘IAf)u
‘IA(wa) = MA*w(‘IAf)'
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Proof. We find

Ta(Tof)(t) = Tof(At) = f(At —x) = f(A(t — A7 ')
= (Taf)(t — A7) = Ta1o(Taf)(t)

and

Tu(MoF) () = M, f(At) = €274 £( At)
= 2T F(AL) = Maeo(Taf) ().

Lemma A.3.4 (Fourier Transform of a Coordinate Transformation).

1

Af_’th’ (Al)f

holds for all invertible A € R f € L?(RY).

Proof. For f € S(R?), a change of variables yields

T = [ flan)e e

1 —2miA" Ly

= Taer Al Lo f e ATV dy
1 o (A=-1)*

et Al Jpu S
1 7 —1\*

- A|f((A y€)
1 ~

- T F©).

The standard density argument gives the statement for all f € L2(R?). [

Lemma A.3.5. Let A € R¥™? be invertible. Then the coordinate transfor-
mation T4 is a continuous mapping from S(R?) to S(RY).
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Proof. Let f € S(RY).
We start by considering a single partial derivative of T4 f. For 1 < j < d,
0;Taf () = 0;(f(Ax))

= 8j(f(a11x1 + ...+ A1dTdy - - -, Aq1Tq + ...+ CdeId));

the chain rule gives

0;Taf(x) =D (Of)(Ax) - ar; = Ta(Y  ar;onf)(w).

k=1 k=1

Continuing inductively, we get for any multiindex § € N4

O"Taf(x) =Ta( Y ¢,0f)(x)

[vI<18

with some appropriate coefficients c,.
If a = (ay,...,aq) € N¢ is a multiindex, then

2*Taf(w) = 2 f(Ax) = (A7 Aw)* f(Az) = (A7'y)* f(y),

where we substituted y for Az. The d components of A~y are each a linear

. . . 71 . Vi
combination of y,...,yq. Denoting A=" = (aij)lgi,jgd’ we have

d

(A™'y)* = H(Z ajy;)" = pa(y)

=1 j=1

with some polynomial p,(y) = Z| 51<]a dsy° of degree less than or equal |a].
The matrix A is invertible, so when z runs through all of R, the same is
true of y = Ax, therefore

sup |x*Taf(z)| = sup [pa(v)f(y)|.
zcRd y€ERd

By putting the pieces together, we conclude for any multiindices a, 3 € Nd

20T o f(x) = 2T a( Z c,07 f)

[vI<18

= > Ay’ (Y 0

l6]<]e| IvI<IBl
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and

sup [2°0 T4 f(x)| = sup | Y dsy’( > ¢,0"f)(v)l

ER¢ YER? |51<al <18l
<O dsl- el - [18°07 F ()] |oo-
181<[al |vI<I8]

This estimate proves that T4f € S(R?) and T4 : S(RY) — S(R?) is continu-
ous. [
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A.4 Partial Fourier Transform

Definition A.4.1 (Partial Fourier Transform). Let f = f(x,y) € L*(R?*),
z,y € RY.

The partial Fourier transform of f (with respect to the second argument)
15 defined as

~

3"2f(x,w) = fx<w)v

where ~ denotes the Fourier transform on L?*(R?) and

fo(y) = f(z,y), yeR’

denotes the cross section of f for fived first argument v € RY.

By Fubini’s Theorem, f, € L?(R?) for almost every x € R?, thus Fyf is well
defined.

Lemma A.4.2. F, is a unitary operator from L?*(R*?) to L?*(R%*). The
inverse (=adjoint) is given by

?glF(xay) :HTSF(‘I"Z/) = H:QF(xv _y) :TAHT2F('T7y)

with matriz A = ({ %).

Proof. We have

J[ s st [ ([ (o) e
— [ 1EIPds
S RZRE
- [ ([ 1nwr ) w
//R f(z,y)|? dvdy
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with Fubini’s Theorem and Plancherel’s Formula. Thus Ff € L*(R??),
|Fof|l = || f]l, and Fp : L*(R?*?) — L2(R??) is an isometry.
Let F' € L*(R*®). Set
f(x,y) = F_IF;B(y)a
where F~! denotes the inverse Fourier transform. Then
Fof(r,w) = F 'FF,(w) = F,(w) = F(z,w),
thus F = F»f and F, : L*(R*) — L?(R*) is surjective and thus unitary.
The above also shows that
Ty 9(x,y) = F ' Fuly) = FFo(~y) = F2F(z, —y).
O

Lemma A.4.3 (Commutation Relations with Time-Frequency Shifts). Let
F € L*(R*?). Then

S’Q(T(;)F)(x,w) = e ST F) (z — 1 w) = M( 0 )T<
?Q(M(g)F)(x,w) = 2P (FyF) (2,0 — 0) = M(p)T(g)(?gF)(x,w)
for all (3),(5) € R*.

Proof. Assume that F' € S(R?*?). Then a calculation yields

FQ(T(T)F)(a:,w) = /Rd F(zx —r,y—s)e ™Y dy

— / F(x — 7 t)e 2w t+s) gy (Subst. t =y — s)
Rd

= e S FoF) (2 — 1, w)

= M)t T
with a substitution at the indicated place.
Analogously, we compute

3:2<M(§)F)(137 w) — / eQﬂi(P-x+0-y)F(x7 y)efQﬂiw-y dy

R4
_ 627rip-x / F(l’, y)6—27ri(w—a)~y dy
R4

= 2P (FyF) (1, w — o)
= M(S)T(o)(fng)(x,w)

(o



A.4. PARTIAL FOURIER TRANSFORM 125

That these formulas are also valid for arbitrary F' € L?(R*?), follows from
the standard density argument. [

Lemma A.4.4. The partial Fourier transform Fy is a continuous mapping
from S(R*) to S(R*).

Proof. Let f € S(R?*?). Then

Fof(z,w)= [ flz,y)e ™Y dy
Rd

is well-defined and exists as an integral for all z,w € R? We can thus
estimate for all z,w € R%:

[F2f (2, w)] = I/Rd [z, y)e ™Y dy|
z,y)|d
< [ 1wl
= /]Rd ((1 + \xP + ‘?Jy2>s/2 . |f(:c,y)\) . (1 + mz + |y[2)_5/2 dy

< swp (Ul ) e l) - [ (1 ).
(z,y)eR2d Rd

The supremum is finite for arbitrary s > 0, since f € S(R??). The integral

is finite if and only if s > d. Thus

1Foflloe < C N+ T2l + [y flo,9) o (%)

for s > d and C' > 0 some constant (depending only on s).
For convenience we introduce the following notation: Let F' = F(z,y) be a
function on R?*® and o = (ay,as), 8 = (81, 52) € N2¢ be multiindices; then
write

MG,y = M M2 F(x,y) = 2y F(z,y)
for the multiplication operator and
Dfx,y) = D51D52F(x, y) = 351852F(x,y)
for the partial differential operator.
It is then not hard to prove that the partial Fourier transform satisfies the
following rules that are analogous to the full Fourier transform:

D D% Fyf = (~2mi)\ - Fo(DI M f)
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and
1
MM f = (5—) - Ty (M D ).
271 Y

Hence, by induction, 5 f is infinitely differentiable, and for arbitrary multi-
indices «, 8 € N2? we have

! B
’M(:I:,w)D

(z.w)

Fof (z,w)| = MM DI D2Fs f(x,w)|
= 2P0l 5, (MO D22 DI M £) (2, w)|
< C - ||Fo(ME D22 DI MP f)]| oo

The estimate (%) now yields

sup |M&7w)Dfx7w)3’2f(ZE,w)‘ <0

(z,w)ER2d

for all multiindices «, 3 (hence F5f € S(R?*?)) and continuity of the mapping
9:2 : S(RQd) — S(RQd) ]
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A.5 Short-Time Fourier Transform and Mod-
ulation Spaces

Definition A.5.1 (Short-Time Fourier Transform). Let f,g € L*(R?). The
short-time Fourier transform of f with window g (STFT) is defined as

V(f,9)(x,w) == (f, M,T.g) = 9 FW)gly —x)e >V dy

for x,w € RY.
Lemma A.5.2. Let f,g € L*(RY). Then the following holds for all z,w €
R¢:
VI(f,9)(@,w) = (fTog)(w)
- ﬁTwM—:v/g\>
g

Proof. The first expression follows directly from the definition, the second
by applying Plancherel’s Theorem, and the third from Lemma A.2.3. [

Observe that the STFT is a bilinear time-frequency distribution in the sense
considered in this work (with coefficient matrix A = (PI f), which is right-
regular, cf. Definition 1.2.10. Thus all results of the first chapter apply.
In particular, one has such things as orthogonality relations or covariance
formulas for the STFT.

Definition A.5.3 (Mixed-Norm Spaces). Let 1 < p,q < oo. The mized-
norm space LP4(R*) is defined as

LP9(R*) .= {F : R* — C measurable : ||F||pra < 00},

with mixed p,q-norm

q/p 1/q
1P|l gma = (/ (/ |F<x,y>|pdw) dy> |
Rd Rd
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For p =00 or g = 00, this definition is modified in the expected way, i.e.

q 1/q
1Fl[0n 1= (/ (sup\m,y)r) dy) . ifp—oo,
R \xzeRd

1/p
1Fllne = s ([ FG@alae) o ifa=oc
R

yeRd

resp.

As usual, we identify functions in LP¢ that differ only on a set of Lebesgue
measure zero (that is, formally we consider equivalence classes of measurable
functions, two functions F' and G being equivalent if and only if A\({z €
R : F(z) # G(x)}) = 0, where X denotes Lebesgue measure on R??.) With
this convention, the mixed p,¢g-norm becomes indeed a norm (not only a
seminorm), and LP?(R??) is a Banach space.

Lemma A.5.4 (Transformation Formula for Mixed Norm Spaces). Let F' €
LPA(R?), 1 < p,qg < oo. Let Ay, Ay € R™ be dnvertible matrices and
bi,by € RY be arbitrary vectors. Consider the function

G(Z) = G(Zl, ZQ) = F(A121 + bl, AQZQ + bg), z = (2’1, 22> - de,
Then G € LP4(R??) and

1

Gllrpe =
1G1lzr | det A [1/7 - | det Ay|!/a

[ E[oa.

(In case p = 0o or ¢ = 0, ]l) resp. é are understood to be equal to 0.)

Proof. We compute the mixed p,q-norm of G:

q/p 1/q
|G||ra = (/ (/ |G(21, 22) [P dzl) d22>
Rd \JRd
q/p 1/q
= (/ ( |F(A12’1 + bl, AQZQ + b2)|p le) d22> .
Rd Rd

The inner integral yields

1
|F(A121 + bl, A2Z2 + b2)|p le =

_ F A bo)|P d
e [det A, | Rd| (s1, Agza + bo)|P dsy
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by an easy substitution in the first argument, hence

q/p
||G||LP7€{ = / ( |G(Z17 22)|p le) dZQ
Rd Rd
1 q/p 1/q
= _ F A bo)|P d d
</Rd(|detz41| o | (51 Azz2 1 0o) 81) 22>

1 a/p 1/q
- W /d ] |F(s1, Agzo + b2) [P dsy dzs
1 R R

1 1 a/p 1/q
- p
~|det A VP \ | det Ay| Jga ( e |F'(s1, 52)] dsl) dss9

1/q

1 a/p La
= F(s1,s9)Pds ds
| det A, |1/7 - | det Ay| /4 /Rd ( Rd| (51,52)] 1) 2
1
- Fl|ra,
|detA1|1/P-|detA2|1/‘1|| 7
by another substitution in the second argument.
In case p = 0o or ¢ = 00, the calculations are even simpler. ]

Definition A.5.5 (Modulation Spaces). Let g € S(R?) be fivred. We define
the modulation space

MPIRY = {f € S(RY) : VIf,g) € LPIR™)}.

It can be shown that the modulation spaces are Banach spaces whose defi-
nition does not depend on the chosen window function g; different windows
yield just equivalent norms.

The theory of modulation spaces is explained in detail in the monographs
[17] and [14].
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A.6 Wiener Amalgam Spaces

This section discusses some properties of Wiener amalgam spaces. These
spaces are used as a technical tool at several places in the text. They char-
acterize functions that have certain local and global regularity properties
described by a local resp. global component, usually some normed spaces.
An excellent survey of Wiener amalgam spaces can be found in [12].

For our purposes, it is not necessary to define Wiener amalgam spaces in
full generality. We thus restrict ourselves to the special case where the local
component is always the Fourier algebra FL! and the global component is
some LP-space. As we will see, such Wiener amalgams are closely related to
the short-time Fourier transform and modulation spaces.

Definition A.6.1 (Wiener Amalgam Spaces). Let g € D(R?) be a test func-
tion (i.e. a C*®-function with compact support). The Wiener amalgam
space W (FL', LP)(R?) (with local component FL' and global compo-
nent LP, 1 < p < o0) is defined as the space of all functions f on R? such

that the norm
1/p
lhvtoran = [ 15 Tty =)

is finite. (Note that for p = oo the obvious adjustments need to be made.
For the sake of brevity, these will not always be pointed out explicitly in the
following.)

If we denote
F(z) = Fy(2) = |f - Togll5r1, 2z €R%

then obviously f € W(FL', L?)(R?) if and only if F' € LP(R?), and
1/p
Wlbwiean = ([ Flrdz) = 1Pl

It is not hard to see that W (FL', LP)(R?) equipped with the above norm is
a Banach space, consisting of continuous functions on R,

The next theorem shows that the definition of W(FL!, LP)(R%) does not
depend on the particular choice of the test function g; different such functions
yield the same space with equivalent norms.
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Theorem A.6.2 (Equivalence of Norms). Let g, go € D(R?) be two different
test functions. Let f be a continuous function on R?. Then

1/p
16 = ([ 15 Tl =) <o

1/p
1F1l2 = (/Rd f - Togallf dZ) < 00,

and in this case there are positive constants A, B > 0 independent of f such
that

if and only if

A-[fllz < Al < B-[If1l2:

Proof. In order to prove the theorem, we first show a useful

Lemma A.6.3. Let f € FL'(RY) and ¢ € D(RY).
Then f-¢ € FLYR?) (and in particular f - T.¢ € FLYR?) for all z € R?),
and there ezists a constant C' = C(¢) > 0 independent of f such that

f - Tedllsrr < C - || fllzre

for all z € R4,

Proof. We have T,¢ € D(R?) C S(RY) = FS(R?) C FLYRY) for all 2z €
R?. Now FL'Y(R?) is a Banach algebra under pointwise multiplication, thus
f-T.¢ € FL' for all z € R? with

f - Teollsnr < [ fllzr - [Tz lrr

Now, since ¢ € D(R?) C S(RY), there is a 1) € S(RY) such that ¢ = . Then
T.p =T, = M, hence

@l = [[Motl[pr = [|[9l]r = [[@]|rrr

independent of z € R?. So

I[f - To0llgrr < @]l - | fllgr
for all f € FLY(R?) and z € R% O
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Now assume || f|]2 < o0.
Let p =g9- g2 = |92’2 € D(Rd). Then

[f - T.ollgrr = || f - T(g2 - G2)l|oz
= |[(f-T.92) - T G|
< C"|f - Tagol|51e

with a constant C' = C’(g3) > 0, by the Lemma. Hence

1/p
([ Toityas) < il < o

Observe that ¢ > 0, so we can find a suitable linear combination of translates
of ¢, say

Y=Y T.¢6€DRY,
j=1
such that ¢(t) > d > 0 for all ¢ € supp(g;), the support of g;. Then

1f - Tl = |If - To) T 0)| |
j=1
= ||f ) ZTz+zj¢||"fL1
j=1
=1 f Tty 8l

j=1

n
< Z Hf ) Tz+zg-¢H5fL1’
j=1
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SO

1/p n 1/p
([ Tolpa:) < ( L5008 T bl dz>
Rd R ST
n 1/p
< Z (/ f - Toiz; Ollorr dz)
j=1 \JR

1/p
=nn- (/Rd Hf . TZ¢||3“L1 dZ)

<n-C- ISl

< 00,

since the LP-norm is translation invariant. Finally, choose a test function p €
D(R?) such that p(t) = ﬁ for t € supp(g1). Then obviously g1 = p- (¢ - g1).
Therefore

f-Tgillsrr = ||If - To(p -9 - g1)l|gr
= ||(f : Tzﬂ) : Tz(w : gl)HS’"Ll
<C"-||f - Topllgp

with a constant C” = C" (¢ - g1) > 0, again by the Lemma, and thus

1/p
171l = (/ ||f-TZgl||§L1dz)
Rd

1/p
<o ([ 7ol a)
Rd
<" C oIl

< 00.

We conclude that ||f||2 < oo implies ||f]]1 < oo and

fll < B-Ifll2

with B:=C"-C"-n > 0.
Finally, by symmetry, we may interchange the roles of ¢g; and g in the
preceding argument, so the other inequality is valid as well. ]
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The connection with the short-time Fourier transform is given in

Theorem A.6.4. Let f be a function (or tempered distribution) on R? and
g € D(R?) be a test function. Then

HfHW(?Ll,Lq) = ||V(f7 Q)HLLQ

(where L9(R?*®) denotes the mized-norm space defined in Definition A.5.3).
Thus W (FL, L9)(RY) = M4(RY) with equivalent norms, in particular W(FL', L*)(RY) =
MY(R?).

Proof. A direct computation shows

1/q
lbviossan = ( [ 17Tl d2)

:(AJWEEMJOUQ
- (/Rd ( - - Tog(w)] dw)q dz> 1/q
= (/R ( NV 9)E @) dw)'] dz) /g

= |[V(f.9)lLra
= C - [[fllarra
with C' > 0 depending on ¢g. Thus f € W(FL', L9)(R?) if and only if

[ fllwrr,ney < oo if and only if || f|[are < oo if and only if f € M"(RY),
with equivalent norms. O

Finally, the following theorem gives a version of Holder’s Inequality for
Wiener amalgam spaces.

Theorem A.6.5 (Holder’s Inequality for Amalgam Spaces). Let f € W (FL', LP)(R?)
and g € W(FL, L) (R?) with %—i—% =1,1<p,q < o0, conjugate exponents.
Then f-g e W(FLY, LY)(RY) = MY (RY) and

f - gllwery < C- || fllweer,eey - 19llwer Lo

(with some generic constant C' > 0).
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Proof. Choose a test function ¢ € D(R?). Then ¢ = ¢ - ¢ € D(R?) is also
a test function, and ¢ and v generate equivalent norms in all the spaces
W(FL', LP)(R?), 1 < p < 00, by Theorem A.6.2. Thus

I - albwissa = [ 1(F-9) - Tedllow d=
< [ 10-9) Tl a:
- [ 179 o O)lows
(16 7:0) (g Tl =

with a suitable constant C' > 0 (that depends only on ¢ and v). Now the
Fourier algebra FL! is a Banach algebra, hence

(f-T20) - (g - T2d)lsrr < f - Te@llsrr - [lg - Tol| 711,

SO
[ I -T26) - (9 L) d=
< [ U Teollows - Teollos =
Rd

Holder’s Inequality for LP-spaces now yields

C'/ I1f - To9llgrr - ||g - T2@|5rr dz

<o ([ 1Tl a ) ([N ot ) q

<C- ||f||W(:rL1,LP) ) ||9HW(?L1,LP)-
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A.7 Trace Class and Hilbert-Schmidt Opera-
tors

In this section we collect (mainly without proofs) the most fundamental facts
about compact operators on Hilbert space, spectral theory, and trace class
and Hilbert-Schmidt operators. These can be found in any standard textbook
on functional analysis, e.g. [5] or [35]. Unless otherwise stated, H always
denotes a complex separable Hilbert space.

Definition A.7.1 (Compact Operators). A linear mapping T : H — H s
called compact if T maps bounded subsets of H onto relatively compact sets,

i.e. T(B) C H is compact for all bounded B C H.

Since compact subsets of a Hilbert space are bounded, 7" maps bounded sets
onto bounded sets and in particular the closed unit ball onto a bounded set.
Therefore there is a C' > 0 such that ||T'(x)|| < C for all z € H with ||z|| < 1;
so T is automatically a bounded linear operator.

Elementary properties of compact operators are contained in

Theorem A.7.2. Let S,T,T, be compact (forn € N), A, u € C, and A :
H — H be bounded. Then the following holds:

1. The operator \S + pT is compact.

2. The composition of a compact and a bounded operator (in either order)
18 compact, i.e. both AT and T A are compact.

3. If lim, o0 ||A — Ty||lg—m = 0, then A is compact: the set of compact
operators is closed under limits with respect to the operator norm.

The statements of the previous theorem may be stated in a concise form by
saying: The compact operators form a closed two-sided ideal in the Banach
algebra B(H — H) of all bounded linear operators on H into itself.

Compact operators may be characterized in several ways:

Theorem A.7.3. Let T : H — H be a bounded operator. The following are
equivalent:
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1. T is compact.

2.

3.

If (xp)nen is a bounded sequence in H , then its image (Tx,,)nen contains
a convergent subsequence.

If (xp)nen 1s weakly convergent, then (Tx,)nen converges in norm.

Theorem A.7.4 (Spectral Representation for Compact Self-Adjoint Oper-
ators). Let T : H — H be compact and self-adjoint. Then there ezists a
sequence (Aj);jen of real numbers and an orthonormal family (¢;)en of vec-
tors in H such that

o limj o \; =0;

o T'p; = \;jp; for all j € N, i.e. the \; are eigenvalues of T with associ-

ated eigenvectors ¢;;

o T'f = Z;; N (f,05) ¢; for all f € H, with convergence of the series

in the norm of H.

Definition A.7.5 (Singular Values, Hilbert-Schmidt Operator, Schatten p—
Class). We define:

1.

The singular values of a compact operator T : H — H are defined as
the square-roots of the eigenvalues of the (compact self-adjoint positive)
operator T*T'. We write

s;(T) := N (T*T)"?,

where \j(-) denotes the sequence of eigenvalues of a compact self-adjoint
operator in mon-increasing order.

A compact operator T : H — H is called a Hilbert-Schmidt operator,
if (sj)jen € C*(N). The set of all Hilbert-Schmidt operators is denoted
by 82.

A compact operator T : H — H belongs to the Schatten p-class, if
(sj)jen € (P(N). The set of all Schatten p-class operators is denoted by
8P.

Theorem A.7.6. Let T : H — H. The following are equivalent.
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1. T is a Hilbert-Schmaidt operator.

2. There exists some orthonormal basis (ex)gen of H such that ", . ||Tex|[* <
0.

8. > pen 1T fel|? < 0o holds for all orthonormal bases (fi)ken-

We have

D Texl? = |T)f

keN

independently of the chosen basis (€ )ken-
Lemma A.7.7. If T : H — H satisfies Y,y ||Tex|[> = C < oo for some

orthonormal basis (ex)ren, then T is bounded. The estimate ||T||gon < VO
holds.

Proof. Let f =3, _, cxex. Observe that || f|[* = >_1_, |cx|?, since (ex)ren is
orthonormal. Then

ITFI?=(Tf,Tf) = chkq Tey, Te;)

k=1 1=1
<SS el el - | (Tex, Tes) |
k=1 i=1
<ZZ\ck\ lci| - [|Tex|| - || Tes|
k=1 =1
n 2
= <Z !ck!-I\TekH) :
k=1

This last expression can be estimated further by the Chauchy-Schwarz In-
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(Z ] I\Tek|\>2 < (Z \ckﬁ) - (Z HmH?)
<A1 (Z ||Tek||2)

<11 (ZHT@J!Q>
k=1

= C[If|1

equality:

So T is bounded on the dense subspace of finite linear combinations of ele-
ments of (ex)reny With operator norm ||T'||,, < V/C. By the standard density
argument, 7' is bounded on all of H, with the same operator norm. O

Lemma A.7.8. If T : H — H satisfies Y, ||Tex||* < oo for some or-
thonormal basis (e )ken, then T is compact.

Proof. Define the operator T), as

T"(Z ckek) = Z ckTek,
k=1

keN

ie. T,, = TP,, where P, is the projection onto the finite-dimensional space
spanned by the basis vectors eq, ..., e,. Obviously T, has finite rank at most
n. Then

(T = T)fIP =11 ) eTexl

k>n

Using the same estimate as in the previous lemma, we continue

IS alel < (zw) - (ZHMH?)

k>n k>n k>n

< lell3 - <Z|IT6kI|2>

k>n

< I (Z HTekHQ) |

k>n
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This shows that

1/2
1T = Tllaron < (annz) -

k>n

But the last term tends to zero for n — oo, since the series >, . ||Tex|[?
converges. This means that T can be approximated in the operator norm by
operators of finite rank. So T is compact. O

The last two theorems in this section give useful criteria to decide whether
a bounded operator on L?(R?) is trace class. Proofs can be found in [46].

Theorem A.7.9 (Criterion for Trace Class). Suppose T is a compact oper-
ator on H.
Then T belongs to the trace class 8'(H) if and only if

> (Ten en)| < o0

neN

for every orthonormal basis (e,)nen of H.
In this case we have

||T||st =  sup Z | (Ten, en) |

(en)nen ONB S

g

Actually, in the preceding theorem one can dispense with the assumption
that T" be compact in the first place.

Theorem A.7.10 (Weidmann, [42]). Let T' be a bounded linear operator on

H such that
Z (Tep,, en) < 00

neN

for every orthonormal basis (e,)nen of H.
Then T is a trace class operator. O
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A.8 Tensor Products

Definition A.8.1 (Tensor Product). Let f,g : R? — C be two functions.
The tensor product of f and g is defined as the function on R*?

f®@g(z,y) = f(x)g(y).

Lemma A.8.2. The tensor product f ® g of f,g € L*(RY) is in L*(R?),
and

1 ® gllr2weay = (111 - llgll.

Proof. If f,g € L?*(R%), then

//de|f®g:ry|2dxdy—// 9(y)|* dwdy
:/Rd ]f(m)|2das-/Rd l9(y)|? dy

= |11~ lg]* < oo,
so f® g € LAR*) and |[|f & gllr2(meay = |I£1] - 19l- .

Lemma A.8.3. Let (¢k)ren and (fi)ien be orthonormal bases for L*(RY).
Then the family of tensor products (e ® fl)(k,l)eNxN constitutes an orthonor-
mal basis for L*(R?).

Proof. Orthonormality can be shown by direct computation:

@ frew e i) = [ e i)l fi) dedy
= )exs dx ‘
/Rd o ( /fl ) fr(y)
<€k7 €k'> <fl7 fl’ = Oy, k'5l -

For completeness, assume that H = H(z,y) € L*(R??) is arbitrary. For
y € RY, define the auxiliary function
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We have

[ ([impas) an= [[ P sy = e < o,
R R

by Fubini’s Theorem, so
M = [ 1H @R dr < o

and H, € L*(R?) for almost every y € R?. The (almost everywhere defined)

function
1/2
v = ([ 0P o)

is also in L?(R?) and

[R]? = /VLF@—/HHW@—// H(z,y)? dady = || |22 g0,

Now, for any g € L?(R?), set

Hy(y) :== (Hy, g) -

This function is again defined for almost every y € R? (since H, € L?(R?)
for almost every y € R?), and is in L*(R%) by

WMPz/IU%mP@
]Rd

S/IWMWMW@
Rd

= llalF [ I

= |lglI* - [In|[?
= lgll* - 1H |75 goay < 00,

with an application of the Cauchy-Schwarz Inequality.
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Now we get

(008 ) o = [ ) -0 ) dady

- /Rd( RdH(x,y)ei(x) dx) fi(y) dy

= [ (e Ty

= <H€i7 f])

for all 7, j € N, therefore Parseval’s Identity gives

> HH,e® fi) e P =D | (He, £i) 17

(4,5)eNxN €N jeN
= IHe |
€N
But
VP = [ L dy = [ e P iy
yields

Z/ | (Hy,e:) > dy
/Z| yei) 2 dy

- / 1H, |12 dy
Rd

= [|Al”
= || H|[72ge0)

> || He P

1€EN

again by Parseval’s Identity (the change of the order of integration and sum-
mation is justified by Fubini’s Theorem). So we have

> H{H e ® f3) agany P = |1 HI[F2(ge0

1,7EN

for all H € L*(R??), and this is equivalent to the completeness of the or-
thonormal system (e; ® f;) (i )enxn- N
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Theorem A.8.4. Let T := span{f @ g : f,g € L*(RY)} C L*(R*?) be the
linear subspace of L*(R??) spanned by all tensor products of functions in
L*(RY). Then T is dense in L*(R??).

Proof. This is an obvious corollary to the preceding lemma. Let (¢;);en and
(f;)jen be orthonormal bases in L?(RY). If H € L*(R*@) such that HLT,
then H L (f®g) for all f,g € L*(R?), in particular H L (e;® f;) for all i, j € N.
Since (€;® f;)(i.;)enxn is an orthonormal basis for L?(R??), this implies H = 0.

Therefore T+ =T = {0} and T = L*(R?). O
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Abstract

Diese Dissertation verfolgt zwei Zielsetzungen.

Erstens wird versucht, wohlbekannte Zeit-Frequenz-Verteilungen wie etwa die
Kurzzeit-Fouriertransformation oder die Wigner-Verteilung zu verallgemein-
ern und in einen einheitlichen Rahmen einzufiigen. Insbesondere werden
die zugehorigen Pseudodifferentialoperator-Kalkiile und deren wesentliche
Eigenschaften untersucht und mit bereits bestehenden Kalkiilen wie etwa der
Kohn-Nirenberg-Korrespondenz oder dem Weyl-Kalkiil verglichen. Die Leit-
frage besteht darin, ob sich die recht schonen Eigenschaften der erwahnten
Kalkiile auf die allgemeinere Situation tibertragen lassen.

Zweitens wird, basierend auf den Ergebnissen des ersten Teils, ein spezieller
Typus von Pseudodifferentialoperatoren, ndamlich Zeit-Frequenz-Lokalsations-
operatoren, genauer analysiert. Ihre grundlegenden Eigenschaften, beson-
ders Abbildungseigenschaften des Symbols, werden in einheitlichem Rahmen
prasentiert. Der Zusammenhang mit der Berezin-Transformation erlaubt es,
neue Dichtheitsresultate fiir die Menge der Lokalisationsoperatoren als Teil-
mengen groflerer Operatorklassen sowohl beziiglich verschiedener Symbol-
klassen als auch verschiedener Topologien zu beweisen.

The purpose of this doctoral thesis is twofold.

First, an attempt is made to generalize well-known time-frequency distribu-
tions, such as the short-time Fourier transform or the Wigner distribution,
and integrate them into a unified framework. In particular, the associated
pseudodifferential calculi and their properties are investigated and compared
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to already existing calculi, such as the Kohn-Nirenberg correspondence or the
Weyl calculus. The guiding question is which of the rather nice properties of
the mentioned calculi carry over to the more general situation.

Second, based on the first part, a specific type of pseudodifferential operators,
namely the time-frequency localization operators, are analyzed more closely.
Their basic properties, in particular mapping properties of the symbol, are
reviewed in a unified way. The connection with the Berezin transform allows
to prove new density results of the set of localization operators as subsets of
larger classes of operators, for different symbol classes and with respect to
different topologies.



