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Introduction

A highly interesting �eld in algebraic number theory is to gain structural infor-
mation about matrix groups over number �elds and their arithmetic subgroups.
After trying to handle these objects with pure group theory, number theorists
went over to consider groups with some additional structure. As a result, the
whole Lie theory was developed; however, the analytic topology and structure
on Lie groups did not really �t for the geometric aspect of interest. Therefore,
groups objects in the category of algebraic varieties were considered, called al-
gebraic groups. In particular, it was tried to receive information about groups
G ⊂ GLn(Ok), where k is an algebraic number �eld and Ok denotes the ring of
integers in k. It is well known that Ok is a free Z-module, which means that
the ring of integers can be viewed as a lattice in k. Now let G ⊂ GLn(C) be
a Zariski-closed subset of the general linear group over the complex numbers.
Now the integral points of G, i.e., the intersection G ∩ GLn(Ok), is again a
discrete subgroup of Gk.

In particular we can ask which structural properties does Γ = SL2(Z) have
in SL2(Q). For that, the natural action of SL2(R) on the upper half plane of
the complex plane H by Moebius transformations can be considered. It became
clear that the analysis of special functions onH lead to important results. These
special functions, called modular forms, are meromorphic on H, invariant under
Γ and satisfy a special growth condition. This theory is strongly related to many
other mathematical and physical �elds, for example to the theory of elliptic
curves. Clearly it was tried to generalize these functions to arbitrary Lie-groups
G and arbitrary discrete subgroups Γ of G, which led to the de�nition of an
automorphic form F . Here, the function F : G → C is a Γ-invariant function
which is an eigenfunction of special operators and satis�es a special growth
condition. Due to the invariance property, it su�ces to de�ne automorphic
forms on the quotient G/Γ.

Another important tool, developed in the 30's in the last century due to
Chevalley, Artin and Weil, which has been very fruitful in the last years, are
the adeles and ideles of an algebraic number �eld. It is possible to obtain a lot
of arithmetic properties of the ring of integers Ok out of these constructions.
Clearly, the question arises if the adeles are also a useful tool in the analysis of
automorphic forms. In fact, it was shown that the automorphic forms can be
viewed as functions de�ned on the adelic points of an algebraic group G, where
the role of Γ is taken by Gk. Again, from the invariance property we conclude
that an automorphic form is uniquely determined on the quotient GA/Gk. Thus,
the latter quotient became an object of interest.

This diploma thesis is dedicated to develop a reduction theory for Gk in GA,
i.e., to construct fundamental domains or sets for GA with respect to the discrete
subgroup Gk and to �nd structural information about them. We will proceed
in the following way. First, we will answer the question how we can construct
fundamental sets and domains. For that, we de�ne the term arithmetic subgroup
and construct fundamental sets for GZ in GR. After that, we will de�ne the
"adelization" of algebraic k-varieties and k-rational morphism between them
and start to analyse adelic algebraic groups. We try to �nd a fundamental
set for GLn(k) in GLn(A), for which we use a height function. We will see
that GLn(A) can be decomposed in an orthogonal, diagonal and unipotent part
modulo the subgroup GLn(k). Then we handle the general case and show that
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every fundamental set is a product of a fundamental set Σ for GZ in GR and a
compact subset of the restricted product

∏
v∈V f

k
(kv : Ov), where V

f
k denote the

�nite places, kv the completion of k with respect to v and Ov the valuation ring
of kv.

Afterwards, we try to �nd criteria for the quotient GA/Gk to be compact,
to have �nite invariant volume respectively. For that, we construct a measure
on algebraic groups which is invariant under left translations for every place
v ∈ Vk. After that we obtain a measure on GA/Gk simply by multiplying the
local measures. As an example, let G = SL2. We will compute the volume
vol(SL2(Qv)/ SL2(Zv)) for every v ∈ Vk, which equals π2

6 in the real case and
6
π2 for the �nite part. So we will see that vol(SL2(A)/ SL2(Q)) = 1. Our main
goal will be the proof of the following Theorem:

Theorem. Let G be an algebraic k-group. Then

(i) GA/Gk is compact if and only if every unipotent element of Gk belongs to
the unipotent radical of G and X(G0)k = 1.

(ii) GA/Gk has �nite invariant volume if and only if X(G0)k = 1.

In the next step we will consider the quotient G(1)
A /Gk, where we de�ne G

(1)
A

as
G

(1)
A =

⋂
χ∈X(G)k

ker(g 7→
∏
v∈Vk

|χ(gv)|v),

where the intersection ranges over all k-rational characters of G. We will show
that this object has always �nite invariant volume. At last, we consider injec-
tive morphisms ϕ : H ↪→ G between reductive algebraic k-groups and show the
following Theorem:

Theorem. Let G, H be reductive algebraic k-groups. Let ϕ : H ↪→ G be an
injective k-morphism and let

ϕ
(1)
A : H

(1)
A /Hk → G

(1)
A /Gk

be the map induced by ϕ. Then the map ϕ(1) is proper.

In chapter 1, the basics of the theory of algebraic groups are introduced.
First, we quickly review the basic results of algebraic varieties over algebraically
closed �elds and state some descending theory. After that, we introduce alge-
braic k-groups and show that they are obtained as closed subgroups of GLn(k).
In the third subsection, we give some structural properties and de�ne some im-
portant subclasses of algebraic groups, as reductive and semisimple groups. At
last, we mention a useful tool, the restriction of scalars, which plays an essential
role in this setting.

The second chapter is dedicated to review some facts about topology and
measure theory. In the �rst subsection the term of a proper map is introduced
and basic results are given. Afterwards we construct a topological space out of
in�nitely many others, called the restricted topological product. We will also
see that this topological product is locally compact under certain assumptions,
where we will construct a Haar mesure on this product. Moreover, we will
construct Haar measures explicitly and compute the volume of SL2(R)/ SL2(Z).
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In the third chapter we �rst review some basic results about algebraic number
�elds and valuations. Furthermore, we give some properties of the completion
kv of an algebraic number �eld k with respect to the valuation v. Out of these
completions, we will construct the adele ring Ak and the idele group Jk of k as a
restricted topological product and introduce some reduction theory for k in Ak,
k∗ in Jk respectively. In the last part we introduce the term of an arithmetic
subgroup Γ of an algebraic R-group G ⊂ GLn(R). Furthermore, we will see
which conditions have to be satis�ed to guarantee the quotient GR/GZ to be
compact or to have �nite invariant volume.

The fourth section, which forms the main part of this thesis, examines alge-
braic k-groups G, where k is an algebraic number �eld, and their adelic points.
In the �rst subsection we will associate to every k-variety X an adelic variety
XA, i.e., a special subset of Ank . Furthermore, we will �adelize� algebraic groups
and give some basic properties about them. In particular, we will introduce
the terms class number and strong approximation property. Afterwards, we
try to construct a fundamental set for GLn(Q) in GLn(A), called Minkowski
reduction. For that, we �rst decompose the general linear group at every place
v and then obtain a general decomposition out of the local ones. After that,
we improve the obtained result by using a height function on GLn(A). In the
third section, the case of an arbitrary group is considered, i.e., we try to �nd
fundamental sets for GA with respect to Gk. We will see that it su�ces to focus
on the case of an reductive group, where the desired set is obtained from that
of GLn(A). Furthermore, we investigate which conditions on G do we need that
the quotient GA/Gk is compact, have �nite invariant volume respectively. After
that, we consider the quotient G(1)

A /Gk, where G
(1)
A is the intersection of the

kernels of all characters of G, and try to answer the same question.
In the last subsection we consider injective morphisms between reductive

k-groups G, H and try to obtain a connection between the compactness of
G

(1)
A /Gk and H(1)

A /Hk. Let i : H ↪→ G be such an injective morphism. First we

will prove that the adelization i(1)
A : H

(1)
A /Hk → G

(1)
A /Gk of i remains injective.

Our main goal is to show that the map i(1)
A is proper. For that, we generalize

the proof for the real case of Schwermer in [16, ch. 6.1] to the adeles.
At this point I want to thank Professor Schwermer for pointing out this

interesting �eld of study to me and for granting me the utmost intellectual
freedom and academic support throughout my studies.
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1 Algebraic groups

As an initial step, we want to review some background material in the theory of
algebraic k-groups, where k is a �eld. Although some of the results are essential
in the later parts of this work, we will omit the proofs. More information about
algebraic geometry can be found in [8, ch. 1], the main references for the theory
of algebraic groups are [9] and [15].

In this �rst section a brief introduction to the theory of algebraic groups is
given. The basic de�nitions and important results are stated.

1.1 Introduction to algebraic groups

Let Ω be an algebraically closed �eld. We denote by An
Ω (or sometimes just

An) the n-dimensional a�ne Ω-space endowed with the Zariski topology. Let
Ω[x1, . . . , xn] be the polynomial ring in n variables. Let X ⊂ An

Ω be an algebraic
variety. We denote by Ω[X] the a�ne algebra of X. To every a = (a1, . . . , an) ∈
X corresponds the maximal idealma = (x1−a1, . . . , xn−an) ⊂ Ω[X]. Moreover,
the stalk near a is denoted by Oa, which is a local ring with unique maximal
ideal ma. Let ϕ : X → Y be a morphism between two algebraic varieties. Then
we denote the comorphism of ϕ by ϕ∗ : Ω[Y ]→ Ω[X].

Now let k ⊂ Ω be a sub�eld of Ω, let X be a Ω-variety. For an ideal a ⊂ Ω[X]
we de�ne

ak := k[x1, . . . , xn] ∩ a.

If a = Ω[X]ak, then we say that a is de�ned over k or a is a k-ideal. For every
k-ideal a we can �nd generators f1, . . . , fn ∈ k[x1, . . . , xn]. A point x ∈ X
is said to be de�ned over k and will be called a k-point if the maximal ideal
mx ⊂ Ω[X] corresponding to x is de�ned over k. Moreover, a variety X ⊂ An

Ω

is said to be de�ned over k or a k-variety if Ω[X]I(X)k = I(X). Now let X,
Y be k-varieties, ϕ : X → Y be a morphism of varieties. Then we say that ϕ is
de�ned over k if there are polynomials f1, . . . , fn ∈ k[X] with ϕ = (f1, . . . , fn).
For a k-morphism between k-varieties we obtain that k-points are mapped to
k-points.

Let X be a k-variety, let x ∈ X. Then a k-derivation δ : Ox → Ω is a k-linear
map from the stalk near x to Ω which satis�es

δ(fg) = δ(f)g(x) + f(x)δ(g)

for all f , g ∈ Ox. The set of all k-derivations of Ox form a k-vector space, called
the tangent space T (X)x of X in x. It can be shown that T (X)x is canonically
isomorphic to the dual space of mx/m2

x viewed as a Ox/mx-vector space. We call
an element ξ ∈ T (X)x an tangent vector. Now let ϕ : X → Y be a k-morphism
between k-varieties and let x ∈ X and y = ϕ(x) ∈ Y . Then the comorphism ϕ∗

induces a k-linear map dϕx : T (X)x → T (Y )y, called the di�erential of ϕ at x.
Let G denote an a�ne algebraic group de�ned over k with multiplication

µ : G × G → G, inversion ν : G → G and neutral element e ∈ Gk For all g,
h ∈ G we will write gh (resp. g + h in the commutative case) instead of µ(g, h)
and also g−1 (resp. −g) instead of ν(g). Since only a�ne algebraic groups are
considered in this thesis, the word "a�ne" will often be omitted.

Since an algebraic variety is uniquely determined by its a�ne algebra, we
shall express the structure of an algebraic group G in terms of k[G]. We obtain
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1 ALGEBRAIC GROUPS

induced comorphisms

µ∗ : k[G]→ k[G]⊗ k[G]

ν∗ : k[G]→ k[G]

e∗ : k[G]→ k

which satisfy the dual group axioms, i.e., which make k[G] into a Hopf algebra.
Let G be an algebraic k-group. Then we denote by G0 the connected com-

ponent of the identity. Moreover, for g ∈ G, let lg be the left multiplication
h 7→ µ(g, h) with g, which is an automorphism of G. Analogously, the right
multiplication with g is denoted by rg.

As a major example we consider the general linear group GLn as algebraic
k-group for any n ∈ N. It is realized as the zero set of the polynomial det(xij)y−
1 ∈ k[x11, . . . , xnn, y] in the n2 + 1 dimensional a�ne space; the map µ (resp.
ν) is the usual matrix multiplication (resp. inversion), with the unit matrix as
the neutral element. For n = 1, we write Gm instead of GL1 and call it the
multiplicative group.

From the general linear group we can deduce many examples of algebraic
groups by using the following Lemma:

Lemma 1.1. Let G be an algebraic k-group, H ⊂ G a k-closed subgroup. Then
H is also an algebraic k-group.

Proof. Since a k-closed subset of a k-variety is again a k-variety and H is a
subgroup we obtain that H is also an algebraic k-group.

Using the lemma, we can identify various classical matrix groups as algebraic
groups, for example

(1) SLn(k) = {g ∈ GLn(k) | det(g) = 1}

(2) On(k) = {g ∈ GLn(k) | gt = g−1}

(3) SOn(k) = {g ∈ On(k) | det(g) = 1}

In fact, we obtain all algebraic k-groups in this way. This result is stated in
the following Theorem, which is often called the Theorem of Chevalley.

Theorem 1.2. Let G be an algebraic group de�ned over k. Then G is isomor-
phic to a k-closed subgroup of some GLn(k).

Proof. [9, 8.6]

Although the last theorem could be used to reduce the study of algebraic
groups completely to matrix groups, it is usually preferred to stay in the general
context since the independence of the representation is complicated to handle.
However, this theorem has a big technical value, because it allows to use special
properties of matrices (e.g. the behaviour of Eigenvalues) for proofs in the
setting of algebraic groups.

Now let us return to the general case. Let X be a k-variety, let G be an
algebraic k-group which acts on X via the map ϕ : G × X → X. Usually, we
will write g.x (or simply gx if no confusion is possible) for ϕ(g, x) for all x ∈ X,
g ∈ G. The orbit of x ∈ X under the action of G is denoted by Gx and its
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1.1 INTRODUCTION TO ALGEBRAIC GROUPS

stabilizer by Gx. We obtain an isomorphism G/Gx → Gx of sets. In particular,
for a k-group G and a normal k-subgroup H of G the set of cosets G/H can
be endowed with the structure of an a�ne variety which makes G/H into an
algebraic k-group.

Let G be an algebraic k-group which acts on an algebraic k-variety X. Then
for all g ∈ G let τg denote the comorphism corresponding to the morphism
X → X, x 7→ g.x. We call τg the translation of functions by g. The maps τg,
g ∈ G induce a group homomorphism

τ : G→ GL(k[X])

g 7→ τg.

In particular, the group G acts on itself by left translation. Then for g ∈ G, the
induced representation ρg on k[G] is called the right translation of functions by
g.

Let G be a k-group which acts on a k-varietyX. Then the a�ne algebra k[X]
of X consists completely of �nite dimensional, translation-invariant subspaces,
which is stated in the following Proposition.

Proposition 1.3. Let G be an algebraic k-group acting on an a�ne k−variety
X, let τ denote the induced comorphism of the action de�ned as above. Let F
be a �nite dimensional subspace of k[X]. Then there exists a �nite dimensional
subspace E of k[X] including F which is stable under τg for all g ∈ G.

Proof. [9, 8.6]

Another important tool for the analysis of algebraic groups is the notion of
a character. A k-character χ of G is a k-morphism χ : G → Gm of algebraic
k-groups. Let χ1, χ2 be k-characters of G. Then the morphisms

χ1 + χ2 : g 7→ χ1(g) · χ2(g) and − χ1 : g 7→ χ1(g)−1,

where multiplication and inversion are those of Gm, are again k-characters.
Using this morphism we can endow the set X(G)k of all k-characters with a
structure of an abelian group.

Now let G be an algebraic k-group, let ϕ : G→ GLn(k) be a representation
of G as a k-closed subgroup of some GLn(k). Then we call an element g ∈ G
unipotent (respectively semisimple) if ϕ(g) has this property. We can decompose
every g ∈ G into an unipotent and a semisimple part, which is stated in the
following Theorem.

Theorem 1.4. Let G be an algebraic group.

(i) If g ∈ G, there exists unique elements gs, gu ∈ G such that gs is semisim-
ple, gu is unipotent and g = gsgu = gugs.

(ii) If ϕ : G → G′ is a morphism of algebraic groups then ϕ(gs) = ϕ(g)s and
ϕ(gu) = ϕ(g)u.

Proof. [9, 15.3]

We call gs (resp. gu) the semisimple (resp. unipotent) part of g. Let
Gs (resp. Gu) denote the k-subgroup of G which consists of all semisimple

7



1 ALGEBRAIC GROUPS

(resp. unipotent) elements of G. We call an algebraic group G unipotent if
G = Gu. The subgroup Gu is always closed, however, Gs is not closed in
general. Moreover, if G is connected, so are Gs and Gu.

Let G be an algebraic k-group. Since the product of two closed solvable
subgroups is again closed and solvable, we obtain the existence of a unique
largest normal solvable subgroup, whose identity component is called the radical
R(G) of G. Moreover, the unipotent part of R(G) is called the unipotent radical
Ru(G) of G. Both of these subgroups are de�ned over k. We call an algebraic
k-group G semisimple (resp. reductive) if R(G) (resp. Ru(G)) is trivial.

The following Proposition shows that it is often su�cient to study only
unipotent and reductive groups.

Proposition 1.5. Let G be a connected algebraic k-group, where k is a �eld of
characteristic 0. Then there exists a reductive k-subgroup H ⊂ G such that G
can be written as semidirect product

G = HRu(G).

Moreover, any reductive k-subgroup H ′ ⊂ G is conjugate by an element of
Ru(G)k to a subgroup of H.

Proof. This result was proven by Mostow in [14].

The decomposition obtained in the previous Proposition is called the Levi-
decomposition. In the next section we want to focus on reductive groups.

1.2 Reductive groups

The main example for a reductive group is the full general linear group. As a
�rst result, we state the Iwasawa decomposition.

Proposition 1.6. Let A denote the group of diagonal matrices with positive
entries in R and U the group of real upper triangular unipotent matrices. Let
K = On(R). Then the natural map ϕ : K×A×U→ GLn(R), ϕ(k, a, u) = kau,
is a homeomorphism of real groups.

Proof. [5, ch. VII, �3, Prop.7]

We can state another decomposition for the general linear group from which
the existence of a maximal compact subgroup of reductive groups follows.

Proposition 1.7. Let S ⊂ GLn(R) denote the set of positive de�nite symmetric
matrices of dimension n and let K = On(R). Then we have

GLn(R) = K S,

and for each matrix g ∈ GLn(R) its factorisation g = ks with k ∈ K and s ∈ S
is unique.

Proof. [15, Prop. 3.7]

Proposition 1.8. Let G ⊂ GLn(C) be a reductive algebraic R-group, let K and
S be as before. Then we obtain
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1.2 REDUCTIVE GROUPS

(i) GR = (G∩K)(G∩S). Furthermore, G∩K is a maximal compact subgroup
of G.

(ii) Any compact subgroup of GR is contained in a maximal compact subgroup,
and all maximal compact subgroups are conjugate.

Proof. [15, Prop. 3.10]

We need another result for reductive groups. It allows us in many cases to
consider self-adjoint groups.

De�nition. Let G ⊂ GLn(C) be an algebraic Q-group. For an element g ∈ GR
let gt denote the transpose matrix of g. Then we call G self adjoint if gt ∈ GR
for all g ∈ GR.

Proposition 1.9. Let G ⊂ GLn(C) be a reductive R-group. There exists a ∈
GLn(R) such that HR = aGRa

−1 is self adjoint.

Proof. [15, Thm 3.7]

We have stated in chapter 1.1 that we obtain every algebraic k-group as
a subgroup of the general linear group. For reductive groups we can proof a
stronger version of this result. The following discussion follows [1, �7.6].

Let G be a connected group over k, where k is a �eld with characteristic
0. If G is reductive, then this is equivalent to the complete reducibility of
G-representations, which is a fact following from the theory of reductive Lie
algebras. Now let H be a reductive k-subgroup of G. Let Ω be an algebraic
closure of k. Then the group G acts on the subspace Ω[G]H of Ω[G] consisting of
all rational functions f ∈ Ω[G] which are right-invariant under ρh for all h ∈ H,
where ρh again denotes the right-translation of functions. We want to deduce a
representation of G with useful properties out of that action. For that, we need
to analyse the ring I = Ω[G]H a bit further.

Lemma 1.10. Let G be a reductive k-group, which acts on a k-vector space
W , viewed as an a�ne k-space. Let X ⊂ W be an irreducible subvariety of W
which is stable under the G-action. Let I be the ring Ω[X]G of rational function
on X which are G-invariant. Then

(i) there is a projection π : Ω[X] → I which is I-linear and stabilizes every
G-invariant subspace of Ω[X].

(ii) the ring I separates the closed G-invariant subsets of X.

(iii) the ring I is �nitely generated as an Ω-algebra.

Proof. (i) Let N be the sum of all minimal subspaces of Ω[X] on which G
does not operate trivially. Since G is reductive, the action of G on Ω[X] is
completely reducible, so we can write Ω[X] = I ⊕ N . We now de�ne the
map π : Ω[X] → I as the projection on I with respect to this decomposi-
tion. First, we show that π is I-linear. We have I ∩ N = {0}, and since
1 ∈ I, we obtain

I2 ∩ IN = I ∩ IN = {0}.

9



1 ALGEBRAIC GROUPS

From the complete reducibility and the above decomposition we conclude
that IN ⊂ N . Now let ϕ ∈ I and ψ ∈ Ω[X]. Let ψ = ψI + ψN be the
decomposition with respect to the above direct sum. It follows that

π(ϕ · ψ) = π(ϕ · ψI + ϕ · ψN )

= π(ϕ · ψI) + π(ϕ · ψN )

= ϕ · ψI
= ϕ · π(ψ),

so π is I-linear. Now let E ⊂ Ω[X] be a G-stable subspace of Ω[X]. Then
we can write

E = (E ∩ I)⊕ (E ∩N),

which shows that
π(E) = E ∩ I ⊂ E.

(ii) Let A and B be two G-stable algebraic subsets of X with A ∩B = ∅. Let
I(A) and I(B) the vanishing ideals of A respectively B in Ω[X]. Since
the two subsets are disjoint, we have I(A) + I(B) = Ω[X]. Therefore, we
can �nd elements α ∈ I(A) and β ∈ I(B) with α+ β = 1. Since we have
1 ∈ I, we obtain

1 = π(1) = π(α) + π(β).

From the de�nition of the action of G on Ω[X] we conclude that also the
ideals I(A) and I(B) are G-stable. By (i) this implies that π(α) ∈ I(A),
π(β) ∈ I(A) and π(α)|B = π(β)|A = 0.

(iii) We have an isomorphism Ω[X] ∼= Ω[W ]/I(X) of Ω-algebras, where I(X)
denotes the vanishing ideal of X. Let p : Ω[W ]→ Ω[X] denote the canon-
ical projection. Then for all g ∈ G, f ∈ Ω[W ] and x ∈ X we obtain

ρg(p(f)) = ρg(f + I(X)) = ρg(f) + ρg(I(X)) = ρg(f) + I(X) = p(ρg(f)),

so p commutes with the G-action. Now let M (resp. N) be the sum of all
minimal subspaces of Ω[W ] (resp. Ω[X]) on which G operates non-trivially.
Then from complete reducibility we obtain that Ω[W ] = Ω[W ]G ⊕M and
Ω[X] = I ⊕N . This yields

I ⊕N = Ω[X] = p(Ω[W ]) = p(Ω[W ]G ⊕M) = p(Ω[W ]G)⊕ p(M).

Since the G-action commutes with the map p, we obtain

p(Ω[W ]G) = I.

Thus, it su�ces to prove part (iii) in the case X = W . Let

J = {f ∈ I | f(0) = 0}.

Then J is an ideal in I generated by homogeneous, G-invariant polyno-
mials. Now consider the ideal J of Ω[W ] generated by J . Since Ω[W ]
is a Noetherian ring, we can �nd �nitely many homogeneous polynomials
f1, . . . , fs ∈ J with J = (f1, . . . , fs). We now want to show that I is gen-
erated by (f1, . . . , fs) as an Ω-algebra. Since every polynomial is a linear

10
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combination of its homogeneous parts, it su�ces to prove the assertion
for homogeneous polynomials f ∈ I with deg(f) > 0. Now let f ∈ I a
homogeneous polynomial with deg(f) > 0. Since f(0) = 0, we have f ∈ J ,
so f ∈ J . Thus we can write

f =

s∑
i=1

aifi

with ai ∈ Ω[W ]. Since f and all fi are homogeneous, so is ai for all
i = 1, . . . , s. Moreover, we have

deg(f) = deg(

s∑
i=1

aifi) =

s∑
i=1

deg(aifi) =

s∑
i=1

(deg(ai) + deg(fi)) ,

and since f is homogeneous we obtain deg(f) = deg(ai) + deg(fi) for all
i = 1, . . . , s. Thus, deg(ai) = deg(f) − deg(fi) for all i = 1, . . . , s with
ai 6= 0. Now we use induction on n = deg(f). For n = 1 and ai 6= 0, we
have

deg(ai) = deg(f)− deg(fi) = 1− 1 = 0,

thus ai ∈ Ω.

If n > 1, then we can use the mapping π from part (i) to obtain

f = π(f) = π

(
s∑
i=1

aifi

)
=

s∑
i=1

π (aifi) =

s∑
i=1

π (ai) fi,

so we can choose the polynomials ai to lie in I. Moreover,

deg(ai) < deg(f),

so from the induction hypothesis we get that ai ∈ (f1, . . . , fn) for all
i = 1, . . . , s. Thus,

f =

s∑
i=1

aifi ∈ (f1, . . . , fn).

Now we are able to prove a stronger version of the Theorem of Chevalley for
connected reductive groups which will be useful at the end of this thesis.

Proposition 1.11. Let G be a connected k-group, let H be a reductive k-
subgroup of G. Then there is a �nite dimensional k-vector spaceW , viewed as an
a�ne space, an element w ∈Wk and a k-rational representation ρ : W×G→W
so that the orbit wG of w is closed in W and the stabilizer of w is exactly H.

Proof. The proof follows [1, Prop. 7.7]. The group H operates from the right
on the variety G ⊂ GL(V ). From Lemma 1.10(iii) we know that the functions
I = Ω[G]H which are constant on the right cosets Hx of G modulo H are �nitely
generated as an Ω-algebra. Thus we can �nd generators w1, . . . , ws ∈ Ω[G] for
I. Since G is a k-group, we can assume that the wi are in k[G] for i = 1, . . . , s.
From Proposition 1.3 we conclude that we can �nd �nite dimensional G-stable

11



1 ALGEBRAIC GROUPS

subspaces Wi of Ω[G] with wi ∈Wi for i = 1, . . . , s. Moreover, these subspaces
are de�ned over k. We de�ne the vector space W to be

W =

s⊕
i=1

Wi,

endowed with the G-action

W ×G→W

(v1, . . . , vs) 7→ (ρg(v1), . . . , ρg(vs)),

and let w = (w1, . . . , ws) ∈Wk.
We �rst show that the isotropy group Gw of w is exactly H. For that, let

h ∈ H. Since wi ∈ I, we have ρh(wi) = wi for all i = 1, . . . , s, which implies
ρh(w) = w. This shows that H ⊂ Gw. Conversely, let h ∈ Gw. This implies
that ρh(wi) = wi for all i = 1, . . . , s. From the de�nition of the right translation
this yields wi(h) = ρh(wi)(e) = wi(e) for i = 1, . . . , s. Now I is generated by
the wi as an Ω-algebra, thus f(h) = f(e) for all f ∈ I and all h ∈ Gw. We
have seen in Lemma 1.10(ii) that I separates the closed subsets of G which are
H-stable, so in particular the right cosets of G modulo H. Thus, Gw ⊂ H.

Now it su�ces to prove that the orbit X = wG of w is closed in W . For
that, let ϕ : G → W be the orbit map of w de�ned by g 7→ ρg(w). Then the
corresponding comorphism ϕ∗ has the form

ϕ∗ : Ω[X]→ Ω[G]

f 7→ ϕ∗(f) ( : g 7→ f(ρg(w))) .

The inclusion H ⊂ Gw yields

ρh(ϕ∗(f))(g) = f(ρg(ρh(w))) = f(ρg(w)) = (ϕ∗(f))(g)

for every f ∈ Ω[X], thus ϕ∗(Ω[X]) ⊂ I. We want to show that the comorphism
ϕ∗ induces an isomorphism of Ω-algebras

ϕ∗ : Ω[X]→ I.

Since ker(ϕ∗) = {0}, the map ϕ∗ is injective. Now for a �xed i ∈ {1, . . . , s}
let {z1, . . . , zn} be a base for Wi and let {a1, . . . , an} be the corresponding dual
base. Then we de�ne rational functions uj ∈ Ω[W ], j = 1, . . . , n via

uj : W → Ω

(v1, . . . , vn) 7→ aj(vi).

Then we obtain for every g ∈ G that

wi(g) = (ρg(wi))(e) =

n∑
j=1

aj(ρg(wi))zj(e) =

n∑
j=1

zj(e)(ϕ
∗(uj))(g),

thus wi =
∑n
j=1 zj(e)ϕ

∗(uj). So ϕ∗ is an isomorphism from Ω[X] to I.

To get the equality X = X we prove that for every x ∈ X the corresponding
maximal ideal mx ∈ Ω[X] has a zero y ∈ X. Since ϕ∗ is an isomorphism, this

12



1.3 RESTRICTION OF SCALARS

is equivalent to the existence of a zero g ∈ G of ϕ∗(mx). For that, it su�ces
to prove that for every proper ideal a ⊂ Ω[X] the ideal ϕ∗(a)Ω[G] in Ω[G] is
proper. If not, then there are elements a1, . . . , at ∈ a and f1, . . . , ft ∈ Ω[G] so
that

t∑
i=1

ϕ∗(ai)fi = 1.

Using the projection π from Lemma 1.10(i) and the inclusion ϕ∗(Ω[X]) ⊂ I we
obtain that

1 = π(1) = π(

t∑
i=1

ϕ∗(ai)fi) =

t∑
i=1

π(ϕ∗(ai)fi) =

t∑
i=1

ϕ∗(ai)π(fi).

Now ϕ∗ is invertible, so

1 =

t∑
i=1

ai((ϕ
∗)−1 ◦ π)(fi),

which contradicts the properness of a. So X is closed in W .

1.3 Restriction of scalars

In the theory of algebraic groups we often can restrict ourselves to the case of a
closed subgroup of GLn(k) for some k; however, the arbitrariness of the �eld of
de�nition can be very hard to handle. Now we introduce a powerful tool which
often allows us to consider algebraic groups de�ned over Q. This is called the
restriction of scalars.

Let k be an algebraic number �eld, let Ω be an algebraic closed �eld contain-
ing k. Let G ⊂ GLn(Ω) be an algebraic group de�ned over a �nite separable
extension l of k. We now want to construct an algebraic group G′ whose k-
points G′k are naturally isomorphic to the l-points Gl of G. This can be done by
considering the group Rl/k(G), the group which we obtain from G by restricting
scalars from l to k. The construction of this group is now given; it can be found
in [15, 2.1.2].

Choose a base θ1, . . . , θn of l over k and consider the left regular represen-
tation

ρ : l→ Md(k)

x 7→ lx( : y 7→ xy)

with respect to the chosen base.
Now let Pλ(xij) for λ = 1, . . . ,m be a �nite set of generators of al, where

a ⊂ Ω[x11, . . . , xnn,det(xij)
−1] is the ideal of functions vanishing on G, and let

Pλ have the form

Pλ =
∑

aγ11...γnn
xγ1111 . . . xγnn

nn .

We can associate to each polynomial the �matrix� polynomial

P̃λ(yij) =
∑

ρ(aγ11...γnn
)yγ1111 . . . yγnn

nn ,

13
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where yij = (yαβij ), α, β = 1, . . . , d, are matrices of Md(k), under the identi�ca-
tion Mn(Md(k)) ∼= Mnd(k) given by

((y)ij)α,β 7→ (y)(i−1)d+α,(j−1)d+β .

Furthermore, let Fµ(yαβ) = 0, α, β = 1, . . . , d, µ = 1, . . . , r be a system of linear
equations. Then we obtain that the image of Gl in Mnd(k) under ρ is de�ned
by the equations

Fµ(yαβij ) = 0, i, j = 1, . . . , n, µ = 1, . . . , r

P̃λ(yαβij ) = 0, λ = 1, . . . ,m.

Let G′ be the set of solutions of the above matrices in GLn(Ω). Then G′ is
the desired k-group.

We can interpret G′ as the group of points of G in the k̄-algebra l⊗k k̄. Since
l is separable over k we obtain that there exist d = [l : k] distinct k-embeddings
σ1, . . . , σd : l → k̄. Then we obtain that l ⊗k k̄ ∼= k̄d, where the inclusion of
l in k̄d has the form x 7→ (σ1(x), . . . , σd(x)). Let Gσi denote the subgroup of
GLn(Ω) which is determined by the solutions of σ∗i (f) for all f ∈ al. Then we
conclude that there is a l-rational homomorphism µ : G′ → G such that

µ0 = (µσ1 , . . . , µσd) : G′ → Gσ1 × · · · ×Gσd

is an isomorphism over l̄.
Now let ϕ : G → H be a l-morphism of algebraic l-groups G and H. Then

there is a corresponding k-morphism Rl/k(ϕ) : Rl/k(G) → Rl/k(H). Con-
versely, not every k-morphism can be written as Rl/k(ϕ) for a suitable l-
morphism ϕ. This can be seen by considering a Galois extension l/k with Galois
group G. Then every σ ∈ G is a l-morphism, but the above representation of
Rl/k(G) as the product of the Gσ for all σ ∈ G implies that Rl/k(σ) = idk for
all σ ∈ G. However, we have the following bijection:

Proposition 1.12. Let l be an algebraic number �eld, let k be a sub�eld of l.
Let G be an algebraic l-group. Then there is a bijection

X(G)l ∼= X(G′)k

from the group of l-rational characters on G to the group of k-rational characters
on G′ = Rl/k(G).

Proof. [2, 1.5]. Without loss of generality let σ1 = id. Then we de�ne

G1 =

d⋂
i=2

ker (µσi) .

Since this group is invariant under every isomorphism of C over l, it is de�ned
over l. Moreover, the map µ maps G1 isomorphically onto G. Now de�ne the
morphism ν : G → G1 as the inverse of the restriction of µ onto G1. Then we
obtain that the homomorphism

ν0 = (νσ1 , . . . , νσd) : Gσ1 × · · · ×Gσd → G′

14
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is the inverse of µ0.
Now let χ ∈ Xl(G). Then we clearly have that χ ◦ µ ∈ Xl(G

′), thus the
product of the characters (χ ◦ µ)σ in Xl(G

′) is de�ned over k. So we obtain
a map β : Xl(G) → Xk(G′), χ 7→

∏d
i=1(χ ◦ µ)σi . Moreover, we have a map

α : Xk(G′)→ Xl(G) de�ned by χ 7→ χ ◦ µ. We claim that α is a bijection with
inverse β.

First, let χ ∈ Xl(G), g ∈ G. Then we have

(α ◦ β)(χ)(g) = β(χ)(ν(g))

=

d∏
i=1

(χ ◦ µ)
σi (ν(g))︸ ︷︷ ︸
∈G1

= (χ ◦ µ ◦ ν) (g)

= χ(g)

Now let χ ∈ Xk(G′), let g ∈ G′. Then we obtain

(β ◦ α)(χ)(g) = α (χ)

(
d∏
i=1

µσi (g)

)

= χ

(
ν

(
d∏
i=1

µσi (g)

))

= χ

(
d∏
i=1

νσiµσi(g)

)
= χ (g)

So we obtain that
Xl(G) ∼= Xk(G′).
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2 Results from topology and measure theory

2.1 Properness

Let f : X → Y be a continuous map between topological spaces X, Y and let
K ⊂ Y be compact. It is well known that the preimage f−1(K) ⊂ X is not
compact in general. Now we want to analyse continuous maps which satisfy the
above condition. For further information see [4, �10].

De�nition. Let X, Y be topological spaces, let f : X → Y be a continuous
map. We call f proper if f is closed and for all points y ∈ Y the preimage
f−1(y) ⊂ X is compact.

So far we have de�ned a proper map only by considering preimages of points;
however, the following Proposition shows that proper maps satisfy the desired
property.

Proposition 2.1. Let f : X → Y be a proper map between topological spaces
X and Y . Then for every compact set K ⊂ Y the preimage f−1(K) ⊂ X is
compact.

Proof. LetK ⊂ Y be compact, let
⋃
i∈I Ui be an open covering of f

−1(K). Since
f is proper, it follows that for every y ∈ K the preimage f−1(y) ⊂ f−1(K) is
compact. Thus, there exists a �nite subcover

⋃
i∈Iy Ui of

⋃
i∈I Ui for f

−1(y),
where Iy is a �nite subset of I. The set X \

⋃
i∈Iy Ui is closed in X and f is

closed, hence f(X \
⋃
i∈Iy Ui) is closed in Y. Therefore, the set

Vy := Y \ f

X \ ⋃
i∈Iy

Ui


is open in Y . Now we obtain

f−1(y) ⊂
⋃
i∈Iy

Ui ⇒ y 6∈ f

X \ ⋃
i∈Iy

Ui

⇒ y ∈ Y \ f

X \ ⋃
i∈Iy

Ui

 ,

so y ∈ Vy. Since K =
⋃
y∈K , it follows that K ⊂

⋃
y∈K Vy. Now K is compact,

so there exist elements x1, . . . , xm ∈ K such that K ⊂
⋃m
j=1 Vxj . Then

f−1(K) ⊂ f−1

 m⋃
j=1

Vxj

 = f−1

 m⋃
j=1

f
X \ ⋃

i∈Ixj

Ui

{

 =

m⋃
j=1

⋃
i∈Ixj

Ui,

and the last union is a �nite subcover of
⋃
i∈I Ui. Thus, K is compact.

In chapter 4.5 we will be in the following situation: Given an injective map
i : H → G between topological groups H and G, our aim will be to show that
the map i is proper. As a �rst step, we will reformulate this due to the following
Proposition.

Proposition 2.2. Let f : X → Y be a continuous, injective map between topo-
logical spaces X and Y . Then the following are equivalent:
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(i) f is proper.

(ii) f is closed.

(iii) f is a homeomorphism onto a closed subspace of Y .

Proof. (i)⇒ (ii): follows from the de�nition.

(ii) ⇒ (iii): The space X is closed, so f(X) ⊂ Y is closed. From the
assumptions we obtain that f̄ : X → f(X) is continuous and bijective.
Now let g : f(X)→ X denote the inverse function of f̄ and let A ⊂ X be
an arbitrary closed set. Then we get g−1(A) = f̄(A) is closed in Y , since
f is closed. Thus, g is continuous.

(iii) ⇒ (i): The map f is closed as a homeomorphism onto a closed
subspace of Y . Now let y ∈ Y . If y ∈ Y \ f(X), we have f−1(y) = ∅ is
compact. Now let y ∈ f(X). Since f is bijective, there exists an element
x ∈ X with f(x) = y. Thus, f−1(y) = x is compact.

So we will use part (iii) of the Proposition to show that the map i : H → G
is proper. However, the topological groups H and G have further properties in
our setting. Both of them are locally compact, σ-compact and Hausdor�, and
the map i induces an action of H on the space G. In this case we are able to
show that the map i is always a homeomorphism onto its image. Before that,
we need a Lemma from topology which is usually known as the Baire Category
Theorem.

Lemma 2.3. Let M be a locally compact Hausdor� space. Let {Mi}∞i=1 be a
countable set of closed subsets of M with M =

⋃∞
i=1Mi. Then there is a positive

integer i0 ∈ N such that Mi0 contains an open subset of M .

Proof. Assume that Mi contains no open subset of M for all i ∈ N. Since M is
locally compact, we can �nd an open subset U1 of M such that U1 is compact.
Now U1 6⊂ M1, so the open set U1 \M1 is non-empty. Now choose an element
a1 ∈ U1 \M1. Since M is locally compact, we can �nd a neighbourhood U2 of
a1 such that U2 ⊂ U1 \M1. Then U2 ∩M1 = ∅. Now U2 6⊂ M2, so the open
set U2 \ M2 is non-empty. Then we choose an element a2 ∈ U2 \ M2 and a
neighbourhood U3 of a2 with U3 ⊂ U2 \M2, thus U3 ∩M2 = ∅. Inductively, we
get a sequence of compact, non-empty sets

U1 ⊂ U2 ⊂ · · · ⊂ Un ⊂ · · · .

Since all Ui, i = 1, . . . n, are non-empty, there is an element b ∈
⋂∞
i=1 Ui. But

then b 6∈
⋃∞
i=1Mi, which contradicts M =

⋃∞
i=1Mi.

Now we are able to prove the Theorem which allows us to simplify the proof
of the properness of the map i.

Theorem 2.4. Let G be a locally compact group, let X be a locally compact
Hausdor� space. Suppose G acts on X continuously and transitively. For any
x ∈ X let Gx denote the isotropy group of x under the action of G. If G is
σ-compact, then the map

ω : G/Gx → X

is a homeomorphism.
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Proof. Let π : G→ G/Gx denote the canonical projection. By de�nition of the
quotient topology on G/Gx, the map π is open. Let ϕ : G→ X, g 7→ g.x be the
orbit map of x. Since G acts continuously, the map ϕ is continuous. Moreover
ω ◦ π = ϕ, so it su�ces to prove that ϕ is an open map.

Let U be an open subset of G, let u ∈ U . Since G is locally compact, we
can choose a compact neighbourhood V of 1 ∈ G such that V is symmetric
and uV V ⊂ U . Now G is σ-compact, so there is a countable set of com-
pact sets {Wi}∞i=1 such that G =

⋃∞
i=1Wi. Each Wi is contained in the union⋃

wi∈Wi
wiV̊ of open sets. Since Wi is compact, we can �nd �nitely many el-

ements w1
i , . . . , w

ni
i such that Wi ⊂

⋃ni

j=1 w
j
i V̊ for all i ∈ N. So if we choose

{yk}∞k=1 = {wji }i,j , then G is covered by the compact sets {ykV }∞k=1.
The G-action on X is transitive, so we have

X =

∞⋃
k=1

ϕ(ykV ).

Now ϕ(ykV ) is compact as the continuous image of the compact set ykV for all
k ∈ N. Moreover, since the map X → X, x 7→ g.x is a homeomorphism for all
g ∈ G, we obtain that ϕ(ykV ) is homeomorphic to ϕ(V ) for all k ∈ N. Now X
is Hausdor�, so ϕ(ykV ) is closed for all k ∈ N. By Lemma 2.3 there is a positive
integer m ∈ N such that ϕ(ymV ) contains an open subset of X. Now ϕ(ymV ) is
homeomorphic to ϕ(V ), so also ϕ(V ) contains an open subset of X. Therefore,
there is an element u1 ∈ V such that ϕ(u1) is an inner point of ϕ(V ). This
implies that ϕ(e) is an inner point of ϕ(u−1

1 V ) and thus ϕ(u) is an inner point
of ϕ(uu−1

1 V ). But we have

uu−1
1 V ⊂ uV V ⊂ U,

so ϕ(u) is an inner point of ϕ(U). Thus, every point ϕ(u) ∈ ϕ(U) is inner, i.e.
ϕ(U) is open.

Let G be a topological group, let X be a topological space. Assume that G
acts on X continuously. Now we want to analyse the situation when the action
of G on X is proper.

De�nition. Let G be a topological group operating continuously on a topolog-
ical space X. Then G is said to operate properly on X if the mapping

θ : G×X → X ×X
(g, x) 7→ (x, g.x)

is proper.

Proposition 2.5. Let G be a locally compact group operating continuously on
a Hausdor� space X. Then G operates properly on X if and only if for each
pair of points (x, y) ∈ X ×X there is are neighbourhoods Vx of x and Vy of y
such that the set

K = {s ∈ G | s.Vx ∩ Vy 6= ∅}

is contained in a compact set.

Proof. [4, �4.4, Prop. 7]
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In particular, letG be a discrete group operating continuously on a Hausdor�
space X. Then G operates properly on X if and only if for each pair of points
(x, y) ∈ X ×X there is are neighbourhoods Vx of x and Vy of y such that the
set {s ∈ G | s.Vx ∩ Vy 6= ∅} is �nite.

Proposition 2.6. Let G be a discrete group operating properly on a Hausdor�
space X. Let x be a point of X and Gx be the stabilizer of x. Then:

(i) The subgroup Gx is �nite and there is an open subset U ⊂ X, containing
x, which is stable under Gx, and on which the equivalence relation induced
by the relation de�ned by G is the equivalence relation de�ned by Gx.

(ii) The canonical mapping

U/Gx → X/G

is a homeomorphism of U/Gx onto an open neighbourhood of the class of
x in X/G.

Proof. [4, �4.4., Prop. 8]

2.2 Restricted topological product and Haar measure

In this section we want to introduce another de�nition from topology which
is related to the product of topological spaces. Let {Xλ}λ∈Λ be a family of
topological spaces, let X =

∏
λ∈ΛXλ. Then from the Theorem of Tychono� we

know that X is compact if and only if Xλ is compact for all λ ∈ Λ. However,
the in�nite product of locally compact spaces is not locally compact in general.
In particular, the usual in�nite product G =

∏
λ∈ΛGλ of locally compact topo-

logical groups {Gλ}λ∈Λ is not necessarily locally compact, so we cannot de�ne
a Haar measure on G. Therefore we will introduce the notion of a �restricted
topological product� of topological spaces, which remains locally compact if its
factors are locally compact. For more information see [4, I, �4].

De�nition. Let {Xλ}λ∈Λ be a family of topological spaces indexed by an ar-
bitrary index set Λ. Let Λ0 ⊂ Λ be a �nite subset of Λ. For all λ 6∈ Λ0 let Xλ

contain an open, compact subspace Yλ ⊂ Xλ. Then the restricted (topological)
product X =

∏
λ∈Λ (Xλ : Yλ) of the Xλ with respect to the Yλ is de�ned as the

set

X = {(xλ)λ∈Λ | xλ ∈ Yλ for all λ ∈ Λ \ S, for all �nite S ⊂ Λ containing Λ0},

endowed with a topology de�ned as follows: the open sets of X are of the form

U =
∏
λ∈S

Uλ ×
∏
λ 6∈S

Yλ,

where S is a �nite subset of Λ containing Λ0 and Uλ ⊂ Xλ are open subsets of
Xλ for all λ ∈ S. Otherwise said, an element x = (xλ) of the restricted product
of Xλ with respect to the Yλ is an element of

∏
λ∈ΛXλ with xλ ∈ Yλ for almost

all λ.
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For each �nite subset S ⊂ Λ with Λ0 ⊂ S we de�ne the set

XS =
∏
λ∈S

Xλ ×
∏
λ6∈S

Yλ,

endowed with the usual product topology. If S1 and S2 are such sets with
S1 ⊂ S2, then we have XS1

⊂ XS2
. Thus the sets {XS} is a directed system.

Then it clearly follows that X is the direct limit

X = lim−→SXS ,

where the limit is taken over all �nite subsets S as above.
As we have said at the beginning of this section the reason for not considering

the usual product X =
∏
λ∈ΛXλ is that for locally compact spaces Xλ the

product space X is not locally compact in general. More precisely, we have the
following Proposition.

Proposition 2.7. (i) Let {Xλ}λ∈Λ be a family of locally compact spaces such
that Xλ is compact for all but a �nite number of indices. Then the product
space X =

∏
λ∈ΛXλ is locally compact.

(ii) Conversely, if the product of a family {Xλ}λ∈Λ of non-empty topological
spaces is locally compact, then the factors Xλ are compact for all but a
�nite number of indices, and the factors which are not compact are locally
compact.

Proof. [4, I.�9.7, Prop.14]

We will use this in the following situation. Let {Gλ}λ∈Λ be a family of
locally compact groups and Hλ be open compact subgroups for all λ ∈ Λ \ Λ0,
where Λ0 is a �nite subset of Λ. Then the restricted product

G =
∏
λ∈Λ

(Gλ : Hλ)

itself becomes a locally compact topological group by component wise opera-
tions. Now we know that there exists a Haar measure on G, which can be
constructed out of the factors Gλ resp. Hλ. For more information about Haar
measures see the Appendix.

As a �rst step, we consider �nite products of locally compact groups. Let
Gi be such groups with Haar measures µi for i = 1, 2. Then G has a unique
measure

µ = µ1 × µ2

such that for any µi-measurable subsetsMi ⊂ Gi, i = 1, 2, the setM = M1×M2

is µ-measurable and
µ(M) = µ1(M1)µ2(M2).

Now let {Gλ}λ∈Λ be a family of locally compact groups with Haar measures
µλ. Moreover, let Λ0 ⊂ Λ be a �nite subset so that there is an open compact
subgroup Hλ ⊂ Gλ for all λ ∈ Λ \ Λ0. Since the Hλ are compact, we can
normalize µλ in a way so that µλ(Hλ) = 1 for all λ ∈ Λ \ Λ0. Then for every
�nite subset S ⊂ Λ with Λ0 ⊂ S we obtain a measure µS on

GS =
∏
λ∈S

Gλ ×
∏
λ 6∈S

Hλ,
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2 RESULTS FROM TOPOLOGY AND MEASURE THEORY

which is the in�nite product of the µλ. It can easily be shown that if S1, S2 are
�nite subsets of Λ containing Λ0 and S1 ⊂ S2, then we have also GS1

⊂ GS2

and thus µS2
|GS1

= µS1
. So using countable additivity of the Haar measure and

the fact that G is the direct limit of the GS with S as above, we obtain a left
Haar measure µ on G. Note that we could also have forced the product∏

λ∈Λ\Λ0

µλ(Hλ)

to be absolutely convergent instead of using the condition µλ(Hλ) = 1.
So we have constructed Haar measures for restricted products of locally

compact groups. However, later we will analyse quotients of the formX = G/H,
where G is a locally compact group and H ⊂ G a closed subgroup, endowed
with the quotient topology induced from G. In particular, we try to �nd criteria
when this quotient has �nite invariant volume, i.e., under which conditions there
exists a G-invariant Borel measure β on X so that β(X) is �nite. The next
Theorem gives a relation between the modulus of G and H and the existence of
a left-invariant Borel measure on X.

Theorem 2.8. A nonzero G-invariant Borel measure β on X = G/H exists if
and only if ∆G|H = ∆H . It is uniquely determined up to a positive scalar.

Proof. The proof can be found in [5, ch. VII, �2, n◦6, Corr. 2]

In particular, if H is discrete, then there exists a left-invariant measure on
X if and only if G is unimodular. In general, we can �nd a connection between
the measure β on the quotient G/H and the Haar measures µ and ν on G and
H respectively. The rest of this chapter follows [15, ch. 3.5].

For that, let H be a closed subgroup of G and consider a function f which
is integrable over G. For all g ∈ G we put

ϕ(g) =

∫
H

f(gh)dν(h).

Then ϕ is a function on G which is constant on cosets modulo H, thus can be
regarded as a function on G/H. We obtain the following formula:∫

G/H

(∫
H

f(gh)dν(h)

)
dβ(gH) =

∫
G

f(g)dµ(g).

Another important ingredient for the analysis of the volume of X = G/H
is needed. We say that a subset F ⊂ G is a fundamental domain with respect
to H if π|F is bijective, where π : G → G/H denotes the canonical projection.
In the given situation, we can always �nd a µ-measurable fundamental domain
F ⊂ G. Then the above formula yields∫

X

f(x)dβ(x) =

∫
F

f(π(g))dµ(g),

for any function f integrable over X = G/H. It can be shown that this formula
also holds if we use a more general notion of a fundamental domain. We say
that F ⊂ G is a fundamental domain for H in G if
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(a) G = FH

(b) F ∩ Fh has measure 0 for all h ∈ H \ {e}

Such a situation is given if F is a closed subset of G with boundary of measure 0,
covering G/H, and such that the H-translates of F have points in common only
at the boundary. Now if we take f ≡ 1 in the above integral identity, we obtain
that X has �nite invariant measure if and only if there exists a measurable
fundamental domain F ⊂ G relative to H having �nite measure. Since every
measurable set covering X contains a fundamental domain, we obtain that X
has �nite measure if and only if it is covered by a set with �nite measure. This
will be very important in chapter 3.3.

We will see that it is not possible in general to construct fundamental do-
mains explicitly; however, in many cases we can �nd a good approximation for
it. A subset Ω ⊂ G is called a fundamental set of G with respect to H if

(a) G = ΩH

(b) Ω−1Ω ∩H is �nite.

If we can �nd such a fundamental set we may not be able to compute the volume
vol(X) of X = G/H. But as above, it can be decided whether it is �nite or
not. Indeed, if Ω has �nite invariant volume, then from above also the volume
of X is �nite. Conversely, let vol(X) be �nite and let F ⊂ Ω be a measurable
fundamental domain in the sense of the second de�nition. Then we have

Ω ⊂ ∪h∈H0
Fh,

where H0 is a �nite subset of H. Thus, vol(Ω) is �nite. So we obtain that G/H
has �nite volume if and only if there exists a fundamental set Ω ⊂ G of �nite
volume.

Our aim in the last part of this section is to describe explicitly Haar measures
in the cases of our interest. First, we have the following Proposition which
applies to the Iwasawa decomposition of real algebraic groups.

Proposition 2.9. Let G be an unimodular locally compact group and let H, A
and U be closed subgroups of G with left Haar measures ν, ρ and σ respectively
such that the product morphism H ×A×U → G is a homeomorphism. Assume
that A normalizes U and that A and U are unimodular. Then

µ = modU (inn(a)|U )ν(h)× ρ(a)× σ(u)

is a left Haar measure on G.

Proof. The proof can be found in [11, Prop. 2.3]

Another possibility to obtain Haar measures on locally compact groups is
the use of di�erential forms. Let k be a �eld, let X be a smooth n-dimensional
algebraic k-variety. Then a k-system of local parameters in the neighbourhood
of x0 in X is a system of k-rational functions x1, . . . , xn de�ned at x0 such that
the di�erential dx0

ϕ of the function

ϕ : X → An

x 7→ (x1(x), . . . , xn(x))
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2 RESULTS FROM TOPOLOGY AND MEASURE THEORY

is an isomorphism of tangent spaces. Now a k-di�erential form is an expression
of the form ω = f(x)dx1 ∧ · · · ∧ dxn, where f : X → k is a k-rational function.
It can be shown that for a connected k-group G with n = dim(G) there always
exists a nonzero n-dimensional k-rational left-invariant di�erential form ω on
G, which is unique up to a multiplicative constant.

Example. Let G = SL2 over Q. As a local system of parameters of 1 we can
use the coordinate functions x, y, z : G → A1, which associates to a matrix

X =

(
x y
z t

)
∈ GQ, with t = 1+yz

x , its corresponding coordinates. Now let

ω = f(X)dx ∧ dy ∧ dz

be a Q-rational left-invariant di�erential form, where f : GQ → Q. Let A =(
a b
c 1+bc

a

)
∈ GQ. Since ω is left-invariant, we conclude that

f(X) dx ∧ dy ∧ dz

= f(AX) d(ax+ bz) ∧ d(ay + b
1 + yz

x
) ∧ d(cx+

1 + bc

a
z)

= f(AX)

(
(a dx+ b dz) ∧ (a dy + b d(

1 + yz

x
)) ∧ (c dx+

1 + bc

a
dz)

)
= f(AX)dx ∧ dz ∧ (−a dy +

b(1 + yz)

x2
dx− bz

x
dy − by

x
dz)

= f(AX)(
ax+ bz

x
) dx ∧ dy ∧ dz,

thus f(AX)(ax+ bz) = f(X)x, where the multiplication is that of Q. Since we
have that X11 = x and (AX)11 = ax+ bz, we can write the last equation as

f(X) · x(X) = f(AX) · x(AX),

where the multiplication is again in Q. Since this holds for all A ∈ GQ we
conclude that f has the form f = λ

x for an element λ ∈ Q.
Now consider the Iwasawa decomposition for SL2(R), which is obtained by

intersecting the factors of the Iwasawa decomposition of GL2(R) with SL2(R).
Then we can write every matrix g ∈ GR as a product of matrices

g =

(
cos(ϕ) − sin(ϕ)
sin(ϕ) cos(ϕ)

)(
α 0
0 α−1

)(
1 u
0 1

)

with α > 0. Now take α, ϕ and u as coordinates in GR. Then we see that

x = α cos(ϕ),

y = αu cos(ϕ)− α−1 sin(ϕ),

z = α sin(ϕ).
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Thus we obtain

ω =
λ

x
dx ∧ dy ∧ dz

=
λ

α cos(ϕ)
d(α cos(ϕ)) ∧ d(αu cos(ϕ)− α−1 sin(ϕ)) ∧ d(α sin(ϕ))

= − λ

α cos(ϕ)
(cos(ϕ)dα− α sin(ϕ)dϕ) ∧ (sin(ϕ)dα+ α cos(ϕ)dϕ)∧

d(αu cos(ϕ)− α−1 sin(ϕ))

=
λ

α cos(ϕ)
(α cos2(ϕ) + α sin2(ϕ))dϕ ∧ dα ∧ d(αu cos(ϕ)− α−1 sin(ϕ))

=
λ

α cos(ϕ)
α2 cos(ϕ)dϕ ∧ dα ∧ du

= λαdϕ ∧ dα ∧ du.

We will use this Q-di�erential form for SL2 to compute the volume of the
fundamental domain for SL2(Z) in SL2(R) in chapter 3.3 and for the adelic case
in chapter 4.4.
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3 Results from number theory

3.1 Algebraic number �elds

In this �rst subsection we brie�y want to review the theory of algebraic number
�elds. More information about the ring of integers and Dedekind rings can be
found in [10, ch. X], for the theory of valuations see [12, ch. XII.4] and for the
completions with respect to the valuations see [7].

Let k be an algebraic number �eld. Then the ring of integers in k is denoted
byOk, which is free Z-module of rank [k : Q] and a Dedekind ring. A (fractional)
ideal a of k is a Ok-submodule of k so that there is an element x ∈ Ok with
xa ⊂ Ok. Every fractional ideal has a unique decomposition into a product of
prime ideals. In particular, every ideal a of Ok can be written as

a =
∏
p

prp(a),

where the nonnegative integer rp(a) is zero for almost all p and where the prod-
uct runs over all prime ideals p of Ok. The set Jk of all fractional ideals of k
form a group under ideal multiplication; the inverse of the ideal a is given by
a−1 = {x ∈ k | xa ⊂ Ok}. Moreover, the set of all principal ideals (more explic-
itly, the Ok-modules xOk with x ∈ k∗), denoted by Pk, is a normal subgroup
of Jk. The quotient group Ck = Jk/Pk is called the class group of k, which is
always a �nite group; its cardinality is called the class number hk of k.

For any ideal a ⊂ Ok we denote by N(a) the cardinality of Ok/a, which is
always �nite. For a prime ideal p, the resulting �eld is called the residue �eld of
p. Let B = {v1, . . . , vn} be a Q-base of k. Then B is an integral base if vi ∈ Ok
for all i = 1, . . . , n. Since every Z-base of Ok is also a Q-base of k, we can always
choose integral bases for algebraic number �elds.

Now we want to obtain several arithmetic properties of the ring of integers
Ok. For that, it is useful to consider completions of k with respect to several
valuations. For further information see [12, ch. XII.4].

De�nition. A valuation v of an algebraic number �eld k is a map v : k → R
which satis�es the following conditions:

(1) v(x) ≥ 0 for all x ∈ k and v(x) = 0⇔ x = 0;

(2) v(xy) = v(x)v(y) for all x, y ∈ k;

(3) v(x+ y) ≤ v(x) + v(y) for all x, y ∈ k

If we replace condition (3) by the stronger condition

(3') v(x+ y) ≤ max{v(x), v(y)} for all x, y ∈ k,

then we call the valuation non-archimedean, otherwise archimedean.

Any valuation v on an algebraic number �eld k induces a metric dv via
dv(x, y) = v(x − y) for all x, y ∈ k. By the topology generated by v we
mean the topology induced by the metric dv. We say that two valuations are
equivalent if they generate the same topology on k. We now want to construct
(inequivalent) valuations for any algebraic number �eld k.
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First, we have the usual archimedean value |.|∞ on Q, which can be extended
to k by setting |x|∞ = Nk/Q(x)n for all x ∈ k, where n = [k : Q] and Nk/Q(x)
denotes the norm of x, i.e., the determinant of the left-multiplication with x ∈ k.
Now let G = Gal(Q̄/Q) be the absolute Galois group of Q. By restricting every
element σ ∈ G to k, we obtain n distinct embedding σi : k → Q̄. Then the maps
|.|i : k → R, de�ned by |x|i := |σi(x)|∞, are again archimedean valuations. A
valuation |.|i is called real (resp. complex) if σi(k) ⊂ R (resp. σi(k) 6⊂ R). If σi
is an embedding of k into C, then σi is also a complex embedding. We order the
archimedean valuations as follows: Let s (resp. 2t) be the number of real (resp.
complex) embeddings of k into C, so s + 2t = n. We order the embeddings in
such a way that σi is real for 1 ≤ i ≤ s, σi = σi+t for s+ 1 ≤ i ≤ t.

Non-archimedean valuations can be constructed as follows: Let p be a prime
ideal in Ok. For any x ∈ k∗ we consider the (fractional) ideal (x) (i.e., the
Ok-submodule xOk). Then this ideal has a unique factorization into prime
ideals

(x) =
∏
p

prp(x)

with suitable integers rp(x) which are zero for almost all p. Now de�ne the map
|.|p : k → R via |x|p = N(p)−rp(x), where N(p) = |Ok/p|. Then the map |.|p is
a non-archimedean valuation. We identify a prime ideal p with the valuation
corresponding to it.

The valuations constructed above are exactly all non-trivial inequivalent val-
uations of k. We de�ne the set Vk as the set of equivalence classes of valuations
of k and call them the places of k. The archimedean (resp. non-archimedean)
valuations are denoted by V∞k (resp. V fk ) and are called the in�nite (resp. �-
nite) places. Now we want to consider the completion kv of k with respect to
a valuation v ∈ Vk. If v ∈ V∞k , we simply get kv = R, if v is a real place, or
kv = C, if v is a complex place.

For v ∈ V fk , let p denote the prime ideal corresponding to v. The �eld kv
is a locally compact, �nite extension of Qp, the �eld of p-adic numbers, where
(p) = p ∩ Z. The closure of the ring of integers Ok in kv is the valuation ring

Ov = {x ∈ kv | |x|v ≤ 1},

called the ring of v-adic integers. The valuation ring is a free module over Zp,
the ring of p-adic integers, whose rank equals the dimension [kv : Qp]; thus, Ov
is an open, compact subring of kv. Furthermore, Ov is a local ring with maximal
ideal

pv = {x ∈ kv | |x|v < 1}

(called valuation ideal) and the group of units

Uv = Ov \ pv.

The valuation ideal is a principal ideal, any generator π of pv is called a uni-
formizing parameter. A uniformizing parameter has the property that v(π)
generates the value group Γ = v(k∗v), and any two uniformizing parameters
di�er by an element of Uv.

Example. As an important example, we want to look at the case k = Q. The
ring Ok is clearly Z itself. The only non-trivial archimedean valuation is the
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usual euclidean value |.|∞ on Q, so V∞Q consists of only one element. Since Z is a
principal ideal domain, every prime ideal p is of the form p = (p) for a uniquely
determined prime p ∈ Z; thus the decomposition into prime ideals corresponds
to the factorization into primes. Any element x ∈ Q can be uniquely written
as x = prp(x) s

t , where (s, t) = (p, t) = (p, s) = 1, for any prime p. The norm of
the ideal (p) is the cardinality of the ring Z/pZ, thus equals p. Now the p-adic
value on Q is de�ned by |x|p = N(p)−rp(x) = p−rp(x). The completition of Q
with respect to |.|p is the �eld Qp, and the valuation ring Op equals Zp. The
valuation ideal is pZp and a uniformizing parameter is given by π = p. The
group of units Up are the elements in Zp with p-adic value 1, thus the elements
x = s

t ∈ Q whose unique prime factorization contains no power of p.

3.2 Adeles and Ideles

Now we try to gain more information about the ring of integers Ok of an alge-
braic number �eld k by analysing the completions kv for v ∈ Vk. By considering
only one valuation we do not get much information; however, by looking at all
completions at the same time we are able to prove several important results.
This is the idea of the ring of adeles, which we now want to introduce. The
proofs of the results in this chapter can be found in [7].

De�nition. Let k be an algebraic number �eld. Then {kv}v∈Vk
is a family of

locally compact topological rings. Moreover, for all v ∈ V fk there is an open
compact subring Ov of kv. Then we de�ne the ring of adeles Ak over k as the
restricted product

Ak =
∏
v∈Vk

(kv : Ov),

together with component wise operations, where the sets from the de�nition of
the restricted product are Λ = Vk and Λ0 = V∞k .

By de�nition, Ak admits a topology with respect to which Ak is turned into
a topological ring. Moreover, since the kv are locally compact, the adele ring
Ak is a locally compact ring. The open sets of Ak are of the form

W =
∏
v∈S

Wv ×
∏
v 6∈S

Ov,

where S is a �nite subset of Vk containing V∞k and Wv is an open subset of
kv for all v ∈ S. More generally, we can de�ne for such a subset S the ring of
S-adeles Ak(S) as the set

Ak(S) =
∏
v∈S

kv ×
∏
v 6∈S

Ov,

together with the component wise operations and the induced topology from
the product topology on

∏
v∈Vk

kv.
Let x ∈ k. Since x ∈ Ov for almost all v ∈ Vk, we can embed the �eld k

into Ak by the diagonal embedding k ↪→ Ak, x 7→ (x, x, . . . ). For matters of
simpli�cation, we usually identify k with its image in Ak. As a �rst result we
can state the following Proposition.

Proposition 3.1. k is a discrete subring of Ak.

29



3 RESULTS FROM NUMBER THEORY

Proof. [7, Theorem 3-2-3]

Now it is natural to ask whether we can �nd a "su�ciently nice" subset Ω
so that the k-translates of Ω cover Ak.

De�nition. Let A be a commutative topological group, let Γ a discrete sub-
group. Let Ω ⊂ A be a compact subset of A. Ω is called a fundamental set for
Γ in A if

(1) ΩΓ = A

(2) for all γ1, γ2 ∈ Γ, γ1 6= γ2 the intersection of the translates γ1Ω ∩ γ2Ω of Ω
is �nite.

If the intersection in (2) is empty, then Ω is called a fundamental domain.

So our aim is to �nd a fundamental domain (or at least a fundamental set)
for k in Ak with respect to the additive structure. As a �rst step, we can state
the following Lemma.

Lemma 3.2. Let S ⊂ Vk be a �nite subset of k-primes containing V∞k . Then

Ak(S) + k = Ak.

Proof. [7, Proposition 3-2-5]

So Ak(S) has the desired covering property of a fundamental set for every
�nite subset S ⊂ Vk containing V∞k . However, the second property is not
satis�ed in general. After restricting the in�nite part of the adeles we obtain
the following result, which shows that {

∑n
i=1 tiθi | 0 ≤ ti < 1}×

∏
v∈V f

k
Ov is a

fundamental domain for k in Ak, where θ1, . . . , θn is an integral base for Ok.

Proposition 3.3. Every adele can be expressed uniquely in the form s+t, where
t ∈ k, s ∈ Ak(∞) and the in�nite component of s is of the form

n∑
i=1

tiθi, for 0 ≤ ti < 1,

where {θ1, . . . , θn} is an integral basis for k.

Proof. [7, Proposition 3-2-6]

Furthermore, we have the following theorem.

Theorem 3.4. The quotient Ak/k is compact.

Proof. [7, Theorem 3-2-4]

So we have gained some topological information about the structure of k in
Ak.

Before we introduce another construction concerning the multiplicative group
O∗k we state an important result in the setting of adeles. It gives a connection
between all the v-adic valuations of the elements of k∗.
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Theorem 3.5 (Product Formula). Let x ∈ k∗. Then∏
v∈Vk

|x|v = 1.

Proof. [7, Theorem 3-2-7]

So we have seen that the adele ring contains much information about the
additive group Ok of k. It is natural to ask if we can achieve a similar construc-
tion for the multiplicative group O∗k. We de�ne the idele group Jk over k as the
restricted product

Jk =
∏
v∈Vk

(k∗v : Uv),

where k∗v is the multiplicative subgroup of kv and Uv the groups of units in Ov.
Note that we again have Λ = Vk and Λ0 = V∞k in the notation of chapter 2.2.
The ideles are exactly the invertible elements of the adele ring; however, the
topology on Jk is not the induced topology from Ak, it is �ner than that of Ak.
But there is a connection between Ak and Jk; namely, the idele group Jk can be
viewed as the general linear group GL1(Ak) with entries in the ring of adeles.
This fact will be made clearer in chapter 4.1.

As in the adelic case, the subgroup k∗ can be embedded into Jk diagonally.
In this way we get the analogous result as before:

Proposition 3.6. k∗ is a discrete subgroup of Jk.

Proof. [7, Theorem 3-3-1]

So the group k∗ plays the same role in Jk as k does in Ak; however, it can
be shown that the quotient Jk/k∗ is not compact. Therefore, our next aim will
be to obtain the structural description of this quotient. For that, we need the
notion of the idelic norm.

De�nition. The idelic norm is the map |.| : Jk → R>0 de�ned by

a = (av)v 7→ |a| =
∏
v∈Vk

|av|v.

Since av ∈ Uv for almost all v ∈ V , the v-adic value |av|v equals 1 for almost
all v ∈ V . Thus, the idelic norm is well de�ned. In addition, for a, b ∈ Jk it
follows immediately from the de�nition that |ab| = |a||b| and |1| = 1, so the
idelic norm is a group homomorphism from Jk into the multiplicative group R∗.
This in fact is a homomorphism of topological groups, which follows from the
next result:

Lemma 3.7. The idelic norm map is continuous.

Proof. [7, Proposition 3-3-2]

Now let J(1)
k = {a ∈ Jk | |a| = 1} be the subgroup of Jk of ideles with norm

1. Then we have the exact sequence

1→ J(1)
k → Jk → R>0 → 1

of topological groups. From the product formula it follows that k∗ ⊂ J(1)
k . Now

we obtain the following result:
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Theorem 3.8. The quotient J(1)
k /k∗ is compact.

Proof. [7, Theorem 3-3-5]

Another fact which is strongly related to the above theorem is that we can
decompose the ideles as Jk = k∗(R>0 ×

∏
v∈V f

k
Uv).

The reason why we have to reduce to the subgroup J(1)
k in this case will be

made clear at the beginning of chapter 4.5.

3.3 Arithmetic subgroups and reduction theory

One aim of this diploma thesis is to obtain information about the topological
structure of the quotient GA/Gk for an algebraic number �eld k. In particular,
we try to �nd criteria for which this quotient is compact, has �nite invariant
volume respectively. We will see in chapter 4 that this is strongly connected to
the real case, i.e., we have to analyse the quotient GR/GZ. The following chapter
is dedicated to the de�nition of the term arithmetic group and the development
of some reduction theory for GR with respect to GZ. The stated results can be
found in [15, ch. 4].

First, we give the de�nition of an arithmetic subgroup of an algebraic k-
group, where k is an algebraic number �eld. For that, let GOk

denote the
intersection Gk ∩GLn(Ok).

De�nition. Let G ⊂ GLn(C) be an algebraic k-group. A subgroup Γ ⊂ G is
called arithmetic if it is commensurable with GOk

, i.e., if Γ ∩ GOk
has �nite

index in both Γ and GOk
.

It is notable that the de�nition of the Ok-points of G depends on the reali-
sation of G as a subgroup of GLn(k). More precisely, let V be a k-vector space
on which G operates. We must �x a base e1, . . . , en of VOk

, or equivalently, a
lattice L = Oke1 + · · ·+Oken. Then GOk

is the stabilizer GLOk
of L, i.e.,

GLOk
= {g ∈ Gk | g(L) = L}.

The following Proposition guarantees that every choice of a lattice delivers an
arithmetic group.

Proposition 3.9. Let ϕ : G → G′ be a k-isomorphism of k-groups. If Γ is an
arithmetic subgroup of G, then ϕ(Γ) is an arithmetic subgroup of G′.

Proof. [15, Prop. 4.1]

So we obtain that arithmetic subgroups are mapped onto arithmetic sub-
groups by k-isomorphisms. As a corollary, we can deduce that for an arithmetic
subgroup Γ ⊂ G and for every g ∈ Gk also the group gΓg−1 is an arithmetic
group. We have also seen that every Ok-lattice in Vk induces an arithmetic
subgroup of Gk. This in fact gives rise to a bijective correspondence, which is
stated in the next Proposition.

Proposition 3.10. Let G ⊂ GLn(C) be an algebraic k-group and Γ ⊂ Gk an
arithmetic subgroup. Then there exists a Γ-invariant lattice L ⊂ kn. Moreover,

[GLOk
: Γ] <∞.
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Proof. [15, Prop. 4.2]

It should be noted that we often can restrict ourselves to the case k = Q. To
see that let θ1, . . . , θn be an integral base for Ok. Applying restriction of scalars
with the chosen base we obtain a Q-group G′ = Rk/Q(G) with GOk

∼= G′Z. Thus
we will develop a reduction theory �rst for the case GR/GZ.

De�nition. Let Γ be an arithmetic subgroup of GQ, where G is an algebraic
Q-group. An open subset Ω ⊂ GR is called a fundamental domain for Γ in GR
if

(1) K Ω = Ω, where K is a suitable maximal compact subgroup of G;

(2) Ω̄Γ = GR;

(3) Ω ∩ Ωγ = ∅ for all γ ∈ Γ, γ 6= e.

A subset Ω ⊂ GR is called a fundamental set for Γ in GR if

(1) K Ω = Ω, where K is a suitable maximal compact subgroup of G;

(2) ΩΓ = GR;

(3) Ω−1Ω ∩ (xGZy) is �nite for all x, y ∈ GQ.

It follows immediately from the de�nitions that every fundamental domain
is also a fundamental set. Now we want to �nd a fundamental domain (or at
least a fundamental set) for GZ in GR. For that, we could �rst consider the
cases of GLn(R) and SLn(R) and try to apply the following Lemma.

Lemma 3.11. Let G = ΣΓ be a decomposition of an abstract group G as a
product of some subset Σ and a subgroup Γ. Furthermore, given a right action
of G on some set X, let H = Gx denote the stabilizer of a point x ∈ X. Assume
that for a suitable a ∈ G the intersection (xaΣ)∩xΓ is �nite, let us say equal to
{xb1, . . . , xbr} with bi ∈ Γ. Then H = Ω(Γ∩H), where Ω = (

⋃r
i=1 aΣb−1

i )∩H.
If, in addition, there is some subgroup D, Γ ⊂ D ⊂ G, for which Σ−1Σ ∩ gΓh
is �nite for any g, h ∈ D, then Ω−1Ω ∩ g(Γ ∩ H)h is also �nite for any g,
h ∈ D ∩H.

Proof. It is clear that H ⊃ Ω(Γ ∩H). Now let h ∈ H. Since a−1h ∈ G, we can
�nd elements σ ∈ Σ, γ ∈ Γ with

a−1h = σγ. (1)

Since H is the stabilizer of x it follows that

x = xh = xaa−1h = xaσγ,

thus xγ−1 = xaσ. Now the left side of this equation is in xΓ and the right side
in xaΣ, so from the assumptions we can �nd an integer i ∈ {1, . . . , r} with

xγ−1 = xbi. (2)

Put γ′ = biγ ∈ Γ. Then from (2) we obtain that γ′ ∈ H, thus γ′ ∈ Γ ∩H. Now
(1) yields

h = aσγ = aσb−1
i γ′
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and aσb−1
i = hγ′−1 ∈ H, so the �rst claim follows.

Now we prove the second part. For d1, d2 ∈ D let

Σ−1Σ ∩ d1Γd2 = {d1γ1d2, . . . , d1γnd2}.

Let g, h ∈ D ∩H be arbitrary. Let θ ∈ (aΣbi1)−1(aΣbi2)∩ g(Γ∩H)h. Then we
can �nd elements σ1, σ2 ∈ Σ, γ ∈ Γ with

θ = gγh = (aσ1bi1)−1(aσ2bi2) = b−1
i1
σ−1

1 σ2bi2 .

This is equivalent to

σ−1
1 σ2 = bi1gγhb

−1
i2
∈ Σ−1Σ ∩ d1Γd2,

thus we can �nd an element bi1gγjhb
−1
i2
∈ {bi1gγ1hb

−1
i2
, . . . , bi1gγnhb

−1
i2
} with

σ−1
1 σ2 = bi1gγjhb

−1
i2
.

This yields
θ = gγjh,

so for every i1, i2 ∈ {1, . . . , r} the intersection (aΣbi1)−1(aΣbi2) ∩ g(Γ ∩ H)h
is �nite. Since there are only �nitely many choices for i1 and i2, the claim
follows.

So as a �rst step, we want to construct a fundamental set for G = GLn(R)
with respect to Γ = GLn(Z). For that, let K, A, U denote the subgroups
of orthogonal matrices, diagonal matrices with positive entries, and unipotent
matrices respectively.

De�nition. A Siegel set Σt,u of G is a set of the form Σt,u = K At Uu with t,
u > 0, where

At = {a ∈ A | ai
ai+1

≤ t, i = 1, . . . , n− 1},

Uu = {u ∈ U | |uij | ≤ u for all 1 ≤ i < j ≤ n}.

This de�nition is the essential ingredient for the reduction theory in the real
case. Put Γ = GLn(Z). Then we obtain

Theorem 3.12. We have G = Σt,uΓ for t ≥ 2√
3
and u ≥ 1

2 .

Proof. The proof uses the height function Ψ which associates to every g ∈ G
the number Ψ(g) = |ge1|, where |.| denotes the usual Euclidean norm on Rn.
It is shown that the minimum of Ψ on gΓ has the desired properties for n = 2.
The general case is obtained by induction. The complete proof can be found in
[15, Thm 4.4].

The proof of the last Theorem is not very di�cult; However, it is omitted
since we consider the adelic case in section 4.2 where the proof is analogous.
From 3.12 we immediately obtain a fundamental set for SLn(R).
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Corollary 3.13. Put Σ
(1)
t,u = Σt,u ∩ SLn(R). Then SLn(R) = Σ

(1)
t,u SLn(Z) for

t ≥ 2√
3
and u ≥ 1

2 . Moreover,

Σ
(1)
t,u = (K∩SLn(R))(At ∩SLn(R))Uu.

Proof. [15, p.180, Corollary]

So we obtained a fundamental set for the cases GLn(R) and SLn(R). Unfor-
tunately, the interior of the Siegel set Σ = Σ0

2√
3
, 12

is not a fundamental domain.

This can be seen if we consider the case SL2(R). Let H denote upper half plane
of the complex plane, i.e., H = {z ∈ C | =(z) > 0}. Then the group SL2(R)
acts transitively on H from the right by Moebius transformations. Moreover,
the stabilizer of i is given by the subgroup SO(2); thus, we can identify H with
the quotient SL2(R)/ SO(2). If we consider the image of the Siegel set in this
setting, it can be shown that the intersection of Γ-translates of Σ is not always
empty. Thus, Σ is not a fundamental domain.

The next step is to establish the existence of a fundamental set for an arbi-
trary Q-group G. Here we can restrict ourselves to connected groups since the
quotient G/G0 is �nite. Moreover, the following Lemma allows us to consider
only reductive groups.

Lemma 3.14. (i) Let N be a unipotent Q-group. Then there is an open,
relatively compact subset U ⊂ NR (i.e., the closure of U is compact) such
that

(a) NR = UNZ,

(b) U−1U ∩ (nNZm) is �nite for any n, m ∈ NQ.

(ii) Let G be a connected Q-group, let G = HN be its Levi-decomposition,
where H is a maximal reductive Q-group of G and N = Ru(G) its unipo-
tent radical. Suppose Σ ⊂ HR satis�es HR = ΣHZ and the intersection
Σ−1Σ ∩ (gHZh) is �nite for any g, h ∈ HQ. If U ⊂ NR is as in (i), then
the set Ω = ΣU satis�es

(a) GR = ΩGZ,

(b) Ω−1Ω ∩ (xGZy) is �nite for any x, y ∈ GQ.

Proof. [15, Thm 4.9]

Thus we only need to construct a fundamental set for connected reductive
groups G, for which we want to use Lemma 3.11. For that, the following points
have to be satis�ed:

(i) De�ne a right action of GLn on some set X such that G is the stabilizer
of a suitable point x ∈ X;

(ii) Find an element a ∈ GLn(R) for which xaΣ ∩ xGLn(Z) is �nite, where Σ
is a Siegel set in GLn(R).

Since G is a reductive group, we see from Proposition 1.11 that there is a
Q-rational representation ρ : GLn(C) → GL(V ), where V is a Q-vector space,
and a vector v ∈ VQ so that G is the stabilizer of v and the orbit of v under ρ is
closed. Now choose an element a ∈ GLn(R) so that a−1Ga is self-adjoint. The
�niteness of the desired intersection now follows from
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Proposition 3.15. Let ρ : GLn(C)→ GL(V ) be a Q-representation and let L
be a lattice in VQ. If v ∈ VR is a point whose stabilizer

G = {g ∈ GLn(C) | vρ(g) = v}

is a self-adjoint group and vρ(GLn(C)) is closed in the Zariski-topology, then
vρ(Σ) ∩ L is �nite for any Siegel set Σ ⊂ GLn(R).

Proof. [15, Prop 4.5]

Then we obtain the following Theorem:

Theorem 3.16. Let G ⊂ GLn(C) be a reductive algebraic Q-group, and let
Σ = Σt,u for t ≥ 2√

3
, u ≥ 1

2 , be a Siegel set of GLn(R). Then we can �nd an
element a ∈ GLn(R) and elements b1, . . . , br ∈ GLn(Z) such that the set

Ω = (

r⋃
i=1

aΣbi) ∩G

is a fundamental set for GZ in GR.

Proof. The original proof can be found in [3].

As a corollary, we obtain that for every arithmetic subgroup of a connected
Q-group there exists an open fundamental set. The next question, which natu-
rally arises, is about the topological structure of the quotient GR/GZ, or equiv-
alently, of the fundamental set developed above. As a �rst result, we want to
give a criterion for compactness of a subset of GLn(R)/GLn(Z), which is due
to Mahler.

Proposition 3.17 (Mahler's Criterion). A subset Ω ⊂ GLn(R) is relatively
compact modulo GLn(Z) if and only if

(i) det(g) is bounded for all g ∈ Ω;

(ii) Ω(Zn \ {0}) ∩ U = ∅ for a suitable neighborhood U of 0 in Rn.

Proof. The original proof can be found in [13].

For the general case of an arbitrary Q-group G we need some preparation.
First, we can clearly reduce to the case of connected groups. Let G = HRu(G)
be the Levi-decomposition of G, where H is a maximal reductive subgroup of
G. We want to lead the case back to the reductive part of G, for which the
following Lemma is needed.

Lemma 3.18. Let H ⊂ G be a reductive subgroup of a connected group G, both
de�ned over Q. Then HR/HZ is closed in GR/GZ.

Proof. [15, Lemma 4.15]

From that, we can deduce that the compactness of GR/GZ is equivalent to
that of HR/HZ. Indeed, if the �rst quotient is compact, then clearly also the
latter as a closed subset. Conversely, let HR/HZ be compact. Then we can �nd
a compact fundamental set Σ such that HR = ΣHZ. Then from Proposition
3.14 we obtain that GR/GZ is compact. So it su�ces to consider connected
reductive groups. We will omit the rest of the proof of the following Theorem
which states an important criteria for compactness.
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Theorem 3.19. Let G be an algebraic Q-group. Then the following are equiv-
alent:

(i) GR/GZ is compact

(ii) Every unipotent element of GQ belongs to the unipotent radical of G and
X(G0)Q = 1.

Proof. [15, Theorem 4.12]

Another question of interest is under which conditions the quotient GR/GZ
has �nite invariant volume. Here the result, which is proven in [15, ch. 4.6], is
stated without any further preparation.

Theorem 3.20. Let G be an algebraic Q-group. Then the following are equiv-
alent:

(i) GR/GZ has �nite invariant volume

(ii) G0 does not have non-trivial Q-characters.

Proof. [15, Theorem 4.13]

It is clearly interesting to compute the volume of GR/GZ (if it exists) with
respect to a canonical Haar measure. Due to Langlands, the solution of this
problem is strongly related to the theory of Eisenstein series and other analytic
techniques which are not treated in this diploma thesis. However, we want to
consider the case G = SL2, for which the computation can be made directly.

Example. Let G = SL2. We have seen at the end of chapter 2.2 that a Q-rational
left-invariant di�erential form is given by

ω = αdϕ ∧ dα ∧ du,

where the coordinates ϕ, α and u can be computed for any x ∈ GR by considering
the Iwasawa decomposition

x =

(
cos(ϕ) − sin(ϕ)
sin(ϕ) cos(ϕ)

)(
α 0
0 α−1

)(
1 u
0 1

)
So the volume of GR/GZ can be expressed as

∫
F
αdϕdαdu, where F ⊂ GR is

a fundamental domain with respect to GZ. So our aim is to construct such a
fundamental domain F . For that, let H = SO2(R)\SL2(R) denote the upper
half plane of the complex plane. We have seen that we have a right action of
SL2(R) on P via

ρ :

((
x y
u t

)
, z

)
7→ tz + y

uz + x
.

It can be shown that the closed set

D = {z ∈ H | |<(z)| ≤ 1

2
, |z| ≥ 1},
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where <(z) denotes the real part of z, is a fundamental domain for the induced
action of PSL2(Z) on H. Now de�ne the subsets

K0 =

{(
cos(ϕ) − sin(ϕ)
sin(ϕ) cos(ϕ)

)
| ϕ ∈ [0, π]

}
,

Ω =

{
(α, u) ∈ R>0 × R | ρ

(
α αu
0 α−1

)
∈ D

}
,

D0 =

{(
α 0
0 α−1

)(
1 u
0 1

)
| (α, u) ∈ Ω

}
.

Then it is easy to see that we can de�ne F = K0D0. For the computation of
the integral we need to write the set Ω in another way. For that, let (α, u) ∈ Ω.
Then we have

(α, u) ∈ Ω⇔ ρ

(
α αu
0 α−1

)
∈ D

⇔ u+
1

α2
i ∈ D

⇔ |u| ≤ 1

2
∧ |u+

1

α2
i| =

√
u2 +

1

α4
≥ 1

⇔ |u| ≤ 1

2
∧ 0 ≤ α ≤ 1

4
√

1− u2
,

so it follows that

Ω =

{
(α, u) ∈ R>0 × R | |u| ≤ 1

2
∧ 0 ≤ α ≤ 1

4
√

1− u2

}
.

So we obtain

vol(GR/GZ) =

∫ π

0

dϕ

∫
Ω

αdαdu

=

∫ π

0

dϕ

∫ 1
2

− 1
2

∫ 1
4
√

1−u2

0

αdαdu

=
π

2

∫ 1
2

− 1
2

1√
1− u2

du

=
π

2
arcsin(u)|

1
2

− 1
2

=
π

2

(π
6

+
π

6

)
=
π2

6
= ζ(2).

Here, ζ denotes the Riemannian zeta-function de�ned by

ζ(s) =

∞∑
n=1

n−s

for all s ∈ C with <(s) > 1. There is a strong relation to number theory which
is re�ected by the following formula:

ζ(s) =
∏

p prime

1

1− 1
ps

.
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In the last part of this section we will generalize some of the de�nitions
and results to arbitrary number �elds. Let k be an algebraic number �eld, G
a k-group and let Ok denote the ring of integers of k. Then a Ok-arithmetic
subgroup of G is a subgroup Γ of G which is commensurable with the group GOk

.
The group GOk

is a discrete subgroup of G∞ =
∏
v∈V∞k

Gkv , so this de�nition
is the direct analogue of GZ in GR. So we are also interested in developing a
reduction theory in this case. The following theorem gives the most important
results, whose proofs are tied to the case of k = Q by restriction of scalars.

Theorem 3.21. Let G be an algebraic k-group, where k is an algebraic number
�eld. Then the following hold:

(i) there exists an open fundamental set Ω ⊂ G∞ relative to GOk
, i.e.

(a) K Ω = Ω for a suitable maximal compact subgroup K ⊂ G∞,
(b) ΩGOk

= G∞,

(c) Ω−1Ω ∩ xGOk
y is �nite for all x, y ∈ Gk;

(ii) G∞/GOk
is compact if and only if every unipotent element of Gk belongs

to the unipotent radical of G and X(G0)k = 1;

(iii) G∞/GOk
has �nite invariant volume if and only if X(G0)k = 1.

Proof. [15, Thm 4.17]. Choose an integral base of Ok over Z and use it to
construct H = Rk/Q(G). Then we obtain that GOk

∼= HZ and G∞ ∼= HR, so
(i) immediately follows from the case k = Q. In addition, it can be shown that
if U = Ru(G) is the unipotent radical of G, then U ′ = Rk/Q(U) is that of H.
Furthermore, every unipotent element ofGk is in U if and only if every unipotent
element of HQ is in U ′. Since we know from Proposition 1.12 that X(H0)Q =
X(G0)k, the claims (ii) and (iii) follow from Theorem 3.19 respectively Theorem
3.20.
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4 Adelic algebraic groups

As we have seen in section 3.2 the adele ring and the idele group of an algebraic
number �eld k contain a lot of information about the arithmetic properties of
the ring of integers Ok respectively of its multiplicative group O∗k. Now we are
interested in the Ok-points of an algebraic group G de�ned over k. We could
try to gain some structural properties out of GOk

itself; however, from the
discussion above we can expect to receive more information by considering the
�adelic points� of G. The aim of this chapter is to introduce the adelic points of
an algebraic group G. Although these points do not form an algebraic variety,
we call G in this context an �adelic algebraic group� by abuse of language.
Moreover, we want to obtain several result in analogy to the adele ring and the
idele group. In particular, a reduction theory for adelic algebraic groups is built
up.

4.1 Adelization of a�ne varieties

Throughout this section, let k be an algebraic number �eld and let X be an
a�ne k-variety. Moreover, �x an embedding ϕ : X ↪→ An

k , so X is presented as
a k-closed subset of An

k . We want to associate to X an �adelic� variety XA, i.e.,
a subset of An corresponding to X. More details can be found in [15, ch. 5].

De�nition. The space XA is de�ned as the base change of X to the k-adeles
Ak. In other words,

XA = {(a1, . . . , an) ∈ An | f(a1, . . . , an) = 0 for all f ∈ I(X)},

where I(X) denotes the vanishing ideal of X, endowed with the topology in-
duced from the product topology.

Note that this de�nition is equivalent to de�ning XA by means of the re-
stricted product. In fact, for Λ = Vk and Λ0 = V∞k we have

XA =
∏
v∈Vk

(XKv : XOv ).

In analogy to the construction of the ring of adeles, we can de�ne the space of
the S-integral adeles. To do so, let S be a �nite subset of Vk containing V∞k .
Now we can de�ne the S-integral adele space XA(S) as

XA(S) =
∏
v∈S

Xkv ×
∏
v 6∈S

XOv .

In particular, for S = V∞k , we write XA(∞) and call it the space of integral
adeles. The topology on XA(S) is the usual product topology. It follows from
the de�nition of the adelization that XA can be written as

XA =
⋃
S

XA(S).

It can easily be seen that for two k-varieties X and Y we have

(X × Y )A = XA × YA.
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The diagonal embedding k ↪→ A induces an embedding kn ↪→ An, thus also
Xk ↪→ XA. The image of this embedding is called the space of principal adeles.
Since k is discrete in A, it follows that the k-points of X (more exactly, their
image under the diagonal mapping) are also discrete (and closed) in XA. For
simpli�cation of notation, we usually identify Xk with its image in XA.

We could now de�ne an adelic algebraic group simply as the adelization of
its underlying variety (what we will do later). However, we �rst have to prove
that the construction above is independent of the embedding of X in an a�ne
space An

k . For that, we need the notion of functions between adelic spaces.
LetX,Y be k-varieties, let f : X → Y be a k-rational map. Then f induces a

continuous map fkv : Xkv → Ykv for any v ∈ Vk. Now we de�ne the adelization
fA of the function f to be the restriction of the product

∏
v∈Vk

fkv to XA.
Clearly, we expect the function fA to map into YA continuously.

Lemma 4.1. Let X ⊂ An, Y ⊂ Am be k-varieties, let f : X → Y be a k-
rational map. Then fA(XA) ⊂ YA and the map fA : XA → YA is continuous.

Proof. Since f is a k-rational map between X and Y we know that f is of the
form

f(x1, . . . , xn) = (f1(x1, . . . , xn), . . . , fm(x1, . . . , xn))

with polynomials f1, . . . , fm ∈ k[x1, . . . , xn]. Now let S0 be a �nite subset of Vk
containing V∞k , so that the coe�cients of all the fi's are v-integers for v 6∈ S0.
Then it follows that fKv (XOv ) ⊂ YOv for any v 6∈ S0, hence fA(XA(S)) ⊂ YA(S)

for any subset S of Vk containing S0. Since XA(S) inherits the direct product
topology, we obtain that fA|XA(S)

is continuous. Now XA (resp. YA) can be
written as the union of all XA(S) (resp. YA(S)), so the Lemma follows.

Now we want to prove the independence of the construction of the adelic
space from the representation of the variety at the beginning of this section.
Since any two presentations of the k-variety X are biregular k-isomorphic, we
have to ensure that these presentations remain homeomorph when passing to
the adelization.

Proposition 4.2. Let f : X → Y be a biregular k-isomorphism between two
k-closed subsets X ⊂ An, Y ⊂ Am. Then the adelization fA : XA → YA is a
homeomorphism.

Proof. Let g : Y → X be the inverse of f , then g is also a k-regular map. So by
Lemma 4.1 we obtain that gA : YA → XA is continuous. Now gkv is the inverse
of fkv for all v ∈ Vk, thus gA is the inverse of fA.

Now the time has come to de�ne an adelic algebraic group. For that, we have
seen in chapter 1.1 that every algebraic k-group can be realized as a k-closed
subgroup of GLn(k) for a positive integer n. Now we want to use that fact to
reduce the de�nition of adelization of an algebraic group to that of the general
linear group. However, we have to ensure that for an arbitrary algebraic k-
group G the induced topology from GLn(k) and the topology of the adelization
of the underlying space coincide. But this is an easy fact which we state in the
following Lemma:

Lemma 4.3. Let Y be a closed k-subvariety of X. Then YA = XA ∩
∏
v Ykv .

Moreover, the topology on YA is induced from that on XA.
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Proof. We clearly have YA ⊂ XA ∩
∏
v Ykv . Conversely, let x ∈ XA ∩

∏
v Ykv .

Then xv ∈ XOv for almost all v ∈ V fk , so in particular xv ∈ Onv . Moreover,
f(xv) = 0 for all f ∈ I(Y ), where I(Y ) denotes the vanishing ideal of Y . Thus,

xv ∈ XOv
∩ Ykv = YOv

for almost all v ∈ V fk .

So we obtain that x ∈
∏
v∈Vk

Ykv and xv ∈ YOv for almost all v ∈ V fk , i.e.,
x ∈ YA. Since the topology on Ykv is induced form Xkv for all v ∈ Vk the
topology on YA is induced from that on XA.

Now we want to describe GLnA . For this, we consider the standard realization
of GLn as a hypersurface in An2+1:

GLn = {(x11, . . . , xnn, y) ∈ An2+1 | y det(xij)− 1 = 0}.

From the construction of the adelization it follows that GLnA consists of all
matrices in Mn(A) whose determinant is invertible in A, i.e., GLnA = GLn(A).
We can also view GLnA as restricted product. Since also GLnOv

= GLn(Ov),
we obtain that

GLn(A) =
∏
v∈Vk

(GLn(kv) : GLn(Ov)) .

A base of the topology on GLn(A) is formed by de�ning the sets

U =
∏
v∈S

Uv ×
∏
v 6∈S

GLn(Ov),

to be open, where S is a �nite subset of Vk containing V∞k and where the Uv
are open subsets of GLn(kv). The subgroup

GLnA(S)
= GLn(A(S)) =

∏
v∈S

GLn(kv)×
∏
v 6∈S

GLn(Ov)

is called the group of S-integral adeles. For S = V k∞, we write GLnA(∞)
instead

of GLnA(S)
and call it the group of integral adeles. Again, the k-points of GLn

can be embedded diagonally into GLnA , where it is a discrete subset. We will
identify GLnk

with its image under this embedding, and call them the subgroup
of principal adeles.

These concepts can be easily extended to arbitrary algebraic groups G, where
we restrict ourselves to the case of a closed subgroup of GLn(k). We de�ne the
adele group GA as the restricted product

GA =
∏
v∈Vk

(Gkv : GOv
),

where GOv
= G ∩ GLn(Ov) for v ∈ V fk , together with the induced topology

from GLn(A). Therefore a base for the topology is given by the sets

W =
∏
v∈S

Wv ×
∏
v 6∈S

GOv ,

where S is a �nite subset of Vk containing V∞k andWv ⊂ Gkv are open sets. The
adele group is a locally compact topological group and the k-points Gk form a
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discrete subgroup of GA, where we again identify Gk with its image under the
diagonal embedding. For any �nite subset S ⊂ Vk containing V∞k we can de�ne
the group of S-integral adeles

GA(S) =
∏
v∈S

Gkv ×
∏
v 6∈S

GOv
;

we obviously have
GA =

⋃
S

GA(S).

For S = V∞k we write GA(∞) instead of GA(V∞k ). Note that the de�nition of
GOv depends on the matrix realization of G as a closed subgroup of GLn(k).

Another important term in the setting of adelic points is the concept of
truncated adeles. For an arbitrary subset S ⊂ Vk we de�ne the group of S-
adeles GAS

as the image of GA under the projection of
∏
v Gkv onto

∏
v 6∈S Gkv .

Otherwise said, the group of S-adeles is the restricted product

GAS
=

∏
v∈Vk\S

(Gkv : GOv ).

We can again consider the embedding Gk ↪→ GAS
, whose image is called the

group of principal S-adeles. Moreover, we can de�ne the group of T -integral
S-adeles. Let S ⊂ Vk be an arbitrary subset of Vk, let T be a subset of Vk
containing S. Then the T -integral S-adeles are de�ned as

GAS(T ) =
∏

v∈T\S

Gkv ×
∏

v 6∈T∪V∞k

GOv
.

For GAV∞
k

(resp GAV∞
k

(V∞k )) we write GAf
(resp. GAf (∞)). We need to intro-

duce another notation. For S ⊂ Vk, we de�ne GS =
∏
v∈S Gkv .

As in the non-adelic case we want to have the possibility to restrict ourselves
to the case of the Q-adeles. Let G be an algebraic k-group, let H = Rk/Q(G)
be the group obtained by restriction of scalars. Then it can be shown that we
have an isomorphism HAQ

∼= GAk
of adelic algebraic groups.

As in the case of the adeles, we now want to get some topological information
about the discrete subgroup Gk in GA. For that, we introduce the notion of
strong approximation which will be important in the following section.

De�nition. Let G be an algebraic k-group, let S ⊂ Vk be a �nite subset of
k-primes containing V∞k . Then G is said to satisfy the strong approximation
property relative to S if the image under the diagonal embedding Gk ↪→ GAS

is
dense in GAS

. For S = V∞k we say that G has the absolute strong approximation
property.

For an algebraic group G which satisfy the strong approximation property,
this means that the k-points of G are dense in the set

∏
v 6∈S(Gkv : GOv ). In

other words, the product GSGk, where GS and Gk are viewed as subgroups in
GA, is dense in the full adele group GA.

It is clearly possible to de�ne the S-adelic space for an arbitrary k-variety
X, just by adapting the de�nition of the adelic space. Moreover, there is also
a notion of (absolute) strong approximation property for varieties which can

44



4.1 ADELIZATION OF AFFINE VARIETIES

be used to simplify several proofs; however, it is not as much known as in the
setting of algebraic groups. Further information can be found in [15, ch.7].

We could also ask which role the subgroups of integral and principal adeles
play in the structure of the whole adele group. For that, consider a decomposi-
tion

GA =
⋃
λ∈Λ

GA(∞)xλGk

of GA into double cosets modulo GA(∞) and Gk. We de�ne the class number
of G as the cardinality of Λ, denoted by cl(G). As we will see later the class
number of an arbitrary algebraic group is always �nite. For that, we will use
the Levi decomposition to reduce to the case of a reductive group.

First, we need a Lemma.

Lemma 4.4. Let G be an algebraic k-group, let G = HN be a semidirect
product, where H, N are k-subgroups of G. Assume that N is normal in G.
Then the adelization NA of N is normal in GA and GA = HANA is again a
semidirect product.

Proof. Since G is isomorphic to H ×N as a variety, we get that

GA = (H ×N)A = HA ×NA,

i.e., GA = HANA. The normality of NA in GA follows from the normality of Nkv
in Gkv for every v ∈ Vk.

The next Proposition allows us in a special situation to reduce the com-
putation of the class number of an algebraic group G to that of a subgroup
H.

Proposition 4.5. Let G = HN be an algebraic k-group, let H, N be k-
subgroups of G. Assume that N is normal in G and N satis�es the absolute
strong approximation property. Then it follows that

cl(G) ≤ cl(H).

Proof. Since translation with an element x ∈ GA is a homeomorphism and
NA(∞) is normal in GA, the subgroup x−1NA(∞)x is open in NA for all x ∈ GA
as the image of the open subset NA(∞). Furthermore, N satis�es the absolute
strong approximation property, hence the set N∞Nk is dense in NA. Thus, the
two open subsets (x−1NA(∞)x)y and N∞Nk must intersect for all y ∈ NA. Now
N∞ is a normal subgroup of GA contained in NA(∞), so we get

NA = (x−1NA(∞)x)N∞Nk = (x−1NA(∞)N∞x)Nk = (x−1NA(∞)x)Nk.

In particular, for x = 1 this yields NA = NA(∞)Nk. From the above equation
we deduce

xNA(∞)Nk = NA(∞)xNk

for any x ∈ GA. Now using Lemma 4.4 we obtain

GA = HANA = HANA(∞)Nk = NA(∞)HANk.
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Now let HA =
⋃
iHA(∞)xiHk be a decomposition into double cosets modulo

the principal and integral adeles, then we get a decomposition of GA via

GA = NA(∞)HANk =
⋃
i

NA(∞)HA(∞)xiHkNk =
⋃
i

GA(∞)xiGk.

Now in the last union some of the cosets could coincide, thus we get the required
result.

The Proposition clearly implies that every algebraic group G which satis�es
the absolute strong approximation property has class number equal to one.
Moreover, we have the following Lemma:

Lemma 4.6. Let U be a unipotent group de�ned over k. Then U satis�es the
strong approximation property for any nonempty subset S.

Proof. This proof is based on a consideration about birational morphisms be-
tween algebraic k-varieties and can be found in [15, Lemma 5.1].

The Lemma implies that every unipotent group has trivial class number.
This will in fact be important if we use the Levi decomposition of an algebraic
group and Proposition 4.5. So we can restrict ourselves to the case of a reductive
group.

To prove the �niteness of the class number we need some more preparation.
Since Gk is a discrete subgroup of GA, it is natural to ask whether a reduction
theory can be developed. In the next section, we will handle the case G = GLn.

4.2 Minkowski reduction of GLn(A)
Since for an algebraic k-group G the k-points Gk are discrete in GA, we could
ask if we can �nd a suitable �nice� subset Ω ⊂ GA so that the Gk-translates of
Ω cover the whole adele group in a suitable approximative way. More precisely,
we have the following de�nition.

De�nition. A subset Ω of GA is called a fundamental set for Gk if

(1) ΩGk = GA

(2) Ω−1Ω ∩Gk is �nite.

If the intersection in (2) is empty, then we say that Ω is a fundamental domain
for Gk.

In other words, condition (2) means that the intersection of twoGk-translates
of the subset Ω is �nite (resp. empty) if Ω is a fundamental set (resp. domain).

In this subsection, we want to develop a reduction theory for the case
GLn(A), i.e., we want to �nd a suitable fundamental set for GLn(Q) in GLn(A).
This procedure is called Minkowski reduction. The general case of an arbitrary
algebraic group G is handled in section 4.3. The discussion mainly follows [6].

From Proposition 1.8 we know that the group GLn(R) contains a maximal
compact subgroup, namely the group O(n) of orthogonal matrices. Moreover,
it can be shown that also the general linear groups GLn(Qv) with v ∈ V fQ has
the same property. In this setting, the maximal compact subgroup is GLn(Zp).
Now we have the following de�nition.
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De�nition. For all v ∈ VQ we de�ne Kv as the maximal compact subgroup of
GLn(Qv); namely

Kv =

{
O(n) if v ∈ V∞Q
GLn(Zp) if v ∈ V fQ

.

As a �rst step, we want to locally decompose a matrix into a compact and
an upper triangular part. This result is delivered by the following Proposition.

Proposition 4.7. Let v ∈ VQ, Uv = {g ∈ GLn(Qv) | g is upper triangular }.
Then

GLn(Qv) = Kv Uv,

to be called Iwasawa decomposition.

Proof. First, let v ∈ V∞Q and let g ∈ GLn(Qv) = GLn(R). Let gi denote the
i-th column of g for i = 1, . . . , n. Applying the Gram-Schmidt process on these
vectors, we obtain an orthonormal family {v1, . . . , vn} of vectors, where every vi
is a linear combination of the vectors gj for j = 1, . . . , i. By viewing the vectors
vi, i = 1, . . . , n as the columns of a matrix k ∈ O(n) we obtain a decomposition

k = gb,

where the i-th column of b contains the coe�cients of vi with respect to the basis
{g1, . . . , gn}. From the Gram-Schmidt process we obtain that b ∈ Uv. Since the
inverse of an upper triangular matrix is again upper triangular, we can write
g = kb̃ with b̃ ∈ Uv and k ∈ O(n). Thus,

GLn(R) = O(n) Uv .

Now let v ∈ V fQ , g ∈ GLn(Qv). We have to �nd an element k ∈ GLn(Zv) such
that kg ∈ Uv. This will be done by induction on n.

For n = 1, there is nothing to show. So let n > 1. Since g ∈ GLn(Qv),
the �rst column g(1) of g is not the zero vector. So there is an entry of g(1)

with maximal v-adic norm. Now we can choose a permutation matrix P so
that Pg = g̃ and that g̃11 has maximal v-adic norm in the �rst column. De�ne
λi = − g̃i1

g̃11
; then we have λi ∈ Zv. Let T ∈ GLn(Zv) be the matrix

T =


1 0 . . . 0
λ2 1 . . . 0
...

. . .
...

λn 0 . . . 1

 .

Then by multiplication we obtain

T g̃ =

(
g̃11 ∗
0 g′

)
,

where g′ is an element of GLn−1(Qv). By the induction hypothesis, we can �nd
an element k′ ∈ GLn−1(Zv) such that k′g′ ∈ U (n−1)

v . Now de�ne

k =

(
1 0
0 k′

)
TP.
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Then it follows that

kg =

(
1 0
0 k′

)
TPg =

(
1 0
0 k′

)
T g̃ =

(
1 0
0 k′

)(
g̃11 ∗
0 g′

)
=

(
g̃11 ∗
0 k′g′

)
∈ U (n)

p .

It is clear that we could improve the above decomposition by splitting the
upper triangular part into a diagonal and an unipotent part. Furthermore,
we can use this local result to obtain a global decomposition. For that, let
∆n ⊂ GLn denote the algebraic Q-group of n-dimensional invertible diagonal
matrices.

Proposition 4.8. De�ne the following subsets of GLn(A):

K =
∏
v∈VQ

Kv

AR = {g = (gij) ∈ ∆n(R) | gii > 0 for all i = 1, . . . , n}
A = AR×

∏
v∈VQ
{id}

D = ∆n(Q) ⊂ GLn(Q)

N = {(nij) ∈ GLn(A) | nij = 0 if i > j and nii = 1 for all i}.

Then we have
GLn(A) = K A D N .

Proof. Let g ∈ GLn(A). By using the local Iwasawa decomposition we can write
g at every place v ∈ VQ as g(v) = k(v)u(v) with k(v) ∈ Kv, u(v) ∈ Uv. Since
g(v) ∈ Kv for almost all v ∈ VQ, it follows that u(v) = idQn

v
for almost all v.

Now de�ne k = (k(v))v ∈ K, u = (u(v))v ∈ GLn(A). Since u is upper triangular,
we can �nd n ∈ N , and a diagonal matrix d̃ ∈ GLn(A) such that u = d̃n. Note
that u(v) = id for almost all v imply that d̃(v) = id for almost all v. From the
fact that d̃(v)

i = 1 for almost all v ∈ Vk it follows that d̃i ∈ J. Now we have

J = Q∗

R>0 ×
∏
v∈V f

Q

Z∗v

 ,

thus we can choose qi ∈ Q∗ such that qid̃i ∈ R>0 ×
∏
v∈V f

Q
Z∗v. Now set d =

diag(q1, . . . , qn) ∈ D. Then

dd̃ =

q1d̃1 0 . . . 0

0
. . .

...
0 . . . 0 qnd̃n

 = ra,

where a ∈ A and r ∈ {id} ×
∏
v∈V f

Q
∆n(Z∗v) ⊂ K. This yields

g = ku = kd̃n = kdd−1d̃n = kdd̃d−1n = kr︸︷︷︸
∈K

ad−1n ∈ K A D N .
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The above result provides a nice characterization of the full adele group in
terms of subgroups; however, since we have a right action of the Q-points of
GLn on GLn(A), we would prefer the discrete part (i.e. the subgroup D) to be
on the right side. For that, let g = dn ∈ GLn(A) be an upper triangular matrix
with d ∈ D and n ∈ N. Then we recursively can �nd a matrix ñ ∈ N so that
g = ñd. Thus, N D = D N, so the above decomposition can be written as

GLn(A) = K A N D .

Our next aim will be the decomposition of N into a subset NQ ⊂ GLn(Q) and
a subset consisting of unipotent matrices with bounded o�-diagonal entries.

Lemma 4.9. Let NQ = N∩GLn(Q), N 1
2

= {n ∈ N | nij ∈
[
− 1

2 ,
1
2

]
×
∏
p Zp}.

Then
N = N 1

2
NQ .

Proof. Let x = (xij) ∈ N. From chapter 3.2 we know that

Ak = k + A(∞) = Q +

R×
∏
v∈V f

k

Zv

 .

Now for any a ∈ Ak we can �nd an element z ∈ Z so that the in�nite part of
a + z lies in

[
− 1

2 ,
1
2

]
. Moreover, for any v ∈ V fQ we have (a + z)v ∈ Zv, so we

obtain

Ak = Q +

[−1

2
,

1

2

]
×
∏
v∈V f

k

Zv

 .

This implies that we can recursively �nd an element y = (yij) ∈ NQ so that
xy ∈ N 1

2
.

Corollary 4.10. GLn(A) = K A N 1
2

NQ D and for each g ∈ GLn(A) there is an
element γ ∈ GLn(Q) with gγ ∈ K A N 1

2
.

Note that a decomposition of the form g = kand with k ∈ K, a ∈ A, n ∈ N 1
2
,

d ∈ GLn(Q) is not necessarily unique.
Thus we have found a subset of GLn(A) which satis�es condition (1) of

de�nition 4.2. However, the intersection of two GLn(Q)-translates of the subset
K A N 1

2
is not �nite in general. The reason for that is the size of A. Therefore

we want to improve this decomposition of GLn(A) by shrinking the set A to a
smaller subset. For the analysis of this right action, we de�ne a height function
as follows:

De�nition. For each v ∈ VQ we de�ne a local height function ηv : Qnv → R≥0

by

ηv(x) =

{ √
x2

1 + · · ·+ x2
n if v ∈ V∞Q

supi |xi|v if v ∈ V fQ
,

where |.|v denotes the v-adic valuation on Qv for all v ∈ V fQ .
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So for an element x = (x1, . . . , xn) ∈ Qn the height function has a large value
at a �nite place v ∈ V fQ if the denominator of any xi contains a large power of
pv in its prime decomposition (where pv is the prime number associated to v) .

Since ηv is continuously de�ned on a dense subspace of Qv for all v ∈ VQ,
we can extend the local heights to the domain Qv. Now we could de�ne a
height function on An simply by multiplying the local heights for all Q-primes
v; however, this product may not converge. So we restrict ourselves to a subset
of An on which this product has a well-de�ned value.

De�nition. (1) Let P = {x ∈ An | ηv(x(v)) = 1 for almost all v ∈ VQ}. Then
the elements x ∈ P are called primitive.

(2) Let x = (x1, . . . , xn) ∈ An be a primitive vector. Then de�ne the (global)
height function as

η(x) =
∏
v∈VQ

ηv(x
(v)),

where x(v) = (x
(v)
1 , . . . , x

(v)
n ) for all v ∈ VQ.

In the next Lemma some basic properties of the height function are given.

Lemma 4.11. (i) If t ∈ J, then it follows for all x ∈ P that tx ∈ P and
η(tx) = |t|η(x), where |.| denotes the idelic norm.

(ii) For all g ∈ GLn(A), x ∈ P we have gx ∈ P .

(iii) The set Qn \ 0 is a subset of P .

(iv) GLn(A)(Qn \ 0) = P ∗ := {x ∈ P | η(x) 6= 0}.

(v) If x ∈ P ∗, then there is an element q ∈ Q∗ such that qx ∈ Rn×
∏
p S

n−1(Qp)
and η(x) = η∞(qx). Here Sn−1(Qp) = {x ∈ Qnp | ηp(x) = 1} denotes the
(n− 1)-dimensional unit sphere in Qp.

(vi) If g ∈ GLn(A), then g(Qn \ 0) is discrete and closed in An.

Proof. (i) Since |t(v)|v = 1 for almost all v it follows that

ηv((tx)(v)) = ηv(t
(v)x(v)) = |t(v)|ηv(x(v)) = 1

for almost all v and thus

η(tx) =
∏
v

ηv((tx)(v)) =
∏
v

|t(v)|vηv(x(v)) =
∏
v

|t(v)|v
∏
v

ηv(x
(v)) = |t|η(x).

(ii) Let g ∈ GLn(A), x ∈ P . Then g(v) ∈ Kv for almost all v. From the
de�nition of the height function it follows immediately that for k ∈ Kv we
have ηv(kh) = ηv(h) for all h ∈ GLn(Av). This yields

ηv((gx)(v)) = ηv((g
(v)x(v)) = ηv(x

(v)) for almost all v.

Since x ∈ P , we have ηv((gx)(v)) = 1 for almost all v.

(iii) Let x ∈ Q \ {0}. Then in the coordinates of x only �nitely many primes
appear, i.e., x ∈ (Z∗v)

n for almost all v, thus ηv(x) = 1 for almost all v.
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(iv) One inclusion is clear by combining part (ii) and (iii). So let x ∈ P ∗ and
let S = V∞ ∪ {v | ηv(x(v)) 6= 1}. For v ∈ S, we can simply choose an
element g(v) ∈ GLn(Qv) such that g(v)x(v) = e1. Now let v 6∈ S. Then we
can choose h(v) ∈ GLn(Qv) such that h(v)e1 = x(v). Using the Iwasawa
decomposition, we can write h(v) = k(v)u(v), so u(v)e1 = (k(v))−1x(v). Now
we have ηv((k(v))−1x(v)) = 1 = |u(v)

11 | ∈ Z∗v, thus e1 = 1

u
(v)
11

(k(v))−1x(v).

(v) Let x ∈ P ∗. Then there are only �nitely many primes p1, . . . , pk with
ηpi(x) 6= 1 for all i. Now choose ei ∈ Z with ηpi(p

ei
i x) = 1 for all i and put

q :=
∏k
i=1 p

ei
i . Then we obtain

η(x) = η(qx) = η∞(qx).

(vi) Since Q ⊂ A is discrete and closed we obtain the same for Qn ⊂ An. Now
A is a topological ring and for all g ∈ GLn(A) the map

lg : An → An

x 7→ gx

is a polynomial in x, thus a homeomorphism with inverse l−1
g = lg−1 .

Therefore, g(Q \ {0}) is discrete and closed.

From the Lemma it immediately follows:

Corollary 4.12. The function η is well de�ned on the n-dimensional projective
space PnQ := (Q \ {0}) /Q∗.

The next Proposition shows that the set of projective points, whose image
under g ∈ GLn(A) has bounded height, is �nite. This in fact will be needed
for the construction of a fundamental set, or more exactly, for the proof of
Proposition 4.16.

Proposition 4.13. Let c > 0 and g ∈ GLn(A). Then the set

{x ∈ PnQ | η(gx) ≤ c}

is �nite. In particular, there is a vector x0 ∈ Qn \ {0} such that η(gx0) is
minimal.

Proof. Let x ∈ Qn \ {0}. By 4.11(v) there is an element q ∈ Q∗ such that

qgx ∈ Rn ×
∏
p

Sn−1(Qp).

Now let c > 0. If η(gx) ≤ c, then by 4.11(v) we see that

g(qx) = q(gx) ∈ F := Bc(0)×
∏
p

Sn−1(Qp).

The set F is compact in An. Now we know from 4.11(vi) that g(Qn \ {0}) is
discrete and closed in An, thus the set

g(Qn \ {0}) ∩Bc(0)×
∏
p

Sn−1(Qp)
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is �nite. This means that for all x ∈ Qn \ {0} with η(x) ≤ c we can �nd an
element q ∈ Q∗ so that g(qx) ∈ F . Thus, the set g−1F is �nite. Now the classes
[x] and [qx] coincide in PnQ, so the claim follows.

De�nition. De�ne the function Φ: GLn(A)→ R by g 7→ η(ge1).

By de�nition, Φ associates with any element g ∈ GLn(A) the height of the
image of the �rst base vector in Qn under g. Let g = kand with k ∈ K, a ∈ A,
n ∈ N and d ∈ D the decomposition of g as in Proposition 4.8. The next Lemma
will show that the values this function takes only depend on the matrix a. This
in fact will be useful to improve the decomposition by reducing A to a smaller
subset.

Lemma 4.14. Let g ∈ GLn(A), k ∈ K, n ∈ N, a ∈ A and d ∈ D. Then we get

(i) Φ(gn) = Φ(g).

(ii) Φ(kg) = Φ(g).

(iii) Φ(gd) = Φ(g).

(iv) Φ(a) = |a1|∞, where a1 is the �rst column of a.

In particular, for g ∈ GLn(A), g = kand, we have Φ(g) = |a1|∞.

Proof. (i) Φ(gn) = η(gne1) = η(ge1) = Φ(g).

(ii) Φ(kg) = η(kge1) = η(ge1) = Φ(g).

(iii) The element d11 is in Q∗ embedded diagonally into the ideles JQ. There-
fore, it commutes with every g ∈ GLn(A). Using 4.11(i) and the product
formula, we obtain that

Φ(gd) = η(gde1) = η(gd11e1) = η(d11ge1) = |d11|η(ge1) = η(ge1) = Φ(g).

(iv) Φ(a) = η(ae1) = η(a1) = |a1|∞.

We are now ready to give the central Lemma from which the desired decom-
position follows. It states that in each coset of GLn(A) modulo GLn(Q), the
diagonal elements of the representative with smallest value under Φ satisfy an
inequality.

Lemma 4.15. Let g ∈ GLn(A), g = kan 1
2
nQd, with Φ(gγ) ≥ Φ(g) for all

γ ∈ GLn(Q). Then
a1

a2
≤ 2√

3
.

Proof. De�ne

γ := (nQd)−1 diag

((
0 1
1 0

)
, 1n−2

)
∈ GLn(Q).
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Then it follows that

Φ(gγ) = Φ

(
kan 1

2
nQd (nQd)

−1
diag

((
0 1
1 0

)
, 1n−2

))
= Φ

(
kan 1

2
diag

((
0 1
1 0

)
, 1n−2

))
= η

(
kan 1

2
diag

((
0 1
1 0

)
, 1n−2

)
e1

)
= η

(
kan 1

2
e2

)
= η

(
a((n 1

2
)12e1 + e2)

)
= η

(
a1(n 1

2
)12e1 + a2e2

)
≥ Φ(g)

Now t = (n 1
2
)12 ∈ N 1

2
, hence

η(a1n12e1 + a2e2) =
√
a2

1t
2
∞ + a2

2 ≥ a1.

Since t∞ ∈
[
− 1

2 ,
1
2

]
, we obtain a2

1 · 1
4 + a2

2 ≥ a2
1, thus

a1
a2
≤ 2√

3
.

De�nition. Let Ω(t) = {a ∈ A | ai
ai+1

≤ t}, Nu = {n ∈ N | |nij | ≤ u}. Then

we de�ne the so called Siegel set ΣA
t,u as

ΣA
t,u = K Ω(t) Nu .

Now we want to prove the main Proposition of this section, namely that
every orbit of the right action of GLn(Q) on GLn(A) has a minimal element
(with respect to Φ) in ΣA

2√
3
, 12
.

Proposition 4.16. Let g ∈ GLn(A). Then there is an element γ0 ∈ GLn(Q)
such that

Φ(gγ0) = min
γ∈GLn(Q)

Φ(gγ)

and gγ0 ∈ ΣA
2√
3
, 12
.

Proof. Let g ∈ GLn(A). We can choose an element γ′ ∈ GLn(Q) with Φ(gγ′)
minimal. Let

gγ′ = kan 1
2
nQd ∈ K A N 1

2
NQ D .

Now de�ne γ′′ = (nQd)−1γ′. Then we obtain

Φ(gγ′′) = Φ(kan 1
2
nQd(nQd)−1γ′) = Φ(kan 1

2
γ′) = Φ(gγ′).

Now we want to proof the claim by induction on n. The case n = 2 follows
from Lemma 4.15.

Let n > 2. Set g̃ := k−1gγ′′ =

(
a1 ∗
0 b

)
, with b ∈ GLn−1(A). Then by

induction hypothesis, we can choose an element x ∈ GLn−1(Q) such that

bx = k′a′n′ ∈ ΣA
2√
3
, 12
.
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Now let x̃ be the matrix

(
1 0
0 x

)
∈ GLn(Q). Then we obtain

g̃x̃ =

(
a1 ∗
0 b

)
=

(
a1 ∗
0 bx

)
=

(
a1 ∗
0 k′a′n′

)
=

(
1 0
0 k′

)(
a1 0
0 a′

) (
1 ∗
0 n′

)
︸ ︷︷ ︸
=:ñ=ñ 1

2
ñQ

.

Since Φ(g̃) = Φ(k−1gγ′′) = Φ(gγ′′) it follows that Φ(g̃) is minimal. By Lemma
4.15 we get that a1

a′1
≤ 2√

3
. Moreover,

gγ′′x̃ñ−1
Q = k

(
1 0
0 k′

)(
a1 0
0 a′

)
ñ 1

2
∈ ΣA

2√
3
, 12
.

Now de�ne γ0 = γ′′x̃ñ−1
Q . Then we obtain

Φ(gγ0) = Φ(gγ′′x̃ñ−1
Q ) = Φ(gγ′′),

so Φ(gγ0) has minimal value.

Theorem 4.17. GLn(A) = K Ω(c) N 1
2

GLn(Q) for c ≥ 2√
3
.

Proof. Follows immediately from Proposition 4.16.

So we obtain that the GLn(Q)-translates of the Siegel set ΣA
2√
3
, 12

cover the

group GLn(A). So clearly the question arises if this set is a fundamental set
or even a fundamental domain. Let γ = − id ∈ GLn(Q), let g ∈ ΣA

2√
3
, 12

be

arbitrary. Since γ is also in K and commutes with every element in GLn(A), we
obtain that

gγ ∈ K Ω(c) N 1
2
∩K Ω(c) N 1

2
γ,

thus ΣA
2√
3
, 12

is not a fundamental domain. However, it can be shown that the

intersection between two GLn(Q)-translates of ΣA
2√
3
, 12

is always �nite, so it is a

fundamental set for GLn(Q) in GLn(A).

4.3 Fundamental sets

Now we try to handle the general case of an arbitrary algebraic group G de�ned
over k. Although Gk is discrete in GA, we cannot expect the quotient GA/Gk
to be compact. Our �rst aim in this chapter is to construct fundamental sets
for Gk in GA. Since every algebraic group can be realized as a closed subgroup
of GLn(k) it is convenient to look at the special case of G = GLn over Q �rst.

Proposition 4.18. Let G = GLn over Q and let Σ be a fundamental set for
GZ in GR. Then

Ω = Σ×
∏
v∈V f

k

GZv

is a fundamental set for GQ in GA.

Proof. [15, Prop. 5.7]
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As we have seen in 4.17, the GLn(Q)-translates of the set ΣA
t, 12

cover GA.

From the de�nitions it follows that we can write

ΣA
t, 12

= Σt, 12 ×
∏
v∈V f

k

GLn(Zv)

where Σt, 12 is the Siegel set from chapter 3.3. Thus, ΣA
t, 12

a fundamental set for

GLn(Z) in GLn(R), so Theorem 4.17 would also follow from Proposition 4.18.
Now we want to construct fundamental sets for arbitrary adelic groups G

over Q. For that, we use the notion of an action of GA. Recall that an action of
a k-group G on a k-variety X is a continuous k-morphism ρ : G×X → X such
that the induced morphism ρ̌ : G → Aut(X) is a group homomorphism. Now
any action ρ of G on X induces an action

ρA : (G×X)A = GA ×XA → XA

on the adelization XA. This will be needed for the following Proposition.

Proposition 4.19. Let G ⊂ GLn be a reductive Q-group and let Ω be the
fundamental set for GQ in GA corresponding to the Siegel domain Σ = Σt,u
for t ≥ 2√

3
, u ≥ 1

2 (in other words, Ω = ΣA
t,u). For a ∈ GLn(R) let a∞ be

the embedding of a into GLn(A), i.e., a∞ = (a, In, In, . . . ), where In is the n-
dimensional unit matrix. Then there is an element a ∈ GLn(R) and elements
b1, . . . , br ∈ GLn(Q) such that

∆ =

(
r⋃
i=1

a∞Ωbi

)
∩GA

is a fundamental set for GQ in GA.

Proof. By Proposition 1.11 there exists a Q-representation ρ : GLn → GLm and
a vector v ∈ Qn such that the GLn-Orbit of v is closed in GLm and the isotropy
group is G. Using Proposition 1.9 we can choose an element a ∈ GLn(R)
such that the group a−1Ga is self-adjoint. Now from the de�nition of Ω and
the continuousness of the adelization ρA it follows that the projection of all
elements of the set v(a∞Ω) onto Am∞ lie in a suitable compact set. So we obtain
that the set M = v(a∞) ∩ Qm is contained in the lattice 1

lZ for a suitable
integer l. This yields that lM ⊂ (lv)Σ ∩ Zm, which is �nite from Proposition
3.15. So we obtain that the subset v(a∞Ω) ∩ vGLn(Q) is �nite, let us say
v(a∞Ω) ∩ vGLn(Q) = {vb1 . . . vbr} for bi ∈ GLn(Q). Now from Lemma 3.11
and Proposition 4.18 we conclude that ∆ is a fundamental set for GQ in GA.

So we have obtained a way to construct a fundamental set for GQ in GA for
any reductive group. Note that the projection on the non-Archimedean part
of the set ∆ is compact. Now the general case of an reductive group over an
arbitrary number �eld simply follows by considering the restriction of scalars.
More precisely, we have the following

Theorem 4.20. Let G be a reductive algebraic group de�ned over an algebraic
number �eld k. Then there exists a fundamental set for Gk in GA having compact
projection onto the non-Archimedean part.
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Proof. Let H = Rk/Q(G) be the group obtained from G by restriction of scalars.
Then by proposition 4.19 we obtain thatHQ has a fundamental set inHAQ which
has compact projection on the non-Archimedean part. By carring over this set
with respect to the isomorphism HAQ

∼= GA, we get the desired result.

So we have obtained fundamental sets for reductive k-groups for any alge-
braic number �eld k. Now we are interested in the properties of these funda-
mental sets. We can clearly ask if they are compact, or if the have �nite volume
with respect to the Haar measure on the product space An. Before that, we
will obtain the fundamental result for the class number of an arbitrary algebraic
group. For that, we �rst need two lemmas.

Lemma 4.21. Let G be an algebraic k-group. Then GA(∞) and yGA(∞)y
−1 are

commensurable, for any y ∈ GA.

Proof. Let U =
∏
v∈V f

k
GOv

. Then we have GA(∞) = G∞ × U and

yGA(∞)y
−1 = (y∞G∞y

−1
∞ )× (yfUy

−1
f ) = G∞ × (yfUy

−1
f ),

where y∞ (resp. yf ) denotes the in�nite (resp. �nite) part of y ∈ GA. But U and
yfUy

−1
f are open compact subgroups of GAf

, and therefore are commensurable.
Thus, GA(∞) and yGA(∞)y

−1 are also commensurable.

Lemma 4.22. Let G be an algebraic k-group, G0 its component of the identity.
Then the quotient GA/G

0
A is compact.

Proof. [15, Prop. 5.5]

Theorem 4.23. Let G be an algebraic k-group. Then the class number cl(G)
of G is �nite.

Proof. We �rst treat the case of a connected group G. Let G = HU be the
Levi-decomposition of G, where U = Ru(G) is the unipotent radical of G and
H is a reductive k-group. Then from Proposition 4.5 we get that the �niteness
of cl(H) is su�cient to show. For that, we use the fundamental set ∆ ⊂ HA
which we constructed in Theorem 4.19. Since ∆ has compact projection on the
non-Archimedean part and the subset HA(∞)x is open in HA for any x ∈ HA,
we can �nd �nitely many xi ∈ HA so that

∆ ⊂
r⋃
i=1

HA(∞)xi.

Thus,

HA = ∆Hk =

r⋃
i=1

HA(∞)xiHk,

which means that the class number of H is �nite.
Now let G be arbitrary, let G0 denote the connected component of the iden-

tity. So from above we can �nd elements x1, . . . , xn ∈ G0
A such that

G0
A =

r⋃
i=1

G0
A(∞)xiG

0
k.
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VOLUME OF GA/GK

From Lemma 4.22 we know that the quotient GA/G
0
A is compact, thus we can

�nd a compact set D ⊂ GA so that GA = DG0
A. By the same argument as above

we can �nd elements yj ∈ GA so that D ⊂
⋃s
j=1GA(∞)yj . This yields

GA = DG0
A =

r⋃
i=1

s⋃
j=1

GA(∞)yjG
0
A(∞)xiG

0
k.

Now from Lemma 4.21 we know that yGA(∞)y
−1 is commensurable with GA(∞),

i.e., there exists elements z1, . . . , zt ∈ GA such that yGA(∞)y
−1 ⊂

⋃t
l=1GA(∞)zl.

Then

GA(∞)yGA(∞)xGk = GA(∞)(yGA(∞)y
−1)yxGk ⊂

t⋃
l=1

GA(∞)zlyxGk,

from which we deduce the desired decomposition.

By reviewing what we have done so far one question arises. Namely, is the
fundamental set from proposition 4.18 universal? The answer is given by the
following Proposition.

Proposition 4.24. Let G be an k-group. If B is a fundamental set in G∞
relative to GOk

, then there is a compact subset C of GAf
such that B × C is a

fundamental set in GA relative to Gk.

Proof. [15, Proposition 5.9]

4.4 Criteria for compactness and �nite invariant volume

of GA/Gk

In this section we want to obtain criteria for the compactness and the �niteness
of the volume of GA/Gk. For that, we need to construct an invariant measure
on the adelic points of an algebraic group G. Since there exists a Haar measure
on Ak the product space Ank can be viewed as a measurable space. Now we can
de�ne an invariant measure µ on GA simply by restriction of the Haar measure
of Ank . However, we want to describe µ in terms of di�erential form, as we have
seen at the end of chapter 2.2. This construction follows [15, ch. 5.3].

So let G be a connected algebraic group, let ω be a left-invariant rational
di�erential k-form on G of degree n = dim(G). Then we have seen in section
2.2 that ω induces a left-invariant measure µ on Gk, thus also a left-invariant
measure µv on Gkv for each v ∈ Vk. The idea to obtain a measure on the adelic
points of G is simply to multiply the local measures; however, this product do
not need to converge. Choose numbers λv for v ∈ V fk , which we call convergence
coe�cients, such that the product∏

v∈Vk

λvµv(GOv
)

converges absolutely. Then we de�ne a Haar measure τ on GA as the in�nite
product of the local measures. The absolute convergence of the above product
guarantees that it is well-de�ned. Now let ω′ another left-invariant rational
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di�erential k-form on G. Then we can �nd an element c ∈ k∗ so that ω′ = cω.
This yields µ′v = ‖c‖nvµv, thus by using the product formula we obtain

τ ′ = (
∏
v∈Vk

‖c‖nv )τ = τ.

This implies that the de�nition of the measure τ is independent of the left-
invariant rational di�erential k-form on G.

De�nition. The Haar measure τ constructed above is called the Tamagawa
measure corresponding to the set of convergence coe�cients λ = (λv).

So we have constructed an invariant measure on GA; however, we are inter-
ested in the volume of the set GA/Gk. Now since the subgroup Gk is discrete
in GA, an invariant measure on GA/Gk exists if and only if GA is unimodular,
as we have seen in Theorem 2.8. As a �rst step, we want to show that the last
condition is equivalent to the unimodularity of G∞.

Lemma 4.25. Let G be an algebraic group. Then GA is unimodular if and only
if G∞ is unimodular.

Proof. As a �rst step, we want to reduce the proof to the case of a connected
algebraic group. Since the topological group GA/G

0
A is compact, it has �nite

GA-invariant measure. This implies that the restriction of the module function
∆GA to G0

A is ∆G0
A
. In particular, if ∆GA ≡ 1, then ∆G0

A
≡ 1. Conversely, let

∆G0
A
≡ 1. Then the connected component of the identity G0

A of the adelic points
is contained in the kernel of ∆GA . Thus we get a continuous homomorphism

∆: GA/G
0
A → R>0.

Now the image of ∆ is compact as the continuous image of a compact set,
thus a compact subgroup of R>0. However, there are no nontrivial compact
subgroups of R>0, thus ∆GA ≡ 1. So we can restrict ourselves to the case
of a connected algebraic group. Since the quotient G∞/G0

∞ is �nite (as the
number of components of G), we obtain the analogue result by using the same
argumentation as above.

So let G be connected. From the construction of the Tamagawa measure we
obtain that GA is unimodular if and only if all Gkv are unimodular. Now if G∞
is unimodular, then ω is also right invariant, where ω is a left-invariant rational
di�erential k-form used to construct the Tamagawa measure. Thus,

∆G∞ ≡ 1⇔ ∆GA ≡ 1.

Now one of the main results of this thesis is proved. It states that the criteria
for the compactness respectively the �niteness of the volume of GA/Gk are the
same as in the in�nite case.

Theorem 4.26. Let G be an algebraic k-group. Then

(i) GA/Gk is compact if and only if every unipotent element in Gk is contained
in the unipotent radical of G and X(G0)k = 1.

(ii) GA/Gk has �nite invariant volume if and only if X(G0)k = 1.
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Proof. [15, Theorem 5.5]. From Proposition 4.24 we know that there exists a
fundamental set of Gk in GA of the form Ω = B×C, where B ⊂ G∞ is a closed
fundamental set with respect to GO and C is a compact open set of GA(∞). Now
if Ω is compact (respectively has �nite invariant volume), then also GA/Gk has
this property. Conversely, let GA/Gk be compact. Since the Gk-translates of Ω
have �nite intersection, we get that Ω is compact. Since Ω = B × C and C is
compact, the last result is equivalent to B being compact. Furthermore, since C
has �nite volume, the �nite volume of Ω is equivalent to B having �nite volume.
Now from Lemma 4.25 we conclude that GA/Gk is compact (respectively has
�nite invariant volume) if and only if G∞/GO is compact (resp. has �nite
invariant volume). So the claim follows from Theorem 3.21.

So we have obtained criteria for the compactness and the �niteness of the
volume of the quotient GA/Gk for every Tamagawa measure τ . It can be shown
that the convergence coe�cients can be chosen canonically for an algebraic
group G, see e.g. [17, p.115]. In particular, if G is semisimple, we can choose
λv = 1 for all v ∈ V . With respect to the Tamagawa measure obtained in this
way, we can de�ne the following important term.

De�nition. Let G be an algebraic k-group, let τ be the Tamagawa measure
obtained canonically. Then we de�ne the Tamagawa number τ(G) of G as the
invariant volume of GA/Gk, if it exists.

As we have seen in Theorem 4.26 the Tamagawa number of a semisimple
group is �nite. As an example, we want to compute τ(SL2).

Example. Let G = SL2 over Q. As we have seen in chapter 2.2 a Q-rational

di�erential form for G is given by ω = 1
xdx∧dy∧dz, where X =

(
x y
z t

)
∈ GQ.

Let µ∞ denote the corresponding measure on the in�nite place, let F be a
fundamental domain for GR/GZ. Then we have seen in chapter 3.3 that

vol(GR/GZ) = µ∞(F ) =
π2

6
.

Now we have to compute the volume of GQp
/GZp

for any prime p. Let µp de-
note the measure on GQp corresponding to ω. Let SL2(Zp, p) be the congruence
subgroup of SL2(Zp) modulo p, i.e.,

SL2(Zp, p) = {g ∈ SL2(Zp) | g ≡ I2 mod p},

where the reduction modulo p is meant to be componentwise. It is clear that

µp(SL2(Zp)) = |SL2(Z/pZ)|µp(SL2(Zp, p)),

and an easy combinatorical argument shows that |SL2(Z/pZ)| = p(p2−1). Thus
it remains to compute Γ = µp(SL2(Zp, p)).

The set Γ is mapped by x, y, z onto pZp×pZp×pZp and we have
∣∣ 1
x

∣∣
p

= 1 on

Γ. Thus µp(Γ) = (νp(pZp))3, where νp is the Haar measure on Qp normalized by
νp(Zp) = 1. Let σp : Qp → Qp denote the left-multiplication with p. Then it can
be shown that modQp(σp) = |p|p = 1

p , where |.|p denotes the p-adic valuation.
This yields

µp(SL2(Zp)) = |SL2(Z/pZ)|µp(SL2(Zp, p)) = p(p2 − 1)p−3 = 1− 1

p2
.
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Using the analogous result of Proposition 4.18 we see that Ω = F×
∏
p SL2(Zp)

is a fundamental set for SL2(A)/ SL2(Q). Thus

τ(G) = µ∞(F )×
∏
p

µp(SL2(Zp)) =
π2

6

∏
p

(
1− 1

p2

)
= ζ(2)ζ(2)−1 = 1.

For the last example we used that we have an explicit description of the
fundamental domain for SL2(A)/ SL2(Q). Therefore, this computation cannot
be used to compute the Tamagawa number of an arbitrary algebraic group G
de�ned over a number �eld k.

4.5 Properness of injective morphisms

We have seen in the previous chapter that the quotient GA/Gk cannot be ex-
pected to be compact or to have �nite invariant volume. This result is not
really surprising, since we have seen this in chapter 3.2 for the case of the idele
group J/k∗ ∼= GL1(A)/GL1(k). But after restricting to the special ideles J(1)

k we
again obtained compactness. Now for arbitrary groups G the question arises if
we can always restrict to a subgroup G(1)

A of GA such that the quotient G(1)
A /Gk

is compact, has �nite invariant volume respectively.
Let χ ∈ X(G)k. Since the k-points of G are dense in Gkv for all v ∈ Vk, we

can extend the character χ uniquely to all of Gkv . Now we associate to any χ
the continuous homomorphism

ck(χ) : GA → R>0

(gv)v 7→
∏
v

|χ(gv)|v.

Since χ is k-rational, we know that χ maps GOv
into Ov for almost all v ∈ V fk .

Therefore for all g ∈ GA we have |χ(gv)|v ≤ 1 for almost all v ∈ V fk , so the map

ck(χ) is well de�ned. Now de�ne the subgroup G(1)
A of GA via

G
(1)
A =

⋂
χ∈X(G)k

ker(ck(χ)).

From the product formula it follows that Gk ⊂ G(1)
A .

The following Proposition delivers structural information about the quotient
G

(1)
A /Gk.

Theorem 4.27. Let G be a connected algebraic k-group. Then G(1)
A is unimod-

ular and G(1)
A /Gk has �nite invariant volume. Moreover, the quotient G(1)

A /Gk
is compact if and only if every unipotent element of Gk is contained in the
unipotent radical of G.

Proof. [15, Theorem 5.6]

Now in the rest of this work we try to analyse the connection between re-
ductive algebraic groups G and their subgroups in view of the compactness of
G

(1)
A /Gk. The following discussion is based on the ideas in [16, ch. 6.1].
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For that, let G, H be reductive algebraic k-groups. Let i : H ↪→ G be
an injective k-homomorphism. Then it follows that the map i : HA → GA is
injective as well as the restriction iA|H(1)

A
: H

(1)
A → G

(1)
A . Since i(Hk) ⊂ Gk, we

get a map
i
(1)
A : H

(1)
A /Hk → G

(1)
A /Gk,

which is easily seen to be injective.
We now want to show that this map is proper.

Proposition 4.28. The map i(1)
A is proper.

Proof. Since i(1)
A is injective, we have seen in Proposition 2.2 that is su�ces

to show that i(1)
A is a homeomorphism onto a closed subspace of G(1)

A /Gk. By

Theorem 2.4 it su�ces to show that the image of i(1)
A is closed in G

(1)
A /Gk.

By the de�nition of the quotient topology this means that i(1)
A (H

(1)
A /Hk)Gk =

iA(H
(1)
A )Gk is closed in G

(1)
A . This in fact is equivalent to Gk being closed in

iA(H
(1)
A )\G(1)

A . From 1.11 we know that there are a �nite dimensional k-vector
space W , viewed as a�ne k-variety, a k-representation ϕ : W × G → W and a
k-point w ∈Wk such that the orbit of w is closed in W and the isotropy group
of w is i(H). Let ϕ̌ : G → GL(W ) denote the induced k-homomorphism. Now
by Lemma 4.1 we obtain that the adelization ϕ̌A : GA → GL(WA) is continuous,
so we get a representation of GA and after restriction a representation

ϕ
(1)
A : WA ×G(1)

A →WA

of G(1)
A . Since i(H) = pr2(ϕ−1)(w) and adelization preserves continuity, we

deduce that iA(H
(1)
A ) = pr2((ϕ

(1)
A )−1)(w), so it is still the stabilizer of w. Now

ϕ is a k-rational representation, so we have ϕ̌(g)(w) ∈ Wk for all g ∈ Gk. Now
de�ne Γ := Wk. Then it follows that Γ is a Gk-stable lattice in WA and w ∈ Γ.
Since the k-points of W are discrete in WA and ϕ maps k-points onto k-points,
we get that the Gk-orbit of w is discrete in WA and also closed since wGk is
closed in Wk and Wk is closed in WA. Now let p : G

(1)
A → iA(H

(1)
A )\G(1)

A denote
the canonical projection. Then we have an identi�cation p(Gk) → wGk by
sending iA(H

(1)
A )g onto wH(1)

A g, so p(Gk) is closed in iA(H
(1)
A )/G

(1)
A .

As a corollary, we obtain that if G is a reductive algebraic k-group with
G

(1)
A /Gk is compact, then alsoH(1)

A /Hk is compact for every reductive k-subgroup
H of G. Moreover, since every algebraic k-group can be embedded into some
GLn(k), it su�ces to prove the compactness of the quotient for "big" closed
subgroups of the general linear group.
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Appendix

Haar measure

In this section we want to introduce a left-invariant measure on locally compact
topological groups, called Haar-measure. Since the proof of the existence of this
measure is rather technical, it will be omitted. For more information about
Haar measures, see [5, ch. VII, �1].

Proposition. Let G be a locally compact group. Then there exists a nonzero
measure µ on G such that

(i) all continuous functions f : G→ C with compact support are µ-integrable.

(ii) µ is invariant under left translations, i.e., for all h ∈ G and all µ-integrable
functions f we have ∫

G

f(g)dµ(g) =

∫
G

f(hg)dµ(g).

Proof. [5, ch. VII, �1, Théorème 1]

De�nition. Such a measure is called a left Haar measure on G.

Let µ, µ′ be two left Haar measures on G. Then there exists a nonzero
constant λ ∈ C∗ with µ = λµ′, so the Haar measure is unique up to a constant
multiple. Let A ⊂ G be a µ-measurable subset of G. Then for each g ∈ G we
have µ(gA) = µ(A). Every Borel set of G is µ-measurable. Moreover, if A ⊂ G
is open (resp. compact), then µ(A) is positive (resp. �nite).

We can analogously de�ne a right Haar measure on a locally compact group
to be a nonzero measure on a locally compact group G which satis�es condition
(i) of the above Proposition and is invariant under right translations. Every left
Haar measure µ on G induces a right Haar measure µ′ by de�ning

µ′(Ag) = µ(gA)

for all g ∈ G and all Borel sets A ⊂ G.
Now let σ be an isomorphism of topological groups. Then σ maps µ-

measurable sets to µ-measurable sets. Therefore we can de�ne a measure µ′

on G by µ′(A) = µ(σ(A)) for any µ-measurable set A. It can be shown that µ′

is again a left Haar measure on G, thus there exists a nonzero constant modG(σ)
(or just mod(σ)) with µ′ = mod(σ)µ. Clearly this constant is independent of
the original choice of µ.

De�nition. Let σ be an isomorphism of topological groups. Then the non-zero
constant mod(σ) ∈ C∗ is called the modulus of the automorphism σ.

We now want to establish some properties of the modulus of an automor-
phism. For that, let Aut(G) denote the group of automorphisms of G as a
topological group and �x a left Haar measure µ on G. Then we have the fol-
lowing Lemma.

Lemma. Let G be a locally compact group.
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(i) If G is compact then mod(σ) = 1 for all σ ∈ Aut(G).

(ii) If G is discrete, then mod(σ) = 1 for all σ ∈ Aut(G).

Proof. Let µ be a left Haar measure on G, let σ ∈ Aut(G).

(i) If G is compact, then µ(G) <∞. Then we obtain

µ(σ(G)) =

∫
G

dµ(σ(G)) =

∫
σ−1(G)

dµ(G) =

∫
G

dµ(G) = µ(G),

thus mod(σ) = 1.

(ii) If G is discrete, then the set {e} is open, hence has positive measure. This
yields

µ(σ(e)) =

∫
{e}

dµ(σ(e)) =

∫
{σ−1(e)}

dµ(e) =

∫
{e}

dµ(e) = µ(e),

so mod(σ) = 1.

For every g ∈ G is the map inng : G → G, h 7→ ghg−1 an automorphism of
topological groups. Let ∆G(g) denote the corresponding modulus. This induces
a continuous homomorphism

∆G : G→ R>0,

called the modulus of G. We say that a locally compact group G is unimodular
if ∆G ≡ 1. Let µ be a left Haar measure on an unimodular group G. Then µ
is a also a right Haar measure, i.e., µ is also invariant under right translations.
Moreover, µ(X) = µ(X−1) for all measurable sets X ⊂ G. Now we want to give
some examples of unimodular groups. From the de�nition of the modulus it
immediately follows that any abelian locally compact group G satis�es ∆G ≡ 1.
Moreover, we have the following Corollary of the Lemma.

Corollary. Any compact or discrete locally compact group is unimodular.
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Summary

This diploma thesis deals with algebraic groups G de�ned over algebraic number
�elds k. To gain information about the k-points of G we can consider the adelic
points GA of G. One aim of this thesis is to construct fundamental domains
respectively sets for Gk in GA. In addition, criteria for compactness and for the
existence of a �nite invariant volume for the quotient GA/Gk shall be found.
Furthermore, we consider the group G

(1)
A de�ned by the intersection of the

kernels of all k-characters of G and again try to �nd conditions which guarantee
that the quotient G(1)

A /Gk is compact, has �nite invariant volume respectively.
At the end of this thesis we analyse inclusions i : H ↪→ G of reductive algebraic
k-groups and show that the induced morphism i

(1)
A : H

(1)
A /Hk → G

(1)
A /Gk is

proper.
After a short introduction to the theory of algebraic groups the �rst impor-

tant result in the �rst chapter is that every a�ne algebraic k-group is isomorphic
to a closed subgroup of GL(V ) for a suitable k-vector space V . In the third sub-
section we improve this representation for the case of a connected algebraic
group G and a reductive subgroup H ⊂ G.

In the second chapter we introduce the notion of properness for continuous
maps. In particular, we show the connection between such maps and the com-
pactness of preimages of compact sets. In the second subsection we consider the
restricted topological product of topological spaces. Furthermore, we construct
measures on such products and give conditions when a measure on an algebraic
group induces a measure on a quotient of that group. At the end, we compute
a rational left-invariant di�erential form on SL2 over Q.

The third chapter is dedicated to a review of the theory of algebraic number
�elds and their completions with respect to valuations. After that, the adeles
and ideles of an algebraic number �eld are de�ned and important results in this
context are stated. In the third subsection we consider arithmetic subgroups of
algebraic groups over Q and construct fundamental sets for GR with respect to
GZ. In addition, we give conditions which are equivalent to the compactness,
the �nite invariant volume of GR/GZ respectively. At the end, we generalize
these results to arbitrary number �elds.

The main part of this diploma thesis is formed by the fourth chapter. First,
we associate to every algebraic variety X de�ned over k an �adelic� variety.
Afterwards we construct fundamental sets respectively domains for Gk in GA,
where GA denote the adelic points of G. Here we reduce the general case to
that of GLn. In the fourth subsection we consider GA/Gk and analyse under
which condition this quotient is compact, has �nite invariant volume respec-
tively. We show, that this question can be reduced to the in�nite case. After
that, we restrict to the subgroup G(1)

A ⊂ GA de�ned by the intersection of the
kernels of all k-characters of G, and clear which criteria are equivalent to the
compactness respectively to the �nite invariant volume of G(1)

A /Gk respectively.
In the last chapter we consider injective k-morphisms i : H ↪→ G and show, that
the induced map

i
(1)
A : H

(1)
A /Hk ↪→ G

(1)
A /Gk

is proper.

65





Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit algebraischen Gruppen G de�niert
über einem algebraischen Zahlkörper k. Um Informationen über die k-Punkte
von G zu erhalten können wir die adelischen Punkte GA von G betrachten. Ein
Ziel dieser Arbeit ist die Konstruktion von Fundamentalbereichen bzw. -mengen
fürGk inGA. Weiters sollen Kriterien für Kompaktheit sowie für endliches invar-
inates Volumen des Quotienten GA/Gk gefunden werden. Ferner betrachten wir
die Gruppe G(1)

A , de�niert als der Schnitt über die Kerne aller k-Charaktere von
G, und wollen auch hier Bedingungen �nden, die garantieren, dass der Quotient
G

(1)
A /Gk kompakt ist bzw. endliches invariantes Volumen hat. Am Ende dieser

Arbeit betrachten wir Inklusionen i : H → G von reduktiven algebraischen k-
Gruppen und zeigen, dass der induzierte Morphismus i(1)

A : H
(1)
A /Hk → G

(1)
A /Gk

eigentlich ist.

Nach einer kurzen Einführung in die Theorie der algebraischen Gruppen ist
das erste wichtige Resultat im ersten Kapitel die Darstellung einer beliebigen
(a�nen) algebraischen k-Gruppe als abgeschlossene Untergruppe von GL(V )
für einen k-Vektorraum V . Im 3. Abschnitt verfeinern wir diese Darstellung im
Fall einer zusammenhängenden algebraischen Gruppe G und einer reduktiven
Untergruppe H ⊂ G.

Im zweiten Kapitel führen wir den Begri� der Eigentlichkeit von stetigen
Abbildungen ein. Insbesondere zeigen wir den Zusammenhang solcher Abbil-
dungen zur Kompaktheit von Urbildern von kompakten Mengen. Im zweiten
Unterkapitel betrachten wir das verschränkte topologische Produkt von topol-
ogischen Räumen. Weiters konstruieren wir Maÿe auf solchen Produkten und
geben Bedingungen, unter welchen das Maÿ auf einer algebraischen Gruppe
eines auf dem Quotienten induziert. Am Schluss berechnen wir eine rationale
Di�erentialform auf der Gruppe SL2 über Q.

Das dritte Kapitel widmet sich zunächst der Wiederholung der Theorie der
algebraischen Zahlkörper und deren Vervollständigungen durch Bewertungen.
Danach werden die Adele und Idele eines algebraischen Zahlkörpers de�niert
und die wichtigsten Resultate zitiert. Im dritten Unterabschnitt betrachten wir
arithmetische Untergruppen von algebraischen Gruppen über Q und konstru-
ieren Fundamentalmengen für GR bezüglich GZ. Weiters geben wir Bedingun-
gen an, die äquivalent sind zur Kompaktheit bzw. zum endlichen Volumen von
GR/GZ. Am Schluss geben wir die Verallgemeinerungen auf beliebige algebrais-
che Zahlkörper.

Der Hauptteil dieser Arbeit wird vom vierten Kapitel gebildet. Zunächst
assoziieren wir zu jeder algebraischen k-Varietät X eine �adelische� Varietät.
Danach konstruieren wir Fundamentalbereiche bzw. -mengen für Gk in GA, wo
GA die adelischen Punkte von G bezeichnen, wobei wir zunächst den Fall G =
GLn betrachten und den allgemeinen Fall darauf zurückführen. Im vierten Un-
terkapitel betrachten wir den Quotient GA/Gk und analysieren, unter welchen
Bedingungen dieser kompakt ist bzw. endliches invariantes Volumen hat. Danach
beschränken wir uns auf die Untergruppe G(1)

A ⊂ GA, de�niert durch den Durch-
schnitt über die Kerne aller k-Charaktere von G, und klären wieder welche Kri-
terien äquivalent zur Kompaktheit bzw. zum endlichen Volumen von G(1)

A /Gk
sind. Im letzten Kapitel betrachten wir injektive k-Morphismen i : H ↪→ G und
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zeigen, dass die induzierte Abbildung

i
(1)
A : H

(1)
A /Hk ↪→ G

(1)
A /Gk

eigentlich ist.
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Notation

Z Ring of integers
Q Field of rational numbers
R Field of real numbers
C Field of complex numbers
Vk Places of an algebraic number �eld k
Ok Ring of integers in an algebraic number �eld k
kv Completion of an algebraic number k with respect to a valuation v
Ov Valuation ring in kv
Ak Ring of adeles over k
GLn(k) Group of n-dimensional invertible matrices with entries in k
SLn(k) Group of n-dimensional matrices with entries in k and determinant equal to 1
Σt,u Siegel set for GZ in GR with the parameters t and u
ΣA
t,u Siegel set for Gk in GA corresponding to Σt,u

cl(G) Class number of an algebraic group G
X(G)k Group of characters of G de�ned over k
GA Points of G in the adeles A
G

(1)
A Subgroup of GA de�ned by the intersection of the kernels of all k-characters of G

τ(G) Tamagawa number of the algebraic group G
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