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Abstract 

 

Male genitalia that bear spines, hooks and other conspicuous projections that cause harm 

to females during mating are common among animals. Yet, our knowledge about the 

function of such harmful genital traits is limited. In the seed beetle Callosobruchus 

maculatus, males possess genital spines that injure females during copulation. These 

spines aid males in sperm competition, but their exact function is unknown. Here, I 

explored the functional significance of the genital spines in C. maculatus by assessing 

two potential sperm competition advantages. (1) I investigated, if the genital spines 

increase the dispersal of accessory seminal substances throughout the females‟ body. (2) I 

explored whether the spines function as an anchor during copulation to prevent females 

from terminating the copulations earlier than beneficial for males. To test these 

hypotheses, I compared the mating performance of long and short spined males, which I 

generated experimentally in two complimentary ways. First, I used artificial selection to 

create long and short spined lines. Second, I shortened genital spines using micro laser 

ablation. Since copulation duration was not related to spine length, my results did not 

support the anchor hypothesis. However, my results showed that the dispersal of 

accessory seminal substances throughout the females‟ body increased with increasing 

spine length, and that long spined males achieved advantages in sperm competition. This 

provides the first evidence that genital spines increase male fertilization success by 

perforating female tissues, through which accessory seminal substances can pass more 

efficiently. Moreover, my results illustrate one way in which sexual selection can shape 

genital morphology. 
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1. Introduction 

 

Male genitalia that are equipped with spines, hooks or other appendages are common 

among animals – especially in insects (Crudgington & Siva-Jothy 2000; Blanckenhorn et 

al. 2002; Stockley 2002; Arnqvist & Rowe 2005; Kamimura 2010). Such male genitalic 

traits can be harmful and may injure females during copulation (Merritt 1989; 

Crudgington & Siva-Jothy 2000; Stutt & Siva-Jothy 2001; Blanckenhorn et al. 2002; 

Stockley 2002; Kamimura 2007). For instance in Drosophila melanogaster the dorsal 

branches of the basal processes of the male adeagus pierce the female reproductive tract 

and lead to melanized scars within the females (Kamimura 2010). In bed bugs, males 

have even evolved specialized intromittent organs for extra-genital insemination and 

pierce the abdominal body wall of the females to force them into copulations, a 

mechanism called traumatic insemination (Stutt & Siva-Jothy 2001). In the seed beetle 

Callosobruchus maculatus, males are armed with conspicuous genital spines that injure 

the females‟ reproductive tract during copulation. Even mating a single time can leave 

melanized scars within the females‟ reproductive tract (Crudgington & Siva-Jothy 2000; 

Rönn et al. 2007). The internal wounds are costly to the females and can shorten their 

lifespan (Crudgington & Siva-Jothy 2000; Rönn et al. 2006). However, in C. maculatus – 

such as in many other cases – the specific function of the harmful genital spines is still 

unknown. Furthermore, it is still under discussion, how males can evolve and maintain 

such harmful genitalia despite the fact that they are harmful to their mates. To contribute 

to this discussion and to gain more insights into the potential functions of harmful 

genitalia, I explored the functional significance of the genital spines in C. maculatus in 

my diploma thesis. In the following sections I will first introduce the potential 

mechanisms that drive genital evolution (section 1.1.) and explain sexual conflict and the 

theories that can cause the evolution and maintenance of harmful genitalia (section 1.2.). 

Then I will write about the role of accessory seminal substances in sexual selection and 

genital evolution (section 1.3.) and mention the multiple functions of male genitalia 

(section 1.4.). I will finish the introduction by describing the general biology of C. 

maculatus, the potential functions of the genital spines in that species (section 1.5.) and 

the goal of my thesis (section 1.6.).  
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1.1. Rapid Genital Evolution 

 

In species with internal fertilization genital morphology is extremely diverse and evolves 

rapidly. Even across closely related and morphologically very similar species genitalia 

can vary enormously (Hosken & Stockley 2004; Simmons et al. 2009) and in many insect 

taxa one actually has to inspect the genitalia to be able to identify to which species the 

specimen belongs to (Klotz 1970 in Gilligan & Wenzel 2008; Eberhard 1985; Simonsen 

2006). There are several theories that could explain the diversity of genital morphology 

and rapid genital evolution. Originally, the lock and key hypothesis was proposed, where 

female and male genitalia were assumed to function like lock and key to avoid 

hybridization (Dufour 1844 in Shapiro & Porter 1989). Only the male of the same species 

was expected to have the right key for the females‟ lock, a mechanism that potentially 

could lead to variance in genital morphology and speciation. However, there is little 

evidence for the lock and key system. Instead most studies disagree with this hypothesis 

(Porter & Shapiro 1990; Arnqvist et al. 1997; Arnqvist 1998; Eberhard 2001; Gilligan & 

Wenzel 2008). Another theory, the pleiotropy hypothesis, explains the huge variation in 

genital morphology by selection of other traits that accidentally lead to genital 

modifications due to genetic correlations (Mayr 1963). Yet, this theory cannot explain 

why genitalia are much more variable than other morphological traits (or cannot explain 

why genital variance is so disproportional high). Furthermore, under the pleiotropy 

hypothesis selection should not act on genitalic traits. Yet, it has been shown in many 

species that selection acts on genitalic traits and that genital morphology affects the 

fitness of their bearer (Arnqvist 1998; Arnqvist & Danielsson 1999; Danielsson & 

Askenmo 1999; House & Simmons 2003; Takami 2003; Arnqvist & Rowe 2005; 

Wenninger & Averill 2006; Hotzy & Arnqvist 2009). Additionally, it is hard to imagine 

how harmful male genitalia could evolve and persist under pleiotropy, since such 

genitalic traits induce costs in females. However, pleiotropy could be partly responsible 

for genital evolution but cannot explain the extreme diversity of genital morphology 

(Hosken & Stockley 2004). More recently, sexual selection has entered the spot light of 

genital evolution and is getting more and more attention since the number of studies 

detecting correlations between male genital morphology and fertilization success is 

growing (Arnqvist 1998; Arnqvist & Danielsson 1999; Danielsson & Askenmo 1999; 

House & Simmons 2003; Takami 2003; Arnqvist & Rowe 2005; Wenninger & Averill 

2006; Hotzy & Arnqvist 2009). Sexual selection mechanisms that were suggested to drive 
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genital evolution are (1) cryptic female choice, (2) sperm competition and (3) sexual 

conflict (Arnqvist 1997; Hosken & Stockley 2004), whereat it is under discussion, 

whether sexual conflict should be considered a force that drives genital evolution or not, 

since sexual conflict can also be seen as one way to generate cryptic female choice and as 

a product of sperm competition (Chapman et al. 2003; Arnqvist 2004; Arnqvist & Rowe 

2005; Jagadeeshan & Singh 2006). Thus, starting from now, I will only refer to sperm 

competition and cryptic female choice when it comes to the mechanisms that drive genital 

evolution.  

 

Cryptic female choice (Eberhard 1996) – which is defined as any female trait that biases 

male fertilization success towards certain males – can trigger male genital evolution by 

two mechanisms: good genes and sexy sons (Hosken & Stockley 2004). This could occur 

if male genitalia morphology would reflect male quality and females could use genital 

traits to choose males that produce attractive sons or/and inherit good genes. For example, 

females could potentially detect the quality of a male by his stimulation ability and 

choose to fertilize their eggs with the sperm of the best stimulating males (Eberhard 1985; 

Eberhard 2001; Hosken & Stockley 2004).   

 

Male-male conflict – in the form of sperm competition – also plays a role in rapid genital 

evolution. Sperm competition arises, when the sperm of at least two males compete for 

fertilization of an ovum, which is very common among animals (Parker 1970; Birkhead & 

Møller 1998) since strict monogamy is very rare (Birkhead & Møller 1998; Arnqvist & 

Nilsson 2000; Griffith et al. 2008). In other words, as soon as females mate to more than 

one male during one reproductive period, selection will favor morphologic and 

physiologic traits of male genitalia that are beneficial in sperm competition. Males may 

outcompete rival males in many different ways. For instance they can a) transfer larger 

ejaculates (Gage & Baker 1991; Gage 1991; Parker 1998),  b) remove the sperm of  rival 

males (Waage 1979; von Helversen & von Helversen 1991; Tsuchiya & Hayashi 2008), 

c) transfer accessory seminal substances that serve in sperm competition (for accessory 

seminal substances see section 1.3. page 8), d) reduce female remating behavior or 

manipulate the reproductive behavior of the female in another way that is beneficial to the 

focal male (Chen et al. 1988; Chapman & Partridge 1996; Simmons 2001). Thus, sperm 

competition creates a variety of potential genitalic functions that may accelerate genital 
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evolution. Furthermore, different components of the adeagus may serve different 

purposes to aid different sperm competition functions (Hosken & Stockley 2004).  

 

However, the relative importance of sperm competition and cryptic female choice in 

genital evolution is still unknown. In general, it is important to say that these mechanisms 

are not mutually exclusive and that combinations of them may lead to genital divergence 

in particular cases (Hosken & Stockley 2004). Furthermore, it is hard to distinguish 

between sperm competition and cryptic female choice, since it is often hard to determine 

whether a male‟s fertilization success is the result of the male‟s sperm competition ability 

or of cryptic female choice (Birkhead 2000; Kempenaers et al. 2000; Andersson & 

Simmons 2006). 

 

1.2. Sexual Conflict and Harmful Male Traits  

 

Sexual conflict – i.e. male-female conflict over reproduction and fertilization – is very 

common among animals and occurs since males and females play different roles in 

reproduction and maximize their fitness in different ways (Parker 1979; Arnqvist & Rowe 

2005). Thus, it can be beneficial for one sex to enhance its own fitness by harming the 

other sex, as long as the gain in fitness outweighs the costs caused to the partner. In this 

way, traits that increase the fitness of one sex can be favored by sexual selection even 

though they are harmful and costly to the other sex (Fowler & Partridge 1989; 

Crudgington & Siva-Jothy 2000; Rönn et al. 2006). Sexual conflict can range from 

cannibalistic female spiders that consume their mates (Schneider & Lubin 1998; 

Schneider & Elgar 2001; Fromhage & Schneider 2005), over traumatic insemination 

(Stutt & Siva-Jothy 2001; Kamimura 2007; Hosken & Price 2009), to infanticidal males 

that kill a females‟ offspring to accelerate her next receptivity (Hrdy 1979; Grinnell & 

McComb 1996; Schneider & Lubin 1997). Thus, the variety of sexual conflict is huge. I 

will focus on harmful male traits that induce costs in females due to copulation, since this 

is the kind of sexual conflict that occurs in C. maculatus. During copulation, males can 

cause costs in females either by inflicting direct physical injuries (e.g. by harmful genital 

spines) or by transferring harmful accessory seminal substances (for accessory seminal 

substances see next section). However, it is still uncertain by which mechanisms such 

harmful male traits may evolve and persist (Morrow et al. 2003; Edvardsson & Tregenza 
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2005; Teuschl et al. 2007). Two theories could explain this – the adaptive harm 

hypothesis and the pleiotropic harm hypothesis (which is not to be confused with the 

pleiotropy hypothesis of genital evolution mentioned before). Under the adaptive harm 

hypothesis, Johnstone & Keller (2000) suggested that the harm itself can be beneficial. 

They assumed that the inflicted harm per se could serve males if trauma owing to mating 

could prohibit or decelerate females‟ remating behavior so that future sperm competition 

could be avoided or at least lowered. Furthermore, harm would be adaptive if the 

perceived injuries endanger the survival of the females and if this would lead to a 

terminal reproduction effect, i.e. the females would respond to the harm by investing 

more into their current reproduction (Morrow et al. 2003). Yet, many studies trying to 

prove the adaptive harm theory did not find the expected effects (Morrow et al. 2003; 

Edvardsson & Tregenza 2005; Eady et al. 2007; Teuschl et al. 2007). Instead, there is 

growing evidence that harmful traits, such as spiny genitalia, evolved for other reasons 

than causing injuries per se (Morrow et al. 2003; Edvardsson & Tregenza 2005; Eady et 

al. 2007; Y Teuschl et al. 2007; Hotzy & Arnqvist 2009). This matches the pleiotropic 

harm hypothesis. The pleiotropic harm hypothesis states that harmfulness of male 

genitalia is a negative side effect of the actual function of the harmful trait (Parker 1979; 

Morrow et al. 2003; Parker 2006). Pleiotropic harm, for instance, would be caused if 

genital armature would serve sperm competition purposes and injuries caused in females 

would be a by-product of that sperm competition function. In C. maculatus and some 

other insects, this seems to be the case (Kamimura 2007; Tsuchiya & Hayashi 2008; 

Hotzy & Arnqvist 2009).  

 

1.3. Accessory Seminal Substances  

 

Something else that is shaped by sexual selection and that plays an important role in 

sperm competition and sexual conflict are accessory seminal substances. Accessory 

seminal substances are peptides or proteins that are produced in the accessory 

reproductive glands of males (Chen 1984; Arnqvist & Rowe 2005). They are transferred 

into the females‟ body during mating and can act as neuropeptides within the females 

(Arnqvist & Rowe 2005). Such seminal substances may manipulate females‟ reproductive 

behavior in a way that benefits the male (Chapman et al. 1995; Gems & Riddle 1996). For 

example, they can enhance oviposition rate or reduce females‟ receptivity to subsequent 
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matings (Chen et al. 1988; Chapman & Partridge 1996; Simmons 2001). In many cases, 

this carries costs for females if the reproductive behavior of the female is modulated in a 

way that is suboptimal for the female. Furthermore, accessory seminal substances can 

actually be toxic to females (Das et al. 1980; Chapman et al. 1995; Rice 1996). But 

accessory seminal substances are not always used to manipulate female behavior or to 

serve intersexual conflict. They can also target intrasexual competition and serve in sperm 

competition by destroying, removing, repositioning or incapacitating stored sperm of 

previous mates (Radwan & Witaliński 1991; Clark et al. 1995; Chapman & Partridge 

1996). Potentially, accessory seminal substances could lead to the need of additional 

functions of male genitalia since genital morphology could serve to increase the uptake 

and dispersal of accessory seminal substances within the females‟ body (Eberhard 1998). 

Hence, accessory seminal substances could provide a further engine for genital evolution. 

 

1.4. Pre- and Postcopulatory Functions of Male Genitalia 

 

Evolution and function of male genital structures go hand in hand. Male genital 

morphology is of course shaped by its functions and as indicated by the diversity of 

mechanisms that contribute to rapid genital evolution, male genitalia do not only serve to 

transfer sperm but have multiple functions. In general, the functions of male genitalia can 

be divided into precopulatory and postcopulatory functions. Pre copulation male genitalia 

may serve to gain matings (Bertin & Fairbairn 2005; Polak & Rashed 2010). This is 

frequently linked to sexual conflict since males and females often have different optimal 

mating rates (Arnqvist 1989; Arnqvist 1992) but can be linked to intrasexual competition 

as well (Bertin & Fairbairn 2005). Postcopulatory, male genitalia may function to 

increase the males‟ fertilization success by possessing traits that serve in sperm 

competition, manipulate cryptic female choice and/or aid in sexual conflict over 

fertilization.  

 

1.5. Callosobruchus maculatus  

 

C. maculatus are seed beetles that are pests of dried legumes (Raja et al. 2001; Tuda et al. 

2006). During the last decades, they have become a model organism for sperm 

competition, male-female interactions, sexual conflict and sexually antagonistic 
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coevolution (Eady 1994a; Eady 1994b; Edvardsson & Tregenza 2005; Edvardsson 2007; 

Rönn et al. 2007). Females of C. maculatus mate multiply and store sperm of several 

males in their spermatheca giving rise to sperm competition. Immediately after mating, 

the females start cementing their eggs either directly onto the surface of host seeds or on 

their pods. The hatching larvae burrow into the seeds, exactly beneath the egg and 

develop within the seed thereby consuming it. After pupation, the mature beetles emerge 

from the seeds and reproduce. Adult C. maculatus are capital breeders and do not need 

any nourishment during reproduction. But if water and food are available they will 

forage. (Fox 1993b; Fox 1993a; Arnqvist et al. 2005) 

 

As mentioned above, males of C. maculatus possess spiny genitalia and injure females 

during copulation, which is thought to be costly to females since multiply mating has 

been shown to reduce female lifespan (Crudgington & Siva-Jothy 2000). Although a 

correlational study showed that males with longer genital spines fertilize more eggs under 

sperm competition than males with shorter genital spines (Hotzy & Arnqvist 2009), the 

specific function of the spines is still unknown. The spines could have several potential 

functions. (1) They could serve as an anchor to increase copulation duration by 

preventing dislodgement by either females or rival males during copulation (Edvardsson 

& Tregenza 2005; Eady et al. 2007). (2) The spines could also increase and/or accelerate 

the transfer of accessory seminal substances into the haemolymph by puncturing the 

female reproductive tract and thereby aid the male in intrasexual competition (Lewis & 

Pollock 1975; Merritt 1989; Eberhard 1996; Eberhard 1998; Crudgington & Siva-Jothy 

2000; Eady et al. 2007). (3) It has also been suggested that genital spines could function 

to directly remove sperm from rivals as they do in other species (Waage 1979; Simmons 

2001), although Eady (1994) showed that this is not the case in C. maculatus. (4) In many 

animals the female immune system reacts against sperm and accessory seminal 

substances within the females‟ body (Yanagimachi & Chang 1963; Mattner 1969; 

McGraw et al. 2004; Fedorka & Zuk 2005). If the sperm of C. maculatus also has to face 

such immune responses, trade-offs between the immune reactions against both the male 

induced wounds and the sperm could decrease immune response against sperm since 

immune function then might focus on coping with the internal injuries. This could 

potentially increase sperm uptake. (5) Adaptive harm caused by the spines could either 

lower future sperm competition by reducing the remating probability of the females, or 

increase a current males‟ fitness by inducing a final reproduction response in females. 
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However, previous studies indicate that the harm due to genital spines in C. maculatus is 

not adaptive but rather pleiotropic (Edvardsson & Tregenza 2005; Hotzy & Arnqvist 

2009). Moreover, I want to note that all these potential functions are not mutually 

exclusive and that the genital spines could of course serve multiple functions in C. 

maculatus. 

 

1.6. The Goal of my Thesis  

 

The aim of my diploma thesis was to answer following explicit questions:  

1) Do genital spines serve in sperm competition and is the fertilization success of 

long spined males higher than of short spined males?  

2) Do genital spines increase the dispersal of accessory seminal substances within 

the females‟ body, i.e. is the dispersal of accessory seminal substances of long 

spined males more effective? 

3) Do genital spines serve as an anchor during copulation to prevent females from 

terminating copulation earlier than beneficial for the male? In other words, do 

long spined males copulate longer than short spined males?  

 

To address these questions, I compared males with long and short genital spines in three 

main experiments: 

1) I performed a sperm competition assay to test whether long spined males have a 

higher fertilization success than short spined males.  

2) I performed a radio label experiment and traced male seminal substances of long 

and short spined males in different female body parts to see whether ejaculate 

dispersal depends upon genital spine length.  

3) I compared the copulation duration of long and short spined males to see if long 

genital spines prolong copulation.  

 

I obtained long and short spined males by two complimentary strategies. The first strategy 

was to select for genital spine length by artificial spine selection to achieve populations 

with either long or short genital spines. Secondly, I manipulated the genital spine length 

experimentally by using a micro laser ablation system to shorten spines. 
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So far, most studies investigating the function of genital morphology in sperm 

competition have been based on correlations between genital variation and male 

fertilization success. Such studies range from comparative studies on species level 

(Arnqvist 1998), over comparative studies on population level (Hotzy & Arnqvist 2009), 

to studies locking at the natural variation in genital morphology within populations and 

fertilization success (House & Simmons 2003; Wenninger & Averill 2006). However, all 

these studies have in common that they cannot distinguish between the effects of genital 

morphology on fertilization success and the effects of correlated traits on fertilization 

success. In my diploma thesis, I tried to solve this problem by comparing the effects of 

genital spine length due to artificial genital spine selection to the effects of genital spine 

length due to experimental genital spine ablation. If both approaches show the same 

results, this suggests that the effects of both spine length manipulations are due to spine 

length. This should minimize the risk that correlated traits are responsible for the results. 

Thus, in combination artificial spine selection and experimental spine ablation should be 

able to unveil the causal effects of the genital spines in C. maculatus.  
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2. Methods 
 

2.1. Artificial Spine Selection 

 

Artificial spine selection and all experiments using males from the resulting selection 

lines were carried out at Uppsala University, Sweden. The stock population I used to 

create my selection lines was Callosobruchus maculatus South India USA (SI USA) 

which is reared on mung beans (Vigna radiata). SI USA was originally collected in South 

India in 1979. The population has first been cultured in the USA for 23 years and is in 

Uppsala since 2002. Under the laboratory conditions we use in our lab generation time of 

SI USA is about three weeks. I chose the population for three practical reasons. 1) The 

individuals of this population are quite large and therefore easy to handle. 2) Males and 

females are easily distinguishable. 3) Collecting virgins is very easy and efficient since 

only one beetle emerges per bean (if there are several larvae within one bean only one of 

them survives). Using this population as the base, I selected three selection lines with 

long (L1, L2, L3) and three selection lines with short (S1, S2, S3) genital spines. The 

selection itself was done by comparing the genital spines of the males under a dissecting 

microscope (Leica MZ7 5). I estimated the relative spine length within a group of males 

and chose the third of the males possessing the longest or shortest spines to found the 

corresponding selection lines.  

 

Artificial Spine Selection in the First Generation Virgin males from the stock 

population were randomly chosen after emergence. The males were anaesthetized with 

CO2 and kept under a constant CO2 flow for the whole selection process (max. 45 Min). 

To be able to compare the genital spines, the adeagus was everted using an adjustable 

vacuum pump connected to a tube that ended in a pipette tip. When the genitalia of a set 

of 12 males were fully inflated, I assessed their genital spine length and split them into 

half. One half contained the longer spined males and the other half contained the shorter 

spined males. Within these groups spine length was compared again and the four males 

with the longest and the four with the shortest spines were selected. Afterwards, I inflated 

the genitalia of the next set of 12 males and compared their genital spines in the same 

way. This process was repeated until 50 long spined and 50 short spined males were 

selected. Then, I started the two first selection lines by transferring the corresponding 
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selected males and 50 randomly selected virgin females from the stock population into a 1 

liter glass jar and providing them with 150 g mung beans. Subsequently, I selected the 

males for the next two selection lines. Since it took me two to three days to select 100 

males (i.e. the males for one short and one long selection line) I selected and started the 

six selection lines in three blocks, each two to three days apart from each other. Each 

block consisted of one long spined and one short spined line (first block: L1, S1; second 

block: L2, S2; third block: L3, S3). 

 

Spine Selection of the Subsequent Generations In the subsequent generations, selection 

was basically performed as in the first generation. 12 males from the same selection line 

(e.g. L1) were compared in respect to their genital spine length. Again they were first split 

into half and then into three groups of four males with either long, short or intermediate 

spine length. But then only four out of the 12 males were selected. Depending on the 

selection line they derived from, either the four males with the shortest or the longest 

spines were chosen to sire the next generation. Like in the first generation, each 

population was founded by 50 selected virgin males and 50 virgin females. The females 

were randomly chosen from the same selection line as the corresponding males. All 

generations were selected in the same block system as in generation one. The six lines 

were therefore synchronized in pairs.  

 

Artificial spine selection was performed for five generations. Males of the sixth 

generation were then compared in mating experiments. The selection lines were reared in 

1 liter glass jars containing 150 g of mung beans and kept in climate chambers at ~30°C, 

~ 55% relative humidity with a 12:12 diurnal light cycle, except for the third and fourth 

generation which were kept at ~26°C, ~55% relative humidity to slow down the life 

cycle. Selection took place at room temperature and during the selection period (two to 

three days) the beetles were held at room temperature to slow down their metabolism and 

thereby increase their lifespan. During the mating experiments, using the males of the 

sixth generation, beetles were kept at ~30°C and ~55% relative humidity but the matings 

itself were performed at room temperature.  
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2.2. Genital Spine Ablation - Laser Treatment 

 

Genital spine ablation and all mating experiments carried out with males of the laser 

treatments were carried out at the University of Cincinnati, Ohio. As for the selection 

lines I used Callosobruchus maculatus South India USA (SI USA) for the spine ablation 

experiments. Beetles were sent from Lexington (Charles Fox‟s Lab, University of 

Kentucky) to Cincinnati (Michal Polak‟s Lab, University of Cincinnati) a couple of 

weeks before the experiments started. In Cincinnati they were kept in climate chambers at 

constant humidity with a 12:12 diurnal light cycle. To ensure the beetles would emerge 

during the period the laser treatment took place, the temperature was changed from ~30°C 

to ~20°C to slow down their metabolism and development. Shortly before the spine 

ablation, the beetles were put into virgin chambers and kept at the initial ~30°C to ensure 

enough beetles would emerge at the same time. Laser treatment and mating experiments 

were carried out at room temperature. Apart from that beetles were kept at ~30°C during 

the experimental time. To shorten the genital spines of the males I used a cutting-edge 

laser ablation system invented by Polak et al. (for more information see Polak & Rashed 

2010). 

 

I conducted four different laser treatments. In the first treatment, the strong spine ablation 

treatment (A), I shortened thirty ventral spines of the adeagus. In a second weaker spine 

ablation treatment (B) I shortened ten ventral spines. The third treatment (C) was a 

surgical control. Here no spines were shortened, but I hit spine-less areas of the adeagus 

with the laser beam ten times. In the fourth treatment (D), a second control treatment, the 

males were not hit by the laser beam at all. Instead, I shot the laser beam close to the 

adeagus ten times without hitting any tissue. To illustrate the spine ablation treatments, 

scanning electron microscope pictures (Figure 1, Figure 2 and Figure 3) were taken at the 

Department of Chemistry at the University of Cincinnati using an ESEM microscope 

from Phillips (XL 30 ESEM, FEI Company, Hillboro, Oregon, U.S.A.) The ESEM 

samples were coated with a 10 nm gold film in a vacuum desk (Denton Vacuum Desk II).  
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Figure 1. ESEM picture of the adeagus tip of a male of laser treatment C (i.e. the surgical control). All spines are 

intact since the laser only hit spine-less areas of the adeagus (no visible injuries). 

 

 

Figure 2. ESEM picture of the adeagus tip of a male of the laser treatment B (i.e. the weak spine ablation 

treatment in which 10 spines were cut off).  The red arrow points to the area where spines were ablated. 

 

 

Figure 3. ESEM picture of the adeagus tip of a male of the laser treatment A (i.e. the strong spine ablation 

treatment in which 30 spines were cut off). The red arrow points to the area where spines were ablated. 
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Spine ablation process Males were randomly assigned to one of the laser treatments (A, 

B, C or D). Then I inflated their genitalia in the same way as for the artificial spine 

selection. As soon as the genitalia were fully inflated, the males were transferred to a 

motorized stage (Prior H117, Rocklans, MA, USA) on an inverted light microscope 

(Olympus, Center Valley, PA, USA), which was connected to a laser system (for more 

details see (Polak & Rashed 2010). I used the single shot laser modus for the spine 

ablation with a laser intensity of 40%. In most cases, one spine was cut per laser shot. 

Occasionally, two spines were cut with one laser shot if they were very close to each 

other. In both spine ablating treatments I shortened spines that were located on the ventral 

side of the adeagus. Half of the spines were cut while the male was positioned on one 

lateral side. Then, I turned the male to his other lateral side and cut the second half of the 

spines. The controls were also put on their lateral sides for the laser treatment.  

 

2.3. Mating Experiments 

 

The sperm competition and ejaculate dispersal experiments were performed using both 

males from the selection lines and males from the laser treatments. The copulation 

duration assay was only done with males from the selection lines.  

 

All focal males of the selection line experiments originated from the selection lines (L1, 

L2, L3, S1, S2 and S3). The background males and all females derived from the 

nonselected SI USA stock population (I will also refer to this as the “base population”). 

Since the selection lines were selected in three blocks and synchronized in pairs, the 

mating experiments were performed in the same block system (i.e. the lines that were 

selected together were also used in the same experimental block). The three experimental 

blocks were performed three days apart from each other (first block: L1, S1; second 

block: L2, S2; third block: L3, S3).  

 

In the spine ablation experiments all individuals originated from one population (SI 

USA). The ejaculate dispersal experiment of the spine ablation treatment was run in two 

blocks, conducted four days apart from each other, whereas the sperm competition 

experiment consisted of one block only.  
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2.3.1. Sperm competition Assay  

 

For this experiment I used the following standard protocol to measure the proportion of 

eggs that is fertilized by the second of two males. Females were mated twice. First they 

were mated to a gamma irradiated, sterilized background male. They were then remated 

to a fertile focal male. When using the right irradiation dosage spermatozoa of sterilized 

males are still able to compete normally with the spermatozoa of fertile males, but eggs 

fertilized by the gamma irradiated males cannot hatch due to DNA damage within the 

spermatozoa (Ahmed et al. 1977). Thus, the proportion of eggs fertilized by the second 

male, i.e. P2, can be determined by counting the number of hatched versus unhatched 

eggs. In the P2 experiment using the males of the selection lines I started 22 to 25 

replicates per line (L1 and S1: 22, L2 and S2: 25, L3 and S3: 24). In the P2 experiment 

using spine ablated males I started 33 replicates per laser treatment. 

 

Sterilization of the Background Males One to three day old virgin background males 

were sterilized by gamma irradiation. Background males of the selection line experiment 

were irradiated with 80 Gy using the Cesium source of the Rudbeck laboratory in 

Uppsala. Background males of the laser ablation experiment were sterilized with 87.5 Gy 

using the Cobalt source at the Department of Nuclear & Radiological Engineering at the 

University of Cincinnati. I used about 80 Gy for sterilization since a previous study has 

shown that 80 Gy lead to complete sterilization of male C. maculatus but do not affect 

sperm competition (Ahmed et al. 1977). For irradiation, 10 to 20 males were put into one 

Petri dish and several Petri dishes were placed such that they received the same amount of 

radioactivity. After irradiation, males were separated and kept solitary in Eppendorf tubes 

to recover from the sterilization until the mating experiments started.  

 

First Mating One to two days after sterilization, one to two day old virgin females were 

mated to one of the sterilized background males. One male and one female were 

introduced into a small Petri dish (Ø 3 cm) and the mating procedure was observed (this 

applies to all mating experiments). After copulation was completed, each female was 

transferred into a clean Eppendorf tube containing one (first block selection lines), three 

(second block and third block selection lines) or five (laser ablation experiment) mung 

beans as oviposition substrate. The females were kept in climate chambers until the 

second mating. Males of the selection lines were prepared for genital spine length 
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measurement after the mating. Males of the laser ablation treatments were frozen after 

copulation. 

 

Second Mating Two days after their first mating, the females were remated to focal 

virgin males. In the selection line experiment those males derived of one of the selection 

lines and were randomly selected from virgin chambers one day before the mating trials. 

In the laser ablation experiment the focal males were prepared as follows: Three to four 

days before the mating trails one day old virgin males were randomly allocated to one of 

the four laser treatments: A: 30 spines shortened, B: 10 spines shortened, C: surgical 

control (spine-less area hit by the laser beam) and D: laser did not hit any tissue. The laser 

treatments were performed during two successive days. In total I prepared 33 males per 

treatment (day one: 15 males per treatment, day two: 18 males per treatment). After 

exposing them to the laser treatment, five (day one) or six (day two) males of the same 

treatment were placed into a Petri dish (Ø 3 cm) and provided with 20% sugar solution 

for three to four days, to recover from the treatment before the mating trials. Matings 

were performed like the first matings, but I placed one (spine ablation experiment) or 

three (selection line experiment) mung beans into the mating dish to facilitate remating of 

the females. When females did not remate, males (selection line experiment) or females 

(spine ablation experiment) were exchanged. Some of the females did not remate during 

the first day and were remated one day later. Those females were provided with three 

(selection line experiment) or five (spine ablation experiment) mung beans overnight to 

enhance their remating probability. In the laser ablation experiment copulation duration 

was recorded. Copulation start was defined as the time point when the male reached 

mating position (male is hanging within the female) and stopped tapping with his 

antennae onto the females‟ abdomen. Copulation was regarded as terminated as soon as 

the couple separated. In the selection line experiment copulation duration was not 

recorded, since a separate copulation duration assay was performed in this case. 

 

Post mating procedures Successfully remated females were each transferred into a 

medium sized Petri dish (Ø 6cm) containing ~ 60 (selection line experiment) or ~100 

(spine ablation experiment) mung beans to lay their eggs on. Mated focal males of the 

selection line experiment were prepared for spine measurement after the mating. The 

laser treatment males were returned to the climate chambers and kept solitary until they 

died. Once per day they were scanned to determine their lifespan. Afterwards they were 
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frozen for elytra length measurement. Seven days after the second mating, the remated 

females were removed from the Petri dishes and frozen for elytra length measurement. 

The beans were frozen after all eggs had hatched and the larvae had bored into the beans 

but before offspring emergence. The proportion of eggs fertilized by the first, sterile and 

second, fertile male was determined by counting the number of unhatched and hatched 

eggs respectively. Eggs laid between the first and second mating were counted separately 

to account for eggs that were laid before sperm competition occurred. As body size 

indicator, I measured elytra size of all mated individuals (for details of elytra size 

measurement see page 26). Beetles and infested beans of the laser ablation experiment 

were sent to Uppsala for elytra length measurement and egg counting.   

 

2.3.2. Ejaculate Dispersal within the Females’ Body  

 

To trace seminal substances of long and short spined males within the females‟ body, I 

mated females to radio labeled males. Subsequently, I measured the proportion of radio 

label within different female body parts to see where the ejaculate ends up. Males were 

radio labeled by feeding them 
14

C-Arginine, which seemed reasonable since 
14

C-Arginine 

has been successfully used in a radio label study using Acanthoscelides obtectus a closely 

related species of C. maculatus (see Huignard 1983). To ensure that the ejaculate would 

contain a sufficient amount of 
14

C, males were mated two times during the feeding period 

to get rid of the old, unlabeled ejaculate. The radio labeled males were then mated to 

nonvirgin females and ejaculate dispersal within these females was traced by measuring 

the amount of 
14

C that ended up in bursa, spermatheca and the rest of the females‟ body. I 

started 20 replicates per selection line, plus 20 blanks in the ejaculate dispersal 

experiment using the selection lines and 34 replicates per laser treatment, plus 18 blanks 

in the ejaculate dispersal experiment using the laser treated males.  

 

Radio Labeling of the Males First, one day old virgin males of either the selection lines 

or the laser treatments were mated to background females to trigger ejaculate renewal. In 

the selection line experiment copulation duration was recorded and used for the 

copulation duration experiment with intact females (see page 24). In both experiments I 

also started blank males that were exactly treated like the radio labeled individuals with 

two exceptions: 1) the blank males were not radio labeled and fed on pure 20% sugar 

solution, 2) The blank males of the spine ablation experiment were not exposed to the 
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laser procedure and the blank males of the selection line experiment derived from the 

base population (stock population). In the selection line experiments, males were radio 

labeled immediately after copulation. Each five males of the same selection line were 

transferred into a feeding chamber (Ø 3 cm Petri dish) containing a feeding vial filled 

with 340 µl of 1:1 
14

C-Arginine : 20% sugar solution (Arginine L-[
14

C(U)], 250µCi, 

Perkin&Elmer) or pure 20% sugar solution (blanks) and kept there for 24 hours. In the 

spine ablation experiment males were exposed to the laser treatment between copulation 

and feeding period. After copulation they were randomly allocated to one of the following 

laser treatments: A: 30 spines shortened, B: 10 spines shortened, C: surgical control (i.e. 

spine-less areas hit by the laser) or the blank treatment (no laser exposure) and the 

corresponding treatment was conducted. In this experiment I only used one control 

treatment, which was the surgical control C but I did not use treatment D (i.e. laser was 

shot close to the adeagus but no tissue was hit by the laser). For feeding, each eight (first 

block: laser ablation) or nine (second block: laser ablation, and blanks) males of the same 

treatment were transferred into a feeding chamber containing the same 
14

C-cocktail or 

blank-cocktail respectively as in the selection line experiment. The focal males and 

blanks of both experiments were remated to another background female one day after the 

first mating and afterwards returned into the feeding chamber for another day to gather 

more 
14

C label. All background females were disposed after mating.  

 

Focal Female Matings and Ejaculate Dispersal The focal females in this experiment 

were mated twice, which was necessary to trigger sperm competition within the females. 

First, they were mated to unlabeled background males when they were one day old. Three 

days later, they were remated to the radio labeled, focal males, except for the blank 

females that were mated to one of the blank males instead. After each mating females 

were provided with ~30 beans for oviposition. In the selection line experiment both males 

were weighed to the nearest 10
-5

g before and after copulation to account for ejaculate 

weight and body size (Micro balance: Sartorius Genius Series ME235P-0CE, Sartorius
®

). 

In the laser ablation experiment ejaculate weight was not recorded and instead elytra 

length was used to indicate male body size. For the blank individuals of both experiments 

neither body size nor ejaculate weight were recorded. Unlabeled background males were 

disposed after usage in the selection line experiment, but frozen and stored for elytra 

length measurement in the spine ablation experiment. Radio labeled males and blank 

males were frozen and stored for scintillation analysis in both experiments. To ensure the 
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radio labeled ejaculate had time to disperse, radio labeled (and blank) females were 

frozen 18 hours (±10 Min) after the final copulation. 7 days later the Petri dishes 

containing the infested beans were frozen too and kept at –18 °C until eggs were counted. 

Number of eggs laid after the first and the second mating were counted separately. 

Beetles and infested beans of the spine ablation experiment were sent to Uppsala for 

elytra length measurement, egg counting, female dissection and scintillation analysis.  

 

Female Dissection Dissection was performed under a dissecting microscope (Leica MZ7 

5) using micro forceps. Focal females were three times rinsed in 70% ethanol to get rid of 

all outer radio label due to copulation (the same procedure applies to the blank females). 

The washing dish was rinsed after each female. Females were dissected on a small square 

of gelatin (1.2 cm
2
) in a Petri dish lid (Ø 12cm). The gelatin square was placed on a drop 

of water (10µl) to fix it. The rinsed female was placed on the gelatin and one elytron was 

removed using micro forceps. Then, elytra size was measured twice using a dial calipers 

(SMIEC, 0.02mm exact). The measured elytron was placed into a fresh Eppendorf tube. 

Thorax and abdomen of the female were separated and thorax and head were also 

transferred into the Eppendorf tube. Subsequently, a drop of water (10µl) was dripped on 

the gelatin for further dissection. I removed the bursa copulatrix and the spermatheca and 

transferred each of them into a new Eppendorf tube. The rest of the females‟ body and the 

gelatin (which already sucked in all the haemolymph etc.) were placed into the first 

Eppendorf tube, already containing the elytra, thorax and head of the female. This lead to 

3 Eppendorf tubes per female containing: (1) rest of the female‟s body, (2) bursa, (3) 

spermatheca. The Eppendorf tubes were stored at -18 °C until they were prepared for 

scintillation analysis. Dissecting instruments were rinsed in 70% ethanol after each 

female.  

 

Preparation for Scintillation Analysis The frozen radio labeled males were three times 

rinsed in 70% ethanol to wash off all outer label. Then, they were put into a new 

Eppendorf tube and crushed using a steel pestle. Afterwards, they were frozen again until 

tissue solubilizing. The steel pestle was cleaned after each usage. Two days before 

scintillation analysis, the samples (radio labeled and blank males and radio labeled and 

blank female body parts) were defrosted and tissue solubilizer was added. I used two 

different tissue solubilizers. In the selection line experiment I used TS-2 (Koch-Light 

Research Laboratories Ltd, England), in the spine ablation experiment I used Solvable 
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(PerkinElmer, USA). The amounts of tissue solubilizer I added to the different 

scintillation samples were the same in both experiments: 1) focal males: 100 µl, 2) rest of 

the female body: 200 µl 3) bursa copulatrix 50 µl, 4) spermatheca: 50 µl. After adding the 

tissue solubilizer, all samples were centrifuged for 1 Min at 10.7x1000 rpm to ensure that 

the tissues were actually covered by the tissue solubilizer. 24 hours later the scintillation 

cocktail was added. In both experiments each sample was supplied with 1.5 ml 

scintillation cocktail (Optiphase „Hisafe‟ 2, PerkinElmer, USA).  

 

Scintillation Analysis 25 hours after adding the scintillation cocktail, the samples were 

analyzed with a Liquid Scintillation Analyzer (Packard, TRI-CARB 2100TR) to measure 

the radioactivity of the different samples. Samples were analyzed twice, for ten minutes 

each. Scintillation analysis was performed in blocks that were consistent with the 

experimental blocks (selection line experiment: three blocks; spine ablation experiment: 

two blocks). Each block contained between 6 and 9 blanks in addition to the labeled 

samples to measure the background radioactivity.   

 

Preparation of the Data for Statistical Analysis First, I took an average of the readings 

of the two scintillation cycles for the CPM (counts per minutes) data for all types of 

samples and removed some misreads. If there were two readings, the mean of both 

readings was used. If there was only one reasonable reading (e.g. due to a misread or 

missing reading), this one was used. I compensated for the background by subtracting the 

mean reading of the corresponding blanks from the mean of the sample readings. This led 

to the “true” 
14

C-label for all observations that could be used in the statistical tests. The 

14
C-label in the spermatheca was quite low and when subtracting the blank readings from 

the spermatheca readings some of the values became negative. Thus, I added a constant of 

2.3 to all spermathecal readings to get rid of negative values. Then, I calculated three new 

variables: 1) total signal in females (i.e. sum of bursa and rest of female‟s body), 2) 

proportion of 
14

C in the rest of female‟s body (i.e. ratio of rest of female‟s body to total 

signal) and 3) proportion of 
14

C in spermatheca (i.e. ratio of spermatheca to total signal).  
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2.3.3. Copulation Duration Assay  

 

In this assay I measured the copulation duration of couples with females who had intact 

hind legs and were thus able to terminate matings and females who could not terminate 

matings due to hind leg ablation. I mated these females to males of the different selection 

lines and analyzed the difference between the female treatments in respect to the genital 

spine length of the males. In contrast to the other mating experiments, this experiment 

was only carried out using males of the selection lines. Per selection line, I mated 20 

males to females with intact hind legs, and 20 males to females with ablated hind legs. 

 

Female Treatments Focal females in this experiment were randomly selected from the 

base population and were allocated to one of two following treatments: 1) intact treatment 

and 2) ablated treatment.  In the latter treatment the females were anesthetized under a 

steady CO2 flow and the hind legs were ablated using micro scissors. I cut the hind legs in 

the middle section of the femur such that the females could not reach the male with their 

hind legs during copulation. Therefore these females could not kick off the male to 

terminate copulation. Hind leg ablation was performed about 30 Minutes before the 

mating experiments started. In the intact treatment females had intact hind legs and were 

thus able to terminate matings.  

 

Mating experiments One to two days old virgin females of both female treatments were 

mated to one day old virgin males of the different selection lines. Copulation length was 

documented as follows: Copulation start was defined as the time point when the male 

reached mating position (male is hanging within the female) and stopped tapping with his 

antennae onto the females‟ abdomen. Copulation was regarded as terminated as soon as 

the couple separated. Before and after mating, males were weighed to the nearest 10
-5 

g to 

account for body size and ejaculate weight (Micro balance: Sartorius Genius Series 

ME235P-0CE, Sartorius®). After usage, females were frozen and stored for elytra size 

measurement. Males, who had mated to intact females, were radio labeled after the 

mating and used in the ejaculate dispersal experiment (see page 20). Males, who had 

mated to females with ablated hind legs, were prepared for genital spine measurement. 

  

 

 



 

 

25 

 

2.4. Spine Length of the Selection Lines  

 

To check if the genital spine length of the selection lines actually differed across the 

selection lines, spine length was measured of all males used in the sperm competition 

experiment carried out with the selection lines and the males who mated to ablated 

females in the copulation duration experiment. This lead to approximate 40 (36 to 40) 

replicates per selection line, and 111 replicates of the base population.  

 

Inflation and Fixation of Male Genitalia Preparation for the spine length measurement 

took place a couple of hours after the males were used in the different mating 

experiments. The genitalia were inflated in the same manner as for the artificial spine 

selection (see page 13). As soon as the genitalia were fully inflated, the males were 

placed into boiling water for 20 seconds. This led to primary fixation of the genitalia due 

to coagulation of the proteins. Then, each male was transferred into a small Eppendorf 

tube containing 60µl of Bouin‟s Solution for final fixation. The males were stored in 

Bouin‟s solution at room temperature for about 3 weeks.  

 

Spine Length Measurement Males were washed in 70% ethanol and transferred into an 

Eppendorf tube containing 70% ethanol. Several Eppendorf tubes turned out to be not 

completely airtight and dried out. In some of these cases the genital spines were covered 

by residue crystals, which were removed using a needle. Within the next three days, 

genital spines were measured as follows: The genitalia were cut off with micro scissors, 

put in a small, flattened drop of glycerol on a microscope slide and placed under a 

dissecting microscope (Leica MZ8). Each adeagus was oriented in two different positions 

to measure the length of both the lateral and the ventral spines. In each position, the 5 

longest spines were measured using a CAD digitizing tablet (SummaSketch III, 

Summagraphics) connected to the dissecting microscope. Spine length was measured as 

the distance between tip and base of the spine. All measurements were performed at the 

same magnification and the genitalia were always oriented in the same manner.  
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2.5. Body Size Measurement  

 

Elytra length was measured of all individuals used in the mating experiments (spine 

ablation and selection line experiments) except for: 1) the males of the ejaculate dispersal 

experiment carried out with the selection lines 2) the males of the copulation duration 

experiment using the selection lines. In these both cases body weight was used as body 

size. Males were weighed two times in immediate succession to the nearest 10
-5

g and the 

mean of the measurements was taken (Micro balance: Sartorius Genius Series ME235P-

0CE, Sartorius®). Elytra size of the focal females of the ejaculate dispersal experiments 

was measured twice using a dial calipers (SMIEC, 0.02mm exact). Elytra size of all other 

individuals was measured using a CAD digitizing tablet (SummaSketch III, 

Summagraphics) connected to a dissecting microscope (Leica MZ8). Each individual was 

placed on a small piece of blue tack and the elytra were oriented horizontal under the 

microscope. Both elytra were measured twice and the mean of the measurements was 

taken. All measurements were performed at the same magnification. 

 

2.6. Statistical Analysis 

 

Statistical analyses were performed using SYSTAT 11 (Wilkinson 2004) and GenStat 

v.10.0 (Payne et al. 2007).   

 

Continuous response data was analyzed in Systat11 by running analyses of variance 

(ANOVA), analyses of covariance (ANCOVA) and regressions. This applies to the 

selection line data as well as to the spine ablation data. In each model, all possible factors 

and covariates that could affect the model were tested. Factors and covariates that did not 

contribute to the fit of the model were removed from the model. A few outliers (i.e. 

studentized residual >3) were also removed from the analyses. The distribution of the 

residuals of the response variable of all general linear models was tested for normality 

using the Kolmogorov-Smirnov-Test. In cases with non-normally distributed residuals, 

transformation of the data was performed to meet the assumptions of normally distributed 

errors. In some cases the model was run using the original data although the Kolmogorov-

Smirnov-Test was significant, because visual inspection of the residuals showed that they 
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were nicely distributed (symmetrical and dome-shaped) and could be treated like 

normally distributed.  

 

Ratio response data was analyzed in Genstat running analyses of deviance (ANDEVA). 

This applied to the P2 data of both, the selection line experiment and the spine ablation 

experiment. In both cases, I modeled the number of hatched eggs laid after the second 

mating in a generalized linear model with binomial errors, using a logit link function and 

an empirically derived dispersion parameter. The total number of eggs laid after the 

second mating was used as the binomial denominator. As I did in the general linear 

models, I tested those factors and covariates that could have contributed to the fit of the 

models, and factors and covariates that did not contribute to the fit of the models were 

removed from the final models. 

 

For the selection line data I additionally ran two sample T-tests to detect differences 

between the long and short spined selection lines. The means that were used for the two 

sample T-test were generated by running the corresponding general linear model of the 

response variable without the effect of selection, saving the residuals and calculating the 

mean residual per selection line.  

 

  



 

 

28 

 

3. Results 

3.1. Selection Lines 

3.1.0. Definitions of Some Variables 

 

In all selection line data “block” refers to the block system that was used for the artificial 

spine selection. At the same time this matches to the experimental blocks of each mating 

experiments since the experiments were performed using the same block system. Each 

block contained one long and one short spined selection line (i.e. L1 and S1, L2 and S2 or 

L3 and S3). The factor “group” is used in connection with the data of the genital spine 

length of the selection lines. It refers to males that were used in two different mating 

experiments (the first group of males was used in the sperm competition experiment, 

whereas the second group of males used in the copulation duration experiment). I 

distinguish between these males since the spine length of them was not measured at the 

same time but consecutively.  

 

 

3.1.1. Spine Length and Artificial Spine Selection  

 

To test whether the long spined lines differed in spine length from the short spined males 

I ran two ANCOVAs for lateral and ventral spine length respectively (Table 1 and Table 

2).  

 

Differences in Lateral Spine Length Selection had definitely a very large effect on 

lateral spine length (Table 1). Furthermore selection had worked into the right direction 

with all long spined lines having longer lateral spines than the short spined lines (Figure 

4). Interestingly the lateral spine length of males of the different groups differed 

significantly too (Table 1). Males of the different blocks also differed in lateral spine 

length (Table 1). The interactions between block and group and block and selection had a 

large impact on lateral spine length too, although selection definitely had the biggest 

effect on lateral spine length (Table 1). Male body size, the interaction between selection 

and group and the interaction between block, selection and group were not significant 

(Table 1).   
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Table 1. ANCOVA of lateral spine length of the selection lines 

Source SS DF F-ratio P-value 

Selection 0.014 1 34.945 < 0.001 

Block 0.006 2 7.743 0.001 

Group 0.010 1 23.295 < 0.001 

Block*Selection 0.004 2 4.715 0.010 

Block*Group 0.007 2 8.613 < 0.001 

Selection*Group 0.001 1 3.015 0.084 

Block*Selection*Group 0.000 2 0.569 0.567 

Elytra length 0.000 1 0.088 0.767 

Error 0.089 216 

 

Figure 4. Means and standard errors of lateral spine length (in µm) of the six selection lines and the base 

population, after five generations of selecting the genital spine length of the selection lines.  

 

Differences in Ventral Spine Length I ran the same model for the ventral spine length 

and selection also had a large effect on ventral spine length (Table 2) at which all long 

spined lines had significant longer ventral spines than the short spined lines (Figure 5). 

The second factor that contributed to the variation in ventral spine length was block 

(Table 2). All other tested factors, covariates and interactions did not have a significant 

effect on the length of the ventral genital spines (Table 2). 
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Table 2. ANCOVA of ventral spine length of the selection lines 

Source SS DF F-ratio P-value 

Selection 0.021 1 47.974 < 0.001 

Block 0.005 2 5.829 0.003 

Group 0.000 1 0.037 0.848 

Block*Selection 0.002 2 2.168 0.117 

Block*Group 0.000 2 0.001 0.999 

Selection*Group 0.001 1 1.699 0.194 

Block*Selection*Group 0.000 2 0.228 0.796 

Elytra length 0.000 1 0.324 0.570 

Error 0.096 216  

 

Figure 5. Means and standard errors of ventral spine length (in µm) of the six selection lines and the base 

population, after five generations of selecting the genital spine length of the selection lines.  

 

Two two sample T-tests using the mean residuals per selection line for lateral and ventral 

spine length respectively showed the same results as the ANCOVAs. Both, the lateral 

spines and the ventral spines, differed significantly due to selection (Two sample T-test: 

lateral spines: N = 6, df = 4, t = 3.787, p = 0.019; two sample T-test: ventral spines: N = 

6, df = 4, t = 6.466, p = 0.003).  

 

All these results allow the conclusion that selection has been efficient since both lateral 

and ventral spine length have evolved in the predicted direction in all selection lines. 

Furthermore, I ran an ANOVA for male body size (elytra length) and an ANCOVA for 

male ejaculate size to see whether selection had affected those traits as well. But neither 

body size (see Table 3) nor ejaculate size (ANCOVA: F(1,213) = 0.169, p = 0.681, Table 13 
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page 40) were affected by the selection. When looking at the male body size only males 

of the different blocks differed significantly in body size (Table 3). All other tested 

factors did not contribute to the variance in body size (Table 3). This suggests that the 

selection lines only differed in spine length due to selection and that I had not 

accidentally selected for other correlated traits while selecting on genital spine length.  

 

Table 3. ANOVA of male body size (i.e. elytra length) of the selection lines 

Source SS DF F-ratio P-value 

Block 0.032 2 4.423 0.013 

Selection 0.001 1 0.238 0.626 

Group 0.004 1 1.212 0.272 

Block*Selection 0.008 2 1.145 0.320 

Block*Group 0.017 2 2.296 0.103 

Selection*Group 0.000 1 0.050 0.823 

Block*Selection*Group 0.002 2 0.215 0.807 

Error 0.793 217  

 

Strength of the Artificial Spine Selection Across the three blocks, the mean lateral spine 

length of the long versus short line differed by 0.24 – 1.05 SD‟s of the base population. 

For the ventral spine length the means differed by 0.60 – 1.32 SD‟s of the base 

population. Expressed in the proportion of mean spine length of the base population, the 

corresponding numbers were 0.04-0.18 and 0.09-0.19. Thus, the genital spine length 

responded strongly to the selection process. 

 

Table 4. Within block response of genital spine length to selection process after 5 generations of artificial spine 

selection Difference in genital spine length within the blocks is given as  (a) the difference between the means in µm 

(i.e. mean of long spined line minus mean of short spined line, (b) the difference of means of the long minus the short 

spined lines in proportion of the SD of the base population (i.e. difference between the means/SD of base) and (c) the 

difference of the means of the long and short spined lines in proportion of the mean of the base population (i.e. 

difference between the means/mean of base). 

 Diff. between means 

(in µm) 

Diff. in prop. of SD of 

the base population 

Diff. in prop. of mean 

of the base population 

 lateral ventral lateral ventral lateral ventral 

Block 1 8.984 8.851 1.051 1.318 0.182 0.187 

Block 2 2.067 4.052 0.242 0.603 0.042 0.085 

Block 3 4.456 5.792 0.521 0.862 0.090 0.122 

 

Another way the strength of the response to the artificial spine selection can be expressed, 

is by calculating the heritability in all six lines as deviations from the base line values. 

The heritability of a selected trait is: h2 = 2R/S (Falconer & Mackay 1996), whereat h2 is 

the heritability of the selected trait, R is  the response to selection in SD‟s per generation 
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and S is the selection intensity in SD‟s. Since I selected 30% of the males the 

corresponding intensity of selection was 1.1 in each line (Falconer & Mackay 1996). 

Using the above formula I calculated the heritability of lateral and ventral spine length in 

each line. The mean heritability for ventral and lateral spines across all selection lines was 

0.185 (min = 0.077, max = 0.402), which is quite low for a morphological trait. However, 

it is important to note that this estimate of overall h2 is a conservative estimate, since the 

selection process was assumed to be perfect – which it was probably not. Therefore, the 

intensity of selection used in the calculations was exaggerated and the true heritability 

should be somewhat higher. Anyway, the results show that genital spine length is a 

heritable trait.  

 

3.1.2. Sperm competition Assay  

 

Some females that did not remate and the corresponding couples were excluded from the 

data set (remaining replicates per selection line: L1: 16, S1: 18, L2: 19, S2: 20, L3: 20, 

S3: 19).  

 

Sterilization Only 6 out of 2279 eggs laid in between the matings (i.e. fertilized by the 

irradiated males) hatched. Hatching rate of eggs fertilized by sterilized males was thus 

only 0.3%.  

 

P2 across the Selection Lines To test differences in P2 between the selection lines I ran 

an ANDEVA of the number of hatched eggs that were laid after the 2nd mating with 

binomial errors, using the total number of eggs after 2nd mating as the binomial 

denominator, a logit link function and an empirically derived dispersion parameter. 

According to the ANDEVA, the proportion of hatched P2 eggs was marginally non-

significantly affected by selection (Table 5). The blocks did not differ in the proportion of 

hatched P2 eggs (Table 5), but time between mating had an effect on P2 (Table 5). I 

tested the effect of all possible covariates, factors and interactions. But none of them 

contributed to the fit of the model. Thus, they were removed from the model (female size, 

sterile male size and focal male size: all p > 0.1; female age and focal male age: both p > 

0.2; interaction between block and selection: p > 0.9).  

  



 

 

33 

 

Table 5. ANDEVA of the number of hatched P2 eggs with the total number of eggs laid after the second mating 

as the binomial denominator 

Source SS DF F-ratio P-value 

Block 35.52 2 0.83 0.438 

Selection 151.17 1 3.55 0.062 

Time between 

matings 

171.17 1 4.01 0.048 

Residual 42.63 105   

Change   2.31 0.063 

 

Although the effect of selection was marginally non-significant according to the 

ANDEVA, looking at the mean P2 per population showed that all long spined lines had a 

higher fertilization success than the short spined lines (Figure 6). Furthermore, when I 

compared the mean residuals of the P2 per selection line with a two sample T-test, the 

selection lines did differ significantly in their P2 values due to selection (Two sample T-

test: N = 6, df = 4, t = 5.916,  p = 0.004). Thus, according to the T-test, selection for long 

spines has definitely resulted in a higher fertilization success.  

 

Figure 6. Means and standard errors of P2 across the six selection lines, after five generations of genital spine 

selection. P2 is shown as the percentage of eggs fertilized by the males of the selection lines under sperm competition 

with a sterilized background male.  

 

Gonadotropic Effect of Genital Spine Length To test if spine length had a gonadotropic 

effect on females, and that is that males of the long spined selection lines induced females 

to lay more eggs, I ran an ANCOVA for the total (hatched plus unhatched) number of 

eggs laid after the second mating. Since the original residuals were not normally 
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distributed, square transformed data was used to run this model. Selection did not have 

any effect on the number of eggs a female laid after the second mating (see Table 6). 

Thus a gonadotropic effect is unlikely. Covariates that affected the number of eggs laid 

after the second mating were the number of eggs laid between the matings and female 

size (Table 6). All other tested factors and interactions were not significant (Table 6).   

 

Table 6. ANCOVA of the number of eggs laid after the second mating 

Source SS DF F-ratio P-value 

Selection 2248628.162 1 0.368 0.546 

Block 5922210.306 2 0.484 0.618 

Eggs between matings 1.29130E+08 1 21.106 < 0.001 

Female size 2.64402E+07 1 4.322 0.040 

Block*Selection 1.42731E+07 2 1.166 0.316 

Error 6.24048E+08 102  

 

 

3.1.3. Ejaculate Dispersal within the Female’s Body  

 

Some females had to be excluded from the data set since a) they did not remate (each one 

of S1 and of S3), b) their bursa copulatrix was accidentally ruptured during dissection 

(each one of S1, L2 and L3). Furthermore, some females had to be excluded because of 

misreads of the scintillation analyzer. Remaining replicates per selection line were: L1: 

18, S1: 15, L2: 17, S2: 18, L3: 19, S3: 18.  

 

Total 
14

C-Signal within Females To test which covariates had an impact on the amount 

of 
14

C-label within the radio labeled females, I first ran a multiple regression for the total 

14
C-signal of the radio labeled females. Since the residuals of the original data of the total 

radio label in females were not normally distributed, square root transformed data was 

used in the analysis. It turned out that the total amount of radio label in females was very 

strongly dependent up on the amount of radio label in the males (Table 7). Additionally, 

focal male body size affected the total amount of radio label in females and female size 

potentially could have had an effect too (Table 7). Interestingly, the total signal in females 

was lower when the focal male and/or focal female were larger. All the other covariates – 

both males‟ ejaculate sizes, base male size, eggs laid between the matings and eggs laid 

after the second mating – did not contribute to the variation of the total 
14

C-signal in the 

females (Table 7).   
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Table 7. Multiple regression of total 14C-signal in females Total signal is given as 14C counts per minute. Multiple 

R: 0.903, Squared multiple R: 0.816, Adjusted squared multiple R: 0.800 

Source β (coefficient) Std Error t  P (2 tailed) 

Constant 121.347 35.705 3.399 0.001 

Base male ejaculate -0.156 0.162 -0.961 0.339 

Base male body size -0.008 0.029 -0.268 0.789 

Focal male ejaculate 0.115 0.158 0.727 0.469 

Focal male body size -0.052 0.025 -2.107 0.038 

Focal female body size -25.647 13.966 -1.836 0.070 

Eggs between matings 0.094 0.105 0.896 0.373 

Eggs after 2
nd

 mating -0.149 0.181 -0.823 0.412 

Male signal 0.001 < 0.001 19.120 < 0.001 

 

Since the amount of radio label in males had a very large impact on the total amount of 

radio label in females (see Table 1) and both signals were strongly, positively correlated 

(R = 0.924, N = 102) the male 
14

C-signal could not be used as a covariate in the models 

for subsequent analysis. 

 

Amount of 
14

C-label that Left the Bursa Copulatrix I ran an ANCOVA of the 
14

C-

label that dispersed into the rest of the females‟ body while keeping the 
14

C-label within 

the bursa copulatrix constant, to test whether the selection lines differed in the proportion 

of 
14

C that dispersed from the females‟ bursa copulatrix into the rest of the females‟ body. 

Selection, block and focal female body size all had a significant effect on the amount of 

14
C that left the bursa copulatrix and dispersed throughout the female‟s body, but most 

variation was caused by selection (Table 8). The interaction between selection and block 

did not have an effect on ejaculate dispersal (Table 8). None of the other covariates (base 

male ejaculate size and body weight, focal male body and ejaculate size, final mating 

time, number of eggs laid before and after the second mating, as well as total number of 

eggs) contributed to the fit of the model (for all of them p > 0.1). Thus, they were 

excluded from the model. 

 

Table 8. ANCOVA of the 14C-signal as counts per minutes in the rest of the female’s body 

Source SS DF F-ratio P-value 

Signal in bursa 3.86129E+08 1 571.241 < 0.001 

Block 7756773.228 2 5.738 0.004 

Selection 4207216.545 1 6.224 0.014 

Focal female body size 2708028.484 1 4.006 0.048 

Block* Selection 1636580.697 2 1.211 0.303 

Error 6.28631E+07 93  
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A two sample T-test across the selection lines using the mean residual per lines showed 

the same picture: the amount of radiolabel in the rest of the females‟ body was 

significantly different between females mated to long and females mated to short spined 

males (Two sample T-test: N= 6, df = 4, t = 3.127, p = 0.035). As predicted, the 

proportion of 
14

C in the rest of the females‟ body was higher across the long spined lines 

(Figure 7). 

 
Figure 7. Proportion of 14C that left the bursa copulatrix and dispersed throughout the females’ bodies. Shown 

are the means and SE of the dispersed radio label in females that were mated to radio labeled males of the different 

selection lines after 5 generations of genital spine length selection.  

 

14
C-Label in the Spermatheca Two facts strongly suggest that the variation in 

spermathecal readings reflect contamination. 1) There was no effect on the signal strength 

due to the male signal, whereas the total signal in the female was highly dependent on the 

male signal (see Table 7 and Table 9). 2) The label in the spermatheca was strongly 

dependent on the label in the rest of the female‟s body while it was less dependent on the 

label in the bursa copulatrix (Table 9). Therefore, I excluded the spermathecal data from 

the any further analysis.  
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Table 9. ANCOVA of 14C-signal as counts per minutes in the spermatheca 

Source SS DF F-ratio P-value 

Selection 0.244 1 0.061 0.806 

Block 30.772 2 3.845 0.026 

Focal male body size 11.140 1 2.783 0.099 

Focal female body size 5.739 1 1.434 0.235 

Focal male ejaculate size 4.260 1 1.065 0.305 

Signal male 2.871 1 0.717 0.400 

Signal in rest of female 27.447 1 6.858 0.011 

Signal in bursa 12.540 1 3.133 0.081 

Block*Selection 0.699 2 0.087 0.916 

Error 316.161 79  

 

 

3.1.4. Copulation Duration Assay 

 

One couple did not mate and was excluded from the data set. Some males transferred no 

or a suspicious low amount of ejaculate and the corresponding matings were also 

removed from the data set since those pairs most probably did not copulate successfully. 

Remaining replicates of the intact female treatment per selection line: L1: 18, S1: 19, L2: 

20, S2: 19, L3: 20, S3: 19. Remaining replicates of the ablated female treatment per 

selection line: L1: 18, S1: 18, L2: 19, S2: 18, L3: 19, S3: 19.   

 

Copulation Duration and Spine Length First, I ran an ANOVA for copulation duration 

to test whether the female treatment affected copulation duration, and to assess the 

interaction between female treatment and selection. Both, female treatment and the 

interaction between selection and female treatment had an impact on mating duration 

(Table 10). Whereat copulation duration was most dependent on female treatments, i.e. 

copulation duration was much longer for ablated females than for intact females (Figure 

8). Selection itself also had an effect on copulation duration but only when females had 

ablated hind legs (see Table 10, Table 11 and Table 12). The interaction between female 

treatment and block had a significant effect on copulation duration, while block itself and 

the interactions between selection and block did not contribute to the variance in mating 

duration (Table 10). The same applied to the interaction between selection, female 

treatment and block (Table 10).  
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Table 10. ANOVA of copulation duration of all female treatments 

Source SS DF F-ratio P-value 

Selection 47.214 1 4.334 0.039 

Female treatment 2076.428 1 190.586 < 0.001 

Block 8.800 2 0.404 0.668 

Selection*Female treatment 65.152 1 5.980 0.015 

Selection*Block 58.945 2 2.705 0.069 

Female treatment*Block 148.547 2 6.817 0.001 

Selection*Female treatment*Block 1.599 2 0.073 0.929 

Error 2331.525 214  

 

Additionally, I ran an ANCOVA for the copulation duration of each female treatment to 

see whether selection had an effect on copulation duration when females were able or not 

able to terminate the copulation. Since the original residuals of the copulation duration for 

the intact female treatment were not normally distributed, ln (natural logarithm) 

transformed data was used to run the ANCOVA for the intact female treatment. The 

residuals of copulation duration of the ablated female treatment were normally distributed 

and thus the original data could be used.  

 

When analyzing the copulation duration of ablated females, selection had a big impact on 

copulation duration and ejaculate weight also affected copulation duration (Table 11). 

The effects of block and the interaction between block and selection on copulation 

duration were not significant (Table 11).  Since male body size (ANCOVA: F 1,103 = 

0.002, p = 0.966), female body size (ANCOVA: F1,99 = 0.349, p = 0.556) and female age 

at mating (ANCOVA: F1,98 = 0.938, p = 0.335) did not contribute to the fit of the model 

they were excluded from the analysis. In contrast to the ablated female treatment, 

selection had no effect on copulation duration when females were intact (Table 12). All 

variance in copulation duration of intact females was mainly due to differences between 

the blocks, but the interaction between block and selection and female age at mating also 

affected copulation duration of intact females (Table 12). Female body size (ANCOVA: 

F1,103  = 0.012, p = 0.914), male body size (ANCOVA: F1,103 < 0.001, p = 0.996) and 

ejaculate size (ANCOVA: F1,103 =0.563, p = 0.455) did not contribute to the model and 

were excluded from the model. 
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Table 11. ANCOVA of copulation duration of ablated females 

Source SS DF F-ratio P-value 

Selection 107.485 1 5.732 0.018 

Block 104.497 2 2.786 0.066 

Ejaculate weight 71.303 1 3.802 0.054 

Block*Selection 28.740 2 0.766 0.467 

Error 1950.325 104  
 

Table 12. ANCOVA table of copulation duration for intact females Since the original residuals of the mating were 

not normally distributed ln (natural logarithm) transformed data was used in the analysis. 

Source SS DF F-ratio P-value 

Selection 0.000 1 < 0.001 > 0.999 

Block 1.336 2 16.900 < 0.001 

Female age  0.160 1 4.050 0.047 

Selection*Block 0.291 2 3.678 0.029 

Error 4.231 107  

 

The results of a two sample T-test for ablated females and intact females respectively 

showed the same picture. When females could not terminate the mating (ablated female 

treatment), copulation duration differed significantly between the long and short spined 

lines (Two sample T-test: N = 6, df = 4, t = 3.905, p = 0.017) and long spined males 

mated for a longer time. But, when females were intact and thus able to terminate the 

mating, copulation duration did not differ between long and short spined males (Two 

sample T-test: N = 6, df = 4, t = -0.300, p = 0.779).  

 
Figure 8. Means and standard errors of the copulation duration across the selection lines after five generations 

of genital spine selection. Hollow circles are used for the intact female treatment (i.e. females with intact hind legs), 

whereas filled circles are used for the ablated female treatment (i.e. females with ablated hind legs).  
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Copulation Duration and Ejaculate Weight To assess whether selection indirectly 

affected the ejaculate size of the selection lines and to test if ejaculate size was affected 

by male body size and female treatment I ran an ANCOVA of the ejaculate weight of the 

selection lines. Ejaculate size did not differ due to selection (Table 13). As mentioned 

before, this indicates that I was not indirectly selecting for differences in ejaculate size 

when selecting for male genital spine length. Ejaculate weight was significantly higher 

when females were ablated then when females were intact (Table 13). Furthermore, male 

body size affected ejaculate size significantly (Table 13) with larger males transferring 

larger ejaculates (see Figure 9). Copulation duration almost had an effect on ejaculate size 

(Table 13). The interaction between female treatment and block was also on the border to 

affect ejaculate size significantly (Table 13). Everything else (block, the interaction 

between selection and female treatment, the interaction between selection and block and 

the interaction between selection, female treatment and block) did not have an effect on 

ejaculate weight (Table 13). 

 

Table 13. ANCOVA of ejaculate weight 

Source SS DF F-ratio P-value 

Selection 0.927 1 0.018 0.893 

Female treatment 200.748 1 3.951 0.048 

Block 22.792 2 0.224 0.799 

Selection*Female treatment 19.455 1 0.383 0.537 

Selection*Block 195.020 2 1.919 0.149 

Female treatment*Block 271.669 2 2.273 0.071 

Selection*Female treatment*Block 9.757 2 0.096 0.908 

Male weight 587.799 1 11.568 0.001 

Copulation duration 192.916 1 3.797 0.053 

Error 10772.304 212 
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Figure 9. Correlation between male body weight and ejaculate weight of males mated to females with intact or 

ablated hind legs. Male body weight and ejaculate weight are shown in µg. Data points of males that mated with 

ablated females are filled, data points of males that mated with intact females are hollow.  

 

3.2. Genital Spine Ablation – Laser Treatment 

3.2.1. Differences between the Laser Treatments  

 

I ran several ANOVAs to test if males of the laser treatments responded differently to the 

laser treatments before running the actual models for the results of the mating 

experiments. For most tested variables, like copulation duration, life span, number of eggs 

that females laid after the second mating and male body size, there was no difference 

between males of the different laser treatments (see Table 14). But the surgical control 

males of the ejaculate dispersal experiment ingested significantly more 
14

C than the spine 

ablation treatments (see Table 14 and Figure 10). The last model was run with square root 

transformed data since the original residuals of the ingested 
14

C amount (i.e. radio label of 

the males) were not normally distributed. Furthermore, the second control treatment 

(treatment D, where no tissue was hit by the laser and which was only used in the P2 

experiment) appeared deviant. Although the effects were not significant, the D treatment 

had the lowest mating duration, the lowest life span, and females mated to these males 

laid the fewest eggs after the 2nd mating. This was not due to an incidental difference in 

male body size, since the D treatment males were not smaller than the males of the other 

treatments (Table 14).  
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Table 14. ANOVAs assessing for differences between all laser treatments 

 

Response variable 
 

 

Source 
 

 

SS 
 

 

DF 
 

 

F-ratio 
 

 

P-value 
 

Copulation duration 

 

  

laser treatment 7.089 3 0.226 0.878 

error 980.728 94   

Life span 

 

 

laser treatment 41.348 3 1.578 0.200 

error 838.292 96   

Male body size 

 

 

laser treatment 2.709 3 0.900 0.444 

error 96.291 96   

Eggs laid after 2
nd

 

mating 

 

laser treatment 267.484 3 0.308 0.819 

error 27783.906 96   

Ingested amount of 
14

C-label (square root 

transformed male 
14

C-

signal) 

laser treatment 95297.785 2 4.272 0.017 

block 18708.620 1 1.677 0.199 

male size 14572.745 1 1.306 0.256 

block*treatment 85352.255 2 3.826 0.026 

error 925802.442 83  

 

 

Since the laser treatment definitely influenced the feeding behavior of the males, i.e. 

males of the surgical control treatment ingested significantly more radiolabel than the 

spine ablation treatments, it could be problematic to retain the surgical control treatment 

in the analysis. Similarly, the second control treatment (treatment D) also showed signs of 

undesirable effects. For that reason, I decided to run all analyses of the spine ablation 

experiment twice. Once including the two control treatments and once excluding both 

control treatments from the analyses.  

 

To check if the laser treatments in which genital spines were actually ablated (i.e. 

treatment A and B) differed in their degree of injury, I ran the same tests as above but 

including treatment A and B only. The spine ablation treatments neither differed in 

mating duration, life span, the number of eggs laid after second mating, body size nor in 

the amount of 
14

C they ingested (Table 15). Thus, the only difference between them was 

the number of spines that were ablated.  
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Figure 10. The amount of 14C in counts per minute that was ingested by males of the different laser treatments. 
Shown are the means and standard errors for each treatment. In treatment A thirty genital spines were ablated. In 

treatment B ten genital spines were ablated. In treatment C no spines were cut by the laser but instead spine-less areas 

of the adeagus were hit by the laser beam 10 times.  

 

Table 15. ANOVAs assessing for differences between treatment A and B (i.e. laser treatments in which genital 

spines were ablated) 

 

Response variable 
 

 

Source 
 

 

SS 
 

 

DF 
 

 

F-ratio 
 

 

P-value 
 

Copulation 

duration  

 

laser treatment 0.370 1 0.037 0.847 

error 463.935 47   

Life span 

 

 

laser treatment 11.640 1 1.141 0.291 

error 479.625 47   

Male body size 

 

 

laser treatment 2.005 1 2.362 0.131 

error 39.894 47   

Eggs laid after 2
nd

 

mating 

 

laser treatment 1.661 1 0.006 0.941 

error 14037.318 47   

Ingested amount 

of 
14

C-label  

laser treatment 3.12240E+07 1 0.016 0.900 

block 1.43447E+10 1 7.286 0.009 

male size 2.50696E+09 1 1.273 0.264 

block*treatment 3.02728E+07 1 0.015 0.902 

error 1.12221E+11 57  

  



 

 

44 

 

3.2.2. Sperm competition Assay  

 

Some of the laser ablation males died before they could mate (during the recovery time 

and in the mating chambers) and were excluded from the analyses below (A: 6, B: 2, C: 3, 

D: 8).  Females who did not remate and the corresponding males were also excluded from 

the analyses (A: 2, B: 5, C: 2, D: 2). Remaining replicates per treatment: A: 25, B: 26, C: 

28, D: 23. 

 

Sterilization Only 10 out 2737 eggs laid in between the matings (i.e. fertilized by the 

irradiated males) hatched. Thus, the hatching rate of eggs sired by sterilized males was 

only 0.4%.  

 

Analysis of P2 I ran two ANDEVAs of the number of hatched eggs that were laid after 

2nd mating one with and one without control treatments. I used binomial errors, using the 

total number of eggs after 2nd mating as the binomial denominator, a logit link function 

and an empirically derived dispersion parameter. Independent of whether the control 

treatments were included (Table 16) or not (Table 17), males of the different laser 

treatments did not differ in their fertilization success. Although the trend was in the 

predicted direction when the analysis was restricted to the laser treatments in which 

genital spines were actually ablated, i.e. P2 was lower for males that had more spines 

removed (see treatment A and B in Figure 11). When all treatments were included, the 

eggs between matings had an effect on fertilization success (Table 16). This effect was 

not seen when control treatments were excluded from the analysis (Table 17).  
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Table 16. ANDEVA of P2 of the males of the laser ablation experiment with all laser treatments included 

Source Mean 

deviance 

DF Deviance ratio P-value 

Laser treatment 8.37 3 0.81 0.490 

Eggs between 

matings 

46.60 1 4.52 0.036 

Residual 10.31 95   

Change   1.74 0.148 

 

Table 17. ANDEVA of P2 of the males of the laser ablation experiment without control treatments 

Source Mean 

deviance 

DF Deviance ratio P-value 

Laser treatment 0.00 1 < 0.001 0.984 

Eggs between 

matings 

26.68 1 2.43 0.126 

Residual 10.99 46   

Change   1.21 0.306 

 

 

Figure 11. Fertilization success (P2 in %) of the males of the laser treatments. The graph shows the means and 

standard errors of the percentage of eggs that was fertilized by males of the different laser treatments in competition 

with a sterilized background male.  In treatment A thirty genital spines were ablated. In treatment B ten genital spines 

were ablated. Treatment C served as a surgical control at which spine-less areas of the adeagus were hit with the laser 

beam 10 times.  In treatment D the laser beam was shot 10 times besides the adeagus without hitting any tissue.  
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3.2.3. Ejaculate Dispersal within the Female’s Body 

 

The scintillation cocktail and the tissue solubilizer I used in this experiment (Solvable) 

did not completely merge when high amounts of tissue solubilizer were used. Samples 

containing 200 µl tissue solubilizer (rest of the female‟s body) stayed turbid. All the other 

samples (focal male, bursa copulatrix and spermatheca) cleared up after shaking them and 

stayed clear for the whole scintillation analysis. But, since the turbidity of all samples 

containing the rest of the females‟ bodies was constant for all samples, I decided to count 

them normally with the scintillation analyzer. Some females had to be excluded from the 

data set since a) their bursa copulatrix was accidentally ruptured during dissection, b) they 

did not remate or c) the scintillation readings were striking low or missing (total amount 

of removed females per laser treatment: A: 6, B: 8, C: 6). Remaining replicates per laser 

treatment: A: 28, B: 26, C: 28.   

 

Proportion of 
14

C-label in the rest of the females’ body As for the data from the 

selection line experiment, I ran ANCOVAs of the 
14

C-label that dispersed into the rest of 

the females‟ body while keeping the 
14

C-label within the bursa copulatrix constant, to test 

whether the laser treatments differed in the proportion of 
14

C that dispersed from the 

females‟ bursa copulatrix into the rest of the females‟ body. When all laser treatments 

were included into the model, the original residuals of the amount of 
14

C in the rest of the 

females‟ body were not normally distributed. Thus, square root transformed data was 

used for the analysis. Furthermore two cases with student < 3 were excluded from the 

analysis. When the control treatment was excluded, the original data could be used since 

the residuals were normally distributed then. Both, when the control treatment was 

included (Table 18) and excluded (Table 19) from the analysis, the laser treatments did 

not significantly differ in the proportion of 
14

C that left the bursa and dispersed into the 

rest of the female‟s body. But in both cases focal female size contributed significantly to 

the variance of the proportion of 
14

C in the rest of the females‟ body (see Table 18 and 

Table 19), whereat more radiolabel dispersed throughout the body of large females 

(Pearson Correlation: R = 0,279, N = 82, Least Square Regression: t = 2.601, N = 82). 

When the control was included, the number of eggs a female laid significantly affected 

the proportion of 
14

C that dispersed into the rest of the females‟ body (Table 18). 

Interestingly, the more eggs females laid the more radio label entered the haemolymph or 

vice versa (Pearson Correlation: R = 0.278, N = 82, Least Square Regression: t = 2.591, N 
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= 82). This effect was much less important and not significant when the control was 

excluded from the analysis (Table 19). All other tested factors and interactions did not 

have an effect on the radio label in the rest of the females‟ body (see Table 18 and Table 

19).  

 

But even though the laser treatments did not significantly differ in their 
14

C-disperal, the 

trend pointed into the predicted direction when the control treatment was excluded, i.e. 

less radio label dispersed throughout females that mated to males with more spines 

ablated (Figure 12).  

 

Table 18. ANCOVA of the amount of 14C-label that left the bursa copulatrix and dispersed within the female’s 

body including the control treatment 

Source SS DF F-ratio P-value 

Laser treatment 704.552 2 1.702 0.190 

Block 138.047 1 0.667 0.417 

Signal in bursa 31311.323 1 151.310 < 0.001 

Focal female size 1564.084 1 7.558 0.008 

Eggs total 1076.091 1 5.200 0.026 

Laser 

treatment*Block 

548.670 2 1.326 0.272 

Error 14899.363 72  

 
 

Table 19. ANCOVA of the amount of 14C-label that left the bursa copulatrix and dispersed within the female’s 

body without the control treatment 

Source SS DF F-ratio P-value 

Laser treatment 2124050.831 1 1.255 0.268 

Block 354774.107 1 0.210 0.649 

Label in bursa 1.37055E+08 1 80.998 < 0.001 

Female size 7822650.100 1 4.623 0.037 

Eggs total 5186777.064 1 3.065 0.087 

Block*Laser 

treatment 

3802461.294 1 2.247 0.141 

Error 7.95281E+07 47  
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Figure 12. The proportion of 14C that left the bursa copulatrix and dispersed into the rest of the females’ bodies. 

The graph shows the means and standard errors of the dispersed radio label of females mated to radio labeled males of 

the different laser treatments. In treatment A thirty genital spines of the males were ablated. In treatment B only ten 

genital spines of the males were ablated. Treatment C served as a surgical control at which spine-less areas of the 

adeagus were ten times hit with the laser beam.   

 

14
C-Label in the Spermatheca Since I used the same method to determine the amount of 

14
C-label in the spermatheca as in the experiment using the selection lines, I assume that 

the variation in the spermathecal readings of the laser ablation experiment also reflects 

contamination rather than anything else. Therefore, I excluded the spermathecal data from 

the analyses. 
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4. Discussion  
 

First, I will discuss which hypotheses of the functional significance of genital spines are 

supported or not supported by my results (sections 4.1. and 4.2.). I will then look at my 

results in respect to the evolution of genital morphology and the evolution of harmful 

male traits (section 4.3. and 4.4.). Finally, I will discuss artificial spine selection and 

experimental spine ablation as methods to explore the function of genital spines (section 

4.5.). Since some of the experimental spine ablation treatments I conducted appeared 

unsuccessful and are therefore hard to interpret, I will mainly discuss the results of the 

selection line experiments. Thus, if not otherwise mentioned, all interpretations will refer 

to the results of the selection line experiments.   

 

4.1. Genital Spines, Ejaculate Dispersal and Male Fertilization Success  

 

My results strongly indicate that the genital spines of male C. maculatus serve in sperm 

competition by puncturing the female reproductive tract to increase the ejaculate dispersal 

throughout the females‟ body. Males of the long spined selection lines fertilized more 

eggs in the sperm competition assay than males of the short spined selection lines, which 

indicates that spine length is linked to male fertilization success and that males with 

longer spines fertilize more eggs under sperm competition. This result is in agreement 

with the results of a previous comparative study in C. maculatus, where populations with 

longer genital spines had a higher fertilization success, when mated to females of a 

background population, than populations with shorter genital spines (Hotzy & Arnqvist 

2009). Both studies indicate that genital spines serve to increase male fertilization success 

and that male fertilization success is linked to genital spine length. Furthermore, and this 

has not been shown before, my results demonstrate that ejaculate passage throughout the 

females‟ body is higher when females mate to long spined males. As far as I know, this is 

the first experimental evidence for the hypothesis that genital spines may serve to 

increase the passage of accessory seminal substances into the females‟ haemolymph, 

although it has been suggested in different insects (Lewis & Pollock 1975; Merritt 1989; 

Eberhard 1996; Eberhard 1998; Crudgington & Siva-Jothy 2000). For instance, Lewis & 

Pollock (1975) and Eberhard (1998) assumed that genital spines in the blowfly Lucilia 
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sericata serve this function. They based this suggestion on the fact that the spiny adeagus 

of Lucilia sericata has three openings, one terminal sperm exit and two lateral exits for 

accessory seminal substances, and that most of the spines are located next to the lateral 

apertures. A similar genital morphology is found in Lucilia cuprina and was also 

suggested to improve the uptake of accessory seminal substances (Merritt 1989). 

Furthermore, Crudgington & Siva-Jothy (2000) suggested that the genital spines of C. 

maculatus might serve the same function and pierce the reproductive tract to increase the 

passage of accessory seminal substances into the female haemolymph. This suggestion is 

now confirmed by my results. In addition, Crudgington & Siva-Jothy (2000) suggested 

that the increased passage of accessory seminal substances could lead to an increased 

oviposition rate due to accessory seminal substances. This seemed likely, since accessory 

seminal substances have a gonadotropic effect in many insect species (Pickford et al. 

1969; Das et al. 1980; Chen 1984; Chen et al. 1988; Gillott 2003; Arnqvist & Rowe 

2005). Furthermore, a recent study showed that oviposition is in fact induced by male-

derived extracts in C. maculatus (Yamane & Miyatake 2010a). Yet, I did not find any 

evidence for a gonadotropic effect in C. maculatus due to spine length. Females mated to 

males of the long spined lines did not lay more eggs after mating than females mated to 

males of the short spined lines, despite the fact that more radiolabeled ejaculate entered 

the haemolymph of females mated to long spined males. It is interesting that I did not find 

a gonadotropic effect due to spine length, especially since Yamane & Miyatake (2010a) 

detected accessory seminal substances that induced oviposition in C. maculatus. 

However, a possible explanation for this could be that only a certain amount of the 

seminal substance is needed to trigger oviposition and that increasing amounts of the 

corresponding seminal substance do not further increase oviposition rate after a certain 

threshold is reached. In this case, maybe both the long and the short spined males already 

reached this level of stimulation and thus no difference in oviposition rate was detectable 

in my study. Hence, it would be interesting to test the effect of different amounts of the 

male derived substances on oviposition rate in C. maculatus, to see if this assumption can 

be confirmed. Since I did not detect any difference in the gonadotropic response due to 

spine length, the differences in male fertilization success I detected cannot be explained 

by a gonadotropic effect. However, accessory seminal substances do not have to modulate 

male fertilization success by increasing the oviposition rate. It is known that they 

influence male fertilization success in many other ways. For instance, accessory seminal 

substances of the acarid mite Caloglyphus berlesei may reposition rival sperm into the 
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distal end of the spermatheca so that its usage for fertilization is unlikely or reduced 

(Radwan & Witaliński 1991). In Drosophila accessory seminal substances influence 

sperm displacement (i.e. sperm removal from spermatheca by the female) and thereby 

affect male fertilization success (Clark et al. 1995). Sperm displacement has been 

reported in C. maculatus (Eady 1994b) and is likely to be affected by accessory seminal 

substances. Moreover, it has also been shown that male derived extracts inhibit female 

mating receptivity in C. maculatus (Yamane et al. 2008; Yamane & Miyatake 2010b). In 

the current study I only measured differences in P2 between long and short spined males 

and did not investigate the effects of spine length on female mating receptivity. Thus, the 

effect of spine length on male fertilization success I measured was not due to differences 

in female mating receptivity. However, since I could show that ejaculate dispersal 

increases with spine length in C. maculatus, spine length could potentially influence the 

strength of the inhibiting effects on female mating receptivity detected by Yamane et al. 

(2008). This means that long spined males could potentially more efficiently inhibit 

female remating behavior. Thus, it would be interesting to measure the effects of spine 

length on female mating receptivity. Since the increased fertilization success of long 

spined males can neither be explained by increased oviposition nor by a decreased 

remating probability of the females, it very is likely that either additional accessory 

seminal substances – which have not been detected in C. maculatus so far – or, additional 

functions of the detected accessory seminal substances influenced the P2 I measured in 

my experiments. However, further investigations are needed, to detect which accessory 

seminal substances influence male fertilization success in C. maculatus and which 

particular functions they serve.  

 

4.2. Genital Spines and Copulation Duration  

 

It has also been suggested that the genital spines in C. maculatus serve as an anchor 

during copulation to prolong copulation and to prevent either the female or rival males to 

terminate the copulation too soon (Simmons 2001; Morrow et al. 2003; Edvardsson & 

Tregenza 2005; Rönn et al. 2007). Yet, I did not find any effect of spine length on 

copulation duration when females were able to terminate matings. Hence, my results do 

not support the suggestion that genital spine length is linked to copulation duration and 

thus do not support the anchor hypothesis. However, copulation duration was affected by 
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spine length when females could not terminate the copulation, with long spined males 

mating for a longer time than short spined males. This could indicate two things: First, 

copulation duration could be prolonged by long spines if it takes long spined males longer 

to either position the adeagus within the female or to loosen themselves from the female. 

Second, the optimal copulation duration could differ between long and short spined 

males, if long spined males also transfer larger ejaculates. Yet, ejaculate size did not 

differ between long and short spined males and thus it is unlikely that their optimal 

copulation duration differs. Therefore, it is more likely that long spined males face 

mechanical difficulties, either when freeing them from the female at the end of the 

copulation, or when positioning the adeagus within the female at the beginning of the 

copulation. However, my data indicate that the spines do not prevent females from 

terminating the matings earlier than beneficial for the male. In addition, a comparative 

study did not find an effect of rival males on copulation duration of long and short spined 

C. maculatus populations, which suggests that moreover the spines do not serve to hinder 

rival males to dislodge the copulating male from the female (Rönn et al. unpublished 

data). Thus, although I cannot exclude that the spines might have evolved as an anchor, 

there is no evidence that an anchor ability of the spines leads to the maintenance of long 

genital spines, since the anchor ability of the spines does not differ within the natural 

variance of genital spine length of the populations today. 

 

4.3. Genital Evolution and Sexual Selection 

 

Three main hypotheses have been invoked to explain the remarkable rapid evolution of 

genitalia: 1) the lock and key hypothesis, 2) the pleiotropy hypothesis and 3) sexual 

selection hypothesis. 1) Under the lock and key hypothesis male and female genitalia are 

assumed to serve as a species specific lock and key system to avoid hybridization, and 

thus genital variance has to be extremely high to ensure that the lock and key system 

works (Dufour 1844 in Shapiro & Porter 1989). 2) According to the pleiotropy hypothesis 

the rapid evolution of genital morphology can be explained by selection on non-genitalic 

traits that are genetically correlated with genitalic traits. As mentioned in the introduction 

most empirical evidence contradicts both the lock and key hypothesis and the pleiotropy 

hypothesis and supports the connection between sexual selection and genital evolution 

instead. My results also provide further evidence that genital evolution is driven by sexual 
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selection and that the genital spines in C. maculatus evolve via sexual selection. This is in 

agreement with many studies showing the importance of sexual selection in rapid genital 

evolution and genital divergence (Arnqvist 1998; Arnqvist & Danielsson 1999; 

Danielsson & Askenmo 1999; House & Simmons 2003; Takami 2003; Bertin & Fairbairn 

2005; House & Simmons 2005; Wenninger & Averill 2006; Hotzy & Arnqvist 2009; 

Polak & Rashed 2010). Under the sexual selection hypothesis, sperm competition and 

cryptic female choice are assumed to shape genital evolution and to fuel genital 

divergence (Hosken & Stockley 2004). In the current study, however, I could not 

distinguish, whether sperm competition, cryptic female choice or both of those 

mechanisms were responsible for the increased fertilization success (measured as P2) of 

long spined males, since the method I used to measure male fertilization success does not 

allow such conclusions. However, the increased ejaculate dispersal in long spined males 

suggests, that the spines are a product of sperm competition rather than cryptic female 

choice. Female sperm choice due to male genital spine length would be possible in C. 

maculatus if male spine length is correlated to male quality. Tadler (1999) demonstrated 

cryptic female choice in the seed bug Lygaeus simulans, where females modulate the 

males‟ fertilization success depending on the genitalic traits of the males. Thus, it would 

be interesting to conduct experiments that show whether the selection on genital spine 

length in C. maculatus is due to sperm competition, cryptic female choice or both of those 

mechanisms.  

 

4.4. Pleiotropic vs. Adaptive Harm of the Genital Spines 

 

As mentioned in the introduction, two theories are used to explain harmful male traits that 

are costly to females such as the genital spines in C. maculatus: a) the adaptive harm 

hypothesis and b) the pleiotropic harm hypothesis. Male induced harm in females is 

assumed to be adaptive if the harm itself is beneficial for the male. For instance, harm 

could prohibit or decelerate females‟ remating behavior and decrease the chance of future 

sperm competition if the females respond to the harm by investing more into their current 

reproduction (Johnstone & Keller 2000; Morrow et al. 2003). In contrast, harm is 

assumed to be pleiotropic if the induced harm is a by-product of another function of the 

harmful trait (Parker 1979; Morrow et al. 2003; Parker 2006). My study suggests strongly 

that the inflicted harm in C. maculatus is pleiotropic. My results show that the injuries in 
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females caused by the spines increase the dispersal of seminal fluid throughout the 

females‟ body and that this is linked to male fertilization success. This suggests that the 

spines serve to increase ejaculate dispersal within the female and that the harm is a side-

effect of that function rather than that the injuries are induced to harm the female per se. 

Furthermore, assuming that the inflicted harm increases with spine length, oviposition 

rate was not linked to the strength of harm in this study, since females did not lay more 

eggs when they were mated to long spined and thus more harmful males. This indicates 

that the oviposition rate was not dependent on the strength of the harm as expected under 

the adaptive harm hypothesis. Thus, adaptive harm is even more unlikely. Hence, my 

findings provide more evidence for the pleiotropic harm hypothesis and are in concert 

with previous studies, which have indicated that the harm in C. maculatus is pleiotropic 

rather than adaptive (Morrow et al. 2003; Edvardsson & Tregenza 2005; Hotzy & 

Arnqvist 2009; Gay et al. 2010).  

 

4.5. Artificial Spine Selection and Experimental Spine Ablation 

 

Artificial spine selection worked well and turned out to be a good method to generate 

males with different genital spine lengths. In all six selection lines, spine length 

responded in the predicted direction to the selection process. Furthermore, spine length 

showed significant heritability. In contrast, the genital spine ablation using the laser edge-

ablation system did not work satisfying, since the control treatments appeared deviant and 

the spine ablation treatments did not differ significantly from each other. However, I want 

to point out that these problems were most likely the result of choosing imperfect spine 

ablation treatments and control treatments and that laser surgery has been used 

successfully when investigating the function of male genitalic traits in Drosophila 

bipectinata Duda (Polak & Rashed 2010). Looking at the average 230 spines possessed 

on the adeagus of C. maculatus, ablating 10 (i.e. ~ 4%) and 30 (i.e. ~ 13%) spines was 

probably not enough to see a significant difference in P2 or ejaculate dispersal between 

the different treatments. Furthermore, the control treatments I choose turned out to be 

problematic, since the amount of injury was probably different between the control 

treatments and the spine ablation treatments. This is indicated by the fact that the control 

males ingested significantly more radio label than the spine ablated males. If this was due 

to more severe, or less severe injuries caused by the laser treatment is hard to say, but this 
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difference made the control treatments non-informative. Nevertheless, I think it would be 

worth to repeat the laser surgery experiment conducting stronger spine ablation 

treatments and a better control treatment instead, especially since the results of the spine 

ablation indicate that the expected treatment effects were potentially there, but probably 

too weak to be detected. In both, the P2 experiment and the ejaculate dispersal 

experiment, the trends pointed into the predicted directions when the control treatments 

were excluded from analysis (i.e. P2 and ejaculate dispersal were both lower for males 

with more spines removed). By removing more spines it could be possible to detect 

differences between males with more and less genital spines removed. Furthermore, the 

weak spine ablation treatment I conducted (only 10 genital spines removed) might be a 

good control treatment for future experiments. A spine ablation experiment with more 

reasonable treatments could thus provide a more direct picture of the functional 

significance of the genital spines in C. maculatus. 

 

4.6. Conclusion 

 

My results strongly suggest that the genital spines serve to increase the males‟ 

fertilization success by increasing the passage of seminal fluid into the female 

haemolymph. This provides further evidence for sexual selection as an engine that drives 

genital evolution and for the link between genital morphology and male fertilization 

success. Moreover, my results suggest that the harm inflicted in females due to the genital 

spines is of pleiotropic rather than of adaptive nature. In addition, I did not find an effect 

of genital spine length on copulation duration in C. maculatus and thus my data does not 

support the anchor hypothesis.  
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Zusammenfassung 
 

Genitalstacheln, -haken und dergleichen, die Weibchen während der Kopulation 

verletzen, sind bei Männchen vieler Tierarten zu finden.  Die Funktion solcher 

Genitalstrukturen und die Kräfte, die zu ihrer Evolution und Beibehaltung führen, werden 

seit Jahrzenten diskutiert. Der Adeagus von Callosobruchus maculatus (Coleoptera: 

Bruchidae) beispielsweise ist mit Stacheln versehen, die den weiblichen Geschlechtstrakt 

durchbohren und Narben hinterlassen. Eine komparative Studie hat gezeigt, dass 

Männchen mit längeren Genitalstacheln unter Spermienkonkurrenz höhere 

Befruchtungserfolge erzielen als kurzstachelige Männchen. Auf welche Weise die 

Stacheln den Befruchtungserfolg erhöhen, blieb allerdings ungeklärt. Im Rahmen meiner 

Diplomarbeit habe ich zwei Hypothesen über die Funktion der Genitalstacheln 

untersucht, die Perforierungshypothese und die Ankerhypothese.  

 

Die Perforierungshypothese besagt, dass die Genitalstacheln dazu dienen, den weiblichen 

Geschlechtstrakt zu perforieren, damit mehr Ejakulat der Männchen in die Hämolymphe 

der Weibchen gelangt. Das ist für die Männchen vorteilhaft, da sich im Ejakulat 

Substanzen befinden, die das weibliche Verhalten zugunsten der Männchen manipulieren. 

Obwohl angenommen wird, dass Genitalstacheln bei mehreren Insekten diese Funktion 

haben, ist diese Diplomarbeit meines Wissens die erste Studie, in der diese Hypothese 

überprüft wird. Laut der zweiten Hypothese – der Ankerhypothese – dienen die 

Genitalstacheln als Anker während der Kopulation, um zu verhindern, dass die Weibchen 

die Kopulation früher beenden, als es für die Männchen optimal ist. Dieser Hypothese 

zufolge ist zu erwarten, dass langstachelige Männchen länger kopulieren als 

kurzstachelige Männchen, da sich längere Stacheln effektiver verankern sollten.  

 

Um die Perforierungshypothese zu prüfen, wurden lang- und kurzstachelige Männchen 

mit 
14

C markiert und untersucht, ob sich das Ejakulat von langstacheligen Männchen 

besser im weiblichen Körper ausbreitet. Die Ankerhypothese wurde getestet, indem die 

Kopulationsdauer von Paaren verglichen wurde, bei denen die Männchen entweder lange 

oder kurze Genitalstacheln hatten. Zusätzlich wurde überprüft, ob langstachelige 

Männchen unter Spermienkonkurrenz einen höheren Befruchtungserfolg haben, da in 

beiden Hypothesen davon ausgegangen wird, dass das so ist. Die lang- und 
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kurzstacheligen Männchen, die in den Versuchen verwendet wurden, wurden mit zwei 

sich ergänzende Methoden erzeugt. Zum einen wurden Selektionslinien mit langen und 

kurzen Stacheln gezüchtet, zum anderen wurden Genitalstacheln mit einem Mikrolaser 

gekürzt, um Männchen mit unterschiedlicher Stachellänge zu erzeugen.  

 

Langstachelige Männchen kopulierten nicht länger als  kurzstachelige Männchen, daher 

sprechen die Resultate gegen die Ankerhypothese. Des Weiteren zeigte es sich, dass sich 

mehr Ejakulat von langstacheligen als von kurzstacheligen Männchen im Körper des 

Weibchens ausbreitete und dass langstachelige Männchen unter Spermienkonkurrenz 

einen höheren Prozentsatz von Eizellen befruchteten als kurzstachelige Männchen. Diese 

Resultate sprechen dafür, dass die Genitalstacheln von C. maculatus die Ausbreitung des 

Ejakulats im weiblichen Körper fördern, und dass dies langstacheligen Männchen 

Befruchtungsvorteile verschafft. Die Studie illustriert darüber hinaus, wie sexuelle 

Selektion – in Form von Spermienkonkurrenz – die Morphologie von männlichen 

Genitalien beeinflussen kann.  
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