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Abstract

This thesis is devoted to the implementation and assessment of three wave func-
tion based methods for solid state systems under periodic boundary conditions:
(7) Second-order Mgller-Plesset perturbation theory (MP2), (i) Random phase
approximation plus second-order screened exchange (RPA+SOSEX), and (111)
Coupled-cluster singles and doubles (CCSD).

The first part briefly reviews the employed theoretical and computational
methods. The implemented expressions of the Hartree-Fock, MP2, RPA+SOSEX
and CCSD theories are derived. Natural orbitals are introduced and approxi-
mated at the level of MP2. Moreover, we explain the evaluation of the required
quantities in the framework of the projector-augmented wave (PAW) method
as implemented in the Vienna ab-initio simulation package (VASP).

The second part summarizes the results that have been obtained at the dif-
ferent levels of theory. Structural properties, atomization energies and quasi-
particle band gaps have been calculated using HF and MP2 for archetypical
semiconductors and insulators. It is shown that MP2 tends to overcorrelate
strongly screening materials and undercorrelate weakly screening materials.
This leads to an over- and underestimation of lattice constants for weakly-
and strongly screening materials, respectively. The RPA+SOSEX method
was employed for the evaluation of total correlation energies of atoms, atom-
ization energies of small molecules, as well as lattice constants and atomization
energies of a series of semiconductors and insulators. We show that the intro-
duction of second-order screened exchange lifts some deficiancies of the RPA,
such as the underbinding of molecules and solids, and the overestimation of the
total correlation energies. Finally, using CCSD and MP2 natural orbitals our
CCSD implementation was tested for the LiH molecule as well as solid. Our
results agree very well with results that have been obtained using quantum
chemical codes.
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Zusammenfassung

Diese Doktorarbeit befasst sich mit der Implementierung und Evaluierung
von drei wellenfunktionsbasierten Methoden fiir Festkorper unter periodis-
chen Randbedingungen: (i) Zweite Ordnung Mgller-Plesset Storungstheorie
(MP2), (i) Random phase approzimation plus second-order screened exchange
(RPA+SOSEX), und (u7) Coupled-cluster singles and doubles (CCSD).

Der erste Teil erklart die verwendeten theoretischen sowie computerori-
entierten Methoden. Die implementierten Ausdriicke der Hartree-Fock, MP2,
RPA+SOSEX und CCSD theorien werden teilweise abgeleitet. Natural orbitals
werden eingefithrt und auf der Ebene von MP2 approximiert. Ausserdem wird
die Berechnung der benotigten Ausdriicke im Rahmen der projector-augmented
wave (PAW) Methode, welche im Vienna ab-initio simulation package (VASP)
implementiert ist, erortert.

Der zweite Teil beinhaltet die numerischen Ergebnisse der verschiedenen
Methoden und deren Interpretation. Gitterkonstanten, Bulkmoduli, Atom-
sierungsenergien und Quasiteilchen Bandliicken wurden mit Hilfe von HF und
MP2 fiir eine Serie von Halbleitern und Isolatoren berechnet. Wir zeigen
dass MP2 stark abschirmende Materialien iiberkorreliert und schwach abschir-
mende Materialien unterkorreliert. Dies fiihrt zu einer Uber- bzw. Unter-
schitzung von Gitterkonstanten fiir schwach bzw. stark abschirmende Mate-
rialien. RPA+SOSEX wurde verwendet um totale Korrelationsenergien von
Atomen, Atomisierungsenergien von kleinen Molekiilen, sowie Gitterkonstan-
ten und Atomisierungsenergien von Halbleitern und Isolatoren zu berechnen.
Es wird gezeigt das die Beriicksichtigung von SOSEX mehrere Probleme der
RPA 16st. Insbesondere korrigiert SOSEX die Tendenz der RPA zur Unter-
schiitzung von Bindungsenergien und Uberschitzung von totalen Korrelation-
senergien. Schlussendlich wird die CCSD Implementierung mit Hilfe von MP2
natural orbitals fiir das LiH Molekiil und den LiH Festkorper getestet. Die
CCSD Ergebnisse stimmen gut mit quantenchemischen Berechnungen iiberein.
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Chapter 1

Introduction

Computational materials science and quantum chemistry aim at a realistic de-
scription of matter at the level of quantum mechanics. Since the solution of the
full Schrédinger equation is impossible for anything but the smallest systems,
approximate methods are required that ideally achieve two goals: (7) high ac-
curacy, or at least a well controlled error, and (ii) low computational demands.
Unfortunately, the scaling of the computational effort with respect to the sys-
tem size is almost always less favourable for more accurate methods. However,
with the increase in available computer power during the last decades, highly
accurate methods become tractable and hence attract increased attention. In
the field of computational quantum chemistry a systematic hierarchy of highly
accurate methods for the description of the ground state energy of a many-
electron system is well established. This hierarchy starts from the one-electron
Hartree-Fock (HF) approximation that neglects electron correlation and ends
with the ezact non-relativistic full configuration interaction (full CI) method.
In between HF and full CI, two distinct series of approximations exist: (1)
The Mgller-Plesset perturbation theory attempts to construct a converging
series ({MP1, MP2, .., MPoo}) of approximations to the exact full CI limit.
Although the series is expected to converge for simple semiconductors and in-
sulators, metallic systems will always yield a diverging correlation energy at
any order n. (i) Coupled-cluster theory constructs a series of approximations
({CCS, CCSD, .., CCSDT..N}) that will at N-th order always recover the
full CI limit, where N is the number of electrons. The complexity along these
series of approximations, however, increases significantly and more accurate

methods tend to scale quite unfavorably with respect to increasing system



2 Chapter 1. Introduction

size. As such, these correlated wave function methods (MP2, CCSD) have not
yet been applied to extended systems. The present work is devoted to the

implementation and evaluation of
e second-order Mgller-Plesset perturbation theory (MP2)
e coupled-cluster singles and doubles (CCSD) theory, as well as

e an approximation to CCSD termed RPA+SOSEX

for solid state systems. The corresponding methods were coded and imple-
mented in the Vienna ab-initio simulation package (VASP). The present thesis
is organized as follows: In the first part, a brief review of the employed theo-
retical and computational methods is given. The second part presents results
obtained using MP2, RPA+SOSEX and CCSD for periodic systems as well as
molecules.



Part 1

Theory






Chapter 2

The many-particle Schrodinger
equation

The basic problem in theoretical condensed matter physics and quantum chem-
istry is to solve the many-particle Schrodinger equation, which can be written
as

0
H\I/(Rl, ..,RM,I'l, ..,I’N) = Zha\ll(Rl, ..,RM,I'l, ..,I'N) (2].)

Here R,; and r; denote the positions of the M nuclei and N electrons, respec-
tively. Any direct analytical or numerical approach to solve this equation for
anything but the smallest systems fails. Nevertheless it is possible to construct
approximations to Eq. (2.1), that are applicable to a large number of problems
in solid state physics and quantum chemistry.

2.1 Born-Oppenheimer approximation

Since the mass of the nuclei is much larger than the mass of the electron
(Muucleus > Melectron) ONE can assume that the electrons are always in the
electronic ground state and adiabatic equilibrium with respect to the atomic
positions. This allows to decouple the electronic and nuclear part of the wave
function and yields

\I/(Rl, ey RM, ry,.., I'N) = \I’<I'1, oey I'N|R1, oey RM)(I)(Rl, .oy RM) (22)

where U(ry,..,ry|Rq, .., Ry) and ®(Ry, .., Ry,) are the electronic and nuclear

wave functions, respectively. W(ry,..,ry|Ry, .., Ry) depends only parametri-

5



6 Chapter 2. The many-particle Schrodinger equation

cally on R;. Furthermore the ions can be described as classical particles due

to their large mass. Hence the total energy of a system reads

E"Y Ry, .., Ra, Ry, ., Ry) =T(Ry, .., Ry) + E™ ™Ry, .., Rur)
+ <\I[<I'17 8] rN|R17 ) RM)‘H61|\I[(I'17 ) rN‘Rh ) RM)> :
(2.3)

The first two terms denote the nuclear kinetic energy and the nucleus-nucleus
Coulomb interaction whereas the last term is the electronic Schrodinger equa-
tion.

2.2 The electronic Schrodinger equation

Solving the electronic Schrodinger equation
HYU(ry,..,vn[Ry, ., Ray)) = E|U(ry, .., tn|Ry, .., Ryy)), (2.4)

constitutes the main problem in the field of solid state physics and quantum
chemistry. The electronic Hamiltonian, H, is given by

Ny N N N o2

H = — —A,, — Va(r; P —— 2.5

i=1 =1 =1 j>1
where the first and second term are one-electron operators and correspond to
the kinetic energy operator and the attractive nuclear potential, respectively.
The attractive nuclear potential is defined as

M .

Vn(r) = € _
N() ra |Ra—r|

(2.6)
where Z, is the atomic number of the a-th nucleus at position R,. The Born-
Oppenheimer approximation allowed for reducing the dependence of ¥ on R,
to this parametric form. The last term in Eq. (2.5) is a two-electron operator
and accounts for the electron-electron Coulomb interaction. Note that the
many-electron wave function, ¥(ry,..,rn), is a function of 3N coordinates,
where N is the number of electrons. Any approach to solve Eq. (2.4) directly
is limited to a few electrons because of the high dimensionality of W(ry,..,ry).
Therefore all methods that are applicable to a reasonable system size either do
not require the explicit knowledge of ¥ or find a reduced rank representation

of the many-electron wave function .



Chapter 3

Density functional theory

Density functional theory is a method that solves the electronic Schrodinger
equation [Eq. (2.4)] exactly without requiring the explicit knowledge of the
complete many-electron wave function W.

3.1 Theorems by Hohenberg and Kohn

In 1964 Hohenberg and Kohn formulated two theorems that form the basis of
density functional theory (DFT) [1].

1. Every observable of a stationary quantum mechanical system is uniquely
determined only by its ground state density n. Therefore the energy of a

system can be written as a functional E of the density.

Eln] = (V[H|W¥)

2. The exact ground state density is the one that minimizes E[n]:

En] = ming, (V|H|¥),

where ming, denotes a minimization with respect to the wave function

U that is consistent with the density n.

7



8 Chapter 3. Density functional theory

Kohn and Sham suggested to split up the functional E[n] into several contri-

butions, which can be written in the following form [2]:
Eln] = T,[n] + Eun[n] + Ene[n] + Eee[n| + Eyen]. (3.1)

Here E,,[n|, E,c[n] and E..[n] denote the nucleus-nucleus, the nucleus-electron
and the electron-electron Coulomb energies. T,[n] is the kinetic energy of
non-interacting electrons. These terms can be calculated explicitly. The last
term in Eq. (3.1), Ey[n], is the exchange-correlation energy. It is implicitly
defined through Eq. (3.1), as the difference between the many-body ground
state energy, E[n], and the first four terms on the right-hand side. An explicit
expression for E..[n] is not known.

Due to its complexity the correlation energy term and, sometimes, the
exchange energy term, are approximated. This is commonly done by intro-
ducing functionals F,.[n] that are exact for the homogeneous electron gas.
Such functionals have been proposed in various forms like LDA (local density
approximation) or GGA (generalized gradient approximation) and fulfill cer-
tain sumrules for the exchange and correlation hole, as well as asymptotically
known limits.

In Kohn-Sham density functional theory, the density of an N-electron sys-
tem is calculated as the sum over the densities of N one-electron orbitals,

N

n(r) =Y Wi ()di(r) (3-2)

=1

The one-electron orbitals, 1);(r), are the solutions of the Kohn-Sham equations,

(—;—mAr — Vn(r) 4+ Viu(r) + vxc(r)> Ui(r) = €3hi(r), (3.3)

where Vi is the external attractive potential of the nuclei as defined in Eq. (2.6)
and the Hartree potential, Vy, reads

_ 2 5., n(r')
Vig(r) = /d e (3.4)
The exchange and correlation potential, vy, is given by
0F
ve(r) = LEelnlD)], (3.5)
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The one-electron wave functions in Eq. (3.3) are subject to the orthonormality
constraint

/fﬂw@www:@f (3.6)

3.2 The LDA and GGA functionals

The simplest form to approximate F,. is the local density approximation
(LDA),

@?ﬂmwha/QAMMM@w%, (3.7)

where €,.(n(r)) is the exchange-correlation energy density of the homogeneous
electron gas. €,.(n(r)) is known from Monte Carlo simulations [3]. Strictly
speaking it is not correct to assume that €,.(n(r)) depends only on the local
density in solids. Nevertheless the results are often in good agreement with
experiment, especially for metals. The LDA fails if the gradient of the density

becomes large.

A better approximation to E,. can be obtained by the additional inclusion

of a dependence on the local gradient of the density [4],

Egn(r)] = /fxc (n(r), [Vn(r)|) n(r)d’r. (3-8)

This is commonly known as the generalized gradient approximation (GGA).
Like €,c(n(r)), fee(n(r), |Vn(r)|) has to be parametrized by an analytical func-
tion to perform practical calculations. How the construction of such functionals
is done in detail is beyond the scope of this chapter. Presently the most com-
mon and most universal (or best balanced) functional is the one of Perdew,
Burke and Ernzerhof in Ref. [5]. This functional will be referred to as PBE-
functional in the following chapters.



10



Chapter 4

Hartree-Fock theory

In contrast to DF'T, which in principle allows to determine the exact ground
state density but not the many-electron wave function, Hartree-Fock (HF)
theory [6, 7] tries to approzimate the “true” many-electron wave function. The
HF ansatz for the N-electron wave function reads
. 1 Ui(r) .. Un(r)
U (ry, .., ry) = Vol .. .. .. . (4.1)
Ui(ry) - Yn(rw)

UHE (). ry) corresponds to a Slater determinant that is constructed from a
set of orthonormal one-electron orbitals (spin-orbitals) ;(r) [8]. By construc-
tion, W1 is antisymmetric under exchange of two coordinates or orbitals,
as required for a fermionic wave function. The HF approximation neglects
electronic “correlation” completely, which is in fact defined as the difference
between the HF energy and the true many-body ground state energy. We will
come back to this point later.

Inserting WHF as ansatz into Eq. (2.4) yields the electronic energy expression

in the Hartree-Fock approximation

EHF — (\I!HF(rl, o rN)\Hel|\IIHF(r1, W TN)). (4.2)

By the application of Slater-Condon rules (see Appendix A) we can express
Eq. (4.2) in terms of spin—orbitals, ¥;(r), to read

Z/drz/; [ g e = V()| 40 433 Wt ot

m=1 n=1
(4.3)

11



12 Chapter 4. Hartree-Fock theory

The first term in the above equation accounts for the kinetic energy of the
electrons. Vy denotes the external attractive nuclear potential as defined
in Eq. (2.6). (Ym¥n||tvmib,) are antisymmetrized electron repulsion (or two-
electron-four-orbital) integrals that are defined as

(ol [Vt = / / drydrs (w* (1) (02) (2100 (1)

[t — 1y
_w;<rl>wz<rz>wn<rl>wm<”)) (4.4)
r1 — 12 ' .

Equations (3.4) and (4.4) allow for rearranging the last term on the right-hand
side of Eq. (4.3) as

N

3 223 {tntallmtn) =3 3 [ s Vi)

m=1 n=1
N
+%;/drl/dI'Q’(/}:n(I'l)Vx(rl,rQ)wm(rQ)a
(4.5)

where
N

Vx(ri,T —622 Yalr1)n(rs) : (4.6)

vy — 1y

Vi and Vx are the Hartree and exchange potential, respectively. At this point
we emphasize three aspects of Vx in the HF approximation (i) it is non-local,
(ii) it is a direct consequence of the antisymmetry of the wave function and
(iii) it cures the “unphysical” self-interaction of an electron that feels its own
Hartree potential exactly.

In principle, DFT accounts for the effects of Vx as well, but in practice no
density functional approximation to Vy is exact for anything but the homoge-
neous electron gas.

According to the variational principle, the Hartree-Fock energy is an upper
bound of the exact energy [9]. Therefore the “best” Hartree-Fock spin-orbitals
1;(r) are those which minimize the Hartree-Fock energy, EMY. By varying the
orbitals until the energy is a minimum one obtains the so-called Hartree-Fock
integro-differential equation (Euler equation)

L o B = Viv(r) | ¢i(r) + Vi (r)i(r) + / dr'Vi (v, x') ¢ (r') = €ihi(r), (4.7)
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where the orbitals are subject to the constraint to remain orthonormal

[ o)) = 6 (4.8)

Solving Eq. (4.7) self-consistently yields the Hartree-Fock spin-orbitals, ;, and
the corresponding orbital eigenenergies, ¢;. The N orbitals {1, 19, ..., N}
with the the lowest eigenenergies {e;, €, ...,ex} are called occupied orbitals.
All orbitals with higher eigenenergies are referred to as unoccupied or virtual
orbitals.

Equation (4.7) can be written in terms of the Fock operator, fi, to read as

ﬁ-z/;i(r) = €1)5(r), (4.9)

where f; operates on the i-th orbital and is implicitly defined through Eq. (4.7).
Canonical orbitals diagonalize the matrix elements of the Fock operator

fl = (51 filvs) = by (4.10)

|WHFY is the ezact solution to the so-called Hartree-Fock Hamiltonian, H®,

that is constructed from the sum of one-electron Fock operators [9]
N
HOWM) =3 fi|whF) = EOH), (4.11)
i=1

where

occ.

EO =Y "¢. (4.12)
N.B. the Hartree-Fock energy, E™F | is not the sum of the occupied one-electron

eigenvalues

occ.

E"™ £ e, (4.13)

but

occ. occ.

BT =Y % Zk(jkujk). (4.14)
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Chapter 5

Correlation in wave function
based methods

The correlation energy, E¢, is defined as the difference between the exact

electronic ground state energy, Eqg, and the Hartree-Fock energy, Fyp,
Ec = Egs — Enr. (5.1)

We know from the variational principle that Exr > FEgg. Therefore, the
correlation energy, F¢, must be zero or negative. Correlation lowers the energy
compared to HF by allowing the electrons to remain spatially separated, a
requirement imposed by the repulsive electron-electron Coulomb kernel. In
fact, the Coulomb kernel, \I“Tlrjl’ exhibits singularities at the collision points
between two electrons, r;; = |r;—r;| = 0, implying that the Coulomb repulsion
at the collision points becomes infinite. To compensate for the infinite Coulomb
potential, the wave function is discontinuous at the collision points and thereby
develops an infinitely large kinetic energy density. This leads to the so-called

Kato cusp condition for the exact many-electron wave function that reads [10]

o (i)
8rij

= const. (5.2)
r;;=0
A single Slater determinant (as it is used in HF') does not have enough varia-

tional freedom to describe such a discontinuity. To this end, so-called excited
Slater determinants are added to the Hartree-Fock determinant as Ansatz for

ab..e

the many-electron wave function. Excited Slater determinants, Wi, corre-

spond to Hartree-Fock determinants in which one, two,..., N occupied orbitals

15
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i, j, ..., ¥y, are replaced by wirtual orbitals 1., ¥, ..., Y, respectively. Elec-
tron creation, p!, and annihilation, p;, operators are used to construct excited

determinants by acting on a reference state |WH)

U7 =plpiP") (5-3)
|‘I'?]b> =plpipip;| T (5.4)

These singly, doubly, .., N-tuply excited determinants form a complete orthog-
onal basis for the many-electron wave function:

n /
<\qu..e |\I/a bl > :51',1"5]‘,]”--5m,m’5a,a’5b,b’--5e,e’a and

ij.ml| =45 .m/

(UHF|ge-e ) =0, (5.5)

We note that, all excited Slater determinants are eigenfunctions of H® as
defined in Eq. (4.11)
HOWYY = BP0, (5.6)
where
Eijb — <Z €k> — € —€ + €+ €. (5.7)
k

This applies to any excited determinant, not just doubles, as exemplified in

the equations above.

5.1 Second-order Mgller-Plesset perturbation
theory

Chr. Mgller and M. S. Plesset derived in 1934 an expression for the ground state
energy from Rayleigh-Schrodinger perturbation theory [11]. In their derivation
the unperturbed Hamiltonian is chosen such that the Hartree-Fock energy
appears as the zero-order energy and the first-order contribution vanishes.
The second-order contribution to the energy is referred to as MP2 correlation
energy in the following. These days, the MP2 method is one of several post-
Hartree-Fock methods frequently used in the field of quantum chemistry. One
reason for the popularity of the MP2 method is its ability to capture Van

der Waals interactions that are not accounted for by the HF approximation.
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Moreover relative energies as well as bond-lengths are significantly improved
compared to HF, in particular for elements in the main group. Furthermore
the inclusion of higher orders of the perturbation series allows for systematic
studies, where MP2 constitutes only the second step after a HF calculation. In
the following, we will derive the MP2 energy in a slightly different manner than
outlined in Ref. [11], which, however, yields the same result [9]. We choose
the unperturbed Hamiltonian, H®, to be the Hartree-Fock Hamiltonian [see
Eq. (4.11)]. Hence the unperturbed (A = 0) and fully perturbed (A = 1)
Hamiltonian read

H=H9 4 X\(H—- H), where (5.8)

H denotes the electronic Hamiltonian [see Eq. (2.5)]. (H—H©) is also referred
to as fluctuation potential.

From perturbation theory we know that

(HO + \[H - HON@O £ X004 220@ ) =(EO - AEWD 4 N\2EO))
x (TO AW 4 \2g@ ),
(5.9)

The essential assumption of perturbation theory is that the fluctuation po-
tential corresponds to a small perturbation to H®, such that Eq. (5.9) con-
verges rapidly with respect to orders of A. In Eq. (5.9), E®© and ¥ are
the lowest eigenvalue and the corresponding eigenfunction of the unperturbed
Hamiltonian, H© [see Eq. (4.11)], respectively. We know from Eq. (4.12) and
Eq. (4.11) that

OcCcC.

EO =Y "¢ (5.10)

and
g0 — pHF, (5.11)

UM is expanded into a basis of excited Hartree-Fock determinants,
‘g;(l)) = T2|PHF), (5.12)
where

1 =1
"= 14+ Ty + Ty + T2 =) T (5.13)
k=0
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T, is a double excitation operator that creates excited Slater determinants

with coeflicients t?]l»’:

OCC. unocc. OCC. unocc.

To[U") =3 N tplpipips [0 =Y D e (5.14)

1<j a<b i<j a<b

Up to N-tuply excited determinants are included in ¥ that are constructed

from products of double-excitation operators e.g.

occ. unocc.

T,TL0") = Y~ Y ehedjweeh), (5.15)

1<j<k<la<b<c<d

ey

where N is the number of electrons. The MP2 energy is defined as the sum of

E® truncated at second-order
EMP2 — O 4 g L @), (5.16)
Inserting the Ansatz for U™ from Eq. (5.12) into Eq. (5.9) yields

(HO + X(H — HO) (W) 4 X [eT20HF) + 20 4 ) =
[E@ 4+ AED £ X2 E® ] (|whF) +>\‘6T2\DHF>+)\2\P(2 +.).  (5.17)

Collating all terms from Eq. (5.17) linear and quadratic in A results in
HOeT 0 4 (H — 7O |WHF) = EOeT2 g 4 pOIHF) - (5.18)
and

HOWNEY + (H — HO)eT20F) = EOw®) 4 B T2 0T 4+ EC)|gHF),

(5.19)
respectively.
Multiplying Eq. (5.18) from the left with (%] yields
BT &gt (1 1) ) =
:E}E’t;}f :(‘I’?f\};N/HF)
(@ZP|E(0)|€T2\I,HF> + <\I,?;)|E(1)|\I,HF>. (5.20)

v~ '

:E(O)tgjb =0
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In the above equation the last term on the right-hand side vanishes due to the
orthogonality of the Slater determinants. It follows from Egs. (5.7) and (5.10)
that

E%b —FY =, e — ¢ —¢j. (5.21)

Solving Eq. (5.20) for ¢¢* and inserting Eq. (5.21) yields the coefficients of ¥(*)

(V37| H|wT)

o —
€+ € — € — €

(5.22)

Employing Slater-Condon rules (see Appendix A) allows to express (¥§?| H|PHF)
in terms of one-electron orbitals

(W H[T) = (ab]]if) =e /drl/ { o (r1) 1y (r2)1hi(r1) 1) (r2)

vy — 1y

Y)Y (r2)1/1z(r1)1/fa(1"2)} _

vy — 1y

(5.23)

In passing we note that the coefficients, tf]b, fulfill the following permutation

symmetries
ab ba ab ba
ty =t = —t3 = =45 (5.24)

EMP2 can be calculated by multiplying Eq. (5.19) from the left with (UHF|,
which yields

\<\I,HF‘H(O)|\I,(2 > (‘I’HF‘(H H(O )|€T2\I,HF> <\I’HF|E(O |\I’(2 >

:<\I,HF ‘Evr(o) ‘\11(2)> :<\I/HF |H\eT2 \IJHF>—E(O)
+ (UHF|EW |eT2 @) 4 (UHF| E@|PHFY - (5.25)
_BM _E®)

From Eq. (5.25) it follows that
(UHF| H|eT 0y = EO 4+ EW 4 O, (5.26)
Rearranging the above expression and inserting Eq. (5.16) yields
EMP2 — (GHF| | T2 gHFy — (HF| 7| gHF) | pMP2 (5.27)

where
EMP2 — (P | Z k'T2k|\IfHF) (5.28)
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Figure 5.1: MP2 direct (left) and exchange-like (right) term.

Hence, we find that the MP2 energy is the sum of the Hartree-Fock energy

MP2
E C

plus the MP2 correlation energy, . Employing Slater-Condon rules (see

Appendix A) allows to express Eq. (5.28) in terms of spin-orbitals to read

OCC. unocc.

ENP? — —ZZt (ij||ab). (5.29)

ij ab

Inserting Eq. (5.22) into Eq. (5.29) yields the final MP2 correlation energy

expression

OCC. unocec.

— e,+e]—ea—eb ’

One comment is in place here: In deriving Eqgs. (5.30) and (5.22), we have

assumed canonical orbitals, which ensures that all contributions from single-

excitations vanish because of the Brillouin theorem, which reads [9]
(U H|WT) = [ = 0. (5.31)

Equation (5.30) can easily be generalized to non-spin-polarized systems

where it reads

OCC. unocc.

Eg/IPZ Z Z ZJ|a(; ab\ij>—<ba|2’j)). (5.32)

+€ —€ — 6

i ab
In the above equation, i,j and a,b denote occupied and unoccupied spatial

orbitals, respectively.

In the field of quantum chemistry, Goldstone diagrams are used to express

algebraic expressions such as Eq. (5.32) [9]. Figure 5.1 shows the Goldstone
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diagrams corresponding to Eq. (5.32). The direct and exchange-like diagrams

correspond to
OCC. unocc.

2| zy|ab
FAMP2 5.33
By S (5.3

]

and

OCC. unocc.

(1j]ab)(balij)
EOX=-3">" - (5.34)

€; — €, — €
ij ab +j a b

respectively. The exchange-like term is also referred to as second-order ex-
change.

Our MP2 implementation in VASP scales as O(N?), where N is a mea-
sure of the system size. For further details on the implementation of the MP2
method in VASP the reader is referred to Sec. 8.3 and Appendix C. In sec-
tion 5.6 we outline an alternative way to evaluate Eq. (5.33) that exhibits a

more favorable scaling of the computational effort with respect to the system

size [i.e. O(N?)].

5.2 Coupled-Cluster singles and doubles the-

ory

The coupled-cluster method was initially proposed by Fritz Coester and Her-
mann Kiimmel for applications in the field of nuclear physics [13, 14]. In
1966, Jiri Cizek reformulated the method for electron correlation in atoms and
molecules [15], where it became a standard for quantum chemical calculations
on systems that do not exhibit strong static correlation [16, 17, 18, 19]. The
Ansatz for the coupled-cluster wave function is, like in MP2, an exponential
Ansatz that reads

[TEE) = T[T, (5.35)
where
1 2 3 k
_1+T+2'T +3 T Zk'T (5.36)

However, in coupled-cluster singles and doubles (CCSD) theory the excitation
operator T is a sum of single- as well as double-excitation operators.

T =T, + Ty, where (5.37)
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T, [ v = Z unz | Wy, (5.38)

OCC. unocc.

To[UH) =3 ) (5.39)

i<j a<b

The sets {t{} and {t{} are the coefficients of the CCSD wave function and are
also referred to as single and double amplitudes, respectively. Higher orders of
coupled-cluster theories, such as CCSDT.., are obtained by including higher
orders of excitation operators in T (=T + Ty + T3+ ..).

Up to N-tuply excited determinants are included in the CCSD wave func-

tion that are constructed from products of single- and double-excitation oper-

ators e.g.
T, T, | U = Z Z tebe | wabey (5.40)
1<j<k a<b<c
T, T, | U = Z Z tobted | Wb, (5.41)

1<j<k<la<b<c<d

Inserting Eq. (5.35) into the Schrodinger equation yields
H|eTUH) = poosbTyhly, (5.42)
Multiplying Eq. (5.42) from the left with (UHF| gives
(UHF| | TWHFY — pOCSD (@HF | TgHEy (5.43)

which can be rearranged as the sum of the Hartree-Fock energy, £, and the

CCSD correlation energy, ES“SP:
ECCSD — gHF | poosD, (5.44)
where
EECSD — (gHP| | Z k'Tk\I/HF> (5.45)

Employing Slater-Condon rules (see Appendlx A) to express the correlation
energy in terms of electron repulsion integrals and amplitudes yields

ESCSP — Z > (2t3t3+ t“b) (ij]|ab). (5.46)

i ab
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Only squared single amplitudes and double amplitudes occur in the expression
of the CCSD correlation energy. Higher excitations do not contribute to the
correlation energy directly because the electronic Hamiltonian contains at most
two-electron operators (i.e the electron-electron Coulomb interaction). Equa-
tion (5.46) holds for canonical orbitals only because of the Brillouin theorem
((Ue|H|WHFY = 0) [9]. In coupled-cluster theory the coefficients of the CCSD
wave function ¢{ and t?j’ are calculated from the amplitude equations. Mul-
tiplication of Eq. (5.42) from the left with singly- and doubly- excited Slater
determinants yields the single and double amplitude equations, respectively

(WS H|eTOT) (e EOCSD| T (5.47)
<\II?;’|H|6T\IIHF> :<\I/;_1](7|ECCSD|6T\IIHF>. (5.48)

The above set of equations are the so-called general CCSD equations. In some
of the first computer implementations of the CCSD method, Egs. (5.47) and
(5.48) served as amplitude equations [17].

An explicit dependence of the amplitudes on the CCSD energy emerges from
the terms on the right-hand sides in Eqs. (5.47) and (5.48), which makes it
inconvenient for implementations. With some mathematical foresight, one
finds that it is more efficient to multiply Eq. (5.42) from the left with (¥¢|e~T
and (P§|e~T, respectively:

<\I,?|67TH€T‘\I,HF> — <\I,gt|€fTECCSD€T|\I,HF>7 (549>
(Uee T HeT| W) = (Uit|e T ECSPT|@F), (5.50)
Like eT is an excitation operator working on the function on the right, e~ T is a

de-excitation operator working on the function on the left [9]. The right-hand
sides of Egs. (5.49) and (5.50) vanish due to the orthogonality of the Slater

determinantal basis. Hence, the single and double amplitude equations read

(U¢e THe™ | UMY =0 and (5.51)
(leTHe™ | W) =0, (5.52)

respectively. The sets of single and double amplitudes {#{} and {t{’} that solve
Egs. (5.51) and (5.52) are used to calculate the energy in Eq. (5.46). Express-

ing Eqs. (5.51) and (5.52) in terms of one-electron orbitals in order to obtain a
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set of equations that are suitable for an implementation on the computer, is not
straightforward. The derivation quickly turns into a formidable task because
of the large number of terms involved. Therefore computer programs for an
automated derivation of the amplitude equations have been implemented [20].
The implementation by S. Hirata in Ref. [20] relies on a second-quantized rep-
resentation of the respective many-body theory. Since it would be beyond the
scope of this work to explain the automated derivation, we restrict ourselves to

giving the expressions of the amplitude equations that have been implemented

in VASP.

5.2.1 Unrestricted CCSD amplitude equations

The following amplitude equations for spin-polarized reference determinants
have been implemented in VASP. They were derived by a program of S. Hi-
rata in Ref. [20]. In the following i, j,k,I,m,n,0 and a,b,c,d, e, f, g, h denote
occupied and unoccupied spin-orbitals, respectively. The single and double
amplitude equations read

0=ro— Zf’“t“+2fg”tb Ztl (la||ib) +ka oo Zt (Im)|ib)

Imb

—Zt (mallbc) — tht“fb Zt“tc (kml||ic)

mbc kmc

1

- Z 2t (mal|bc) — Z 02 t¢(Im||be) — 3 Z the 2 (mn)|be)

mbc lmbe mnbc
+ ) thetd(in|[bd) — > bt (In||bd) (5.53)

Inbd Inbd

and

—(abllij) = Y ta,(mb|lij) + P(abij — baij) » _ te (mb||ij)
+[1 = P(abji — abij)] » _ t(abllie) — [1 — P(abij — abji)] Y  fI"t2
— [1 — P(baij — abij)] Z fé’te“ Zt“b {mn|ij)

+ [1 — P(abji — baji) — P(abji — abij) + P(abji — baij)] Zti?(anie)

ne

1
+§zf:tf (abllef) +Zt“tb (mnllij)
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— [1 = P(abji — baji) — P(abji — abij) + P(abji — baij)] Ztet“ (nblie)

ne

+ Ztetf (abllef) — [1 — P(abji — abij)] Z mt“b t!
mf
iy g myfa 1 g iy a :

+ [1 — P(abij — baij)] Z f7 tzfj o+ [2 — §P(ab]z — abij)] Zt,fntf<mn||zg)

mf mng
— [1 = P(abji — baji) — P(abji — abij) + P(abji — baij)] thgtﬁ(no||z’e>)
— [1 — P(abji — abij)] Ztﬁ%tﬁ mollif)

mof
— [1 = P(abji — baji) — P(abji — abij) + P(abji — baij)] th{;tf nb||eg))

neg
1 ef a g g ca
_ [5 — §P(abw — baij) ] thfto (obllef)) + [1 — P(abij — baij)] th tf (ob||ef))
oef oef

1 1 . . ebyfa
+ {5 — 5P(bazg — abw)} thbtffp (opllef))

opef

ef.a 1 1 "
+ 1 ettmtonllen) - |3~ yPabis — atgi)| S el nl )

opef pfg
— [1 — P(baij — abij)] Z tfgti';(np||eg> + [1 — P(abji — abij)] Z tjt‘fltg nollie))
npeg noe
— [1 — P(abij — baij)] thtftg ob|lef) + thtftgf) opllef))
oef opef
+ [1 — P(baij — abij) — P(baij — baji) + P(baij — abji)] Z tftitﬂ'j nplleg))
npeg
+ [1 — P(abij — abji)] tht{;t%’ opllef) + Z tfnththh (mnl||gh))
opef mngh
— [1 = P(baij — abij)] Y _ thtlete(mol| fh) + ) tetltet (opllef),
mofh opef
(5.54)

respectively. The Fock matrix elements f; are defined by Eq. (4.10) and
become diagonal in the case of canonical orbitals. In the above equation the
permutation operator P(baij — abji) is defined as

P(wzyz — w'a'y'2"){. }or = {. Joe +{- (5.55)
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Clearly a manual implementation of Eqgs. (5.53) and (5.54) is very complicated
and error-prone. Therefore a metaprogram was developed for an automated
implementation in VASP. Although the automated implementation is not very
efficient, it allows for the calculation of single atoms and small molecules using
an unrestricted (spin-polarized) Hartree-Fock reference determinant.

Note that Eq. (5.54) contains up to four nested summations. As such, the
evaluation of the computationally most demanding terms is carried out by
looping over eight indices (including the indices 7, j, a and b of the amplitudes)
and requires a computational effort that scales as O(N®), where N is a measure
of the system size. However, it is straight-forward to reduce the scaling of the
computational effort to O(N®) by introducing intermediate quantities. As an

example we reduce the scaling of the computational effort of the following term
in Eq. (5.54) from O(N?®) to O(N°®):

thtftﬁ,li opllef) = Ztgﬁxfjp, where (5.56)
opef o |
O(N®) O(N°)
Xa, = Ztetf opllef) . (5.57)
(’)(N5)

Hence we find that the right-hand side of Eq. (5.56) can be evaluated at a
computational effort that scales as O(N®) only. The “price” one has to pay
for reducing the computational cost is evidently the storage of the intermediate
quantity x5

5.2.2 Restricted CCSD amplitude equations

In the case of restricted (non-spin-polarized) reference determinants, the CCSD
amplitude equations can be greatly simplified by defining spin-free amplitudes
and determinants. In the following ¢, j, k, [, m,n,o0 and a, b, ¢, d, e, f, g, h denote
occupied and unoccupied spatial orbitals, respectively. The CCSD spin-free

single- and double-excitation operators are defined by

OCC. unocc.

I = Z > 0l pi +pl,pi,) (5.58)
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and

2 0OcCC. unocc.
ab ba + T
( ) > (1 — ) (pl,pipl vy, + Pl pi Py, Ps)

i ab

2 occ. unocc.
ab
< ) >O> twl.pipl i, + Pl pip),ps)

i ab

2 0OccC. unocc.
( ) >t wh. il pi, + Pl pin) pi,) (5.59)

i ab

respectively [19]. The operator p}, (p;,) creates (annihilates) an electron in
orbital a with spin eigenfunction 1. Note that as a consequence of Eq. (5.59)
we find that

£ £ —the. (5.60)

Inserting Eqgs. (5.58) and (5.59) into Eq. (5.51) yields the single amplitude
equations [19]:

:ff—Qfot t%Zn“tc Z/{ktk—l—ZZm (2657 — te0) —I—Z/{ktct“

ke ki
_'_Zzwaktc_'_zzw(cldt _'_Zzw tctk
ke kg ked kike ked kg
=D D ity =y Y witdy, (5.61)

klc kik klc K

k

In the above equation, w{’ are antisymmetrized two-electron-four-orbital in-

tegrals that are given by
wi* = (ak||ic). (5.62)

’c

The double amplitudes equations are obtained from inserting Egs. (5.58) and
(5.59) into Eq. (5.52) [21, 19]:

0=v"" + Z > kit + Z Xty +> Z Xt 4 Z Xeptstd + Py et
cd ke c

—PZAft +PZ< Zv tk>tc PZ( +vaft§>
+PZZ 22 — ) PZZ wte — P Y XUt (5.63)

ke kk kc kk ke kk
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In the above equation vffb are two-electron-four-orbital integrals that are given
by
Vo = (17 ab). (5.64)

Equations (5.63) and (5.61) contain the following intermediate quantities:

RE=TEE DD watid Y ) witit, (5.65)

led kike led Ky
R =fe = 305wkt = ST S whtged, (5.66)
kld kik; kid K

o

(¢}

RE=fEHY 0wk (5.67)
d K

—KF + Z free 4 Z Z whts, (5.68)

A% =K% + Z Fre Z Z weh (5.69)

kd ki

X =ok + Z Bl + Z VB Y O ol + Z vkterd, (5.70)
cd ke
Xeq =Veq — Z ith — Cralf (5.71)
Xk = Zvlkta—FZvctd——ZZvc Zv tdte
l
+ = Z Z w4 and (5.72)

R SCLED WETEE) DT RS ST L)

d K Id

>
By

.

where P is the permutation operator

PLS={. 30 +{. ). (5.74)

As already outlined in Sec. 5.2.1 the intermediate quantities are introduced
to reduce the scaling of the computational effort in the amplitude equations
to O(N®). Since all algebraic operations in the above equations correspond
to matrix-matrix multiplications, these equations were implemented in VASP
using BLAS libraries. Furthermore the intermediate quantities as well as am-

plitudes are distributed according to efficient parallelization strategies.
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(a) (b) (c)

Figure 5.2: Diagrams containing (a) particle-particle, (b) hole-hole and (c)
particle-hole interactions. The wiggly line represents the unscreened Coulomb

interaction.

5.3 Notes on CCSD and MP2

The solution of the amplitude equations [see Egs. (5.53), (5.54), (5.61) and
(5.63)] leads to the inclusion of infinitely many Goldstone diagrams of a cer-
tain type in the CCSD correlation energy. This is in contrast to Nth-order
perturbation theory, which only includes diagrams up to order N. Moreover
CCSD is exact to third-order. As such, we can put HF, MP2 and CCSD in a
hierarchy of methods with increasing accuracy that reads

HF < MP2 < CCSD. (5.75)

The type of diagrams that are included in MP2 and CCSD enables us to
make a statement about their accuracy for weakly/strongly polarizable sys-
tems. Particle-particle and hole-hole ladder diagrams, are claimed to be rele-
vant for weakly polarizable systems [22]. On the other hand, for strongly polar-
izable solids, higher order diagrams, specifically, the summation of all bubble
diagrams, as included in the random phase approximation (we will come back
to that later), are important. MP2 neglects particle-particle, particle-hole
and hole-hole ladder diagrams. Moreover MP2 includes only a second-order
bubble-diagram, which is also referred to as direct MP2 term (see Fig. 5.1).
As such MP2 is expected to be accurate only for systems with an intermediate
polarizability. We note that MP2 even diverges for three dimensional metallic
systems (i.e. systems with infinite polarizability) [12].

CCSD contains particle-particle, particle-hole, hole-hole ladder (see Fig. 5.2)
as well as infinitely many bubble (or ring) diagrams. As such the accuracy of
CCSD should depend only little on the polarizability of the system. Moreover

we stress that CCSD is exact for any two-electron system.
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5.3.1 MP2 and CCSD energies are not variational

It is important to note that in contrast to HF, MP2 and CCSD are not vari-
ational methods. There is no guarantee that the resulting total energy is an
upper bound of the exact energy, Fecact. The electronic energy in MP2 and
CCSD is given by

E = (UM H|eTwHr) (5.76)

where

T, in MP2
T = (5.77)
T1 + T2 in CCSD.

An expansion of |UHF) and [eTWHF) over a set of eigenfunctions of H reads
) =3 | ws) (5.78)
|eTWH) = " d;| ). (5.79)
J
Inserting Eqs. (5.78) and (5.79) into Eq. (5.76) yields
E =Y c¢di{(V;|H|¥;)

)
= cidie;. (5.80)

Note that ¢; # d;, because |[WHF) £ |eTWHF) - Subtracting Fege; from both
sides of Eq. (5.80) yields

E— Eexact - Z C:diei - Eexact~ (581)

7

Since Feyacy corresponds to the ground state energy of H, all eigenvalues, e;,

of H fulfill
€ > Fexact. (5.82)

Since ¢fd; can be negative, (E — FEeyaer) might be negative as well. Hence, the
total MP2 and CCSD energies can be lower than Fey.ct.
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5.4 The correlation energy in the random phase

approximation

The random phase approximation (RPA) to the correlation energy dates back
to the late fifties and was introduced in solid state physics by Nozieres and
Pines [23]. A particular promising feature of the RPA is that all bonding
situations are described reasonably well: ionic, covalent, metallic, and even van
der Waals bonding [24]. This stands in contrast to perturbation theory, such
as Moller-Plesset perturbation theory (MPn), which diverges to any order n in
metallic systems. In fact, one motivation for introducing the RPA was that the
resummation of certain diagrams removes the divergence of the perturbation
series.

For the calculation of total energies, the RPA was largely disregarded, and
instead the focus has been on Kohn-Sham methods [2], which are computation-
ally less complex. However, the standstill in the development of new function-
als and the tremendous advances in computer power have recently brought the
RPA back to general attention. This revival was first realized in GW quasi-
particle methods [25], which usually implicitly rely on the RPA [26, 27], but
total energies moved into focus only shortly afterwards [28, 29].

The RPA correlation energy can be derived in different ways, for instance
from many-electron Green’s function theory [30], or using the adiabatic-connection
fluctuation-dissipation theorem (ACFDT) [31, 32], or from coupled-cluster the-
ory [33, 34]. In the following sections, we derive the RPA correlation energy
from the ACFDT and outline its connection to Casida’s equation and coupled-

cluster theory.

5.4.1 The adiabatic-connection fluctuation dissipation

theorem

Sections 5.1 and 5.2 discussed correlated methods that use an explicit ansatz for
the many-electron wave function and are based on perturbation- and coupled-
cluster theory, respectively. The adiabatic-connection fluctuation dissipation
theorem (ACFDT) provides an alternative method to calculate the correla-
tion energy without the knowledge of the many-electron wave function. The

ACFDT yields in principle an exact expression for the Hartree-exchange-
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correlation energy (Ee. + Epye) [see Eq. (3.1)]. The derivation of the Hartree-
exchange-correlation energy expression in the ACFDT along the lines of Ref. [36]
is briefly sketched below.

The adiabatic-connection

In the adiabatic connection one considers a Hamiltonian with a coupling con-
stant « that gradually increases the electron-electron Coulomb interaction, Vee,
from 0 (KS system) to 1 (fully-interacting system):

~

H(a) =T +V(a)+ aV.. (5.83)

T and V(a) denote the kinetic energy operator and the KS potential, respec-
tively. V(Oz) is chosen such that the ground state density and energy of the
a-interacting system are equal to the exact many-body density and energy (i.e.
the fully-interacting system).

The exact energy, E, for « =1 and o = 0 is given by

E = (U(D)[HD)¥(1)) = (W) T+Veet V(D) W(1)) = (T (1) T+Vee| (1)) + Fexs
(5.84)

and
E = (W(0)|H(0)[W(0)) = (¥(0)|T+V (0)[¥(0)) = T+ Eu+ Eext + Eae, (5.85)

respectively. In the above equation Ey and T, refer to the Hartree- and kinetic
energy of the KS system, respectively. Fe corresponds to the nuclear-nuclear
and nuclear-electron interaction energy. By virtue of Egs. (5.84) and (5.85),
one finds that (see Ref. [36] for details)

En+ Eye =E — Eoxe — T,
=(U(L)[H (1) (1)) = (L(L)V ()LL) — (L(0)[H(0)[¥(0)) + ((0)|V(0)]¥(0))

- / o () H )] ¥(a) ~ (¥(0) V(@) (@) . (556

The Hellmann-Feynman theorem allows to rearrange the above equation to

read

it + By — / 4o (W (0)| Ve | W (), (5.87)

i.e. there is no reference to the kinetic energy operator anymore.
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The fluctuation dissipation theorem

Since Vee in Eq. (5.87) is a two-electron operator, Fy + FE,. can be calculated
from the pair-probability density. As such, Eq. (5.87) becomes

1
EH+Em:/ da (W) |V |9 ( /da—/d3 /d3’ (5.7 5.88)
0

Furthermore the following relation holds for the pair-probability density [37]
n®?(r, 1) = (¥(a)]dn(r)on(r')|¥(a)) + n(r)n(’) +6(r —r)n(r),  (5.89)

where dn(r) corresponds to the density fluctuation operator, defined as

N

dn(r) = a(r) — n(r) = > _ d(r —1;) — n(r). (5.90)

=1

The fluctuation-dissipation theorem, first derived in Ref. [38], allows to relate

the density fluctuation operator to the density-density response function, Y.,
according to [39, 32, 37]

—/O d—wxa(r r';iw) = n*(r,r’) — n(r)n(r’) + o(r — r')n(r). (5.91)

™

Solving the above equation for n?*(r, r’) and inserting the result into Eq. (5.88)
yields

2 1 L va(r. i S ¢

EH+Emc = EH_e_/ da/dw//d?’rd?)r/ _X (I',I' 72("-}) + (I' r )n(r) .
2 Jo T |r—r| v —r/|

(5.92)

In the above equation, x, denotes the density-density response function (or

particle polarizability) of the system with interaction strength « and is given
by the Dyson-like equation [40]

Xa — XO(I', r/7 w>+/ dr// / dI'///X(](I" r//’ w>[(){y(r//’ r///)_'_ :BCMC(I'//’ I'///’ w)]XQ(r///7 I'/’ w)’
(5.93)
where xj is the response function of the reference (KS) system [40]

vl =315 (SEDENIEole) | SN

o — € —wW—1m €, — € +w+1m

(5.94)
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In the above, in introduces an infinitesimal shift along the imaginary axis
and v denotes the Coulomb kernel ‘ri—i/‘ Equation (5.93) is a Dyson-like
equation that links the response function of the a-interacting system, y, to the
response function of the KS system, xq. ¥, and ¢, denote Kohn-Sham orbitals
and orbitalenergies, respectively. f is the exchange-correlation kernel of the
system with interaction strength a.

We now return to Eq. (5.92). It is shown in Ref. [36] that the last term
on the right-hand side of Eq. (5.92) can be expressed by the exchange energy,
Ex, and x( such that

By + By = By + Ex + EA"PT (5.95)
where
e’ | 225 i () (r)|
By === /d%/d%’ P~ and (5.96)
JJACFDT :1 /lda /Oo d_w /dx dx Xa (X1, X2, w) — Xo(X1, X2, w) (5.97)
c 2, . T 10X3 TeR— . .

The remarkable result of the ACFDT is that the correlation energy can
be expressed only by the response function of the KS and a-interacting sys-
tem. At this point we emphasize an important aspect of the ACFDT: the
exchange energy is evaluated using KS orbitals and, as such, differs from the
self-consistent Hartree-Fock exchange energy. In the field of quantum chem-
istry, however, the correlation energy is defined as the difference between the
self-consistent Hartree-Fock energy and the exact ground state energy. As a
consequence, the correlation energy in the ACFDT differs from the definition
of the correlation energy in the field of quantum chemistry.

Equations (5.95), (5.94) and (5.93) allow to determine (Ey + EAFPT)
exactly in principle. However, the exact form of f< is not known. As such, we
have to rely on approximations for f2 and xq.

In the random phase approximation (RPA), the exchange-correlation kernel

“ in Eq. (5.93) is simply neglected. Therefore the response function in the
RPA reads

XSPA(r,r’,w) = Xo(r,r’,w)—i—a/dr”/dr’”xg(r,r”,w)y(r”,r’”)XaRPA(r”’,r’,w).
(5.98)
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Figure 5.3: The bubble diagrams on the right-hand side correspond to xo.
The dressed bubble diagram on the left-hand side denotes yXFA. Wiggly lines

represent the unscreened Coulomb interaction v.

It is known from GW-RPA calculations that from a practical point of view the
RPA is well justified and yields reasonably accurate polarizabilities compared
to experiment if Kohn-Sham eigenvalues and orbitals are used in Eq. (5.94). [41]

In passing we note that the above Eq. (5.98) can also be arranged to read

—1 _
Xat (W) =xo H(w) —ar. (5.99)
Equation (5.99) is also referred to as an inverse Dyson-like equation.
Equation (5.98) can be solved recursively by inserting the expression from
the left-hand side into the right-hand side yielding

XA = o 4+ axorxo + aXxorxovXo + ... (5.100)
The above equation corresponds, in a diagrammatic language, to a resumma-
tion of infinitely many so-called bubble diagrams [see Fig. 5.3].
Inserting Egs. (5.94) and (5.98) into Eq. (5.97) allows for integrating over
the coupling constant « analytically [see Eq. (3.34) in Ref. [36]] and yields a
closed expression for the RPA correlation energy that reads

*d
ERPA — / Q—MTT{ZTL(l + XoV) — XoV}- (5.101)
o 2w

5.4.2 ACFDT-RPA from time-dependent density func-
tional theory

ERPA will be outlined. In

In this section an alternative approach to calculate
Egs. (5.97) and (5.101), an integration over w is carried out explicitly. One
might replace the integration by a summation over the residues at the poles
of x. The independent particle response function, o, [defined in Eq. (5.94)]

exhibits poles in w at the single-particle excitation energies (¢, —¢;). The poles



36 Chapter 5. Correlation in wave function based methods

RPA

of x« need to be determined. To calculate the poles of x,**, we introduce the

density matrix response function [42]
= (11,1 1 0) = —{(Ear)] (A — ) (r22])), (5102

where

1 0 A~ B~
A = dA. = . 1
(0 —1) e e (BO‘* A“*) (5.103)

A® and B are in the RPA given by

Aliajb) =0;;0ab(€a — €) + a (ij|ab) (5.104)
Bajuy =0 (ijlab) . (5.105)

In the above equations 7,5 and a,b refer to occupied and unoccupied spin-
orbitals, respectively. The density matrix response function (A, — wA)™!
given in an orbital basis and split into a resonant and anti resonant part (first
and second line of A). The resonant and anti resonant parts exhibit poles
at positive and negative frequencies w, respectively loosely corresponding to
the first and second term in Eq. (5.94), respectively. =, is defined such that
the diagonal elements in real space correspond to the (independent) particle
polarizability [42]

Xa Ay, 1o, w) = — (1111 | (Aq — wA) 7 (rara)). (5.106)

The projection from orbital into real space ({(rir;)| and |(rory))) contains the

summation of the resonant and anti resonant part. As such we find for =Z,—g

—((r1r1)|(Aog — wA) ™7 |(rars)) Z Z I (r1)Ye(r1)(A” — w) Z;jb)wj(rQ)q/;Z(rQ)
ij  ab
+ 0 () a(rn) (A° + w) oy 1 (12)55 ()
ij  ab
(5.107)
=Xo(r1, ra2, w). since (5.108)
(AO - w)(m 7b) 52_]501);- (5109)

€ — W
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B* B¢
B** B**
Dyson-like equation (5.99) in the orbital basis becomes

Ae=0 1 B* B°
L OV =2 B~ . —wn) (5.110)
0 A0 0 —1 B Bor| L

g v~
av

Replacing XRPA — —(Ay — wA) and av — < ), the inverse

—1
XEPAT ()

Xo ()

Subtracting wA from both sides of the above equation gives

Aa:O 0 B« B~ Aa B
= = A, 5.111
< O Aa:o*) + <Ba* Ba*) <Ba* Aa*) ( )

Replacing A, in the above equation by its spectral representation with eigen-
vectors | X2, Y,*) that are orthonormalized according to [42]

(X2 YEAIXE YN =1, (5.112)
yields
A B®
(m* Aa*) D BIXE ) (XP KA. (5113)

Multiplication from right with \Xﬁ‘,Yn‘)‘) yields the so-called Casida equa-
tion [43]

Ac B [ Xxo 1 Xe
i I 0 ", (5.114)
Bor A | \ ye 0 —-1) \ye

where n labels the eigenstates and poles of the response function and corre-
sponds to the number of product states (ia). w? corresponds to the poles of
YRPA . Equation (5.114) generalizes the Dyson-like equation and is widely used
in time-dependent Hartree-Fock (TDHF) and time-dependent density func-
tional theory (TDDFT) to calculate excitation energies and transition prop-
erties [44]. The eigenvectors | X2, Y,®) and the corresponding eigenvalues w®

fulfill Eq. (5.114) and allow to rewrite the response function in its spectral

representation [44]

P ey ) = 3 (pi(rl)pi*(rz) N pﬁ(rl)pi*(rz)) ’ (5.115)

we —w — 1 we +w +1in

n

where

Ppa() =D (X + Vi) () (). (5.116)

jb
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Inserting Eq. (5.115) into Eq. (5.97) yields the RPA correlation energy without
frequency integration: [44]

1 (3] (o ouk _ ,a=0 a=0%*
A =L [ oY [f e B ) s

In the following we will carry out the « integration in Eq. (5.117) analyti-
cally along the lines of Ref. [44]. Furche showed in Ref. [44] that

dws dA,
L= (XY Y. 5.118
dOZ < n’» n d n’ n> ( )
By virtue of Eq. (5.111), we find that
dA, ¢ C
= 5.119
fet (C* C*) ’ ( )

where C' = (ij|ab). Thus,

d
w sza—i_ynawZ.7|a’b>(Xa+Yan—//d1Qpn o pn( )

ij ab ‘rl - r2‘

(5.120)
Inserting the above equation into Eq. (5.117) allows to integrate over « and
yields [44]

(D> (-

where w,, corresponds to the poles of x

ey \a 0) = % D (wn—wp), (5.121)

RPA and w? is the sum of zero- and

first-order RPA excitation energies given by [44]

WP = e, — € + //dx o, P KUTXE) gy, (5.122)

|X1 — X

5.4.3 The RPA in coupled-cluster theory

The results of the previous section allow to outline the connection between the
Casida equation and coupled-cluster doubles theory in the RPA (as discussed
in Ref. [34]). Casida’s equation [see Eq. (5.114)] might be multiplied from the

left by A to read
A B X o=t (& (5.123)
= W . .
—-B* —A* Y Y



5.4 The correlation energy in the random phase approximation 39

Multiplying the above equation [see Eq. (5.114)] for « = 1 on the right by X !

A B\/[1 (1
(5 20 o

where T'= Y X ~!. Multiplying Eq. (5.124) on the left by (T —1) yields

(1 —1) (_’z* _i*> G) — (17 —1)w G) . (5.125)

Carrying out the matrix multiplications in the above equation leads to

gives

B*+ AT + TA+ TBT = 0. (5.126)

This is the quadratic Riccati equation, which is equivalent to the original
matrix diagonalization problem stated in Eq. (5.114). The remarkable point
is that this equation has only half of the dimension of the original eigenvalue
problem, but since the equation is non-linear (quadratic) its solution can be
only determined by iteration. Furthermore, it is not obvious how to calculate X
and Y from T', but remarkably the correlation energy can be readily calculated,
as demonstrated below. Inserting Eqs. (5.104) and (5.105) into Eq. (5.126)
yields
0 = (ablij) + t?]b(ea + e — € —€j)

+3 7N ((iclak) 5t + ¢3¢ (cjlkb))
k c

OCC. unocc.

+3°0N "t (klled) 1. (5.127)
kl d

The above equation is in fact a simplified version of the coupled-cluster ampli-
tude equations that are given in Sec. 5.2. As such, we find that the eigenvectors
X and Y of Casida’s equation allow to calculate amplitudes T' (= Y X 1) that
are solutions of the coupled-cluster doubles amplitude equations in the ran-
dom phase approximation. In a full CCD calculation, the amplitude equations
are significantly more complicated involving, e.g. particle-particle diagrams,
hole-hole and particle-hole ladder diagrams [see Fig. 5.2, respectively].

In coupled-cluster doubles theory the correlation energy is calculated from
the amplitudes as

1
EEP =Y 5 (ijllab) e, (5.128)

ijab
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Replacing (ij||ab) by (ij|ab) yields

1 1
> 5 (ijlab) b = STr(BT). (5.129)

ijab
From the first line in Eq. (5.124) we know that
Tr(BT)=Tr(w—A). (5.130)

Inserting Eq. (5.130) into the right-hand side of Eq. (5.129) yields

L, . ab __ 1 _ 1 _ — 1 — . — (11
Z 3 (ij]ab) i} = éT'r(BT) = §Tr(w A) = 5 Z(wn €qa + € — (iilaa)).

ijab n
(5.131)
As such, the expression for the ACFDT-RPA correlation energy corresponds
to the coupled-cluster doubles energy expression for (ij||ab) — (ij|ab) with
amplitudes that were calculated from a simplified version of the amplitude
equations [see Eq. (5.127)].
The RPA is only correct to first-order perturbation theory, but like CCSD
performs a resummation of diagrams of a certain type (bubble diagrams) to

infinite order.

5.5 Beyond RPA: Second-order screened ex-

change

The RPA accounts for the direct correlation from symmetric Coulomb terms
(“Hartree-like”) only. As a result, one finds that the correlation energy of a
one-electron system is not vanishing in the RPA. Instead the RPA yields (for

a one-electron system with an occupied orbital )

1
ESPA =N — (ii|ab) % # 0. 5.132
C ; 2 <ZZ|(1, > i 7& ( )
This error is also referred to as self-correlation. MP2 and CCD do not suffer
from self-correlation errors for one-electron systems due to the inclusion of
exchange-like terms in the energy expression [see Eq. (5.34)]. The exchange-
like term cancels exactly with the direct term for one-electron systems:

> 1 (il |ab) 2 =) 1\(<ii||ab> — (iilba)) t57. (5.133)
2 2

ab ab -0
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Figure 5.4: Diagrams corresponding to (a) direct-RPA correlation and (b)

second-order screened exchange (SOSEX). The wiggly and double wiggly line
represent the unscreened and screened Coulomb interaction, respectively.

We now define the RPA+second-order screened exchange (SOSEX) corre-
lation energy as (see Fig. 5.4)

ERPATSOSEX — N % (iflab) s — > % (ij|ba) 2, (5.134)
ijab ijab

i.e. suggest to use the “original” CCD correlation energy as defined in Eq. (5.128).
The first term in Eq. (5.134) corresponds to the RPA correlation energy. The
exchange-like second term in Eq. (5.134) is related to the anti-symmetry of the
many-electron wave function and approximately accounts for correlation from
the “exchange” (SOSEX). We want to improve upon the RPA [see Fig. 5.4(a)]
by including an exchange-like correlation term that is fully compatible with
the direct Coulomb correlation accounted for by the RPA, where compatibil-
ity here implies that for one-electron systems, the self-correlation error exactly
vanishes. Furthermore, RPA4+SOSEX is correct to second order (equivalent to
MP2), whereas RPA is only correct to first order.
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%'0-6* - RPA [Freeman] i
- RPA+SOSEX [Freeman]
. — CA as parametrized by Perdew/ZungerA

o
oe)

Correlation energy
N N
0 O B~ N

r [a.u]

Figure 5.5: RPA, RPA4+SOSEX and exact correlation energies of the homo-
geneous electron gas as a function of the Wigner Seitz radius, rs. The exact
values correspond to quantum Monte Carlo results as parameterized by Perdew

and Zunger [3]

In a full CCD calculation, the total energy expression in Eq. (5.134) re-
mains unchanged, but the evaluation of the amplitudes is significantly more
complicated involving, e.g. particle-particle diagrams, hole-hole and particle-
hole ladder diagrams [see Fig. 5.2, respectively|. Furthermore, usually also
singly excited determinants, in which one occupied orbital is replaced by a
virtual orbital, are included (CCSD). Our assumption is twofold. (i) First,
we assume that the contributions from the singles in the total energy expres-
sion are small such that one can neglect them. (ii) Second, we assume that
the amplitudes t‘;}’ evaluated using Kohn-Sham orbitals and the direct-ring
approximation [Eq. (5.127)], resemble in some way the amplitudes of CCSD
using HF' orbitals. These conjectures imply that the Coulomb and exchange-
like correlation terms in Eq. (5.134) should give a good estimate for the total
correlation energy. This approximation to the correlation energy is in no way
new and has been suggested by Monkhorst [47] and Freeman [33] in the late
seventies, but largely disregarded or forgotten afterwards. Freeman evalu-

ated the correlation energy of the homogeneous electron gas (HEG) using the
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RPA and RPA+SOSEX on top of KS orbitals and eigenvalues before the ex-
act quantum Monte Carlo results by Ceperley and Alder were published in
Ref. [3]. Figure 5.5 shows that the RPA+SOSEX correlation energies for the
HEG agree very well with the exact Monte Carlo results, whereas the RPA
exhibits a strong overestimation of the correlation energy that is attributed to
self-correlation.

We note that it is difficult to motivate the RPA+SOSEX approximation
in the framework of ACFDT, where SOSEX would have to correspond to an
approximation of f&, but in Green’s function theory, this particular subset
of diagrams is equivalent to vertex corrections in the self-energy only, disre-
garding vertex corrections in the polarizability (i.e. electrostatic particle-hole
interactions) [48].

The computational effort of our RPA+SOSEX implementation scales as
O(N?®), where N is a measure of the system size. This is achieved by the in-
troduction of intermediate quantities in Eq. (5.127). For further details on the
implementation of the RPA+SOSEX method in VASP and the intermediate
quantities, the reader is referred to Sec. 8.3 and Appendix D.

5.6 The direct MP2 correlation energy

In this section, we outline a scheme to evaluate the “direct” contributions in
second-order Mgller-Plesset perturbation theory using the response function.
In the ACFDT we may write the following expression for the correlation energy
(see Eq. (5.97)),

1 00 d
B—— / da / B b (i) — 1 ()]} (5.135)
0 0 2m
Evaluating the above in reciprocal space, the trace is defined as

Tr{AB} := ) Age/(a)Barc. (5.136)

The summation over G and G’ includes all reciprocal lattice vectors with |G|?
and |G’|?, below a kinetic energy cutoff E, [see remarks following Eqgs. (8.37)
and (8.38)].

The Coulomb kernel v in reciprocal space is given by vgg = 4me?dgq /|G |?

and the independent-particle response function at imaginary frequencies x°(iw)
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by [compare Eq. (5.94)]

occ. unocc. —i(G’)r’
et =553 ({2l el

o — € — W

I i IO YU i |wz>).

€q — € + W

(5.137)

where the sum over ¢ and a may be restricted to run over occupied and virtual
orbitals, respectively.
Expanding the interacting response function x® up to first order in « (or

equivalently, up to second order in x°) one obtains [compare Eq. (5.100)]

X (iw) = x°(iw) + x° (iw)avx® (iw), (5.138)

1/°°d_wz4ﬂ'€2
2 )y 2wz |GP

and

oo (5.139)
. e .
X Z X&e (Zw)@XOGIG(W)-
G/

Inserting Eq. (5.137) into the above we obtain

— (e, — €) +w(eb—e)+w

! (5.140)

%2 dre? Z (Pale D™ |abi) (5 ]e Gy e
0 2 GP

which yields

OCC unocc.

— oy y Al (5.141)
€, T € — € — e]

ij ab

As mentioned in Sec. 5.1 this is commonly called the “direct” contribution to
the MP2 correlation energy [compare Eq. (5.33)]. From the above it is clear

that this contribution may be written as
dw

D= —5/0 ng"{l/X (iw)rx° (iw)}. (5.142)

This expression may be conveniently evaluated as follows. First one constructs

the Hermitian matrix:

S(iw) e = Ve X (iw)vgr. (5.143)
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This may be diagonalized with respect to G and G’, to yield a set of Ng real
eigenvalues {A(iw)}, where Ng is the number of plane waves in the basis set
expansion of the response functions. The trace in Eq. (5.142) may then be

evaluated as
Tr{vx(iw)rx (iw)} = > Aiw)2. (5.144)

The evaluation of the direct MP2 term as outlined above exhibits a computa-
tional effort that scales as O(N*) only [compared to O(N®) for the evaluation
of Eq. (5.33)]. The O(N*) scaling results from the calculation of x"(iw) in
Eq. (5.137) and constitutes the computational bottleneck.

5.7 Solving the amplitude equations

The amplitude equations (5.53), (5.54), (5.61),(5.63) and (5.127) can be gen-
eralized to read as a quadratic system of equations. In the following we briefly
sketch the algorithm that we use for solving the double amplitude equations.
The single amplitude equations are solved analogue. For the sake of brevity
we write the double amplitude equations as

0=A+BT,+O(T) + O(T?). (5.145)

In the above equation Ty denotes t%’ and T depends only on (tftg) and t%’.
The exact forms of O(T) and O(T?) are not of importance for the following
discussion. Note that the matrix B is of the size (N,*N2) x (N,>N?). N, and
N, are the number of unoccupied and occupied orbitals, respectively. This
makes a direct storage and inversion of B impossible for larger systems. In
practice, one attempts to solve Eq. (5.145) by means of the Jacobi method.
Equation (5.145) can be written as

0=A+ (B —D)Ty + O(T) + O(T?), (5.146)

where

B=B -D, (5.147)

and D is diagonal. Rearranging Eq. (5.146) yields

DT, = A+ B'T, + O(T) + O(T?). (5.148)
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Since D is a diagonal matrix it is straightforward to calculate its inverse and
multiply Eq. (5.148) from the left with D1,

T, =D '[A+B'T,+ O(T) + O(T?)] . (5.149)

The Jacobi method is an iterative technique that solves Eq. (5.149) by obtain-
ing a new value for Ty from the left-hand side, using a previous value for Ty
on the right-hand side:

T{*) =D [A+ BT + 0 (T) + 0 (1)) ]. (5.150)
In our implementation of the CCSD method, the starting guess for Ty = Tgo)

equals zero. Moreover, we choose D to be the diagonal Fock matrix. As a
result, we get in the first iteration

T =D 'A, (5.151)

which equals the MP2 amplitudes in Eq. (5.22) [as one finds after careful
inspection of Eq. (5.54)]. The advantage of the Jacobi method is that at most
two sets of amplitudes Té"“) and Tg") (i.e. the new and the previous set)
need to be stored at the same time. All other quantities can be calculated on
the fly.
Equation (5.150) produces a series of amplitudes {T;l), T, T .. Tg")}
that converges if
p(D7'B)) < 1. (5.152)

In the above equation p is the spectral radius of the matrix D™'B’. The
neglect of quadratic terms in Eq. (5.150) is, in general, well justified because
they are small and changes the conditioning of the matrix D~'B’ only little.
Convergence difficulties are in practice only observed for systems with a small
gap, and strong multireference character (i.e. systems where the Hartree-Fock

determinant is not dominant in the configuration space).
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Natural orbitals

Up to this point we have discussed several methods that allow for the treat-
ment of correlation effects at different levels of theory. All wave function
based methods, require an unoccupied orbital space that is either calculated
from Hartree-Fock or density functional theory. In practice, one observes that
the correlation energy converges very slowly with respect to the number of
unoccupied HF or DFT orbitals. Therefore the number of unoccupied orbitals
is usually orders of magnitude larger than the number of occupied orbitals.
The contribution of the unoccupied orbitals to the computational effort in
MP2, RPA, RPA+SOSEX and CCSD scales as O(N,*), O(N,?), O(N,?) and
O(N,*) (in our implementations), respectively, where N, is the number of un-
occupied orbitals. As such, the highest potential to reduce the computational
effort lies in a reduction of the number of unoccupied orbitals. The question
arises, whether it is possible to construct a different unoccupied orbital space
in which the correlation energy converges more rapidly with respect to the un-
occupied orbitals? In fact, it is known that natural orbitals form a one-electron
basis for which the expansion in excited Slater determinants converges more
rapidly [49]. Natural orbitals are defined as the eigenfunctions of the one-
electron reduced density matrix. The one-electron reduced density matrix, ~,

is given by

y(ry, 1)) = /drgdrg...drN\I/(rl,rg,...,rN)\I/*(r’l,rQ,...,rN). (6.1)

47
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Insertion of the definition for WHF from Eq. (4.1) into Eq. (6.1) yields the
reduced density matrix in the HF approximation,

occ.

Flry,r) Z Yi(ry)Y (6.2)

which can be transformed into the HF orbital basis, where it becomes a diag-
onal matrix in the occupied-occupied orbital (7,5) block and zero otherwise [9]
up ) 0ij if 4,7 € occupied

"}/ ey
Y 0 otherwise

In general if |[¥) is not |PHF) but a linear combination of several determinants,

7 is not diagonal. Insertion of eT2|WH¥) into Eq. (6.1) yields

OCC. unocc. OCC. unocc.
/ /
Y2 (ry, 1)) = / drydrs...dry (U 7 " w (T Y e wn),
kl b k'l 't

(6.3)
where we have neglected all quadruply or higher excited determinants. The
indices k, [ and a, b denote occupied and unoccupied one-electron spin-orbitals,

respectively. Carrying out the integrations in Equation (6.3) yields

?(ry,17) Z?/)z (r1)e Z Z thithi Ya(r) vy (r)). (6.4)
cab

Transforming the density matrix from Eq. (6.4) into the HF orbital basis yields

%b if aorb € occupied

T occ. unocc.
2 — 6.5
Tab Z Z t24%" if ¢ and b € unoccupied. (6:5)

Note that v . is non-diagonal in the virtual-virtual orbital block. Eigenvectors
and eigenvalues of %bQ are called natural orbitals and occupation numbers,
respectively. The occupation numbers lie between 0 and 1 and imply that the
corresponding natural orbital occurs in no or all configurations (excited Slater
determinants), respectively [49]. An N-electron system is therefore determined
by a single Slater determinant, if exactly N natural orbitals are fully occupied.

Now we are faced with the difficulty of how to exploit natural orbitals in

actual calculations: To evaluate Eq. (6.5) we need to know the amplitudes



49

ab
1,

nately it turns out that natural orbitals, calculated at the level of MP2 (i.e.

for which we would have to carry out the correlated calculation. Fortu-

employing t?;”s from Eq. (5.22) ) are already a good approximation to the
exact natural orbitals. The MP2 natural orbitals may then be used in more
sophisticated methods such as CCSD, where a faster convergence with respect
to the employed one-electron orbital basis allows for a significant reduction in
the computational cost.

Inserting Eq. (5.22) into Eq. (6.5) yields the second-order one-electron reduced
density matrix at the level of MP2:

%b if a orb € occupied

MP2 __ 0OCC. unocc.

- {cb 6.6

R D
where

Afjb = €.+ € — € — €. (6.7)

The ¢, correspond to one-electron Hartree-Fock eigenvalues. Note that the
evaluation of Eq. (6.6) scales as O(N®) for atoms and molecules, where N
is a measure of the system size. In Ref. [50], Aquilante et. al. propose to

approximate the virtual-virtual block of the density matrix by

cblit) {iilca
y - (bl Litlea) 'A;LL ). (6.8)

This approximate MP2 density matriz may be constructed with a computa-
tional effort that scales as O(N*) only.
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Chapter 7

Quasiparticles in the MP2 and

GW approximation

In order to calculate band gaps (as measured in Photoemission spectroscopy)
in the MP2 approximation, it is common practice to define the QP energies
for the valence state, éMF2 and conduction band state, éMF?  according to
Koopman’s theorem as MP2 total energy differences of the (N + 1), (V) and

(N — 1) electron systems [52]:

2 = gl — pi! (7.1)

v

emr? = piitt — gl (7.2)
Equations (7.1) and (7.2) constitute corrections to the HF orbital energies
defined in Eq. (4.7).

Inserting the expression for the MP2 correlation energies from Eq. (5.32)
into the equations above yields the following expressions for the MP2 QP

energies of the valence (éM"?) and conduction band (e}*?) :

() = 3 ) (2 o) — (i)

v HF _ (HF _ HF
b € Tw—¢€, €

5 lilan) @ Glan) = Ggloa)) )

HF | HF _ _HF _
€ tT€ €, w

Z’j7a

o1
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es () = 3 icka) (2 elab) — (icba))

c HF _ (HF _ HF
b €, +tw—E¢€, €,

g lilae) (2 lislad) = Gglea)) -

HF 4 HF _ _HOF _
€ 1€ €, w

Z7j7a

HF
v

These are evaluated for w = € and w = €IF respectively. Note that Egs. (7.3)
and (7.4) include direct as well as exchange-like terms. The exchange-like term
in the MP2 QP energy corrects for the self-screening and self-correlation error
in the direct term [48], which includes an unphysical contribution: the particle
or hole state is involved in the screening of its own charge density, and thus
experiences its own correlation potential. We note in passing that self-screening
and self-correlation are interchangeable terms in second-order theory.

Equations (7.3) and (7.4) represent a first approximation to the self-consistent
MP2 QP energies. In a self-consistent scheme all one-electron energies €' on
the right-hand side of Egs. (7.3) and (7.4), respectively, would be replaced by
the corresponding MP2 QP energies. Accordingly Egs. (7.3) and (7.4) become
nonlinear equations, requiring a rather time consuming iterative solution and
an update of all orbital energies. It is also not guaranteed that such an iterative
solution will yield an improved description of the QP energies.

Here we apply a limited self-consistent scheme, in which the one-electron

HF MP2 HF —

energy of the considered orbital only (w = ¢," — w = ¢ ° or w = €,

w = eMP?) is updated on the right-hand side. As such, the quasiparticle energy
equation reads

A = I 4 PP (7.5)

Expanding éMP2(eMP2) in the above equation around e yields

8€MP2(CU) anMPQ(w) 9
MP2 __ _HF | -MP2/ HF MP2 _ _HF MP2 _ _HF
€ - =¢€, +& (€, )—1—"67 e (en —€, )—0—# . (en — €, ) +..
(7.6)
Truncating the Taylor expansion at linear terms in (e%m — €llF ) gives
0MP2 ()

MP2 _ _HF | =MP2/ HF MP2 _ _HF

€ =€ +& (6 )+ n@w egF(" — 6 ). (7.7)
Solving the above equation for eMP? yields

QP2 — dIF . P2 71072 (7.5)
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ZMP2 ig defined as,

8g P2(CL)) !
MP2 n

and is proportional to the norm of the QP peak. This approach is inspired by

The normalization factor

the QP equation discussed below, and it is compatible to the approach usually
taken in the solid state community to solve the QP equations in Hedin’s GW
method [25, 53].

Strictly speaking, Koopman’s theorem is a rather ad hoc approach to derive
equations for the QP energies. The appropriate theoretical framework is the
solution of the QP equation

(T + Vi + () 6 = €6, (7.10)
where T'is the kinetic energy operator, Vg the Hartree potential, and ¥ the self-

energy operator. The latter is energy dependent and non-local (i.e. depends
on two coordinates). The QP equation has a discrete set of solutions {¢,, ¢, },
where the orbitals ¢,, are commonly referred to as Dyson orbitals or Lehmann
amplitudes. Closed exact expressions for the self-energy operator ¥(e) are
not known. Two commonly used methods to construct approximations to
the self-energy are the GW method of Hedin [25], applied in the solid state
community [53], and the ADC (algebraic diagrammatic construction) method
of Schirmer, Cederbaum and Walter [54], often used by quantum chemists.

In all practical applications the GW expressions are subject to further
approximations. For solid state systems the simplest and computationally
most convenient approximation is to evaluate GW within the random phase
approximation (RPA). It can be derived from Hedin’s set of equations by
neglecting vertex corrections [25]. This yields a simple closed expression for
the self-energy Ygw, which reads [53]:

Sew (' w) =— / dw'W (r, v, )G(r, 1, w + W) (7.11)

2r J_o

G’ r,w) = Z Yo (r )‘M ) (7.12)

W — €y + insgn(ey — )

W(r,r',w) =v(r,r' ++/dr”/dr”’y r,r’ 7w ) (7.13)

x(r, v’ w) :XO(r,r’,w)+/dr”/dr”’XO(r,r”,w)y(r”,r”’)X(r”’,r',w)
(7.14)
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Here y is the polarizability of the interacting many-electron system calculated
in the random phase approximation. Yo and v are the independent particle

polarizability and the bare Coulomb kernel given by

OCC. unocc.

()i (r)a(r) | 7 ()a ()05 (1)) (r)
Xorrw ZZ < a— € —W—1Nn €, — € +w+in )
(7.15)
and
v(r,r') = . i T (7.16)

respectively. In practical GW-RPA calculations, {¢;,v;} and {e,,¥,} com-
monly refer to occupied and unoccupied Kohn-Sham orbital energies (or or-
bitals), respectively. We note that the RPA equations specified here neglect
all ladder diagrams, as is usually done in the solid state community (direct
RPA).

A crude approximation to Eq. (7.14) is the termination of the Dyson-like

equation at the lowest order:

X(w) = xo(w), (7.17)

ie, W = v + vxor. In appendix B we show that this allows to recover
the direct terms in the MP2 QP energies given in Eq. (7.3). This has one
important implication: MP2 can be only reliable if the polarizability of the
system 1s small, as higher order terms are not accounted for. We will illustrate
this in Sec. 9.2.4.

We now return to the previous QP equation (7.3), to illustrate the implica-
tion of an update of w = € and w = €I¥ on the right-hand side of Eq. (7.3).
If we assume that the Dyson orbitals are well approximated by the HF orbitals
¢n = YHF one can, multiplying the QP equation (7.10) from the left with !
and integratlng over space, obtain:

(Wn |T + Vg + S (en) [ ) = en (U 10" - (7.18)

Linearization of the self-energy around € and solving for ¢, yields Eq. (7.8)
(compare Ref. [41]). This implies that updating the orbital energy of the con-

sidered orbital is consistent with a self-consistent solution of the QP equation,
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with the self-energy operator calculated non-self-consistently at the MP2 level.
Exactly the same is usually done in GW calculations for solids, but there the
self-energy is approximated at the RPA level instead of the MP2 level, and
the orbitals are from Kohn-Sham instead of HF calculations. Both approxi-
mations are expected to work in a certain regime: (i) for weakly polarizable
atoms, molecules and solids, HF+MP2 should be a good approximation, since
higher order effects are small, whereas (ii) the RPA is justified if the effect of
exchange-like diagrams is small, which is expected to be the case for densely
packed strongly polarizable solids.

We finally note that a similar analogy between RPA and MP2 has already

been discussed for the correlation energies in section 5.6.
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Chapter 8

The PAW Method

The projector augmented wave (PAW) method was introduced by Blochl [55].
Its close relationship to the ultrasoft pseudopotentials method of Vander-
bilt [56] was shown by Kresse and Joubert [57]. This section provides a short
introduction to this topic.

Under periodic boundary conditions the mutually orthogonal DFT or HF one-

electron (canonical) orbitals are Bloch functions, i.e.,
(v + R|t) = (rlipg)e’™ (8.1)

for all lattice vectors R. The index a, labeling the one-electron orbitals 1,
is understood to be shorthand for the band index n, and the Bloch wave
vector k, (i.e., a = nyk,). The wave vector is conventionally chosen to lie
within the first Brillouin zone. In the PAW method, the one-electron wave
functions 1, are derived from the pseudo-wave-functions Py by means of a

linear transformation
ha) = )+ D (189) = 16:) (Bila) (8:2)

The pseudo wave functions 1, are the variational quantities of the PAW-

method and are expanded in reciprocal space using plane waves,
~ 1 _ .
(rltha) = Wiy Z Coge' 9T, (8.3)
G

In Eq. (8.2), the index i is a shorthand for the atomic site R;, the angular

momentum quantum numbers /; and m;, and an additional index ¢; denoting

o7
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the linearization energy [57]. The all-electron partial waves ¢; are the solution
to the radial Schrodinger equation for the non-spin-polarized reference atom at
specific energies €; and specific angular momenta [;. The pseudo-partial waves,
q%, are equivalent to the all-electron partial waves outside a core radius r. and
match continuously onto ¢; inside the core radius. The partial waves ¢; and
éi are represented on radial logarithmic grids. The projector functions p; are

constructed in such a way that they are dual to the pseudo partial waves, i.e.,

<ﬁi‘(gj> = 0y (8.4)

8.1 The charge density

It can be shown [57] from Eq. (8.2) that the electronic charge density in the
PAW method may be written as

n(r) = i(r) + n'(r) — a'(r), (8.5)

where 7i(r), n!(r), and i!(r) are defined as,
a(r)=> fn <lﬁnlr> <r|1/7n>, (8.6)
il(r) = Zp (&ilr) (xlés) (8.7)
nl(r) = Zp (i) (xlo) (88)

1,J
with

P = fn <77Z~)n|ﬁi> <Z5j|?/~)n> Oryr, - (8.9)

07,7, 1s one if 7 and j refer to the same atomic site. The f,, denote the occupan-
cies of the n-th one-electron state. The p;; can be regarded as the one-electron
reduced density matrix at each atomic site.

Typically, the summation over n in Eqgs. (8.6) and (8.9) is restricted to
include only the chemically relevant valence states. The charge density cor-
responding to the (tightly bound) core electrons is kept frozen (frozen core
approximation). The total charge density is then given by

n=(f+z)— (A +fizge) + (n* +nz.), (8.10)
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where nz. = ny +n.. nz and n. denote the nuclear and core electronic charge
densities, respectively. The pseudized core density nyz. is a charge distribution
that is equivalent to nyz. beyond the core radius r. and has the same moment

as ny. inside r,
/ nz.(r)d’r = / fize(r)d’r, (8.11)

where fQ stands for the integration on the radial logarithmic grid.
In order to ensure a correct and efficient treatment of the long-range elec-

trostatic interactions the total charge density is rewritten as
n=(f+fge+n)— (A* + iz + 1)+ (n' +nge) (8.12)

where 7 is a compensating charge density that is chosen such that ' + 7 has

exactly the same multipole moments as n' [see Eq. (27) in Ref. [57]].

8.2 The total energy in the PAW method

Within the PAW method the total energy can be written as [57]
E=E+FE'—E. (8.13)

Here the last two terms are evaluated on atom-centered radial logarithmic grids
whereas the first term is calculated on a regular grid.

This separation is very efficient from a computational point of view and can
be performed for any observable that corresponds to a semilocal operator.
The three contributions to Eq. (8.13) are given by

+ By [+ 7] + /Q vir [z [i(r) + a(r)] dr + U(R, Zion)  (8.14)

~ - 1 -~
E'=>pi <¢i| - §A|¢j> + B[l + 7+ i)
(2]

iy iy /Q onlizd[il(r) + a(r)dr (8.15)

1 —_
E' =) pj <¢i| - §A|¢j> + Ene[n! + nl
i

+ Bl + /Q vn[nzcn! (r)dr (8.16)
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where

0= [y = [ [at2E

and 7. is a partial electronic core charge density (see Sec. II C of Ref. [57]). In
equations (8.15) and (8.16) the overline denotes that these terms are evaluated
on the radial grid.

Equations (8.14), (8.15) and (8.16) hold for the total energy in DFT.
To obtain the Hartree-Fock energy, we replace F,. by the Fock-exchange en-
ergy, Fx, where

N N
3N ) fofom: (8.18)

m=1 n=1

l\D|>—t

The evaluation of the electron repulsion integrals (1,1, |11, ) will be outlined
in the following section.

8.3 Electron repulsion integrals in the PAW
method

In this section, we will derive the PAW expressions for the electron repulsion

(or two-electron-four-orbital) integrals

Ve Giglat) = ¢ /<wi|r><r|¢a><wj|r'><r'|¢b> wan (310)

v — /|

From the definition in Eq. (8.1) it is straightforward to show that the two-
electron-four-orbital integrals, ng, are non-zero only if the crystal momentum
is conserved, i.e.,

ky =k +k; —k, — K, (8.20)

where K is any reciprocal lattice vector that takes k; into the first Brillouin
zone. Since, the electron repulsion integrals are closely related to the expres-
sions for the HF exchange integrals within the PAW framework, we adopt a
similar notation as in Ref. [58].

In the PAW method, the overlap charge density that arises from two orbitals

7 and a

Nia(r) = (i) (r|¢a) (8.21)
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may be written as

Nia(t) = [flia(r) + ftia(r)] = [, (1) + 25 ()] + 15, (1) (8.22)
where B B
Nia(r) = (thi[r)(r[¢a) (8.23)
is the PS overlap charge density expanded in the plane wave basis set, and
ia(r) = > (ulr) (x| 60) (il P) (B |a) 0r, 7, (8.24)
pv
n}a(r) = Z<¢M|r> <I‘|¢)V> <Jz|ﬁu> <ﬁV|Ja>5mnv (8'25)
pv

are the PS and AE overlap charge densities expanded in the basis of partial
waves in the PAW spheres. ¢, is one if y and v refer to the same atomic
site. From hereon, the superscript 1 is used to label one-center contributions,
quantities that are expressed in terms of partial waves. They are non-zero
within the PAW spheres only. The delta functions in Eq. (8.24) and (8.25)
express the fact that the one-center expansions are defined to be site diagonal.
The so-called compensation charge densities 7}, and 7, are both spatially
confined to the PAW spheres, and are chosen in such a way that the sum
~21a + n! has the same moments as the AE one-center overlap charge density

ni, (for a detailed description of the construction scheme see Sec. II B of
Ref. [58]).

Introducing the following shorthand

{fHo} = / FOTE) gy gy, (8.26)
the two-electron-four-orbital integrals V“b of Eq. (8.19), may be rewritten as

{mia ;b = {Tia i His+ing } — {750 i H; + i 1+ {ni Hom, }, (8.27)

i.e., analogous to Eq. (20) of Ref. [58]. It is important to note that the right-
hand side of Eq. (8.27) contains integrals over quantities expressed either solely
in the plane wave basis (the first term) or solely in the basis of partial waves
(the last two terms) [N.B.: the introduction of the compensation charges in
Eq. (8.22) enables this separation|. Thus within the PAW formalism the two-
electron-four-orbital integrals consist of three separate contributions:

ab ab 11 ab 1y/,ab
| N U (8.28)
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with

Vi ={Tiia + ia} {7y + 7 },
lvi?b ={7i + ﬁila}{ﬁ})j + ﬁ})j}a (8.29)
W ={nj, Hny,

The last term on the right-hand side of Eq. (8.28), the AE one-center contri-

bution to V;?b, is given by

g ey [ AR v an G ) ) (5 ) 1 )
KAV

(8.30)
where only combinations of kKA\ur on the same lattice site, ie., 7, = 7\ =

7, = T, are understood to contribute to the sum above. Loosely following the

7
derivation in Sec. IT D3 of Ref. [58] we rewrite the above as

1‘/1'?b = Z chmylﬂmﬂ KAV l,gm,ilAmk <1/}Z|p/’v> <p)\‘wa><’l/}j‘p,u><pu|wb> (831)

rkAuv LM

where we introduced the Clebsch-Gordan coefficients CEM - and the Slater-

ml'm/’

type integrals

Sk = 47Ti‘QQ/TC dr w(r)ux(r) /TC dr’ u,(r"u (r')( e ) (8.32)
KAMV_2L+1 0 K A o i v 7‘£+1 . .

The function u; denotes the radial part of the AE partial wave:

1 —_—

wr = 73l i, (£ 7). (8.33)

¢i(r) =

|I' — Ti|

Completely analogous, the second term on the right-hand side of Eq. (8.28),

the PS one-center contribution to V%, may be written as

1‘7;@6 Z Z l,,ml,lﬂmu H)\uucl,im,ilAmA <w2‘pli> <p)\|1/}a> <w]‘pﬂ><p1/‘wb> (834)

rkApuv LM
with
~ 4mre? Te o B
St =57 | dr i) + ahantv)]

X /OTC dr' [, ("), (r') + (jﬁygL(r’)] <%§1) , (8.35)
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where u; and (Z-ngL denote the radial parts of the PS partial wave 51 and the
appropriate compensation charge, respectively. The construction scheme for
the latter is specified in Sec. II D4 of Ref. [58] and will not be repeated here.

Finally, the first term on the right-hand side of Eq. (8.28), the plane wave

contribution to V2

i s 1s given by

Vb = ¢? / [P0+ Ttia] (r) [7i; + 7" () 70 (8.36)

v —r'|

Introducing the plane wave expansion of the compensated PS overlap charge

density,
[flia + fia] () = Y Ciage'®eM+O)T, (8.37)
G

we rewrite Eq. (8.36) as follows

~ 4me? CiocCric—
ab __ 1iaG~bjG—K
Vi’ =g ZG k, — k; + G|?’ (8.38)

where k; is the Bloch wave vector associated with the PS orbital @Z, [see
Eq. (8.3)], and G and K are reciprocal lattice vectors. The latter is given
by Eq. (8.20). The plane wave expansion of the PS overlap charge densities is
usually limited to the components for which (2?/2m,)|k, — k; + G|? is below
some kinetic energy cutoft F,.

The evaluation of the plane wave contributions to the two-electron-four-
orbital integrals is complicated by the fact that Eq. (8.38) has an integrable
divergence in the long-wavelength limit, i.e., for G = k; — k, (and G =
k, — k; + K). In this case, Eq. (8.38) can be rewritten as

2 *
‘7&1) _ 47T6 Cnikaﬂaka,GCnbkb,njkb,G
g 2
0 < Il

(8.39)

The long-wavelength limit (G = 0) of which is given by (see Sec. II D of
Ref. [59)),

*
CnikaJrq,naka ,OCnbkarq,nj k;,0

lim — lim (Vo tal € Wnk,) <wnjkb‘e_iq.r‘wnbkb+q>
a0 laf? a0 laf?

=6+ Bk Tngtc,) (i By - @ (8.40)
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where ﬁnk is the derivative of the cell periodic part of the wave function v,

with respect to k given by [59]

Boc) = (1 + Z \@k>Qz’j<ﬁjk|> |Victink) + i (Z |Pie) Qij (Pjxc| (T — Rz‘)) |Uni)
— i) |Pad T (Pl (8.41)

ij

Unk denotes the cell periodic part of the PS wave function {Enk.
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Chapter 9

Second-order Mgller-Plesset
perturbation theory

The wave function based treatment of electronic correlation constitutes a hi-
erarchy of methods that, starting from the one-electron Hartree-Fock approx-
imation, allows one to rigorously and systematically approximate the many-
body nature of the true ground state wave function. The simplest form of the
wave function based treatment of correlation, is the canonical formulation of
second-order Mgller-Plesset [11] (MP2) perturbation theory.

In this chapter, we compute the atomization energy of the LiH molecule
and the cohesive energy of bulk LiH using the Hartree-Fock and MP2 methods,
and demonstrate the accuracy of our approach through a comparison with
Gaussian-type-orbital (GTO) calculations for the molecule and the results of
Casassa et al. [78] and Manby et al. [80, 81, 82] for the solid. Moreover we
apply our MP2 implementation to a series of archetypical semiconductors and
insulators. We calculate lattice constants, bulk moduli, atomization energies
and quasiparticle band gaps at the level of HF and MP2 in order to evaluate

the accuracy of these methods for solid state systems.

9.1 Basis set convergence and the LiH test

The atomization (cohesive) energy Dy(M) per unit cell of a molecule (extended
system) M, is defined as

Do(M) = E(M) = E(X), (9.1)
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where Ey(M) is the total energy per unit cell of M, and the sum is taken over
the total energies £ (X) of the constituent atoms X in their spin-polarized
symmetry-broken ground state (i.e., no fractional occupancies). In this section,
we compute the atomization energy of a LiH molecule and the cohesive energy
of bulk LiH, at the HF+MP2 level. We demonstrate the accuracy of our
canonical MP2 implementation through a comparison with GTO calculations
for the molecule, and to the results of local MP2 (CRYSCOR) calculations
of Casassa et al. [78] and the hierarchical extrapolation scheme of Manby
et al. [80] for the solid. Furthermore we address two important aspects of
HF+MP2 calculations under periodic boundary conditions using a plane wave
basis set: (i) the convergence of the MP2 correlation energy with respect to
the kinetic energy cutoft, E,, imposed on the plane wave basis set expansion
of the PS overlap charge densities [see Eq. (8.37)], and (ii) the convergence of
the HF and MP2 correlation energies of atoms and molecules with respect to
the volume of the supercell.

All calculations in the present work are “all-electron” calculations, in the
sense that all electrons of the system are treated as valence electrons, i.e. we do
not invoke the frozen core approximation. The PAW datasets were constructed
with two s and two p partial waves as additional one-center basis functions in
the case of H, and three s, three p, and two d partial waves in the case of Li.
In all calculations the plane wave basis set expansion of the wave functions

was cut off at a kinetic energy of 550 eV.

9.1.1 The Li atom and LiH molecule

The convergence behavior of the MP2 correlation energy with respect to the
size of the plane wave basis set expansion of the PS overlap charge densities is
illustrated in Fig. 9.1. It shows the dependence of the MP2 correlation energy
of a Li atom on the kinetic energy cutoff £, applied in Eqgs. (8.37) and (8.38)
[i.e., the basis set expansion of the overlap charge densities is limited to those
plane wave components with (2*/2m. )|k, —k; — G|?> < E,]. Unfortunately, the
convergence of the MP2 correlation energy with respect to E, is quite slow.
Following the work of Harl et al. [45], we assume that for sufficiently high E,
the MP2 correlation energy behaves as

E.(Ey) = E(Ey, — 0o) + CE*" (9.2)
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and extrapolate our data using this functional form to determine the infinite
basis set limit E,.(£, — oo). This procedure is indicated by the dotted (blue)
lines in Fig. 9.1 and the inset shows the energies E.(E, — o00). Furthermore,
as expected, under periodic boundary conditions the MP2 correlation energy
of the Li atom is seen to depend on the size of the supercell, e.g. Figure 9.1
shows the infinite basis set extrapolation of the MP2 correlation energy for a
Li atom in a 6x6x6 A3 (circles), 6.5x6.5x6.5 A® (squares), and 7x7x7 A3
(pluses) supercell. The volume dependence of E.(E, — oo) for the Li atom
is shown in Fig. 9.2. At large volume €2, the correlation energy should drop
off as 1/, i.e., it should show the volume dependence typical for the van der
Waals interaction between the periodically repeated images of the Li atom.
This volume dependence is indicated by the dotted (blue) line in Fig. 9.2,
and the extrapolation of the MP2 correlation energy of the Li atom to infinite
volume is shown in the inset: E.(E), — 00, — 00) = —0.853 eV. Note that
to correctly reproduce the 1/92? dependence of the correlation energy on the
volume, we had to use a (2 x 2 x 2) I'-centered mesh of k-points, instead of the
[-only sampling that is usually employed in supercell calculations for atoms

and molecules.

To calculate the MP2-correlation contribution to the atomization energy
of the LiH molecule, AE. = EYH — EU (note EY = 0), we follow a sim-
ilar procedure; extrapolation of AFE.(E,,Q) = EYH(E, Q) — EM(E,,Q) to
the infinite plane wave basis set limit AE.(E, — o0,(2) followed by an ex-
trapolation to infinite supercell volume 2 — oo. This is shown in Figs. 9.3
and 9.4. AE.(E,,Q) converges much more rapidly with respect to E, than
E.(E,, Q) (compare Figs. 9.1 and 9.3). As depicted in the inset of Fig. 9.4, the
extrapolation of the infinite basis set limit of AE. to infinite volume yields,
AE.(E, — 00,02 = 00) = —0.822 V. This is in excellent agreement with the
result obtained from Gaussian-type-orbital (GTO) calculations with GAUS-
SIANO3 [84], AE.(GTO) = —0.819 eV. The latter was extrapolated to its
infinite basis set limit from a series of calculations using Dunning’s aug-cc-
pCV(D,T,Q)Z and aug-cc-pV(D,T,Q)Z basis sets for Li and H, respectively.

As shown in Fig. 9.5, AEyp, the HF contribution to Dy(LiH) depends
on the volume of the supercell as well, and converges with 1/9? towards
AEpp(Q — o0) = —1.084 eV, which is in perfect agreement with the result
from the corresponding basis set extrapolated GTO calculations, A Eyp(GTO) =
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Figure 9.1: Dependence of the MP2 correlation energy E,. of a Li atom on
the kinetic energy cutoff £, that determines the size of the plane wave basis
set expansion of the overlap densities (E, vs. Ey 8/ 2) for three different cubic
supercells of increasing size [6x6x6 A3 (circles), 6.5x6.5x6.5 A3 (squares),
and 7x7x7 A® (plusses)]. The extrapolation F, — oo is indicated by the
dotted (blue) lines, and the inset shows E.(E, — 00).

—1.084 eV. Beware that the convergence behaviour of Fyr and AFEyr with re-
spect to the volume of the supercell depends on the way the long-wavelength
limit of the Fock exchange interaction is treated. In the present work we
have used the method of Massida et al. [85] and not a more efficient method
that has recently been proposed by Spencer and Alavi [86]. From the above,
the final PAW result for the atomization energy of the LiH molecule reads,
Do(LiH) = AEur + AE. = —1.906 eV [GTO: Dy(LiH) = —1.903 eV]. To ease
comparison, the PAW and GTO results for the atomization energy of the LiH
molecule are recapitulated in Tab. 9.1.

One important point to mention is that whereas the PAW and GTO MP2
correlation energy differences are in excellent agreement, the absolute MP2

correlation energies are not. The PAW MP2 correlation energies are substan-
tially smaller than their GTO counterparts, e.g. for Li: E.(PAW) = —0.853 eV
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Figure 9.2: Dependence of the infinite basis set limit of the MP2 correlation
energy of a Li atom, E.(E, — 00), on € the volume of the supercell [E.(E, —
o0) vs. Q72]. The extrapolation  — oo is indicated by the dotted (blue) line,
and the inset shows E.(E, — 00, — 00).

vs. E.(GTO) = —1.123 eV despite the fact that both methods should in prin-
ciple recover the all-electron result (the Li and H PAW potentials are both
all-electron potentials). We believe this to be due to the fact that our MP2
calculations are not converged with respect to the basis set of additional lo-
cal functions inside the PAW spheres (¢, and &fy) The one-center basis sets
used in this work, however, are of sufficient quality to obtain well converged
MP2 correlation energy differences. The HF calculations are less sensitive
in this respect. With the PAW datasets used in this work even the abso-
lute PAW and GTO HF total energies agree to within a few meV, e.g. for
Li: Fyr(PAW) = —202.258 eV vs. Egp(GTO) = —202.255 eV.

9.1.2 Bulk LiH

To calculate the MP2-correlation energy contribution to the atomization en-

ergy of bulk LiH we follow a similar strategy. The MP2 correlation energy
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Figure 9.3: Dependence of the MP2-correlation contribution to the atomization
energy of a LiH molecule, AE,, on the kinetic energy cutoff £, that determines
the size of the plane wave basis set expansion of the overlap densities (AE,
vs. Ey 3/ 2), for three different cubic supercells of increasing size [6x6x6 A?
(circles), 6.5x6.5x6.5 A3 (squares), and 7x7x7 A® (plusses)]. The extrapo-
lation E), — oo is indicated by the dotted (blue) lines, and the inset shows
AE.(E, — 00).

Table 9.1: The atomization energy Dy, and the HF and MP2-correlation con-
tributions to Dy, AEyr and AE,, for a LiH molecule, from PAW and GTO
calculations. All energies in eV.

A By AE, Dy
PAW -1.084 -0.822 ~1.906
GTO -1.084 -0.819 -1.903
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Figure 9.4: Dependence of the infinite basis set limit of the MP2-correlation
contribution to the atomization energy of a LiH molecule, AE (E, — 00), on
Q the volume of the supercell [AE.(E, — oo) vs. Q72]. The extrapolation
(1 — oo is indicated by the dotted (blue) line, and the inset shows AE.(E, —
00, 2 — 00).
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Figure 9.5: Dependence of the HF contribution to the atomization energy of
a LiH molecule, AEyp, on the volume, 2, of the supercell (AFEgp vs. Q72).
The extrapolation 2 — oo is indicated by the dotted (blue) line, and the inset
shows A By (2 — 00).
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Table 9.2: Convergence of the basis set extrapolated MP2 correlation energy
of bulk LiH with respect to the sampling of the first Brillouin zone. The
latter is specified by n, which is short for a (n x n x n) I'-centered mesh of
k-points. In addition to the total MP2 correlation energy E.(E, — o) we
list the “direct” (D) and “exchange”-like (X) contributions that make up the
total MP2 correlation energy, as well as the ratio X/D. All energies are in eV.

n D X X/D E.(E, — 00)
2 -3.667 1.684 -0459(3)  -1.983
3 -3.679 1.653 -0.449(2)  -2.027
4 -3.706 1.666 -0.449(5)  -2.040
5 -3.716 1.668 -0.449(0)  -2.048
6 -3.717 -2.048
8 -3.718 -2.049
10 -3.719 -2.049

of the bulk E.(E,,n) is evaluated at the 0K experimental volume, Qg =
17.03 A3, for a series of increasingly dense (n x n x n) I-centered meshes of
k-points (n = 2, 3, 4, and 5), at several different cutoff energies £, = 150,
200, 250, 300, and 350 eV. These energies are then extrapolated to F, — oo
in the manner described in Sec. 9.1.1 (see for instance Fig. 9.2). The resulting
basis set extrapolated MP2 correlation energies E.(E, — oo,n) are listed in

Tab. 9.2.

Unfortunately E.(E, — oo,n) converges quite slowly with respect to n, a
problem that is compounded by the fact that the computational effort scales
as N2, where Ny = n? is the total number of k-points in the mesh. We
note, however, that the ratio between the contributions to the MP2 correlation
energy stemming from terms that involve |V23”b|2 and those that involve V;?bVZS’“*
[see Egs. (8.19), (5.33) and (5.34)], the so-called “direct” (D) and “exchange”-
like (X)) contributions, has converged to X/D = —0.449 already at n = 3
(see Tab. 9.2). This allows to exploit an alternative scheme to compute the
direct contributions to the MP2 correlation energy scaling as N7 (see Sec. 5.6).
For bulk LiH we evaluate the basis set extrapolated MP2 correlation energy
(and D, X, and X/D) in the manner of Sec. 5.1 for n = 2, 3, 4, and 5,
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Table 9.3: The cohesive energy Dy, and the HF and MP2-correlation contri-
butions to Dy, AEyr and AFE,, of bulk LiH. All energies in eV.

NN} D,

This work -3.583  -1.197  -4.780
Manby et al.  -3.591* -1.186" -4.777
Casassa et al. -4.738¢
Exp. (0K) -4.7624
* Ref. [81], (at Q0 = 17.03 A3).

b Ref. [82], (idem).

° Ref. [78], (at Qy = 16.31 A3).

4 Ref. [80]

whereas for n = 6, 8, and 10, we calculate only the direct contributions to the
MP2 correlation energy D, as outlined Sec. 5.6. The fact that X/D converges
rapidly with respect to n is then used to infer the total MP2 correlation energy
from the corresponding direct contribution, i.e.,

X
E.(E, — oco,n) = (1 + D

for n = 6, 8, and 10 (see Tab. 9.2). As can be seen from Tab. 9.2, the
MP2 correlation energy of bulk LiH converges towards E.(E, — oco,n =

) D(E, — oo,n), (9.3)

n=>5

10) = —2.049 eV (essentially converged already for n = 5). Hence the
MP2-correlation contribution to the cohesive energy of bulk LiH amounts to
AEYH = EMH(E — co,n = 10) — EY(E, — c0,Q — 00) = —1.196(4) eV,
which is in excellent agreement with the result Manby et al. [82] obtained by
means of their hierarchical extrapolation scheme, AE, = —1.186 eV. Alterna-
tively we may also compute AEYH by extrapolating

AE.= lim EY™(E,,n=10)—- EY(E,,Q — c0). (9.4)

Ey—o0

This extrapolation is shown in Fig. 9.6, and yields AEYH = —1.196(6) eV,
i.e., essentially the same result as before. Note that AE,(E,) behaves almost
perfectly as E, /3 over the entire range of F, depicted in Fig. 9.6; if one uses

only the two data points at E, = 150 and 200 eV, the extrapolation yields
AFE.=—1.197(9) eV.
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Figure 9.6: Dependence of the MP2-correlation energy contribution to the
cohesive energy of bulk LiH, AE,, on the energy cutoff F, that determines
the size of the plane wave basis set expansion of the overlap densities (AFE,
vs. Ex %), The extrapolation E, — oo is indicated by the dotted (blue) line,
and the inset shows AE,(E, — c0).

Figure 9.7 shows the dependence of the Hartree-Fock contribution to the
cohesive energy of bulk LiH, on the total number of k-points in the mesh Ny:

AEgy (Ni) = Exie (Nk) — Bie(2 = 00) = Eyg(Q = 00), (9.5

where EfL(Q — oo0) and FL(Q — oo) denote the Hartree-Fock energies of
the spin polarized Li and H atoms (converged with respect to the size of the
supercell). This contribution is seen to converge as N, ' towards AELI (N, —
o0) = —3.583 eV, which is in good agreement with the work of Gillan et
al. [81], AEE = —3.591 eV. Beware that the convergence behaviour of HF
calculations on periodic systems with respect to the k-point sampling depends
critically on the treatment of the long-wavelength limit of the exchange inter-
actions. As already emphasized, we have used the scheme of Massida et al. [85]
here, although a more efficient scheme has been suggested recently.

From the above, the final PAW result for the cohesive energy of bulk LiH
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Figure 9.7: Convergence of the Hartree-Fock contribution to the cohesive en-
ergy of bulk LiH with respect to N, the total number of k-points (AFEyp
vs. N '). The extrapolation N, — oo is indicated by the dotted (blue) line,
and the inset shows A Eyp (N, — 00).
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reads, Dy(bulk LiH) = AELT + AEMH = —4.780 eV. Table 9.3 summarizes
our results and those of Refs. [78], [81], and [82]. The fact that our result for
the total cohesive energy of LiH agrees with the work of Manby et al. [81, 82]
to within a few meV (see Tab. 9.3) is a bit fortuitous; the discrepancies in the
Hartree-Fock and MP2-correlation contributions to the cohesive energy partly
cancel. The discrepancy between our result and the CRYSCOR LMP2 calcu-
lations of Casassa et al. [78] is a bit more substantial [Dy(PAW) = —4.780 eV
vs. Do(LMP2) = —4.738 eV]. This is further compounded by the fact that
the latter were obtained at the HF+LMP2 theoretical equilibrium volume
Qo = 16.31 A3, the HF+LMP2 cohesive energy at the experimental volume
would be in slightly worse agreement with the present work (see Fig. 2 of
Ref. [78]). The most likely explanation for the difference between the PAW
and LMP2 results is that the MP2-correlation contributions to the cohesive
energy in the LMP2 calculations were not fully converged with respect to the
basis set.

9.1.3 Conclusions and Summary

In this section, we have presented an implementation of the canonical formula-
tion of second-order Mgller-Plesset perturbation theory within the framework
of the projector-augmented-wave formalism, under periodic boundary condi-
tions using a plane wave basis set. To demonstrate the accuracy of our ap-
proach we have shown that the PAW result for the atomization energy of a
LiH molecule at the HF+MP2 level of theory is in perfect agreement with
well converged Gaussian-type-orbital calculations [Do(PAW) = —1.906 eV
vs. Do(GTO) = —1.903 eV].

To establish the feasibility of employing MP2 perturbation theory in its
canonical form to systems that are periodic in three dimensions, using the
present approach, we calculated the cohesive energy of bulk LiH. The PAW
HF+MP2 result for the cohesive energy of bulk LiH is in excellent agree-
ment with the work of Manby et al. [Dy(PAW) = —4.780 eV vs. Dy(GTO) =
—4.777 eV].

We have shown how the MP2 correlation energy (difference) can be extrap-
olated to the infinite basis set limit with respect to the kinetic energy cutoff F,
that is imposed on the plane wave expansion of the overlap charge densities,

which enter in the usual two-electron-four-orbital Coulomb repulsion integrals.



80 Chapter 9. Second-order Mgller-Plesset perturbation theory

The PAW MP2 correlation energy is seen to converge as F, 32 at large E,.
We have not tried to converge the absolute MP2 correlation energies with re-
spect to the one-center basis set of additional local functions inside the PAW
spheres. These one-center basis sets were, however, verified to be of sufficiently
high quality to obtain well converged MP2 correlation energy differences, by
comparison with Gaussian-type-orbital calculations.

As to be expected, in case of the supercell calculations on the Li atom
and LiH molecule, the MP2 correlation energy is seen to fall off as 272 at
large volume €2 of the simulation cell (essentially the fingerprint of van der
Waals interactions between the periodic images). This was used to establish
the infinite volume limit of the MP2 correlation energies for finite systems.

For bulk LiH, the MP2 correlation energy had to be converged with respect
to the k-point sampling density of the first Brillouin zone. Here we pointed at
the possibility of exploiting the observation that the ratio X/D between the
“direct” (D) and “exchange”-like (X) contributions to the MP2 correlation
energy seems to converge much faster with respect to the k-point sampling
than these contributions do individually. This allows one to infer the total
MP2 correlation energy from a computation of the “direct” contribution only.
The latter may be computed by means of an algorithm that scales as N2, where
Ny is the total number of k-points in the mesh, instead of the N} scaling of the
canonical MP2. Beware, however, that the rapid convergence of X/D with Ny
is solely an observation from our “computer experiment” on LiH, and we have
as yet no proof that this behaviour should be the norm, although preliminary

results for a set of semiconductors and insulators suggest it to be.
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Table 9.4: Matching radii r. of the PAW potentials used in the present work.
If the matching radii differ for specific quantum numbers, they are specified

for each [-quantum number using subscripts.

Valence re la.u] Valence re la.u.]

H 1s 1.05 1.1,9 Mg 2p3s 2.05q 1.6,
Li 1s2s 1.25 1.554 Al 3s3p 1.94pa 2.0
B 2s2p 1.5 1.7)4 Si 3s3p 1.55 1.9,4
C 252p 1.2, 15,4 |P 3s3p 1.9,, 2.04
N 252p 1.3, 1.5, | S 3s3p 1.7 oyt

0 252p 1.2, 15,4 | Cl 3s3p 1.7, 1.9,
F 2s2p 1.1, 1.4,4 Ar 3s3p 1.55 1.9,4¢
Ne 2s2p 1.45 1.8,4 Zm 3d4s 2.05q 2.3,5
Na 3s 2.55¢ 3.0, | As 3d4sdp 2. 1gpar

9.2 Structural and energetic properties

A systematic evaluation of MP2 in the complete basis set (CBS) limit in order
to assess the accuracy of this method for a set of solids is still missing in the
literature. This chapter aims at filling this gap and providing MP2 lattice
constants, atomization energies as well as quasiparticle (QP) band gaps for a
number of typical semiconductors and insulators paying particular attention
to converge the results with respect to the employed basis set. This section
is organized as follows, in Sec. 9.2.1 we present the computational details. In
Sec. 9.2.2,9.2.3 and 9.2.4 the MP2 structural and energetic properties, and QP
band gaps are summarized, respectively. Section 9.2.5 discusses the divergence
of the MP2 correlation energy for metallic systems. Finally, in Sec. 9.2.6, we
draw preliminary conclusions.

9.2.1 Computational Details

The pseudopotentials employed in the calculations were specifically optimized
to yield accurate scattering properties well above the vacuum level and the
potentials and technical details are identical to Ref. [45] and references therein.
The matching radii of the PAW potentials employed in the MP2 calculations
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Table 9.5: Experimentally measured or extrapolated T = 0K lattice constants,
a®™P. Epw and E, denote the energy cutoffs applied to the plane wave basis
set expansion of the orbitals and overlap charge densities, respectively. Efy,
B¢ and Efy, EY were employed for calculating the lattice constants (a) and
band gaps (g), respectively. The corresponding structures are denoted us-
ing the Strukturbericht symbols in parenthesis in the first column (Al=fcc,
Ad=diamond, Bl=rock-salt, B3=zinc-blende). All energies and lattice con-
stants in eV and A, respectively.

a®P Ew E¢ Bl EY
C (A4) 3.5672 550 400 360 250
Si (A4) 5.4302 450 300 300 150
SiC (B3)  4.3582 550 400 414 250
BN (B3)  3.607° 550 400 450 250
BP (B3)  4.538P 450 350
BAs (B3)  4.777° 550 400
AIN (B3)  4.380° 550 400
AIP (B3)  5.460° 450 350
AlAs (B3)  5.658" 400 300
LiH (B1)  4.084* 600 450
LiF (B1)  4.010* 600 450 500 250
LiCl (B1)  5.106% 600 450
MgO (B1) 4.2072 600 450 400 250
ZnS (B3)  5.420¢ 360 250
ZnO (B3)  4.580¢ 400 250
Ne (A1) 4.430° 400 250
Ar (A1) 5.260° 300 250
Na (A1f)  5.317f 80 50

“Ref. [88], PRef. [89], “Ref. [90], ‘Ref. [91],
Ref. [92], 'Ref. [93]
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Table 9.6: Convergence of the HF+MP2 lattice constant, ag, bulk modul,
By, and total energy, E, with respect to the employed k-mesh used in the
calculation of the HF, direct MP2 (dMP2) and SOX term for diamond.

HF dMP2 SOX ao [A] By [GPa] E [eV]

88X 8X8 6x6x6 3x3x3 3.5529 449.6 -38.9619
8X8x8 8X8x8 3x3%x3 3.5507 448.7 -38.9748
8XxX8x8 8XxX8x8 4x4x4 3.5527 453.3 -39.0018
10x10x10 6x6x6 3x3%x3 3.9012 448.4 -38.9489
10x10x10 8x8x8 3x3%x3 3.5509 448.5 -38.9617
10x10x10 8x8x8 4x4x4 3.5510 455.2 -38.9888

are listed in Tab. 10.1.

Table 9.5 summarizes the employed energy cutoffs, experimental lattice
constants as well as structures. The superscripts a and g for the energy cutoffs
E in Tab. 9.5 indicate that the corresponding cutoffs were employed in the
calculation of the lattice constants and atomization energies (a), and QP band
gaps (g), respectively. The energy cutoffs limit the size of the basis set to PW
components satisfying

(A?/2m )|k + G* < E. (9.6)

Epw denotes the cutoff energy for the plane wave basis set of the one-electron
orbitals.

As outlined in Sec. 8.3 the construction of the 4-index integrals V%" in the
PAW method requires the evaluation of intermediate overlap charge densities
Nio(r) = ¥F(r)1h,(r) which are expanded into an auxiliary PW basis set, which
is limited to PW components with a kinetic energy below E,.

As for LiH the CBS limit was obtained assuming that for large £ the corre-

lation energy Fc behaves as,
Ec(Ey) = Ec(Ey — 00) + CE*?, (9.7)

and extrapolating our data with respect to E, using this functional form [45].
Table 9.5 lists the largest F, out of 4 points that are used in this extrapolation.
The points are equally spaced with a spacing between 30 and 50 eV. For the

MP2 QP band gaps we found it unnecessary to perform an extrapolation with
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respect to F,.
For the calculations of the lattice constants and atomization energies the
second-order exchange (SOX) contributions to the MP2 energy was calcu-
lated using (3x3x3) k—points, whereas for the direct contributions (6x6x6)
k—points were employed. For the HF part (§x8x8) k—points were used. Ta-
ble 9.6 shows the convergence of the HF+MP2 lattice constant, bulk modulus
and total energy of diamond with respect to the number of k-points used in
the calculation of the HF, direct MP2 and SOX contribution. The changes
in the lattice constant, bulk modulus and total energy from the coarsest to
the densest k-mesh listed in Table 9.6 amount to less than 0.1%, 1.5% and 30
meV, respectively, which we consider to be sufficient for the present purpose.
The HF, and MP2 “direct”, and “exchange”-like contributions to the MP2
band gaps were calculated using (10x10x10), (8x8x8), and (3x3x3) k-
points, respectively. These settings ensure a convergence of the MP2 band gaps
to within a few 10 meV. All k—point meshes were centered at the Gamma-
point.

9.2.2 Structural properties

In order to establish the quality of the MP2 method for three dimensional
extended systems we have calculated lattice constants and bulk moduli for
selected solids. HF and MP2 lattice constants have been obtained from fitting
a Murnaghan equation of state to the corresponding calculated energy versus
volume curves. The curves were fitted in the range €/€Q.,=0.85 — 1.15 with
constant steps of 0.05, where (2., is the non zero-point corrected experimental
equilibrium volume.

Figure 9.8 illustrates the relative errors of the HF as well as MP2 lattice
constants. As reference, the zero-point corrected experimental lattice constants
from Ref. [97] have been used. For comparison we also show the relative errors
of the PBE lattice constants, which have been taken from Ref. [98] (for C, Si,
SiC, LiF and MgO), Ref. [99] (for BN, BP, BAs, and LiH), and Ref. [24] (for
AIN; AIP, AlAs). The PBE results will not be discussed again. The relative
errors of the RPA lattice constants were also added for comparison and have
been taken from Ref. [24] (for C, Si, SiC, AIN, AlIP, AlAs, LiF, LiCl, and MgO)
and Ref. [100] (for BN, BP, BAs, and LiH).

The relative errors in the HF lattice constants in Fig. 9.8 show the well-known
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Figure 9.8: Relative errors of the calculated PBE, RPA, HF and MP2 lattice
constants. As reference, zero-point corrected experimental lattice constants

were used.
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Table 9.7: Calculated HF and MP2 lattice constants as well as bulk mod-
uli. For comparison the experimental lattice constants, a; ", and bulk moduli,
B, measured at 0 K are listed as well. The experimental lattice constants
and bulk moduli have been corrected for zero-point vibrational effects (lattice
constants and bulk moduli in parentheses correspond to uncorrected experi-

mental values). Lattice constants and bulk moduli are given in A and GPa,

respectively.
HF MP2 exp HF MP2 exp
a0 a0 a0 By By B,

C 3.5952 3.553 3.553
Si 5.512 5.415 5.421
SiC 4.372 4.362 4.346
BN 3.599 3.608 3.592 (3.607 428 395 410

3.567 (
(
(225)
(400)
BP 4588 4511  4.525 (4.538 176 177 168 (165)
(149)
(202)
8

5.430
4.358

495 450 455 (443)
103 100 101
240 224 229

(3.567)

(5.430)

(4.358)

(3.607)

(4.538)

BAs 4.832 4746  4.765 (4.777) 145 145 151
AIN 4367 4402  4.368 (4.380) 228 197 206
AP 5546 5460  5.451 (5.460) 94 93 87 (86)

AlAs 5752 5638  5.649 (5.658) 78 80 75 (74)

LiH 4111 3971  3.979 (4.084) 32 38 38-43 (33-38)
LiF 4003  4.026  3.972 (4.010) 81 76 76 (70)
LiCl 5265  5.040  5.070 (5.106) 30 38 39 (35)
MgO 4.197 4234  4.189 (4.207) 175 153 170 (165)
MARE 1.31%  0.46% 7.9%  4.1%
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trend of overestimation, except for C, which is negligibly underestimated.
The mean absolute relative error (MARE) in the HF lattice constants is 1.31%.
The overestimation ranges from only 0.2% in MgO to as much as 3.9% in LiCl.
Moreover an increasing overestimation can be found for compounds with heav-
ier constituents, Aafl¥ (Si)>Aaf* (SiC)>Aaf™ (C), AafF (LiCl)>Aaf™ (LiF),
Aaf™ (XAs)>AalF (XP)> Aaf* (XN) (X=B,Al), and AalF (AlY)>Aa{™"(BY)
(Y=N, P, As). This is usually explained by the neglect of dynamic correlation
between the negatively charged cations which increases with increasing size
and “softness” of the cation.

The relative errors of the MP2 lattice constants shown in Fig. 9.8 reveal
that for most materials the addition of the MP2 correlation energy leads to an
improvement in the description of the lattice constants compared to HF. The
mean absolute relative error in MP2 is 0.46%. However, the improvements
from HF to MP2 are on first sight not systematic, and in some cases the
MP2 lattice constants are even worse than the HF ones, in particular, for the
strongly ionic systems, MgO and LiF. Careful inspection reveals two trends:
(i) with increasing polarizability of the constituents the MP2 lattice constants
decrease, and (ii) MP2 lattice constants increase with increasing ionicity.

The first trend (i) is easy to understand. As a low order approximation,
MP2 will overestimate the polarizability and correlation energy, if the con-
stituents are “soft” and easily polarizable. Since the polarizability usually in-
creases with increasing atomic size (and hence atomic number Z), one expects
that MP2 becomes progressively worse with increasing atomic order number,
in particular along a column of the periodic table (the atomic size decreases
along a row). The effect is already visible in the absolute correlation energy of
closed shell atoms. For instance, along the group He, Ne, Ar, the absolute cor-
relation energy is underestimated for He, quite good for Ne, and overestimated
for Ar [101]. Generally, for very light weakly polarizable elements HF-+MP2
tends to underestimate the correlation energy, for elements with intermediate
order number HF+MP2 obtains about the right results, for heavier elements
it overestimates the correlation energy. This obviously relates to and explains
the popularity of MP2 for main group chemistry involving first and second
row elements. Our present calculations are in full accord with these rules. For
MP2, the lattice constants decrease from BN, over BP to BAs, and from AIN,
over AIP to AlAs, and from LiF to LiCl. This reverses the trend we have
observed at the HF' level: whereas for HF the lattice constants increase with
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increasing atomic number of the constituents, MP2 lattice constants decrease
with the atomic order number.

The second trend (ii) is more difficult to understand, but also clearly vis-
ible in our calculations. For both the series, C, BN, LiF, and Si, AIP, MgO
the lattice constants increase with increasing ionicity (and band gap). It is
likely that this is related to the observation that MP2 tends to give too small
correlation energies for very weakly polarizable systems (LiF and MgO), gets
it right for intermediate polarizabilities, and overestimates the correlation en-
ergy for strongly polarizable systems. We will come back to this issue in the
conclusions.

Figure 9.9 depicts the relative errors in the calculated PBE, HF and MP2
bulk moduli. Zero-point corrected experimental bulk moduli serve as reference
for the relative errors [97]. For comparison, the PBE and RPA bulk moduli
have been taken from the same references as the lattice constants. An im-
provement in the description of the bulk moduli from HF to MP2 is observed
for C, Si, SiC, BN, AIN, AIP, LiH, LiF, and LiCl whereas for BP, BAs, AlAs
and MgO the correction from MP2 either overshoots or goes into the wrong
direction (BP, BAs and AlAs). Nevertheless, the mean absolute relative error
reduces from 7.9% in HF to 4.1% in MP2.

The agreement between the RPA results and the MP2 results for the lattice
constants and bulk moduli is striking. On average the lattice constants agree
to within 0.5 %. However, the RPA shows a clear tendency to overestimate
the lattice constants, which we have shown to be related to the neglect of
exchange-like terms in the direct RPA [101]. MP2 exhibits somewhat more
scatter around experiment, with similar or larger lattice constants for light,
weakly polarizable compounds, and smaller lattice constants for heavier, more
polarizable elements. On average both methods, yield excellent results for the
lattice constants. For the bulk moduli the behaviour is even more striking. For
most systems, the errors for RPA and MP2 are similar. We believe that this
is an indication that errors in experimental bulk moduli are responsible for the
remaining discrepancy between many-body theory and experiment. Finally,
Tab. 9.7 summarizes the HF, MP2 and experimental lattice constants and
bulk moduli.

The final issue, we would like address is the dependence of the MP2 corre-
lation energy on the unit cell volume. In fact, the volume dependence varies

significantly from material to material. Figures 9.10 and 9.11 show the MP2
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Figure 9.10: MP2 correlation energy E¢ versus volume () for C (upper panel),
SiC (middle panel) and Si (bottom panel). The insets show the contributions
from the direct, Ep, and SOX, Fx, term, respectively. All energies are given
in eV.
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Figure 9.11: MP2 correlation energy E¢ versus volume €2 for MgO. The insets
show the contributions from the direct, Fp, and SOX, Fx, term, respectively.

All energies are given in eV.

correlation energies, F¢, and the contributions from the direct, Ep, and SOX
term, Ex, (see insets in Figs. 9.10 and 9.11) with respect to the unit cell vol-
umes, for C, Si, SiC and MgO, respectively. The only common feature is that
if the direct term is attractive, the SOX term is repulsive and vice versa. Apart
from this, the behavior is rather different, varying from a parabolic shape for
C, over weak attraction for SiC and Si to a repulsive linear behavior for MgO.
A simple linear behavior is also observed for LiH [102], as well as LiF. This is
important because if the volume dependence of the correlation energy is well
approximated by a linear slope, it suffices to calculate the correlation energy for
two volumes only. Generally, however, this is not the case, but instead the cor-
relation energy exhibits a sizable curvature around the equilibrium volume, in
particular for covalently bonded systems. Most likely there is no deeper phys-
ical principle underlying this observation, but the results highlight that the
volume dependence of the correlation energy needs to be calculated carefully

at several points around the equilibrium volume without a prior: assumptions.
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Table 9.8: PBE, HF and MP2 Atomization energies in eV /atom. Experimental

values are corrected for zero-point vibrations [97].

DFT-PBE atomization

energies have been taken from Ref.[24] unless stated otherwise.

Eat PBE HF MP2 Exp.
C 7.72 5.28 7.97 7.55
Si 4.55 2.97 5.05 4.68
SiC 6.40 4.49 6.86 6.48
BN 6.94% 4.74 7.12 6.68
BP 5.16* 3.38 5.61 5.09
BAs 4.50* 2.74 5.06

AIN 5.72 3.86 6.07 5.85
AlP 4.09 2.46 4.32 4.32
AlAs 3.69 2.09 3.95 3.82
LiH 2.38% 1.79 2.39 2.49
LiF 4.33 3.34 4.49 4.46
LiCl 3.37 2.70 3.64 3.59
MgO 4.98 3.59 9.39 5.20
MAE 0.16 1.59 0.23

*from Ref. [99]
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9.2.3 Atomization energies

Table 9.8 summarizes the calculated HF and MP2 atomization energies of C, Si,
SiC, BN, BP, BAs, AIN, AIP, AlAs, LiH. LiF, LiCl and MgO. For comparison,
we also list the PBE atomization energies. HF dramatically underestimates
the atomization energies with a mean absolute error of 1.59 eV /atom and a
maximum error of 2.27 eV /atom (for C).

The mean absolute error of the MP2 atomization energies given in Tab. 9.8 is
230 meV /atom, which is slightly worse than a MAE of 144 meV /atom that was
obtained for a set of 17 small closed-shell molecules [103]. MP2 overestimates
the atomization energies for the systems that we have studied in this work,
with the single exception of LiH. The largest overestimation is observed for
BP and amounts to 520 meV. A more detailed analysis is difficult since the
errors are affected by both the description of the atom and the solid. Without
accurate reference values for the solids (and atoms), it is difficult to make a
final assessment. Tentatively, however, the overbinding is larger for covalently
bonded systems and fairly small for ionic systems with a large band gap. The
overbinding might well be related to the tendency of MP2 to overcorrelate

more strongly polarizable systems.

9.2.4 Band gaps

Table 9.9 lists the HF, MP2 and experimental fundamental band gaps as well
as exchange-like contributions to the MP2 band gap for Si, SiC, C, ZnS, BN,
Zn0O; MgO, LiF, Ar, and Ne. Note that in Tab. 9.9 the band gaps of C, SiC,
Si and BN are indirect, whereas the band gaps of ZnO, ZnS, MgO, LiF, Ne
and Ar are direct.

All HF band gaps are too large compared to experiment. Adding the QP
correlation energy at the MP2 level to the HF eigenenergies results in a reduc-
tion of the band gaps; in simple words, correlation closes the band gap, since
the HF exchange is screened by correlation effects (in particular by direct or
Coulomb correlation). We find a dramatic underestimation of the MP2 band
gaps for Si and SiC, resulting even in negative band gaps. In these systems,
MP2 overestimates the effect of correlation on the band gap dramatically. For
other systems, such as ZnO, ZnS, C and BN, MP2 is closer to the experimental

value, but the the results are still unsatisfactory. For the large gap systems Ar,
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Table 9.9: Hartree-Fock (e;"), MP2 (€}'"*) and experimental (e

) band gaps,

as well as exchange-like contributions to the MP2 band gap ESOX. The experi-

mental band gaps have been taken from Ref. [104] (see also references therein).

The different systems are ordered by their corresponding experimental static

dielectric constant €. All band gaps in eV.

€SP E?F 619\/{P2 EEOX €xP
Si 11.90 7.1 —1.2 —0.04 1.2
SiC 6.52 8.7 —0.8 0.04 24
C 5.70 13.1 1.9 —0.21 2.5
ZnS 5.13 10.1 2.0 0.21 3.9
BN 4.50 13.8 3.1 0.1 6.3
Zn0O 3.74 11.1 2.1 0.52 3.4
MgO 3.00 15.5 7.1 0.43 7.8
LiF 1.90 21.8 14.2 0.67 14.2
Ar 18.1 13.7 0.24 14.2
Ne 25.3 20.3 0.76 21.7
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Figure 9.12: Relative errors of HF and MP2 QP band gaps with respect to the
experimental static dielectric constant. Lines are guide to the eye.

Ne, LiF and MgO, however, the MP2 QP gaps are in satisfactory agreement
with experiment.

The second-order exchange contribution to the MP2 band gap, eg’OX,

is
always less than 16% of the contribution from the direct term and it opens
the gap in all cases except for Si and C. The SOX term in the MP2 QP
energy corrects for the self-screening and self-correlation error in the direct
term [48], which includes an unphysical contribution: the particle or hole state
is involved in the screening of its own charge density, and thus experiences
its own correlation potential. We note in passing that self-screening and self-

correlation are interchangeable terms in second-order theory.

As a result of self-correlation, the (N+1) electron energy is generally too
low, and the (N-1) electron energy too high, which results in too small band
gaps if the SOX term is neglected. Direct or Coulomb correlation reduces
the gap, because it screens the HF exchange, and self-screening leads to an
overscreening and overestimation of the correlation effect. The SOX term
reduces this effect and therefore increases the band gap. Moreover we observe
that ag%;:(“’) ~ 86%1\;22(”), because % ~ 0. This implies that the weight
of the QP peak is almost entirely determined by the direct term, whereas the

SOX term only shifts the position of the peak.
The errors in the HF and MP2 band gaps are correlated with the exper-
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Figure 9.13: HF plus dMP2 energy as well as equilibrium volume of face-
centered-cubic sodium with respect to the number of k-points in each direction.

imental static dielectric constant: Figure 9.12 shows the relative error of the
HF and MP2 QP band gaps with respect to the experimental static dielec-
tric constants. The HF band gap is a good approximation for the true QP
band gap for systems with a dielectric constant around one [see Eq. (B.4)],
but, due to the neglect of Coulomb correlation it can not describe the band
gap for systems with a sizable polarizability. In MP2, however, a crude, low
order truncation of the polarizability is used [Eq. (7.17)], which is a good ap-
proximation only if the polarizability is small. Both trends are confirmed in
Fig. 9.12. The error in the HF gap increases roughly linearly with increasing
experimental static dielectric constant. The error in the MP2 band gaps is
small for weakly polarizable systems, but grows rapidly with increasing dielec-
tric constant (compare also Table 9.9). As a result, bulk MP2 band gaps are

only reliable if the static dielectric constant e is smaller than 3.

9.2.5 Metallic sodium

The electronic correlation energy in second-order perturbation theory diverges
for the 3-D free electron gas [105]. However, this does not necessarily imply
that properties such as the equilibrium volume diverge as well. Moreover,
one might hope that using Hartree-Fock as reference state lifts this divergence
by virtue of its “only” logarithmically vanishing band gap. It is therefore
worthwhile to investigate the behavior of the HF+MP2 energy and equilibrium

volume of a simple metal such as sodium.
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For the calculations of metallic sodium, the 3s state was treated as valence
state and the equilibrium volume for a given k-point mesh was calculated
in the same manner as outlined in Sec. 9.2.2. Only the direct contribution
to the MP2 energy (dMP2) was calculated as this allows us to employ very
dense k-point meshes (see Sec.. 5.6). Figure 9.13 shows the dMP2 equilibrium
volume as well as total energy of the face-centered-cubic sodium crystal with
respect to the number of k-points used to sample the Brillouin zone in each
direction. Our calculations show that the equilibrium volume as well as total
energy diverge linearly with the number of k-points. It is not straightforward
to explain the functional form of the divergence and we will leave its analytic
derivation to future work. The numerical evidence, however, suggests that
HF+MP2 diverges for atomization energies and lattice constants of metals as

one would expect from the analytic results for the 3-D free electron gas.

9.2.6 Conclusions and Summary

In this section, we have presented results of canonical MP2 calculations for a set
of typical semiconducting and insulating solid state systems. To investigate the
accuracy of the MP2 method for bulk systems, lattice constants, atomization
energies and band gaps were calculated and compared to experiment. For all
three aspects, MP2 is an improvement over the HF method.

The errors in the calculated MP2 lattice constants are, with few exceptions,
smaller than 0.5% and therefore smaller than for Hartree-Fock and commonly
used density functionals. An important observation is that MP2 seems to
overestimate the lattice constants of large band gap systems that are weakly
polarizable, whereas for systems with a small band gap, which are strongly
polarizable, MP2 tends to underestimate the lattice constants. The first error
is most likely related to the neglect of particle-particle and hole-hole ladder di-
agrams, which are claimed to be relevant for weakly polarizable systems [22].
On the other hand, for strongly polarizable solids, higher order diagrams,
specifically, the summation of all bubble diagrams included in the RPA, are
important. These will reduce the polarizability and concomitantly the corre-
lation energy [compare discussion following Eq.(7.17)]. At intermediate polar-
izabilities, MP2 works remarkably well and this seems to apply specifically to
main group chemistry involving elements such as H, Li-F, and Na-Si.

For the MP2 atomization energies, a MAE of 230 meV /atom is found, which
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constitutes a huge improvement over the corresponding HF mean absolute error
of 1.59 eV /atom. The error is comparable to the error found for small molecules
(MAE=144 meV /atom) [103]. A clear systematic trend in the error is lacking.
Tentatively, however, we found that the error is smaller for ionic solids than for
covalently bonded materials, but since atomization energies can be fortuitously
good due to error cancellation between the atom and the solid, a more detailed
analysis would require accurate reference values for the solids (and atoms).
These are presently not available for solids. Nevertheless, the finding again
suggests that MP2 tends to overcorrelate more strongly polarizable solids.

The MP2 QP band gaps improve (slightly) over the HF ones. Overall,
the MP2 band gap results are somewhat disappointing, but in hindsight this
is to be expected. The band gap is very sensitive to the long wavelength
limit of the static polarizability [104], and the static polarizability is seriously
overestimated for strongly polarizable solids, when second-order perturbation
theory is used, as higher order bubble diagrams will decrease the polarizabil-
ity. Overall, we indeed found that the error in the MP2 band gap is related
to the (experimental) static dielectric constant. Results become unreliable if
the static dielectric constant € is larger than 3. For systems with e larger than
three, MP2 results in a pronounced overcorrection of the band gaps. This over-
correction is sometimes so strong that the MP2 band gaps become negative.

It might comes as a surprise, that MP2 works so well for relative ener-
gies and lattice constants, despite failing for excitation energies. Certainly
the method is rescued by the fact that total energies are integral quantities
accounting for all excitations, whereas the band gap is very sensitive to low
energy excitations (and the long wavelength limit), which are not accurately
described for strongly polarizable solids applying second-order perturbation
theory and HF orbitals.

Finally, we calculated the MP2 correlation energy as well as the equilibrium
volume of metallic sodium. In agreement with previous reports [105] we find
that the electronic correlation energy diverges in second-order perturbation
theory. Like the correlation energy, the equilibrium volume exhibits a linear
divergence with respect to the number of k-points in each direction, which
makes MP2 useless for predicting properties of metals.

In summary, we find that MP2 is remarkably accurate for solid state sys-
tems involving main group elements. Overall, the accuracy seems to be compa-

rable to the accuracy found for molecules. MP2 therefore is a viable alternative
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to conventional density functional theory calculations, although, we empha-
size that our present implementation is at least 2 to 3 orders of magnitudes
more expensive than conventional density functional theory calculations. The
present results, however, are sufficiently encouraging to attempt to improve
the efficiency of the implementation and to evaluate more sophisticated many-
electron techniques, such as coupled-cluster methods (specifically CCSD) for
3-D periodic solids. We expect that some deficiencies, such as the tendency to
overcorrelate strongly polarizable solids and undercorrelate weakly polarizable
solids, will be lifted by coupled-cluster methods.
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Second-order screened exchange
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Figure 10.1: Diagrams corresponding to (a) direct-RPA correlation and (b)
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second-order screened exchange (SOSEX). The wiggly and double wiggly line
represent the unscreened and screened Coulomb interaction, respectively.

In this chapter we include an exchange-like correlation term in the RPA
[see Fig. 10.1(a)] that is fully compatible with the direct Coulomb correlation
accounted for by the RPA, where compatibility here implies that for one-

101
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Table 10.1: Core radii r. for the PAW potentials used in the present work. If
the core radii differ for specific quantum numbers, they are specified for each

channel using subscripts.

Valence r. [a.u] ERPATSOSEX fay/]
H s 1.0, 1.1, 600
Li 1525 1.2, 1.5, 600
C 2s2p 1.2, 1.5,4 460
N 252p 1.3, 1.5,4 1200
O 2s2p 1.2, 1.5,4 600
F 252p 1.1, 1.4 600
Ne 2s2p 1.45 1.8,4 500
Na 2s2p3s 1.6 2.0, 2.24 360
Si 3s3p 1.55 1.9,4 360

electron systems, the self-correlation error exactly vanishes. We call the term
second-order screened exchange (SOSEX), since the corresponding diagram is
reminiscent of the exchange-like diagram in second order perturbation theory,
albeit with one Coulomb line replaced by a screened Coulomb interaction [see
Fig. 10.1(b)]. We calculate absolute correlation energies of closed-shell atoms
using Kohn-Sham orbitals and the RPA+SOSEX, CCSD and MP2 method.
Moreover atomization energies of small molecules and solids will be calculated

at the level of RPA4+SOSEX.

10.1 Computational details

The pseudopotentials employed in the Vienna ab-initio simulation package
(VASP) calculations were specifically optimized to yield accurate scattering
properties well above the vacuum level and the potentials and technical details
are identical to Ref. [46] and references therein. The core radii of the PAW
potentials and the corresponding energy cutoffs employed in the RPA4+SOSEX
calculations are listed in Tab. 10.1. For the SOSEX calculations of solids
a 3x3x3 k-point mesh was used, whereas the slower converging RPA term

was evaluated using an 8x8x8 k-point mesh and the techniques explained



10.2 Closed-shell atoms 103

in Sec. 5.4.1 and Ref. [45]. All presented energy differences were carefully
converged with respect to the energy cutoffs defining the basis set of the one-
electron orbitals (parameter EXFATSOSEX in Tab 10.1) as well as the auxiliary
basis set used in the construction of the intermediate terms in Egs. (D.2) and
(D.3). Similar to the basis set for the one-electron orbitals, the size of the
auxiliary basis set is determined by an energy cutoff £, and all plane waves

G satisfying the equation
(R?/2m.)|G|* < E,

are included in the basis set. To determine the infinite basis set limit, the
correlation energy is determined at a set of different energy cutoffs E, and
extrapolated to the infinite basis set limit, as already outlined in Sec. 9.1. To

allow for an accurate extrapolation, we have chosen values for F, observing
E, < 2/3ERPATSOSEX (se0 Sec. 9.1 and Ref. [45]).

cut
For molecules and atoms large cubic boxes were required in order to mini-
mize the interaction between the periodic images. Eventually supercells with
9 A length were employed for the calculation of the atoms and molecules.
For closed shell atoms, results were calculated using a modified version of
the DALTON code [107]. The DALTON results were obtained by extrapolating
to the infinite basis set limit using aug-cc-pCVXZ basis sets (X=D,T,Q,5,6).
For the 1/X? extrapolation procedure the corresponding two largest basis sets
available at the EMSL Basis Set Library [108] were used (He: 5-6, Be: T-Q,

Ne: Q-5, Ar: Q-5).

10.2 Closed-shell atoms

We restricted the study to closed shell atoms, since the DALTON coupled-
cluster code only allows for the solution of the CCSD equation on top of a
restricted open shell reference state (majority orbitals are equal to minority
orbitals), whereas the restriction to doubles (CCD) and Kohn-Sham orbitals
requires the use of an unrestricted open shell reference state for open shell sys-
tems. In Figures 10.2(a) and (b) we show the relative errors in the correlation
energy evaluated using various approximations, with respect to the “exact”
non-relativistic results [109]. Our CCSD values are close to the exact values,

as one would expect. If only the direct terms are evaluated in the CCSD



104 Chapter 10. Second-order screened exchange

S gol : |1 RPA+SOSEX.
S 80 g RPA+ EE ] REA .
c r I d'CCSD b I I MP2 7
® 60- ¥ RPA 0L _
B L

S 40 1 r :
9 L

S 20 1 F .
=

® O .
g 9 A

© -20- 1 r 1
@ _407 | | | | | | | |

Figure 10.2: Relative errors of absolute correlation energies evaluated using
various approximations with respect to “exact” non-relativistic results from
Ref. [109]: CCSD, RPA+SOSEX, RPA+ (from Ref. [110]), CCSD using direct
terms only (d-CCSD), and RPA. For CCSD, HF orbitals were used. On the
left KS orbitals were used in the RPA calculations, whereas on the right HF

orbitals were used for all calculations.

total energy expression (d-CCSD), the absolute correlation energy is overes-
timated by at least 50 %. The RPA using DFT orbitals yields correlation
energies close to the d-CCSD, whereas inclusion of exchange (RPA+SOSEX)
restores good agreement with the CCSD results albeit slightly underestimat-
ing the absolute correlation energy (AE < 250 meV). Another simple means
to correct the error of the RPA is to add a local DFT approximation for the
lacking exchange-like correlation contribution (RPA+) [111], but clearly this

approximation performs worse than an explicit evaluation of the SOSEX term.

The use of HF instead of Kohn-Sham orbitals reduces the RPA polariz-
abilities and therefore the correlation energies drastically, as shown in Fig.
10.2(b). The RPA and RPA+SOSEX now clearly underestimate the corre-
lation energies obtained in d-CCSD and CCSD, respectively. This is related
to the fact that HF orbitals yield too small polarizabilities and correlation
energies, if the particle-hole ladder diagrams are not included (see Sec. 5.3).
MP2 (and second-order Gérling-Levy perturbation theory) can be regarded
as a low order approximation to RPA+SOSEX, in which the amplitudes are
determined by the first line in Eq. (5.127), or equivalently by replacing the
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Table 10.2: Absolute correlation energies of the He, Be, Ne and Ar atom
calculated using MP2, CCSD, d-CCSD, RPA and RPA+SOSEX. All units in

milliHartree. Aug-cc-pCVXZ basis sets were used.

Reference He Be Ne Ar

X(Basis set) 5 Q 5 5

MP2 HF —-36.53 —73.48 —375.93 —796.43
CCSD HF —41.57 —-91.98 —-375.93 —684.58
d-CCSD HF —83.15 —181.10 —590.46 —1045.69
RPA HF —65.49 —126.75 —495.15 —895.68
RPA+SOSEX HF —32.75 —64.56 —312.86 —585.60
RPA DFT-PBE —82.61 —175.76 —583.58 —1040.84

RPA+SOSEX DFT-PBE —41.30 —89.23 —369.23 —679.31

screened Coulomb interactions in Fig. 10.1 by a bare Coulomb interaction.
MP2 works quite well using HF orbitals for 1st and 2nd row elements, first
slightly underestimating the correlation energy, getting it right for Ne, but fi-
nally significantly overestimating the absolute correlation energy for Ar. This
is related to the fact that heavier atoms are more polarizable, and any low
order approximation, even evaluated using HF orbitals, tends to overestimate
the correlation energy. Table 10.2 summarizes the non-extrapolated correlation

energies of the closed-shell atoms.

10.3 Solids and molecules

At this point, our conclusion is that Kohn-Sham orbitals allow for a rea-
sonably accurate evaluation of the total correlation energy of atoms using
RPA+SOSEX (5 kcal/mol). Our second reference system is the jellium elec-
tron gas, for which results have been obtained by Freeman [33]. Freeman’s
calculations were based on free-electron orbitals and one-electron energies,
which are exactly identical to Kohn-Sham orbitals and one-electron energies,
and clearly his results agree exceedingly well with the Quantum-Monte Carlo
(QMC) simulations obtained three years later by Ceperley and Alder [3] (see
Fig. 10.3). As such, Freeman’s data are the first reliable estimate of the jellium
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Figure 10.3: Correlation energy of jellium evaluated using various approxima-
tions: exact from quantum Monte-Carlo [Ref. [3]], RPA and RPA+SOSEX
values are from Freeman [Ref. [33]] and were obtained using Kohn-Sham or-
bitals and one-electron energies, whereas the RPA(HF) values were calculated

using HF orbitals and one-electron energies using VASP.

correlation energy, but seem to have been largely disregarded. In Fig. 10.3, we
have included our numerical RPA values for Hartree-Fock orbitals. Compared
to the Kohn-Sham reference state, Hartree-Fock introduces a logarithmic sin-
gularity at the Fermi-level and increases the band width of jellium significantly.
This combined effect reduces the polarizability and concomitantly the correla-
tion energy drastically to values that are close to the the exact QMC values.
This agreement, however, is fortuitous: (i) correlation effects from exchange-
like terms are real and must be accounted for and (ii) we did not observe sys-
tematic error cancellation for atoms as exemplified in Fig. 10.2(b). In passing,
we note that self-consistent GW-RPA calculations, disregarding any correla-
tion effects from the exchange-like terms, yield good total correlation energies
for the jellium as well [112]. This is related to the fact that self-consistent GIW
calculations increase the band-width in very much the same manner as a HF

reference state [113] so that agreement with exact QMC correlation energies
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Table 10.3: Lattice constants and atomization energies of C, Si, SiC, LiH
and LiF evaluated using RPA, RPA+ (from Ref. [24]), RPA+SOSEX and
experimental values. All experimental values have been corrected for zero
point vibrations.

ao(A) E.i(eV/atom)
RPA  RPA+ SOSEX EXP RPA RPA+ SOSEX EXP
C 3.572  3.578 3.502  3.553 T7.01 6.94 7.43 7.55
Si 0.431  5.445 5.426  5.421 439 433 4.68 4.68
SiC  4.366 4.374 4341 4.346 6.03 5.96 6.39 6.48
LiH 3.983 4.001 3.989 3979 241 2.39 2.46 2.49
LiF 3.998 4.010 3.995  3.972 422 415 4.37 4.46

is obtained as well— certainly fortuitously (RPA[HF]=RPA[GW ]~ QMC, see
also Ref. [30]).

As a last case, we have calculated the lattice constants and atomization
energies of solids (C, Si, SiC, LiH and LiF [see Tab. 10.3]) as well as the
atomization energies of the HF, HyO, Nay, Siy, Ny and Ne, molecules (see
Tab. 10.4) using the RPA+SOSEX and VASP. For the atomization energies of
the molecules the same structures as in Ref. [28] were employed and the Nay
molecule was calculated at the experimental bond length of 3.079 A. Compared
to Ref. [46] we have corrected the experimental lattice constants of the solids
for zero-point vibration effects, by evaluating the phonon dispersion relations
in the harmonic approximation at each volume [118]. We now clearly see that
the RPA tends to overestimate the lattice constants for C, Si, SiC and LiF.
The inclusion of SOSEX usually decreases the lattice constants, which we in-
terpret to result from a reduction of the Pauli repulsion. On the other hand,
the RPA+, which attempts to model the effects of SOSEX by a local correla-
tion energy functional, increases the lattice constants even further, worsening
agreement with experiment [24].

At the RPA+SOSEX level, we are able to obtain spectacular agreement
with experiment for the lattice constants (mean absolute relative error—-MARE:

0.2 %). For the atomization energies of the solids the improvements are also
significant after inclusion of SOSEX (MAE: 70 meV/atom). The atomization
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Table 10.4: Atomization energies of the HF, H,O, Nay, Sis, Ny and Ne,
molecules evaluated using RPA, RPA+SOSEX and experimental values. All

experimental values have been corrected for zero point vibrations.

E.(eV/atom)

RPA SOSEX EXP
HF 2.88% 3.01 3.06"
H,0O 3.23% 3.29 3.36°¢
Na, 0.26 0.31 0.364
Siy 1.52 1.58 1.63¢
Ny 4.84% 4.65 4.94¢
Nesy 0.00022% 0.00062 0.00173¢

o Ref. [28], P Ref. [114], © Ref. [115] , ¢ Ref. [116], © Ref. [117]

energies of the molecules exhibit a similar accuracy when SOSEX is taken into
account, except for the case of Ny, which we believe to result from the neglect
of higher order effects such as triples in the coupled-cluster expansion. In fact,
our RPA+SOSEX results are remarkably close to the CCSD results of Bak et.
al for HF (3.02 eV /atom), H,O (3.31 eV /atom) and Ny (4.68 eV /atom) [119].
Although it is well known that CCSD does not allow to predict total energy
differences with chemical accuracy, the important point is that a wave function
based method (RPA+SOSEX) can yield an accuracy comparable to CCSD but
at a significantly lower computational complexity and cost.

10.4 The G2-1 test set

After the results from the previous sections were published, Paier et al. cal-
culated 55 atomization energies of small molecules of the G2-1 test set using
RPA+SOSEX [120]. Figure 10.4 shows the error distribution of the 55 G2-1
atomization energies for the RPA and RPA+SOSEX. Clearly, RPA4+SOSEX
lifts the tendency of the RPA to underbind molecules. The MAE of the atom-
ization energies compared to experiment of the G2-1 test set is reduced from

10 keal/mol in the RPA to 5 kcal/mol in RPA+SOSEX.
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Figure 10.4: Error distribution of the 55 G2-1 atomization energies for RPA
and SOSEX from Ref. [120].

10.5 Conclusions and Summary

RPA+4+SOSEX seems to be a promising approximation for absolute correla-
tion energies and changes in the correlation energy in particular for solids.
Our present implementation relies on Kohn-Sham PBE orbitals, although, for
consistency, the orbitals should be determined within an optimized-effective-
potential framework, ideally using RPA+SOSEX or at least the RPA. This,
however, is left for future work. Since RPA4+SOSEX is exactly self-correlation
free for any one-electron system, it will describe any one-electron system ex-
actly, if Hartree-Fock orbitals are used, and the problems described in Ref. [106]
for Hy dissociation are not present. Nevertheless, the use of PBE orbitals in-
troduces a small error, since the PBE orbitals suffer from selfinteraction errors.

It is certainly puzzling that Kohn-Sham wave functions yield amplitudes
that must in some way resemble the true CCSD amplitudes evaluated using HF
orbitals, despite the neglect of all particle-hole, particle-particle and hole-hole
ladder diagrams present in the conventional CCSD method. This brings us
back to an observation we have made before [104]: the Kohn-Sham DFT band
gaps are much smaller than the real quasiparticle band gaps, but this band gap
error is to a large extent corrected for by the neglect of diagrams, that describe
the electrostatic interaction between electrons and holes (see Sec. 5.3). For

PBE orbitals, this cancellation effect must work remarkably well in the two
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extremes we have considered here: jellium and atoms.

The present work also clarifies some important issues that are widely disre-
garded in the solid state community: correlation effects from the exchange-like
terms are exceedingly important for the total energy, and modeling this term
by a local DFT like term does not seem to be accurate (RPA+).



Chapter 11

Natural orbitals and CCSD

The scaling of the computational effort of our CCSD implementation with re-
spect to the system size is very unfavorable [O(N®)]. In this chapter, we reduce
the computational cost by introducing natural orbitals that allow for reducing
the number of virtual orbitals without sacrificing accuracy. Natural orbitals
(NOs) can be obtained by diagonalizing the virtual-virtual orbital block of a
density matrix, calculated at the level of second-order Mgller-Plesset pertur-
bation theory (MP2) [see Sec. 6 and Egs. (6.6) and (6.8)] [49, 123, 124, 50].
Eigenvectors and eigenvalues of this density matrix are called (approximate)
MP2 natural orbitals and occupation numbers, respectively.

Natural orbitals allow to reduce the virtual orbital space of atoms and
molecules by about half without significantly compromising accuracy if gaus-
sian type orbitals (GTOs) are used [123, 124]. In general, however, the reduc-
tion is related to linear dependencies in the density matrix and much larger
reductions are possible if an inefficient basis set is used to capture correlation
effects.

Plane waves (PWs) constitute fairly efficient basis functions for solid state
systems. They form a complete set, where the number of basis functions can
be controlled by a single parameter, the PW energy cutoff. However, one
major shortcoming is that the PW basis set is independent of the atomic
species and its location. In calculations of open structures, where the electron
density is localized around a few atomic sites, this feature of the PW basis set
becomes unfavorable when compared to the use of GTOs. Even atoms or small
molecules in a large box require several thousands of virtual canonical orbitals.

A large part of this virtual orbital space is unnecessary because it describes

111



112 Chapter 11. Natural orbitals and CCSD

regions in the vacuum far away from the nucleus where the true many-electron
wave function vanishes. In the following, it is shown that one can lift this
problem by means of natural orbitals that are calculated at the level of MP2

or in an even more approximate fashion.

11.1 Computational details

The density matrix in Eq. (6.6) is calculated using the Vienna ab-initio simula-
tion package (VASP) in the framework of the PAW method. For the evaluation
of the two-electron-four-orbital integrals (ij|ab) two basis sets are used: (i) the
basis set for the one-electron orbitals i, j, a and b, (ii) as well as the auxiliary
basis set used in the construction of the overlap between two orbitals ¢ and a
(see Sec. 8.3 for details). These basis sets are determined by energy cutoffs

E.. and FE,, respectively, and all PWs G satisfying the equation
<h2/2m6>|G|2 < Ex/cut

are used. For the evaluation of yMF? [see Eq. (6.6)] we set F, close to Eey
because we find a fast convergence of the natural orbitals with respect to
E,.. The correlation energy in the complete basis set limit is extrapolated by
systematically increasing F, as outlined in Sec. 9.1.

Natural orbitals with an occupation number close to zero are expected to
contribute only little to the correlation energy [49]. Therefore we introduce
a threshold, &, that defines a subspace of the natural orbitals by truncating
them according to their occupation number. Only natural orbitals with an
occupation number larger than & are included in this subspace.

Unlike HF orbitals, natural orbitals do not diagonalize the Fock matrix [see
Eq. (4.10)]. Therefore non-canonical formulations of the employed correlated
methods would be required. We work around the non-canonical implemen-
tations by carrying out the following procedure subsequent to the underlying
Hartree-Fock (HF) calculation: (i) calculate the natural orbitals (NOs), (ii)
order the natural orbitals according to their occupation numbers [eigenvalues
of the density matrix defined in Eq. (6.6)], (iii) recalculate the Fock matrix
[see Eq. (4.10)] in the basis of NOs, and (iv) diagonalize (“canonicalize”) in
a subspace of this Fock matrix that is defined by the threshold £&. These
“canonicalized” orbitals diagonalize the subspace and can be used in a sub-

sequent canonical wave function based correlated calculation. We stress that
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Figure 11.1: Convergence of the MP2 correlation energy of the Li atom in a
6x6x6 A3 box with respect to the number of natural and HF orbitals per
spin-channel. The inset shows the convergence on a different scale. The top
x-axis in the inset shows the occupation number threshold, &, of the MP2

natural orbitals for the spin-up channel.

the correlation energy is not changed by the diagonalization in the subspace
of NOs.

11.2 Li atom and LiH bulk using natural or-
bitals

As a first example, we study the convergence of the MP2 correlation energy of a
Li atom in the spin polarized state in a 6x6x6 A3 box. The correlation energy
was not extrapolated to the complete basis set limit; a fixed kinetic energy
cutoftf F, =400 eV was used. The kinetic energy cutoff for the one-electron
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4th 40th 400th

Figure 11.2: Charge densities of the Hartree-Fock orbitals (HFOs) in the top
row and natural orbitals (NOs) in the bottom row of a Li atom in a 6x6x6
A® box. The 4th, 40th and 400th orbitals are plotted.

orbitals was set to E .y =500 eV. Figure 11.1 shows the MP2 correlation energy
of the Li atom with respect to the number of orbitals per spin channel. For
the given cutoff E.,; and box size, 5450 orbitals span the complete space of
one-electron Hartree-Fock orbitals. The convergence of the correlation energy
with respect to the number of HFOs is extremely slow. Even 4000 HFOs
yield an MP2 correlation energy that deviates by more than 10 meV from the
correlation energy obtained using the full space (733 meV). In contrast, 30
natural orbitals (NOs) already suffice to obtain an agreement that lies within
10 meV of the converged value. The top axis of the inset in Fig. 11.1 shows the
corresponding occupation number threshold, &, of the MP2 natural orbitals.
We find that 30 natural orbitals correspond to an occupation number threshold
of 107%. The occupation numbers quickly decay to zero, which illustrates the
insignificance of the neglected natural orbitals and the “redundancy” present in
the PW basis set in the description of many-electron properties. Approximate
MP2 natural orbitals [eigenvectors of the approximate density matrix given by
Eq. (6.8)] reduce the convergence rate only slightly (see inset of Fig. 11.1). In
fact, both types of natural orbitals allow for reducing the number of virtuals
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Figure 11.3: Convergence of the MP2 correlation energy of the LiH solid using
a 4x4x4 k-point mesh with respect to the number of natural and HF orbitals
per k-point. The top x-axis shows the occupation number threshold, &, of the
MP2 natural orbitals at the I'-point.

compared to Hartree-Fock by at least an order of magnitude.

Figure 11.2 shows the charge densities of the 4th, 40th and 400th natural,
and Hartree-Fock orbital of a Li atom in a 6x6x6 A3 box. Hartree-Fock
orbitals and natural orbitals are ordered by their increasing one-electron HF
eigenvalues and decreasing occupation numbers respectively. The HF orbitals
become essentially plane waves at higher energies and greater band indices,
since the kinetic energy operator dominates at sufficiently high energies. The
natural orbitals with large occupation numbers maximize the overlap with the
occupied orbitals, whereas the natural orbitals with small occupation numbers
exhibit only very little density at the Li atom, as can be clearly seen for the

400th NO.

Figure 11.3 shows the convergence of the MP2 correlation energy of the
face-centered-cubic LiH crystal with a unit cell volume of 17.03 A3. The first
Brillouin zone was sampled using a 4x4x4 k-point mesh and the same cutoffs
as for the Li atom were employed (E, =400 eV, E, =500 eV). In the case of
solids the reduction of the virtual orbital space using natural orbitals is less

significant than for a single atom in a box. This is not unexpected because
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Table 11.1: Atomization energy of the LiH molecule using natural and HF
orbitals. Plane-waves (PWs) as well as aug-cc-pVXZ(X=T,Q) basis sets were
used in the calculations.

This work Ref. [87] GAMESS

Orbitals NOs HFOs HFOs
Basis set type PWs PWs aug-cc-pVXZ
AEYY 1.084 1.084 1.085
AEMP2 0.823 0.822 0.818
AECCSD 1.039 1.034

in contrast to an atom in a box, the electrons of the solid are delocalized
over the entire unit cell and almost all degrees of freedom supplied by the
plane wave basis set are required to describe the many-electron wave function.
Nevertheless it is possible to remove about half of the HF virtual orbital space
without introducing an error larger than 10 meV. The approximate and exact
MP2 natural orbitals show a very similar convergence rate. The top axis in
Fig. 11.3 shows the corresponding occupation number thresholds, &, for the
MP2 natural orbitals. An error smaller than 10 meV in the correlation energy
can be achieved by including all NOs with & = 1075,

11.3 The H, and LiH test using CCSD and

natural orbitals

As a first test of our CCSD implementation with natural orbitals we calculate
the dissociation energy of a H, molecule with a bond length of 0.75 A, using 80
natural orbitals. We obtain a HF and CCSD contribution to the dissociation
energy of 3.619 eV and 1.112 eV, respectively. The resulting dissociation energy
of 4.731 eV agrees perfectly with the experimental value of 4.73 eV [114].

As a second test of our implementation we have calculated the dissociation
energy of the LiH molecule at the level of MP2 as well as CCSD using NOs.
The bond length was set to 2.042 A. Table 11.1 summarizes the HF, MP2 as
well as CCSD contributions to the atomization energies of the LiH molecule.
The column on the right lists the results that have been obtained using the



11.3 The H, and LiH test using CCSD and natural orbitals 117

Table 11.2: Contributions of the MP2 correlation energy to the atomization
energy of the LiH crystal calculated according to Eq. (11.1).

nyos nz ng AEMP?
192 16 16 1.192
256 16 16 1.195
192 32 16 1.203
192 48 16 1.189
192 54 16 1.189
192 64 16 1.205
192 54 32 1.185
192 54 48 1.187

GAMESS code [94]. The middle column summarizes the HF and MP2 results
that were calculated using VASP and Hartree-Fock orbitals in Sec. 9.1 and
Ref. [87]. The column on the left summarizes the HF, MP2 as well as CCSD
contributions obtained using VASP and NOs. VASP and GAMESS results
agree to within a few meV. The discrepancy between the VASP MP2 results
that were obtained using NOs and HFOs is 1 meV and originates from the
truncation of the virtual orbital space. 200 and 58 NOs were used in the
calculations of the molecule and atom, respectively. This corresponds to a &
of approximately 10~7. The agreement of the CCSD results calculated using
VASP with the ones obtained using the GAMESS code is very good as well, and
both results do not deviate by more than 5 meV. This is excellent considering
that VASP employs pseudopotentials (more precisely the PAW method) and
is not a conventional GTO all-electron code.

As a last application we calculate the atomization energy of the LiH solid
at the level of MP2 as well as CCSD. Even with natural orbitals it would be
impossible to perform a CCSD calculation of the LiH crystal with a k-point
mesh denser than 2x2x2, because of the large number of virtual orbitals and
the unfavorable scaling of the computational effort of our CCSD implementa-
tion with respect to the system size. Therefore we calculate the correlation

energy, Ec, of a solid for a desired (ny X ny X ny) k-point mesh and ng, orbitals
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Table 11.3: HF, MP2 and CCSD contributions to the atomization energy of the
LiH crystal using different orbitals compared to quantum chemical calculations
of LiH Clusters from Ref. [125]. The MP2 contribution to the atomization
energy of the LiH crystal from Ref. [87] corresponds to a calculation using a
4x4x4 k-point mesh.

This work Ref. [87] Ref.[125]
Orbitals NOs HFOs HFOs

AETF 3.583 3583  3.589
AEMP? 1.187 1.188 1.182
AECCSD 1326 1.329

per k-point using the following approximation:

Nk

Ec(nk X Ng X nk,nfun) = Ec(2 X 2 X 2,7’qu11) + ZCZ (111)
=3

E.(2X2x2,ngy) is the calculated correlation energy using a (2 x 2 x 2) k-point

mesh and a converged basis set. C; are correction terms that account for the

difference between (2x2x2) and denser k-point grids and are calculated as
Ci=FE(ixixin)—E(i—1)x(i—1)x(i—1),n,). (11.2)

Evidently Eq. (11.1) becomes exact for n; — ngn, but typically n; is cho-
sen smaller than ng,; and decreases with an increasing number of k-points, 4,
in each direction. This approach is similar to the progressive downsampling
technique of Ohnishi et al. in Ref. [126] and both techniques rely on the ob-
servation that the long range behavior of the polarizability depends mostly on
the low-lying excitations. In practice, we find a fast convergence of the cor-
relation energy with respect to n;. Moreover we calculate E.(2 X 2 X 2, ng,),
using nyos natural orbitals at each k-point. Table 11.2 summarizes the con-
vergence of the MP2 atomization energy with respect to nyos and n; for all
i. We find that the convergence with respect to n; is fairly noisy. From the
noise, we estimate an error bar of approximately 10 meV for the correlation
energy given by Eq. (11.1). However, we find that it suffices to use nyos = 192,
ng = 54 and ny = 32. These settings are then employed in a CCSD calcula-
tion. Table 11.3 summarizes the resulting HF, MP2 and CCSD contributions
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to the atomization energy of the LiH crystal. The results are again compared
to previous calculations obtained using HFOs and quantum chemical calcula-
tions using the incremental approach and LiH clusters [125]. The agreement
between Ref. [87] and Ref. [125] was already discussed in Sec. 9.1. We find that
Eq. (11.1) works reliably for calculating the MP2 contribution to the atomiza-
tion energy of the LiH crystal. Our MP2 results deviate by less than 10 meV
from Sec. 9.1 and Ref. [87]. Moreover our CCSD results are in very good agree-
ment with Ref. [125] which gives us confidence of the correct implementation
of the CCSD code for periodic boundary conditions.

11.4 Conclusions and Summary

In summary, we have shown that MP2 natural orbitals allow for a tremendous
reduction of the virtual orbital space, compared to HF orbitals for calcula-
tions of single atoms or molecules in a box using a PW basis set. This allows
for calculations of atoms and small molecules using highly accurate quantum-
chemical methods such as CCSD in a PW basis set. In the case of solids, the
virtual orbital space can be reduced approximately by half without compro-
mising the accuracy significantly. Note that in CCSD calculations, a reduction
of the virtual orbital space by half corresponds to a speed-up of an order of
magnitude. Although the computational cost of evaluating natural orbitals
scales as O(N?®), we can approximate the MP2 NOs by a simpler expression
that scales only as O(N*). The approximated NOs perform only slightly worse
than the exact MP2 NOs. This even allows us to reduce the computational
cost of MP2 calculations for large systems. Moreover natural orbitals will not
only help in expanding the applicability of our MP2 or CCSD implementation;
many other correlated methods that are implemented in a PW basis will ben-
efit as well. It is straightforward to apply the presented procedures to other
methods such as the Random phase approximation plus second-order screened
exchange [101] or GW-BSE [127].
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Chapter 12

Conclusions and Summary

This thesis is devoted to the implementation and evaluation of the following
three wave function based methods to treat electron correlation in solid state

systems under periodic boundary conditions:
1. second-order Mgller-Plesset perturbation theory (MP2),
2. random phase approximation plus second-order screened exchange (RPA+SOSEX),
3. and coupled-cluster singles and doubles theory (CCSD).

In the first part (chapters 1-8), a brief theoretical review of these methods
was given. The second part is split into three chapters that address MP2,
RPA+SOSEX and CCSD results (chapters 9, 10 and 11, respectively).

Section 9.1 outlines important technical procedures that are required to
obtain converged correlation energies with respect to the employed basis set
and Brillouin zone sampling.

Section 9.2 summarizes structural and energetic properties that have been
calculated using our MP2 implementation for a small test set of 13 solid state
systems. It is shown that the mean absolute relative errors (MARE) of the
MP2 lattice constants and bulk moduli are 0.46% and 4.1%, respectively. As
such, MP2 clearly outperforms Hartree-Fock, which exhibits a MARE of 1.31%
and 7.9% for the lattice constants and bulk moduli, respectively. For the MP2
atomization energies, a MAE of 230 meV /atom is found, which constitutes
a huge improvement over the corresponding HF mean absolute error of 1.59
eV/atom as well. Compared to DFT-PBE, MP2 improves upon lattice con-

stants and bulk moduli, but not upon atomization energies. We find that
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the MP2 band gaps are only accurate for systems with a dielectric constant
smaller than 3. In general MP2 tends to overcorrelate strongly screening ma-
terials and undercorrelate weakly screening materials. This trend is reflected
in the errors of the MP2 band gaps, lattice constants and atomization energies
for systems with a large dielectric constant. In addition we have presented
numerical evidence that the MP2 energy diverges for metallic systems.

Chapter 10 summarizes results for total correlation energies of atoms and
the homogeneous electron gas using RPA and RPA4+SOSEX. Furthermore our
RPA+SOSEX implementation was employed to calculate atomization energies
of 5 solids and 6 molecules. SOSEX corrects for the “self-correlation” error in
the RPA. As such, RPA4+SOSEX reduces the error in the total RPA correla-
tion energies by around 30% for atoms and the free electron gas. Moreover
RPA+SOSEX yields highly accurate results for lattice constants and atomiza-
tion energies. We are able to obtain spectacular agreement with experiment
for the lattice constants (MARE: 0.2 %). For the atomization energies of the
solids the accuracy is also excellent (MAE: 70 meV/atom). RPA+SOSEX
clearly outperforms DFT-PBE, HF, MP2 and RPA in terms of accuracy for
lattice constants and atomization energies. Although RPA+SOSEX is a new
method that requires more testing, our preliminary results and those from
Ref. [120] indicate that RPA+SOSEX might achieve the same accuracy as
CCSD with a much smaller computational complexity and effort. The compu-
tational effort of our MP2 and RPA+SOSEX implementations scale as O(N?),
where N is a measure of the system size.

Chapter 11 addressed natural orbitals and first tests of our coupled-cluster
singles and doubles code for solid state systems. We have shown that natural
orbitals at the level of second-order Mgller-Plesset perturbation theory allow to
achieve a much faster convergence of the correlation energy with respect to the
number of virtual orbitals. The virtual orbital space can be reduced by about
half without losing significant accuracy. This enables us to perform the first
calculations of three dimensional solids under periodic boundary conditions at
the CCSD level. We have calculated the CCSD atomization energies of the
LiH molecule and solid and shown that our implementation yields results that
agree well with quantum chemical calculations.



Appendix A

Slater-Condon rules

Slater-Condon rules express the result of integrals over one- and two-body
operators between identical or different Slater determinants constructed of
orthonormal orbitals 1; in terms of the individual orbitals. In the following
one- and two-body operators are denoted by O;(r1) and Oy(r;, r;), respectively.
We define the one- and two-body operators to be the one-body Hamiltonian

and the two-electron Coulomb operator:

O, = Z h(r;),

N N ]
OQ:GQZZM‘—I‘H.

i i<y
We suppose that the Slater determinants ¥/ are constructed from a set of
orthonormal orbitals {1, .., ;, ..,¥ N} according to

] Ui(ry) . Un(r)
Ul(ry, . rn) = |1, s, . = — . . .

(T1, . TN) = [Y1, i, o, ) Wi
Ui(rn) - Yn(rw)
The Slater-Condon rules distinguish between following cases:

e Case 1: Both Determinants are identical

\I/I — \I/H
(WO = 3 (W Blom) = / ey, (0 ) ) (1)
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N N
(IO = £ 575 (Wt it}

where

<¢l¢m||¢n¢0> — 2 /dr1 /drg {¢7(P1)w;<r2)¢n<r1)1/10<I'2) . ¢7(P1)¢;(r2)¢o(r1)wn(rz)

[Ty — 1o [Ty — 1y
e Case 2: Both determinants differ by one orbital

‘;[/I = |1/11, --,wrm --71/}N>
\I/H = ‘wly --,1/1p7 --71/}N>
(01 [W) = (| Rleiy)

N
(U0 U™) = (Whthn [ty

e Case 3: Both determinants differ by two orbitals

\I’I = ‘wly --,Q/Jm,wn, --7¢N>
ol = ‘wla --uwzana "7¢N>

(UHO, W) =0
<‘I’I‘02‘\DH> == <1/Jm¢n||1/1p1/1q>

If the determinants differ by more than two orbitals, the integrals of the one-

and two-body operator vanish.



Appendix B

Direct contributions to the M P2
QP energy

In this appendix we give a formal proof that starting from a truncated inverse
Dyson-like equation in the GW formalism one obtains formally the expression
for the “direct” contribution to the MP2 quasiparticle energies, eMF2,

The exchange and correlation contribution to the GW QP energy eﬁ‘g/ is

obtained from Eq. (7.18):

S (@) = (a2 n)
1 ) 0 A
-5 > > / A We(G, G, ) (s [

q,G,G’" n/
1
/ ; :
W— W — €k—_q + iNSgN(Enk_q — 1)

(B.1)

x (Untaeale™ @S )

Here q is the Bloch wave vector difference q = k—k’. For the sake of brevity we
will employ a shorthand for the Fourier-transformed overlap densities reading

(il xq) = (n|G[n) (B.2)

where n is a shorthand for v, x.
W is the dynamically screened Coulomb interaction given by [compare Eq. (7.13)]:

2

4
(G, G w), (B.3)

W (G, G w) =
(GG gl @
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where € is the symmetric dielectric function, which is defined as

4mre?

—1 G’,G’/, :5 /+
‘@ (&) =lee T g T

Xq(G, G, w). (B.4)

In the Random Phase Approximation (RPA), the fully interacting particle
polarizability x is given by the Dyson-like equation Eq. (7.14), and the inde-
pendent particle polarizability x is defined as

Xq<G Q' w uicc iz ///| N G|n//>< //|G/|n///>
0 ) W — =T W'+ € — Epr + msgn(enu — En///)

<n//‘ _ G‘n///> <n///|G/‘n//>
(.U/ + €Ent — €Enm —|— insgn(enm — 61’1”)

(B.5)

where k" and k” in Eq. (B.5) satisfy the condition q = k" — k"
Approximating the full polarizability by the independent particle polarizability
X = Xo, the inverse dielectric matrix simplifies to

65 (G, G w)=1+wvxo. (B.6)

Putting Eq. (B.6) into Eq. (B.3) results in two terms:

2 2 2

) 4me
la+G/|>

dre 4re UG, G

W.(G. G\ o) = be.c N
(&G = ee gl @ oGP

Inserting the first term from the above equation into Eq. (B.1) yields the Fock
exchange contribution to the one-electron energies, which is usually already
included in the HF eigenvalues.

The second term in Eq. (B.7) decays like W,Q for lim,,_,, when inserted into
Eq. (B.1). This term comprises the direct contribution to the MP2 QP ener-
gies, and we will concentrate on its evaluation in the following. Putting the
second term from Eq. (B.7) into Eq. (B.1) gives

— G'n) (n|G[n’)
dMP2 Z Z / q G G/ /
€n 2 0 ( ) , W ) 2
o 167%e? (B.7)
w—w — ey +insgn(en — p) '
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Using the definition for yo from Eq. (B.5) yields

unocc. occ.

0= ¥ Yo [ e Targran & 22

q,G G’ n’ n’ n/" /
" < l/l| _ G|n//> <n//|G/|n///> <n/l| _ G|n//l> <n/l/|G/|nl/>
(,d/ —|— En/// — Gn// + ’iT}Sgn(€n// — En///) (.U, + Gn// — En/// —|— insgn(en/// — Gn//)

(n|G|n’) (n|G'[n)
w—w — €y +insgn(ey — )

Rearranging the terms and using

dme? ~ (Uil — Gla) (U5 Glyhs)

jlab) = B.8
allows for introducing the two-electron four-orbital integrals.
unocc. occ. " "ot
(dMP2 (n"n|n"n’) x c.c.
d 2 n//
Z 27'(' / w Z ; w |f,¢ﬂ + €En/t — Eplt + Znsgn(En// — Gn///)

('l % e ) |
CU, + €n/’t — Eni + Z?’/Sgn(enm — En//) CU, — W + €En’ — i?’/Sgn(En/ — ,LL)
(B.9)

The integration over w’ can be performed analytically using the residue theo-
rem to yield

. unocc. occ. occ. " "ot
nnn X c.C.
EIdlMPZ E E 2197 E < ‘ > :
27T n’ W — €n — €n + €nr — 2“7

unocc. < ///n| " /> X C.C.

(B.10)

—271

- €n/’ — € — W + €n/ — 2’”’]
n

7 is an infinitesimal shift required to distinguish between occupied and unoc-
cupied states, but after the frequency integration it can be dropped. Moreover,
we can rearrange the terms to obtain the final expression for the QP energy:

unocc. occ. unocc. " "oy oce. "y
(NP2, n|n"n’) x c.c. (n"n’|n"n) x c.c.
2 _
Z; Z/EW+W—€N—€/ §€n’+€n”’_w_€n”
(B.11)
Clearly Eq. (B.11) is equivalent to the direct terms in Eqs. (7.3) and (7.4).
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Appendix C

Implementation of MP2 in
VASP

The MP2 correlation energy reads

occ. unocc. ‘/ab 2‘/ab ‘[ba>*

EC—Z; £j+€]_€a 0 ) (C.1)

— €
1] b

where

V“b (1j|ab). (C.2)

In the above equation 7,5 and a,b denote occupied and unoccupied spatial
orbitals, respectively. €, denotes the eigenvalues of the Fock matrix defined in
Eq. (4.10). The construction of V;?b in the framework of the PAW method is
outlined in Sec. 8.3. From Sec. 8.3 we find that the electron repulsion integral

Vi‘;b can be written as
Vb — Z (0)C(0) + Z Cia(G)C(G (C.3)

where o is understood to be a shorthand for the indices x, A, p and v (see

Sec. 8.3). G is a shorthand for the plane wave component G, as defined in
Sec. 8.3. The coefficients CL, C'!

ia) ~5b

Egs. (8.31), (8.34), and (8.38).

Our MP2 implementation proceeds in two steps:

C;, and C » are implicitly defined through

1. The coefficients C'}

a’

C]b, C and C b, are evaluated and stored.
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2. The electron repulsion integrals are calculated blockwise from the co-
efficients. Every block is defined by a combination of occupied orbital
indices 7 and j. Therefore one block at a time needs to be stored in mem-
ory and is of the size N"™° x N""°¢  Knowing one block for a given
i and j allows for performing the summation over a and b in Eq. (C.1).
Subsequently a new block of electron repulsion integrals for the next
combination of ¢ and j is evaluated and the nested summation over a
and b in Eq. (C.1) is carried out. This is repeated until all possible com-
binations of ¢ and j are accounted for. Summing over all contributions
from the different combinations of ¢ and j yields the MP2 correlation

energy.

The above steps are highly parallelizable. In step (1) all occupied orbitals i are
distributed to all nodes. For a set of unoccupied orbitals {a}, which is different
on every node, the coefficients C’il{a}, CA'Z.I{G}, éi{a} and éi{a} are evaluated and
stored locally. From step (1) to step (2) a redistribution of the coefficients is
carried out. The coefficients are brought into a block-cyclic matrix distribution
that is well suited for highly efficient parallelized matrix-matrix multiplication
routines. The columns of the distributed coefficient matrices correspond to
the indices G and o, respectively. The rows of the distributed coefficient ma-
trices corresponds to the index of the unoccupied orbitals a. In total there
are 4N°< block-cyclically distributed coefficient matrices (C!(a,0), C}(a,0),
Ci(a, G) and é’i(a, G)). This allows for a blockwise construction of the electron
repulsion integrals using highly efficient parallel matrix-matrix multiplication
routines (ScaLAPACK libraries). Since the construction of the electron repul-
sion integrals scales as O(N?), where N is a measure of the system size, this

step is the computational bottle neck of our implementation.



Appendix D

Implementation of

RPA+4+SOSEX in VASP

The coupled-cluster double amplitude equations in the random phase approx-

imation read

0 = (ijlab) +t(ca + € — € — ¢;)
+ (iclak) ti + t3 (cj|kb) + ti (cd|kl) ¢ (D.1)

The solution of the above equations is outlined in Sec. 5.7 and scales as O(N°®),
where N is a measure of the system size. However, it is possible to reduce
the computational effort for calculating the amplitudes and the RPA+SOSEX
energy to scale as O(N°) only. This is achieved by rearranging the nested
summations in the construction of the electron repulsion integrals and the
amplitude equations. For this purpose we define intermediate quantities that

read as
Xia(0) =Yt Cy (o), (D.2)
kc
Xla(0) = 15C1 (o), (D.3)
kc
%ia(G) —th@:é‘kc(G), and (D.4)

)A(za Zt Ck:c (D5)

(D.6)
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The coefficients C},,, Ci,, Cy. and Cj, have been introduced in Eq. (C.3). Em-
ploying the above definitions of the intermediate quantities allows for rewriting

Eq. (D.1) into an equation that scales only as N° :
0 = t%cte—c—c)+ > [Chio) + xu(0)] {(él (0) + ¥} (0)
ij \-a ? J ia ia jb 7b
+3 |CialG) + Xl @) [ Ci(G) + Xin(G)] (D7)
G

Because of the simplicity of Eq. (D.7) an important technical advantage arises.
In contrast to a full CCSD algorithm, it suffices to store a single set of ampli-
tudes, which greatly reduces the memory requirements.

The distribution of the coefficients C},, O}, Cy. and C, as well as interme-
diate quantities xL, (0), XL (0), Xia(G), and X;(G) is done analogue to the the
procedure outlined in Appendix C. Hence, the MP2 as well as RPA+SOSEX
implementation are based on highly efficient matrix-matrix multiplication rou-

tines.
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