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1. Executive Summary 

The objective of this diploma thesis is the enhancement of an MMAS algorithm 

by ingenious local search procedures and in the following to apply this new 

algorithm to the Quadratic Assignment Problem (QAP). 

As described in chapter 2, the QAP is one of the hardest combinatorial 

optimization problems and was stated as NP-hard in 1976.1 Due to the fact that 

exact algorithms work rather poor for the QAP, the scientific world started with 

the development of heuristic methods.2 

In chapter 3 we describe one of these approaches, the so-called Ant Colony 

Optimization (ACO), in detail and show how the behavior of real ants – 

especially their foraging procedure based on pheromone trails – influenced the 

creation of this heuristic.  

Chapter 4 is dedicated to the main ACO algorithms. After giving an insight in the 

historical development, we take a look at the very first ant algorithm, the so-

called Ant System. Afterwards we discuss the successors of this algorithm and 

list the main algorithms for the Traveling Salesman Problem (TSP) as well as 

for the QAP. 

The local search procedures, which are used in our implementation, orientate 

themselves towards Iterated Ants and Large Neighborhood Search (LNS). In 

chapter 5 we give a description of these original ideas. 

Chapter 6 deals with the implementation part of this diploma thesis. We show all 

important principles, which form part of the proposed algorithms, and afterwards 

we take a closer look at the actual algorithms MMAS Basis, MMAS Random 

Removal, MMAS Product Removal Highest, MMAS Product Removal Lowest 

and MMAS 3 Iterated. 

Last but not least we present the obtained results which refer to several 

classical QAP instances taken from the QAPLIB.3 

 

 

 

 

                                            
1 see Sahni/Gonzales, 1976 
2 see Ramkumar/Ponnambalam/Jawahar, 2009 
3 http://www.opt.math.tu-graz.ac.at/qaplib/ 
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2. The Quadratic Assignment Problem (QAP) 

2.1   General Description 
The Quadratic Assignment Problem (QAP) is a typical combinatorial 

optimization problem which was first introduced by Koopmans and Beckmann in 

19574. 

 

The main aim of the QAP is the allocation of a set of n facilities (e.g. machines) 

to a set of n locations (e.g. working stations) in order to minimize the total sum 

of the products between distances and flows. The distances are measured as 

the way from one location to another one, the flows are measured as the 

material flow from one facility to another. 

 

In 1976 Sahni and Gonzales5 stated the QAP as NP-hard and it is still 

considered as one of the most difficult combinatorial optimization problems due 

to the complexity of computing a good solution6. 

Up to now it has just been possible to solve the QAP to optimality in the range 

of the smaller instance sizes (around n = 25) because the higher the instance 

size gets, the more intractable it becomes. Unfortunately exact algorithms work 

rather poor on average and/or need a very long period of time to calculate 

reasonable solutions. Therefore the development of various heuristics for the 

QAP took place and led to the possibility to receive relatively satisfying solution 

values within an acceptable time span. The most important heuristic 

approaches are ant algorithms, simulated annealing, tabu search, construction 

methods, genetic algorithms, etc…7 

The QAP is often used to model real life applications like, for example, the 

layout planning of university grounds8, typewriter keyboard design9 or even 

hospital layout10. 
                                            
4 see Koopmans/Beckmann, 1957, p 64 ff 
5 see Sahni/Gonzales, 1976 
6 see Ji/Wu/Liu, 2006, p 107 
7 see Ramkumar/Ponnambalam/Jawahar, 2009, p 621 
8 see Dickey/Hopkins, 1972 
9 see Burkard/Offermann, 1977 
10 see Elshafei, 1977 
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2.2   Mathematical Model11 
Mathematically the definition of the Quadratic Assignment Problem consists of a 

set N = {1, 2, ..., n} (n locations, n facilities) and two matrices of dimension  

n x n: 

a. Distance matrix D = {dij}, where dij represents the distance between 

location i and location j 

b. Flow matrix F = {fkl}, where fkl represents the material flow between 

facility k and facility l 

 

The cost of transferring material, patients, data etc. from location i to location j 

can easily be calculated by the term: 

 

𝑑𝑖𝑗 ∗ 𝑓𝜋(𝑖)𝜋(𝑗)                                                                                                                                  (1)                                                                                                       

  

After all the main aim of the QAP is to find a permutation out of S(n) which 

minimizes the total sum of the products between distances and corresponding 

flows which leads us to the following objective function: 

 

min
𝜋∈𝑆(𝑛)

��𝑑𝑖𝑗

𝑛

𝑗=1

𝑛

𝑖=1

∗ 𝑓𝜋(𝑖)𝜋(𝑗)                                                                                                         (2) 

 

The term 𝜋(𝑖) denotes the facility which is assigned to location i and conversely 

the term 𝜋(𝑗) stands for the allocated facility on location j. 

 

There are also two important constraints which need to be taken into 

consideration:  

 

�𝑥𝑖𝑘

𝑛

𝑘=1

= 1            𝑓𝑜𝑟 𝑖 = 1, … ,𝑛                                                                                             (3) 

...each location i can be occupied by exactly 1 facility 

 

 

                                            
11 see Maniezzo/Colorni/Dorigo, 1994, p 1 
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�𝑥𝑖𝑘

𝑛

𝑖=1

= 1            𝑓𝑜𝑟 𝑘 = 1, … ,𝑛                                                                                            (4) 

  ...each facility k has to be assigned to exactly 1 location i 

 

As a binary variable xik can either be of the value 1 (if facility k is assigned to 

location j) or of the value 0 (if facility k is not assigned to location j). 

 

By taking this binary variable into account, the resulting objective function can 

be formulated as: 

 

min����𝑑𝑖𝑗

𝑛

𝑗=1

𝑛

𝑖=1

𝑛

𝑙=1

𝑛

𝑘=1

∗ 𝑓𝑘𝑙 ∗ 𝑥𝑖𝑘 ∗ 𝑥𝑗𝑙                                                                                     (5) 

 

2.3   Example 
For better understanding a short example of a symmetric QAP with problem 

size n = 5 is illustrated below. 

 

   .... map of locations 1-5 

 

 

      

                            D = {1, 2, 3, 4, 5}             F = {A, B, C, D, E} 

 

 
 

 

1 2 3
4 5

1 2 3 4 5 A B C D E
1 0 1 2 1 2 A 0 3 4 2 6
2 1 0 1 2 1 B 3 0 5 3 7
3 2 1 0 3 2 C 4 5 0 10 5
4 1 2 3 0 1 D 2 3 10 0 1
5 2 1 2 1 0 E 6 7 5 1 0
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1E 2C 3A
4B 5D

1B 2A 3C
4D 5E

1C 2A 3D
4E 5B

1A 2D 3B
4E 5C

Permutation 1:  

 

A-1, B-3, C-5, D-2, E-4 

 

Cost= 2*(3*2+4*2+2*1+6*1+5*2+3*1+7*3+10*1+5*1+1*2)= 146 

 

Permutation 2:                                                                

 

A-2, B-5, C-1, D-3, E-4 

 

Cost= 2*(3*1+4*1+2*1+6*2+5*2+3*2+7*1+10*2+5*1+1*3)= 144 

 

Permutation 3:         

 

A-2, B-1, C-3, D-4, E-5 

 

Cost = 2*(3*1+4*1+2*2+6*1+5*2+3*1+7*2+10*3+5*2+1*1) = 170 

 

Permutation 4:                     

                                              

A-3, B-4, C-2, D-5, E-1 

 

Cost = 2*(3*3+4*1+2*2+6*2+5*2+3*1+7*1+10*1+5*1+1*2) = 132 

 

Although these four permutations are only a fraction of all available solutions, it 

can obviously be observed that a better solution quality can be received if the 

two facilities with the largest material flow among themselves are being put on 

(the) two locations which have the smallest distance to each other. In case of 

permutation number three the total opposite (largest distance- highest material 

flow) leads to tremendously high total costs. Therefore the main concern should 

be to find a permutation which arranges the facilities in a way so that the 

highest material flows are being multiplied with the smallest distances. 
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2.4   The QAPLIB12 
Since the first formulation of a Quadratic Assignment Problem model a whole lot 

of international scientists have conducted researches in this field in order to 

create algorithms which are capable of finding feasible solutions. Many 

algorithms have been established as well as a lot of different problem instances 

by several researchers. 

In 1991 a group of Austrian scientists from the Graz University of Technology 

had the idea to put up the QAPLIB to provide all these information and solutions 

to the scientific community. At that time the QAPLIB, as an up-to-date source, 

contained all accessible QAP instances. 

In 1994 Burkard, Rendl and Karisch performed a major update and enhanced 

the QAPLIB by several new problem instances and a list of the best known 

solutions and best lower bounds. 

A real turning point marked the year 1996 when it became a homepage in the 

World Wide Web not only just because of to the steadily growing community 

which was interested in this particular area of research. Also new data and 

solutions as well as an overall view over recent dissertations concerning the 

QAPLIB were included.  

During the years 2000 and 2002 some other updates took place: several new 

problem instances, a list of people being involved in the QAP research work and 

improved best solutions to some existing instances were included. Since 2002, 

the homepage has been updated by Peter Hahn at the University of 

Pennsylvania.  

 

The descriptions and the solutions to all problem instances are clearly 

structured and give some indication of how good the current best solutions are. 

In case of an existing optimal solution, the QAPLIB gives information about the 

solution value, the applied heuristic and the permutation. In case of a non 

existing optimal solution, the best feasible solution is given accompanied by a 

lower bound and a value for the relative gap between the bound and the best 

feasible solution. 

                                            
12 http://www.opt.math.tu-graz.ac.at/qaplib/#intro, called up on 22.03.2011  
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Some examples of heuristics being used for calculating the solutions of the 

QAPLIB are ant systems, scatter search, simulated annealing, genetic hybrids 

and tabu search. 

 

3. Ant Colony Optimization 

The research field of Ant Colony Optimization (ACO) can be traced back to the 

observations of ant colonies and their behavior in real nature. Although a single 

ant is a quite simple living thing and not capable of solving difficult tasks, a 

whole social insect society is able to overcome this lack of capabilities due to a 

high grade of organization and communication among themselves. Because of 

that it is easier for ant colonies than for a single ant to find a solution for a 

certain problem.13 

The observation of real ants showed up that they use some kind of indirect 

communication technique called stigmergy which is defined by changes of the 

immediate environment. Often these changes are a result of the use of 

chemicals known as pheromones which are deposited by the ants on the 

ground in order to create an incentive for the other ants to follow the same way. 

This natural behavior inspired the development of ant algorithms which make 

use of some kind of artificial stigmergy to influence a group of artificial ants.14 

 

3.1   Definition of Metaheuristics 
Originally, a metaheuristic can be defined as an algorithmic concept which 

combines a construction heuristic with a local search procedure with the aim to 

carry out a broad search in the space of possible solutions without getting stuck 

in local optima.15 It finds application to various types of complex problems (in 

particular combinatorial optimization problems) and has the advantage that the 

adaption to a specific problem can be realized without performing any serious 

changes to the general framework. The rising utilization of metaheuristics has 

                                            
13 see Dorigo/Stützle, 2004, p 1 
14 see Dorigo/Stützle, 2004, p 1 
15 see Glover/Kochenberger, 2002, p xi 
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improved the possibility for generating better solutions especially for large 

instance sizes.16 

Although the solution values calculated by metaheuristics cannot provide 

conclusive proof of optimality, existing exact algorithms often produce solutions 

without any chance of reaching the best values found by metaheuristics. This 

observation led to a stronger research work in the field of metaheuristics.17 

 

3.2   Biological Principles 
The basic principles which formed the basis for the creation of the research field 

dealing with Ant Colony Optimization is deeply embedded in another scientific 

discipline called swarm intelligence. All the knowledge and the observations that 

came from several biological studies of insect societies (also including ant 

colonies) as well as the finding that social insects are able to hide the simplicity 

of their individuals by forming a highly structured organization in order to cope 

with complex problems made it possible to establish swarm intelligence as an 

emerging research field.18  

 

3.2.1 Real Ants´ Behavior 
As already mentioned above, the scientific findings concerning the foraging 

behavior of ants in nature represent the most important basis for all ant 

algorithms.  

When ants leave their nest to search for some food they continually leave some 

chemical known as pheromone on the ground which disposes the other ants to 

follow the same path. This chemical-driven kind of indirect communication 

among the single ants is also known as stigmergy, a term which was introduced 

by French entomologist Pierre-Paul Grassé in the late fifties of the twentieth 

century. Stigmergy differs from other forms of communication in two main 

aspects:19 

a. Stigmergy is in contrast to human forms of communication neither visible 

nor audible. Ants mediate their information by modifying their direct 

environment. 

                                            
16 see Dorigo/Stützle, 2004, p 33 
17 see Glover/Kochenberger, 2002, p xi f 
18 see Garnier/Gautrais/Theraulaz, 2007, p 3 
19 see Dorigo/Birattari/Stützle, 2006, p 28 
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b. Stigmergic information has to deal with limitations in terms of space. 

Pheromones have a certain range which means that it can only be 

distinguished by the immediate neighborhood. 

 

3.2.2 The Double Bridge Experiment 
The idea to observe this foraging behavior of ants in order to prove the 

existence of stigmergy led to a lot of experiments by several scientists. Probably 

the best known of those experiments is the so-called “double bridge 

experiment” which was carried out by Denebourg, Goss and other colleagues in 

the late nineties of the twentieth century.20  

In their experiment they observed the behavior of an Argentine ant species 

named Iridomyrmex humilis by connecting a nest with a food source through the 

implementation of a diamond shaped bridge where initially both branches were 

of equal length.  

 

 
Figure 1: Branches of equal length21 

 

At the beginning of the experiment the whole area between the nest and the 

food source is free from all pheromone but as soon as the ants start to explore 

the environment they continually leave pheromone on the ground.22  

Due to the fact that there exist two branches which can be chosen to get to the 

food the ants randomly select their way in the starting phase. This leads to the 

initial observation that 50% of the ants choose the upper branch and the other 

50% choose the lower branch. However, because of the fact that ants get 

                                            
20 see Denebourg et al., 1990, p 159 ff 
21 taken from http://www.scholarpedia.org/wiki/images/9/97/SameLengthDoubleBridge.png,  
   called up on 27.01.2011 
22 see Denebourg et al., 1990, p 160 ff 
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stimulated and influenced in their decision making process by the pheromones 

left by their predecessors, a higher concentration of ants can be noticed on one 

branch after some time. So the amount of ants following one particular branch 

grows stronger over time until all insects exclusively go for the same way.23 

 

In 1989 Goss and his colleagues made some amendments to this experiment in 

order to prove that ant colonies were able to find the shortest branch. The 

diamond shaped bridge is replaced with two new branches; a short branch and 

another branch which is twice as long as the shorter one.24 

 

 
Figure 2: Branches have different length25 

 

Again the ants head off towards the food source and randomly choose either 

the short or the longer branch. But the main difference to the other experiment 

is the time which an ant needs for the way from the nest to the food and back 

again; all the ants which choose the shorter branch need less time for their 

whole way and get back to the nest first. As a result these ants are able to leave 

more pheromone on the shorter branch than their colleagues on the longer 

branch can do in the same period of time which induces the pheromone level on 

the shorter branch to grow more rapidly. Now the other ants more likely follow 

the short path when leaving the nest and the ants leaving the food source also 

decide for this way due to the higher concentration of pheromone.26 In most of 

                                            
23 see Denebourg et al., 1990, p 160 ff 
24 see Goss et al., 1989, p 579 ff 
25 taken from http://www.scholarpedia.org/article/File:DiffLengthDoubleBridge.png, called up    
   27.01.2011 
26 see Goss et al., 1989, p 579 ff 
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the experimental runs Goss et al. were able to observe the convergence 

towards the shorter branch.27 

 

The process of this experiment can be compared to the generation of optimal 

solutions for the shortest-route problem.28 

 

3.2.3 From Real to Artificial Ants 
In order to generate solutions artificial ants are dependent on:29 

a. Heuristic information which is problem specific 

b. Artificial pheromone trails which reflect how desirable a certain solution 

component is 

 

Besides that also some other assumptions have to be made:30 

a. Artificial ants are not blind 

b. The provided time for solution construction is discrete 

c. Artificial ants have a memory in order to store the already added partial 

solutions (e.g. certain assignments, already walked ways, ...) 

 

With this information artificial ants are able to continually build up their solutions 

by enhancing the already generated solution part through adding solution 

components in every step of the process.  

 

3.3   Main procedures of the ACO Metaheuristic31 
Since the first formulation of an ant algorithm, many successful adaptations 

have been developed and have found application to several combinatorial 

optimization problems (see chapter 4, section 4.2). Although many different 

variations of ant algorithms exist in the scientific world, they all have one thing in 

common: an ACO algorithm can always be described as the interaction of three 

different activities. 

 
 

                                            
27 see Dorigo/Stützle, 2004, p 4 
28 see Mullen et al., 2009, p 9609 
29 see Dorigo/Stützle, 2009, p 3 f 
30 see Dorigo/Maniezzo/Colorni, 1996 
31 see Dorigo/Stützle, 2004, p 37 f 
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procedure ACOMetaheuristic 

ScheduleActivities 

ConstructAntsSolutions 

UpdatePheromones 

DaemonActions % optional 

end-ScheduleActivities 

end-procedure 

 

Figure 3: Pseudo-code of an ACO metaheuristic32 

 

ConstructAntsSolutions 

In this step the artificial ants evaluate all possible solution components which 

can be added to the already existing partial solution. The new part of the 

solution is being selected by a probability based policy which includes the actual 

pheromones and sometimes heuristic information. 

 

UpdatePheromones 

This procedure deals with the modification of the pheromone trails. Depending 

on which assignments or connections an ant uses in its solution, new 

pheromone is being deposited on this assignment in order to make it more 

desirable for the following ants. Before doing so the natural process of 

evaporation has to be taken into consideration which means that the 

pheromone levels have to be decreases by a constant factor. 

 

DaemonActions 

Although this step is optional it can enhance the algorithm by helpful and 

optimizing procedures. A good example would be the implementation of a local 

search procedure in order to improve the solution constructed by a single ant. 

The daemon could also check all individual solutions and pick the best and/or 

the second best in order to deposit some additional pheromone. 

 

                                            
32 taken from Dorigo/Stützle, 2004, p 38 
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4. Ant Algorithms 

4.1   Historical Development 
The very first ant algorithm to be mentioned in scientific literature was Ant 

System (AS) which initially consisted of three different algorithms called ant-

density, ant-quantity and ant-cycle. They differed from each other concerning 

the carrying out of the pheromone updates. While in ant-cycle the ants had to 

construct the whole solution before they were able to modify the pheromone 

values, in ant-density and ant-quantity the pheromone update was made after 

every solution construction step (e.g. after each assignment). Due to the fact 

that ant-cycle continually provided the best solution values, the research 

concentrated on the further development of this algorithm and called it Ant 

System.33  

 

Its first application to the Traveling Salesman Problem (TSP) will be discussed 

later (see chapter 4, section 4.3). 

 

In the following years numerous scientists got into the spirit of this new 

algorithm and tried to develop extensions or even to improve the basic idea. 

Several new algorithms were developed (see chapter 4, section 4.4 & 4.5) and 

the term ACO metaheuristic was found in order to define a new class of 

algorithms.34 

 

4.2   Applications to several problems 
During the last few years the interest in the research area of Ant Colony 

Optimization was continually growing and led to the modeling of several 

variants of older algorithms and also of new ant algorithms as well as to the 

application to a large number of problems. 

In Figure 4 a short excerpt of applications including authors and year is given. 

 

 

 

                                            
33 see Dorigo/Stützle, 2003, p 260 f 
34 see Dorigo/Stützle, 2003, p 261 
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4.3   Ant System applied to the Traveling Salesman Problem 
The Traveling Salesman Problem (TSP) is an NP-hard combinatorial 

optimization problem which wants to minimize the total tour length of a 

salesman who has to visit a given list of customers (e.g. cities, private people, 

...). The salesman has to start from his home and is allowed to include a 

customer exactly once in his tour before returning home.35 

 

 
 

Figure 4: List of several applications of ant algorithms36 

 

 

                                            
35 see Dorigo/Stützle, 2004, p 65 f 
36 modified from Dorigo/Di Caro, 1999 

Problem Name Authors Year Algorithm name

Traveling salesman Dorigo, Maniezzo & Colorni 1991 AS
Gambardella & Dorigo 1995 Ant-Q
Dorigo & Gambardella 1996 ACS & ACS-3-opt
Stützle & Hoos 1997 MMAS
Bullnheimer, Hartl & Strauss 1997 ASrank

Quadratic Assignment Maniezzo, Colorni & Dorigo 1994 AS-QAP
Gambardella, Taillard & Dorigo 1997 HAS-QAP
Stützle & Hoos 1998 MMAS-QAP
Maniezzo & Colorni 1998 AS-QAP
Maniezzo 1998 ANTS-QAP
Wiesemann & Stützle 2006 Iterated Ants

Vehicle Routing Bullnheimer, Hartl & Strauss 1996 AS-VRP
Gambardella, Taillard & Agazzi 1999 HAS-VRP

Connection-oriented Schoonderwoerd, Holland, 1996 ABC
  network routing   Bruten & Rothkrantz

White, Pagurek & Oppacher 1998 ASGA
Di Caro & Dorigo 1998 AntNet-FS
Bonabeau, Henaux, Guérin, 1998 ABC-smart ants
  Snyers, Kuntz & Théraulaz

Connection-less Di Caro & Dorigo 1997 AntNet & AntNet-FA
  network routing Subramanian, Druschel & Chen 1997 Regular ants

Heusse, Guérin, Snyers & Kuntz 1998 CAF
van der Put & Rothkrantz 1998 ABC-backward

Sequential Ordering Gambardella & Dorigo 1997 HAS-SOP
Graph Coloring Costa & Hertz 1997 ANTCOL

Shortest common Michel & Middendorf 1998 AS-SCS
  supersequence
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Figure 5: A 40 node TSP (a) and a whole tour as a possible solution (b)37 

 

In all ant algorithms designed for the TSP the values of the pheromone matrix 

ijτ  represent the potential goodness of inserting city j directly after city i in the 

route.  

Before starting the solution construction each ant k is assigned to a starting city 

(either randomly chosen or according to a certain criterion) and receives an 

internal memory which stores all completed construction moves of the ant. Then 

an ant performs the following steps:38 

 

I. The next city to be visited is selected probabilistically by equation 6 which is 

based on some heuristic information ijij d/1=η  (where ijd  stands for the 

distance between the cities i and j) on the one hand and the pheromone 

trails on the other hand. The parameters α  and β  regulate the grade of 

influence on the result of the equation and k
iN  defines the set of all 

unvisited cities. 

𝑝𝑖𝑗𝑘 (𝑡) =  
�𝜏𝑖𝑗(𝑡)�𝛼 ∗  �𝜂𝑖𝑗�

𝛽

∑ [𝜏𝑖𝑙]𝛼 ∗  [𝜂𝑖𝑙]𝛽𝑙∈𝑁𝑖
𝑘

     𝑖𝑓 𝑗 ∈ 𝑁𝑖𝑘                                                                   (6) 

 

II. Step number I. is repeated until all cities are included in the tour, then the 

ant returns to its starting point. 

 

                                            
37 modified from http://www.i-cherubini.it/mauro/blog/wp-content /uploads/ 2007/08/ images/       
Dry_TSP_experiment.png, called up 06.01.2011 
38 see Dorigo/Stützle, 2003, p 261 f 
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III. After all ants have finished the construction of their tours, the pheromone 

trails are updated. First the pheromone values have to be lowered by a 

constant rate ρ  (0 < ρ < 1) in order to fulfill the demand of the natural 

evaporation and to prevent the pheromone trails from unlimited growing. 

After that all ants (m is the number of ants) deposit their pheromones.  

 

∀(𝑖, 𝑗)  𝜏𝑖𝑗(𝑡 + 1) = (1 − 𝜌) ∗ (𝜏𝑖𝑗(𝑡)) +  �∆𝜏𝑖𝑗𝑘
𝑚

𝑘=1

(𝑡)                                                (7) 

 

The term )(tk
ijτ∆ denotes the amount of deposited pheromone on the edge 

between city i and j. 

∆𝜏𝑖𝑗𝑘 (𝑡) =  �
1

𝐿𝑘(𝑡)
  𝑖𝑓 𝑒𝑑𝑔𝑒 (𝑖, 𝑗)𝑖𝑠 𝑢𝑠𝑒𝑑 𝑏𝑦 𝑎𝑛𝑡 𝑘

0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
�                                                       (8) 

 

)(tLk stands for the tour length of ant k. 

 

4.4   The direct successors of Ant System 
 

4.4.1 Elitist Ant System39 40 
One of the first improvements over the original ant system was the elitist ant 

system. This algorithm enables the current global best solution tour to deposit 

additional pheromone in order to help the edges of the best tour to get a 

stronger weight. The best tour is denoted with Tgb, where gb is the abbreviation 

for global best. The depositing of the additional pheromone happens during the 

normal pheromone update according to equation 9. 

 

  𝜏𝑖𝑗(𝑡 + 1) = (1 − 𝜌) ∗ �𝜏𝑖𝑗(𝑡)� +  �∆𝜏𝑖𝑗𝑘
𝑚

𝑘=1

(𝑡) + ∆𝜏𝑖𝑗
𝑔𝑏(𝑡)                                               (9) 

 

 

 
                                            
39 see Dorigo/Stützle, 2003, p 262 
40 see Dorigo/Stützle, 2004, p 73 
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The additional pheromone can be of the quantities 

 

∆𝜏𝑖𝑗
𝑔𝑏(𝑡) = �

𝑒
𝐿𝑔𝑏(𝑡)

    𝑖𝑓 𝑒𝑑𝑔𝑒 (𝑖, 𝑗) ∈ 𝑇𝑔𝑏

0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
�                                                                           (10) 

 

Where e is a positive integer and Lgb stands for the tour length of Tgb. 

 

4.4.2 Rank-Based Ant System41 
Another adaption of the original ant system which also follows and further 

develops the ideas of the elitist ant system is the rank-based ant system ASrank.  

In this algorithm the amount of pheromone, which an ant is allowed to deposit, 

depends on the rank of the ant (the shorter the length of an ant´s tour, the more 

pheromone is provided for an ant).  

Before starting the pheromone modification all ants are ranked according to the 

lengths of their tours (sorted in increasing order). In each pheromone updating 

only the first (w-1) ants as well as the best tour so far are allowed to modify the 

pheromone trails according to equation 11:42 

 

𝜏𝑖𝑗(𝑡 + 1) = (1 − 𝜌) ∗ �𝜏𝑖𝑗(𝑡)� +  �(𝑤 − 𝑟) ∗ ∆𝜏𝑖𝑗𝑟
𝑤−1

𝑟=1

(𝑡) + 𝑤 ∗ ∆𝜏𝑖𝑗
𝑔𝑏(𝑡)                   (11) 

 

4.4.3 Ant Colony System43 
The ant colony system (ACS) algorithm distinguishes from the ant system 

algorithm in three main things: 

a. Only the global best tour is brought in for the pheromone evaporation 

and the pheromone depositing 

b. The ant colony system makes use of a different action choice rule in 

order to enhance the exploitation of the ants´ search experience 

c. The single ants try to improve the exploration of alternative tours by 

constantly removing some pheromone when using a certain arc (i, j). 

 

                                            
41 see Dorigo/Stützle, 2004, p 73 f 
42 see Dorigo/Stützle, 2004, p 73 f 
43 see Dorigo/Stützle, 2004, p 76 ff 
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Constructing the tour 

In ACS the ants use a pseudorandom proportional rule in order to choose the 

cities to move to. This rule is given by 

 

𝑗 = �
𝑎𝑟𝑔𝑚𝑎𝑥𝑙∈𝑁𝑖𝑘  �𝜏𝑖𝑙[𝜂𝑖𝑙]𝛽�,    𝑖𝑓 𝑞 ≤ 𝑞0;

𝐽,       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒;
�                                                                          (12) 

 

where variable J is randomly selected according to equation 6 (α = 1), q0 is a 

parameter (0 ≤ q0 ≤ 1) and q is a uniformly distributed variable [0, 1]. 

 

 

Updating the global pheromone trail 

As mentioned before, only the ant with the global best tour is allowed to deposit 

pheromone in ACS which can be interpreted as a strong elitist strategy:  

𝜏𝑖𝑗(𝑡 + 1) = (1 − 𝜌) ∗ �𝜏𝑖𝑗(𝑡)� +  𝜌 ∗ ∆𝜏𝑖𝑗
𝑔𝑏(𝑡)                                                                  (13) 

 

During the first experiments with ACS the influence of the iteration best tour on 

the pheromone update was tested. Despite the relatively good findings for small 

TSP instances (≤ 100), in which the iteration best tour performed as good as the 

global best tour, the final result showed that the global best tour had the better 

overall performance (even for larger instance sizes). 

 

Updating the local pheromone trail 

In order to intensify the searching process and to circulate a stagnation 

behavior in ACS the ants use a special procedure to weaken the influence of 

the single pheromone values. 

Each time an ant passes a certain arc (i, j), the corresponding pheromone value 

is updated by using the following equation: 

 

𝜏𝑖𝑗 = �(1 − 𝜉) ∗ 𝜏𝑖𝑗� + (𝜉 ∗ 𝜏0)                                                                                              (14) 

 

The parameter 0τ  is given the initial value of the pheromone trails, and ξ  is 

some kind of evaporation parameter (where 0 < ξ  < 1). 
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The main aim of this local pheromone update is to reduce the desirability of 

certain arcs to make a better exploration of different tours possible. 

 

4.5   ACO applied to the QAP 
The ant algorithms for the Traveling Salesman Problem can easily be adapted 

to the Quadratic Assignment Problem (see chapter 2 for a detailed problem 

description). While for the TSP the main aim is the construction of tours, a good 

solution for the QAP is characterized by an optimal and cost-effective 

assignment of facilities to the available locations. Despite the differing target 

settings, in both algorithms the use of pheromone trails shows a significant 

grade of influence.  

The following sections describe some available ant algorithms for the QAP. The 

first one is the original ant system, which was adapted and first applied to the 

QAP in 1994.44 The second algorithm to be presented here is the HAS-QAP, a 

hybrid ant-local search system.45 The third one – the MAX-MIN ant system 

(MMAS) – is probably the most interesting one because it is the basis for the 

practical implementation part of this diploma thesis. MMAS was introduced by 

Stützle and Hoos and is an improvement over ant system.46 

 

4.5.1 Ant System for the QAP47 
Like all other ant algorithms this heuristic makes use of a set of m ants which 

assign a facility to a certain location in every construction step.  

In order to guarantee that each ant doesn’t include a location twice in its 

construction process, some kind of tabu list must be defined. This list stores all 

already occupied locations until a whole permutation is completed: 

• tabuk is the tabu list for ant k (primarily a vector) 

• tabuk(a) is the a-th element in the tabu list of ant k 

 

In the ant system algorithm for the QAP the ants construct their solutions 

probabilistically by using the Roulette Wheel method (for further description see 

                                            
44 see Maniezzo/Colorni/Dorigo, 1994 
45 see Gambardella/Taillard/Dorigo, 1999 
46 see Stützle/Hoos, 1999  
47 see Maniezzo/Colorni/Dorigo, 1994, p 1 ff 
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chapter 6, section 6.1.2). The probability that ant k assigns facility i to location j 

can be calculated by: 

 

𝑝𝑖𝑗𝑘 (𝑡) = �
�𝜏𝑖𝑗(𝑡)�𝛼 ∗  �𝜂𝑖𝑗�

𝛽

∑ [𝜏𝑖𝑙]𝛼 ∗  [𝜂𝑖𝑙]𝛽𝑙∉𝑡𝑎𝑏𝑢𝑘
     𝑖𝑓 𝑗 ∉ 𝑡𝑎𝑏𝑢𝑘

0        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

�                                                             (15) 

 

As in all other ant algorithms, the variable ijτ stands for the pheromone trail (in 

this case the pheromone of the assignment location j- facility i), the variable ijη

marks the heuristic information (in this case the desirability or potential 

goodness of an assignment) and the parameters α and β  determine the 

relative influence of these variables. 

 

At the very beginning of the algorithm the potential goodness of a particular 

assignment has to be determined by calculating the two potential vectors D 

(distance potential vector) and F (flow potential vector) as well as the coupling 

matrix A. Given the distance matrix and the flow matrix the sums of each row 

form the two potential vectors. 

 

 
 

The distance potentials di indicate the sum of all distances from one location to 

all other locations; the flow potentials fj indicate the sum of all material flows 

from one particular facility to all the others. 

 

d1 = 0+5+2+3+1 = 11 f1 = 0+2+3+1+2 = 8 

d2 = 5+0+2+4+2 = 13 f2 = 2+0+4+2+1 = 9 

d3 = 2+2+0+6+3 = 13 f3 = 3+4+0+3+1 = 11 

...    ... 

0 5 2 3 1 0 2 3 1 2
5 0 2 4 2 2 0 4 2 1

D = 2 2 0 6 3 F = 3 4 0 3 1
3 4 6 0 2 1 2 3 0 3
1 2 3 2 0 2 1 1 3 0
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88 99 121 99 77
104 117 143 117 91

A = 104 117 143 117 91
120 135 165 135 105
64 72 88 72 56

 
 

The lower a flow potential, the less important this activity is for the whole 

network; the lower a distance potential of a certain node, the more barycentric it 

is considered in the system.  

 

By taking these two potential vectors as a basis one may calculate the coupling 

matrix A with its elements aij by forming the products di*fj. The potential 

goodness ijη of a particular assignment can then be obtained by defining the 

inverse of the coupling matrix elements ijη = 1/ aij. 

 

a11 = 11*8 = 88  a21 = 11*9 = 99  a31 = 11*11 = 121 

a12 = 13*8 = 104  a22 = 13*9 = 117  ... 

a13 = 13*8 = 104  a23 = 13*9 = 117 

a14 = 15*8 = 120  a24 = 15*9 = 135 

a15 = 8*8 = 64  a25 = 8*9 = 72 

 

 

 

Now an ant is able to start the solution construction by starting with the facility 

which has the greatest flow potential and assigning it to the location obtained by 

equation (15). The pheromone trails are updated according to equation (7). 

 

4.5.2 HAS-QAP48 
Before giving a more detailed description of the HAS-QAP, it is necessary to 

give a short overview of the most important facts. 

 

The greatest difference between the HAS-QAP – a hybrid ant colony system – 

and other ant algorithms is that ants use the pheromone trails in a non-standard 

                                            
48 see Gambardella/Taillard/Dorigo, 1999 

11 8
13 9

D = 13 F = 11
15 9
8 7
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way. Normally the pheromone trails are consulted for the construction of 

feasible solutions; in the HAS-QAP they are used only to modify existing 

solutions. After this modification based on the pheromone values, an additional 

local search is performed.  

 

The updating process of the pheromone values happens by taking into account 

only the best solution so far. This global update considerably shortens the 

solution finding process; additionally, this effect is increased by the 

intensification mechanism which can also lead to an early convergence. The 

intensification mechanism helps the algorithm to solve the problem of choosing 

the starting solution for an ant (during each iteration). If at the end of the 

iteration the solution of an ant is worse than at the beginning, the ant will again 

choose the solution from the beginning of the iteration.     

   

Because of this inconvenience mentioned before, there exists the possibility to 

activate a diversification mechanism in order to prevent the algorithm to 

converge too early. It consists of the erasing of all the pheromone trails and an 

additional re-initialization of the ants´ solutions. 

 

Detailed description of HAS-QAP 
This section explains the individual steps of the HAS-QAP algorithm (as shown 

in Figure 6) more precisely: 

 

Initialization phase- solutions 

The initial solution which is assigned to an ant is randomly generated and goes 

through a local search procedure (see section “Manipulating the solutions by 

local search”) in order to optimize it. 

 

Initialization phase- pheromone matrix 

At the beginning of the algorithm all values of the pheromone matrix ijτ  are set 

to the same initial value 0τ .  
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*initialization* 
Generate m random initial permutations π 1(1), ..., π m(1), each one 

associated to an ant   
Improve π 1(1), ..., π m(1) with the local search procedure 
Let π * be the best solution 
Initialize the pheromone trail matrix T   
Activate intensification 
*main loop* 
For i = 1 to Imax repeat 

*solution manipulation* 
For each permutation π k(i) (1 ≤ k ≤ m) do 

  Apply R pheromone trail swaps to π k(i) to obtain π̂ k(i) 

  Apply the local search procedure to π̂ k(i) to obtain π~ k(i) 
End For 
*intensification* 
For each ant k do 

  If intensification is active 
Then π k(i+1) ← best permutation between π k(i) and 

π~ k(i) 

  Else π k(i+1) ← π~ k(i) 
End For 
If ∀ k π k(i+1)= π k(i) then deactivate intensification 

If ∃k such that f(π~ k(i)) < f(π *) 
  Then 
  Update π *, the best solution found so far 
  Activate Intensification 

*pheromone trail updating* 
Update the pheromone trail matrix 
*diversification* 
If S iterations have been performed without improving π * then 

  Perform a diversification 
End For 

Figure 6: The HAS-QAP algorithm49 

 

Manipulating the solutions using pheromones 

The first part of the manipulation of solutions performs R swaps to the solution 
kπ to obtain the new permutation kπ̂ . The two elements to be swapped are 

chosen according to the following rule: first, an index r (between 1 and n) has to 

be selected. Second, depending on the value of r an index s (s≠ r) can be 

chosen by employing one of two different policies: 

 

1. set s to a value so that k
s

k
r rs ππ ττ + is maximized; with probability q 

2. choose s with probability 
∑
≠

+

+

rj

k
j

k
r

k
s

k
r

rj

rs

)( ππ

ππ

ττ
ττ

; with probability (1- q) 

                                            
49 modified from Gambardella/Taillard/Dorigo, 1999, p 169 
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After the selection of the two indices the elements k
sπ and k

rπ can be swapped. 

 

Manipulating the solutions by local search 

This neighborhood search is based on a first improvement strategy and 

examines all possible swaps of the elements iπ and jπ ofπ . The difference in 

the objective function can be determined by: 

 

∆(𝜋, 𝑖, 𝑗) = �𝑑𝑖𝑖 − 𝑑𝑗𝑗� �𝑓𝜋𝑗𝜋𝑗 − 𝑓𝜋𝑖𝜋𝑖�                                          

+ �𝑑𝑖𝑗 − 𝑑𝑗𝑖� �𝑓𝜋𝑗𝜋𝑖 − 𝑓𝜋𝑖𝜋𝑗�

+ ��𝑑𝑘𝑖 − 𝑑𝑘𝑗� �𝑓𝜋𝑘𝜋𝑗 − 𝑓𝜋𝑘𝜋𝑖�
𝑘≠𝑖,𝑗

+ �𝑑𝑖𝑘 − 𝑑𝑗𝑘� �𝑓𝜋𝑗𝜋𝑘 − 𝑓𝜋𝑖𝜋𝑘�                                                                     (16) 

 

If an improving swap of two elements is found, this swap is performed 

immediately.  

 

Intensification 

The intensification mechanism pursues the goal of exploring the neighborhood 

of the best solution so far more exactly. Intensification is active as long as at 

least one ant is capable of improving its solution. In Figure 7 a typical 

intensification mechanism is demonstrated: on the vertical axis the solution 

quality is measured (of ant k and the best known solution value), on the 

horizontal axis three of the main steps of an HAS-QAP algorithm are 

represented (the initial solution, manipulating the solutions using pheromones, 

manipulating the solutions using local search). 

According to Figure 7, the intensification mechanism is not active at the 

beginning of the algorithm  so we have to set )(~)1( ii kk ππ ←+ . After iteration 

i+1 a new best solution is found which requires the activation of intensification 

and )1(~)2( +←+ ii kk ππ . At the end of iteration i+2, due to the fact that 

intensification is active and the solution )2( +ikπ is better than )2(~ +ikπ , )3( +ikπ

receives the solution value of )2( +ikπ .     
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Figure 7: Example for intensification50 

 

Updating the pheromone trails 

As mentioned above, the pheromone update in the HAS-QAP is performed only 

by the global best solution *π , which leads to a faster convergence of the 

algorithm. Before doing so, the usual pheromone evaporation has to be realized 

by using choosing parameter ρ and using the following equation: 

 

𝜏𝑖𝑗(𝑡 + 1) = (1 − 𝜌) ∗ �𝜏𝑖𝑗(𝑡)�                                                                                              (17) 

 

Diversification 

The diversification mechanism consists in generating new starting solutions for 

the ants (only one ant keeps the global best solution) and re-initializing the 

pheromone matrix. It is activated if no new best solution is generated during the 

last S iterations. 

                                            
50 taken from Gambardella/Taillard/Dorigo, 1999, p 170 



 

26 
 

4.5.3 MAX-MIN Ant System (MMAS)51 
Since the first appearance of ant algorithms in the scientific literature, there has 

always been a strong interest to improve the performance of these algorithms in 

order to guarantee a better quality of solutions.  

A lot of research projects came to the finding that a stronger utilization of the 

global best solution can have an enormous influence on the efficiency of the 

algorithm. Unfortunately a higher influence rate of the best solution can lead to 

early search stagnation. So the main aim was to create an algorithm which 

combines an effective use of the best solutions with a special mechanism for 

avoiding early stagnation.  

The algorithm which is capable of meeting these requirements – the MAX-MIN 

Ant System – contains three special functions which distinguishes the MMAS 

from the normal ant system: 

1. In the initialization phase the pheromone trails are set to a value maxτ in 

order to allow a higher exploration 

2. In MMAS only one single ant is allowed to update the pheromone trails 

after each iteration; this can be either the ant with the best known 

solution (global best solution) or the best ant of the current iteration 

(iteration best solution) 

3. An infinite rise of the pheromone values and therefore stagnation can be 

avoided by introducing an interval for the pheromone trails [ ]maxmin ,ττ  

 

ad 1- pheromone trail initialization 

The initialization of the pheromone matrix has to be made with a very high value 

for 0τ  which can be chosen arbitrarily. By keeping to this rule, it can be 

guaranteed that all pheromone trails even out in the specified interval [ ]maxmin ,ττ

(normally exactly at maxτ ) after the first iteration.  

 

ad 2- pheromone trail updating 

In MMAS the pheromone trail updating is realized according to 

 

                                            
51 vgl. Stützle/Hoos, 2000, p 898 ff 
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𝜏𝑖𝑗(𝑡 + 1) = 𝜌 ∗ 𝜏𝑖𝑗(𝑡) + ∆𝜏𝑖𝑗𝑏𝑒𝑠𝑡                                                                                             (18) 

 

where    

 

∆𝜏𝑖𝑗𝑏𝑒𝑠𝑡 =
1

𝑓(𝑠𝑏𝑒𝑠𝑡)
                                                                                                                      (19) 

and )( bestsf refers to either the global best solution (sgb) or the iteration best 

solution (sib). This idea of using one single ant for the pheromone update has 

already been described in ACS; in ACS mainly the global best solution is used 

whereas in MMAS the main focus lies on the iteration best solutions. 

 

For updating the pheromones it is also very common to use mixed strategies 

which consist of using both sgb and sib in a constantly changing order (e.g. using 

sgb every 10 iterations). The best strategy is probably the dynamic mixed one 

which mainly uses the iteration best solutions coupled with a growing influence 

factor of the global best solution throughout the algorithm. This kind of 

compromise prohibits the search from concentrating too fast around the value of 

the global best solution in case of only using the sgb. By including the sib, which 

is normally significantly different in every iteration, in this mixed strategy, not 

only the pheromone trails belonging to the global best solution are updated but 

also less promising solutions get reinforced. In the practical part of this diploma 

thesis also a dynamic mixed strategy was implemented. 

 

ad 3- pheromone trail limits 

Every algorithm can have to face the problem of search stagnation which does 

not depend on the pheromone updating strategy. Search stagnation occurs if 

there exist significantly high pheromone trails for a certain permutation; these 

pheromone trails then have an essential influence on the solution construction 

of the ants (this situation is even worse in MMAS because in this algorithm the 

influence parameter β  of the heuristic information is normally set to zero which 

means that the probability choice rule only depends on the values of the 

pheromone matrix) which can lead to an endless circle of constant 

reinforcement of the best solution. 
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In order to avoid this undesirable behavior the MMAS makes use of so called 

pheromone trail limits [ ]maxmin ,ττ which help to keep the pheromone trails ijτ

within a certain range. In every iteration it has to be verified that the constraint 

maxmin )( τττ ≤≤ tij  holds by checking the pheromone trails: 

• if max)( ττ >tij , set max)( ττ =tij  

• if min)( ττ <tij , set min)( ττ =tij  

As mentioned above, the pheromone trails are initialized with a very high 

number which helps the pheromone values to even out in the interval [ ]maxmin ,ττ

after the first iteration. In MMAS this interval of trail limits is always updated if 

there is a new global best solution available.  

maxτ  is updated as follows: 

 

𝜏𝑖𝑗𝑚𝑎𝑥(𝑡) = �𝜌𝑡−𝑖
𝑡

𝑖=1

1
𝑓(𝑠𝑜𝑝𝑡)

+ 𝜌𝑡𝜏𝑖𝑗(0)                                                                                (20) 

 
because of 1<ρ  the sum can be rewritten as 

 
1

1 − 𝜌
∗

1
𝑓(𝑠𝑜𝑝𝑡)

                                                                                                                          (21) 

 

)( optsf  stands for the objective function value of the optimal solution. By 

substituting )( optsf  for )( gbsf  (the solution value of the global best solution), 

the updating procedure of maxτ  is triggered with every new global best solution.  

Going out from the value of maxτ the updating of minτ can now be realized. For 

this procedure we need the two possibilities bestp   – possibility of constructing 

the best solution after the convergence of MMAS – and decp  – possibility of an 

ant choosing all permutations with pheromone trail maxτ to construct its solution – 

in order to inset them into the following formulas. Assuming that 0>bestp  we 

can determine  
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𝑝𝑑𝑒𝑐 = �𝑝𝑏𝑒𝑠𝑡 
𝑛                                                                                                                             (22) 

 

By setting avg=n/2 to the value of decp  can also be calculated by: 

 

𝑝𝑑𝑒𝑐 =
𝜏𝑚𝑎𝑥

𝜏𝑚𝑎𝑥 + (𝑎𝑣𝑔 − 1)𝜏𝑚𝑖𝑛
                                                                                               (23) 

 

By transforming this equation for minτ  we get: 

 

𝜏𝑚𝑖𝑛 =
𝜏𝑚𝑎𝑥(1 − 𝑝𝑑𝑒𝑐)
(𝑎𝑣𝑔 − 1)𝑝𝑑𝑒𝑐

=
𝜏𝑚𝑎𝑥(1 − �𝑝𝑏𝑒𝑠𝑡 

𝑛 )
(𝑎𝑣𝑔 − 1)�𝑝𝑏𝑒𝑠𝑡 

𝑛                                                                    (24) 

 

5. Local Search Methods 

The research on metaheuristics supplies us with the knowledge that the best 

solution values can be achieved by combining a well thought-out mechanism for 

generating the initial solution with an effective local search method. Probably 

the best working algorithms are the iterated local search algorithms, which 

iteratively try to improve the initial solution by using a certain local search 

method. The main aim of a local search procedure is to find the local optimum 

in the neighborhood of a starting solution constructed by an ant. The probability 

for good local search methods to improve the solution value is quite high 

because a neighborhood different to the one of the initial construction phase 

can be sifted through. A very popular local search procedure, especially for the 

Traveling Salesman Problem, is the k-exchange which provides different 

variants like for example 2-opt (see section 5.1), 2.5-opt and 3-opt.52 

Although the combination of local search and a constructing mechanism is 

always a good choice for generating solutions, the two main aims to be 

optimized (efficiency and effectiveness) are mutually exclusive. Either you have 

an algorithm which generates high quality solutions within an above average 

time span or the algorithm works really fast and the quality of the solution has to 

                                            
52 see Dorigo/Stützle, 2004, p 92 f 
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suffer under it.53 Because of that it has to be chosen between a best 

improvement strategy and a first improvement strategy: 

• Best Improvement  the local search procedure sifts all possible 

solutions of the neighborhood carefully in order to find the best one 

• First Improvement  as soon as the local search finds a better solution, 

the procedure is being stopped 

 

5.1   2-opt 
This simple local search method deals with the exchange of two different 

solution components. In case of the Traveling Salesman Problem, the algorithm 

chooses two edges from the solution and swaps them in the hope of a new best 

solution.54 

 

 
Figure 8: 2-opt procedure for the TSP 

 

This local search method can find application to the Quadratic Assignment 

Problem in a straightforward way. Instead of switching two edges, 2-opt 

removes two already assigned facilities from their locations to switch them in 

order to improve the value of the objective function. In case of a first 

improvement strategy, if a better solution is found, the initial solution is 

replaced. This happens as long as there are no further improvements possible. 

The exact number of possible swaps in the neighborhood of a solution can 

always be calculated using the term 2/)1(* −nn .55 

 

                                            
53 see Dorigo/Stützle, 2004, p 92 f 
54 http://en.wikipedia.org/wiki/2-opt, called up on 22.03.2011 
55 see Ramkumar/Ponnambalam/Jawahar, 2009, p 623 
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There exist two main groups of interchanges for the QAP: 

1. Pairwise interchange: the two facilities don´t need to be adjacent 

2. Adjacent pairwise interchange: the two facilities have to be adjacent 

(here the number of possible swaps is reduced to )1( −n ) 

 

 
Figure 9: Pairwise interchange (a), adjacent pairwise interchange (b) 

 

5.1.1 A short example: 2-opt for the QAP 
 

                          
 

Initial solution: 1-A, 2-B, 3-C, 4-D 

Cost = 2*(1*3+2*4+1*2+1*5+2*3+3*10) = 108 

 

Changing facilities B & C 

Solution: 1-A, 2-C, 3-B, 4-D 

Cost = 2*(1*4+ 2*3+1*2+1*5+2*10+3*3) = 92 

Improvement of 16 
 

Changing facilities A & C 

Solution: 1-C, 2-B, 3-A, 4-D 

Cost = 2*(1*5+2*4+1*10+1*3+2*3+3*2) = 76 

Improvement of 32 
 

 

1 2
3 4

1 2 3 4 A B C D
1 0 1 2 1 A 0 3 4 2
2 1 0 1 2 B 3 0 5 3
3 2 1 0 3 C 4 5 0 10
4 1 2 3 0 D 2 3 10 0
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Changing facilities A & D 

Solution: 1-D, 2-B, 3-C, 4-A 

Cost = 2*(1*3+2*10+1*2+1*5+2*3+3*4) = 96 

Improvement of 12 
 

5.2   Iterated ants – a hybridization of ACO  
To hybridize an ant algorithm means that an effective local search mechanism 

is added to the algorithm in order to search for better solutions in the 

neighborhood of the initial solution (constructed by the ants). Many research 

projects dealt with this topic and tried to find the optimal metaheuristic to 

improve ants´ solutions – a considerable example would be the tabu search for 

the Quadratic Assignment Problem. Beside these findings a lot of different ways 

of hybridizing ant algorithms have been developed. One of them supports the 

idea of letting the single ants construct their solutions by starting from partial 

solutions. Normally the ants start their construction mechanism from scratch but 

starting from partial solutions – which are obtained by removing components 

from an ant´s initial solution – presents two very important advantages:56 

1. The solution finding can be accelerated by far  

2. The best parts of a solution are directly exploitable 

 

Being one of the most important elements and ideas behind the implementation 

part of this diploma thesis, I would like to describe the Iterated Ants algorithm in 

detail which is faithful to the Iterated Greedy (IG) metaheuristic. Figure 10 

shows a general outline of such an IG algorithm. 

 

 
Figure 10: Outline of an IG algorithm57 

                                            
56 see Dorigo/Stützle, 2009, p 18 
57 taken from Ruiz/Stützle, 2008 
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A typical Iterated Greedy algorithm starts with generating an initial solution 

followed by a local search procedure. Once this starting solution s is available, 

the algorithm begins with the main loop which consists of four mechanisms:58 

1. Destruction: this procedure is responsible for destroying a certain amount 

(fixed or variable) of solution components of s which results in the partial 

solution sp; there exist a lot of different destroy algorithms which will be 

discussed later 

2. Construction: in Iterated Ants the construction mechanism normally uses 

the same probability choice rule as in ACO; the partial solution sp is 

reconstructed bit by bit until a whole permutation s´ is obtained 

3. Local Search: in the main loop of an Iterated Greedy algorithm there 

exists the possibility of running through a second local search procedure; 

this is optional and should be well thought-out in terms of a longer 

runtime 

4. Acceptance Criterion: in this step we are free to choose how to accept a 

solution. For example if the solution value of s´ is better than the value of 

s, we can take s´ as the new s and start again with the main loop of the 

Iterated Greedy algorithm 

 

In Iterated Ants algorithms it is assumed that each ant implements its own 

Iterated Greedy algorithm. This means that in all iterations every ant creates a 

complete candidate solution and then tries to improve it by using the Iterated 

Greedy algorithm. In 2006 W. Wiesemann and T. Stützle made an experimental 

study dealing with the idea of Iterated Ants and introduced 3 different destroy 

mechanisms:59 

1. rand: the solution parts to be destroyed are chosen randomly 

2. prob: the probability of removing a certain solution component depends 

on the belonging pheromone trail ijτ ; the higher this pheromone value, 

the higher is the possibility that this component is removed from the 

candidate solution. This means that the probability is proportional to the 

pheromone trail. 

                                            
58 see Dorigo/Stützle, 2009, p 18 
59 see Wiesemann/Stützle, 2006, p 182 f 
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3. iprob: this destroy mechanism is completely the opposite of the previous 

one and promotes a probability which is inversely proportional to the 

pheromone trails; the lower the pheromone value, the higher is the 

possibility that this component is removed from the candidate solution. 

 

5.3   Very Large Scale Neighborhood Search (VLSN) 
All VLSN algorithms are known for generating solutions of very high quality. 

They search a large neighborhood – this neighborhood is normally reduced to a 

subset of all possible solutions because otherwise the searching time would 

exceed all acceptable time limits – in order to find local optima. VLSN and LNS 

(which is going to be described in section 5.3.1) are two very similar terms 

which can easily be mixed up. So a very important fact to mention here is that 

the term VLSN stands for the class of algorithms dealing with very large 

neighborhood searches and LNS only denotes a certain metaheuristic 

belonging to this class. However, the main characteristic each algorithm needs 

to have to belong to the class of VLSN algorithms is an exponential growth of 

the available neighborhood depending on the instance size of the problem.60 

The class of VLNS algorithms can be divided into three categories:61 

1. Variable depth methods 

The main idea of Variable Depth Neighborhood Search (VDNS) 

algorithms is not to start with the whole neighborhood but to gradually 

enhance its size. For example, by using the k-exchange neighborhood: 

At first the algorithm starts with the 1-exchange neighborhood N1 but 

every time it gets trapped in a local minimum, the neighborhood is 

extended by the 2-exchange neighborhood N2 (then by N3, N4,... Nk). 

 

                                            
60 see Pisinger/Ropke, 2010, p 399 f 
61 see Ahuja et al., 2002, p 79 ff 
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             Figure 11: Gradual extension of the neighborhood in VDNS62 

 

2. Network flow based improvement methods 

They can be divided into three different groups: 

• Cyclic exchange neighborhood: means that parts are moved from 

one subset to another; let A be the whole problem and S1,... Sk 

are the subsets (k = 4) – a cyclic exchange would be if you shift 

one element of S1 to S2, one element from S2 to S3, one from S3 

to S4 and last but not least one element from S4 to S1. 

• Path exchanges: is some kind of swap neighborhood and 

consists of deciding on a random number of independent swaps 

and realizing them together 

• Assignment neighborhood: this so-called exponential 

neighborhood structure can be obtained by making reasonable 

assignments in an improvement graph  

 

3. Methods based on constraining the original problem 

Although one of the main characteristics of NP-hard problems is the fact 

that they can´t be solved in polynomial time, there exists the possibility 

to enhance the initial problem by additional constraints or even 

restrictions. The resulting neighborhood may be solved within an 

acceptable period of time. 

 

 

 
                                            
62 taken and modified from Pisinger/Ropke, 2010, p 403 
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5.3.1 Large Neighborhood Search (LNS)63 
The LNS metaheuristic was introduced in 199864 and was originally designed 

for solving the Vehicle Routing Problem. 

 

In this algorithm the neighborhood is determined by firstly destroying parts of 

the solution and secondly repairing them again. Therefore, two well thought-out 

methods are needed as well as an effective element of stochasticity which is 

included in the destroy method in order to guarantee that different solution parts 

are chosen for destruction in every retrieval. So the whole neighborhood N(x) of 

an initial solution x is the resulting set of solutions of the interplay between 

destroying and repairing.  

 

In Figure 12 a pseudo-code of a typical LNS algorithm is shown. At the 

beginning we have an initial feasible solution x as the main input (see line 1). 

The variable xb stands for the global best solution which is found during the 

whole algorithm – it takes on the value of x before starting the main loop (see 

line 2). In line number 4 the function r(d(x)) destroys parts of the solution x and 

repairs this partial solution afterwards. The outcome of this function is the 

variable xt.  

 

For the accept function in line number 5 exist a lot of possibilities how to 

implement it – a very popular one is to accept only improved solutions which 

means new solutions xt with a smaller objective function value than x (even in 

the paper of Shaw65 only improving solutions are allowed). In this case x is set 

to the value of xt. In line number 8 we can see the comparison of the objective 

function values of xt and the global best solution xb. If the equation )()( bt xcxc <

holds, the best solution will be updated by tb xx = . In the line before last the 

stopping criterion is checked – this can be for example a certain number of 

iterations or any other criterion the implementer is keen of. At last the global 

best solution is returned (see line 12). 

 

                                            
63 see Pisinger/Ropke, 2010, p 405 ff 
64 see Shaw, 1998 
65 see Shaw, 1998 

http://de.pons.eu/englisch-deutsch/retrieval�
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Figure 12: Pseudo-code of an LNS algorithm66 

 

Probably the most important considerations before implementing an LNS 

algorithm are the choice and the extent of the destroy mechanism. It has to be 

determined how many solution parts to destroy which can have an immense 

influence on the behavior of the whole algorithm. If a very large part of the initial 

solution x is destroyed then it may happen that the repair mechanism is 

extremely time consuming or provides solutions of worse quality. If the number 

of destroyed solution components is very low then the effectiveness of a 

neighborhood search is lost due to a failure caused by exploring only a 

minimized solution space. There exist several different suggestions in scientific 

papers: Ropke and Pisinger67recommend a random determining of the degree 

of construction which depends on the instance size; Shaw68 considers a gradual 

increase of the removed components to be effective. It also has to be 

guaranteed that different solution components are removed in every invocation 

of the remove operator so that every part of the solution can possibly be 

affected. 

 

5.3.2 Adaptive Large Neighborhood Search (ALNS)69 
The Adaptive Large Neighborhood Search differs from the Large Neighborhood 

search in the number of destroy and repair operators permitted in the algorithm. 

In the ALNS it is allowed to use several different operators which have to be 

given a certain weight in order to control how often the method is deployed 

                                            
66 taken from Pisinger/Ropke, 2010, p 407 
67 see Ropke/Pisinger, 2006 
68 see Shaw, 1998 
69 see Pisinger/Ropke, 2010, p 409 f 
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during the algorithm. In contrast to the LNS, in ALNS each destroy/repair 

method creates its own neighborhood which leads to multiple neighborhoods. In 

Figure 13 the pseudo-code of an ALNS algorithm is shown. 

 

 
Figure 13: Pseudo-code of an ALNS algorithm70 

 

The set of destroy methods is denoted −Ω  while the set of repair methods is 

denoted +Ω ; as it can be seen in line number 4 −Ω∈d  and +Ω∈r . In line 

number 2 the two new weight parameters −ρ (where
−Ω− ∈ Rρ ) and +ρ (where

+Ω+ ∈ Rρ ) are introduced which help to select the methods following the 

roulette wheel algorithm. In case of the repair methods, the probability of 

choosing method number z is calculated as follows: 

 

𝜙𝑧+ =
𝜌𝑧+

∑ 𝜌𝑘+
|Ω+|
𝑘=1

                                                                                                                            (25) 

 

The formula for the destroy methods works in the same way with using −
zφ

instead of +
zφ , −

zρ instead of +
zρ and −

kρ instead +
kρ ; last but not least the set of 

methods changes from +Ω  into −Ω .  

                                            
70 see Pisinger/Ropke, 2010, p 409 
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6. Implementation 

The practical part of this diploma thesis deals with the idea to take the MMAS 

algorithm as proposed by Stützle and Hoos71 as a basis and to replenish it with 

new local search methods. In the best case these worked out methods should 

search the neighborhood of a solution on the one hand very fast, and on the 

other hand they should provide feasible solutions of good quality. The basic 

idea of these new local search methods is the so called Iterated Ants idea by 

Wiesemann and Stützle72 (see chapter 5, section 5.2 for more details) which 

primarily tries to destroy a solution and then to reconstruct it in order to obtain a 

better one. Due to the fact that all algorithms which have been implemented in 

the course of this diploma thesis use the same mechanism for reconstruction, 

the main research focused on the development and implementation of effective 

destroy mechanisms to create a valuable neighborhood of solutions. Five 

different algorithms have been implemented by using C++ as the programming 

language. The algorithms differ mainly from each other in the functionality of the 

local search methods – the algorithmic basis is always the same MMAS Basis 

Algorithm as presented below (see chapter 6, section 6.2.1). The only 

exceptional case is the MMAS 3 Iterated algorithm (see chapter 6, section 

6.2.5) which is the only algorithm that doesn´t orient itself by the Iterated Ants 

idea but by the Large Neighborhood Search idea. The main objective here was 

to implement a MMAS algorithm that generates an initial solution which is then 

used to run through a typical LNS procedure. This LNS procedure contains the 

three proposed destroy mechanisms called random removal, product removal 

highest and product removal lowest which will be described below. 

 

6.1   General Principles 
As mentioned above, the algorithms have a lot of different procedures like the 

pheromone update or the Roulette Wheel method in common. It is important to 

remember to implement the algorithms in a way that they use to be very similar 

to each other in order to make the resulting solutions comparable. 

 

                                            
71 see Stützle/Hoos, 2000, p 898 ff 
72 see Wiesemann/Stützle, 2006, p 179 ff 
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6.1.1 Roulette Wheel Procedure73 
In all five MMAS algorithms which are proposed in this diploma thesis, ants 

construct their solutions by following a special procedure known as the Roulette 

Wheel method. In all runs of the algorithm (the number of runs can also be 

interpreted as the number of ant colonies) a certain amount of individual ants 

use this procedure in order to randomize their assignments. 

 

At the beginning all facilities have to be sorted in decreasing order and are 

stored in a vector. Each ant starts its solution construction with the first element 

of this vector (facility with the highest sum of flows to all other facilities) and 

calculates the probability of assigning facility i to location j according to equation 

(15). Because in MMAS algorithms the influence factor of the heuristic 

information is set to zero, the obtained probabilities exclusively depend on the 

pheromone trails (factor α  is set to 1): 

 

𝑝𝑖𝑗𝑘 (𝑡) = �
�𝜏𝑖𝑗(𝑡)�𝛼

∑ [𝜏𝑖𝑙]𝛼𝑙∉𝑡𝑎𝑏𝑢𝑘
     𝑖𝑓 𝑗 ∉ 𝑡𝑎𝑏𝑢𝑘

0        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                                                  (27) �  

 

After the calculation of all probabilities they even have to be cumulated. 

Afterwards a random number in the range [0, 1] is generated to determine the 

location to be taken: 

 

 

 

 
 

 

 
Figure 14: Roulette Wheel procedure 

 

                                            
73 http://en.wikipedia.org/wiki/Fitness_proportionate_selection, called up on 22.03.2011 

p21 p22 p24 p25 p26 p27
probability 0,12 0,22 0,03 0,25 0,29 0,09
cumulated 0,12 0,34 0,37 0,62 0,91 1
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Example: if the random number has the value 0,45  facility 2 would be 

assigned to location 5 because 0,37 < 0,45 ≤0,62. 

 

6.1.2 2-opt First Improvement 
In all implemented algorithms the 2-opt local search procedure (for detailed 

description see chapter 5, section 5.1) is employed in two places: one the one 

hand 2-opt tries to optimize the initial solution generated by an ant and on the 

other hand it helps to improve the obtained assignment after the destroy and 

reconstruct mechanisms. This local search method is subject to a first 

improvement strategy which means that the loop of 2-opt starts over if a better 

solution is found. Due to the fact that no special termination criterion exists, it 

can be guaranteed that the 2-opt procedure keeps on passing through as long 

as an improved solution is available in the neighborhood.  

For keeping the runtime of the algorithm low, the exchanges of the facilities are 

scored by a delta evaluation before they are actually switched:74 

 

∆𝐶𝑥𝑦(𝑏) = �(𝑓𝑖𝑥

𝑛

𝑖=1

− 𝑓𝑖𝑦) ∗ �𝑑(𝑏𝑖 , 𝑏𝑥) − 𝑑(𝑏𝑖 , 𝑏𝑦)� − 2𝑓𝑥𝑦𝑑�𝑏𝑥, 𝑏𝑦�                            (26) 

 

The costs of the exchange )(bCxy∆ depend on the original assignment b and the 

two facilities to be exchanged x and y. The higher the value of )(bCxy∆ is, the 

more desirable the exchanging of x and y gets.  

Initially the facilities in the first two locations are evaluated by setting x=0 and 

y=1 (the value refers to the index of a vector). The next evaluations would be 

[x=0; y=2], [x=0; y=3], [x=0; y=4] until [x=0; y=n] – then the algorithm continues 

with [x=1; y=2], [x=1; y=3], [x=1; y=4], [x=1; y=5],... and so on. The conditions 

yx ≠  and yx < have to be fulfilled all the time in order to exclude redundant 

calculations.  

 

6.1.3 Updating the Pheromone Trails 
As already discussed in chapter 4-section 4.5.3, MMAS algorithms normally 

only make use of the iteration best solutions for updating the pheromone trails. 

                                            
74 see Askin/Standridge, 1993, p 219 
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In order to prevent an exclusive influence of the iteration best solutions we use 

a mixed strategy in our implementation: 

• Iterations 1-9: use global best solution in every third iteration 

• Iteration 10-24: use global best solution in every second iteration 

• Iteration > 25: exclusive use of global best solution 

 

This interplay between a constantly growing influence of the global best solution 

and a continually disappearing pheromone updating of the iteration best 

solution guarantees equable pheromone trails in the initial phase of the 

algorithm.  

 

After all it is a natural cause of action that before updating the pheromone trails 

the evaporation of the pheromones (we choose the resistance factor ρ = 0,8) 

has to be realized. So the whole pheromone trail updating is carried out 

according to: 

 

𝜏𝑖𝑗(𝑡 + 1) = 𝜌 ∗ 𝜏𝑖𝑗(𝑡) +
1

𝑓(𝑠𝑏𝑒𝑠𝑡)
                                                                                        (28) 

 

6.2   The Algorithms 
For the practical part of this diploma thesis five algorithms have been 

implemented in C++. The MMAS Basis algorithm is a “normal” MMAS algorithm 

which only uses the 2-opt local search method to improve the initial solutions. 

The MMAS Random Removal, MMAS Product Removal Highest and MMAS 

Product Removal Lowest algorithms follow the idea of Iterated Greedy 

algorithms while the MMAS 3 Iterated is more an adaptation of a Large 

Neighborhood Search. All algorithms except the MMAS 3 iterated run through 

1000 iterations – each including a colony of k = 5 ants. The resistance factor of 

the pheromone trails is set to ρ = 0,8 and the influence parameter of the 

pheromones is set to α = 1. According to equation (22) we set bestp = 0,005 for 

generating the pheromone trail limits. The pheromone trail initialization is done 

by setting maxτ = 200. For all five different algorithms we will give a detailed 

description in the following sections. 
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6.2.1 MMAS Basis Algorithm 
The MMAS Basis Algorithm was implemented as proposed by Stützle and 

Hoos.75 This algorithm is the base of all other algorithms and is used to 

generate the initial solution before starting the destroy/reconstruct mechanisms. 

In Figure 15 the pseudo-code of the MMAS Basis algorithm is shown where ib = 

iteration best solution, gb = global best solution, s = best solution of an ant with 

costs f(s) and s´ = best solution found during 2-opt with costs f(s´). 

 
For 1000 iterations 
 For all 5 ants do 

Generate random number and assign facilities to locations 
following to the Roulette Wheel procedure in order to get s 
Calculate f(s) 
Do 

2-opt local search to obtain s´ and f(s´) 
If (f(s´) < f(s)) 

   Set s = s´ and f(s) = f(s´) 
   EndIf 
  While(improvement == true) 

If (s < ib) 
 Set ib = s 
EndIf 

 EndFor 
 If (ib < gb) 
  Set gb = ib 
  Update pheromone trail limits 
 EndIf 
 Update the pheromone trails 
EndFor 

Figure 15: Pseudo-code for the MMAS Basis algorithm 

 

6.2.2 MMAS Random Removal 
The MMAS Random Removal algorithm contains the easiest destroy 

mechanism of all implemented algorithms. By choosing the solution 

components to be removed with the help of a random number generator, the 

algorithm works much faster than MMAS Product Removal Highest and MMAS 

Product Removal Lowest because it doesn´t waste time on account of 

complicated calculations. Generated random numbers have to be in the range 

[0, (n-1)] and stand for the indices of the solution vector, e.g. the number 0 

denotes location 1 in the vector.  

 
                                            
75 see Stützle/Hoos, 2000, p 898 ff 
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For 1000 iterations 
 For all 5 ants do 

Generate initial solution s according to Roulette Wheel 
Calculate f(s) 
Do 

2-opt local search to obtain s´ and f(s´) 
If (f(s´) < f(s)) 

   Set s = s´ and f(s) = f(s´) 
   EndIf 
  While(improvement == true) 
  For 6 runs 

DESTRUCT 
Calculate (n/6) components to be removed  
Generate random numbers and remove solution 
components from s  update f(s) 

   RECONSTRUCT 
    Reconstruct s according to Roulette Wheel 

  Do 
2-opt local search to obtain s´ and f(s´) 
If (f(s´) < f(s)) 

    Set s = s´ and f(s) = f(s´) 
    EndIf 
   While(improvement == true) 
  EndFor 

If (s < ib) 
 Set ib = s 
EndIf 

EndFor 
 If (ib < gb) 
  Set gb = ib 
  Update pheromone trail limits 
 EndIf 
 Update the pheromone trails 
EndFor 

Figure 16: Pseudo-code for the MMAS Random Removal 

 

The total number of components to be removed is set to (n/6) so it depends on 

the problem size how many components have to be chosen. It is important to 

mention here that the result of the division is always rounded down, e.g. in runs 

with the problem instance 35 there have to be removed 5 components because 

35/6 results in 5. The reconstruct mechanism follows the same Roulette Wheel 

procedure as usual and the total number of destroy/reconstruct runs is set to 6. 

In Figure 16 the pseudo-code of the MMAS Random Removal is shown. 
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6.2.3 MMAS Product Removal Highest 
As in MMAS Random Removal, in this algorithm the number of solution parts to 

be destroyed is set to (n/6). To determine these solution components, the 

MMAS Product Removal Highest algorithm applies a very complex procedure 

which includes the product of distances and flows and the total material flows 

among the individual facilities.  

 

By starting from the initial solution of an ant the algorithm calculates the product 

of the distance between two locations and the flow between the corresponding 

facilities according to equation (29) and stores the five highest products in a 

vector.  

 

𝑑𝑖𝑗 ∗ 𝑓𝜋(𝑖)𝜋(𝑗)                                                                                                                                (29) 

 

Then exactly one product has to be chosen by using the Roulette Wheel 

method. For this each product is allotted a probability which is calculated by

∑ )/( productsproduct . By following the Roulette Wheel procedure the 

probabilities are cumulated, a random between [0, 1] is generated and the 

certain product is selected.  

 

The two locations and the two facilities which are assigned to this product are 

the first components to be removed. Now the algorithm searches for the facility 

which has the highest material flow to the already destroyed facilities and 

removes it (and the corresponding location) as well. This step is repeated until 

the number of necessary removals is reached.  

 

The reconstruction of the solution also follows the Roulette Wheel procedure. 

After this recreation the 2-opt local search method is applied for the second time 

in order to better the solution until no further improvements are possible. In 

Figure 17 the pseudo-code of the algorithm is shown. 
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For 1000 iterations 
 For all 5 ants do 

Generate initial solution s according to Roulette Wheel 
Calculate f(s) 
Do 

2-opt local search to obtain s´ and f(s´) 
If (f(s´) < f(s)) 

   Set s = s´ and f(s) = f(s´) 
   EndIf 
  While(improvement == true) 
  For 6 runs 

DESTRUCT 
Calculate (n/6) components to be removed 
Generate 5 highest products and choose one 
probabilistically  destroy the two 
corresponding locations and facilities 
Destroy facilities with highest flow to already 
removed facilities until all necessary 
components are destroyed 

   RECONSTRUCT 
    Reconstruct s according to Roulette Wheel 

  Do 
2-opt local search to obtain s´ and f(s´) 
If (f(s´) < f(s)) 

    Set s = s´ and f(s) = f(s´) 
    EndIf 
   While(improvement == true) 
  EndFor 

If (s < ib) 
 Set ib = s 
EndIf 

EndFor 
 If (ib < gb) 
  Set gb = ib 
  Update pheromone trail limits 
 EndIf 
 Update the pheromone trails 
EndFor 

Figure 17: Pseudo-code for the MMAS Product Removal Highest 

 

6.2.4 MMAS Product Removal Lowest 
This algorithm is more or less the same as MMAS Product Removal Highest 

with only one exception: after the destruction of the first two locations with the 

corresponding facilities the algorithm removes the facilities with the lowest flow 

instead of the highest flow. In Figure 18 the pseudo-code of these 

destroy/reconstruct mechanisms is shown. 
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For 6 runs 
DESTRUCT 

Calculate (n/6) components to be removed 
Generate 5 highest products and choose one 
probabilistically  destroy the two corresponding 
locations and facilities 
Destroy facilities with lowest flow to already removed 
facilities until all necessary components are destroyed 

 RECONSTRUCT 
  Reconstruct s according to Roulette Wheel 

Do 
2-opt local search to obtain s´ and f(s´) 
If (f(s´) < f(s)) 
  Set s = s´ and f(s) = f(s´) 

  EndIf 
 While(improvement == true) 
EndFor 

Figure 18: Destroy/reconstruct of MMAS Product Removal Lowest 

 

6.2.5 MMAS 3 Iterated 
In contrast to the previous algorithms the MMAS 3 Iterated makes use of a 

different local search procedure which is very similar to an Adaptive Large 

Neighborhood Search. The procedure contains all three destroy mechanisms of 

MMAS Random Removal, MMAS Product Removal Highest and MMAS Product 

Removal Lowest. In order to maintain the total number of 6 destroy/reconstruct 

runs, each destroy mechanism is applied exactly twice. Therefore, it is 

redundant to deploy certain weights to control the utilization rate of a certain 

operator as it normally happens in ALNS.  

 

MMAS 3 Iterated consists of two main loops with 500 iterations each which 

guarantees a total sum of 1000 iterations to make the results comparable to the 

outcomes of the previous algorithms. The first loop is similar to the MMAS Basis 

algorithm and has the main task to generate an initial solution which is later 

used by the ALNS. This neighborhood search is implemented in the second 

loop which takes the initial solution and tries to improve it by destroying and 

reconstructing combined with a 2-opt local search as usual. In Figure 19 the 

pseudo-code of this algorithm is represented. 
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For 500 iterations 
 For all 5 ants do 

Generate random number and assign facilities to locations 
following to the Roulette Wheel procedure in order to get s 
Calculate f(s) 
Do 

2-opt local search to obtain s´ and f(s´) 
If (f(s´) < f(s)) 

   Set s = s´ and f(s) = f(s´) 
   EndIf 
  While(improvement == true) 

If (s < ib) 
 Set ib = s 
EndIf 

 EndFor 
 If (ib < gb) 
  Set gb = ib 
  Update pheromone trail limits 
 EndIf 
 Update the pheromone trails 
EndFor 
For 500 iterations 
 For 6 runs 

DESTRUCT 
 Remove (n/6) components from s 
 If (run==1||run==2) use MMAS Random Removal 

If (run==3||run==4) use MMAS Product Highest 
If (run==5||run==6) use MMAS Product Lowest 

   
  RECONSTRUCT 
   Reconstruct s according to Roulette Wheel 

Do 
2-opt local search to obtain s´ and f(s´) 
If (f(s´) < f(s)) 

   Set s = s´ and f(s) = f(s´) 
   EndIf 
  While(improvement == true) 
 EndFor 
EndFor 

Figure 19: Pseudo-code for the MMAS 3 Iterated 

 

7. Computational Results 

In this chapter the experimental results obtained by the test runs of MMAS 

Basis, MMAS Random Removal, MMAS Product Removal Highest, MMAS 

Product Removal Lowest and MMAS 3 Iterated are presented. The employed 

laptop was a Sony Vaio VGN-NS21M (Intel (R) Pentium (R) Dual CPU T3400 
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@ 2.16 GHz, 3 GB RAM) with Windows Vista Home Premium as operating 

system. 

 

The processed data files were taken from the QAPLIB76 and comprise various 

instance sizes (from n = 12 to n = 50). All parameters of the algorithms were 

fixed to the same values throughout the whole experiment: 

• Total number of iterations = 1000 

• Number of ants per iteration = 5 

• Influence factor of pheromone trails α = 0 

• Resistance of pheromone trails ρ = 0,8 

• bestp  = 0,005 

• Number of destroy/reconstruct runs = 6 

 

All results which are included and compared in the following tables stand for the 

mean of 5 independent runs of each algorithm. In Tables 1-8 we summarize the 

most important results for each problem instance which were obtained by the 

quoted algorithm. The term avg value denotes the average solution value, 

Best% shows the percentage deviation from the best known solution value, 

Runtime is the mean of all five attended runtimes and Runtimebest denotes the 

average point in time when the algorithm has already generated the global best 

solution.  

 

 
Table 1: Experimental results for tai20a 

 

 

                                            
76 http://www.opt.math.tu-graz.ac.at/qaplib/ 

Best known solution: 703482
Algorithm avg value Best% Runtime Runtimebest

MMAS Basis 713818,8 1,47% 1,1238 0,1892
MMAS Random Removal 707981,6 0,64% 9,6118 2,3910
MMAS Product Removal Highest 707255,6 0,54% 11,9530 0,7090
MMAS Product Removal Lowest 706830,0 0,48% 11,2584 1,4500
MMAS 3 Iterated 709905,6 0,91% 1,5984 0,6336

Tai20a
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For tai20a the best performing algorithm regarding its average solution value 

seems to be MMAS Product Removal Lowest (followed by MMAS Product 

Removal Highest) whereas MMAS Basis is the fastest in finding the global best 

solution. 

 

 
Table 2: Experimental results for tai25a 

 

 
Table 3: Experimental results for tai30a 

 

For both tai25a and tai30a on average MMAS Random Removal generates the 

best solutions and again MMAS Basis is the fastest in doing so. MMAS 3 

Iterated and MMAS Basis work very similar for tai30a with the same percentage 

deviation of 1,66% although MMAS 3 Iterated needs more time to pass through 

the given 1000 iterations. In addition it is mentionable that the average finding of 

the global best solution of MMAS Random Removal exceeds the results of the 

others by far. 

 

Best known solution: 1167256
Algorithm avg value Best% Runtime Runtimebest

MMAS Basis 1186522,0 1,65% 2,2474 0,8226
MMAS Random Removal 1176860,0 0,82% 22,9786 3,9768
MMAS Product Removal Highest 1178170,0 0,94% 27,4612 3,3894
MMAS Product Removal Lowest 1181646,0 1,23% 25,8960 1,7016
MMAS 3 Iterated 1180998,0 1,18% 3,3726 1,3102

Tai25a

Best known solution: 1818146
Algorithm avg value Best% Runtime Runtimebest

MMAS Basis 1848306,0 1,66% 4,2778 1,7168
MMAS Random Removal 1837754,0 1,08% 42,1664 12,8358
MMAS Product Removal Highest 1838892,0 1,14% 47,5116 5,8688
MMAS Product Removal Lowest 1840376,0 1,22% 49,6724 4,6456
MMAS 3 Iterated 1848316,0 1,66% 7,1198 2,8382

Tai30a
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Table 4: Experimental results for tai35a 

  

 

For tai35a again MMAS Product Removal Lowest performs best and in MMAS 

Random Removal the artificial ants need three times as much runtime to find 

the global best solution. 

 

 
Table 5: Experimental results for tai40a 

 

The problem instance tai40a provides the worst results for MMAS Product 

Removal Lowest and is more or less the only outlier for this algorithm. Despite 

the fact that MMAS Random Removal still needs longest for the best solution, it 

performs absolutely best for tai40a. 

 

 
Table 6: Experimental results for tai50a 

Best known solution: 2422002
Algorithm avg value Best% Runtime Runtimebest

MMAS Basis 2459866,0 1,56% 6,7744 3,4618
MMAS Random Removal 2457496,0 1,47% 81,5020 28,5492
MMAS Product Removal Highest 2461998,0 1,65% 70,6380 7,1256
MMAS Product Removal Lowest 2452816,0 1,27% 75,1002 8,3894
MMAS 3 Iterated 2457294,0 1,46% 10,5102 3,6192

Tai35a

Best known solution: 3139370
Algorithm avg value Best% Runtime Runtimebest

MMAS Basis 3200836,0 1,96% 10,3558 4,9514
MMAS Random Removal 3171490,0 1,02% 157,4742 39,1266
MMAS Product Removal Highest 3183276,0 1,40% 131,1442 31,4480
MMAS Product Removal Lowest 3193490,0 1,72% 138,1652 16,9546
MMAS 3 Iterated 3192152,0 1,68% 20,2120 10,1150

Tai40a

Best known solution: 4941410
Algorithm avg value Best% Runtime Runtimebest

MMAS Basis 5045378,0 2,10% 24,7618 14,0986
MMAS Random Removal 5019180,0 1,57% 481,2132 156,8340
MMAS Product Removal Highest 5018722,0 1,56% 352,6580 108,5374
MMAS Product Removal Lowest 4997166,0 1,13% 373,7104 74,6542
MMAS 3 Iterated 5025534,0 1,70% 48,4134 32,4442

Tai50a
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Tai50a provides the worst results for MMAS Basis, MMAS Random Removal 

and MMAS 3 Iterated. In case of MMAS Basis this may happen due to a lack of 

an extensive local search procedure. Again MMAS Product Removal Lowest 

performs best and has an average runtime which lies slightly beneath the total 

mean. Very interesting is the fact that although MMAS Product Removal 

Highest and MMAS Product Removal Lowest generate solutions in a very 

similar way, MMAS Product Removal Lowest needs remarkable less time for 

the finding of the global best solution. 

 

 
Table 7: Experimental results for scr12 

 

Scr12 is the only problem instance for which the best known solution is found in 

every run of each algorithm whereas MMAS Basis is the fastest one.  

 

 
Table 8: Experimental results for tho30 

 

For Tho30 the best known solution can be generated in almost every run 

(independent from the applied algorithm) and it is the only problem instance for 

which MMAS Product Removal Highest performs best. 

 

 

Best known solution: 31410
Algorithm avg value Best% Runtime Runtimebest

MMAS Basis 31410,0 0,00% 0,3354 0,0184
MMAS Random Removal 31410,0 0,00% 3,6120 0,0210
MMAS Product Removal Highest 31410,0 0,00% 2,3244 0,0146
MMAS Product Removal Lowest 31410,0 0,00% 2,4188 0,0146
MMAS 3 Iterated 31410,0 0,00% 0,4144 0,0050

Scr12

Best known solution: 149936
Algorithm avg value Best% Runtime Runtimebest

MMAS Basis 150372,8 0,29% 6,4364 3,7190
MMAS Random Removal 150181,6 0,16% 197,9978 28,3628
MMAS Product Removal Highest 150073,6 0,09% 94,8862 19,1026
MMAS Product Removal Lowest 150167,2 0,15% 111,5210 8,6936
MMAS 3 Iterated 150207,6 0,18% 15,2622 4,6800

Tho30
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In Table 9 we give an overview of all percentage deviations for all problem 

instances – best results are indicated in italic face. MMAS Basis and MMAS 3 

Iterated are the two worst performing algorithms for all instances with scr12 
being the only exception. After all MMAS Random Removal seems to be the 

best algorithm followed by MMAS Product Removal Highest and MMAS Product 

Removal Lowest which differ by 0,01%. Again the algorithm to come in last is 

MMAS Basis which is never able to generate the best solution – this is the best 

proof that the main idea to extend the MMAS Basis by a more precise local 

search procedure leads to better performing algorithms. 

 

 
Table 9: Comparison of percentage deviations 

 

In Table 10 the total runtimes of MMAS Random Removal and MMAS Product 

Removal Lowest are checked against each other. As mentioned before, these 

two algorithms perform absolutely best and although MMAS Random provides 

slightly better solution values, MMAS Product Removal Lowest needs less time 

to fulfill the 1000 iterations (on average 26 seconds faster).  

 

 
Table 10: Comparison of total runtime 

MMAS MMAS MMAS Product MMAS Product MMAS
Basis Random Rem. Highest Rem. Lowest 3 Iterated

tai 20a 1,47% 0,64% 0,54% 0,48% 0,91%
tai 25a 1,65% 0,82% 0,94% 1,23% 1,18%
tai 30a 1,66% 1,08% 1,14% 1,22% 1,66%
tai 35a 1,56% 1,47% 1,65% 1,27% 1,46%
tai 40a 1,96% 1,02% 1,40% 1,72% 1,68%
tai 50a 2,10% 1,57% 1,56% 1,13% 1,70%
scr12 0,00% 0,00% 0,00% 0,00% 0,00%
tho30 0,29% 0,16% 0,09% 0,15% 0,18%

Mean: 1,34% 0,85% 0,91% 0,90% 1,10%

Problem instance

MMAS MMAS Product
Random Rem. Lowest

tai 20a 9,6118 11,2584
tai 25a 22,9786 25,896
tai 30a 42,1664 49,6724
tai 35a 81,502 75,1002
tai 40a 157,4742 138,1652
tai 50a 481,2132 373,7104
scr12 3,612 2,4188
tho30 197,9978 111,521

Mean: 124,5695 98,4678

Problem instance
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By looking at Table 11 it can be observed that MMAS Product Removal Lowest 

is for nearly every problem instance the fastest algorithm regarding the point in 

time when the best solution is first available throughout the total runtime. The 

comparison of these algorithms, which all implement the Iterated Ants idea, 

shows that the artificial ants in MMAS Random Removal need longest to 

generate the best solution. After all, this algorithm still finds the best solution 

values on average which makes the discussion concerning the runtime more or 

less dispensable. 

 

 
Table 11: Comparison of time needed to find best solution 

 

8. Conclusion 

In this diploma thesis five MMAS algorithms, which differ from each other by the 

implemented local search procedures, have been proposed. Unfortunately, they 

weren´t able to improve the best known solutions in the tested instances, but by 

looking at the results some very interesting findings can be observed. First of 

all, we can say that it has absolutely been proofed that by enhancing the MMAS 

Basis algorithm by an efficient local search we can definitely improve the 

solution quality. In doing so, we can say that in our case the random removal of 

solution components worked slightly better than the destroy methods of MMAS 

Product Removal Highest and MMAS Product Removal Lowest, although these 

algorithms have the focus on incorporating important information like the 

distance and flow matrices. The worst results were obtained by the MMAS 3 

Iterated which is more or less a modification of an Adaptive Large 

Neighborhood Search. 

MMAS MMAS Product MMAS Product
Random Rem. Highest Rem. Lowest

tai 20a 2,3910 0,709 1,45
tai 25a 3,9768 3,3894 1,7016
tai 30a 12,8358 5,8688 4,6456
tai 35a 28,5492 7,1256 8,3894
tai 40a 39,1266 31,448 16,9546
tai 50a 156,8340 108,5374 74,6542
scr12 0,0210 0,0146 0,0146
tho30 28,3628 19,1026 8,6936

Mean: 34,0122 22,024425 14,56295

Problem instance
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After all there´s one conclusion which can be drawn from these experimental 

results: the research field of Ant Colony Optimization for the QAP seems to be 

exploited very good because no improved results were obtained. Nevertheless, 

I think that there still exist lots of basic approaches which can still be pursued. 
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Abstract 

This diploma thesis deals with the scientific research area of Ant Colony 

Optimization algorithms and applies them to the Quadratic Assignment 

Problem. 

 

The central aim of the Quadratic Assignment Problems is to find an optimal 

allocation of a certain number of facilities to the equal number of possible 

locations in order to minimize the overall costs. This theoretical formulation can 

be passed on real life problems in a straightforward way. One of the best 

examples is the challenge each company has to deal with when opening a new 

production site. The production cost can be kept to a minimum as long as the 

used machines are cleverly arranged to their locations so that the overall sum of 

the products between material flows and distances comes to an economical 

appropriate value. 

 

In the theoretical part of this thesis some of the most important ant algorithms 

like MMAS and HAS-QAP are discussed and it is shown how the additional 

implementation of an effective local search method can improve the solution 

quality.   

 

The practical part of this thesis tries to enhance a basic MMAS algorithm by 

implementing additional local search methods based on the ideas of Iterated 

Ants and Adaptive Large Neighborhood Search. Therefore five different 

algorithms have been implemented in C++: MMAS Basis, MMAS Random 

Removal, MMAS Product Removal Highest, MMAS Product Removal Lowest 

and MMAS 3 Iterated. At the end the generated results are discussed and the 

solution qualities of the individual algorithms are compared among themselves. 

 

 

 

 

 

 



 

61 
 

Zusammenfassung 

Diese Diplomarbeit beschäftigt sich mit dem wissenschaftlichen 

Forschungsgebiet der Ameisenoptimierung und deren Algorithmen und wendet 

diese auf das Quadratische Zuordnungsproblem an. 

 

Das Hauptziel des Quadratischen Zuordnungsproblems besteht darin eine 

geeignete Zuordnung von einer gewissen Anzahl an Funktionen zu der gleichen 

Anzahl an möglichen Plätzen zu finden, um die Gesamtkosten zu minimieren. 

Dieser theoretische Ansatz kann auf direktem Weg auf Probleme der 

Wirklichkeit übertragen werden. Eines der besten Beispiele hierfür ist die 

Herausforderung, welcher ein Unternehmen sich stellen muss wenn es eine 

neue Produktionsstätte eröffnet. Die Produktionskosten können solang auf 

einem minimalen Level gehalten werden wie die verwendeten Maschinen 

intelligent auf ihren Standorten angeordnet werden, sodass die Gesamtsumme 

der Produkte zwischen Materialflüsse und Distanzen einen ökonomisch 

angemessenen Wert ergibt. 

 

Im theoretischen Teil dieser Arbeit werden einige der wichtigsten 

Ameisenalgorithmen wie MMAS und HAS-QAP diskutiert und es wird gezeigt 

wie die zusätzliche Implementierung von effektiven Local Search Methoden die 

Lösungsqualität verbessern kann. 

 

Der praktische Teil dieser Arbeit versucht einen grundlegenden MMAS 

Algorithmus um zusätzliche Local Search Methoden, welche auf den Ideen von 

Iterated Ants und Adaptive Large Neighborhood Search basieren,  zu erweitern 

und so zu verbessern. Hierfür wurden fünf verschiedene Algorithmen in C++ 

implementiert: MMAS Basis, MMAS Random Removal, MMAS Product 

Removal Highest, MMAS Product Removal Lowest and MMAS 3 Iterated. 

Zuletzt werden die generierten Ergebnisse diskutiert und die Lösungsqualitäten 

der einzelnen Algorithmen untereinander verglichen. 
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