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Zusammenfassung 
 “Peptidmimics” von konformationellen Epitopen eines Tumorantigens werden auch 

als Mimotope bezeichnet und stellen vielversprechende Kandidaten für die Entwicklung 

von Tumorvakzinen dar. Derartige Mimotopvakzine induzieren eine Tumorantigen-

spezifische Immunantwort. Kürzlich konnte für das maligne Melanom gezeigt werden, 

dass durch Vakzinierung von Kaninchen mit einem an Tetanustoxoid gekoppelten 

Mimotop des HMW-MAA (“high molecular weight-melanoma associated antigen”) 

Antikörper gebildet wurden, die das Tumorwachstum in einem Melanommausmodell 

hemmen konnten. HMW-MAA wurde als Zielantigen gewählt, da es von vielen 

Melanomzellen exprimiert wird und in normalen Geweben fast nicht vorkommt. 

 Das Ziel dieser Dissertation war die Entwicklung einer Polymimotopvakzine, die 

eine starke humorale Immunantwort gegen mehrere Epitope des HMW-MAA 

induzieren sollte. Verschiedene Studien haben gezeigt, dass Vakzine, die gegen mehr 

als ein Epitop eines Tumorantigens gerichtet sind, eine höhere Erfolgsrate aufweisen. 

Der Effekt der induzierten Antikörper sollte sowohl in vitro (Tumorproliferation, 

antikörperabhängige, zellvermitteltete Zytotoxizität, komplementabhängige Zyto-

toxizität) als auch in vivo (Melanommausmodell: C57BL/6 Mäuse mit einem 

subkutanen Tumor der HMW-MAA transfizierten Mausmelanomzelllinie B16F10) 

untersucht werden. 

 Mittels einer linearen pIII-12mer Phagenpeptidbank wurden Peptidliganden für eine 

Reihe von anti-HMW-MAA monoklonalen Antikörpern (mAbs VT80.12, VF1-TP43, 

VF1-TP34, 149.53 und 225.28S F(ab')2) selektiert. Diese Antikörper erkennen 

unterschiedliche Epitope des HMW-MAA, weshalb sie sich gegenseitig in ihrer 

Bindung nicht inhibieren. Es wurden verschiedene Panningstrategien angewendet 

(Panning mit Oberflächenimmobilisierung und in Lösung mit Protein G- bzw. 

Streptavidin-Bindung). Für jeden mAb wurde mindestens ein Peptidligand identifiziert. 

Es waren aber nur die Peptide, die für die mAbs VT80.12 und VF1-TP43 identifiziert 

wurden, auch in der Lage, die Bindung der entsprechenden mAbs an das HMW-MAA 

zu inhibieren. Daher wurden diese beiden Peptide jeweils an KLH („keyhole limpet 

hemocyanin“) als immunogenen Träger gekoppelt. Die in Kaninchen induzierten 

Antikörper zeigten einen starken Hintergrund verursacht durch die anti-KLH 

Antikörper. Durch die Immunisierung von BALB/c Mäusen konnte dieses Problem 

gelöst werden. Beide Peptide induzierten Peptid-spezifische Antikörper, aber nur das 
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VT80.12-Peptid induzierte auch anti-HMW-MAA Antikörper. Diese Antikörper waren 

jedoch nicht in der Lage, das Wachstum der HMW-MAA exprimierenden humanen 

Melanomzelllinie 518A2 in vitro zu inhibieren. 

 In dieser Arbeit konnten sehr viele neue Informationen für die Selektion von 

Mimotopen gewonnen werden, jedoch konnten noch keine idealen Mimotopkandidaten 

für die Polymimotopvakzine identifiziert und im Melanommausmodell getestet werden. 
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Summary 
 Peptide mimics, also called mimotopes, of conformational epitopes of tumor antigens 

are promising candidates for the design of anti-tumor vaccines. Such mimotope 

vaccines stimulate a tumor antigen specific immune response. For melanoma, it was 

recently demonstrated that vaccination of rabbits with a mimotope of the high molecular 

weight-melanoma associated antigen (HMW-MAA) coupled to tetanus toxoid induced 

antibodies that suppressed tumor growth in a melanoma xenotransplant severe 

combined immunodeficiency mouse model. The HMW-MAA was selected as target 

antigen because it is highly expressed on melanoma cells and has a restricted 

distribution in normal tissues. 

 The aim of this thesis was to develop a polymimotope vaccine that would induce a 

strong humoral immune response against several epitopes of the HMW-MAA. Several 

studies have demonstrated that vaccines directed against multiple epitopes of a tumor 

antigen have a higher success rate. The effect of the induced antibodies were then to be 

tested in vitro (tumor proliferation, antibody-dependent cell-mediated cytotoxicity, 

complement-dependent cytotoxicity) and in vivo (melanoma mouse model: C57BL/6 

mice harboring a subcutaneous tumor of the mouse melanoma cell line B16F10 

transfected with the HMW-MAA). 

 Peptide ligands for a panel of anti-HMW-MAA monoclonal antibodies (mAbs)  

– VT80.12, VF1-TP43, VF1-TP34, 149.53, and 225.28S F(ab')2 – which recognize 

distinct epitopes on the HMW-MAA and do not cross-inhibit each other were selected 

using a linear pIII-12mer phage display peptide library by surface panning as well as 

solution-phase panning with protein G or streptavidin capture. Peptide ligands were 

identified for each mAb, but only one peptide identified for each of the mAbs VT80.12 

and VF1-TP43 was able to inhibit the binding of the respective mAb to the HMW-

MAA. These two peptides were then coupled to keyhole limpet hemocyanin (KLH) as 

immunogenic carrier and used for immunization of rabbits. Due to the high background 

of the KLH-induced antibodies, further immunizations were performed in BALB/c 

mice. Both peptides induced a peptide specific immune response but only the VT80.12-

peptide induced anti-HMW-MAA antibodies. However, these antibodies did not 

suppress the proliferation of the HMW-MAA expressing human melanoma cell line 

518A2 in vitro. 
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 In summary, we have produced a lot of new methodologic know-how on the 

selection of mimotopes but could not yet identify ideal mimotope candidates which 

could be tested as parts of a polymimotope vaccine in the melanoma mouse model. 
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Malignant melanoma 
 
Malignant melanoma represents the most common form of fatal skin cancer and one of 

the most common fatal malignancies among young adults. Worldwide incidence rates 

have been constantly increasing for at least 30 years more than that of any other cancer, 

resulting in an estimated increase at a rate of 5% per year [1-4]. In 2009, the American 

Cancer Society estimated 68,720 new cases and 8,650 deaths for melanoma in the USA 

[5]. As shown in figure 1, invasive melanoma currently is the fifth most frequently 

diagnosed cancer in men and the sixth most frequently diagnosed cancer in women in 

the USA [5,6]. 

 

 
Figure 1. Estimated new melanoma cases are indicated for men and women with black 

arrows (adapted from Cancer Facts & Figures 2009 [5]) 

 

The highest incidence of melanoma worldwide is observed in Australia – with a clear 

latitude gradient within the continent – and in New Zealand (Table 1). Reported 

incidence rates are much lower for the USA and Europe. All European countries report 

a higher incidence in females than males. In contrast, higher incidence for males is 

reported in Australia, New Zealand, and the USA [4]. In addition, the American Cancer 

Society reports rapid increases among young white women (3.8% annual increase since 

1995 in those aged 15-34 years) and older white men (8.8% annual increase since 2003 

in those ≥65 years) [5]. 
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Table 1. Comparative melanoma incidence for selected states and countries worldwide 

for the time period 1998-2002 (adapted from MacKie et al. [4]) 

Incidence (per 105 subjects) Country 
Male Female 

Australia   
 Queensland 55.8 41.1 
 New South Wales 38.5 26.5 
 Victoria 27.3 23.4 
New Zealand 34.8 31.4 
US SEER 14 registries 19.4 14.4 
Switzerland, Vaud 16.6 19.6 
Norway 14.2 14.6 
Sweden 11.9 12.1 
Denmark 11.9 14.1 
Latvia 3.2 4.2 
Lithuania 3.7 5.2 
Estonia 5.3 6.6 
Belarus 2.7 3.5 
Serbia 3.8 4.8 
 

Although diagnosis of melanoma has significantly improved [7], leading to an increase 

in the percentage of patients being diagnosed with “thin” melanomas (≤1 mm) and a 

decrease in the percentage of patients diagnosed with “thick” melanomas (>4 mm) [8], 

the mortality rate for melanoma has been continually increasing over the past decade 

[1,4]. 

 

Melanomas generally originate from benign nevi, which are clonally expanded 

melanocytes that proliferate abnormally but do not progress [9]. The overcoming of 

senescence leads to a dysplastic nevus, which can progress to a stage of spreading with 

low invasive potential (radial growth phase). The next stage (vertical growth phase) 

often results in metastases to local lymph nodes and eventually to distant sites, 

including other skin sites, pleura, lungs, liver and brain [9]. A schematic view of this 

process is shown in figure 2. 
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Figure 2. Melanoma development and metastasis (from Miller AJ and Mihm MC [10]) 
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Melanoma associated antigens (MAAs) 
 
Tumor associated antigens or tumor antigens are antigens that are associated with a 

certain tumor. Thus, melanoma associated antigens (MAAs) or melanoma antigens are 

highly expressed on melanoma cells. Several MAAs have been identified and 

characterized. They are grouped into different categories as shown in table 2 and can be 

expressed at different melanoma stages, i.e. primary or metastatic melanomas [11]. The 

identification and structural characterization of MAAs opened the possibility to 

specifically target certain MAAs with immunotherapeutic approaches, as described in 

following sections. 

 

Table 2. Human melanoma antigens (adapted from Hodi FS [11]) 

Melanocyte lineage/differentiation antigens (abundant proteins in melanin production) 
e.g. Tyrosinase, gp75 (tyrosinase related protein-1, TRP-1), gp100, MelanA/MART-1, TRP-2 
 

Oncofetal/cancer-testis antigens (normally expressed in testis and placenta) 
e.g. MAGE family, BAGE family, GAGE family, NY-ESO-1 
 

Tumor-specific antigens (subtle mutations of normal cellular proteins) 
e.g. CDK4, β-catenin 
 

Other mutated peptides (activated as a result of cellular transformation) 
e.g. Mutated introns, N-acetylglucosaminyltransferase V gene product, MUM-1, p15 
 

Antigens indentified by monoclonal antibodies 
e.g. Gangliosides (GM2, GD2, GM3, and GD3), HMW-MAA, p97 melanotransferrin 
 

SEREX antigens 
e.g. D-1, SSX-2 
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High molecular weight-melanoma associated antigen (HMW-MAA) 
 
One of the MAAs is the high molecular weight-melanoma associated antigen (HMW-

MAA), also known as the chondroitin sulfate proteoglycan 4 (CSPG4) or melanoma 

chondroitin sulfate proteoglycan (MCSP). This MAA was originally identified with 

murine monoclonal antibodies (mAbs) on the surface of human melanoma cells at the 

beginning of the 1980’s [12,13]. 

 

The HMW-MAA gene is located on human chromosome 15 [14] and encodes a 2322 

amino acid (aa) long protein (UniProt accession number: Q6UVK1). A schematic view 

of the HMW-MAA sequence is shown in figure 3. The first 29 aa residues display a 

signal peptide and the remaining aa the core protein which contains three major domain 

structures: a large extracellular domain (1), a short hydrophobic transmembrane region 

(2), and a short cytoplasmic tail (3). There are 15 potential N-linked glycosylation sites 

throughout the extracellular domain [1]. 

The expression of HMW-MAA seems to be regulated by a classical 5’ CpG island 

promoter that precedes the ten exons comprising the human HMW-MAA gene [15]. 

The level of methylation of the promoter predicts HMW-MAA expression in vivo. 

Unmethylated promoter DNA leads to HMW-MAA expression in human melanoma 

cells, whereas methylation of promoter DNA results in the absence of HMW-MAA 

expression in normal human lymphocytes [15]. 

 

 
Figure 3. Analysis of the full-length aa sequence of the HMW-MAA protein (from 

Campoli et al. [1]) 
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Potential HMW-MAA homologues have been identified in several animals, i.e. zebra 

fish, frog, mouse, rat, chicken, dog, cattle, horse, rhesus monkey, and chimpanzee [1]. 

With the exception of frog chondroitin sulfate proteoglycan, each of the animal 

homologues shares over 80% aa sequence identity with HMW-MAA and with each 

other. NG2, the rat homologue, and AN2, the mouse homologue, share more than 90% 

homology with HMW-MAA. 

 

HMW-MAA is a highly glycosylated integral membrane chondroitin sulfate proteo-

glycan consisting of an N-linked 280 kDa glycoprotein component and a 450 kDa 

chondroitin sulfate proteoglycan component expressed on the cell membrane [1,16]. 

The 280 kDa and 450 kDa components of HMW-MAA contain the same core protein 

and can be expressed independently. Furthermore, the components are posttrans-

lationally modified in the trans-Golgi network through glycosylation and sulfation of 

carbohydrate moieties. HMW-MAA can be expressed with or without covalently 

attached chondroitin sulfate glycosaminoglycan [1,17,18]. The number of molecules 

was determined to be approximately 5x106 per melanoma cell [19]. 

 

Several lines of evidence suggest that HMW-MAA plays important roles in cell 

proliferation, cell migration, invasion, and angiogenesis [1]. HMW-MAA expression 

correlates with the increase of the proliferative capacity of melanoma cells [20]. In 

addition, HMW-MAA interacts with extracelluar matrix (ECM) components and 

promotes cell adhesion and migration, thereby influencing their metastatic potential. 

Melanoma cells which express HMW-MAA following transfection with HMW-MAA 

cDNA display higher migratory ability than the parental cells which do not express 

HMW-MAA [1]. Furthermore, anti-HMW-MAA mAb inhibit melanoma cell 

attachment to capillary endothelium and interactions with various ECM components 

including collagen and collagen-fibronectin complexes [21] as well as cytoskeletal 

reorganization in migrating melanoma cells [1]. Garrigues et al. demonstrated that 

HMW-MAA expression is restricted to cell surface microspike domains of migrating 

cells in vitro [17]. As shown in Figure 4, both the co-localization of HMW-MAA and 

α4β1 integrin and the interactions between HMW-MAA and ECM components, such as 

laminin, tenascin, and types II, V, and VI collagen, lead to extensive microspike 

formation, cytoskeletal rearrangements, melanoma cell spreading and migration, as well 

as to the activation of focal adhesion kinase (FAK) and ERK 1/2 signaling cascades [1].
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Figure 4. Schematic view of HMW-MAA induced signal transduction (from Campoli 

et al. [1]) 

 

HMW-MAA is expressed at high levels on both activated pericytes and pericytes in 

angiogenic vasculature within the tumor environment as well as by angiogenic blood 

vessels in normally developing tissues and in neovasculature found in stroma and 

granulation tissue of healing wounds [1,22]. Therefore, it is suggested that HMW-MAA 

plays a role in the regulation of angiogensis. 

 

It was originally thought that HMW-MAA has a restricted distribution in normal 

tissues, having been initially detected only on melanocytes, endothelial cells, and 

pericytes [1,12,22]. More recently, it became evident that HMW-MAA has a broader 

distribution, being expressed by a number of normal and malignant cells. 

HMW-MAA is also expressed on restricted areas of the interfollicular epidermis as well 

as the basal layer of normal oral mucosa with the exception of foreskin and perineum, 

the basal layer of the outer root sheath and the follicular papilla of the hair follicle, 

chondrocytes, smooth muscle cells, angiomyolipomas, differentiated myofibers of the 

sarcolemma and neuromuscular junction of human postnatal skeletal muscle, microglial 

and mesangial cells of the renal glomerulus, and fetal epidermal melanocytes as well as 

in the vascular paracellular clefts of placental villi [1]. 
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HMW-MAA has been found to be expressed on more than 90% of surgically removed 

benign nevi and melanoma lesions, with a limited degree of intra- and interlesional 

heterogeneity [1]. HMW-MAA expression has also been found in astrocytomas, 

gliomas, neuroblastomas, squamous cell carcinoma of the head and neck, basal breast 

cancer, mesothelioma, pancreatic carcinoma, some types of renal cell carcinoma, 

chordoma, chondrosarcoma, soft tissue sarcomas, and hematologic malignancies 

(expression on blast cells in both childhood and adult acute lymphoblastic leukemia and 

childhood acute myeloid leukemia) as well as cancer stem cells [1]. 
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Therapy of melanoma 
 
While most early stage melanomas (thin primary tumors; stage 0-II) are highly curable 

with optimal surgical excision, patients with advanced stage melanoma (lymph node 

involvement and metastases; stage III-IV) have a poor prognosis and often succumb, 

due to failure of metastasis control [1,3,23-25]. 

Metastatic melanoma is highly resistant to conventional therapy, including standard 

chemotherapy and radiotherapy. The response rate for conventional agents, like 

cisplatin, dacarbazine or temozolomide, as single agent or in combination, is only 15-

25% [26-31]. Therefore, the need to develop and apply novel and improved therapeutic 

strategies for the treatment of melanoma has been emphasized. 

 

As melanoma is among the most immunogenic of all solid caners, a lot of different 

immunotherapeutic approaches to treat melanoma have been investigated in preclinical 

and clinical studies and have been the focus of several review articles in the recent past 

[3,9,25,26,32-38]. An overview describing the general mechanisms of the investigated 

strategies is shown in table 3. 

 

Table 3. Approaches for the treatment of melanoma (adapted from Nestle FO [34]) 

Active (= Vaccination) 
Whole cell vaccines (e.g. autologous or allogeneic melanoma cell lines)
Antigen-based vaccines (e.g. peptides, protein, DNA, RNA) 
Adjuvant-based vaccines (e.g. dendritic cells) 
 

Passive 
Adoptive cell transfer (e.g. tumor-infiltrating lymphocytes (TILs)) 
Antibodies (e.g. anti-CTLA-4) 
Inhibitors (targeting molecules in signal transduction pathways) 
Adjuvants (e.g. Toll-like receptor agonists) 
Cytokines (e.g. IL-2, IFN-α) 
 

So far, only the immune-modulating agents interferon-α (IFN-α) and interleukin-2 (IL-

2) are approved by the US Food and Drug Administration (FDA). IFN-α is administered 

for the treatment of high-risk melanoma patients. IL-2 is used for the treatment of 

patients with metastatic melanoma [25,32,33]. For both cytokines, the overall response 

rates remain low and the benefits must be balanced against several serious side-effects, 
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such as flu-like symptoms, anorexia, fatigue, depression, thyroid dysfunction, skin rash, 

altered blood cell counts, and liver toxicity [9,33]. 

 

Noteworthy, the development of a vaccine that would show significant clinical benefit 

in melanoma has not been successful by now, as clinical responses remain at a low rate. 

However, the extent of research activity in the field and a number of novel approaches 

indicate that such an approach remains attractive [36]. 

Encouraging results were obtained by using immunostimulatory mAbs directed to 

immune-receptor molecules to increase immune responses. MAbs of this type (e.g. anti-

CTLA-4, anti-CD137 and anti-CD40) are currently studied in clinical trials [25]. 

Nevertheless, complications such as autoimmunity and systemic inflammation are 

problematic side effects associated with these therapeutics. 

In addition, adoptive cell transfer of ex vivo expanded autologous tumor reactive 

lymphocytes in combination with lymphodepletion or myeloablation by the use of 

chemotherapy or radiochemotherapy resulted in 50-70% objective clinical response 

[39,40]. However, this are time-consuming and cost-intensive treatments, which are 

therefore at the moment not routinely applicable in the general clinical practice. 
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Monoclonal antibodies in clinical use 
 
As mentioned above, to date immunotherapeutic approaches to treat melanoma have not 

been successful. However, chimeric or humanized mAbs directed against tumor 

antigens of diverse malignancies represent a recent and very significant addition to the 

therapeutic anticancer armamentarium. Although considerations of side effects, therapy 

with mAbs is reasonably safe in comparison to other therapeutic modalities used for 

cancer patients. Today, several mAbs have been approved by the FDA as antibody-

based therapeutic anticancer drugs and are routinely used in the clinic. These antibodies 

are summarized in table 4. 

 

Table 4. FDA-approved tumor antigen specific mAbs for human cancers (adapted from 

Campoli et al. [41]) 

mAb Target Isotype FDA-approved disease 
Rituximab CD20 Chimeric IgG1 CD20+ low-grade lymphoma 

diffuse large B-cell lymphoma 
follicular lymphoma 

    

90Y Ibritumomab 
+ tiuxetan 

CD20 Radiolabeled murine IgG1 CD20+ low-grade lymphoma 

    

131I Tositumomab CD20 Radiolabeld murine IgG1 CD20+ low-grade lymphoma 
    

Alemtuzumab CD53 Humanized IgG1 Chronic lymphocytic leukemia 
    

Gemtuzumab 
+ ozogamicin 

CD33 Recombinant humanized IgG4 
-conjugated to calicheamicin 

Acute myelogenous leukemia 

    

Trastuzumab Her2/neu Humanized IgG1 Her2/neu+ breast cancer 
    

Cetuximab EGFR Chimeric IgG1 EGFR+ colon cancer 
    

Panitumumab EGFR Fully human IgG2 EGFR+ colon cancer 
    

Bevacizumab VEGF Humanized IgG1 Colon cancer 
recurrent or advanced non-small 
cell lung cancer 
metastatic breast cancer 
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The huge costs of the production of mAbs are the greatest disadvantage of this kind of 

therapy. Doses used in humans are typically in the mg per kg body weight range, and 

most regimens involve repetitive applications over longer time periods. Therefore, 

expensive GMP produced batches are required for quality control, toxicology and 

clinical trials. An example for the high costs is given in a recent publication where 

clinicians from the Norfolk and Norwich University Hospital estimated that more than  

€ 2.9 millions were necessary per year to make Herceptin® (Trastuzumab) available to 

75 patients who might be eligible for the treatment [42]. 
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Monoclonal antibodies directed to HMW-MAA 
 
Although poorly immunogenic in humans, the HMW-MAA is highly immunogenic in 

BALB/c mice, as indicated by the high frequency of HMW-MAA-specific antibody-

secreting hybridomas generated from BALB/c mice immunized with HMW-MAA-

bearing human melanoma cells [12]. Consequently, a large number of mouse anti-

HMW-MAA mAbs has been developed (see table 5). Analysis of a panel of mouse anti-

HMW-MAA mAb by cross-inhibition experiments classified them into at least six 

groups that identify distinct and spatially non-overlapping antigenic determinants [12]. 

In general, these anti-HMW-MAA mAbs are poor mediators of complement- and cell-

dependent cytotoxicity of melanoma cells, although they are able to inhibit spreading, 

migration and invasion of melanoma cells in vitro [1]. 

 

Table 5. Grouping of a panel of HMW-MAA-specific mAbs according to their epitope 

specificity (adapted from Campoli et al. [12]) 

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 
149.53 225.28S 763.74 VF1-TP34 VF1-TP41.2 VF20-VT87.41 
VZ68.2 VF4-ZP109 VT80.12 VF4-TP108 VF1-TP43 VF20-VT5-1 
 653.25 TP32 VF20-VT1.7  VF18.176 
   543  VT67.5 
   116  TP61.5 
     TP175-11 
     724 
     9.2.27 
 

It was demonstrated that two anti-HMW-MAA mAbs (225.28S and MK2-23) had anti-

tumor effects in vivo. The mAb 225.28S was generated by immunizing female BALB/c 

mice with human melanoma M21 cells [43]. An interesting effect was observed in a 

follow-up study of more than 300 patients who had received immunoscintigraphy with 
99mTc-labeled 225.28S F(ab')2 fragments as part of a routine melanoma staging protocol. 

Survival time was significantly longer in patients who had received multiple injections 

as compared to those who had received only a single dose [44]. This finding suggests 

that F(ab')2 fragments arrest tumor progression for a limited time and the effect cannot 

be due to any Fc mediated functions, as no Fc portions were present in the injected 

material. 
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Furthermore, Hafner et al. were able to demonstrate that the mAb 225.28S was able to 

suppress tumor growth in a human melanoma xenotransplant model in severe combined 

immunodeficiency (SCID) mice [45]. 

In addition, stage IV melanoma patients had a significant increase of survival 

prolongation upon immunization with the anti-idiotypic mAb MK2-23, which mimics 

the epitope of the anti-HMW-MAA mAb 763.74 [46,47]. 
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Cancer vaccines – from peptide to mimotope vaccines 
 
Passive administration with tumor antigen specific mAbs, like the treatment with the 

Herceptin® antibody, has produced promising results in the clinics. However, a number 

of concerns remains such as repeated treatments and associated costs, limited duration 

of therapeutic effectiveness, and possible undesired immunogenicity. Therefore, a 

therapeutic approach capable of inducing active specific immunity would offer 

sustained protection at a lower cost, preventive therapy and long term immunity. 

 

One of the great problems in developing cancer vaccines is that tumor associated self-

antigens do not induce an immune response, since the corresponding reactive B and T 

cell clones have been eliminated during the establishment of self-tolerance. Especially 

for melanoma, this kind of malignancy seems to be very efficient regarding tumor 

escape/evasion of the host immune responses via tumor-induced immunosuppression. 

The mechanisms of immunoediting include inhibition of maturation of antigen 

presenting cells or downregulation of MHC class I expression of melanoma cells. In 

addition, T cell tolerance or anergy is induced upon secretion of immunosuppressive 

cytokines like IL-10 and transforming growth factor-β (TGF-β) [33], as shown in Figure 

5. 

 

 
Figure 5. Overview of immunoediting (from Kirkwood et al. [33]) 

 

As most of the active melanoma vaccines aim to induce a cellular immune response by 

the induction of cytotoxic T lymphocytes [38], they somehow fail due the above 

mentioned immunoediting mechanisms used by melanoma. 
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Therefore, and since some tumor antigen specific mAbs are successfully used in the 

clinics to treat different cancers, several strategies have been developed to overcome 

this problem via focusing on B cells. As an example, research groups have predicted 

putative B cell epitopes of the tumor antigen Her-2/neu and could demonstrate that 

some of these B cell epitopes coupled to an immunogenic carrier protein induced a 

humoral immune response directed to the tumor antigen with anti-tumor activity 

[48,49]. 

 

Cancer vaccines designed to elicit an antibody response that targets antigenic sites on a 

tumor antigen must closely mimic the three-dimensional structure of the corresponding 

region on the antigen. Studies of the three-dimensional structures of antigen-antibody 

complexes showed that antigenic epitopes are conformational and vaccine design 

should consider such parameters to elicit antibodies of high affinity. 

Molecular mimicry provides a way to generate vaccine components that elicit and/or 

enhance an immune response against tumor antigens that are mostly non-mutated self-

antigens and therefore poorly or non immunogenic in patients. 

 

The benefits of synthetic peptides and the knowledge of the effects of epitope mimicry 

led to the development of mimotopes which are peptides that mimic the structure of the 

epitope of an antigen that is defined by an antibody. The term “mimotope” was 

introduced by Geysen and his colleagues in the 1980’s [50]. Easy identification of 

mimotopes was made feasible by the application of the so called “phage display” 

technology, which was developed by George P. Smith [51]. 

 

Mimotopes are selected using random peptide phage display libraries that consist of 

filamentous phage particles (e.g. bacteriophage M13, fd, and f1) displaying random 

peptides of defined length on their surface. Most commonly, peptides are either fused to 

the phage minor coat protein pIII (Gene 3 protein; Fig. 6) or, at a higher copy number, 

to the major coat protein pVIII (Gene 8 protein; Fig. 6). These are peptides from 4 to 40 

aa residues in length, assembled either in linear or in constrained (circular) form [52]. 
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Figure 6. Schematic illustration of the bacteriophage M13 (from Stopar et al. [53]) 

 

For biopanning, a mAb is immobilized and incubated with a phage display peptide 

library. Phages displaying specific peptides for the mAb bind to it and can then be 

eluted by lowering the pH. Amplification of the eluted phages occurs via infection of 

host cells, mostly E. coli. Amplified phages are then used for further rounds of infection 

to increase the number of specific phages. Single clones are then used to prepare DNA 

and to determine the sequences coding for the peptides. 

A peptide representing a mimotope has to fulfill two requirements: (1) it has to inhibit 

the binding of the mAb to the antigen and (2) it has to induce a humoral immune 

response that is directed to the natural antigen. 

 

At the beginning of the 1990’s, it was demonstrated that mimotopes were able to mimic 

discontinuous, i.e. conformational epitopes which are mainly recognized by antibodies 

[54,55]. Mimotopes can be found for proteins as well as for carbohydrates [56]. 

Furthermore, mimotopes can be identified with no prior information concerning 

antibody specificity [57,58]. 

Mimotopes of several tumor antigens have been generated and were used as vaccines in 

animal models. One of the first mimotopes of a tumor antigen was described for the 

prostate-specific membrane antigen [59]. A mAb recognizing an unknown antigen 

present on the surface of many tumor cells was used to generate a mimotope that was 

able to prolong the life span of animals inoculated with fibrosarcoma cells [60]. Two 

mAbs directed against the GD2 ganglioside, expressed on neuroectodermally derived 

tumors, including neuroblastoma and melanoma, were used in different studies to 
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generate mimotopes of the antigen. The vaccine-induced antibodies exhibited protection 

against human GD2-positive melanoma growth in the SCID mouse xenograft model 

[61] or induced a reduction of spontaneous liver metastases [62]. 

MAbs used in the clinic also served as sources to generate mimotopes of tumor 

antigens. Mimotopes of Her-2/neu were generated using trastuzumab [63,64], of 

epidermal growth factor receptor (EGFR) using cetuximab [65,66], and of CD20 using 

rituximab [67-70]. Some of these mimotopes [65-67] induced a humoral immune 

response able to inhibit tumor cell growth in vitro and are good candidates for active 

immunotherapy. 

For melanoma, Hafner et al. described mimotopes of the melanoma cell-adhesion 

molecule (Mel-CAM), which induced Mel-CAM specific antibodies in BALB/c mice. 

These antibodies showed an enhanced proliferation of the Mel-CAM positive human 

melanoma cell line MelJuSo in vitro. However, these antibodies mediated low but 

specific cell lysis of MelJuSo cells due to complement dependent cytotoxicity [71,72]. 

In regard to HMW-MAA, mimotopes were successfully identified using the mAb 

225.28S [73,74] and the mAb 763.74 [75], respectively. These mimotopes induced 

HMW-MAA specific antibodies that showed anti-tumor effects in vitro [73-75] as well 

as in vivo in a human melanoma xenotransplant SCID mouse model [76]. 
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Multi-epitope vaccines 
 
An interesting effect was observed in a study where SCID mice were treated with a 

combination of mAbs directed to Her-2/neu. The mixture was more effective than the 

individual mAbs indicating a synergistic effect [77]. Chen et al. observed similar results 

using a DNA vaccine containing four mimotopes of the MG7 antigen for gastric cancer 

in BALB/c mice [78]. Wagner et al. investigated the effect of a mixture of three 

peptides in a c-neu transgenic mouse model and observed higher inhibitions of tumor 

growth with the combination [79]. The authors concluded that targeting several epitopes 

of a tumor antigen with antibodies was more effective compared to a vaccine targeting 

only one epitope. 

This synergistic effect of targeting multiple epitopes of an antigen was not only 

investigated for human malignancies, but also for a viral disease of chicken. Wang et al. 

developed a multi-mimotope vaccine for infectious bursal disease virus, which induced 

high levels of antibodies upon immunization of chicken that showed protective effects 

against the viral infection [80]. 
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Aim of this thesis 
 
The aim of this study was the development of a mimotope-based polypeptide or 

polymimotope vaccine that would induce a strong humoral immune response against 

multiple epitopes of the HMW-MAA. Therefore, peptide ligands for a panel of anti-

HMW-MAA mAbs were planned to be selected using the phage display technology. 

These mAbs recognize distinct epitopes on the HMW-MAA and do not cross-inhibit 

each other. Phages displaying peptides that inhibit the binding of their corresponding 

mAb to the HMW-MAA should be selected as mimotopes. These mimotopes were 

planned to be synthesized and coupled to KLH as an immunogenic carrier protein. 

Immunization experiments were designed to be performed in BALB/c mice with either 

single mimotope conjugates or mixtures of mimotope conjugates. After purification of 

the induced mouse IgGs the in vitro effects of these mouse anti-HMW-MAA specific 

antibodies on HMW-MAA expressing melanoma cells should be assessed. Tumor 

proliferation, antibody-dependent cell-mediated cytotoxicity (ADCC) and complement 

dependent cytotoxicity (CDC) should be studied. Finally, the in vivo efficacy of the 

antibodies induced by the mixture of mimotope conjugates that revealed the best in vitro 

results were planned to be tested and compared in a syngenic melanoma mouse model 

using C57BL/6 mice that harbor a subcutaneous tumor of the mouse melanoma cell line 

B16F10 which express the HMW-MAA upon transfection with HMW-MAA cDNA. 

 

With this study, the efficacy and superiority of poly- over single-mimotope vaccines in 

vitro and in vivo might be proven. The clinical use of mimotope vaccination might still 

take years, but we hope that this study provides insights towards a new way to prolong 

overall survival of melanoma patients and ultimately even to cure those patients. 
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Abstract 

The phage display technology has been successfully applied to study epitopes of a 

variety of antigens. Different libraries displaying random peptides fused to 

bacteriophage coat proteins have been developed. Peptide ligands selected from these 

libraries using monoclonal antibodies (mAbs) can mimic conformational epitopes which 

are recognized by the antibodies. In the recent past, such peptide mimics, also called 

mimotopes, have been used to develop antigen specific cancer vaccines. We have 

focused our research on the high molecular weight-melanoma associated antigen 

(HMW-MAA) which is highly expressed on melanoma cells. We screened five anti-

HMW-MAA monoclonal antibodies with different epitope specificities using a linear 

pIII-12mer phage display peptide library. Peptide ligands were selected by three 

different panning strategies: immobilization of the mAb (surface panning), protein G 

capture of the mAb, or streptavidin capture of the biotinylated mAb (solution-phase 

panning). Peptide ligands for each mAb could only be identified with the surface 

panning strategy. We therefore conclude that surface panning is superior to solution-

phase panning concerning a straight forward way to identify peptide ligands. 
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Introduction 

The phage display technology uses both filamentous (e.g. M13, fd, f1) and, more 

recently, lytic bacteriophages (e.g. T4, T7, λ) to display foreign peptides or proteins on 

the phage surfaces (1). In the case of filamentous phages, the minor coat proteins pIII, 

pVI, pVII, and pIX as well as the major coat protein pVIII have been successfully used 

for peptide presentation (1). The coat proteins pIII and pVIII are commonly used to 

display random peptides fused to their N-terminus. Peptides are 4 to 40 amino acid (aa) 

residues in length, displayed either in linear or in constrained (circular) form (2). As 

large foreign peptides can disrupt the structural stability of the phages by hampering 

assembly and infection as a result of interference with pIII or pVIII function, they can 

only be displayed as hybrid phage particles (3,4). Therefore, phage display systems 

have been classified according to the arrangement of the coat protein genes into three 

different types: (1) type 3, (2) type 33, and (3) type 3+3 (the same applies to pVIII as 

well as pVI). Type 3 systems display foreign peptides on every copy of pIII. In type 33 

vectors, the phage genome bears two genes encoding for the wild-type and recombinant 

molecule. Type 3+3 systems have two genes for pIII on separate genomes, the wild-type 

version on a so called helper phage, the recombinant version on a phagemid (4). The 

latter two system types supply mosaic phages. 

Epitope study and other relevant research fields have been successfully investigated by 

using phage display (5-7). One attractive application of this technology is the 

identification of mimotopes which are small peptides that structurally mimic a given 

antibody-binding site but are composed of different amino acids (8). Mimotopes are 

able to mimic conformational epitopes both of protein and carbohydrate antigens (9), 

and should induce antibodies against the target antigen upon immunization. Therefore, 

they have been used in vaccines to induce immune responses against bacterial 

polysaccharides or tumor antigens. 

Regarding tumor antigen specific vaccines, several monoclonal antibodies (mAbs) 

directed against diverse tumor antigens have been used to identify mimotopes which 

were then investigated as vaccines. For malignant melanoma, the high molecular 

weight-melanoma associated antigen (HMW-MAA) has presented an interesting target 

antigen in the recent past. Mimotopes were identified using different phage display 

peptide libraries by screening several anti-HMW-MAA mAbs. The mAb 763.74 was 

screened with both a linear pVIII-15mer and a cyclic pVIII-12mer (XCX8CX) library 

(10), the mAb 149.53 with a linear pVIII-15mer library (11), and the mAb 225.28S with 
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a linear pVIII-9mer (12,13), a linear pVIII-15mer (11) as well as with a cyclic pIII-

12mer (CX10C) library (14). All studies followed a surface panning strategy, i.e. 

immobilization of the mAb by coating to a plastic surface, resulting in the identification 

of peptide ligands, except for the cyclic pVIII-12mer. 

Our intent was to identify peptide ligands for five different anti-HMW-MAA mAbs 

using surface as well as solution-phase panning strategies to evaluate under which 

conditions tight-binding peptides can be selected. Therefore, we have applied a 

commercially available phage display peptide library from New England BioLabs 

(Ipswich, MA, USA), which expresses 12-mer peptides at the N-terminus of the minor 

coat protein pIII of bacteriophage M13 (Ph.D.-12™). This library has been successfully 

used not only for the generation of mimotopes of tumor antigens (8,15) but also for 

epitope mapping of antibodies (16-18) as well as diverse other antigens (19-22). 
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Materials and Methods 

Monoclonal anti-HMW-MAA antibodies 

The mAbs VT80.12, VF1-TP34, 149.53, 225.28S F(ab')2,VF1-TP43 and TP61.5 were 

developed and characterized as described elsewhere (23-26). 

 

Biotinylation of mAbs 

NHS-LC-Biotin (Pierce, Rockford, IL, USA) was diluted in dimethylformamide at a 

concentration of 40 mg/ml. Five microliters of this solution was added to 1 mg/ml mAb 

in PBS and incubated for 45 min at room temperature (RT). Excess NHS-LC-Biotin 

was removed by dialysis against PBS. Successful biotinylation was proven by 

streptavidin detection in a dot blot assay. Briefly, biotinylated mAb was dotted onto a 

nitrocellulose membrane (Whatman, Dassel, Germany) and incubated with alkaline 

phosphatase (AP)-conjugated streptavidin (GE Healthcare, Little Chalfont, UK). Color 

development was done with 5-bromo-4-chloro-3-indolyl phosphate/nitroblue 

tetrazolium. 

 

Cell lines 

The human melanoma cell line 518A2 which expresses high levels of HMW-MAA and 

M14, the human melanoma cell line with no detectable expression of HMW-MAA, 

were maintained in RPMI 1640 medium (Lonza, Verviers, Belgium). The medium was 

supplemented with 10% (v/v) FCS and 1% (v/v) antibiotic-antimycotic mix (both from 

Gibco, Paisley, UK). Both cell lines were cultured in a humidified atmosphere 

containing 5% CO2 and 95% ambient air at 37°C. 

 

Preparation of cell lysates 

A total of 5x107 melanoma cells was suspended in 1 ml of lysis buffer (50 mM Tris-

HCl, pH 7.4; 150 mM NaCl; 1% (v/v) Triton X-100; 1x complete EDTA-free protease 

inhibitor mix (Roche, Mannheim, Germany)), extensively vortexed and incubated on ice 

for 15 min. After disruption, samples were centrifuged 10 min at 800 x g at 4°C. 

Supernatants were removed from cell debris and stored at -20°C until use. Protein 

concentration was determined using a bicinchoninic acid (BCA) protein assay (Pierce). 
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Microsomal preparations 

Cells (~5x107) were disrupted in 1 ml lysis buffer (50 mM Na-phosphate, pH 7.4; 2 mM 

EDTA; 250 mM saccharose; 1x complete EDTA-free protease inhibitor mix (Roche)) 

using a dounce tissue grindler. Unbroken nuclei were separated by centrifugation at 

1000 x g. Thereafter, supernatants were centrifuged at 32000 x g for 1 h at 4°C. Pellets 

were solubilized in buffer containing 100 mM Na-phosphate, pH 7.4; 2 mM EDTA; 500 

mM NaCl and 1% Triton X-100. Samples were stored at 4°C until use. Protein 

concentration was determined using a BCA protein assay (Pierce). 

 

Biopanning 

The Ph.D.-12™ library that expresses linear 12mer peptides fused to the pIII minor coat 

protein of bacteriophage M13 was purchased from New England Biolabs (Ipswich, MA, 

USA). Biopanning protocols for surface and solution-phase panning were executed 

following the manufacturer’s instructions with some minor modifications. 

Surface panning (direct coating). 

MaxiSorp immunotubes (Nunc, Roskilde, Denmark) were coated with 10 µg mAb in 1 

ml 50 mM Na-carbonate buffer, pH 9.6, overnight (o/n) at 4°C. Unspecific binding sites 

were blocked with TBST (50 mM Tris-HCl, pH 7.5; 150 mM NaCl; 0.1% (v/v) Tween-

20) containing 3% (w/v) milk powder for 1 h at RT. Afterwards, the immobilized mAb 

was incubated with 1x1011 phages and 10 µg isotype control (BD Biosciences, Franklin 

Lakes, NJ, USA) in 1 ml TBST for 1 h at RT with agitation. Unbound phages and 

phage-isotype complexes were removed by extensively washing with TBST. Bound 

phages were eluted with 1 ml elution buffer (0.2 M Glycine-HCl, pH 2.2). The eluate 

was neutralized by adding 150 µl 1 M Tris-HCl, pH 9.1. 

Solution-phase panning with surface protein G capture. 

MaxiSorp immunotubes (Nunc) were coated with 20 µg protein G (AbD Serotec, 

Düsseldorf, Germany) in 1 ml 100 mM NaHCO3, pH 8.6 o/n at 4°C. Unspecific binding 

sites were blocked with 100 mM NaHCO3, pH 8.6 containing 5 mg/ml BSA for 1 h at 

4°C. Meanwhile, 1x1011 phages were preincubated with 10 µg mAb in TBST at RT. 

Protein G capture of the phage-mAb complex was allowed for 1 h at RT. Bound phages 

were eluted with 1 ml elution buffer (0.2 M Glycine-HCl, pH 2.2; 1 mg/ml BSA) and 

neutralized by adding 150 µl 1 M Tris-HCl, pH 9.1. An incubation step of phages with 

the isotype control was included for the 2nd as well as for the 3rd round of selection. 
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Solution-phase panning with surface streptavidin capture. 

MaxiSorp immunotubes (Nunc) were coated with 100 µg streptavidin in 1 ml 100 mM 

NaHCO3, pH 8.6 o/n at 4°C. Unspecific binding sites were blocked with 100 mM 

NaHCO3, pH 8.6 containing 5 mg/ml BSA and 0.1 µg/ml streptavidin for 1 h at 4°C. 

Meanwhile, 1x1011 phages were preincubated with 10 µg biotinylated mAb in TBST at 

RT. Streptavidin capture of the phage-biotinylated mAb complex was allowed for 30 

min at RT. Bound phages were eluted as described above for the solution-phase panning 

with surface protein G capture. 

 

For all three panning strategies, phages were amplified in E. coli ER2738. The 

amplified phages were purified by precipitation with 20% polyethylene glycol (PEG) 

6000, 2.5 M NaCl and used in the next round. Three rounds of selection were performed 

with increasing Tween-20 concentrations (1st round: 0.1%; 2nd round: 0.3%; 3rd round: 

0.5%). After that, individual plaques were picked up randomly of the unamplified 3rd 

round eluate to screen for specific single phage clones. 

 

Phage ELISA 

MaxiSorp immunoplates (Nunc) were coated with 5 µg/ml mAb in 50 mM Na-

carbonate buffer, pH 9.6 o/n at 4°C. Nonspecific binding sites were blocked with PBS 

containing 3% milk powder (3% MPBS). Phage precipitates were diluted in 3% MPBS, 

added to mAb-coated plates, and incubated for 1 h at RT. After washing with PBS, 

bound phages were detected using a horse radish peroxidase (HRP)-conjugated mouse 

anti-M13 antibody (GE Healthcare) diluted 1:5000 in 3% MPBS. Color development 

was carried out with o-phenylendiamin (Fast o-Phenylendiamin HCl; Sigma, St. Louis, 

MO, USA). The reaction was stopped by addition of 0.18 M H2SO4 and the absorbance 

was measured at 450 nm. 

 

ssDNA isolation and sequencing 

Single phage clones that bound specifically to the respective mAb were amplified in 

E.coli ER2738 (o/n-culture 1:100 diluted) for 4.5 h at 37°C with vigorous shaking. 

Bacterial cells were pelleted by centrifugation and single stranded DNA from each 

phage clone was isolated from 2 ml phage containing supernatant using the QIAprep 

Spin M13 Kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions. 

Agarose gel electrophoresis (1.2%) was carried out to check ssDNA integrity. PCR was 



Chapter II 
Successful selection of mimotopes from phage-displayed libraries strongly depends on the selection strategy  

44 

performed using the SequiTherm EXCEL II DNA Sequencing Kit (Epicentre 

Biotechnologies, Madison, WI, USA) with an IRD-800 labeled -96 gIII sequencing 

primer (5´- CCC TCA TAG TTA GCG TAA CG -3´; MWG Biotech, High Point, NC, 

USA). DNA sequence analysis was performed with an automatic LI-COR fluorescent 

sequencer 4000 L (LI-COR, Lincoln, NE, USA) and the AlignIR V2.0 software (LI-

COR). 

 

Competitive ELISA 

MaxiSorp immunoplates (Nunc) were coated with 5 µg/ml mAb in 50 mM Na-

carbonate buffer, pH 9.6 o/n at 4°C. Nonspecific binding sites were blocked with 3% 

MPBS. Phage particles (1011 pfu/well) and cell lysates (0.5, 1, and 1.5 mg/ml) were 

added simultaneously and incubated for 2 h at RT. After washing with PBS, bound 

phages were detected as described for phage ELISA. 

 

Synthesis of peptides 

The peptides NHLDTVMSLRLRC (80.12p3), NYQDLQRTHFKSGPGPGC (43.12p3), 

and an unrelated peptide AEGEFTRTQPGRFPGGGGGC (control peptide) were 

synthesized using F-moc strategy by piCHEM (Graz, Austria). The purity of the 

peptides was ~95%, as assessed by HPLC. 

 

ELISA inhibition assay 

Maxisorp immunoplates (Nunc) were coated o/n at 4°C with 4 µg/ml of mAb T61.5 in 

coating buffer (50 mM Na-carbonate, pH 9.6). Ten nanograms of biotinylated mAb was 

incubated with increasing concentrations (0, 10, 50, and 100 µg/ml) of synthetic peptide 

in TBST (0.5% Tween-20) containing 1% (w/v) BSA o/n at 4°C. The next day, 

microtiter plates were blocked with TBST/3% milk powder and incubated for 3 h at RT 

with 100 µg/ml microsomal preparations diluted in TBST/1% BSA. After washing, 

mAb preincubated with peptides was added and incubation was continued for one 

additional hour at RT. Bound biotinylated mAb was detected using AP-conjugated 

streptavidin (GE Healthcare), followed by addition of p-nitrophenylphosphate (Sigma). 

Absorbance was measured at 405 nm. Percentage of inhibition was calculated as 

follows: 100 – (OD (inhibited)/OD (uninhibited) x 100). 
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Sequence and structural alignments 

Identified peptide ligands were aligned with the HMW-MAA aa sequence (UniProt 

accession no. Q6UVK1) using the pairwise local alignment BLAST (27). 

Using the ModBase Database of Comparative Protein Structure Models (28), four 

models spanning the extracellular domain of HMW-MAA were chosen for mapping of 

mimotope residues onto the molecular surface of HMW-MAA using MIMOX, a Web 

Tool for Phage Display Analysis (29). Laminin alpha 2 chain LG4-5 domain pair (PDB 

accession no. 1dykA) was used as template to model aa 27-380 of HMW-MAA, the 

crystal structure of mammalian fatty acid synthase (PDB accession no. 2vz8B) for aa 

260-1733, the C-cadherin ectodomain (PDB accession no. 1l3wA) for aa 1259-1832, 

and the crystal structure of mammalian fatty acid synthase in complex with NADP 

(PDB accession no. 2vz9A) for aa 680-2234. 
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Results 

To select the positive clones that bind to the anti-HMW-MAA mAbs, a random 12-mer 

phage display peptide library composed of 1x1011 independent phage clones was 

incubated with the mAbs. For each biopanning, the phage titer of the amplified eluate 

was determined in plaque forming units (pfu) for inputs and outputs to determine the 

degree of selection. 

 

Surface panning with the mAb VT80.12 

After three rounds of selection, the total number of phages that bound to the mAb 

VT80.12 was increased from 3x105 pfu/ml in the 1st round to 2x109 pfu/ml in the 3rd 

round (Fig. 1A). Twenty-four individual phage clones were tested by phage ELISA for 

their binding ability to the mAb VT80.12 (Fig. 1B). Twenty-two positive clones were 

subjected to DNA sequencing yielding two predominant DNA sequences that encoded 

the aa sequences NHLDTVMSLRLR (“80.12p3”; eight phage clones) and 

HFYQFSLLNDMQ (“pVT80-2”; ten phage clones). Phage particles, expressing the two 

sequences, were co-incubated with a cell lysate from the HMW-MAA expressing 

human melanoma cell line 518A2 (HMW-MAApos) or the HMW-MAA negative human 

melanoma cell line M14 (HMW-MAAneg) on ELISA plate-immobilized mAb VT80.12. 

Only phages displaying the 80.12p3-peptide were competitively removed in a 

concentration-dependent way up to 35% (Fig. 2A). Therefore, the peptide 80.12p3 was 

chemically synthesized with an additional C-terminal cysteine residue for conjugation 

purposes. This peptide inhibited the binding of the biotinylated mAb VT80.12 to the 

HMW-MAA only up to 23% in an ELISA inhibition experiment (Fig. 2B). 

 

Surface panning with the mAb VF1-TP43 

Three rounds of selection were performed with the mAb VF1-TP43. The phage titer 

was increased from 1x105 pfu/ml in the 1st round to 3x109 pfu/ml in the 3rd round (Fig. 

3A). Thirty individual phage clones were tested for their specificity to the mAb VF1-

TP43 (Fig. 3B). Twenty positive clones were subjected to DNA sequencing yielding 

one DNA sequence encoding the aa sequence NYQDLQRTHFKS (“43.12p3”). In a 

competitive ELISA experiment, binding of the phage-displayed peptide was reduced up 

to 33% by a HMW-MAA containing cell lysate (Fig. 4A). The peptide 43.12p3 was 

synthesized with an GPGPG-linker and an additional C-terminal cysteine residue. It was 
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able to inhibit the binding of the biotinylated mAb VF1-TP43 to the HMW-MAA in a 

dose-dependent way up to 92% (Fig. 4B). 

 

Surface panning with the mAb VF1-TP34 

Three rounds of selection were performed with the mAb VF1-TP34 showing a distinct 

increase of the phage titer from 1x107 pfu/ml to 1x109 pfu/ml (Fig. 5A). Thereafter, 141 

individual clones were picked up randomly and tested in phage ELISA for their 

specificity. Only nine phage clones were able to bind specifically to the mAb VF1-

TP34. DNA sequencing yielded the two deduced aa sequences IICHPYPKRCVN 

(“pTP34-1”; eight individual clones) and SSTIQKHLETRR (“pTP34-2”; one clone). 

Both peptides (as phage-displayed peptides) were not competitively removed by a 

HMW-MAA containing cell lysate (data not shown). 

 

Surface panning with the mAb 149.53 

Four rounds of selection were performed with the mAb 149.53, because the increase of 

the phage titer was not sufficient after three rounds (Fig. 5B). Thereafter, the phage titer 

was increased from 2x106 pfu/ml to 1x109 pfu/ml. Overall, 118 individual clones of the 

fourth round were tested for their binding ability to the mAb 149.53. Twenty-six 

positive clones were subjected to DNA sequencing resulting in the one deduced aa 

sequence YVCPPMIHLCYS (“p149.53”). The binding of this phage-displayed peptide 

to the mAb 149.53 was not inhibited by a cell lysate from HMW-MAApos cells. 

 

Surface panning with the mAb 225.28S F(ab')2 

After three rounds of selection, the phage titer was increased from 2x106 pfu/ml in the 

1st round to 2x108 pfu/ml in the 3rd round (Fig. 5C). Twenty-four indiviudal phage 

clones were tested by phage ELISA for their binding ability to the F(ab')2-fragment of 

the mAb 225.28S. Twenty-three positive clones were subjected to DNA sequencing 

yielding one DNA sequence that encoded the aa sequence SWIHWNQADKLF 

(“p225Fab”). The binding of this phage-displayed peptide to the mAb 225.28S F(ab')2 

was not inhibited by a cell lysate from HMW-MAApos cells. 
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Identification of peptide ligands by solution-phase panning 

Due to the fact that direct coating of an antibody may alter its native 3-dimensional 

structure – although antibodies should bind preferentially with their Fc-part to the 

surface of microtiter plates – phage displayed peptides that could mimic conformational 

epitopes, which are recognized by the variable regions of an antibody, might not be 

identified. We therefore decided to perform the panning procedure under more native 

conditions for the mAbs, i.e. as solution-phase panning and used two different 

strategies. 

 

First, as protein G binds antibodies of the IgG1 isotype specifically via their Fc-part, 

this possibility seemed to be a very elegant one of identifying specific phages for our 

mAbs VT80.12, VF1-TP34, and 149.53. Therefore, protein G was immobilized and 

incubated with the mAb-phage complex. There was no increase of phage titer from the 

1st to the 3rd round (~107 pfu/ml for each round) and the amplified, precipitated phages 

from each round were negative for the respective mAb in phage ELISA experiments. 

 

In a second solution-phase panning procedure, streptavidin was immobilized to catch 

the biotinylated mAbs VT80.12 and VF1-TP34, respectively. Despite increasing phage 

titer (from ~106 pfu/ml in the 1st round to ~109 pfu/ml in the 3rd round), the amplified, 

precipitated rounds were not specific for the mAbs. 

 

Sequence and structure alignments 

The peptides 43.12p3 and p225Fab could be aligned to the extracellular domain of 

HMW-MAA at position 387-397 and 445-449, respectively, by BLAST (Fig. 6). No 

significant similarities were found for the other peptides. 

The peptide 80.12p3 could be located at position 570-527 of HMW-MAA using 

MIMOX (Table 1). Locations of the peptides 43.12p3, p225Fab, and 80.12p3 on the 

molecular surface of the HMW-MAA are illustrated in Fig. 7. 
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Discussion 

We have performed biopannings of five anti-HMW-MAA mAbs that recognize 

different epitopes of HMW-MAA described by lacking cross-reactivity to each other, 

using the Ph.D.-12™ library from New England BioLabs. Biopannings were performed 

in three ways: (1) surface panning/direct coating of the mAb, (2) solution-phase panning 

with surface protein G capture of the mAb, and (3) solution-phase panning with surface 

streptavidin capture of the biotinylated mAb, yielding different results regarding 

selection of peptide ligands for each panning strategy. 

At least one peptide sequence for each mAb was obtained with the surface panning 

protocol. Phages binding specifically to the mAb VT80.12 were easily obtained, 

resulting in two peptide ligands. Whereas the peptide 80.12p3 inhibited the binding of 

the mAb VT80.12 to the HMW-MAA (Fig. 2), the other peptide (pVT80-2) did not, 

indicating that the latter peptide did not mimic the antigen binding site of the mAb 

properly. As inhibitions obtained with the synthetic peptide 80.12.p3 were lower than 

the ones obtained with the phage-associated peptide, it is possible that the phage particle 

provides some inhibitory effects for this peptide. This can be explained by the fact that 

the interaction between the antibody and the phage-displayed peptide depends on the 

peptide’s microenvironment that is provided by the phage particle during the affinity 

selection (30). 

One peptide ligand was identified for the mAb VF1-TP43. All sequenced phage clones 

both from the 2nd (data not shown) and 3rd round (Fig. 3) displayed only this aa 

sequence indicating that this was the dominant peptide ligand for the mAb VF1-TP43. 

The peptide 43.12p3 inhibited the binding of HMW-MAA to the mAb VF1-TP43 both 

as phage-displayed peptide (Fig. 4A) and as synthetic peptide (Fig. 4B), excluding the 

possibility that the conformation of the phage-displayed peptide was constrained by the 

structural context of the bacteriophage surface. Furthermore, the additional GPGPG-

linker of the synthetic peptide might stabilize the peptide’s conformation leading to a 

higher inhibition obtained with the synthetic peptide than the phage-displayed one. 

These results clearly indicate that the synthetic peptide adopts a conformation in 

solution that is comparable with that on the phage surface (14). This proves that this 

mimotope is a genuine antigenic mimic of the HMW-MAA-epitope recognized by the 

mAb VF1-TP43. Hence, the peptide 43.12p3 will be considered as a mimotope 

candidate for immunization experiments to induce HMW-MAA specific antibodies. 
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Biopanning of the mAb VF1-TP34 was difficult yielding only ~6% positive individual 

phage clones displaying two peptide sequences. Peptide pTP34-1 contains two cysteine 

residues at position 3 and 10, which are likely to form a disulfide bridge, thus 

transforming the linear peptide into a circular one displayed on the phage particle. In 

our case, regarding coupling the synthetic peptide to an immunogenic carrier protein via 

an additionally introduced C-terminal cysteine residue for vaccination purposes, the 

chemical synthesis and the coupling process would only be possible with great effort. 

Due to this “unpreferable” sequence, the peptide pTP34-1 would be excluded for further 

examinations. As this peptide was more frequently found than the other peptide (pTP34-

2), the first seemed to be the dominant ligand obtained with the library used. However, 

both peptides did not inhibit the binding of HMW-MAA to the mAb VF1-TP34, 

indicating that these peptide ligands do not mimic the epitope. 

For the mAb 149.53 four rounds of selection were needed to obtain sufficient phage 

titers (Fig. 5B). After that, one peptide sequence containing two cysteine residues at 

position 3 and 10 could be obtained for all of the sequenced phage inserts. Therefore, 

the same conclusions can be made as for the peptide pTP34-1. 

With the F(ab')2-fragment of the mAb 225.28S one peptide sequence was obtained. 

Comparing this sequence to already described mimotopes identified with the mAb 

225.28S (11-14) revealed no sequence similarities. Peptide ligands obtained by Ferrone 

et al. (11), Hafner et al. (14), and Wagner et al. (13) yielded the same consensus 

sequence. We suggest that the F(ab')2-fragment, which binds properly to HMW-MAA, 

has a slightly different three-dimensional structure due to the missing Fc portion 

compared to the mAb 225.28S, thus preferring different types of peptide constraints. 

All identified peptides have one to four aromatic aa residues as well as many 

hydrophobic aa side chains, suggesting that they might partially mimic carbohydrate 

moieties, which would be in line with the fact that HMW-MAA is a highly glycosylated 

integral membrane chondroitin sulfate proteoglycan. The presence of both aromatic and 

hydrophobic residues is often a characteristic of peptides that mimic carbohydrates, 

resembling sugar moieties in their size and cyclic shape (31). However, local alignment 

or mimotope mapping of the peptides with the HMW-MAA sequence yielded matches 

for the peptides 43.12p3, p225Fab, and 80.12p3 (Fig. 6+7; Table 1), that could be 

allocated to surface-exposed residues of the extracellular domain of HMW-MAA. 
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Both solution-phase panning strategies either by protein G or streptavidin capture did 

not yield any specific peptide ligand. This might be attributed to restrictions regarding 

concentrations of either mAb or the catching molecules, incubation time, washing 

conditions as well as elution conditions, which affect the two important parameters of 

affinity selection, i.e. stringency and yield. 

We therefore conclude that screening a panel of several peptide libraries rather than just 

one and optimization of screening conditions should lead to the identification of high-

affinity peptides. It is possible that a single library will not provide tight-binding 

peptides for a lot of antibodies as the preference of an antibody for particular peptide 

ligands is usually not known in advance. 
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Tables 

Table 1 Mimotope mapping. The peptide 80.12p3 was mapped to the HMW-MAA 

surface using the conservative match mode of the web tool MIMOX (29). The crystal 

structure of mammalian fatty acid synthase (PDB accession no. 2vz8B) was used to 

model aa 260-1733 of HMW-MAA. 

aa position 570 568 566 567 569 565 563 561 541 536 534 527

HMW-MAA Q H L E T I M S L R L R 
80.12p3 N H L D T V M S L R L R 
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Figures 

Fig. 1 Specificity of phages selected for the mAb VT80.12. Amplified panning rounds 

(A) and 24 selected single phage clones (B) were tested for their specificity to the mAb 

VT80.12 ( ) or a mouse IgG1 isotype control ( ) in phage ELISA experiments. 
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Fig. 2 Mimicry of the phage-displayed peptide “80.12p3”. (A) In a competitive ELISA 

experiment, the binding of the phage-displayed peptide 80.12p3 to the mAb VT80.12 

was competed by a cell lysate from HMW-MAApos cells ( ) but not from HMW-

MAAneg cells ( ). (B) Microtiter plates were coated with the mAb TP61.5 and 

incubated with a microsomal preparation of 518A2 melanoma cells to catch the HMW-

MAA. Biotinylated mAb VT80.12 was preincubated with increasing concentrations of 

synthetic peptide 80.12p3 ( ) and a control peptide ( ), and then incubated with the 

HMW-MAA. Percentage of inhibition was calculated as follows: 100 – (OD 

(inhibited)/OD (uninhibited) x 100). 
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Fig. 3 Specificity of phages selected for the mAb VF1-TP43. Amplified panning rounds 

(A) and 30 selected single phage clones (B) were tested for their specificity to the mAb 

VF1-TP43 ( ) or a mouse IgG1 isotype control ( ) in phage ELISA experiments. 
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Fig. 4 Mimicry of the phage-displayed peptide “43.12p3”. (A) A cell lysate from 

HMW-MAApos cells ( ) but not from HMW-MAAneg cells ( ) was able to compete the 

binding of the phage-displayed peptide 43.12p3 in a concentration dependent way. (B) 

Graph showing percentage of inhibition as calculated from reduction in binding ability, 

when biotinylated mAb VF1-TP43 was preincubated with increasing concentrations of 

synthetic peptide 43.12p3 ( ) and a control peptide ( ) ,and then incubated with the 

HMW-MAA. 
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Fig. 5 Specificity of phages selected for the mAbs VF1-TP34 (A), 149.43 (B), and 

225.28S F(ab')2 (C). Amplified panning rounds were tested for their specificity to the 

respective mAb ( ) and isotype-matched control antibody ( ). 
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Fig. 6 Local alignment of identified peptide ligands with HMW-MAA. The sequences 

of the peptides 43.12p3 (magenta) and p225Fab (cyan) could be aligned with HMW-

MAA (UniProt accession no. Q6UVK1) using BLAST (27). Identical residues are 

indicated in bold, similar ones in italics. The length of the whole peptide sequences is 

indicated with colored solid lines. The signal peptide and the transmembrane region of 

HMW-MAA are indicated in bold and underlined letters at the N-terminus and C-

terminus, respectively. 
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Fig. 7 Mimotope mapping. The peptides 43.12p3 (magenta), p225Fab (cyan), and 

80.12p3 (yellow) are displayed on the putative surface of HMW-MAA using Swiss 

PDB Viewer (Swiss Institute of Bioinformatics, Lausanne, Switzerland). The crystal 

structure of mammalian fatty acid synthase (PDB accession no. 2vz8B) was used to 

model aa 260-1733 of HMW-MAA. 

 

 



Chapter II 
Successful selection of mimotopes from phage-displayed libraries strongly depends on the selection strategy  

64 

 



Chapter II 
Successful selection of mimotopes from phage-displayed libraries strongly depends on the selection strategy  

65 

References 

1. Bratkovic, T. (2010). Progress in phage display: evolution of the technique and its 

application. Cell Mol Life Sci, 67, 749-767. 

2. Smith, G. P., Petrenko, V. A. (1997). Phage Display. Chem Rev, 97, 391-410. 

3. Makowski, L. (1993). Structural constraints on the display of foreign peptides on 

filamentous bacteriophages. Gene, 128, 5-11. 

4. Smith, G. P. (1993). Preface - Surface display and peptide libraries. Gene, 128, 1-2. 

5. Cortese, R., Felici, F., Galfre, G., Luzzago, A., Monaci, P., Nicosia, A. (1994). 

Epitope discovery using peptide libraries displayed on phage. Trends Biotechnol, 

12, 262-267. 

6. Cortese, R., Monaci, P., Luzzago, A., Santini, C., Bartoli, F., Cortese, I., et al. 

(1996). Selection of biologically active peptides by phage display of random 

peptide libraries. Curr Opin Biotechnol, 7, 616-621. 

7. Meola, A., Delmastro, P., Monaci, P., Luzzago, A., Nicosia, A., Felici, F., et al. 

(1995). Derivation of vaccines from mimotopes. Immunologic properties of human 

hepatitis B virus surface antigen mimotopes displayed on filamentous phage. J 

Immunol, 154, 3162-3172. 

8. Yang, L., Jiang, H., Shi, B., Wang, H., Li, J., Wang, H., et al. (2010). Identification 

and characterization of Ch806 mimotopes. Cancer Immunol Immunother, 59, 1481-

1487. 

9. Devlin, J. J., Panganiban, L. C., Devlin, P. E. (1990). Random peptide libraries: a 

source of specific protein binding molecules. Science, 249, 404-406. 

10. Luo, W., Hsu, J. C., Tsao, C. Y., Ko, E., Wang, X., Ferrone, S. (2005). Differential 

immunogenicity of two peptides isolated by high molecular weight-melanoma-

associated antigen-specific monoclonal antibodies with different affinities. J 

Immunol, 174, 7104-7110. 

11. Ferrone, S., Wang, X. (2001). Active specific immunotherapy of malignant 

melanoma and peptide mimics of the human high-molecular-weight melanoma-

associated antigen. Recent Results Cancer Res, 158, 231-235. 

12. Riemer, A. B., Hantusch, B., Sponer, B., Kraml, G., Hafner, C., Zielinski, C. C., et 

al. (2005). High-molecular-weight melanoma-associated antigen mimotope 

immunizations induce antibodies recognizing melanoma cells. Cancer Immunol 

Immunother, 54, 677-684. 



Chapter II 
Successful selection of mimotopes from phage-displayed libraries strongly depends on the selection strategy  

66 

13. Wagner, S., Hafner, C., Allwardt, D., Jasinska, J., Ferrone, S., Zielinski, C. C., et al. 

(2005). Vaccination with a human high molecular weight melanoma-associated 

antigen mimotope induces a humoral response inhibiting melanoma cell growth in 

vitro. J Immunol, 174, 976-982. 

14. Hafner, C., Wagner, S., Allwardt, D., Riemer, A. B., Scheiner, O., Pehamberger, 

H., et al. (2005). Cross-reactivity of mimotopes with a monoclonal antibody against 

the high molecular weight melanoma-associated antigen (HMW-MAA) does not 

predict cross-reactive immunogenicity. Melanoma Res, 15, 111-117. 

15. Jiang, B., Liu, W., Qu, H., Meng, L., Song, S., Ouyang, T., et al. (2005). A novel 

peptide isolated from a phage display peptide library with trastuzumab can mimic 

antigen epitope of HER-2. J Biol Chem, 280, 4656-4662. 

16. Mohammadi, M., Rasaee, M. J., Rajabibazl, M., Paknejad, M., Zare, M., 

Mohammadzadeh, S. (2007). Epitope mapping of PR81 anti-MUC1 monoclonal 

antibody following PEPSCAN and phage display techniques. Hybridoma 

(Larchmt), 26, 223-230. 

17. Hu, S., Zhu, Z., Li, L., Chang, L., Li, W., Cheng, L., et al. (2008). Epitope mapping 

and structural analysis of an anti-ErbB2 antibody A21: Molecular basis for tumor 

inhibitory mechanism. Proteins, 70, 938-949. 

18. Zheng, L., Li, B., Qian, W., Zhao, L., Cao, Z., Shi, S., et al. (2008). Fine epitope 

mapping of humanized anti-IgE monoclonal antibody omalizumab. Biochem 

Biophys Res Commun, 375, 619-622. 

19. Li, Y., Ning, Y. S., Wang, Y. D., Hong, Y. H., Luo, J., Dong, W. Q., et al. (2007). 

Production of mouse monoclonal antibodies against Helicobacter pylori Lpp20 and 

mapping the antigenic epitope by phage display library. J Immunol Methods, 325, 

1-8. 

20. Li, Y., Ning, Y. S., Wang, Y. D., Luo, J., Wang, W., Dong, W. Q., et al. (2008). 

Production of mouse monoclonal antibodies against Helicobacter pylori Catalase 

and mapping the antigenic epitope by phage display library. Vaccine, 26, 1263-

1269. 

21. Xie, H. L., Wang, Z., Cui, S. J., Zhang, C. F., Cui, Y. D. (2010). The epitope of the 

VP1 protein of porcine parvovirus. Virol J, 7, 161. 



Chapter II 
Successful selection of mimotopes from phage-displayed libraries strongly depends on the selection strategy  

67 

22. Lin, M., McRae, H., Dan, H., Tangorra, E., Laverdiere, A., Pasick, J. (2010). High-

resolution epitope mapping for monoclonal antibodies to the structural protein Erns 

of classical swine fever virus using peptide array and random peptide phage display 

approaches. J Gen Virol, 91, 2928-2940. 

23. Giacomini, P., Natali, P., Ferrone, S. (1985). Analysis of the interaction between a 

human high molecular weight melanoma-associated antigen and the monoclonal 

antibodies to three distinct antigenic determinants. J Immunol, 135, 696-702. 

24. Temponi, M., Fawwaz, R. A., Kekish, U., Wang, T. S., Ferrone, S. (1991). 

Improvement by affinity chromatography on antiidiotypic monoclonal antibodies 

(MAbs) of immunoreactivity and in vivo targeting of radiolabelled anti-HMW-

MAA MAb TP61.5 in nude mice bearing human melanoma lesions. Int J Cancer, 

49, 624-630. 

25. Temponi, M., Gold, A. M., Ferrone, S. (1992). Binding parameters and idiotypic 

profile of the whole immunoglobulin and Fab' fragments of murine monoclonal 

antibody to distinct determinants of the human high molecular weight-melanoma 

associated antigen. Cancer Res, 52, 2497-2503. 

26. Campoli, M. R., Chang, C. C., Kageshita, T., Wang, X., McCarthy, J. B., Ferrone, 

S. (2004). Human high molecular weight-melanoma-associated antigen (HMW-

MAA): a melanoma cell surface chondroitin sulfate proteoglycan (MSCP) with 

biological and clinical significance. Crit Rev Immunol, 24, 267-296. 

27. http://blast.ncbi.nlm.nih.gov/.  

28. http://modbase.compbio.ucsf.edu/modbase-cgi/index.cgi.  

29. http://immunet.cn/mimox/.  

30. Galfre, G., Monaci, P., Nicosia, A., Luzzago, A., Felici, F., Cortese, R. (1996). 

Immunization with phage-displayed mimotopes. Methods Enzymol, 267, 109-115. 

31. Dharmasena, M. N., Jewell, D. A., Taylor, R. K. (2007). Development of peptide 

mimics of a protective epitope of Vibrio cholerae Ogawa O-antigen and 

investigation of the structural basis of peptide mimicry. J Biol Chem, 282, 33805-

33816. 

 



 

68 

 

 



 

69 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter III 
 

Specificity of mimotope-induced anti-high molecular weight-

melanoma associated antigen (HMW-MAA) antibodies 

does not ensure biological activity 
 

Sonja Gaier1*, Julia Latzka1*, Gerlinde Hofstetter1, Nina Balazs1, Soldano Ferrone2, 

Otto Scheiner1, Heimo Breiteneder1, Hubert Pehamberger3, Stefan Wagner1 

 
* These authors contributed equally to this work and are listed in alphabetical order. 
 
1Department of Pathophysiology and Allergy Research, Medical University of Vienna, 

 Vienna, Austria 
2Departments of Surgery, of Immunology and of Pathology, University of Pittsburgh 

 Cancer Institute, Pittsburgh, Pennsylvania, USA 
3Department of Dermatology, Medical University of Vienna, Vienna, Austria 

 

Manuscript submitted to Vaccine 



 

70 

 

 

 

 



Chapter III 
Specificity of mimotope-induced anti-HMW-MAA antibodies does not ensure biological activity  

71 

Abstract 

Vaccines based on peptide mimics (mimotopes) of conformational tumor antigen 

epitopes have been investigated for a variety of human tumors including breast cancer, 

tumors expressing the carcinoembryonic antigen, B cell lymphoma, neuroblastoma, and 

melanoma. In our previous work, we designed a vaccine based on a mimotope of the 

high molecular weight-melanoma associated antigen (HMW-MAA) that elicited HMW-

MAA specific antibodies with anti-tumor activity in vitro and in vivo. In this study, we 

aimed to identify additional HMW-MAA mimotopes with distinct epitope specificities 

as potential components of a polymimotope melanoma vaccine. 

Random peptide phage libraries were screened with the anti-HMW-MAA monoclonal 

antibodies (mAbs) VT80.12 and VF1-TP43 yielding one peptide ligand for each mAb. 

Both peptides confirmed epitope mimicry in inhibition ELISAs and were coupled to the 

carrier protein keyhole limpet hemocyanin (KLH) for immunization experiments. 

Although both HMW-MAA mimotopes elicited peptide specific antibodies in rabbits or 

BALB/c mice, HMW-MAA specific antibodies were only obtained in mice upon 

immunization with the mimotope defined by the mAb VT80.12. However, despite being 

cross-reactive to HMW-MAA these antibodies had no effect on the in vitro tumor 

proliferation of HMW-MAA expressing human melanoma cells. 

This work describes constraints related to mimotopes generated by phage display and 

discusses the potential relevance of mimotope-selecting mAbs and applied 

immunization models on the outcome of mimotope vaccination. From our results we 

conclude that these aspects should be considered when using mimotopes as vaccine 

components. 
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1. Introduction 

For at least two decades, the high molecular weight-melanoma associated antigen 

(HMW-MAA) has been the focus of several studies to implement effective 

immunotherapy for melanoma. Originally identified with murine monoclonal antibodies 

(mAbs) on the surface of human melanoma cells, HMW-MAA has been found to be 

overexpressed in at least 80% of primary and metastatic melanomas and more recently, 

in several other tumors as well as cancer stem cells 1,2. However, HMW-MAA 

expression is not restricted to transformed cells, as it has been found on various cells of 

normal tissue including melanocytes, hairfollicles and basal cells of the epidermis as 

well as endothelial cells, chondrocytes and pericytes 1. Its expression on both activated 

and resting pericytes in tumor vessels has suggested that HMW-MAA is critical to 

tumor angiogenesis 2. Furthermore, HMW-MAA is known to contribute to the 

malignant phenotype of melanoma by activating several signaling cascades (e.g. Rho 

GTPases, p130cas, FAK) that are involved in adhesion, migration and spreading of 

melanoma cells 3. 

The idea of HMW-MAA-directed immunotherapy has been primarily supported by 

preclinical studies that showed prolonged survival rates of melanoma patients in 

association with anti-HMW-MAA specific antibodies (Abs) induced by active 

immunization 4-6. Since then, a number of antibody- as well as T cell-based 

immunotherapies have been investigated. Recently, Maciag et al. generated a Listeria 

monocytogenes (Lm)-based vaccine against HMW-MAA 7. Immunization of C57BL/6 

mice bearing B16F10-HMW-MAA melanomas induced HMW-MAA specific CD8+ 

and CD4+ T cells that were equally required for tumor inhibition, as in vivo depletion of 

each of these cells resulted in uncontrolled tumor growth 7. Noteworthy, this study 

provided the first syngenic melanoma mouse model for HMW-MAA as well as novel 

information on the contribution of T cells in anti-HMW-MAA immunity. 

In contrast, we emphasized the induction of humoral anti-HMW-MAA immunity by 

using peptide mimics (mimotopes) as immunogens. Mimotopes are small peptides that 

mimic conformational B cell epitopes of antigens and can be selected by screening 

random peptide phage libraries with a mAb of interest. As mimotopes do not 

necessarily share the identical amino acid sequence with the original antigen, they are 

ideal antigen surrogates able to overcome immunotolerance 8-11. Regarding melanoma, 
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this is of particular interest as most melanoma associated antigens including the HMW-

MAA are known to be self-antigens 1,12. 

In previous studies, we identified a linear HMW-MAA mimotope (225D9.2+) which 

mimics an epitope recognized by the anti-HMW-MAA mAb 225.28S. Immunization 

with this mimotope coupled to tetanus toxoid induced HMW-MAA specific Abs in 

rabbits that inhibited tumor cell proliferation in vitro 13. Passive administration of these 

Abs in a xenogenic melanoma SCID mouse model inhibited tumor growth up to 40% in 

a therapeutic setting and up to 62% in a prophylactic setting 14. 

As epitope loss is commonly found in melanoma 15 and several studies indicate that 

targeting multiple epitopes of a tumor antigen has synergistic effects and correlates with 

higher success rates, efficacy of a melanoma vaccine might be improved by the co-

application of several peptides 16-18. 

In this study, we report the selection of additional HMW-MAA mimotopes with distinct 

epitope specificities and discuss constraints related to mimotope vaccines regarding 

their immunogenicity and antigenicity. 
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2. Materials and methods 

2.1. Monoclonal anti-HMW-MAA antibodies 

The mAbs VT80.12, VF1-TP43, and TP61.5 were developed and characterized as 

described elsewhere 19-21. 

2.2. Biotinylation of Abs (mAbs, rabbit IgGs) 

NHS-LC-Biotin (Pierce, Rockford, IL, USA) was diluted in dimethylformamide at a 

concentration of 40 mg/ml. Five microliters of this solution was added to 1 mg/ml mAb 

or rabbit IgGs in PBS and incubated for 45 min at room temperature (RT). Excess NHS-

LC-Biotin was removed by dialysis against PBS. 

2.3. Cell lines 

The human melanoma cell line 518A2 which expresses high levels of HMW-MAA and 

M14, a human melanoma cell line with no detectable expression of HMW-MAA, were 

maintained in RPMI 1640 medium (Lonza, Verviers, Belgium). The medium was 

supplemented with 10% (v/v) FCS and 1% (v/v) antibiotic-antimycotic mix (both from 

Gibco, Paisley, UK). Both cell lines were cultured in a humidified atmosphere 

containing 5% CO2 and 95% ambient air at 37°C. 

2.4. Microsomal preparations 

Microsomal preparations were performed using ~5x107 cells according to the protocol 

described elsewhere 22. Protein concentration was determined using a bicinchoninic acid 

(BCA) protein assay (Pierce). 

2.5. Phage display, affinity selection and sequence analysis 

Peptide ligands for the mAb VT80.12 were selected from a pVIII-15mer phage display 

peptide library 23. Therefore, the mAb VT80.12 was immobilized and incubated with 

~1010 phages. Phages displaying peptides that bound to the mAb VT80.12 were eluted 

and amplified in E. coli TG1. 

Peptide ligands for the mAb VF1-TP43 were selected using the Ph.D.-12™ Phage 

Display Peptide Library, a pIII-12mer library, purchased from New England Biolabs 

(Ipswich, MA, USA). Biopanning was executed following the manufacturer’s 

instructions. 
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After three rounds of selection, single phage clones that bound to the respective mAb 

were identified by phage ELISA and subsequently subjected for DNA sequencing. 

2.6. Synthesis of peptides 

The peptides GRQYYEGRKPDYRAAC (15/3/6) and NYQDLQRTHFKSGPGPGC 

(43.12p3) were synthesized using F-moc strategy by piCHEM (Graz, Austria). The 

purity of the peptides was ~95%, as assessed by HPLC. 

2.7. ELISA inhibition assay 

MaxiSorp immunoplates (Nunc, Rosklide, Denmark) were coated overnight (o/n) at 4°C 

with 4 µg/ml of mAb T61.5 in 50 mM Na-carbonate buffer, pH 9.6. Ten nanograms of 

biotinylated mAb were incubated with increasing concentrations (0, 10, 50, 100, and 

500 µg/ml) of synthetic peptides in TBST (0.5% (v/v) Tween-20) containing 1% (w/v) 

BSA o/n at 4°C. After blocking with TBST/3% (w/v) milk powder, plates were 

incubated for 3 h at RT with 100 µg/ml microsomal preparations diluted in TBST/1% 

BSA. After washing, the mAb preincubated with peptides was added and incubation 

was continued for an additional hour at RT. Bound biotinylated mAb was detected 

using alkaline phosphatase (AP)-conjugated streptavidin (GE Healthcare, Little 

Chalfont, UK), followed by addition of p-nitrophenylphosphate (Sigma). Absorbance 

was measured at 405 nm. Percentage of inhibition was calculated as follows: 100 – (OD 

(inhibited)/OD (uninhibited) x 100). 

2.8. Conjugation of peptides 

Peptides were coupled to the carrier protein keyhole limpet hemocyanin (KLH; Sigma, 

St. Louis, MO, USA) or bovine serum albumin (BSA; Pierce) using the 

heterobifunctional crosslinker reagent m-maleimidobenzoyl-N-hydroxysuccinimide 

(MBS; Pierce) as described previously 13. Conjugation of the peptides to the carrier 

proteins was verified in a dot blot assay. Therefore, peptide conjugates were dotted onto 

nitrocellulose (NC) membrane (Whatman, Dassel, Germany). After blocking with 

PBST (0.5% Tween-20) containing 3% milk powder, NC strips were incubated with 

biotinylated mAb, followed by AP-conjugated streptavidin (GE Healthcare). Color 

development was done with 5-bromo-4-chloro-3-indolyl phosphate/nitroblue 

tetrazolium. 
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2.9. Immunizations 

New Zealand white rabbits were immunized at Charles River Laboratories (Kisslegg, 

Germany). Immunizations were done thrice in 14- to 28-day intervals (day 1, 29, and 

43) each with 200 µg of the peptide-KLH conjugates or KLH alone adsorbed to CFA 

(first immunization) or IFA (second and third immunization). Serum samples were 

taken before treatment (preimmune serum) and ten days after the first (day 11) and 

second immunization (day 39). Rabbits were sacrificed two weeks after the third 

immunization (day 57). 

Female BALB/c (4 groups, n = 3; 6-8 weeks old; Charles River Laboratories, Sulzfeld, 

Germany) were immunized i.p. three times in 14-day intervals (day 1, 15, and 29) each 

with 15 µg of the peptide-KLH conjugates or KLH alone adsorbed to aluminium 

hydroxide (Alum; Serva, Heidelberg, Germany) in a total volume of 150 µl PBS 

solution. Sham-treated mice received PBS buffered alum only. Sera were taken from the 

tail vein on day 0 (preimmune serum), 22, and 41. Mice were treated according to 

European Union Rules of Animal Care, with permission 66.009/152-II/10b/2009 from 

the Austrian Ministry of Science. 

2.10. Purification of rabbit or mouse IgG Abs 

Total IgG from sera of rabbits were purified according to the protocol described 

elsewhere 13. 

For purification of mouse IgG Abs, serum samples taken after the third immunization or 

after sacrifice of mice were pooled for each group and diluted with an equal volume of 

binding buffer (20 mM Na-phosphate, pH 7.0). The HiTrap Protein G HP column (GE 

Healthcare) was equilibrated with binding buffer and the sample applied. Bound Abs 

were eluted with 100 mM glycine-HCl, pH 2.7 and neutralized by addition of 1 M Tris-

HCl, pH 9.0. 

Purification of rabbit or mouse IgG was monitored using nonreducing 8% SDS-PAGE. 

Protein concentration was determined by a BCA protein assay (Pierce). 
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2.11. Peptide specific Ab response 

MaxiSorp immunoplates (Nunc) were coated with 10 µg/ml peptide-BSA conjugates or 

KLH or BSA in 50 mM Na-carbonate buffer, pH 9.6, o/n at 4°C. Nonspecific binding 

sites were blocked with TBST/3% milk powder. 

Purified rabbit Abs were diluted at concentrations of 0.05, 0.1, 0.5, 1, 5, and 10 µg/ml in 

TBST/0.5% BSA, added to antigen-coated plates, and incubated for 2 h at RT. After 

washing, bound Abs were detected using AP-conjugated swine anti-rabbit IgG (Dako, 

Glostrup, Denmark) diluted 1:1000 in TBST/0.5% BSA. Color development was 

performed as described for the ELISA inhibition assay. 

Mouse sera were diluted 1:1000 in TBST/0.5% BSA and incubated for 2 h at RT. AP-

conjugated rabbit anti-mouse IgG + IgM (Jackson ImmunoResearch, West Grove, PA, 

USA) diluted 1:5000 in TBST/0.5% BSA was used as a second step Ab. Visualization 

of bound mouse Abs was performed as described above. 

2.12. HMW-MAA specific Ab response 

2.12.1. ELISA protocol 

For the detection of the HMW-MAA specific Ab response, HMW-MAA was purified 

from microsomal preparations as described for the ELISA inhibition assay. After 

blocking and catching, plates were incubated for 2 h at RT with increasing 

concentrations (12.5, 50, and 200 µg/ml) of purified rabbit Abs diluted in TBST/1% 

BSA. Bound IgG was detected as described for the peptide-specific Ab response. 

2.12.2. FACS protocol 

Flow cytometric analysis of melanoma cells stained with sera from immunized mice or 

purified Abs from immunized rabbits was performed as previously described 24. Briefly, 

5x105 cells were incubated for 1 h on ice with a 1:10 dilution of pooled mouse sera for 

each group or 100 µg purified rabbit Abs in 100 µl PBS/1% BSA. One microgram of 

mAb VT80.12 served as positive control staining of HMW-MAA. Cells were then 

washed twice with PBS/0.5% BSA and incubated for an additional 30 min on ice with 

FITC-labeled goat anti-mouse IgG or FITC-labeled goat anti-rabbit IgG (both diluted 

1:2000 in PBS/1% BSA; AbD Serotec, Düsseldorf, Germany). After washing, cells 

were resuspended in PBS/0.5% BSA and 20,000 gated events were analyzed by flow 

cytometry on a BD FACScanto using BD FACSDiva software (BD Biosciences, 
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Franklin Lakes, NJ, USA). Histogram overlays were done applying FlowJo software 

(Tree Star, Ashland, OR, USA). 

2.12.3. Immunohistochemistry (IHC) protocol 

Immunohistochemical staining of established 518A2 tumor tissues was performed as 

described by Wagner et al. 14. Briefly, tumor sections were incubated with either 

blocking buffer (negative control), 30 µg/ml biotinylated mAb VT80.12 (positive 

control) or 100 µg/ml biotinylated purified Abs of rabbits either immunized with 

15/3/6-KLH conjugate or KLH. After washing with TBST, slides were incubated with 

StreptABComplex/HRP (Dako) for 30 min. Specific Ab binding was visualized by a 

DAB chromogen solution (Dako) following hematoxylin counterstaining. Stained slides 

were viewed by an Olympus Vanox AHBT3 microscope and photographed with a Zeiss 

AxioCam MRc5 camera. 

2.13. Inhibition of tumor cell growth in vitro 

Tumor cells were seeded in 96-well tissue culture plates (Costar; Corning, NY, USA) at 

1500 cells/well. Cells were allowed to adhere o/n at 37°C. Purified Abs from mice 

immunized with either the 15/3/6-KLH conjugate or KLH were added at increasing 

concentrations (0, 0.01, 0.1, and 1 mg/ml) and incubation was continued for an 

additional 72 h at 37°C. Cells were pulsed with 0.5 µCi of [methyl-3H]thymidine/well 

(GE Healthcare) for another 6 h at 37°C and then harvested. Incorporated [3H]thymidine 

was measured by a Wallac MicroBeta TriLux 1450 counter (PerkinElmer, Waltham, 

MA, USA). Percentage of inhibition of proliferation was calculated by comparing the 

cpm values of treated cells with those of untreated cells, which were set at 100%. 
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3. Results 

3.1. Identification of peptide ligands 

Biopanning of the mAb VT80.12 was performed with a linear pVIII-15mer phage 

display peptide library. After three rounds of selection, the total number of phages that 

bound to the mAb VT80.12 was increased from 1x105 CFU/ml in the 1st round to 1x109 

CFU/ml in the 3rd round. Twenty individual phage clones of each the 2nd and 3rd round 

were tested for their ligand specificity in phage ELISA. Among these, eighteen (2nd 

round) and nineteen (3rd round) phage clones bound to the mAb VT80.12. DNA 

sequencing of these 37 phage clones yielded one peptide sequence 

GRQYYEGRKPDYRAA (“15/3/6”). Phages (106-1013 CFU/ml) displaying this 

sequence showed a concentration-dependent inhibition up to 70% in ELISA 

experiments (data not shown). Therefore, the peptide 15/3/6 was chemically synthesized 

with an additional C-terminal cysteine residue for conjugation purposes. In ELISA 

inhibition experiments, the peptide inhibited the binding of the mAb VT80.12 to the 

HMW-MAA up to 93% (Fig. 1A). 

Biopanning of the mAb VF1-TP43 was performed with a linear pIII-12mer phage 

display peptide library. Three rounds of selection yielded an increase of phage titer from 

1x105 pfu/ml (1st round) to 3x109 pfu/ml (3rd round). Among 30 tested phage clones, 20 

were specifically recognized by the mAb VF1-TP43 in phage ELISA. DNA sequencing 

yielded one peptide sequence NYQDLQRTHFKS (“43.12p3”). In a competitive ELISA 

experiment, binding of the phage displayed peptide to the mAb VF1-TP43 was reduced 

up to 33% by a HMW-MAA containing cell lysate (data not shown). The peptide 

43.12p3 was synthesized with a GPGPG-linker and an additional C-terminal cysteine 

residue. In subsequent inhibition experiments, this peptide inhibited the binding of the 

mAb VF1-TP43 to the HMW-MAA up to 100% (Fig. 1B). 

3.2. Peptide specific Ab response in rabbits 

The peptide 15/3/6 was coupled to KLH or BSA as carrier protein. Conjugation to the 

carrier protein was confirmed in a dot blot assay (data not shown). New Zealand white 

rabbits were immunized with the conjugate 15/3/6-KLH or the carrier protein KLH 

alone. After three immunizations, Abs were purified using a HiTrap protein A HP 

column. Twenty milliliters of serum yielded ~20 mg of IgG Abs. The purity was greater 

than 95% as confirmed by SDS-PAGE (data not shown). Peptide specific Abs were 



Chapter III 
Specificity of mimotope-induced anti-HMW-MAA antibodies does not ensure biological activity  

82 

determined by ELISA after incubation of coated peptide-BSA conjugate, BSA or KLH 

with purified IgG Abs. Both, 15/3/6- and KLH-specific Abs were already detectable at a 

concentration of 0.05 µg/ml and increased in a dose- dependent manner (Fig. 2). Abs 

purified from the KLH-immunized rabbit did not bind to the peptide. No Abs directed 

against BSA could be determined. 

3.3. HMW-MAA specific Ab response in rabbits 

HMW-MAA specificity of rabbit Abs was determined in ELISA by testing their binding 

ability to the HMW-MAA. Binding to the HMW-MAA negative cell line M14 was 

detected for both, the peptide-conjugate and the KLH-induced Abs (Fig. 2). Even when 

the HMW-MAA catching mAb was directly incubated with purified rabbit Abs and 

subsequently detected with AP-conjugated swine anti-rabbit IgG, high background 

levels were measured (data not shown). 

In a second approach, HMW-MAA specificity of rabbit Abs was investigated by FACS 

analysis. The HMW-MAA positive human melanoma cell line 518A2 (HMW-MAApos) 

or the HMW-MAA negative human melanoma cell line M14 (HMW-MAAneg) were 

incubated with each 100 µg purified rabbit Abs and detected with a FITC-conjugated 

goat anti-rabbit IgG. As expected, the mAb VT80.12 specifically bound to the HMW-

MAApos, but not to the HMW-MAAneg cells. However, HMW-MAA specificity of the 

15/3/6-KLH conjugate induced Abs could not be observed, as Abs induced by KLH 

showed a similar staining pattern to HMW-MAApos as well as to HMW-MAAneg cells 

(Fig. 3A). 

In a third approach, we used solid 518A2 tumors established in C.B.17 SCID/SCID 

mice 14 to detect HMW-MAA reactive rabbit Abs by IHC. Whereas staining of 

melanoma cells was observed with the biotinylated mAb VT80.12, none was observed 

with either an isotype-matched control mAb (data not shown) or PBS buffer. Also in 

this setup, we detected a high background staining of anti-KLH Abs on 518A2 tumor 

tissue, and therefore no HMW-MAA specific anti-15/3/6 Abs (Fig. 3B). 
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3.4. Peptide specific Ab response in BALB/c mice 

The peptides 15/3/6 or 43.12p3 were coupled each to KLH or BSA. Female BALB/c 

mice (4 groups, n = 3) were immunized with 15 µg of the peptide-KLH conjugates, 

KLH or were sham-treated with PBS buffered alum. Serum samples of each group were 

tested for the presence of peptide specific Abs in ELISA. Peptide specificity was 

confirmed for both anti-15/3/6-KLH and anti-43.12p3-KLH Abs as they bound to the 

corresponding peptide-BSA conjugates (Fig. 4). As expected, KLH specific Abs were 

detected in the KLH-group (Fig. 5) as well as in the groups immunized with the 

peptide-KLH conjugates (data not shown). Sham-treated mice did not develop Abs 

against the peptides 15/3/6 or 43.12p3, KLH or BSA (data not shown). 

3.5. HMW-MAA specific Ab response in BALB/c mice 

Preimmune serum samples or serum samples after the third immunization of individual 

mice were pooled for each group. Serum pools were diluted 1:10 and incubated with 

HMW-MAApos or HMW-MAAneg cells. Bound Abs were detected with a FITC-labeled 

goat anti-mouse IgG by FACS analysis. None of the mouse Abs of preimmune serum 

pools showed reactivity to HMW-MAApos or HMW-MAAneg cells (data not shown). 

Immunization with the 15/3/6-KLH conjugate induced HMW-MAA specific Abs, 

whereas the 43.12p3-KLH conjugate did not (Fig. 5). KLH-induced Abs showed 

negligible background staining on HMW-MAApos as well as HMW-MAAneg cells. 

3.6. Inhibition of tumor cell growth 

The effect of anti-15/3/6-KLH Abs on tumor growth in vitro was determined by a 

[3H]thymidine proliferation assay. HMW-MAApos or HMW-MAAneg cells were 

incubated with increasing concentrations of purified mouse Abs. Upon treatment with 

anti-15/3/6 Abs, proliferation of HMW-MAApos cells was inhibited to a maximum of 

~17% (Fig. 6). Almost identical results were obtained, when either HMW-MAApos cells 

were treated with anti-KLH Abs or HMW-MAAneg cells were incubated with anti-

15/3/6 or anti-KLH Abs. Results given in Fig. 7 represent mean values of 3 independent 

experiments. 
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4. Discussion 

In this study we aimed to select two mimotopes defined by the anti-HMW-MAA mAbs 

VT80.12 and VF1-TP43 that should serve together with our previously described 

225D9.2+ mimotope 13,14 as components of a polymimotope vaccine against melanoma. 

We therefore screened two linear phage display peptide libraries (pVIII-15mer with 

mAb VT80.12, pIII-12mer with mAb VF1-TP43) yielding one peptide ligand for each 

mAb. Both peptides (15/3/6: ligand to VT80.12; 43.12p3: ligand to VF1-TP43) 

inhibited binding of the respective mAb to the HMW-MAA up to 100%, thereby 

proofing epitope mimicry and their definition as mimotopes. Upon immunization of 

either rabbits or BALB/c mice, each mimotope coupled to the carrier protein KLH 

demonstrated immunogenicity by inducing mimotope specific Abs. However, only the 

15/3/6-KLH conjugate induced HMW-MAA specific Abs in BALB/c mice, but these 

Abs failed to inhibit tumor cell proliferation in vitro. 

 

Epitope mimicry to HMW-MAA was confirmed for both peptides 15/3/6 and 43.12p3 

in ELISA inhibition experiments (Fig. 1). Thus, constraints referring to phage display 

were preliminary excluded. 

An important issue of this study was the applied animal model in the context of the 

carrier protein used for vaccination. Initially, immunization experiments were 

performed in rabbits as high amounts of antibodies can be obtained from the blood for 

subsequent in vitro tests. Although mimotope specific Abs were induced for the tested 

mimtope, these showed no HMW-MAA specificity in ELISA experiments (Fig. 2). 

Instead, we observed a high background staining of KLH specific Abs on the HMW-

MAA-positive or -negative cell lysate, as well as on the HMW-MAA catching mAb. 

Similarly, FACS staining (Fig. 3) as well as immunohistochemistry (Fig. 4) failed to 

confirm HMW-MAA specific Abs. Immunizations were then repeated in BALB/c mice 

to assess whether the results from the rabbit immunizations were attributed to the carrier 

protein KLH or the applied animal model. Using this model, FACS analysis confirmed 

HMW-MAA specificity of mimotope-induced Abs (Fig. 6), indicating that the 

undesired binding of rabbit anti-KLH Abs was likely attributed to the rabbit Abs and 

not to the carrier protein KLH. However, we cannot exclude a possible contribution of 

the used adjuvants (CFA/IFA in rabbits vs. alum in BALB/c mice) to the unspecific 

binding of rabbit anti-KLH Abs, as adjuvants are known to differentially deliver antigen 
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and activate the immune system 25. We therefore conclude that the choice of carrier 

protein has an impact on the outcome of vaccination and might depend on the used 

immunization model. 

Although the 43.12p3-KLH conjugate induced mimotope specific mouse Abs, these 

failed to cross-react with the natural antigen HMW-MAA (Fig. 6), indicating that 

immunogenicity of mimotopes does not necessarily correlate with their specificity. The 

discrepancy between epitope specificity of an anti-HMW-MAA mAb and epitope 

specificity of HMW-MAA mimotope-induced Abs is best described by previous studies 

of Wagner et al. 13 and Hafner et al. 26. Both studies deal with the identification of 

distinct HMW-MAA mimotopes which were defined by the same mAb (225.28S) and 

coupled to the same carrier protein (tetanus toxoid, TT) for subsequent immunization 

experiments in rabbits. Using the identical immunization protocol, a HMW-MAA 

specific Ab response was only obtained upon immunization with the mimotope-TT 

conjugate described by Wagner et al. 13. These findings clearly indicate that – despite 

conforming affinity selections as well as conforming immunization protocols – not 

every mimotope truly mimics the relevant epitope of the original antigen. On the one 

hand, such constraints might originate during affinity selection as phage displaying 

peptides may bind to residues of the mAb that are not part of the paratope. Although 

such peptides might inhibit the binding of their defined mAb to the original epitope, 

these will fail to induce a specific immune response to the original antigen. In addition, 

B cell epitopes are known to be conformational in nature 27. Hence, it is possible that 

mAbs recognize certain conformations of epitopes which are not displayed in the same 

structural context by the natural antigen. The above-described constraints probably 

outline the major pitfall of the phage display technique that complicates the selection of 

“true“ mimotopes, solely based on their binding characteristics to mAbs. On the other 

hand, it is to state that immunization with mimotopes does not guarantee the induction 

of Abs that display the appropriate paratope to the natural antigen, emphazising also a 

possible contribution of the used animal model to the outcome of mimotope 

vaccination. This might be of particular relevance for other investigators who apply 

mimotopes for vaccination strategies. 

Immunization of BALB/c mice with the 15/3/6 mimotope conjugate resulted in the 

induction of mimotope- and HMW-MAA specific Abs (Fig. 5 and 6). However, these 

Abs showed no anti-tumor activity in in vitro proliferation assays (Fig. 7). Importantly, 

the mAb VT80.12 itself does not inhibit tumor cell proliferation neither directly nor 
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indirectly by mediating ADCC or CDC 28. We therefore have to question whether anti-

tumor activity in vivo of the mimotope defining mAb should be a prerequisite to induce 

antibodies with tumor inhibiting properties. As a matter of fact, certain mAbs (e.g. 

Rituximab 29-32, Cetuximab 33,34, Trastuzumab 11,35) which are currently applied for 

cancer therapies and successfully served as sources to generate mimotope vaccines with 

anti-tumor activity in vitro fulfill this requirement even if in vivo results for the these 

mimotope vaccines are not available yet. As reported by Hafner et al., passive 

administration of the anti-HMW-MAA mAb 225.28S significantly reduced tumor 

volume in a human melanoma xenotransplant SCID mouse model, although this mAb 

had no effect on human melanoma cells in vitro 36. This supports the hypothesis of 

using mAbs with in vivo rather than in vitro anti-tumor activity for the selection of 

mimotopes. 

To date, only one mimotope-based vaccine targeting the HMW-MAA has demonstrated 

anti-tumor activity in vitro 13 and in vivo 14. The identification of additional HMW-

MAA mimotopes as components of an effective polymimotope vaccine might depend 

on the in vivo anti-tumor activity of the selecting mAbs per se but also on the used 

animal model as well as on the paratope conformation of the mimotope-induced Abs. In 

addition, we suggest that the efficacy of every mimotope based vaccine should be 

evaluated in an animal model by active immunization. 
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Figures 

Fig. 1. Inhibition of mAb binding to HMW-MAA by synthetic peptides. Microtiter 

plates were coated with mAb TP61.5 and incubated with microsomal preparation of 

518A2 melanoma cells to catch HMW-MAA. Biotinylated mAbs were preincubated 

with increasing concentrations of generated peptide mimics, followed by incubation 

with HMW-MAA. (A) Biotinylated mAb VT80.12 was preincubated with synthetic 

peptide 15/3/6 ( ) and a control peptide ( ). (B) Biotinylated mAb VF1-TP43 was 

preincubated with synthetic peptide 43.12p3 ( ) as well as the control peptide ( ). 

Binding of biotinylated mAbs was measured using an AP-conjugated streptavidin. 

Percentage of inhibition was calculated as follows: 100 – (OD (inhibited)/OD 

(uninhibited) x 100). 
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Fig. 2. Antigen and HMW-MAA specific immune response of immunized rabbits. Left 

panel: Microtiter plates were coated with 15/3/6 coupled to BSA, KLH, or BSA and 

incubated with increasing concentrations of purified rabbit Abs from immunizations 

with 15/3/6-KLH or KLH to detect peptide and KLH specific Abs. Right panel: 

Microtiter plates were coated with mAb TP61.5 and incubated with microsomal 

preparations of the melanoma cell lines 518A2 or M14. Purified rabbit Abs were 

analyzed by administration of increasing Ab concentrations. 
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Fig. 3. HMW-MAA specific Ab response determined by FACS and IHC. (A) The 

human melanoma cell lines 518A2 and M14 were each incubated with 1 µg mAb 

VT80.12 (as positive control to detect HMW-MAA) or 100 µg purified rabbit Abs from 

immunizations with 15/3/6-KLH or KLH. Bound antibodies were detected with FITC-

labelled goat anti-mouse IgG or FITC-labelled goat anti-rabbit IgG. Histogram overlays 

show unstained (white) vs. stained cells (grey). (B) Immunohistochemistry on 518A2 

tumor tissues of C.B.17 SCID/SCID mice 14. HMW-MAA staining was done with PBS 

buffer (negative control), mAb VT80.12 (positive control), and biotinylated IgG 

fraction of either 15/3/6-KLH antiserum (anti-15/3/6) or KLH antiserum (anti-KLH). 

Bound Abs were detected with StrepAB/HRP and visualized by DAB-chromogen 

solution and subsequent hematoxylin counterstaining. 
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Fig. 4. Antigen specific immune response of immunized BALB/c mice. Serum samples 

from day 0 (preimmune serum; white bars), day 22 (grey bars), and day 41 (black bars) 

were tested in ELISA. Results are shown for each mouse individually. Peptide 

specificity of sera from mice immunized with 15/3/6-KLH or 43.12p3-KLH was 

assessed using the respective peptide-BSA conjugates. Sera from KLH immunized mice 

were tested for specificity of KLH. 
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Fig. 5. HMW-MAA specific immune response of immunized BALB/c mice. Human 

melanoma cell lines 518A2 and M14 were either incubated with 1 µg mAb VT80.12 (as 

positive control) or a 1:10 diluted serum pool of each group. Bound antibodies were 

detected with FITC-labelled goat anti-mouse IgG. Histogram overlays show unstained 

(white) and stained cells (grey). 
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Fig. 6. Inhibition of cell proliferation in vitro. [3H]Thymidine proliferation assay 

demonstrating the effects of the purified mouse Abs on HMW-MAA expressing 

melanoma cells. The 518A2 or M14 cells were incubated with increasing concentrations 

of purified Abs from the mouse immunizations with 15/3/6-KLH or KLH for 72 h and 

pulsed with [3H]thymidine. Data are shown in percentage of inhibition compared with 

untreated cells; cpm values of untreated cells were set at 100%. The values are the mean 

of three independent experiments. Percentage of inhibition was calculated as follows: 

100 – (OD (inhibited)/OD (uninhibited) x 100). 
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Concluding Remarks 
 

The aim of this thesis was the generation of a polymimotope vaccine against malignant 

melanoma. This vaccine should target several epitopes of the HMW-MAA, a tumor-

antigen which is highly expressed on human melanoma cells, using the mimotope 

approach to elicit a strong humoral anti-HMW-MAA immune response. The efficacy of 

this polymimotope vaccine should then be tested in a syngenic melanoma mouse model. 

The results obtained with this thesis should provide new know-how regarding the 

superior efficacy of multi- over mono-epitope targeting vaccines. 

 

Limitations regarding (1) the application of different panning strategies using phage 

display peptide libraries to identify mimotopes, (2) the presence of in vitro or in vivo 

biological activity of an antibody which is used for the identification of mimotopes, (3) 

the animal model used for immunization to obtain tumor antigen specific antibodies, 

and (4) the possible discrepancy between immunogenicity and antigenicity of 

mimotopes have been extensively discussed in chapter II and III. 

 

In addition to the already discussed limitations, there are three issues that need to be 

addressed. 

First, regarding phage display, the efficacy of selection can be enhanced to a certain 

extent by manipulating stringency which is the degree to which peptides with higher 

fitness are favored over peptides with lower fitness and is inversely proportional to yield 

which is the fraction of phage particles with a given fitness that survive selection [1,2]. 

Usually, peptides with high fitness should be isolated, but stringency can only be 

increased to a certain extent, as increasing stringency usually implicates decreased 

yield. Therefore, high yield of the fittest clones is of paramount importance in the first 

round of selection, whose input consists of all clones of a certain phage display peptide 

library [2]. Considering the facts that each clone is represented by only 100 phage 

particles on average and the yield for the fittest clones is sometimes not greater than 

1%, it is very likely that such clones are going to be lost during the first round of 

selection and can therefore never be recovered [2]. Clones that are obtained after the 

first round of selection can be amplified and are thus represented by millions of phages 

which can be applied in following rounds of selection. Thereafter, yield can be 
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decreased in favor of high stringency for the subsequent rounds. However, there is a 

limit to stringency, because in practice selection techniques are imperfect and there is an 

unavoidable background yield of all phages regardless of their fitness [2]. If stringency 

is set too high, the yield of a specifically selected phage will fall far below the 

background of a nonspecifically isolated phage, and all power of discrimination in favor 

of high fitness is lost [2]. 

 

Second, regarding the fact that a peptide which binds its selector antibody (thus 

qualifying it as an antigenic mimic) is not able to elicit antibodies directed against the 

target antigen when used to immunize naive animals (thus failing as an immunogenic 

mimic), there are additional considerations which should be mentioned [2]. 

Small peptides are often flexible and might adopt a certain conformation when binding 

the selector antibody but other conformations when eliciting new antibodies upon 

immunization [3,4]. Therefore, only few of these antibodies, if any, would cross-react 

with the authentic epitope. Furthermore, a peptide might be an antigenic mimic without 

being a true structural mimic. Such a peptide would bind the selector antibody in an 

entirely different way than does the original authentic epitope, via altogether different 

interactions [2]. 

However, the induction of mimotope specific antibodies is a much more difficult 

process and varies considerably from one mimotope to another. This may be reasonable 

since the immune system can differentiate different antigens and produces very different 

responses [5]. 

 

Third, as short synthetic peptides representing B cell epitopes, continuous/linear or 

discontinuous/conformational, are generally poor immunogens, they require conjugation 

to a carrier protein providing T helper cell epitopes and usually the co-administration of 

an adjuvant in order to induce an antibody response [6-8]. 

Because it is now difficult to obtain carriers such as tetanus toxoid (TT) or diphtheria 

toxoid, it seems to be a good and cheap alternative to use KLH, as it is a large (>2000 

kDa), highly glycosylated protein frequently used as a carrier protein in animals and 

humans due to its potent immunogenicity [9,10]. Nevertheless, there are epitopes on the 

surface of KLH that cross-react with a variety of different carbohydrate antigens [10]. 

May et al. immunized mice with mimotopes, which were identified for the 

glucuronoxylomannan (GXM) component of the capsular polysaccharide of 
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Cryptococcus neoformans, conjugated to KLH as carrier. They observed that KLH 

alone induced antibodies that cross-reacted with GXM, but did not confer protection 

against cryptococcal infection, suggesting that the cross-reactive epitope on KLH was 

not protective [10]. 

Additionally, different carriers may influence the immunogenicity of a mimotope 

conjugate. In this concern, Li et al. showed that antibodies induced upon immunization 

of mice with a CD20 mimotope coupled to KLH were capable of mediating more 

efficient complement killing of CD20+ cells when compared to the antibodies from mice 

vaccinated with the respective TT-conjugate [11]. Wondimu et al. observed the opposite 

when using GD2 ganglioside mimotopes coupled to KLH or synthesized as MAP 

(multiple-antigen peptides). Here, the KLH-conjugate was less efficient than the MAP 

[12]. 

In conclusion, the immunogenicity of a mimotope conjugate can be increased by using a 

correct carrier and caution needs to be taken when creating vaccines for carbohydrate 

antigens using KLH as carrier protein [10-12]. 
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