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Abstract

This thesis is devoted to the implementation and assessment of three wave func-
tion based methods for solid state systems under periodic boundary conditions:
(i) Second-order Møller-Plesset perturbation theory (MP2), (ii) Random phase
approximation plus second-order screened exchange (RPA+SOSEX), and (iii)
Coupled-cluster singles and doubles (CCSD).

The first part briefly reviews the employed theoretical and computational
methods. The implemented expressions of the Hartree-Fock, MP2, RPA+SOSEX
and CCSD theories are derived. Natural orbitals are introduced and approxi-
mated at the level of MP2. Moreover, we explain the evaluation of the required
quantities in the framework of the projector-augmented wave (PAW) method
as implemented in the Vienna ab-initio simulation package (VASP).

The second part summarizes the results that have been obtained at the dif-
ferent levels of theory. Structural properties, atomization energies and quasi-
particle band gaps have been calculated using HF and MP2 for archetypical
semiconductors and insulators. It is shown that MP2 tends to overcorrelate
strongly screening materials and undercorrelate weakly screening materials.
This leads to an over- and underestimation of lattice constants for weakly-
and strongly screening materials, respectively. The RPA+SOSEX method
was employed for the evaluation of total correlation energies of atoms, atom-
ization energies of small molecules, as well as lattice constants and atomization
energies of a series of semiconductors and insulators. We show that the intro-
duction of second-order screened exchange lifts some deficiancies of the RPA,
such as the underbinding of molecules and solids, and the overestimation of the
total correlation energies. Finally, using CCSD and MP2 natural orbitals our
CCSD implementation was tested for the LiH molecule as well as solid. Our
results agree very well with results that have been obtained using quantum
chemical codes.
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Zusammenfassung

Diese Doktorarbeit befasst sich mit der Implementierung und Evaluierung
von drei wellenfunktionsbasierten Methoden für Festkörper unter periodis-
chen Randbedingungen: (i) Zweite Ordnung Møller-Plesset Störungstheorie
(MP2), (ii) Random phase approximation plus second-order screened exchange
(RPA+SOSEX), und (iii) Coupled-cluster singles and doubles (CCSD).

Der erste Teil erklärt die verwendeten theoretischen sowie computerori-
entierten Methoden. Die implementierten Ausdrücke der Hartree-Fock, MP2,
RPA+SOSEX und CCSD theorien werden teilweise abgeleitet. Natural orbitals
werden eingeführt und auf der Ebene von MP2 approximiert. Ausserdem wird
die Berechnung der benötigten Ausdrücke im Rahmen der projector-augmented
wave (PAW) Methode, welche im Vienna ab-initio simulation package (VASP)
implementiert ist, erörtert.

Der zweite Teil beinhaltet die numerischen Ergebnisse der verschiedenen
Methoden und deren Interpretation. Gitterkonstanten, Bulkmoduli, Atom-
sierungsenergien und Quasiteilchen Bandlücken wurden mit Hilfe von HF und
MP2 für eine Serie von Halbleitern und Isolatoren berechnet. Wir zeigen
dass MP2 stark abschirmende Materialien überkorreliert und schwach abschir-
mende Materialien unterkorreliert. Dies führt zu einer Über- bzw. Unter-
schätzung von Gitterkonstanten für schwach bzw. stark abschirmende Mate-
rialien. RPA+SOSEX wurde verwendet um totale Korrelationsenergien von
Atomen, Atomisierungsenergien von kleinen Molekülen, sowie Gitterkonstan-
ten und Atomisierungsenergien von Halbleitern und Isolatoren zu berechnen.
Es wird gezeigt das die Berücksichtigung von SOSEX mehrere Probleme der
RPA löst. Insbesondere korrigiert SOSEX die Tendenz der RPA zur Unter-
schätzung von Bindungsenergien und Überschätzung von totalen Korrelation-
senergien. Schlussendlich wird die CCSD Implementierung mit Hilfe von MP2
natural orbitals für das LiH Molekül und den LiH Festkörper getestet. Die
CCSD Ergebnisse stimmen gut mit quantenchemischen Berechnungen überein.
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Chapter 1

Introduction

Computational materials science and quantum chemistry aim at a realistic de-

scription of matter at the level of quantum mechanics. Since the solution of the

full Schrödinger equation is impossible for anything but the smallest systems,

approximate methods are required that ideally achieve two goals: (i) high ac-

curacy, or at least a well controlled error, and (ii) low computational demands.

Unfortunately, the scaling of the computational effort with respect to the sys-

tem size is almost always less favourable for more accurate methods. However,

with the increase in available computer power during the last decades, highly

accurate methods become tractable and hence attract increased attention. In

the field of computational quantum chemistry a systematic hierarchy of highly

accurate methods for the description of the ground state energy of a many-

electron system is well established. This hierarchy starts from the one-electron

Hartree-Fock (HF) approximation that neglects electron correlation and ends

with the exact non-relativistic full configuration interaction (full CI) method.

In between HF and full CI, two distinct series of approximations exist: (i)

The Møller-Plesset perturbation theory attempts to construct a converging

series ({MP1, MP2, .., MP∞}) of approximations to the exact full CI limit.

Although the series is expected to converge for simple semiconductors and in-

sulators, metallic systems will always yield a diverging correlation energy at

any order n. (ii) Coupled-cluster theory constructs a series of approximations

({CCS, CCSD, .., CCSDT..N}) that will at N -th order always recover the

full CI limit, where N is the number of electrons. The complexity along these

series of approximations, however, increases significantly and more accurate

methods tend to scale quite unfavorably with respect to increasing system

1



2 Chapter 1. Introduction

size. As such, these correlated wave function methods (MP2, CCSD) have not

yet been applied to extended systems. The present work is devoted to the

implementation and evaluation of

• second-order Møller-Plesset perturbation theory (MP2)

• coupled-cluster singles and doubles (CCSD) theory, as well as

• an approximation to CCSD termed RPA+SOSEX

for solid state systems. The corresponding methods were coded and imple-

mented in the Vienna ab-initio simulation package (VASP). The present thesis

is organized as follows: In the first part, a brief review of the employed theo-

retical and computational methods is given. The second part presents results

obtained using MP2, RPA+SOSEX and CCSD for periodic systems as well as

molecules.



Part I

Theory
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Chapter 2

The many-particle Schrödinger

equation

The basic problem in theoretical condensed matter physics and quantum chem-

istry is to solve the many-particle Schrödinger equation, which can be written

as

HΨ(R1, ..,RM , r1, .., rN) = ih̄
∂

∂t
Ψ(R1, ..,RM , r1, .., rN) (2.1)

Here Ri and rj denote the positions of the M nuclei and N electrons, respec-

tively. Any direct analytical or numerical approach to solve this equation for

anything but the smallest systems fails. Nevertheless it is possible to construct

approximations to Eq. (2.1), that are applicable to a large number of problems

in solid state physics and quantum chemistry.

2.1 Born-Oppenheimer approximation

Since the mass of the nuclei is much larger than the mass of the electron

(mnucleus >> melectron) one can assume that the electrons are always in the

electronic ground state and adiabatic equilibrium with respect to the atomic

positions. This allows to decouple the electronic and nuclear part of the wave

function and yields

Ψ(R1, ..,RM , r1, .., rN) = Ψ(r1, .., rN |R1, ..,RM)Φ(R1, ..,RM) (2.2)

where Ψ(r1, .., rN |R1, ..,RM) and Φ(R1, ..,RM) are the electronic and nuclear

wave functions, respectively. Ψ(r1, .., rN |R1, ..,RM) depends only parametri-

5



6 Chapter 2. The many-particle Schrödinger equation

cally on Ri. Furthermore the ions can be described as classical particles due

to their large mass. Hence the total energy of a system reads

Etot(R1, ..,RM , Ṙ1, .., ṘM) =T (Ṙ1, .., ṘM) + Enuc−nuc(R1, ..,RM)

+
〈
Ψ(r1, .., rN |R1, ..,RM)|Hel|Ψ(r1, .., rN |R1, ..,RM)

〉
.

(2.3)

The first two terms denote the nuclear kinetic energy and the nucleus-nucleus

Coulomb interaction whereas the last term is the electronic Schrödinger equa-

tion.

2.2 The electronic Schrödinger equation

Solving the electronic Schrödinger equation

Hel|Ψ(r1, .., rN |R1, ..,RM)〉 = E|Ψ(r1, .., rN |R1, ..,RM)〉, (2.4)

constitutes the main problem in the field of solid state physics and quantum

chemistry. The electronic Hamiltonian, Hel, is given by

Hel = −
N∑

i=1

h̄2

2me
∆ri −

N∑

i=1

VN(ri) +

N∑

i=1

N∑

j>i

e2

|ri − rj|
, (2.5)

where the first and second term are one-electron operators and correspond to

the kinetic energy operator and the attractive nuclear potential, respectively.

The attractive nuclear potential is defined as

VN (r) = e2
M∑

a=1

Za

|Ra − r| , (2.6)

where Za is the atomic number of the a-th nucleus at position Ra. The Born-

Oppenheimer approximation allowed for reducing the dependence of Ψ on Ra

to this parametric form. The last term in Eq. (2.5) is a two-electron operator

and accounts for the electron-electron Coulomb interaction. Note that the

many-electron wave function, Ψ(r1, .., rN), is a function of 3N coordinates,

where N is the number of electrons. Any approach to solve Eq. (2.4) directly

is limited to a few electrons because of the high dimensionality of Ψ(r1, .., rN).

Therefore all methods that are applicable to a reasonable system size either do

not require the explicit knowledge of Ψ or find a reduced rank representation

of the many-electron wave function Ψ.



Chapter 3

Density functional theory

Density functional theory is a method that solves the electronic Schrödinger

equation [Eq. (2.4)] exactly without requiring the explicit knowledge of the

complete many-electron wave function Ψ.

3.1 Theorems by Hohenberg and Kohn

In 1964 Hohenberg and Kohn formulated two theorems that form the basis of

density functional theory (DFT) [1].

1. Every observable of a stationary quantum mechanical system is uniquely

determined only by its ground state density n. Therefore the energy of a

system can be written as a functional E of the density.

E[n] = 〈Ψ|H|Ψ〉

2. The exact ground state density is the one that minimizes E[n]:

E[n] = minΨ|n 〈Ψ|H|Ψ〉,

where minΨ|n denotes a minimization with respect to the wave function

Ψ that is consistent with the density n.

7



8 Chapter 3. Density functional theory

Kohn and Sham suggested to split up the functional E[n] into several contri-

butions, which can be written in the following form [2]:

E[n] = Tn[n] + Enn[n] + Ene[n] + Eee[n] + Exc[n]. (3.1)

Here Enn[n], Ene[n] and Eee[n] denote the nucleus-nucleus, the nucleus-electron

and the electron-electron Coulomb energies. Tn[n] is the kinetic energy of

non-interacting electrons. These terms can be calculated explicitly. The last

term in Eq. (3.1), Exc[n], is the exchange-correlation energy. It is implicitly

defined through Eq. (3.1), as the difference between the many-body ground

state energy, E[n], and the first four terms on the right-hand side. An explicit

expression for Exc[n] is not known.

Due to its complexity the correlation energy term and, sometimes, the

exchange energy term, are approximated. This is commonly done by intro-

ducing functionals Exc[n] that are exact for the homogeneous electron gas.

Such functionals have been proposed in various forms like LDA (local density

approximation) or GGA (generalized gradient approximation) and fulfill cer-

tain sumrules for the exchange and correlation hole, as well as asymptotically

known limits.

In Kohn-Sham density functional theory, the density of an N -electron sys-

tem is calculated as the sum over the densities of N one-electron orbitals,

n(r) =

N∑

i=1

ψ∗
i (r)ψi(r) (3.2)

The one-electron orbitals, ψi(r), are the solutions of the Kohn-Sham equations,

(
− h̄2

2m
∆r − VN (r) + VH(r) + vxc(r)

)
ψi(r) = ǫiψi(r), (3.3)

where VN is the external attractive potential of the nuclei as defined in Eq. (2.6)

and the Hartree potential, VH , reads

VH(r) = e2
∫
d3r′

n(r′)

|r− r′| . (3.4)

The exchange and correlation potential, vxc, is given by

vxc(r) =
δExc[n(r)]

δn(r)
. (3.5)



3.2 The LDA and GGA functionals 9

The one-electron wave functions in Eq. (3.3) are subject to the orthonormality

constraint ∫
d3r′ψ∗

i (r)ψj(r) = δij. (3.6)

3.2 The LDA and GGA functionals

The simplest form to approximate Exc is the local density approximation

(LDA),

ELDA
xc [n(r)] =

∫
ǫxc(n(r))n(r)d

3r, (3.7)

where ǫxc(n(r)) is the exchange-correlation energy density of the homogeneous

electron gas. ǫxc(n(r)) is known from Monte Carlo simulations [3]. Strictly

speaking it is not correct to assume that ǫxc(n(r)) depends only on the local

density in solids. Nevertheless the results are often in good agreement with

experiment, especially for metals. The LDA fails if the gradient of the density

becomes large.

A better approximation to Exc can be obtained by the additional inclusion

of a dependence on the local gradient of the density [4],

EGGA
xc [n(r)] =

∫
fxc (n(r), |∇n(r)|)n(r)d3r. (3.8)

This is commonly known as the generalized gradient approximation (GGA).

Like ǫxc(n(r)), fxc(n(r), |∇n(r)|) has to be parametrized by an analytical func-

tion to perform practical calculations. How the construction of such functionals

is done in detail is beyond the scope of this chapter. Presently the most com-

mon and most universal (or best balanced) functional is the one of Perdew,

Burke and Ernzerhof in Ref. [5]. This functional will be referred to as PBE-

functional in the following chapters.
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Chapter 4

Hartree-Fock theory

In contrast to DFT, which in principle allows to determine the exact ground

state density but not the many-electron wave function, Hartree-Fock (HF)

theory [6, 7] tries to approximate the “true” many-electron wave function. The

HF ansatz for the N -electron wave function reads

ΨHF(r1, .., rN) =
1√
N !

∣∣∣∣∣∣∣



ψ1(r1) .. ψN(r1)

.. .. ..

ψ1(rN) .. ψN(rN)




∣∣∣∣∣∣∣
. (4.1)

ΨHF(r1, .., rN) corresponds to a Slater determinant that is constructed from a

set of orthonormal one-electron orbitals (spin-orbitals) ψi(r) [8]. By construc-

tion, ΨHF is antisymmetric under exchange of two coordinates or orbitals,

as required for a fermionic wave function. The HF approximation neglects

electronic “correlation” completely, which is in fact defined as the difference

between the HF energy and the true many-body ground state energy. We will

come back to this point later.

Inserting ΨHF as ansatz into Eq. (2.4) yields the electronic energy expression

in the Hartree-Fock approximation

EHF = 〈ΨHF(r1, .., rN)|Hel|ΨHF(r1, .., rN)〉. (4.2)

By the application of Slater-Condon rules (see Appendix A) we can express

Eq. (4.2) in terms of spin-orbitals, ψi(r), to read

EHF =

N∑

i=1

∫
drψ∗

i (r)

[
− h̄2

2m
∆r − VN(r)

]
ψi(r) +

1

2

N∑

m=1

N∑

n=1

〈ψmψn||ψmψn〉 .

(4.3)

11



12 Chapter 4. Hartree-Fock theory

The first term in the above equation accounts for the kinetic energy of the

electrons. VN denotes the external attractive nuclear potential as defined

in Eq. (2.6). 〈ψmψn||ψmψn〉 are antisymmetrized electron repulsion (or two-

electron-four-orbital) integrals that are defined as

〈ψmψn||ψmψn〉 = e2
∫ ∫

dr1dr2

(
ψ∗
m(r1)ψ

∗
n(r2)ψm(r1)ψn(r2)

|r1 − r2|

−ψ
∗
m(r1)ψ

∗
n(r2)ψn(r1)ψm(r2)

|r1 − r2|

)
. (4.4)

Equations (3.4) and (4.4) allow for rearranging the last term on the right-hand

side of Eq. (4.3) as

1

2

N∑

m=1

N∑

n=1

〈ψmψn||ψmψn〉 =
1

2

N∑

m=1

∫
dr1ψ

∗
m(r1)VH(r1)ψm(r1)

+
1

2

N∑

m=1

∫
dr1

∫
dr2ψ

∗
m(r1)VX(r1, r2)ψm(r2),

(4.5)

where

VX(r1, r2) = −e2
N∑

n=1

ψ∗
n(r1)ψn(r2)

|r1 − r2|
. (4.6)

VH and VX are the Hartree and exchange potential, respectively. At this point

we emphasize three aspects of VX in the HF approximation (i) it is non-local,

(ii) it is a direct consequence of the antisymmetry of the wave function and

(iii) it cures the “unphysical” self-interaction of an electron that feels its own

Hartree potential exactly.

In principle, DFT accounts for the effects of VX as well, but in practice no

density functional approximation to VX is exact for anything but the homoge-

neous electron gas.

According to the variational principle, the Hartree-Fock energy is an upper

bound of the exact energy [9]. Therefore the “best” Hartree-Fock spin-orbitals

ψi(r) are those which minimize the Hartree-Fock energy, EHF. By varying the

orbitals until the energy is a minimum one obtains the so-called Hartree-Fock

integro-differential equation (Euler equation)

[
− h̄2

2m
∆r − VN(r)

]
ψi(r) + VH(r)ψi(r) +

∫
dr′VX(r, r

′)ψi(r
′) = ǫiψi(r), (4.7)
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where the orbitals are subject to the constraint to remain orthonormal

∫
drψi(r)

∗ψj(r) = δij. (4.8)

Solving Eq. (4.7) self-consistently yields the Hartree-Fock spin-orbitals, ψi, and

the corresponding orbital eigenenergies, ǫi. The N orbitals {ψ1, ψ2, ..., ψN}
with the the lowest eigenenergies {ǫ1, ǫ2, ..., ǫN} are called occupied orbitals.

All orbitals with higher eigenenergies are referred to as unoccupied or virtual

orbitals.

Equation (4.7) can be written in terms of the Fock operator, f̂i, to read as

f̂iψi(r) = ǫiψi(r), (4.9)

where f̂i operates on the i-th orbital and is implicitly defined through Eq. (4.7).

Canonical orbitals diagonalize the matrix elements of the Fock operator

f j
i = 〈ψj |f̂i|ψi〉 = δijǫi. (4.10)

|ΨHF〉 is the exact solution to the so-called Hartree-Fock Hamiltonian, H(0),

that is constructed from the sum of one-electron Fock operators [9]

H(0)|ΨHF〉 =
N∑

i=1

f̂i|ΨHF〉 = E(0)|ΨHF〉, (4.11)

where

E(0) =
occ.∑

i

ǫi. (4.12)

N.B. the Hartree-Fock energy, EHF, is not the sum of the occupied one-electron

eigenvalues

EHF 6=
occ.∑

i

ǫi, (4.13)

but

EHF =

occ.∑

i

ǫi −
1

2

occ.∑

jk

〈jk||jk〉. (4.14)
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Chapter 5

Correlation in wave function

based methods

The correlation energy, EC , is defined as the difference between the exact

electronic ground state energy, EGS, and the Hartree-Fock energy, EHF ,

EC = EGS − EHF . (5.1)

We know from the variational principle that EHF ≥ EGS. Therefore, the

correlation energy, EC , must be zero or negative. Correlation lowers the energy

compared to HF by allowing the electrons to remain spatially separated, a

requirement imposed by the repulsive electron-electron Coulomb kernel. In

fact, the Coulomb kernel, 1
|ri−rj |

, exhibits singularities at the collision points

between two electrons, rij = |ri−rj | = 0, implying that the Coulomb repulsion

at the collision points becomes infinite. To compensate for the infinite Coulomb

potential, the wave function is discontinuous at the collision points and thereby

develops an infinitely large kinetic energy density. This leads to the so-called

Kato cusp condition for the exact many-electron wave function that reads [10]

∂
(

Ψ(rij)

Ψ(0)

)

∂rij

∣∣∣∣∣∣
rij=0

= const. (5.2)

A single Slater determinant (as it is used in HF) does not have enough varia-

tional freedom to describe such a discontinuity. To this end, so-called excited

Slater determinants are added to the Hartree-Fock determinant as Ansatz for

the many-electron wave function. Excited Slater determinants, Ψab..e
ij..m, corre-

spond to Hartree-Fock determinants in which one, two,..., N occupied orbitals

15
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ψi, ψj , ..., ψm are replaced by virtual orbitals ψa, ψb, ..., ψe, respectively. Elec-

tron creation, p†a, and annihilation, pi, operators are used to construct excited

determinants by acting on a reference state |ΨHF〉,

|Ψa
i 〉 =p†api|ΨHF〉 (5.3)

|Ψab
ij 〉 =p†ap†bpipj|ΨHF〉 (5.4)

....

These singly, doubly, .., N -tuply excited determinants form a complete orthog-

onal basis for the many-electron wave function:

〈Ψab..e
ij..m|Ψa′b′..e′

i′j′..m′〉 =δi,i′δj,j′..δm,m′δa,a′δb,b′ ..δe,e′, and

〈ΨHF|Ψa..e
i..m〉 =0. (5.5)

We note that, all excited Slater determinants are eigenfunctions of H(0) as

defined in Eq. (4.11)

H(0)|Ψab
ij 〉 = Eab

ij |Ψab
ij 〉, (5.6)

where

Eab
ij =

(
occ.∑

k

ǫk

)
− ǫi − ǫj + ǫa + ǫb. (5.7)

This applies to any excited determinant, not just doubles, as exemplified in

the equations above.

5.1 Second-order Møller-Plesset perturbation

theory

Chr. Møller and M. S. Plesset derived in 1934 an expression for the ground state

energy from Rayleigh-Schrödinger perturbation theory [11]. In their derivation

the unperturbed Hamiltonian is chosen such that the Hartree-Fock energy

appears as the zero-order energy and the first-order contribution vanishes.

The second-order contribution to the energy is referred to as MP2 correlation

energy in the following. These days, the MP2 method is one of several post-

Hartree-Fock methods frequently used in the field of quantum chemistry. One

reason for the popularity of the MP2 method is its ability to capture Van

der Waals interactions that are not accounted for by the HF approximation.
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Moreover relative energies as well as bond-lengths are significantly improved

compared to HF, in particular for elements in the main group. Furthermore

the inclusion of higher orders of the perturbation series allows for systematic

studies, where MP2 constitutes only the second step after a HF calculation. In

the following, we will derive the MP2 energy in a slightly different manner than

outlined in Ref. [11], which, however, yields the same result [9]. We choose

the unperturbed Hamiltonian, H(0), to be the Hartree-Fock Hamiltonian [see

Eq. (4.11)]. Hence the unperturbed (λ = 0) and fully perturbed (λ = 1)

Hamiltonian read

H̄ = H(0) + λ(H −H(0)), where (5.8)

H denotes the electronic Hamiltonian [see Eq. (2.5)]. (H−H(0)) is also referred

to as fluctuation potential.

From perturbation theory we know that

(H(0) + λ[H −H(0)])(Ψ(0) + λΨ(1) + λ2Ψ(2)..) =(E(0) + λE(1) + λ2E(2)..)

× (Ψ(0) + λΨ(1) + λ2Ψ(2) + ..).

(5.9)

The essential assumption of perturbation theory is that the fluctuation po-

tential corresponds to a small perturbation to H(0), such that Eq. (5.9) con-

verges rapidly with respect to orders of λ. In Eq. (5.9), E(0) and Ψ(0) are

the lowest eigenvalue and the corresponding eigenfunction of the unperturbed

Hamiltonian, H(0) [see Eq. (4.11)], respectively. We know from Eq. (4.12) and

Eq. (4.11) that

E(0) =
occ.∑

i

ǫi (5.10)

and

Ψ(0) = ΨHF. (5.11)

Ψ(1) is expanded into a basis of excited Hartree-Fock determinants,

|Ψ(1)〉 = eT2 |ΨHF〉, (5.12)

where

eT2 = 1 +T2 +
1

2!
T2

2 +
1

3!
T2

3 + .. =

∞∑

k=0

1

k!
T2

k. (5.13)
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T2 is a double excitation operator that creates excited Slater determinants

with coefficients tabij :

T2|ΨHF〉 =
occ.∑

i<j

unocc.∑

a<b

tabij p
†
ap

†
bpipj |ΨHF〉 =

occ.∑

i<j

unocc.∑

a<b

tabij |Ψab
ij 〉. (5.14)

Up to N -tuply excited determinants are included in Ψ(1) that are constructed

from products of double-excitation operators e.g.

T2T2|ΨHF〉 =
occ.∑

i<j<k<l

unocc.∑

a<b<c<d

tabij t
cd
kl |Ψabcd

ijkl 〉, (5.15)

...,

where N is the number of electrons. The MP2 energy is defined as the sum of

E(i) truncated at second-order

EMP2 = E(0) + E(1) + E(2). (5.16)

Inserting the Ansatz for Ψ(1) from Eq. (5.12) into Eq. (5.9) yields

(H(0) + λ(H −H(0)))(|ΨHF〉+ λ
∣∣eT2ΨHF

〉
+ λ2Ψ(2) + ..) =

[
E(0) + λE(1) + λ2E(2) + ..

] (
|ΨHF〉+ λ

∣∣eT2ΨHF
〉
+ λ2Ψ(2) + ..

)
. (5.17)

Collating all terms from Eq. (5.17) linear and quadratic in λ results in

H(0)|eT2ΨHF〉+
(
H −H(0)

)
|ΨHF〉 = E(0)|eT2ΨHF〉+ E(1)|ΨHF〉 (5.18)

and

H(0)|Ψ(2)〉+ (H −H(0))|eT2ΨHF〉 = E(0)|Ψ(2)〉+ E(1)
∣∣eT2ΨHF

〉
+ E(2)|ΨHF〉,

(5.19)

respectively.

Multiplying Eq. (5.18) from the left with 〈Ψab
ij | yields

〈Ψab
ij |H(0)|eT2ΨHF〉︸ ︷︷ ︸

=Eab
ij t

ab
ij

+ 〈Ψab
ij |
(
H −H(0)

)
|ΨHF〉︸ ︷︷ ︸

=〈Ψab
ij |H|ΨHF〉

=

〈Ψab
ij |E(0)|eT2ΨHF〉︸ ︷︷ ︸

=E(0)tabij

+ 〈Ψab
ij |E(1)|ΨHF〉︸ ︷︷ ︸

=0

. (5.20)
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In the above equation the last term on the right-hand side vanishes due to the

orthogonality of the Slater determinants. It follows from Eqs. (5.7) and (5.10)

that

Eab
ij −E(0) = ǫa + ǫb − ǫi − ǫj . (5.21)

Solving Eq. (5.20) for tabij and inserting Eq. (5.21) yields the coefficients of Ψ(1)

tabij = −
〈Ψab

ij |H|ΨHF〉
ǫa + ǫb − ǫi − ǫj

. (5.22)

Employing Slater-Condon rules (see Appendix A) allows to express 〈Ψab
ij |H|ΨHF〉

in terms of one-electron orbitals

〈Ψab
ij |H|ΨHF〉 = 〈ab||ij〉 =e2

∫
dr1

∫
dr2

[
ψ∗
a(r1)ψ

∗
b (r2)ψi(r1)ψj(r2)

|r1 − r2|

−ψ
∗
b (r1)ψ

∗
a(r2)ψi(r1)ψj(r2)

|r1 − r2|

]
. (5.23)

In passing we note that the coefficients, tabij , fulfill the following permutation

symmetries

tabij = tbaji = −tabji = −tbaij . (5.24)

EMP2 can be calculated by multiplying Eq. (5.19) from the left with 〈ΨHF|,
which yields

〈ΨHF|H(0)|Ψ(2)〉︸ ︷︷ ︸
=〈ΨHF|E(0)|Ψ(2)〉

+ 〈ΨHF|(H −H(0))|eT2ΨHF〉︸ ︷︷ ︸
=〈ΨHF|H|eT2ΨHF〉−E(0)

= 〈ΨHF|E(0)|Ψ(2)〉

+ 〈ΨHF|E(1)
∣∣eT2ΨHF

〉
︸ ︷︷ ︸

=E(1)

+ 〈ΨHF|E(2)|ΨHF〉︸ ︷︷ ︸
=E(2)

. (5.25)

From Eq. (5.25) it follows that

〈ΨHF|H|eT2ΨHF〉 = E(0) + E(1) + E(2). (5.26)

Rearranging the above expression and inserting Eq. (5.16) yields

EMP2 = 〈ΨHF|H|eT2ΨHF〉 = 〈ΨHF|H|ΨHF〉+ EMP2
C , (5.27)

where

EMP2
C = 〈ΨHF|H|

∞∑

k=1

1

k!
T2

k|ΨHF〉. (5.28)
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Figure 5.1: MP2 direct (left) and exchange-like (right) term.

Hence, we find that the MP2 energy is the sum of the Hartree-Fock energy

plus the MP2 correlation energy, EMP2
C . Employing Slater-Condon rules (see

Appendix A) allows to express Eq. (5.28) in terms of spin-orbitals to read

EMP2
C =

1

4

occ.∑

ij

unocc.∑

ab

tabij 〈ij||ab〉. (5.29)

Inserting Eq. (5.22) into Eq. (5.29) yields the final MP2 correlation energy

expression

EMP2
C =

1

4

occ.∑

ij

unocc.∑

ab

|〈ij||ab〉|2
ǫi + ǫj − ǫa − ǫb

. (5.30)

One comment is in place here: In deriving Eqs. (5.30) and (5.22), we have

assumed canonical orbitals, which ensures that all contributions from single-

excitations vanish because of the Brillouin theorem, which reads [9]

〈Ψa
i |H|ΨHF〉 = fa

i = 0. (5.31)

Equation (5.30) can easily be generalized to non-spin-polarized systems

where it reads

EMP2
C =

occ.∑

ij

unocc.∑

ab

〈ij|ab〉(2〈ab|ij〉 − 〈ba|ij〉)
ǫi + ǫj − ǫa − ǫb

. (5.32)

In the above equation, i, j and a, b denote occupied and unoccupied spatial

orbitals, respectively.

In the field of quantum chemistry, Goldstone diagrams are used to express

algebraic expressions such as Eq. (5.32) [9]. Figure 5.1 shows the Goldstone
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diagrams corresponding to Eq. (5.32). The direct and exchange-like diagrams

correspond to

EdMP2
C =

occ.∑

ij

unocc.∑

ab

2|〈ij|ab〉|2
ǫi + ǫj − ǫa − ǫb

, (5.33)

and

ESOX
C = −

occ.∑

ij

unocc.∑

ab

〈ij|ab〉〈ba|ij〉
ǫi + ǫj − ǫa − ǫb

, (5.34)

respectively. The exchange-like term is also referred to as second-order ex-

change.

Our MP2 implementation in VASP scales as O(N5), where N is a mea-

sure of the system size. For further details on the implementation of the MP2

method in VASP the reader is referred to Sec. 8.3 and Appendix C. In sec-

tion 5.6 we outline an alternative way to evaluate Eq. (5.33) that exhibits a

more favorable scaling of the computational effort with respect to the system

size [i.e. O(N4)].

5.2 Coupled-Cluster singles and doubles the-

ory

The coupled-cluster method was initially proposed by Fritz Coester and Her-

mann Kümmel for applications in the field of nuclear physics [13, 14]. In

1966, Jǐri Č́ıžek reformulated the method for electron correlation in atoms and

molecules [15], where it became a standard for quantum chemical calculations

on systems that do not exhibit strong static correlation [16, 17, 18, 19]. The

Ansatz for the coupled-cluster wave function is, like in MP2, an exponential

Ansatz that reads

|ΨCC〉 = eT|ΨHF〉, (5.35)

where

eT = 1 +T+
1

2!
T2 +

1

3!
T3 + .. =

∞∑

k=0

1

k!
Tk. (5.36)

However, in coupled-cluster singles and doubles (CCSD) theory the excitation

operator T is a sum of single- as well as double-excitation operators.

T = T1 +T2, where (5.37)
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T1|ΨHF〉 =
occ.∑

i

unocc.∑

a

tai |Ψa
i 〉, (5.38)

T2|ΨHF〉 =
occ.∑

i<j

unocc.∑

a<b

tabij |Ψab
ij 〉. (5.39)

The sets {tai } and {tabij } are the coefficients of the CCSD wave function and are

also referred to as single and double amplitudes, respectively. Higher orders of

coupled-cluster theories, such as CCSDT.., are obtained by including higher

orders of excitation operators in T (=T1 +T2 +T3 + ..).

Up to N -tuply excited determinants are included in the CCSD wave func-

tion that are constructed from products of single- and double-excitation oper-

ators e.g.

T1T2|ΨHF〉 =
occ.∑

i<j<k

unocc.∑

a<b<c

tai t
bc
jk|Ψabc

ijk〉, (5.40)

T2T2|ΨHF〉 =
occ.∑

i<j<k<l

unocc.∑

a<b<c<d

tabij t
cd
kl |Ψabcd

ijkl 〉. (5.41)

...

Inserting Eq. (5.35) into the Schrödinger equation yields

H|eTΨHF〉 = ECCSD|eTΨHF〉. (5.42)

Multiplying Eq. (5.42) from the left with 〈ΨHF| gives

〈ΨHF|H|eTΨHF〉 = ECCSD〈ΨHF|eTΨHF〉, (5.43)

which can be rearranged as the sum of the Hartree-Fock energy, EHF, and the

CCSD correlation energy, ECCSD
C :

ECCSD = EHF + ECCSD
C , (5.44)

where

ECCSD
C = 〈ΨHF|H|

∞∑

k=1

1

k!
TkΨHF〉. (5.45)

Employing Slater-Condon rules (see Appendix A) to express the correlation

energy in terms of electron repulsion integrals and amplitudes yields

ECCSD
C =

occ.∑

ij

unocc.∑

ab

(
1

2
tai t

b
j +

1

4
tabij

)
〈ij||ab〉. (5.46)
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Only squared single amplitudes and double amplitudes occur in the expression

of the CCSD correlation energy. Higher excitations do not contribute to the

correlation energy directly because the electronic Hamiltonian contains at most

two-electron operators (i.e the electron-electron Coulomb interaction). Equa-

tion (5.46) holds for canonical orbitals only because of the Brillouin theorem

(〈Ψa
i |H|ΨHF〉 = 0) [9]. In coupled-cluster theory the coefficients of the CCSD

wave function tai and tabij are calculated from the amplitude equations. Mul-

tiplication of Eq. (5.42) from the left with singly- and doubly- excited Slater

determinants yields the single and double amplitude equations, respectively

〈Ψa
i |H|eTΨHF〉 =〈Ψa

i |ECCSD|eTΨHF〉 (5.47)

〈Ψab
ij |H|eTΨHF〉 =〈Ψab

ij |ECCSD|eTΨHF〉. (5.48)

The above set of equations are the so-called general CCSD equations. In some

of the first computer implementations of the CCSD method, Eqs. (5.47) and

(5.48) served as amplitude equations [17].

An explicit dependence of the amplitudes on the CCSD energy emerges from

the terms on the right-hand sides in Eqs. (5.47) and (5.48), which makes it

inconvenient for implementations. With some mathematical foresight, one

finds that it is more efficient to multiply Eq. (5.42) from the left with 〈Ψa
i |e−T

and 〈Ψab
ij |e−T, respectively:

〈Ψa
i |e−THeT|ΨHF〉 = 〈Ψa

i |e−TECCSDeT|ΨHF〉, (5.49)

〈Ψab
ij |e−THeT|ΨHF〉 = 〈Ψab

ij |e−TECCSDeT|ΨHF〉. (5.50)

Like eT is an excitation operator working on the function on the right, e−T is a

de-excitation operator working on the function on the left [9]. The right-hand

sides of Eqs. (5.49) and (5.50) vanish due to the orthogonality of the Slater

determinantal basis. Hence, the single and double amplitude equations read

〈Ψa
i |e−THeT|ΨHF〉 =0 and (5.51)

〈Ψab
ij |e−THeT|ΨHF〉 =0, (5.52)

respectively. The sets of single and double amplitudes {tai } and {tabij } that solve
Eqs. (5.51) and (5.52) are used to calculate the energy in Eq. (5.46). Express-

ing Eqs. (5.51) and (5.52) in terms of one-electron orbitals in order to obtain a



24 Chapter 5. Correlation in wave function based methods

set of equations that are suitable for an implementation on the computer, is not

straightforward. The derivation quickly turns into a formidable task because

of the large number of terms involved. Therefore computer programs for an

automated derivation of the amplitude equations have been implemented [20].

The implementation by S. Hirata in Ref. [20] relies on a second-quantized rep-

resentation of the respective many-body theory. Since it would be beyond the

scope of this work to explain the automated derivation, we restrict ourselves to

giving the expressions of the amplitude equations that have been implemented

in VASP.

5.2.1 Unrestricted CCSD amplitude equations

The following amplitude equations for spin-polarized reference determinants

have been implemented in VASP. They were derived by a program of S. Hi-

rata in Ref. [20]. In the following i, j, k, l,m, n, o and a, b, c, d, e, f, g, h denote

occupied and unoccupied spin-orbitals, respectively. The single and double

amplitude equations read

0 =fa
i −

∑

k

fk
i t

a
k +

∑

b

fa
b t

b
i −
∑

lb

tbl 〈la||ib〉+
∑

kc

fk
c )t

ca
ki

1

2

∑

lmb

tbalm〈lm||ib〉

1

2

∑

mbc

tbcmi〈ma||bc〉 −
∑

lb

tbit
a
l f

l
b −

∑

kmc

takt
c
m〈km||ic〉

−
∑

mbc

tbi t
c
m〈ma||bc〉 −

1

2

∑

lmbe

tbalmt
e
i 〈lm||be〉 − 1

2

∑

mnbc

tbcmit
a
n〈mn||bc〉

+
∑

lnbd

tbali t
d
n〈ln||bd〉 −

∑

lnbd

tbit
a
l t

d
n〈ln||bd〉 (5.53)

and

0 =〈ab||ij〉 −
∑

m

tam〈mb||ij〉+ P (abij → baij)
∑

m

tam〈mb||ij〉

+ [1− P (abji→ abij)]
∑

e

tej〈ab||ie〉 − [1− P (abij → abji)]
∑

m

fm
i t

ab
mj

− [1− P (baij → abij)]
∑

e

f b
e t

ea
ij +

1

2

∑

mn

tabmn〈mn||ij〉

+ [1− P (abji→ baji)− P (abji→ abij) + P (abji→ baij)]
∑

ne

teanj〈nb||ie〉

+
1

2

∑

ef

tefij 〈ab||ef〉+
∑

mn

tamt
b
n〈mn||ij〉
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− [1− P (abji→ baji)− P (abji→ abij) + P (abji→ baij)]
∑

ne

tejt
a
n〈nb||ie〉

+
∑

ef

tei t
f
j 〈ab||ef〉 − [1− P (abji→ abij)]

∑

mf

fm
f t

ab
mjt

f
i

+ [1− P (abij → baij)]
∑

mf

fm
f t

fa
ij t

b
m + [

1

2
− 1

2
P (abji→ abij)]

∑

mng

tabmnt
g
j 〈mn||ig〉

− [1− P (abji→ baji)− P (abji→ abij) + P (abji→ baij)]
∑

noe

teanjt
b
o〈no||ie〉〉

− [1− P (abji→ abij)]
∑

mof

tabmjt
f
o〈mo||if〉

− [1− P (abji→ baji)− P (abji→ abij) + P (abji→ baij)]
∑

neg

teanjt
g
i 〈nb||eg〉〉

−
[
1

2
− 1

2
P (abij → baij)

]∑

oef

tefij t
a
o〈ob||ef〉〉+ [1− P (abij → baij)]

∑

oef

teaij t
f
o〈ob||ef〉〉

+

[
1

2
− 1

2
P (baij → abij)

]∑

opef

tebij t
fa
op 〈op||ef〉〉

+
1

4

∑

opef

tefij t
ab
op〈op||ef〉 −

[
1

2
− 1

2
P (abij → abji)

]∑

pfg

tabmit
fg
pj 〈mp||fg〉〉

− [1− P (baij → abij)]
∑

npeg

tebnit
ga
pj 〈np||eg〉+ [1− P (abji→ abij)]

∑

noe

tejt
a
nt

b
o〈no||ie〉〉

− [1− P (abij → baij)]
∑

oef

tei t
f
j t

a
o〈ob||ef〉+

1

2

∑

opef

tei t
f
j t

ab
op〈op||ef〉〉

+ [1− P (baij → abij)− P (baij → baji) + P (baij → abji)]
∑

npeg

tei t
b
nt

ga
pj 〈np||eg〉〉

+ [1− P (abij → abji)]
∑

opef

tei t
f
o t

ab
pj〈op||ef〉+

1

2

∑

mngh

tamt
b
nt

gh
ij 〈mn||gh〉〉

− [1− P (baij → abij)]
∑

mofh

tbmt
f
o t

ha
ij 〈mo||fh〉+

∑

opef

tei t
f
j t

a
ot

b
p〈op||ef〉,

(5.54)

respectively. The Fock matrix elements fx
y are defined by Eq. (4.10) and

become diagonal in the case of canonical orbitals. In the above equation the

permutation operator P (baij → abji) is defined as

P (wxyz → w′x′y′z′){...}wz
xy = {...}wz

xy + {...}w′z′

x′y′ . (5.55)
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Clearly a manual implementation of Eqs. (5.53) and (5.54) is very complicated

and error-prone. Therefore a metaprogram was developed for an automated

implementation in VASP. Although the automated implementation is not very

efficient, it allows for the calculation of single atoms and small molecules using

an unrestricted (spin-polarized) Hartree-Fock reference determinant.

Note that Eq. (5.54) contains up to four nested summations. As such, the

evaluation of the computationally most demanding terms is carried out by

looping over eight indices (including the indices i, j, a and b of the amplitudes)

and requires a computational effort that scales asO(N8), where N is a measure

of the system size. However, it is straight-forward to reduce the scaling of the

computational effort to O(N6) by introducing intermediate quantities. As an

example we reduce the scaling of the computational effort of the following term

in Eq. (5.54) from O(N8) to O(N6):

∑

opef

tei t
f
j t

ab
op〈op||ef〉

︸ ︷︷ ︸
O(N8)

=
∑

op

tabopχ
ij
op

︸ ︷︷ ︸
O(N6)

, where (5.56)

χij
op =

∑

ef

tei t
f
j 〈op||ef〉

︸ ︷︷ ︸
O(N5)

. (5.57)

Hence we find that the right-hand side of Eq. (5.56) can be evaluated at a

computational effort that scales as O(N6) only. The “price” one has to pay

for reducing the computational cost is evidently the storage of the intermediate

quantity χij
op.

5.2.2 Restricted CCSD amplitude equations

In the case of restricted (non-spin-polarized) reference determinants, the CCSD

amplitude equations can be greatly simplified by defining spin-free amplitudes

and determinants. In the following i, j, k, l,m, n, o and a, b, c, d, e, f, g, h denote

occupied and unoccupied spatial orbitals, respectively. The CCSD spin-free

single- and double-excitation operators are defined by

T1 =

occ.∑

i

unocc.∑

a

tai (p
†
a↑
pi↑ + p†a↓pi↓) (5.58)
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and

T2 =

(
1

2!

)2 occ.∑

ij

unocc.∑

ab

(
tabij − tbaij

)
(p†a↑pi↑p

†
b↑
pj↑ + p†a↓pi↓p

†
b↓
pj↓)

+

(
1

2!

)2 occ.∑

ij

unocc.∑

ab

tabij (p
†
a↑
pi↓p

†
b↑
pj↓ + p†a↓pi↑p

†
b↓
pj↑)

−
(
1

2!

)2 occ.∑

ij

unocc.∑

ab

tbaij (p
†
a↑
pi↓p

†
b↓
pj↑ + p†a↓pi↑p

†
b↑
pj↓) (5.59)

respectively [19]. The operator p†a↑ (pi↑) creates (annihilates) an electron in

orbital a with spin eigenfunction ↑. Note that as a consequence of Eq. (5.59)

we find that

tabij 6= −tbaij . (5.60)

Inserting Eqs. (5.58) and (5.59) into Eq. (5.51) yields the single amplitude

equations [19]:

0 =fa
i − 2

∑

kc

fk
c t

a
kt

c
i +
∑

c

κac t
c
i −
∑

k

κki t
a
k +

∑

kc

∑

kk

κkc (2t
ca
ki − tcaik ) +

∑

kc

κkc t
c
i t

a
k

+
∑

kc

∑

kk

wak
ic t

c
k +

∑

kcd

∑

kkkc

wak
cd t

cd
ik +

∑

kcd

∑

kk

wak
cd t

c
i t

d
k

−
∑

klc

∑

kkkl

wkl
ic t

ac
kl −

∑

klc

∑

kl

wkl
ic t

a
kt

c
l . (5.61)

In the above equation, wak
ic are antisymmetrized two-electron-four-orbital in-

tegrals that are given by

wak
ic = 〈ak||ic〉. (5.62)

The double amplitudes equations are obtained from inserting Eqs. (5.58) and

(5.59) into Eq. (5.52) [21, 19]:

0 =vijab
∗
+
∑

kl

∑
kkχ

kl
ij t

ab
kl +

∑

kl

χkl
ij t

a
kt

b
l +
∑

cd

∑

kc

χab
cdt

cd
ij +

∑

cd

χab
cdt

c
i t

d
j + P

∑

c

λac t
cb
ij

− P
∑

k

λki t
ab
kj + P

∑

c

(
vabic −

∑

k

vkbic t
a
k

)
tcj − P

∑

k

(
vakij +

∑

c

vakic t
c
j

)
tbk

+ P
∑

kc

∑

kk

(
2χak

ic − χak
ci

)
tcbkj − P

∑

kc

∑

kk

χak
ic t

bc
kj − P

∑

kc

∑

kk

χbk
ci t

ac
kj. (5.63)
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In the above equation vijab are two-electron-four-orbital integrals that are given

by

vijab = 〈ij|ab〉. (5.64)

Equations (5.63) and (5.61) contain the following intermediate quantities:

κki =f
k
i +

∑

lcd

∑

klkc

wkl
cdt

cd
il +

∑

lcd

∑

kl

wkl
cdt

c
i t

d
l , (5.65)

κac =f
a
c −

∑

kld

∑

kkkl

wkl
cdt

ad
kl −

∑

kld

∑

kl

wkl
cdt

a
kt

d
l , (5.66)

κkc =f
k
c +

∑

ld

∑

kl

wkl
cdt

d
l , (5.67)

λki =κ
k
i +

∑

c

fk
c t

c
i +
∑

lc

∑

kl

wkl
ic t

c
l , (5.68)

λac =κ
a
c +

∑

k

fk
c t

a
k +

∑

kd

∑

kk

wak
cd t

d
k, (5.69)

χkl
ij =v

kl
ij +

∑

c

vklic t
c
j +
∑

c

vklcjt
c
i +
∑

cd

∑

kc

vklcdt
cd
ij +

∑

cd

vklcdt
c
i t

d
j , (5.70)

χab
cd =v

ab
cd −

∑

k

vakcd t
b
k −

∑

k

ckbcdt
a
k, (5.71)

χak
ic =vakic −

∑

l

vlkic t
a
l +

∑

d

vakdc t
d
i −

1

2

∑

ld

∑

kl

vlkdct
da
il −

∑

ld

vlkdct
d
i t

a
l

+
1

2

∑

ld

∑

kl

wlk
dct

ad
il and (5.72)

χak
ci =vakci −

∑

l

vlkci t
a
l +

∑

d

vakcd t
d
i −

1

2

∑

ld

∑

kl

vlkcdt
da
il −

∑

ld

vlkcdt
d
i t

a
l , (5.73)

where P is the permutation operator

P {...}abij = {...}abij + {...}baji . (5.74)

As already outlined in Sec. 5.2.1 the intermediate quantities are introduced

to reduce the scaling of the computational effort in the amplitude equations

to O(N6). Since all algebraic operations in the above equations correspond

to matrix-matrix multiplications, these equations were implemented in VASP

using BLAS libraries. Furthermore the intermediate quantities as well as am-

plitudes are distributed according to efficient parallelization strategies.
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(b) (c)(a)

Figure 5.2: Diagrams containing (a) particle-particle, (b) hole-hole and (c)

particle-hole interactions. The wiggly line represents the unscreened Coulomb

interaction.

5.3 Notes on CCSD and MP2

The solution of the amplitude equations [see Eqs. (5.53), (5.54), (5.61) and

(5.63)] leads to the inclusion of infinitely many Goldstone diagrams of a cer-

tain type in the CCSD correlation energy. This is in contrast to Nth-order

perturbation theory, which only includes diagrams up to order N . Moreover

CCSD is exact to third-order. As such, we can put HF, MP2 and CCSD in a

hierarchy of methods with increasing accuracy that reads

HF < MP2 < CCSD. (5.75)

The type of diagrams that are included in MP2 and CCSD enables us to

make a statement about their accuracy for weakly/strongly polarizable sys-

tems. Particle-particle and hole-hole ladder diagrams, are claimed to be rele-

vant for weakly polarizable systems [22]. On the other hand, for strongly polar-

izable solids, higher order diagrams, specifically, the summation of all bubble

diagrams, as included in the random phase approximation (we will come back

to that later), are important. MP2 neglects particle-particle, particle-hole

and hole-hole ladder diagrams. Moreover MP2 includes only a second-order

bubble-diagram, which is also referred to as direct MP2 term (see Fig. 5.1).

As such MP2 is expected to be accurate only for systems with an intermediate

polarizability. We note that MP2 even diverges for three dimensional metallic

systems (i.e. systems with infinite polarizability) [12].

CCSD contains particle-particle, particle-hole, hole-hole ladder (see Fig. 5.2)

as well as infinitely many bubble (or ring) diagrams. As such the accuracy of

CCSD should depend only little on the polarizability of the system. Moreover

we stress that CCSD is exact for any two-electron system.
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5.3.1 MP2 and CCSD energies are not variational

It is important to note that in contrast to HF, MP2 and CCSD are not vari-

ational methods. There is no guarantee that the resulting total energy is an

upper bound of the exact energy, Eexact. The electronic energy in MP2 and

CCSD is given by

E = 〈ΨHF|H|eTΨHF〉, (5.76)

where

T =




T2 in MP2

T1 +T2 in CCSD.
(5.77)

An expansion of |ΨHF〉 and |eTΨHF〉 over a set of eigenfunctions of H reads

|ΨHF〉 =
∑

i

ci|Ψi〉 (5.78)

|eTΨHF〉 =
∑

j

dj|Ψj〉. (5.79)

Inserting Eqs. (5.78) and (5.79) into Eq. (5.76) yields

E =
∑

ij

c∗idj〈Ψi|H|Ψj〉

=
∑

i

c∗idiǫi. (5.80)

Note that ci 6= di, because |ΨHF〉 6= |eTΨHF〉. Subtracting Eexact from both

sides of Eq. (5.80) yields

E − Eexact =
∑

i

c∗idiǫi −Eexact. (5.81)

Since Eexact corresponds to the ground state energy of H , all eigenvalues, ǫi,

of H fulfill

ǫi ≥ Eexact. (5.82)

Since c∗idi can be negative, (E −Eexact) might be negative as well. Hence, the

total MP2 and CCSD energies can be lower than Eexact.
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5.4 The correlation energy in the random phase

approximation

The random phase approximation (RPA) to the correlation energy dates back

to the late fifties and was introduced in solid state physics by Nozières and

Pines [23]. A particular promising feature of the RPA is that all bonding

situations are described reasonably well: ionic, covalent, metallic, and even van

der Waals bonding [24]. This stands in contrast to perturbation theory, such

as Møller-Plesset perturbation theory (MPn), which diverges to any order n in

metallic systems. In fact, one motivation for introducing the RPA was that the

resummation of certain diagrams removes the divergence of the perturbation

series.

For the calculation of total energies, the RPA was largely disregarded, and

instead the focus has been on Kohn-Sham methods [2], which are computation-

ally less complex. However, the standstill in the development of new function-

als and the tremendous advances in computer power have recently brought the

RPA back to general attention. This revival was first realized in GW quasi-

particle methods [25], which usually implicitly rely on the RPA [26, 27], but

total energies moved into focus only shortly afterwards [28, 29].

The RPA correlation energy can be derived in different ways, for instance

from many-electron Green’s function theory [30], or using the adiabatic-connection

fluctuation-dissipation theorem (ACFDT) [31, 32], or from coupled-cluster the-

ory [33, 34]. In the following sections, we derive the RPA correlation energy

from the ACFDT and outline its connection to Casida’s equation and coupled-

cluster theory.

5.4.1 The adiabatic-connection fluctuation dissipation

theorem

Sections 5.1 and 5.2 discussed correlated methods that use an explicit ansatz for

the many-electron wave function and are based on perturbation- and coupled-

cluster theory, respectively. The adiabatic-connection fluctuation dissipation

theorem (ACFDT) provides an alternative method to calculate the correla-

tion energy without the knowledge of the many-electron wave function. The

ACFDT yields in principle an exact expression for the Hartree-exchange-
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correlation energy (Eee +EHxc) [see Eq. (3.1)]. The derivation of the Hartree-

exchange-correlation energy expression in the ACFDT along the lines of Ref. [36]

is briefly sketched below.

The adiabatic-connection

In the adiabatic connection one considers a Hamiltonian with a coupling con-

stant α that gradually increases the electron-electron Coulomb interaction, V̂ee,

from 0 (KS system) to 1 (fully-interacting system):

Ĥ(α) = T̂ + V̂ (α) + αV̂ee. (5.83)

T̂ and V̂ (α) denote the kinetic energy operator and the KS potential, respec-

tively. V̂ (α) is chosen such that the ground state density and energy of the

α-interacting system are equal to the exact many-body density and energy (i.e.

the fully-interacting system).

The exact energy, E, for α = 1 and α = 0 is given by

E = 〈Ψ(1)|Ĥ(1)|Ψ(1)〉 = 〈Ψ(1)|T̂+V̂ee+V̂ (1)|Ψ(1)〉 = 〈Ψ(1)|T̂+V̂ee|Ψ(1)〉+Eext

(5.84)

and

E = 〈Ψ(0)|Ĥ(0)|Ψ(0)〉 = 〈Ψ(0)|T̂+V̂ (0)|Ψ(0)〉 = Tn+EH+Eext+Exc, (5.85)

respectively. In the above equation EH and Tn refer to the Hartree- and kinetic

energy of the KS system, respectively. Eext corresponds to the nuclear-nuclear

and nuclear-electron interaction energy. By virtue of Eqs. (5.84) and (5.85),

one finds that (see Ref. [36] for details)

EH + Exc =E −Eext − Tn

=〈Ψ(1)|Ĥ(1)|Ψ(1)〉 − 〈Ψ(1)|V̂ (1)|Ψ(1)〉 − 〈Ψ(0)|Ĥ(0)|Ψ(0)〉+ 〈Ψ(0)|V̂ (0)|Ψ(0)〉

=

∫ 1

0

dα
d

dα

(
〈Ψ(α)|Ĥ(α)|Ψ(α)〉 − 〈Ψ(α)|V̂ (α)|Ψ(α)〉

)
. (5.86)

The Hellmann-Feynman theorem allows to rearrange the above equation to

read

EH + Exc =

∫ 1

0

dα〈Ψ(α)|V̂ee|Ψ(α)〉, (5.87)

i.e. there is no reference to the kinetic energy operator anymore.
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The fluctuation dissipation theorem

Since V̂ee in Eq. (5.87) is a two-electron operator, EH + Exc can be calculated

from the pair-probability density. As such, Eq. (5.87) becomes

EH+Exc =

∫ 1

0

dα〈Ψ(α)|V̂ee|Ψ(α)〉 =
∫ 1

0

dα
e2

2

∫
d3r

∫
d3r′

n2,α(r, r′)

|r− r′| . (5.88)

Furthermore the following relation holds for the pair-probability density [37]

n2,α(r, r′) = 〈Ψ(α)|δn̂(r)δn̂(r′)|Ψ(α)〉+ n(r)n(r′) + δ(r− r′)n(r), (5.89)

where δn̂(r) corresponds to the density fluctuation operator, defined as

δn̂(r) = n̂(r)− n(r) =

N∑

i=1

δ(r− ri)− n(r). (5.90)

The fluctuation-dissipation theorem, first derived in Ref. [38], allows to relate

the density fluctuation operator to the density-density response function, χα,

according to [39, 32, 37]

−
∫ ∞

0

dω

π
χα(r, r

′; iω) = n2,α(r, r′)− n(r)n(r′) + δ(r− r′)n(r). (5.91)

Solving the above equation for n2,α(r, r′) and inserting the result into Eq. (5.88)

yields

EH+Exc = EH−
e2

2

∫ 1

0

dα

∫
dω

∫ ∫
d3rd3r′

(
1

π

χα(r, r
′; iω)

|r− r′| +
δ(r− r′)n(r)

|r− r′|

)
.

(5.92)

In the above equation, χα denotes the density-density response function (or

particle polarizability) of the system with interaction strength α and is given

by the Dyson-like equation [40]

χα = χ0(r, r
′, ω)+

∫
dr′′
∫
dr′′′χ0(r, r

′′, ω)[αν(r′′, r′′′)+fα
xc(r

′′, r′′′, ω)]χα(r
′′′, r′, ω),

(5.93)

where χ0 is the response function of the reference (KS) system [40]

χ0(r, r
′, ω) = −

occ.∑

i

unocc.∑

a

2

(
ψ∗
a(r

′)ψi(r
′)ψ∗

i (r)ψa(r)

ǫa − ǫi − ω − iη
+
ψ∗
i (r

′)ψa(r
′)ψ∗

a(r)ψi(r)

ǫa − ǫi + ω + iη

)
.

(5.94)
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In the above, iη introduces an infinitesimal shift along the imaginary axis

and ν denotes the Coulomb kernel e2

|r−r′|
. Equation (5.93) is a Dyson-like

equation that links the response function of the α-interacting system, χα to the

response function of the KS system, χ0. ψn and ǫn denote Kohn-Sham orbitals

and orbitalenergies, respectively. fα
xc is the exchange-correlation kernel of the

system with interaction strength α.

We now return to Eq. (5.92). It is shown in Ref. [36] that the last term

on the right-hand side of Eq. (5.92) can be expressed by the exchange energy,

EX, and χ0 such that

EH + Exc = EH + EX + EACFDT
C , (5.95)

where

EX =− e2

2

∫
d3r

∫
d3r′

|∑occ.
i ψ∗

i (r)ψi(r
′)|

|r− r′| and (5.96)

EACFDT
C =

1

2

∫ 1

0

dα

∫ ∞

0

dω

π

∫
dx1dx2

χα(x1,x2, ω)− χ0(x1,x2, ω)

|x1 − x2|
. (5.97)

The remarkable result of the ACFDT is that the correlation energy can

be expressed only by the response function of the KS and α-interacting sys-

tem. At this point we emphasize an important aspect of the ACFDT: the

exchange energy is evaluated using KS orbitals and, as such, differs from the

self-consistent Hartree-Fock exchange energy. In the field of quantum chem-

istry, however, the correlation energy is defined as the difference between the

self-consistent Hartree-Fock energy and the exact ground state energy. As a

consequence, the correlation energy in the ACFDT differs from the definition

of the correlation energy in the field of quantum chemistry.

Equations (5.95), (5.94) and (5.93) allow to determine (EX + EACFDT
C )

exactly in principle. However, the exact form of fα
xc is not known. As such, we

have to rely on approximations for fα
xc and χα.

In the random phase approximation (RPA), the exchange-correlation kernel

fα
xc in Eq. (5.93) is simply neglected. Therefore the response function in the

RPA reads

χRPA
α (r, r′, ω) = χ0(r, r

′, ω)+α

∫
dr′′
∫
dr′′′χ0(r, r

′′, ω)ν(r′′, r′′′)χRPA
α (r′′′, r′, ω).

(5.98)
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+ ...++=

Figure 5.3: The bubble diagrams on the right-hand side correspond to χ0.

The dressed bubble diagram on the left-hand side denotes χRPA
α . Wiggly lines

represent the unscreened Coulomb interaction ν.

It is known from GW -RPA calculations that from a practical point of view the

RPA is well justified and yields reasonably accurate polarizabilities compared

to experiment if Kohn-Sham eigenvalues and orbitals are used in Eq. (5.94). [41]

In passing we note that the above Eq. (5.98) can also be arranged to read

χRPA
α

−1
(ω) = χ0

−1(ω)− αν. (5.99)

Equation (5.99) is also referred to as an inverse Dyson-like equation.

Equation (5.98) can be solved recursively by inserting the expression from

the left-hand side into the right-hand side yielding

χRPA
α = χ0 + αχ0νχ0 + α2χ0νχ0νχ0 + .... (5.100)

The above equation corresponds, in a diagrammatic language, to a resumma-

tion of infinitely many so-called bubble diagrams [see Fig. 5.3].

Inserting Eqs. (5.94) and (5.98) into Eq. (5.97) allows for integrating over

the coupling constant α analytically [see Eq. (3.34) in Ref. [36]] and yields a

closed expression for the RPA correlation energy that reads

ERPA
c =

∫ ∞

0

dω

2π
Tr{ln(1 + χ0ν)− χ0ν}. (5.101)

5.4.2 ACFDT-RPA from time-dependent density func-

tional theory

In this section an alternative approach to calculate ERPA
c will be outlined. In

Eqs. (5.97) and (5.101), an integration over ω is carried out explicitly. One

might replace the integration by a summation over the residues at the poles

of χ. The independent particle response function, χ0, [defined in Eq. (5.94)]

exhibits poles in ω at the single-particle excitation energies (ǫa−ǫi). The poles
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of χα need to be determined. To calculate the poles of χRPA
α , we introduce the

density matrix response function [42]

Ξα(r1, r
′
1, r2, r

′
2, ω) = −〈(r1r′1)|(Λα − ω∆)−1|(r2r′2)〉, (5.102)

where

∆ =

(
1 0

0 −1

)
and Λα =

(
Aα Bα

Bα∗ Aα∗

)
. (5.103)

Aα and Bα are in the RPA given by

Aα
(ia,jb) =δijδab(ǫa − ǫi) + α 〈ij|ab〉 (5.104)

Bα
(ia,jb) =α 〈ij|ab〉 . (5.105)

In the above equations i, j and a, b refer to occupied and unoccupied spin-

orbitals, respectively. The density matrix response function (Λα − ω∆)−1 is

given in an orbital basis and split into a resonant and anti resonant part (first

and second line of ∆). The resonant and anti resonant parts exhibit poles

at positive and negative frequencies ω, respectively loosely corresponding to

the first and second term in Eq. (5.94), respectively. Ξα is defined such that

the diagonal elements in real space correspond to the (independent) particle

polarizability [42]

χRPA
α (r1, r2, ω) =− 〈(r1r1)|(Λα − ω∆)−1|(r2r2)〉. (5.106)

The projection from orbital into real space (〈(r1r1)| and |(r2r2)〉) contains the
summation of the resonant and anti resonant part. As such we find for Ξα=0

−〈(r1r1)|(Λ0 − ω∆)−1|(r2r2)〉 =
∑

ij

∑

ab

ψ∗
i (r1)ψa(r1)(A

0 − ω)−1
(ia,jb)ψj(r2)ψ

∗
b (r2)

+
∑

ij

∑

ab

ψ∗
i (r1)ψa(r1)(A

0 + ω)−1
(ia,jb)ψj(r2)ψ

∗
b (r2)

(5.107)

=χ0(r1, r2, ω). since (5.108)

(A0 − ω)−1
(ia,jb) =δijδab

1

ǫa − ǫi − ω
. (5.109)
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Replacing χRPA
α

−1 → −(Λα − ω∆) and αν →
(
Bα Bα

Bα∗ Bα∗

)
, the inverse

Dyson-like equation (5.99) in the orbital basis becomes

−
[(

Aα=0 0

0 Aα=0

)
− ω

(
1 0

0 −1

)]

︸ ︷︷ ︸
χ−1
0 (ω)

−
(
Bα Bα

Bα∗ Bα∗

)

︸ ︷︷ ︸
αν

= −(Λα − ω∆)︸ ︷︷ ︸
χRPA
α

−1(ω)

(5.110)

Subtracting ω∆ from both sides of the above equation gives
(
Aα=0 0

0 Aα=0∗

)
+

(
Bα Bα

Bα∗ Bα∗

)
=

(
Aα Bα

Bα∗ Aα∗

)
= Λα (5.111)

Replacing Λα in the above equation by its spectral representation with eigen-

vectors |Xα
i , Y

α
i 〉 that are orthonormalized according to [42]

〈Xα
n , Y

α
n |∆|Xα

n , Y
α
n 〉 = 1, (5.112)

yields (
Aα Bα

Bα∗ Aα∗

)
=
∑

i

ωi∆|Xα
i , Y

α
i 〉〈Xα

i , Y
α
i |∆. (5.113)

Multiplication from right with |Xα
n , Y

α
n 〉 yields the so-called Casida equa-

tion [43] (
Aα Bα

Bα∗ Aα∗

)(
Xα

n

Y α
n

)
= ωα

n

(
1 0

0 −1

)(
Xα

n

Y α
n

)
, (5.114)

where n labels the eigenstates and poles of the response function and corre-

sponds to the number of product states (ia). ωα
n corresponds to the poles of

χRPA
α . Equation (5.114) generalizes the Dyson-like equation and is widely used

in time-dependent Hartree-Fock (TDHF) and time-dependent density func-

tional theory (TDDFT) to calculate excitation energies and transition prop-

erties [44]. The eigenvectors |Xα
n , Y

α
n 〉 and the corresponding eigenvalues ωα

n

fulfill Eq. (5.114) and allow to rewrite the response function in its spectral

representation [44]

χRPA
α (r1, r2, ω) = −

∑

n

(
ραn(r1)ρ

α
n
∗(r2)

ωα
n − ω − iη

+
ραn(r1)ρ

α
n
∗(r2)

ωα
n + ω + iη

)
, (5.115)

where

ραn(r) =
∑

jb

(Xα
n,jb + Y α

n,jb)ψ
∗
j (r)ψb(r). (5.116)
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Inserting Eq. (5.115) into Eq. (5.97) yields the RPA correlation energy without

frequency integration: [44]

ERPA
C =

1

2

∫ ∞

0

dα
∑

n

∫∫
dr1dr2

ραn(r1)ρ
α
n
∗(r2)− ρα=0

n (r1)ρ
α=0
n

∗
(r2)

|r1 − r2|
. (5.117)

In the following we will carry out the α integration in Eq. (5.117) analyti-

cally along the lines of Ref. [44]. Furche showed in Ref. [44] that

dωα
n

dα
= 〈Xα

n , Y
α
n |
dΛα

dα
|Xα

n , Y
α
n 〉. (5.118)

By virtue of Eq. (5.111), we find that

dΛα

dα
=

(
C C

C∗ C∗

)
, (5.119)

where C = 〈ij|ab〉. Thus,
dωα

n

dα
=
∑

ij

∑

ab

(Xα
n + Y α

n )∗ia〈ij|ab〉(Xα
n + Y α

n )jb =

∫∫
dr1r2

ραn(r1)ρ
α
n
∗(r2)

|r1 − r2|
.

(5.120)

Inserting the above equation into Eq. (5.117) allows to integrate over α and

yields [44]

ERPA
C =

1

2

∫
dα
∑

n

(
dωα

n

dα
− dωα

n

dα
|α=0

)
=

1

2

∑

n

(ωn − ωD
n ), (5.121)

where ωn corresponds to the poles of χRPA
α=1 and ωD

n is the sum of zero- and

first-order RPA excitation energies given by [44]

ωD
n = ǫa − ǫi +

∫∫
dx1dx2

ρα=0
n (x1)ρ

α=0
n (x2)

|x1 − x2|
= ǫa − ǫi + 〈ii|aa〉. (5.122)

5.4.3 The RPA in coupled-cluster theory

The results of the previous section allow to outline the connection between the

Casida equation and coupled-cluster doubles theory in the RPA (as discussed

in Ref. [34]). Casida’s equation [see Eq. (5.114)] might be multiplied from the

left by ∆ to read
(

A B

−B∗ −A∗

)(
X

Y

)
= ωα=1

(
X

Y

)
. (5.123)
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Multiplying the above equation [see Eq. (5.114)] for α = 1 on the right by X−1

gives (
A B

−B∗ −A∗

)(
1

T

)
= ωα=1

(
1

T

)
, (5.124)

where T = Y X−1. Multiplying Eq. (5.124) on the left by
(
T −1

)
yields

(
T −1

)( A B

−B∗ −A∗

)(
1

T

)
=
(
T −1

)
ωα=1

(
1

T

)
. (5.125)

Carrying out the matrix multiplications in the above equation leads to

B∗ + A∗T + TA+ TBT = 0. (5.126)

This is the quadratic Riccati equation, which is equivalent to the original

matrix diagonalization problem stated in Eq. (5.114). The remarkable point

is that this equation has only half of the dimension of the original eigenvalue

problem, but since the equation is non-linear (quadratic) its solution can be

only determined by iteration. Furthermore, it is not obvious how to calculateX

and Y from T , but remarkably the correlation energy can be readily calculated,

as demonstrated below. Inserting Eqs. (5.104) and (5.105) into Eq. (5.126)

yields

0 = 〈ab|ij〉+ tabij (ǫa + ǫb − ǫi − ǫj)

+
occ.∑

k

unocc.∑

c

(
〈ic|ak〉 tcbkj + tacik 〈cj|kb〉

)

+

occ.∑

kl

unocc.∑

cd

tacik 〈kl|cd〉 tdblj . (5.127)

The above equation is in fact a simplified version of the coupled-cluster ampli-

tude equations that are given in Sec. 5.2. As such, we find that the eigenvectors

X and Y of Casida’s equation allow to calculate amplitudes T (= Y X−1) that

are solutions of the coupled-cluster doubles amplitude equations in the ran-

dom phase approximation. In a full CCD calculation, the amplitude equations

are significantly more complicated involving, e.g. particle-particle diagrams,

hole-hole and particle-hole ladder diagrams [see Fig. 5.2, respectively].

In coupled-cluster doubles theory the correlation energy is calculated from

the amplitudes as

ECCD
C =

∑

ijab

1

2
〈ij||ab〉 tabij , (5.128)
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Replacing 〈ij||ab〉 by 〈ij|ab〉 yields
∑

ijab

1

2
〈ij|ab〉 tabij =

1

2
Tr(BT ). (5.129)

From the first line in Eq. (5.124) we know that

Tr(BT ) = Tr(ω −A). (5.130)

Inserting Eq. (5.130) into the right-hand side of Eq. (5.129) yields

∑

ijab

1

2
〈ij|ab〉 tabij =

1

2
Tr(BT ) =

1

2
Tr(ω − A) =

1

2

∑

n

(ωn − ǫa + ǫi − 〈ii|aa〉).

(5.131)

As such, the expression for the ACFDT-RPA correlation energy corresponds

to the coupled-cluster doubles energy expression for 〈ij||ab〉 → 〈ij|ab〉 with

amplitudes that were calculated from a simplified version of the amplitude

equations [see Eq. (5.127)].

The RPA is only correct to first-order perturbation theory, but like CCSD

performs a resummation of diagrams of a certain type (bubble diagrams) to

infinite order.

5.5 Beyond RPA: Second-order screened ex-

change

The RPA accounts for the direct correlation from symmetric Coulomb terms

(“Hartree-like”) only. As a result, one finds that the correlation energy of a

one-electron system is not vanishing in the RPA. Instead the RPA yields (for

a one-electron system with an occupied orbital i)

ERPA
C =

∑

ab

1

2
〈ii|ab〉 tabii 6= 0. (5.132)

This error is also referred to as self-correlation. MP2 and CCD do not suffer

from self-correlation errors for one-electron systems due to the inclusion of

exchange-like terms in the energy expression [see Eq. (5.34)]. The exchange-

like term cancels exactly with the direct term for one-electron systems:

∑

ab

1

2
〈ii||ab〉 tabii =

∑

ab

1

2
(〈ii||ab〉 − 〈ii|ba〉)︸ ︷︷ ︸

=0

tabii . (5.133)
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Figure 5.4: Diagrams corresponding to (a) direct-RPA correlation and (b)

second-order screened exchange (SOSEX). The wiggly and double wiggly line

represent the unscreened and screened Coulomb interaction, respectively.

We now define the RPA+second-order screened exchange (SOSEX) corre-

lation energy as (see Fig. 5.4)

ERPA+SOSEX
C =

∑

ijab

1

2
〈ij|ab〉 tabij −

∑

ijab

1

2
〈ij|ba〉 tabij , (5.134)

i.e. suggest to use the “original” CCD correlation energy as defined in Eq. (5.128).

The first term in Eq. (5.134) corresponds to the RPA correlation energy. The

exchange-like second term in Eq. (5.134) is related to the anti-symmetry of the

many-electron wave function and approximately accounts for correlation from

the “exchange” (SOSEX). We want to improve upon the RPA [see Fig. 5.4(a)]

by including an exchange-like correlation term that is fully compatible with

the direct Coulomb correlation accounted for by the RPA, where compatibil-

ity here implies that for one-electron systems, the self-correlation error exactly

vanishes. Furthermore, RPA+SOSEX is correct to second order (equivalent to

MP2), whereas RPA is only correct to first order.
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Figure 5.5: RPA, RPA+SOSEX and exact correlation energies of the homo-

geneous electron gas as a function of the Wigner Seitz radius, rS. The exact

values correspond to quantum Monte Carlo results as parameterized by Perdew

and Zunger [3]

.

In a full CCD calculation, the total energy expression in Eq. (5.134) re-

mains unchanged, but the evaluation of the amplitudes is significantly more

complicated involving, e.g. particle-particle diagrams, hole-hole and particle-

hole ladder diagrams [see Fig. 5.2, respectively]. Furthermore, usually also

singly excited determinants, in which one occupied orbital is replaced by a

virtual orbital, are included (CCSD). Our assumption is twofold. (i) First,

we assume that the contributions from the singles in the total energy expres-

sion are small such that one can neglect them. (ii) Second, we assume that

the amplitudes tabij evaluated using Kohn-Sham orbitals and the direct-ring

approximation [Eq. (5.127)], resemble in some way the amplitudes of CCSD

using HF orbitals. These conjectures imply that the Coulomb and exchange-

like correlation terms in Eq. (5.134) should give a good estimate for the total

correlation energy. This approximation to the correlation energy is in no way

new and has been suggested by Monkhorst [47] and Freeman [33] in the late

seventies, but largely disregarded or forgotten afterwards. Freeman evalu-

ated the correlation energy of the homogeneous electron gas (HEG) using the
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RPA and RPA+SOSEX on top of KS orbitals and eigenvalues before the ex-

act quantum Monte Carlo results by Ceperley and Alder were published in

Ref. [3]. Figure 5.5 shows that the RPA+SOSEX correlation energies for the

HEG agree very well with the exact Monte Carlo results, whereas the RPA

exhibits a strong overestimation of the correlation energy that is attributed to

self-correlation.

We note that it is difficult to motivate the RPA+SOSEX approximation

in the framework of ACFDT, where SOSEX would have to correspond to an

approximation of fα
xc, but in Green’s function theory, this particular subset

of diagrams is equivalent to vertex corrections in the self-energy only, disre-

garding vertex corrections in the polarizability (i.e. electrostatic particle-hole

interactions) [48].

The computational effort of our RPA+SOSEX implementation scales as

O(N5), where N is a measure of the system size. This is achieved by the in-

troduction of intermediate quantities in Eq. (5.127). For further details on the

implementation of the RPA+SOSEX method in VASP and the intermediate

quantities, the reader is referred to Sec. 8.3 and Appendix D.

5.6 The direct MP2 correlation energy

In this section, we outline a scheme to evaluate the “direct” contributions in

second-order Møller-Plesset perturbation theory using the response function.

In the ACFDT we may write the following expression for the correlation energy

(see Eq. (5.97)),

Ec = −
∫ 1

0

dα

∫ ∞

0

dω

2π
Tr{ν[χα(iω)− χ0(iω)]}. (5.135)

Evaluating the above in reciprocal space, the trace is defined as

Tr{AB} :=
∑

GG′

AGG′(q)BG′G. (5.136)

The summation over G and G′ includes all reciprocal lattice vectors with |G|2
and |G′|2, below a kinetic energy cutoff Eχ [see remarks following Eqs. (8.37)

and (8.38)].

The Coulomb kernel ν in reciprocal space is given by νGG′ = 4πe2δGG′/|G|2
and the independent-particle response function at imaginary frequencies χ0(iω)
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by [compare Eq. (5.94)]

χ0
GG′(iω) = −

occ.∑

i

unocc.∑

a

2

(〈ψa|ei(G)·r|ψi〉〈ψi|e−i(G′)·r′|ψa〉
ǫa − ǫi − iω

+
〈ψi|ei(G)·r|ψa〉〈ψa|e−i(G′)·r′ |ψi〉

ǫa − ǫi + iω

)
. (5.137)

where the sum over i and a may be restricted to run over occupied and virtual

orbitals, respectively.

Expanding the interacting response function χα up to first order in α (or

equivalently, up to second order in χ0) one obtains [compare Eq. (5.100)]

χα(iω) = χ0(iω) + χ0(iω)ανχ0(iω), (5.138)

and

Ec = −1

2

∫ ∞

0

dω

2π

∑

G

4πe2

|G|2

×
∑

G′

χ0
GG′(iω)

4πe2

|G′|2χ
0
G′G(iω).

(5.139)

Inserting Eq. (5.137) into the above we obtain

Ec =−
occ∑

ij

unocc.∑

ab

2

π

∫ ∞

0

(ǫa − ǫi)

(ǫa − ǫi)2 + ω2

(ǫb − ǫj)

(ǫb − ǫj)2 + ω2
dω

× 2

[(
4πe2

Ω

∑

G

〈ψa|ei(G)·r|ψi〉〈ψj|e−i(G)·r′ |ψb〉
|G|2

)
× c.c.

] (5.140)

which yields

Ec = −
occ∑

ij

unocc.∑

ab

2|〈ij|ab〉|2
ǫa + ǫb − ǫi − ǫj

. (5.141)

As mentioned in Sec. 5.1 this is commonly called the “direct” contribution to

the MP2 correlation energy [compare Eq. (5.33)]. From the above it is clear

that this contribution may be written as

D = −1

2

∫ ∞

0

dω

2π
Tr{νχ0(iω)νχ0(iω)}. (5.142)

This expression may be conveniently evaluated as follows. First one constructs

the Hermitian matrix:

S(iω)GG′ = ν
1/2
GGχ

0
GG′(iω)ν

1/2
G′G′. (5.143)
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This may be diagonalized with respect to G and G′, to yield a set of NG real

eigenvalues {λ(iω)}, where NG is the number of plane waves in the basis set

expansion of the response functions. The trace in Eq. (5.142) may then be

evaluated as

Tr{νχ0(iω)νχ0(iω)} =
∑

n

λ(iω)2n. (5.144)

The evaluation of the direct MP2 term as outlined above exhibits a computa-

tional effort that scales as O(N4) only [compared to O(N5) for the evaluation

of Eq. (5.33)]. The O(N4) scaling results from the calculation of χ0(iω) in

Eq. (5.137) and constitutes the computational bottleneck.

5.7 Solving the amplitude equations

The amplitude equations (5.53), (5.54), (5.61),(5.63) and (5.127) can be gen-

eralized to read as a quadratic system of equations. In the following we briefly

sketch the algorithm that we use for solving the double amplitude equations.

The single amplitude equations are solved analogue. For the sake of brevity

we write the double amplitude equations as

0 = A+BT2 +O(T) +O(T2). (5.145)

In the above equation T2 denotes tabij and T depends only on (tai t
b
j) and tabij .

The exact forms of O(T) and O(T2) are not of importance for the following

discussion. Note that the matrix B is of the size (Nu
2N2

o )× (Nu
2N2

o ). Nu and

No are the number of unoccupied and occupied orbitals, respectively. This

makes a direct storage and inversion of B impossible for larger systems. In

practice, one attempts to solve Eq. (5.145) by means of the Jacobi method.

Equation (5.145) can be written as

0 = A+ (B′ −D)T2 +O(T) +O(T2), (5.146)

where

B = B′ −D, (5.147)

and D is diagonal. Rearranging Eq. (5.146) yields

DT2 = A+B′T2 +O(T) +O(T2). (5.148)
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Since D is a diagonal matrix it is straightforward to calculate its inverse and

multiply Eq. (5.148) from the left with D−1,

T2 = D−1
[
A+B′T2 +O(T) +O(T2)

]
. (5.149)

The Jacobi method is an iterative technique that solves Eq. (5.149) by obtain-

ing a new value for T2 from the left-hand side, using a previous value for T2

on the right-hand side:

T
(n+1)
2 = D−1

[
A+B′T

(n)
2 +O

(
T(n)

)
+O

((
T(n)

)2)]
. (5.150)

In our implementation of the CCSD method, the starting guess for T2 = T
(0)
2

equals zero. Moreover, we choose D to be the diagonal Fock matrix. As a

result, we get in the first iteration

T
(1)
2 = D−1A, (5.151)

which equals the MP2 amplitudes in Eq. (5.22) [as one finds after careful

inspection of Eq. (5.54)]. The advantage of the Jacobi method is that at most

two sets of amplitudes T
(n+1)
2 and T

(n)
2 (i.e. the new and the previous set)

need to be stored at the same time. All other quantities can be calculated on

the fly.

Equation (5.150) produces a series of amplitudes
{
T

(1)
2 ,T

(2)
2 ,T

(3)
2 , ...,T

(n)
2

}

that converges if

ρ(D−1B′) < 1. (5.152)

In the above equation ρ is the spectral radius of the matrix D−1B′. The

neglect of quadratic terms in Eq. (5.150) is, in general, well justified because

they are small and changes the conditioning of the matrix D−1B′ only little.

Convergence difficulties are in practice only observed for systems with a small

gap, and strong multireference character (i.e. systems where the Hartree-Fock

determinant is not dominant in the configuration space).



Chapter 6

Natural orbitals

Up to this point we have discussed several methods that allow for the treat-

ment of correlation effects at different levels of theory. All wave function

based methods, require an unoccupied orbital space that is either calculated

from Hartree-Fock or density functional theory. In practice, one observes that

the correlation energy converges very slowly with respect to the number of

unoccupied HF or DFT orbitals. Therefore the number of unoccupied orbitals

is usually orders of magnitude larger than the number of occupied orbitals.

The contribution of the unoccupied orbitals to the computational effort in

MP2, RPA, RPA+SOSEX and CCSD scales as O(Nu
2), O(Nu

2), O(Nu
2) and

O(Nu
4) (in our implementations), respectively, where Nu is the number of un-

occupied orbitals. As such, the highest potential to reduce the computational

effort lies in a reduction of the number of unoccupied orbitals. The question

arises, whether it is possible to construct a different unoccupied orbital space

in which the correlation energy converges more rapidly with respect to the un-

occupied orbitals? In fact, it is known that natural orbitals form a one-electron

basis for which the expansion in excited Slater determinants converges more

rapidly [49]. Natural orbitals are defined as the eigenfunctions of the one-

electron reduced density matrix. The one-electron reduced density matrix, γ,

is given by

γ(r1, r
′
1) =

∫
dr2dr3...drNΨ(r1, r2, ..., rN)Ψ

∗(r′1, r2, ..., rN). (6.1)

47
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Insertion of the definition for ΨHF from Eq. (4.1) into Eq. (6.1) yields the

reduced density matrix in the HF approximation,

γHF(r1, r
′
1) =

occ.∑

i

ψi(r1)ψ
∗
i (r

′
1), (6.2)

which can be transformed into the HF orbital basis, where it becomes a diag-

onal matrix in the occupied-occupied orbital (i,j) block and zero otherwise [9]

γHF
ij =




δij if i, j ∈ occupied

0 otherwise
.

In general if |Ψ〉 is not |ΨHF〉, but a linear combination of several determinants,

γ is not diagonal. Insertion of eT2|ΨHF〉 into Eq. (6.1) yields

γT2(r1, r
′
1) =

∫
dr2dr3...drN(Ψ

HF+
occ.∑

kl

unocc.∑

ab

tabklΨ
ab
kl)(Ψ

HF+
occ.∑

k′l′

unocc.∑

a′b′

ta
′b′

k′l′Ψ
a′b′

k′l′ )
∗,

(6.3)

where we have neglected all quadruply or higher excited determinants. The

indices k, l and a, b denote occupied and unoccupied one-electron spin-orbitals,

respectively. Carrying out the integrations in Equation (6.3) yields

γT2(r1, r
′
1) =

occ.∑

i

ψi(r1)ψ
∗
i (r

′
1) +

1

2

occ.∑

kl

unocc.∑

cab

tackl t
bc
kl

∗
ψa(r1)ψ

∗
b (r

′
1). (6.4)

Transforming the density matrix from Eq. (6.4) into the HF orbital basis yields

γT2
ab =





γHF
ab if a or b ∈ occupied

1

2

occ.∑

kl

unocc.∑

c

tackl t
bc
kl

∗
if a and b ∈ unoccupied.

(6.5)

Note that γT2
ab is non-diagonal in the virtual-virtual orbital block. Eigenvectors

and eigenvalues of γT2
ab are called natural orbitals and occupation numbers,

respectively. The occupation numbers lie between 0 and 1 and imply that the

corresponding natural orbital occurs in no or all configurations (excited Slater

determinants), respectively [49]. An N -electron system is therefore determined

by a single Slater determinant, if exactly N natural orbitals are fully occupied.

Now we are faced with the difficulty of how to exploit natural orbitals in

actual calculations: To evaluate Eq. (6.5) we need to know the amplitudes
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tabij , for which we would have to carry out the correlated calculation. Fortu-

nately it turns out that natural orbitals, calculated at the level of MP2 (i.e.

employing tabij ’s from Eq. (5.22) ) are already a good approximation to the

exact natural orbitals. The MP2 natural orbitals may then be used in more

sophisticated methods such as CCSD, where a faster convergence with respect

to the employed one-electron orbital basis allows for a significant reduction in

the computational cost.

Inserting Eq. (5.22) into Eq. (6.5) yields the second-order one-electron reduced

density matrix at the level of MP2:

γMP2
ab =





γHF
ab if a or b ∈ occupied

1

2

occ.∑

ij

unocc.∑

c

〈cb||ij〉 〈ij||ca〉
∆cb

ij∆
ca
ij

if a and b ∈ unoccupied,
(6.6)

where

∆cb
ij = ǫc + ǫb − ǫi − ǫj . (6.7)

The ǫn correspond to one-electron Hartree-Fock eigenvalues. Note that the

evaluation of Eq. (6.6) scales as O(N5) for atoms and molecules, where N

is a measure of the system size. In Ref. [50], Aquilante et. al. propose to

approximate the virtual-virtual block of the density matrix by

∑

ci

〈cb|ii〉 〈ii|ca〉
∆cb

ii∆
ca
ii

. (6.8)

This approximate MP2 density matrix may be constructed with a computa-

tional effort that scales as O(N4) only.



50



Chapter 7

Quasiparticles in the MP2 and

GW approximation

In order to calculate band gaps (as measured in Photoemission spectroscopy)

in the MP2 approximation, it is common practice to define the QP energies

for the valence state, ǫ̃MP2
v , and conduction band state, ǫ̃MP2

c , according to

Koopman’s theorem as MP2 total energy differences of the (N + 1), (N) and

(N − 1) electron systems [52]:

ǫ̃MP2
v = EN

C − EN−1
C (7.1)

ǫ̃MP2
c = EN+1

C − EN
C . (7.2)

Equations (7.1) and (7.2) constitute corrections to the HF orbital energies

defined in Eq. (4.7).

Inserting the expression for the MP2 correlation energies from Eq. (5.32)

into the equations above yields the following expressions for the MP2 QP

energies of the valence (ǫ̃MP2
v ) and conduction band (ǫ̃MP2

c ) :

ǫ̃MP2
v (ω) =

∑

i,a,b

〈iv|ab〉 (2 〈iv|ab〉 − 〈iv|ba〉)∗
ǫHF
i + ω − ǫHF

a − ǫHF
b

−
∑

i,j,a

〈ij|av〉 (2 〈ij|av〉 − 〈ij|va〉)∗
ǫHF
i + ǫHF

j − ǫHF
a − ω

(7.3)
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ǫ̃MP2
c (ω) =

∑

i,a,b

〈ic|ab〉 (2 〈ic|ab〉 − 〈ic|ba〉)∗
ǫHF
i + ω − ǫHF

a − ǫHF
b

−
∑

i,j,a

〈ij|ac〉 (2 〈ij|ac〉 − 〈ij|ca〉)∗
ǫHF
i + ǫHF

j − ǫHF
a − ω

(7.4)

These are evaluated for ω = ǫHF
v and ω = ǫHF

c , respectively. Note that Eqs. (7.3)

and (7.4) include direct as well as exchange-like terms. The exchange-like term

in the MP2 QP energy corrects for the self-screening and self-correlation error

in the direct term [48], which includes an unphysical contribution: the particle

or hole state is involved in the screening of its own charge density, and thus

experiences its own correlation potential. We note in passing that self-screening

and self-correlation are interchangeable terms in second-order theory.

Equations (7.3) and (7.4) represent a first approximation to the self-consistent

MP2 QP energies. In a self-consistent scheme all one-electron energies ǫHF on

the right-hand side of Eqs. (7.3) and (7.4), respectively, would be replaced by

the corresponding MP2 QP energies. Accordingly Eqs. (7.3) and (7.4) become

nonlinear equations, requiring a rather time consuming iterative solution and

an update of all orbital energies. It is also not guaranteed that such an iterative

solution will yield an improved description of the QP energies.

Here we apply a limited self-consistent scheme, in which the one-electron

energy of the considered orbital only (ω = ǫHF
v → ω = ǫMP2

v or ω = ǫHF
c →

ω = ǫMP2
c ) is updated on the right-hand side. As such, the quasiparticle energy

equation reads

ǫMP2
n = ǫHF

n + ǫ̃MP2
n (ǫMP2

n ) (7.5)

Expanding ǫ̃MP2
n (ǫMP2

n ) in the above equation around ǫHF
n yields

ǫMP2
n = ǫHF

n +ǫ̃MP2
n (ǫHF

n )+
∂ǫ̃MP2

n (ω)

∂ω

∣∣∣
ǫHF
n

(
ǫMP2
n − ǫHF

n

)
+
∂2ǫ̃MP2

n (ω)

∂ω2

∣∣∣
ǫHF
n

(
ǫMP2
n − ǫHF

n

)2
+..

(7.6)

Truncating the Taylor expansion at linear terms in
(
ǫMP2
n − ǫHF

n

)
gives

ǫMP2
n = ǫHF

n + ǫ̃MP2
n (ǫHF

n ) +
∂ǫ̃MP2

n (ω)

∂ω

∣∣∣
ǫHF
n

(
ǫMP2
n − ǫHF

n

)
. (7.7)

Solving the above equation for ǫMP2
n yields

ǫMP2
n = ǫHF

n + ǫ̃MP2
n (ǫHF

n )ZMP2
n . (7.8)
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The normalization factor ZMP2
n is defined as,

ZMP2
n =

(
1− ∂ǫ̃MP2

n (ω)

∂ω

∣∣∣
ǫHF
n

)−1

, (7.9)

and is proportional to the norm of the QP peak. This approach is inspired by

the QP equation discussed below, and it is compatible to the approach usually

taken in the solid state community to solve the QP equations in Hedin’s GW

method [25, 53].

Strictly speaking, Koopman’s theorem is a rather ad hoc approach to derive

equations for the QP energies. The appropriate theoretical framework is the

solution of the QP equation

(T + VH + Σ(ǫ))φ = ǫφ, (7.10)

where T is the kinetic energy operator, VH the Hartree potential, and Σ the self-

energy operator. The latter is energy dependent and non-local (i.e. depends

on two coordinates). The QP equation has a discrete set of solutions {ǫn, φn},
where the orbitals φn are commonly referred to as Dyson orbitals or Lehmann

amplitudes. Closed exact expressions for the self-energy operator Σ(ǫ) are

not known. Two commonly used methods to construct approximations to

the self-energy are the GW method of Hedin [25], applied in the solid state

community [53], and the ADC (algebraic diagrammatic construction) method

of Schirmer, Cederbaum and Walter [54], often used by quantum chemists.

In all practical applications the GW expressions are subject to further

approximations. For solid state systems the simplest and computationally

most convenient approximation is to evaluate GW within the random phase

approximation (RPA). It can be derived from Hedin’s set of equations by

neglecting vertex corrections [25]. This yields a simple closed expression for

the self-energy ΣGW , which reads [53]:

ΣGW (r, r′, ω) =
i

2π

∫ ∞

−∞

dω′W (r, r′, ω′)G(r′, r, ω + ω′) (7.11)

G(r′, r, ω) =
∑

n′

ψn′(r)ψ∗
n′(r′)

ω − ǫn′ + iηsgn(ǫn′ − µ)
(7.12)

W (r, r′, ω) =ν(r, r′) + +

∫
dr′′
∫
dr′′′ν(r, r′′)χ(r′′, r′′′, ω)ν(r′′′, r′) (7.13)

χ(r, r′, ω) =χ0(r, r
′, ω) +

∫
dr′′
∫
dr′′′χ0(r, r

′′, ω)ν(r′′, r′′′)χ(r′′′, r′, ω)

(7.14)
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Here χ is the polarizability of the interacting many-electron system calculated

in the random phase approximation. χ0 and ν are the independent particle

polarizability and the bare Coulomb kernel given by

χ0(r, r
′, ω) = −

occ.∑

i

unocc.∑

a

2

(
ψ∗
a(r

′)ψi(r
′)ψ∗

i (r)ψa(r)

ǫa − ǫi − ω − iη
+
ψ∗
i (r

′)ψa(r
′)ψ∗

a(r)ψi(r)

ǫa − ǫi + ω + iη

)

(7.15)

and

ν(r, r′) =
e2

|r− r′| , (7.16)

respectively. In practical GW -RPA calculations, {ǫi, ψi} and {ǫa, ψa} com-

monly refer to occupied and unoccupied Kohn-Sham orbital energies (or or-

bitals), respectively. We note that the RPA equations specified here neglect

all ladder diagrams, as is usually done in the solid state community (direct

RPA).

A crude approximation to Eq. (7.14) is the termination of the Dyson-like

equation at the lowest order:

χ(ω) = χ0(ω), (7.17)

i.e., W = ν + νχ0ν. In appendix B we show that this allows to recover

the direct terms in the MP2 QP energies given in Eq. (7.3). This has one

important implication: MP2 can be only reliable if the polarizability of the

system is small, as higher order terms are not accounted for. We will illustrate

this in Sec. 9.2.4.

We now return to the previous QP equation (7.3), to illustrate the implica-

tion of an update of ω = ǫHF
v and ω = ǫHF

c on the right-hand side of Eq. (7.3).

If we assume that the Dyson orbitals are well approximated by the HF orbitals

φn = ψHF
n , one can, multiplying the QP equation (7.10) from the left with ψHF

n
∗

and integrating over space, obtain:

〈
ψHF
n |T + VH + ΣMP2(ǫn)|ψHF

n

〉
= ǫn

〈
ψHF
n |ψHF

n

〉
. (7.18)

Linearization of the self-energy around ǫHF
n and solving for ǫn yields Eq. (7.8)

(compare Ref. [41]). This implies that updating the orbital energy of the con-

sidered orbital is consistent with a self-consistent solution of the QP equation,
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with the self-energy operator calculated non-self-consistently at the MP2 level.

Exactly the same is usually done in GW calculations for solids, but there the

self-energy is approximated at the RPA level instead of the MP2 level, and

the orbitals are from Kohn-Sham instead of HF calculations. Both approxi-

mations are expected to work in a certain regime: (i) for weakly polarizable

atoms, molecules and solids, HF+MP2 should be a good approximation, since

higher order effects are small, whereas (ii) the RPA is justified if the effect of

exchange-like diagrams is small, which is expected to be the case for densely

packed strongly polarizable solids.

We finally note that a similar analogy between RPA and MP2 has already

been discussed for the correlation energies in section 5.6.
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Chapter 8

The PAW Method

The projector augmented wave (PAW) method was introduced by Blöchl [55].

Its close relationship to the ultrasoft pseudopotentials method of Vander-

bilt [56] was shown by Kresse and Joubert [57]. This section provides a short

introduction to this topic.

Under periodic boundary conditions the mutually orthogonal DFT or HF one-

electron (canonical) orbitals are Bloch functions, i.e.,

〈r+R|ψa〉 = 〈r|ψa〉eika·R (8.1)

for all lattice vectors R. The index a, labeling the one-electron orbitals ψ,

is understood to be shorthand for the band index na and the Bloch wave

vector ka (i.e., a ≡ naka). The wave vector is conventionally chosen to lie

within the first Brillouin zone. In the PAW method, the one-electron wave

functions ψa are derived from the pseudo-wave-functions ψ̃a by means of a

linear transformation

|ψa〉 = |ψ̃a〉+
∑

i

(|φi〉 − |φ̃i〉)
〈
p̃i|ψ̃a

〉
. (8.2)

The pseudo wave functions ψ̃a are the variational quantities of the PAW-

method and are expanded in reciprocal space using plane waves,

〈r|ψ̃a〉 =
1√
Ω

∑

G

CaGe
i(ka+G)·r. (8.3)

In Eq. (8.2), the index i is a shorthand for the atomic site Ri, the angular

momentum quantum numbers li and mi, and an additional index ǫi denoting

57
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the linearization energy [57]. The all-electron partial waves φi are the solution

to the radial Schrödinger equation for the non-spin-polarized reference atom at

specific energies ǫi and specific angular momenta li. The pseudo-partial waves,

φ̃i, are equivalent to the all-electron partial waves outside a core radius rc and

match continuously onto φi inside the core radius. The partial waves φi and

φ̃i are represented on radial logarithmic grids. The projector functions p̃i are

constructed in such a way that they are dual to the pseudo partial waves, i.e.,

〈
p̃i|φ̃j

〉
= δij . (8.4)

8.1 The charge density

It can be shown [57] from Eq. (8.2) that the electronic charge density in the

PAW method may be written as

n(r) = ñ(r) + n1(r)− ñ1(r), (8.5)

where ñ(r), n1(r), and ñ1(r) are defined as,

ñ(r) =
∑

n

fn

〈
ψ̃n|r

〉〈
r|ψ̃n

〉
, (8.6)

ñ1(r) =
∑

i,j

ρij

〈
φ̃i|r

〉〈
r|φ̃j

〉
, (8.7)

n1(r) =
∑

i,j

ρij 〈φi|r〉 〈r|φj〉 , (8.8)

with

ρij =
∑

n

fn

〈
ψ̃n|p̃i

〉〈
p̃j |ψ̃n

〉
δτiτj . (8.9)

δτiτj is one if i and j refer to the same atomic site. The fn denote the occupan-

cies of the n-th one-electron state. The ρij can be regarded as the one-electron

reduced density matrix at each atomic site.

Typically, the summation over n in Eqs. (8.6) and (8.9) is restricted to

include only the chemically relevant valence states. The charge density cor-

responding to the (tightly bound) core electrons is kept frozen (frozen core

approximation). The total charge density is then given by

n = (ñ+ ñZc)− (ñ1 + ñZc) + (n1 + nZc), (8.10)
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where nZc = nZ +nc. nZ and nc denote the nuclear and core electronic charge

densities, respectively. The pseudized core density ñZc is a charge distribution

that is equivalent to nZc beyond the core radius rc and has the same moment

as nZc inside rc ∫

Ωr

nZc(r)d
3r =

∫

Ωr

ñZc(r)d
3r, (8.11)

where
∫
Ωr

stands for the integration on the radial logarithmic grid.

In order to ensure a correct and efficient treatment of the long-range elec-

trostatic interactions the total charge density is rewritten as

n = (ñ + ñZc + n̂)− (ñ1 + ñZc + n̂) + (n1 + nZc) (8.12)

where n̂ is a compensating charge density that is chosen such that ñ1 + n̂ has

exactly the same multipole moments as n1 [see Eq. (27) in Ref. [57]].

8.2 The total energy in the PAW method

Within the PAW method the total energy can be written as [57]

E = Ẽ + E1 − Ẽ1. (8.13)

Here the last two terms are evaluated on atom-centered radial logarithmic grids

whereas the first term is calculated on a regular grid.

This separation is very efficient from a computational point of view and can

be performed for any observable that corresponds to a semilocal operator.

The three contributions to Eq. (8.13) are given by

Ẽ =
∑

n

fn

〈
ψ̃n | −1

2
∆ | ψ̃n

〉
+ Exc [ñ+ n̂+ ñc]

+ EH [ñ+ n̂] +

∫

ΩR

vH [ñZc] [ñ(r) + n̂(r)] dr + U(R,Zion) (8.14)

Ẽ1 =
∑

i,j

ρij

〈
φ̃i| −

1

2
∆|φ̃j

〉
+ Exc[ñ1 + n̂+ ñc]

+ EH [ñ1 + n̂] +

∫

ΩR

vH [ñZc][ñ
1(r) + n̂(r)]dr (8.15)

E1 =
∑

i,j

ρij

〈
φi| −

1

2
∆|φj

〉
+ Exc[ñ1 + nc]

+ EH [n1] +

∫

ΩR

vH [nZc]n
1(r)dr (8.16)
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where

vH [n](r) =

∫
n(r′)

|r − r′|dr
′EH [n] =

1

2

∫
dr

∫
dr′

n(r)n(r′)

|r − r′| , (8.17)

and ñc is a partial electronic core charge density (see Sec. II C of Ref. [57]). In

equations (8.15) and (8.16) the overline denotes that these terms are evaluated

on the radial grid.

Equations (8.14), (8.15) and (8.16) hold for the total energy in DFT.

To obtain the Hartree-Fock energy, we replace Exc by the Fock-exchange en-

ergy, EX , where

EX = −1

2

N∑

m=1

N∑

n=1

〈ψmψn|ψnψm〉 fnfm. (8.18)

The evaluation of the electron repulsion integrals 〈ψmψn|ψnψm〉 will be outlined
in the following section.

8.3 Electron repulsion integrals in the PAW

method

In this section, we will derive the PAW expressions for the electron repulsion

(or two-electron-four-orbital) integrals

V ab
ij = 〈ij|ab〉 = e2

∫ 〈ψi|r〉〈r|ψa〉〈ψj |r′〉〈r′|ψb〉
|r− r′| dr′dr. (8.19)

From the definition in Eq. (8.1) it is straightforward to show that the two-

electron-four-orbital integrals, V ab
ij , are non-zero only if the crystal momentum

is conserved, i.e.,

kb = ki + kj − ka −K, (8.20)

where K is any reciprocal lattice vector that takes kb into the first Brillouin

zone. Since, the electron repulsion integrals are closely related to the expres-

sions for the HF exchange integrals within the PAW framework, we adopt a

similar notation as in Ref. [58].

In the PAWmethod, the overlap charge density that arises from two orbitals

i and a

nia(r) = 〈ψi|r〉〈r|ψa〉 (8.21)
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may be written as

nia(r) = [ñia(r) + n̂ia(r)]− [ñ1
ia(r) + n̂1

ia(r)] + n1
ia(r) (8.22)

where

ñia(r) = 〈ψ̃i|r〉〈r|ψ̃a〉 (8.23)

is the PS overlap charge density expanded in the plane wave basis set, and

ñ1
ia(r) =

∑

µν

〈φ̃µ|r〉〈r|φ̃ν〉〈ψ̃i|p̃µ〉〈p̃ν |ψ̃a〉δτµτν (8.24)

n1
ia(r) =

∑

µν

〈φµ|r〉〈r|φν〉〈ψ̃i|p̃µ〉〈p̃ν |ψ̃a〉δτµτν , (8.25)

are the PS and AE overlap charge densities expanded in the basis of partial

waves in the PAW spheres. δτµτν is one if µ and ν refer to the same atomic

site. From hereon, the superscript 1 is used to label one-center contributions,

quantities that are expressed in terms of partial waves. They are non-zero

within the PAW spheres only. The delta functions in Eq. (8.24) and (8.25)

express the fact that the one-center expansions are defined to be site diagonal.

The so-called compensation charge densities n̂1
ia and n̂ia are both spatially

confined to the PAW spheres, and are chosen in such a way that the sum

ñ1
ia + n̂1

ia has the same moments as the AE one-center overlap charge density

n1
ia (for a detailed description of the construction scheme see Sec. II B of

Ref. [58]).

Introducing the following shorthand

{f}{g} = e2
∫

f(r)g∗(r′)

|r− r′| dr′dr, (8.26)

the two-electron-four-orbital integrals V ab
ij of Eq. (8.19), may be rewritten as

{nia}{nbj} = {ñia+n̂ia}{ñbj+n̂bj}−{ñ1
ia+n̂

1
ia}{ñ1

bj+n̂
1
bj}+{n1

ia}{n1
bj}, (8.27)

i.e., analogous to Eq. (20) of Ref. [58]. It is important to note that the right-

hand side of Eq. (8.27) contains integrals over quantities expressed either solely

in the plane wave basis (the first term) or solely in the basis of partial waves

(the last two terms) [N.B.: the introduction of the compensation charges in

Eq. (8.22) enables this separation]. Thus within the PAW formalism the two-

electron-four-orbital integrals consist of three separate contributions:

V ab
ij = Ṽ ab

ij − 1Ṽ ab
ij + 1V ab

ij (8.28)
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with

Ṽ ab
ij ={ñia + n̂ia}{ñbj + n̂bj},

1Ṽ ab
ij ={ñ1

ia + n̂1
ia}{ñ1

bj + n̂1
bj}, (8.29)

1V ab
ij ={n1

ia}{n1
bj}.

The last term on the right-hand side of Eq. (8.28), the AE one-center contri-

bution to V ab
ij , is given by

1V ab
ij = e2

∑

κλµν

∫ 〈φκ|r〉〈r|φλ〉〈φµ|r′〉〈r′|φν〉
|r− r′| dr′dr〈ψ̃i|p̃κ〉〈p̃λ|ψ̃a〉〈ψ̃j |p̃µ〉〈p̃ν|ψ̃b〉,

(8.30)

where only combinations of κλµν on the same lattice site, i.e., τκ = τλ =

τµ = τν are understood to contribute to the sum above. Loosely following the

derivation in Sec. II D3 of Ref. [58] we rewrite the above as

1V ab
ij =

∑

κλµν

∑

LM

CLM
lνmν lµmµ

SL
κλµνC

LM
lκmκlλmλ

〈ψ̃i|p̃κ〉〈p̃λ|ψ̃a〉〈ψ̃j|p̃µ〉〈p̃ν |ψ̃b〉, (8.31)

where we introduced the Clebsch-Gordan coefficients CLM
lml′m′ and the Slater-

type integrals

SL
κλµν =

4πe2

2L+ 1

∫ rc

0

dr uκ(r)uλ(r)

∫ rc

0

dr′ uµ(r
′)uν(r

′)

(
rL<
rL+1
>

)
. (8.32)

The function ui denotes the radial part of the AE partial wave:

φi(r) =
1

|r− τi|
ui(|r− τi|)Ylimi

( ̂r− τi). (8.33)

Completely analogous, the second term on the right-hand side of Eq. (8.28),

the PS one-center contribution to V ab
ij , may be written as

1Ṽ ab
ij =

∑

κλµν

∑

LM

CLM
lνmν lµmµ

S̃L
κλµνC

LM
lκmκlλmλ

〈ψ̃i|p̃κ〉〈p̃λ|ψ̃a〉〈ψ̃j |p̃µ〉〈p̃ν|ψ̃b〉 (8.34)

with

S̃L
κλµν =

4πe2

2L+ 1

∫ rc

0

dr
[
ũκ(r)ũλ(r) + q̄LκλgL(r)

]

×
∫ rc

0

dr′
[
ũµ(r

′)ũν(r
′) + q̄LµνgL(r

′)
]( rL<

rL+1
>

)
, (8.35)
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where ũi and q̄
L
ijgL denote the radial parts of the PS partial wave φ̃i and the

appropriate compensation charge, respectively. The construction scheme for

the latter is specified in Sec. II D4 of Ref. [58] and will not be repeated here.

Finally, the first term on the right-hand side of Eq. (8.28), the plane wave

contribution to V ab
ij , is given by

Ṽ ab
ij = e2

∫
[ñia + n̂ia] (r) [ñbj + n̂bj ]

∗ (r′)

|r− r′| dr′dr. (8.36)

Introducing the plane wave expansion of the compensated PS overlap charge

density,

[ñia + n̂ia] (r) =
∑

G

CiaGe
i(ka−ki+G)·r, (8.37)

we rewrite Eq. (8.36) as follows

Ṽ ab
ij =

4πe2

Ω

∑

G

CiaGC
∗
bjG−K

|ka − ki +G|2 , (8.38)

where ki is the Bloch wave vector associated with the PS orbital ψ̃i [see

Eq. (8.3)], and G and K are reciprocal lattice vectors. The latter is given

by Eq. (8.20). The plane wave expansion of the PS overlap charge densities is

usually limited to the components for which (h̄2/2me)|ka − ki +G|2 is below

some kinetic energy cutoff Eχ.

The evaluation of the plane wave contributions to the two-electron-four-

orbital integrals is complicated by the fact that Eq. (8.38) has an integrable

divergence in the long-wavelength limit, i.e., for G = ki − ka (and G =

kb − kj +K). In this case, Eq. (8.38) can be rewritten as

Ṽ ab
ij =

4πe2

Ω

∑

G

Cnika,naka,G
C∗

nbkb,njkb,G

|G|2 . (8.39)

The long-wavelength limit (G = 0) of which is given by (see Sec. II D of

Ref. [59]),

lim
q→0

Cnika+q,naka,0
C∗

nbkb+q,njkb,0

|q|2 = lim
q→0

〈ψnika+q|eiq·r|ψnaka
〉〈ψnjkb

|e−iq·r|ψnbkb+q〉
|q|2

=q̂ · 〈~βnika
|ũnaka

〉〈ũnjkb
|~βnbkb

〉 · q̂, (8.40)
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where ~βnk is the derivative of the cell periodic part of the wave function ψnk

with respect to k given by [59]

|~βnk〉 =
(
1 +

∑

ij

|p̃ik〉Qij〈p̃jk|
)
|∇kũnk〉+ i

(∑

ij

|p̃ik〉Qij〈p̃jk|(r−Ri)

)
|ũnk〉

− i
∑

ij

|p̃ik〉~τij〈p̃jk|ũnk〉. (8.41)

ũnk denotes the cell periodic part of the PS wave function ψ̃nk.
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Chapter 9

Second-order Møller-Plesset

perturbation theory

The wave function based treatment of electronic correlation constitutes a hi-

erarchy of methods that, starting from the one-electron Hartree-Fock approx-

imation, allows one to rigorously and systematically approximate the many-

body nature of the true ground state wave function. The simplest form of the

wave function based treatment of correlation, is the canonical formulation of

second-order Møller-Plesset [11] (MP2) perturbation theory.

In this chapter, we compute the atomization energy of the LiH molecule

and the cohesive energy of bulk LiH using the Hartree-Fock and MP2 methods,

and demonstrate the accuracy of our approach through a comparison with

Gaussian-type-orbital (GTO) calculations for the molecule and the results of

Casassa et al. [78] and Manby et al. [80, 81, 82] for the solid. Moreover we

apply our MP2 implementation to a series of archetypical semiconductors and

insulators. We calculate lattice constants, bulk moduli, atomization energies

and quasiparticle band gaps at the level of HF and MP2 in order to evaluate

the accuracy of these methods for solid state systems.

9.1 Basis set convergence and the LiH test

The atomization (cohesive) energy D0(M) per unit cell of a molecule (extended

system) M , is defined as

D0(M) = E0(M)−
∑

X

E0(X), (9.1)

67
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where E0(M) is the total energy per unit cell of M , and the sum is taken over

the total energies E0(X) of the constituent atoms X in their spin-polarized

symmetry-broken ground state (i.e., no fractional occupancies). In this section,

we compute the atomization energy of a LiH molecule and the cohesive energy

of bulk LiH, at the HF+MP2 level. We demonstrate the accuracy of our

canonical MP2 implementation through a comparison with GTO calculations

for the molecule, and to the results of local MP2 (CRYSCOR) calculations

of Casassa et al. [78] and the hierarchical extrapolation scheme of Manby

et al. [80] for the solid. Furthermore we address two important aspects of

HF+MP2 calculations under periodic boundary conditions using a plane wave

basis set: (i) the convergence of the MP2 correlation energy with respect to

the kinetic energy cutoff, Eχ, imposed on the plane wave basis set expansion

of the PS overlap charge densities [see Eq. (8.37)], and (ii) the convergence of

the HF and MP2 correlation energies of atoms and molecules with respect to

the volume of the supercell.

All calculations in the present work are “all-electron” calculations, in the

sense that all electrons of the system are treated as valence electrons, i.e. we do

not invoke the frozen core approximation. The PAW datasets were constructed

with two s and two p partial waves as additional one-center basis functions in

the case of H, and three s, three p, and two d partial waves in the case of Li.

In all calculations the plane wave basis set expansion of the wave functions

was cut off at a kinetic energy of 550 eV.

9.1.1 The Li atom and LiH molecule

The convergence behavior of the MP2 correlation energy with respect to the

size of the plane wave basis set expansion of the PS overlap charge densities is

illustrated in Fig. 9.1. It shows the dependence of the MP2 correlation energy

of a Li atom on the kinetic energy cutoff Eχ applied in Eqs. (8.37) and (8.38)

[i.e., the basis set expansion of the overlap charge densities is limited to those

plane wave components with (h̄2/2me)|ka−ki−G|2 < Eχ]. Unfortunately, the

convergence of the MP2 correlation energy with respect to Eχ is quite slow.

Following the work of Harl et al. [45], we assume that for sufficiently high Eχ

the MP2 correlation energy behaves as

Ec(Eχ) = Ec(Eχ → ∞) + CE−3/2
χ (9.2)
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and extrapolate our data using this functional form to determine the infinite

basis set limit Ec(Eχ → ∞). This procedure is indicated by the dotted (blue)

lines in Fig. 9.1 and the inset shows the energies Ec(Eχ → ∞). Furthermore,

as expected, under periodic boundary conditions the MP2 correlation energy

of the Li atom is seen to depend on the size of the supercell, e.g. Figure 9.1

shows the infinite basis set extrapolation of the MP2 correlation energy for a

Li atom in a 6×6×6 Å3 (circles), 6.5×6.5×6.5 Å3 (squares), and 7×7×7 Å3

(pluses) supercell. The volume dependence of Ec(Eχ → ∞) for the Li atom

is shown in Fig. 9.2. At large volume Ω, the correlation energy should drop

off as 1/Ω2, i.e., it should show the volume dependence typical for the van der

Waals interaction between the periodically repeated images of the Li atom.

This volume dependence is indicated by the dotted (blue) line in Fig. 9.2,

and the extrapolation of the MP2 correlation energy of the Li atom to infinite

volume is shown in the inset: Ec(Eχ → ∞,Ω → ∞) = −0.853 eV. Note that

to correctly reproduce the 1/Ω2 dependence of the correlation energy on the

volume, we had to use a (2×2×2) Γ-centered mesh of k-points, instead of the

Γ-only sampling that is usually employed in supercell calculations for atoms

and molecules.

To calculate the MP2-correlation contribution to the atomization energy

of the LiH molecule, ∆Ec = ELiH
c − ELi

c (note EH
c ≡ 0), we follow a sim-

ilar procedure; extrapolation of ∆Ec(Eχ,Ω) = ELiH
c (Eχ,Ω) − ELi

c (Eχ,Ω) to

the infinite plane wave basis set limit ∆Ec(Eχ → ∞,Ω) followed by an ex-

trapolation to infinite supercell volume Ω → ∞. This is shown in Figs. 9.3

and 9.4. ∆Ec(Eχ,Ω) converges much more rapidly with respect to Eχ than

Ec(Eχ,Ω) (compare Figs. 9.1 and 9.3). As depicted in the inset of Fig. 9.4, the

extrapolation of the infinite basis set limit of ∆Ec to infinite volume yields,

∆Ec(Eχ → ∞,Ω → ∞) = −0.822 eV. This is in excellent agreement with the

result obtained from Gaussian-type-orbital (GTO) calculations with GAUS-

SIAN03 [84], ∆Ec(GTO) = −0.819 eV. The latter was extrapolated to its

infinite basis set limit from a series of calculations using Dunning’s aug-cc-

pCV(D,T,Q)Z and aug-cc-pV(D,T,Q)Z basis sets for Li and H, respectively.

As shown in Fig. 9.5, ∆EHF, the HF contribution to D0(LiH) depends

on the volume of the supercell as well, and converges with 1/Ω2 towards

∆EHF(Ω → ∞) = −1.084 eV, which is in perfect agreement with the result

from the corresponding basis set extrapolated GTO calculations, ∆EHF(GTO) =
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Figure 9.1: Dependence of the MP2 correlation energy Ec of a Li atom on

the kinetic energy cutoff Eχ that determines the size of the plane wave basis

set expansion of the overlap densities (Ec vs. E
−3/2
χ ) for three different cubic

supercells of increasing size [6×6×6 Å3 (circles), 6.5×6.5×6.5 Å3 (squares),

and 7×7×7 Å3 (plusses)]. The extrapolation Eχ → ∞ is indicated by the

dotted (blue) lines, and the inset shows Ec(Eχ → ∞).

−1.084 eV. Beware that the convergence behaviour of EHF and ∆EHF with re-

spect to the volume of the supercell depends on the way the long-wavelength

limit of the Fock exchange interaction is treated. In the present work we

have used the method of Massida et al. [85] and not a more efficient method

that has recently been proposed by Spencer and Alavi [86]. From the above,

the final PAW result for the atomization energy of the LiH molecule reads,

D0(LiH) = ∆EHF +∆Ec = −1.906 eV [GTO: D0(LiH) = −1.903 eV]. To ease

comparison, the PAW and GTO results for the atomization energy of the LiH

molecule are recapitulated in Tab. 9.1.

One important point to mention is that whereas the PAW and GTO MP2

correlation energy differences are in excellent agreement, the absolute MP2

correlation energies are not. The PAW MP2 correlation energies are substan-

tially smaller than their GTO counterparts, e.g. for Li: Ec(PAW) = −0.853 eV
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Figure 9.2: Dependence of the infinite basis set limit of the MP2 correlation

energy of a Li atom, Ec(Eχ → ∞), on Ω the volume of the supercell [Ec(Eχ →
∞) vs. Ω−2]. The extrapolation Ω → ∞ is indicated by the dotted (blue) line,

and the inset shows Ec(Eχ → ∞,Ω → ∞).

vs. Ec(GTO) = −1.123 eV despite the fact that both methods should in prin-

ciple recover the all-electron result (the Li and H PAW potentials are both

all-electron potentials). We believe this to be due to the fact that our MP2

calculations are not converged with respect to the basis set of additional lo-

cal functions inside the PAW spheres (φν and φ̃ν). The one-center basis sets

used in this work, however, are of sufficient quality to obtain well converged

MP2 correlation energy differences. The HF calculations are less sensitive

in this respect. With the PAW datasets used in this work even the abso-

lute PAW and GTO HF total energies agree to within a few meV, e.g. for

Li: EHF(PAW) = −202.258 eV vs. EHF(GTO) = −202.255 eV.

9.1.2 Bulk LiH

To calculate the MP2-correlation energy contribution to the atomization en-

ergy of bulk LiH we follow a similar strategy. The MP2 correlation energy
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Figure 9.3: Dependence of the MP2-correlation contribution to the atomization

energy of a LiH molecule, ∆Ec, on the kinetic energy cutoff Eχ that determines

the size of the plane wave basis set expansion of the overlap densities (∆Ec

vs. E
−3/2
χ ), for three different cubic supercells of increasing size [6×6×6 Å3

(circles), 6.5×6.5×6.5 Å3 (squares), and 7×7×7 Å3 (plusses)]. The extrapo-

lation Eχ → ∞ is indicated by the dotted (blue) lines, and the inset shows

∆Ec(Eχ → ∞).

Table 9.1: The atomization energy D0, and the HF and MP2-correlation con-

tributions to D0, ∆EHF and ∆Ec, for a LiH molecule, from PAW and GTO

calculations. All energies in eV.

∆EHF ∆Ec D0

PAW -1.084 -0.822 -1.906

GTO -1.084 -0.819 -1.903



9.1 Basis set convergence and the LiH test 73

 −0.825

 −0.820

 −0.815

 −0.810

 −0.805

 −0.800

 −0.795

 −0.790

 −0.785

 −0.780

∞ 600 400 300 250 200

∆E
c 

(e
V

)

Ω (Å3)

 −0.822

Ω=∞

Figure 9.4: Dependence of the infinite basis set limit of the MP2-correlation

contribution to the atomization energy of a LiH molecule, ∆Ec(Eχ → ∞), on

Ω the volume of the supercell [∆Ec(Eχ → ∞) vs. Ω−2]. The extrapolation

Ω → ∞ is indicated by the dotted (blue) line, and the inset shows ∆Ec(Eχ →
∞,Ω → ∞).
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Figure 9.5: Dependence of the HF contribution to the atomization energy of

a LiH molecule, ∆EHF, on the volume, Ω, of the supercell (∆EHF vs. Ω−2).

The extrapolation Ω → ∞ is indicated by the dotted (blue) line, and the inset

shows ∆EHF(Ω → ∞).
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Table 9.2: Convergence of the basis set extrapolated MP2 correlation energy

of bulk LiH with respect to the sampling of the first Brillouin zone. The

latter is specified by n, which is short for a (n × n × n) Γ-centered mesh of

k-points. In addition to the total MP2 correlation energy Ec(Eχ → ∞) we

list the “direct” (D) and “exchange”-like (X) contributions that make up the

total MP2 correlation energy, as well as the ratio X/D. All energies are in eV.

n D X X/D Ec(Eχ → ∞)

2 -3.667 1.684 -0.459(3) -1.983

3 -3.679 1.653 -0.449(2) -2.027

4 -3.706 1.666 -0.449(5) -2.040

5 -3.716 1.668 -0.449(0) -2.048

6 -3.717 -2.048

8 -3.718 -2.049

10 -3.719 -2.049

of the bulk Ec(Eχ, n) is evaluated at the 0K experimental volume, Ωexp.
0K =

17.03 Å3, for a series of increasingly dense (n × n × n) Γ-centered meshes of

k-points (n = 2, 3, 4, and 5), at several different cutoff energies Eχ = 150,

200, 250, 300, and 350 eV. These energies are then extrapolated to Eχ → ∞
in the manner described in Sec. 9.1.1 (see for instance Fig. 9.2). The resulting

basis set extrapolated MP2 correlation energies Ec(Eχ → ∞, n) are listed in

Tab. 9.2.

Unfortunately Ec(Eχ → ∞, n) converges quite slowly with respect to n, a

problem that is compounded by the fact that the computational effort scales

as N3
k , where Nk = n3 is the total number of k-points in the mesh. We

note, however, that the ratio between the contributions to the MP2 correlation

energy stemming from terms that involve |V ab
ij |2 and those that involve V ab

ij V
ba∗
ij

[see Eqs. (8.19), (5.33) and (5.34)], the so-called “direct” (D) and “exchange”-

like (X) contributions, has converged to X/D = −0.449 already at n = 3

(see Tab. 9.2). This allows to exploit an alternative scheme to compute the

direct contributions to the MP2 correlation energy scaling as N2
k (see Sec. 5.6).

For bulk LiH we evaluate the basis set extrapolated MP2 correlation energy

(and D, X , and X/D) in the manner of Sec. 5.1 for n = 2, 3, 4, and 5,
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Table 9.3: The cohesive energy D0, and the HF and MP2-correlation contri-

butions to D0, ∆EHF and ∆Ec, of bulk LiH. All energies in eV.

∆EHF ∆Ec D0

This work -3.583 -1.197 -4.780

Manby et al. -3.591a -1.186b -4.777

Casassa et al. -4.738c

Exp. (0K) -4.762d

a Ref. [81], (at Ωexp.
0K = 17.03 Å3).

b Ref. [82], (idem).
c Ref. [78], (at Ω0 = 16.31 Å3).
d Ref. [80]

whereas for n = 6, 8, and 10, we calculate only the direct contributions to the

MP2 correlation energy D, as outlined Sec. 5.6. The fact that X/D converges

rapidly with respect to n is then used to infer the total MP2 correlation energy

from the corresponding direct contribution, i.e.,

Ec(Eχ → ∞, n) =

(
1 +

X

D

∣∣∣
n=5

)
D(Eχ → ∞, n), (9.3)

for n = 6, 8, and 10 (see Tab. 9.2). As can be seen from Tab. 9.2, the

MP2 correlation energy of bulk LiH converges towards Ec(Eχ → ∞, n =

10) = −2.049 eV (essentially converged already for n = 5). Hence the

MP2-correlation contribution to the cohesive energy of bulk LiH amounts to

∆ELiH
c = ELiH

c (Eχ → ∞, n = 10) − ELi
c (Eχ → ∞,Ω → ∞) = −1.196(4) eV,

which is in excellent agreement with the result Manby et al. [82] obtained by

means of their hierarchical extrapolation scheme, ∆Ec = −1.186 eV. Alterna-

tively we may also compute ∆ELiH
c by extrapolating

∆Ec = lim
Eχ→∞

ELiH
c (Eχ, n = 10)− ELi

c (Eχ,Ω → ∞). (9.4)

This extrapolation is shown in Fig. 9.6, and yields ∆ELiH
c = −1.196(6) eV,

i.e., essentially the same result as before. Note that ∆Ec(Eχ) behaves almost

perfectly as E
−2/3
χ over the entire range of Eχ depicted in Fig. 9.6; if one uses

only the two data points at Eχ = 150 and 200 eV, the extrapolation yields

∆Ec = −1.197(9) eV.
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Figure 9.6: Dependence of the MP2-correlation energy contribution to the

cohesive energy of bulk LiH, ∆Ec, on the energy cutoff Eχ that determines

the size of the plane wave basis set expansion of the overlap densities (∆Ec

vs. E
−3/2
χ ). The extrapolation Eχ → ∞ is indicated by the dotted (blue) line,

and the inset shows ∆Ec(Eχ → ∞).

Figure 9.7 shows the dependence of the Hartree-Fock contribution to the

cohesive energy of bulk LiH, on the total number of k-points in the mesh Nk:

∆ELiH
HF (Nk) = ELiH

HF (Nk)− ELi
HF(Ω → ∞)− EH

HF(Ω → ∞), (9.5)

where ELi
HF(Ω → ∞) and EH

HF(Ω → ∞) denote the Hartree-Fock energies of

the spin polarized Li and H atoms (converged with respect to the size of the

supercell). This contribution is seen to converge as N−1
k towards ∆ELiH

HF (Nk →
∞) = −3.583 eV, which is in good agreement with the work of Gillan et

al. [81], ∆ELiH
HF = −3.591 eV. Beware that the convergence behaviour of HF

calculations on periodic systems with respect to the k-point sampling depends

critically on the treatment of the long-wavelength limit of the exchange inter-

actions. As already emphasized, we have used the scheme of Massida et al. [85]

here, although a more efficient scheme has been suggested recently.

From the above, the final PAW result for the cohesive energy of bulk LiH
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Figure 9.7: Convergence of the Hartree-Fock contribution to the cohesive en-

ergy of bulk LiH with respect to Nk, the total number of k-points (∆EHF
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and the inset shows ∆EHF(Nk → ∞).
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reads, D0(bulk LiH) = ∆ELiH
HF + ∆ELiH

c = −4.780 eV. Table 9.3 summarizes

our results and those of Refs. [78], [81], and [82]. The fact that our result for

the total cohesive energy of LiH agrees with the work of Manby et al. [81, 82]

to within a few meV (see Tab. 9.3) is a bit fortuitous; the discrepancies in the

Hartree-Fock and MP2-correlation contributions to the cohesive energy partly

cancel. The discrepancy between our result and the CRYSCOR LMP2 calcu-

lations of Casassa et al. [78] is a bit more substantial [D0(PAW) = −4.780 eV

vs. D0(LMP2) = −4.738 eV]. This is further compounded by the fact that

the latter were obtained at the HF+LMP2 theoretical equilibrium volume

Ω0 = 16.31 Å3; the HF+LMP2 cohesive energy at the experimental volume

would be in slightly worse agreement with the present work (see Fig. 2 of

Ref. [78]). The most likely explanation for the difference between the PAW

and LMP2 results is that the MP2-correlation contributions to the cohesive

energy in the LMP2 calculations were not fully converged with respect to the

basis set.

9.1.3 Conclusions and Summary

In this section, we have presented an implementation of the canonical formula-

tion of second-order Møller-Plesset perturbation theory within the framework

of the projector-augmented-wave formalism, under periodic boundary condi-

tions using a plane wave basis set. To demonstrate the accuracy of our ap-

proach we have shown that the PAW result for the atomization energy of a

LiH molecule at the HF+MP2 level of theory is in perfect agreement with

well converged Gaussian-type-orbital calculations [D0(PAW) = −1.906 eV

vs. D0(GTO) = −1.903 eV].

To establish the feasibility of employing MP2 perturbation theory in its

canonical form to systems that are periodic in three dimensions, using the

present approach, we calculated the cohesive energy of bulk LiH. The PAW

HF+MP2 result for the cohesive energy of bulk LiH is in excellent agree-

ment with the work of Manby et al. [D0(PAW) = −4.780 eV vs. D0(GTO) =

−4.777 eV].

We have shown how the MP2 correlation energy (difference) can be extrap-

olated to the infinite basis set limit with respect to the kinetic energy cutoff Eχ

that is imposed on the plane wave expansion of the overlap charge densities,

which enter in the usual two-electron-four-orbital Coulomb repulsion integrals.
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The PAW MP2 correlation energy is seen to converge as E
−3/2
χ at large Eχ.

We have not tried to converge the absolute MP2 correlation energies with re-

spect to the one-center basis set of additional local functions inside the PAW

spheres. These one-center basis sets were, however, verified to be of sufficiently

high quality to obtain well converged MP2 correlation energy differences, by

comparison with Gaussian-type-orbital calculations.

As to be expected, in case of the supercell calculations on the Li atom

and LiH molecule, the MP2 correlation energy is seen to fall off as Ω−2 at

large volume Ω of the simulation cell (essentially the fingerprint of van der

Waals interactions between the periodic images). This was used to establish

the infinite volume limit of the MP2 correlation energies for finite systems.

For bulk LiH, the MP2 correlation energy had to be converged with respect

to the k-point sampling density of the first Brillouin zone. Here we pointed at

the possibility of exploiting the observation that the ratio X/D between the

“direct” (D) and “exchange”-like (X) contributions to the MP2 correlation

energy seems to converge much faster with respect to the k-point sampling

than these contributions do individually. This allows one to infer the total

MP2 correlation energy from a computation of the “direct” contribution only.

The latter may be computed by means of an algorithm that scales as N2
k , where

Nk is the total number of k-points in the mesh, instead of the N3
k scaling of the

canonical MP2. Beware, however, that the rapid convergence of X/D with Nk

is solely an observation from our “computer experiment” on LiH, and we have

as yet no proof that this behaviour should be the norm, although preliminary

results for a set of semiconductors and insulators suggest it to be.
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Table 9.4: Matching radii rc of the PAW potentials used in the present work.

If the matching radii differ for specific quantum numbers, they are specified

for each l-quantum number using subscripts.

Valence rc [a.u.] Valence rc [a.u.]

H 1s 1.0s 1.1pd Mg 2p3s 2.0sd 1.6p
Li 1s2s 1.2s 1.5pd Al 3s3p 1.9spd 2.0f
B 2s2p 1.5s 1.7pd Si 3s3p 1.5s 1.9pd
C 2s2p 1.2s 1.5pd P 3s3p 1.9sp 2.0df
N 2s2p 1.3s 1.5pd S 3s3p 1.7spdf
O 2s2p 1.2s 1.5pd Cl 3s3p 1.7s 1.9pdf
F 2s2p 1.1s 1.4pd Ar 3s3p 1.5s 1.9pdf
Ne 2s2p 1.4s 1.8pd Zn 3d4s 2.0sd 2.3pf
Na 3s 2.5sdf 3.0p As 3d4s4p 2.1spdf

9.2 Structural and energetic properties

A systematic evaluation of MP2 in the complete basis set (CBS) limit in order

to assess the accuracy of this method for a set of solids is still missing in the

literature. This chapter aims at filling this gap and providing MP2 lattice

constants, atomization energies as well as quasiparticle (QP) band gaps for a

number of typical semiconductors and insulators paying particular attention

to converge the results with respect to the employed basis set. This section

is organized as follows, in Sec. 9.2.1 we present the computational details. In

Sec. 9.2.2, 9.2.3 and 9.2.4 the MP2 structural and energetic properties, and QP

band gaps are summarized, respectively. Section 9.2.5 discusses the divergence

of the MP2 correlation energy for metallic systems. Finally, in Sec. 9.2.6, we

draw preliminary conclusions.

9.2.1 Computational Details

The pseudopotentials employed in the calculations were specifically optimized

to yield accurate scattering properties well above the vacuum level and the

potentials and technical details are identical to Ref. [45] and references therein.

The matching radii of the PAW potentials employed in the MP2 calculations
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Table 9.5: Experimentally measured or extrapolated T = 0K lattice constants,

aexp. EPW and Eχ denote the energy cutoffs applied to the plane wave basis

set expansion of the orbitals and overlap charge densities, respectively. Ea
PW,

Ea
χ and Eg

PW, Eg
χ were employed for calculating the lattice constants (a) and

band gaps (g), respectively. The corresponding structures are denoted us-

ing the Strukturbericht symbols in parenthesis in the first column (A1=fcc,

A4=diamond, B1=rock-salt, B3=zinc-blende). All energies and lattice con-

stants in eV and Å, respectively.

aexp Ea
PW Ea

χ Eg
PW Eg

χ

C (A4) 3.567a 550 400 360 250

Si (A4) 5.430a 450 300 300 150

SiC (B3) 4.358a 550 400 414 250

BN (B3) 3.607b 550 400 450 250

BP (B3) 4.538b 450 350

BAs (B3) 4.777b 550 400

AlN (B3) 4.380c 550 400

AlP (B3) 5.460b 450 350

AlAs (B3) 5.658b 400 300

LiH (B1) 4.084a 600 450

LiF (B1) 4.010a 600 450 500 250

LiCl (B1) 5.106a 600 450

MgO (B1) 4.207a 600 450 400 250

ZnS (B3) 5.420d 360 250

ZnO (B3) 4.580d 400 250

Ne (A1) 4.430e 400 250

Ar (A1) 5.260e 300 250

Na (A1f) 5.317f 80 50

aRef. [88], bRef. [89], cRef. [90], dRef. [91],
eRef. [92], fRef. [93]
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Table 9.6: Convergence of the HF+MP2 lattice constant, a0, bulk modul,

B0, and total energy, E, with respect to the employed k-mesh used in the

calculation of the HF, direct MP2 (dMP2) and SOX term for diamond.

HF dMP2 SOX a0 [Å] B0 [GPa] E [eV]

8×8×8 6×6×6 3×3×3 3.5529 449.6 -38.9619

8×8×8 8×8×8 3×3×3 3.5507 448.7 -38.9748

8×8×8 8×8×8 4×4×4 3.5527 453.3 -39.0018

10×10×10 6×6×6 3×3×3 3.5512 448.4 -38.9489

10×10×10 8×8×8 3×3×3 3.5509 448.5 -38.9617

10×10×10 8×8×8 4×4×4 3.5510 455.2 -38.9888

are listed in Tab. 10.1.

Table 9.5 summarizes the employed energy cutoffs, experimental lattice

constants as well as structures. The superscripts a and g for the energy cutoffs

E in Tab. 9.5 indicate that the corresponding cutoffs were employed in the

calculation of the lattice constants and atomization energies (a), and QP band

gaps (g), respectively. The energy cutoffs limit the size of the basis set to PW

components satisfying

(h̄2/2me)|k+G|2 < E. (9.6)

EPW denotes the cutoff energy for the plane wave basis set of the one-electron

orbitals.

As outlined in Sec. 8.3 the construction of the 4-index integrals V ab
ij in the

PAW method requires the evaluation of intermediate overlap charge densities

nia(r) = ψ∗
i (r)ψa(r) which are expanded into an auxiliary PW basis set, which

is limited to PW components with a kinetic energy below Eχ.

As for LiH the CBS limit was obtained assuming that for large Eχ the corre-

lation energy EC behaves as,

EC(Eχ) = EC(Eχ → ∞) + CE−3/2
χ , (9.7)

and extrapolating our data with respect to Eχ using this functional form [45].

Table 9.5 lists the largest Eχ out of 4 points that are used in this extrapolation.

The points are equally spaced with a spacing between 30 and 50 eV. For the

MP2 QP band gaps we found it unnecessary to perform an extrapolation with
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respect to Eχ.

For the calculations of the lattice constants and atomization energies the

second-order exchange (SOX) contributions to the MP2 energy was calcu-

lated using (3×3×3) k−points, whereas for the direct contributions (6×6×6)

k−points were employed. For the HF part (8×8×8) k−points were used. Ta-

ble 9.6 shows the convergence of the HF+MP2 lattice constant, bulk modulus

and total energy of diamond with respect to the number of k-points used in

the calculation of the HF, direct MP2 and SOX contribution. The changes

in the lattice constant, bulk modulus and total energy from the coarsest to

the densest k-mesh listed in Table 9.6 amount to less than 0.1%, 1.5% and 30

meV, respectively, which we consider to be sufficient for the present purpose.

The HF, and MP2 “direct”, and “exchange”-like contributions to the MP2

band gaps were calculated using (10×10×10), (8×8×8), and (3×3×3) k-

points, respectively. These settings ensure a convergence of the MP2 band gaps

to within a few 10 meV. All k−point meshes were centered at the Gamma-

point.

9.2.2 Structural properties

In order to establish the quality of the MP2 method for three dimensional

extended systems we have calculated lattice constants and bulk moduli for

selected solids. HF and MP2 lattice constants have been obtained from fitting

a Murnaghan equation of state to the corresponding calculated energy versus

volume curves. The curves were fitted in the range Ω/Ωeq=0.85 − 1.15 with

constant steps of 0.05, where Ωeq is the non zero-point corrected experimental

equilibrium volume.

Figure 9.8 illustrates the relative errors of the HF as well as MP2 lattice

constants. As reference, the zero-point corrected experimental lattice constants

from Ref. [97] have been used. For comparison we also show the relative errors

of the PBE lattice constants, which have been taken from Ref. [98] (for C, Si,

SiC, LiF and MgO), Ref. [99] (for BN, BP, BAs, and LiH), and Ref. [24] (for

AlN, AlP, AlAs). The PBE results will not be discussed again. The relative

errors of the RPA lattice constants were also added for comparison and have

been taken from Ref. [24] (for C, Si, SiC, AlN, AlP, AlAs, LiF, LiCl, and MgO)

and Ref. [100] (for BN, BP, BAs, and LiH).

The relative errors in the HF lattice constants in Fig. 9.8 show the well-known
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Figure 9.8: Relative errors of the calculated PBE, RPA, HF and MP2 lattice

constants. As reference, zero-point corrected experimental lattice constants

were used.
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Figure 9.9: Relative errors of the calculated PBE, RPA, HF and MP2 bulk

moduli. As reference, zero-point corrected experimental bulk moduli were

used.
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Table 9.7: Calculated HF and MP2 lattice constants as well as bulk mod-

uli. For comparison the experimental lattice constants, aexp0 , and bulk moduli,

Bexp
0 , measured at 0 K are listed as well. The experimental lattice constants

and bulk moduli have been corrected for zero-point vibrational effects (lattice

constants and bulk moduli in parentheses correspond to uncorrected experi-

mental values). Lattice constants and bulk moduli are given in Å and GPa,

respectively.

aHF
0 aMP2

0 aexp0 BHF
0 BMP2

0 Bexp
0

C 3.552 3.553 3.553 (3.567) 495 450 455 (443)

Si 5.512 5.415 5.421 (5.430) 103 100 101 (99)

SiC 4.372 4.362 4.346 (4.358) 240 224 229 (225)

BN 3.599 3.608 3.592 (3.607) 428 395 410 (400)

BP 4.588 4.511 4.525 (4.538) 176 177 168 (165)

BAs 4.832 4.746 4.765 (4.777) 145 145 151 (149)

AlN 4.367 4.402 4.368 (4.380) 228 197 206 (202)

AlP 5.546 5.460 5.451 (5.460) 94 93 87 (86)

AlAs 5.752 5.638 5.649 (5.658) 78 80 75 (74)

LiH 4.111 3.971 3.979 (4.084) 32 38 38-43 (33-38)

LiF 4.003 4.026 3.972 (4.010) 81 76 76 (70)

LiCl 5.265 5.040 5.070 (5.106) 30 38 39 (35)

MgO 4.197 4.234 4.189 (4.207) 175 153 170 (165)

MARE 1.31% 0.46% 7.9% 4.1%
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trend of overestimation, except for C, which is negligibly underestimated.

The mean absolute relative error (MARE) in the HF lattice constants is 1.31%.

The overestimation ranges from only 0.2% in MgO to as much as 3.9% in LiCl.

Moreover an increasing overestimation can be found for compounds with heav-

ier constituents, ∆aHF
0 (Si)>∆aHF

0 (SiC)>∆aHF
0 (C), ∆aHF

0 (LiCl)>∆aHF
0 (LiF),

∆aHF
0 (XAs)>∆aHF

0 (XP)>∆aHF
0 (XN) (X=B,Al), and ∆aHF

0 (AlY)>∆aHF
0 (BY)

(Y=N, P, As). This is usually explained by the neglect of dynamic correlation

between the negatively charged cations which increases with increasing size

and “softness” of the cation.

The relative errors of the MP2 lattice constants shown in Fig. 9.8 reveal

that for most materials the addition of the MP2 correlation energy leads to an

improvement in the description of the lattice constants compared to HF. The

mean absolute relative error in MP2 is 0.46%. However, the improvements

from HF to MP2 are on first sight not systematic, and in some cases the

MP2 lattice constants are even worse than the HF ones, in particular, for the

strongly ionic systems, MgO and LiF. Careful inspection reveals two trends:

(i) with increasing polarizability of the constituents the MP2 lattice constants

decrease, and (ii) MP2 lattice constants increase with increasing ionicity.

The first trend (i) is easy to understand. As a low order approximation,

MP2 will overestimate the polarizability and correlation energy, if the con-

stituents are “soft” and easily polarizable. Since the polarizability usually in-

creases with increasing atomic size (and hence atomic number Z), one expects

that MP2 becomes progressively worse with increasing atomic order number,

in particular along a column of the periodic table (the atomic size decreases

along a row). The effect is already visible in the absolute correlation energy of

closed shell atoms. For instance, along the group He, Ne, Ar, the absolute cor-

relation energy is underestimated for He, quite good for Ne, and overestimated

for Ar [101]. Generally, for very light weakly polarizable elements HF+MP2

tends to underestimate the correlation energy, for elements with intermediate

order number HF+MP2 obtains about the right results, for heavier elements

it overestimates the correlation energy. This obviously relates to and explains

the popularity of MP2 for main group chemistry involving first and second

row elements. Our present calculations are in full accord with these rules. For

MP2, the lattice constants decrease from BN, over BP to BAs, and from AlN,

over AlP to AlAs, and from LiF to LiCl. This reverses the trend we have

observed at the HF level: whereas for HF the lattice constants increase with
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increasing atomic number of the constituents, MP2 lattice constants decrease

with the atomic order number.

The second trend (ii) is more difficult to understand, but also clearly vis-

ible in our calculations. For both the series, C, BN, LiF, and Si, AlP, MgO

the lattice constants increase with increasing ionicity (and band gap). It is

likely that this is related to the observation that MP2 tends to give too small

correlation energies for very weakly polarizable systems (LiF and MgO), gets

it right for intermediate polarizabilities, and overestimates the correlation en-

ergy for strongly polarizable systems. We will come back to this issue in the

conclusions.

Figure 9.9 depicts the relative errors in the calculated PBE, HF and MP2

bulk moduli. Zero-point corrected experimental bulk moduli serve as reference

for the relative errors [97]. For comparison, the PBE and RPA bulk moduli

have been taken from the same references as the lattice constants. An im-

provement in the description of the bulk moduli from HF to MP2 is observed

for C, Si, SiC, BN, AlN, AlP, LiH, LiF, and LiCl whereas for BP, BAs, AlAs

and MgO the correction from MP2 either overshoots or goes into the wrong

direction (BP, BAs and AlAs). Nevertheless, the mean absolute relative error

reduces from 7.9% in HF to 4.1% in MP2.

The agreement between the RPA results and the MP2 results for the lattice

constants and bulk moduli is striking. On average the lattice constants agree

to within 0.5 %. However, the RPA shows a clear tendency to overestimate

the lattice constants, which we have shown to be related to the neglect of

exchange-like terms in the direct RPA [101]. MP2 exhibits somewhat more

scatter around experiment, with similar or larger lattice constants for light,

weakly polarizable compounds, and smaller lattice constants for heavier, more

polarizable elements. On average both methods, yield excellent results for the

lattice constants. For the bulk moduli the behaviour is even more striking. For

most systems, the errors for RPA and MP2 are similar. We believe that this

is an indication that errors in experimental bulk moduli are responsible for the

remaining discrepancy between many-body theory and experiment. Finally,

Tab. 9.7 summarizes the HF, MP2 and experimental lattice constants and

bulk moduli.

The final issue, we would like address is the dependence of the MP2 corre-

lation energy on the unit cell volume. In fact, the volume dependence varies

significantly from material to material. Figures 9.10 and 9.11 show the MP2
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Figure 9.10: MP2 correlation energy EC versus volume Ω for C (upper panel),

SiC (middle panel) and Si (bottom panel). The insets show the contributions

from the direct, ED, and SOX, EX, term, respectively. All energies are given

in eV.
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All energies are given in eV.

correlation energies, EC, and the contributions from the direct, ED, and SOX

term, EX, (see insets in Figs. 9.10 and 9.11) with respect to the unit cell vol-

umes, for C, Si, SiC and MgO, respectively. The only common feature is that

if the direct term is attractive, the SOX term is repulsive and vice versa. Apart

from this, the behavior is rather different, varying from a parabolic shape for

C, over weak attraction for SiC and Si to a repulsive linear behavior for MgO.

A simple linear behavior is also observed for LiH [102], as well as LiF. This is

important because if the volume dependence of the correlation energy is well

approximated by a linear slope, it suffices to calculate the correlation energy for

two volumes only. Generally, however, this is not the case, but instead the cor-

relation energy exhibits a sizable curvature around the equilibrium volume, in

particular for covalently bonded systems. Most likely there is no deeper phys-

ical principle underlying this observation, but the results highlight that the

volume dependence of the correlation energy needs to be calculated carefully

at several points around the equilibrium volume without a priori assumptions.
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Table 9.8: PBE, HF and MP2 Atomization energies in eV/atom. Experimental

values are corrected for zero-point vibrations [97]. DFT-PBE atomization

energies have been taken from Ref.[24] unless stated otherwise.

Eat PBE HF MP2 Exp.

C 7.72 5.28 7.97 7.55

Si 4.55 2.97 5.05 4.68

SiC 6.40 4.49 6.86 6.48

BN 6.94a 4.74 7.12 6.68

BP 5.16a 3.38 5.61 5.09

BAs 4.50a 2.74 5.06

AlN 5.72 3.86 6.07 5.85

AlP 4.09 2.46 4.32 4.32

AlAs 3.69 2.09 3.95 3.82

LiH 2.38a 1.79 2.39 2.49

LiF 4.33 3.34 4.49 4.46

LiCl 3.37 2.70 3.64 3.59

MgO 4.98 3.59 5.35 5.20

MAE 0.16 1.59 0.23

afrom Ref. [99]
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9.2.3 Atomization energies

Table 9.8 summarizes the calculated HF and MP2 atomization energies of C, Si,

SiC, BN, BP, BAs, AlN, AlP, AlAs, LiH. LiF, LiCl and MgO. For comparison,

we also list the PBE atomization energies. HF dramatically underestimates

the atomization energies with a mean absolute error of 1.59 eV/atom and a

maximum error of 2.27 eV/atom (for C).

The mean absolute error of the MP2 atomization energies given in Tab. 9.8 is

230 meV/atom, which is slightly worse than a MAE of 144 meV/atom that was

obtained for a set of 17 small closed-shell molecules [103]. MP2 overestimates

the atomization energies for the systems that we have studied in this work,

with the single exception of LiH. The largest overestimation is observed for

BP and amounts to 520 meV. A more detailed analysis is difficult since the

errors are affected by both the description of the atom and the solid. Without

accurate reference values for the solids (and atoms), it is difficult to make a

final assessment. Tentatively, however, the overbinding is larger for covalently

bonded systems and fairly small for ionic systems with a large band gap. The

overbinding might well be related to the tendency of MP2 to overcorrelate

more strongly polarizable systems.

9.2.4 Band gaps

Table 9.9 lists the HF, MP2 and experimental fundamental band gaps as well

as exchange-like contributions to the MP2 band gap for Si, SiC, C, ZnS, BN,

ZnO, MgO, LiF, Ar, and Ne. Note that in Tab. 9.9 the band gaps of C, SiC,

Si and BN are indirect, whereas the band gaps of ZnO, ZnS, MgO, LiF, Ne

and Ar are direct.

All HF band gaps are too large compared to experiment. Adding the QP

correlation energy at the MP2 level to the HF eigenenergies results in a reduc-

tion of the band gaps; in simple words, correlation closes the band gap, since

the HF exchange is screened by correlation effects (in particular by direct or

Coulomb correlation). We find a dramatic underestimation of the MP2 band

gaps for Si and SiC, resulting even in negative band gaps. In these systems,

MP2 overestimates the effect of correlation on the band gap dramatically. For

other systems, such as ZnO, ZnS, C and BN, MP2 is closer to the experimental

value, but the the results are still unsatisfactory. For the large gap systems Ar,



94 Chapter 9. Second-order Møller-Plesset perturbation theory

Table 9.9: Hartree-Fock (ǫHF
g ), MP2 (ǫMP2

g ) and experimental (ǫexpg ) band gaps,

as well as exchange-like contributions to the MP2 band gap ǫSOX
g . The experi-

mental band gaps have been taken from Ref. [104] (see also references therein).

The different systems are ordered by their corresponding experimental static

dielectric constant ǫ0. All band gaps in eV.

ǫexp0 ǫHF
g ǫMP2

g ǫSOX
g ǫexpg

Si 11.90 7.1 −1.2 −0.04 1.2

SiC 6.52 8.7 −0.8 0.04 2.4

C 5.70 13.1 1.9 −0.21 5.5

ZnS 5.13 10.1 2.0 0.21 3.9

BN 4.50 13.8 3.1 0.1 6.3

ZnO 3.74 11.1 2.1 0.52 3.4

MgO 3.00 15.5 7.1 0.43 7.8

LiF 1.90 21.8 14.2 0.67 14.2

Ar 18.1 13.7 0.24 14.2

Ne 25.3 20.3 0.76 21.7
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Figure 9.12: Relative errors of HF and MP2 QP band gaps with respect to the

experimental static dielectric constant. Lines are guide to the eye.

Ne, LiF and MgO, however, the MP2 QP gaps are in satisfactory agreement

with experiment.

The second-order exchange contribution to the MP2 band gap, ǫSOX
g , is

always less than 16% of the contribution from the direct term and it opens

the gap in all cases except for Si and C. The SOX term in the MP2 QP

energy corrects for the self-screening and self-correlation error in the direct

term [48], which includes an unphysical contribution: the particle or hole state

is involved in the screening of its own charge density, and thus experiences

its own correlation potential. We note in passing that self-screening and self-

correlation are interchangeable terms in second-order theory.

As a result of self-correlation, the (N+1) electron energy is generally too

low, and the (N-1) electron energy too high, which results in too small band

gaps if the SOX term is neglected. Direct or Coulomb correlation reduces

the gap, because it screens the HF exchange, and self-screening leads to an

overscreening and overestimation of the correlation effect. The SOX term

reduces this effect and therefore increases the band gap. Moreover we observe

that ∂ǫ̃MP2
n (ω)
∂ω

≈ ∂ǫ̃dMP2
n (ω)
∂ω

, because ∂ǫ̃SOX
n (ω)
∂ω

≈ 0. This implies that the weight

of the QP peak is almost entirely determined by the direct term, whereas the

SOX term only shifts the position of the peak.

The errors in the HF and MP2 band gaps are correlated with the exper-
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Figure 9.13: HF plus dMP2 energy as well as equilibrium volume of face-

centered-cubic sodium with respect to the number of k-points in each direction.

imental static dielectric constant: Figure 9.12 shows the relative error of the

HF and MP2 QP band gaps with respect to the experimental static dielec-

tric constants. The HF band gap is a good approximation for the true QP

band gap for systems with a dielectric constant around one [see Eq. (B.4)],

but, due to the neglect of Coulomb correlation it can not describe the band

gap for systems with a sizable polarizability. In MP2, however, a crude, low

order truncation of the polarizability is used [Eq. (7.17)], which is a good ap-

proximation only if the polarizability is small. Both trends are confirmed in

Fig. 9.12. The error in the HF gap increases roughly linearly with increasing

experimental static dielectric constant. The error in the MP2 band gaps is

small for weakly polarizable systems, but grows rapidly with increasing dielec-

tric constant (compare also Table 9.9). As a result, bulk MP2 band gaps are

only reliable if the static dielectric constant ǫ is smaller than 3.

9.2.5 Metallic sodium

The electronic correlation energy in second-order perturbation theory diverges

for the 3-D free electron gas [105]. However, this does not necessarily imply

that properties such as the equilibrium volume diverge as well. Moreover,

one might hope that using Hartree-Fock as reference state lifts this divergence

by virtue of its “only” logarithmically vanishing band gap. It is therefore

worthwhile to investigate the behavior of the HF+MP2 energy and equilibrium

volume of a simple metal such as sodium.
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For the calculations of metallic sodium, the 3s state was treated as valence

state and the equilibrium volume for a given k-point mesh was calculated

in the same manner as outlined in Sec. 9.2.2. Only the direct contribution

to the MP2 energy (dMP2) was calculated as this allows us to employ very

dense k-point meshes (see Sec.. 5.6). Figure 9.13 shows the dMP2 equilibrium

volume as well as total energy of the face-centered-cubic sodium crystal with

respect to the number of k-points used to sample the Brillouin zone in each

direction. Our calculations show that the equilibrium volume as well as total

energy diverge linearly with the number of k-points. It is not straightforward

to explain the functional form of the divergence and we will leave its analytic

derivation to future work. The numerical evidence, however, suggests that

HF+MP2 diverges for atomization energies and lattice constants of metals as

one would expect from the analytic results for the 3-D free electron gas.

9.2.6 Conclusions and Summary

In this section, we have presented results of canonical MP2 calculations for a set

of typical semiconducting and insulating solid state systems. To investigate the

accuracy of the MP2 method for bulk systems, lattice constants, atomization

energies and band gaps were calculated and compared to experiment. For all

three aspects, MP2 is an improvement over the HF method.

The errors in the calculated MP2 lattice constants are, with few exceptions,

smaller than 0.5% and therefore smaller than for Hartree-Fock and commonly

used density functionals. An important observation is that MP2 seems to

overestimate the lattice constants of large band gap systems that are weakly

polarizable, whereas for systems with a small band gap, which are strongly

polarizable, MP2 tends to underestimate the lattice constants. The first error

is most likely related to the neglect of particle-particle and hole-hole ladder di-

agrams, which are claimed to be relevant for weakly polarizable systems [22].

On the other hand, for strongly polarizable solids, higher order diagrams,

specifically, the summation of all bubble diagrams included in the RPA, are

important. These will reduce the polarizability and concomitantly the corre-

lation energy [compare discussion following Eq.(7.17)]. At intermediate polar-

izabilities, MP2 works remarkably well and this seems to apply specifically to

main group chemistry involving elements such as H, Li-F, and Na-Si.

For the MP2 atomization energies, a MAE of 230 meV/atom is found, which
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constitutes a huge improvement over the corresponding HFmean absolute error

of 1.59 eV/atom. The error is comparable to the error found for small molecules

(MAE=144 meV/atom) [103]. A clear systematic trend in the error is lacking.

Tentatively, however, we found that the error is smaller for ionic solids than for

covalently bonded materials, but since atomization energies can be fortuitously

good due to error cancellation between the atom and the solid, a more detailed

analysis would require accurate reference values for the solids (and atoms).

These are presently not available for solids. Nevertheless, the finding again

suggests that MP2 tends to overcorrelate more strongly polarizable solids.

The MP2 QP band gaps improve (slightly) over the HF ones. Overall,

the MP2 band gap results are somewhat disappointing, but in hindsight this

is to be expected. The band gap is very sensitive to the long wavelength

limit of the static polarizability [104], and the static polarizability is seriously

overestimated for strongly polarizable solids, when second-order perturbation

theory is used, as higher order bubble diagrams will decrease the polarizabil-

ity. Overall, we indeed found that the error in the MP2 band gap is related

to the (experimental) static dielectric constant. Results become unreliable if

the static dielectric constant ǫ is larger than 3. For systems with ǫ larger than

three, MP2 results in a pronounced overcorrection of the band gaps. This over-

correction is sometimes so strong that the MP2 band gaps become negative.

It might comes as a surprise, that MP2 works so well for relative ener-

gies and lattice constants, despite failing for excitation energies. Certainly

the method is rescued by the fact that total energies are integral quantities

accounting for all excitations, whereas the band gap is very sensitive to low

energy excitations (and the long wavelength limit), which are not accurately

described for strongly polarizable solids applying second-order perturbation

theory and HF orbitals.

Finally, we calculated the MP2 correlation energy as well as the equilibrium

volume of metallic sodium. In agreement with previous reports [105] we find

that the electronic correlation energy diverges in second-order perturbation

theory. Like the correlation energy, the equilibrium volume exhibits a linear

divergence with respect to the number of k-points in each direction, which

makes MP2 useless for predicting properties of metals.

In summary, we find that MP2 is remarkably accurate for solid state sys-

tems involving main group elements. Overall, the accuracy seems to be compa-

rable to the accuracy found for molecules. MP2 therefore is a viable alternative
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to conventional density functional theory calculations, although, we empha-

size that our present implementation is at least 2 to 3 orders of magnitudes

more expensive than conventional density functional theory calculations. The

present results, however, are sufficiently encouraging to attempt to improve

the efficiency of the implementation and to evaluate more sophisticated many-

electron techniques, such as coupled-cluster methods (specifically CCSD) for

3-D periodic solids. We expect that some deficiencies, such as the tendency to

overcorrelate strongly polarizable solids and undercorrelate weakly polarizable

solids, will be lifted by coupled-cluster methods.



100



Chapter 10

Second-order screened exchange

Figure 10.1: Diagrams corresponding to (a) direct-RPA correlation and (b)

second-order screened exchange (SOSEX). The wiggly and double wiggly line

represent the unscreened and screened Coulomb interaction, respectively.

In this chapter we include an exchange-like correlation term in the RPA

[see Fig. 10.1(a)] that is fully compatible with the direct Coulomb correlation

accounted for by the RPA, where compatibility here implies that for one-

101
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Table 10.1: Core radii rc for the PAW potentials used in the present work. If

the core radii differ for specific quantum numbers, they are specified for each

channel using subscripts.

Valence rc [a.u.] ERPA+SOSEX
cut [eV]

H 1s 1.0s 1.1pd 600

Li 1s2s 1.2s 1.5pd 600

C 2s2p 1.2s 1.5pd 460

N 2s2p 1.3s 1.5pd 1200

O 2s2p 1.2s 1.5pd 600

F 2s2p 1.1s 1.4pd 600

Ne 2s2p 1.4s 1.8pd 500

Na 2s2p3s 1.6s 2.0p 2.2d 360

Si 3s3p 1.5s 1.9pd 360

electron systems, the self-correlation error exactly vanishes. We call the term

second-order screened exchange (SOSEX), since the corresponding diagram is

reminiscent of the exchange-like diagram in second order perturbation theory,

albeit with one Coulomb line replaced by a screened Coulomb interaction [see

Fig. 10.1(b)]. We calculate absolute correlation energies of closed-shell atoms

using Kohn-Sham orbitals and the RPA+SOSEX, CCSD and MP2 method.

Moreover atomization energies of small molecules and solids will be calculated

at the level of RPA+SOSEX.

10.1 Computational details

The pseudopotentials employed in the Vienna ab-initio simulation package

(VASP) calculations were specifically optimized to yield accurate scattering

properties well above the vacuum level and the potentials and technical details

are identical to Ref. [46] and references therein. The core radii of the PAW

potentials and the corresponding energy cutoffs employed in the RPA+SOSEX

calculations are listed in Tab. 10.1. For the SOSEX calculations of solids

a 3×3×3 k-point mesh was used, whereas the slower converging RPA term

was evaluated using an 8×8×8 k-point mesh and the techniques explained
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in Sec. 5.4.1 and Ref. [45]. All presented energy differences were carefully

converged with respect to the energy cutoffs defining the basis set of the one-

electron orbitals (parameter ERPA+SOSEX
cut in Tab. 10.1) as well as the auxiliary

basis set used in the construction of the intermediate terms in Eqs. (D.2) and

(D.3). Similar to the basis set for the one-electron orbitals, the size of the

auxiliary basis set is determined by an energy cutoff Eχ, and all plane waves

G satisfying the equation

(h̄2/2me)|G|2 < Eχ

are included in the basis set. To determine the infinite basis set limit, the

correlation energy is determined at a set of different energy cutoffs Eχ and

extrapolated to the infinite basis set limit, as already outlined in Sec. 9.1. To

allow for an accurate extrapolation, we have chosen values for Eχ observing

Eχ < 2/3ERPA+SOSEX
cut (see Sec. 9.1 and Ref. [45]).

For molecules and atoms large cubic boxes were required in order to mini-

mize the interaction between the periodic images. Eventually supercells with

9 Å length were employed for the calculation of the atoms and molecules.

For closed shell atoms, results were calculated using a modified version of

the DALTON code [107]. The DALTON results were obtained by extrapolating

to the infinite basis set limit using aug-cc-pCVXZ basis sets (X=D,T,Q,5,6).

For the 1/X3 extrapolation procedure the corresponding two largest basis sets

available at the EMSL Basis Set Library [108] were used (He: 5-6, Be: T-Q,

Ne: Q-5, Ar: Q-5).

10.2 Closed-shell atoms

We restricted the study to closed shell atoms, since the DALTON coupled-

cluster code only allows for the solution of the CCSD equation on top of a

restricted open shell reference state (majority orbitals are equal to minority

orbitals), whereas the restriction to doubles (CCD) and Kohn-Sham orbitals

requires the use of an unrestricted open shell reference state for open shell sys-

tems. In Figures 10.2(a) and (b) we show the relative errors in the correlation

energy evaluated using various approximations, with respect to the “exact”

non-relativistic results [109]. Our CCSD values are close to the exact values,

as one would expect. If only the direct terms are evaluated in the CCSD
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Figure 10.2: Relative errors of absolute correlation energies evaluated using

various approximations with respect to “exact” non-relativistic results from

Ref. [109]: CCSD, RPA+SOSEX, RPA+ (from Ref. [110]), CCSD using direct

terms only (d-CCSD), and RPA. For CCSD, HF orbitals were used. On the

left KS orbitals were used in the RPA calculations, whereas on the right HF

orbitals were used for all calculations.

total energy expression (d-CCSD), the absolute correlation energy is overes-

timated by at least 50 %. The RPA using DFT orbitals yields correlation

energies close to the d-CCSD, whereas inclusion of exchange (RPA+SOSEX)

restores good agreement with the CCSD results albeit slightly underestimat-

ing the absolute correlation energy (∆E ≤ 250 meV). Another simple means

to correct the error of the RPA is to add a local DFT approximation for the

lacking exchange-like correlation contribution (RPA+) [111], but clearly this

approximation performs worse than an explicit evaluation of the SOSEX term.

The use of HF instead of Kohn-Sham orbitals reduces the RPA polariz-

abilities and therefore the correlation energies drastically, as shown in Fig.

10.2(b). The RPA and RPA+SOSEX now clearly underestimate the corre-

lation energies obtained in d-CCSD and CCSD, respectively. This is related

to the fact that HF orbitals yield too small polarizabilities and correlation

energies, if the particle-hole ladder diagrams are not included (see Sec. 5.3).

MP2 (and second-order Görling-Levy perturbation theory) can be regarded

as a low order approximation to RPA+SOSEX, in which the amplitudes are

determined by the first line in Eq. (5.127), or equivalently by replacing the



10.3 Solids and molecules 105

Table 10.2: Absolute correlation energies of the He, Be, Ne and Ar atom

calculated using MP2, CCSD, d-CCSD, RPA and RPA+SOSEX. All units in

milliHartree. Aug-cc-pCVXZ basis sets were used.

Reference He Be Ne Ar

X(Basis set) 5 Q 5 5

MP2 HF −36.53 −73.48 −375.93 −796.43

CCSD HF −41.57 −91.98 −375.93 −684.58

d-CCSD HF −83.15 −181.10 −590.46 −1045.69

RPA HF −65.49 −126.75 −495.15 −895.68

RPA+SOSEX HF −32.75 −64.56 −312.86 −585.60

RPA DFT-PBE −82.61 −175.76 −583.58 −1040.84

RPA+SOSEX DFT-PBE −41.30 −89.23 −369.23 −679.31

screened Coulomb interactions in Fig. 10.1 by a bare Coulomb interaction.

MP2 works quite well using HF orbitals for 1st and 2nd row elements, first

slightly underestimating the correlation energy, getting it right for Ne, but fi-

nally significantly overestimating the absolute correlation energy for Ar. This

is related to the fact that heavier atoms are more polarizable, and any low

order approximation, even evaluated using HF orbitals, tends to overestimate

the correlation energy. Table 10.2 summarizes the non-extrapolated correlation

energies of the closed-shell atoms.

10.3 Solids and molecules

At this point, our conclusion is that Kohn-Sham orbitals allow for a rea-

sonably accurate evaluation of the total correlation energy of atoms using

RPA+SOSEX (5 kcal/mol). Our second reference system is the jellium elec-

tron gas, for which results have been obtained by Freeman [33]. Freeman’s

calculations were based on free-electron orbitals and one-electron energies,

which are exactly identical to Kohn-Sham orbitals and one-electron energies,

and clearly his results agree exceedingly well with the Quantum-Monte Carlo

(QMC) simulations obtained three years later by Ceperley and Alder [3] (see

Fig. 10.3). As such, Freeman’s data are the first reliable estimate of the jellium
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Figure 10.3: Correlation energy of jellium evaluated using various approxima-

tions: exact from quantum Monte-Carlo [Ref. [3]], RPA and RPA+SOSEX

values are from Freeman [Ref. [33]] and were obtained using Kohn-Sham or-

bitals and one-electron energies, whereas the RPA(HF) values were calculated

using HF orbitals and one-electron energies using VASP.

correlation energy, but seem to have been largely disregarded. In Fig. 10.3, we

have included our numerical RPA values for Hartree-Fock orbitals. Compared

to the Kohn-Sham reference state, Hartree-Fock introduces a logarithmic sin-

gularity at the Fermi-level and increases the band width of jellium significantly.

This combined effect reduces the polarizability and concomitantly the correla-

tion energy drastically to values that are close to the the exact QMC values.

This agreement, however, is fortuitous: (i) correlation effects from exchange-

like terms are real and must be accounted for and (ii) we did not observe sys-

tematic error cancellation for atoms as exemplified in Fig. 10.2(b). In passing,

we note that self-consistent GW -RPA calculations, disregarding any correla-

tion effects from the exchange-like terms, yield good total correlation energies

for the jellium as well [112]. This is related to the fact that self-consistent GW

calculations increase the band-width in very much the same manner as a HF

reference state [113] so that agreement with exact QMC correlation energies
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Table 10.3: Lattice constants and atomization energies of C, Si, SiC, LiH

and LiF evaluated using RPA, RPA+ (from Ref. [24]), RPA+SOSEX and

experimental values. All experimental values have been corrected for zero

point vibrations.

a0(Å) Eat(eV/atom)

RPA RPA+ SOSEX EXP RPA RPA+ SOSEX EXP

C 3.572 3.578 3.552 3.553 7.01 6.94 7.43 7.55

Si 5.431 5.445 5.426 5.421 4.39 4.33 4.68 4.68

SiC 4.366 4.374 4.341 4.346 6.03 5.96 6.39 6.48

LiH 3.983 4.001 3.989 3.979 2.41 2.39 2.46 2.49

LiF 3.998 4.010 3.955 3.972 4.22 4.15 4.37 4.46

is obtained as well— certainly fortuitously (RPA[HF]≈RPA[GW ]≈ QMC, see

also Ref. [30]).

As a last case, we have calculated the lattice constants and atomization

energies of solids (C, Si, SiC, LiH and LiF [see Tab. 10.3]) as well as the

atomization energies of the HF, H2O, Na2, Si2, N2 and Ne2 molecules (see

Tab. 10.4) using the RPA+SOSEX and VASP. For the atomization energies of

the molecules the same structures as in Ref. [28] were employed and the Na2
molecule was calculated at the experimental bond length of 3.079 Å. Compared

to Ref. [46] we have corrected the experimental lattice constants of the solids

for zero-point vibration effects, by evaluating the phonon dispersion relations

in the harmonic approximation at each volume [118]. We now clearly see that

the RPA tends to overestimate the lattice constants for C, Si, SiC and LiF.

The inclusion of SOSEX usually decreases the lattice constants, which we in-

terpret to result from a reduction of the Pauli repulsion. On the other hand,

the RPA+, which attempts to model the effects of SOSEX by a local correla-

tion energy functional, increases the lattice constants even further, worsening

agreement with experiment [24].

At the RPA+SOSEX level, we are able to obtain spectacular agreement

with experiment for the lattice constants (mean absolute relative error–MARE:

0.2 %). For the atomization energies of the solids the improvements are also

significant after inclusion of SOSEX (MAE: 70 meV/atom). The atomization
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Table 10.4: Atomization energies of the HF, H2O, Na2, Si2, N2 and Ne2
molecules evaluated using RPA, RPA+SOSEX and experimental values. All

experimental values have been corrected for zero point vibrations.

Eat(eV/atom)

RPA SOSEX EXP

HF 2.88a 3.01 3.06b

H2O 3.23a 3.29 3.36c

Na2 0.26 0.31 0.36d

Si2 1.52a 1.58 1.63c

N2 4.84a 4.65 4.94c

Ne2 0.00022a 0.00062 0.00173e

a Ref. [28], b Ref. [114], c Ref. [115] , d Ref. [116], e Ref. [117]

energies of the molecules exhibit a similar accuracy when SOSEX is taken into

account, except for the case of N2, which we believe to result from the neglect

of higher order effects such as triples in the coupled-cluster expansion. In fact,

our RPA+SOSEX results are remarkably close to the CCSD results of Bak et.

al for HF (3.02 eV/atom), H2O (3.31 eV/atom) and N2 (4.68 eV/atom) [119].

Although it is well known that CCSD does not allow to predict total energy

differences with chemical accuracy, the important point is that a wave function

based method (RPA+SOSEX) can yield an accuracy comparable to CCSD but

at a significantly lower computational complexity and cost.

10.4 The G2-1 test set

After the results from the previous sections were published, Paier et al. cal-

culated 55 atomization energies of small molecules of the G2-1 test set using

RPA+SOSEX [120]. Figure 10.4 shows the error distribution of the 55 G2-1

atomization energies for the RPA and RPA+SOSEX. Clearly, RPA+SOSEX

lifts the tendency of the RPA to underbind molecules. The MAE of the atom-

ization energies compared to experiment of the G2-1 test set is reduced from

10 kcal/mol in the RPA to 5 kcal/mol in RPA+SOSEX.
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Figure 10.4: Error distribution of the 55 G2-1 atomization energies for RPA

and SOSEX from Ref. [120].

10.5 Conclusions and Summary

RPA+SOSEX seems to be a promising approximation for absolute correla-

tion energies and changes in the correlation energy in particular for solids.

Our present implementation relies on Kohn-Sham PBE orbitals, although, for

consistency, the orbitals should be determined within an optimized-effective-

potential framework, ideally using RPA+SOSEX or at least the RPA. This,

however, is left for future work. Since RPA+SOSEX is exactly self-correlation

free for any one-electron system, it will describe any one-electron system ex-

actly, if Hartree-Fock orbitals are used, and the problems described in Ref. [106]

for H+
2 dissociation are not present. Nevertheless, the use of PBE orbitals in-

troduces a small error, since the PBE orbitals suffer from selfinteraction errors.

It is certainly puzzling that Kohn-Sham wave functions yield amplitudes

that must in some way resemble the true CCSD amplitudes evaluated using HF

orbitals, despite the neglect of all particle-hole, particle-particle and hole-hole

ladder diagrams present in the conventional CCSD method. This brings us

back to an observation we have made before [104]: the Kohn-Sham DFT band

gaps are much smaller than the real quasiparticle band gaps, but this band gap

error is to a large extent corrected for by the neglect of diagrams, that describe

the electrostatic interaction between electrons and holes (see Sec. 5.3). For

PBE orbitals, this cancellation effect must work remarkably well in the two
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extremes we have considered here: jellium and atoms.

The present work also clarifies some important issues that are widely disre-

garded in the solid state community: correlation effects from the exchange-like

terms are exceedingly important for the total energy, and modeling this term

by a local DFT like term does not seem to be accurate (RPA+).
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Natural orbitals and CCSD

The scaling of the computational effort of our CCSD implementation with re-

spect to the system size is very unfavorable [O(N6)]. In this chapter, we reduce

the computational cost by introducing natural orbitals that allow for reducing

the number of virtual orbitals without sacrificing accuracy. Natural orbitals

(NOs) can be obtained by diagonalizing the virtual-virtual orbital block of a

density matrix, calculated at the level of second-order Møller-Plesset pertur-

bation theory (MP2) [see Sec. 6 and Eqs. (6.6) and (6.8)] [49, 123, 124, 50].

Eigenvectors and eigenvalues of this density matrix are called (approximate)

MP2 natural orbitals and occupation numbers, respectively.

Natural orbitals allow to reduce the virtual orbital space of atoms and

molecules by about half without significantly compromising accuracy if gaus-

sian type orbitals (GTOs) are used [123, 124]. In general, however, the reduc-

tion is related to linear dependencies in the density matrix and much larger

reductions are possible if an inefficient basis set is used to capture correlation

effects.

Plane waves (PWs) constitute fairly efficient basis functions for solid state

systems. They form a complete set, where the number of basis functions can

be controlled by a single parameter, the PW energy cutoff. However, one

major shortcoming is that the PW basis set is independent of the atomic

species and its location. In calculations of open structures, where the electron

density is localized around a few atomic sites, this feature of the PW basis set

becomes unfavorable when compared to the use of GTOs. Even atoms or small

molecules in a large box require several thousands of virtual canonical orbitals.

A large part of this virtual orbital space is unnecessary because it describes

111
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regions in the vacuum far away from the nucleus where the true many-electron

wave function vanishes. In the following, it is shown that one can lift this

problem by means of natural orbitals that are calculated at the level of MP2

or in an even more approximate fashion.

11.1 Computational details

The density matrix in Eq. (6.6) is calculated using the Vienna ab-initio simula-

tion package (VASP) in the framework of the PAW method. For the evaluation

of the two-electron-four-orbital integrals 〈ij|ab〉 two basis sets are used: (i) the

basis set for the one-electron orbitals i, j, a and b, (ii) as well as the auxiliary

basis set used in the construction of the overlap between two orbitals i and a

(see Sec. 8.3 for details). These basis sets are determined by energy cutoffs

Ecut and Eχ, respectively, and all PWs G satisfying the equation

(h̄2/2me)|G|2 < Eχ/cut

are used. For the evaluation of γMP2
ab [see Eq. (6.6)] we set Eχ close to Ecut

because we find a fast convergence of the natural orbitals with respect to

Eχ. The correlation energy in the complete basis set limit is extrapolated by

systematically increasing Eχ as outlined in Sec. 9.1.

Natural orbitals with an occupation number close to zero are expected to

contribute only little to the correlation energy [49]. Therefore we introduce

a threshold, ξ, that defines a subspace of the natural orbitals by truncating

them according to their occupation number. Only natural orbitals with an

occupation number larger than ξ are included in this subspace.

Unlike HF orbitals, natural orbitals do not diagonalize the Fock matrix [see

Eq. (4.10)]. Therefore non-canonical formulations of the employed correlated

methods would be required. We work around the non-canonical implemen-

tations by carrying out the following procedure subsequent to the underlying

Hartree-Fock (HF) calculation: (i) calculate the natural orbitals (NOs), (ii)

order the natural orbitals according to their occupation numbers [eigenvalues

of the density matrix defined in Eq. (6.6)], (iii) recalculate the Fock matrix

[see Eq. (4.10)] in the basis of NOs, and (iv) diagonalize (“canonicalize”) in

a subspace of this Fock matrix that is defined by the threshold ξ. These

“canonicalized” orbitals diagonalize the subspace and can be used in a sub-

sequent canonical wave function based correlated calculation. We stress that
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Figure 11.1: Convergence of the MP2 correlation energy of the Li atom in a

6×6×6 Å3 box with respect to the number of natural and HF orbitals per

spin-channel. The inset shows the convergence on a different scale. The top

x-axis in the inset shows the occupation number threshold, ξ, of the MP2

natural orbitals for the spin-up channel.

the correlation energy is not changed by the diagonalization in the subspace

of NOs.

11.2 Li atom and LiH bulk using natural or-

bitals

As a first example, we study the convergence of the MP2 correlation energy of a

Li atom in the spin polarized state in a 6×6×6 Å3 box. The correlation energy

was not extrapolated to the complete basis set limit; a fixed kinetic energy

cutoff Eχ =400 eV was used. The kinetic energy cutoff for the one-electron
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Li Li
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Figure 11.2: Charge densities of the Hartree-Fock orbitals (HFOs) in the top

row and natural orbitals (NOs) in the bottom row of a Li atom in a 6×6×6

Å3 box. The 4th, 40th and 400th orbitals are plotted.

orbitals was set to Ecut =500 eV. Figure 11.1 shows the MP2 correlation energy

of the Li atom with respect to the number of orbitals per spin channel. For

the given cutoff Ecut and box size, 5450 orbitals span the complete space of

one-electron Hartree-Fock orbitals. The convergence of the correlation energy

with respect to the number of HFOs is extremely slow. Even 4000 HFOs

yield an MP2 correlation energy that deviates by more than 10 meV from the

correlation energy obtained using the full space (733 meV). In contrast, 30

natural orbitals (NOs) already suffice to obtain an agreement that lies within

10 meV of the converged value. The top axis of the inset in Fig. 11.1 shows the

corresponding occupation number threshold, ξ, of the MP2 natural orbitals.

We find that 30 natural orbitals correspond to an occupation number threshold

of 10−6. The occupation numbers quickly decay to zero, which illustrates the

insignificance of the neglected natural orbitals and the “redundancy” present in

the PW basis set in the description of many-electron properties. Approximate

MP2 natural orbitals [eigenvectors of the approximate density matrix given by

Eq. (6.8)] reduce the convergence rate only slightly (see inset of Fig. 11.1). In

fact, both types of natural orbitals allow for reducing the number of virtuals
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Figure 11.3: Convergence of the MP2 correlation energy of the LiH solid using

a 4×4×4 k-point mesh with respect to the number of natural and HF orbitals

per k-point. The top x-axis shows the occupation number threshold, ξ, of the

MP2 natural orbitals at the Γ-point.

compared to Hartree-Fock by at least an order of magnitude.

Figure 11.2 shows the charge densities of the 4th, 40th and 400th natural,

and Hartree-Fock orbital of a Li atom in a 6×6×6 Å3 box. Hartree-Fock

orbitals and natural orbitals are ordered by their increasing one-electron HF

eigenvalues and decreasing occupation numbers respectively. The HF orbitals

become essentially plane waves at higher energies and greater band indices,

since the kinetic energy operator dominates at sufficiently high energies. The

natural orbitals with large occupation numbers maximize the overlap with the

occupied orbitals, whereas the natural orbitals with small occupation numbers

exhibit only very little density at the Li atom, as can be clearly seen for the

400th NO.

Figure 11.3 shows the convergence of the MP2 correlation energy of the

face-centered-cubic LiH crystal with a unit cell volume of 17.03 Å3. The first

Brillouin zone was sampled using a 4×4×4 k-point mesh and the same cutoffs

as for the Li atom were employed (Eχ =400 eV, Ecut =500 eV). In the case of

solids the reduction of the virtual orbital space using natural orbitals is less

significant than for a single atom in a box. This is not unexpected because
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Table 11.1: Atomization energy of the LiH molecule using natural and HF

orbitals. Plane-waves (PWs) as well as aug-cc-pVXZ(X=T,Q) basis sets were

used in the calculations.

This work Ref. [87] GAMESS

Orbitals NOs HFOs HFOs

Basis set type PWs PWs aug-cc-pVXZ

∆EHF 1.084 1.084 1.085

∆EMP2
c 0.823 0.822 0.818

∆ECCSD
c 1.039 1.034

in contrast to an atom in a box, the electrons of the solid are delocalized

over the entire unit cell and almost all degrees of freedom supplied by the

plane wave basis set are required to describe the many-electron wave function.

Nevertheless it is possible to remove about half of the HF virtual orbital space

without introducing an error larger than 10 meV. The approximate and exact

MP2 natural orbitals show a very similar convergence rate. The top axis in

Fig. 11.3 shows the corresponding occupation number thresholds, ξ, for the

MP2 natural orbitals. An error smaller than 10 meV in the correlation energy

can be achieved by including all NOs with ξ = 10−8.

11.3 The H2 and LiH test using CCSD and

natural orbitals

As a first test of our CCSD implementation with natural orbitals we calculate

the dissociation energy of a H2 molecule with a bond length of 0.75 Å, using 80

natural orbitals. We obtain a HF and CCSD contribution to the dissociation

energy of 3.619 eV and 1.112 eV, respectively. The resulting dissociation energy

of 4.731 eV agrees perfectly with the experimental value of 4.73 eV [114].

As a second test of our implementation we have calculated the dissociation

energy of the LiH molecule at the level of MP2 as well as CCSD using NOs.

The bond length was set to 2.042 Å. Table 11.1 summarizes the HF, MP2 as

well as CCSD contributions to the atomization energies of the LiH molecule.

The column on the right lists the results that have been obtained using the
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Table 11.2: Contributions of the MP2 correlation energy to the atomization

energy of the LiH crystal calculated according to Eq. (11.1).

nNOs n3 n4 ∆EMP2
c

192 16 16 1.192

256 16 16 1.195

192 32 16 1.203

192 48 16 1.189

192 54 16 1.189

192 64 16 1.205

192 54 32 1.185

192 54 48 1.187

GAMESS code [94]. The middle column summarizes the HF and MP2 results

that were calculated using VASP and Hartree-Fock orbitals in Sec. 9.1 and

Ref. [87]. The column on the left summarizes the HF, MP2 as well as CCSD

contributions obtained using VASP and NOs. VASP and GAMESS results

agree to within a few meV. The discrepancy between the VASP MP2 results

that were obtained using NOs and HFOs is 1 meV and originates from the

truncation of the virtual orbital space. 200 and 58 NOs were used in the

calculations of the molecule and atom, respectively. This corresponds to a ξ

of approximately 10−7. The agreement of the CCSD results calculated using

VASP with the ones obtained using the GAMESS code is very good as well, and

both results do not deviate by more than 5 meV. This is excellent considering

that VASP employs pseudopotentials (more precisely the PAW method) and

is not a conventional GTO all-electron code.

As a last application we calculate the atomization energy of the LiH solid

at the level of MP2 as well as CCSD. Even with natural orbitals it would be

impossible to perform a CCSD calculation of the LiH crystal with a k-point

mesh denser than 2×2×2, because of the large number of virtual orbitals and

the unfavorable scaling of the computational effort of our CCSD implementa-

tion with respect to the system size. Therefore we calculate the correlation

energy, Êc, of a solid for a desired (nk×nk×nk) k-point mesh and nfull orbitals
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Table 11.3: HF, MP2 and CCSD contributions to the atomization energy of the

LiH crystal using different orbitals compared to quantum chemical calculations

of LiH Clusters from Ref. [125]. The MP2 contribution to the atomization

energy of the LiH crystal from Ref. [87] corresponds to a calculation using a

4×4×4 k-point mesh.

This work Ref. [87] Ref.[125]

Orbitals NOs HFOs HFOs

∆EHF 3.583 3.583 3.589

∆EMP2
c 1.187 1.188 1.182

∆ECCSD
c 1.326 1.329

per k-point using the following approximation:

Êc(nk × nk × nk, nfull) = Ec(2× 2× 2, nfull) +

nk∑

i=3

Ci. (11.1)

Ec(2×2×2, nfull) is the calculated correlation energy using a (2×2×2) k-point

mesh and a converged basis set. Ci are correction terms that account for the

difference between (2×2×2) and denser k-point grids and are calculated as

Ci = Ec(i× i× i, ni)− Ec((i− 1)× (i− 1)× (i− 1), ni). (11.2)

Evidently Eq. (11.1) becomes exact for ni → nfull, but typically ni is cho-

sen smaller than nfull and decreases with an increasing number of k-points, i,

in each direction. This approach is similar to the progressive downsampling

technique of Ohnishi et al. in Ref. [126] and both techniques rely on the ob-

servation that the long range behavior of the polarizability depends mostly on

the low-lying excitations. In practice, we find a fast convergence of the cor-

relation energy with respect to ni. Moreover we calculate Ec(2 × 2 × 2, nfull),

using nNOs natural orbitals at each k-point. Table 11.2 summarizes the con-

vergence of the MP2 atomization energy with respect to nNOs and ni for all

i. We find that the convergence with respect to ni is fairly noisy. From the

noise, we estimate an error bar of approximately 10 meV for the correlation

energy given by Eq. (11.1). However, we find that it suffices to use nNOs = 192,

n3 = 54 and n4 = 32. These settings are then employed in a CCSD calcula-

tion. Table 11.3 summarizes the resulting HF, MP2 and CCSD contributions
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to the atomization energy of the LiH crystal. The results are again compared

to previous calculations obtained using HFOs and quantum chemical calcula-

tions using the incremental approach and LiH clusters [125]. The agreement

between Ref. [87] and Ref. [125] was already discussed in Sec. 9.1. We find that

Eq. (11.1) works reliably for calculating the MP2 contribution to the atomiza-

tion energy of the LiH crystal. Our MP2 results deviate by less than 10 meV

from Sec. 9.1 and Ref. [87]. Moreover our CCSD results are in very good agree-

ment with Ref. [125] which gives us confidence of the correct implementation

of the CCSD code for periodic boundary conditions.

11.4 Conclusions and Summary

In summary, we have shown that MP2 natural orbitals allow for a tremendous

reduction of the virtual orbital space, compared to HF orbitals for calcula-

tions of single atoms or molecules in a box using a PW basis set. This allows

for calculations of atoms and small molecules using highly accurate quantum-

chemical methods such as CCSD in a PW basis set. In the case of solids, the

virtual orbital space can be reduced approximately by half without compro-

mising the accuracy significantly. Note that in CCSD calculations, a reduction

of the virtual orbital space by half corresponds to a speed-up of an order of

magnitude. Although the computational cost of evaluating natural orbitals

scales as O(N5), we can approximate the MP2 NOs by a simpler expression

that scales only as O(N4). The approximated NOs perform only slightly worse

than the exact MP2 NOs. This even allows us to reduce the computational

cost of MP2 calculations for large systems. Moreover natural orbitals will not

only help in expanding the applicability of our MP2 or CCSD implementation;

many other correlated methods that are implemented in a PW basis will ben-

efit as well. It is straightforward to apply the presented procedures to other

methods such as the Random phase approximation plus second-order screened

exchange [101] or GW -BSE [127].
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Chapter 12

Conclusions and Summary

This thesis is devoted to the implementation and evaluation of the following

three wave function based methods to treat electron correlation in solid state

systems under periodic boundary conditions:

1. second-order Møller-Plesset perturbation theory (MP2),

2. random phase approximation plus second-order screened exchange (RPA+SOSEX),

3. and coupled-cluster singles and doubles theory (CCSD).

In the first part (chapters 1-8), a brief theoretical review of these methods

was given. The second part is split into three chapters that address MP2,

RPA+SOSEX and CCSD results (chapters 9, 10 and 11, respectively).

Section 9.1 outlines important technical procedures that are required to

obtain converged correlation energies with respect to the employed basis set

and Brillouin zone sampling.

Section 9.2 summarizes structural and energetic properties that have been

calculated using our MP2 implementation for a small test set of 13 solid state

systems. It is shown that the mean absolute relative errors (MARE) of the

MP2 lattice constants and bulk moduli are 0.46% and 4.1%, respectively. As

such, MP2 clearly outperforms Hartree-Fock, which exhibits a MARE of 1.31%

and 7.9% for the lattice constants and bulk moduli, respectively. For the MP2

atomization energies, a MAE of 230 meV/atom is found, which constitutes

a huge improvement over the corresponding HF mean absolute error of 1.59

eV/atom as well. Compared to DFT-PBE, MP2 improves upon lattice con-

stants and bulk moduli, but not upon atomization energies. We find that
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the MP2 band gaps are only accurate for systems with a dielectric constant

smaller than 3. In general MP2 tends to overcorrelate strongly screening ma-

terials and undercorrelate weakly screening materials. This trend is reflected

in the errors of the MP2 band gaps, lattice constants and atomization energies

for systems with a large dielectric constant. In addition we have presented

numerical evidence that the MP2 energy diverges for metallic systems.

Chapter 10 summarizes results for total correlation energies of atoms and

the homogeneous electron gas using RPA and RPA+SOSEX. Furthermore our

RPA+SOSEX implementation was employed to calculate atomization energies

of 5 solids and 6 molecules. SOSEX corrects for the “self-correlation” error in

the RPA. As such, RPA+SOSEX reduces the error in the total RPA correla-

tion energies by around 30% for atoms and the free electron gas. Moreover

RPA+SOSEX yields highly accurate results for lattice constants and atomiza-

tion energies. We are able to obtain spectacular agreement with experiment

for the lattice constants (MARE: 0.2 %). For the atomization energies of the

solids the accuracy is also excellent (MAE: 70 meV/atom). RPA+SOSEX

clearly outperforms DFT-PBE, HF, MP2 and RPA in terms of accuracy for

lattice constants and atomization energies. Although RPA+SOSEX is a new

method that requires more testing, our preliminary results and those from

Ref. [120] indicate that RPA+SOSEX might achieve the same accuracy as

CCSD with a much smaller computational complexity and effort. The compu-

tational effort of our MP2 and RPA+SOSEX implementations scale as O(N5),

where N is a measure of the system size.

Chapter 11 addressed natural orbitals and first tests of our coupled-cluster

singles and doubles code for solid state systems. We have shown that natural

orbitals at the level of second-order Møller-Plesset perturbation theory allow to

achieve a much faster convergence of the correlation energy with respect to the

number of virtual orbitals. The virtual orbital space can be reduced by about

half without losing significant accuracy. This enables us to perform the first

calculations of three dimensional solids under periodic boundary conditions at

the CCSD level. We have calculated the CCSD atomization energies of the

LiH molecule and solid and shown that our implementation yields results that

agree well with quantum chemical calculations.



Appendix A

Slater-Condon rules

Slater-Condon rules express the result of integrals over one- and two-body

operators between identical or different Slater determinants constructed of

orthonormal orbitals ψi in terms of the individual orbitals. In the following

one- and two-body operators are denoted byO1(r1) andO2(ri, rj), respectively.

We define the one- and two-body operators to be the one-body Hamiltonian

and the two-electron Coulomb operator:

O1 =
N∑

i

h(ri),

O2 = e2
N∑

i

N∑

i<j

1

|ri − rj|
.

We suppose that the Slater determinants ΨI are constructed from a set of

orthonormal orbitals {ψ1, .., ψi, .., ψN} according to

ΨI(r1, .., rN) = |ψ1, .., ψi, .., ψN〉 =
1√
N !

∣∣∣∣∣∣∣



ψ1(r1) .. ψN (r1)

.. .. ..

ψ1(rN) .. ψN (rN)




∣∣∣∣∣∣∣
.

The Slater-Condon rules distinguish between following cases:

• Case 1: Both Determinants are identical

ΨI = ΨII

〈
ΨI|O1|ΨII

〉
=

N∑

m

〈ψm|h|ψm〉 =
N∑

m

∫
dr1ψ

∗
m(r1)h(r1)ψm(r1)
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〈
ΨI|O2|ΨII

〉
=

1

2

N∑

m

N∑

n

〈ψmψn||ψmψn〉

where

〈ψlψm||ψnψo〉 = e2
∫
dr1

∫
dr2

[
ψ∗
l (r1)ψ

∗
m(r2)ψn(r1)ψo(r2)

|r1 − r2|
− ψ∗

l (r1)ψ
∗
m(r2)ψo(r1)ψn(r2)

|r1 − r2|

]

• Case 2: Both determinants differ by one orbital

ΨI = |ψ1, .., ψm, .., ψN〉

ΨII = |ψ1, .., ψp, .., ψN 〉

〈
ΨI|O1|ΨII

〉
= 〈ψm|h|ψp〉

〈
ΨI|O2|ΨII

〉
=

N∑

n

〈ψmψn||ψpψn〉

• Case 3: Both determinants differ by two orbitals

ΨI = |ψ1, .., ψm, ψn, .., ψN 〉

ΨII = |ψ1, .., ψp, ψq, .., ψN〉

〈
ΨI|O1|ΨII

〉
=0

〈
ΨI|O2|ΨII

〉
= 〈ψmψn||ψpψq〉

If the determinants differ by more than two orbitals, the integrals of the one-

and two-body operator vanish.



Appendix B

Direct contributions to the MP2

QP energy

In this appendix we give a formal proof that starting from a truncated inverse

Dyson-like equation in the GW formalism one obtains formally the expression

for the “direct” contribution to the MP2 quasiparticle energies, ǫdMP2
n .

The exchange and correlation contribution to the GW QP energy ǫGW
n,k is

obtained from Eq. (7.18):

ǫGW
n,k (ω) = 〈ψn,k|Σ(ω)|ψn,k〉

=
1

Ω

∑

q,G,G′

∑

n′

i

2π

∫ ∞

−∞

dω′Wq(G,G
′, ω′)

〈
ψn,k|ei(q+G)r|ψn′,k−q

〉

×
〈
ψn′,k−q|e−i(q+G′)r′|ψn,k

〉 1

ω − ω′ − ǫn′k−q + iηsgn(ǫn′k−q − µ)
.

(B.1)

Here q is the Bloch wave vector difference q = k−k′. For the sake of brevity we

will employ a shorthand for the Fourier-transformed overlap densities reading

〈
ψn,k|ei(q+G)r|ψn′,k−q

〉
= 〈n|G|n′〉 , (B.2)

where n is a shorthand for ψn,k.

W is the dynamically screened Coulomb interaction given by [compare Eq. (7.13)]:

Wq(G,G
′, ω) =

4πe2

|q+G||q+G′|ǫ
−1
q (G,G′, ω), (B.3)
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where ǫ is the symmetric dielectric function, which is defined as

ǫ−1
q (G,G′, ω) = δG,G′ +

4πe2

|q+G||q+G′|χq(G,G
′, ω). (B.4)

In the Random Phase Approximation (RPA), the fully interacting particle

polarizability χ is given by the Dyson-like equation Eq. (7.14), and the inde-

pendent particle polarizability χ0 is defined as

χq
0 (G,G

′, ω′) =
1

Ω

unocc.∑

n′′

occ.∑

n′′′

∑

k′′

2

[ 〈n′′′| −G|n′′〉 〈n′′|G′|n′′′〉
ω′ + ǫn′′′ − ǫn′′ + iηsgn(ǫn′′ − ǫn′′′)

− 〈n′′| −G|n′′′〉 〈n′′′|G′|n′′〉
ω′ + ǫn′′ − ǫn′′′ + iηsgn(ǫn′′′ − ǫn′′)

]
, (B.5)

where k′′′ and k′′ in Eq. (B.5) satisfy the condition q = k′′ − k′′′.

Approximating the full polarizability by the independent particle polarizability

χ = χ0, the inverse dielectric matrix simplifies to

ǫ−1
q (G,G′, ω) = 1 + νχ0. (B.6)

Putting Eq. (B.6) into Eq. (B.3) results in two terms:

Wq(G,G
′, ω′) = δG,G′

4πe2

|q+G||q+G′| +
4πe2

|q+G|2χ
q
0 (G,G

′, ω′)
4πe2

|q+G′|2 .

Inserting the first term from the above equation into Eq. (B.1) yields the Fock

exchange contribution to the one-electron energies, which is usually already

included in the HF eigenvalues.

The second term in Eq. (B.7) decays like 1
ω′2 for limω′→∞ when inserted into

Eq. (B.1). This term comprises the direct contribution to the MP2 QP ener-

gies, and we will concentrate on its evaluation in the following. Putting the

second term from Eq. (B.7) into Eq. (B.1) gives

ǫdMP2
n (ω) =

1

Ω

∑

q,G,G′

∑

n′

i

2π

∫ ∞

−∞

dω′ 〈n′| −G′|n〉
|q+G′|2 χq

0 (G,G
′, ω′)

〈n|G|n′〉
|q+G|2

× 16π2e4

ω − ω′ − ǫn′ + iηsgn(ǫn′ − µ)
. (B.7)
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Using the definition for χ0 from Eq. (B.5) yields

ǫdMP2
n (ω) =

1

Ω2

∑

q,G,G′

∑

n′

i

2π

∫ ∞

−∞

dω′ 4πe2

|q+G|2
4πe2

|q+G′|2
unocc.∑

n′′

occ.∑

n′′′

∑

k′

2

×
[ 〈n′′′| −G|n′′〉 〈n′′|G′|n′′′〉
ω′ + ǫn′′′ − ǫn′′ + iηsgn(ǫn′′ − ǫn′′′)

− 〈n′′| −G|n′′′〉 〈n′′′|G′|n′′〉
ω′ + ǫn′′ − ǫn′′′ + iηsgn(ǫn′′′ − ǫn′′)

]

× 〈n|G|n′〉 〈n′|G′|n〉
ω − ω′ − ǫn′ + iηsgn(ǫn′ − µ)

Rearranging the terms and using

〈ij|ab〉 = 4πe2

Ω

∑

G

〈ψi| −G|ψa〉 〈ψj |G|ψb〉
|G+ ki − ka|2

, (B.8)

allows for introducing the two-electron four-orbital integrals.

ǫdMP2
n (ω) =−

∑

n′

i

2π

∫ ∞

−∞

dω′

unocc.∑

n′′

occ.∑

n′′′

2wn′′

[ 〈n′′′n|n′′n′〉 × c.c.

ω′ + ǫn′′′ − ǫn′′ + iηsgn(ǫn′′ − ǫn′′′)

− 〈n′′n|n′′′n′〉 × c.c.

ω′ + ǫn′′ − ǫn′′′ + iηsgn(ǫn′′′ − ǫn′′)

]
× 1

ω′ − ω + ǫn′ − iηsgn(ǫn′ − µ)

(B.9)

The integration over ω′ can be performed analytically using the residue theo-

rem to yield

ǫdMP2
n (ω) =

−i
2π

unocc.∑

n′′

occ.∑

n′′′

2

[
2πi

occ.∑

n′

〈n′′n|n′′′n′〉 × c.c.

ω − ǫn′ − ǫn′′′ + ǫn′′ − 2iη

−2πi

unocc.∑

n′

〈n′′′n|n′′n′〉 × c.c.

ǫn′′ − ǫn′′′ − ω + ǫn′ − 2iη

]
(B.10)

η is an infinitesimal shift required to distinguish between occupied and unoc-

cupied states, but after the frequency integration it can be dropped. Moreover,

we can rearrange the terms to obtain the final expression for the QP energy:

ǫdMP2
n (ω) =

unocc.∑

n′′

occ.∑

n′′′

2

[
unocc.∑

n′

〈n′′′n|n′′n′〉 × c.c.

ǫn′′′ + ω − ǫn′′ − ǫn′

−
occ.∑

n′

〈n′′′n′|n′′n〉 × c.c.

ǫn′ + ǫn′′′ − ω − ǫn′′

]

(B.11)

Clearly Eq. (B.11) is equivalent to the direct terms in Eqs. (7.3) and (7.4).
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Appendix C

Implementation of MP2 in

VASP

The MP2 correlation energy reads

EC =
occ.∑

ij

unocc.∑

ab

V ab
ij (2V

ab
ij − V ba

ij )
∗

ǫi + ǫj − ǫa − ǫb
, (C.1)

where

V ab
ij = 〈ij|ab〉. (C.2)

In the above equation i, j and a, b denote occupied and unoccupied spatial

orbitals, respectively. ǫx denotes the eigenvalues of the Fock matrix defined in

Eq. (4.10). The construction of V ab
ij in the framework of the PAW method is

outlined in Sec. 8.3. From Sec. 8.3 we find that the electron repulsion integral

V ab
ij can be written as

V ab
ij =

∑

o

C1
ia(o)Ĉ

1
jb(o) +

∑

G

C̃ia(G) ˆ̃Cjb(G), (C.3)

where o is understood to be a shorthand for the indices κ, λ, µ and ν (see

Sec. 8.3). G is a shorthand for the plane wave component G, as defined in

Sec. 8.3. The coefficients C1
ia, Ĉ

1
jb, C̃ia and ˆ̃Cjb are implicitly defined through

Eqs. (8.31), (8.34), and (8.38).

Our MP2 implementation proceeds in two steps:

1. The coefficients C1
ia, Ĉ

1
jb, C̃ia and ˆ̃Cjb, are evaluated and stored.
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2. The electron repulsion integrals are calculated blockwise from the co-

efficients. Every block is defined by a combination of occupied orbital

indices i and j. Therefore one block at a time needs to be stored in mem-

ory and is of the size Nunocc. × Nunocc.. Knowing one block for a given

i and j allows for performing the summation over a and b in Eq. (C.1).

Subsequently a new block of electron repulsion integrals for the next

combination of i and j is evaluated and the nested summation over a

and b in Eq. (C.1) is carried out. This is repeated until all possible com-

binations of i and j are accounted for. Summing over all contributions

from the different combinations of i and j yields the MP2 correlation

energy.

The above steps are highly parallelizable. In step (1) all occupied orbitals i are

distributed to all nodes. For a set of unoccupied orbitals {a}, which is different

on every node, the coefficients C1
i{a}, Ĉ

1
i{a}, C̃i{a} and ˆ̃Ci{a} are evaluated and

stored locally. From step (1) to step (2) a redistribution of the coefficients is

carried out. The coefficients are brought into a block-cyclic matrix distribution

that is well suited for highly efficient parallelized matrix-matrix multiplication

routines. The columns of the distributed coefficient matrices correspond to

the indices G and o, respectively. The rows of the distributed coefficient ma-

trices corresponds to the index of the unoccupied orbitals a. In total there

are 4Nocc. block-cyclically distributed coefficient matrices (C1
i (a, o), Ĉ

1
i (a, o),

C̃i(a,G) and ˆ̃Ci(a,G)). This allows for a blockwise construction of the electron

repulsion integrals using highly efficient parallel matrix-matrix multiplication

routines (ScaLAPACK libraries). Since the construction of the electron repul-

sion integrals scales as O(N5), where N is a measure of the system size, this

step is the computational bottle neck of our implementation.



Appendix D

Implementation of

RPA+SOSEX in VASP

The coupled-cluster double amplitude equations in the random phase approx-

imation read

0 = 〈ij|ab〉+ tabij (ǫa + ǫb − ǫi − ǫj)

+ 〈ic|ak〉 tcbkj + tacik 〈cj|kb〉+ tacik 〈cd|kl〉 tdblj . (D.1)

The solution of the above equations is outlined in Sec. 5.7 and scales as O(N6),

where N is a measure of the system size. However, it is possible to reduce

the computational effort for calculating the amplitudes and the RPA+SOSEX

energy to scale as O(N5) only. This is achieved by rearranging the nested

summations in the construction of the electron repulsion integrals and the

amplitude equations. For this purpose we define intermediate quantities that

read as

χ1
ia(o) =

∑

kc

tacikC
1
kc(o), (D.2)

χ̂1
ia(o) =

∑

kc

tacik Ĉ
1
kc(o), (D.3)

χ̃ia(G) =
∑

kc

tacik C̃kc(G), and (D.4)

ˆ̃χia(G) =
∑

kc

tacik
ˆ̃Ckc(G). (D.5)

(D.6)
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The coefficients C1
kc, Ĉ

1
kc, C̃kc and

ˆ̃Ckc have been introduced in Eq. (C.3). Em-

ploying the above definitions of the intermediate quantities allows for rewriting

Eq. (D.1) into an equation that scales only as N5 :

0 = tabij (ǫa + ǫb − ǫi − ǫj) +
∑

o

[
C1

ia(o) + χ1
ia(o)

] [
(Ĉ1

jb(o) + χ̂1
jb(o)

]

+
∑

G

[
C̃ia(G) + χ̃ia(G)

] [
ˆ̃Cjb(G) + ˆ̃χjb(G)

]
(D.7)

Because of the simplicity of Eq. (D.7) an important technical advantage arises.

In contrast to a full CCSD algorithm, it suffices to store a single set of ampli-

tudes, which greatly reduces the memory requirements.

The distribution of the coefficients C1
kc, Ĉ

1
kc, C̃kc and

ˆ̃Ckc, as well as interme-

diate quantities χ1
ia(o), χ̂

1
ia(o), χ̃ia(G), and ˆ̃χia(G) is done analogue to the the

procedure outlined in Appendix C. Hence, the MP2 as well as RPA+SOSEX

implementation are based on highly efficient matrix-matrix multiplication rou-

tines.
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[87] M. Marsman, A. Grüneis, J. Paier, and G. Kresse, J. Chem. Phys. 130,

184103 (2009).

[88] V. N. Staroverov, G. E. Scuseria, J. Tao, and J. P. Perdew, Phys. Rev.

B 69, 075102 (2004).

[89] O. Madelung, Semiconductors: Data Handbook, 3rd ed. Springer, Berlin

(2004).

[90] A. Trampert, O. Brandt, K. H. Ploog, in Crystal Structure of Group III

Nitrides, edited by J.I. Pankove and T.D. Moustakas, Semiconductors

and Semimetals Vol. 50, San Diego (1998).

[91] S. M. Sze, Physics of Semiconductor Devices Wiley Interscience, New

York (1981).

[92] R. W. G. Wyckoff, Crystal Structures Interscience New York (1963).

[93] The experimental crystal structure of sodium is body-centered-cubic

(bcc). However, for the present purpose we have employed the face-

centered-cubic structure, because it is more densely packed and it does

not affect the divergence of MP2 for metallic systems. The lattice con-

stant of the face-centered-cubic sodium was chosen such that the volume

agrees with the volume of the bcc crystal.

[94] http://www.msg.chem.iastate.edu/GAMESS/GAMESS.html

[95] M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gor-

don, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su,

T. L. Windus, M. Dupuis, J. A. Montgomery, J. Comput. Chem. 14,

1347 (1993).

[96] M. S. Gordon, M. W. Schmidt, Chapter 41, pp 1167-1189, in “The-

ory and Applications of Computational Chemistry, the first forty years”

(2005).

[97] L. Schimka, J. Harl, and G. Kresse, to be published.



BIBLIOGRAPHY 139

[98] J. Paier, M. Marsman, K. Hummer, G. Kresse, I. C. Gerber, and
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ria, Andreas Grüneis, and Georg Kresse

“Erratum: Hybrid functionals including random phase approximation

correlation and second-order screened exchange”

J. Chem. Phys. 132 , 094103 (2010).

2. Laurids Schimka, Judith Harl, Alessandro Stroppa, Andreas Grüneis, Mar-
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