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1 Introduction 

One out of three persons is affected by cancer during their lifetime (Pecorino, 2008) and 

more than 50 % of them die from the disease (Stewart, et al., 2003). In 2004 13 % of all 

deaths worldwide were caused by cancer and the number of people affected and die 

from cancer will increase from 7.4 million in 2004 to approximately 12 million in 2030. 

Despite the fact that 30 % of cancer cases could be prevented by healthy nutrition, 

avoiding other risk factors like tobacco, being physically active and preventing chronic 

infections (WHO, 2009), there is a substantial need for anti-cancer drugs at the moment 

and it will increase in the near future. For the treatment of many types of cancer, plants 

have been a source of effective drugs. Over 60 % of anti-cancer drugs originate from 

natural sources like plants, marine organisms and micro-organisms (Cragg, et al., 2005). 

For thousands of years those natural products have been administered as a therapy 

against several diseases (Shoeb, 2006). An estimation conducted by the WHO reveals 

that even today 80 % of the population in Asian and African countries rely on 

traditional medicine for primary health care (WHO, 2008). Important examples of drugs 

derived from natural products that are now used in clinic are the vinca alkaloids 

vinblastine (VLB) and vincristine (VCR). Both were isolated from the Madagascar 

periwinkle, Catharanthus roseus G. Don.(Apocynaceae). Semi-synthetic analogues of 

these agents, originally used for the treatment of diabetes, are recently applied during 

cancer therapy in combination with other chemotherapeutic drugs. Another agent 

belonging to the plant-derived chemotherapeutic drugs is called Paclitaxel (taxol®), 

isolated from the bark of Taxus brevifolia Nutt. These examples show that isolated 

compounds from plants traditionally used as home remedies may lead to the 

development of novel anti-cancer agents (Cragg, et al., 2005). Between 1983 and 1994, 

60 % of anti-cancer drugs arised from natural origin (Cragg, et al., 1997). Especially the 

high biodiversity of the rain forests provide a framework of possible sources for new 

drugs (Cseke, et al., 2006). These facts established the basis for the present work with 

the objective of finding new potential lead compounds against cancer by investigating 

two ethnomedical plants from Guatemala. The two plants, Pluchea odorata and Smilax 

spinosa, are both used by the Maya as natural healing plants against inflammation. 
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Because of similar signalling pathways up-regulated in inflammation and cancer these 

plants were selected (Kundu, et al., 2008). Bioassay-guided fractionation of P. odorata 

and its anti-cancer activity (especially of the dichloromethane extract) were first 

described by Gridling et al. (2009). Therefore the activity of the dichloromethane 

extract was further investigated in the current work with focus on the apoptotic 

pathways. Not much is known about the anti-cancer activity of the second ethnomedical 

plant, S. spinosa, and therefore we started with the extraction of the plant particularly 

focussing on the toxic activity. Both plant extracts and fractions were tested in 

proliferation and apoptosis assays, using HL-60 cells. In case of P. odorata the 

bioassay-guided fractionation, using solvents of increasing polarity, was further 

conducted with the most active fraction of the proliferation or apoptosis assay. After 

bioassay-guided fractionation, mechanisms of growth inhibition and apoptosis were 

investigated in western blot analyses.  
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2 Literature survey 

This chapter includes important mechanisms for the development of cancer, as well as 

the definition of leukaemia and facts about the use of ethnomedical plants during drug 

development.  

2.1 Carcinogenesis 

Adults consist of around 10
13

 cells. These cells are renewed and replaced constantly, but 

during this process alterations or damage to the genetic material can occur, which may 

lead to cancer if they are not being repaired (World Cancer Research Fund International, 

2007). In tumor cells many alterations of deoxyribonucleic acid (DNA), including point 

mutations and even chromosomal aberrations such as deletions and translocations have 

been detected. Causes of damaged DNA are both endogenous (internal) and exogenous 

(environmental) and accumulate during lifetime. Most of the mutations detected in 

tumor cells are somatic mutations, which are not passed to the next generation, whereas 

germline mutations will be inherited and therefore passed to the offspring (Pecorino, 

2008). 5 to 10 % of cancers are caused by inheriting genes alterations. For example 

defects of DNA repair mechanisms predispose persons towards cancer (World Cancer 

Research Fund International, 2007).  

2.1.1 The multistep model 

A tumor arises from one single cell and is the outcome of a long latent period involving 

generations of cells (Foulds, 1969) undergoing multiple steps of tumor development, 

(Stewart, et al., 2003) (Figure 1). Especially with increasing age, mutations accumulate, 

repair mechanisms fail and thus the chance for carcinogenesis to take place is rising 

(Till, 1999). The three steps tumor initiation (irreversible genome damage), tumor 

promotion (reproduction of initiated cells) and tumor progression (increasing malignity) 

(Nau, et al., 2003) are described in the following chapter for historical reasons. This 

model is outdated and replaced by concise and proven concepts based on molecular 

verification (see chapter 2.2 The six hallmarks of cancer).  



Literature survey 

 

4 

 

 

Figure 1 Multistep model of carcinogenesis (own figure, based on Oliveira, et al., 2007) 

2.1.1.1 Tumor initiation 

Initiation, the first step of the multistep model, includes the exposure to an agent that 

results in the first mutation. This mutation can be exogenous, endogenous or an 

inherited mutation (World Cancer Research Fund International, 2007). Endogenous 

carcinogenic chemicals are for example reactive oxygen species or products of lipid 

oxidation, both generated in metabolism (Burcham, 1999). Physical components like 

viruses, genotoxic or epigenetic factors belong to the exogenous cancer-causing 

chemicals (Davis, et al., 1993).  

Somatic mutations are transferred to daughter cells during proliferation and generate the 

potential for neoplastic growth (World Cancer Research Fund International, 2007). An 

irreversible DNA damage can be acquired by a unique application of a genotoxic 

chemical (Nau, et al., 2003). A distinction is drawn between direct and indirect 

genotoxic substances: direct carcinogens are substances which directly bind to bases of 

the DNA (reactive oxygen species, hydroxyl radicals, and hydrogen peroxide and also 

external factors such as ultra-violet (UV) light) (Stewart, et al., 2003), whereas indirect 

ones like benzopyren, aflatoxin B1 or nitrosamines have to be activated in the 
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by mutations, they will lead to genetic instability and loss of differentiation (Stewart, et 

al., 2003).  

2.1.1.2 Tumor promotion 

During the second step, tumor promotion, the initiated cells proliferate and become 

neoplastic. Tumor promoters are substances with epigenetic effects including hormones 

like oestrogens, androgens or phytohormones. Also polycyclic aromatic hydrocarbons 

are counted among tumor promoters, which all operate „around the gene‟ and do not 

modify the DNA sequence. The effect of epigenetic changes is reversible and thus a 

repeated supply is required for tumor promotion. As a consequence proliferation of the 

mutated cells is stimulated and a benign tumor develops (Nau, et al., 2003).  

2.1.1.3 Tumor progression 

Benign tumor cells being exposed to further genotoxic substances increase their DNA 

damage and if DNA repair mechanisms are lacking the malignancy of the tumor 

increases (Nau, et al., 2003). Oncogenes have to be activated and tumor suppressor 

genes have to be deactivated for more and more autonomous growth of the tumor 

during the progression (Stewart, et al., 2003). Eventually, cancer cells become invasive 

and induce angiogenesis (World Cancer Research Fund International, 2007). This entire 

step is irreversible, just like the first step of tumor initiation (Nau, et al., 2003). This 

dogma is at stake, as it does not explain spontaneous remissions and ignores the fact 

that cells can be reprogrammed.  

2.1.2 The role of oncogenes and tumor suppressor genes 

Oncogenes and tumor suppressor genes are varying in function and play different roles 

in tumor development. During carcinogenesis proto-oncogenes are activated to 

oncogenes (gain of function), whereas alterations in tumor suppressor genes result in a 

loss of function (Stewart, et al., 2003). In the following chapters both genes and their 

proteins are described further.  
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2.1.2.1 Oncogenes 

Proto-oncogenes, which are a normal part of the human genome, participate in 

regulation of growth and differentiation processes (Mehnert, et al., 2003). As they are 

dominant genes, one somatic mutation in one allele of a proto-oncogene induces the 

transformation into an oncogene. The oncogene thus gained its function and triggers 

uncontrolled proliferation and tumor promotion (Zielinski, et al., 1999). Hence, 

oncogenes have the ability to transform healthy cells, which is the main step in the 

development of sporadic tumors (Hunter, 1997). Until now, no germline mutations in 

oncogenes have been detected, leading to the assumption that such mutations are lethal 

during embryonic development (Löffler, et al., 1997). Mechanisms which may induce 

activation of proto-oncogenes are for example point mutations, gen amplifications or 

translocations (Till, 1999). Examples for oncogenes are c-Myc and Bcl-2, described in 

chapter 2.2.2 and 2.2.3.  

2.1.2.2 Tumor suppressor genes 

Tumor suppressor genes are also part of the normal human genome (Mehnert, et al., 

2003). They protect the cells from unrestricted growth by guarding parts of the cell 

cycle as well as genes of the DNA repair system (Karlson, et al., 2005) and controlling 

the accuracy of cell division (Stewart, et al., 2003). The cell is then affected by genetic 

changes more easily (Kinzler, et al., 1997). Mutations of tumor suppressor genes are 

often the reason for congenital tumors, for which already one germline mutation has to 

be present (Zielinski, et al., 1999). Hereditary tumors thus occur at younger ages, 

because only one allel has to be hit by a mutation for a tumor to develop (Till, 1999). 

Tumor suppressor genes are for example the retinoblastoma protein (pRb) and p53 

described in chapter 2.2.2 and 2.2.3, respectively.  

2.1.3 Cancer and inflammation  

Many chronic inflammations induced by non-infectious agents are known for their 

association with cancer. For example cancer caused by asbestos and also rheumatoid 

arthritis is linked with non-Hodgkin‟s lymphoma. On the other hand there also exist 
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cancers on the basis of virus or bacterium infections. For example hepatitis B virus and 

liver cancer are strongly associated and helicobacter pylori infections in the stomach are 

capable of causing stomach cancer. The link between inflammation and cancer are 

components causing DNA damage, produced during the inflammatory response. 

Macrophages for instance produce TNFα which acts as a tumor promotor when its 

expression, regulated by nuclear factor κB (NF-κB), is increased. Also reactive oxygen 

species (ROS) and nitrogen species (NOS) secreted by leucocytes promote 

carcinogenesis as they damage the DNA. The possibility of DNA damage is also 

enhanced by hepatitis B and helicobacter pylori infections, which both lead to tissue 

regeneration and increased cell division. Cell division is known as a procedure where 

DNA is susceptible to be damaged and where mutated genome can be passed to the 

progeny (Pecorino, 2008).  

The link between cancer and inflammation continues even when the tumor has already 

developed. Again TNFα produced by tumor-associated macrophages (TAM) is the key 

for further malignancy, as it can affect cell motility and tumor metastasis (Pecorino, 

2008). A very important target for anti-cancer drugs involving the inflammation causing 

part of the immune system is COX-2 inhibition (Stewart, et al., 2003), because the 

overexpression of COX-2 in epithelial cells inhibits apoptosis and increases the 

invasiveness of tumour cells (Gupta, et al., 2001). Close to 20 % of all cancers 

worldwide are estimated to be attributable to infection (Flood, et al., 2000). Thus the 

link between cancer and inflammation can be used for development of new therapeutics 

against cancer.  

2.2 The six hallmarks of cancer 

Approximately one hundred types of cancer from different origins are defined by now. 

Every type of cancer belongs either to carcinomas (cancers in epithelial cells), sarcomas 

(cancers from mesodermal cells) or adenocarcinomas (cancer of glandular tissues). 

Hanahan and Weinberg (2000) defined six hallmarks present in most cancer types: self-

sufficiency in growth signals, insensitivity to anti-growth signals, evading apoptosis, 

limitless replicative potential and sustained angiogenesis (Figure 2). Each hallmark is a 

(potential) opportunity for new therapeutics to attach (Pecorino, 2008). In the following 
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chapters the six hallmarks are characterized. Two of them, loss of growth control and of 

programmed cell death control, were studied in a series of tests with extracts of the 

traditional healing plants P. odorata and S. spinosa.  

2.2.1 Self sufficiency in growth signals 

The hallmarks of growth signal autonomy, as well as evasion of growth inhibitory 

signals, and unlimited replication, increase cell proliferation (World Cancer Research 

Fund International, 2007). Unlike normal cells, cancer cells are independent from 

normal growth factor signalling for their division (Pecorino, 2008). Many cancer cells 

also produce their own growth signals, thus creating a positive signalling loop. Healthy 

cell types provide growth factors in a paracrine fashion to stimulate the proliferation of 

each other, whereas some tumor cells are able to autocrinely produce their own growth 

factors. Both, dependence from normal growth factors and the triggering of a positive 

signalling loop lead to unregulated cell growth. Examples for growth factors autocrinely 

produced by tumor cells are platelet-derived-growth factor (PDGF) and transforming 

growth factor α (TGFα) in glioblastomas and sarcomas, respectively. Cells gain this 

growth signal autonomy by alteration of extracellular growth signals, alteration of 

transcellular transducers of those signals or mutations of intracellular circuits (Hanahan, 

et al., 2000).  

 

Figure 2 The six hallmarks of cancer (own figure, based on Hanahan, et al., 2000) 
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2.2.2 Insensitivity to antigrowth signals 

Most cells of the body are quiescent and not dividing, because they achieve growth 

inhibitory signals to maintain homeostasis (Pecorino, 2008). Normal cells for example 

decrease proliferation as a result of environmental signals like contact with other cells. 

Anti-growth signals from nearby cells are soluble growth inhibitors or immobilized 

inhibitors placed in the extracellular matrix. These signals inhibit proliferation in two 

different ways. First, cells can be transferred into the quiescent stage of the cell cycle, 

G0. Second, cells are made to give up their proliferative potential by entering 

postmitotic stages of the cell cycle (Hanahan, et al., 2000). Probably all anti-

proliferative signals are caused by the pRb and its two relatives p107 and p130. In its 

hypophosphorylated stage, pRb is inactive and blocks the progression from G1 to S 

phase by altering the function of E2F transcription factors (Hanahan, et al., 2000). Thus 

proliferation is inhibited (Figure 3). For G1 to S phase transition, pRb has to be 

phosphorylated by Cyclin/Cyclin-dependent kinases (Cdks). The phosphorylation 

allows E2F to interact with transcription co-activators and to initiate messenger 

ribonucleic acid (mRNA) synthesis (Weinberg, 1995). In contrast to this acquisition, 

TGFβ inhibits G1 progression by preventing pRb phosphorylation (Hanahan, et al., 

2000). TGFβ also suppresses c-Myc which blocks Cyclin-Cdk complexes and therefore 

no pRb phosphorylation and no proliferation occurs (Datto, et al., 1997).  

The insensitivity to antigrowth factors in different types of cancer can depend on the 

following mechanisms that interrupt the pRb pathway, as well as to a variety of other 

mechanisms regarding the pRb signalling circuit (Fynan, et al., 1993). For example 

TGFβ responsiveness can be lost through down-regulation of TGFβ receptors or the 

receptors themselves can be mutated (Markowitz, et al., 1995). Also, a loss of pRb 

function can be generated by a mutation of its gene. PRb is lost in retinoblastomas and 

altered in 5-10 % of all other cancers (Stewart, et al., 2003). Regarding the c-Myc 

oncoproteine an overexpression is noticed in many tumors. C-Myc stimulates growth, 

but during normal development the protein is associated with the Mad-Max complex 

which finally leads to differentiation-inducing signals (Foley, et al., 1999). An 

overexpression of c-Myc thus promotes growth and increases differentiation.  
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Cell cycle and cancer 

The cell cycle plays an important role in tumor development and cancer therapy, 

because cancer is a result of an imbalance between DNA damage, repair and apoptosis. 

This mismatch leads to uncontrolled cell growth. The cell cycle describes the 

proliferation process from one cell to two daughter cells. This process is subdivided into 

four phases: G1, S, G2 and M (Pecorino, 2008) (Figure 3). M (mitosis) phase and S 

(synthesis) phase are separated by gap phases G1 and G2 (Stewart, et al., 2003).  

 

 

Figure 3 Cell cycle (own figure, based on Pecorino, 2008) 

Cyclin-Cdk activity and checkpoints of the cell cycle 
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passes the checkpoint and enters the S phase (World Cancer Research Fund 

International, 2007). Otherwise, the cell cycle will be arrested to stop replicating the 

DNA damage (Pecorino, 2008). During the S phase the two copies of every 

chromosome replicate and become four copies of each. After the synthesis phase, the 

cells continue with a gap phase (G2), in which the cells grow and synthesise proteins 

(World Cancer Research Fund International, 2007). After passing checkpoint G2 

(ensure no DNA damage or unreplicated DNA is generated), the cells enter the M 

phase, where they divide in two new cells with two copies of chromosomes each 

(Pecorino, 2008). The M phase also contains a checkpoint which arrests the cell cycle if 

the DNA of a daughter cell is damaged (World Cancer Research Fund International, 

2007) or in case of misalignment on the mitotic spindle (Pecorino, 2008). Every failure 

of a checkpoint function results in DNA-mutations which can induce carcinogenesis 

(Pecorino, 2008).  

Because each cell that enters the cell cycle undergoes several serious challenges like 

completing DNA synthesis, proofreading and correcting synthesized DNA (Stewart, et 

al., 2003), the cell cycle is controlled by Cyclins and their specific Cdks (Pecorino, 

2008). Complexes of Cyclins and Cdks activate transcription factors, which themselves 

activate Cyclin genes and other genes which products are needed for the next phase of 

the cell cycle (World Cancer Research Fund International, 2007). The first Cyclin 

established in the cell cycle is called Cyclin D. Cyclin D and the Cdks 4 and 6 result in 

passing the cell through G1. Cyclin D is also responsible for the Cyclin E gene 

expression, whose product is liable for the transition from G1 to S phase, as illustrated 

in Figure 3. According to this mechanism, Cyclin A and Cdk2 are responsible for 

passing the S phase and Cyclins A, B and Cdk1 for transition from G2 to M phase, also 

presented in Figure 3 (Pecorino, 2008). 

During lifetime approximately 10
16

 cell divisions proceed. As the DNA is permanently 

exposed to genotoxic, epigenetic or endogenous substances damaging the DNA, each of 

these divisions has the chance for failures in the replicated DNA. This may lead to non-

functionating genes and further to altered proteins (World Cancer Research Fund 

International, 2007).  
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2.2.3 Evading apoptosis 

Definition  

Apoptosis is defined as the programmed cell death. Unwanted cells are eliminated 

through apoptosis, a process which can be subdivided in three phases: regulation, 

effector phase and engulfing (Strasser, et al., 2000). It is a program of steps including 

disruption of cellular membranes, break down of cytoplasmic and nuclear skeletons, 

chromosome degradation, nucleus fragmentation and extruded cytosol (Hanahan, et al., 

2000). The shrivelled cell corpse is interlocked by nearby cells and disappears (Wyllie, 

et al., 1980). Apoptosis differs from necrosis morphologically and functionally (Figure 

4). In apoptosis only single cells are involved and it does not cause inflammation. 

Apoptosis is initiated usually when abnormalities like DNA damage, signalling 

imbalance as a result of oncogene activation, lack of survival factors or presence of 

hypoxia are registered (Evan, et al., 1998). Therefore apoptosis maintains tissue 

integrity and protects the cell from cancer (World Cancer Research Fund International, 

2007).  

 

 

 

Figure 4 Apoptosis and necrosis characteristic morphological changes (own figure, based on Stewart, et 

al., 2003) 
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Mechanisms 

Pathways leading to apoptosis are also included in cell proliferation, differentiation, 

response to stress and homeostasis (Stewart, et al., 2003). Two pathways, an extrinsic 

and an intrinsic pathway that induce apoptosis, are known (Pecorino, 2008).  

The extrinsic pathway leads to apoptosis by activation of cell death receptors, including 

the activity of sensors. Sensors are described as components which evaluate the 

extracellular and intracellular environment and if necessary activate regulators and 

effectors of the apoptosis pathway (Hanahan, et al., 2000). Sentinels of this pathway are 

survival or death factor binding cell surface receptors. Survival signals are interfered by 

insulin-like growth factors (IGF-1/IGF-2) through their receptor IGF-1R and by 

interleukin-3 (IL-3) and the IL-3 receptor (Butt, et al., 1999), whereas death signals can 

be triggered by the FAS ligand binding FAS receptor or by the tumor necrosis factor α 

(TNF α) binding TNF-R1 (Ashkenazi, et al., 1999). After ligand binding to the cell 

surface receptor FAS, also called CD95 receptor, the death domain interacts with the 

FAS-associated death domain protein (FADD) molecule and afterwards binds 

procaspase 8. In case of the TNF-receptor, the death domain interacts with the 

intracellular adaptor protein TRADD (TNF receptor-associated death domain protein). 

Caspase 8 activates itself by self-cleavage and induces apoptosis by activating caspase 3 

through cleaving the procaspase (Pecorino, 2008) (Figure 5). All caspases are effectors 

of apoptosis (Thornberry, et al., 1998). Caspase 8 and caspase 9 are called 

“gatekeepers” because they are activated by the death receptor FAS and cytochrome c 

(Hanahan, et al., 2000).  

The intrinsic pathway also leads to the activation of caspase 3 by affecting the 

mitochondria through stimuli from inside the cell, like DNA damage or oxidative stress 

(Pecorino, 2008). It responds with the release of cytochrome c, when converged by 

signals that provoke apoptosis (Green, et al., 1998). These pro-apoptotic signals are 

often mediated by members of the B-cell lymphoma 2 (Bcl-2) family (Gross, et al., 

1999). For example Bax, Bak, Bid and Bim have pro-apoptotic effects, whereas other 

members of this family have anti-apoptotic effects (Bcl-2, Bcl-XL, Bcl-W). Bcl-2 and 

Bcl-XL are located in the outer mitochondrial membrane (Stewart, et al., 2003), 

whereas Bax can be influenced by the tumor suppressor protein p53 which up-regulates 

the expression of Bax and induces the translocation of Bax from cytosol to the 

http://en.wikipedia.org/wiki/Interleukin_3
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mitochondria. There, cytochrome c is released as consequence of the translocation 

(Hanahan, et al., 2000). Caspases, which are playing a very important role in effecting 

apoptosis (Thornberry, et al., 1998) are activated by assembling a complex of apoptotic 

protease activating factor-1 (Apaf-1), procaspase 9 and adenosine-5'-triphosphate 

(ATP). Thus, caspase 9 leads to the activation of caspase 3, which induces apoptosis 

(Stewart, et al., 2003).  

Also there are interactions between the two pathways. Caspase 9 for example is able to 

activate caspase 8 (Stewart, et al., 2003). Also caspase 8 is able to activate Bid (pro-

apoptotic), which can stimulate the intrinsic pathway of apoptosis by activating Bax and 

Bak resulting in cytochrom c release and finally caspase 9 activation (Pecorino, 2008). 

 

 

Figure 5 Intrinsic and extrinsic apoptotic pathway (Stewart, et al., 2003) 
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Apoptosis and tumor development 

Hanahan and Weinberg (2000) assume that almost all cancer cells contain alterations to 

evade apoptosis (Hanahan, et al., 2000). The cell cycle is screened by tumor suppressor 

proteins and most cells that gain carcinogenic capacities are eliminated by apoptosis. 

But if tumor suppressor genes acquire mutations, the cells escape from the apoptotic 

pathways, survive and proliferate. In addition further mutations accumulate (Pecorino, 

2008).  

P53, a tumor suppressor gene, is mutated in more than 50 % of all cancers. In 

consequence DNA damage is not detected anymore and the apoptosis effector cascade 

is not induced (Harris, 1996). Also, the phosphatidylinositol 3-kinase (PI3-kinase)-

AKT/protein kinase B (PKB) pathway decreases apoptosis in several human cancers, by 

transmitting anti-apoptotic survival signals. This pathway can be induced by 

extracellular factors like IGF-1/2 or IL-3 (Evan, et al., 1998) or intracellular by Ras 

(Downward, 1998). Also, the loss of the pTEN tumor suppressor, which usually 

weakens the AKT survival signal, can activate this pathway (Cantley, et al., 1999). 

Another mechanism in lung and colon carcinoma cell lines leading to inhibition of 

apoptosis is the up-regulation of a decoy receptor for the FAS ligand, which results in 

blocking the death-inducing signal from the FAS death receptor (Pitti, et al., 1998).If 

Bcl-2, a proto-oncogene, is activated and becomes an oncogene, Bcl-2 is over-expressed 

and thus decreases the apoptotic turnover (Pecorino, 2008). Hence Bcl-2 is connected to 

carcinogenesis.  

2.2.4 Limitless replicative potential 

Probably all mammalian cells only have the potential to replicate 60 to 70 times until an 

autonomous program lead to senescence (permanent growth arrest) and thus protects the 

cells from unlimited proliferation (Hanahan, et al., 2000). Every time the cell passes the 

cell cycle, the telomeric DNA diminishes. If telomeres are too small to protect the 

DNA, the cell undergoes apoptosis (Counter, et al., 1992). However, in cancer cells 

telomeric maintenance exists (Shay, et al., 1997) which admits unlimited proliferation 

(Hanahan, et al., 2000).  
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2.2.5 Sustained angiogenesis 

Nutrients and oxygen are required for the proliferation of cells, including tumor cells. 

Angiogenesis is defined as the growth of new vessels with the objective to provide 

adequate supply of nutrients and oxygen for cancer cells through capillaries. Thus, 

angiogenesis is required for an invasive growth of the tumor (Karlson, et al., 2005) and 

increases the chance of generating metastasis (Fidler, et al., 1994). Therefore, 

proliferation and migration of endothelial cells, proteolysis of the extracellular matrix 

and synthesis of new matrix components are needed (Stetler-Stevenson, 1999). In 

healthy adults angiogenesis is induced as consequence of a pathologic situation like 

inflammation or hypoxia (Stetler-Stevenson, 1999) and under this condition inducers of 

angiogenesis and inhibitors are arranged in balance (Hanahan, et al., 2000). However, 

tumor cells secrete angiogenic growth factors, which block inhibitors of angiogenesis 

(Folkman, 1995). Signals promoting angiogenesis are the vascular endothelial growth 

factor (VEGF) and the fibroblast growth factor (FGF 1/2). Both bind to transmembrane 

tyrosine kinase receptors displayed by endothelial cells (Veikkola, et al., 1999).  

2.2.6 Tissue invasion and metastasis 

As a consequence of the tumor reaching the membrane encapsulating the organ, serine- 

and metalloproteases are secreted by cancer cells for further growth of the tumor 

(MacDougall, et al., 1995). These proteases digest the membrane and allow cancer cells 

to invade to nearby tissues and to spread all over the body by using the blood and 

lymphatic system (World Cancer Research Fund International, 2007). Beside proteases 

classes of proteins are also involved in invasion and metastasis (Hanahan, et al., 2000). 

Cell-to-cell adhesion molecules (CAM) and integrins, which link cells to the 

extracellular matrix, are noticed to be altered in metastatic tumors. Another well-

documented alteration affects the adhesion molecule E-cadherin. E-cadherin normally 

results in conveyance of anti-growth (Christofori, et al., 1999), but a mutation of the 

gene that encodes for E-cadherin is found in a majority of epithelial cancers. Thus, no 

release of anti-growth signals occurs in these cancers. Once cancer cells escape from the 

origin organ and intravasated into the blood or lymphatic system, the cells stick to the 
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endothelial tissue and extravasate from the vessels into the target tissue (Karlson, et al., 

2005). Again, angiogenesis is needed for accretion of the metastatic colony (Löffler, et 

al., 1997). 

2.3 Leukaemia 

Leukaemia is defined as the neoplastic proliferation of lymphoid or myeloid cells of the 

haematopoietic system (Freireich, et al., 1991). The incidence is about one to twelve 

cases in 100,000 people. Interestingly the incidence in industrialized countries is higher 

than in developing countries (Stewart, et al., 2003). The chance of getting leukaemia is 

the highest in the first four years of life. People affected with leukaemia have a five year 

survival rate of approximately 40 % in industrialized countries, whereas in low-income 

countries the survival rate is about 20 % (Parkin, et al., 2005). Leukaemia is associated 

with risk factors including tobacco use, infection with human T-cell leukaemia virus, 

radiation and benzene (IARC International Agency for Research on Cancer, 1987). 

Subcategories of the generic term leukaemia are: acute lymphoblastic leukaemia (ALL) 

which especially occurs in children, acute myeloid leukaemia (AML) which is the 

predominant form of the disease in adults, chronic myelogenous leukaemia (CML) and 

chronic lymphocytic leukaemia (CLL), which is the usual type of leukaemia in patients 

over 50 years of age.  

HL-60 cells, which are used for analysing the anti-cancer effect of P. odorata and S. 

spinosa in the present study, are a subtype of AML.  

2.4 Investigated activity of two ethnomedical plants from Guatemala 

Ethnomedicine is defined as the use of plants as medicine. Fabricant et al. (2001) 

describes ethnomedicine as “highly diversified approach to drug discovery”. It involves 

observation, description, and experimental investigation of indigenous drugs for their 

possible biological or medicinal activity. The plants are selected by their botany, 

chemistry, biochemistry and/or pharmacology character. The selected plants are often 

used in traditional medicine for hundreds of years (Fabricant, et al., 2001), which is the 

reason why no or only little toxic effects in humans are expected. Especially in Africa 
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and South America traditional medicine is advised by a shaman or herbalist. He often 

keeps the use of the healing plants as a secret (Rastogi, et al., 1982). Therefore, not 

much is known about the plants used by humans for thousands of years and thus this is a 

great potential for drug development. Until now, only 6 % of higher plant species have 

been screened for their biologic activity (Fabricant, et al., 2001). But with focus on 

plants used in traditional medicine, the screening can be done more efficiently as it is a 

very expensive and time consuming work. For example in 1991 in the United States 

only one out of 10,000 pure compounds reached the U.S Drug Administration. The 

process costed $231 million and took ten years (Vagelos, 1991). By now most of the 

investigated plant species were tested towards their anti-cancer or anti-HIV activity 

(Fabricant, et al., 2001).  

 

The anti-neoplastic activity of P. odorata is described by Gridling et al. (2009) and 

Bauer et al. (2010). Both describe an impressive effect of the dichloromethane extract in 

HL-60 and MCF-7 cells. Gridling et al. (2009) first investigated the anti-cancer activity 

of P. odorata and started with the extraction of the plant. The apolar constituents 

contained in the dichloromethane extract showed anti-proliferative (cell cycle arrest in 

G2-M phase) and pro-apoptotic (caspase 3 activation) effects in both cell lines. They 

also led to the inhibition of inflammatory responses and exhibition of the anti-cancer 

activity (Grindling, et al., 2009). Bauer et al. (2010) further investigated the 

dichloromethane extract of P. odorata by using bioassay-guided fractionation. The three 

most active fractions of this fractionation process were highly apolar. Here the most 

significant anti-proliferative activity was observed at a concentration of 3 µg/ml 

medium after 72 hours of incubation in HL60 cells. A down-regulation of Cyclin D1 

and cell division control(Cdc)25A in HL-60 cells was triggered by these apolar 

fractions, which is described as the mechanism for the anti-proliferative activity 

measured in proliferation assays, because the two down-regulated oncogenes are known 

as cell-cycle protagonists (Bauer, et al., 2010).  

 

About the second plan, S. spinosa, not much is known yet. Until now only few 

pharmacological effects of Smilax sp. are investigated in clinical trials (Taylor, 2005). 

Smilax regelii for example has an antimicrobial activity against Shigella dysenteria 

(Caceres, et al., 1990) and a Smilax glabra extract had a immunmodulatory activity in 
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rats by decreasing the IL-1-, TNF- and NO-release of macrophages (Jiang, et al., 2003). 

Smilax regelii (syn. Sarsaparille) is probably the most common genus of Smilax. It is 

mostly applicated internally, it is for example known as medicament against arthritis, 

rheumatism (both causing inflammation), against psoriasis or dermatitis (skin 

disorders), against impotence or as a blood purifier (Taylor, 2005). An excessive dosage 

of Smilax regelii is said to cause gastrointestinal irritation (Taylor, 2005), but it is also 

active against snake bites (Alam, et al., 1998). 

Smilax sp. (including sarsaparilla) species are especially known as saponin and other 

plant steroids containing plants. They can be synthesized into human steroids such as 

estrogen and testosterone. Also the majority of Smilax regelii‟s activities are reported to 

be caused by these steroids and saponins (Taylor, 2005). Navarro et al. (2003) 

investigated the methanol extract of S. spinosa for their ability to render DPPH, OH
.
 and 

O
2-

 radicals innocuous and inhibit lipoperoxidation. S. spinosa showed a significant 

activity for all the above listed mechanisms and it was also active against Salmonella 

typhi and Trypanosoma cruzi. Therefore the methanol extract has an anti-oxidative and 

antimicrobial activity (Navarro, et al., 2003). 

As S. spinosa was not yet investigated towards its anti-neoplastic activity, the present 

work was conducted to analyse the oncolytic effects on HL-60 cells.  

http://dict.leo.org/ende?lp=ende&p=Ci4HO3kMAA&search=innocuous&trestr=0x8002
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3 Materials and methods 

3.1 Plant material 

3.1.1 P. odorata 

  

 

Figure 6 P. odorata plant and flower (National Park Service, 2010) 

Kingdom: Plantae 

Division: Magnoliophyta 

Class:  Magnoliopsida 

SuBclassis: Asteridae 

Order:  Asterales 

Family: Asteraceae 

Genus:  Pluchea cass. 

Species: Pluchea odorata (L.) cass.  

(Natural Resources Conservation Service, 2010) 

 

P. odorata is also called saltmarsh fleabane, sweet-scent or Santa María. The plant is 

distributed in North and South America in the following countries: USA, Mexico, 

Belize, Guatemala, Panama, Cayman Islands, Guadeloupe, Jamaica, Puerto Rico, St. 

Lucia, Venezuela and Ecuador (GRIN Germplasm Resources Information Network, 

2004). P. odorata grows up to 3 m. Its usual places of location are clearings or edges of 

the forest. The harsh plant-leaves smell oregano-like (Arvigo, et al., 1994) and flowers 
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of P. odorata look pink. In traditional medicine P. odorata is used for therapy of 

common cold, fever, flu, head colds, headache, hypertension, neuralgia, ophthalmia, 

palsy, pneumonia and snake bite (Arvigo, et al., 1994). Further the plant is described as 

being antidote, astringent, diaphoretic, emmenagogue, haemostat and stomachic 

(Johnson, 1999), as well as traditionally used by mothers after giving birth to decrease 

the risk for infections and conveyance of tissue recovery and for abatement of arthralgia 

(Arvigo, et al., 1994). P. odorata is also traditionally used by the Mayas to treat 

swellings, inflammation, and bruises on the skin. The medical solution is prepared by 

boiling two handfuls of leaves in one gallon of water and then it is frequently applied on 

the affected area until the inflammation subsides (Balick, et al., 2005).  

 

For this research the aerial parts (leaves, caulis, florescence) of P. odorata were 

collected in Guatemala, Departamento Petén, in the north-western area of Lago Petén 

Itzá, San José, (16 59'30" N, 89 54'00" W). 6 kg of air dried plant material have been 

extracted with dichloromethane by Björn Feistel (Finzelberg GmbH & Co.KG, 

Andernach, Germany), preserved and transported to Vienna, where the investigation of 

the present work took place. Voucher specimens Nr. 1-2009 08. 04. 2009 were archived 

at the Museum of Natural History, Vienna, Austria, leg. G. Krupitza & R. O. Frisch. 

3.1.2 S. spinosa 

  

 

Figure 7 S. spinosa leave (Paton, et al., 2010) and root (own picture) 

 

 

http://dict.leo.org/ende?lp=ende&p=Ci4HO3kMAA&search=abatement&trestr=0x2001
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Kingdom: Plantae 

Division: Magnoliophyta 

Class:  Liliopsida 

Order:  Liliales 

Family: Smilacaceae 

Genus:  Smilax 

Species: Smilax spinosa 

(IABIN Red Interamericana de Información sobre Biodiversidad, 2010) 

 

Until now more than 200 Smilax species are identified, which makes the classification 

of each plant of the Smilax genus very difficult. In western literature not much is known 

about S. spinosa, which is the reason for general description of the Smilax genus 

(Smilax sp.). Smilax sp. is a vine growing in forests and undisturbed areas, reaching up 

to 6 m. The flowers of Smilax sp. are green and small and its fruits are 5-10 mm brown 

berries. The leaves are lanceolate, 9 cm long by 5 cm wide, and look shiny and smooth 

with paired tendrils at the axil (Arvigo, et al., 1998). Smilax sp. occurs in pantropical to 

temerate climate (Missouri Botanical Garden, 2010) especially in South America, 

Jamaica, the Caribbean, Mexico, Honduras, and the West Indies (Taylor, 2005). Many 

Smilax species contain stems covered with prickles. The long and tuberous root is 

spreading 6-8 feet wide, is odourless and almost tasteless (Taylor, 2005). Traditionally 

the root is used against fatigue, anaemia, acidity, toxicity, rheumatism and for skin 

conditions by boiling a small handful of minced root in three cups of water. If 

cinnamon, milk and nutmeg are added, it is said to have a positive influence on the 

proliferation of red blood cells. Two other ways of preparing the traditional medicine 

are described by Arvigo, et al.(1998). One recipe leads to a drinkable mixture by boiling 

a handful of the root with three cloves of garlic and three hibiscus flowers (unopened) 

for ten minutes. This mixture is said to stop internal haemorrhaging, which occurs after 

childbirth or during menstruation. The other recipe, used against male impotency, 

includes a handful of root and guinweo (a local plant) both soaked in rum and applied in 

shots twice a day (Arvigo, et al., 1998). Already in 1536 a Smilax root from Mexico was 

introduced into European medicine to treat syphilis and rheumatism. This is the time 

when the long history of the Smilax roots for syphilis and other sexually-transmitted 

diseases started (Taylor, 2005).  

http://plants.usda.gov/java/ClassificationServlet?source=profile&symbol=Magnoliophyta&display=63
http://zipcodezoo.com/Key/Plantae/Liliopsida_Class.asp
http://plants.usda.gov/java/ClassificationServlet?source=profile&symbol=Liliales&display=63
http://plants.usda.gov/java/ClassificationServlet?source=profile&symbol=Smilacaceae&display=63
http://plants.usda.gov/java/ClassificationServlet?source=display&classid=SMSM
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For the present work, the rhizome of S. spinosa was collected in Playa Diana, San José, 

Petén, Guatemala (16 59'30" N, 89 54'00" W). The root was dried and brought to 

Vienna, Austria. Voucher specimens Nr. 4-2009 19. 04. 2009 were archived at the 

Museum of Natural History, Vienna, Austria, leg. G. Krupitza & R. O. Frisch, det. 

B.Wallnöfer (W), 26. 01. 2010. The plant was ground before the extraction and analyses 

of the anti-neoplastic activity were performed. 

3.2 General methods 

3.2.1 Thin layer chromatography (TLC) 

Thin layer chromatography (TLC) was used for detecting the best solvent combination 

for vacuum liquid chromatography (VLC) or column chromatography (CC), or as a 

finger print of new fractions. Stationary phase and mobile phases are described in Table 

1. The mobile phase varied between six solvent systems. Plates were detected under 

UV254, UV366 and visible light, before and after spraying with anisaldehyd sulphuric 

acid reagent (ASR). ASR consisted of 0.5 ml anisaldehyd, 10 ml glacial acetic acid, 

85 ml methanol and 5 ml H2SO4 (sulfuric acid). The sprayed plate was heated at 100 °C 

for five minutes and then compounds were detected at UV and visible light. Unless 

otherwise stated 8 µl extract or fraction were applied to the plate.  
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Table 1 Stationary phase, mobile phases and detection methods used for TLC 

Stationary phase  silica gel plates 60 F254 (Merck, Darmstadt, Germany) 

Mobile phase 

  

 TLC system 1: chloroform: methanol: water  90:22:3.5 

 TLC system 2: chloroform: methanol: water  90:3.5:0.2 

 TLC system 3: chloroform: methanol: water  70:30:10 

 TLC system 4: dichloromethane: ethyl acetate 80:20 

 TLC system 5: dichloromethane: ethyl acetate 85:15 

 TLC system 6: chloroform: methanol: water  70:22:3.5 

Detection 

 

 UV254, UV366, visible light 

 Anisaldehyd sulphuric acid reagent (ASR) 

 

3.2.2 Cell culture 

HL-60 (human promyelocytic leukaemia cell) cells were purchased from American 

Type Culture Collection (ATCC). The cells were grown in RPMI 1640 medium which 

was supplemented with 10 % heat-inactivated fetal calf serum (FCS), 1 % Glutamax 

and 1 % Penicillin-Streptomycin. Both medium and supplements were obtained from 

Life Technologies. The cells were kept in humidified atmosphere at 37 °C containing 

5 % CO2.  

 

 

Figure 8 Cell culture work (left), HL-60 cells (right) (own pictures)       
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3.2.3 Proliferation assay 

Proliferation assays were performed to analyse the inhibition of proliferation of HL-60 

cells treated with an extract or fraction of P. odorata or S. spinosa. Extracts and 

fractions were either dissolved in preferably small amounts of 96 % ethanol in the case 

of P. odorata or dimethyl sulfoxide (DMSO) in the case of S. spinosa. HL-60 cells were 

seeded in 24-well plates at a concentration of 1 x 10
5
 cells per ml RPMI medium, 

allowing logarithmic growth within 72 hours. Afterwards the cells were treated with at 

least one concentration of a plant extract or fraction. Each experiment was carried out in 

triplicate. The control was only treated with 96 % ethanol (in P. odorata experiments) 

or DMSO (in S. spinosa experiments) in the concentration of the highest extract or 

fraction concentration. After 24, 48 and 72 hours the number of cells was determined 

using the Sysmex Cell Counter (Sysmex Corp., Japan). Percentage of cell division 

progression compared to the untreated control was calculated by applying the following 

formula:  

 

Table 2 Explanation of the formula used for calculation of proliferation assay data 

Calculation Description 

C48 or 72h  + drug Cell number after 48 or 72 h of drug treatment 

C24h    + drug Cell number after 24 h of drug treatment 

C48 or 72h  - drug Cell number after 48 or72 h without drug treatment 

C24h    - drug Cell number after 24 h without drug treatment 

 

3.2.4 Apoptosis assay 

Determination of cell death by Hoechst 33258 (HO) and propidium iodide (PI) double 

staining (both Sigma, St. Louis, MO) allows identifying the amount and the type of cell 

death (early or late apoptosis or necrosis). Therefore HL-60 cells were seeded in a 24-

well plate at a concentration of 1 x 10
5
 cells per ml RPMI medium. Cells were treated 

with at least one concentration of a fraction or extract of P. odorata or S. spinosa, 
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whereas the control was only treated with 96 % ethanol in P. odorata experiments or 

DMSO in S. spinosa experiments in the concentration of the highest extract or fraction 

concentration. The cells were incubated for 8, 24, 48 and/or 72 hours, depending on the 

experiment. At each time point 100 µl cell suspension of each well were transferred into 

separate wells of a 96-well plate and Hoechst 33285 and propidium iodide were added 

at final concentrations of 5 µg/ml and 2 µg/ml, respectively. After one hour of 

incubation at 37 °C, stained cells were examined and photographed on a fluorescence 

microscope (Axiovert, Zeiss) equipped with a DAPI filter. Type and number of cell 

deaths were evaluated by visual examination of the photographs according to the 

morphological characteristics revealed by HOPI staining. Experiments were done in 

triplicate.  

 

 

Figure 9 Fluorescence microscope (Axiovert, Zeiss) (own picture) 

3.2.5 Western Blotting 

3.2.5.1 Preparation of lysates 

HL-60 cells were seeded in a tissue culture flask at a concentration of 1 x 10
6
 cells per ml 

RPMI medium. P. odorata fractions F1, F4.6.3 and F5.3.6.7 and the water-methanol 

fraction (achieved from the detannification process) of S. spinosa were analysed by 

western blots. HL-60 cells were either incubated with 40 µg/ml F1 or with 10 µg/ml of 

one of the other two P. odorata fractions or with 120 µg/ml of the S. spinosa extract for 
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0.5, 2, 4, 8 and 24 hours. At each time point, 4 x 10
6
 cells were harvested, placed on ice 

and centrifuged (1000 rpm, 4 °C, 4 min). Then, the supernatant (medium) was discarded 

and the pellet was washed twice with cold phosphate buffered saline (PBS, pH 7.2), and 

centrifuged (1000 rpm, 4 °C, 4 min). The cell pellet was lysed in a buffer containing 

150 mM NaCl, 50 mM Tris (pH 8.0), 1 % Triton-X-100, 1 mM phenylmethylsulfonyl 

fluoride (PMSF) and 1 mM protease inhibitor cocktail (PIC) (Sigma, Schnelldorf, 

Germany). Afterwards the lysate was centrifuged at 12000 rpm for 20 min at 4 °C. 

Supernatant was transferred into a 1.5 ml tube and stored at -20 °C for further analyses. 

3.2.5.2 Gel electrophoresis (SDS-PAGE) and blotting 

Equal amounts of protein samples (lysate) were mixed with sodium dodecyl sulfate 

(SDS) sample buffer (1:1) and loaded onto a 10 % polyacrylamide gel. Proteins were 

separated by polyacrylamide gel electrophoresis (PAGE) at 120 Volt for approximately 

one hour. To make proteins accessible to antibody detection, they were 

electrotransferred from the gel onto a polyvinylidene difluoride (PVDF) Hybond 

membrane (Amersham, Buckinghamshire, UK) at 95 Volt for 80 minutes. Membranes 

were allowed to dry for 30 minutes to provide fixing of the proteins on the membrane. 

Methanol was used to remoist the membranes. Equal sample loading was checked by 

staining the membrane with Ponceau S (Sigma).  

3.2.5.3 Protein detection 

After washing with PBS or TBS (tris buffered saline, pH 7.6), membranes were blocked 

in PBS- or TBS-milk (5 % non-fat dry milk in PBS containing 0.5 % Tween 20 or TBS 

containing 0.1 % Tween 20) for one hour at room temperature. Then membranes were 

washed with PBS/T (PBS containing 0.5 % Tween 20) or TBS/T (TBS containing 

0.1 % Tween 20), changing the washing solution four to five times every five minutes. 

Then every membrane was incubated with a primary antibody (1:500) in blocking 

solution (according to the data sheet TBS-, PBS- milk or TBS-, PBS- BSA), at 4 °C 

over night gently shaking. Subsequently the membrane was again washed with PBS/T 

or TBS/T, and incubated with the second antibody (peroxidase-conjugated goat anti-
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rabbit IgG or anti-mouse IgG) diluted 1:2000 for one hour at room temperature. After 

washing the membranes chemiluminescence was developed with enhanced 

chemiluminescence (ECL) plus detection kit (Amersham, UK) (two seconds to ten 

minutes) and membranes were exposed to the Lumi-Imager TM F1 (Roche) for 

increasing times.  

3.2.5.4 Antibodies 

Table 3 Antibodies used for western blots P. odorata fractions and S. spinosa extracts 

Antibody Description 
Pluchea  

odorata 

Smilax 

spinosa 

    Anti-acetylated tubulin 

clone6-11B-1 

Monoclonal mouse ascites fluid, product no. 

T6793 (Sigma) 
P S 

α tubulin (DM1A) 
Sc-32293, monoclonal mouse (Santa Cruz 

Biotechnology, Inc.) 
P S 

β tubulin (H-235) 
Sc-9104, polyclonal rabbit (Santa Cruz 

Biotechnology, Inc.) 
P S 

Anti-H2AX (pSer139) Mouse, DR 1017 (EMD Chemicals) P S 

Cleaved caspase 3 

(Asp175) 
Polyclonal rabbit, #9661 (Cell Signaling) P S 

Cleaved caspase 8 

(Asp391) 

18C8 Rabbit mAb, monoclonal rabbit, #9496 

(Cell Signaling) 
P S 

Cleaved caspase 9 

(Asp330) 

Human Specific, polyclonal rabbit, #9501 

(Cell Signaling) 
P S 

PARP-1 (F-2) 
Sc-8007, monoclonal mouse (Santa Cruz 

Biotechnology, Inc.) 
 S 

Phospho-Stat3 

(Tyr705)(D3A7) 
Monoclonal rabbit, #9145 (Cell Signaling) P S 

Stat3 Polyclonal Rabbit, #9132 (Cell Signaling) P S 

Phospho-Stat5 

(Tyr694)(C11C5)  
Monoclonal rabbit, #9359 (Cell Signaling)  S 

Stat5 (C-17) 
Sc-835, polyclonal rabbit (Santa Cruz 

Biotechnology, Inc.) 
 S 

c-Jun (H-79) 
Sc-1694, polyclonal rabbit (Santa Cruz 

Biotechnology, Inc.) 
P S 

Jun b (210) 
Sc-73, polyclonal rabbit (Santa Cruz 

Biotechnology, Inc.) 
P S 
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c-Myc Ab-2 (9E10.3) 
#MS-139-P1, monoclonal mouse (Thermo 

Fisher Scientific, Inc.) 
P S 

p21 (C-19) 
sc-397, polyclonal rabbit (Santa Cruz 

Biotechnology, Inc.) 
 S 

pChk2 (Thr68) Polyclonal rabbit, #2661 (Cell Signaling) P  

Chk2 
Polyclonal rabbit, #2662 (Cell Signaling) 

 
P  

pCdc25A-S177 
Antibody, polyclonal rabbit, Cat. #AP3046a 

(Abgent) 
P S 

Cdc25A (F-6) 
sc-7389, monoclonal mouse (Santa Cruz 

Biotechnology, Inc.) 
P S 

Cyclin D1 (M-20) 
Sc-718, polyclonal rabbit, (Santa Cruz 

Biotechnology, Inc.) 
 S 

Paxillin (H-114) 
Sc-5574, polyclonal rabbit, (Santa Cruz 

Biotechnology, Inc.) 
P  

ROCK-1 (C8F7) 
Monoclonal rabbit, #4035 (Santa Cruz 

Biotechnology, Inc.) 
P  

Phospho-Myosin Light 

Chain 2 (Ser19) 
Polyclonal rabbit, #3671 (Cell Signaling) P  

Myosin Light Chain 2 Polyclonal rabbit, #3672 (Cell Signaling) P  

Phospho-MYPT1 

(Thr696) 

Rabbit polyclonal IgG, Cat. # 07-251 

(upstate cell signalling solutions) 
P  

MYPT1 Polyclonal rabbit, #2634 (Cell Signaling) P  

β actin (AC-15) 
monoclonal mouse ascites fluid, Cat. No. 

A5441 (Sigma) 
P S 

 

3.2.6 Statistical Analysis 

For statistical analyses Excel 2003 software and Prism 5 software package (GraphPad, 

CA, USA) were used. The values were expressed as mean ± standard deviation and the 

Student‟s T-test was applied to compare differences between control samples and 

treatment groups. Statistical significance level was set to p < 0.05. 
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3.3 Methods used for P. odorata 

In the following chapters the methods which were only used for analysing P. odorata 

are described.  

3.3.1 Chlorophyll Separation 

113.66 g of the dichloromethane extract (Björn Feistel, Finzelberg GmbH & Co.KG, 

Andernach, Germany) were divided into four parts. Every part was dissolved in 100 ml 

dichloromethane and mixed with 200 ml of a water-methanol mixture (1:1). After 

evaporation of dichloromethane at 40 °C and 600-800 mbar (Heidolph WB 2001) the 

remaining solution was filtered (Schleicher & Schuell, Microscience, 595, Ref Nr 

10311612 – diameter 150 nm). Collected insoluble chlorophyll of the four parts was 

combined and dissolved in 760 ml dichloromethane. Again the dichloromethane was 

evaporated like described above, as well as the water-methanol mixture at 40 °C and 

100-300 mbar. The chlorophyll part and the rest of the fraction were checked by TLC. 

3.3.2 Vacuum Liquid Chromatography (VLC) 

Vacuum liquid chromatography was used for separating large amounts of extracts or 

fractions (> 5 g) of P. odorata.  

3.3.2.1 VLC - fractionation of the chlorophyll-rich dichloromethane extract 

For better separation only one third of the dichloromethane extract with chlorophyll 

(most active substances were still contained in the chlorophyll part) was applied to the 

VLC column. The extract (36 g) was dissolved in dichloromethane, mixed with 70 g 

silica gel and evaporated (Heidolph WB 2001) to dryness. To obtain a homogenous 

powder it was refined in a mortar. The 12 x 40 cm column was packed with 900 g silica 

gel, the silica gel containing extract, and to ballast the powdered sample it was covered 

with sea sand. By applying vacuum the mobile phase was passed through the column. 

After checking the collected fractions by TLC, those with similar bands were reunited. 

Table 4 shows the mobile phases used. 
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Figure 10 VLC of the chlorophyll-rich dichloromethane extract (own picture) 

Table 4 Mobile phases used for VLC of the chlorophyll-rich dichloromethane extract 

Mobile phase Relation Volume (l) 

Petroleum ether  4 

Petroleum ether: chloroform 9 : 1 5 

Chloroform  12 

Chloroform: methanol  9 : 1 9 

Chloroform: methanol  7 : 3 9 

Chloroform: methanol 5 : 5 9 

Chloroform: methanol  3 : 7 9 

Chloroform: methanol  1 : 9 9 

Methanol  9 

 

3.3.2.2 VLC – fractionation of F1 

Approximately 10 g of F1 were dissolved in dichloromethane and applied to a 5 x 60 cm 

column to achieve a better separation compared to a column with a larger diameter and 

larger amount so substance. The established solution was mixed with silica gel and 

evaporated (Heidolph WB 2001) to dryness. After refining in a mortar it was placed on 
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top of the column and covered with silica gel. For elution of compounds the following 

mobile phases were used by applying vacuum (Table 5). Collected fractions were 

checked by TLC and similar fractions were reunited. 

Table 5 Mobile phases used for VLC of F1 

Mobile phase Relation Volume (l) 

Dichloromethane: hexan 8 : 2 2 

Dichloromethane  2 

Dichloromethane: ethyl acetate 8 : 2 1 

Dichloromethane: ethyl acetate 6 : 4 1 

Dichloromethane: ethyl acetate 4 : 6 1 

Dichloromethane: ethyl acetate 2 : 8 1 

Ethyl acetate  1 

Ethyl acetate: methanol  8 : 2 1 

Ethyl acetate: methanol 6 : 4 1 

 

3.3.3 Column chromatography (CC) and Thin Layer Chromatography 

(TLC) 

For fractions with less than 2 g CC without applying vacuum and once scraping the 

fraction off a TLC plate were conducted.  

3.3.3.1 CC – fractionation of F2.6 

For fractionation of F2.6 a column a 5 x 50 cm column was used. It was filled up with 

silica gel mixed with dichloromethane. On top of the silica gel the whole fraction, also 

dissolved in dichloromethane, was added slowly and afterwards covered with silica gel. 

Mobile phases used are shown in Table 6. 100 ml fractions were collected, checked by 

TLC and those with similar band patterns were reunited.  
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Table 6 Mobile phases used for CC of F2.6 

Mobile phase Relation Volume (l) 

Dichloromethane 100 % 1 

Dichloromethane: ethyl acetate 80 : 20 2 

Dichloromethane: ethyl acetate 60 : 40 1 

Dichloromethane: ethyl acetate  40 : 60 1 

Dichloromethane: ethyl acetate  20 : 80 1 

Ethyl acetate 100 % 1 

 

3.3.3.2 CC – fractionation of F3.2 

42.54 mg of F3.2 were separated by a 1 x 17 cm silica gel column. The column was 

packed with silica gel mixed with dichloromethane. Mobile phases were used as 

described in Table 7. Fractions were collected by hand, a few drops in each tube, 

depending on the solvent colour. Approximately ten drops per minute were collected. 

Again the new fractions were checked by TLC.  

Table 7 Mobile phases used for CC of F3.2 

Mobile phase Relation Volume (ml) 

Dichloromethane 100 % 60 

Dichloromethane: ethyl acetate 90 : 10 100 

Dichloromethane: ethyl acetate 80 : 20 100 

Dichloromethane: ethyl acetate 60 : 40 100 

 

3.3.3.3 CC – fractionation of F4.2.2 

12.15 mg of F4.2.2 were applied to a 1 x 12 cm column (trying to achieve a pure 

substance). Silica gel conditioned with dichloromethane was applied on top of the 

column. Fractions were collected by hand, a few drops in each tube, approximately ten 

drops per minute.  
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Table 8 Mobile phases used for CC of F4.2.2 

Mobile phase Relation Volume (ml) 

Dichloromethane 100 % 125 

Dichloromethane: ethyl acetate 90:10 100 

 

3.3.3.4 Scraped TLC of F5.2.2.1 

This method was conducted, because only a very small amount (6.9 mg) of F 5.2.2.1 

was left after column chromatography. Scraping the new fractions off the TLC plate 

was attempted to purify the main compounds of F5.2.2.1. For this method a silica gel 

TLC plate on a glass panel, measuring 20 x 20 cm, was utilized. F5.2.2.1 was dissolved 

in dichloromethane and applied to the centre of the plate, broadly based. As solvent  

TLC system 4 (dichloromethane: ethyl acetate, 80:20) was used. TLC was stopped after 

running three quarter over the plate. Under UV254 and UV366 four substances were 

detected, marked and scraped off with an applicator afterwards. The thus received 

compounds containing silica were resuspended in dichloromethane and centrifuged for 

ten minutes at 3000 rpm. The supernatant (dichloromethane and substance) was saved, 

whereas the pellet was again resuspended, centrifuged and again the supernatant was 

pooled. Dichloromethane was evaporated at 850 mbar and 40 °C (Heidolph WB 2001). 

The obtained substances were weighted.  

3.3.3.5 CC – fractionation of F3.3 

1.14 g of F3.3 were fractionated by a 3.5 x 40 cm column. Sephadex was used as 

stationary phase to eliminate the chlorophyll, because sephadex separates the 

compounds by molecular weight. The column was packed with sephadex mixed with 

methanol. On top of this the fraction dissolved in dichloromethane and methanol was 

applied slowly. To cover the dissolved fraction, some more sephadex was placed on top. 

Methanol was used as mobile phase. Fractions were collected in tubes, up to 15 ml in 

each tube, depending on the colour of the fractions. New fractions were checked by 

TLC and those with similar band patterns were reunited.  
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3.3.3.6 CC – fractionation of F4.3.1 

Since the previous column failed to separate F3.3, all fractions from column 3.3 were 

reunited again (F4.3.1) and applied to a 2 x 30 cm silica gel column. F4.3.1 was 

dissolved in dichloromethane, placed on top of the column and covered with silica gel. 

Mobile phases were used as illustrated in Table 9. New fractions were checked by TLC 

and those with similar band patterns were reunited.  

Table 9 Mobile phases used for CC of F4.3.1 

Mobile phase  Relation Volume (ml) 

Dichloromethane 100 % 500 

Dichloromethane: ethyl acetate 90 : 10 500 

Dichloromethane: ethyl acetate 80 : 20 500 

Dichloromethane: ethyl acetate 60 : 40 500 

Dichloromethane: ethyl acetate 40 : 60 500 

Dichloromethane: ethyl acetate 20 : 80 500 

Ethyl acetate 100 % 500 

 

3.3.3.7 CC – fractionation of F5.3.6.7 

145.64 mg of F5.3.6.7 were fractionated by a 80 x 1.5 cm column. Dichloromethane 

was used to dissolve the F5.3.6.7 and silica gel was also conditioned with 

dichloromethane. After applying the fraction on top of the silica gel, the fraction was 

again covered with silica gel. As mobile phase one litre solvent (chloroform: methanol: 

water, 95:1.5:0.1) was used, until no substances were eluted anymore. Afterwards the 

column was washed with 300 ml methanol. Fractions were collected in tubes, ten drops 

per minute, and every 30 minutes the tubes were changed. New fractions were checked 

by TLC and those with similar band patterns were reunited.  
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3.3.3.8 CC – fractionation of F3.6 

0.32 g of F3.6 were fractionated by a 2.5 x 40 cm column as described in chapter 3.3.3.5 

(CC – fractionation of F3.3.).  

3.3.3.9 CC – fractionation of F4.6.3 

F4.6.3 (very oily) was further fractionated, as it contained the highest anti-proliferative 

and pro-apoptotic activity. The 2.5 x 15 cm column was packed with silica gel 

conditioned with dichloromethane. The fraction on top was also dissolved in 

dichloromethane. First hexan was used as mobile phase to remove the oil. Since this 

was not successful, a solution of dichloromethane and hexan (70:30) was applied. 

Further solvent systems applied are shown in Table 10. The first four systems did not 

elute any substances, but the last solvent system was successful. New fractions were 

collected by a fraction collector, collecting ten drops per minute and changing the tube 

every 30 minutes. New fractions were checked by TLC and those with similar band 

patterns were reunited.  

Table 10 Mobile phases used for CC of F4.6.3 

Mobile phase Relation Volume (ml) 

Dichloromethane: hexan 70 : 30 300 

Dichloromethane 100 % 125 

Dichloromethane: ethyl acetate 80 : 20 300 

Dichloromethane: ethyl acetate 50 : 50 700 

 

3.4 Methods used for S. spinosa 

3.4.1 Extraction 

The root of S. spinosa was air dried and then milled (Moulinette „S‟, Moulinex). 

Afterwards the obtained powder was extracted. 20.1 g milled root were mixed with 

200 ml (1:10) of solvent (see Table 11) and treated in an ultra sonic bath for ten minutes 
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to break the cell walls. Then the mixture was placed on a reflux-water bath at the 

temperature of the boiling point of the solvent plus 10 °C (Table 11). After one hour in 

the water bath the solvent was filtered through a round filter (Schleicher & Schuell, 

Microscience, 595, Ref Nr 10311612 – diameter 150 nm). The retained plant material 

(residue) was dried on a sheet of paper over night, before reuse for the next extraction. 

The liquid phase (solvent), which contained the dissolved material, was evaporated by a 

rotavapor (Heidolph WB 2001) and a water bath at 40 °C to complete dryness. 

Table 11 Solvents used for extraction of S. spinosa 

Solvent Water Bath Rotavapor (mbar) 

Petroleum ether 55 °C 570 

Dichloromethane 40 °C 850 

Ethyl acetate 92 °C 260 

Methanol 84 °C 300 

Water 100°C 70 

 

3.4.2 Detannification of the methanol extract 

As the methanol extract was the most promising extract of S. spinosa, separation of the 

tannins was conducted to make sure that the performed bio-assays were not biased by 

tannins contained in the extract. For the removal of tannins the methanol extract of S. 

spinosa (4.13 g) was dissolved in 60 ml of a water-methanol mixture (9:1). After triple 

solvent extraction with 60 ml petroleum ether for the withdrawal of chlorophyll, waxes 

and fats, the methanol fraction was diluted with 60 ml of water. Subsequently this 

aqueous solution was extracted three times with 120 ml chloroform. For isolation of the 

detannified extract, the collected chloroform layer was washed three times with 360 ml 

sodium chloride solution (1 %). After drying with sodium sulphate, the solution was 

filtered (Schleicher & Schuell, Microscience, 595, Ref Nr 10311612 – diameter 150 

nm) and afterwards the chloroform was evaporated at 470 mbar (Heidolph WB 2001).  
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4 Results 

The results of the experiments performed with P. odorata and S. spinosa extracts and 

fractions are described separately in the following chapters.  

4.1 P. odorata 

This chapter describes the fractionation process of P. odorata from the dichloromethane 

extract to the most active fractions and further to the divided activities in the daughter 

fractions. In the following scheme an overview of these results is illustrated. Obtained 

fractions were investigated towards their anti-carcinogenic potential in HL-60 cells. 

Bioassay (proliferation and apoptosis assay)-guided fractionation was performed to 

identify the most promising fractions. Finally the effects of the two most active 

fractions were subsequently studied in more detail by western blot analysis. 

 

 

Figure 11 Fractionation overview of P. odorata 
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4.1.1 Comparison of the 2005 and 2009 dichloromethane extract  

The activity of the dichloromethane extract from 2009 (extracted by Björn Feistel, 

Finzelberg GmbH & Co. KG, Andernach, Germany) was tested in comparison to the 

dichloromethane extract from 2005 (extracted by Sabine Bauer) to ascertain that the 

new extract is as effective as the old one. In both cases HL-60 cells were treated with 

5 µg/ml, 10 µg/ml and 40 µg/ml for 24 and 72 hours and counted afterwards to measure 

the anti-proliferative activity as described in chapter 3.2.3. In Figure 12 the 

dichloromethane extract from 2009 reveals a nuance higher activity than the 2005 

collected extract (yet not significant). Therefore the new dichloromethane extract was 

appropriate for subsequent fractionation.  

 

 

  

Figure 12 Anti-proliferative effect of dichloromethane extract from 2005 and of the one from 2009 

HL-60 cells were seeded into 24-well plate (1 x 10
5
 cells/ml), incubated with 5, 15 and 40 µg/ml of each 

extract for 72 hours. Cells were counted after 24, 48 and 72 hours of treatment. The percentage of 

proliferation between 24 and 72 hours was determined in comparison to control. Experiments were 

performed in triplicate. Asterisks indicate significance compared to untreated control (p<0.05) and error 

bars indicate ±SD 
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4.1.2 Separation of chlorophyll 

Separation of chlorophyll was conducted to achieve a more concentrated extract with 

higher activity for further fractionation. The process of separation was performed as 

described in chapter 3.3.1.  TLC system 3 (chloroform: methanol: water, 70:30:10) was 

used for TLC analysis, applying four times 5 µl of each extract (with chlorophyll and 

without chlorophyll). As illustrated in Figure 13, a yet undefined amount of active 

compounds was still contained in the chlorophyll extract and therefore the separation of 

chlorophyll was not successful.  

 

 

Figure 13 TLC of chlorophyll-rich (a) and  

chlorophyll-free dichloromethane extract (b) 

Mobile phase:  TLC system 3 

Detection: visible light with ASR 

 

The proliferation assay performed with HL-60 cells shows that the chlorophyll-rich 

extract was more active than the chlorophyll-free extract. The 18-folds higher 

concentration of extract without chlorophyll was tested, because the amount of extract 

without chlorophyll was 18-folds less than the amount of extract with chlorophyll. That 

way both extracts were comparable. The results of the proliferation assay are presented 

in Figure 14 and show a proliferation rate of 80 % in HL-60 cells treated with 

chlorophyll-free extract in contrast to proliferation arrest in these cells treated with 

chlorophyll-rich extract.  

 

   a        b     
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Figure 14 Anti-proliferative effect of 

chlorophyll-free and chlorophyll rich 

dichloromethane extract of P. odorata 

HL-60 cells were seeded into 24-well plate 

(1 x 10
5
 cells/ml), incubated with 40 µg/ml 

of chlorophyll-free and chlorophyll-rich 

dichloromethane extract for 72 hours, 

respectively. Cells were counted after 24, 

48 and 72 hours of treatment. The 

percentage of proliferation between 24 and 

72 hours was determined in comparison to 

control. Experiments were performed in 

triplicate. Asterisks indicate significance 

compared to untreated control (p<0.05) and 

error bars indicate ±SD  

4.1.3 Vacuum Liquid Chromatography (VLC) 

In the following two chapters results of VLC of P. odorata are described.  

4.1.3.1 VLC of the chlorophyll-rich dichloromethane extract – F1-F3  

The VLC-conditions were determined empirically to achieve an optimal separation of 

fractions with different polarities. VLC was conducted as described in chapter 3.3.2.1. 

To evaluate the quality of the VLC fractionation, a TLC with TLC system 3 

(chloroform: methanol: water, 70:30:10), detected under visible light, UV254 and UV366 

was performed (Figure 15).  

 

 

Figure 15 TLC of F1-F3 

Mobile phase:  TLC system 3 

Detection: visible light with ASR (left), 

UV254 (middle), UV366 (right) 

      1        2        3           1        2        3            1        2        3 
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For analytical reasons TLC system 5 (dichloromethane: ethyl acetate, 85:15) was used 

to achieve an improved separation with this solvent system. Three bands were visible 

under UV254 and after spraying with ASR, approximately ten bands become visible in 

the white light.  

 

 

Figure 16 TLC of F1-F3 

Mobile phase:  TLC system 5 

Detection: UV254 (left) and visible light with ASR (right) 

Table 12 Obtained amounts of fractions from VLC of the chlorophyll-rich dichloromethane extract 

Fraction F1 F2 F3 

Amount in g 22.98  10.83  1.58  

 

F1, F2 and F3 were tested in the proliferation assay with HL-60 cells at concentrations 

of 15 µg/ml and 40 µg/ml after 24 and 72 hours. The results of the proliferation assay 

are illustrated in Figure 17 and reveal F1 and F2 as the most active ones (35 % and 

50 % of control when treated with 15 µg/ml), whereas the activity of F3 is much lower 

(95 % of control when treated with 15 µg/ml).  

 

  1        2        3        1        2        3 
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Figure 17 Anti-proliferative effect of F1, F2 and F3 

HL-60 cells were seeded into 24-well plate (1 x 10
5
 

cells/ml), incubated with 15 and 40 µg/ml of each 

fraction for 72 hours. Cells were counted after 24, 

48 and 72 hours of treatment. The percentage of 

proliferation between 24 and 72 hours was 

determined in comparison to control. Experiments 

were performed in triplicate. Asterisks indicate 

significance compared to untreated control 

(p<0.05) and error bars indicate ±SD  

 

 

To investigate whether fractions were cytotoxic, HL-60 cells were analysed for 

apoptotic phenotypes. Apoptosis assay of these three fractions was carried out using 

15 µg/ml and 40 µg/ml and analysed after 24, 48 and 72 hours. Results of this assay 

show the same activity distribution as the proliferation assay of these fractions. After 

24 hours 60 % of cells treated with F1 showed apoptosis, and 30 % of cells treated with 

F2 (Figure 18). The pictures taken for the apoptosis assay showed different colours of 

the dead cells in F1 and F2 (green) compared to F3 (light pink), which may refer to 

different cell death mechanisms. To assure that the greenish looking cells were dead, 

HL-60 cells were seeded in 24-well plates (1 x 10
5
 cells/ml) and treated with 40 µg/ml 
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of F1, F2 and F3, respectively. After 48 hours of incubation the cells were centrifuged 

and the supernatant (old medium) was renewed. Cells were counted right after the new 

medium was added and then again after 3 and 6 days (72 hours and 144 hours). The result 

in Figure 19 shows that HL-60 cells pre-treated with F1 and F2 were dead, whereas 

cells pre-treated with F3 showed growth similar to the control. Therefore F1 was chosen 

for further fractionation, because it revealed the highest anti-proliferative and pro-

apoptotic activity. 
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Figure 18 Induction of apoptosis by F1, F2 and F3 

HL-60 cells were seeded in 24-well plates (1 x 10
5
 cells/ml) and incubated with 15 and 40 µg/ml of each 

fraction for 72 hours. Afterwards cells were double stained with Hoechst 33258 and propidium iodide and 

examined under the microscope with UV light connected to a DAPI filter. Nuclei with morphological 

changes which indicated cell death were counted and the percentages of dead cells were calculated. 

Experiments were performed in triplicate. Asterisks indicate significance compared to untreated control 

(p<0.05) and error bars indicate ±SD. 

 

 

Figure 19 Analysis of proliferation of HL-60 cells pre-treated with F1, F2 and F3, respectively.   

Pre-treated HL-60 cells (pre-treated in 24-well plates (1 x 10
5
 cells/ml) with 40 µg/ml of F1, F2 and F3, 

respectively; after 48 hours of incubation cells were centrifuged and old medium was replaced by new 

one) were counted right away after the new medium was added and after 3 and 6 days. Experiments were 
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performed in triplicate. Asterisks indicate significance compared to untreated control (p<0.05) and error 

bars indicate ±SD  

To check the differences of cell death mechanisms between F1 and the most active 

fractions of the 2005 dichloromethane extract investigation of Bauer et al. (2010), 

western blot analyses were conducted of F1 with the focus on the caspase 3 apoptotic 

pathway. In addition to caspase 3, anti-acetylated tubulin blots were analysed. In Figure 

20 the results of the western blot analysis of F1 are displayed. HL-60 cells treated with 

F1 did not increase acetylation of α tubulin but substantially activated caspase 3. The 

most active fractions investigated by Bauer et al. (2010), also led to an acetylation of 

α tubulin. Hence, F1 seemed to be completely different than the already investigated 

fractions and was therefore used for further fractionation and analyses.  

 

 

 

 

Figure 20 Western blot analysis of F1 on caspase 3 and 

α-tubulin 

HL-60 cells (1 x 10
6
 cells/ml) were incubated with 

40 µg/ml F1 and harvested after 0.5, 2, 4, 8 and 24 h of 

treatment. Cells were lysed and obtained proteins samples 

applied to SDS-PAGE. Western blot analysis was 

conducted with the indicated antibodies. Equal sample 

loading was confirmed by Ponceau S staining and β-actin 

analysis. 

4.1.3.2 VLC of F1 – F2.1-F2.10 

For further fractionation of F1, a VLC was conducted as described in chapter 3.3.2.2. 

The quality of the fractionation was measured by TLC using TLC system 5 

(dichloromethane: ethyl acetate, 85:15). The separation of the starting fraction F1 and 

the new derivative fractions F2.1-F2.9 are depicted in Figure 21. The TLC reveals that 

the VLC worked well in order to separate the contained compounds of F1 by polarity. 

F2.3 and F2.4 as well as F2.10 and F2.11 were recombined because they looked similar 

on the TLC. The obtained amounts of new fractions are presented in Table 13. 
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Figure 21 TLC of F2.1-F2.10 

Mobile phase:  TLC system 5 

Detection: visible light with ASR (both pictures) 

 

Table 13 Obtained amounts of fractions from VLC of F1 

Fraction F2.1 F2.2 F2.3+4 F2.5 F2.6 F2.7 

Amount in g 1.63 0.17  1.28  4.57  1.73  0.22  

 

Fraction F2.8 F2.9 F2.10+11 

Amount in g 0.04  0.12  0.16  

 

The activity of F2.1-F2.10 was tested in HL-60 cells by analysing apoptosis. The cells 

were treated with a concentration of 10 µg/ml of each fraction and incubated for 24, 48 

and 72 hours, when cells were analysed (Figure 22). F2.6 (90 % apoptosis after 24 

hours), F2.7 (95 % apoptosis after 24 hours) and F2.10 (95 % apoptosis after 72 hours) 

induced the highest rates of apoptosis, whereas the other fractions triggered the 

apoptosis rates to maximal 40 %. Thus, this fractionation resulted in a clear separation 

of cytotoxic fractions from non-toxic ones.  

Figure 22 also illustrates decreasing apoptotic activity of F2.6 and F2.7 with increasing 

time, whereas in F2.10 the activity increases from 24 to 72 hours indicating the distinct 

stabilities or activities of the contained compounds. 

 

  0        1        2        3        4        5        6        7        8        9        9        10       11 

 



Results 

 

48 

 

 

Figure 22 Induction of apoptosis by F2.1-F2.10 

HL-60 cells were seeded in 24-well plates (1 x 10
5
 cells/ml) and incubated with 10 µg/ml of each fraction 

for 72 hours. Afterwards cells were double stained with Hoechst 33258 and propidium iodide and 

examined under the microscope with UV light connected to a DAPI filter. Nuclei with morphological 

changes which indicated cells death were counted and the percentages of dead cells were calculated. 

Experiments were performed in triplicate. Asterisks indicate significance compared to untreated control 

(p<0.05) and error bars indicate ±SD. 

As illustrated on the TLC of F2.6-F2.10 (Figure 23), conducted with  TLC system 1 

(chloroform: methanol: water, 90:22:3.5), F2.10 contains compounds which are also 

contained in F2.6 and F2.7. F2.10 is the last received fraction of the column. All 

substances left in the column, which were not eluted by previous mobile phases, are 

finally eluted with methanol and are now contained in F2.10. Because of this, F2.10 was 

not further fractionated. Instead of F2.10, the fractionation of F2.6 followed.  

 

 

Figure 23 TLC of F2.6-F2.10 

Mobile phase:  TLC system 1 

Detection: visible light with ASR (left), 

UV366 with ASR (right) 

 

 6       7        8        9      10         6       7        8        9       10 
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4.1.4 Column Chromatography (CC) and Thin Layer Chromatography 

(TLC) 

F2.6 and F2.7 were the most active fractions and we continued with the fractionation of 

F2.6 because it contained 8-folds more material than F2.7. In the following chapters the 

results of the fractionation process, starting with F2.6 are described.  

4.1.4.1 CC of F2.6 – F3.1-F3.10 

Column chromatography of F2.6 was conducted as described in chapter 3.3.3.1. This 

time the new derivative fractions were checked by TLC system 2 (chloroform: 

methanol: water, 90:3.5:0.2). Figure 24 depicts the starting fraction F2.6 and the new 

obtained ones F3.1-F3.10. As the TLC reveals, both F3.3 and F3.6 contain a main 

compound, which were tried to be separated during further fractionation processes. 

Obtained amounts of the ten fractions are presented in Table 14. 

  

 

Figure 24 TLC of F3.1-F3.10 

Mobile phase:  TLC system 2 

Detection: visible light with ASR 

 

Figure 25 TLC of F3.1-F3.10 

Mobile phase:  TLC system 2 

Detection: UV254 

     0        1        2        3        4        5        6        7        8         9        10     

     0        1        2        3        4        5        6        7        8         9        10     
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Table 14 Obtained amounts of fractions from CC of F2.6 

Fraction F3.1 F3.2 F3.3 F3.4 F3.5 

Amount in g 0.02 0.05  1.14  0.07  0.05  

 

Fraction F3.6 F3.7 F3.8 F3.9 F3.10 

Amount in g 0.32  0.02 0.01  0.03  0.04  

 

In the proliferation assay, the anti-proliferative activity of F3.1-F3.10 is displayed. The 

assay was performed with HL-60 cells, which were treated with each fraction at the 

concentration of 2 µg/ml and 10 µg/ml and analysed after 24 and 72 hours. As Figure 

26 reveals, F3.4-F3.6 had an highly anti-proliferative effect, as the three fractions 

suppressed proliferation by almost 100 % upon incubation with 10 µg/ml. F3.2, F3.3 

and F3.6 were chosen for further fractionation because the TLC of F3.2 visualized only 

a few bands and F3.3 and F3.6 both contained a main compound.  

 

 

Figure 26 Anti-proliferative effect of F3.1-F3.10 

HL-60 cells were seeded into 24-well plate (1 x 10
5
 cells/ml), incubated with 2 and 10 µg/ml of each 

fraction (except F2.7 and F2.8 were only applied in the concentration of 2 µg/ml) for 72 hours. Cells were 

counted after 24, 48 and 72 hours of treatment. The percentage of proliferation between 24 and 72 hours 

was determined in comparison to control. Experiments were performed in triplicate. Asterisks indicate 

significance compared to untreated control (p<0.05) and error bars indicate ±SD.   
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4.1.4.2 CC of F3.2 – F4.2.1-F4.2.6 

Column chromatography of F3.2 was conducted as described in chapter 3.3.3.2. New 

fractions were checked by TLC system 4 (dichloromethane: ethyl acetate, 80:20). At the 

beginning the separation process worked well, whereas towards the end no clear 

separation of compounds could be spotted on the TLC. F4.2.2 appeared to be the most 

promising one, regarding to obtain a pure compound (Figure 27), which is the reason 

for further purification of this fraction. The other fractions were tested in a proliferation 

assay, whereas F4.2.2 was completely applied to silica gel column fractionation. The 

reason for not testing F4.2.2 before applying it to the column was the small amount of 

substance left over. Amounts of the six fractions are presented in Table 15.  

 

 

 

 

Figure 27 TLC of F4.2.1-F4.2.6 

Mobile phase:  TLC system 4 

Detection: UV366 

Table 15 Obtained amount of fractions from CC of F3.2 

Fraction F4.2.1 F4.2.2 F4.2.3 F4.2.4 F4.2.5 F4.2.6 

Amount in g 0.0023 0.0122  0.0027  0.0045 0.0040 0.0026 
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Proliferation assay of F4.2.1-F4.2.6 - except for F4.2.2 - is presented in Figure 28 also 

reveals the highest increase in proliferation in F4.2.5: up to 50 % increase in the highest 

concentration (5 µg/ml), compared to the control. Further fractionation of these 

fractions was not conducted, because unfortunately only small amounts of this fraction 

were left over with still a few impurities included.  

 

 
 

 

Figure 28 Anti-proliferative effect of F4.2.1, F4.2.3-F4.2.6 

HL-60 cells were seeded into 24-well plate (1 x 10
5
 cells/ml), incubated with 2 and 5 µg/ml of each 

fraction for 72 hours. Cells were counted after 24, 48 and 72 hours of treatment. The percentage of 

proliferation between 24 and 72 hours was determined in comparison to control. Experiments were 

performed in triplicate. Asterisks indicate significance compared to untreated control (p<0.05) and error 

bars indicate ±SD.         

  

4.1.4.3 CC of F4.2.2 – F5.2.2.1-F5.2.2.1.4 

Column chromatography of F4.2.2 was conducted as described in chapter 3.3.3.3. 

Objective of this column was purifying the main compound of F4.2.2. TLC of F5.2.2.1, 

using TLC system 4 (dichloromethane: ethyl acetate, 80:20), reveals that this fraction 

contains a main compound, but unfortunately also some impurities. By scraping the 

compounds off a TLC plate (description see chapter 3.3.3.4, results see chapter 4.1.4.4), 

the impurities were tried to be removed, as it was not possible to purify by column 

chromatography with such a small amount of fraction. Amounts of the four fractions are 

depicted in Table 16. 
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Figure 29 TLC of F5.2.2.1-F5.2.2.4 

Mobile phase:  TLC system 4 

Detection: UV366 

Table 16 Obtained amount of fractions from CC of F4.2.2 

Fraction F5.2.2.1 F5.2.2.2 F5.2.2.3 F5.2.2.4 

Amount in g 0.0069 0.000479 0.00066 0.00037 

 

4.1.4.4 Scraped TLC of F5.2.2.1 – F6.2.2.1.1-F6.2.2.1.4 

Scraping bands of F5.2.2.1 off a glass TLC plate was performed as described in chapter 

3.3.3.4. Visible single bands were scraped off and a TLC of these four bands was 

conducted by using TLC system 4 (dichloromethane: ethyl acetate, 80:20). The obtained 

TLC reveals four single bands.  

 

 

Figure 30 TLC of F6.2.2.1.1-F6.2.2.1.4 

Mobile phase:  TLC system 4 

Detection: visible light with ASR (left), UV366 (right) 
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Table 17 Obtained amount of fractions from CC of F5.2.2.1 

Fraction F6.2.2.1.1 F6.2.2.1.2 F6.2.2.1.3 F6.2.2.1.4 

Amount in mg 5.3  0.2  0.4  0.2  

 

Proliferation assay of F6.2.2.1.1-F6.2.2.1.4 is presented in Figure 31. F6.2.2.1.2 and 

F6.2.2.1.3 are the most active fractions. Compared to the starting fraction (F3.2) they 

show a large decrease in activity. During the fractionation process and the conducted 

step of scraping the bands of F5.2.2.1 off the TLC plate, the activity was further split 

between the new fractions. The concentrations depicted in the proliferation graph are 

estimated concentrations as it was not possible to calculate the exact weight of the 

scraped fractions. Possibly some scraped off silica is still contained in the new fractions 

and therefore biasing the real fraction weights and hence the results of the proliferation 

analyses. 

 

 

 

Figure 31 Anti-proliferative effect of F6.2.2.1.1-F6.2.2.1.4 

HL-60 cells were seeded into 24-well plate (1 x 10
5
 cells/ml), incubated with 2 and 10 µg/ml of each 

fraction for 72 hours. Cells were counted after 24, 48 and 72 hours of treatment. The percentage of 

proliferation between 24 and 72 hours was determined in comparison to control. Experiments were 

performed in triplicate. Asterisks indicate significance compared to untreated control (p<0.05) and error 

bars indicate ±SD.         
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4.1.4.5 CC of F3.3 – F4.3.1 

Column chromatography of F3.3 was performed as described in chapter 3.3.3.5. The 

collected fractions were checked by TLC system 2 (chloroform: methanol: water, 

90:3.5:0.2). Afterwards all collected fractions were recombined, as no separation of 

substances was revealed by TLC (Figure 32). 1.085 g of F4.3.1 were left over after CC.  

 

 

Figure 32 TLC of F4.3.1 

Mobile phase:  TLC system 2 

Detection: UV254 

4.1.4.6 CC of F4.3.1 – F5.3.6.1-F5.3.6.12 

Column chromatography of F4.3.1 was conducted as described in chapter 3.3.3.6. The 

TLC was performed with TLC system 2 (chloroform: methanol: water, 90:3.5:0.2). As 

seen by TLC (Figure 33) the compounds contained in F4.3.1 were not separated well by 

the CC. Amounts of the twelve fractions are presented in Table 18. 

 

 

Figure 33 TLC of F5.3.6.1-

F5.3.6.12 

Mobile phase:  TLC system 2 

Detection: UV254 
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Table 18 Obtained amount of fractions from CC of F4.3.1 

Fraction F5.3.6.1 F5.3.6.2 F5.3.6.3 F5.3.6.4 F5.3.6.5 F5.3.6.6 

Amount in g 
0.000374

  
0.00345  0.05886  0.09094  0.25592  0.06486  

 

Fraction F5.3.6.7 F5.3.6.8 F5.3.6.9 F5.3.6.10 F5.3.6.11 F5.3.6.12 

Amount in g 0.14622  0.00751  0.00617  0.11147  0.06250  0.00349  

 

Proliferation and apoptosis assay (Figure 34 and Figure 35), performed at 

concentrations of 5 µg/ml and 10 µg/ml, were both analysed after 24 and 48 hours. The 

apoptosis assay was only conducted with F5.3.6.1, F5.3.6.2, F5.3.6.6, F5.3.6.7, 

F5.3.6.10 and F5.3.6.11, because these fractions revealed the strongest growth 

inhibition in the proliferation assay. Especially F5.3.6.2 and F5.3.6.7 decreased cell 

proliferation: in the highest concentration (10 µg/ml) both fractions inhibit proliferation 

by almost 100 % compared to the control. Also, the apoptosis assay reflects this result 

with an almost 100 % cell death rate induced by these fractions. The most active 

F5.3.6.7 was chosen for further fractionation. 

 

 

Figure 34 Anti-proliferative effect of F5.3.6.1-F5.3.6.12 

HL-60 cells were seeded into 24-well plate (1 x 10
5
 cells/ml), incubated with 5 and 10 µg/ml of each 

fraction for 48 hours. Cells were counted after 24 and 48 hours of treatment. The percentage of 

proliferation between 24 and 48 hours was determined in comparison to control. Experiments were 

performed in triplicate. Asterisks indicate significance compared to untreated control (p<0.05) and error 

bars indicate ±SD. 
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Figure 35 Induction of apoptosis by F5.3.6.1, F5.3.6.2, F.5.3.6.6, F5.3.6.7, F5.3.6.10 and F5.3.6.11 

HL-60 cells were seeded in 24-well plates (1 x 10
5
 cells/ml) and incubated with 5 and 10 µg/ml of each 

fraction for 48 hours. Afterwards cells were double stained with Hoechst 33258 and propidium iodide and 

examined under the microscope with UV light connected to a DAPI filter. Nuclei with morphological 

changes which indicated cell death were counted and the percentages of dead cells were calculated. 

Experiments were performed in triplicate. Asterisks indicate significance compared to untreated control 

(p<0.05) and error bars indicate ±SD.       

  

4.1.4.7 CC of F5.3.6.7 – F6.3.6.7.1-F6.3.6.7.12 

Column chromatography of F5.3.6.7 was performed as described in chapter 3.3.3.7. 

TLC system 2 (chloroform: methanol: water, 90:3.5:0.2) was utilized for a fingerprint of 

the newly received fractions (Figure 36). The TLC reveals that F6.3.6.7.3, F6.3.6.7.4 

and F6.3.6.7.5 included main compounds, but also many impurities, which were not 

separated by the CC. Amounts of the twelve fractions are presented in Table 19.  

 

 

 

 

Figure 36 TLC of F6.3.6.7.1-F6.3.6.7.12 

Mobile phase:  TLC system 2 

Detection: visible light with ASR (top), UV254 (bottom) 

 

Table 19 Obtained amount of fractions from CC of F5.3.6.7 

Fraction F6.3.6.7.1 F6.3.6.7.2 F6.3.6.7.3 F6.3.6.7.4 

Amount in g 0.0847  0.00343  0.02647  0.0202  

 

Fraction F6.3.6.7.5 F6.3.6.7.6 F6.3.6.7.7 F6.3.6.7.8 

Amount in g 0.04245  0.01703  0.00262  0.00327  
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Fraction F6.3.6.7.9 F6.3.6.7.10 F6.3.6.7.11 F6.3.6.7.12 

Amount in g 0.00280 0.00808  0.00121  0.06682  

 

The apoptosis assay of the received fractions was performed in the concentrations of 

2 µg/ml and 5 µg/ml and cells were photographed after 24 hours. Unfortunately, the 

activity of the starting fraction F5.3.6.7 was split up into the new fractions, and 

therefore decreased in comparison to the starting fraction F5.3.6.7, which reached an 

apoptotic rate of 60 % in the concentration of 5 µg/ml after 24 hours of incubation. This 

is the reason for not further fractionating these newly received fractions.  

 

 

 

Figure 37 Induction of apoptosis by F6.3.6.7.1-F6.3.6.7.12 

HL-60 cells were seeded in 24-well plates (1 x 10
5
 cells/ml) and incubated with 2 and 5 µg/ml of each 

fraction for 24 hours. Afterwards cells were double stained with Hoechst 33258 and propidium iodide and 

examined under the microscope with UV light connected to a DAPI filter. Nuclei with morphological 

changes which indicated cell death were counted and the percentages of dead cells were calculated. 

Experiments were performed in triplicate. Asterisks indicate significance compared to untreated control 

(p<0.05) and error bars indicate ±SD.       

   

4.1.4.8 CC of F3.6 – F4.6.1-F4.6.4 

Fractionation of 3.6 was performed as described in chapter 3.3.3.8. For TLCs of the new 

fractions, TLC system 2 (chloroform: methanol: water, 90:3.5:0.2) was used. Figure 38 

shows an oily fraction 4.6.3 including one main compound.  
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Figure 38 TLC of F4.6.1-F4.6.4 

Mobile phase:  TLC system 2 

Detection: visible light with ASR (left), UV254 (right) 

Table 20 Obtained amount of fractions from CC of F3.6 

Fraction F4.6.1 F4.6.2 F4.6.3 F4.6.4 

Amount in g 0.00933 0.00486 0.20695 0.05479 

 

As illustrated in Table 20, F4.6.3 is the one with the highest amount of left over active 

material. HL-60 cells were treated with 2 µg/ml and 10 µg/ml for 24 and 48 hours to 

measure the apoptotic effect F4.6.1-F4.6.4. F4.6.3 shows an apoptosis rate of 90 % in 

the highest concentration (10 µg/ml) after 24 hours of incubation, whereas the other 

fractions induced only 20 % of apoptosis at the most. Consequently, F4.6.3 was further 

fractionated.  
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Figure 39 Induction of apoptosis by F4.6.1-F4.6.4 

HL-60 cells were seeded in 24-well plates (1 x 10
5
 cells/ml) and incubated with 2 and 10 µg/ml of each 

fraction for 48 hours. Afterwards cells were double stained with Hoechst 33258 and propidium iodide and 

examined under the microscope with UV light connected to a DAPI filter. Nuclei with morphological 

changes which indicated cell death were counted and the percentages of dead cells were calculated. 

Experiments were performed in triplicate. Asterisks indicate significance compared to untreated control 

(p<0.05) and error bars indicate ±SD.       

  

4.1.4.9 CC of F4.6.3 – F5.6.3.1-F5.6.3.6 

Column chromatography of F4.6.3 was performed as described in chapter 3.3.3.9. TLC 

of the new fractions was conducted with  TLC system 2 (chloroform: methanol: water, 

90:3.5:0.2) as presented in Figure 40. F5.6.3.1 is depicted on the TLC as one band, 

whereas F5.6.3.3 and F5.6.3.4 show main compounds, but also many impurities. The 

amounts of the new fractions in mg are listed in Table 21.  

 

 

Figure 40 TLC of F5.6.3.1-

F5.6.3.6 

Mobile phase:  TLC system 2 

Detection: visible light with 

ASR (left), UV254 (right) 
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Table 21 Obtained amount of fractions from CC of F4.6.3 

Fraction F5.6.3.1 F5.6.3.2 F5.6.3.3 F5.6.3.4 F5.6.3.5 F5.6.3.6 

Amount in mg 3.33 0.31 19.49 25.28 16.31 3.58 

 

Apoptosis assay was performed after 8 and 24 hours in concentrations of 2 µg/ml and 

5 µg/ml. Figure 41 illustrates the rate of apoptosis after 24 hours. Only the pictures 

taken after 24 hours were analysed as there was no 100 % apoptosis rate in these cells. 

As shown in the graph, the apoptosis rate of the starting fraction was split to the 

daughter fractions, even fraction F5.6.3.1 did not show an enrichment of activity. 

Therefore no further fractionation process was performed with these fractions.  

 

 

Figure 41 Induction of apoptosis by F5.6.3.1-F5.6.3.6 

HL-60 cells were seeded in 24-well plates (1 x 10
5
 cells/ml) and incubated with 2 and 5 µg/ml of each 

fraction for 24 hours. Afterwards cells were double stained with Hoechst 33258 and propidium iodide and 

examined under the microscope with UV light connected to a DAPI filter. Nuclei with morphological 

changes which indicated cell death were counted and the percentages of dead cells were calculated. 

Experiments were performed in triplicate. Asterisks indicate significance compared to untreated control 

(p<0.05) and error bars indicate ±SD.       
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4.1.5 Western Blot analysis 

Western blot analyses were conducted with the two most active fractions (F4.6.3 and 

F.5.3.6.7) received by two different tracks of the bio-assay guided fractionation process. 

Both fractions showed a significant pro-apoptotic effect after 48 hours of about 100 % 

in HL-60 cells treated with 10 µg/ml of F4.6.3 and about 90 % in HL-60 cells treated 

with F5.3.6.7. Also the anti-proliferative effect of 10 µg/ml F5.3.6.7 was close to 

100 %. Proteins for the western blot analyses were chosen with a main focus on cell 

cycle stress, apoptosis induction and cell motility. 

4.1.5.1 Analysis of the cell cycle and its checkpoint regulators 

 

Figure 42 Analysis of cell cycle and checkpoint regulators 

HL-60 cells (1 x 10
6
 cells/ml) were incubated with 10 µg/ml F4.6.3 and F5.3.6.7, respectively and 

harvested after 0.5, 2, 4, 8 and 24 h of treatment. Cells were lysed and obtained proteins samples applied 

to SDS-PAGE. Western blot analysis was conducted with the indicated antibodies. Equal sample loading 

was confirmed by Ponceau S staining and β-actin analysis 

Chk2, Cdc25A: DNA damage generally leads to the activation of ataxia-telangiectasia-

mutated (ATM) and ATM-and Rad3-related (ATR)-kinases, which themselves activate 

the effector kinases Chk1 and Chk2 (check point kinases) (Kiyokawa, et al., 2008). The 

Chk1/Chk2 phosphorylation results in the inactivation of Cdc25A phosphatase 

(Kiyokawa, et al., 2008) which causes the inactivation of Cyclin E-Cdk2. On the other 

hand an increased expression of Cdc25A accelerates the G1-S transition by increasing 

the Cdk2/Cyclin E activity (Blomberg, et al., 1999). Cdc25A activates also 

Cdk2/CyclinA necessary for DNA replication during S phase (Kiyokawa, et al., 2008) 
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(see chapter 2.2.2). Cdc25A is also a critical regulator for the G2-M transition and is 

required for Cdk1/Cyclin B activation. But in the G2-M transition also Cdc25C is 

involved, whereas the G1-S progression is predominantly controlled by Cdc25A and 

Cdc25B. Increased levels of Cdc25A and Cdc25B are often observed in various human 

cancer tissues, because the deregulated expression of these phosphatases allows cells to 

pass DNA damage-induced checkpoints and therefore lead to genomic instability 

(Kiyokawa, et al., 2008). 

 

The analysis of the above described cell cycle and checkpoint regulators in HL-60 cells 

that were treated with F4.6.3 or with F5.3.6.7 showed differences in their expression 

patterns, because 10 µg/ml F4.6.3 caused the de-phosphorylation of Chk2, whereas 

F5.3.6.7 caused the phosphorylation of Chk2 after 4 hours concomitant with caspase 3 

activation. Therefore, both fractions seem to be free of genotoxic compounds. 

Interestingly, Chk2 protein expression becomes induced. Whether this is sufficient to 

induce growth arrest is unlikely, because its target Cdc25A becomes strongly induced 

instead of degraded. In exposure to F5.3.6.7 the constitutive phosphorylation of Cdc25A 

was undetectable after 2 hours of incubation, which is an indicator for the stabilization 

of the protein (Madlener, et al., 2009). Indeed, Cdc25A protein levels increased, 

although not quite as high as upon treatment with F4.6.3. The phosphorylation and 

protein expression patterns clearly indicate that different compounds are contained in 

the two fractions and both fractions contain active principles free of genotoxic activity.  
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4.1.5.2 Analysis of apoptosis related proteins 

 

Figure 43 Analysis of apoptosis related proteins 

HL-60 cells (1 x 10
6
 cells/ml) were incubated with 10 µg/ml F4.6.3 and F5.3.6.7, respectively and 

harvested after 0.5, 2, 4, 8 and 24 h of treatment. Cells were lysed and obtained proteins samples applied 

to SDS-PAGE. Western blot analysis was conducted with the indicated antibodies. Equal sample loading 

was confirmed by Ponceau S staining and β-tubulin analysis 

H2AX: γH2AX is the most commonly used and sensitive marker for detecting DNA-

double-strand breaks (Paull, et al., 2000), which is the reason for using the γH2AX 

antibody for detecting the mechanism of apoptosis generated by F4.6.3 and F5.3.6.7. As 

shown in Figure 43 F4.6.3 induced the phosphorylation of H2AX with a peak after 4 

hours and then slowly disappearing. F5.3.6.7 only induced a slight phosphorylation of 

H2AX, completely disappearing after 4 hours of incubation. However, H2AX 

phosphorylation was not caused by DNA damage induced by both fractions, but due to 

caspase 3 activity that indices DNA fragmentation through endonuclease G.  

 

Caspases: Also cleaved caspases 8 and 9 were analysed (for their function during 

apoptosis see chapter 2.2.3 Evading apoptosis). F4.6.3 induced the cleavage of caspase 

9 especially after 2 hours of incubation, whereas caspase 8 and caspase 3 were cleaved 

after 4 hours of incubation. Thus the cleavage of caspase 9 and the cleavage of caspase 

8 resulted in the cleavage of caspase 3, which is a direct effector of apoptosis (see 

Figure 5). This activation cascade after 4 hours of incubation perfectly matches the 

γH2AX, pCHK2 and pCdc25A activation after 4 hours. F5.3.6.7 showed a different 
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effect on the caspase cascade then F4.6.3. F5.3.6.7 first induces the cleavage of caspase 

3 (after 2 hours of incubation) and therefore caspase 8 (with a peak at 4 hours and then 

completely disappearing) and caspase 9 (slightly increasing with a peak at 24 hours of 

incubation) were cleaved. This leads to the assumption that apoptosis caused by 

F5.3.6.7 is not induced by the caspase cascade, but independent of caspase 8 and 9.  

 

-tubulin: F.4.6.3 and F5.3.6.7 induced an increasing acetylation of -tubulin, which 

implicates the stabilization of microtubules (Piperno, et al., 1987), and is reminiscent of 

the mechanism of taxol and therefore it triggers mitotic arrest and apoptosis, which was 

in fact observed at a concentration of 10 µg/ml after 48 hours. Tilting the fine-tuned 

equilibrium of polymerized/de-polymerized microtubule is incompatible with normal 

cell division and this causes not only cell cycle arrest, but also apoptosis.  

Unexpectedly, -tubulin-targeting property was enriched in both fractions that was 

initially undetectable in the starting fraction F1.  

4.1.5.3 Analysis of mobility related proteins 

 

Figure 44 Analysis of mobility proteins 

HL-60 cells (1 x 10
6
 cells/ml) were incubated with 10 µg/ml F4.6.3 and F5.3.6.7, respectively and 

harvested after 0.5, 2, 4, 8 and 24 h of treatment. Cells were lysed and obtained proteins samples applied 

to SDS-PAGE. Western blot analysis was conducted with the indicated antibodies. Equal sample loading 

was confirmed by Ponceau S staining and β-actin analysis 
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Paxillin: Paxillin is the key regulator of cell migration (Paulitschke, et al., 2010), signal 

transduction, regulation of cell morphology (Salgia, et al., 1995), and it is an focal 

adhesion associated adaptor protein (Schaller, 2001). Thus paxillin is included in 

regulation of cell spreading and cell motility, both coordinated by signalling events by 

paxillin associated proteins (Schaller, 2001). For example it is a key coordinator of the 

Rho guanosine-5'-triphosphate (GTP)-ase family (Rho, Rac, Cdc42), which signalling 

cascades are responsible for cell spread and migration (Paulitschke, et al., 2010) and 

involved in cancer cell invasion.  

The paxillin expression showed an increase in HL-60 cells treated with F4.6.3 whereas 

treatment with F5.3.6.7 left paxillin levels virtually unaffected. As paxillin is a focal 

adhesion phosphoprotein and necessary for the cell-extracellular matrix (ECM) contact 

(Deakin, et al., 2008), HL-60 cell motility was probably increased by F4.6.3.   

 

ROCK-1: Two isoforms of Rho-associated kinases (ROCK-1 and ROCK-2) are known 

(Nakagawa, et al., 1996). Both are downstream effectors of RhoA (ras homolog gene 

family, member A) (Leung, et al., 1996), which is a small guanosine triphosphate-

binding protein mediating various cellular physiologic functions such as cell 

proliferation, migration, adhesion, apoptosis and contraction (Hidaka, et al., 2010).  

The RhoA/ROCK pathway is probably implicated in the pathophysiology of diverse 

cardiovascular diseases (Noma, et al., 2006), including myocardial hypertrophy (Satoh, 

et al., 2003), hypertension (Uehata, et al., 1997), atherosclerosis (Mallat, et al., 2003), 

and ischaemia/reperfusion injury (Bao, et al., 2004). Especially ROCK-1 creates a direct 

link from RhoA to cell morphology through the phosphorylation of MLC. The ROCK 

activity in peripheral leukocytes can be assayed by western blot analysis using a specific 

antibody to phospho-myosin-binding subunit (MBS) on myosin light-chain 

phosphatase, which is a downstream target of ROCK (Hidaka, et al., 2010). ROCKs are 

also able to generate an amoeboid movement by causing the formation of actin stress 

fibres and focal adhesions (Sahai, et al., 2003). 

During the western blot analysis of the mobility proteins, the expression of ROCK-1 

was unaffected by F4.6.3 in HL-60 cells. F5.3.6.7 showed an inhibiting effect on 

ROCK-1, which completely disappeared after 2 hours of incubation. In contrast, cells 

treated with F4.6.3 still expressed ROCK-1. The pMLC2 expression was completely 

undetectable at all conditions tested. Thus, F5.3.6.7 may have the effect of decreasing 
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the mobility of HL-60 cells and therefore decreasing the chance for cancer cell 

invasivity.  

 

MLC2: Myosin light chain kinase (MLCK) phosphorylates myosin light chain 2 

(MLC2) at Thr18 and Ser19 in smooth muscle (Ikebe, et al., 1985), which results in 

myosin ATPase activity and smooth muscle contraction (Tan, et al., 1992). Also ROCK 

is able to phosphorylate Ser19 of smooth muscle MLC2, which regulates the assembly 

of stress fibres (Totsukawa, et al., 2000). 

As described above, MLC2 was not phosphorylated by both fractions, which is an 

indicator for the absence of cell mobility.  

 

MYPT1: MYPT1 (myosin-binding subunit of myosin phosphatase) is a subunit of the 

myosin phosphatase. In response to signals of the GTPase Rho it regulates the 

interaction of actin and myosin (Feng, et al., 1999). One signalling pathway leading to 

the inhibitory phosphorylation of MYPT1 is the Rho/Rho kinase pathway, in which the 

activated GTPase Rho binds to Rho kinase and in consequence activates the kinase 

(Matsui, et al., 1996). In consequence, the activated Rho kinase phosphorylates MYPT1 

and thus inhibits the myosin phosphatase (Kimura, et al., 1996). Phosphorylation of 

MYPT1 is essential for motility, mitosis, apoptosis, and smooth muscle contractility 

(Vetterkind, et al., 2010). MYPT1 was slightly phosphorylated within 24 hours after 

incubation with F4.6.3. F5.3.6.7 suppressed constitutive MYPT1 phosphorylation after 

8 hours of incubation. Thus the cell mobility indicator pMYPT1 and MYPT were 

decreased by F5.3.6.7 but not by F4.6.3. The data indicate that F5.3.6.7 contains an anti-

invasive-activity.  
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4.2 S. spinosa 

This chapter includes the results of S. spinosa. The following scheme is an overview of 

results of the fractionation processes of S. spinosa. Lyophilized leaves of S. spinosa 

were subjected to sequential extraction with five solvents of increasing polarity. The 

obtained extracts were investigated for their anti-carcinogenic potential in HL-60 cells. 

Proliferation and apoptosis assays were performed to identify the most promising 

extract which afterwards went through a detannification process. Furthermore the 

effects were studied in more detail by western blot analysis.  

 

 
 

Figure 45 Fractionation steps overview 

 

4.2.1 Extraction 

The root of S. spinosa was weighted before and after air drying. After air drying (625 g) 

the weight corresponded to 76.78 % of the weight before the drying process (814 g). 

Thus, air drying reduces the weight by 23.22 %. The extraction of S. spinosa was 

performed as described in chapter 3.4.1. The extract weights obtained from serial 

extraction of 20.1 g air dried root of S. spinosa with five solvents of increasing polarity 

are presented in Table 22. The table illustrates that the weight of the methanol extract 

corresponds to 20.55 % of dried plant. 
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Table 22 Obtained amounts of extracts of S. spinosa 

Solvent 

Extract weight 

corresponding to 20.1 g 

dried plant (g) 

Extract weight 

corresponding to 1 mg 

dried plant (µg) 

Petroleum Ether 0.01354 0.6736  

Dichloromethane 0.02199 1.0940  

Ethyl acetate 0.22287 11.0881  

Methanol 4.12975 205.4602  

Water 2.9701 147.7662  

 

To determine the anti-proliferative effects in HL-60 cells, extracts were applied with 

increasing concentrations (5 µg/ml, 10 µg/ml, 30 µg/ml, 60 µg/ml) for 24 and 72 hours. 

Results of the proliferation assay are presented in Figure 46. The methanol extract 

revealed a 45 % decrease in proliferation compared to the control and therefore was the 

most anti-proliferative extract of S. spinosa. Thus, values of the methanol extract were 

calculated in two more ways. In Figure 46 the 24 hours values were compared to the 

72 hours values, whereas in Figure 47 the 24 hour values were compared to 48 hours 

values and in Figure 48 the 48 hour and 72 hours values were compared.  
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Figure 46 Anti-proliferative effect of extracts (petroleum ether, dichloromethane, ethyl acetate, methanol 

and water) 

HL-60 cells were seeded into 24-well plate (1 x 10
5
 cells/ml), incubated with 5, 15, 30 and 60 µg/ml of 

each extract for 72 hours. Cells were counted after 24 and 72 hours of treatment. The percentage of 

proliferation between 24 and 72 hours was determined in comparison to control. Experiments were 

performed in triplicate. Asterisks indicate significance compared to untreated control (p<0.05) and error 

bars indicate ±SD. 
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Figure 47 Anti-proliferative effect of methanol 

extract 

HL-60 cells were seeded into 24-well plate (1 x 10
5
 

cells/ml), incubated with 5, 15, 30 and 60 µg/ml of 

the methanol extract for 48 hours. Cells were 

counted after 24 and 48 hours of treatment. The 

percentage of proliferation between 24 and 

48 hours was determined in comparison to control. 

Experiments were performed in triplicate. Asterisks 

indicate significance compared to untreated control 

(p<0.05) and error bars indicate ±SD. 

 

 

Figure 48 Anti-proliferative effect of methanol 

extract 

HL-60 cells were seeded into 24-well plate (1 x 10
5
 

cells/ml), incubated with 5, 15, 30 and 60 µg/ml of 

the methanol extract for 72 hours. Cells were 

counted after 48 and 72 hours of treatment. The 

percentage of proliferation between 48 and 

72 hours was determined in comparison to control. 

Experiments were performed in triplicate. Asterisks 

indicate significance compared to untreated control 

(p<0.05) and error bars indicate ±SD. 

 

 

Figure 49 Anti-proliferative effect of methanol 

extract 

HL-60 cells were seeded into 24-well plate (1 x 10
5
 

cells/ml), incubated with 60, 90, 120 and 

180 µg/ml of the methanol extract for 72 hours. 

Cells were counted after 24 and 72 hours of 

treatment. The percentage of proliferation between 

24 and 72 hours was determined in comparison to 

control. Experiments were performed in triplicate. 

Asterisks indicate significance compared to 

untreated control (p<0.05) and error bars indicate 

±SD. 
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Figure 47 (24-48 h) illustrates a linear decrease of cells alive compared to the control 

over the time. Figure 48 does not show this linear effect, which leads to the assumption 

that the methanol extract mainly inhibited proliferation in the first 48 hours. Further the 

methanol extract was tested in higher concentrations (60 µg/ml, 90 µg/ml, 120 µg/ml, 

180 µg/ml). As presented in Figure 49, the activity of the methanol extract increased in 

higher concentrations up to nearly 100 % in cells treated with 180 µg/ml (24 and 

72 hours values are compared in this figure). Still remaining that the methanol extract 

weighted almost one fifth of the whole lyophilized root substance, it was a promising 

plant concerning anti-carcinogenic activity.  

Also, a cell death assay (apoptosis and necrosis) of the methanol extract in the 

concentrations of 60 µg/ml, 90 µg/ml and 120 µg/ml was performed. It is presented in 

Figure 50. An apoptosis rate of 70 % after 72 hours in the highest concentration 

(120 µg/ml) was measured. Therefore the methanol extract was subject of further 

analyses.  

 
 

 

Figure 50 Induction of apoptosis by methanol extract 

HL-60 cells were seeded in 24-well plates (1 x 10
5
 cells/ml) and incubated with 60, 90 and 120 µg/ml of 

each extract for 72 hours. Afterwards cells were double stained with Hoechst 33258 and propidium iodide 

and examined under the microscope with UV light connected to a DAPI filter. Nuclei with morphological 

changes which indicated apoptosis were counted and the percentage of apoptotic cells was calculated. 

Experiments were performed in triplicate. Asterisks indicate significance compared to untreated control 

(p<0.05) and error bars indicate ±SD. 

 



Results 

 

74 

 

 

Figure 51 Induction of necrosis by methanol extract 

HL-60 cells were seeded in 24-well plates (1 x 10
5
 cells/ml) and incubated with 60, 90 and 120 µg/ml of 

the methanol extract for 72 hours. Afterwards cells were double stained with Hoechst 33258 and 

propidium iodide and examined under the microscope with UV light connected to a DAPI filter. Nuclei 

with morphological changes which indicated necrosis were counted and the percentage of necrotic cells 

was calculated. Experiments were performed in triplicate. Asterisks indicate significance compared to 

untreated control (p<0.05) and error bars indicate ±SD.     

  

4.2.2 Detannification 

Detannification (separation of tannins) of methanol extract of S. spinosa was conducted 

as described in chapter 3.4.2. Approximately 10 % of the starting extract were lost 

during the process.  

Table 23 Obtained amounts of fractions after detannification of the methanol extract 

Fraction Substances contained in the fraction Amount 

1 Petroleum ether Chlorophyll, wax, resin, apolar substances  0.02704 g 

2 Water-methanol Tannins und polar substances 3.64527 g 

3 Chloroform All other substances soluble in chloroform 0.01800 g 

 

The TLCs were performed with  TLC system 6 (chloroform: methanol: water, 

70:22:3.5). On the TLC (Figure 52), the petroleum ether extract from the beginning and 

the petroleum ether fraction from the detannification process seemed to contain almost 

the same substances. However, the substances only contained in the petroleum ether 
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fraction but not in the petroleum ether extract are probably reason for the increased 

activity of this fraction compared to the extract. Tannins should have washed out in with 

the water-methanol mixture, but are undetectable in this received fraction. In contrast, 

the water-methanol fraction contained active substances, which were actually expected 

to be found in the chloroform layer. Apparently the substances seemed to have almost 

the same polarity as the tannins which was the reason why they were washed out in the 

water-methanol mixture. 

 

  

Figure 52 TLC of petroleum ether extract (1), 

petroleum ether fraction (2), water-methanol fraction 

(3) and chloroform fraction(4) 

Mobile phase:  TLC system 6 

Detection: visible light with ASR (left), UV366 with 

ASR (right) 

 

A proliferation assay and an apoptosis assay were performed after the detannification 

process to measure the anti-carcinogenic activity. HL-60 cells were treated with 

30 µg/ml and 60 µg/ml of each fraction achieved from the layers of the detannification 

process to measure the anti-proliferative activity and with 60 µg/ml, 90 µg/ml and 

120 µg/ml to measure the apoptotic activity. In both experiments the cells were 

incubated for 24 and 48 hours. Figure 53 shows the highest decrease in proliferation in 

cells treated with fraction of the petroleum ether layer. It inhibited proliferation up to 

40 % in the highest concentration (60 µg/ml) compared to the control, whereas the 

petroleum ether extract from the beginning did not show an anti-proliferative effect in 

HL-60 cells. Therefore the activity of the petroleum ether fraction resulted from the 

invisible substances on the TLC. In the apoptosis assay most apoptotic cells were 

counted in cells treated with fraction of the water-methanol layer, up to 95 % in the 

concentration of 120 µg/ml.  

 

  1       2        3       4    1       2        3        4   
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Figure 53 Proliferation assay of petroleum ether fraction, water-methanol fraction and chloroform fraction 

achieved from the detannification process  

HL-60 cells were seeded into 24-well plate (1 x 10
5
 cells/ml), incubated with 30 and 60 µg/ml of each 

fraction achieved from the detannification process for 48 hours. Cells were counted after 24 and 48 hours 

of treatment. The percentage of proliferation between 24 and 48 hours was determined in comparison to 

control. Experiments were performed in triplicate. Asterisks indicate significance compared to untreated 

control (p<0.05) and error bars indicate ±SD. 
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Figure 54 Induction of apoptosis by petroleum ether fraction, water-methanol fraction and chloroform 

fraction achieved from the detannification process  

HL-60 cells were seeded in 24-well plates (1 x 10
5
 cells/ml) and incubated with 60, 90 and 120 µg/ml of 

each extract for 48 hours. Afterwards cells were double stained with Hoechst 33258 and propidium iodide 

and examined under the microscope with UV light connected to a DAPI filter. Nuclei with morphological 

changes which indicated cell death were counted and the percentages of dead cells were calculated. 

Experiments were performed in triplicate. Asterisks indicate significance compared to untreated control 

(p<0.05) and error bars indicate ±SD.       
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4.2.3 Western Blot analysis 

Western blot analyses were conducted with the most active fraction, the water-methanol 

fraction achieved from the detannification process of the methanol extract. The fraction 

showed a significant pro-apoptotic effect after 48 hours of about 90 % in HL-60 cells 

treated with 120 µg/ml. The anti-proliferative effect of the fraction was about 20 % in 

cells treated with 60 µg/ml for 48 hours. Proteins for the western blot analysis were 

chosen with a main focus on cytotoxic markers, cell cycle regulators, apoptosis inducers 

and oncogenes.  

4.2.3.1 Analysis of the cell cycle and its checkpoint regulators 

 

Figure 55 Analysis of cell cycle regulators 

HL-60 cells (1 x 10
6
 cells/ml) were incubated with 

120 µg/ml of the water-methanol fraction and harvested 

after 0.5, 2, 4, 8 and 24 h of treatment. Cells were lysed and 

obtained proteins samples applied to SDS-PAGE. Western 

blot analysis was conducted with the indicated antibodies. 

Equal sample loading was confirmed by Ponceau S staining 

and β-actin analysis 

 

Cyclin D1: The proto-oncogene Cyclin D1 is necessary for the G1 to S phase transition 

as described in chapter 2.2.2. Cyclin D1 is involved in cell growth, metabolism, and 

cellular differentiation. Therefore an overexpression of Cyclin D1 plays a key role in 

the development of several cancers (Fu, et al., 2004). Cyclin D1 expression was clearly 

increased after 2 hours of treatment with the water-methanol fraction. This is indicative 

for cell cycle activation.   

 

Cdc25A: Cdc25A is especially involved in G1-S transition. An inactivation of Cdc25A 

phosphatase (Kiyokawa, et al., 2008) causes the inactivation of Cyclin E-Cdk2. 

(Blomberg, et al., 1999). For further description see chapter 4.1.5.1. HL-60 cells treated 

with the S. spinosa water-methanol fraction caused a slight phosphorylation of Cdc25A 

at serine177, which was reported to trigger the recruitment of the proteasome and 
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consequently degradation of Cdc25A. This is an indicator for cell cycle arrest in the G1 

phase (Madlener, et al., 2009) and stands in sharp contrast to Cyclin D1 up-regulation. 

Contradicting cell cycle signalling can be considered as pro-apoptotic condition.  

 

P21: P21 is a Cdk-inhibitor protein. It silences the Cdk2/Cyclin E kinase, which 

normally triggers the G1-S transition. Thus p21 is thereby causing G1 arrest (Kastan, et 

al., 2004). Additionally, p21 binds to the Cdk4/Cyclin D complex. This results in a 

hypophosphorylation and activation of pRb and thereby suppression of the E2F pathway 

and cessation of the cell cycle (Meeran, et al., 2008). An important inducer of p21 

transcription is p53, but this pathway is excluded because HL-60 cells are proven to be 

p53 deficient (Wolf, et al., 1985). P21 can also be regulated by p53-independent 

pathways (Abukhdeir, et al., 2008); its transcription for example can be regulated by the 

oncogene c-Myc (Coller, et al., 2000). During incubation of HL-60 cells with the S. 

spinosa extract, p21 was expressed at all times within the 24 hours of incubation. The 

peak of the expression was reached after 2 hours. The expression is an indicator for cell 

cycle arrest in G1 phase.  

4.2.3.2 Analysis of apoptosis related proteins 

 

Figure 56 Analysis of apoptosis related proteins  

HL-60 cells (1 x 10
6
 cells/ml) were incubated with 120 µg/ml 

of the water-methanol fraction and harvested after 0.5, 2, 4, 8 

and 24 h of treatment. Cells were lysed and obtained proteins 

samples applied to SDS-PAGE. Western blot analysis was 

conducted with the indicated antibodies. Equal sample 

loading was confirmed by Ponceau S staining and β-tubulin 

analysis 
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γH2AX: γH2AX is the most commonly used and sensitive marker for detecting DNA-

double-strand breaks (Paull, et al., 2000). During this experiment the phosphorylation of 

H2AX was induced after 8 and 24 hours.  

 

Caspases: During the analysis of apoptosis related proteins, also cleaved caspase 3, 8 

and 9 were analysed. For their function during apoptosis (see chapter 2.2.3 Evading 

apoptosis). The increased cleavage of caspase 9 was observed after 2 hours till 8 hours 

of incubation, whereas caspase 8 was cleaved after 4 hours till 24 hours of incubation 

with the S. spinosa extract. In result of caspase 8 and 9 cleavage, apoptosis inducing 

caspase 3 was activated after 24 hours.  

 

PARP: Poly (Adenosine diphosphate (ADP)-ribose) polymerase (PARP) is activated by 

DNA strand breaks. It is a nuclear enzyme, which participated in DNA repair (Pieper, et 

al., 1999). During apoptosis, PARP is cleaved by caspase 3 into a 85 kDa fragment 

(Chang, et al., 2010). In HL-60 cells treated with the S. spinosa extract, the PARP 

cleavage occurred after 24 hours and thus exactly correlated with the cleavage and 

activation of caspase 3. Both protein cleavages are indicators of apoptosis. The data 

infer that the water-methanol fraction contains a genotoxic property, but caspase 9 

(intrinsic apoptosis pathway) was activated by another mechanism, because it was 

cleaved before phosphorylation of H2AX.  

 

-tubulin: The water-methanol fraction induced a persistent acetylation of -tubulin for 

the time of incubation, which implicates the stabilization of microtubules (Piperno, et 

al., 1987), which is incompatible with normal cell division and causes cell cycle arrest 

and apoptosis.  
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4.2.3.3 Analysis of oncogenes 

 

Figure 57 Analysis of oncogenes  

HL-60 cells (1 x 10
6
 cells/ml) were incubated with 

120 µg/ml of the water-methanol fraction and harvested 

after 0.5, 2, 4, 8 and 24 h of treatment. Cells were lysed and 

obtained proteins samples applied to SDS-PAGE. Western 

blot analysis was conducted with the indicated antibodies. 

Equal sample loading was confirmed by Ponceau S staining 

and β-actin analysis 

 

Stat3: The Stat3 oncogene product is the most activated Stat protein in human cancers 

(Jackson, et al., 2009). Stat family proteins are transcription factors involved in normal 

and pathological cellular processes. Stat3 is especially included in cell cycle 

progression, apoptosis, angiogenesis and immune evasion (Grisko, et al., 2006). The 

activation of Stat3 leads to the prevention of apoptosis and increasing cell proliferation 

(Kanda, et al., 2004) and an overexpression of Stat3 was found in leukaemia, breast 

cancer, pancreatic cancer, prostatic cancer and melanoma. The phosphorylated Stat3 is 

able to migrate into the nucleus and to activate the transcription of target genes there 

(Deng, et al., 2010). In HL-60 cells treated with the extract of S. spinosa, the Stat3 

phosphorylation decreased after 2 hours of incubation. Thus the oncogenic potential and 

the anti-apoptotic activity were decreased.  

 

Stat5: Stat5 oncogene product is described to be activated by IL3 (Mui, et al., 1995) 

and to induce anti-apoptotic genes and cell proliferation (Gündogdu, et al., 2010). The 

Stat5 protein has a specific binding site on the Bcl-X promoter, and thus regulates Bcl-

XL. Bcl-XL is known to be an anti-apoptotic protein which maintains cell survival 

under stresses such as genotoxic drugs (Jinawath, et al., 2010). In the experiment Stat5 

was not phosphorylated at all when HL-60 cell were treated with the S. spinosa extract.  
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C-Myc: C-Myc is described to influence cell proliferation, differentiation and apoptosis 

(Dominguez-Sola, et al., 2007). An increase in c-Myc expression triggers an abnormal 

proliferation rate and is recognized in many tumor types. C-Myc is described in more 

detail in chapter 2.2.2 (Insensitivity to antigrowth signals). The expression of c-Myc is 

strongly suppressed by the extract of S. spinosa in HL-60 cells after 2 hours of 

incubation.  

 

C-Jun, Jun B: C-Jun and junB are both products of the Jun family genes and 

components of the activating protein-1 transcription factor complexes. Those complexes 

are important in cell growth, differentiation, and neoplastic transformation. C-Jun and 

junB are usually promoting cell proliferation, but if activated, especially c-Jun is found 

to function in cell cycle progression and neoplastic transformation  (Wang, et al., 2000). 

During incubation of HL-60 cells with the S. spinosa extract, c-Jun expression was 

immensely increased during the first 0.5 hours of treatment, whereas the junB 

expression stayed stable during the whole 24 hours of incubation. Thus the extract has 

an important impact on the de-regulation of various oncogenes: up-regulation of Cyclin 

D1 and c-Jun and down-regulation of Cdc25A, Stat3, c-Myc, as well as the up-

regulation of the tumor suppressor p21.  
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5 Conclusion 

In the present work the anti-neoplastic activity of the dichloromethane extract from 

aerial parts of P. odorata, and of extracts of the S. spinosa root was investigated. The 

two plants are ethnomedical healing remedies used especially against inflammation by 

the Maya.  

5.1 P. odorata 

We started the P. odorata investigation with the bio-assay guided fractionation of the 

dichloromethane extract, which was already examined by Gridling et al. (2009) and 

Bauer et al. (2010), who both discovered a strong anti-neoplastic activity in some of the 

extracts and fractions. The current bio-assay guided fractionation indicated that the 

apoptotic activity of the plant was induced by highly apolar components, matching the 

outcome of the investigation conducted by Bauer et al. (2010), who investigated 

especially the anti-proliferative effect of the apolar dichloromethane extract.  

Interestingly the highest anti-neoplastic activity was found in two fractions (F4.6.3 and 

F5.3.6.7), containing different compounds. Four respectively five fractionation steps, 

including vacuum liquid chromatography (VLC) and column chromatography (CC), 

had to be performed to achieve the two most active fractions. In between the 

fractionation steps, especially apoptosis assays, but also proliferation assays were 

performed to detect the most promising fractions for further fractionation processes. 

HL-60 cells treated with 10 µg/ml of F4.6.3 and F5.3.6.7 for 48 hours showed an almost 

a 100 % and 90 % apoptotic rate, respectively.  

 

The analysis of the cell cycle proteins Chk2 and Cdc25A revealed a weak 

phosphorylation of Chk2 and the phosphorylation of Cdc25A serine 177 by F4.6.3, 

whereas F5.3.6.7 de-phosphorylated Cdc25A at the amino acid. The phosphorylation of 

serine 177 of Cdc25A is known to promote the degradation of Cdc25A by the 

proteasome. Cdc25A is required for the activation of the CyclinE/Cdk2 complex, which 

is needed for the transition of the G1-S phase of the cell cycle (Blomberg, et al., 1999). 

However, for unknown reasons, Cdc25A was even up-regulated by F4.6.3, despite 
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induction of serine 177 phosphorylation. In contrast, F5.3.6.7 de-phosphorylated serine 

177 and this was in accordance with moderate Cdc25A stabilization (up-regulation). 

Taking together, the expression of pChk2 and pCdc25A varied between both fractions, 

which indicated that different bio-active compounds were contained in F4.6.3 and 

F5.3.6.7. F4.6.3 included compounds for causing the early (yet weak) phosphorylation 

of Chk2 and transient phosphorylation of Cdc25A. In contrast, upon treatment with the 

more apolar fraction F5.3.6.7 the phosphorylation of Chk2 occurred later, but the 

inhibiting (degrading) phosphorylation of Cdc25A was blocked in HL-60 cells.  

 

Regarding apoptosis related proteins the two extracts did not differ too much. γH2AX 

was activated by both extracts, although stronger in cells treated with F4.6.3, indicating 

DNA-double-strand breaks in both cases. This was not due to genotoxicity (Paull, et al., 

2000), but correlated with caspase 3 and concomitant apoptotic signature type DNA 

fragmentation. Even caspase 3 was activated differently by the two extracts. F5.3.6.7 

led to the cleavage of caspase 3 first and afterwards induced an activation of caspase 8 

and 9. In contrast, F4.6.3 induced the activation of the caspase cascade by both ways, 

the extrinsic by activation of caspase 8 leading to an activation of caspase 3 and the 

intrinsic apoptotic pathway by activation of caspase 9 also resulting in the activation of 

caspase 3, which in the end induces apoptosis (Stewart, et al., 2003). The acetylation of 

-tubulin, which implicates the stabilization of microtubules  (Piperno, et al., 1987) and 

therefore cell cycle arrest and most likely apoptosis, was increased by both extracts, but 

was earlier decreased by F5.3.6.7.  

 

Markers of cell mobility, which is a hallmark property for the invasive/metastatic 

potential of cancer cells, were decreased by F5.3.6.7, whereas increased by F4.6.3. 

Regarding paxillin, a key regulator of cell migration (Paulitschke, et al., 2010), F5.3.6.7 

did not induce this protein to a level observed by exposure to F4.6.3, which strongly 

increased the paxillin expression after 2 hours of incubation and which persisted 

thereafter at somewhat reduced level.  

The effects on cell mobility by F4.6.3 and F5.3.6.7 are also recognized by the 

expression of ROCK-1, which is known to be generating an amoeboid movement 

(Sahai, et al., 2003) and therefore being able to promote metastasis. F5.3.6.7 led to a 

quick inhibition of the ROCK-1 expression, whereas cells treated with F4.6.3 still 
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slightly expressed ROCK-1 for the duration of incubation. But pMLC2, which is 

phosphorylated by ROCK-1, was not phosphorylated by both fractions. MYPT was only 

slightly constitutively phosphorylated and F5.3.6.7 led to a complete inhibition of the 

phosphorylation. Even the total MYPT protein expression was down-regulated by 

F5.3.6.7, whereas F4.6.3 affected neither phosphorylation nor protein expression. 

Therefore, F5.3.6.7 positively influenced paxillin, ROCK-1, pMLC2 and pMYPT1 

expression and activity, whereas F4.6.3 did not exhibit such an activity.  

 

Summing up, two fractions of the dichloromethane extract of P. odorata have pro-

apoptotic, anti-proliferative and anti-metastatic effects on HL-60 cells, with a more 

mobility decreasing activity in F5.3.6.7.  

5.2 S. spinosa 

The investigation of the root of S. spinosa started with the extraction by using solvents 

of increasing polarity. Afterwards the extracts were tested in proliferation and apoptosis 

assays. The methanol extract was detected to be the most active extract by decreasing 

cell proliferation by 90 % in the concentration of 90 µg/ml and apoptosis by 70 % in the 

concentration of 120µg/ml, after 72 hours of incubation. Tannins that may have 

contaminated the methanol extract were tried to be separated from the extract. From the 

detannification process three different layers of solvents (fractions) were received, but 

no tannins were visually detected in the separated fractions. The most active compounds 

were found in the water-methanol fraction, where also the tannins were expected but not 

observed. The fraction obtained from the water-methanol layer, inhibited proliferation 

up to 40 % in the concentration of 60 µg/ml and induced apoptosis up to 95 % in the 

concentration of 120 µg/ml after 48 hours of incubation, and therefore was the most 

active fraction after the detannification process.  

 

The water-methanol fraction increased the expression of the cell cycle protagonists 

Cyclin D1 and Cdc25A and also increased the phosphorylation of Cdc25A, which 

resulted in the decrease of Cdc25A protein after 24 hours. P21, a tumor suppressor 

protein, which silences the Cdk2/Cyclin E kinase resulting in the inhibition of G1-S 

transition (Kastan et al., 2004), was up-regulated by the water-methanol fraction. Thus, 
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these are all indicators that this fraction caused cell cycle disturbances leading to growth 

arrest.  

 

Besides cell cycle arrest, the fraction was also figured out to promote apoptosis by a 

genotoxic mechanism as γH2AX levels, a marker for DNA-double strand breaks  (Paull, 

et al., 2000), was increased concomitant or before the activation of caspase 3. The 

caspase cascade i.e. cleaving of caspase 9 and 8, which both result in cleavage of 

caspase 3 and in addition leading to apoptosis (Stewart, et al., 2003) and the cleavage of 

PARP in the late stage (Chang, et al., 2010), suggested that the fraction induced the 

intrinsic pathway. The cleavage of PARP is known as an indicator for apoptosis.  

 

Also the activity of the transcription factor Stat3 was down-regulated by the 

investigated S. spinosa fraction, which decreases the anti-apoptotic potential of the 

cancer cells. Besides this, the water-methanol fraction strongly suppressed the 

expression of the oncogene c-Myc and which has an impact on abnormal cell-

proliferation.  

 

In summary, the water-methanol fraction of S. spinosa had a positive impact on HL-60 

cells, especially regarding the inactivation of oncogenesis, but was also acting pro-

apoptotic and decreased cell-proliferation.  
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6 Summary 

The facts that one out of three persons is affected by cancer during their lifetime 

(Pecorino, 2008) and that more than 50 % of them die from the disease (Stewart, et al., 

2003) show that there is a substantial need for anti-cancer drugs.  

 

Plants have been a source of effective drugs for the treatment of cancers, and generally 

over 60 % of anti-cancer drugs originate from natural sources (Cragg, et al., 2005). For 

this reason two ethnomedical plants, used by the Mayas of Guatemala, were 

investigated towards their anti-neoplastic activity. Ethnomedical plants have a large 

impact in cancer research, because those natural products have been administered as a 

therapy against several diseases for hundreds of years (Shoeb, 2006). The two plants 

investigated in this study, P. odorata and S. spinosa, are originally used against 

inflammation. Reason for the investigation of plants with anti-inflammatory effects is 

that both, inflammation and cancer up-regulate similar signalling pathways (Kundu, et 

al., 2008). The dichloromethane extract of P. odorata is already known to contain an 

anti-neoplastic activity, as described by Gridling et al. (2009) and Bauer et al. (2010). 

Therefore the bio-assay guided fractionation of P. odorata started with the 

dichloromethane extract. After four, respectively five steps of fractionation using 

vacuum liquid chromatography or column chromatography with in-between testing the 

pro-apoptotic and anti-proliferative effect on HL-60 cells, the fractionation process 

resulted in two very active fractions; F4.6.3 and F5.3.6.7. The two fractions were then 

further analysed by western blot analysis with focus on cytotoxic effects. In the 

concentration of 10 µg/ml both fractions had strong cytotoxic effects. F4.6.3 induced 

apoptosis by 100 % in HL-60 cells after 48 hours; F5.3.6.7 induced an apoptosis rate of 

90 %. The western blot analysis revealed that F4.6.3 was the fraction with the stronger 

γH2AX activation, indicating DNA-double-strand breaks. For this reason the fraction 

showed also the activation of the caspase cascade and inhibition of the cell cycle 

progression by phosphorylation of Chk2 and Cdc25A. In contrast, F5.3.6.7 had a 

stronger impact on the cell mobility proteins like decreasing the expression of paxillin 

and ROCK-1. This and the complete inhibition of pMYPT are indicative for decreased 

cell mobility, decreasing the chance for metastasis.  
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The air-dried root of the second ethnomedical plant from Guatemala, S. spinosa, was 

first milled and then extracted by solvents with increasing polarity. Afterwards 

proliferation and apoptosis assays were conducted. The most active extract, the 

methanol extract was then subjected to detannification. The anti-proliferative and pro-

apoptotic activity was found in the water-methanol layer, which should also include the 

tannins that however have not been detectible. The extract inhibited proliferation up to 

40 % in the concentration of 60 µg/ml and induced apoptosis up to 95 % in the 

concentration of 120 µg/ml after 48 hours of incubation. Proteins relating cell cycle 

progression, apoptosis and oncoproteins were investigated by western blotting. The 

fraction especially had a great impact on oncogenes. It decreased pStat3 as well as c-

Myc, which are all indicators for abnormal cell growth. Further the water-methanol 

fraction led to cell cycle disturbances leading to growth arrest by decreasing the 

expression of Cdc25A after 24 hours and increasing the level of p(Ser177)Cdc25A and 

p21. Apoptosis indicating proteins like γH2AX and the caspase cascade including 

caspase 8, 9 and in the end the cleavage of caspase 3, which itself results in a PARP 

cleavage were up-regulated by the extract of S. spinosa. 

 

In summary, both investigated plants clearly showed anti-neoplastic effects on HL-60 

cells, and therefore confirm that ethnomedical plants, used against inflammation for 

hundreds of years are suitable to discover novel anti-cancer drugs.  

 

 



Zusammenfassung 

 

89 

 

7 Zusammenfassung 

Während des Lebens erkrankt durchschnittlich eine von drei Personen an Krebs 

(Pecorino, 2008) und mehr als 50 % der betroffenen Personen sterben an der Krankheit 

(Stewart, et al., 2003). Allein diese beiden Fakten zeigen die große Notwendigkeit für 

Medikamente gegen Krebs auf.  

 

60 % der Medikamente zur Tumorbehandlung stammen von Pflanzen ab, womit 

Pflanzen eine wichtige Grundlage für die Entwicklung dieser Medikamente bilden 

(Cragg, et al., 2005). Aus diesem Grund wurden die zwei ethnomedizinischen Pflanzen, 

die von den Maya in Guatemala verwendet werden, auf ihre anti-neoplastische Wirkung 

hin untersucht. Ethnomedizinische Pflanzen sind deshalb so wichtig in der 

Krebsforschung, da diese Pflanzen über Jahrhunderte hinweg gegen verschiedene 

Krankheiten verwendet wurden (Shoeb, 2006). Die zwei in dieser Studie untersuchten 

Pflanzen, P. odorata and S. spinosa, wurden ausgewählt, da sie ursprünglich zur 

Behandlung von Entzündungen verwendet wurden und bei Entzündungen und Krebs 

ähnliche Signalwege angesprochen werden (Kundu, et al., 2008).  

 

Das Dichlormethan-Extrakt der P. odorata ist bekannt dafür anti-neoplastisch zu 

wirken, wie Gridling et al. (2009) und Bauer et al. (2010) bereits beschrieben. Deshalb 

wurde die „Bio-Assay Guided Fractionation“ der P. odorata mit dem Dichlormethan-

Extrakt begonnen. Nach vier bzw. fünf Fraktionierungsschritten mit Vakuum-

Flüssigkeitschromatographie bzw. normaler Säulenchromatographie, wurden zwei sehr 

aktive Fraktionen erhalten; F4.6.3 und F5.3.6.7. Zwischen den jeweiligen 

Fraktionierungsschritten wurde die pro-apoptotische und anti-proliferative Aktivität der 

Fraktionen an HL-60 Zellen getestet. Die zytotoxischen Effekte dieser zwei Fraktionen 

waren erheblich, in der Konzentration von 10 µg/ml rief F4.6.3 nach 48 Stunden eine 

Apoptoserate von 100 % in HL-60 Zellen hervor, F5.3.6.7 von 90 %. Mittels Western 

Blots wurden diese Effekte weiter analysiert. Hier zeigte F4.6.3 einen etwas stärkeren 

Effekt auf die γH2AX Aktivierung, welche auf eine höhere Anzahl an DNA-

Doppelstrangbrüchen hinweist. Als Konsequenz wurde die Caspase-Kaskade in Gang 

gesetzt, und der Zellzyklus durch die Phosphorylierung von Chk2 und Cdc2A 

angehalten. Im Gegensatz zu F4.6.3 zeigte F5.3.6.7 einen größeren Einfluss auf 
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Mobilitätsproteine. F5.3.6.7 verminderte die Expression von Paxillin und ROCK-1 und 

hemmte die Phosphorylierung von MYPT, welche allesamt für eine Einschränkung der 

Zellmobilität stehen und damit den Weg für eine Metastasierung erschweren.  

 

Die getrocknete Wurzel der zweiten ethnomedizinischen Pflanze, S. spinosa, wurde 

zuerst gemahlen und anschließend mit Lösungsmitteln mit steigender Polarität 

extrahiert. Danach wurden Proliferations- und Apoptose-Assays durchgeführt und das 

aktivste Extrakt - das Methanol-Extrakt - einer Detannifizierung unterzogen. Nach dem 

Detannifizierungs-Prozess war die anti-neoplastische Aktivität in der Wasser-Methanol-

Fraktion zu finden, in welcher auch die Tannine enthalten sein sollten. Die Tannine 

konnten jedoch nicht detektiert werden. Die Proliferation von HL-60 Zellen wurde 

durch die neu erhaltene Wasser-Methanol-Fraktion nach 48 Stunden in einer 

Konzentration von 60 µg/ml um 40 % gehemmt. Apoptose wurde in der Konzentration 

von 120 µg/ml nach 48 Stunden in 95 % der HL-60 Zellen induziert. Auf Grund dieses 

Ergebnisses wurden Onkoproteine, bzw. Proteine die am Zellzyklus oder der Apoptose 

beteiligt sind, mittels Western Blots näher untersucht. Die Fraktion hatte vor allem 

großen Einfluss auf Onkogene wie beispielsweise Stat3 und c-Myc. Die 

Phosphorylierung von Stat3 wurde durch die Wasser-Methanol-Fraktion vermindert, 

ebenso wie die c-Myc-Expression, welche beide als Indikatoren für abnormales 

Zellwachstum bekannt sind. Außerdem führte die Fraktion  zu Unterbrechungen des 

Zellzyklus durch verminderte Expression von Cdc25A nach 24 Stunden und erhöhte 

Expression von p(Ser177)Cdc25A und p21. Ebenfalls wurden Indikatoren für Apoptose 

durch die Fraktion von S. spinosa beeinflusst. Die γH2AX Expression stieg und 

zusätzlich wurde die Caspase-Kaskade in Gang gesetzt, bei der es durch Aktivierung 

von Caspase 8 und 9 zur Spaltung von Caspase 3 kommt. Caspase 3 ist bekannt für die 

Induktion von Apoptose und für die Aktivierung von PARP, welches ebenfalls ein 

Apoptose Indikator ist.  

  

Zusammenfassend kann gesagt werden, dass beide untersuchten Pflanzen deutliche anti-

neoplastische Effekte in HL-60 Zellen zeigten und deshalb untermauern, dass 

ethnomedizinische Pflanzen, die seit Jahrhunderten als Medikament gegen Entzündung 

in Verwendung sind, eine gute Grundlage für die Forschung nach neuen 

Krebsmedikamenten bilden.  
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