

DIPLOMARBEIT

Titel der Diplomarbeit

„Ant approaches for the QAP“

Verfasserin

Stephanie Richter

angestrebter akademischer Grad

Magistra der Sozial- und Wirtschaftswissenschaften
(Mag. rer. soc. oec.)

Wien, im März 2011

Studienkennzahl lt. Studienblatt: 157

Studienrichtung lt. Studienblatt: Internationale Betriebswirtschaft

Betreuer/Betreuerin: o. Univ.-Prof. Dipl.-Ing. Dr. Richard F. Hartl

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OTHES

https://core.ac.uk/display/11594107?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

III

Ehrenwörtliche Erklärung

Hiermit erkläre ich, dass ich diese Arbeit allein und nur unter

Verwendung der angeführten Quellen und Hilfsmittel verfasst habe.

Die Arbeit wurde bisher keiner Prüfungsbehörde vorgelegt und auch

noch nicht veröffentlicht.

_________________ _______________________

 Ort und Datum Stephanie Richter

IV

Danksagung

Allen voran will ich mich bei meinen Eltern bedanken, welche mir

mein bisheriges Leben lang immer mit Rat und Tat zur Seite

standen und mir dieses Studium durch ihre finanzielle Unterstützung

ermöglichten. Danke für alles – ich hätte oft nicht gewusst, was ich

ohne euch tun sollte!!

Ein weiteres Dankeschön gilt meiner Familie – ihr habt mich immer

tatkräftig unterstützt und mich dazu ermuntert nicht den Kopf

hängen zu lassen in Zeiten, in denen ich selbst nicht mehr an

meinen Erfolg geglaubt habe.

Besonders will ich hier meine Nichte Helene und meinen Neffen

Alexander erwähnen, die mir beide sehr viel Freude bereiten.

Desweiteren möchte ich all meinen Freunden und Unikolleginnen für

ihre Unterstützung und die vielen lustigen Stunden in unseren

Lernkreisen danken – ohne euch hätte mir sicher oft die Motivation

gefehlt.

Ganz besonders bedanken möchte ich mich bei meiner besten

Freundin Ingrid Oberleitner – ich kann das alles hier gar nicht in

Worte fassen – du weißt schon was ich meine!!!

Diese Diplomarbeit widme ich meinem verstorbenen Großvater,

welcher mir mein Leben lang immer ein großes Vorbild war.

V

Table of Contents

1. Executive Summary ... 1

2. The Quadratic Assignment Problem (QAP) ... 2

2.1 General Description ... 2

2.2 Mathematical Model ... 3

2.3 Example ... 4

2.4 The QAPLIB ... 6

3. Ant Colony Optimization .. 7

3.1 Definition of Metaheuristics .. 7

3.2 Biological Principles ... 8

3.2.1 Real Ants´ Behavior .. 8

3.2.2 The Double Bridge Experiment ... 9

3.2.3 From Real to Artificial Ants .. 11

3.3 Main procedures of the ACO Metaheuristic ... 11

4. Ant Algorithms ... 13

4.1 Historical Development .. 13

4.2 Applications to several problems ... 13

4.3 Ant System applied to the Traveling Salesman Problem 14

4.4 The direct successors of Ant System ... 16

4.4.1 Elitist Ant System .. 16

4.4.2 Rank-Based Ant System ... 17

4.4.3 Ant Colony System .. 17

4.5 ACO applied to the QAP .. 19

4.5.1 Ant System for the QAP .. 19

4.5.2 HAS-QAP .. 21

4.5.3 MAX-MIN Ant System (MMAS) ... 26

VI

5. Local Search Methods ... 29

5.1 2-opt .. 30

5.1.1 A short example: 2-opt for the QAP .. 31

5.2 Iterated ants – a hybridization of ACO ... 32

5.3 Very Large Scale Neighborhood Search (VLSN) 34

5.3.1 Large Neighborhood Search (LNS) ... 36

5.3.2 Adaptive Large Neighborhood Search (ALNS) 37

6. Implementation .. 39

6.1 General Principles ... 39

6.1.1 Roulette Wheel Procedure .. 40

6.1.2 2-opt First Improvement .. 41

6.1.3 Updating the Pheromone Trails ... 41

6.2 The Algorithms ... 42

6.2.1 MMAS Basis Algorithm ... 43

6.2.2 MMAS Random Removal .. 43

6.2.3 MMAS Product Removal Highest .. 45

6.2.4 MMAS Product Removal Lowest ... 46

6.2.5 MMAS 3 Iterated ... 47

7. Computational Results ... 48

8. Conclusion ... 54

References ... 56

Abstract ... 60

Zusammenfassung ... 61

Curriculum Vitae ... 62

VII

List of Figures

Figure 1: Branches of equal length ... 9

Figure 2: Branches have different length .. 10

Figure 3: Pseudo-code of an ACO metaheuristic .. 12

Figure 4: List of several applications of ant algorithms 14

Figure 5: A 40 node TSP (a) and a whole tour as a possible solution (b) 15

Figure 6: The HAS-QAP algorithm .. 23

Figure 7: Example for intensification ... 25

Figure 8: 2-opt procedure for the TSP .. 30

Figure 9: Pairwise interchange (a), adjacent pairwise interchange (b) 31

Figure 10: Outline of an IG algorithm .. 32

Figure 11: Gradual extension of the neighborhood in VDNS 35

Figure 12: Pseudo-code of an LNS algorithm ... 37

Figure 13: Pseudo-code of an ALNS algorithm ... 38

Figure 14: Roulette Wheel procedure ... 40

Figure 15: Pseudo-code for the MMAS Basis algorithm 43

Figure 16: Pseudo-code for the MMAS Random Removal 44

Figure 17: Pseudo-code for the MMAS Product Removal Highest 46

Figure 18: Destroy/reconstruct of MMAS Product Removal Lowest 47

Figure 19: Pseudo-code for the MMAS 3 Iterated ... 48

List of Tables

Table 1: Experimental results for tai20a .. 49

Table 2: Experimental results for tai25a .. 50

Table 3: Experimental results for tai30a .. 50

Table 4: Experimental results for tai35a .. 51

Table 5: Experimental results for tai40a .. 51

Table 6: Experimental results for tai50a .. 51

Table 7: Experimental results for scr12 ... 52

Table 8: Experimental results for tho30 .. 52

Table 9: Comparison of percentage deviations ... 53

Table 10: Comparison of total runtime .. 53

Table 11: Comparison of time needed to find best solution 54

VIII

1

1. Executive Summary

The objective of this diploma thesis is the enhancement of an MMAS algorithm

by ingenious local search procedures and in the following to apply this new

algorithm to the Quadratic Assignment Problem (QAP).

As described in chapter 2, the QAP is one of the hardest combinatorial

optimization problems and was stated as NP-hard in 1976.1 Due to the fact that

exact algorithms work rather poor for the QAP, the scientific world started with

the development of heuristic methods.2

In chapter 3 we describe one of these approaches, the so-called Ant Colony

Optimization (ACO), in detail and show how the behavior of real ants –

especially their foraging procedure based on pheromone trails – influenced the

creation of this heuristic.

Chapter 4 is dedicated to the main ACO algorithms. After giving an insight in the

historical development, we take a look at the very first ant algorithm, the so-

called Ant System. Afterwards we discuss the successors of this algorithm and

list the main algorithms for the Traveling Salesman Problem (TSP) as well as

for the QAP.

The local search procedures, which are used in our implementation, orientate

themselves towards Iterated Ants and Large Neighborhood Search (LNS). In

chapter 5 we give a description of these original ideas.

Chapter 6 deals with the implementation part of this diploma thesis. We show all

important principles, which form part of the proposed algorithms, and afterwards

we take a closer look at the actual algorithms MMAS Basis, MMAS Random

Removal, MMAS Product Removal Highest, MMAS Product Removal Lowest

and MMAS 3 Iterated.

Last but not least we present the obtained results which refer to several

classical QAP instances taken from the QAPLIB.3

1 see Sahni/Gonzales, 1976
2 see Ramkumar/Ponnambalam/Jawahar, 2009
3 http://www.opt.math.tu-graz.ac.at/qaplib/

2

2. The Quadratic Assignment Problem (QAP)

2.1 General Description
The Quadratic Assignment Problem (QAP) is a typical combinatorial

optimization problem which was first introduced by Koopmans and Beckmann in

19574.

The main aim of the QAP is the allocation of a set of n facilities (e.g. machines)

to a set of n locations (e.g. working stations) in order to minimize the total sum

of the products between distances and flows. The distances are measured as

the way from one location to another one, the flows are measured as the

material flow from one facility to another.

In 1976 Sahni and Gonzales5 stated the QAP as NP-hard and it is still

considered as one of the most difficult combinatorial optimization problems due

to the complexity of computing a good solution6.

Up to now it has just been possible to solve the QAP to optimality in the range

of the smaller instance sizes (around n = 25) because the higher the instance

size gets, the more intractable it becomes. Unfortunately exact algorithms work

rather poor on average and/or need a very long period of time to calculate

reasonable solutions. Therefore the development of various heuristics for the

QAP took place and led to the possibility to receive relatively satisfying solution

values within an acceptable time span. The most important heuristic

approaches are ant algorithms, simulated annealing, tabu search, construction

methods, genetic algorithms, etc…7

The QAP is often used to model real life applications like, for example, the

layout planning of university grounds8, typewriter keyboard design9 or even

hospital layout10.

4 see Koopmans/Beckmann, 1957, p 64 ff
5 see Sahni/Gonzales, 1976
6 see Ji/Wu/Liu, 2006, p 107
7 see Ramkumar/Ponnambalam/Jawahar, 2009, p 621
8 see Dickey/Hopkins, 1972
9 see Burkard/Offermann, 1977
10 see Elshafei, 1977

3

2.2 Mathematical Model11
Mathematically the definition of the Quadratic Assignment Problem consists of a

set N = {1, 2, ..., n} (n locations, n facilities) and two matrices of dimension

n x n:

a. Distance matrix D = {dij}, where dij represents the distance between

location i and location j

b. Flow matrix F = {fkl}, where fkl represents the material flow between

facility k and facility l

The cost of transferring material, patients, data etc. from location i to location j

can easily be calculated by the term:

𝑑𝑖𝑗 ∗ 𝑓𝜋(𝑖)𝜋(𝑗) (1)

After all the main aim of the QAP is to find a permutation out of S(n) which

minimizes the total sum of the products between distances and corresponding

flows which leads us to the following objective function:

min
𝜋∈𝑆(𝑛)

��𝑑𝑖𝑗

𝑛

𝑗=1

𝑛

𝑖=1

∗ 𝑓𝜋(𝑖)𝜋(𝑗) (2)

The term 𝜋(𝑖) denotes the facility which is assigned to location i and conversely

the term 𝜋(𝑗) stands for the allocated facility on location j.

There are also two important constraints which need to be taken into

consideration:

�𝑥𝑖𝑘

𝑛

𝑘=1

= 1 𝑓𝑜𝑟 𝑖 = 1, … ,𝑛 (3)

...each location i can be occupied by exactly 1 facility

11 see Maniezzo/Colorni/Dorigo, 1994, p 1

4

�𝑥𝑖𝑘

𝑛

𝑖=1

= 1 𝑓𝑜𝑟 𝑘 = 1, … ,𝑛 (4)

 ...each facility k has to be assigned to exactly 1 location i

As a binary variable xik can either be of the value 1 (if facility k is assigned to

location j) or of the value 0 (if facility k is not assigned to location j).

By taking this binary variable into account, the resulting objective function can

be formulated as:

min����𝑑𝑖𝑗

𝑛

𝑗=1

𝑛

𝑖=1

𝑛

𝑙=1

𝑛

𝑘=1

∗ 𝑓𝑘𝑙 ∗ 𝑥𝑖𝑘 ∗ 𝑥𝑗𝑙 (5)

2.3 Example
For better understanding a short example of a symmetric QAP with problem

size n = 5 is illustrated below.

 map of locations 1-5

 D = {1, 2, 3, 4, 5} F = {A, B, C, D, E}

1 2 3
4 5

1 2 3 4 5 A B C D E
1 0 1 2 1 2 A 0 3 4 2 6
2 1 0 1 2 1 B 3 0 5 3 7
3 2 1 0 3 2 C 4 5 0 10 5
4 1 2 3 0 1 D 2 3 10 0 1
5 2 1 2 1 0 E 6 7 5 1 0

5

1E 2C 3A
4B 5D

1B 2A 3C
4D 5E

1C 2A 3D
4E 5B

1A 2D 3B
4E 5C

Permutation 1:

A-1, B-3, C-5, D-2, E-4

Cost= 2*(3*2+4*2+2*1+6*1+5*2+3*1+7*3+10*1+5*1+1*2)= 146

Permutation 2:

A-2, B-5, C-1, D-3, E-4

Cost= 2*(3*1+4*1+2*1+6*2+5*2+3*2+7*1+10*2+5*1+1*3)= 144

Permutation 3:

A-2, B-1, C-3, D-4, E-5

Cost = 2*(3*1+4*1+2*2+6*1+5*2+3*1+7*2+10*3+5*2+1*1) = 170

Permutation 4:

A-3, B-4, C-2, D-5, E-1

Cost = 2*(3*3+4*1+2*2+6*2+5*2+3*1+7*1+10*1+5*1+1*2) = 132

Although these four permutations are only a fraction of all available solutions, it

can obviously be observed that a better solution quality can be received if the

two facilities with the largest material flow among themselves are being put on

(the) two locations which have the smallest distance to each other. In case of

permutation number three the total opposite (largest distance- highest material

flow) leads to tremendously high total costs. Therefore the main concern should

be to find a permutation which arranges the facilities in a way so that the

highest material flows are being multiplied with the smallest distances.

6

2.4 The QAPLIB12
Since the first formulation of a Quadratic Assignment Problem model a whole lot

of international scientists have conducted researches in this field in order to

create algorithms which are capable of finding feasible solutions. Many

algorithms have been established as well as a lot of different problem instances

by several researchers.

In 1991 a group of Austrian scientists from the Graz University of Technology

had the idea to put up the QAPLIB to provide all these information and solutions

to the scientific community. At that time the QAPLIB, as an up-to-date source,

contained all accessible QAP instances.

In 1994 Burkard, Rendl and Karisch performed a major update and enhanced

the QAPLIB by several new problem instances and a list of the best known

solutions and best lower bounds.

A real turning point marked the year 1996 when it became a homepage in the

World Wide Web not only just because of to the steadily growing community

which was interested in this particular area of research. Also new data and

solutions as well as an overall view over recent dissertations concerning the

QAPLIB were included.

During the years 2000 and 2002 some other updates took place: several new

problem instances, a list of people being involved in the QAP research work and

improved best solutions to some existing instances were included. Since 2002,

the homepage has been updated by Peter Hahn at the University of

Pennsylvania.

The descriptions and the solutions to all problem instances are clearly

structured and give some indication of how good the current best solutions are.

In case of an existing optimal solution, the QAPLIB gives information about the

solution value, the applied heuristic and the permutation. In case of a non

existing optimal solution, the best feasible solution is given accompanied by a

lower bound and a value for the relative gap between the bound and the best

feasible solution.

12 http://www.opt.math.tu-graz.ac.at/qaplib/#intro, called up on 22.03.2011

7

Some examples of heuristics being used for calculating the solutions of the

QAPLIB are ant systems, scatter search, simulated annealing, genetic hybrids

and tabu search.

3. Ant Colony Optimization

The research field of Ant Colony Optimization (ACO) can be traced back to the

observations of ant colonies and their behavior in real nature. Although a single

ant is a quite simple living thing and not capable of solving difficult tasks, a

whole social insect society is able to overcome this lack of capabilities due to a

high grade of organization and communication among themselves. Because of

that it is easier for ant colonies than for a single ant to find a solution for a

certain problem.13

The observation of real ants showed up that they use some kind of indirect

communication technique called stigmergy which is defined by changes of the

immediate environment. Often these changes are a result of the use of

chemicals known as pheromones which are deposited by the ants on the

ground in order to create an incentive for the other ants to follow the same way.

This natural behavior inspired the development of ant algorithms which make

use of some kind of artificial stigmergy to influence a group of artificial ants.14

3.1 Definition of Metaheuristics
Originally, a metaheuristic can be defined as an algorithmic concept which

combines a construction heuristic with a local search procedure with the aim to

carry out a broad search in the space of possible solutions without getting stuck

in local optima.15 It finds application to various types of complex problems (in

particular combinatorial optimization problems) and has the advantage that the

adaption to a specific problem can be realized without performing any serious

changes to the general framework. The rising utilization of metaheuristics has

13 see Dorigo/Stützle, 2004, p 1
14 see Dorigo/Stützle, 2004, p 1
15 see Glover/Kochenberger, 2002, p xi

8

improved the possibility for generating better solutions especially for large

instance sizes.16

Although the solution values calculated by metaheuristics cannot provide

conclusive proof of optimality, existing exact algorithms often produce solutions

without any chance of reaching the best values found by metaheuristics. This

observation led to a stronger research work in the field of metaheuristics.17

3.2 Biological Principles
The basic principles which formed the basis for the creation of the research field

dealing with Ant Colony Optimization is deeply embedded in another scientific

discipline called swarm intelligence. All the knowledge and the observations that

came from several biological studies of insect societies (also including ant

colonies) as well as the finding that social insects are able to hide the simplicity

of their individuals by forming a highly structured organization in order to cope

with complex problems made it possible to establish swarm intelligence as an

emerging research field.18

3.2.1 Real Ants´ Behavior
As already mentioned above, the scientific findings concerning the foraging

behavior of ants in nature represent the most important basis for all ant

algorithms.

When ants leave their nest to search for some food they continually leave some

chemical known as pheromone on the ground which disposes the other ants to

follow the same path. This chemical-driven kind of indirect communication

among the single ants is also known as stigmergy, a term which was introduced

by French entomologist Pierre-Paul Grassé in the late fifties of the twentieth

century. Stigmergy differs from other forms of communication in two main

aspects:19

a. Stigmergy is in contrast to human forms of communication neither visible

nor audible. Ants mediate their information by modifying their direct

environment.

16 see Dorigo/Stützle, 2004, p 33
17 see Glover/Kochenberger, 2002, p xi f
18 see Garnier/Gautrais/Theraulaz, 2007, p 3
19 see Dorigo/Birattari/Stützle, 2006, p 28

9

b. Stigmergic information has to deal with limitations in terms of space.

Pheromones have a certain range which means that it can only be

distinguished by the immediate neighborhood.

3.2.2 The Double Bridge Experiment
The idea to observe this foraging behavior of ants in order to prove the

existence of stigmergy led to a lot of experiments by several scientists. Probably

the best known of those experiments is the so-called “double bridge

experiment” which was carried out by Denebourg, Goss and other colleagues in

the late nineties of the twentieth century.20

In their experiment they observed the behavior of an Argentine ant species

named Iridomyrmex humilis by connecting a nest with a food source through the

implementation of a diamond shaped bridge where initially both branches were

of equal length.

Figure 1: Branches of equal length21

At the beginning of the experiment the whole area between the nest and the

food source is free from all pheromone but as soon as the ants start to explore

the environment they continually leave pheromone on the ground.22

Due to the fact that there exist two branches which can be chosen to get to the

food the ants randomly select their way in the starting phase. This leads to the

initial observation that 50% of the ants choose the upper branch and the other

50% choose the lower branch. However, because of the fact that ants get

20 see Denebourg et al., 1990, p 159 ff
21 taken from http://www.scholarpedia.org/wiki/images/9/97/SameLengthDoubleBridge.png,
 called up on 27.01.2011
22 see Denebourg et al., 1990, p 160 ff

10

stimulated and influenced in their decision making process by the pheromones

left by their predecessors, a higher concentration of ants can be noticed on one

branch after some time. So the amount of ants following one particular branch

grows stronger over time until all insects exclusively go for the same way.23

In 1989 Goss and his colleagues made some amendments to this experiment in

order to prove that ant colonies were able to find the shortest branch. The

diamond shaped bridge is replaced with two new branches; a short branch and

another branch which is twice as long as the shorter one.24

Figure 2: Branches have different length25

Again the ants head off towards the food source and randomly choose either

the short or the longer branch. But the main difference to the other experiment

is the time which an ant needs for the way from the nest to the food and back

again; all the ants which choose the shorter branch need less time for their

whole way and get back to the nest first. As a result these ants are able to leave

more pheromone on the shorter branch than their colleagues on the longer

branch can do in the same period of time which induces the pheromone level on

the shorter branch to grow more rapidly. Now the other ants more likely follow

the short path when leaving the nest and the ants leaving the food source also

decide for this way due to the higher concentration of pheromone.26 In most of

23 see Denebourg et al., 1990, p 160 ff
24 see Goss et al., 1989, p 579 ff
25 taken from http://www.scholarpedia.org/article/File:DiffLengthDoubleBridge.png, called up
 27.01.2011
26 see Goss et al., 1989, p 579 ff

11

the experimental runs Goss et al. were able to observe the convergence

towards the shorter branch.27

The process of this experiment can be compared to the generation of optimal

solutions for the shortest-route problem.28

3.2.3 From Real to Artificial Ants
In order to generate solutions artificial ants are dependent on:29

a. Heuristic information which is problem specific

b. Artificial pheromone trails which reflect how desirable a certain solution

component is

Besides that also some other assumptions have to be made:30

a. Artificial ants are not blind

b. The provided time for solution construction is discrete

c. Artificial ants have a memory in order to store the already added partial

solutions (e.g. certain assignments, already walked ways, ...)

With this information artificial ants are able to continually build up their solutions

by enhancing the already generated solution part through adding solution

components in every step of the process.

3.3 Main procedures of the ACO Metaheuristic31
Since the first formulation of an ant algorithm, many successful adaptations

have been developed and have found application to several combinatorial

optimization problems (see chapter 4, section 4.2). Although many different

variations of ant algorithms exist in the scientific world, they all have one thing in

common: an ACO algorithm can always be described as the interaction of three

different activities.

27 see Dorigo/Stützle, 2004, p 4
28 see Mullen et al., 2009, p 9609
29 see Dorigo/Stützle, 2009, p 3 f
30 see Dorigo/Maniezzo/Colorni, 1996
31 see Dorigo/Stützle, 2004, p 37 f

12

procedure ACOMetaheuristic

ScheduleActivities

ConstructAntsSolutions

UpdatePheromones

DaemonActions % optional

end-ScheduleActivities

end-procedure

Figure 3: Pseudo-code of an ACO metaheuristic32

ConstructAntsSolutions

In this step the artificial ants evaluate all possible solution components which

can be added to the already existing partial solution. The new part of the

solution is being selected by a probability based policy which includes the actual

pheromones and sometimes heuristic information.

UpdatePheromones

This procedure deals with the modification of the pheromone trails. Depending

on which assignments or connections an ant uses in its solution, new

pheromone is being deposited on this assignment in order to make it more

desirable for the following ants. Before doing so the natural process of

evaporation has to be taken into consideration which means that the

pheromone levels have to be decreases by a constant factor.

DaemonActions

Although this step is optional it can enhance the algorithm by helpful and

optimizing procedures. A good example would be the implementation of a local

search procedure in order to improve the solution constructed by a single ant.

The daemon could also check all individual solutions and pick the best and/or

the second best in order to deposit some additional pheromone.

32 taken from Dorigo/Stützle, 2004, p 38

13

4. Ant Algorithms

4.1 Historical Development
The very first ant algorithm to be mentioned in scientific literature was Ant

System (AS) which initially consisted of three different algorithms called ant-

density, ant-quantity and ant-cycle. They differed from each other concerning

the carrying out of the pheromone updates. While in ant-cycle the ants had to

construct the whole solution before they were able to modify the pheromone

values, in ant-density and ant-quantity the pheromone update was made after

every solution construction step (e.g. after each assignment). Due to the fact

that ant-cycle continually provided the best solution values, the research

concentrated on the further development of this algorithm and called it Ant

System.33

Its first application to the Traveling Salesman Problem (TSP) will be discussed

later (see chapter 4, section 4.3).

In the following years numerous scientists got into the spirit of this new

algorithm and tried to develop extensions or even to improve the basic idea.

Several new algorithms were developed (see chapter 4, section 4.4 & 4.5) and

the term ACO metaheuristic was found in order to define a new class of

algorithms.34

4.2 Applications to several problems
During the last few years the interest in the research area of Ant Colony

Optimization was continually growing and led to the modeling of several

variants of older algorithms and also of new ant algorithms as well as to the

application to a large number of problems.

In Figure 4 a short excerpt of applications including authors and year is given.

33 see Dorigo/Stützle, 2003, p 260 f
34 see Dorigo/Stützle, 2003, p 261

14

4.3 Ant System applied to the Traveling Salesman Problem
The Traveling Salesman Problem (TSP) is an NP-hard combinatorial

optimization problem which wants to minimize the total tour length of a

salesman who has to visit a given list of customers (e.g. cities, private people,

...). The salesman has to start from his home and is allowed to include a

customer exactly once in his tour before returning home.35

Figure 4: List of several applications of ant algorithms36

35 see Dorigo/Stützle, 2004, p 65 f
36 modified from Dorigo/Di Caro, 1999

Problem Name Authors Year Algorithm name

Traveling salesman Dorigo, Maniezzo & Colorni 1991 AS
Gambardella & Dorigo 1995 Ant-Q
Dorigo & Gambardella 1996 ACS & ACS-3-opt
Stützle & Hoos 1997 MMAS
Bullnheimer, Hartl & Strauss 1997 ASrank

Quadratic Assignment Maniezzo, Colorni & Dorigo 1994 AS-QAP
Gambardella, Taillard & Dorigo 1997 HAS-QAP
Stützle & Hoos 1998 MMAS-QAP
Maniezzo & Colorni 1998 AS-QAP
Maniezzo 1998 ANTS-QAP
Wiesemann & Stützle 2006 Iterated Ants

Vehicle Routing Bullnheimer, Hartl & Strauss 1996 AS-VRP
Gambardella, Taillard & Agazzi 1999 HAS-VRP

Connection-oriented Schoonderwoerd, Holland, 1996 ABC
 network routing Bruten & Rothkrantz

White, Pagurek & Oppacher 1998 ASGA
Di Caro & Dorigo 1998 AntNet-FS
Bonabeau, Henaux, Guérin, 1998 ABC-smart ants
 Snyers, Kuntz & Théraulaz

Connection-less Di Caro & Dorigo 1997 AntNet & AntNet-FA
 network routing Subramanian, Druschel & Chen 1997 Regular ants

Heusse, Guérin, Snyers & Kuntz 1998 CAF
van der Put & Rothkrantz 1998 ABC-backward

Sequential Ordering Gambardella & Dorigo 1997 HAS-SOP
Graph Coloring Costa & Hertz 1997 ANTCOL

Shortest common Michel & Middendorf 1998 AS-SCS
 supersequence

15

Figure 5: A 40 node TSP (a) and a whole tour as a possible solution (b)37

In all ant algorithms designed for the TSP the values of the pheromone matrix

ijτ represent the potential goodness of inserting city j directly after city i in the

route.

Before starting the solution construction each ant k is assigned to a starting city

(either randomly chosen or according to a certain criterion) and receives an

internal memory which stores all completed construction moves of the ant. Then

an ant performs the following steps:38

I. The next city to be visited is selected probabilistically by equation 6 which is

based on some heuristic information ijij d/1=η (where ijd stands for the

distance between the cities i and j) on the one hand and the pheromone

trails on the other hand. The parameters α and β regulate the grade of

influence on the result of the equation and k
iN defines the set of all

unvisited cities.

𝑝𝑖𝑗𝑘 (𝑡) =
�𝜏𝑖𝑗(𝑡)�𝛼 ∗ �𝜂𝑖𝑗�

𝛽

∑ [𝜏𝑖𝑙]𝛼 ∗ [𝜂𝑖𝑙]𝛽𝑙∈𝑁𝑖
𝑘

 𝑖𝑓 𝑗 ∈ 𝑁𝑖𝑘 (6)

II. Step number I. is repeated until all cities are included in the tour, then the

ant returns to its starting point.

37 modified from http://www.i-cherubini.it/mauro/blog/wp-content /uploads/ 2007/08/ images/
Dry_TSP_experiment.png, called up 06.01.2011
38 see Dorigo/Stützle, 2003, p 261 f

16

III. After all ants have finished the construction of their tours, the pheromone

trails are updated. First the pheromone values have to be lowered by a

constant rate ρ (0 < ρ < 1) in order to fulfill the demand of the natural

evaporation and to prevent the pheromone trails from unlimited growing.

After that all ants (m is the number of ants) deposit their pheromones.

∀(𝑖, 𝑗) 𝜏𝑖𝑗(𝑡 + 1) = (1 − 𝜌) ∗ (𝜏𝑖𝑗(𝑡)) + �∆𝜏𝑖𝑗𝑘
𝑚

𝑘=1

(𝑡) (7)

The term)(tk
ijτ∆ denotes the amount of deposited pheromone on the edge

between city i and j.

∆𝜏𝑖𝑗𝑘 (𝑡) = �
1

𝐿𝑘(𝑡)
 𝑖𝑓 𝑒𝑑𝑔𝑒 (𝑖, 𝑗)𝑖𝑠 𝑢𝑠𝑒𝑑 𝑏𝑦 𝑎𝑛𝑡 𝑘

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
� (8)

)(tLk stands for the tour length of ant k.

4.4 The direct successors of Ant System

4.4.1 Elitist Ant System39 40
One of the first improvements over the original ant system was the elitist ant

system. This algorithm enables the current global best solution tour to deposit

additional pheromone in order to help the edges of the best tour to get a

stronger weight. The best tour is denoted with Tgb, where gb is the abbreviation

for global best. The depositing of the additional pheromone happens during the

normal pheromone update according to equation 9.

 𝜏𝑖𝑗(𝑡 + 1) = (1 − 𝜌) ∗ �𝜏𝑖𝑗(𝑡)� + �∆𝜏𝑖𝑗𝑘
𝑚

𝑘=1

(𝑡) + ∆𝜏𝑖𝑗
𝑔𝑏(𝑡) (9)

39 see Dorigo/Stützle, 2003, p 262
40 see Dorigo/Stützle, 2004, p 73

17

The additional pheromone can be of the quantities

∆𝜏𝑖𝑗
𝑔𝑏(𝑡) = �

𝑒
𝐿𝑔𝑏(𝑡)

 𝑖𝑓 𝑒𝑑𝑔𝑒 (𝑖, 𝑗) ∈ 𝑇𝑔𝑏

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
� (10)

Where e is a positive integer and Lgb stands for the tour length of Tgb.

4.4.2 Rank-Based Ant System41
Another adaption of the original ant system which also follows and further

develops the ideas of the elitist ant system is the rank-based ant system ASrank.

In this algorithm the amount of pheromone, which an ant is allowed to deposit,

depends on the rank of the ant (the shorter the length of an ant´s tour, the more

pheromone is provided for an ant).

Before starting the pheromone modification all ants are ranked according to the

lengths of their tours (sorted in increasing order). In each pheromone updating

only the first (w-1) ants as well as the best tour so far are allowed to modify the

pheromone trails according to equation 11:42

𝜏𝑖𝑗(𝑡 + 1) = (1 − 𝜌) ∗ �𝜏𝑖𝑗(𝑡)� + �(𝑤 − 𝑟) ∗ ∆𝜏𝑖𝑗𝑟
𝑤−1

𝑟=1

(𝑡) + 𝑤 ∗ ∆𝜏𝑖𝑗
𝑔𝑏(𝑡) (11)

4.4.3 Ant Colony System43
The ant colony system (ACS) algorithm distinguishes from the ant system

algorithm in three main things:

a. Only the global best tour is brought in for the pheromone evaporation

and the pheromone depositing

b. The ant colony system makes use of a different action choice rule in

order to enhance the exploitation of the ants´ search experience

c. The single ants try to improve the exploration of alternative tours by

constantly removing some pheromone when using a certain arc (i, j).

41 see Dorigo/Stützle, 2004, p 73 f
42 see Dorigo/Stützle, 2004, p 73 f
43 see Dorigo/Stützle, 2004, p 76 ff

18

Constructing the tour

In ACS the ants use a pseudorandom proportional rule in order to choose the

cities to move to. This rule is given by

𝑗 = �
𝑎𝑟𝑔𝑚𝑎𝑥𝑙∈𝑁𝑖𝑘 �𝜏𝑖𝑙[𝜂𝑖𝑙]𝛽�, 𝑖𝑓 𝑞 ≤ 𝑞0;

𝐽, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒;
� (12)

where variable J is randomly selected according to equation 6 (α = 1), q0 is a

parameter (0 ≤ q0 ≤ 1) and q is a uniformly distributed variable [0, 1].

Updating the global pheromone trail

As mentioned before, only the ant with the global best tour is allowed to deposit

pheromone in ACS which can be interpreted as a strong elitist strategy:

𝜏𝑖𝑗(𝑡 + 1) = (1 − 𝜌) ∗ �𝜏𝑖𝑗(𝑡)� + 𝜌 ∗ ∆𝜏𝑖𝑗
𝑔𝑏(𝑡) (13)

During the first experiments with ACS the influence of the iteration best tour on

the pheromone update was tested. Despite the relatively good findings for small

TSP instances (≤ 100), in which the iteration best tour performed as good as the

global best tour, the final result showed that the global best tour had the better

overall performance (even for larger instance sizes).

Updating the local pheromone trail

In order to intensify the searching process and to circulate a stagnation

behavior in ACS the ants use a special procedure to weaken the influence of

the single pheromone values.

Each time an ant passes a certain arc (i, j), the corresponding pheromone value

is updated by using the following equation:

𝜏𝑖𝑗 = �(1 − 𝜉) ∗ 𝜏𝑖𝑗� + (𝜉 ∗ 𝜏0) (14)

The parameter 0τ is given the initial value of the pheromone trails, and ξ is

some kind of evaporation parameter (where 0 < ξ < 1).

19

The main aim of this local pheromone update is to reduce the desirability of

certain arcs to make a better exploration of different tours possible.

4.5 ACO applied to the QAP
The ant algorithms for the Traveling Salesman Problem can easily be adapted

to the Quadratic Assignment Problem (see chapter 2 for a detailed problem

description). While for the TSP the main aim is the construction of tours, a good

solution for the QAP is characterized by an optimal and cost-effective

assignment of facilities to the available locations. Despite the differing target

settings, in both algorithms the use of pheromone trails shows a significant

grade of influence.

The following sections describe some available ant algorithms for the QAP. The

first one is the original ant system, which was adapted and first applied to the

QAP in 1994.44 The second algorithm to be presented here is the HAS-QAP, a

hybrid ant-local search system.45 The third one – the MAX-MIN ant system

(MMAS) – is probably the most interesting one because it is the basis for the

practical implementation part of this diploma thesis. MMAS was introduced by

Stützle and Hoos and is an improvement over ant system.46

4.5.1 Ant System for the QAP47
Like all other ant algorithms this heuristic makes use of a set of m ants which

assign a facility to a certain location in every construction step.

In order to guarantee that each ant doesn’t include a location twice in its

construction process, some kind of tabu list must be defined. This list stores all

already occupied locations until a whole permutation is completed:

• tabuk is the tabu list for ant k (primarily a vector)

• tabuk(a) is the a-th element in the tabu list of ant k

In the ant system algorithm for the QAP the ants construct their solutions

probabilistically by using the Roulette Wheel method (for further description see

44 see Maniezzo/Colorni/Dorigo, 1994
45 see Gambardella/Taillard/Dorigo, 1999
46 see Stützle/Hoos, 1999
47 see Maniezzo/Colorni/Dorigo, 1994, p 1 ff

20

chapter 6, section 6.1.2). The probability that ant k assigns facility i to location j

can be calculated by:

𝑝𝑖𝑗𝑘 (𝑡) = �
�𝜏𝑖𝑗(𝑡)�𝛼 ∗ �𝜂𝑖𝑗�

𝛽

∑ [𝜏𝑖𝑙]𝛼 ∗ [𝜂𝑖𝑙]𝛽𝑙∉𝑡𝑎𝑏𝑢𝑘
 𝑖𝑓 𝑗 ∉ 𝑡𝑎𝑏𝑢𝑘

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

� (15)

As in all other ant algorithms, the variable ijτ stands for the pheromone trail (in

this case the pheromone of the assignment location j- facility i), the variable ijη

marks the heuristic information (in this case the desirability or potential

goodness of an assignment) and the parameters α and β determine the

relative influence of these variables.

At the very beginning of the algorithm the potential goodness of a particular

assignment has to be determined by calculating the two potential vectors D

(distance potential vector) and F (flow potential vector) as well as the coupling

matrix A. Given the distance matrix and the flow matrix the sums of each row

form the two potential vectors.

The distance potentials di indicate the sum of all distances from one location to

all other locations; the flow potentials fj indicate the sum of all material flows

from one particular facility to all the others.

d1 = 0+5+2+3+1 = 11 f1 = 0+2+3+1+2 = 8

d2 = 5+0+2+4+2 = 13 f2 = 2+0+4+2+1 = 9

d3 = 2+2+0+6+3 = 13 f3 = 3+4+0+3+1 = 11

... ...

0 5 2 3 1 0 2 3 1 2
5 0 2 4 2 2 0 4 2 1

D = 2 2 0 6 3 F = 3 4 0 3 1
3 4 6 0 2 1 2 3 0 3
1 2 3 2 0 2 1 1 3 0

21

88 99 121 99 77
104 117 143 117 91

A = 104 117 143 117 91
120 135 165 135 105
64 72 88 72 56

The lower a flow potential, the less important this activity is for the whole

network; the lower a distance potential of a certain node, the more barycentric it

is considered in the system.

By taking these two potential vectors as a basis one may calculate the coupling

matrix A with its elements aij by forming the products di*fj. The potential

goodness ijη of a particular assignment can then be obtained by defining the

inverse of the coupling matrix elements ijη = 1/ aij.

a11 = 11*8 = 88 a21 = 11*9 = 99 a31 = 11*11 = 121

a12 = 13*8 = 104 a22 = 13*9 = 117 ...

a13 = 13*8 = 104 a23 = 13*9 = 117

a14 = 15*8 = 120 a24 = 15*9 = 135

a15 = 8*8 = 64 a25 = 8*9 = 72

Now an ant is able to start the solution construction by starting with the facility

which has the greatest flow potential and assigning it to the location obtained by

equation (15). The pheromone trails are updated according to equation (7).

4.5.2 HAS-QAP48
Before giving a more detailed description of the HAS-QAP, it is necessary to

give a short overview of the most important facts.

The greatest difference between the HAS-QAP – a hybrid ant colony system –

and other ant algorithms is that ants use the pheromone trails in a non-standard

48 see Gambardella/Taillard/Dorigo, 1999

11 8
13 9

D = 13 F = 11
15 9
8 7

22

way. Normally the pheromone trails are consulted for the construction of

feasible solutions; in the HAS-QAP they are used only to modify existing

solutions. After this modification based on the pheromone values, an additional

local search is performed.

The updating process of the pheromone values happens by taking into account

only the best solution so far. This global update considerably shortens the

solution finding process; additionally, this effect is increased by the

intensification mechanism which can also lead to an early convergence. The

intensification mechanism helps the algorithm to solve the problem of choosing

the starting solution for an ant (during each iteration). If at the end of the

iteration the solution of an ant is worse than at the beginning, the ant will again

choose the solution from the beginning of the iteration.

Because of this inconvenience mentioned before, there exists the possibility to

activate a diversification mechanism in order to prevent the algorithm to

converge too early. It consists of the erasing of all the pheromone trails and an

additional re-initialization of the ants´ solutions.

Detailed description of HAS-QAP
This section explains the individual steps of the HAS-QAP algorithm (as shown

in Figure 6) more precisely:

Initialization phase- solutions

The initial solution which is assigned to an ant is randomly generated and goes

through a local search procedure (see section “Manipulating the solutions by

local search”) in order to optimize it.

Initialization phase- pheromone matrix

At the beginning of the algorithm all values of the pheromone matrix ijτ are set

to the same initial value 0τ .

23

initialization
Generate m random initial permutations π 1(1), ..., π m(1), each one

associated to an ant
Improve π 1(1), ..., π m(1) with the local search procedure
Let π * be the best solution
Initialize the pheromone trail matrix T
Activate intensification
main loop
For i = 1 to Imax repeat

solution manipulation
For each permutation π k(i) (1 ≤ k ≤ m) do

 Apply R pheromone trail swaps to π k(i) to obtain π̂ k(i)

 Apply the local search procedure to π̂ k(i) to obtain π~ k(i)
End For
intensification
For each ant k do

 If intensification is active
Then π k(i+1) ← best permutation between π k(i) and

π~ k(i)

 Else π k(i+1) ← π~ k(i)
End For
If ∀ k π k(i+1)= π k(i) then deactivate intensification

If ∃k such that f(π~ k(i)) < f(π *)
 Then
 Update π *, the best solution found so far
 Activate Intensification

pheromone trail updating
Update the pheromone trail matrix
diversification
If S iterations have been performed without improving π * then

 Perform a diversification
End For

Figure 6: The HAS-QAP algorithm49

Manipulating the solutions using pheromones

The first part of the manipulation of solutions performs R swaps to the solution
kπ to obtain the new permutation kπ̂ . The two elements to be swapped are

chosen according to the following rule: first, an index r (between 1 and n) has to

be selected. Second, depending on the value of r an index s (s≠ r) can be

chosen by employing one of two different policies:

1. set s to a value so that k
s

k
r rs ππ ττ + is maximized; with probability q

2. choose s with probability
∑
≠

+

+

rj

k
j

k
r

k
s

k
r

rj

rs

)(ππ

ππ

ττ
ττ

; with probability (1- q)

49 modified from Gambardella/Taillard/Dorigo, 1999, p 169

24

After the selection of the two indices the elements k
sπ and k

rπ can be swapped.

Manipulating the solutions by local search

This neighborhood search is based on a first improvement strategy and

examines all possible swaps of the elements iπ and jπ ofπ . The difference in

the objective function can be determined by:

∆(𝜋, 𝑖, 𝑗) = �𝑑𝑖𝑖 − 𝑑𝑗𝑗� �𝑓𝜋𝑗𝜋𝑗 − 𝑓𝜋𝑖𝜋𝑖�

+ �𝑑𝑖𝑗 − 𝑑𝑗𝑖� �𝑓𝜋𝑗𝜋𝑖 − 𝑓𝜋𝑖𝜋𝑗�

+ ��𝑑𝑘𝑖 − 𝑑𝑘𝑗� �𝑓𝜋𝑘𝜋𝑗 − 𝑓𝜋𝑘𝜋𝑖�
𝑘≠𝑖,𝑗

+ �𝑑𝑖𝑘 − 𝑑𝑗𝑘� �𝑓𝜋𝑗𝜋𝑘 − 𝑓𝜋𝑖𝜋𝑘� (16)

If an improving swap of two elements is found, this swap is performed

immediately.

Intensification

The intensification mechanism pursues the goal of exploring the neighborhood

of the best solution so far more exactly. Intensification is active as long as at

least one ant is capable of improving its solution. In Figure 7 a typical

intensification mechanism is demonstrated: on the vertical axis the solution

quality is measured (of ant k and the best known solution value), on the

horizontal axis three of the main steps of an HAS-QAP algorithm are

represented (the initial solution, manipulating the solutions using pheromones,

manipulating the solutions using local search).

According to Figure 7, the intensification mechanism is not active at the

beginning of the algorithm  so we have to set)(~)1(ii kk ππ ←+ . After iteration

i+1 a new best solution is found which requires the activation of intensification

and)1(~)2(+←+ ii kk ππ . At the end of iteration i+2, due to the fact that

intensification is active and the solution)2(+ikπ is better than)2(~ +ikπ ,)3(+ikπ

receives the solution value of)2(+ikπ .

25

Figure 7: Example for intensification50

Updating the pheromone trails

As mentioned above, the pheromone update in the HAS-QAP is performed only

by the global best solution *π , which leads to a faster convergence of the

algorithm. Before doing so, the usual pheromone evaporation has to be realized

by using choosing parameter ρ and using the following equation:

𝜏𝑖𝑗(𝑡 + 1) = (1 − 𝜌) ∗ �𝜏𝑖𝑗(𝑡)� (17)

Diversification

The diversification mechanism consists in generating new starting solutions for

the ants (only one ant keeps the global best solution) and re-initializing the

pheromone matrix. It is activated if no new best solution is generated during the

last S iterations.

50 taken from Gambardella/Taillard/Dorigo, 1999, p 170

26

4.5.3 MAX-MIN Ant System (MMAS)51
Since the first appearance of ant algorithms in the scientific literature, there has

always been a strong interest to improve the performance of these algorithms in

order to guarantee a better quality of solutions.

A lot of research projects came to the finding that a stronger utilization of the

global best solution can have an enormous influence on the efficiency of the

algorithm. Unfortunately a higher influence rate of the best solution can lead to

early search stagnation. So the main aim was to create an algorithm which

combines an effective use of the best solutions with a special mechanism for

avoiding early stagnation.

The algorithm which is capable of meeting these requirements – the MAX-MIN

Ant System – contains three special functions which distinguishes the MMAS

from the normal ant system:

1. In the initialization phase the pheromone trails are set to a value maxτ in

order to allow a higher exploration

2. In MMAS only one single ant is allowed to update the pheromone trails

after each iteration; this can be either the ant with the best known

solution (global best solution) or the best ant of the current iteration

(iteration best solution)

3. An infinite rise of the pheromone values and therefore stagnation can be

avoided by introducing an interval for the pheromone trails []maxmin ,ττ

ad 1- pheromone trail initialization

The initialization of the pheromone matrix has to be made with a very high value

for 0τ which can be chosen arbitrarily. By keeping to this rule, it can be

guaranteed that all pheromone trails even out in the specified interval []maxmin ,ττ

(normally exactly at maxτ) after the first iteration.

ad 2- pheromone trail updating

In MMAS the pheromone trail updating is realized according to

51 vgl. Stützle/Hoos, 2000, p 898 ff

27

𝜏𝑖𝑗(𝑡 + 1) = 𝜌 ∗ 𝜏𝑖𝑗(𝑡) + ∆𝜏𝑖𝑗𝑏𝑒𝑠𝑡 (18)

where

∆𝜏𝑖𝑗𝑏𝑒𝑠𝑡 =
1

𝑓(𝑠𝑏𝑒𝑠𝑡)
 (19)

and)(bestsf refers to either the global best solution (sgb) or the iteration best

solution (sib). This idea of using one single ant for the pheromone update has

already been described in ACS; in ACS mainly the global best solution is used

whereas in MMAS the main focus lies on the iteration best solutions.

For updating the pheromones it is also very common to use mixed strategies

which consist of using both sgb and sib in a constantly changing order (e.g. using

sgb every 10 iterations). The best strategy is probably the dynamic mixed one

which mainly uses the iteration best solutions coupled with a growing influence

factor of the global best solution throughout the algorithm. This kind of

compromise prohibits the search from concentrating too fast around the value of

the global best solution in case of only using the sgb. By including the sib, which

is normally significantly different in every iteration, in this mixed strategy, not

only the pheromone trails belonging to the global best solution are updated but

also less promising solutions get reinforced. In the practical part of this diploma

thesis also a dynamic mixed strategy was implemented.

ad 3- pheromone trail limits

Every algorithm can have to face the problem of search stagnation which does

not depend on the pheromone updating strategy. Search stagnation occurs if

there exist significantly high pheromone trails for a certain permutation; these

pheromone trails then have an essential influence on the solution construction

of the ants (this situation is even worse in MMAS because in this algorithm the

influence parameter β of the heuristic information is normally set to zero which

means that the probability choice rule only depends on the values of the

pheromone matrix) which can lead to an endless circle of constant

reinforcement of the best solution.

28

In order to avoid this undesirable behavior the MMAS makes use of so called

pheromone trail limits []maxmin ,ττ which help to keep the pheromone trails ijτ

within a certain range. In every iteration it has to be verified that the constraint

maxmin)(τττ ≤≤ tij holds by checking the pheromone trails:

• if max)(ττ >tij , set max)(ττ =tij

• if min)(ττ <tij , set min)(ττ =tij

As mentioned above, the pheromone trails are initialized with a very high

number which helps the pheromone values to even out in the interval []maxmin ,ττ

after the first iteration. In MMAS this interval of trail limits is always updated if

there is a new global best solution available.

maxτ is updated as follows:

𝜏𝑖𝑗𝑚𝑎𝑥(𝑡) = �𝜌𝑡−𝑖
𝑡

𝑖=1

1
𝑓(𝑠𝑜𝑝𝑡)

+ 𝜌𝑡𝜏𝑖𝑗(0) (20)

because of 1<ρ the sum can be rewritten as

1

1 − 𝜌
∗

1
𝑓(𝑠𝑜𝑝𝑡)

 (21)

)(optsf stands for the objective function value of the optimal solution. By

substituting)(optsf for)(gbsf (the solution value of the global best solution),

the updating procedure of maxτ is triggered with every new global best solution.

Going out from the value of maxτ the updating of minτ can now be realized. For

this procedure we need the two possibilities bestp – possibility of constructing

the best solution after the convergence of MMAS – and decp – possibility of an

ant choosing all permutations with pheromone trail maxτ to construct its solution –

in order to inset them into the following formulas. Assuming that 0>bestp we

can determine

29

𝑝𝑑𝑒𝑐 = �𝑝𝑏𝑒𝑠𝑡
𝑛 (22)

By setting avg=n/2 to the value of decp can also be calculated by:

𝑝𝑑𝑒𝑐 =
𝜏𝑚𝑎𝑥

𝜏𝑚𝑎𝑥 + (𝑎𝑣𝑔 − 1)𝜏𝑚𝑖𝑛
 (23)

By transforming this equation for minτ we get:

𝜏𝑚𝑖𝑛 =
𝜏𝑚𝑎𝑥(1 − 𝑝𝑑𝑒𝑐)
(𝑎𝑣𝑔 − 1)𝑝𝑑𝑒𝑐

=
𝜏𝑚𝑎𝑥(1 − �𝑝𝑏𝑒𝑠𝑡

𝑛)
(𝑎𝑣𝑔 − 1)�𝑝𝑏𝑒𝑠𝑡

𝑛 (24)

5. Local Search Methods

The research on metaheuristics supplies us with the knowledge that the best

solution values can be achieved by combining a well thought-out mechanism for

generating the initial solution with an effective local search method. Probably

the best working algorithms are the iterated local search algorithms, which

iteratively try to improve the initial solution by using a certain local search

method. The main aim of a local search procedure is to find the local optimum

in the neighborhood of a starting solution constructed by an ant. The probability

for good local search methods to improve the solution value is quite high

because a neighborhood different to the one of the initial construction phase

can be sifted through. A very popular local search procedure, especially for the

Traveling Salesman Problem, is the k-exchange which provides different

variants like for example 2-opt (see section 5.1), 2.5-opt and 3-opt.52

Although the combination of local search and a constructing mechanism is

always a good choice for generating solutions, the two main aims to be

optimized (efficiency and effectiveness) are mutually exclusive. Either you have

an algorithm which generates high quality solutions within an above average

time span or the algorithm works really fast and the quality of the solution has to

52 see Dorigo/Stützle, 2004, p 92 f

30

suffer under it.53 Because of that it has to be chosen between a best

improvement strategy and a first improvement strategy:

• Best Improvement  the local search procedure sifts all possible

solutions of the neighborhood carefully in order to find the best one

• First Improvement  as soon as the local search finds a better solution,

the procedure is being stopped

5.1 2-opt
This simple local search method deals with the exchange of two different

solution components. In case of the Traveling Salesman Problem, the algorithm

chooses two edges from the solution and swaps them in the hope of a new best

solution.54

Figure 8: 2-opt procedure for the TSP

This local search method can find application to the Quadratic Assignment

Problem in a straightforward way. Instead of switching two edges, 2-opt

removes two already assigned facilities from their locations to switch them in

order to improve the value of the objective function. In case of a first

improvement strategy, if a better solution is found, the initial solution is

replaced. This happens as long as there are no further improvements possible.

The exact number of possible swaps in the neighborhood of a solution can

always be calculated using the term 2/)1(* −nn .55

53 see Dorigo/Stützle, 2004, p 92 f
54 http://en.wikipedia.org/wiki/2-opt, called up on 22.03.2011
55 see Ramkumar/Ponnambalam/Jawahar, 2009, p 623

31

There exist two main groups of interchanges for the QAP:

1. Pairwise interchange: the two facilities don´t need to be adjacent

2. Adjacent pairwise interchange: the two facilities have to be adjacent

(here the number of possible swaps is reduced to)1(−n)

Figure 9: Pairwise interchange (a), adjacent pairwise interchange (b)

5.1.1 A short example: 2-opt for the QAP

Initial solution: 1-A, 2-B, 3-C, 4-D

Cost = 2*(1*3+2*4+1*2+1*5+2*3+3*10) = 108

Changing facilities B & C

Solution: 1-A, 2-C, 3-B, 4-D

Cost = 2*(1*4+ 2*3+1*2+1*5+2*10+3*3) = 92

Improvement of 16

Changing facilities A & C

Solution: 1-C, 2-B, 3-A, 4-D

Cost = 2*(1*5+2*4+1*10+1*3+2*3+3*2) = 76

Improvement of 32

1 2
3 4

1 2 3 4 A B C D
1 0 1 2 1 A 0 3 4 2
2 1 0 1 2 B 3 0 5 3
3 2 1 0 3 C 4 5 0 10
4 1 2 3 0 D 2 3 10 0

32

Changing facilities A & D

Solution: 1-D, 2-B, 3-C, 4-A

Cost = 2*(1*3+2*10+1*2+1*5+2*3+3*4) = 96

Improvement of 12

5.2 Iterated ants – a hybridization of ACO
To hybridize an ant algorithm means that an effective local search mechanism

is added to the algorithm in order to search for better solutions in the

neighborhood of the initial solution (constructed by the ants). Many research

projects dealt with this topic and tried to find the optimal metaheuristic to

improve ants´ solutions – a considerable example would be the tabu search for

the Quadratic Assignment Problem. Beside these findings a lot of different ways

of hybridizing ant algorithms have been developed. One of them supports the

idea of letting the single ants construct their solutions by starting from partial

solutions. Normally the ants start their construction mechanism from scratch but

starting from partial solutions – which are obtained by removing components

from an ant´s initial solution – presents two very important advantages:56

1. The solution finding can be accelerated by far

2. The best parts of a solution are directly exploitable

Being one of the most important elements and ideas behind the implementation

part of this diploma thesis, I would like to describe the Iterated Ants algorithm in

detail which is faithful to the Iterated Greedy (IG) metaheuristic. Figure 10

shows a general outline of such an IG algorithm.

Figure 10: Outline of an IG algorithm57

56 see Dorigo/Stützle, 2009, p 18
57 taken from Ruiz/Stützle, 2008

33

A typical Iterated Greedy algorithm starts with generating an initial solution

followed by a local search procedure. Once this starting solution s is available,

the algorithm begins with the main loop which consists of four mechanisms:58

1. Destruction: this procedure is responsible for destroying a certain amount

(fixed or variable) of solution components of s which results in the partial

solution sp; there exist a lot of different destroy algorithms which will be

discussed later

2. Construction: in Iterated Ants the construction mechanism normally uses

the same probability choice rule as in ACO; the partial solution sp is

reconstructed bit by bit until a whole permutation s´ is obtained

3. Local Search: in the main loop of an Iterated Greedy algorithm there

exists the possibility of running through a second local search procedure;

this is optional and should be well thought-out in terms of a longer

runtime

4. Acceptance Criterion: in this step we are free to choose how to accept a

solution. For example if the solution value of s´ is better than the value of

s, we can take s´ as the new s and start again with the main loop of the

Iterated Greedy algorithm

In Iterated Ants algorithms it is assumed that each ant implements its own

Iterated Greedy algorithm. This means that in all iterations every ant creates a

complete candidate solution and then tries to improve it by using the Iterated

Greedy algorithm. In 2006 W. Wiesemann and T. Stützle made an experimental

study dealing with the idea of Iterated Ants and introduced 3 different destroy

mechanisms:59

1. rand: the solution parts to be destroyed are chosen randomly

2. prob: the probability of removing a certain solution component depends

on the belonging pheromone trail ijτ ; the higher this pheromone value,

the higher is the possibility that this component is removed from the

candidate solution. This means that the probability is proportional to the

pheromone trail.

58 see Dorigo/Stützle, 2009, p 18
59 see Wiesemann/Stützle, 2006, p 182 f

34

3. iprob: this destroy mechanism is completely the opposite of the previous

one and promotes a probability which is inversely proportional to the

pheromone trails; the lower the pheromone value, the higher is the

possibility that this component is removed from the candidate solution.

5.3 Very Large Scale Neighborhood Search (VLSN)
All VLSN algorithms are known for generating solutions of very high quality.

They search a large neighborhood – this neighborhood is normally reduced to a

subset of all possible solutions because otherwise the searching time would

exceed all acceptable time limits – in order to find local optima. VLSN and LNS

(which is going to be described in section 5.3.1) are two very similar terms

which can easily be mixed up. So a very important fact to mention here is that

the term VLSN stands for the class of algorithms dealing with very large

neighborhood searches and LNS only denotes a certain metaheuristic

belonging to this class. However, the main characteristic each algorithm needs

to have to belong to the class of VLSN algorithms is an exponential growth of

the available neighborhood depending on the instance size of the problem.60

The class of VLNS algorithms can be divided into three categories:61

1. Variable depth methods

The main idea of Variable Depth Neighborhood Search (VDNS)

algorithms is not to start with the whole neighborhood but to gradually

enhance its size. For example, by using the k-exchange neighborhood:

At first the algorithm starts with the 1-exchange neighborhood N1 but

every time it gets trapped in a local minimum, the neighborhood is

extended by the 2-exchange neighborhood N2 (then by N3, N4,... Nk).

60 see Pisinger/Ropke, 2010, p 399 f
61 see Ahuja et al., 2002, p 79 ff

35

 Figure 11: Gradual extension of the neighborhood in VDNS62

2. Network flow based improvement methods

They can be divided into three different groups:

• Cyclic exchange neighborhood: means that parts are moved from

one subset to another; let A be the whole problem and S1,... Sk

are the subsets (k = 4) – a cyclic exchange would be if you shift

one element of S1 to S2, one element from S2 to S3, one from S3

to S4 and last but not least one element from S4 to S1.

• Path exchanges: is some kind of swap neighborhood and

consists of deciding on a random number of independent swaps

and realizing them together

• Assignment neighborhood: this so-called exponential

neighborhood structure can be obtained by making reasonable

assignments in an improvement graph

3. Methods based on constraining the original problem

Although one of the main characteristics of NP-hard problems is the fact

that they can´t be solved in polynomial time, there exists the possibility

to enhance the initial problem by additional constraints or even

restrictions. The resulting neighborhood may be solved within an

acceptable period of time.

62 taken and modified from Pisinger/Ropke, 2010, p 403

36

5.3.1 Large Neighborhood Search (LNS)63
The LNS metaheuristic was introduced in 199864 and was originally designed

for solving the Vehicle Routing Problem.

In this algorithm the neighborhood is determined by firstly destroying parts of

the solution and secondly repairing them again. Therefore, two well thought-out

methods are needed as well as an effective element of stochasticity which is

included in the destroy method in order to guarantee that different solution parts

are chosen for destruction in every retrieval. So the whole neighborhood N(x) of

an initial solution x is the resulting set of solutions of the interplay between

destroying and repairing.

In Figure 12 a pseudo-code of a typical LNS algorithm is shown. At the

beginning we have an initial feasible solution x as the main input (see line 1).

The variable xb stands for the global best solution which is found during the

whole algorithm – it takes on the value of x before starting the main loop (see

line 2). In line number 4 the function r(d(x)) destroys parts of the solution x and

repairs this partial solution afterwards. The outcome of this function is the

variable xt.

For the accept function in line number 5 exist a lot of possibilities how to

implement it – a very popular one is to accept only improved solutions which

means new solutions xt with a smaller objective function value than x (even in

the paper of Shaw65 only improving solutions are allowed). In this case x is set

to the value of xt. In line number 8 we can see the comparison of the objective

function values of xt and the global best solution xb. If the equation)()(bt xcxc <

holds, the best solution will be updated by tb xx = . In the line before last the

stopping criterion is checked – this can be for example a certain number of

iterations or any other criterion the implementer is keen of. At last the global

best solution is returned (see line 12).

63 see Pisinger/Ropke, 2010, p 405 ff
64 see Shaw, 1998
65 see Shaw, 1998

http://de.pons.eu/englisch-deutsch/retrieval�

37

Figure 12: Pseudo-code of an LNS algorithm66

Probably the most important considerations before implementing an LNS

algorithm are the choice and the extent of the destroy mechanism. It has to be

determined how many solution parts to destroy which can have an immense

influence on the behavior of the whole algorithm. If a very large part of the initial

solution x is destroyed then it may happen that the repair mechanism is

extremely time consuming or provides solutions of worse quality. If the number

of destroyed solution components is very low then the effectiveness of a

neighborhood search is lost due to a failure caused by exploring only a

minimized solution space. There exist several different suggestions in scientific

papers: Ropke and Pisinger67recommend a random determining of the degree

of construction which depends on the instance size; Shaw68 considers a gradual

increase of the removed components to be effective. It also has to be

guaranteed that different solution components are removed in every invocation

of the remove operator so that every part of the solution can possibly be

affected.

5.3.2 Adaptive Large Neighborhood Search (ALNS)69
The Adaptive Large Neighborhood Search differs from the Large Neighborhood

search in the number of destroy and repair operators permitted in the algorithm.

In the ALNS it is allowed to use several different operators which have to be

given a certain weight in order to control how often the method is deployed

66 taken from Pisinger/Ropke, 2010, p 407
67 see Ropke/Pisinger, 2006
68 see Shaw, 1998
69 see Pisinger/Ropke, 2010, p 409 f

38

during the algorithm. In contrast to the LNS, in ALNS each destroy/repair

method creates its own neighborhood which leads to multiple neighborhoods. In

Figure 13 the pseudo-code of an ALNS algorithm is shown.

Figure 13: Pseudo-code of an ALNS algorithm70

The set of destroy methods is denoted −Ω while the set of repair methods is

denoted +Ω ; as it can be seen in line number 4 −Ω∈d and +Ω∈r . In line

number 2 the two new weight parameters −ρ (where
−Ω− ∈ Rρ) and +ρ (where

+Ω+ ∈ Rρ) are introduced which help to select the methods following the

roulette wheel algorithm. In case of the repair methods, the probability of

choosing method number z is calculated as follows:

𝜙𝑧+ =
𝜌𝑧+

∑ 𝜌𝑘+
|Ω+|
𝑘=1

 (25)

The formula for the destroy methods works in the same way with using −
zφ

instead of +
zφ , −

zρ instead of +
zρ and −

kρ instead +
kρ ; last but not least the set of

methods changes from +Ω into −Ω .

70 see Pisinger/Ropke, 2010, p 409

39

6. Implementation

The practical part of this diploma thesis deals with the idea to take the MMAS

algorithm as proposed by Stützle and Hoos71 as a basis and to replenish it with

new local search methods. In the best case these worked out methods should

search the neighborhood of a solution on the one hand very fast, and on the

other hand they should provide feasible solutions of good quality. The basic

idea of these new local search methods is the so called Iterated Ants idea by

Wiesemann and Stützle72 (see chapter 5, section 5.2 for more details) which

primarily tries to destroy a solution and then to reconstruct it in order to obtain a

better one. Due to the fact that all algorithms which have been implemented in

the course of this diploma thesis use the same mechanism for reconstruction,

the main research focused on the development and implementation of effective

destroy mechanisms to create a valuable neighborhood of solutions. Five

different algorithms have been implemented by using C++ as the programming

language. The algorithms differ mainly from each other in the functionality of the

local search methods – the algorithmic basis is always the same MMAS Basis

Algorithm as presented below (see chapter 6, section 6.2.1). The only

exceptional case is the MMAS 3 Iterated algorithm (see chapter 6, section

6.2.5) which is the only algorithm that doesn´t orient itself by the Iterated Ants

idea but by the Large Neighborhood Search idea. The main objective here was

to implement a MMAS algorithm that generates an initial solution which is then

used to run through a typical LNS procedure. This LNS procedure contains the

three proposed destroy mechanisms called random removal, product removal

highest and product removal lowest which will be described below.

6.1 General Principles
As mentioned above, the algorithms have a lot of different procedures like the

pheromone update or the Roulette Wheel method in common. It is important to

remember to implement the algorithms in a way that they use to be very similar

to each other in order to make the resulting solutions comparable.

71 see Stützle/Hoos, 2000, p 898 ff
72 see Wiesemann/Stützle, 2006, p 179 ff

40

6.1.1 Roulette Wheel Procedure73
In all five MMAS algorithms which are proposed in this diploma thesis, ants

construct their solutions by following a special procedure known as the Roulette

Wheel method. In all runs of the algorithm (the number of runs can also be

interpreted as the number of ant colonies) a certain amount of individual ants

use this procedure in order to randomize their assignments.

At the beginning all facilities have to be sorted in decreasing order and are

stored in a vector. Each ant starts its solution construction with the first element

of this vector (facility with the highest sum of flows to all other facilities) and

calculates the probability of assigning facility i to location j according to equation

(15). Because in MMAS algorithms the influence factor of the heuristic

information is set to zero, the obtained probabilities exclusively depend on the

pheromone trails (factor α is set to 1):

𝑝𝑖𝑗𝑘 (𝑡) = �
�𝜏𝑖𝑗(𝑡)�𝛼

∑ [𝜏𝑖𝑙]𝛼𝑙∉𝑡𝑎𝑏𝑢𝑘
 𝑖𝑓 𝑗 ∉ 𝑡𝑎𝑏𝑢𝑘

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (27) �

After the calculation of all probabilities they even have to be cumulated.

Afterwards a random number in the range [0, 1] is generated to determine the

location to be taken:

Figure 14: Roulette Wheel procedure

73 http://en.wikipedia.org/wiki/Fitness_proportionate_selection, called up on 22.03.2011

p21 p22 p24 p25 p26 p27
probability 0,12 0,22 0,03 0,25 0,29 0,09
cumulated 0,12 0,34 0,37 0,62 0,91 1

41

Example: if the random number has the value 0,45  facility 2 would be

assigned to location 5 because 0,37 < 0,45 ≤0,62.

6.1.2 2-opt First Improvement
In all implemented algorithms the 2-opt local search procedure (for detailed

description see chapter 5, section 5.1) is employed in two places: one the one

hand 2-opt tries to optimize the initial solution generated by an ant and on the

other hand it helps to improve the obtained assignment after the destroy and

reconstruct mechanisms. This local search method is subject to a first

improvement strategy which means that the loop of 2-opt starts over if a better

solution is found. Due to the fact that no special termination criterion exists, it

can be guaranteed that the 2-opt procedure keeps on passing through as long

as an improved solution is available in the neighborhood.

For keeping the runtime of the algorithm low, the exchanges of the facilities are

scored by a delta evaluation before they are actually switched:74

∆𝐶𝑥𝑦(𝑏) = �(𝑓𝑖𝑥

𝑛

𝑖=1

− 𝑓𝑖𝑦) ∗ �𝑑(𝑏𝑖 , 𝑏𝑥) − 𝑑(𝑏𝑖 , 𝑏𝑦)� − 2𝑓𝑥𝑦𝑑�𝑏𝑥, 𝑏𝑦� (26)

The costs of the exchange)(bCxy∆ depend on the original assignment b and the

two facilities to be exchanged x and y. The higher the value of)(bCxy∆ is, the

more desirable the exchanging of x and y gets.

Initially the facilities in the first two locations are evaluated by setting x=0 and

y=1 (the value refers to the index of a vector). The next evaluations would be

[x=0; y=2], [x=0; y=3], [x=0; y=4] until [x=0; y=n] – then the algorithm continues

with [x=1; y=2], [x=1; y=3], [x=1; y=4], [x=1; y=5],... and so on. The conditions

yx ≠ and yx < have to be fulfilled all the time in order to exclude redundant

calculations.

6.1.3 Updating the Pheromone Trails
As already discussed in chapter 4-section 4.5.3, MMAS algorithms normally

only make use of the iteration best solutions for updating the pheromone trails.

74 see Askin/Standridge, 1993, p 219

42

In order to prevent an exclusive influence of the iteration best solutions we use

a mixed strategy in our implementation:

• Iterations 1-9: use global best solution in every third iteration

• Iteration 10-24: use global best solution in every second iteration

• Iteration > 25: exclusive use of global best solution

This interplay between a constantly growing influence of the global best solution

and a continually disappearing pheromone updating of the iteration best

solution guarantees equable pheromone trails in the initial phase of the

algorithm.

After all it is a natural cause of action that before updating the pheromone trails

the evaporation of the pheromones (we choose the resistance factor ρ = 0,8)

has to be realized. So the whole pheromone trail updating is carried out

according to:

𝜏𝑖𝑗(𝑡 + 1) = 𝜌 ∗ 𝜏𝑖𝑗(𝑡) +
1

𝑓(𝑠𝑏𝑒𝑠𝑡)
 (28)

6.2 The Algorithms
For the practical part of this diploma thesis five algorithms have been

implemented in C++. The MMAS Basis algorithm is a “normal” MMAS algorithm

which only uses the 2-opt local search method to improve the initial solutions.

The MMAS Random Removal, MMAS Product Removal Highest and MMAS

Product Removal Lowest algorithms follow the idea of Iterated Greedy

algorithms while the MMAS 3 Iterated is more an adaptation of a Large

Neighborhood Search. All algorithms except the MMAS 3 iterated run through

1000 iterations – each including a colony of k = 5 ants. The resistance factor of

the pheromone trails is set to ρ = 0,8 and the influence parameter of the

pheromones is set to α = 1. According to equation (22) we set bestp = 0,005 for

generating the pheromone trail limits. The pheromone trail initialization is done

by setting maxτ = 200. For all five different algorithms we will give a detailed

description in the following sections.

43

6.2.1 MMAS Basis Algorithm
The MMAS Basis Algorithm was implemented as proposed by Stützle and

Hoos.75 This algorithm is the base of all other algorithms and is used to

generate the initial solution before starting the destroy/reconstruct mechanisms.

In Figure 15 the pseudo-code of the MMAS Basis algorithm is shown where ib =

iteration best solution, gb = global best solution, s = best solution of an ant with

costs f(s) and s´ = best solution found during 2-opt with costs f(s´).

For 1000 iterations
 For all 5 ants do

Generate random number and assign facilities to locations
following to the Roulette Wheel procedure in order to get s
Calculate f(s)
Do

2-opt local search to obtain s´ and f(s´)
If (f(s´) < f(s))

 Set s = s´ and f(s) = f(s´)
 EndIf
 While(improvement == true)

If (s < ib)
 Set ib = s
EndIf

 EndFor
 If (ib < gb)
 Set gb = ib
 Update pheromone trail limits
 EndIf
 Update the pheromone trails
EndFor

Figure 15: Pseudo-code for the MMAS Basis algorithm

6.2.2 MMAS Random Removal
The MMAS Random Removal algorithm contains the easiest destroy

mechanism of all implemented algorithms. By choosing the solution

components to be removed with the help of a random number generator, the

algorithm works much faster than MMAS Product Removal Highest and MMAS

Product Removal Lowest because it doesn´t waste time on account of

complicated calculations. Generated random numbers have to be in the range

[0, (n-1)] and stand for the indices of the solution vector, e.g. the number 0

denotes location 1 in the vector.

75 see Stützle/Hoos, 2000, p 898 ff

44

For 1000 iterations
 For all 5 ants do

Generate initial solution s according to Roulette Wheel
Calculate f(s)
Do

2-opt local search to obtain s´ and f(s´)
If (f(s´) < f(s))

 Set s = s´ and f(s) = f(s´)
 EndIf
 While(improvement == true)
 For 6 runs

DESTRUCT
Calculate (n/6) components to be removed
Generate random numbers and remove solution
components from s  update f(s)

 RECONSTRUCT
 Reconstruct s according to Roulette Wheel

 Do
2-opt local search to obtain s´ and f(s´)
If (f(s´) < f(s))

 Set s = s´ and f(s) = f(s´)
 EndIf
 While(improvement == true)
 EndFor

If (s < ib)
 Set ib = s
EndIf

EndFor
 If (ib < gb)
 Set gb = ib
 Update pheromone trail limits
 EndIf
 Update the pheromone trails
EndFor

Figure 16: Pseudo-code for the MMAS Random Removal

The total number of components to be removed is set to (n/6) so it depends on

the problem size how many components have to be chosen. It is important to

mention here that the result of the division is always rounded down, e.g. in runs

with the problem instance 35 there have to be removed 5 components because

35/6 results in 5. The reconstruct mechanism follows the same Roulette Wheel

procedure as usual and the total number of destroy/reconstruct runs is set to 6.

In Figure 16 the pseudo-code of the MMAS Random Removal is shown.

45

6.2.3 MMAS Product Removal Highest
As in MMAS Random Removal, in this algorithm the number of solution parts to

be destroyed is set to (n/6). To determine these solution components, the

MMAS Product Removal Highest algorithm applies a very complex procedure

which includes the product of distances and flows and the total material flows

among the individual facilities.

By starting from the initial solution of an ant the algorithm calculates the product

of the distance between two locations and the flow between the corresponding

facilities according to equation (29) and stores the five highest products in a

vector.

𝑑𝑖𝑗 ∗ 𝑓𝜋(𝑖)𝜋(𝑗) (29)

Then exactly one product has to be chosen by using the Roulette Wheel

method. For this each product is allotted a probability which is calculated by

∑)/(productsproduct . By following the Roulette Wheel procedure the

probabilities are cumulated, a random between [0, 1] is generated and the

certain product is selected.

The two locations and the two facilities which are assigned to this product are

the first components to be removed. Now the algorithm searches for the facility

which has the highest material flow to the already destroyed facilities and

removes it (and the corresponding location) as well. This step is repeated until

the number of necessary removals is reached.

The reconstruction of the solution also follows the Roulette Wheel procedure.

After this recreation the 2-opt local search method is applied for the second time

in order to better the solution until no further improvements are possible. In

Figure 17 the pseudo-code of the algorithm is shown.

46

For 1000 iterations
 For all 5 ants do

Generate initial solution s according to Roulette Wheel
Calculate f(s)
Do

2-opt local search to obtain s´ and f(s´)
If (f(s´) < f(s))

 Set s = s´ and f(s) = f(s´)
 EndIf
 While(improvement == true)
 For 6 runs

DESTRUCT
Calculate (n/6) components to be removed
Generate 5 highest products and choose one
probabilistically  destroy the two
corresponding locations and facilities
Destroy facilities with highest flow to already
removed facilities until all necessary
components are destroyed

 RECONSTRUCT
 Reconstruct s according to Roulette Wheel

 Do
2-opt local search to obtain s´ and f(s´)
If (f(s´) < f(s))

 Set s = s´ and f(s) = f(s´)
 EndIf
 While(improvement == true)
 EndFor

If (s < ib)
 Set ib = s
EndIf

EndFor
 If (ib < gb)
 Set gb = ib
 Update pheromone trail limits
 EndIf
 Update the pheromone trails
EndFor

Figure 17: Pseudo-code for the MMAS Product Removal Highest

6.2.4 MMAS Product Removal Lowest
This algorithm is more or less the same as MMAS Product Removal Highest

with only one exception: after the destruction of the first two locations with the

corresponding facilities the algorithm removes the facilities with the lowest flow

instead of the highest flow. In Figure 18 the pseudo-code of these

destroy/reconstruct mechanisms is shown.

47

For 6 runs
DESTRUCT

Calculate (n/6) components to be removed
Generate 5 highest products and choose one
probabilistically  destroy the two corresponding
locations and facilities
Destroy facilities with lowest flow to already removed
facilities until all necessary components are destroyed

 RECONSTRUCT
 Reconstruct s according to Roulette Wheel

Do
2-opt local search to obtain s´ and f(s´)
If (f(s´) < f(s))
 Set s = s´ and f(s) = f(s´)

 EndIf
 While(improvement == true)
EndFor

Figure 18: Destroy/reconstruct of MMAS Product Removal Lowest

6.2.5 MMAS 3 Iterated
In contrast to the previous algorithms the MMAS 3 Iterated makes use of a

different local search procedure which is very similar to an Adaptive Large

Neighborhood Search. The procedure contains all three destroy mechanisms of

MMAS Random Removal, MMAS Product Removal Highest and MMAS Product

Removal Lowest. In order to maintain the total number of 6 destroy/reconstruct

runs, each destroy mechanism is applied exactly twice. Therefore, it is

redundant to deploy certain weights to control the utilization rate of a certain

operator as it normally happens in ALNS.

MMAS 3 Iterated consists of two main loops with 500 iterations each which

guarantees a total sum of 1000 iterations to make the results comparable to the

outcomes of the previous algorithms. The first loop is similar to the MMAS Basis

algorithm and has the main task to generate an initial solution which is later

used by the ALNS. This neighborhood search is implemented in the second

loop which takes the initial solution and tries to improve it by destroying and

reconstructing combined with a 2-opt local search as usual. In Figure 19 the

pseudo-code of this algorithm is represented.

48

For 500 iterations
 For all 5 ants do

Generate random number and assign facilities to locations
following to the Roulette Wheel procedure in order to get s
Calculate f(s)
Do

2-opt local search to obtain s´ and f(s´)
If (f(s´) < f(s))

 Set s = s´ and f(s) = f(s´)
 EndIf
 While(improvement == true)

If (s < ib)
 Set ib = s
EndIf

 EndFor
 If (ib < gb)
 Set gb = ib
 Update pheromone trail limits
 EndIf
 Update the pheromone trails
EndFor
For 500 iterations
 For 6 runs

DESTRUCT
 Remove (n/6) components from s
 If (run==1||run==2) use MMAS Random Removal

If (run==3||run==4) use MMAS Product Highest
If (run==5||run==6) use MMAS Product Lowest

 RECONSTRUCT
 Reconstruct s according to Roulette Wheel

Do
2-opt local search to obtain s´ and f(s´)
If (f(s´) < f(s))

 Set s = s´ and f(s) = f(s´)
 EndIf
 While(improvement == true)
 EndFor
EndFor

Figure 19: Pseudo-code for the MMAS 3 Iterated

7. Computational Results

In this chapter the experimental results obtained by the test runs of MMAS

Basis, MMAS Random Removal, MMAS Product Removal Highest, MMAS

Product Removal Lowest and MMAS 3 Iterated are presented. The employed

laptop was a Sony Vaio VGN-NS21M (Intel (R) Pentium (R) Dual CPU T3400

49

@ 2.16 GHz, 3 GB RAM) with Windows Vista Home Premium as operating

system.

The processed data files were taken from the QAPLIB76 and comprise various

instance sizes (from n = 12 to n = 50). All parameters of the algorithms were

fixed to the same values throughout the whole experiment:

• Total number of iterations = 1000

• Number of ants per iteration = 5

• Influence factor of pheromone trails α = 0

• Resistance of pheromone trails ρ = 0,8

• bestp = 0,005

• Number of destroy/reconstruct runs = 6

All results which are included and compared in the following tables stand for the

mean of 5 independent runs of each algorithm. In Tables 1-8 we summarize the

most important results for each problem instance which were obtained by the

quoted algorithm. The term avg value denotes the average solution value,

Best% shows the percentage deviation from the best known solution value,

Runtime is the mean of all five attended runtimes and Runtimebest denotes the

average point in time when the algorithm has already generated the global best

solution.

Table 1: Experimental results for tai20a

76 http://www.opt.math.tu-graz.ac.at/qaplib/

Best known solution: 703482
Algorithm avg value Best% Runtime Runtimebest

MMAS Basis 713818,8 1,47% 1,1238 0,1892
MMAS Random Removal 707981,6 0,64% 9,6118 2,3910
MMAS Product Removal Highest 707255,6 0,54% 11,9530 0,7090
MMAS Product Removal Lowest 706830,0 0,48% 11,2584 1,4500
MMAS 3 Iterated 709905,6 0,91% 1,5984 0,6336

Tai20a

50

For tai20a the best performing algorithm regarding its average solution value

seems to be MMAS Product Removal Lowest (followed by MMAS Product

Removal Highest) whereas MMAS Basis is the fastest in finding the global best

solution.

Table 2: Experimental results for tai25a

Table 3: Experimental results for tai30a

For both tai25a and tai30a on average MMAS Random Removal generates the

best solutions and again MMAS Basis is the fastest in doing so. MMAS 3

Iterated and MMAS Basis work very similar for tai30a with the same percentage

deviation of 1,66% although MMAS 3 Iterated needs more time to pass through

the given 1000 iterations. In addition it is mentionable that the average finding of

the global best solution of MMAS Random Removal exceeds the results of the

others by far.

Best known solution: 1167256
Algorithm avg value Best% Runtime Runtimebest

MMAS Basis 1186522,0 1,65% 2,2474 0,8226
MMAS Random Removal 1176860,0 0,82% 22,9786 3,9768
MMAS Product Removal Highest 1178170,0 0,94% 27,4612 3,3894
MMAS Product Removal Lowest 1181646,0 1,23% 25,8960 1,7016
MMAS 3 Iterated 1180998,0 1,18% 3,3726 1,3102

Tai25a

Best known solution: 1818146
Algorithm avg value Best% Runtime Runtimebest

MMAS Basis 1848306,0 1,66% 4,2778 1,7168
MMAS Random Removal 1837754,0 1,08% 42,1664 12,8358
MMAS Product Removal Highest 1838892,0 1,14% 47,5116 5,8688
MMAS Product Removal Lowest 1840376,0 1,22% 49,6724 4,6456
MMAS 3 Iterated 1848316,0 1,66% 7,1198 2,8382

Tai30a

51

Table 4: Experimental results for tai35a

For tai35a again MMAS Product Removal Lowest performs best and in MMAS

Random Removal the artificial ants need three times as much runtime to find

the global best solution.

Table 5: Experimental results for tai40a

The problem instance tai40a provides the worst results for MMAS Product

Removal Lowest and is more or less the only outlier for this algorithm. Despite

the fact that MMAS Random Removal still needs longest for the best solution, it

performs absolutely best for tai40a.

Table 6: Experimental results for tai50a

Best known solution: 2422002
Algorithm avg value Best% Runtime Runtimebest

MMAS Basis 2459866,0 1,56% 6,7744 3,4618
MMAS Random Removal 2457496,0 1,47% 81,5020 28,5492
MMAS Product Removal Highest 2461998,0 1,65% 70,6380 7,1256
MMAS Product Removal Lowest 2452816,0 1,27% 75,1002 8,3894
MMAS 3 Iterated 2457294,0 1,46% 10,5102 3,6192

Tai35a

Best known solution: 3139370
Algorithm avg value Best% Runtime Runtimebest

MMAS Basis 3200836,0 1,96% 10,3558 4,9514
MMAS Random Removal 3171490,0 1,02% 157,4742 39,1266
MMAS Product Removal Highest 3183276,0 1,40% 131,1442 31,4480
MMAS Product Removal Lowest 3193490,0 1,72% 138,1652 16,9546
MMAS 3 Iterated 3192152,0 1,68% 20,2120 10,1150

Tai40a

Best known solution: 4941410
Algorithm avg value Best% Runtime Runtimebest

MMAS Basis 5045378,0 2,10% 24,7618 14,0986
MMAS Random Removal 5019180,0 1,57% 481,2132 156,8340
MMAS Product Removal Highest 5018722,0 1,56% 352,6580 108,5374
MMAS Product Removal Lowest 4997166,0 1,13% 373,7104 74,6542
MMAS 3 Iterated 5025534,0 1,70% 48,4134 32,4442

Tai50a

52

Tai50a provides the worst results for MMAS Basis, MMAS Random Removal

and MMAS 3 Iterated. In case of MMAS Basis this may happen due to a lack of

an extensive local search procedure. Again MMAS Product Removal Lowest

performs best and has an average runtime which lies slightly beneath the total

mean. Very interesting is the fact that although MMAS Product Removal

Highest and MMAS Product Removal Lowest generate solutions in a very

similar way, MMAS Product Removal Lowest needs remarkable less time for

the finding of the global best solution.

Table 7: Experimental results for scr12

Scr12 is the only problem instance for which the best known solution is found in

every run of each algorithm whereas MMAS Basis is the fastest one.

Table 8: Experimental results for tho30

For Tho30 the best known solution can be generated in almost every run

(independent from the applied algorithm) and it is the only problem instance for

which MMAS Product Removal Highest performs best.

Best known solution: 31410
Algorithm avg value Best% Runtime Runtimebest

MMAS Basis 31410,0 0,00% 0,3354 0,0184
MMAS Random Removal 31410,0 0,00% 3,6120 0,0210
MMAS Product Removal Highest 31410,0 0,00% 2,3244 0,0146
MMAS Product Removal Lowest 31410,0 0,00% 2,4188 0,0146
MMAS 3 Iterated 31410,0 0,00% 0,4144 0,0050

Scr12

Best known solution: 149936
Algorithm avg value Best% Runtime Runtimebest

MMAS Basis 150372,8 0,29% 6,4364 3,7190
MMAS Random Removal 150181,6 0,16% 197,9978 28,3628
MMAS Product Removal Highest 150073,6 0,09% 94,8862 19,1026
MMAS Product Removal Lowest 150167,2 0,15% 111,5210 8,6936
MMAS 3 Iterated 150207,6 0,18% 15,2622 4,6800

Tho30

53

In Table 9 we give an overview of all percentage deviations for all problem

instances – best results are indicated in italic face. MMAS Basis and MMAS 3

Iterated are the two worst performing algorithms for all instances with scr12
being the only exception. After all MMAS Random Removal seems to be the

best algorithm followed by MMAS Product Removal Highest and MMAS Product

Removal Lowest which differ by 0,01%. Again the algorithm to come in last is

MMAS Basis which is never able to generate the best solution – this is the best

proof that the main idea to extend the MMAS Basis by a more precise local

search procedure leads to better performing algorithms.

Table 9: Comparison of percentage deviations

In Table 10 the total runtimes of MMAS Random Removal and MMAS Product

Removal Lowest are checked against each other. As mentioned before, these

two algorithms perform absolutely best and although MMAS Random provides

slightly better solution values, MMAS Product Removal Lowest needs less time

to fulfill the 1000 iterations (on average 26 seconds faster).

Table 10: Comparison of total runtime

MMAS MMAS MMAS Product MMAS Product MMAS
Basis Random Rem. Highest Rem. Lowest 3 Iterated

tai 20a 1,47% 0,64% 0,54% 0,48% 0,91%
tai 25a 1,65% 0,82% 0,94% 1,23% 1,18%
tai 30a 1,66% 1,08% 1,14% 1,22% 1,66%
tai 35a 1,56% 1,47% 1,65% 1,27% 1,46%
tai 40a 1,96% 1,02% 1,40% 1,72% 1,68%
tai 50a 2,10% 1,57% 1,56% 1,13% 1,70%
scr12 0,00% 0,00% 0,00% 0,00% 0,00%
tho30 0,29% 0,16% 0,09% 0,15% 0,18%

Mean: 1,34% 0,85% 0,91% 0,90% 1,10%

Problem instance

MMAS MMAS Product
Random Rem. Lowest

tai 20a 9,6118 11,2584
tai 25a 22,9786 25,896
tai 30a 42,1664 49,6724
tai 35a 81,502 75,1002
tai 40a 157,4742 138,1652
tai 50a 481,2132 373,7104
scr12 3,612 2,4188
tho30 197,9978 111,521

Mean: 124,5695 98,4678

Problem instance

54

By looking at Table 11 it can be observed that MMAS Product Removal Lowest

is for nearly every problem instance the fastest algorithm regarding the point in

time when the best solution is first available throughout the total runtime. The

comparison of these algorithms, which all implement the Iterated Ants idea,

shows that the artificial ants in MMAS Random Removal need longest to

generate the best solution. After all, this algorithm still finds the best solution

values on average which makes the discussion concerning the runtime more or

less dispensable.

Table 11: Comparison of time needed to find best solution

8. Conclusion

In this diploma thesis five MMAS algorithms, which differ from each other by the

implemented local search procedures, have been proposed. Unfortunately, they

weren´t able to improve the best known solutions in the tested instances, but by

looking at the results some very interesting findings can be observed. First of

all, we can say that it has absolutely been proofed that by enhancing the MMAS

Basis algorithm by an efficient local search we can definitely improve the

solution quality. In doing so, we can say that in our case the random removal of

solution components worked slightly better than the destroy methods of MMAS

Product Removal Highest and MMAS Product Removal Lowest, although these

algorithms have the focus on incorporating important information like the

distance and flow matrices. The worst results were obtained by the MMAS 3

Iterated which is more or less a modification of an Adaptive Large

Neighborhood Search.

MMAS MMAS Product MMAS Product
Random Rem. Highest Rem. Lowest

tai 20a 2,3910 0,709 1,45
tai 25a 3,9768 3,3894 1,7016
tai 30a 12,8358 5,8688 4,6456
tai 35a 28,5492 7,1256 8,3894
tai 40a 39,1266 31,448 16,9546
tai 50a 156,8340 108,5374 74,6542
scr12 0,0210 0,0146 0,0146
tho30 28,3628 19,1026 8,6936

Mean: 34,0122 22,024425 14,56295

Problem instance

55

After all there´s one conclusion which can be drawn from these experimental

results: the research field of Ant Colony Optimization for the QAP seems to be

exploited very good because no improved results were obtained. Nevertheless,

I think that there still exist lots of basic approaches which can still be pursued.

56

References

Ahuja, R.K., Ergun, Ö., Orlin, J.B., Punnen, A.P.: A survey of very large-scale

neighborhood search techniques, Discrete Applied Mathematics 123, 75-102,

2002

Askin, R.G., Standridge, C.R.: Modeling & Analysis Of Manufacturing

Systems, John Wiley & Sons, 1993

Burkard, R.E., Offermann, J.: Entwurf von Schreibmaschinentastaturen mittels

quadratischer Zuordnungsprobleme, Zeitschrift für Operations Research 21,

B121-B132, 1977

Denebourg, J.L., Aron, S., Goss, S., Pasteels, J.M.: The self-organizing

exploratory pattern of the Argentine ant, Journal of Insect Behavior 3 (2), 159-

168, 1990

Dickey, J.W., Hopkins, J.W.: Campus building arrangement using TOPAZ,

Transportation Science 6, 59-68, 1972

Dorigo, M., Stützle, T.: Ant Colony Optimization: Overview and Recent

Advances, Technical Report TR/IRIDIA/2009-013, IRIDIA, Université Libre de

Bruxelles, http://iridia.ulb.ac.be/IridiaTrSeries/IridiaTr2009-

013r001.pdf, 2009

Dorigo, M., Stützle, T.: Ant Colony Optimization, MIT Press, Cambridge,

Massachusetts, London, England, 2004

Dorigo, M., Stützle, T.: The Ant Colony Optimization Metaheuristic: Algorithms,

Applications, and Advances, in: F. Glover, G.A. Kochenberger (Eds.),

Handbook of Metaheuristics, Kluwer Academic Publishers, Boston, Dordrecht,

London, 251-285, 2003

57

Dorigo, M., Di Caro, G.: The Ant Colony Optimization Meta-Heuristic, in: D.

Corne et al. (Eds.), New Ideas in Optimization, McGraw-Hill, 11-32, 1999

Dorigo, M., Birattari, M., Stützle, T.: Ant Colony Optimization – Artificial Ants

as a Computational Intelligence Technique, IEEE Computational Intelligence

Magazine 1 (4), 28-39, 2006

Dorigo, M., Maniezzo, V., Colorni, A.: The Ant System: Optimization by a

colony of cooperating agents, IEEE Transactions on Systems, Man, and

Cybernetics-Part B 26 (1), 29-41, 1996

Elshafei, A.N.: Hospital layout as a quadratic assignment problem, Operations

research Quarterly 28, 167-179, 1977

Gambardella, L.M., Taillard, E.D., Dorigo, M.: Ant colonies for the quadratic

assignment problem, Journal of the Operational Research Society 50 (2), 167-

176, 1999

Garnier, S., Gautrais, J., Theraulaz, G.: The biological principles of swarm

intelligence, in Swarm Intelligence 1 (1), 3-31, 2007

Glover, F., Kochenberger, G.A.: Handbook of Metaheuristics, Kluwer

Academic Publishers, Boston, Dordrecht, London, 2003

Goss, S., Aron, S., Deneubourg, J.L., Pasteels, J.M.: Self-organized

shortcuts in the Argentine ant, Naturwissenschaften 76, 579-581, 1989

Ji, P., Wu, Y., Liu, H.: A Solution Method for the Quadratic Assignment

problem (QAP), The Sixth International Symposium on Operations Research

and Its Applications (ISORA’06), Xinjiang, China, August 8-12, 106–117, 2006

Koopmans, T.C., Beckmann, M.J.: Assignment Problems and the Location of

Economic Activities, Econometrica 25, 53-76, 1957

58

Maniezzo, V., Colorni, A., Dorigo, M.: The Ant System applied to the

Quadratic Assignment Problem, Technical Report IRIDIA/94/28, Université

Libre de Bruxelles, Belgium, 1994

Mullen, R.J., Monekosso, D., Barman, S., Remagnino, P.: A review of ant

algorithms, Expert Systems with Applications 36 (6), 9608-9617, 2009

Pisinger, D., Ropke, S.: Large neighborhood search, in: J. Potvin, M.

Gendreau (Eds.), Handbook of Metaheuristics, Springer-Verlag, 399-419, 2010

Ramkumar, A.S., Ponnambalam, S.G., Jawahar, N.: A new iterated last local

search heuristic for solving QAP formulation in facility layout design, Robotics

and Computer-Integrated Manufacturing 25 (3), 620-629, 2009

Ropke, S., Pisinger, D.: An adaptive large neighborhood search heuristic for

the pickup and delivery problem with time windows, Transportation Science 40

(4), 455-472, 2006

Ruiz, R., Stützle, T.: An Iterated Greedy Heuristic for the Sequence Dependent

Setup Times Flowshop Problem with Makespan and Weighted Tardiness

Objectives, European Journal of Operational Research 187 (3), 1143-1159,

2008

Sahni, S., Gonzales, T.: P-complete approximization problems, Journal of the

Association for Computing Machinery 23 (3), 555-565, 1976

Shaw, P.: Using constraint programming and local search methods to solve

vehicle routing problems, in: CP-98 (Fourth International Conference on

Principles and Practice of Constraint Programming), Volume 1520 of LNCS,

417-431, 1998

Stützle, T., Hoos, H.H.: MAX-MIN Ant System, Future Generation Computer

Systems 16 (8), 889-914, 2000

59

Wiesemann, W., Stützle, T.: Iterated Ants: An Experimental Study for the

Quadratic Assignment Problem, in: M. Dorigo et al. (Eds.), Ant Colony

Optimization and Swarm Intelligence: 5th International Workshop, ANTS 2006,

Brussels, Belgium, September 4-7, 2006, Proceedings, Volume 4150 of LNCS,

Springer-Verlag, Berlin, 179-190, 2006

Internet-resources

The QAPLIB: http://www.opt.math.tu-graz.ac.at/qaplib/

 Called up 13.01.2011

The QAPLIB introduction: http://www.opt.math.tu-graz.ac.at/qaplib/#intro

 Called up 22.03.2011

Roulette Wheel: http://en.wikipedia.org/wiki/Fitness_proportionate_selection

 Called up on 22.03.2011

2-opt local search method: http://en.wikipedia.org/wiki/2-opt

 Called up on 22.03.2011

Figure 1:
http://www.scholarpedia.org/wiki/images/9/97/ SameLengthDoubleBridge.png
 Called up 27.01.2011

Figure 2:

http://www.scholarpedia.org/article/File:DiffLengthDoubleBridge.png
Called up 27.01.2011

Figure 5:
http://www.i-cherubini.it/mauro/blog/wp-
content/uploads/2007/08/images/Dry_TSP_experiment.png

Called up 06.01.2011

60

Abstract

This diploma thesis deals with the scientific research area of Ant Colony

Optimization algorithms and applies them to the Quadratic Assignment

Problem.

The central aim of the Quadratic Assignment Problems is to find an optimal

allocation of a certain number of facilities to the equal number of possible

locations in order to minimize the overall costs. This theoretical formulation can

be passed on real life problems in a straightforward way. One of the best

examples is the challenge each company has to deal with when opening a new

production site. The production cost can be kept to a minimum as long as the

used machines are cleverly arranged to their locations so that the overall sum of

the products between material flows and distances comes to an economical

appropriate value.

In the theoretical part of this thesis some of the most important ant algorithms

like MMAS and HAS-QAP are discussed and it is shown how the additional

implementation of an effective local search method can improve the solution

quality.

The practical part of this thesis tries to enhance a basic MMAS algorithm by

implementing additional local search methods based on the ideas of Iterated

Ants and Adaptive Large Neighborhood Search. Therefore five different

algorithms have been implemented in C++: MMAS Basis, MMAS Random

Removal, MMAS Product Removal Highest, MMAS Product Removal Lowest

and MMAS 3 Iterated. At the end the generated results are discussed and the

solution qualities of the individual algorithms are compared among themselves.

61

Zusammenfassung

Diese Diplomarbeit beschäftigt sich mit dem wissenschaftlichen

Forschungsgebiet der Ameisenoptimierung und deren Algorithmen und wendet

diese auf das Quadratische Zuordnungsproblem an.

Das Hauptziel des Quadratischen Zuordnungsproblems besteht darin eine

geeignete Zuordnung von einer gewissen Anzahl an Funktionen zu der gleichen

Anzahl an möglichen Plätzen zu finden, um die Gesamtkosten zu minimieren.

Dieser theoretische Ansatz kann auf direktem Weg auf Probleme der

Wirklichkeit übertragen werden. Eines der besten Beispiele hierfür ist die

Herausforderung, welcher ein Unternehmen sich stellen muss wenn es eine

neue Produktionsstätte eröffnet. Die Produktionskosten können solang auf

einem minimalen Level gehalten werden wie die verwendeten Maschinen

intelligent auf ihren Standorten angeordnet werden, sodass die Gesamtsumme

der Produkte zwischen Materialflüsse und Distanzen einen ökonomisch

angemessenen Wert ergibt.

Im theoretischen Teil dieser Arbeit werden einige der wichtigsten

Ameisenalgorithmen wie MMAS und HAS-QAP diskutiert und es wird gezeigt

wie die zusätzliche Implementierung von effektiven Local Search Methoden die

Lösungsqualität verbessern kann.

Der praktische Teil dieser Arbeit versucht einen grundlegenden MMAS

Algorithmus um zusätzliche Local Search Methoden, welche auf den Ideen von

Iterated Ants und Adaptive Large Neighborhood Search basieren, zu erweitern

und so zu verbessern. Hierfür wurden fünf verschiedene Algorithmen in C++

implementiert: MMAS Basis, MMAS Random Removal, MMAS Product

Removal Highest, MMAS Product Removal Lowest and MMAS 3 Iterated.

Zuletzt werden die generierten Ergebnisse diskutiert und die Lösungsqualitäten

der einzelnen Algorithmen untereinander verglichen.

62

Curriculum Vitae

Persönliche Daten

Name: Stephanie Richter

Geburtsdatum: 17.Juni.1986

Geburtsort: Linz, Oberösterreich

Staatsbürgerschaft: Österreich

Familienstand: ledig

Ausbildung

10/2004 – 03/2011 Universität Wien
Betriebswirtschaftliches Zentrum Wien (BWZ)

Studium der Internationalen Betriebswirtschaftslehre
Spezialisierungen:

• Produktionsmanagement

• Internationale Unternehmensführung

09/1996 – 06/2004 BRG Fadingerstrasse, Linz

09/1992 – 06/1996 VS 43 Stadlerschule, Linz

	Executive Summary
	The Quadratic Assignment Problem (QAP)
	General Description
	Mathematical Model10F
	Example
	The QAPLIB11F

	Ant Colony Optimization
	Definition of Metaheuristics
	Biological Principles
	Real Ants´ Behavior
	The Double Bridge Experiment
	From Real to Artificial Ants

	Main procedures of the ACO Metaheuristic30F

	Ant Algorithms
	Historical Development
	Applications to several problems
	Ant System applied to the Traveling Salesman Problem
	The direct successors of Ant System
	Elitist Ant System38F 39F
	Rank-Based Ant System40F
	Ant Colony System42F

	ACO applied to the QAP
	Ant System for the QAP46F
	HAS-QAP47F
	MAX-MIN Ant System (MMAS)50F
	Since the first appearance of ant algorithms in the scientific literature, there has always been a strong interest to improve the performance of these algorithms in order to guarantee a better quality of solutions.
	A lot of research projects came to the finding that a stronger utilization of the global best solution can have an enormous influence on the efficiency of the algorithm. Unfortunately a higher influence rate of the best solution can lead to early sear...
	The algorithm which is capable of meeting these requirements – the MAX-MIN Ant System – contains three special functions which distinguishes the MMAS from the normal ant system:

	Local Search Methods
	2-opt
	A short example: 2-opt for the QAP

	Iterated ants – a hybridization of ACO
	Very Large Scale Neighborhood Search (VLSN)
	Large Neighborhood Search (LNS)62F
	Adaptive Large Neighborhood Search (ALNS)68F

	Implementation
	General Principles
	Roulette Wheel Procedure72F
	2-opt First Improvement
	Updating the Pheromone Trails

	The Algorithms
	MMAS Basis Algorithm
	MMAS Random Removal
	MMAS Product Removal Highest
	MMAS Product Removal Lowest
	MMAS 3 Iterated

	Computational Results
	Conclusion
	References
	Abstract
	Zusammenfassung
	Curriculum Vitae

