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Abstract 
 
Cyclophilins are ubiquitous proteins found in archea, bacteria, and eukarya, with 

the largest family described so far in the plant species A. thaliana. 

Cyclophilins possess peptidyl–prolyl cis–trans isomerase (PPIase) activity, they 

catalyze cis–trans isomerization of peptide bonds preceding proline. The majority of 

cyclophilins (PPIases) are small proteins containing only a PPIase domain of about 120 

amino acids. However, several multidomain cyclophilins from different organisms have 

been also described. Among them, the most complex multidomain cyclophilin 

characterized so far is A. thaliana Cyp59 (AtCyp59). It has a unique, conserved from yeast 

to human, domain organization, consisting of N-terminal PPIase domain followed by an 

RNA recognition motif (RRM) and a C-terminal domain enriched in charged amino acids 

and serines or RS/RD dipeptide repeats. As a consequence of its multidomain 

organization, AtCyp59 may be involved in several cellular processes such as splicing, RNA 

processing, protein trafficking and maturation, etc. AtCyp59 has been shown to localize in 

the nucleus where it interacts with the C-terminal domain of RNA Polymerase II. Via its 

SR/RD domain it interacts with majority of SR proteins.  Up-to-date, the exact biological 

functions of RRM domain are still remaining unclear. Here we present genomic SELEX, the 

genome-wide screen method allowing us to search for RNA targets of RRM domain of 

AtCyp59. By random priming we constructed the representative genomic library of A. 

thaliana, consisting of 50-300nt long overlapping sequences. The library was accordingly 

used for genomic SELEX, allowing identification of the 7nt-long RNA binding consensus 

which was shown to bind to RRM domain of AtCyp59 in a sequence specific manner in 

vitro and in vivo. Mutations in either RRM domain or consensus sequence prevented 

formation of RNA-protein complex. Bioinformatics analysis has shown that this binding 

motif represents a global signature located near the translational stop-codon in 70% of A. 

thaliana mRNAs. Comparative analysis of RNA-binding activity AtCyp59 and its RRM 

domain indicated contribution of PPIase and RS/RD-rich domains to binding to structured 

RNAs. Presented data allowed us to shed a light on function of RRM domain of AtCyp59, 

global regulator protein lying on interconnection between two important cellular 

processes, transcription and splicing. 
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Zusammenfassung 
 
Die Cyclophiline gehören zu den weitverbreitesten Proteinen in Archeen, 

Bakterien und Eukarionten und bilden auch die größte beschriebene Proteinfamilie der 

Spezies  A. thaliana. Die Cyclophiline weisen eine peptidyl–prolyl cis–trans Isomerase 

(PPIase) Aktivität auf und katalysieren die cis–trans Isomerisierung der Prolin 

vorangehender Peptid-Bindungen. Die Mehrheit der Cyclophiline (PPIasen) ist eher klein, 

sie beinhalten lediglich eine einzige PPIase Domäne bestehend aus 120 Aminosäuren. 

Dennoch sind wenige Cyclophilin Proteine mit Mehrfachdomänen bekannt. Zu den höchst 

komplexen Cyclophilin Vertretern, gehört die A. thaliana Cyp59 (AtCyp59). Das Protein 

hat eine, in der Evolution von Hefe zu Menschen konservierte, besondere Domänen-

Organisation. Diese besteht aus einer N-Terminal PPIase gefolgt von einem RNA-

Erkennungs-Motiv (RNA recognition motif, RRM) und der C-Terminus Domäne, welche 

wiederum geladene Aminosäuren wie auch Serinen oder RS/RD Dipeptid Wiederholungen 

beinhaltet. Aufgrund ihrer multidomän Struktur könnte AtCyp59 in vielen zellulären 

Prozessen, wie beispielsweise Splicing, RNA processing, Proteintransport und Zellreifung 

etc., involviert sein. Darüberhinaus wurde bereits gezeigt dass AtCyp59 Proteine sich im 

Nukleus aufhalten und dort mit der C-Terminus Domäne von RNA Polymerase II 

interagieren. Die SR/RD Domäne hingegen wird zur Bindung an SR Proteine verwendet. 

Die exakte biologische Funktion des RRM Motives ist immer noch unklar. In dieser Arbeit 

präsentiere ich ein genomisches SELEX, eine genomweite analyse Methode, die eine 

Suche des RNA-bindenden Motivs der RRM Domäne von AtCyp59 ermöglicht. Mit Hilfe 

von random priming haben wir eine genomische Bibliothek von A. thaliana, bestehend 

aus 50-300nt langen überlappenden Sequenzen, erstellt. In Verbindung mit dem SELEX 

Verfahren waren wir im Stande eine 7nt lange RNA-bindende Konsensusequenz zu 

identifizieren, die eine spezifische Bindung an die AtCyp59 und dessen RRM Domäne in 

vitro und in vivo aufweist. Mutationen an der RRM Domäne so wie auch der 

Konsensusequenz verhinderten eine Bildung des RNA-Protein Komplexes. Erweiterte 

bioinformatischen Analysen zeigten, dass dieses Bindung–Motiv ein globales 

Sequenzmerkmal repräsentiert, welches sich in der Nähe des transnationalen stop-codon 

bei 70% aller A. thaliana mRNAs befindet. Untersuchungen der Bindungsaktivität 

zwischen RNA und der AtCyp59 der RRM Domäne wiesen eine Beteiligung der PPIase und 
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RS/RD- Reichen Domäne in die Bindung an die strukturierte RNA. Die präsentierten Daten 

erlauben uns einen Einblick in die Funktion der RRM Domäne von AtCyp59, eines 

regulatorischen Proteins welches zwischen 2 wichtigen zellulären Prozessen; 

Transkription und Splicing steht, zu gewähren.  
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1. Introduction 

 

1.1 Pre-mRNA splicing 
 

Exploring the ‘RNA World’ hypothesis (Cech, 2009) is one of the most developing 

fields nowadays. RNA is not only an intermediate between DNA as storage of genetic 

information and protein as a functional substance but rather a high complex and 

differentially regulated molecule. 

In eukaryotes, transcribed pre-mRNA is undergoing maturation through several 

rounds of modification such as 5’-cap structure addition (Shuman, 2001), splicing 

(Gornemann, 2005), (Lacadie, 2005) and 3’-end processing (Proudfoot et al., 2002). All 

steps are connected and strictly regulated via formation of correct messenger RNA and 

linked back to transcription (Buratowski, 2008), RNA export, further translation to a 

protein and RNA surveillance (Moore, 2009). 

 

1.1.1 Spliceosomal assembly and splice-sites recognition 
 

Splicing is being recognized as a fundamental gene regulation tool and basis for 

the proteome variability through generation of alternative RNA forms as an alternative to 

genes expansion (Kramer, 1996). This is a process of excision of non-coding genetic 

information (introns), and ligation of future coding parts (exons) from transcribed pre-

mRNA (Zhou, 2002). On the structure, pre-mRNA consists of few elements which 

distinguish future exons from introns; those are a 5’- and 3’-splice sites, a branch point 

sequence and a polypyrimidine-rich tract (Figure 1.1. A). As it has been shown in the 

figure these sequence elements are possessed several key features important for a 

splicing process. For instance, 5’-splice site should contain GU sequence; 3’-splice site 

should have AG sequence and branch point sequence usually has a consensus comprised 

from U and AC nucleotides. As it well studied for decades two guanidines from splice sites 

and one adenosine from branch point sequence are the main players in splicing catalysis.  
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Chemical mechanism of splicing employs two coherent nucleophilic attacks resulting in 

transesterification reactions followed by formation of the lariant intron product and joint 

exons (figure 1.1 B) (Wachtel, 2009). To undertake and catalyze these two reactions, living 

cell creates a massive ribonucleoprotein (RNP) catalytic complex named spliceosome. This 

machinery (spliceosome) is composed of five small nucleoprotein particles (snRNP) and 

around 200 associated proteins (Jurica, 2003). The assembly of the spliceosome as well as 

the fundamental chemical steps shows a high level of conservation from yeast to humans 

and may be divided by a number of discrete steps (Barrass, 2003).  

Firstly, U1 snRNP binds to the nascent pre-mRNA at the 5’-splice site which leads 

to the formation of E complex. Further, to build a pre-initiation spliceosomal A complex, 

3’-splice site along with the polypyrimidine tract has to be recognized by the complex of 

U2 snRNP with secondary factor U2AF and SF1 protein (Gaur, 2000) (Figure 1.1 C). Next, 

the U4-U5-U6 tri-snRNP complex identifies the A complex and displaces U1 snRNP from 

5’-splice site to produce B complex, which resembles active spliceosome by the 

composition but not by structure. Finally, to produce mature C complex, U4 snRNP has to 

disassemble from tri-snRNP allowing base pairing between U2 and U6 snRNPs (Brow, 

2002). This step finalizes the formation of catalytically active spliceosome which promotes 

two step transesterification process. 

 



- 17 - 
 

 

Figure 1.1: Pre-mRNA splicing. (A).Schematic structure of the pre-mRNA with features 

important for the splicing – 5’ and 3’ splice sites and branch point sequence with * - preferred 

adenosine, PPT- polypyrimidine tract. (B) Stepwise chemical nucleophilic attacks during the 

splicing and formation of the lariant product. (C) Spliceosomal assembly and complex progression 

through splicing reaction (Ritchie, 2009). 

 

Although, the steps of the splicing are conserved through evolution, the exon 

surrounding (so-called splicing code) is very diverse. Remarkably, despite of differences in 

the genome complexity and exon-introns length mRNA splicing element of all organisms 

are recognized and spliced correctly. For example, S. cerevisias has a very small 

proportion of the genes containing introns and majority of those hold only one intron of 

relatively small size of approximately 200-300 bases (Barrass, 2003). In contrast, human 

genes are very large in size and multi-intronic where introns could amount to a thousand 

of nucleotides. And in general, it is known that in higher eukaryotes pre-mRNA sequence 
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elements are less conserved but most of their genes are spliced meaning of higher and 

more complex levels of regulation (Wahl, 2009). 

Therefore the crucial step in splicing initiation is a precise splice-site determination 

which separates exons from introns. It takes place when U1 snRNP binds to the 5’-splice 

site and supports identification of the 3’-splice site through exon body (Sharma, 2008). 

Several proteins associated with the U1 snRNP facilitate 5’-splice site recognition 

while a protein components of U2 snRNPs help to recognize 3’-splice sites on the pre-

mRNA. In more details, at the first step 3’-splice site is recognized by U2AF65 large 

subunit of the heterodimeric U2AF complexes binding to the U2snRNP through its protein 

component SF3b155. Remarkably, protein U2AF65 consists of three RRM domain 

structures and RS (Argenine - Serine rich) region (Selenko, 2003).  RRM stands for RNA-

recognition motif and is important for RNA-binding activity whereas RS region is 

responsible for protein-protein interactions. The second key step in 3’ splice site 

recognition is determination of the position of polypyrimidine tract (Py-tract). Small 

subunit of U2AF heterodimer–U2AF35 brings together Py-tract and 3’-splice site 

facilitating their interaction. Despite there is no direct structural evidence of 

U2AF35/U2AF65 interaction it’s believed to take place through RNA participation (Wu, 

1999), (Zorio, 1999). 

From the other site of pre-spliceosomal complex, 5’-splice site is recognized by U1 

snRNP where U1C protein component guides U1 snRNA to the 5’-end of the exonic 

sequence (Oubridge, 1994).  It’s known that in yeast U1C directly attaches to the 5’-splice 

site whereas human U1C plays intermediate role in 5’-splice site recognition. It is 

integrated in U1 snRNP through N-terminal part of U1-70K and Sm core proteins which do 

bind to 5’-splice site. It’s believed that this intermediate interaction is facilitated by zinc-

finger motif in human U1C. U1-70K containing a RRM domain forms an area for U1C 

binding while role of Sm proteins is concluded to create a platform for composite RNA 

structure (Muto, 2004). 

Further transition from a pre-sliceosomal  E complex to the A complex requires 

U2snRNP association on the branch-point sequence where it pushes away adenosine 

through imperfect complementation with pre-mRNA and positions this residue for further 

nucleophilic attack in splicing reaction (Query, 1994).  
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Since statistical occurrence of the splicing consensus sequences on pre-mRNA is 

very high and splicing doesn’t take place on all of those sequences it’s very important to 

choose splice sites in the right way. And the “right way” for particular mRNA can vary 

dependent on many external factors. As a consequence, different exons of the pre-mRNA 

can be chosen in the process called alternative splicing (AS). Preference to the specific 

splice site is determined by presence, number and competition between proteins factors 

associated with a pre-mRNA which affect spiceosome assembly in positive or negative 

way. One of the ideas how it could be regulated is highlighted in the work of Black and 

colleagues (Sharma, 2008). They explore a theory of division between the exon 

recognition complexes and the intron-recognition complexes within pre-mRNA based on 

differences in protein-binding components which leads to usage of a particular pattern of 

exons. 

 

1.1.2 Alternative splicing 
 

Due to the possibility to create more than one mRNA forms from one gene, 

alternative splicing (AS) has been implemented by eukaryotes as a source of genome 

complexity and protein diversity. Inclusion of exclusion part of the whole exon or intron 

could affect both mRNA and protein function (Moore, 2008). As for mRNAs AS could lead 

to changes in an mRNA surveillance and stability because majority of aberrant or 

alternatively spliced isoforms contained premature stop codones that direct such 

transcript to the nonsense mediated decay after the first round of translation (Moore, 

2008). As for the proteins, changes in mRNA levels directly linked to the translational 

potential of the protein together with it further stability, localization and function. 

Alternative splicing is regulated by activity of multiple RNA-binding proteins 

expressing in a particular tissue at the time (Matlin, 2005). They can be either activators 

or repressors of splicing which bind to the enhancer or silencer sequences around 

alternatively spliced exons or introns. Such sequences are called “cis-regulatory 

elements” and could be divided into exonic splicing enhancer or silencer (ESE or ESS) and 

intronic splicing enhancer or silencer (ISE or ISS). Silencers elements are usually occupied 



- 20 - 
 

by an hnRNP proteins (Mauger, 2008) while enhancers are bound to a SR proteins (Long, 

2009), (discussed in section 1.1.3).  

Decision of exact splicing site to take is usually being made at the stage of an exon 

recognition or early sliceosome E complex assembly (Black, 2003), but newest studies 

revealed that such decision could happen at literally every single step of splicing even at 

transesterification reaction (Lallena, 2002). Growing evidences suggested an influence of 

RNA transcription, for instance the rate of RNA polymerase II (discussed in section 1.3), 

on splicing regulation (de la Mata, 2006).  

Since spliceosome assembly at premature stages occurs around exons (Sterner, 

1996) which are much shorter then introns (50-250 bp length versus >1000bp in the 

human genome),  AS regulation of splice-site selection can occur based on promotion or 

inhibition of the U1 and U2 snRNP binding to that splice site (Kotlajich, 2009), (Figure 1.2).  

 

 

 

Figure 1.2: Splice site selection. (A) SR proteins factors (blue) directly interact with 

sequence elements on pre-mRNA (exonic splicing enhancers) and promote binding of snRNPs to 

the splice site. (B) Competition between splicing enhancers – SR proteins and splicing silencers – 

hnRNP for the splice site selection. (C) Bridging mechanisms of SR proteins action on splice site 

selection by bringing together U1 and U2 snRNPs across intron (Long, 2009). 
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Promotion of the AS site selection is modulated by action of SR proteins. For 

instance, they can facilitate “bridging” between U1 and U2 snRNPs. SR proteins may 

directly interact with ESE on target RNA. This interaction engages binding of U1 and U2 

snRNPs to the 5’- and 3’-splice sites respectively (Bourgeois, 1999). A cross-talk between 

SR proteins and spliceosomal components is modulated by RS domain which undergoes 

rounds of intensive phosphorylation (Feng, 2008). As an example of that regulation, 

human SR protein SRp38 acts in promotion of spliceosomal A complex formation by 

bringing together U1 and U2 snRNPs and stabilization of 5’-splice site and branch point 

sequence recognition (Shin, 2004). 

Inhibition of the alternative splicing is regulated by silencers.  The first possible 

way of action is to sterically block positive regulatory elements or snRNPs via binding in a 

close proximity to the splice site. For instance, it’s well known that PTB protein when 

being bound to the polypyrimidine tract prevents an interaction of U2AF with exon 

(Sauliere, 2006). Second mechanism of inhibition is binding of silencer to the region over 

100-200 bp upstream or downstream of the regulated exon followed by its sequestering 

via multiple interactions along RNA (Spellman, 2006). Another possible mechanism is to 

“loop out” an alternative exon through numerous interactions among RNA-binding 

proteins on the sites of neighboring exons which conformationaly hinder assembly of the 

spliceosomal complex on the first exon (Damgaard, 2002). Well known example is when 

nhRNP protein interacts with its own pre-mRNA near alternatively spliced exon 7 

therefore preventing this exon to be spliced (Hutchison, 2002). 

Nevertheless, splicing and alternative splicing of each individual pre-mRNA is 

highly dependent on number, activity and competition of splicing activators and 

inhibitors. Most frequently, decision of a particular exon to be included or excluded is 

undertaken by difference in SR and hnRNP occupancy on that exon (Zhu, 2000). For 

instance, splicing of human exon 2 gene encoding α-tropomyosin is dependent on winner 

in the competition for the same binding sequence between SR protein 9G8 and hnRNP F 

(Crawford, 2006). 

There are a lot of evidences that alternative splicing is one of the determinations 

of tissue specification in higher eukaryotes. Interestingly, although over 90% of human 

genes are spliced alternatively giving in the average two-three mRNAs and they do so 

tissue-specifically (Wang, 2008). Recently, combined approached involved RNA-seq 
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method, bioinformatics analysis and microarrays of different tissues revealed that 

mammalian brain posses a highest number of tissue-specific different spliced variants of 

mRNAs (Xu, 2002). It is linked with the fact that brain is the most dynamic developing 

tissue and has thousand of different cell types (Li, 2007). Recently it has been shown that 

over 50% of the alternatively spliced mRNA isoforms are differentially expressed within 

the tissue which can be clarified by tissue-specific expression of the splicing factors 

(Wang, 2008). For instance, there are differences in expression of PTB and nPTB - specific 

for neural tissue form of PTB protein created from another mRNA isoform – in neuron 

development. PTB could only be expressed in the undifferentiated neurons whereas nPTB 

is upregulated in adult tissue. It is believed that such regulation occurs on transcriptional 

level (Boutz, 2007). 

 

1.1.3 SR proteins. 
 

The first discovery of SR proteins as splicing regulators came in 90-ties from 

research group of Fu (Fu, 1995).  However, domain enriched in serine and arginine was 

previously found in Drosophila melanogaster associated within the genes SWAP, TRA and 

TRA-2 (Boggs, 1987). Structurally SR proteins are defined by presence of one or two an 

RRM domain which provides possibilities for RNA binding followed by RS domain which 

set for protein-protein interactions (Wu, 1993).  

RNA recognition motif is a structure that sequence specifically binds nucleic acids, 

particularly single-stranded RNA. RRMs fall into a subgroup of the ferredoxin fold (Carte, 

2008) that is featured by a β-α-β-β-α-β-structure. Usually RRM consists of two notable 

motifs: RNP1 and RNP2 which share conserved aromatic residues. Several X-ray structures 

of different RRM motifs alone or together with bound RNA were published (Oubridge, 

1994), (Allain, 2000). The classical way of RNA molecule interacts with motif is that RNA 

lies on the β-sheet part between two RNP motifs while most conserved amioacids 

(tyrosine and phenylalanine) from the β-sheets stacks behind the bases (Maris, 2005). 

Recently the identification of and PTB and Fox-1 binding partners has brought a new level 

of complexity into RRM-RNA recognition. In this model aromatic-nucleic acid stacking are 
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substituted by range of hydrophobic interactions on RNA with loop structure of RRM 

motif (Auweter, 2006). 

As it was mentioned above (section 1.1.2) main role of SR proteins is to facilitate 

splice-site recognition. There are two theories how this facilitation could be 

accomplished. The first way is to provide a “bridge” between U1 and U2 snRNps to 

convey further spliceosomal assembly (Robberson, 1990) and the second is through SR 

proteins competition for binding to the ESE elements in pre-mRNA with negative acting 

factors such as hnRNPs (Martinez-Contreras, 2007). 

Besides primary role of SR proteins in promoting spliceosomal assembly they are 

also involved in mRNA transcription (discussed in section 1.2.1), translation, nuclear 

export and NMD (nonsense-mediated decay) (Huang, 2005). If to look at SR protein 

localization, majority of SR proteins have pattern localization in nucleus’s compartment-

splicing speckles. Speckles as believed serve as a reservoir for splicing factors (Lamond, 

2003). However, there are other SR proteins like SF2/AFS, Srp20, and 9G8 in human, 

which show a shuttling profile. They move continuously between nucleus and cytoplasm 

engaged in mRNA isoforms transport from nucleus to the cytoplasm (Huang, 2001).  

SR proteins are involved in regulation of NMD for the mRNA isoforms containing a 

PTC (premature termination codon). Recently, it has been discovered that overexpression 

of several SR proteins (SF2/ASF, SC35, SRp40) strongly amplifies NMD pathway 

independently of their nucleus-cytoplasm shuttling activity (Zhang, 2004), (Sato, 2008). 

SR proteins could also regulate mRNA on a translational level. It has been shown 

that SF2/ASF proteins while accompanying polyribosome promote translation of the 

mRNAs containing ESE elements in vivo and in vitro (Sanford, 2004). The mechanism of is 

based on mTOR pathway activation leading to activation of the 4E-BP protein – a main 

inhibitor of a cap-dependent translation (Michlewski, 2008). Another example of the 

participation of SR proteins in translational regulation is SRp20. This protein could bind 

IRES (internal ribosome entry site) and promotes translation of viral RNAs (Bedard, 2007). 

Activity of SR proteins is highly dependent on their phosphorylation status 

(Mermoud, 1994). Presence of arginine-serine repeats within RS domain allows tuning 

activity and localization of SR proteins (Lin, 2007). As an example, only 

hyperphospahorylated RS domain of ASF/SF2 protein is able to interact with other 

proteins of spliceosomal assembly for instance U1-70K (Xiao, 1997), although, 
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hypophosphorylated status of RS domain is required for a splicing catalysis (Tazi, 1993). 

There are several kinase families in the cell which are responsible for phosphorylation of 

SR proteins. These include SRPK (SR protein kinase family) (Wang, 1998), the Clk/Sty 

(Colwill, 1996) and topoisomerase I (Rossi, 1996). It is known that for example SRPK1 

kinase could only phosphorylate “docking motif” of RS domain which prevents other 

kinase activities (Ngo, 2008), whereas Clk/Sty family is able to add Phospho-group to the 

whole C-terminus of SR proteins (Ngo, 2005). 

 

1.1.4 pre-mRNA structure in splicing 
 

Influence of pre-mRNA structure is a further layer of complexity in assembly of the 

spliceosome and regulation of alternative splicing. It has been known for a long-time that 

RNA structures are capable of immediate splicing regulation. There are several aspects 

how this question could be approached: the first, presence of internal RNA structures 

within pre-mRNA with intervenient or promoting effect on splicing; the second, 

occurrence of protein-RNA or small metabolite–RNA complexes creating special RNA 

structures affecting splicing (Chen, 1999). 

There are several examples of how splicing is facilitated or inhibited by presence 

of local RNA structure (figure 1.3). One is when internal RNA structure is present in 5’ 

splice site of branch-point sequence leads to the U1 and U2 snRNPs incapability of 

unwinding the structure. Also it has been discovered that presence of local RNA structure 

in polypyrimidine tract is hindering U2AF65 interaction (Warf, 2009). When splicing is 

being promoted by RNA structure, pre-mRNA forms an area locally in which important 

splicing factors are coming together closer in space. One of the famous examples is how 

splicing of Drosophila melanogaster Dscam gene is taking place (Graveley, 2005). Another 

example is an existence of cryptic splice sites (sites that are corresponded the criteria of 

splice sites but not involved in splicing). Local RNA structures could conceal cryptic sites 

but upon distraction of such structures these sites become available for splicing which 

typically resulted in an erroneous mRNA form.  

Anyway, in understanding importance of internal pre-mRNA structures, it should 

be taken into account that splicing takes place co-transcriptionally (Singh, 2007). 
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Therefore low-energy and slow-forming structures could not have time to appear in a 

pre-mRNA when splicing reaction is taking place involving speed of transcription in splice-

site selection. Even more, competition between proteins preferred to be attached to the 

single-stranded RNA and formation of a local RNA structure in this place at particular time 

point should be taken into consideration. 

 

 

Figure 1.3: Examples of pre-mRNA structural elements that have an influence on 

splicing. (A) Schematic presentation of the sequence elements on the primary pre-mRNA 

structure which are important for splicing. (B) Pre-mRNA structure that inhibits splicing. Loop 

formation at 5’ and 3’ splice sites prevents binding of U1 and U2 (green) snRNP to them and 

thereby interferes with binding of U2AF65 and SR proteins. (C) Example of pre-mRNA structure 

that promotes splicing. This loop-structure forms an environment in which all important splicing 

signals are brought together to the close proximity. Also cryptic splice site (*) is masked in the 

loop which leads to SR protein binding and increase in usage of this splice site (Warf, 2010). 

 

Recently, some proteins have been found which are able to interact with local 

structural elements on a pre-mRNA therefore influence the splice-site selection. One of 

such examples is an alternative splicing protein MBNL1. It has been shown that upon 
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binding to the structured RNA MBNL1 could suppress or boost alternative splicing on 

particular cassette exons (Warf, 2007). Another example deals with RNA helicases - 

proteins which could unwind inhibitory structures on pre-mRNA. For instance, activity 

DEAD box RNA helicase p72 increases frequency of insertion of exon 4 in CD44 minigene 

(Honig, 2002). 

Small metabolites recently have brought a new complexity to the field. They could 

specifically bind to the pre-mRNA local structures and by doing that regulate splicing. For 

example, thiamine pyrophosphate metabolite (TPP) binds to the aptamer structure in the 

3’UTR of the pre-mRNA of genes implicated in its own biosynthesis and creates a negative 

loop of regulation of vitamine B1 synthesis (Croft, 2007), (Wachter, 2007) . 

 

1.1.5 Plant-specific aspects of splicing 
 

The first hint of why splicing in plants are separated from other eukaryotes came 

from the observation that mammals introns could not be processed in plants (Hartmuth, 

1986). This observation is perhaps consistent with the fact that there are several 

differences in genes organization between metazoan and vertebrates for example, in 

plants length of genes are smaller and introns are much shorter (Lander, 2001).  

Studying splicing in plants is associated with some complications such as absence 

of in vitro splicing extract. This fact led to difficulties in accomplishment of such a great 

success in plants for studying roles of splicing factors and RNA-binding proteins as in 

vertebrates. However development of the “invertase mini-exon system” for plants lines 

has given a broad overview on splicing (Brown, 2002). 

As it was discovered afterwards mammals and plants share a lot of similarities in 

how splicing process is taking place. For example, it seems that branch point sequence is 

very important for splice-site recognition in both branches. However, plants do not 

contain strong signal for a branch point sequence. Instead, they created U-rich sequence 

between branch point sequence and 3’ splice site. It has been shown the U or UA-rich 

sequences are critical for splicing in plants and mutations in this region lead to mistakes in 

splicing (Goodall, 1989).  As for the plant SR and hnRNP proteins over 60% from them 

have a high order of similarity to mammals splicing factors suggesting a general 
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conservation in mechanism of splicing (Simpson, 2008). Rest of the proteins appeared to 

have only partial similarity to vertebrate factors. However, there were found several 

proteins including proteins belonging to SR family with unique organization. Function of 

these proteins is not fully understood till now (Kalyna, 2004), (Kalyna, 2006). 

Alternative splicing occurs less frequently in plants compare to vertebrates (35% 

versus at least 74%) but recent studies have shown that this number is highly 

underestimated (Barbazuk, 2008). Nevertheless, AS plays as same important role in plants 

as in animals. Genes undergoing alternative splicing are involved in all developmental 

processes in plants as well as in stress responses and flowering time (Reddy, 2007), 

(Hirose, 1993). Unfortunately, little is known about the functions of proteins produced or 

whether they are existed from alternatively spliced mRNA isoforms (Simpson, 2010). 

Interestingly, plants possessed the highest number of SR genes, 24 in rice and 19 in 

Arabidopsis thaliana (Lopato, 1999), (Lopato, 2002), (Golovkin, 1998). Plants SR proteins 

could be divided in several groups, (figure 1.4). Among them there are true homologues 

for human SR proteins such as SF2/ASF, SC35 and 9G8 whereas other SR proteins are 

unique for plant kingdom and therefore considered to have plant-specific functions 

(Kalyna, 2003). Several groups are intensively studying such subfamilies (Isshiki, 2006), 

(Ali, 2007), (Lorkovic, 2008), (Brown, 2009). Like in animals SR proteins activity and 

interaction with other proteins in plant SR families are highly dependent of their 

phosphorylation status. It’s been shown that 13 out of 19 SR proteins could be 

phosphorylated in vivo (de la Fuente van Bentem, 2006). Same kinase families as in 

mammals are responsible for RS domain phosphorylation in plants, however it’s been 

discovered that MAP kinases could also be involved in SR proteins regulation (Feilner, 

2005). 
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Figure 1.4: Subfamilies of plant SR proteins. Left column represents the SR proteins similar to the 

mammals and on the right – specific for the plant kingdom. Structural elements are named 

according to the aminoacid differences: RRR – RNA recognition domain; ψRRM – Specific for 

ASF/SF2 homologs; RS, and SR – domain rich in argenins and serins according to majority; ZnK – 

zinc knuckle domain of CCHC type; SP and PSK – domains rich in serines, prolines and lysines; SCL 

– have plant-specific extension on the N-terminal domain (Barta, 2008) 

 

1.2 Co-transcriptional RNA processing 
 

Current understanding of the pre-mRNA processing is based on the view that 

majority of mRNA are spliced co-transcriptionally. Especially, a lot of studies were 

performed on how alternative splicing influences on transcription. Recently it has been 

shown that rate of Polymerase II transcription determines what type of splicing factors on 

the particular binding site near the alternative exon would have the major influence on 

splicing (Kolasinska-Zwierz, 2009), (Loomis, 2009). There are two theories how RNA Pol II 

regulates alternative splicing (Kornblihtt, 2006). One is “recruitment model” and the 

other is “kinetic model”. In the “recruitment model” RNA polymerase along with 

transcription factors is directly or indirectly involved which interaction with splicing 

factors influences on the rate of transcription. Thus, alterations in occupancy of splicing 

factors on their binding sites lead to inclusion or exclusion of the alternative exon (Das, 
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2007). Such examples were intensively studied by groups of O'Malley (Auboeuf, 2004) 

and Kornblihtt (Cramer, 1999). In the “kinetic model” splicing on particular alternative site 

is dependent on whether spliceosome could be assembled fast enough on this site. This 

assemble relies on the speed of RNA Pol II in this region on the gene. For instance, it has 

been shown that mutations in Pol II which slow down the rate of transcription also lead to 

the inclusion of the exons with predominantly weak splice sites (de la Mata, 2003). The 

way how RNA polymerase can change its pace lies in modulation of the phosphorylation 

status of the biggest C-terminal domain (Phatnani, 2006). 

 

1.2.1 C-terminal domain of Polymerase II  
 

RNA polymerase II is accountable for transcription of the multitude of genes and is 

specialized on mRNA genes. It has a unique C-terminal region organization, named CTD 

domain. Beside C-terminal domain, other parts of polymerase are conserved within all 

kingdoms and between other DNA dependent RNA polymerases (Allison, 1985). CTD 

consists of Tyr-Ser-Pro-Thr-Ser-Pro-Ser repeated heptamers of different length which is 

dependent on the organism with maximum of 52 repeats in humans (Corden, 1990). CTD 

remains an essential domain because full or partial deletion of C-terminal domain is lethal 

as it has been shown in yeast and drosophila (Gerber, 1995). Nevertheless, for the in vitro 

transcription systems, Pol II could proceed without C-terminal domain (McCracken, 1998), 

meaning that CTD is served as modulator of the process. The modern understanding of 

the role of this domain in transcription represents as a platform for the multiple 

interactions of the variety of factors influencing mRNA processing and further translation 

(Phatnani, 2006). During transcription CTD expands from the enzyme core to the nascent 

mRNA site which allows it to influence on mRNA processing by recruiting specific factors 

responsible for modifications (Bentley, 2005).  

The largest domain of RNA polymerase undergoes multiple modifications to 

successfully accomplish mRNA synthesis which consists of following steps: initiation, 

elongation and termination (figure 1.5) (Buratowski, 2003). 
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Figure 1.5: C-terminal domain phosphorylation during transcription. (A) CTD of Pol II at 

transcription initiation is in unphosphorylated stage which is believed to block transcription start. 

(B) Beginning of the transcription. Ser 5 is phosphorylated by CDK7 and CTD of the Pol II is located 

near the pre-mRNA exit which helps to recruit appropriate enzymes for 5’-mRNA end formation. 

(C) Efficient elongation complex of Pol II with Ser5 and Ser2 phosphorylated. Both serines should 

be with phosphor group to promote producative pre-mRNA formation. (D) After successful 3’-end 

mRNA formation CTD of Pol II becomes dephosphorylated which helps for Pol II recycling (Egloff, 

2008). 

 

Alterations on CTD of PolII are tightly connected to the enrollment of the specific 

transcription factors during mRNA synthesis; predominantly phosphorylation of the two 

serines is of the great importance (Buratowski, 2003). Other in vivo proved sites of 
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modifications include: tyrosine phosphorylation, serines and threonines glycosylation, 

isomerization of the two prolines. These modifications at particular point in time could be 

recognized as the “CTD code”. This recognition provides range of signals affecting 

interaction of the transcriptional and splicing factors with the polymerase (Corden, 2007). 

Phosphorylation of the serine 2 and serine 5 is the most well deliberated alteration in the 

CTD (Buratowski, 2003). Dependent on phosphorylation status, Pol II could form two main 

stages: hypo- and hyperphosphorylated (IIa and IIo) which migrate differently in SDS 

PAGE (Baskaran, 1993). Hypophosphorylated CTD is associated with transcription 

initiation and hyperphosphorylated CTD is essential for efficient elongation on the 

transcription cycle (Zhang, 1991). It is still remain unclear how many phosphates are 

correlated with Pol II at given point in time. However it’s documented that in the 

hyperphosphorylated stage there is approximately one phosphate residue per repeat 

(Payne, 1993). Cycline-dependent kinase (Cdk7) is responsible for the Ser5 

phosphorylation in vivo (Komarnitsky, 2000). Cdk7 is a part of the universal transcription 

factor TFIIH which interacts with the 5’-end of the transcribed gene. Phosphorylation of 

Ser 5 helps to recruit enzymes responsible for the 5’-cap addition to the nascent mRNA 

(Gomes, 2006). Other cycline-dependent kinase - Cdk9 – acts on Ser2 phopshorylation. 

This modification serves as a switch from initiation-early elongation to the efficient 

elongation form of the Pol II (Peterlin, 2006). Moreover, phosphorylation of both serines 

is required for involvement of splicing and poly-adenilation machineries (Hirose, 1999). 

During a cell-division Ser2 and Ser5 could be phosphorylated by another kinase, Cdk8. In 

the absence of DNA template Cdk8 could produce the highly phosphorylated stage of CTD 

that believed to be inactive (Bird, 2004). Removal of phosphates from both serines also 

plays an important role in transcription especially for mRNA 3’- end processing and Pol II 

recycling (Meinhart, 2005). Dephosphorylation of Ser2 and 5 requires two enzymes, Fcp1 

and Ssu72 respectively (Reyes-Reyes, 2007).  

Next crucial modification on the C-terminal domain of the Pol II is isomerization of 

the two prolines. The peptide bond preceding prolines could exist in two conformations 

cis and trans. It results in four possible arrangements of each CTD repeat (Stiller, 2004).  

The bond is naturally fixed in trans conformation and requires energy to switch to the cis 

conformation. Proteins are conscientious for the proline–bond change called peptidyl-

prolyl cis/trans isomeraases (PPIases) (further discussed in section 1.3) and known to be 
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mainly involved in protein folding in vivo (Schiene, 2000). However there are mammalian 

Pin1 and yeast ESS1 isomerases which regulate structure of the CTD and by that also 

affect transcription (Xu, 2004). Recently, it has been discovered that Pin1 and ESS1 show 

high level of specificity to the phosphor-serine and phosho-treonine bonds and bind 

directly to the phosphorylated CTD (Verdecia, 2000). Since phopshorylation of the C-

terminal domain of the Pol II is correlated with active elongation, interaction of these 

proteins with CTD may influence transcription and 3’-end mRNA processing. Indeed, it has 

been shown that mutation in ESS1 is linked to the abnormal mRNA 3’-end formation 

(Kops, 2002). Therefore Pin1/ESS1 represents bright example of how CTD repeat 

conformation regulates transcription (Wilcox, 2004). 

 

1.2.2 Advantages of co-transcriptional RNA processing 

 

As it was mentioned above pre-mRNA are processed co-transcriptionally. Giving a 

closer look to the “recruitment model” of co-transcriptional splicing, one can discover an 

order of spliceosomal factors assembly on the actively transcribed gene. For instance, the 

U1 snRNP binding to the first 5’ splice site is followed by interaction of U2 snRNP with the 

3’ splice site during the intron transcription (Gornemann, 2005). Also, there are evidences 

that genes transcribed by Pol II in vitro are more efficiently spliced than those transcribed 

by T7 polymerase. This fact further proves the existence of interaction of spliceosomal 

factors with the CTD of Pol II during transcription (Das, 2007). Advantage of linkage 

between transcription and splicing is clearly favorable for fast and efficient processing of 

the long introns especially in human where otherwise would be difficult to bring together 

spliceosomal factors on the distant exons (Dye, 2006, Lacadie, 2006). The approach used 

by cellular systems to deal with large introns is a co-transcriptional excision of them. In 

vivo studies supported that spliceosome could form even if intronic sequence is cleaved 

and degraded as long as exons are attached to the transcriptional unit (Kim, 2007, 

Morlando, 2008).  

Role of SR proteins in co-transcriptional splicing couldn’t be underestimated. SR 

proteins are located in the nuclear speckles and it has been shown, that they are directly 

engage in the nascent RNA transcript by direct interaction with CTD of the Pol II (Misteli, 
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1997), (Bauren, 1994), (Beyer, 1991). Recent studies revealed that the SR proteins not 

only stimulate the snRNP assembly on the alternative splice site during transcription, but 

also are dynamically loaded to the transcription elongation complex. The reason for that 

is that they prefer phosphorylated status of CTD Pol II which resembles efficient 

elongation stage (Sapra, 2009), (Saunders, 2006). 

 

1.2.3 mRNA 3’-end processing 
 

Modifications of the CTD of Pol II play an important role in processing of the last 

exon and the 3’-end of the mRNA. It has been shown by ChIP analysis that polymerase 

loses almost all the Ser5 phosphorylations when it arrives at the polyadenylation signal of 

the protein coding gene (Komarnitsky, 2000). In fact, protein responsible for the 

polyadenylation cleavage PcfI could only interact with CTD phosphorylated on Ser2 

(Licatalosi, 2002). Even more, recently it has been discovered that this factor binds only 

trans isomer of the proline preceding Ser2 from mixture of cis-trans isomers. This is the 

further indication that recognition of the CTD accomplished through proline isomerization 

(Noble, 2005).  

Formation of the correct 3’-end of mRNA is important because it promotes mRNA 

transport to the cytoplasm (Vinciguerra, 2004), influences on stability of mRNAs 

(Wickens, 1997) and enhances the translation (Sachs, 1997). In general the 3’-end mRNA 

formation is exaggerated upon mutations, deletions or loss of phosphorylation of the CTD 

of the Pol II (Wahle, 1999). 3’-end processing is a two step mechanism involving cleavage 

of the mRNA and poly (A) accumulation on the precursor product. This formation is 

performed by combination of the poly(A) polymerase together with complex of proteins, 

CF1A, CF1B and CFII in yeast or CstF-cleavage stimulation factor, CPSF-polyadenylation 

specificity factor, CFIm and CFIIm – cleavage factors in higher eukaryotes (McCracken, 

1997). Remarkably, CFIm protein has number of unique features. It’s exclusively expressed 

in mammals as a heterodimer (Takagaki, 1989). Its N-terminal domain consists of RNP-

type RNA recognition motif which has been revealed to interact with splicing factor U2AF 

(Selenko, 2003) in humans. Its C-terminal domain is enriched with RS, RD and RE repeats 

and possesses the same structure as SR proteins. It has been shown that this protein is co 
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purified with the spliceosome in vitro (Rappsilber, 2002). As it was revealed by SELEX 

experiment (discussed in section 1.5) this protein tends to bind UGUAA motif (Brown, 

2003) collated just upstream polyadenylation signal (PAS) on pre-mRNA. The initial role of 

this protein is to interact with pre-mRNA near the PAS. In general, CFIm acts as mediator 

for interaction between CTD and the spliceosome and enhances proper recognition of the 

polyadenylation site (Venkataraman, 2005). 

Intriguingly, factor CFIm is absent in plants and yeast (Hunt, 2008). The exact 

composition of the plant 3’-end mRNA processing machinery remains unclear because 

many mammals single-gene factors such as CstF, CPSF are encoded by gene families in 

Arabidopsis thaliana which also could be developmental or organ specific (Zhao, 2009). 

And other functions are believed to be undertaken by plant-specific proteins because 

mammals and plant poly(A) signals are different (Bienroth, 1993). 

Many 3’-end processing factors are tending to co-purify with CTD on affinity 

column. Phosphorylation on Ser2 but not on Ser5 is required for that interration (Ahn, 

2004). For instance, 3-end processing is linked to the efficient transcription termination of 

Pol II and its release from transcript (Bauren, 1998). As it has been revealed, yeast Rtt103 

protein directly interacts with CTD where Ser2 is phosphorylated. This interaction leads to 

involvement of 5’- and 3’- RNA exonucleases to release Pol II from the DNA template 

(West, 2004). This finalizes the connection of CTD modification to the all stages of pre-

mRNA processing. 

 

1.3 Proline cis/trans isomerases 
 

The first discovery of the ‘peptidyl-prolyl isomerase’ (PPIase) or ‘cyclophilin’ are 

dated back to 1980s when Cyclophilin A (CypA) protein was identified in the bovine 

thymocytes cells (Fischer, 1984). This intracellular protein showed high affinity to the 

immunosuppressive drug cyclosporine A (CsA) (Handschumacher, 1984). Cyclophilins 

belong to the superfamily of the immunophilins. This group of proteins includes 

cycplophillins, FKBPs – the immunosuppressant drug FK506 binding proteins and 

parvulins (Galat, 2003). Common characteristic of all cyclophilins is the presence of the 

cyclophilin-like domain (CLD) enclosed with unique to each member domain which is 
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required for undertaking specific function or/and localization (Marks, 1996). This family of 

proteins is present in all branches of evolution including yeast and bacteria and all of 

them share structurally conserved PPIase domain. Up to date there have been identified 

7 major cyclophilins in humans (Galat, 2003), nine – in Drosophila (Waldmeier, 2003) and 

as many as 29 genes in Arabidopsis thaliana (He, 2004). 

Why the existence of the PPIases is so important and why prolyl bond is so 

different from others could be seen in the figure 1.6. In general, the peptide bond 

between aminoacid residues could exist in trans and cis conformation. It’s known that 

thermodynamically trans conformation is far more favorable in terms of free energy 

compare to the cis conformation (Stewart, 1990). However, there is one exception which 

is the peptidyl-prolyl imid bond. Being trapped in rotation it could exist in two distinct 

stage trans or cis (Pahlke, 2005). 

 

 

Figure 1.6: Proline cis/trans isomerization as modulation of the protein function. Based 

on substrate specificity (Phosphodependent or not) different classes of PPIases could act on 

promotion of either cis or trans form of proline bond that lead to the differences in function of 

the protein (Lu, 2007). 

 

Switch in conformation of prolyl bond creates an important tool for the protein 

dynamic and could change functional stage of the protein by preventing or enhancing of 

the binding capacity for particular factor. Despite of low energy difference between trans 

and cis- conformation of imid bond rotation is associated with high-energy barrier of so 
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called ω=90o syn transition conformation (Corey, 1953) (figure 1.7). The conformational 

exchange rate is very slow and could take couple of minutes which is inappropriate for 

biological systems in vivo and requires a catalyst. Fundamental PPIase function in catalysis 

is to lower down the high-energy barrier by binding to the each isomers and equilibrating 

free energies enzyme-cis and enzyme-trans to the ground state complexes (Lu, 2007). 

This action increases isomerization rate to the millisecond timescale which is more 

favorable for the biological interactions (Fanghanel, 2004).  

 

 

Figure 1.7: Energy diagram of cis/trans isomerization of the prolyl bond. Blue curve 

represents the normal transition from trans to cis conformation through syn conformation. Red 

curve shows gain in free energy with PPIase catalysis (Lu, 2007). 

 

There is one exceptional case within cis-trans isomarases which is Pin 1 human 

PPIase. Pin 1 could promote proline isomerization of specific substrate Ser/Thr-Pro, 

where it could act only if serine is phosphorylated (Zhou, 2000). Pin1 could separate the 

binding and the catalytical active domains within the protein which makes it more 

flexible. It is known that this function is important in transcription regulation 

(Ranganathan, 1997). 

Crystal structures of many cyclophilins have been solved (Dornan, 2003). They 

revealed high level of conservation. For example, structure of the CypA human cyclophilin 

has mixture of β-barrels with surrounded by two α-stretches and hydrophobic core for 

the CsA binding (Kallen, 2005). 
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By localization cyclophilins could be situated in all compartments of most tissues 

dependent on the specific domain organization or localization signal (Dornan, 2003). For 

instance, human cyclophilin CypD has a mitochondrial localization signal (Hamilton, 1998), 

CypE possessed an RNA recognition motif and localized in nucleus (Mi, 1996) and Cyp40 is 

situated in cytosol (Kieffer, 1993). Functions of the cyclophilins are also dependent on the 

additional domains and localization. For example, CypA besides formation of the CsA-

CypA complex acts as the protein chaperon and upholds formation a virions of human 

immunodeficiency virus (HIV) (Luban, 1993). Other example is Drosophila melanogaster 

NinaA protein – retina-specific cyclophilin which is important for folding of rhodopsin 

isoforms (Stamnes, 1991). Cyclophilins could adjust protein functions, for instance, 

mammalian Cyp40 being a part of steroid receptor complex interacts with heat-shock 

protein Hsp90 (Ratajczak, 1993). 

Despite of these activities recent studies revealed that proteomics analysis of the 

human spliceosome identified several splicing factors located in the nucleus – members 

of immunophilin family (Rappsilber, 2002). Some examples of that factors include PPIG 

(Bourquin, 1997) – binds to the Clk/Sty protein – member of the SR family, which 

regulates RNA splicing through rounds of phosphorylation; PPIE (Mi, 1996) – possesses N -

terminal RNA binding domain and seems to prefer poly (A) and poly (U) stretches of RNA; 

PPIL1 (Pushkarsky, 2001) – part of the 45S snRNP complex; PPIL2 and PPILH (Horowitz, 

2002) – intermingles with hPrp proteins on human spliceosome during the tri - U4/U6/U5 

snRNP transition. These examples show the significance of the cyclophilins especially in 

coupling transcription to the splicing knowing that some of them interact with CTD of the 

Pol II (Horowitz, 2002).  

Looking at the plant immunophilins repertoire they have the largest family in the 

all kingdom of 29 cyclophilin genes and 23 FKBP isoforms (figure 1.8) (Romano, 2004). 

Among them 21 is a single-domain cyclophilins where nine are cytosolic and five – in the 

secretory pathway and two - in mitochondria (Peltier, 2002). Only three on the cyclophilin 

subclass are located in the nucleus and all three have multidomain organization. 
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Figure 1.8: Schematic diagram of 53 immunophilins in Arabidopsis Thaliana genome 

distributed by their localization. In bold letters are the multidomain proteins (Romano 2004). 

 

Majority of cyclophilins show ubiquitous expression pattern in the plants and are 

induced by various stress response such as biotic and abiotic, viral infection, salt, heat 

stress, cold, light and so on (Marivet, 1995). In Arabidopsis genome there are only 8 genes 

encoding the multidomain cycplophilins (MD) and among them AtCyp40 was proved to 

have in vivo function so far (Berardini, 2001). Other cyclophilin AtCyp38 has well 

characterized homolog in spinach TLP40 (Fulgosi, 1998). For the rest of MDs primary 

sequences were indentified. Four of them, AtCyp57, AtCyp59, AtCyp63 and AtCyp95, have 

RNA recognition motif along with other motifs that are rich in charged aminoacids 

(Birney, 1993), suggesting their involvement in pre-mRNA processing (Weighardt, 1999). 

Regardless of equal presence of the RNA-recognition motif in these proteins, they are 

probably contributing at different stages of the pre-mRNA processing (Weighardt, 1999). 

Only three of them, AtCyp59, AtCyp63 and AtCyp95, possess proper nuclear localization 

signal and are located in the nucleus. AtCyp57 has been shown to interact with hnRNP A1 

and seems to shuttle between cytoplasm and nucleus along with hnRNP (Krecic, 1999). 

Since this protein is resembled the same functional characteristics as human parvulin 
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Par14 which is involved in translation, probably hnRNP domain of AtCyp57 could help to 

fold newly translated proteins (Scholz, 1997).  

Other nuclear protein AtCyp59 posses an RRM domain composed of 80 to 90 

amino acids and found to be conserved among species (Lorkovic, 2002). It is also 

established to be an interacting partner to the most of the SR proteins in Arabidopsis, but 

nonspecifically and through its C-terminal domain (Gullerova, 2006). AtCyp59 has pattern 

localization in the nucleus but does not resolve speckles. It has a spotted localization at 

the active sites of transcription and is co-localized with Polymerase II (Gullerova, 2006).  It 

was found that this protein similar to its ortholog in Schizosaccharomyces pombe, Rct1, 

binds to the CTD of PolII and influences on its phosphorylation status. In conclusion it’s 

believed that Atcyp59 is involved in connecting transcription to splicing regulation 

(Gullerova, 2006, 2007). 

 

1.4 Genomic SELEX 
 

Systematic evolution of ligands by exponential enrichment (SELEX) is a 

combination of combinatorial chemistry approach and experimental molecular biology 

techniques allowing determination of high affinity binding partner to a given molecular 

object (Djordjevic, 2007). The first SELEX experiment was performed in 1990 by Tuerk and 

Gold (Tuerk, 1990) where they created artificial RNA-aptamer library and found the 

ribosomal-binding site of the mRNA for T4 DNA polymerase. Typically, initial aptamer 

library contains around 1015 to 1016 oligonucleotides with randomized central part and 

fixed flanking regions (James, 2010). Such pool can be easily converted by in-vitro 

transcription to RNA and back to DNA via RT-PCR. Next round of selection based on 

incubation of the library with target molecule followed by separation of the unbound 

fraction from formed complex which is usually performed on nitrocellulose filters 

(Schneider, 1993). Selected complex is broken down and released nucleic acids are then 

amplified. Cycles are repeated several times to reach high affinity of binding between 

target molecule and selected library pool. Aim of selection is to isolate oligos which have 

the strongest binding affinity to target of interest. 
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Since SELEX procedure implicates in determination of the tight binding partner for 

the target of interest it finds a lot of applications in diagnostic and therapeutic 

applications (Bunka, 2007), for example, usage of strong binders as alternatives to 

antibodies in variety applications. Also several problems can appear during selection 

implementation. Few of the possible effects are losses of the bound oligonucleotides or 

enrichment of unspecific targets due to properties of nitrocellulose membrane during 

selection step. To overcome that problem few others possibilities of partition were 

described and overview in (Gopinath, 2007). Other complication is that the best winner 

could not be present in the genome where target molecule exists. This fact has positive 

and negative sides. On the one side such artificial aptamer could be used in therapeutic 

application from the inhibition of the particular protein to antibodies substitution which is 

now found a widely applications in clinical studies. On the other side best binder couldn’t 

be corresponded to real binders occurring in vivo.  In field of RNA–protein interactions 

other type of SELEX was developed named genomic SELEX. In contrast to randomized 

library, middle part of genomic library is derived directly from pieces of genome of 

interest, what allows searching for real-existing DNA or RNAs from particular organism. 

This procedure doesn’t vary from aptamer-based selection with only one difference in 

initial library-development step. In case of genomic SELEX, library forms via Klenow-

dependent addition of adaptor sequences to the genomic DNA.  

First DNA library for genomic SELEX was developed in 1997 by B.S. Singer (Singer, 

1997) for E.coli, S.cerevisiae (Gold, 1997) and human genomes (Gold, 1997). Then primary 

experiments on studying interaction of Cra-transcription factor with RNA-library in E.coli 

genome are made by T. Shimada (Shimada, 2005). Afterwards, using genomic SELEX 

experiments Kim (Kim, 2003) has been found RNA-targerts for the pre-mRNA splicing 

factor B52 in Drosophila melanogaster. Experiments showed ability of genomic SELEX to 

find already known targets for proteins and new targets which then are proved in various 

in vivo studies. Unsurprisingly, almost same problems appeared in genomic SELEX as in 

aptamer-based one. The global point for genomic approach is overselection and loss of 

weak but biologically significant binders during selection (Lorenz, 2006), (Lorenz, 2010). 

Solution could be to decrease stringency of selection conditions especially on the first 

rounds of SELEX and leave diversity in binding-partners in comparison to fewer winners 

(Zimmermann, 2010). As well as this means that high-strict selection as it applies for 
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aptamer-based selection could be performed in genomic variant (Zimmermann, 2010). 

Other interference in such experiment which is studying RNA-protein interactions is the 

possibility of formation secondary structures between middle part and adapter sequence 

in the library which could lead to unspecific or sometimes incorrect selection for protein 

of interest (Wen, 2001). Approach to handle this issue was suggested by Wen and Grey 

(Wen, 2004) in primer-free genomic SELEX. They developed a method of removal of 

primer-adapters before each cycle of selection and followed by the repayment them back 

to allow amplification of bounded fraction. Finally, genomic SELEX as any other SELEX 

remains in-vitro technique which in certain conditions might not correspond to the in vivo 

situation and some of found complexes could not appear at all in living cells 

(Niranjanakumari, 2002).  These lead to necessity of combination SELEX experiment with 

other in vivo techniques, for example, CLIP and CLIP-HITS technology (Ray, 2009).  

 

1.5 Aim of the thesis 
 

 The main aim of this thesis was to identify genomic RNA targets of the 

Arabidopsis thaliana cyclophilin AtCyp59. 

 

1.5.1 Specific aim: Establishment of the Genomic SELEX system for an affinity 

screen of the AtCyp59 binding RNA partners. 

 

AtCyp59 belongs to a family of peptidyl/prolyl cis/trans isomerases. This family 

encodes 29 genes in A. thaliana genome (Romano, 2004). It is widely known that typically 

cyclophilins are single-domain small proteins which help other proteins in their folding 

and function.  However, AtCyp59 consists of a catalytically active cis/trans isomerase 

domain, an RRM domain and a C-terminal positively charged domain.  AtCyp59 is 

localized in the nucleus and implicated in nuclear RNA metabolism.  This protein contains 

C-terminal positively charged domain enriched in Arginine-Serine (SR) dipeptides.  

Recently, it has been shown by deletion analysis that C-terminal domain of AtCyp59 is 

indispensible for interaction with SR proteins, an important family of splicing factors 

(Graveley, 2000; Gullerova, 2006). Interestingly, AtCyp59 binds to majority of SR proteins 
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through its C-terminal domain suggesting possible involvement of the protein during pre-

mRNA splicing (Gullerova, 2006). As it is known from animal and plant studies, SR proteins 

are localized in the nuclear speckles, which serve as storage reservoirs (Lamond, 2003; 

Lorkovic 2004). However, AtCyp59 is not co-localized significantly with SR proteins. 

Rather, it is situated in very distinctive dots pattern near the periphery of speckles which 

are correlated with active transcription starts (Gullerova, 2006). Pull-down and 

immunoprecipitation analysis revealed that AtCyp59 physically interacts with the CTD of 

Pol II largest subunit (Gullerova, 2006). Moreover, phosphorylation of the CTD decreases 

upon transient over expression of the AtCyp59.  It is well studied that pre-mRNA 

processing occurs co-transcriptionaly in which CTD domain of Pol II plays a very important 

role (Bentley, 2002). In general, CTD acts as a binding platform for various protein factors 

during transcription and at the same time recruits pre-mRNA processing proteins to the 

nascent transcripts from speckles (Proudfoot, 2002; Kornblitt, 2004). These data, together 

with AtCyp59 interaction with SR proteins and CTD of Pol II, propose function of AtCyp59 

as a mediator between mRNA transcription and splicing. 

Beside PPIase and C-terminal domains AtCyp59 contains an RNA recognition motif. 

It has been shown that this domain is highly conserved from yeast to human and more 

conserved in comparison with PPIase domain within diverged species. It binds artificial C- 

or G-rich oligomers of RNAs in vitro, (Gulerova, 2006). This data suggest an importance of 

RRM domain in AtCyp59 function. Since AtCyp59 interacts with CTD of Pol II and with SR 

proteins, AtCyp59 can be proposed to bring certain elements of splicing machinery to the 

transcribing pre-mRNA. Also, AtCyp59 possible interaction with pre-mRNA could help in 

splicing of this RNA by recruitment of other proteins, e.g. SR proteins.  

In addition, absence of in vivo systems for studying AtCyp59 such as T-DNA mutant 

lines, over expressing lines or cell suspensions hinders to study function of this protein, 

especially in terms of its interaction with RNAs. Among in vitro methods available for 

searching for RNA targets, we have chosen the genomic SELEX, the method which utilizes 

genomic RNA library for the SELective EXponential enrichment of RNA ligands (Kim, 

2003). 

I planned to establish DNA library of A. thaliana suitable for further in vitro 

transcription to the RNA library. RNA library was planned to use in affinity selection with 

recombinant GST-tagged protein AtCyp59 on glutathione-coupled sepharose. 
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1.5.2 Specific aim: Validation and functional characterization of the found RNA 

targets upon their interaction with AtCyp59 in vitro and in vivo. 

 

One of AtCyp59 close homologs, S. pombe protein Rct1, is essential protein; Rct1 

deletion mutant cell lines show growth and morphological defects already in 

heterozygous stage (Gullerova, 2007).  Such an unusual for cyclophilin family proteins 

phenomenon might explain why there are no AtCyp59 mutant lines in A. thaliana. Next, 

partial deletion of Rct1 increases phosphorylation status of CTD in S. pombe. These lines 

of evidences indicate a great importance of highly conserved protein AtCyp59 and its 

homologues in transcription regulation (Gullerova, M., Barta, A., Lorkovic, Z.J., 

unpublished data).  

Catalytically active PPIase domain of the protein changes conformation of a 

peptidyl bond followed by prolines. Since AtCyp59 interacts with SR proteins and CTD of 

Pol II, both of them could potentially be substrates for the PPIase domain of AtCyp59. As 

for the S. pombe homolog Rct1, it has been discovered that it interacts with kinase Cdk9 

(Skrahina T., Lorcovic, Z.J., unpublished data). Cdk9 catalyses phosphorylation of serine 2 

(S2) of the CTD of Pol II and by doing that promotes efficient transcription elongation 

(Peterlin, 2006). It has been shown that Cdk9 interacts with PPIase domain of Rct1 

suggesting involvement of Rct1 in either elongation or termination stage of transcription. 

Furthermore, over expression of the Rct1 increases the occupancy of the Pol II mostly 

towards end of transcripts (Skrahina T., Lorkovic, Z.J., unpublished data). These data 

indicate that AtCyp59 might be also involved in the later stages of transcription where it 

may connect transcription and splicing through its multidomain structure. To further 

understand function of the AtCyp59 and, particularly, its RRM domain, bioinformatics 

analysis of the found RNA targets for AtCyp59 was planned. These data would reveal a 

common binding sequence for the protein as well as sequence localization in genome. 

Relevance of found RNA targets would be analyzed in vitro by an electromobility gel-shift 

assay (EMSA) and in vivo by an RNA immunoprecipitation (RIP). Overall this study would 

provide information whether and how RNA binding activity of the AtCyp59 links this 

protein to transcription and (or) splicing. 
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2. Materials and Methods. 

 

2.1 Strains and cells handling 
 

2.1.1 Arabidopsis cell lines and handling of cells 
 
Genotypes of Arabidopsis thaliana lines used are listed in Table 2.1 

General genetic methods, media and growth conditions were used as described 

previously (Manos, 1976) 2,4-Dichlorophenoxyacetic acid (Sigma) and isopentenyl 

adenosine (IPAR) (Sigma) were used at the final concentration 100 µg/ml. 

 

Table 2.1. Genotypes of Arabidopsis Thaliana lines. 

Line Genotype Reference 

Wt  Col-O ABRC stock 

AtCyp59  pXVE::35S::Cyp59-HA This study 

RSZ33  pXVE::35S::RSZ33-HA This study 

YFP  pXVE::35S::YFP-HA This study 

 

2.1.2 E.coli strains. 

 
Genotypes of E.coli strains used are listed in Table 2.2 

 

Table 2.2. Genotypes of E.coli strains. 

Strain Genotype 

XL-1-Blue endA1 gyrA96(nalR)thi-1 recA1 lac glnV44 F’*::Tn10 

proAB+lacIqΔ(lacZ)M15+ hsdR17(rk
-mk

+) 

BL21(DE3) F-ompT hsdSB (rB
-mB

-) gal dcm 

 

2.2 Plasmid construction 
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2.2.1 GST-tagged plasmids 
 

To obtain GST tagged RRM+Zn domain of AtCyp59 (residues 244 -322) its cDNA 

was amplified with BamHI-RMM fw and SalI-RRMZn rev primers from pGST-Cyp59 

plasmid. The fragment was cut with BamHI and SalI and ligated into pGEX-4T-1 plasmid. 

GST tagged mutated RRM+Zn domain (*RRM+Zn) of AtCyp59 (changed residues: (286(Y) 

to D, 288(F) to D, 291(F) to D) was amplified in the same way but from the plasmid 

pDEDH-*RRM-Cyp59-HA. Obtained positive clones were verified by sequencing. 

Construction of plasmids expressing pGST-Cyp59 and pDEDH-Cyp59-HA were 

described in (Gullerova, 2006). A plasmid, expressing mutated version of RRM domain of 

AtCyp59 was obtained using site-directed mutagenesis approach. Cyp59 gene with 

introduced mutations was amplified from pDEDH-Cyp59-HA plasmid using 

Cyp59_RRMmut3 fw and Cyp59_RRMmut3 rev primers. Then, circular original plasmid 

was digested by Dpn1 enzyme and linear new plasmid was ligated and transformed into 

XL-1 blue cells. Positive clones were verified by sequencing. 

 

2.2.2 Arabidopsis binary vectors. 
 
pMDC7 plasmid was obtained from ABRC stock center and contained minimal 35S 

CMV promoter under control of human estrogen inducible system.  

To generate plasmid expressing HA-tagged full-length Arabidopsis Cyp59 protein, 

correspondent cDNA was amplified with following oligonucleotides: AtCyp59XhoI fw and 

AtCyp59RSpeI rev, which introduce HA, SpeI, XhoI sites and stop codon, sequentially. PCR 

product was cloned into XhoI/SpeI digested pMDC7, resulting in pMDC7-cyp59-HA 

plasmid. 

To generate plasmid expressing HA-tagged Rsz33 protein, correspondent cDNA 

was amplified with following oligonucleotides: RSZ33fXhoI and RSZ33RHASpeI, which 

introduce HA, SpeI, XhoI sites and stop codon, sequentially. PCR product was cloned into 

XhoI/SpeI digested pMDC7, resulting in pMDC7-RSZ33-HA plasmid. 

pMDC7-YFP plasmid encoded YFP yellow  protein was obtained from ABRC stock 

center. 

Oligonucleotides used for cloning are listed in Table 2.3 
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Table 2.3 Oligonucleotides for cloning 

Name Restriction 

site 

Sequence In vector 

Atcyp59 RRM with Zn finger domains 

BamHI-RMM fw BamHI GACTAGGGATCCATGCCTGACAATGTGCTG pGEX-4T-1 

SalI-RRMZn rev SalI GACTAGGTCGACTCAACAGTCCTTGGCAATATG pGEX-4T-1 

Atcyp59 full-length and RSZ33 

AtCyp59XhoI fw XhoI TATACTCGAGATGTCAGTTCTTATTGTGACGGAG

CCTT 

pMDC7 

AtCyp59RSpeI 

rev 

SpeI TATAACTAGTTCAAGCGTAATCTGGAACGTCATAT

GGGTA 

pMDC7 

RSZ33fXhoI XhoI TATACTCGAGATGCCTCGCTATGATGATCGCTAT pMDC7 

RSZ33RHASpeI SpeI TATAACTAGTTCAAGCGTAATCTGGAACGTCATAT

GGGTA 

pMDC7 

*RRM-Cyp59-HA 

Cyp59RRMmut3 

fw 

[Phos] GTTGTGCGATGCTGATATAGAGGATG pDEDH 

Cyp59 

RRMmut3 rev 

[Phos] TGTCACCTGTCTTGAAATCCCGGAT pDEDH 
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Fig. 2.1. Map of pMDC7 vector. 
 

2.3 Arabidopsis cell-suspension generation 
 
Each 500 µl of wt Col-O protoplasts cells were transformed with 150 µg of plasmid 

pMDC7-Cyp59-HA, pMDC7-RSZ33-HA or pMDC7-YFP via PEG inducible transformation as 

described in section 2.11.2. Transformed protoplasts were transferred to the 3cm 

cultivation plate, and incubated for 7 days in dark at 22 oC. Next, equal volume of B5-GM 

media supplemented with 100 µg/ml hygromycin in case of pMDC7-cyp59-HA and 

pMDC7-RSZ33-HA or 50 µg/ml kanamycin in case of pMDC7-YFP were added to recover 

the transformants. Cells were transferred into 100ml cultivation flask and incubated 

another 7 days in the dark at 22 oC and slow shaking at 60 rpm. Next, cells were 

transferred to the 300 ml cultivation flask, equal volume of B5-GM media with antibiotic 

were added and cells were incubated again in the dark at 22 oC at 160 rpm rotation. 

Starting for this point cells were diluted 1/5 times each week into fresh media with 

addition of selective reagent. To check presence of incorporated construct into genome 
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of A. Thaliana 1/5 of the cells were collected after 3 weeks time of incubation and 

dilution. Genomic DNA isolated and the presence of construct was checked with PCR 

using gene-specific primers listed in the table 2.3.  

 

2.3.1 Induction of gene expression by estrogen in cell suspension. 

Proteosome inhibition assay. 

 

To induce gene expression in cells carrying insertion of estrogen inducible cassette 

plasmid, 5 days old culture at a density of 4 mio cells/ml was induced by addition of 0.2, 

2, 5, 100 µM final concentration of 17-β-estradiol human estradiol dissolved in DMSO. 

Then, cell suspension was incubated from 8 hours up to 5 days in the dark at 22 oC at 160 

rpm rotation. Then, 500 µl aliquot of cells was spinned down, pellet was dissolved in 100 

µl 2 X LB buffer, boiled for 5 min. 30 µl from it was loaded onto 10 % SDS-PAGE and 

analyzed by Western blot. 3 ml of induced culture were spinned down, grinded in liquid 

nitrogen and total RNA was isolated. 

To perform proteosome inhibition experiment, 5 days old cell cultures (Cyp59, 

RSZ33, YFP) were induced by addition of 17-β-estradiol human estradiol at 100 µM final 

concentration and incubated for 24 hours at standard conditions. Then 26S proteosome 

inhibitor MG-115 (Sigma) was added to the culture at final concentration 100 µM 

dissolved in DMSO. Suspension was incubated further at standard conditions. After 1 

hour, 2 hours and overnight, 1 ml of cells were collected and subjected to the western-

blot analysis. 

 

2.4 Overexpression and purification GST fusion proteins 
 
The plasmids pGST, pGST-AtCyp59, pGST-Atcyp59,RRM+Zn, pGST-

AtCyp59,*RRM+Zn were transformed into E. coli strain BL21(DE3). Overnight cultures 

grown at 37 oC supplemented with 100 µg/ml ampicilin were diluted 100 times and grown 

further at 37 oC till they reached an optical density of 0.8. Protein synthesis was initiated 

by addition of 1 mM final concentration of isopropyl-β-D-thiogalactopyranoside (IPTG). 

Next, cultures were incubated at 37 oC for 3 hrs. 500 ml of each culture was spinned down 
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at 4 oC 4000rpm for 15 min. Pellet was resuspended in 10 ml 1 X PBS buffer and sonicated 

(Bandelin HD 200 Sonoplus) on ice 4 times for 10 sec, at a power of 200 W, 50 cycles. Cell 

lysate was spinned down at 4000rpm for 10 min at 4 oC. The supernatant was mixed with 

500 µl 4B glutathione sepharose beads (GEHealthcare) and incubated at 4 oC for 4 hours 

on slow rotation. The sepharose beads were washed three times with 15 ml of 1 X PBS 

buffer and the proteins were eluted 3 times with 500 µl of glutathione elution buffer 

incubated 10 min at room temperature. Elution buffer was exchange to the binding buffer 

(section 2.6) by overnight dialysis (1:20000). Finally, twenty microliters of each sample 

was resuspended in 60 µl of 2 X LB buffer, boiled for 5 min and 20 µl from it was loaded 

on 10% SDS-PAGE gel for analysis. 

 

2.5 Arabidopsis library preparation 
 

2.5.1 Preparation a plant material 
 
Arabidopsis Thaliana Col-O seedlings were grown for 21 days in ø15 cm cultivation 

plates containing ½ MS Arabidopsis agar media. To prepare 2 plates, 30 mg of seeds were 

surface sterilized. Firstly 1.7 ml 70% ethanol with 0.1% Triton X-100 was added to the dry 

seed and seeds were incubated for 1 min at RT. Then ethanol was changed to 7.5% 

sodium hypochlorite with 0.1% Triton X-100. Seeds were further incubated for 7 min with 

slow rotation. Next, seeds were washed three times with ddH2O for 10 min. Finally they 

were transferred to the ø15 cm cultivation plate. Plates with seeds were incubated for 2 - 

3 days in dark at 4oC for growth synchronization and then were moved to the growth 

chamber and were grown for 3 weeks at 22 oC 16 hrs of light and 8 hrs of dark. 

 

2.5.2 Genomic DNA isolation 
 
Three-week old seedlings were collected from the plate and homogenized in the 

liquid nitrogen. Genomic DNA was isolated from 2 gram of frozen tissue using a Plant 

DNeasy Mini kit (Qiagen) following the manufacturer’s instruction. Finally, DNA was 

dissolved in 200 µl TE buffer and presence of RNA contamination was checked on 1% 
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agarose gel electrophoresis. DNA was stored for the short term at -20oC and for the long 

time at -80oC. 

Afterwards, 30 µg of isolated genomic DNA was placed in a 13 ml round-bottom 

falcon tube and fragmented by ultrasound treatment using a Bandelin Sonoplus UW2070 

device with a MS73 microtip. DNA was sonicated 8 times with 10 pulses for 10 seconds at 

70% power. Sonication produced fragments from 100 bp to 4 kb in length, which were 

checked by agarose gel electrophoresis and compared with unshared control DNA. Then 

fragmented DNA was precipitated overnight in a presence of 1/10 volume 3 M NaOAc pH 

5.4, and 3 volumes of absolute EtOH. The pellet was resuspended in 100 μl of TE buffer.  

 

2.5.3 Primer labeling 
 
In order to visualize the incorporation of the randomized primer-adaptors into 

genome, 2 µl of 10 µM primer (Rran or Fran) (see table 2.4) was added to 1 µl of 10 X PNK 

kinase buffer with 4 µl *γ32P+ ATP and 1 µl (10U) T4 polynucleotide kinase and 2 µl of 

water. The mixture was incubated at 37oC for 1 hour. Then reaction was stopped by 

heating sample at 75oC for 15 min and quickly chilled on ice. Unincorporated nucleotides 

were separated by a G-50 column from GEHealthcare following the manufacturer’s 

instructions. 

In the same time a DNA ladder was kinased in the same way e.g. 5µl of 

φx174/HinF I (250 ng) marker was added to a solution with 1.5 µl of *γ32P+ ATP, 2 µl of 10 

X PNK kinase buffer, 1 µl 10U) T4 polynucleotide kinase and 10.5 µl of water. Solution was 

incubated at 37oC for 10 min and then chilled on ice. One microliter for this mixture was 

mixed with 9 µl of formamide dye and used in 7M urea PAGE gel. 

 

2.5.4 First and Second primer reaction annealing 
 
The starting material was about 25 µg of fragmented and purified DNA as 

described above at a concentration of 1mM. The concentration of the primers was 

adjusted to allow annealing once every 40 nucleotides as described in (Lorenz, 2006). 

Firstly, 7µl of 255 μM unlabeled primer Rran was added to the 72µl of DNA (25 µg). 

Mixture was divided in two parts to allow controlling the introduction of the forward (Fran) 
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and reverse primer (Rran) separately. Next, one tube was supplemented with 2 µl of 2 µM 

radioactive Rran primer and the other with 2 µl of water. Both tubes were incubated for 3 

min at 93oC, then placed on ice and further treated in parallel. After addition of 10 X 

Klenow buffer and deoxyribonucleotides to a final concentration of 1 mM, the reaction 

was started with 67 U of Klenow exo-minus enzyme (Fermentas) and incubated for 5 min 

on ice. After, the reaction was incubated for 25 min at room temperature and then 5 min 

at 50oC. The reaction was inactivated by adding EDTA (final conc. 15 mM) and heating for 

10 min at 75oC. The reaction mixture was cleaned up from low molecular weight 

substances with YM-30 Millipore columns. At this point the efficiency of primer 

incorporation could be monitored in a denaturing 8% polyacrylamide gel. 

The same protocol was applied for the forward primer (Fran) reaction and where 

the radioactive Fran primer was added to the non-radioactive sample.  

 

Table 2.4. Oligonucleotides for library construction. 

Name Sequence 

Fran AGGGGAATTCGGAGCGGGGCAGCNNNNNNNNN 

Rran CGGGATCCTCGGGGCTGGGATGNNNNNNNNN 

 

2.5.5 Preparative extraction of nucleic acids from PAGE 
 

Two reaction samples from the previous step were combined, 80 µl of demonized 

formamide dye was added and resulted mixture was fractionated on a preparative 8% 

denaturing polyacrylamide (7M urea) gel for 2hrs at 100V. Labeled as described 

previously, size marker was added in the first line. 

DNA (size 100-700 bp) was extracted from the gel using following steps. First, gel 

was divided into small pieces and frozen to -80oC for 15 min. Then 500 µl of extraction 

buffer was added to each gel piece. The mixture was heated for 5 min at 95oC and left 

overnight at 25oC shaking (900 rpm). Alternatively shaking could be performed at 65oC for 

3 hours. Next, the gel mixture was filtrated though a 0.22 µm nitrocellulose filter 

(Millipore) and DNA was precipitated with 2 volume of EtOH for 3 hours at -80oC. 
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2.5.6 In vitro RNA transcription 
 
To introduce a T7 promoter sequence to the 5’end of the DNA library, the second 

pair of primers Fclcf and Rclcr (see table 2.5) were used. DNA library were amplified using 

these primers and phusion polymerase (Finnzyme) in 20 µl total of PCR reaction. The 

number of PCR cycles was kept 10 to avoid artificial byproducts. Typically, PCR was set uo 

as following: 10 s denaturation at 95oC, 10 s annealing at 55oC (-3oC below the Tm of 

primer), 20 s elongation at 72oC. PCR reaction was cleaned via phenol/chloroform 

extraction followed by PCR-clean up kit which has a low cut off to leave small DNA 

fragments in the library (e.g. Nucleospin extract II (Macherey-Nagel). Next, library was in 

vitro transcribed using a High Yield Transcription kit (Fermentas) Transcribed RNA was 

extracted with phenol/chloroform and precipitated with 2 volumes of EtOH overnight.  

 

Table 2.5. Oligonucleotides for library amplification. 

Name Sequence 

Fclcf CCAAGTAATACGACTCACTATAGGGGAATTCGGAGCGGG 

Rclcr CGGGATCCTCGGGGCTG 

 

2.5.7 RT-PCR 
 
One-step RT-PCR kit (Qiagen) was used to reversibly transcribe RNA library and 

amplify resulted DNA in one tube. This kit was chosen because it contained two types of 

reverse transcriptases which allowed amplification of low and high abundant transcripts 

from the mixture. The number of PCR cycles during this reaction was kept to 7-9 to 

decrease formation of unspecific products. Concentration of the obtained DNA library 

was checked and if necessary, DNA was further amplified using one of the proof-reading 

polymerases. At this step, the DNA library can be store at -20oC for at least 6 months or 

for a longer period at -80oC. 
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2.5.8 Library quality control 
 
The quality and comprehensiveness of the obtained DNA library was checked by 

PCR using 4 single copy gene primers (see table 2.6). PCR reaction was performed using 

standard protocol. 

 

Table 2.6. Oligonucleotides for library quality control 

Name Gene number Sequence Product Size 

(bp) 

RSZ32 

Lp 595 

AT3G53500 TTAGGGTTACTGCGTATTTGCACTCTC 344 

 

RSZ32 

Rp 939 

AT3G53500 CCAGAGAGTTAAAACACGACCTCAGA 

Rsp31a 

Lp 3818 

AT2G46610 TAGAGCAAGAGCTAGGAGTCCG 183 

 

Rsp31a 

Rp 4096 

AT2G46610 CCACATAGAGTGCAAAGCACATAC 

NUBQ AT1G23410 GGTGCTAAGAAGAGGAAGAAT 245 

 CUBQ AT1G23410 CTCCTTCTTTCTGGTAAACGT 

TPP_L AT2G29630 TGAGTCAGAGTCAGCAATAAAGACA 200 

 TPP_R AT2G29630 GCGGCAACAGTAGCTTCTTC 

 

Buffers: 
 
½ MS Arabidopsis medium 

 2.2 g ½ GM (1A micro + ½ macro) (Duchefa) 

1 ml MS vitamins (Sigma) 

0.5 g MES buffer (Duchefa) 

10 g Sucrose (Sigma) 

7 g Agar (Duchefa) 

Water to 1 L 

pH 5.5 - 5.7 adjusted with 1 M KOH 

TE buffer 
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10 mM Tris-HCl pH 8.0 

1 mM EDTA pH 8.0 

1 X PNK kinase buffer (New England Biolabs) 

70 mM Tris-HCl 

10 mM MgCl2 

5 mM Dithiothreitol 

pH 7.6 at 25°C 

Extraction buffer: 

10 mM Tris-HCl pH 8.0 

2 mM EDTA pH 8.0 

0.3 M NaOAc pH 5.4 

 

2.6 Affinity selection 
 

2.6.1 Preparation of 4B Glutathione beads 
 
In each cycle of Genomic SELEX a fresh aliquot of 40 µl 50% 4B glutathione 

sepharose (which is sufficient to bind up to 8 µg of a protein) was pre-washed 3 times 

with 400 µl binding buffer to remove residuals of ethanol and equilibrate sepharose. 

Next, beads were blocked with 0.5 ml (concentration 200µg/ml) tRNA (Sigma) dissolved in 

ddH2O and incubated 30 min at 4oC by slow rotation. Then, beads were washed three 

times with 400 µl of binding buffer.  

 

2.6.2 Binding reaction and selection 
 

To perform the protein-RNA binding reaction 10 µg of in-vitro transcribed RNA 

were dissolved in 100 µl binding buffer, heated for 5 min at 70oC and then left for 10 min 

at 25oC to refold an RNA pull. Next, the dialyzed to binding buffer protein of interest was 

added in a 3:1 molar excess of RNA over protein in the first 3 cycles. The stringency was 

increased and a ratio of 10:1 was used in later cycles. The mixture of RNA and protein was 

incubated for 30 min at 4oC. Further, the blocked and washed GST-beads were added to 



- 55 - 
 

the binding reaction which was incubated for another 30 min at 4 oC with slow rotation. 

Then the beads were washed 3 times with 400 µl of binding buffer and then eluted twice 

with 100 µl of elution buffer according to the manufactures instructions (GEHealthcare).  

To release RNA from the RNA-protein complex, 400 µl FES buffer and 400 µl of Phenol pH 

6.0 was added to the tube which was vigorously shaken for 10 min at 900 rpm. Then 200 

µl of H2O was added and the mixture was extracted with an equal volume of 

phenol/chloroform/isoamylalcohol: 25/24/1. Obtained RNA was precipitated overnight 

with 40 μg of glycogen, 1/10 volume of 3 M NaOAc pH 5.4, and 2 volumes of EtOH. The 

precipitate was dissolved in 20 µl water, cleaned from residuals of phenol with Megaclear 

RNA clean up kit. The yield of the selected RNA was measured by nanodrop. Selected RNA 

was subjected to the RT-PCR reaction following by in-vitro transcription followed by next 

round of an affinity selection. 

Before the last cycle of selection the control – anti-GST selection with purified 

GST-tag protein was performed using 10:1 molar ratio GST over RNA library. Binding 

reaction was done as described above with only change of keeping unbound to the beads 

RNA fraction instead of beads fraction. 

 

2.6.3 RT-PCR in the SELEX cycle. 
 

To perform reverse transcription and subsequent amplification of the selected 

RNA, the one-step RT-PCR kit (Qiagen) and the library specific primers (see the table 2.5) 

were used following manufacturer’s instructions. This kit was used because it contained 

two types of reverse transcriptases which allowed reverse transcription of low and high 

abundant transcripts from the mixture. The number of PCR cycles was kept to 7-9 to 

decrease formation of unspecific products (Zimmermann, 2010). Next, concentration of 

the received DNA library was checked and library was further amplified in 20 µl reaction 

using phusion polymerase (Finnzymes) to obtained required concentration of DNA library 

for the future in vitro transcription. 

Buffers: 

Binding buffer: 

1 X PBS buffer 
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10 mM MgCl2 

PBS buffer: 

0.135 M NaCl  

27 mM KCl  

8 mM Na2HPO4  

2 mM NaH2P04 

FES buffer: 

20 mM citric buffer pH 5.0 

 7 M urea 

 1mM EDTA pH 8.0 

Elution buffer: 

50 mM This-HCl, pH 8.0 

10 mM reduced glutathione 

 

2.7 Bioinformatics 
 
For the small scale analysis CLC Main Workbench software from CLCBio were used 

to annotate, align and combine data.  Large-scale analysis of 454 deep sequencing data 

was performed by Dr. Marek Zywicki in collaboration with group of Dr. Prof. Norbert 

Polacek in Innsbruck Medical University. For the motif discovery MEME suite software 

http://meme.sdsc.edu/meme4_4_0/cgi-bin/meme.cgi was used (Bailey, 1994). 

 

2.8 In vitro RNA transcription 
 
1. DNA template preparation for in vitro transcription: 

Template for genomic RNA-targets not selected in Genomic SELEX: Partial 

sequence of gene of interest was amplified using phusion polymerase and following 

primer-pairs (see table 2.7) from wt cDNA of A. thaliana in 20 μl PCR reaction. 

Corresponded DNA fragment was excised from 2% agarose gel (TAE buffer) and purified 

using PCR extraction kit (Wizard SV Gel and PCR clean-up system from Promega). In the in 

vitro transcription 6 μl (100-200 ng) of obtained DNA template were used. 

http://meme.sdsc.edu/meme4_4_0/cgi-bin/meme.cgi
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Template for 30nt RNAs containing binding motif variants: synthetic 

oligonucleotides containing selected with Genomic SELEX piece and complementary to T7 

promoter sequence (see table 2.7) were dissolved in TES buffer to final concentration 50 

μM. T7 promoter primer was dissolved in TES buffer similarly. 1 μl of oligonucleotide and 

1 μl of T7 primer were mixed and 4 μl of ddH2O were added. Reaction was heated up to 

95oC for 1 min and then cool down slowly to room temperature and used in the in vitro 

transcription. 

2. In vitro transcription reaction: 

To perform in vitro transcription 6μl of DNA template were added to the High-

Yield In vitro transcription kit (Fermentas) and incubated at 37 oC for 4 hours followed by 

DNase I digestion for 20 min at 37 oC. Then, RNA was extracted by phenol/chloroform 

extraction and precipitated with 1/10 volume 3 M NaOAc, 1 μl (10 mg) glycogen (Roche) 

and 2.5 volume 96% ethanol overnight. Next, RNA was purified using RNA clean-up kit 

(DNA-Free RNA kit from ZYMO research) and finally dissolved in 20μl ddH2O. 

 

Table 2.7. Oligonucleotides to prepare DNA template for in vitro transcription 

Name Gene 

number 

Sequence Product 

size (bp) 

 Oligonucleotides for PRC reaction 

SRP34a fw AT3G49430 TAATACGACTCACTATAGGGTAATCATTATGAATGCAG

GTTGAGC 

132 

SRP34a rev AT3G49430 CACCACCTCCACCACCATAG 

RSZ22 fw AT2G24590 TAATACGACTCACTATAGGGTAGAGCAGTCTCATAACC

GTGGTG 

132 

RSZ22 rev AT2G24590 ACTCATAGCACTTCAAATCAGAACC 

RSZ32 fw AT3G53500 TAATACGACTCACTATAGGGAAGCTATTCCAGGTCACC

AGTC 

130 

RSZ32 rev AT3G53500 CCAAATTCACAACTGACCTGTAGC 

U2B fw AT2G30260 TAATACGACTCACTATAGGGTAATGCAGCCTTCGTTCCA

G 

140 

U2B rev AT2G30260 ACTGTTCGAAGAGAAGCTGTAGCA 
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Primers with anti-T7 promoter  

Rsz32 AT3G53500 GACTGTAACTACGGCTACGGCTTGGGCTCCTTCGGCGA

CGAGGGGAGCGCCCTATAGTGAGTCGTATTAAATT 

73 

RNA_A AT3G28430 GGTGGTGATGGTGACGGCAACAATGGCGGTGTCAGTG

GCGATGGTGACTACAATGGCGGTGCCCCTATAGTGAGT

CGTATTAAATT 

86 

RNA_B At1g1571 TCGACACGGCCACGATCTAATCACTCACTCCCCTATAGT

GAGTCGTATTAAATT 

54 

RNA_C AT3G19430 CTGGCGACGATGGTGGCGGCGATGACAGTGGTGGTGA

TGACGGTGGATACACTCCTCCCCTATAGTGAGTCGTATT

AAATT 

81 

RNA_D AT4G13340 GGAGGTGGAGGCGGTGGTGGTGGTGGCCCTATAGTGA

GTCGTATTAAATT 

50 

RNA_E at4centrom

eric 

GACGGTGATGACGTTGGTCGAGTGATGTCGCAGATGG

AGCCCTATAGTGAGTCGTATTAAATT 

63 

RNA_F AT2G40570 CTGACGTGGCTGCATATTGCTGAGGTGGCTCCCTATAG

TGAGTCGTATTAAATT 

54 

RNA_G CHrM GCGGATGCATGTTTACTGTAAAAGTGGTTGTGTCTTAA

CGGAATGATCTCAACTCGGCTACCCCTATAGTGAGTCG

TATTAAATT 

85 

RNA_H AT1G77850 AACGGCGGTGTTGCGGCGGCGGAGGAGAGGAGGAGC

CCTATAGTGAGTCGTATTAAATT 

59 

RNA_K AT3G49400 TGTTGGTCGAGGACAGTCTTCAAGTGATCGTCGTGGTG

GCTACGGTGCCCTATAGTGAGTCGTATTAAATT 

71 

RNA_L AT4g04350 CAATGAAGAAGTGGTGGATGGTGTTAGTGAGCGTGGT

GGCCACCCCTATAGTGAGTCGTATTAAATT 

67 

RNA_M AT2G07749 ACTGTCGCAATCAAACTCTCCGCCTGCCGGATCATCTCT

ATCAACCGTCTCGGCCGCACCTTCTTCCGCATCTGTCTC

AACTGCTCCCCTATAGTGAGTCGTATTAAATT 

110 

RNA_N AT1G08700 CGGCGTGATGGCTCCCGTCTCCATCTGCATGTTCCTCGT

CGTCCCCCTATAGTGAGTCGTATTAAATT 

68 
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RNA_O AT1G02065 GCGGCGGTTATGGTCAGCAAGTCGCTTACGGCAGCTCC

GTTTCCCCTATAGTGAGTCGTATTAAATT 

67 

RNA_P AT3G32377 CAGGAGCTGCGGTTGGAACTGCGACAGGAGCTGCGGG

TGGAGGTGGCGTCGTTCCCTATAGTGAGTCGTATTAAA

TT 

77 

RNA_R ch3centrom

eric 

ATCGTGGTCTGCAGCACGCGCCTAACGGCGTGCCTCGG

CATCAGCGTCCCTATAGTGAGTCGTATTAAATT 

71 

RNA_S ch4other GGTGGTGGCCGCGGCGGTGGTAGTGTCCGACGGTGGT

GACGGCCGACCCTATAGTGAGTCGTATTAAATT 

70 

RNA_T AT5G35057 GTCGTTGGCCGAGCTGGTGGTGGCATCGTTGGTCGAG

CTGGTGGTGCGCCCTATAGTGAGTCGTATTAAATT 

72 

T7 promoter  AATTTAATACGACTCACTATAGG 23 

 

TES buffer: 

10 mM Tris-HCl pH 8.0 
1 mM EDTA 
0.1 M NaCl 
 

2.9 Electro mobility gel shift-assay (EMSA) 
 

2.9.1 Binding reaction 
 

To perform a binding reaction obtained RNA oligonucleotide (see table 2.8) or in-

vitro transcribed RNA piece (see table 2.9) was mixed with binding buffer, loading buffer 

and appropriately diluted protein (Atcyp59,RRM+Zn, AtCyp59,*RRM+Zn, AtCyp59-full-

length) (for example see following table 2.10). The mixture (20μl final volume) was 

slightly vortexed for 30 sec and left at RT (or in case of full-length protein – on ice) for 15 

min and then loaded to the acryl amide native gel (6% or for the short sequences 10%). 
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Table 2.10. Example of protein and RNA titration for the binding reaction 

Probe RNA [µM] 5X Loading 

Buffer [µl] 

10X Binding 

Buffer [µl] 

Protein 

[nM] 

1 0,1 4 2 0 

2 0,1 4 2 7 

3 0,1 4 2 14 

4 0,1 4 2 35 

5 0,1 4 2 70 

6 0,1 4 2 140 

7 0,1 4 2 280 

8 0,1 4 2 350 

9 0,1 4 2 560 

10 0,1 4 2 700 

 

2.9.2 Native gel electrophoresis and detection 
 

Probes were run in pre-caste native PAGE 6% or 10% (Invitrogen) in 0.5 x TBE 

buffer at RT on 90 V for 30-40 min. Then gel was transferred to the 50ml RNA detection 

solution and incubated in dark for 20 min slowly shaking. Stained gel was rinsed few times 

with water to remove excess of the dye. Next, gel was scanned in the Thyphoon 900 

imager (GEHealthcare) at 526 nm emission filter excited with green laser (532 nm) at 800 

ppt resolution. Pictures were processed in Adobe Photoshop. Kd was calculated as 

described by (Ryder, 2008). 

 

Table 2.8 Synthetic RNA oligonucleotides for EMSA 

Name Gene 

number 

Sequence Length 

(nt) 

7nt binding motif variants 

RNA_A sh  GUUGCCG 7 

RNA_B sh  GUGGCCG 7 

RNA_C sh  GUCGCCA 7 
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RNA_D sh  GCCGCCA 7 

RNA_E sh  GGUGCCG 7 

RNA_F sh  GCAGCCA 7 

RNA_G sh  GUAGCCG 7 

RNA_H sh  GCCGCCG 7 

RNA_K sh  GUAGCCA 7 

RNA_L sh  GUGGCCA 7 

RNA_M sh  GCGGCCG 7 

RNA_N sh  GGAGCCA 7 

RNA_O sh  GCUGCCG 7 

RNA_P sh  GACGCCA 7 

RNA_R sh  GAUGCCG 7 

RNA_S sh  GCGGCCA 7 

RNA_T sh  GAUGCCA 7 

RNA sequences selected by genomic SELEX containing binding motif variants 

RNA_A AT3G28430 GCACCGCCAUUGUAGUCACCAUCGCCACUGACACCGCC

AUUGUUGCCGUCACCAUCACCACC 

62 

RNA_B AT1G1571 GAGUGAGUGAUUAGAUCGUGGCCGUGUCGA 30 

RNA_C AT3G19430 GAGGAGUGUAUCCACCGUCAUCACCACCACUGUCAUC

GCCGCCACCAUCGUCGCCAG 

57 

RNA_D AT4G13340 CCACCACCACCACCGCCGCCACCUCC 26 

RNA_E ch4centrome

ric 

CUCCAUCUGCGACAUCACUCGACCAACGUCAUCACCGU

C 

39 

RNA_F AT2G40570 AGCCACCUCAGCAAUAUGCAGCCACGUCAG 30 

RNA_G CHrM GUAGCCGAGUUGAGAUCAUUCCGUUAAGACACAACCA

CUUUUACAGUAAACAUGCAUCCGC 

61 

RNA_H AT1G77850 CUCCUCCUCUCCUCCGCCGCCGCAACACCGCCGUU 35 

RNA_K AT3G49400 CACCGUAGCCACCACGACGAUCACUUGAAGACUGUCC

UCGACCAACA 

47 

RNA_L AT4G04350 GUGGCCACCACGCUCACUAACACCAUCCACCACUUCUU

CAUUG 

43 
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RNA_M AT2G07749 GAGCAGUUGAGACAGAUGCGGAAGAAGGUGCGGCCG

AGACGGUUGAUAGAGAUGAUCCGGCAGGCGGAGAGU

UUGAUUGCGACAGU 

86 

RNA_N AT1G08700 GGACGACGAGGAACAUGCAGAUGGAGACGGGAGCCAU

CACGCCG 

44 

RNA_O AT1G08700 GAAACGGAGCUGCCGUAAGCGACUUGCUGACCAUAAC

CGCCGC 

43 

RNA_P AT3G32377 AACGACGCCACCUCCACCCGCAGCUCCUGUCGCAGUUC

CAACCGCAGCUCCUG 

53 

RNA_R ch3centrome

ric 

ACGCUGAUGCCGAGGCACGCCGUUAGGCGCGUGCUGC

AGACCACGAU 

47 

RNA_S ch4other UCGGCCGUCACCACCGUCGGACACUACCACCGCCGCGG

CCACCACC 

46 

RNA_T AT5G35057 CGCACCACCAGCUCGACCAACGAUGCCACCACCAGCUC

GGCCAACGAC 

48 

Rsz32 AT3G53500 CGCUCCCCUCGUCGCCGAAGGAGCCCAAGCCGUAGCCG

UAGUUACAGUC 

50 

 

Table 2.9. Genomic RNA targets containing binding pattern and not selected by 

Genomic SELEX  

Name Gene number Sequence Length  

SRP34a  AT3G49430 GUUUCUAAUCAUUAUGAAUGCAGGUUGAGCUUGCACA

UGGUGGUCGAGGACAGUCUUCAAGUGAUCGUCGUGGU

GGCUACGGUGGUGGUGGCAGCGGCUAUGGUGGUGGA

GGUGGUGGUG GUGGAUCAGCUCGGU 

132 

RSZ22  AT2G24590 GUAGAGCAGUCUCAUAACCGUGGUGGUGGUGGAGGUC

GUGGUGGUGGUCGUGGAGGAGGUGAUGGUGGUCGUG

GACGUGGUGGUUCUGAUUUGAAGUGCUAUGAGUGUG

GUG 

132 

RSZ32  AT3G53500 GGCAGGGUGGAAGCUAUUCCAGGUCACCAGUCAAAUCC

CGCUCCCCUCGUCGCCGAAGGAGCCCAAGCCGUAGCCGU

130 
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AGUUACAGUCGAGGUCGCAGCUACAGGUCAGUUGUGA

AUUUGG 

U2B  AT2G30260 UUAAUGCAGCCUUCGUUCCAGCCGAGCGGGCAAGAAAC

AAUGCCACCAAACAACAUACUCUUCAUUCAGAAUCUCCC

ACACGAGACAACAAGCAUGAUGCUACAGCUUCUCUUCG

AACAGU 

140 

 

Buffers: 

10 x TBE buffer: 

890 mM Boric acid 

20 mM EDTA 

890 mM Tris-base 

H20 to 1 liter 

1 X Binding buffer: 

10 mM HEPES-KOH, pH 7.9 

10 mM MgCl2 

50 mM KCl 

1 mM DTT 

0.025% Nonnidet P-40 

Supplemented with protease inhibitor cocktail (Roche) and RNAse inhibitor 

(Promega) upon usage. 

Loading buffer: 

50% glycerol 

0.01% Bromphenol blue 

0.01% Xylene Cyanol 

RNA detection buffer: 

SYBR Green II (Invitrogen) 1:10000 dilution in 0.5 X TBE buffer 

Protein detection buffer: 

SYPRO Red (Invitrogen) 1:5000 dilution in 7.5% Acetic acid. 
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2.10 Protoplasts isolation  
 
Five-days old (4-5 mio cells/ml) wt Col-0 A. thaliana cell suspension (30 ml) grown 

at 22 oC in the dark with 160 rpm shaking in B5-GM media were collected to the falcon 

tube and spinned down at 25 oC 1000 rpm for 5 min. Cell pellet was resuspended in 25 ml 

enzyme solution. B5-0.34 GM media was added to obtain 50 ml volume, and mixture was 

transferred to the 15 cm cultivation plate for 1 -1.5 hrs in the dark with slow 60rpm 

shaking. Cells were checked under microscope every 30 min till the stage when more than 

50% cell population were looked like single-cell colonies of round-shape. After this point 

cells were transferred to the falcon tube and spinned down at 25 oC 1000 rpm for 5 min. 

Pellet was resuspended in 40 ml B5-0.28MS media and cells again spinned down at 25 oC 

1000 rpm for 5 min. At this stage protoplast cells should float over the solution. Such cells 

were transferred to the 13 ml round-bottom falcon tube, washed again with B5-0.28MS 

media and spinned down for 7 min 800 rpm. Last step was repeated one more time to 

obtained homogeneous population of protoplast. (This work was performed together 

with Mag. Andrij Belokurov) 

Buffers: 

B5-GM media: 

4.5 g/ Murahigo & Skug (macro & micro + B5 vitamin) l (Duchefa) 

100µl/l  2,4-Dichlorophenoxyacetic acid (auxin stock - 10mg/ml)  

30 g/l  Sucrose (Sigma) 

 pH 5,7 adjusted with 1 M KOH 

B5-0.28MS media 

4.5 g/l B5 vitamins powder (Duchefa) 

96 g/l Sucrose (sigma) 

pH 5,5  adjusted with 1M KOH 

Enzyme solution: 

1% Cellulase (Duchefa) 

0.2% Macerozyme (Duchefa) 

In B5-0.34GM media 

Filter sterilized, stored -20 oC 
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2.11 PEG inducible protoplasts transformation 
 

2.11.1 Plasmid DNA preparation 
 
In this work following plasmid were used: pDEDH-Cyp59-HA (plasmid encodes full-

length Atcyp59 protein fused with HA-epitope at C-terminus. (Gullerova, 2006), pDEDH-

Cyp59*RRM-HA (plasmid, derived from pDEDH-Cyp59-HA with 3 point mutations in the 

most conserved amino acids in RRM domain (described above)), pGREEN-MPK6-HA 

(plasmid encodes Map kinase 6 protein fused with HA epitope. (Kind gift of Dr. Prof. Irute 

Meskeine)), pDEDH-GFP (encodes green fluorescence protein. (Gullerova, 2006)). Each 

construct was transformed onto E.coli XL-1 blue competent cells and plasmid DNA was 

isolated using Maxi DNA preparation (Qiagen). Final concentration was adjusted to the 

500 ng/μl. 

 

2.11.2 Protoplasts transformation 
 

One hundred μl of protoplasts (2 mio cells/ml) in tube were carefully mixed with 

30 μl plasmid DNA (concentration 0.5 μg/μl) to obtain homogenous solution. 300 μl PEG-

600 pH 9.0 were added to the mixture and obtained solution was left at RT for 15 min. 

Next, 1.5 ml 0.275M Ca(NO3)2 was added to the tube, and resulted solution was mixed 

and spinned down at RT 1000rpm for 5 min without break. Further, supernatant was 

discarded and pellet resuspended in 500 μl B5-0.34GM media. Transformed protoplasts 

were left in the dark at 22 oC for 24 hours. (This work was performed together with Mag. 

Andrij Belokurov) 

 

Buffers: 

B5-0.34GM media 

4.5 g/l  B5 vitamins powder (Duchefa)  

30.5 g Glucose (Serva) 

30.5g Mannitol (Serva) 

1 mg/l 2,4D (auxin-hormone to block cell-differentiation) (10 mg/ml)  

pH 5.5 adjusted with  1 M KOH 
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PEG 6000 solution: 

60 g/l  PEG 6000  (sigma) 

16.4 g/l  Manitol  (serva) 

4.7g/l  Ca(NO3)2*4H2O   

pH 9.0 adjusted with  1M KOH 

0.275M Ca(NO3)2 

64.94 g Ca(NO3)2 *4H2O/l 

 

2.12 SDS-PAGE and Western blotting 
 
Protein extract were prepared from ~400.000 pelleted protoplast cells by adding 

60 μl of 2 x LB buffer, then was boiled for 5 min. 25 μl of extract were loaded to 10% SDS-

PAGE and run at 150 V for 1.5 h. After, gel was transferred onto PVDF membrane 

(Millipore). Western blotting was performed using standard protocol. Primary antibody 

was Anti-HA, rat, monoclonal (Roche) diluted 1:5000 and secondary antibody - rabbit 

anti-rat Immunoglobulin G (Sigma) diluted 1:10000. Secondary antibody was conjugated 

with horseradish peroxidase therefore western blot was developed using 

cheminiluminescence kit (GE Healthcare) and exposed to Kodak Biomax MR film. 

Buffers: 

2 X LB Buffer 

4% SDS 

20% glycerol 

10% β-mercaptoethanol 

0.004% bromphenol blue 

0.125 M Tris-HCl, pH 6.8 

 

2.13 Total RNA isolation 
 
Transformed protoplasts cells (24 hrs after transformation) (~600.000 cells) were 

spinned down at 25 oC for 5 min, 4000 rpm (table centrifuge). Pellet was resuspended in 

450 μl RTL buffer (Qiagen). Total RNA was isolated and treated with DNase I following 



- 67 - 
 

manufacturer’s instruction (Qiagen Plant RNeasy mini kit). Purified RNA were dissolved in 

30 μl of water and stored at -80 oC.  

 

2.14 RNA immunoprecipitation (RIP) 
 

2.14.1 Magnetic-beads conjugation 
 

Dry magnetic dynalbeads (3 mg = 3*108 beads) were dissolved in 60 μl of 0.1 M 

sodium phosphate buffer, vortexed for 30 seconds and slowly rotated for another 10 min 

till complete dissolution. Beads were put on magnet to remove supernatant and buffer 

was exchanged to the mixture of 60μl antibody (monoclonal mouse anti-HA, 

concentration 1mg/ml (sigma)), 60μl of 0.3M sodium-phosphate buffer and 60μl 3 M 

(NH4)2SO4. Mixture was vortexed again for 30 sec. Reaction tube was parafilmed to 

prevent liquid evaporation and incubated at 30 oC for 18 hrs with slow rotation. 

Afterwards, supernatant was removed and beads were quickly washed with 120 μl 100 

mM Glycine - HCl pH 2.5. Buffer was exchanged to the 120 μl 10 mM Tris-HCl pH 8.8. 

Second fast wash were performed with 120 μl of 100 mM triethylamine (Make fresh 

every time by adding 168 μl of stock solution to 11.156 ml of ddH2O) and subsequently 

exchanged to 400 μl 1 x PBS. Beads were incubated for 5 minutes on rocker or shaker. 

Beads were further washed 3 times with PBS buffer, then once with PBS+0.5% Triton-X-

100 for 5 min and once with PBS+0.5% Triton-X-100 for 15 minutes. Finally, beads were 

resuspended in total 200 μl of 1 x PBS+0.02% NaN3 and stored at 4oC. 

 

2.14.2 Immunoprecipitation 
 

Three mio. transformed protoplasts cells (24hrs after transformation) were 

spinned down for 5 min at 25 oC, 4000 rpm on table centrifuge. Pellet was resuspended in 

450 μl lysis buffer and incubated for 20 min on ice. Afterward cells were sonicated 

(Bandelin HD 200 Sonoplus) 4 times for 10 sec on ice, at a power of 200 W, 10 cycles to 

promote nuclear membrane breakage. Then, cells were spinned down and supernatant 

diluted 10 times with binding buffer to decrease SDS concentration to 0.1%. At this stage 
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20 μl pre-washed in binding buffer magnetic dynalbeads, coupled with anti-HA antibodies 

were added to the supernatant and incubated at 4 oC for 1 h with slow rotation. After one 

hour solution was transferred to the eppendorf and moved on magnetic holder. The 

supernatant with unbound material was removed. Magnetic beads were washed there 

times with 1ml binding buffer and then three times with 1 ml washing buffer. Finally, to 

remove RNA-protein complex from the beads and digest proteins, 400 μl washing buffer 

was added to the beads supplemented with 100 μg proteinase K (sigma) and 5 μl 10% 

SDS. The mixture was incubated for 30 min at 55 oC followed by RNA extraction with 

phenol/chloroform. Extracted RNA were precipitated with 1/10 volume NaOAc, 10 μl 

(100mg) glycogen (Roche) and 2.5 volume 96% ethanol overnight. Next day, precipitate 

was spinned down at 4oC for 15 min at 14000rpm then washed with 500 μl 80% ethanol 

to remove residual amount of salts and dissolved in 80 μl  RNase – free water. Next, 

DNase I treatment and RNA clean-up were performed according to manufacturer’s 

instructions (Qiagen RNeasy Plant Mini kit). Purified RNA was dissolved in 30 μl H2O and 

stored at -80 oC. 

Buffers: 

0.1M sodium-phosphate buffer pH 7.4 

2.62 g NaH2PO4xH2O 

14.42 g Na2HPO4xH2O 

Adjust to 1L with water and if necessary pH. 

 

1 x PBS pH 7.4 

0.26 g NaH2PO4xH2O 

1.44 g Na2HPO4xH2O 

8.78 g NaCl 

Adjust to 1L. 

 
100mM Glycine –HCl pH 2.5 

0.375g/50 ml glycine. Adjust pH with HCl. 

 

Lysis buffer 

50 mM HEPES-KOH, pH 7.9 
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2.5 mM MgCl2 

1 mM EDTA 

1% SDS 

Supplemented with RNAse inhibitor(Promega). 

 

Binding buffer 

10 mM HEPES-KOH, pH 7.9 

2 mM MgCl2 

50 mM KCl 

1 mM DTT 

0.025% Nonnidet P-40 

Supplemented with protease inhibitor cocktail(Roche) and RNAse 

inhibitor(Promega) upon usage. 

 

Washing buffer: 

100 mM HEPES-KOH, pH=7.9 

 

2.15 Semi-quantitative RT-PCR 
 

Each RNA sample from immunoprecipitation (10 μl) or 1 μg of total  isolated RNA 

were reversibly transcribed with M-MLV reverse transcriptase (Promega) and 15-mer 

oligo-dT in 20 μl total for 15 min at 42 oC as recommended by Promega. Then sample was 

diluted with 80 μl of H2O and 2 μl from it was used for PCR reaction. 20 μl PCR was 

performed with Phsuion polymerase (Finnzymes) supplemented with 0.1 μl 100 μM each 

primer-pairs for the target genes (see table 2.11) and all other PCR components as 

recommended by Finnzymes. 

 

 

 

 

 



- 70 - 
 

Table 2.11. Oligonucleoties for RT-PCR for targets genes.  

Name Gene 
number 

Sequence Product 
size (bp) 

Domino_rt_F AT5G62440 GCGACCCCGAAAGCCGAGAC 452 

Domino_rt_R AT5G62440 TGTCCATTGCCGTTAGCTCCAGG 

SRp34a_rt_F AT3G49430 TGGATGGCTGTCGCTTGAGGG 620 

SRp34a_rt_R AT3G49430 TCTCGACATTGCCCTGGGGG 

Gar1_rt_F AT3G03920 CACCAATGAGAGGCGGCGGG 579 

 Gar1_rt_R AT3G03920 AGCTTCCACGAGAGCCACCG 

RSZ22a_rt_F AT2G24590 TGGGTTGCTAGAAGACCTCCTGGT 702 

RSZ22a_rt_R AT2G24590 ACGGCAGATACAACTATGGCT 

HAP5B_rt_F AT1G56170 GGGTTTCGCGAGATCTCACTCTCA 704 

HAP5B_rt_R AT1G56170 TGGTTCCCAGCAGAGCAGAGC 

RSZ32 lp595 AT3G53500 TTAGGGTTACTGCGTATTTGCACTCTC 640 

 RSZ32 rp2390 AT3G53500 TGTAGCTGCGACCTCGACTGTAAC 

SR45_rt_F AT1G16610 CGGGCTCTCCTATCCGCCGT 469 

 SR45_rt_R AT1G16610 GGAGGTGGTGGTGGCGGTGA 

RS41_rt_F AT5G52040 GGTCGCACAGGACGCAGACT 1066 

 RS41_rt_R AT5G52040 ACGACAAGCGATTTCGAATGGAGTCA 

AT3G28430_rt_F 

(RNA A) 

AT3G28430 CCCACTTATGCAGTGAAGATACTCCG 1062 

AT3G28430_rt_R 

(RNA A) 

AT3G28430 TGCAGCCGGCTAAAGGTGCC 

AT4G13340_rt_F 

(RNA D) 

AT4G13340 TCTCCAGCACCAACTCCAGTTTATTG 420 

AT4G13340_rt_R 

(RNA D) 

AT4G13340 GCGGTGGAGGCGGAGAGCTA 

tRNA_fw (RNA F) AT2G40570 AGCGTTTTCCGGATAGCATGTCG 736 

tRNA_rev (RNA F) AT2G40570 TGGTCGAGCATTCACCGCGT 

ARF17_fw (RNA H) AT1G77850 CTCGGATCACATGGTTTCAAGGCA 1160 

ARF17_rev (RNA H) AT1G77850 GCCAGACTCTGCAGGACCGC 
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WD-40_fw (RNA K) AT3G49400 TCTCCCATGGTGGAACTTACTGCT 650 

WD-40_rev (RNA K) AT3G49400 GCAGCCTTCTGCGACCTGGC 

AT2G07749_fw 

(RNA M) 

AT2G07749 TCCTCGGGGGCAGACCACAC 750 

AT2G07749_rev 

(RNA M) 

AT2G07749 CTCGGTGGGATGGGTCGGGT 

SQM_fw (RNA O) AT1G02065 GCGGATCTGAGCCACGCGAA 1170 

SQM_rev (RNA O) AT1G02065 TCGGGATCCCCCACACCACA 
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3. Results 

3.1 Selection of the RNA targets for AtCyp59 with Genomic 

SELEX 

3.1.1 Genomic DNA library of Arabidopsis Thaliana 
 

Arabidopsis thaliana cyclophilin Cyp59 (AtCyp59) has been shown to be localized 

in the nucleus (Weighardt, 1999). Moreover, unlike majority of the A. thaliana 

cyclophilins AtCyp59 possesses multidomain structure containing catalytically active 

domain, RNA recognition motif and C-terminal charged domain. In last decade it has been 

demonstrated that RRM domain of AtCyp59 could potentially bind artificial RNA and has 

preferences to the CG-rich sequences (Gullerova, 2006). In order to indentify whether 

AtCyp59 is capable to bind real messenger RNA and if this binding has influence on 

transcription and splicing we decided to set up a Genomic SELEX experiment. Choice of 

method was based on absence of any over expressing protein system (i.e., cell 

suspension, stable plant line) as well as lack of T-DNA insertion mutation lines.  

Genomic SELEX consists of two principal steps: library development and affinity 

selection. During library construction the specific adapter sequences (Figure 3.1) are 

incorporated on the both sides of the genomic DNA library fragments using Klenow 

extension reaction for further utilization of in vitro transcription followed by 

amplification. To ensure ligation of primer-adaptors to the maximum number of available 

places in the A. thaliana genome, genomic DNA was fragmented.  
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 Figure 3.1: Scheme of Arabidopsis DNA library preparation. Examples of the two-step 

Klenow extension reaction with single stranded DNA fragment (in curls).  Primers-adapters are in 

red-blue, where red – is a randomized sequence, blue – fixed sequence. The second pair of 

primers is complementary to the fixed part of the first pair and in dashes – depicted T7 promoter 

sequence on the 5’-end of one adaptor. 

 

At the beginning of library development genomic DNA was isolated from 

approximately 2g of adult (3-weeks old) A. thaliana wild-type Columbia leafs grown in 

vitro on MS media. Obtained DNA (30µg) was fragmented by ultra-sound treatment 

(Figure 3.2 A) to increase availability of genomic pieces for further ligation of adaptors 

(Lorenz, 2006).  

Primers and DNA-sized marker had been labeled on the 5’-end with γ-[32P]-ATP to 

visualize incorporation efficiency before introduction of primer-adaptors to the 

fragmented genomic DNA of A. thaliana. Primer-adaptors Rran and Lran (table 2.4 Materials 

and methods) were designed to contain randomized part which should suit well to 

increase their incorporation to every available piece of DNA; and the fixed-part which was 

screened to be not present in the A. thaliana genome to prevent enrichment of false-

positive sequences. Adaptors were annealed to the fragmented genomic DNA using 

Klenow extension reaction in the two-step manner. Rran and Lran primers were introduced 

separately to control incorporation efficiency. Aliquots of each reaction as well as labeled 

primers were resolved on PAGE followed by autoradiography (Figure 3.2 B). Yield of single 

Klenow extension reaction as it is well known does not exceed 10% (Singer, 1997). Finally 

First pair of primers

Second pair of primers
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only around 1% for initial fragmented genomic DNA got incorporated with adaptors. That 

explains necessity for substantial amount of start material. 

 

 

Figure 3.2:  DNA library preparation and verification. A – 1.2 % agarose gel 

electrophoresis,  M1– λindIII marker; 1- isolated genomic DNA from Arabidopsis thaliana; 2 – 

fragmented DNA; M2 – 100 bp DNA sized marker (Fermentas); B – Autoradiogram of PAGE- gel 

electrophoresis, on side (M) – DNA size marker, 1st- fragmented DNA with incorporated R primer, 

R – labeled primer-adaptor, 2nd – second step of annealing reaction of fragmented DNA with both 

R and L primers ligated, L –  P32- labeled primer before reaction. C – Gel-electrophoresis of the PCR 

amplification with genome-specific primers. Here is on the side DNA size marker, G – PCR on 

genomic DNA before manipulations, Sh- fragmented genomic DNA, L – DNA-library with 
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incorporated primers on the both sides. Sequences of gene specific primers are in the table 2.6 

(Materials and Methods). 

 

After two-step Klenow reaction DNA library was resolved on a preparative PAGE 

followed by autoradiography. DNA fragments of size from 100 bp to 700 bp were excised 

and eluted. Then obtained DNA library was further amplified by PCR to introduce the 

second pair of adapters (table 2.5 Materials and Methods) as well as T7 adaptor sequence 

for in vitro transcription reaction. During this step only those sequences which had gained 

randomized adaptors were amplified because second pair of primers is complementary to 

the fixed-part of the randomized primers. Next, DNA library was in vitro transcribed using 

T7 polymerase followed by reverse transcription and amplification utilizing only second 

pair of primers. These steps ensure that only those fragments which contain T7 promoter 

sequence on the 5’-end and the adapter sequence on the 3’-end were left in the system.  

Finally, resulted “clean” DNA library was screened by amplification with couple of gene-

specific primers to check its diversity. DNA library was compared with initial genomic DNA 

of Arabidopsis thaliana and fragmented DNA (figure 3.2. C). PCR analysis has shown the 

presence of four selected genes in all libraries. Based on that observation obtained DNA 

library was further used for affinity selection with AtCyp59 and also subjected to the 454 

deep sequencing to ensure its representation. 

 

3.1.2 Selection of RNA targets of AtCyp59. 
 

AtCyp59 has multidomain organization where each domain is responsible for 

different action; for example, C-terminal charged domain interacts with SR proteins and 

PPIase domain binds to the CTD of Polymerase II (Gullerova, 2006). Since we were 

interested in the functional contribution of RNA recognition domain of the AtCyp59, we 

decided to clone this domain in frame with N-terminal GST- tag  as shown in figure 3.3 A. 

RRM domain of the AtCyp59 was over expressed in E. coli and purified using glutathione 

Sepharose-4B. Figure 3.3B shows SDS-PAGE of isolated recombinant GST-tagged AtCyp59, 

RRM+Zn. Purified protein was dialyzed in SELEX binding buffer and used in affinity 

selection cycle (as described in Material and Methods).  



- 76 - 
 

   

 

 

Figure 3.3: Purification of the RRM-Zn domain of AtCyp59. A – Schematic representation 

of the domain organization of full-length AtCyp59 and GST-tagged construct of RRM+Zn motif of 

AtCyp59. PPIase – peptidyl/prolyl cis-trans isomerase domain; RRM – RNA recognition motif; Zn – 

zink –finger motif class CCHC, RS/RD(E) – domain enriched in Argenine, Serine, Aspartate, 

Glutmate;  GST- Glutathione S-transferase; Xa - Factor Xa protease site. B – Coomassie blue- 

stained gel of purified recombinant GST tagged RRM+Zn domain of cyclophilin AtCyp59. 

Molecular mass standard in kilodaltons are indicated on the side. 

 

The second principal step in Genomic SELEX procedure is the selection of RNA 

targets through multiple rounds of affinity selection between protein and RNA pool, as it 

is schematically depicted in figure 3.4. In general, during each cycle of selection the DNA 

library is transcribed using T7 polymerase into an RNA library. Then, the RNA pool is 

incubated with a protein in appropriate molecular ratio followed by separation of RNA-

protein complex from unbound RNAs on glutathione sepharose. Resulted complex is 

eluted from sepharose and then an RNA fraction is extracted for further reverse 

transcription followed by amplification to ensure that same amount of material is 

employed at each cycle. Thus, going to the next round of selection, along with increasing 

molecular ratio of RNA over the protein we enhance stringency of selection leaving in the 

system only high affinity RNA binders for AtCyp59 protein. 

AtCyp59 

GST-AtCyp59,RRM+Zn  

A B

-GST-AtCyp59,RRM+Zn  

kDa

55 -
43 -
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Figure 3.4: Schematic representation of SELEX process. Cyclic enrichment of RNA pool 

through subsequent rounds of selection with AtCyp59, RRM+Zn protein on glutathione sepharose. 

 

Crucial step in the affinity selection part of the Genomic SELEX is separation of 

RNA-protein complex from unbound RNA. Since we utilized GST-tagged fusion version of 

the RRM domain with Zn finger of the protein AtCyp59, we decided to use 4B Glutathione 

sepharose for that purpose. Gluthathione sepharose is a reversible system therefore RNA-

protein complex could be easily eluted by excess of reduced glutathione. Unspecific RNA 

binding was prevented by pre-incubation of glutathione sepharose with excess of tRNA. 

Principe of Genomic SELEX is to subsequently enrich RNA binder pool, which is 

capable for binding to the protein throughout cyclic process. During the first three rounds 

of selection we utilized mild binding conditions with molar ratio of RNA pool to the 

protein 3:1 to allow possibility for weak RNA-binders to be present in the system. After 

we had seen substantial enrichment (figure 3.5), we increased molar ratio of RNA to the 

protein up to 10:1 and continued selection. This step ensures that only specific RNA 

targets are present in the selected pool. After the 9th step when RNA recovery level had 

reached 2% out of possible 10% (due to 10:1 molar ratio) we performed additional 

control step of selection. Instead of AtCyp59 protein we used recombinant GST protein 

and collected unbound RNA fraction to discard all unspecific RNA artifacts. After 11 cycles 

we collected a selected RNA pool and performed 454 deep sequencing followed by 

bioinformatics analysis. Prior to the 454 sequencing we had done preliminary analysis of 

the selected RNA library employing reverse transcription followed by TOPO T/A 
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(Promega) cloning system. Sanger DNA sequencing of obtained clones revealed that 253 

out of 300 clone sequences contained 40-50 nt fragments of A. thaliana genome. Based 

on that observation we decided to perform 454 deep sequencing of selected library.  

 

 

 

Figure 3.5: Enrichment of the RNA sequences from Arabidopsis thaliana genome that 

binds cyclophilin AtCyp59.  In a vertical axle calculated RNA recovery as percentage of collected 

RNAs that were bound to the protein and start RNA material in each cycle. During 1-3 cycle 

molecular ration of RNA to the protein were 3:1, cycle 4-9, 11 – ratio 10:1, cycle 10 – anti GST 

selection.  

 

3.2 Bioinformatics analysis of the sequenced libraries. 
 

3.2.1 Analysis of the Initial DNA library. 
 

Prior to selection with AtCyp59, the initial DNA library had been checked by PCR 

amplification with few gene-specific primers. As it is shown in figure 3.2 C all selected 

genes were present in constructed library. Nevertheless, the question we asked is that if 

this library resembles genome of A. thaliana in existence of genomic features. To answer 

this question, initial DNA library was subjected to the deep sequencing using 454 

technology. About 20000 reads (2% of the entire genome) were obtained and aligned 
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back to the genome of A. thaliana after primer-adaptor sequences had been discarded. 

As shown in figure 3.6 initial DNA library contains all genomic elements such as exons, 

introns, pseudogenes, transposones, as original genome does. However, analysis revealed 

that there is a decrease of abundance of intergenic regions and gene intronic sequences 

in the initial DNA library. From the other hand there is an enrichment of gene exons 

sequences and rRNA sequences in the initial library in contrast to the genome. This 

observation could be explained by the differences in availability of diverse genomic 

element for primer-adaptor incorporation, i.e. status of the chromatin condensation can 

influence on availability (Johnson et al., 2002). However, distribution of genomic 

elements across the initial library resembles genome of A. thaliana and distinctions in 

abundance are not crucial. We concluded that initial DNA library is representative enough 

to perform an affinity selection with the protein of interest.  

 

 

Figure 3.6: Comparison between sequences composition in the genome and initial DNA 

library before selection. Genomic elements are indicated in colors and calculated as percentage 

from total number of annotated sequences in genome or obtained sequences after 454 

sequencing. 

 

Initial DNA library showed a slightly different sequences distribution in comparison 

to the genome of A. thaliana. To understand whether this library biased towards excess 

of any particular nucleotides variations we compare di-nucleotides distribution between 
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the initial DNA library and genome of the Arabidopsis thaliana. As shown in the figure 3.7 

there is almost two-fold overrepresentation of CG-rich sequences in the library in contrast 

to the genome and a small underrepresentation of the AT-rich sequences. These 

divergences would be considered in further analysis.  

 

 

 

Figure 3.7: Dinucleotides bias distribution in the initial library. Frequency ratio is 

calculated as difference between abundance of di-nucleotides in the library to the genome. When 

number is >1 then this variation is overrepresented in the library and if <1 – underrepresented. 

 

3.2.2 Sequence composition of the selected library is different from 

the genome and from the initial DNA library. 

 

After 11 rounds of the affinity selection we sequenced resulted SELEX library using 

454 deep sequencing technologies. Obtained 20.000 sequencing reads were aligned back 

to the Arabidopsis genome and compared with the initial library and genome of A. 

thaliana in abundance of the featured in figure 3.8 genomic elements. SELEX library 

drastically differs from the initial DNA library as well as from genome. There is a 

significant enhancement of the sequences annotated as proteins exons and decrease of 
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intergenic sequences and protein introns. Also, it is remarkable that an unusual expand in 

rRNA sequences in the initial library diminished after selection with AtCyp59. From the 

other side, transposable elements seem to be more present in the SELEX library compare 

to either the initial library or the genome. These observations led us to the following 

conclusions. First, SELEX library varies from both genome and the initial DNA library and is 

enriched only in certain types of genomic elements that show the evidence of the 

directed selection. Second, increase in the exonic sequences could serve as an indicator of 

mRNA selection by RNA binding protein which might support our hypothesis that AtCyp59 

is involved in pre-mRNA splicing or transcription. Finally, we saw an enrichment of 

sequences correspondent to transposable elements (turquoise on figure 3.8) which could 

due to a favorable amplification of the repetitive sequences (Economou et. al 1990). 

 

 

Figure 3.8: Abundance of various genomic elements in the libraries and genome of 

A.Thaliana. Genomic elements are indicated in colors and calculated as percentage from total 

number of annotated sequences in genome or total number of obtained sequences. 

 

 

 

 

other RNA pseudogene
other rRNA
transposable element gene intergenic
protein introns protein exons

genome selex library initial library



- 82 - 
 

3.2.3 Analysis of the SELEX library  
 

To find out the quality of obtained reads in the SELEX library we performed 

statistical analysis of the sequences. At the beginning, all 23.000 reads were treated to 

discard primer-adaptors sequences which were used to develop library and further during 

the selection procedure. As shown in the table 3.1 over 70% of the reads contained 

accurate adaptors from the both ends and hold long enough sequence in between 

primers (more than 18 nt). Next question we asked, how many reads from that trimmed 

sequences could be aligned back to the genome of Arabidopsis thaliana. As an analysis 

revealed over 90% of this reads were found in the genome of Arabidopsis thaliana. To 

determine repetitiveness of the sequencing reads we calculated how frequently they 

could be found in the genome. Almost all reads were mapped less than 5 times in the 

genome (table 3.1, figure 3.11) suggesting that sequencing reads belong to non-repetitive 

sequences in the genome of Arabidopsis thaliana. 

 

Table 3.1 General results of the 454 sequencing. 

 

 

Next general question we were interested in was about length distribution of the 

sequence reads we obtained after 454 deep sequencing. There were few assumptions we 

made concerning possible length diversity. First, during the library development we 

selected sequences in range 100-700 bp after introducing randomized primer-adaptors. 

Second, during the selection procedure, where several round of PCR amplification were 

involved, there is a tendency to better amplify sequences of the small size. Finally, at the 

time when we sequenced SELEX library 454 technologies allowed to sequence reads in 

Total number of reads 23186

Number of trimmed sequences from 
both ends (longer than 18 nt)

17654 (71%)

Number of reads mapped to the 
genome

15786 (89%)

Number of reads mapped to five or
less loci in the genome

15690 (88%)
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length up to 200nt. Giving these assumptions, after removal of the primer-adaptor 

sequences we expected to find out reads in our SELEX library in the range of from 20 to 

150 nt in length as revealed to be correct (shown in the figure 3.9).  

 

 

Figure 3.9: Size distribution of the sequenced reads from selected library with AtCyp59. 

Diagram displays dependence of number of sequenced reads obtained from their length. 

 

As shown in the figure 3.9, over 25% of the obtained reads were 27nt in length 

after primer-adaptor sequences had been removed. This striking pre-determination by 

size led us to the question whether these sequences were distinguished from each other 

or belonged to particular class or gene. Further analysis of this cluster revealed that 70% 

of these sequences were mapped to two genes in the genome: YCF 2.2 from the 

chloroplast genome and AT1G15710 gene from nuclear genome. These two genes indeed 

represented 7% and 10.6% from all sequenced reads in the SELEX library respectively. To 

understand what made these sequences so abundant in the selected pool, we performed 

a minimal free energy prediction which is shown in the figure 3.10. It has been shown 

from previous structural studies of RRM-containing proteins (Allain, 2000) that they 

interact with single-stranded RNA and create stacking bounds between aromatic amino 

acids from the protein and heterocyclic residues from RNA molecules (Maris, 2005). This 

knowledge led to the assumption that potential binding site for the AtCyp59 could 
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correspond to the bulge structure in RNA. From the predicted structures exhibited in the 

figure 3.10 the most abundant sequences contain such potential structural elements.  

 

 

 

Figure 3.10: Minimum free energy structure prediction for the two most abundant 

reads. Local RNA structural prediction based on minimal thermodynamically Gibbs energy, in 

green shown mapped to the genome sequence and in black – primer sequences. The whole piece 

represents the sequence which was involved in the rounds of an affinity selection. A – YCF 2.2 

annotated gene from the chloroplast genome to which belonged 7% of sequenced reads, B – 

AT1G1570 gene from nuclear genome to which belonged 10.6% of sequenced reads. 

 

As mentioned above, over 90% of the reads mapped back to the genome were 

found in less than 5 loci in the A. thaliana genes. We further investigated how many reads 

could be mapped once, twice or more to the genome. As shown in the figure 3.11, more 

than 50% from sequenced reads could be found only once or twice in the Arabidopsis 

genome suggesting that they belong to the non-repetitive and gene-related elements in 

the genome. Double mapping also could potentially indicate sequences belonging to the 

homologous genes which emerged after several rounds of genome duplication. 

 

YCF2.2-chloroplasts gene AT1G15710 - prephenate
dehydrogenize  family protein

A B
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Figure 3.11 Sequencing reads distribution by mapping to the loci in the Arabidopsis 

thaliana genome. From over 20.000 sequenced reads almost 50% are showing single presence to 

particular location in the genome. Some could be found twice or more times suggesting possible 

affiliation to the duplicated genes. 

 

Based on the preliminary analysis of the sequenced RNA pool selected with 

cyclophilin AtCyp59, several conclusions could be made. First, majority of obtained reads 

contained expected primer sequences at both ends which could be adequately assigned 

to the 5’- or 3’- end. Second, reads were predictably distributed by their length and could 

be aligned back to the genome. Finally, overall sequence distribution in the SELEX library 

tremendously varied from initial library and from genome. Sequence element 

distributions suggested a force driven selection towards restricted number of sequences 

showing high affinity to the RRM+Zn domain of the AtCyp59. 

 

3.2.4 Orientation of genes found in the SELEX library. 
 

Statistics examination of the library after selection revealed that substantial 

number of reads belongs to the protein coding genes, particularly to their exonic parts. To 

further investigate an abundance of the protein coding genes in overall sequences pool 

we decided to compare representation of sequences which belong to the protein coding 
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genes over other genomic elements such as intergenic regions and transposable elements 

as shown in the figure 3.12 A. Also after sequences had been mapped to the genome and 

assembled by genomic loci we compared abundance of contigs corresponded to the 

protein coding genes over other sorts of sequences in the number of genes as shown in 

the figure 3.12 B. Obtained results demonstrated that sequences of the protein coding 

genes are the main element in selected with AtCyp59 library. 

 

 

Figure 3.12 Mapped to the genome sequence elements composition. A – Representation 

of different genomic elements which had been revealed after selection with AtCyp59 in 

dependence on number of reads. B – Representation of different aligned contigs had been 

generated after selection with AtCyp59 in dependence on number of genes 

 

As discussed previously, protein coding gene sequences in the SELEX library 

represented the most prominent batch of data suggesting that the affinity driven 

selection took place and main targets of RRM+Zn domain of the AtCyp59 lied in the mRNA 

sequences. We wanted to know whether all of the protein coding gene sequences had 

arisen from sense annotated gene strand. As exhibited in the figure 3.13 A those 

sequences were equally distributed in sense and antisense orientation toward annotated 

gene. This observation could be explained by the essence of genomic SELEX method in 

0

1000

2000

3000

4000

5000

n
u

m
b

e
r o

f r
e

ad
s

0

20

40

60

80

100

120

140

160

n
u

m
b

e
r o

f g
e

n
e

s

A B



- 87 - 
 

which no preferences had been set up for the abundance of sequences towards 

transcribed genes because initial sequences were appeared from genomic DNA. 

 

 

Figure 3.13 Genome annotations of the protein coding genes. A – Strand distribution 

according to the transcribed gene. B – Localization of the reads within transcribed gene in the 

sense orientation. 

 

Next, we decided to look deeper into the pre-mRNA structure of the transcribed 

genes and aligned sequences corresponded to these genes into their structure. Average 

length of reads in selected pool accounted for 40-45nt whereas typical size distribution of 

the pre-mRNA genes in the A. thaliana ranged in >1000bp. As displayed in the figure 3.13 

B correspondent sequenced reads were distributed predominantly over exons or 

untranslated regions within a pre-mRNA structure of transcribed genes. 

Combining all revealed data together we concluded that potential RNA targets of 

the RRM+Zn domain of AtCyp59 were localized in the sequences belonging to the protein 

coding genes. These sequences were equally distributed in sense and antisense 

Protein coding genes

Sense annotations

Antisense annotations

Protein coding genes in sense 
orientation

intron

non identified

UTRs

exon-intron 
junctions

exon

alternative exon

A

B



- 88 - 
 

orientation towards annotated genes in the A. thaliana genome. Sense oriented portions 

of sequences were localized in the exonic sequences or UTRs in the pre-mRNA structure. 

 

3.2.5 Analysis of AtCyp59 binding motif. 
 

General purpose of any Genomic SELEX experiment is an identification of the 

common binding motif within obtained sequencing pool for the protein of interest. To 

address this question we aligned back sequencing reads to the genome and sorted 

revealed data by the genomic loci and similarity (when sequences were appeared from 

duplicated genes) into contigs (clusters). Then, we arranged these clusters by number of 

reads presented in each cluster. This number represented depth of sequencing of each 

cluster-locus. To determine the common binding motif we took into consideration the 

first 10 most abundant clusters and subjected them to alignment with MEME suite 

program (Bailey, 1994). Obtained pattern shown in the figure 3.14 represents the 

predicted binding motif for the RRM+Zn domain of AtCyp59. This pattern is GC-rich which 

supported previous findings (Gullerova, 2006). It is well known that composition of the 

exons in the pre-mRNA in the A. thaliana is bias towards GC content (Carels, 2000). These 

findings further indicated that RNA binding partners of RRM+Zn domain of AtCyp59 lie 

within exonic regions of mRNAs. 
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Figure 3.14 Scheme of the bioinformatics identification of the binding motif in the 

selected pool. Binding motif prediction was based on sequences alignment of the 10 most 

abundant clusters in analyzing SELEX library after several rounds of affinity selection with AtCyp59 

using MEME suite program tool. 

 

Predicted binding motif was identified using the first 10 most abundant 

sequencing clusters. To determine whether this motif represents whole SELEX library we 

calculated percentage of contigs or reads contained binding motif in the selected library. 

Results shown in the table 3.2 demonstrated that predicted binding pattern is found in 

50% of the sequence reads which suggests possibility of existence of other potential 

binding motifs. Next, we asked whether this binding sequence was significantly 

meaningful. To answer this question we compared presence of the binding motif in the 

initial library to its abundance in the SELEX library. As displayed in the table 3.2 number of 

reads containing motif was significantly higher in the selected library in contrast to the 

initial pool. Presence of binding motif in the initial library could be explained by previous 

findings that initial library was predominantly biased towards GC-rich sequences. 

Summarizing these observations we could conclude that sequences containing predicted 

binding motif were gradually selected during Genomic SELEX experiment. 
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Table 3.2 Binding motif distribution within the libraries shown in number of reads and 

contigs. 

 

 

To identify how frequently binding motif could be found within sequence reads we 

aligned predicted pattern to the contigs of similar sequences selected during SELEX. 

Results exhibited in the figure 3.15 demonstrated that majority of sequences in the SELEX 

library possessed the binding motif only once or maximum three times. Thus binding 

pattern could serve as the signature of the particular sequence. And moreover, that 

RRM+Zn domain of the AtCyp59 interacts with potential RNA targets in sequence-specific 

manner. 

 

 

 

Figure 3.15 Distribution of the binding motif per sequence in the selected with AtCyp59 

library. Diagram indicates frequency of occurrence of binding motif within unique sequenced 

reads (contigs). 

Absolute number 
of motifs

Normalized number 
of motifs/1000bp

Number of sequences 
with/without motif

SELEX library

assembled unique contigs 61 2.62 54/413 (11.56%)

reads 9421 13 9261/8313 (52.9%)

Initial library

assembled unique contigs 152 0.94 138/938 (12.83%)

reads 967 1.07 916/10266 (8.19%)
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Predicted binding pattern could be divided into several unique motifs because of 

possible nucleotide variations in certain positions within binding motif. To narrow down 

binding motif variations to the more defined pattern or subclass we differentiated each 

binding motif variant by its abundance in the SELEX library. Resulted diagram displayed in 

the figure 3.16 revealed that determined binding pattern could be re-written as 

GCWGCCG. 

 

 

 

Figure 3.16 Frequency of occurrence of the binding motif variants in the SELEX library. 

Each bar us represented the number of unique assembled contigs each containing binding motif 

variant in the library selected with the RRM+Zn domain of AtCyp59. 

 

3.2.6 Distribution of AtCyp59 binding motif in the genome. 
 

Determined binding motif as shown above occurred in 50% of the sequenced 

reads from the library selected with AtCyp59 and was GC-rich. However, based on library 

development procedure, essence of the Genomic SELEX experiment, and number of reads 

Abundance of the binding motif variant in the sequence cluster
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obtained after 454 deep sequencing we assumed that those reads could not cover the 

genome of the A. thaliana. Therefore, we decided to look back to the genome and check 

how abundant in the genome found binding motif is and whether this pattern keeps its 

localization within exonic sequences in the mRNA structure. To answer this question we 

aligned predicted motif over whole genome of A. thaliana. Results shown in the table 3.3 

displayed that over 70% of mRNAs in the genome of A. thaliana contained binding motif 

from which over 20% contained the motif within exonic sequences and only 3% -within 

introns. Figure 3.17 exhibited the normalized per 1000 bp abundance of the binding motif 

in the mRNA structure. Depicted data suggest predominant localization of the binding 

pattern within exonic sequence on mRNA. These striking findings suggested that AtCyp59 

could potentially interact with every mRNA in the genome and act as a general regulator. 

This tendency could circumstantially explain the absence of any T-DNA insertion mutant 

lines of AtCyp59 gene, because such mutation might disturb multiple processes in the 

living cell.  

 

Table 3.3 Binding motif distribution in the Arabidopsis thaliana genome. 

 

 

 

Figure 3.17 Distribution of the AtCyp59 binding motif in the Arabidopsis thaliana 

genome on messenger RNA per thousand base-pairs. Each bar represented the normalized per 

Absolute number 
of motifs

Normalized number 
of motifs/1000bp

Number of sequences 
with/without motif

full mRNAs 41429 0.68 27720/11920 (69.93%)

exons 52197 0.86 44176/154044 (22.29%)

introns 5555 0.21 5349/143231 (3.37%)
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1000 bp number of cDNAs, exons or introns containing binding motif in the genome of 

Arabidopsis thaliana. 

 

To identify how often predicted binding motif could be found within each mRNA in 

the A. thaliana genome, we aligned this motif to the mRNA sequences in the genome. 

Results exhibited in the figure 3.18 displayed the similar trend of binding motif 

distribution as previously shown on figure 3.15. Majority of genes in the genome contain 

binding motif once or maximum three times on the gene-body which further proves 

sequence specificity of interaction between RRM+Zn domain of the AtCyp59 and its 

potential RNA targets. This fact supports that this motif might serve as mRNA signature in 

particular process or at particular stage of mRNA life. 

 

 

Figure 3.18 Distribution of the binding motif per sequence in the Arabidopsis thaliana 

genome. Each bar on the diagram indicated frequency of occurrence of binding motif within gene 

sequence in the genome of the Arabidopsis thaliana. 

 

3.2.7 AtCyp59 binding motif localization near the future stop codon 

on the mRNAs in the genome. 

 

As discovered above predicted binding motif occurred once per sequence in the 

majority of mRNAs in the A. thaliana genome. Also it is localized within exonic regions in 
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the pre-mRNA stricture. To determine whether binding motif had tendency to be present 

towards beginning, middle or end of the pre-mRNA gene we quantified number of 

binding motif occurred normalized to the certain position on the pre-mRNA. Results 

displayed in the figure 3.19 did not show any significant preferences of distribution of 

binding motif on overall position on pre-mRNA. However, when we correlated abundance 

of translation termination sites at normalized position on pre-mRNA to the number of 

binding motif we found considerable enrichment of occurrence of predicted motif 

towards the end of the pre-mRNAs.  

 

 

 

Figure 3.19 Binding motif distribution across mRNA sequence in the genome. On the X 

axis plotted normalized by one length of the pre-mRNA genes. On the right side – absolute 

number of the binding motif and on the left – absolute number of the translation termination 

sites. Each blue bar represented number of binding motifs which could be found within for 

example 0.05 from the beginning of the each mRNA gene. Red dots line represented number of 

translation termination sites which could be found within for example 0.05 from the beginning of 

the each mRNA gene. 

 

To further investigate this phenomenon we plotted number of found binding 

motifs to the normalized position of the translation termination site. Results displayed in 

the figure 3.20 showed significantly high possibility to find binding motif within gene-body 

with increasing possibility to localize binding motif closer to the translation termination 

site and almost complete absence of predicted motif after translation stop codon. 

Normalized position of the binding motif on mRNA sequence     
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Figure 3.20 Position of the binding motif normalized to the translation stop in the 

Arabidopsis thaliana genome. On the X axis plotted normalized by one distance from the 

translations termination site on the mRNA genes. Each blue bar represented number of binding 

motifs which could be found at particular distance from the translational termination site on the 

mRNA gene. 

 

Finally, combining latest bioinformatics observation we concluded that predicted 

binding motif occurred in over 70% pre-mRNA genes in A. thaliana genome which could 

potentially indicate function of the AtCyp59 as the general factor in the transcription 

and/or splicing. Genome-wide data supported localization of the binding motif within 

exonic sequences on gene-body structure which additionally sustained previous studies 

(Gullerova, 2006). It was also supported by correlation between high GC-conent of the 

binding motif and exonic sequences in the genome. Lastly, high possibility to find the 

binding motif near the translation termination site on the pre-mRNA gene structure 

raised assumption that binding of the AtCyp59 to mRNA could contribute to the 3’-end 

processing of the pre-mRNA. AtCyp59 interaction with mRNA might potentially serve as 

indicator of the end of the transcribing gene either for the Polymerase II or the 

spliceosome machinery.  
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3.3 In vitro binding studies of found RNA targets to the 

AtCyp59. 

 

To investigate and verify binding affinity of AtCyp59 to selected targets we used 

recombinant full-length, RRM+ZN and mutated versions of GST-tagged AtCyp59 protein. 

Mutations in the RRM domain were designed to disturb three aromatic conserved amino 

acids which have been shown to be indispensable for RNA recognition (Y286D, F288D and 

F291D). Schematic pictures of the constructed vectors are shown in the figure 3.21 A. 

Proteins were expressed and purified using glutathione beads (coomassie blue stained gel 

is depicted on the figure 3.21 B). Before utilization of these proteins in the EMSA analysis 

they all were dialyzed into appropriate binding buffer. 

 

Figure 3.21 Protein expression panel. A – Schematic representation of variants of the 

AtCyp59 used in the in vitro studies. B – Commasie gel staining of the GST-tagged purified 

proteins. Molecular weight marker is shown on the left side. 

 

3.3.1 RRM-Zn domain of the Atcyp59 binding studies to 7nt variants 

of the binding motif. 

 

Intensive bioinformatics studies on SELEX library revealed a common binding motif 

which could be written as G[NC]NGCCW. This binding consensus as shown above is 

significantly abundant in the library selected with RRM+Zn domain of the AtCyp59 and 

presumably assembles with protein-coding genes. In the genome of A. thaliana this motif 

represents over 70% of the mRNA genes and is localized within exons. Moreover, as it 

kDa
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was discovered, presence of this motif increases towards translation termination site but 

not within UTRs. Also, as it was mentioned above, this binding consensus could be divided 

into 16 single motifs each associated with specific contig in the SELEX library. To verify 

binding affinity of the RRM+Zn domain of AtCyp59 to the binding motif we checked each 

motif variant using electro mobility gel-shift assay (EMSA). For that purpose we took 7nt 

synthesized RNA representing each binding motif variants and incubated it with variable 

concentration of the recombinant protein of AtCyp59 (RRM+Zn domain) dialyzed in the 

binding buffer. Then we separated resulted binding reactions on the native 10% 

polyacrylamide gel in 0.5X TBE buffer. As shown in the figure 3.22 different motif variants 

displayed quite diverse affinity to the RRM+Zn domain of the AtCyp59. For instance, 

exhibit 3.22A and 3.22D shows the best binding affinity to the protein with approximated 

constant of dissociation (Kd) of as little as 40nM, whereas other RNAs showed moderate 

affinity to the protein (figure 3.22 B) or even weak affinity (3.22 C). 
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Figure 3.22 Gel Shift assay with RRM+Zn domain of AtCyp59 and 7nt variants of the 

binding motif. SYBR GREEN II stain of the 10% native polyacrylamide gel electrophoresis of the 

7nt RNA derived from 16 possible binding consensus variants incubated with increasing 

concentration of the RRM+Zn domain of the AtCyp59. Concentration of the protein is shown 

above in nM range. First line in every gel is the line where protein was not added. Free RNA and 

RNA-protein complex formation is indicated with arrow. A,D – examples of the high affinity 

binding between RNA and the protein with approximated Kd = 40nM; B - example of the moderate 

affinity binding between RNA and the protein with approximated Kd = 105nM; C - example of the 

low affinity binding between RNA and the protein with approximated Kd = 300nM. 

 

Results of the in vitro binding experiments with all possible 7nt RNA variants representing 

binding consensus are summarized in the table 3.4. KD’s vary from 40 to 300nM range 

suggesting high order of sequence specificity of the RRM domain of protein to the RNA 

sequence. As it could be seen from the first three RNA candidates in the table 3.4 RRM 

domain of the AtCyp59 recognized the seed sequence of GNNGCCW with higher affinity if 

GUGGCCG – RNA B_sh

C

Complex

Free RNA

[atcyp59],nM [atcyp59],nM

A B

GCUGCCG – RNA O_sh

Complex

Free RNA

[atcyp59],nM

GUCGCCA – RNA C_sh

[atcyp59],nM

GGUGCCG – RNA E_sh

D
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the last nucleotide is G and the second is G or U, which leads to the revised sequence of 

the consensus GG(U)NGCCG. Interestingly, we did not find strong correlation of the 

abundance of these variants in the SELEX library with its binding efficiency to the protein, 

however some of the most abundant motif subclasses appeared on the top of the table 

3.4. 

 

Table 3.4 Range of dissociation constants of 7nt variants of the binding motif, based on 

gel shift assay. 
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3.3.2 Leveling effect of full-length protein on weak and strong 

binders of the binding motif variants. 

 

Next, we were interested in whether other domains of AtCyp59 of the protein 

could contribute to the state of interaction between RNA and protein.  

 

Figure 3.23 Gel shift assay of the binding reaction between full-length protein AtCyp59 

and 7 nt RNA binding motif variants. SYBR GREEN II stain of the 10% native polyarylamide gel 

electrophoresis of the 7nt RNA derived from 16 possible binding consensus variants incubated 

with increasing concentration of the  full-length AtCyp59. Concentration of the protein is shown 

Complexes

Free RNA

[atcyp59],nM [atcyp59],nM

A B

GUGGCCG – RNA B_sh GUGGCCA – RNA L_sh

GACGCCA– RNA P_sh GUAGCCA – RNA K_sh

Complexes

Free RNA

[atcyp59],nM [atcyp59],nM

C D
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above in nM range. First line in every gel is the line where protein was not added. Free RNA and 

RNA-protein complex formation is indicated with arrow. A-D – example of the equal affinity 

binding between RNA and the protein with approximated KD = 120nM.  

 

For that reason, we performed the same screen of 8 from 16 (two from the each 

group showing different binding specificity) of 7nt RNA variants of the binding consensus 

and employing full-length AtCyp59. Again each RNA variant was incubated with increasing 

concentration of the protein and then resolved on the 10% native polyacrylamide gel. 

Examples of the analysis are shown on the figure 3.23 (A-D). As displayed in this exhibit, 

surprisingly all tested RNA variants showed similar binding affinity to the full-length 

protein which could be approximated using this method to the 120nM. Summarized 

results are presented in the table 3.5. As mentioned above, AtCyp59 consists of three 

major parts: PPIase catalytically active domain, RRM – RNA-binding domain and C-

terminal positively charged domain. Both N- and C-terminal domains are responsible for 

the protein-protein interactions and had been found not to participate directly in the RNA 

binding (Gullerova, 2006). However, these experiments suggested that initial recognition 

of the RNA sequences carried out by the RRM+Zn domain of the AtCyp59 might be 

accompanied by C- and N-terminal domains. Also this recognition is highly sequence-

specific and RRM+Zn domain requires GC-rich sequences for the efficient binding. 

Moreover, alterations in binding affinity between short and full-length protein clearly 

indicated that N- and C-terminal domains of the AtCyp59 participated in binding and 

tuned it down to middle binding affinity (table 3.4). One of the proposed hypotheses 

could be that other domains of the cyclophilin AtCyp59 are required for the recognition of 

the local pre-mRNA structure. Fact that very strong binders started to exhibit moderate 

affinity could potentially indicate that in the in vivo situation binding between cyclophilin 

and RNA might be flexible and reversible, probably during short period of time. So-called 

“leveling” of binding within binding consensus indicated that majority of mRNA in 

genome could bind AtCyp59 as it was shown by bioinformatics analysis and supported the 

theory that cycplophlin could play role of general regulatory factor in A. thaliana. 
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Table 3.5 Comparative dissociation constants between RRM+Zn and full-length protein 

atCyp59. 

 

 

3.3.3 Decrease in binding affinity of RRM+Zn domain to the RNA 

binding motif upon mutations in conservative aromatic amino acids 

 

Previous results showed that RRM+Zn domain of the AtCyp59 recognizes target 

RNA in the sequence specific manner. EMSAs using 7nt-long RNAs compromising 

consensus binding sequences identified in the Genomic SELEX experiment revealed 

different affinities with which RRM+Zn domain and full-length AtCyp59 bind to their 

Name Sequence Abundance in the 
selected contigs

Kd [nM]

RRM+Zn domain of the AtCyp59

RNA B_sh GUGGCCG 2 40±10

RNA E_sh GGUGCCG 7 40±10

RNA T_sh GAUGCCA 1 105±25

RNA P_sh GACGCCA 1 105±25

RNA K_sh GUAGCCA 3 200±35

RNA M_sh GCGGCCG 3 200±35

RNA L_sh GUGGCCA 1 300±40

RNA S_sh GCGGCCA 1 300±40

Full-length AtCyp59

RNA B_sh GUGGCCG 2 120±25

RNA E_sh GGUGCCG 7 120±25

RNA T_sh GAUGCCA 1 120±25

RNA P_sh GACGCCA 1 120±25

RNA K_sh GUAGCCA 3 120±25

RNA M_sh GCGGCCG 3 120±25

RNA L_sh GUGGCCA 1 120±25

RNA S_sh GCGGCCA 1 120±25
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target RNAs. To outline the contribution of RRM domain into RNA-binding function of 

AtCyp59, we mutated three conserved residues which are important for RNA binding 

function of RRM (Wang, 2008). 

 

Figure 3.24 Gel shift assay of the binding reaction between RRM+Zn domain and 

mutated *RRM+Zn domain of AtCyp59 and 7 nt RNA binding motif variants. SYBR GREEN II stain 

of the 10% native polyacrylamide gel electrophoresis of the 7nt RNA derived from 16 possible 

binding consensus variants incubated with increasing concentration of the RRM+Zn domain of the 

AtCyp59 or *RRM+Zn domain of AtCyp59. Concentration of the protein is shown above in nM 

range. First line in every gel is the line where protein was not added. RNA sequence used in the 

assay as well as short name is indicated below each gel.  

 

GCUGCCG – RNA O_sh

GGUGCCG – RNA E_sh

GUGGCCA – RNA L_shGUGGCCG – RNA B_sh

[Cyp59RRM+Zn]nM

A B

C D

[Cyp59RRM+Zn]nM

[Cyp59RRM+Zn]nM
[Cyp59RRM+Zn]nM

[Cyp59 *RRM+Zn]nM
[Cyp59 *RRM+Zn]nM

[Cyp59 *RRM+Zn]nM[Cyp59 *RRM+Zn]nM
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Recombinant mutant version of RRM+Zn domain (*RRM+Zn) was purified and 

dialyzed into binding buffer. Using the same EMSA assay we compared binding efficiency 

of normal and mutated protein to the 7nt RNA variants representing binding consensus 

pattern. As shown in the figure 3.24 A-D, disturbance of three conserved aromatic 

residues in the RRM domain of the AtCyp59 significantly decreased binding to the target 

RNAs. In this assay we tested one RNA variant from each four groups which showed 

differential affinity to the RRM+Zn domain of AtCyp59. Further details with approximated 

from this experiment KD’s are shown in the table 3.6. 

 

Table 3.6 Dissociation constants of mutated RRM-Zn domain of protein atCyp59 to the 7 

of variants of the binding motif. 

 

 

As displayed in the table 3.6 all tested 7nt RNAs interacted with mutated protein 

in unspecific manner suggesting that mutations of essential for RNA-binding activity of 

RRM domain amino acids were crucial for sequence-specific recognition of RNAs and 

required for formation of the RNA-protein complexes. 

 

3.3.4 AtCyp59 binds to the RNA sequence specifically. 

 

To further investigate requirements for an interaction between protein and its 

RNA targets, and test the specificity of RNA recognition of AtCyp59, we performed gel-

shift assay using RNA sequence (scramle) which was not neither predicted as binding 

Name Sequence Abundance in the 
selected contigs

Kd [nM]

*RRM+Zn domain of the AtCyp59

RNA B_sh GUGGCCG 2 >700

RNA L_sh GUGGCCA 1 >700

RNA O_sh GCUGCCG 2 >700

RNA E_sh GGUGCCG 7 >700
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motif nor found within sequenced pool after Genomic SELEX experiment. In this binding 

reaction we also used wild type and mutated version of the RRM+Zn domain of AtCyp59. 

 

Figure 3.25 Gel shift assay. SYBR GREEN II stain of the 10% native polyacrylamide gel 

electrophoresis of the 7nt RNA unspecific RNA incubated with increasing concentration of the 

RRM+Zn domain of the AtCyp59 or *RRM+Zn domain of AtCyp59. Concentration of the protein is 

shown above in nM range. First line in every gel is the line where protein was not added. RNA 

sequence used in the assay as well as short name is indicated below the gel. 

 

As shown in the figure 3.25 scrambled RNA interacted with both proteins 

extremely unspecific with approximated Kd was lower than 7µM (table 3.7). WT RRM 

domain of the AtCyp59 had affinity to the non-specific RNA in the same range as if RRM 

domain was mutated. And mutated version of protein showed even lower affinity to the 

scrambled RNA. 

 

 

 

 

 

UAAUUUU – RNA SC

[Cyp59RRM+Zn]nM [Cyp59*RRM+Zn]nM
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Table 3.7 Dissociation constants of non-specific 7nt RNA-oligo to the RRM+Zn and 

*RRM+Zn domain of the AtCyp59. 

 

 

Discovered by genomic SELEX common binding RNA consensus sequence was 

verified to bind to AtCyp59 in vitro using 7nt RNA fragments. Site-directed mutagenesis 

studies revealed that RRM+Zn domain is responsible for the initial RNA sequence 

recognition upon binding to particular RNA piece because mutations in the essential 

aromatic aminoacids in the RRM domain resulted in significant decrease in binding 

affinity and abolished binding of RNA to the protein. It is noteworthy that mutations in 

the RNA motif also decreased binding of both WT and mutated versions of AtCyp59 to 

that RNA sequence suggesting AtCyp59 interacts with RNA in the sequence-specific 

manner.  

 

3.3.5 Differential binding of RRM+Zn domain of AtCyp59 to mRNAs 

containing binding sequence variants. 

 

As it was previously described (figure 3.22), diverse common binding motif 

variants of 7nt-long RNAs have differential affinity to the RRM+Zn domain of the 

ATCyp59. However, during the Genomic SELEX experiment these motif variants were 

encased into longer RNA pieces involved in several round of selection with RRM+Zn 

domain of AtCyp59. To investigate possible contribution of the local mRNA structure in 

binding to the protein, we performed EMSA with RNA fragments as they were sequenced 

Name Sequence Kd [µM]

RRM+Zn domain of the AtCyp59

RNA SC UAAUUUU 0.7±0.1

*RRM+Zn domain of the AtCyp59

RNA SC UAAUUUU >7
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and used in the selection process (each of these fragments contains one particular motif 

variant per sequence). 

 

 

Figure 3.26 Gel shift assay.  SYBR GREEN II stain of the 8% native polyacrilamide gel 

electrophoresis of the approx. 30nt RNA containing one of the 16 possible binding consensus 

variants incubated with increasing concentration of the RRM+Zn domain of the AtCyp59. 

Concentration of the protein is shown above in nM range. First line in every gel is the line where 

protein was not added. Free RNA and RNA-protein complex formation is indicated with arrow. A,B 

– example of the high affinity binding between RNA and the protein with approximated Kd = 

180nM; C - example of the moderate affinity binding between RNA and the protein with 

approximated Kd = 390nM; D - example of the low affinity binding between RNA and the protein 

RNA B – GUGGCCG -AT1G1571 RNA E- GGUGCCG -ch4centromeric

Complex

Free RNA

[atcyp59],nM [atcyp59],nM

A B

Complex

Free RNA

[atcyp59],nM [atcyp59],nM

C D

RNAO- GCUGCCG-AT1G08700
RNAL- GUGGCCA-AT4G04350
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with approximated Kd = 800nM.The binding reaction is between RRM+Zn domain of AtCyp59 and 

selected pieces of RNA containing the variants of binding motif. 

 

Examples of in vitro interaction between 30nt RNA fragments and WT RRM+Zn 

domain of AtCyp59 (figure 3.26) indicated that, similarly to the previous data, RRM+Zn 

domain of the AtCyp59 differentially binds to 30nt-long RNAs as to 7nt-long RNAs.  

 

Table 3.8 Dissociation constants of 30nt RNA selected and sequenced with 454 deep 

sequencing, containing binding motif to the RRM+Zn domain of the AtCyp59. 

 

 

We observed several groups or subclasses of the 30nt-long RNA-variants that 

exhibited high (figure 3.26 A, B), middle (figure 3.26 C), low (figure 3.26 D) or almost no 

affinity to the protein. Interestingly, this graduation was completely similar to the one we 

Name Sequence of 
motif

Gene name Kd [nM]

RNA E GGUGCCG ch4centromeric 180±50

RNA B GUGGCCG AT1G1571 180±50

RNA G GUAGCCG CHrM 180±50

RNA O GCUGCCG AT1G08700 390±70

RNA F GCAGCCA AT2G40570 390±70

RNA T GAUGCCA AT5G35057 220±60

RNA P GACGCCA AT3G32377 220±60

RNA H GCCGCCG AT1G77850 600±75

RNA A GUUGCCG AT3G28430 600±75

RNA K GUAGCCA AT3G49400 600±75

RNA M GCGGCCG AT2G07749 600±75

RNA D GCCGCCA AT4G13340 800±80

RNA C GUCGCCA AT3G19430 800±80

RNA L GUGGCCA AT4G04350 800±80

RNA N GGAGCCA AT1G08700 >1400

RNA R GAUGCCG ch3centromeric >1400
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observed previously with 7-nt long RNA variants. This finding suggested that principal 

RNA sequence recognition undertaken by RRM+Zn domain of the AtCyp 59 does not 

depend on RNA length. Summarized analysis of the all 16 variants of the common binding 

sequence is shown in the table 3.8. However, overall affinity of RRM+Zn domain of 

AtCyp59 to the 30nt-long RNA fragments was decreased compare to the 7nt-long RNA 

pieces. It seems that local RNA structure might influence interaction between RNA and 

the protein and alter overall binding efficiency. However, general tendency in 

differentiating between variable nucleotide preferences remained the same as it was 

observed earlier. 

 

3.3.6 Full-length protein promotes binding to the long RNA targets 

 

As it is described above, longer RNA fragments showed lower affinity to the 

RRM+Zn domain of AtCyp59 in vitro. To determine whether full-length protein AtCyp59 

with N- and C-terminus domains contributes to the binding to longer fragments of the 

RNA, we performed EMSA analysis with two from each four subgroups of differentiated 

affinity RNA sequences (Table 3.8). Results shown in the figure 3.27 demonstrated that 

binding affinity of the several RNAs had been changed and improved upon interaction 

with full-length protein. Generally, approximated KD were significantly higher upon 

binding to full version of the AtCyp59 for all tested variants of the RNA fragment 

containing one of the variant of the common binding motif. Most prominent 

improvement showed RNAs which before exhibited very low binding to the shorter 

version of the protein. Only slight increase in the binding efficiency was detected for the 

top three RNA fragments which previously showed highest affinity in 7nt-long form. 

Summarized results are presented in the table 3.9. 
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Figure 3.27 Gel shift assay. SYBR GREEN II stain of the 8% native polyacrilamide gel 

electrophoresis of the approx. 30nt RNA containing one of the 16 possible binding consensus 

variants incubated with increasing concentration of full-length version AtCyp59. Concentration of 

the protein is shown above in nM range. First line in every gel is the line where protein was not 

added. Free RNA and RNA-protein complex formation is indicated with arrow. A-D – example of 

the high affinity binding between RNA and the protein with approximated Kd = 120-230nM.  

 

As displayed in the table 3.9 dissociation constants of interaction between full-

length protein and long RNA fragments are varied between 120-230nM. This results 

excelled from one obtained with 7 nt RNA sequences which showed complete 

equivalency. Obtained data suggested that local RNA structure interferes with RNA 

sequence recognition upon protein binding and full-length protein helps to grade with 

obstacles by contributing into binding efficiency. However, other AtCyp59 domains could 

Complex

Free RNA

[atcyp59],nM [atcyp59],nM

[atcyp59],nM

Complex

Free RNA

RNA E- GGUGCCG -ch4centromeric
RNAT- AT5G35057 -GAUGCCA

RNA K- AT3G49400-GUAGCCA

A B

C
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not fully equalize binding to long RNA fragment which might suggest that in vivo other 

protein factors should be taken into consideration. 

 

Table 3.9 Dissociation constants of 30nt RNA selected and sequenced with 454 deep 

sequencing, containing binding motif to the RRM+Zn domain of the AtCyp59. 

 

 

3.3.7 Mutations in the RRM domain of AtCyp59 decrease binding 

efficiency to the target mRNAs 

 

As it was previously discussed (figure 3.24), mutations in the RRM domain of the 

AtCyp59 significantly decreased its binding to the RNA sequences and in some cases 

completely prevented interaction. To indentify whether this trend is still present using 

longer RNA fragments, we decided to perform EMSA analysis using few examples from 

different sub-classes of 30 nt-long RNAs. We compared binding efficiency between WT 

and mutated RRM domain of the AtCyp59. Selected RNA fragments were incubated with 

increasing concentration of the one of the protein and then resolved in the 8% native 

polyacrylamide gel. Results are shown in the figure 3.28.  

Name Sequence of 
motif

Gene name Kd [nM]

RNA E GGUGCCG ch4centromeric 110±50

RNA B GUGGCCG AT1G1571 110±50

RNA O GCUGCCG AT1G08700 140±70

RNA T GAUGCCA AT5G35057 110±60

RNA K GUAGCCA AT3G49400 180±75

RNA M GCGGCCG AT2G07749 180±75

RNA D GCCGCCA AT4G13340 230±80

RNA R GAUGCCG ch3centromeric 230±80



- 112 - 
 

 

 

Figure 3.28 Gel shift assay. SYBR GREEN II stain of the 8% native polyacrylamide gel 

electrophoresis of the 30nt RNA containing one of the binding motif derived from 16 possible 

binding consensus variants incubated with increasing concentration of the RRM+Zn domain of the 

AtCyp59 or *RRM+Zn domain of AtCyp59. Concentration of the protein is shown above in nM 

range. First line in every gel is the line where protein was not added. RNA sequence used in the 

assay as well as short name is indicated below each gel.  

 

Tested 30nt RNAs interact with mutated protein in the unspecific manner (figure 

3.28). This suggests that these mutations were crucial for sequence-specific recognition of 

RNAs and were required for the formation of RNA-protein complexes. 

 

[Cyp59 *RRM+Zn]nM[Cyp59 RRM+Zn]nM [Cyp59 *RRM+Zn]nM [Cyp59 RRM+Zn]nM

[Cyp59 *RRM+Zn]nM[Cyp59 RRM+Zn]nM[Cyp59 *RRM+Zn]nM[Cyp59 RRM+Zn]nM

A B

C D

RNA B – GUGGCCG -AT1G1571
RNA E- GGUGCCG -ch4centromeric

RNAT- AT5G35057 -GAUGCCA
RNA K- AT3G49400-GUAGCCA
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3.3.8 Genomic RNA-targets which were not selected also bind to the 

AtCyp59. 

 

Bioinformatics analysis revealed that over 70% of mRNA in the genome of A. 

thaliana contain common binding consensus which was then verified by in vitro studies. 

This finding indicated that each of these mRNA could potentially bind to the RRM+Zn 

domain of the AtCyp59. To determine whether some of the non-sequenced and non-

selected with Genomic SELEX experiment RNAs containing one of the variant of the 

binding motif could interact with RRM+Zn domain of the AtCyp59, we decided to repeat 

EMSA analysis using particular mRNAs from genome. For that purpose we chose four 

mRNA from genome which contained three different variants of the binding motif 

localized in their last exon near the future translation stop codon. Also these mRNAs are 

known to be spliced and some of them could be spliced alternatively. To performed gel-

shift assay we took approx 150nt sequence around binding motif on their sequences. 

Resulted RNA fragments were further incubated with increasing concentration of wild-

type or mutated version of the recombinant RRM+Zn domain of AtCyp59 and then 

resolved on 6% native polyacrylamide gel. In parallel to wild-type version, we also used 

mutated version of the protein to checked whether every of the selected RNAs interact 

specifically with RRM+Zn domain (figure 3.29). 

 

 

 

 

 

 

 



- 114 - 
 

 

 

Figure 3.29 Gel shift assay SYBR GREEN II stain of the 6% native polyacrylamide gel 

electrophoresis of the 100-200nt RNA containing one of the binding motif close to the 

translational stop codon incubated with increasing concentration of the RRM+Zn domain of the 

AtCyp59 or *RRM+Zn domain of AtCyp59. Concentration of the protein is shown above in nM 

range. First line in every gel is the line where protein was not added. RNA sequence used in the 

assay as well as short name is indicated below each gel. 

 

Chosen RNA fragments from genome which contained one of the binding 

sequences near the future translation stop codon  and was not selected with genomic 

SELEX showed moderate binding affinity to the RRM+Zn domain of the AtCyp59 (fig. 

3.29). Furthermore, this interaction seemed to be sequence specific because mutations in 

the RRM domain completely abolished complex formation between RNA and the protein. 

[Cyp59 RRM+Zn]nM [Cyp59 *RRM+Zn]nM

RSZ22

[Cyp59 RRM+Zn]nM [Cyp59 *RRM+Zn]nM

U2B

[Cyp59 RRM+Zn]nM [Cyp59 *RRM+Zn]nM

RSp34a

A B

C
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These results proved the data obtained with bioinformatics analysis and also suggested 

that AtCyp59 could potentially act as general regulatory factor. 

One of the four selected RNAs was also tested using EMSA with full-length version 

of the AtCyp59. Very prominent complex formation between RNA and full-length protein 

was observed in this case (figure 3.30). 

 

.  

Figure 3.30 Gel shift assay. SYBR GREEN II stain of the 6% native polyacrylamide gel 

electrophoresis of the 100-200nt RNA (RSZ32) containing one of the binding motif close to the 

translational stop codon incubated with increasing concentration of the full-length version of the 

AtCyp59. Concentration of the protein is shown above in nM range. First line in every gel is the 

line where protein was not added. RNA sequence used in the assay as well as short name is 

indicated below each gel. 

 

Data presented in this section indicated that predicted binding consensus 

sequence could be proved using EMSA. Binding its RNA targets of different length, 

RRM+Zn domain recognized them in sequence-specific manner. Mutations in either RRM 

domain or RNA target significantly interfere with formation of ribonucleoprotein 

complex. Finally, other domains of the AtCyp59 positively contributed to complex 

Complexes

Free RNA

[atcyp59],nM
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formation especially when long RNA fragments were used. It suggests implication of other 

domains in dealing with local mRNA structure. 

 

3.4 RNA immunoprecipitation in the protoplast 

overexpressing HA tagged AtCyp59. 

 

3.4.1 Mutations in the RRM domain of the AtCyp59 decrease level of 

the protein overexpression. 

 

In vitro studies described in the previous section revealed that RRM+Zn domain of 

AtCyp59 is responsible for binding to RNA fragments containing predicted binding 

consensus sequence. To determine whether this binding occurs in vivo and also whether 

over expression of the AtCyp59 has an effect on expression of target mRNAs, we decided 

to over express full-length protein in the A. thaliana protoplasts system. We cloned C-

terminally HA-tagged full-length versions of AtCyp59 with wild-type and mutated RRM 

domain in the vector pDEDH under 35SCMv promoter. Also, we used pGREEN vector 

containing MAP kinase 6 gene and pDEDH fused with GFP but without HA-tag sequence 

(figure 3.31 A).  

 

 

Figure 3.31 Protoplasts expression. A – Schematic representation of the constructs used 

in the PEG-inducible transformation experiments. 35S – 35S CM virus promoter sequence, HA – 

hemagglutinine antigene, *RRM – RRM domain in which three essential aminoacids were 

mutated, GFP – green fluorescents protein, MAPK – MAP kinase six. B-Western blot assay of cells 

35S Cyp59 HA

35S *RRM-Cyp59 HA

35S MAPK6 HA

35S GFP

pDEDH-Cyp59-HA

pDEDH-*RRM-Cyp59-HA

pGREEN-MAPK6-HA

pDEDH-GFP

kDa
72
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overexpressiing depicted constructs were performed using anti-HA antibody. Molecular weight 

marker in kilodaltons is displayed on the left side 

 

As shown in the figure 3.31 B, mutated version of the AtCyp59 exhibited lower 

level of expression suggesting either protein instability or implication of unknown cell 

regulators preventing formation of abnormal protein. From the other hand, wild-type 

protein showed significant level of expression comparable with level of MAPK6. GFP 

construct in this case was used to indirectly check transformation efficiency which was 

approximately 20-30%. Since protein level of expression of target protein was different 

we decided to check whether level of mRNA of the Cyp59 was also affected upon 

protoplast transformation. For that purpose, second portion of the previously 

transformed protoplast were used for total RNA isolation. Resulted RNA was utilized in 

semi-quantitative RT-PCR with primers to exogeneous constructs in case of Cyp59 and 

*RRM-cyp59 and endogeneous Cyp59 in case of MAPK6 and GFP.  

 

Figure 3.32 Protoplasts RNA expression. Semi-quantitative RT-PCR with primers to the 

AtCyp59 gene. Molecular weight markeris shown in the left side in bp. 

 

 As displayed in the figure 3.32 on mRNA level (exo - and endogenous), both 

AtCyp59 variants was equally expressed. Compare to the other constructs used where 

only endogenous level of cyp59 mRNA was detected in both cases wild-type and mutated 

RRM of AtCyp59 was similarly over expressed. These results suggested that level of 

protein expression is controlled on post-translational level and formation of the abnormal 

version of the AtCyp59 is unfavorable process.  
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RNA_AtCyp59 gene
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3.4.2 Level of expression of target genes doesn’t change significantly 

upon expression of wild-type or mutated AtCyp59 protein. 

 

To identify whether upon AtCyp59 (WT or mutant version) over expression level of 

the target mRNAs are changed, we performed semi-quantitative RT-PCR analysis using 

primer pairs amplifying mRNAs of the target genes. We decided to test mRNAs which 

contain one of the binding motifs (figure 3.33). 

 

 

 

Figure 3.33 Protoplasts mRNA expression. Semi-quantitative RT-PCR with primers to the 

genes indicated on the right side. Molecular weight markers are shown on the left side in bp. 

 

None of the tested mRNA genes showed significant alterations in the expression 

level (figure 3.33). This observation might be explained by the fact that only 20-30% of 

cells were actually transformed with construct of interest and that RT-PCR method is not 

sensitive enough to detect small changes. Second explanation might be that alterations in 
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the expression of the target genes are minimal and could not be detected by RT-PCR 

method. The third, these alterations might be happening during particular stage of plant 

development. 

 

3.4.3 mRNAs containing binding motif co - immunoprecipitate only 

wild-type protein. 

 

To test whether target mRNAs interact with wild-type protein AtCyp59 in vivo, we 

precipitated RNA-protein complex protoplasts cells expressing WT AtCyp59 (mutant 

version served as negative control) using magnetic beads coupled with anti-HA antibody. 

RNA fraction was purified from precipitated complexes and used for the semi-

quantitative RT-PCR with gene-specific primers (figure 3.34). 

 

 

Figure 3.34 Protoplasts RNA immunopresipitation. Semi-quantitative RT-PCR with 

primers to the genes indicated on the right side. Molecular weight marker is shown in the left side 

in bp. 
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As displayed in the figure 3.34, only wild-type cyclophilin protein was able to form 

complex with target genes tested in vivo. Mutated version of the protein as well as 

controlled protein such as GFP did not from a complex with RNA, which suggests absence 

of non-specific binding of RNA to the magnetic beads. Interestingly, some target mRNAs 

especially those which were sequenced in genomic SELEX experiment were precipitated 

by none of the proteins which might suggest either their implication in particular 

developmental or growth stage or their overall low presence of this mRNAs in the 

protoplast system. Also in some cases we saw some background of control 

immunoprecipitations which might indicate uncomplete washing of the beads. 

Generally, from the data obtained we concluded that RRM+Zn domain of the 

AtCyp59 binds sequence specifically RNA containing common binding pattern 

GG(U)NGCCG in vitro and in vivo. Also, mutations in RRM domain of the protein prevent 

complex formation in vivo and significantly decrease binding in vitro. In addition, 

formation of mutated version of AtCyp59 is unfavorable in protoplast expression system 

on the protein level or on mRNA level. 

 

3.5 Expression of the HA-tagged AtCyp59 protein suppressed 

by unknown mechanism in the estrogen-inducible cell-suspension 

system. 

 

3.5.1 Estrogen–inducible expression cassette is integrated in the 

Arabidopsis thaliana genome. 

 

As discussed above, AtCyp59 could be over expressed in the protoplast system. 

When we checked mRNA level of the selected target genes we didn’t find significant up- 

or down-regulation of these genes upon expression of wild-type or mutated version of 

the protein. However, almost every tested target gene containing binding motif was 

shown to immuno-precipitate with wild-type version of the AtCyp59 but not with 

mutated version or GFP. Nevertheless, RNA level after immuno-precipitation was very 
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low and sometimes was difficult to detect (figure 3.34). Also protoplast transformation 

efficiency in general is very low (20-30%) which brings high level of heterogeneity into the 

system. To overcome these obstacles, we decided to develop stable cell-line suspension 

over expressing AtCyp59. We decided to use inducible system since we knew from 

previous experiments that constant expression of AtCyp59 under 35S promoter could not 

be accomplish. We cloned C-terminally HA-tagged AtCyp59, RSZ33 (another AS factor 

(Lopato, 2002)) and YFP gene (figure 3.35 A) to the pMDC7 vector, where 35SCMv 

promoter are kept under control of the LexA operator which became active upon addition 

of the human estrogen (Chang, 2005). 

 

 

Figure 3.35 Estrogen-inducible Arabidopsis thaliana system. A- Schematic representation 

of the constructs. B- PCR amplification of the isolated genomic DNA to check incorporation of the 

constructs.   

 

Designed vectors carrying genes of interest were transformed into isolated 

protoplasts and left for 24 hours to regenerate. Transgenic cell-suspensions were 

cultivated for several weeks of growing on antibiotics selective media. To check construct 
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DNA integration into genome of A. thaliana we isolated genomic DNA from each 

construct and performed PCR amplification using specific primers. As shown in the figure 

3.35 B, targeted genes were successfully incorporated into genome.  

 

3.5.2 Protein expression is suppressed upon estrogen induction but 

level of mRNA produced remains to be sufficient 

 

To carry out over expression experiment we took 5 days-old cell culture (after 

every week routine culture dilution) and induced it by 5µM of 17-β-estradiol. Then 1ml 

aliquots were collected at different time points and analyzed by Western blot analysis to 

indentify start of protein over expression.  

 

 

Figure 3.36 Estrogen-inducible Arabidopsis thaliana system. Western blot analysis of 

induced with 17 β-estradiol cultures expressing AtCyp59, YFP or RSZ33 genes with HA-tag on the 

C-terminus. Analysis performed with anti-HA antibodies. 

 

HA-tagged protein AtCyp59 showed zeroed level of protein expression whereas 

proteins RSZ33 and YFP began to be over expressed between 4 and 8 hours after 

induction reaching saturated level of protein expression in 24 hours upon induction. 

Increasing 17 β-estradiol final concentrations to 50 and 100 µM did not result in any 

detectable level of AtCyp59 over expression. We hypothesized that protein undergoes 
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degradation by a putative cellular mechanism either on transcriptional or translational 

level. To check whether mRNA level of exo- and endogenous AtCyp59 were affected upon 

induction of the protein expression we isolated total mRNA from the cells collected at the 

time points shown in the figure 3.36. Then, we isolated total RNA from these cells and 

performed reverse transcription using oligo-dT primer. Semi-quantitative RT-PCR of exo- 

or endogenous levels of the AtCyp59 are presented in the figure 3.37. 

 

 

Figure 3.37 RNA expression analysis of the cell suspension culture induced with 17 β-

human estradiol. PCR amplification of the AtCyp59 gene using primers to exo- and endogenous 

mRNAs. Cells were induced to the final 5 and 100µM estrogen concentration and collected after 

8, 12, or 24 hours. 

 

As shown in the figure 3.37 the elevated levels of the exogenous mRNA encoding 

HA-tagged AtCyp59 are produced in 12 hours upon induction with 5µM estradiol and 

remain the same till 24 hours check-point. From the other hand, endogenous level of 

mRNA coding for AtCyp59 remains the same level for all time checked regardless 

increasing concentration of inducer. The same level of endogenous mRNA of gene 

AtCyp59 was detected in the cells produced HA-tagged YFP in 24 hours upon treatment. 

Finally, we checked level of exogenous mRNA encoding HA-tagged RSZ33 in the cells 
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producing RSZ33 protein upon induction with 5µM estradiol. In this case, level of 

exogenous RSZ33 mRNA was lower than level of exogenous AtCyp59 mRNA. Summarizing 

these observations, exogenous HA-tagged version of AtCyp59 gene was over expressed 

on transcriptional level but we didn’t detect any produced HA-tagged protein AtCyp59, 

meaning that either the mRNA might not be translated or the protein might undergo 

degradation after translation. To check whether we could prevent protein degradation by 

blocking 26S proteasome degradation pathway, after estradiol induction we incubated 

cells with 26S proteasome inhibitor MG132 for 1, 4, and 24 hours; however we didn’t 

detect any traces of the protein. Summarizing, we concluded that additional production 

above wild-type level of the AtCyp59 is non favorable process and tightly regulated. 
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4. Discussion  

Cyclophilins belong to a protein super family of immunophilins (Galat, 2003). 

These proteins change peptide bond preceding proline from trans- to cis- conformation 

(Marks, 1996). It is well known that imid bond could exist in two distinct conformations, 

rotation of which is accompanied with relatively high energy barrier and requires a 

catalyst (Pahlke, 2005). Cyclophilins have a catalytically active domain – peptidyl-proline 

cis/trans isomerase (PPIase) - which helps to level down energy barrier between two 

conformations and to accelerate the rotation of the peptidyl-prolyl bond. Changes in the 

peptidyl-prolyl bond are indispensable for overall protein function and folding as they 

have been discovered to influence on many processes in the living cell (He, 2004). A. 

thaliana genome encodes a maximum known so far number of cyclophilins – 29 genes 

(He, 2004). Majority of these proteins are very small in size, with single-domain 

organization and localized predominantly in the cytoplasm (Peltier, 2002). However, there 

are three genes of cyclophilin’s family in A.Thaliana which showed nuclear localization. 

These are A. Thaliana cyclophilins AtCyp59, AtCyp64 and AtCyp93 (Romano 2004). Among 

them, AtCyp59 is one of the most interesting proteins as it has a multidomain 

organization which contains catalytically active PPIase domain on the N-terminus 

followed by RRM domain and Argenine-Serine rich domain (SR) on the C-terminus 

(Weighardt, 1999).  

It has been previously shown (Gullerova 2006,) that C-terminal domain of AtCyp59 

is responsible for protein-protein interaction. It binds to majority of another SR proteins 

but this binding seems to be unspecific (Gullerova, 2006). In general, SR proteins are 

argenine-serine rich protein containing also one or two RNA recognition motifs (Wu, 

1993). SR proteins serve as global positive cis-acting regulators of constitutive and/or 

alternative splicing (Robberson, 1990). They promote splicing on the proximal splicing site 

by binding to specific elements on the pre-mRNA stricture – exonic splicing enhancers 

(ESE) (Martinez-Contreras, 2007). In general, splicing is performed by huge 

multicomponent RNA-protein complex – spliceosome. During intron excision spliceosome 

undergoes several structural rearrangements in pre-mRNA, snRNP structure and many 

changes in protein-protein interactions (Burge, 1998). It is still no completely clear how all 

of these changes are regulated. Typically the most flexible and reversible regulation is via 



- 126 - 
 

rounds of phosphorylation/dephosphorylation. It is well established that activity of 

majority of SR proteins are controlled by their phosphorylation status (Mermoud, 1994). 

Moreover, such regulation of phosphor-status of SR proteins is mediated by several 

kinases and phosphatases which could directly interact with spliceosome and influence 

on splicing (Misteli, 1999). Taking this into account, AtCyp59 interaction with SR proteins 

might bring a new level of regulation into pre-mRNA processing. Also AtCyp59 binds to 

the SR proteins by its C-terminal RS/RD region. From the other side, SR proteins have 

many prolines residues in between serines-argenines repeats which conformation might 

be important for availability of serines to be phosphorylated. Interestingly, it has been 

shown recently, that many cyclophilins in human found to be associated with 

spliceosome (Rappsilber, 2002). It has been found that human cyclophilins interact with 

many components of splicing machinery such as tri-snRNP complex, and SR proteins as 

well as with pre-mRNA (Pushkarsky, 2001; Horowitz, 2002). Thus, AtCyp59 might 

potentially mediate pre-mRNA processing on protein-protein level by interaction with SR 

proteins. 

Although AtCyp59 is localized in the nucleus, it does not resemble speckles pattern 

of SR proteins (Gullerova, 2006). AtCyp59 shows specific dots pattern within the nucleus 

which are associated with actively transcribed genes (Gullerova, 2006). Further analysis 

has showed that AtCyp59 interacts in vitro and in vivo with C-terminal domain (CTD) of 

the Polymerase II (Gullerova, 2006). CTD is the largest of Pol II domains and consists of 

several Tyr-Ser-Pro-Thr-Ser-Pro-Ser heptapeptide repeats (up to 52 repeats in humans) 

(Corden, 1990). Pol II is responsible for transcription of all mRNAs in the cell. During the 

transcription two serines in CTD of Pol II got dynamically phosphorylated in processes 

regulated by specific kinase for each serine (Buratowski, 2003). Since conformation of 

preceding prolines can influence on availability of serine residues for phosphorylation, 

interaction between AtCyp59 and CTD of Pol II could play role in phosphorylation status 

of serines on CTD (Schiene, 2000). Apparently, close homolog of AtCyp59 in S. pombe, 

Rct1, interacts with non-catalytic doamin of Cdk9 kinase (Skrahina, unpublished), kinase 

which is responsible for phosphorylation of the Ser2 on the CTD (Peterlin, 2006). This 

phosphorylation mark is appeared when Pol II switches from initiation stage to the 

elongation and Ser 2 stays phosphorylated throughout elongation cycle of transcription 

(Egloff, 2008). As it has been shown, PPIase domain of Rct1 plays an important role in 
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interaction with non-kinase part of Cdk9 (Skrahina, unpublished). This data suggest that 

Rct1 might change the proline bond preceding Ser2 to make it accessible for the Cdk9 

kinase action on CTD of Pol II. As for the AtCyp59, it has been shown that upon over 

expression of the protein in cell culture, level of CTD phosphorylation dramatically 

decreases which leads to cell death (Gullerova, 2006). From the other hand 

overespression of Rct1 in yeast led to morphological cell defects. Also Rct1 is essential 

gene because deletion of this gene is lethal (Gullerova, 2007). It is worth to mention that 

the level of CTD phosphorylation in both overexpression and knock-out of Rct1 decreses 

(Skrahina, unpublished). These data may propose that expression of AtCyp59 seems to be 

tightly regulated and its PPIase domain might be involved in transcription regulation 

during the elongation phase.  

As it is mentioned above, AtCyp59 contains RRM domain which could potentially 

bind RNAs. As it was discovered, it showed a high level of conservation even between 

distinctive species and even higher conservation then its PPIase domain, suggesting an 

additional impact of this domain into overall function of the protein (Gullerova, 2006). It 

has been shown that RRM domain could bind synthetic poly(rC) and poly(rG) (Gullerova, 

2006). However, the absence of in vivo model system where AtCyp59 would be over 

expressed or knock-down makes it difficult to study protein function in vivo. One possible 

solution for this problem would be the usage of antibodies raised against endogenous 

AtCyp59 or its parts for immunoprecipitation-based techniques, i.e. protein- or RNA-

immunoprecipitation from different tissues on different developmental stages. Having no 

anti-AtCyp59 antibodies, we have decided to focus on available in vitro methods to study 

the role of RRM domain of AtCyp59. 

Among in vitro methods, Genomic SELEX appeared to be powerful screening 

technique which allows employing of recombinant protein of interest for selecting of 

specific RNA aptamers sequences with genomic origin (Gold, 1997). Genomic SELEX 

consists of two principal steps: genomic library development (Figure 3.1) and affinity 

selection (Figure 3.4). Crucial point in the whole procedure is quality of DNA library before 

selection, its representation and nucleotide distribution (Singer, 1997). It remains 

important to analyze library before selection, and availability of next generation 

sequencing technologies gives a great tool for it. Our results showed that initial DNA 

library contained same genomic elements as the A. Thaliana genome (Figure 3.6). The 
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number of sequences we obtained could potentially cover only 2% of genome, however 

distribution of the genomic elements in the initial library were only slightly differ than in 

the genome (Figure 3.6). Thus, number of protein exons and rRNA genes were higher 

whereas number of intergenic regions was lower in the initial DNA library. Consistent with 

this, there were increase in CG content and decrease in AT content in di-nucleotide 

distribution in the initial library compare to A. Thaliana genome (Figure 3.7). Interestingly, 

our nucleotide distribution is different from one observed by group of Schroeder 

(Zimmermann, 2010) when they performed “neutral” (no-protein) genomic SELEX 

experiment employing E. coli genomic library. This fact suggests that nucleotide bias we 

observed was not due to amplification forces on library and might lie in library 

delepoment ingeneral or primer design. Also, differences between A. Thaliana genome 

and initial library were considered to be insignificant and library was qualified for further 

selection with AtCyp59. However, for better understanding causes of initial DNA library 

differences compare to genome which could be due to the differences in genome 

chromatin condensation (Johnson, 2002), incomplete randomness of primers, 

preferences of adaptors to particular genome regions, further analysis together with 

deeper sequencing coverage should be performed.  

Analysis of enriched SELEX library after selection with AtCyp59 revealed drastically 

increase in sequences derived from protein exons (Figure 3.8), also further decrease in 

rRNA and intergenic region compare to initial library and from genome of A. Thaliana.  

Our quality control of obtained after SELEX library showed that more than 80% of reads 

we sequenced contained right 5’- and 3’- adaptors from the both sides. The sequences in 

between adaptors were longer than 18 nt and 90% from those reads could be allocated 

back to the genome of A. Thaliana (Table 3.1). We have found that over 50% of obtained 

sequences derived from protein coding genes (Figure 3.12 A, B). Sequencing reads were 

equally distributed over sense and antisense strand towards an annotated gene (Figure 

3.13 A). From those sequences, which were in sense orientation and came from protein 

coding genes, were identified that they were localized in exonic or UTR’s parts of the pre-

mRNA (Figure 3.13 B). Thus, AtCyp59 binds to the RNA targets which are derived from 

protein coding genes, particularly exonic parts.  

Next, we were able to indentify common RNA binding consensus sequence which 

seems to be recognized by AtCyp59 (Figure 3.14). Previous structural studies on proteins, 
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containing RRM domain had revealed that RNA recognition motif usually consists of 4 β-

sheets and 2 α-helices which divide RRM motif into two parts (Allain, 2000). Structural 

analysis has revealed that RNA molecule interacts with RRM domain in between these 

parts making stacking with aromatic rings of the amino acids (Maris, 2005) Also, it is 

known that the size of typical RNA binding pocket in RRM domain allows adoption of 5-15 

ribonucleotides (Wang 2008). In this RNA-binding pocket three conserved aromatic amino 

acids make a stacking interaction with RNA bases (Wang, 2008). The motif, which we 

identified, consists of 7nt-long RNA consensus enriched with G and C nucleotides and 

GCCR core sequence (Table 3.2). This is in consistent with our previous data which 

showed that AtCyp59 interacts with poly-C and poly-G RNA oligonucleotides (Gullerova, 

2006). The binding consensus we have indentified consists of several single motif 

variations where each variation was sequenced different number of times (Figure 3.16). 

We checked in vitro binding for all motif variants with AtCyp59 (Figure 3.22). 

Interestingly, binding motif variants have shown variable binding affinity to the RRM+Zn 

domain of AtCyp59 where binding consensus could be narrowed down to G(GU)GCCG 

(Table 3.4). It is well known that dissociation constant varies a lot depending on nature of 

RNA-protein complex, its stability and proposed function. For instance, binding of U1 

snRNA to its protein is very tight with KD’s in range of few nM (Hall, 1992). From the other 

side, recently KD’s of RNA-protein complex between the human cyclophilin containing 

RRM domain and its RNA targets have been identified. This KD was in range of few μM 

suggesting that this complex is very flexible (Hom, 2010). Our KD approximation for the 

binding of 7nt RNA targets to RRM+Zn domain of AtCyp59 are lying in 100’s nM range. 

These data suggest moderate complex formation. Interestingly, binding of the full-length 

AtCyp59 to the same 7nt binding motif variations showed equal affinity to all binding 

motif variants (Figure 3.23, Table 3.5) suggesting involvement of other domains of 

AtCyp59 in this interaction. Also, we have noticed that full-length AtCyp59 could not 

differentiate between binding motif variants. 

We assume that AtCyp59 interacts with its RNA targets sequence specifically since 

mutations in aromatic amino acids in RRM domain of AtCyp59 which are known to be 

involved in RNA recognition prevent binding of RRM+Zn domain of AtCyp59 to its 7nt 

binding motif variants (Figure 3.24). Also, mutations in core binding pattern of 7nt RNA 

drastically decrease its affinity to RRM+Zn domain of AtCyp59 (Figure 3.25).  
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Sequences involved in the genomic selection and obtained after 454 deep 

sequencing were longer than 7nt with average 30-40 nt (Figure 3.9). We investigated 

binding affinity of these longer RNA pieces to the RRM+Zn domain of AtCyp59 in vitro 

(Figure 3.26). We have found that RRM+Zn domain of AtCyp59 interacts with RNA 

sequences containing variants of binding motif, but its affinity is lower and ranges in KD 

>300nM (Table 3.8). However, specificity of RRM+Zn domain of AtCyp59 to particular 

binding motif variant stays in the same range as for 7nt RNA. We concluded that presence 

of flanking RNA sequences slows down its sequence-specific recognition by protein. 

Interestingly, full-length AtCyp59 equalizes and improves its binding affinity to the longer 

RNA pieces containing binding motif variants (Figure 3.27). Again, as with 7nt RNAs full-

length protein does not differentiate between RNAs containing different binding motif 

variants and binds to them with approximately similar KD around 150-200 nM (Table 3.9). 

Here we concluded that other domains (PPIase, C-terminus region) of AtCyp59 facilitate 

RNA recognition by RRM+Zn domain, probably due to dealing with possible local RNA 

structures. Also, it has been shown that AtCyp59 might have RNA chaperon activity 

(Gullerova, unpublished), when it can modify RNA structure (Rajkowitsch, 2007). Thus, 

full-length AtCyp59 positively regulates binding to its 30nt RNA targets containing 

common binding consensus and might also change local RNA structure to help RRM+Zn 

domain recognizing RNA sequence. Finally, we confirmed that RRM+Zn domain of 

AtCyp59 interacts with 30nt RNAs containing binding motif variants, since mutation in 

RRM domain of AtCyp59 decrease protein affinity to the RNA (Figure 3.28). We also 

confirmed interaction between AtCyp59 and its RNA targets in vivo, using transient 

expression of the AtCyp59 in protoplasts cells (Figure 3.34). We have found that AtCyp59 

does not affect expression of its targets upon over expression in protoplasts (Figure 3.33). 

It may suggest that increase in AtCyp59 protein production does not change overall 

mRNA expression during the 24 hours after protoplast transformation. We also noticed 

that not all RNA targets, which were identified and proved in vitro, were 

immunoprecipitated along with AtCyp59 in vivo, suggesting  that interaction of the 

protein with its RNA might be flexible and happen at particular time point, for example at 

different stages of plant development (Figure 3.34). Interestingly, we have noticed that 

mutations in aromatic amino acids in RRM domain of AtCyp59 negatively affected the 

over expression of mutant protein in protoplast cells (Figure 3.31 B). However, exogenous 
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mRNA levels of both mutated and wt proteins remained on the same level (Figure 3.32). 

We speculate that mutations in the RRM domain of AtCyp59 might influence protein 

stability therefore overall protein level decreases. We also have found that mutated 

version of protein does not immunoprecipitate its RNA targets further showing sequence 

specificity of RRM+Zn domain of AtCyp59 (Figure 3.34). 

Genomic SELEX suits well for common binding RNA motif identification for the 

particular protein, but due to the procedure could not give a full scope of possible targets 

in the genome. Thus, we performed a genome screen to indentify binding consensus 

distribution in A. thaliana genome. We have found that binding motif could be localized in 

over 70% of mRNAs in the genome (Table 3.3). It is overrepresented among exons on the 

pre-mRNAs (Figure 3.17) and typically could be found ones or maximum three times on 

the same mRNA (Figure 3.18). Thus, presence of the binding motif on mRNA might serve 

as mRNA signature for AtCy59 recognition. Also, we have shown that full-length AtCyp59 

binds equally to RNAs containing different variant of the binding motif (Figure 3.27). 

Therefore, presence of this motif in more than 50% of the mRNA genes might indicate 

that AtCyp59 acts as universal factor in transcription or splicing. We have found out that 

position of the RRM+Zn of AtCyp59 binding motif correlates with position of future 

translation termination site on pre-mRNA structure (Figure 3.19, 3.20). We tested binding 

affinity in vitro (Figure 3.29, 3.30) and in vivo (Figure 3.34) of few mRNAs from genome 

which we didn’t find during genomic SELEX and which contained binding motif close to 

the future stop codon. We have found that RRM+Zn domain of AtCyp59 interacts with 

those mRNA pieces in vitro and majority of those mRNA were immunoprecipitated with 

AtCyp59 in protoplast (Figure 3.34). We hypothesized that binding of AtCyp59 to the 

mRNA in close proximity to the future stop codon might have influence on proper 

transcription termination and 3’-end mRNA processing. Notably, it has been discovered 

that cyclophilins are involved in 3’-end mRNA processing (Noble, 2005). For example, 

protein responsible for the polyadenylation cleavage PcfI could only interact with CTD 

phosphorylated on Ser2 and when proline preceding Ser2 is in trans conformation 

(Licatalosi, 2002). We have also found out that PPIase activity of AtCyp59 slows down 

upon binding to the polyA mRNA  fraction or specific RNA found to be AtCyp59 target in 

genomic SELEX (Bannikova O., Skrahina T., Barta A. unpublished). Thus, we speculate that 
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binding of AtCyp59 to the pre-mRNA might serve as a signal to the Pol II of the mRNA 

close end and by that also influence phosphorylation status of the CTD of Pol II.  

In order to study function of AtCyp59 in vivo, we tried to establish estrogen 

inducible AtCyp59 cell suspension system (Figure 3.35 A). Although we have indentified 

that construct was integrated to the A.thaliana genome (Figure 3.35 B) we were unable to 

induce protein expression (Figure 3.36). Strikingly, other constructs in the same system 

we established showed elevated level of protein expression (Figure 3.36). Interestingly, 

we also didn’t notice an increase in mRNA level of AtCyp59 upon estrogen induction 

(Figure 3.37) compare to endogenous AtCyp59 mRNA level. Thus, we assume that 

expression of AtCyp59 is under strong control and might be regulated on mRNA or 

protein level. It has been known that expression of AtCyp59 is tightly regulated as it 

drastically influences on level of CTD of Pol II phosphorylation which might explain tight 

regulation of AtCyp59 expression and absence of its stable over expression lines and T-

DNA mutant lines (Gullerova, 2006). We assume that tight regulation of the AtCyp59 

expression might be associated with its mRNA binding which influences on PPIase activity 

of AtCyp59 (Skrahina, unpublished results) thus altering phosphorylation status of CTD of 

Pol II. Thus, further studies on transcription efficiency of target genes upon expression of 

AtCyp59 might shed the light on AtCyp59 regulatory function. 

Summing up obtained data, genomic SELEX allowed us to identify the binding RNA 

consensus motif for highly conserved multidomain protein AtCyp59. This motif is present 

in more than 50% of A. thaliana mRNAs and localized in last exons close to future 

translation termination sites. The binding of AtCyp59 to its RNA targets was confirmed in 

vitro by EMSA and in vivo by RIP from protoplasts transiently expressing HA-tagged 

protein. Analysis of KD of complexes formed between either full-length AtCyp59 or its 

RRM+Zn domain with RNA target sequences of different length has shown that the other 

domains of AtCyp59 might facilitate RNA binding by RRM+Zn domain. It is noteworthy 

that those domains are C-terminal RS/RD domain which is responsible for protein-protein 

interactions with AS-associated SR proteins and N-terminal PPIase domain which activity 

is inhibited upon RNA binding by full-length protein. Since PPIase activity of AtCyp59 may 

influence on phosphorylation status of Ser2 in CTD repeats of Pol II and this activity is 

negatively regulated by binding of AtCyp59 to its RNA targets which are indeed localized 

close to their translation termination sites, we believe that AtCyp59 represents a global 
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regulator of transcription and plays an important role on interplay between transcription 

and following splicing of pre-mRNAs.  
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