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Abstract

In this thesis, quantum states of two level systems (called qubits) as well as d-level

systems (called qudits), d < ∞, are investigated. The focus is on characterizing

the property of separability and entanglement of composite systems geometrically.

Since to some extend this has already been investigated for two qubit or two qudits,

this work presents possible generalizations for systems comprising more particles

(multipartite). It also shows analytically and numerically how these generalizations

a�ect the prevalent separability criteria such as the Peres-Horodecki criterion, the

realignment criterion, the distillation of entanglement and entanglement measures.

It is shown in detail how a simplex of n-partite qubit states can be constructed in

the similar manner to the bipartite qubit case and why all its elements are bound

entangled states. This result is published in Physical Review A 78, 042327 (2008).

Furthermore, two di�erent constructions of an n-partite Wk-simplex are presented,

which both coincide for n = 2 with the famous magic tetrahedron. For the spe-

cial cases of the tripartite Wk-simplices (W-state simplices) special symmetries of

the eligible quantum systems according to the mentioned separability criteria are

revealed and certain subclasses of states can be discriminated. In addition to un-

veiling these symmetries via this geometrical representation of quantum states,

the di�erent cuts of such simplices also allow a precise comparison of the di�er-

ent criteria in a visual and easy way. These facts are therefore contributing to

understand and characterize composite quantum systems as well as the associated

exciting phenomenon of entanglement and its future applications, such as quantum

cryptography, quantum communication or a possible quantum computer.
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Die vorliegende Diplomarbeit beschäftigt sich überwiegend mit Quanten-Systemen,

die zwei (auch qubit genannt) oder im allgemeinsten Fall d Freiheitsgrade (auch

qudit genannt) aufweisen. Insbesondere werden die Eigenschaften zusammenge-

setzter Quanten-Systeme bezüglich Separabilität beziehungsweise Verschränkung

auf geometrische Weise dargestellt. Beruhend auf ähnlichen, bereits bekannten

Überlegungen für zwei Qubit oder zwei Qudit Systeme, werden mögliche Verallge-

meinerungen dieser Ergebnisse für Vielteilchensysteme präsentiert. Des Weiteren

wird das Verhalten dieser Vielteilchensysteme bezüglich der gängigsten Separabil-

itätskriterien, wie z.B. des Peres-Horodecki Kriteriums, des Realignment Kriteri-

ums, der Destillation von Verschränkung und Verschränkungsmaÿen, sowohl nu-

merisch als auch analytisch betrachtet.

Es wird im Einzelnen gezeigt wie, in Anlehnung an den zwei Qubit Simplex, ein

n-Teilchen Simplex bestehend aus Qubit Zuständen konstruiert werden kann und

warum alle Zustände in diesem Simplex `bound-entangled' sind. Dieses Ergebnis

wurde bereits in Physical Review A 78, 042327 (2008) publiziert.

Auÿerdem werden zwei verschiedene Konstruktionen eines n-Teilchen Wk-Simplex

vorgestellt, die beide für den n = 2 Fall mit dem bekannten `Magic Tetrahedron'

übereinstimmen. Für den speziellen Fall des drei TeilchenWk-Simplex (W-Zustand

Simplex) werden bestimmte Symmetrien der jeweiligen Quanten Systeme bezüglich

der oben erwähnten Separabilitätskriterien aufgezeigt und dementsprechend ver-

schiedene Subklassen von Zustände eingeführt. Zusätzlich zu diesen Symmetrien

können durch diese geometrische Veranschaulichung der Zustände, d.h. durch ver-

schiedene Schnitte dieser Simplices, die verschiedenen Kriterien präzise und le-

icht auf optischem Wege verglichen werden. Aus diesem Grund werden die in

dieser Arbeit beschriebenen Ergebnisse dazu beitragen sowohl zusammengesetzte

Quanten-Systeme als auch das damit verbundene faszinierende Phänomen der Ver-

schränkung, welches die Grundlage für zukünftige Technologien, wie etwa Quan-

tenkryptography, Quantenkommunikation oder möglicherweise Quantencomputer,

bilden wird, besser zu verstehen.
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I Introduction of the Physical Formalism

Part I

Introduction of the Physical Formalism
CHAPTER 1

Mathematical and Physical Basics

In this thesis the description of quantum mechanics is basically formulated by using
methods of the mathematical concept of functional analysis. In order to de�ne the base in
with the theory is formulated the so called Hilbert space has to be introduced.

ä De�nition:
A Hilbert space H over the complex body C is a complex vector space equipped with a
scalar product, which is de�ned below.

Due to the fact that this work focuses on quantum systems with countably �nite degrees
of freedom this general de�nition can be restricted to a discrete Hilbert space with a �xed
dimension d > 0, Hd. Furthermore the so called Dirac formalism will be used as one of
the several equivalent mathematical notations for the description of quantum mechanics. In
this formalism a physical state is denoted by Ψ (the notation shows the connection to the
solution of the Schrödinger equation 1), which corresponds to a so called ket vector | 〉, that
is an element of the introduced Hilbert space Hd 2. The actual ket vector associated with
Ψ is commonly written as |Ψ〉. It has to be noted that via this notation the wave function
is independent of any representation, e.g. spatial or momentum 3. As it is known from
Euclidean vector spaces a minimal set of orthogonal vectors can be found, which allows to
construct every element of the space by a weighted sum of its element. This set is called a
basis B and its de�nition is also valid for Hilbert spaces. As an example for Hd serves the
computational base, often denoted as the set {|0〉 , |1〉 , ..., |d− 1〉} 4.

For elements of a Hilbert space the following compositions can be de�ned:

ä Scalar Product and Norm
The scalar or inner product is already found in the de�nition of the Hilbert space as a
property of the space itself. It ful�lls the de�nition of a linear functional, since it takes
two elements of one Hilbert space and assigns to it a complex scalar, S(|Ψ1〉 ∈ H, |Ψ2〉 ∈
H)→ C.
In the Dirac notation the scalar product is written as 〈Ψ1|Ψ2〉 = c ∈ C. In this case 〈 |
is called a bra or bra-vector and represents the dual form of an element of the Hilbert
space 5. Whenever a basis is given the vector |Ψ〉 can be represented as |Ψ〉 =

∑
i ci |bi〉,

with |bi〉 ∈ B and ci ∈ C and corresponds to its dual by 〈Ψ| = ∑i c
∗
i 〈bi| with 〈bi| being

an element of the dual basis B† (for a orthonormal base the equation 〈bi|bj〉 = δij holds
for its elements).

1The Schrödinger equation in the Dirac formalism is given by −ih̄ ∂
∂t
|Ψ〉 = H |Ψ〉, independent from a special representation.

2The representation of a continuous wave function by a discrete vector can be made w.l.o.g. in this case by restriction to a
limited volume and herewith writing Ψ as the sum of eigenfunctions of the corresponding Hamilton operator.

3With the later de�ned scalar product these special representations are given by Ψ(~x, t) = 〈~x|Ψ〉 and Ψ(~p, t) = 〈~p|Ψ〉,
respectively.

4The elements written in vector form are |0〉 = (1, 0, ..., 0)T , |1〉 = (0, 1, 0, ..., 0)T , ..., |d− 1〉 = (0, 0, 0, ..., 1)T , with T being
the transposition.

5In comparison to the continuous formulation of quantum mechanics the scalar product is given by
∫

Ψ∗1Ψ2dx, whereas the
dual form of the wave equation is received by complex conjugation.
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I Introduction of the Physical Formalism

Since the scalar product of a Hilbert space is constructed to ful�ll the triangle as well as
the parallelogram inequality, a map called norm of ket vector, denoted by the symbol
‖ ‖, can be constructed by ‖|Ψ〉‖ :=

√
〈Ψ|Ψ〉. From the axiomatic approach of a norm

this is, as it will turn out in the course of this chapter, not the only way to de�ne a
norm on a Hilbert space.

ä Kronecker Product
The Kronecker product (also called outer or dyadic product) is de�ned for two elements
|Ψ1〉 and |Ψ2〉 of the same Hilbert space H, whereas one element is again turned into
its dual form. The Kronecker product, K, combines these two elements to a map,
K(|Ψ1〉 , |Ψ2〉) → A, leading other elements of the Hilbert space in the same space ,
A : H → H.
In the Dirac notation the map A is written as |Ψ1〉 〈Ψ2|. Whenever a basis is given, A
can be written as a d× d matrix.

ä Tensor Product
Another important map is the tensor product T, taking elements of two Hilbert spaces
of arbitrary dimension Hd1

A and Hd2
B and turning them into an element of a joint Hilbert

space H, that contains both elements: T (|ΨA〉 ∈ Hd1
A , |ΨB〉 ∈ Hd2

B )→ |Ψ〉 ∈ Hd1·d2 .
In this work such an operation is written as |ΨA〉 ⊗ |ΨB〉 or |ΨAΨB〉.

Operator on a Hilbert space

In quantum mechanics the term operator is a widely stretched word as it is used in many
situations. In common use an operator is expressing a certain physical e�ect. Such an e�ect
can have various actions as for example the time evolution of a particle or its interaction
with other particles. All such e�ects are described by applying operators to elements of
the Hilbert space by using the common vector analysis or the previously introduced maps.
From the mathematical point of view an in�nite number of di�erent maps or operators,
respectively, can be constructed, which means that restrictions have to be made in order
to allow only those that are necessary for a complete formulation of quantum mechanics.
The Dirac notation allows to de�ne an operator O without specifying its representation by
applying it on one vector |Ψ〉 ∈ Hd and assigning it to another |φ〉 ∈ Hd:

|φ〉 = O |Ψ〉 (1)

Another important de�nition is the so called expectation value 〈O〉 of an operator with respect
to an arbitrary vector |Ψ〉, which is de�ned by

〈O〉|Ψ〉 := 〈Ψ|O |Ψ〉 . (2)

When a basis B for a Hd is considered the d-dimensional identity operator 1d can be written
as 1d =

∑d−1
i=0 |bi〉 〈bi|, with |bi〉 ∈ B. With inserting 1d and applying the scalar product with

an arbitrary dual vector |n〉 equation (1) can be rewritten as

〈n|φ〉︸ ︷︷ ︸
cn

=
d−1∑
i=0

〈n|O|bi〉 〈bi|Ψ〉︸ ︷︷ ︸
di

= Oni di. (3)

Since this is a matrix equation, every operator, that can be represented by equation (3), can
be written as d × d matrix. This allows furthermore a more precise de�nition of such an
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I Introduction of the Physical Formalism

operator O by determining which set of states is a�ected by its action. This set is called the
image of O. It is usually de�ned as complement of kernel of the operator, Img(O) := ker(O),
which is the set of states that is mapped into the zero element of the Hilbert space by this
operator,

ker(O) := {|Ψ〉 ∈ Hn|O |Ψ〉 = 0} . (4)

Based on this de�nition, certain classes of operators can be de�ned by referring to their
properties. The most important ones that are used in this thesis are de�ned in the following.

ä Linear Operator
An operator L ∈ Hd is said to be linear, i� L |λ1Ψ1 + λ2Ψ2〉 = Lλ1 |Ψ1〉+Lλ2 |Ψ2〉, with
λi ∈ C and |Ψi〉 ∈ Hd, holds.

ä Bounded Operator
An operator B ∈ Hd is called bounded i� ‖B|Ψ〉‖‖|Ψ〉‖ <∞ ∀ |Ψ〉 ∈ Hd.

ä Positive Operator
A positive operator P ∈ Hd is given when the inequality 〈Ψ|P |Ψ〉 > 0 holds for all
|Ψ〉 ∈ Hd.

ä Unitary Operator
Unitary operators U ful�ll the relation ‖U |Ψ〉‖2 = 〈Ψ|U †U |Ψ〉 = 〈Ψ|Ψ〉 and are hence
de�ned by UU † = U †U = 1. A unitary operator is conserving the norm of an element of a
Hilbert space. One representative of a unitary operator is the time evolution U(t, t0) for
a time dependent quantum state, with the additional properties |Ψ(t)〉 = U(t, t0) |Ψ(t0)〉,
U(t2, t0) = U(t2, t0)U(t1, t0), with t2 ≤ t1 ≤ t0.

ä Hermitian Operator
In order to de�ne an hermitian operator, the adjoint operator has to be introduced.
Whenever matrix representation Oij

6 is possible the adjoint operator O† can be de�ned
via complex conjugation (*) and transposition (T) as O† := O∗T = O∗ji. Otherwise
the equality 〈φ|OΨ〉 =

〈
O†φ|Ψ

〉
can be used. For hermitian operators a special case

of this equality, namely 〈φ|OΨ〉 = 〈Oφ|Ψ〉, holds, i.e. O is self adjoint O† = O. For a
�nite dimensional Hilbert space, which is assumed in this work, a self adjoint operator is
hermitian and vice versa. As a consequence of this property the spectrum of a hermitian
operator comprises only real scalars.
A prominent example of a hermitian operator is the Hamilton operatorH, that describes
not only the time evolution but also the energy of a quantum system.

Density matrix formalism

When considering the case of a quantum mechanical system given as an ensemble of wave
functions Ψi, each with a corresponding probability pi, the whole wave package has to be
represented by a statistical map. In the Dirac formalism this map is given by the so called
density matrix or density operator, usually written as ρ. It is de�ned as

ρ :=
d−1∑
i=0

pi |Ψi〉 〈Ψi| , (5)

6Oij = 〈i|O|j〉
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I Introduction of the Physical Formalism

with pi ≥ 0,
∑

i pi = 1 and 〈Ψi|Ψi〉 = 1. Whenever a basis is chosen, this density operator
can be written in form of a d × d density matrix. If only one element of the Hilbert space
is su�cient to describe ρ, i.e. |Ψi〉 = |Ψ〉 as well as pi = p = 1, ρ is said to be a pure state
ρpure = |Ψ〉 〈Ψ| 7, if this does not hold ρ is said to be a mixed state. In order to satisfy the
properties of a statistical map, the following statements are valid for all density operators:

ä 〈φ|ρ|φ〉 ≥ 0,∀ |φ〉 ∈ Hd, i.e. ρ is positive semide�nite

ä Tr(ρ) = 1, i.e. ρ is trace class 1

Furthermore it can be shown, by using the �rst property, that every density operator is self
adjoint, ρ† = ρ. For pure states the density operator also ful�lls the de�nition of a projector,
ρ2
pure = ρpure (i.e. ρ2

pure = p |Ψ〉 〈Ψ| |Ψ〉︸ ︷︷ ︸
=1

〈Ψ| = ρpure). Regarding the latter property of the

density matrix, a useful functional, the trace operator Tr, is used, which can serve as the
scalar product in this formalism. For a d dimensional Hilbert space Hd, with the vectors |bi〉
being elements of a basis B, it is de�ned as

Tr(ρ) :=
d−1∑
k=0

〈bk| ρ |bk〉 =
d−1∑
k=0

〈bk|
d−1∑
i=0

pi |Ψi〉 〈Ψi| |bk〉 =
d−1∑
i=0

pi︸ ︷︷ ︸
=1

〈
Ψi|

d−1∑
k=0

|bk〉 〈bk|︸ ︷︷ ︸
=1

Ψi

〉
= 1. (6)

As it can be seen in this equation, the result of the trace operator Tr is independent of the
chosen basis and also allows to determine the expectation value of an operator A with regards
to an arbitrary state ρ by

〈A〉ρ =Tr(ρA) =
∑
k

〈bk| ρA |bk〉 =
∑
k

∑
i

pi 〈bk| |Ψi〉 〈Ψi|A |bk〉

=
∑
i

pi 〈Ψi|A
∑
k

|bk〉 〈bk|︸ ︷︷ ︸
=1

|Ψi〉 =
∑
i

pi 〈Ψi|A |Ψi〉 . (7)

In this case the expectation value is given by a weighted sum over the vectors of the density
operator, whereas for a pure state this result coincides with equation (2). It has to be noted,
that two di�erent density matrices can lead to the same probability distribution, which means
that they yield the same expectation values for the same operators and therefore to the same
quantum system. The question, why the expectation values are the crucial parameters for
quantum systems, leads to the postulates of quantum mechanics, which are shortly sketched
in the next segment.

Postulates of Quantum Mechanics

ä A quantum system can be represented by a state vector |Ψ〉 of the Hilbert space Hd.
A pure state corresponds to a set of parallel vectors, λ |Ψ〉, λ ∈ C, whereas a normed
vector ‖|Ψ〉‖ = 1 is usually chosen as a representative, which is unique except for a
phase factor eiα, α ≥ 0. Via superposition state vectors can be combined to a new state
vector.
A statistical quantum state is given by a density operator (5), which is the general
formulation of quantum systems comprising pure states as a special case.

7A pure state can also be written as a single element or a ket-vector, respectively, of the Hilbert space: |Ψ〉.
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I Introduction of the Physical Formalism

ä A measurable value (e.g. spin, energy, angular momentum etc.), also called observ-
able, corresponds to a hermitian operator by its expectation value (7). The possible
expectation value and measurement result, respectively, is one of the eigenvalues of this
operator λi ∈ R 8. In the course of this measurement the state ρ is projected onto
the corresponding eigenvector |ai〉. The probability to receive the i-th eigenvalue of
an hermitian operator A at a measurement P (δA,λi) is given by P (δA,λi) = 〈δA,λi〉ρ =

Tr(ρδA,λi) =
∑

k 〈bk|ρδA,λi |bk〉 =
∑

k

〈
bk|ρ(

∑
j δij |aj〉 〈aj|)|bk

〉
=
∑

k

〈
bk|ρ |ai〉 〈ai| |bk

〉
.

W.l.o.g. the |bk〉 can be chosen to be eigenvectors of A, |ak〉. One obtains the probabil-
ity P (δA,λi) =

∑
k

〈
ak|ρ |ai〉 〈ai| |ak

〉︸ ︷︷ ︸
δik

= 〈ai|ρ|ai〉. In the special case of ρpure, P (δA,λi) =

〈ai|Ψ 〉〈Ψ|ai〉 = |〈ai|Ψ〉|2 = |ci|2 holds, with the ci�s being the coe�cients of expansion
in the eigenbase of the operator A. That means that the squared absolute value of these
coe�cients denotes the probability of receiving the i-th eigenvalue of A as an observable.

In the following de�nition a more general mathematical way is brie�y introduced, as it
allows a description of quantum states and e�ects by special maps instead of operators. As
this theory is often not only a useful alternative but also an assumedly generalization of
existing results, it will be introduced and also referred to it in the further chapters.

ä Completely Positive Map

In order to receive the most general de�nition of a completely positive (cp) map, the
term of a channel has to be established. Following the work of [1], a channel can be seen
as link between two systems, in this work two quantum systems. The �rst system, also
called input system, is characterized by a certain algebra of its observables A, whereas
the second, the output system, in analogy by an algebra B. The two systems are hence
denoted by the set of all bounded operators over its eligible Hilbert space, B(H1) and
B(H2). It will turn out that this choice of a channel connecting these two sets allows an
alternative way of describing the action of operators, e.g. for the measurement process
the output channel B(H2) would be the set of all linear functionals with the appropriate
measurement outcomes.

In order to describe such a channel in a mathematical way, a single operator B ∈ B(H2)
with a certain e�ect ε on quantum systems of the output system is considered. By
introducing a map T , that, in the most general case, is mapping such e�ects of an
operator of the output system to an operator of the input system,

T : ε(B(H1))→ ε(B(H2)), (8)

the link that a channel should provide is completely described 9. When the properties
and the e�ects of linear operators on quantum states are considered, certain propositions
to T can be established in order to gain an equivalent description. For all operators
(here denoted by A) T has to be linear, positive (i.e. T (A) ≥ 0,∀A ≥ 0), bounded
from above by 1 (i.e. T (A) ≤ 1) and trace preserving (i.e. Tr(T (A)) = Tr(A)). Since
for describing composed quantum systems the positivity alone is no longer a su�cient
criteria, the important class completely positive (cp) maps are needed.

8As the Hilbert space is assumed to be discrete this property also holds for the spectrum of a hermitian operator on this
space.

9This argument also holds when instead of the set of the operators the states of the Hilbert space itself would have been
introduced as input and output systems. This choice would have lead to a di�erent map T ∗, that corresponds to T as the
di�erent but equivalent description of quantum mechanics by the Heisenberg and Schrödinger picture.
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De�nition (completely positive map):
When two Hilbert spaces HA and HB with their corresponding observable algebras A
and B are given a linear map T : B(HA) → B(HB) leading from the set of bounded
operators of the Hilbert space HA to the set of bounded operators of the Hilbert space
HB is called a completely positive map if

T ⊗ 1 : A⊗ B(Cd)→ B ⊗ B(Cd) (9)

is positive for all d ∈ N.
ä Kraus Decomposition

It can further be shown [2] that a cp maps T : B(HA)→ B(HB) can always be written
in the form

T (A) =
d∑
j=1

V ∗j AVj, (10)

whereas d ≤ dim(HA)ḋim(HB) and Vj : HA → HB. This form of a cp map is called
the Kraus decomposition with the associated Kraus operators Vj, that ful�ll the relation∑

j V
∗
j Vj ≤ 1.

This is a corollary of the so called Stinespring dilation theorem [3], which claims the
unique description of a positive map (up to unitary equivalence) with operators by
enlarging the given Hilbert space by an ancilla. This theorem is useful as it does not
only allow a direct relation between linear maps T and operators leading from one Hilbert
space to another but also shows how such a map can be constructed by given operators
or vice versa. There exist also other versions of this corollary, where for example the
restriction to cp and trace preserving maps is demanded and leads therefore to more
restrictions of the Kraus operators.

11
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CHAPTER 2

Separable and Entangled States

2.1 Bipartite Entanglement

In this section a two particle quantum system is investigated, that is composed by elements of
two Hilbert spaces, conventionally called HA(lice) and HB(ob), each with arbitrary dimensions,
i.e. arbitrary degree of freedoms (dA and dB). A state ρAB on the composed Hilbert space
HAB = HAlice ⊗ HBob is called bipartite, and de�ned on the d = dA · dB dimensional space
HAB as

ρAB︸︷︷︸
∈HAlice⊗HBob

=

dA−1∑
i=0

dB−1∑
j=0

pij ρiA︸︷︷︸
∈HAlice

⊗ ρjB︸︷︷︸
∈HBob

, with pij ≥ 0. (11)

Furthermore the state ρAB has to ful�ll the properties of a density operator, as discussed in
the previous chapter.
All bipartite states can be classi�ed into two types by restricting this de�nition. A bipartite
state ρAB ∈ HAB can either be separable, i� it can be written as

ρAB,separable =
∑
i

pi |ai〉 〈ai| ⊗ |bi〉 〈bi| , with 0 ≤ pi ≤ 1 and
∑
i

pi = 1, (12)

and |ai〉A and |bi〉B being the eligible bases on HAlice and HBob, respectively. An alternative
de�nition of separable states (with �nite dimension) can be stated by using pure states [4],

ρAB,separable =
∑
i

pi ρ
i
pure,A ⊗ ρipure,B, again with 0 ≤ pi ≤ 1 and

∑
i

pi = 1. (13)

If such a factorization is not possible the state is not separable (also called entangled).
For the special case of ρAB being a pure state (usually written as |Ψ〉AB) equation (11) reduces
to

|Ψ〉AB := ρAB,pure =
∑
ij

cij |ai〉A ⊗ |bj〉B =
∑
ij

cij |aibj〉 , with
∑

c2
ij = 1. (14)

A pure bipartite state is separable if it can written as

ρAB,pure,separable = |Ψ〉AB = |Ψ〉A ⊗ |Ψ〉B . (15)

In equation (14) this is ful�lled i� the matrix C = {cij} has rank 1. A state, that can not be
written in this form, is called a non-separable (or entangled) pure state.
This mathematical de�nition of entanglement suggests that an entangled state is a bipartite
quantum system that can not be factorized. This phenomena leads to a fundamental di�er-
ence of quantum systems compared to classical ones, as a special physical connection between
such particles is found. This leads to the fact that operations performed on one particle have
di�erent results for separable and entangled state, which leads to the so called quantum cor-
relation between two or more systems 10. Along with this de�nition for composite quantum

10This correlation is discussed further in the LOCC section on page 14.
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systems some helpful de�nitions and basic results are needed and therefore presented in the
following:

ä Schmidt Decomposition

The Schmidt decomposition, e.g. found in [5, 6], combines a mathematical theorem with
this de�nition of a d-dimensional bipartite state ρAB, since it claims that a basis trans-
formation from two individual bases of HA and HB to a certain basis in the composite
Hilbert space HAB = HA ⊗HB is always possible in such a way that the coe�cients cij
or pij, respectively, reduce to ci or pi. Due to singular value decomposition this basis
transformation is unique and always possible. Before the general result of this Schmidt
decomposition for arbitrary bipartite states can be posed, the de�nition of the Schmidt
rank r of a pure bipartite state has to be de�ned [7, 8]. Hence a pure bipartite state, as
de�ned in (14), can be rewritten in terms of a new basis |ui〉A ∈ HA, |vj〉B ∈ HB as

|Ψ〉AB =
r−1∑
i=0

ci |ui〉A ⊗ |vi〉B , (16)

with r ≤ min(dA, dB), ci > 0 and
∑r−1

i=0 c
2
i = 1. The ci are called Schmidt coe�cients. A

bipartite pure state is separable i� only one Schmidt coe�cient exists that is non zero
(this property leads back to the de�nition of separability for pure states (15) ). If more
than one Schmidt coe�cients exist that are non zero, the state is entangled, whereas
in addition all these coe�cients are equal, the state is said to be maximally entangled.
These statements only hold for the special case of bipartite pure states.
For arbitrary states this generalization of the Schmidt decomposition is valid:
A bipartite state ρAB can be decomposed in a (weighted) sum of pure states on the
composed Hilbert space, each with its corresponding Schmidt rank ri, |Ψri

i 〉 ∈ HAB. It
has to be noted that this decomposition is not unique.

ρAB =

dA−1∑
i=0

dB−1∑
j=0

pij ρ
i
A,pure ⊗ ρjB,pure −→ ρAB =

∑
i

pi |Ψri
i 〉 〈Ψri

i | . (17)

The Schmidt number k of a state ρAB is de�ned as k = {min rmax}, with rmax being the
largest Schmidt rank of a pure state within one decomposition and k being the minimum
over all maximal Schmidt ranks, rmax, of each possible decomposition.

ä Maximally Entangled States

There are several criteria that can determine the amount of entanglement of a state,
i.e., from a heuristic point of view, how strong the connection between the entangled
particles is. One of them is the Schmidt decomposition, that can, as stated above,
de�ne a maximally entangled pure state or another one would be the von Neumann
entropy 11. However, as it is shown in [9], every maximally entangled bipartite state,
whose subsystems have equal dimension d = dA = dB, is local unitary equivalent 12

to |Ψ+〉 = 1√
d

∑d
i |i, i〉. This leads to the fact that the reduced density matrices of a

maximally entangled state ρA/B = TrA/B |Ψ+〉 〈Ψ+| 13 are totally mixed (i.e. ρA/B = 1d).
The bipartite qubit case serves as a basic example, i.e. two Hilbert spaces with two

11The von Neumann entropy S of a state ρ is de�ned as S(ρ) = −Tr(ρ log2 ρ).
12Local unitary equivalent states can be transformed into each other by applying unitary operators on its eligible subsystems
HA and HB .

13TrA/B denotes the trace operator applied on one of the two subsystems.
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degrees of freedom, H2
A ⊗H2

B
14. In this four dimensional space the four so called pure

Bell states not only denote the maximally entangled states but are also a complete
orthonormal set, the so called Bell-base.∣∣Φ±〉 =

1√
2

(|00〉 ± |11〉),
∣∣Ψ±〉 =

1√
2

(|01〉 ± |10〉) (18)

ä LOCC Operations

For bipartite (as well as later for multi particle systems) an important class of operations
has to be introduced in order to address each particle (local subsystem) and clarify what
information exchange between these subsystems is allowed 15. One approach to charac-
terize these operators is to determine the correlation of a multipartite quantum state. As
these arguments are easily expandable to higher dimensions, a bipartite system, compris-
ing HA and HB, serves to understand the class of LOCC operators. Following the work
of reference [10], two consecutive measurements are considered, one performed by Alice
on the �rst subsystem and one by Bob on the second. The results of these measurement
are obviously depending on whether the two subsystems are somehow connected or the
quantum systems are independent from each other. Therefore if a composite quantum
system can not be separated into two independent subsystems, ρAB 6= ρA⊗ρB, the state
is entangled (equations (12) and (13)) and hence the measurement results of the two
subsystems are not independent from each other, i.e. they are correlated. This means
that a separable state can either be classically correlated or not correlated, whereas an
entangled state is neither. However does an entangled quantum system posses a spe-
cial correlation that can not be described via classical correlation. Entangled states are
therefore said to be quantum correlated states, which allows an information exchange
that is completely unknown from a classical point of view. In order to separate these two
kinds of correlations from each other, a special set of operators is de�ned, comprising
only operators that can not create or manipulate (increase or decrease) the entangle-
ment between the two subsystems and hence the quantum correlation. This set is called
LOCC, standing for Local Operation and Classical Communication. Elements of this
set can be for example unitary operations as well as the measurement operator, as long
as it restricted to only one subsystem. This implies that Alice and Bob are allowed to
prepare a quantum state on their subsystem by using LOCC operation. They can also
correlate their prepared states ρiA and ρiB, respectively, by using classical communica-
tion and create a state ρAB (6= ∑

i piρ
i
A ⊗ ρiB) that is, due to its preparation, classical

correlated.
For the equivalent formalism of channels introduced in chapter 1, a similar result in
terms of a set of LOCC channels can be stated that preserves the classical correlation
of a state. For a more detailed review it is referred to reference [1].

ä Operator Basis

In analogy to a basis given by orthogonal vectors or pure states, respectively, a minimal
set of operators, a so called operator basis, can be constructed, that allows to express
every density operator of the Hilbert space as a (weighted) sum of its elements. However
it has to be noted that the properties of this operator basis depend on the degree of

14The two adjustments of a qubit are denoted by two ket vectors, w.l.o.g. in this work by |0〉 and |1〉.
15For a more detailed de�nition of information via the Shannon-Entropy it is referred to [10].
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freedom of the quantum system and the particles, respectively. For the qubit case, the
elements of the operator basis are given by the three Pauli matrices σx, σy, σz (with the
relations σiσj = δij + iεijkσk) and the identity operator 12.

P =
{(0 1

1 0

)
︸ ︷︷ ︸

σx

,

(
0 −i
i 0

)
︸ ︷︷ ︸

σy

,

(
1 0
0 −1

)
︸ ︷︷ ︸

σz

,

(
1 0
0 1

)
︸ ︷︷ ︸

1

}
. (19)

All these matrices are elements of the SU(2) group and since all their eigenvalues are
either 1 or −1 also hermitian 16. The basis itself is called the Pauli base P . With this
operator basis all density operators can be written as

ρ =
3∑

i,j=0

cij σi ⊗ σi, with Tr(ρ) = 1, (20)

whereas the convenient notation σ0 = 12, σ1 = σx, σ2 = σy and σ3 = σz is used. The
peculiarity of P is that all matrices are not only unitary but also hermitian, a property
that can only be realized for the qubit case.
Though for quantum systems with more than two degrees of freedom, i.e. in general
d (also called qudits), such an operator basis can be found, either the unitarity or the
property of the elements being hermitian vanishes. For the qudit case with d > 2, two
special classes of bases are known: The �rst one comprises unitary matrices, whereas the
second possibility consists of hermitian operators. The unitary choice are called Weyl
operators Wk,l, which are de�ned by

Wk,l :=
d∑
i=0

ωik |i〉 〈i+ l| , (21)

with |i〉 being an element of an orthonormal base ofHd, ω = e
2πi
d and k, l ∈ {0, 1, ...d− 1}

modulo d. Alternatively Wk,l can be de�ned by their action on a pure d-dimensional
state |s〉

Wk,l |s〉 := ωk(s−l) |s− l〉 . (22)

One sees that there exist exactly d unitary, traceless (except for 1d) Weyl operators.
These de�nitions can be found in references [11, 12]
The hermitian choice would be the Gell-mann matrices. These are traceless and the
in�nitesimal generators of the three dimensional special unitary group SU(3). As they
are de�ned by obeying [T i, T j] = if ijkT k with f ijk being either 1, 1

2
or
√

3
2
, depending

on the particular index combination. Possible matrix representations of the Gell-mann
matrices can be taking from various sources.

2.2 Multipartite Entanglement

Before introducing the best known methods in classifying separability and entanglement, this
section is dealing with possible generalizations of the previously stated de�nition of bipar-
tite separability. Unlike a two particles state, whose separability can only be characterized
by regarding two subsystems, the more general n particle case needs to be established with

16σx,σy ,σz are not only elements but also the generators of the SU(2) group.

15



I Introduction of the Physical Formalism

respect to its type of separability concerning its n subsystems. Therefore a further reaching
de�nition of separability for multipartite quantum systems has to be introduced, as it is done
for instance in references [5, 6]. This more general separability is called k-separability

Multipartite Entanglement of pure state:
An n particle pure state |Ψ〉 ∈ HA1,...,An with arbitrary degrees of freedom for each one of
the n subsystems Ai is called k-separable i� there exist m − 1 �cuts � . Such a cut exists
if k subsystems can be divided into two partitions each comprising k

2
subsystems (for k

being even) or k+1
2

and k − k+1
2

subsystems, respectively (for k being odd). This division is
possible if these two partitions are separable (equations (14),(15)). For the special case of
an n-partite state with n − 1 possible cuts, all n subsystems are mutually separable. This
classi�es the state to a so called fully n-separable state,

∣∣Ψfs
〉
. If on the other hand no cut is

possible, no separability can be found between any of the subsystems. Hence such a state is
called genuine n-partite entangled, |Ψge〉. Naturally the k-separability is consistent with the
previous de�nition of bipartite separability, since a bipartite state consists of exactly one cut
that denotes the separability of two partitions, in the following denoted as

∣∣Ψbs
〉
. However it

has to be noted that an n partite quantum state is always said to be entangled except for the
special case of n = m, i.e. n− 1 cuts 17. Contrary to the k = 0 and k = n case, the partition
of the bipartite separability is not unique. All these states are usually summarized by the
term partially separable, which will be examined further afterwards. These rather abstract
de�nitions become clearer when considering the four qubit case as an example:
A fully 4-separable qubit state is de�ned as∣∣Ψfs

〉
A1|A2|A3|A4

= |Ψa〉A1
⊗ |Ψb〉A2

⊗ |Ψc〉A3
⊗ |Ψd〉A4

, (23)

with the three (4−1) cuts A1|A2|A3|A4 denoted as the bars between the subsystems Ai. The
genuine four partite entangled states, which can maybe seen as the opposite of this fs-state,
would be written as

|Ψge〉A1A2A3A4
= |Ψabcd〉A1A2A3A4

. (24)

Beside these unique cases for
∣∣Ψfs

〉
and |Ψge〉, ten possible states are eligible for the bisepa-

rability of a 4-partite state, since there exist
(

4
1

)
possible combination for the Ai|AjAkAl and(

4
2

)
for the AiAj|AkAl case:∣∣Ψbs

〉
A1|A2A3A4

= |Ψa〉A1
⊗ |Ψbcd〉A2A3A4

(25)∣∣Ψbs
〉
A1A2|A3A4

= |Ψab〉A1A2
⊗ |Ψcd〉A3A4∣∣Ψbs

〉
A1A3|A2A4

= |Ψac〉A1A3
⊗ |Ψbd〉A2A4

...

For triseparability only
(

4
2

)
possible states are available, since only the Ai|Aj|AkAl case has

17This means that the state can be written as a product state with n `factors'
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to be considered: ∣∣Ψts
〉
A1|A2|A3A4

= |Ψa〉A1
⊗ |Ψb〉A2

⊗ |Ψcd〉A3A4
(26)∣∣Ψts

〉
A1A2|A3|A4

= |Ψab〉A1A2
⊗ |Ψc〉A3

⊗ |Ψd〉A4∣∣Ψts
〉
A1A2|A3|A4

= |Ψac〉A1A4
⊗ |Ψb〉A2

⊗ |Ψc〉A3

...

The description of k-separability by using cuts is a quite heuristic way. A more exact de�ni-
tion of this property not only for the special case of pure states but for arbitrary quantum
states can be found in reference [13].

Multipartite Entanglement for arbitrary states:
The special case of a state being called fully separable is given i� it can be written as

ρfs :=
∑
i

pi

∣∣∣Ψfs
i

〉〈
Ψfs
i

∣∣∣ . (27)

A state ρ ∈ HA1,...,An with the corresponding index set I = {1, 2, ..., n} is partial k-
separable with respect to a certain partition Pk = {I1, I2, ..., Ik}, with Ii, Ij being a disjoint
subset of I, i�

ρk-sep =
n∑
i=1

pi ρ
i
1 ⊗ ρi2 ⊗ ...⊗ ρik (28)

with ρil being pure density operators de�ned on the Hilbert space, which is assigned to the
index Il. E.g. I1 = {i, j, k} ⇒ ρ1 ∈ HAi ⊗HAj ⊗HAk , with i < j < k ∈ I.
If an n partite state can not be written according to this de�nition of a k-separable state, it
is called genuine n-partite entangled.

As multipartite entanglement and separability, respectively, of n partite systems di�er
from the bipartite case in so many way, the characterization of the set of separable states
(SEP) is still a hard task, whereas a few of the most successful steps are presented in the
following chapters. One of these steps, namely the geometrical visualization of certain sets
of states (simplices), will be focused in chapter 9.
After introducing the mainly used states of this work in the next chapter, the following sec-
tions will give a glimpse of the most common methods that are used to describe, discriminate,
manipulate and characterize quantum states. As one will see, all of these methods were pri-
marily developed for the bipartite case, but often generalization to n partite states can be
found.

2.3 Special Multipartite States

As this work focuses on qubits, the problem of generalizing the four maximally entangled Bell
states (18) for more than two qubits has to be tackled. When speaking of maximally entangled
qubit states of higher dimensions one has to reconsider that there exists no approved measure.
Therefore the property of a state being maximally entangled can not be answered impartial,
which means further that more possible generalizations of so called total entangled states
coexist. It is obvious that these totally entangled state are all genuine multipartite entangled
in terms of equation (24). When speaking of maximally or totally entangled states of a n ≥ 2
particle qubit systems, the eligible states are of this form:
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I GHZ state
The GHZ state, named after Greenberger, Horn and Zeilinger, of an n particle qubit
system is de�ned as

|GHZ〉 :=
1√
2

(|0〉 ⊗ |0〉 ⊗ ...⊗ |0〉︸ ︷︷ ︸
n

+ |1〉 ⊗ |1〉 ⊗ ...⊗ |1〉︸ ︷︷ ︸
n

) :=
1√
2

(|0〉⊗n + |1〉⊗n). (29)

It is constructed via the superposition of two orthogonal states containing n subsystems,
that are all in the same state |0〉 or |1〉. Due to its construction, every measurement
on one subsystem reduces the GHZ state to a separable n − 1 dimensional state. The
same is also valid whenever only a certain subset of the n subsystems is investigated
and others are ignored, which is mathematically expressed by the so called partial trace
operation 18. The entanglement property of this state can therefore only be found when
all n-particles are investigated.

This special property is visualized in Figure 1 for a three particle state, with one dot
representing one qubit, a continuous line the entanglement between two qubits and the
dashed line the vanishing entanglement by �removing� one of the qubits.
In chapter 9 it is shown that these states can be used in order to construct certain sim-
plices by taking convex combinations of this state and its variations. The visualization
of such simplices is shown in part III of this work.

Figure 1: Entanglement of the GHZ state

II Wk states
Another possible generalization to higher dimensions is this set of states:

|Wk〉 :=

(
n

k

)− 1
2

(
∣∣ 11...1︸ ︷︷ ︸

k

00...0︸ ︷︷ ︸
n−k

〉
+ Permutations) 1 ≤ k ≤ n

2
(30)

These kind of states are calledWk states. They are build by the sum of
(
n
k

)
terms in such

a way that every possible permutation of the term, which is composed by n subsystems,
whereas k subsystems are in the �1� and the remaining n − k subsystems are in the
�0� state, is part of this sum. Whenever one subsystem of a Wk state is ignored or
measured, the remaining state may still be entangled (depending on the �direction �of
the measurement, |0〉 or |1〉). This is a fundamental di�erent behavior of entanglement
compared to a GHZ state. This property becomes more obvious when investigating
certain special cases of these Wk states as it is done in the following.

18The partial trace for a bipartite state ρ ∈ HA ⊗ HB of the �rst subsystem is given by TrA(ρ) =∑
k

∑
ij pij 〈k| |j〉 〈j| |k〉A |j〉 〈j|B = ρB , with ρB ∈ HB being the so called reduced density operator. The generalization to

n dimensional states is obvious, since TrAi,Aj ,...,Ak
(ρ) : HA1

⊗HA2
⊗ ...HAn → · · · ⊗HAi−1

⊗HAi+1
⊗ . . .HAj−1

⊗HAj+1
⊗

. . .HAk−1
⊗HAk+1

⊗ . . . , with i, j, k ∈ {1, 2, ..., n}.
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ä W-states
W-states are the restriction of the Wk states for the value k = 1 and are for the n
dimensional qubit case de�ned as

|W 〉 :=
1√
n

(
∣∣ 100...0︸ ︷︷ ︸

n

〉
+ |010...0〉+ ...+ |00...1〉). (31)

They describe the superposition of n particle states comprising n subsystem, whereas
in every term of the sum a di�erent subsystem is in an excited state. Due to this
construction the resulting entanglement can be found in between every pair of the
n particles. Considering for example the special case of a tripartite W state and the
projection onto the |0〉 state on one of its subsystems. The resulting two particle
state is in the maximally entangled |Ψ〉+ = 1√

2
(|01〉+ |10〉) state, contrary to the tri-

partite GHZ state (as well as the n-partite GHZ states), which would be a separable
state after such a measurement. The similar is true for ignoring one subsystem, since
the partial trace leads to the mixed entangled state 1

3
(|00〉 〈00|+|10〉 〈01|+|01〉 〈01|).

In a similar way to the latter picture this property is visualized in Figure 2, whereas
here the continuous drawn ellipses are representing the entanglement of two qubits

Figure 2: Entanglement of the W state

Also for these states a simplex of its Hilbert space can be constructed and visualized
by special cuts of it in an euclidean vector space, as it will be shown in chapter 9

ä Dicke-states
If a four particle system is described by a Wk state, it is often called Dicke state.
So for n = 4 and 2 ≤ k ≤ 4,

|W2〉 :=
1√
6

(|1100〉+ Permutations) (32)
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Figure 3: Graph states up to n ≤5, taken from Ref. [6]

III Graph states
In order to introduce graph states the
references [6, 14, 15] are consulted.
Graph states are originally de�ned in
a geometrical way, as their notation
follows from a two dimensional pat-
tern, constructed by di�erent lines
which are called edges. These edges
are connected on so called vertex
points and can be interpreted as the
interaction between two of such ver-
tex points, which represent quantum
systems. Figure 3 shows examples of
eight di�erent possibilities of constructing such patterns for up to �ve particles. Hence
every single vertex is connected to other adjoining vertices via edges, and all together
a graph G is given by the pair G = (V,E), with V being the number of vertices and
E the number of edges. A more precise de�nition of V is given by the set that corre-
sponds to the dimension of the system (the number of particles) V = {1, ..., N}. The
number of edges E is usually speci�ed by the set containing pairs of adjacent vertices,
E ⊂ [V ]2. Considering the example of three vertices a, b and c, randomly ordered as
1, 2 and 3.
The speci�ed sets would be V = {1, 2, 3} and E = {{1, 2} , {1, 3} , {2, 3}}, if all vertices
were connected (Triangle Graph). It has to be noted that a graph is not uniquely de�ned
by the pair G, but with G and its associated pattern.

The actual construction of graph states can be achieved by di�erent approaches. A quite
convenient method is specifying the interactions of the edges. In the most general case
the interaction between two vertices a, b is described by a unitary operator given by

Uab = e−iφabHab , (33)

withHab being an interaction Hamiltonian and φab the interaction strength or interaction
time (e.g. for graph state φab = π

4
). This unitary operator obeys [UabUbc] = 0 ∀a, b, c ∈ V

when more than one edge is assumed as well as Uab = Uba since the Graph is undirected
(without any vertex ordering) and Uab = U , when assuming that all vertices interact in
the same way. The most studied unitaries Uab are given by the so called Ising interaction,
e.g. obtained by setting HI

ab := σazσ
b
z. Based on this unitary operator, a graph state can

be constructed:
For a given G = (V,E) the graph state |G〉 is de�ned as

|G〉 =
∏
{a,b}∈E

Uab |+〉V . (34)

By choosing |+〉V =
⊗

a∈V
[

1√
2
(|0〉+ |1〉)

]a
(the eigenvector of σx to the eigenvalue +1)

the graph state is assured to be maximally (a = 2) or totally entangled (2 < a <∞).

The Stabilizer formalism

Another interesting way of constructing graph states leads to the so called stabilizer
formalism of quantum states, which was originally founded for quantum error correction,
i.e. regaining a desired quantum state out of a noisy state19 in order to minimize

19A state is said to be noisy if a certain proportion α of the maximally mixed state 1 is added. Written in the density matrix
form it is given as ρNoisy = (1− α)ρ+ α1.
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pollution e�ects like decoherence or channel noises 20. For the graph state de�nition, it
is su�cient to de�ne stabilizers for qubits only. For this task the generalized Pauli group
is important, which is given for an n dimensional qubit system as

Gn =
{

(
±1
±i ) σα1 ⊗ ...⊗ σαn

}
, (35)

with αk ∈ {0, x, y, z}. Gn contains all possible �σ-combinations � for n qubits. Every
element g ∈ Gn is unitary and commutes or anti commutes pairwise. The Stabilizer
group S itself is a subset of this Pauli group Gn, comprising 2n elements and is con-
nected with an arbitrary pure state |Ψ〉 corresponding to S. The elements of Gn and S,
respectively, are restricted by the rule

g |Ψ〉 = |Ψ〉 , (36)

i.e. S contains all eigenvectors of |Ψ〉. This means, as a result of this de�nition, that if g
is an element of S, −g is not, g ∈ S ⇒ (−g) 6= S. The only exception of this restriction
is the negative identity operator −1, that is never part of the Stabilizer set. It has to
be noted that in order to get the minimal possible number of elements of the Stabilizer
group, its elements can be reduced to at least n stabilizer generators g1, ..., gn. E.g. the
identity operator 1 can be generated by σ2

x.

For graph states, given by its pattern and G(V,E), this stabilizer formalism is a helpful
tool, as for every vertex j of the graph state its individual stabilizer can be constructed
in the following way:

gj := σjx

N(j)⊗
k=1

σkz , (37)

with N(j) denoting the number of adjoining vertices in the neighborhood of the j-th
edge and σk denoting the acting on the k-th subsystem. Repeating this process for
all vertices, a set of commuting stabilizers gj is gained and the graph state |G〉 can be
written as

|G〉 〈G| =
n∏
i=1

1

2
(1+ gi). (38)

Using this construction the graphs in Figure 3 No. 2-4 lead to the GHZ state for 3, 4
and 5 qubits 21. E.g. the stabilizers for pattern No.2 are given by g1 = σ1

x ⊗ σ2
z ⊗ σ3

z ,
g2 = σ1

z ⊗ σ2
x ⊗ 13

2 and g3 = σ1
z ⊗ 12

2 ⊗ σ3
x.

In order to see that the stabilizer formalism is a useful tool its connection to so called
quantum circuits is shortly sketched. Quantum circuits are basically used for the promis-
ing application of quantum computation. Furthermore they are providing another
method in constructing quantum states based on the de�nition of special operators,
the so called Cli�ord gates, that act either on single qubits or a pair of qubits, for exam-
ple introduced in reference [17]. These gates are beside the Pauli operators σx, σx and

20Both, decoherence and channel noises, denote the fact that the time evolution of a quantum state has to be taken in account
due to its interaction with its environment. The most commonly known description of such interaction is the Master or Lindblad
equation, originally stated in [16].

21In conjunction with graph states the GHZ state is also often called star state, due to its pattern.
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I Introduction of the Physical Formalism

σx (19) the Hadamard gate (H), the S or Phase gate and the CNOT or XOR gate,
which acts on two qubits, whereas the �rst is called target qubit and the second control
qubit. The latter three are de�ned as:

H= 1√
2

(
1 1
1 −1

)
, S =

(
1 0
0 i

)
, CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



Figure 4: Quantum circuit for the 3
qubit GHZ state

The actual construction of a certain state is done
by following a certain circuit, with its underlaying
rules, using the above de�ned gates. In Figure 4 a
simple three qubit circuit with the Hadamard gate
H, acting on the �rst qubit, and two CNOT gates
(given by the two vertical lines) for the subsystems
1, 2 and 1, 3, respectively. The result of this circuit
is the 3 qubit GHZ state, as starting from top left
H ⊗ 1 ⊗ 1 |000〉 = 1√

2
(|0〉 + |1〉) |00〉. The �rst

CNOT applied on the control qubit and the target
qubit yields 1√

2
(|00〉+ |11〉) |0〉 and the last

CNOT in the same manner on the subsystems 1 and 3 gives the GHZ state 1√
2
(|000〉+

|111〉).
If, however, this circuit was used with the three initial operators A1 := σz ⊗ 1 ⊗ 1,
A2 := 1 ⊗ σz ⊗ 1 and A3 := 1 ⊗ 1 ⊗ σz, that are the stabilizers of the |000〉 state,
the resulting output operators would be A′1 := 1 ⊗ σz ⊗ σz, A′2 := σz ⊗ σz ⊗ 1 and
A′3 := σz⊗1⊗σz. This is valid since HσxH† = σz, HσyH† = −σy as well as CNOT (σx⊗
1)CNOT † = σx ⊗ σx, CNOT (σy ⊗ 1)CNOT † = σy ⊗ σx, CNOT (σz ⊗ 1)CNOT † =
σz ⊗ 1, CNOT (1 ⊗ σx)CNOT

† = 1 ⊗ σx, CNOT (1 ⊗ σy)CNOT
† = σz ⊗ σy and

CNOT (1⊗ σz)CNOT † = σz ⊗ σz.
The three qubit GHZ state is an eigenstate of these resulting operators A′1, A

′
2 and

A′3 with the eigenvalue +1. Furthermore all products of these new stabilizers, i.e. the
operators B1 := −σx ⊗ σy ⊗ σy, B2 := −σy ⊗ σx ⊗ σy, B3 := −σy ⊗ σy ⊗ σx 22 as well
as σx ⊗ σx ⊗ σx also ful�ll this property. This means that the full set of the three qubit
GHZ stabilizers S contains the seven operators A′i and Bi (i = 1, 2, 3)

S = {σx ⊗ σx ⊗ σx, σz ⊗ σz ⊗ 1, σz ⊗ 1⊗ σz,1⊗ σz ⊗ σz,
−σx ⊗ σy ⊗ σy,−σy ⊗ σx ⊗ σy,−σy ⊗ σy ⊗ σx} (39)

This construction via quantum circuits can be generalized to n qubit GHZ states. Fur-
ther examples are the one qubit case, with the stabilizer set S = {1, σx} and the
generator g1 = σx or the two qubit case with S = {1⊗ 1, σx ⊗ σx,−σy ⊗ σy, σz ⊗ σz}
and its generators g1 = σx ⊗ σx and g2 = σz ⊗ σz.

Concluding graph states, the stabilizer formalism and quantum circuits, it has to be
noted that these methods not only allow a generalization of the bipartite states to more
particle systems but it also denotes a complete new formalism of describing and creating

22Compared to the initial operators these three may be seen as the inverse operators, as 1 and σz is exchanged.
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I Introduction of the Physical Formalism

states that can be useful to understand certain symmetries or connections to other states
as well as their corresponding entanglement properties. For more results or applications
it is referred to chapter 6.2 or the references [18, 17].

For more interesting results depending the di�erent kinds of entanglement of states it is
referred to [19], in which the authors have shown a few of the di�erences of these states
with the help of a constructed measure, based on the terms described in chapter 7.
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II Characterization of Separable and Entangled States

Part II

Characterization of Separable and Entangled States
CHAPTER 3

Bell inequality

3.1 Locality and HVT-Theories

Bell inequalities are one of the oldest method of classifying quantum states. When putting
it into its historical concept the work of Einstein, Podolsky and Rosen from 1935 has to be
considered, in which the question is asked whether the Quantum-Mechanical Description of
Physical Reality [Can] Be Considered Complete? [20]. In this paper, which is often referred
to as the EPR-Paradox, the following presumptions are introduced:

ä Completeness:

`Every element of the physical reality 23 must have a counterpart in the physical
[quantum] theory.'.

ä Reality:

`If, without in any way disturbing a system, we can predict with certainty (i.e., with
probability equal to unity) the value of a physical quantity, then there exists an element

of physical reality corresponding to this physical quantity.'

Furthermore Einstein et al. assumed a Gedankenexperiment, in which a bipartite state Ψ
is given, whose two subsystems (Alice and Bob) are allowed to interact in between the time
interval t = 0 to a certain time T . For any further time t > T , when no interaction is allowed,
the time evolution of the combined state can be described by the Schrödinger equation. When
assuming an hermitian operator A with its corresponding eigenvalues (observables) a1, a2, . . .
and eigenfunctions u1(xA), u2(xA), . . . the combined state Ψ can be written as

Ψ(xA, xB) =
∞∑
n=1

Ψn(xB)un(xA), (40)

with xA and xB being the variables used by Alice and Bob, respectively, and the functions
Ψn(xB) acting as the coe�cients of the state expressed in a series of eigenfunctions of un(xA),
with respect to Bob�s subsystem. If furthermore the observable ak on a time t > T was mea-
sured, the state would reduces to Ψk(xB)uk(xA).

Considering now the same situation, however altering the operator A to another hermitian
operatorB, with its corresponding observables b1, b2, . . . and eigenfunctions v1(xA), v2(xA), . . .
. Supposing again the measurement of the l-th observable at a time t > T , the remaining
state is then given by φl(xB)vl(xA).

23This means for quantum mechanics: every measurement result of an observable.

24



II Characterization of Separable and Entangled States

Combining the above introduced de�nitions of reality and completeness and assuming that
the two operators A and B are non-commuting, i.e. AB 6= BA 24, a contradiction to the
assumed de�nitions can be deduced, since the state of the second subsystem is once given
by Ψk(xB), another time by φl(xB), depending on the eligible observable measured by Alice.
However since this measurement is considered at the time t > T and no interaction between
the two subsystems is allowed, it is possible to assign two di�erent wave functions to the
same reality. This argument is commonly called local reality (or Locality) 25.
The contradiction is now received, when Alice measures her observable, as it now can be pre-
dicted (with probability 1) in which eigenstate Bob�s system is (without disturbing it). That
means that with Bob�s system being in a de�ned state and Alice�s measured observable, the
uncertainty principle of two non-commuting observables is violated and at least one of the
introduced assumptions can not be valid.

The authors of this paradox deduced that the description of a quantum state via wave
functions is insu�cient and hence the quantum theory is incomplete, however keeping the
option of a complete theory open.
This statement was criticized by others (especially by Niels Bohr), claiming that the intro-
duced assumption of locality is no valid approach.

With this Paper Einstein et al. initiated the theory of hidden variables (HVT ), that were
introduced in order to restore the completeness of quantum mechanics and solve the EPR-
paradox. Although it is not fully clari�ed whether Einstein was propagating such hidden
variables, HVT are able to bring determinism back into quantum theory by claiming, that
the result of a measurement is pre-existing at any time in terms of a variable λ, which can not
be determined. Considering for example an observable with its associated hermitian operator
A, the hidden variable λ can be introduced as a function of this operator A(λ), in such a way
that the predictions of quantum theory are reproduced properly.
The reason why all HVT are in general disproved is the fact that they can be deduced to a
contradiction using the very axioms of these theories itself, namely locality as well as non-
contextuality. The latter presupposition, which means that the measurement results depend
on the measurement itself and the assembling of the measurement device, respectively, leads
to a contradiction found by van Neumann [21] or later by the Kochen and Specker in their
theorem [22]. However the most famous disproof of hidden variable theories was found by
John Bell, which will be explicitly shown in the next chapter.

Hence up to now the EPR-Paradox and the interpretation, of the formalism of quantum
mechanics can not be solved and leaves the rather philosophical question of interpretation
behind. Beside the popular Kopenhagen interpretation other approaches such as Everett
[23], Penrose [24] and Bohmian quantum mechanics [25, 26, 27] shall be mentioned shortly
and can be investigated further using the respective references.

3.2 Bell and CHSH inequality

After a long argue about whether quantum mechanics can be expressed via hidden variables,
John Bell derived an astonishing answer to this question. He claimed in his work [28],
that if a HVT existed, it would be possible to solve this problem by simply performing the

24This is shown explicitly in [20] for A,B being the position and momentum operator, [X,P ] = −ih̄.
25As the lack of interaction is usually referred to a spatial separation, local reality is often described by, `no action at distance'.
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II Characterization of Separable and Entangled States

proposed Gedankenexperiment of Einstein et al. . In the following picture the set up of this
experiment is shown, which was experimentally �rst realized with a pair of entangled photons
with di�erent polarizations, here denoted by 0 and 1 (i.e. measurement of the non-commuting
spin observables).

Figure 5: Experimental set up for detecting the correlation of entangled photons

When regarding the expectation value of the joint spin measurement results of both par-
ties, it must be possible to see when a correlation (or anti-correlation) of the measurement
results occurs. This correlation depends on the angle between the directions ~a and ~b, as the
expectation value of the two spin operators ~σA and ~σB for a singlet state (e.g. the Bell state

|Ψ+〉) yields E(~a,~b) =
〈

Ψ+|~σA~a⊗ ~σB~b|Ψ+
〉

= −~a · ~b = −cos(ψ), with ψ being the angle

between ~a, ~b and
∣∣~a∣∣ =

∣∣~b∣∣ = 1.
In the following Bell introduces the hidden variable λ with the property

∫
ρ(λ)dλ = 1,

whereas ρ(λ) denotes the distribution over the probability space (normalization) 26. The
hidden variable should reproduce the above calculated value however assuming now local
realism. Together with the directions, λ is aligned to the eligible outcomes of the two spin
measurement results A and B, namely A(~a, λ) = ±1 for Alice and B(~a, λ) = ±1 for Bob.
The expectation value of the combined measurement of the two observables now yields

E(~a,~b)λ =

∫
A(~a, λ)B(~b, λ)dλ. (41)

For further calculations A(~a, λ) = −B(~b, λ) is assumed, which is equivalent to a perfect anti-
correlation of the measurement results of Alice and Bob, i.e. the measurement directions ~a
and ~b are parallel (compare the above expectation value: E(~a,~b) = −1→ ψ = 0):

E(~a,~b)λ = −
∫
A(~a, λ)A(~b, λ)dλ (42)

When introducing another unit vector ~c and calculating the di�erence of this expectation
value with E(~a,~c)λ, one receives, respecting the fact that A(~b, λ)2 = ±12 = 1,

E(~a,~b)− E(~a,~c) = −
∫
A(~a, λ)A(~b, λ)− A(~a, λ)A(~c, λ)dλ, (43)

E(~a,~b)− E(~a,~c) =

∫
A(~a, λ)A(~b, λ)

[
A(~b, λ)A(~c, λ)− 1

]
dλ.

26W.l.o.g. λ is considered as a single continuous parameter.
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II Characterization of Separable and Entangled States

Using the absolute value and the triangle inequality, it yields∣∣∣E(~a,~b)− E(~a,~c)
∣∣∣ =

∣∣∣∣∫ A(~a, λ)A(~b, λ)
[
A(~b, λ)A(~c, λ)− 1

]
dλ

∣∣∣∣ (44)

≤
∫ [

1− A(~b, λ)A(~c, λ)
]
dλ

According to equation (43) this is∣∣∣E(~a,~b)− E(~a,~c)
∣∣∣ ≤ 1 + E(~b,~c), (45)

which is the original form of the inequality, that was found by Bell. This inequality is vio-
lated by inserting certain directions ~a,~b and ~c and calculating their individual expectation
values for certain quantum states. This means furthermore that the predictions of quantum
mechanics can not be reproduced by adding hidden variables without violating local reality.
Another possibility of saving the axiom of Locality is discarding the assumption of reality,
that was introduced in the previous section. However, this is commonly not the case.
In order to prepare this result for experimental purposes, the perfect correlations of proba-
bilities, as it was assumed by Bell, can of course not be reached (E(~a,~b) = −1). Therefore
a derivation of this theorem was introduced by Clauser, Horne, Shimony and Holt, the so
called CHSH inequality, in order to con�rm Bell�s theorem on a more `experimental-friendly'
way. Beside E(~a,~b) = −1 + δ, with δ > 0 and taking the mean values of a suitable number of
measurements, which is in the following denoted by Ā and B̄, respectively, it is also assumed
that the observables A(~a, λ) and B(~a, λ) can take the values {−1, 0, 1}, with 0 being the
result of �no detection'.

Considering now again the di�erence of the two expectation values E(~a,~b)− E(~a,~c) (see
equation (44)) one receives

E(~a,~b)− E(~a,~c) =

∫ (
Ā(~a, λ)B̄(~b, λ)− Ā(~a, λ)B̄(~c, λ)

)
ρ(λ)dλ (46)

=

∫
Ā(~a, λ)B̄(~b, λ)

(
1± Ā(~a′, λ)B̄(~c, λ)

)
ρ(λ)dλ−

∫
Ā(~a, λ)B̄(~c, λ)

(
1± Ā(~a′, λ)B̄(~b, λ)

)
ρ(λ)dλ,

with ~a′ being again a unit vector representing a measurement direction. Proceeding as before
with the absolute value and the triangle inequality, it follows that∣∣∣E(~a,~b)− E(~a,~c)

∣∣∣ ≤ 2±
(
E(~a′,~c) + E(~a′,~b)

)
. (47)

The primal example of this set up is, as mentioned before, the bipartite quantum state of
two spin 1

2
-particles. I.e. rewriting A and B in terms of the Pauli spin matrices the CHSH-

operator can be de�ned as

BCHSH := A1 ⊗ (B1 +B2) + A2 ⊗ (B1 −B2), (48)

with Ai = ~ai · ~σ and Bi = ~ai · ~σ for i = 1, 2. Using this the inequality can furthermore be
written in an operator valued form, ∣∣Tr(BCHSHρ)∣∣ ≤ 2, (49)

which shows in a more explicit way the constraint that has to be ful�lled by a quantum state
ρ. It again turns out that not all states ful�ll the CHSH, just like the previous version of
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II Characterization of Separable and Entangled States

the Bell inequality. For a certain class of entangled states this theoretical bound is violated,
especially for the |Ψ−〉 Bell state one can �nd the maximal violation of 2

√
2, shown in reference

[29]. It can be shown further that every pure bipartite states violates a Bell inequality,
but the existence of a single Bell inequality, which is violated by all entangled states is
not valid. Such a dependence of a criterion on a state is a common situation and is for
instance also for entanglement witnesses. This leads to the assumption, that Bell inequalities
and entanglement witnesses are somehow connected. For more precise investigations in this
directions it is referred to chapter 8.3. Furthermore it is shown that a impurity of white
noise, that is added to a pure entangled state can still violate the CHSH inequality up to a
certain level: i.e. a given state ρ := p |Ψ−〉 〈Ψ−| + (1 − p)1 is nonlocal for p > 1√

2
27. This

becomes an important issue for the experimental task, where creating a pure entangled state
is impossible. A state violating a Bell inequality is said to be nonlocal, but in general it is
hard to discriminate whether a state has nonlocal properties or not, since up till now plenty
of di�erent forms of Bell inequalities are found and also for higher dimensions generalization
to more particles and/or more degrees of freedoms open the range for new constructions.
Whether a state is entangled or not is a su�cient criterion for violating a Bell inequality.
This means that a bipartite state violating a Bell inequality is (beside being nonlocal) also
an entangled state, whereas the reverse statement is not valid for all states. The violation of
a Bell inequality can be used in order to give a su�cient indication of a state to be entangled.
For multipartite states a similar result can be posed and is introduced in the next section.

3.3 Generalizations to multipartite qubits

In principal the method of Bell�s theorem is easy to generalize for n-partite systems by
de�ning the probability in analogy to equation (40) [6]

P (ai, bj, ck, ...) =

∫
Āi(λ) B̄j(λ) C̄k(λ) ... ρ(λ)dλ, (50)

with n observables, written in capital letters, and their corresponding measurement results,
given in lower case letters. Considering now all possible factorizations of a state ρ (i.e. the
k-separability, eq. (28)) the probabilities of two measurement results have to be chosen in a
similar way in order to receive a proper Bell inequality which makes sure that all nonlocal
properties between all subsystems are regarded. E.g. for n = 3 all bipartite cuts have to be
considered,

P (ai, bj, ck) =

∫
Āi(λ) Ōl︸︷︷︸

Bj ,Ck

ρO(λ)dλ+

∫
B̄i(λ) P̄l︸︷︷︸

Aj ,Ck

ρP (λ)dλ+

∫
C̄i(λ) Q̄l︸︷︷︸

Aj ,Bk

ρQ(λ)dλ,

(51)

with
∫
ρO(λ)dλ +

∫
ρP (λ)dλ +

∫
ρQ(λ)dλ = 1. Following the method of CHSH inequality,

that used two observers with two outcomes on each party, the best known n partite Bell
inequality with this respective setting is the so called Mermin inequality de�ned by the Bell
operator BMermin

BMermin := X1X2X3X4...− Y1Y2X3X4...+ Y1Y2Y3Y4...−+... (52)

=
∑
π

X1X2...Xn −
∑
π

Y1Y2X3...Xn − ...+ ...,

27For this state the ppt criterion yields p > 1
3
as the border between SEP and the set of entangled states
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whereas
∑

π denotes the permutation of all observables. The analogy to the CHSH inequality
is given by choosing X, Y as σx,σy, whereas for this choice the maximal violation is achieved
for GHZ states. In a similar way more Mermin-like inequalities can be constructed. Also
another construction could be found, that includes all these types and is therefore a more
general construction for higher dimensional cases and multi-particles problems.
The inequality given by

BArdehali :=
〈
(A+

1 − A−1 )(−
∑
π

X2X3...Xn +
∑
π

Y2Y3X4...Xn − ...+ ...)
〉
+ (53)〈

(A+
1 + A−1 )(

∑
π

Y2X3...Xn −
∑
π

Y2Y3Y4X5...Xn +
∑
π

X2Y3Y4Y5Y6X7...Xn − ...+ ...)
〉
≤ 2

n
2 ,

with A±1 := (∓X1−Y1)√
2

and
∑

π being again the permutation over all observables, is called
Ardehali inequality and has a slightly di�erent construction compared to the previous Mermin
inequality, e.g. the base change forX1 and Y1. The exact theory can be found in [30]. Without
going further into details the only di�erence to the Mermin inequality is given by using non
stabilizer operators, i.e. the operators are not in the same eigenspace as the states are. This
however leads to the fact, that more states can be found violating this inequality.
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CHAPTER 4

Peres-Horodecki criterion

This criterion was �rst established in 1996 by Asher Peres and is a far stronger condition
compared to Bell-inequalities when it comes to detecting whether a bipartite state is entan-
gled or not. A quantum system consisting of two subsystems is separable if its density matrix
can be written as ρ =

∑
i pi ρ

i
A ⊗ ρiB, where ρiA and ρiB are density matrices of pure states

of the two subsystems. Asher Peres showed in his paper [31] that a necessary condition for
separability of an arbitrary mixed bipartite state is obtained by verifying that the so called
partial transposition of its density matrix ρ, has only non-negative eigenvalues.
The exact de�nition is given as follows:

De�nition (partial transposition (pt)):
For |ei〉 and |bi〉 being base vectors for HA and HB, the partial transposition of a bipartite
state, given by the density matrix ρ, with its elements

ρmµ,nν = 〈em ⊗ bµ| ρ |en ⊗ bν〉 , (54)

is de�ned as

ρTBmµ,nν = ρmν,nµ. (55)

Due to ρTA = (ρTB)T an equivalent de�nition can be posed by changing the indices of the
�rst subsystem. With this de�nition the criterion can now be introduced:
Proposition (pt criterion)28:
A state ρ is separable if the partial transposed Matrix σTB is again a valid density matrix
(i.e. a non negative matrix with trace one).
Proof:
Considering a separable bipartite state ρ, written as ρ =

∑
i pi ρ

A
i ⊗ ρBi . After its the partial

transposition it is turned into the state ρTB =
∑

i pi ρ
A
i ⊗ (ρBi )TB . This is nothing else than

applying the operator 1⊗ T on ρ with T being the transposition operation: (1⊗ T )(ρ) = ρTB .
As long as T is a positive map and ρ a density matrix the transposed state ρTB is also again
a density matrix (i.e. all eigenvalues must be greater or equal 0 and Tr(ρ) = 1). That means
on the other hand that if ρTB contains negative eigenvalues the original state ρ can not be
written as a separable density matrix and therefore must be entangled.
Hence the positivity of the partial transposition of a separable matrix is a su�cient property
and also a necessary criterion for bipartite systems with dimensions H2

A⊗H2
B and H2

A⊗H3
B.

However for higher dimensional states as well as for multipartite systems the positivity of
the partial transposed states turns out to be no more su�cient, but certainly necessary.

In order to show why this criterion is no more su�cient for higher dimensions, a more
precise approach to this criteria has to be made following the original work of Peres as well
as the further investigations of Horodecki�s et al. [32]. The �rst step is done by introducing
a set of maps L(B(HA),B(HB)), that comprises all maps leading from the set of bounded
operators acting on HA, denoted by B(HA), to the set of bounded operators acting on HB,
denoted by B(HB).

28It is often also called Peres-Horodecki criterion
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Furthermore such a map Λ ∈ L(A1, A2) is called a positive map, i� a positive operator of
B(HA) is again mapped into a positive operator of B(HB), i.e. Λ(B(HA)) = B(HB) ≥ 0
(compare chapter 1).
As a consequence of the Hahn-Banach theorem, see e.g. [33], it can be proposed that the
convex set of separable states SEP and inseparable states ISEP can be strictly divided by
some Hermitian operator A 29 such that

Tr(Aρ) ≥ 0 for ρ ∈ SEP (56)

Tr(Aρ̃) < 0 for ρ̃ ∈ ISEP. (57)

The separability of bipartite systems can therefore be expressed by using an Hermitian
operator Ã ∈ B(HA)⊗ B(HB):

ρ ∈ HA ⊗HB is separable ⇔ TrÃρ ≥ 0, with Tr(Ã(PA ⊗ PB)) ≥ 0, (58)

with PA/B being the projectors on the A/B-th Hilbert space HA/B. This formalism can
be generalized straightforward to higher dimensions (more degrees of freedom).

The fundamental task of explaining how this pt-criterion works in a mathematical way is
�nding an isomorph relation S between the previously introduced set L(A1, A2) and the very
operators of B(HA) and B(HB) itself.

S : Λ ∈ L(A1, A2)→ Ã ∈ B(HA)⊗ B(HB) (59)

It can be shown [34], that S(Λ) is a Hermitian and positivity preserving as well as an iso-
morphic relation (with respect to an inner product) and it can be expressed as S(Λ) =∑

iE
†
i ⊗ Λ(Ei), with {Ei} being an orthogonal operator base of HA. This is used to verify

the following theorem.
Theorem 1
ρ ∈ HA ⊗HB is separable, i� for any positive map Λ ∈ L(A1, A2) the operator (1⊗ Λ)(ρ) is
positive.
Proof:

Assuming S(Λ) =
∑

i,j P
†
ij ⊗ Λ(Pij), with Pij = |i〉 〈j| being a set of orthogonal projectors

referred to an orthonormal base {ei} (Pijek = δik) and ful�lling
∑

i,j≤n Pij, with n = dimHA,
equation (53) can be rewritten as

Tr(ρS(Λ)) = Tr

{
[(1⊗ Λ)

∑
i,j

Pji ⊗ Pij]ρ
}
≥ 0 (60)

⇒ Tr

{
[(1⊗ ΛT )

∑
i,j

Pji ⊗ TPji]ρ
}
≥ 0, (61)

while T is the transposition map, which is not only a projector (T 2 = 1) but also positive
with respect to the base ei of HA.
Rewriting this condition by de�ning the hermitian operator P0 := 1

n

∑
i,j Pji ⊗ Pji and re-

placing the trace by the scalar product gives〈
ρ, (1⊗ ΛP0)†

〉
. (62)

29Such an operator is called an entanglement witness and will be investigated further in chapter 8.
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Since T preserves the property of the operator P0 being hermitian and Λ is a positive
map, it is equivalent to write

〈ρ, (1⊗ ΛP0)〉 = 〈(1⊗ Λ)ρ, P0〉 = Tr((1⊗ Λ†)ρP0) (63)

As (1⊗λ†) is a positive map, the desired result is gained by regarding i� (1⊗λ†) is positive:

� ⇒ � ρ is separable ⇒ (1⊗ Λ)ρ is positive for any positive Λ⇒ Tr((1⊗ Λ†)ρP0) ≥ 0

� ⇐ � 1⊗ Λρ is positive ⇒ Tr((1⊗ Λ†)ρP0) ≥ 0 ⇒ with Equation (56) ρ is separable.

With the help of theorem 1 one can propose another theorem, that is equivalent to the
ppt criterion formulated at the beginning of this chapter, but with the di�erence that it is
now able to see why the positive partial transposition is no longer a necessary property for
higher dimensions:

Theorem (pt)
A state ρ is separable if its partial transpose, ρTB = (1 ⊗ T )(ρ), is a positive operator. If
ρ ∈ HA2 ⊗HB2 or HA3⊗HB2 the inverse statement is also true (if→ i�), i.e. it is a necessary
and su�cient criterion.

Proof:
�⇒ � If ρ is separable ρT2 is a positive operator.
�⇐ � In order to show the backwards direction one starts from the opposite, i.e. ρTB

is assumed to be positive operator. It is shown in [35], that every positive map Λ ∈
L(B(HA),B(HB)), that acts on HA2 ⊗HB2 or HA3 ⊗HB2 can be expressed with the help of
a completely positive maps ΛCP

i and the transposition operator T as

Λ = ΛCP
1 + ΛCP

2 T. (64)

Because of Λi = 1 ⊗ ΛCP
i being a positive map due to the fact that ΛCP

i is a completely
positive one, one can connect to theorem 1 (�⇐ �) as it is proved analogously. As this con-
struction (62) of a positive map is no longer valid for higher dimensional operators, the pt
criterion is no longer a necessary property. This fact is shown more precise formulated in the
following way:

For higher dimensional density operators ρ 30 this criterion works only as a necessary
criterion because equations (54) and (55) do not hold strictly. In order to see where the
proof fails one has to compare the set of positive operators that remains positive after partial
transposition ST :=

{
A ∈ A1 ⊗ A2 : A ≥ 0, AT2 ≥ 0

}
and the set of all separable states S :=

{λρ : λ ≥ 0, ρ separable}. These turn out not to be equal which can be seen by taking the
dual sets, i.e. positive linear functionals of both sets, whereas the dual set of S is isomorph
to all positive maps and the dual set of ST is given by

WT =
{
Tr[A ·] : A = B + CT , with B, C being a positive operators

}
, (65)

which equals the cone of maps of equation (62). However this equation does not hold for
higher dimensions. Therefore this criterion is not longer su�cient for higher dimensional
cases.

30Higher dimensional means that either the degree of freedom of of the particles is increased or the number of particles or
both.
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II Characterization of Separable and Entangled States

CHAPTER 5

Realignment criterion

Similar to PT-criterion the so called realignment criterion has been established due to its
easiness and handy application for pure and mixed states of bipartite systems of arbitrary
dimension. In reference [36] it is shown that is closely related to the theory of Schmidt
coe�cients (SC), which are de�ned for a pure bipartite state |Ψ〉 ∈ HA ⊗HB as the square
roots of the corresponding coe�cients to a common decomposition of the two Hilbert spaces
HA and HB. Although this is already shortly sketched in the �rst chapter of this thesis a
more precise de�nition in a more useful form for the realignment criterion is stated in the
following.

De�nition(Schmidt-decomposition):
An arbitrary bipartite density operator ρ can always be written as

ρ =
d∑
i=1

λi F
i
A ⊗ F i

B with λ1 ≥ λ2 ≥ ... ≥ λd ≥ 0 (66)

whereas the hermitian, orthonormal operators F i
A/B are elements of an operator base on

LR(HA/B)31, with

Tr[F j
AF

k
A] = Tr[F j

BF
k
B] = δjk for j, k ∈ {1, 2, ..., d} . (67)

Therefore at most d = min {dimHA, dimHB} di�erent Schmidt coe�cients λi exist.
Based on this fact, the following Theorem already gives a necessary condition for separability.

Theorem
It can be shown [36], that a density operator ρ is separable if its Schmidt-coe�cients ful�ll

d∑
i

λi ≤ 1 (68)

This result can actually be seen as the realignment criterion itself, however another formu-
lation of the criterion can be stated which allows an easy calculation of the left hand side of
equation (66) by reordering the matrix coe�cients of the density matrix.

Theorem (Realignment criterion for separability):
Considering a bipartite mixed or pure state with its density matrix ρmµ,nν represented in
an arbitrary but �xed orthonormal product basis, compound by the bases of HA (|m〉
and |n〉) and HB (|µ〉 and |ν〉, respectively), i.e. ρmµ,nν =

∑
m,µ,n,ν cmcµc

∗
nc
∗
ν |mµ〉 〈nν| =∑

m,µ,n,ν c̃mµnν |mµ〉 〈nν|. A new matrix ρR can be received by realigning its elements c̃mµnν
in the following way

ρRmn,µν := ρmµ,nν . (69)

Via singular value decomposition this matrix can be written as

ρR = UDV , (70)
31LR(HA/B) denotes the real vector space of all operators mapping from HA/B to HA/B . However ρ itself is an element of

a subset of the composed set L(H) = LR(HA)⊗ LR(HB), because of the Tr [ρ] = 1 condition.
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II Characterization of Separable and Entangled States

with D being a diagonal, rectangular matrix in dependence of the unitary matrices V and U
of the unitary groups of their corresponding subsystem U(N2

A) or U(N2
B). The entries of D

along its diagonal are the singular values of the realigned matrix ρR. It can be shown further
that, according to the previous construction, theses singular values are the SC of the original
matrix ρ. A necessary condition for the separability of ρ is therefore obtained by ful�lling
(66). If the special case is contemplated, in which the singular values of are nothing else but
the eigenvalues ρR this condition can be written by using the trace-norm 32 of the realigned
matrix, ∥∥ρR∥∥

Tr
:= Tr[

√
ρR †ρR] ≤ 1. (71)

An exact proof of this theorem is given in the next section.
However a small drawback of this criterion has to be noted: The characterization of a state
by its Schmidt coe�cients is not unique, i.e. a single set of SC can be assigned to more than
one state. Therewith di�erent equivalence classes of states are constructed corresponding to
a certain set of SC, for which di�erent properties can be determined. For more information
it is referred to reference [36]

5.1 Realignment criterion via matrix analysis

For completeness, an older construction, inspired by basic matrix analysis, found by Kai
Chen et al. [37], will now be stated. It is more helpful for special application, when it comes
to computing the actual realigned matrix or its norm. First of all a general de�nition has to
be introduced for an arbitrary m × n matrix A = (aij), i ∈ {1, ...,m} , j ∈ {1, ..., n}, whose
elements are transformed into a vector by the following map:

vec(A) :=
[
a11, ...am1, a12, ..., am2, ..., a1n, ..., amn

]T
(72)

Due to the properties of the Kronecker Product the following identities for vec(·) for arbitrary
block matrices X, Y and Z are valid:

vec(XY Z) = (ZT ⊗X)vec(Y ) (73)

Z = X ⊗ Y ⇔ ZR = vec(X)vec(Y )T (74)

It turns out that this map is quite useful whenever the realigned version of a m×m matrix
M has to be determined. As density operators are the matrices of interest, the restriction
to symmetric matrices is valid. Hence the matrixM can always be divided into (m

n
)2 block-

submatrices Ωi,j, with i, j ∈
{

1, 2, ..., m
n

}
, each of the size n, as long as n is chosen to be a

divider of m (also this is no restriction for quantum states). I.e. The m×m decomposition
and as an example the �rst n× n submatrix Ω1,1 is given by

M=


Ω11 Ω21 · · · Ωm

n
1

Ω12
. . .

...
...

Ω1m
n
· · · Ωm

n
m
n

, with Ω1,1 =


m11 m21 · · · mn1

m12
. . .

...
...

m1n · · · mnn

 (75)

32In the general case for singular values the Trace Norm is also often called the Ky Fan norm.
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and in the same manner the other Ωi,j sub-matrices. With this decomposition the realigned
matrix is given by

MR :=



vec(Ω1,1)T

...

vec(Ωm
n
,1)T

...

vec(Ω1,m
n

)T

...

vec(Ωm
n
,m
n

)T


(76)

The resulting realigned matrix is of the size m
n
× n, which shows that all elements of the

original matrix are comprised in a reordered way. Again reminding the connection to the
generalized Schmidt-coe�cients in comparison with this construction, a slightly di�erent for-
mulated theorem, however with the same statement as in the previous section, can be posed.

Theorem (Realignment criterion):
If a bipartite m× n density operator ρAB is separable, it follows that the trace norm of the
singular values of the realigned m2 × n2 matrix ρRAB is less than 1,∥∥ρRAB∥∥Tr =

s∑
i=1

λi ≤ 1. (77)

The sum runs over all s = min {m2, n2} singular values λi of ρRAB.
Based on this matrix analysis the proof of this theorem is done rather quickly by using the
properties of the Kronecker product.
Proof:
Assuming the separable state ρAB, that is expressed by U i

A and U i
B, the two unitary operators

diagonalizing the respective subsystems ρA and ρB, as well as E
k,l
ij , a k × l matrix with the

single entry 1 for the ij-th element and otherwise 0:

ρAB =
∑
i

pi ρ
i
A ⊗ ρiB =

∑
i

pi (U i
A E

m,m
11 (U i

A)†)⊗ (U i
B En,n

11 (U i
B)†) (78)

Using the properties of the vec( ) map (71) and (72) the realigned matrix of ρAB =∑
i pi ρ

i
A ⊗ ρiB can be written as

(ρiA ⊗ ρiB)R = vec(ρiA)vec(ρiB)T (79)

=
{

(U i
A)∗ ⊗ U i

A vec(E
m,m
11 )

}{
(U i

B)∗ ⊗ U i
B vec(En,n

11 )
}T

(80)

=
{

(U i
A)∗ ⊗ U i

A

}
vec(Em,m

11 )vec(En,n
11 )T

{
(U i

B)† ⊗ (U i
B)T
}
. (81)

With vec(Em,m
11 )vec(En,n

11 )T = Em2,n2

11 a matrix with the unique singular value 1 is given (the
scalars pi are suppressed during this calculation). As (U i

A)∗ ⊗ U i
A and (U i

B)† ⊗ (U i
B)T are

unitary operators, (ρiA ⊗ ρiB)R has the same singular value, namely 1. Therefore the trace
norm of the whole state is given by∥∥ρRAB∥∥Tr ≤∑

i

pi
∥∥(ρiA ⊗ ρiB)R

∥∥
Tr

=
∑
i

pi = 1 (82)
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In the �rst step the triangle inequality was used and the desired bound for separable states
is obtained, which all entangled states should violate.

As one may has noticed, the realignment criterion is nothing else but distinguishing density
operators by calculating their norms in a special way. Therefore another, more analytical
approach of proving the realignment criterion shall be mentioned brie�y, following the refer-
ences [38, 39]. This approach starts by de�ning the so called cross norm for the set of trace
class operators denoted by T (HA) and T (HB) acting on HA and HB.
An operator T is said to be trace class if

‖T‖1 := Tr(
√
T ∗T ) <∞. (83)

Each set T (HA) and T (HB) can be made to a Banach space by equipping them with the
de�ned trace norm ‖ ‖1. Also for composed spaces T (HA)⊗ T (HB), which are given by the
set of all �nite linear combinations of composed elements of both sets

∑n
i Ui ⊗ Vi , with

Ui ∈ T (HA) and Vi ∈ T (HB) ∀i, such a norm can be found. By de�ning the so called cross
norm as

‖T‖γ := inf

{
n∑
i

‖Ui‖1 ‖Vi‖1 | T =
n∑
i=1

Ui ⊗ Vi
}
, (84)

whereas the in�mum is taken over all linear combinations that can be used to de�ne T ∈
T (HA)⊗T (HB) 33, it can be shown [38] furthermore, that if a state ρ ∈ HA⊗HB is separable
its cross norm has to be smaller or equal 1, ‖ρ‖γ ≤ 1. Also the inverse statement is valid,
since from ‖ρ‖γ ≤ 1 the property of ρ being separable can be concluded.
This leads to a Theorem, which is shown to be equivalent to the previously formulated
realignment criterion [40]:
An arbitrary bipartite state ρ ∈ HA ⊗HB is separable, i� ‖ρ‖γ = 1.

5.2 Permutation criterion

The structure of this criterion is similar to the pt-criterion as it changes the order of the
elements of the density matrix (the image (Img) of the matrix) and conducts from it the sep-
arability of the original matrix. Also for higher dimensional systems with more particles, i.e.
more subsystems, the realignment of matrix-elements permits to give a necessary condition
whether a state is separable or not. This generalization of the previous criterion is called the
permutation criterion and is de�ned as follows.
A multipartite state ρH1,...,Hn with Hi being of arbitrary dimension is separable, i� the matrix
ρR with interchanged entries, given by

ρR := ρΠ(i1,j1,i2,j2,...,in,jn), (85)

holds this inequality: ∥∥ρR∥∥ ≤ 1 (86)

In this theorem Π denotes the permutation of all indices in the product base. The exact
proof or further results of this theorem can be found in references [41, 42].

33Actually a crossnorm of a bipartite Banach space is, according to [39], given by ‖TA ⊗ TB‖ = ‖TA‖1 ‖TB‖1, with TA/B ∈
T (HA/B), whereas the norm ‖ ‖γ ful�lls this property.

36



II Characterization of Separable and Entangled States

CHAPTER 6

Distillation of Entanglement

Another interesting way of trying to understand entanglement is the so called distillation
or purifying of entanglement out of a given bipartite state. The main idea of this method
is manipulating the state ρ via the help LOCC operators, i.e. measuring, rotating, phase
shifting and ensembles of it. Via this way a new state is created, which carries more entan-
glement in the sense that it contains more proportions of a certain pure maximally mixed
state. The procedure and the sequence, in which the operators are applied to the state is
called the distillation protocol, which is in this thesis denote as Λ and Λ(ρ), respectively.
Such distillation protocols serve the experimental need of regaining maximal entangled sin-
glets out of imperfect noisy quantum channel (noisy entanglement) or mixed states, which
are unwanted for certain applications, see for example reference [43].

6.1 Distillation Protocol

Before applying such a distillation protocol onto a state, k copies of it have to be available.
In the most general case a mixed state ρ ∈ Hd is hence converted to ρ⊗k ∈ Hdk and after the
protocol has been deployed, these k states are reduced to a certain number m. If assumed
that these m remaining states are equal and furthermore �closer� 34 to a maximally or totally
entangled state, the protocol is successful. Depending on these two numbers, namely the
whole amount of copied states k and the states with successful distillation m, a distillation
protocol is said to be optimal if the ratio m

k
is maximal for a su�cient large number of copies

k. The optimal ratio is denoted as Distillable Entanglement ED [5].
From the mathematical point of view, a distillation protocol Λ is an element of the set
LOCC(Hd,Hd), mapping operators of one Hilbert space Hd into itself.

Although there are many ways to construct such a protocol, every Λ can be divided into
three di�erent turns, that an arbitrary state ρ has to run through one or several times in
order to increase its entanglement.

I Copying the initial state ρ k times: ρ→ ρ⊗k

II Applying certain LOCC operations on ρ⊗k in order to receive ρ′⊗m and via projection a
new state ρ′

III Comparing the entanglement of the initial state E(ρ) with the one of the new state
E(ρ′):

ä If E(ρ) ≥ E(ρ′) the protocol failed

ä If E(ρ) < E(ρ′) the protocol is working properly

If the protocol is working properly the process will be repeated until the entanglement
has reached a maximal (i.e. constant) amount, i.e. the entanglement of the state in the
previous run is the same as in the actual.

When speaking of LOCC operations acting on the k copies of the state ρ (point II), the
34Closer means, that the amount of entanglement of the state has increased
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most general form of an operation is given by

Λ̃(ρ⊗n) =

∑m
i=0Ai ⊗Bi ⊗ ...⊗ Siρ⊗kA†i ⊗B†i ⊗ ...⊗ S†i

Tr(A†iAi ⊗B†iBi ⊗ ...⊗ S†iSi)
, (87)

with Ai, Bi, . . . , Si being unitary operators, acting on the m di�erent subsystems.
The exact de�nition of an arbitrary bipartite state ρ, that can be successfully distilled, can
now be posed [44, 45]:

De�nition (distillable state):
Assuming the situation that a bipartite state ρ and a su�cient large number of its copies are
shared by two parties, a state or a density operator ρ is said to be distillable if a maximally
entangled state can be obtained by allowing both parties only the use of LOCC operations.

Also another an equivalent de�nition based on distillable entanglement ED can be given
[46]:
A state is called distillable i� the distillable entanglement ED is strictly larger than zero.

Important representatives of distillation protocols and how their most common operations
can increase entanglement is presented in the following:

ä First of all a helpful de�nition is introduced which allows to rewrite a state as a super-
position of maximally entangled states.
De�nition (Bell diagonal state) [47]:
A Bell diagonal state is referred to the two qubit case and de�ned as mixture of the four
Bell states:

ρBD = c1

∣∣Φ+
〉〈

Φ+
∣∣+ c2

∣∣Φ−〉〈Φ−∣∣+ c3

∣∣Ψ+
〉〈

Ψ+
∣∣+ c4

∣∣Ψ−〉〈Ψ−∣∣. (88)

Due to its construction this state has, among other things, the following properties:

� ρBD is separable if ci ≤ 1 ∀i ∈ {1, 2, 3, 4}.
� In reference [48] it is shown that any bipartite state ρ can be transformed into ρBD

via ρBD =
UA⊗UBρU†A⊗U

†
B

Tr(UAU
†
A⊗UBU

†
B)
, with UA and UB being unitary operators on the eligible

subsystems.

The upcoming operations are manipulating the weights ci and therefore in�uence the
amount of the four Bell states in a arbitrary state. Also for more particles it is possible
to distill certain states to more entangled or fully entangled states (chapter 7), however
it can not be determined whether a protocol is optimal as no unique generalization of
the Bell states exists in the multipartite case (for further results it is referred to chapter
6.2). The following operators are designed to be parts of distillation protocols for the
qubit case:

ä Random bilateral rotation:
This operation is also called twirling operation and means applying a random element
of the SU(2) on both subsystems of a mixed state ρ (written in the Bell basis) in order
to receive a rotational symmetric mixture of Bell states,

ρW = F
∣∣Φ+

〉 〈
Φ+
∣∣+ (1− F )(

∣∣Φ−〉 〈Φ−∣∣+
∣∣Ψ+

〉 〈
Ψ+
∣∣+
∣∣Ψ−〉 〈Ψ−∣∣). (89)

These states are called Werner states with the Fidelity F as a special parameter, F =
〈Φ+| ρW |Φ+〉, indicating one eligible Bell state. This is shown in [43].
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ä Unilateral π and bilateral π
2
rotation:

Unilateral π operations consist of the Identity and the Pauli operators and are applied
on one subsystem of the Bell states:

|Φ〉± σx↔ |Ψ〉+ |Ψ〉± σz↔ |Ψ〉∓ Ψ±
σz↔ Ψ∓ |Ψ〉± σy↔ |Φ〉∓ (90)

Bilateral π
2
rotation Bx, By, Bz are applied on both subsystems and de�ned as (overall

phases ignored)

|Φ〉+ Bx↔ |Ψ〉+ |Φ〉− By↔ |Ψ〉+ |Φ〉+ Bz↔ |Φ〉− (91)

ä Uni- and Bilateral XOR operation: 35

The unilateral XOR (UXOR) or CNOT operation was already be mentioned in chapter
2.3. It is de�ned on a two qubit system, whereas the �rst qubit is the source and the
second one the target qubit. For states written in the computational basis the XOR
operation has the following e�ects:

|00〉 XOR→ |00〉 |10〉 XOR→ |11〉
|01〉 XOR→ |01〉 |11〉 XOR→ |10〉 (92)

The bilateral XOR operation (BXOR) acts on both qubits of the system as well as on its
copy. That means that the state has to be copied at least once in order to receive four
subsystems, whereas the �rst of each state are given to Alice, the second two to Bob.
Alice and Bob can therefore each de�ne a source and a target system. By combining
the two source systems, Alice and Bob receive one of the Bell states (phases omitted)
as a combined source system. Proceeding in the same way on the two target systems
the e�ect of the bilateral XOR operation is given as:

Source Target BXOR operator Source Target

Φ± Φ+ −→ Φ± Φ+

Ψ± Φ+ −→ Ψ± Ψ+

Ψ± Ψ+ −→ Ψ± Φ+

Φ± Ψ+ −→ Φ± Ψ+

Φ± Φ− −→ Φ∓ Φ−

Ψ± Φ− −→ Ψ∓ Ψ−

Ψ± Ψ− −→ Ψ∓ Φ−

Φ± Ψ− −→ Φ∓ Ψ−

As already mentioned, the major di�erence between distillation protocols lies therefore in
way, which LOCC operations are used or how they are combined. Herewith a main classi�-
cation of protocols distinguishes between two di�erent types of protocols. A short sketch of
the di�erences of these two types and how they were introduced in 1996 by Bennett et al. is
given in the following. For a more detailed review it is referred to [43]

1. One way hashing distillation protocol

35This operation is also known as the C-NOT GATE
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This type of protocol allows only a `one way' communication from a given subsystem to
another, not backwards. I.e. informations about measurement results or which operators are
used, are only posted from one party, but can be seen from others (the other, in the bipartite
case). As this means a restriction of information, it is therefore not possible to distill all
states via a one-way procedure. But nevertheless it is useful and su�cient for certain pur-
poses. For more details the reader is referred to the works [49, 50]
The best strategy of the one-way distillation for the bipartite qubit case was introduced in
1996 by Bennett et al. and is called `hashing'36. Again the idea behind this work is, that every
state can be written in a mixture of the four maximally entangled bell states (|Φ±〉 , |Ψ±〉).
In Bennett�s work [49] it is shown that out of a large number of impure pair states k, a
smaller number of puri�ed states l ≈ k(1− S(W )) can be gained, whenever S(W ) < 1, with
W being the corresponding Werner state. This number of puri�ed states, that are close or
even equal to a Bell state, depends beside the number of copies k also on the Entropy 37 of
the state 38 S(W ), which can be used as a simple entanglement measure in the bipartite case.
It is shown further that for k being su�ciently large the ratio l

k
yields 1 − S(W ) and so a

lower bound for the distillable entanglement ED is found: ED ≥ 1− S(W ) 39.

2. Two way distillation protocol

For this class of protocol the restriction of communication is obviously released in such
a way that every measurement and operator applied by one party is told to each other by
classical communication. Two way protocols are the most commonly used distillation pro-
tocols, although they need a lot more copies of the initial state as a one-way protocol. The
advantage of allowing full classical communication between the parties lies in the fact, that
with the knowledge of all operators and measurement results almost every states becomes
distillable 40. So the two way protocol is the most general form of distillation for bipartite
states.
These kind of protocols were also developed by Bennett et al. and just like before his work
is followed. In the next lines a special kind of two way protocol, the so called recurrence
protocol, is introduced:

Alice and Bob start with an arbitrary state, which is again expressed in the Bell basis
(|Ψ±〉 , |Φ±〉) such that every Bell state vector corresponds to a certain probability pi:

|W 〉 = p1

∣∣Ψ+
〉

+ p2

∣∣Ψ−〉+ p3

∣∣Φ+
〉

+ p4

∣∣Φ−〉 (93)

When one considers that the protocol favors one certain Bell state, here w.l.o.g. |Ψ+〉, it is
only the probability p1 that tells by increasing whether the protocol works and if the state
is actually distillable. Therefore one often sees the state written as

|W 〉 = F
∣∣Ψ+

〉
+ (1− F ) (

∣∣Ψ−〉+
∣∣Φ+

〉
+
∣∣Φ−〉) (94)

whereas the Fidelity equals p1 in this case. This Fidelity shows the proportion of a certain
maximally mixed singlet into which the initial state will be distilled.
One turn of the protocol is given of the following form:

36This term was originally used for quantum cryptography.
37The van Neumann Entropy is de�ned as S(ρ) = −Tr [ρlog2(ρ)].
38The state itself is actually an ensemble of Bell diagonal matrices.
39Equality is achieved in the case of a original state, that is a mixture of 2 bell states, see reference [5].
40That means every Bell diagonal state with eigenvalue greater than 1

2
.
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I The initial state ρ expressed in the way as introduced in (93) ρW = ρA ⊗ ρB and is
copied once ρ⊗2

W = ρA ⊗ ρÂ ⊗ ρB ⊗ ρB̂, whereas ρÂ, ρB̂ are the copied subsystems of the
eligible parties.
When it comes to applying operations, the systems ρA, ρB will be called the source
system whereas the copied systems ρÂ, ρÂ are de�ned as the target systems.

II Now a bilateral XOR operation on both source as well as on both target systems (Table)
is applied, followed by a measurement on the target systems. With the direction of the
measurement it is possible to increase the proportion of a particular Bell states, i.e.
now it can be chosen whether the protocol favors |Ψ±〉 or |Φ±〉. If, for instance, the
measurement is done in z-direction (assuming the canonical basis) the two states |Ψ±〉
are received, whereas the other two Bell states vanish. As the distillation should only
favor one state, here |Ψ+〉 or |Ψ−〉, a phase shift or rotation, respectively, can distinguish
these two states after the measurement.

III Alice and Bob gain a new state ρ′ = ρ′A ⊗ ρ′B and have to decide whether the protocol
was successful or has failed. This is the point when the �two-way protocol � comes into
account, since each of the two has to know the results of the measurements performed in
the 2nd step. Via classical communication Alice and Bob can split up their initial states
into two piles; the one that passed the BXOR operation and the one that failed (Table).
In order to see if the distillation worked they compare the changes of the probabilities
pi of the passed states ρ′, i.e. nothing else but the di�erent weights of mixtures of bell
states:

p′1 =
p2

1 + p2
2

p2
1 + p2

2 + p2
3 + p2

4 + 2p12p2 + 2p32p4

p′2 =
2p1p2

p2
1 + p2

2 + p2
3 + p2

4 + 2p12p2 + 2p32p4

p′3 =
p2

3 + p2
4

p2
1 + p2

2 + p2
3 + p2

4 + 2p12p2 + 2p32p4

p′4 =
2p3p4

p2
1 + p2

2 + p2
3 + p2

4 + 2p12p2 + 2p32p4

(95)

The denominator represents the probability for the state to pass the bilateral XOR
operation.
If the protocol failed (p′1 ≤ p1) and no entanglement was distilled, it can either be the
wrong protocol or no entanglement can be distilled out of the state (see next chapter).
Otherwise, if F ′ = p′1 > p1 the amount of the maximally mixed singlet state |Ψ〉+ has
been increased and the protocol worked. In this case two options are available, which
are reconsidered by checking if ED = 1− S(ρ′) > 0, compare reference [13]:

ä If indeed 1 − S(ρ′) > 0, the one way protocol works and it is possible to continue
the distillation of ρ′ by only allowing a restricted communication.

ä Independent from the distilled entanglement ED an iteration of the two-way protocol
is always possible as long as the Fidelity F increases every turn. It has to be noted
that after each turn the new state has to undergo a twirl operation (random bilateral
rotation) in order to start again with a Werner state.
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Figure 6: Entanglement over Fidelity of Werner states from
[49]

In Figure 6 di�erent types of pro-
tocols and di�erent sequences of one
way and two way protocols, respec-
tively, are shown by plotting the
amount of entanglement, which is de-
termined by certain measures (chap-
ter 7), over the Fidelity of the Werner
state. The graphic shows that for
states with F ≤ 1

2
no entanglement

is distillable (ED = 0), neither with
two way protocols nor with one way.
Hence two way protocols work for
F > 1

2
, whereas one-way protocols

even require a Fidelity larger then
0.801 (see reference [43]). The DH

line for example is the result of a one
way hashing protocol, which was used
to continue two possible two way pro-

tocols DM and DR. The E line is received by the Entanglement of Formation, which will be
de�ned and explained in chapter 7.

6.2 Multipartite Distillation

The task of distilling entanglement is quite clear when talking about two qubits. Also for the
generalized bipartite case with an arbitrary degree of freedom on each subsystem, distillation
may be possible, since the maximally entangled states are uniquely de�ned as well as the Pauli
operators can be replaced by Weyl- or Gellman operators. However, as already seen in the
previous chapters, the problem in the multiparticle case already arises in the generalization
of the Bell states as maximally entangled singlets. The entanglement, which is carried by
generalized GHZ or W states di�ers completely from the qubit case. So it still remains
open whether the distillation shall favor one of these totally entangled states, a maximally
entangled bipartite cut of a multipartite system or again a Bell state singlet as in the original
protocols.
Regarding distillation of multipartite qubit systems the possible approach of taking a GHZ
or W state as the favored aim state has already been considered. This chapter shows in
detail how such a protocol is constructed and how it di�ers from previous constructions by
using the maximally entangled tripartite W state as the target state, that has to be distilled
[51]. The main idea of a successful protocol is introducing the W-Base, that comprises
in the tripartite case the following eight vectors |Wk1k2k3〉. It is obtained by applying the
unitary operator UW := 1√

3
1AσBXσ

C
X + σAZσ

B
X1

C + σAX1
BσCX on the eligible standard basis

vector |k1k2k3〉, ki ∈ {0, 1}.

|Wk1k2k3〉 := UW |k1k2k3〉 (96)

The complete base is hence given as
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k1k2k3 |Wk1k2k3〉 k1k2k3 |Wk1k2k3〉

000 1√
3
(|001〉+ |010〉+ |100〉) 100 1√

3
(|101〉 − |110〉+ |000〉)

001 1√
3
(|000〉+ |011〉 − |101〉) 101 1√

3
(|100〉 − |111〉 − |001〉)

010 1√
3
(− |011〉+ |000〉+ |110〉) 110 1√

3
(− |111〉 − |100〉+ |010〉)

011 1√
3
(− |010〉+ |001〉 − |111〉) 111 1√

3
(− |110〉 − |101〉 − |011〉)

Corresponding to these W base a special set of 8 stabilizers Kj can be constructed by
the combination of Pauli operators with respect to the stabilizer condition Kj |W 〉k1k2k3 =

(±1)kj |W 〉k1k2k3 (chapter 2.3). The �rst three are given by

K1 =
1

3

[
2(σX ⊗ σX ⊗ σZ) + 2(σY ⊗ σZ ⊗ σY ) + 2(σZ ⊗ 1⊗ 1)

]
,

K2 =
1

3

[
2(σZ ⊗ σX ⊗ σX) + 2(σY ⊗ σY ⊗ σZ) + 2(σZ ⊗ 1⊗ 1)

]
,

K3 =
1

3

[
2(σX ⊗ σZ ⊗ σX) + 2(σZ ⊗ σY ⊗ σY ) + 2(1⊗ 1⊗ σZ)

]
,

whereas the other 5 are given by their combinations. Therefore the set of stabilizers is given
by {1, K1, K2, K3, K1K2, K1K3, K2K3, K1K2K3}. Now the actual protocol P can be applied.
W.l.o.g. it is assumed that |W000〉 〈W000| is the greatest proportion of the state to be distilled.
Hence it can be written in a way that ρ = F |W000〉 〈W000|+ (F − 1) |noise〉. Mathematically
the protocol P turns three copies of the state ρ (i.e. ρ⊗3) into a state ρ′ by

ρ′ =
∑

m=1,2,3

PM (A)
m PM (B)

m PM (C)
m ρ⊗3M (A)†

m PM (B)†
m PM (C)P †

m , (97)

with

M
(l)

m(l) =
1

4

(
1+ (−1)m

(l)
1 K

(l)
1 K

(l)
2

)(
1+ (−1)m

(l)
2 K

(l)
1 K

(l)
3

)
, (98)

whereas l ∈ {A,B,C} and the completeness relation
∑

m(l) M
(l)†
m(l)M

(l)

m(l) = 1 holds. The oper-
ator P is a special projector, mapping the three copies of ρ into a single copy of the state,
with regards to the index m(l) or also denoted as m (if the subsystem is obvious), which again
corresponds to the result of M (l)

m(l)ρ
⊗3M

(l)†
m(l) . Since there are three subsystems each control-

ling three qubits after the state ρ is copied and M (l)

m(l) comprising the two stabilizers K(l)
1 K

(l)
2

and K(l)
1 K

(l)
3 , two out of the three qubits give its eigenvalues as the result of this operation.

Hence m is assigned to these three di�erent outcomes [0, 1] := 1 =̂ m
(l)
1 ,[1, 0] := 2 =̂ m

(l)
2 and

[0, 1] := 3 =̂ m
(l)
3 . After comparing these outcomes, the three subsystems arrange to choose

the same projection operator P on the same outcomes (in the following denoted by P (l)
i ), i.e.

if m = 1 the operator P (l)
1 : |W000〉(l) → |0〉(l) , |W110〉(l) → |1〉(l) reduces the three qubits of

a subsystem to one qubit, if m = 2, P (l)
2 : |W010〉(l) → |0〉(l) , |W101〉(l) → |1〉(l) or for m = 3,

P
(l)
3 : |W100〉(l) → |0〉(l) , |W011〉(l) → |1〉(l).

Depending on the kind of noise a state is polluted with or how much noise is added, respec-
tively, this protocol can completely distill the W state by iteration of this method. For a
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state with an arbitrary noise however, this protocol has to be extended. But before doing so,
it may be helpful to stress the physical logic behind this protocol:

ä The state ρ is rewritten in the W-basis and copied three times such that every party A,B
and C receives three qubit on which they can perform the de�ned local measurements.

ä The local measurements are given by the combination of particular stabilizer operators
for the W basis K1K2, K1K3. They are applied on two of the three qubits on each
subsystem A,B and C.

ä The corresponding outcome of each party is the 2 bit value m(l) = [m1,m2], with l ∈
{A,B,C}. The value m(l) can yield three di�erent results, which are shared by each
party (That means, that this protocol is a two-way distillation protocol). If all three
outcomesm(l) are equal each party performs the above de�ned projector P corresponding
to one of the three m(l).

ä If the outcomes m(l) do not coincide, the measurement is discarded and the process is
repeated. Otherwise a new state ρ′ is received, containing more properties of the |W000〉
state, hence the Fidelity F is increased. Normalizing and repeating this process may
increase the Fidelity further

When dealing with an arbitrary noise, the protocol is extended by its dual protocol P̄ .
Although the operators are de�ned slightly di�erent, the structure of the previous points are
the same. The stabilizers are changed by a combination of the Hadamard operator, here
de�ned for each party A,B,C (superindex (l)) and within each party for the three qubits
1,2,3 (subindex i) H(l)

i := 1√
2
(σX + σZ), and the swap operator swapij : |kk′〉 → |k′k〉, with

k, k′ ∈ {0, 1} switching the i-th with the j-th element of the tensor product. Hence the
complementary stabilizers are given by K̄(l)

j = Λl†K
(l)
j Λl, with Λl = H l

1H
l
2H

l
3swap

l
13. These

stabilizers are combined in the same way as in the previous protocol, but the fundamental
change, due to this new de�nition, is that the measurement is realized in a complementary
base. Therefore the preparation of the state ρ is not only done by copying it three times
but also by transforming the computational basis into the complementary base. This is ob-
tained with an operator V exchanging the vectors in the way that |000〉 ↔ |000〉 , |111〉 ↔
|111〉 , |100〉 ↔ |011〉 , |010〉 ↔ |101〉 and |001〉 ↔ |110〉. Therefore after the state is prepared
as V AV BV Cρ⊗3V A†V B†V C†, the distillation follows the same procedure using the comple-
mentary operators. However for this dual protocol P̄ the only measurement outcome in
which the three subsystem can coincide is given by m = [0, 0]. This leads to the fact that
only one projector has to be de�ned that reduces the three qubits of each party to one:
P̄ l

0 :
∣∣W̄000

〉
→ H |1〉l ,

∣∣W̄111

〉
→ H |0〉l

Which of the two protocols P or P̄ can actually increase the W-state proportion is a
priori unclear, unless by complete state tomography, i.e. determine each of the entries of the
density matrix of the initial state. Another drawback of this protocol is the uncertainty of
the �nal state, that di�ers between three di�erent outcomes. This drawback turns out to
be a fascinating e�ect, as, for an arbitrary density matrix, the Fidelity is the main factor
indicating which way this recurrence protocol takes.

ä If the �delity is about 0.7, the W-state will be predominated, as more than 99 per cent
of the initial states can be distilled
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ä If the �delity drops under 0.7, the outcome will be unclear as the protocol favors either
the W-state or a two qubit Bell state that is shared by two of the three subsystems, e.g.

1√
2
(|01〉+ |10〉) |0〉 or a undistillable state

This e�ect is quite surprising as the Bell state is not part of the states who are eigenstates
of the used stabilizers.

6.3 Bound entanglement

The success of distillation protocols grew further as one could show in [52] that every two
qubit state, which is entangled, can be distilled. But against previous assumptions, that
this is also true for every bipartite state with higher dimensions, it turned out that there
exist states (already for H3 ⊗ H3), which are entangled but can not be distilled [53]. For
these special entangled states there is a need for a new de�nition, stated for example in [5, 46]:

De�nition (bound entangled state):
A state ρ is called bound entangled i� no maximally entangled state can be distilled out of
it.

As there exist in�nite ways of distillations it is hard to say whether a given state is bound
entangled or not.

This phenomena of entanglement was discovered comparatively late, since it occurs only
in states with Ha ⊗Hb > 6.

Reminding the partial transposition criterion, one notices a similarity in the spaces where
the pt-condition is su�cient and necessary. It is not surprising, that an entangled state
with positive partial transposition is bound entangled. And indeed a connection between
distillation and partial transposition was found, which is, until today, not fully understood,
and will be discussed in the next section.

6.4 Beyond Distillation

This obviously new kind of entanglement, which is found in bound entangled states, is one
of the major tasks in the study of quantum entanglement as it is until now an open question
how such states can be constructed or even distinguished.
Every noti�ed bound entangled state is revealed as a PPT state, when the Peres criterion is
applied. So the question arises whether bound entanglement is only possible within the set
of PPT states?
In 1998 the Horodeckis came up with a promising theorem, that opened an approach to this
question formulated in [54]:

Theorem:
A bipartite state ρ on H = Ha⊗Hb is distillable i� there exist two projectors P : H⊗ka → H2

and Q : H⊗kb → H2 such that for some k ≥ 1 the state

ρ′ = (P ⊗Q)ρ⊗k(P ⊗Q)† (99)

is entangled.
Since the resulting state acts on H2⊗H2 Hilbert space, this is equivalent to a negative partial
transposition of ρ
Corresponding to this theorem, a useful de�nition was introduced:
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De�nition (pseudo k copy distillable or k-distillable):
A bipartite as well as a multipartite state ρ is called pseudo k copy distillable, or shorter
k-distillable, if the condition of this theorem is ful�lled for a certain number of copies k.
With this de�nition the number of required copies is described in order to gain a successful
protocol.

In the following a few promising partial results founding on the above theorem are collected:

ä In [55] it is shown that all qubit states of dimension H2 ⊗Hk are distillable i� they are
NPT states.
For achieving this result much groundwork was done by Horodecki et al. [52], when they
showed that every bipartite state is distillable i� it is entangled.

ä Every NPT state can be transformed into an NPTWerner state using LOCC operations.
Therefore the question whether there is a NPT bound entangled state can be reduced
to the question whether there exist NPT bound entangled Werner states, as claimed in
reference [56].

ä According to reference [57], the property of a state whether it is distillable or not can
be shifted into a Schmidt number problem. The crucial idea behind this follows from
the previous Theorem.

ä If the the rules of distillation are changed by allowing beside LOCC also PPT preserving
operations, all NPT states can be distilled with a single copy of the NPT state, as shown
in reference [58]. This result is shown by using separable superoperators S, which are an
equivalent formulation of the two way communication protocol, since it can be shown
that a state can be distilled, i� Tr [PmS(ρ)] > 1

m
with Pm = |Ψm〉 〈Ψm| being the

projector onto the maximally entangled state in m × m dimensions. Furthermore a
separable superoperator is a completely positive, trace preserving linear transformation,
whose explicit de�nition can be found in reference [59]
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CHAPTER 7

Entanglement measures

This chapter is dealing with the one of the most fundamental question since entangled
states were discovered. Soon after the development of quantum entanglement the search for
a su�ciently simple measure with suitable properties began and has not ended yet. But why
is quantifying entanglement and �nding a good measure such a hard task? In the following
chapter this question will be tackled by introducing di�erent approaches as well as di�erent
types of entanglement measures. The main goal is de�ning a measure that �ts best in order
to deal with upcoming results of describing quantum systems in a geometrical way.

7.1 Basics about measures

When speaking about measures in a general mathematical way one thinks of a linear func-
tional E, that maps elements of one vector space or a Hilbert space, respectively, into C or
more general the underlying scalar body. Furthermore a few axioms have to be proposed in
order to receive a measure. These axioms have to be �tted on this special purpose, namely
quantifying entanglement, and therefore they di�er from the mathematical point of view.
In the following the most commonly used axioms for entanglement measures are introduced,
whereas not all of them have to be ful�lled in order to be a proper measure. Another approach
in quantifying entanglement via state manipulation is shortly sketched after introducing the
most import axioms, that are also found in [6, 9] for instance.

ä Positivity: E(ρ) ≥ 0
This has to be ful�lled for all ρ ∈ H. But this axiom is rather a technical, mathematical
axiom and can easily achieved by shifting, as the measure was mentioned to be linear.

ä Normalization: E(ρ) = 0 i� ρ = 0
For an entanglement measure this property has to be expanded in such a way that
E(ρ) = 0 i� ρ ∈ SEP . Along with the normalization another (optional) property
for a measure is often demanded when it is applied on a maximally entangled bipartite
state, e.g. |Ψ〉: E(|Ψ〉⊗n) = n (compare additivity axiom). For higher dimensions this
property can not be claimed, as there is no unique de�nition of a maximally entangled
states.

ä Non increasing under LOCC: E(Λ(ρ)) ≤ E(ρ)
Λ is chosen from the set of positive maps that is uniquely referred to the set of LOCC
operations, as it is shown in the second chapter.
Following reference [9] also the description with Kraus operators Ki instead of positive
maps is possible:∑

i

pi E
( KiρK

†
i

Tr(KiρK
†
i )

)
≤ E(ρ) with pi = Tr(KiρK

†
i ) (100)

As a more speci�c version of this condition it is often demanded that the measure does
not increase under LOCC operations on average. This means that assuming a LOCC
map, which maps a state ρ with probability pk to a state ρk the inequality∑

k

pk E(ρk) ≤ E(ρ) (101)
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holds.

ä Unitary invariance: E(ρ) = E(UρU †)
The amount of entanglement of state should also be invariant under unitary transfor-
mations.

ä Convexity: E(
∑

i pi ρi) ≤
∑

i pi E(ρi)
The convexity tells about the behavior of the measure, when it is applied locally. One
sees that the entanglement of a state reaches a maximal value when the entanglement
of every subsystem is determined separately and summed up. That also means that the
more information is known about the subsystems, the higher amount of entanglement
is detected. Although this axiom is a necessary one from a mathematical point of view,
it can not be ful�lled by some entanglement measures.

ä Additivity Properties:
Considering n di�erent states ρi with i = 1, 2, ..., n , which are mutual independent from
each other. The entanglement measured in the composed Hilbert space, comprising all
systems, should yield the same amount as adding up the amount of entanglement of the
states measured in their individual Hilbert spaces:

E(ρ) = E(ρi ⊗ ρj ⊗ ...⊗ ρn) = E(ρi) + E(ρj) + ...+ E(ρn) (102)

Contrary to the convexity, it has to be noted that this equality is addressed to n in-
dependent quantum systems with no interaction. Also a weaker additivity condition
exists, which is a special case of the previous one, as one state ρ is copied n times:

E(ρ) = E(ρ⊗ ρ⊗ ...⊗ ρ) = E(ρ⊗n) = nE(ρ) (103)

These requirements are not obeyed by all entanglement measures and can be seen as op-
tional, but self-evident and useful. A function E(ρ) that ful�lls the �rst three points plus
the convexity axiom is called entanglement monotone and can be seen as the pre-stage of a
measure (see reference [9]).

7.2 Entanglement of Formation

The construction of an entanglement measure can be realized, as already mentioned, in var-
ious ways. Beside introducing the stated conditions the already known distillable Entangle-
ment ED (chapter 6) can also serve as a measure. Distillation of entanglement was developed
in order to determine how many maximally entangled states (m) can be produced out of a
given state ρ by copying and applying only trace preserving LOCC operations Λ(ρ⊗n). This
means in a precise mathematically way that the ratio ED (= m

n
) can be found when the

di�erence between a distilled bipartite state ρ and a certain number of maximally entangled
bipartite state

∣∣Ψ+
d

〉 〈
Ψ+
d

∣∣ vanishes,
ED(ρ) := sup

{
r | lim

n→∞

[
inf
Λ
Tr(Λ(ρ⊗n)−

∣∣Ψ+
d

〉 〈
Ψ+
d

∣∣⊗rn)
]

= 0
}
. (104)

Also the consideration from the other direction, namely how many maximally entangled
states are necessary in order to rebuild a given state ρ by using trace preserving LOCC
operations, leads to a commonly used entanglement measure, which is called entanglement
cost and de�ned as

EC(ρ) := inf
{
r | lim

n→∞

[
inf
Λ
D(ρ⊗n,Λ(

∣∣Ψ+
d

〉 〈
Ψ+
d

∣∣⊗rn))
]

= 0
}
, (105)
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with the di�erence, that in this case the measure of entanglement is shifted to a measure of
distance between two states ρ and σ, denoted by the functional D(ρ, σ), found in reference
[60].
As ED and EC have the same underlaying structure, it is not surprising that for bipartite pure
state ED(ρ) = EC(ρ) = S(TrA(ρ)) = S(TrB(ρ)), with S(ρ) = −Tr(ρ log2(ρ)) being the so
called von Neumann entropy. Furthermore basing on the this result for pure states a measure
for arbitrary states ρ can be constructed via the so called Entanglement of Formation EF
[49, 9],

EF (ρ) = inf
pi,|Ψi〉

{∑
i

piS [TrB(|Ψi〉 〈Ψi|)] : ρ =
∑
i

pi |Ψi〉 〈Ψi|
}
. (106)

It can be shown [61] that in the asymptotic limit of in�nite copies (n → ∞) EF and EC
are equal limn→∞

EF (ρ⊗n)
n

= EC . With this construction the problem of the entanglement
measure for a mixed state is returned to a convex superposition of pure states, that repre-
sents the mixed state. Such a construction is called convex roof and is, as there is no unique
decomposition of a mixed state, in general hard to calculate analytically. The loophole out
of this drawback are bounds that can approximate the in�mum of this decomposition. The
advantage of convex roof measures are its properties, which are directly taken over from the
pure state case, such as convexity, positivity or non increasing under LOCC.

Concurrence:

The concurrence, or Wootter�s and Hill Concurrence [62, 63], is an elegant way of analytically
calculating EF for an arbitrary bipartite qubit state. The secret behind this is a certain
expression of the entropy function for pure states, namely the binary entropy function

H(x) = − [xlog2x+ (1− x)log2(1− x)] , with 0 ≤ x ≤ 1, (107)

and therefore also for the amount of entanglement of a pure state ε(x) = H(1
2

+ 1
2

√
1− x2)

41. Combined with a special basis, the Bell-basis with particular phases {ei, i = 1, ..., 4}, in
which any pure state can be written as |Ψ〉 =

∑
i αi |ei〉, its entanglement can be expressed

in terms of its coe�cients αi

EF (|Ψ〉) = ε(
∣∣∑

i

αi
∣∣). (108)

The argument of the function ε, here |∑i αi|, is called concurrence. The concurrence itself
must be seen as a function of the state, C(|Ψ〉), which already acts as some kind of measure
as it ranges from 0 to 1 and its monotonicity is connected to EF . Therefore this formula is
often written in the more general way, using the concurrence function C(|Ψ〉),

EF (|Ψ〉) = ε(C(|Ψ〉)). (109)

The generalization of this construction to arbitrary states ρ is done by de�ning the following
operator valued functional R(ρ),

R(ρ) =
√√

ρρ̃
√
ρ, (110)

41The argument of H is chosen in this way to make sure that the values of the resulting entanglement measure lies in between
0 and 1.
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that replaces E(|Ψ〉). Here ρ̃ is the complex conjugated of ρ, which is given by the previously
introduced basis vectors {ei, i = 1, ..., 4} 42. With this knowledge the following Theorem can
be posed:
Theorem:
For ρ being a density matrix of a two qubit system, with two eigenvalues unequal to 0, the
Entanglement of Formation is given by

EF (ρ) = ε(C(ρ)) with C(ρ) = max {0, 2λmax(ρ)− Tr[R(ρ)]} . (111)

R was explained before and λmax is the largest eigenvalue of R.
The proof of this theorem can be found in reference [62].
This theorem could be generalized further using the so called spin �ip transformation [63].
For a pure state |Ψ〉 the spin �ipped state, here denoted with the tilde symbol, is de�ned as∣∣Ψ̃〉 = σy |Ψ〉∗ . (112)

With this de�nition the concurrence for pure states can be alternatively expressed by C(|Ψ〉) =∣∣∣〈Ψ, Ψ̃
〉∣∣∣.

This spin �ip transformation is generalized to an arbitrary state ρ by taking the complex
conjugation in exactly the above mentioned basis {ei, i = 1, ..., 4}. Hence the the functional
R can be expressed as

R(ρ) =
√√

ρ(σy ⊗ σy)ρ∗(σy ⊗ σy)
√
ρ (113)

with ρ∗ now given in the standard base.
The entanglement of formation EF can hence be formulated with this generalized concurrence:

For a quantum state ρ, describing a two qubit system, the EF is given by

EF (ρ) = ε(C(ρ)) with C(ρ) = max {0, λ1 − λ2 − λ3 − λ4} (114)

whereas the λi are the eigenvalues of the Hermitian matrix R(ρ) in decreasing order or, as
an equivalent de�nition, the λi�s are the square roots of the non Hermitian matrix ρρ̃. For
a pure state, R(ρpure) has only one non-zero eigenvalue.
Although one can expand this result to higher dimensions (concurrence vector, see refer-
ence [64]) the optimization over all pure states remains inevitable for higher dimensions. A
nice attempt of generalizing this result to a multidimensional measure is introduced in the
following and will be applied to illustrate the geometry of states.

7.3 Multipartite Entanglement Measures

In order to receive a multipartite measure and generalize the previous construction one pos-
sible and promising way is the enhancement of the introduced �ip operator (111) and (112),
respectively. As this measure should work for an arbitrary amount of particles with arbitrary
degrees of freedom, it has to distinguish between the di�erent types of entanglement, i.e.
between which subsystem or between which groups of subsystems the entanglement can be
found (k-separability).
Therefore a useful way of looking at a quantum system is regarding the partition of the in-
formation content by using an equation related to Bohr�s complementary condition, known

42R(ρ) also ranges from 0 to 1 and can be understood as a kind of measure of the equality between ρ and ρ̃ as it is invariant
under local unitary transformation.
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for example from the double slit [65]. For an n partite system the equation

I(ρ) +R(ρ) + E(ρ) = n (115)

can be proposed. With the three functions I(ρ), E(ρ) and R(ρ):

ä I(ρ) contains all locally obtainable information of the quantum system and comprises
all subsystems, I(ρ) =

∑n
s=1 S

2
s (ρ).

ä E(ρ) denotes the information content bounded in entanglement between all subsystems

ä R(ρ) is the remaining unavailable information traced to the uncertainty of the measure-
ment result of the quantum state itself.

It remains to explain the quantity S(ρ), that is summed up in order to obtain I(ρ), which
is explained in the �rst point. Formerly introduced to describe the theoretical information
content of the double slit experiment, the original complementary relation by Bohr,

S2(ρ) := P 2(ρ) + C2
coh(ρ) ≤ 1, (116)

can be adapted to an arbitrary two state quantum system. Ccoh(ρ) and P (ρ) are known as
the visibility 43 and predictability 44, respectively, or more general, Ccoh(ρ), the coherence and,
P (ρ), the a priori knowledge of the state. The complementary relation turns out to be an
equality as long as pure states are described, otherwise it is possible to restore the equation out
of the inequality by adding a functionM(ρ), which can be seen as a measure of the mixedness,
the classical uncertainty of the quantum state. It is de�ned by M2(ρ) := d

d−1
[1− Tr(ρ2)].

Herewith the complementary relation yields

S2(ρ) +M2(ρ) = 1. (117)

The next step in constructing a multipartite �concurrence-like � measure is �nding a similar
expression to the latter one (110) for higher dimensions. In reference [65] this problem is
solved by writing the probability for a certain qudit state ρ as

P 2
g (ρ) =

d− 1

d

∑
π

∣∣∣∣P0,0 −
P1,1 + P2,2 + ...+ Pd−1,d−1

d− 1

∣∣∣∣2 . (118)

∑
π denotes the sum over all possible permutations of Pi,i. When considering again the

above used analogy of an interference pattern, one permutation describes the probability
of the particle taking a certain path minus the probabilities of the remaining paths. Using
the completeness relation of the probabilities Pi,j := Tr(ρ |i〉 〈j|), ∑i Pi,i = 1, this quantity
reduces to

P 2
g (ρ) :=

d

d− 1

∑
i

∣∣∣∣Pi,i − 1

d

∣∣∣∣2 =
d

d− 1

∑
i

P 2
i,i −

1

d− 1
. (119)

A similar generalization of the coherence again with the quantity Pi,j, brings the formula

C2
coh,g(ρ) :=

2d

d− 1

d−1∑
j=1

∑
i<j

|Pi,j|2 =
d

d− 1
(Tr(ρ2)−

∑
i

P 2
i,i) (120)

43Here the visibility of the interference pattern is denoted, which is connected with the wave property a particle.
44The predictability denotes the probability of the way, which the eligible particle will take.
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The right side is obtained by Tr(ρ2) =
∑

i<j |Pi,j|
2 =

∑
i P

2
i,i + 2

∑
i,j,i<j |Pi,j|

2 45.
Verifying Bohr�s complementary relation by summing up the generalized quantities, P 2

g (ρ)+

C2
coh,g(ρ) = d

d−1
Tr(ρ2)− d

d−1
= M2(ρ) + 1 yields

P 2
g (ρ) + C2

coh,g(ρ) +M2(ρ) = 1. (121)

Based on this equation, an entanglement measure for multipartite quantum systems and
a generalized concurrence, respectively, can be introduced: As mentioned before, M can
be used as a measure itself, because it ful�lls the required axioms [66], and the amount of
entanglement of a pure state is herewith given by

E(|Ψ〉) :=
n∑
s=1

M2(ρs), (122)

with ρs being the reduced density matrix of |Ψ〉 to the subsystem s,
ρs = Tr[1,...,s−1,s+1,...,n](|Ψ〉 〈Ψ|). The functional M(ρ) is now chosen as the linear Entropy
(SL(ρ) := 1−Tr(ρ)), with the advantage of an easier calculable functional compared to other
possible choices, e.g. the von Neuman Entropy. This advantage of the linear entropy is the
fact, that it can be expressed in terms of operators, i.e. modi�ed Gellmann operators, that
are applied on the density matrix of the pure state to be measured. They are de�ned as

σd×dkl |k〉 = |l〉 , σd×dkl |l〉 = |k〉 , σd×dkl |t〉 = 0 ∀t 6= k, l, (123)

with k, l ∈ {0, 1, ..., d− 1}. For a qubit system the �ip operation is achieved by the σx matrix
(compare Wootter�s and Hill�s concurrence)

Ô{αj} := (σ
s∈{αj}
ki,li

,1s 6={αj}), (124)

where the set {αj} := α1, α2, ..., αm
46 indicates the subsystems αi, on which a �ip operator

is applied. Because this construction is generalizing the previously introduced concurrence
measure, the so-called m-concurrence can be posed. The value m denotes the number of �ip
operations that are applied on the subsystems. E.g. the 2-�ip concurrence is calculated by
�ipping two subsystems and yields the entanglement between two subsystems. That means
that for m = 2 this construction is equivalent to the Wootter�s and Hill�s concurrence.

E(ρ) = E(2)︸︷︷︸
bipartite entanglement

+ E(3)︸︷︷︸
tripartite entanglement

+ ... + E(n)︸︷︷︸
n-partite entanglement

. (125)

with the substructure

E(2) = E(12) + E(13) + ...+ E(1n) + ...+ E(nn)

E(3) = E(123) + E(124) + ...+ E(12n) + ...+ E(nnn)

...

E(n) = E(12...n) (126)

whereas E(ij...k) is the entanglement between the i-th, j-th, ..., k-th subsystem. Expressed
with the m-concurrence the entanglement is given by

E(ρ) := C2
(2)(ρ)︸ ︷︷ ︸

two �ip concurrence

+ C2
(3)(ρ)︸ ︷︷ ︸

three �ip concurrence

+ ... + C2
(n)(ρ)︸ ︷︷ ︸

n-�ip concurrence

(127)

45ρ† = ρ, Tr(ρ2) = 1 =
∑
i<j |Pi,j |

2 and the completeness relation is used.
46They are de�ned in decreasing order, α1 < α2 < ... < αm, to avoid multiple counting.
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In order to get all di�erent amounts of entanglement E(m), one summand C2
(m) has to comprise

all combination of subsystems ({αj}) 47:

C2
(m) =

∑
{αj}

C2
{αj}. (128)

The concurrence itself is de�ned via the �ip operator:

C2
{αj} :=

∑
set

∣∣∣〈Ψ
∣∣∣Ô{αj}(|{in}〉 〈{in}| − |{i′n}〉 〈{i′n}|)∣∣∣Ψ∗〉∣∣∣2 (129)

with ∑
set

:=
∑
i∈{αj}

di−1∑
li=1

∑
ki<li

∑
{in}6={i′n}

. (130)

The indices li and ki belong to the �ip operator Ô{αj} de�ned in equation (123) . The entire
amount of entanglement can be written as the sum of all m-concurrences, but so far this
construction is only valid for pure states. Thus for a pure state |Ψ〉 or ρpure, respectively, its
entanglement is equal to the sum of the squared mixedness of all subsystems:

E(|Ψ〉) :=
n∑

m=2

C2
m =

n∑
s=1

M2(ρpure,s) (131)

The extension to arbitrary states is done by the convex roof construction, that was in-
troduced in the previous chapter 7.2. Hence when talking about the m-concurrence and
the entanglement of a mixed state ρ, (Cm

(g)(ρ))2, the greatest lower bound of all possible
decompositions in pure states has to be calculated.

(Cm
(g)(ρ))2 := inf|Ψi〉,pi

∑
|Ψi〉,pi

pi(C(m)(|Ψi〉))2 (132)

Again the drawback of a convex roof measure is revealed when it comes to calculating the
bounds. However inspired by Wootter�s and Hill�s concurrence

ρ̃m{αj} := O{αj}(|{in}〉 〈{in}| − |{i′n}〉 〈{i′n}|)ρ∗O{αj}(|{in}〉 〈{in}| − |{i′n}〉 〈{i′n}|), (133)

can be constructed. Using the square roots of the eigenvalues of the matrix ρ̃m{αj}ρ, λ
{αj}
m , the

resulting bounds look again similar to the previous case (110),

(Bm(ρ))2 :=
∑
set

∑
{αj}

max

[
0, 2max

[ {
λ{αj}m

} ]
−
∑{

λ{αj}m

}]
. (134)

With this construction a useful entanglement measure is obtained. But it has to be
noted that the current thoughts are not invariant under local unitary transformation (only in
special cases) and therefore the m-concurrence is by implication not equal to the m-partite
entanglement. However this problem can be corrected, as it stems from the fact that the
m-concurrence involves also parts from (m−i)-concurrences (with i < m and (m−i) ≥ 2), by
subducting these (m−i)-concurrences. This again restores the recommended invariance under
local unitary transformation. For further informations about this m-concurrence measure it
is referred to reference [65], whereas special examples on how this measure can be found in
the upcoming chapters of this work or the eligible references.

47There are
(n
m

)
possible combinations.
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CHAPTER 8

Entanglement Witness

Figure 7: Entanglement witness W as a
Hyperplane in Hilbert space

The last separability criterion, that is discussed in this
thesis, are the so called entanglement witnesses. This
is maybe one of the more intuitive criteria, since it
can be based on geometrical consideration. Regard-
ing the convex set of separable states, surrounded by
the set of entangled states, the region of separability
or the borders of it, respectively, can be characterized
by hyperplanes, that are tangential or at least near
to the surface of this region (Hahn-Banach Theorem).
This leads to a separation of the entire Hilbert space
into two parts (Figure 7). Mathematically these hyper-
planes are given by positive (P) or completely positive
(CP) maps leading between the eligible Hilbert spaces
or operators acting on it (compare chapter 1). Even
though this work focuses on entanglement witnesses as
operators acting on a bipartite system, a short outlook on p and cp maps as well as on the
generalization to multipartite systems shall be given following the works of [5, 67, 6].

De�nition (Entanglement Witness):
An operator W is called entanglement witness for an arbitrary pure or mixed state ρ ∈
Hd1
A ⊗Hd2

B , if

〈Wρs〉 = Tr(Wρs) ≥ 0 ∀ρs ∈ SEP (135)

〈Wρe〉 = Tr(Wρe) < 0 ∀ρe /∈ SEP (136)

A state is said to be detected by an entanglement witness, i� the latter inequality holds.
For an operator Wt su�cing Tr(Wtρs) = 0, the witness is called a tangential witness, as
the corresponding hyperplane lies right on the surface of SEP, otherwise for Tr(Wρs) >
0 (Tr(Wρs) < 0) the hyperplanes is inside (outside) the set of entangled states (ENT).
This obvious geometrically observation has its mathematical analogy in the Hahn-Banach
Theorem, which also proves [32] that each entangled state is detected by at least one witness.

8.1 Construction of Witnesses

With this �completeness � relation the next step would be the construction of such a suitable
witness for every state. In order to do that it is useful to distinguish between two kinds of
witnesses, decomposable and non decomposable:
De�nition (decomposable witness):
A bipartite entanglement witness W , that is an element of the set of all bounded operators
B(HA ⊗HB), is called decomposable, if it can be written as

W = P +QTB (137)

with P and Q being positive operators and QTB denotes the partial transposition of Q in
subsystem B.
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This classi�cation has its origin in the theory of P but not CP map, or more precise a
decomposable map Λdec ∈ B(C2) → B(H2) or B(H2) → B(H3), that is of the form Λdec =

Λ
(1)
CP + Λ

(1)
CP ◦T , where Λ

(i)
CP is a CP map and T the transposition operator (see reference [5]),

which are directly connected to operator witnesses itself (Choi-Jamiolkowski isomorphism in
chapter 1)
This means that the same de�nition as before can be posed using PnCP maps:
For a state ρ ∈ Hd

A ⊗ Hd
B and the map (1 ⊗ Λ)[ρ], with Λ : Hd

A → Hd
B being a PnCP map

the following inequalities hold:

Tr[(1⊗ Λ) [P+
d ] ρs] ≥ 0 ∀ρs ∈ SEP (138)

Tr[(1⊗ Λ) [P+
d ] ρs] < 0 ∀ρe /∈ SEP (139)

P+
d denotes the projector on the pure maximally entangled state

∣∣Ψ+
d

〉
= 1

d

∑d−1
i=0 |i〉 ⊗ |i〉 48.

Therefore compared with (135) and (136), respectively, the connection between the operator
witness and the CnCP map witness is given by W = (1 ⊗ Λ)[P+

d ], whereas also the inverse
relation Λ = TrB[WρT ]⊗ 1d is sometimes useful.
This isomorphism is an important issue for the construction of witnesses, since a lot of
separability or entanglement criteria are based on P or CP maps, e.g. as it was stated in
chapter 4, in which the partial transposition criterion was introduced. This implies that
for all these kinds of criteria a suitable witness can be constructed. A simple example of
such a construction gives a state ρe, that is revealed to be entangled by the pt-criteria, i.e.
due to the partial transposed density operator ρTAe there exists at least one eigenvector |κ〉
with corresponding eigenvalue λκ < 0. The suitable witness is given by the outer product of
this eigenvector, Wρe := |κ〉 〈κ|TA . With the previous de�nition of an entanglement witness
follows obviously

Tr(Wρeρe) = Tr(|κ〉 〈κ|TA ρe) = Tr(|κ〉 〈κ| ρTAe ) = λκ < 0, (140)

i.e. ρe is indeed an element of the set of entangled states. On the other hand a separable
states ρs is, as expected, also recognized via Tr(|κ〉 〈κ| ρTAs ) > 0.

Another interesting construction method uses the fact that the neighborhood of an already
known pure entangled state ρe = |κ〉 〈κ| comprises again entangled states. The arising
question is, how much noise can be added to this state until it ends up in the set of separable
states, or the other way round, how much noise is required, when a pure entangled state is
subtracted until the region of entanglement is obtained:

W := α1− |κ〉 〈κ| (141)

In order to determine the minimal weight α, which provides that all separable states ful�ll
equation (134), it has to be assumed, that Tr[Wρs] = Tr[(α1−|κ〉 〈κ|)ρs] = α−Tr[|κ〉 〈κ|)ρs]
is equal zero for the largest value Tr[|κ〉 〈κ|)ρs], which depends on certain separable states.
Considering that the trace is a linear functional, which takes its maximum over a convex set,
as in this case SEP, on its largest points, the eligible states ρs are all pure product states.
That means that the proportion of noise is given by

α = max
ρs

Tr[|κ〉 〈κ| ρs] = max
|Φ〉=|A〉⊗|B〉

Tr[|κ〉 〈κ| |Φ〉 〈Φ|] = max
|Φ〉=|A〉⊗|B〉

|〈κ|Φ〉|2 , (142)

which is the square root of the largest Schmidt coe�cient of |κ〉.
48The normalization factor can also be omitted, as it is done in reference [6].
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A further enhancement of such deliberations are the so called geometrical witnesses, that
require the de�nition of the Hilbert-Schmidt Norm of an operator, ‖X‖HS :=

√
Tr(X†X).

This norm de�nes the distance between an entangled state ρe and the closest separable
state ρs (compare references [68, 69]). The witness W is then constructed in such a way
that it is optimal for all states along the connection between ρe and ρs (here called ρline),
Tr[Wρline] = 0:

W :=
1

‖ρe − ρs‖
(ρs − ρe + Tr[ρs(ρe − ρs)]1) (143)

Most of the existing methods of witness construction are closely related to other criteria due
to the previously introduced isomorphism to PnCP maps, which seem to be the underlying
theory behind these criteria.

8.2 Optimization

For an improvement of a given witness one has to de�ne some kind of `value' for it [70].
Therefore a witness W1 is called �ner than a witness W2 if W1 detects more states than W2

in the sense that all states detected by W2 are also detected. A logical consequence for such
witnesses is

W2 =W1 + P, (144)

with P being some positive operator. Furthermore a witness Wo is called a optimal witness
if P = 0 for all other eligible witnesses, or using the latter de�nition: There is no witness
�ner than Wo (if there would be a �ner witness Wf = Wo + P , for some P 6= 0 Wf would
not be a witness anymore).
For the optimization itself one has to distinguish between decomposable (d) and non decom-
posable (nd) witnesses. Regardless of this discrimination the set of product states on which
a witness W vanishes is useful to de�ne:

pW := {|a, b〉 ∈ H| 〈a, b|W |a, b〉 = 0} , with |a, b〉 ∈ Hd1
A ⊗Hd2

B (145)

Based on these de�nitions an optimization or an iteration, respectively, can be introduced for
d as well as for nd entanglement witnesses. The following theorems can be posed, based on
the fact, that a �ner entanglement witness can be obtained by subtracting projectors, that
are characterized by a vanishing expectation value with elements of the the set pW , or more
precisely:
Theorem (Optimization of decomposable entanglement witnesses):
If, for a given d entanglement witness W , a projector P , such that PPW = 0 49 and further-
more a corresponding scalar factor λ0, given by

λ0 : = inf
|a〉∈Ha

[
〈a|P |a〉− 1

2 〈a|W |a〉 〈a|P |a〉− 1
2
]

min

=

(
sup
|a〉∈Ha

[
〈a|W |a〉− 1

2 〈a|P |a〉 〈a|W |a〉− 1
2
]

max

)−1

> 0, (146)

49PW denotes the projector on the set pW and therefore PPW = 0 is equivalent to 〈a, b|P |a, b〉 = 0.
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can be found 50, then, i� λ < λ0 and λ > 0, an entanglement witness

W ′(λ) :=
W − λP

1− λ (147)

can be constructed, which is �ner then W .

This theorem can be used iteratively:

ä Determine pW

ä Finding an operator PPW = 0 and a corresponding λ0

ä De�ning a �ner witness as W ′(λ) := W−λP
1−λ , with λ 6= 0 and λ ≤ λ0

ä Set W ′ := W and start with point 1

With a simple modi�cation of the projector P, an analogue method can be introduced for
nd-witnesses:
Theorem (Optimization of non decomposable entanglement witnesses):
If there exists for a nd entanglement witness W a nd operator D, such that DPW = 0 and
again a corresponding scalar factor λ0,

λ0 : = inf
|a〉∈Ha

[
〈a|D |a〉− 1

2 〈a|W |a〉 〈a|D |a〉− 1
2
]

min

=

(
sup
|a〉∈Ha

[
〈a|W |a〉− 1

2 〈a|D |a〉 〈a|W |a〉− 1
2
]

max

)−1

> 0, (148)

then i�, λ < λ0 and λ > 0, a nd entanglement witness

W ′(λ) :=
W − λD

1− λ (149)

can be constructed, which is �ner then W .

This theorem can also be used iteratively:

ä Determine pW and pWT

ä Finding an operator D given by D = aP + (1 − a)QT with a ∈ [0, 1], PPW = 0 and
QPWT = 0, and calculating λ0

ä De�ning a �ner witness as W ′(λ) := W−λD
1−λ , with λ 6= 0 and λ ≤ λ0

ä Set W ′ := W and start with point 1

These iterations come to an end when no further Projector P can be subtracted from W
or λ0 = 0, respectively, and the optimal witness operator is found.

The drawback of these optimization method is that whenever a d or nd witness is used in
order to �nd a optimal one, the resulting witness does not preserve this property itself. This
means that the optimal witness of a previously decomposable one could then have the form

50[...]max/min stands for the maximal/minimal eigenvalue and X−
1
2 is the the square root of the pseudo inverse operator of

XP . (XP is called the pseudo inverse of a bounded operator X with a closed image if XP |Ψ〉 = |Φ〉 ⇔ ‖X |Φ〉 − |Ψ〉‖ → min
when ‖|Φ〉‖ → min.)
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of a non decomposable witness and vice versa. In order to solve this problem a so called edge
state δ, located on the surface of the surface of PPTES (the set of PPT states), is de�ned:

δ − ε |a, b〉 〈a, b| /∈ PPTES ∀ |a, b〉 ∈ Hd1 ⊗Hd2 . (150)

Furthermore every state ρ ∈ PPTES can be presented as a convex combination of a separable
and an edge state: ρ = (1−p)ρsep+pδ. The use of this de�nition can be seen when looking at
the characterization of states. Edge states are elements of the set, that is located in between
SEP and PPTES and therefore vanish as long as ρ ∈ Hd with d ≤ 6, because of the necessary
and su�cient property of the pt-operation in this dimensions. I.e. for states with dimension
six or lower the above presented witness Wρe is the optimal one. For higher dimensions this
gap, that contains entangled ppt states, has to be investigated. The states, lying in the gap,
can only be detected by nd witnesses , contrarily to separable states. A possible construction
of these nd-witnesses was found by Lewenstein et. al. [71]:
Any nd witnessW , detecting some edge state δ, which comprises in its range product states,
denoted by |a, b〉 (|a, b〉 ∈ R(ρ)), whereas |a, b∗〉 ∈ R(ρTB), can be expressed as

W = P +QTB − ε1, with 0 ≤ ε ≤ inf
|a,b〉

〈
ab|(P +QTB |ab

〉
, (151)

with P,Q ≥ 0 and R(P ) ⊆ K(δ), R(Q) ⊆ K(δTB). With this nd witness of an edge state and
the above stated optimization theorem all ingredients are given in order to build an optimal
entanglement witness, which exactly distinguishes between separable and entangled states.
Further useful results or other approaches to this optimization problem can be found in
reference [70], e.g. an optimal witness Wo the already mentioned product states |a, b〉, have
to span the entire Hilbert space as well as 〈ai, bi|Wo|ai, bi〉 = 0 has to be ful�lled.

8.3 Bell inequalities - a special kind of witness

Another interesting aspect of witnesses is the connection to Bell inequalities, which shows
nicely the �uent border between the di�erent methods in characterizing quantum states. This
result was found by Barbara M. Terhal [72]. Considering again the theory of Bell inequalities
(chapter 3) for a bipartite system. A given state ρ, that is shared by two parties, Alice and
Bob, is called nonlocal when its expectation value with the Bell operator violates a certain
bound. Along with this nonlocality comes a special correlation between Alice and Bob, that
could not be described by the assumption of hidden variables. Usually the highest violation
of this bound and therefore the most nonlocal features depends on how the Bell inequality
was constructed and for which states it is optimized. Hence when assuming the situation that
each party is sharing a mixed or separable state, which could in the �rst instance not violate
a Bell inequality, its nonlocality can often be increased by allowing Alice and Bob to use
LOCC operations (chapter 1) on his or her substate. This is nothing else but the previously
introduced distillation (chapter 6), which allows to transform every mixed or separable state
into a certain entangled singlet, that also has nonlocal properties. However for showing
the connection between Bell inequalities and entanglement witnesses a set of measurement
operators for Alice, MA

i , i = 1, ..., nA and Bob, MB
j , j = 1, ..., nB, is assumed. Each operator

used by Alice has the substructure

MA
i := (EA

i,1, E
A
i,2, ..., E

A
i,k(i)), with

k(i)∑
m=1

EA
i,m = 1, EA

i,m ≥ 0 (152)
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with EA
i,k being the positive operator corresponding to the k-th measurement outcome of the

i-th operator MA
i on Alice�s side. The same de�nitions are valid for Bob�s subsystem. A

so called probability vector ~P can now be constructed comprising the possible measurement
results of both subsystems, PA:i|k = Tr

[
EA
i,k ⊗ 1ρ

]
and PB:j|l = Tr

[
1⊗ EB

j,lρ
]
, as well as the

correlated measurement results, PA:i|k,B:j|l = Tr
[
EA
i,k ⊗ EB

j,lρ
]
:

~P :=


PA:i|k,B:j|l

PA:i|k

PB:j|l

 (153)

The size of this vector varies according to the number of measurement operators and outcomes
on each subsystem and can be associated with a certain set of so called Boolean vectors
51. This is done by assuming a hidden variable λ that can either be 0 or 1 for a certain
measurement outcome, i.e. it is measured with probability one or zero. Hence every eligible
outcome scenario can be referred to a special Boolean vector ~Bλ and every measurement set-
up to the corresponding set of Boolean vectors. That means also that ~P can be associated
with

~Bλ :=


~BA
λ ⊗ ~BB

λ

~BA
λ

~BB
λ

 , (154)

with ~Bλ describing only one single outcome scenario and therefore the complete system is
described by the set ~Bλ1 , ..., ~BλN , whereas N denotes the number of all possible Boolean
vectors of ~BA

λ and ~BB
λ . Relating to this, every LHV-Theory can be connected to a convex

combination of the eligible set of Boolean vectors ~Bλi vector ~V ,

~V =
∑
i

qi ~Bλi , with qi ≥ 0. (155)

Represented in a more general way by vectors of positive numbers ~PA
i and ~PB

i , respectively,
~V can be represented as

~V :=
∑
i

pi


~PA
i ⊗ ~PB

i

~PA
i

~PB
i

 . (156)

That means that this set of all LHV-Theories LLHV (M) is a convex cone spanning a vector
space that is one to one correlated to a simplex in the Hilbert space, that consists of all states
obeying the LHV theory. It has to be noted that this convex cone and hence the corresponding
simplex depends on the actual measurement operators (MA

i and MB
i ) prepared by Alice and

51This denotes a vector, whose elements are either 0 or 1.
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Bob. If a state ρ, that is measured by Alice and Bob is describable by such a vector ~V ,
it ful�lls a LHV-Theory. I.e. by checking whether the vector ~V , that corresponds to the
measured state ρ, is element of LLHV (M), the nonlocality of a state can be detected. Via the
so called Minkowski-Farkas Lemma [73] for convex sets in Rn a more precise constraint can
be given concerning the states inside this simplex by denoting whether a vector ~P is element
of LLHV (M) or not. The latter is true i� there exists a vector ~F 52 such that

~F · ~P < 0 and ~F · ~Bλi ≥ 0 ∀λi. (157)

This formulation of �nding a suitable ~F for a state ρ is nothing else but constructing a Bell
inequality, which is violated by the very same state ρ. For a bipartite entangled state the
vector ~F can be chosen as ~F = (FA:i|k,B:j|l, FA:i|k, FB:j|l)

T and an operator can be constructed
by

H :=
∑
i,j,k,l

FA:i|k,B:j|lE
A
i,k ⊗ EB

j,l +
∑
i,k

FA:i|kE
A
i,k ⊗ 1

∑
j,l

FB:j|l1⊗ EB
j,l (158)

that heads back to the familiar Bell operator form ~F · ~P = TrHρ ≤ 0. For spin measurements
with the Pauli operators H reduces to

H =
1

4
(21− ~a~σ ⊗ (~b+ ~b′)~σ − ~a′~σ ⊗ (~b′ −~b)~σ) (159)

which is equivalent to the operator found for the CHSH inequality (chapter 3).

52 ~F stands for the Farkas vector.
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Part III

Geometry of Qudits
The next chapters are dealing with the task of visualizing and drawing geometrical pictures
of quantum states regarding their di�erent properties. This is possible, since in special cases
every quantum state, which is an element of the abstract Hilbert space, can be uniquely
identi�ed with a point in the Euclidean vector space. This opens a lot of possibilities, such
as introducing a metric based on distance or geometrical witnesses, that can be used to detect
entanglement or an easy way of comparing the strength of di�erent separability criteria. In
order to get such images it is necessary to restrict the amount of di�erent quantum states with
constraints by limiting the number of particles or reducing their degrees of freedom. This
is done by writing states, which are eligible candidates for visualizations, with real valued
parameters, that can be used as variables for a geometrical illustration. The next chapter
shows how this is done in the easiest, the bipartite qubit case.

CHAPTER 9

Bipartite Qubits

In the two qubit case, H2
A ⊗ H2

B, the states can be written by using the canonical basis
{|00〉 , |01〉 , |10〉 , |11〉} as

|Ψ〉 = p1,0 p2,0 |00〉+ p1,0 p2,1 |01〉+ p1,1 p2,0 |10〉+ p1,1 p2,1 |11〉 , (160)

with the four variables pi,j representing the weights corresponding of the j-th basis vector,
j ∈ {0, 1} of the i-th qubit, i ∈ {0, 1}. The density operator |Ψ〉 〈Ψ| consists of 16 matrix
elements, the products of the pi,j�s. Using the the Bell operator base {1, σ1, σ2, σ3} and the
Bloch representation of qubits, respectively, one receives

|Ψ〉 〈Ψ| = ρ =
1

2
(1+ ai σi)⊗

1

2
(1 + bj σj) =

1

4
(1⊗ 1+ ai 1⊗ σi + bj σj ⊗ 1+ cij σi ⊗ σj),

(161)

whereas the variables are represented by entries of the the real vectors ~a = (a1, a2, a3)T ,
~b = (b1, b2, b3)T and the matrix cij = aibj

53. Following the work of [48] a picture can be
drawn by reducing these variables to at least three. This is done by regarding only locally
maximally mixed states (i.e. Triρ = 1, i ∈ {A,B}), such that the coe�cients ai and bj
vanish. The only thing we are left with are the entries cij of a 3 × 3 matrix, that we can
simplify by singular value decomposition 54. The remaining states are given by

ρ =
1

2
(1⊗ 1+

3∑
i=1

ci σi ⊗ σi). (162)

The three coe�cients ci can now be used as variables in order to to draw a three dimensional
picture. The states have to ful�ll the positivity condition ρ > 0, which means |ci| ≥ 0.

53The three variables ai and bi, respectively, of each qubit are reduced to two by Tr(ρ) = 1.
54This is possible, since of the sigma base can be uniquely referred to a three dimensional euclidean vector (σ1 σ2 σ3)T . Or

more fundamental the Isomorphism between the SU(2) and O(3).
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Figure 8: Geometry of two qubits

Moreover the ci indicate uniquely, by applying the Peres-Horodecki criterion, where the
separated and entangled regions of this states can be found. With this constraints the
following picture of a tetrahedron is received (Figure 8).
At the edges of this tetrahedron the pure maximally entangled Bell states |Φ±〉 and |Ψ±〉 can
be found. Within the double pyramid all separable states are located.

CHAPTER 10

N-partite Qubits

This chapter is generalizing the previous results of two qubits by regarding a quantum
system with an arbitrary but �xed number of qubits n (also known as the n-partite qubit
case). An arbitrary state vector |Ψ〉 ∈ H2n describing such a system contains n entries, either
0 or 1. Following the well-established way of using the sigma operator basis, it can be written
as:

ρ =
1

2
(1 + ciσi)⊗

1

2
(1 + cjσj)⊗ ...⊗

1

2
(1 + cnσn)

=
1

2n

(
(1⊗ 1⊗ ...⊗ 1) + ajk...n(1⊗ σj ⊗ σk ⊗ ...⊗ σn) + bik...n(σi ⊗ 1⊗ σk ⊗ ...⊗ σn) + ...

+ cij...n(σi ⊗ σj ⊗ ...⊗ σn)

)
(163)

Again all parameters ajk...n, bik...n, ..., except for cij,...,n, are vanishing, when these states are
restricted to locally maximal states. The result is, as in the previous chapter, Tr¬iρ = 1
55 as well as Tr¬i,jρ = 1, T r¬i,j,kρ = 1, ..., T r¬i,j,..,n−1ρ = 1. Also the remaining parameters
ci,j,...,n of this matrix can be handled as in the two qubit case, such that via singular value
decomposition the three variables ci remain.

Since the same strategy as in the bipartite case was used the locally maximally mixed
n-qubit states have the same pattern as in the two qubit case:

55The trace is taken over all possible subsystems except the j-th subsystem.
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ρ =
1

2n
(1 +

∑
ciσ
⊗n
i ) (164)

Now it is possible to give a geometrical picture with the three variables ci by applying the
methods introduced in previous sections:

i) Positivity of the states

By investigating the positivity of ρ it turns out that one has to distinguish between an
odd and an even number of particles:

a) If n is odd, the positivity is given by |ci|2 ≤ 1

b) If n is even, the positivity is given by

(1− ~c.~ni) ≥ 0, where the vectors ~ni are

 −1

+1

+1


 +1

−1

+1


 +1

+1

−1


 −1

−1

−1

 (165)

This means from a geometric point of view, that an odd amount of qubits lies within the
Bloch Sphere, whereas for an even number of particles the same geometry as in the two qubit
case is received, namely the tetrahedron, given by the four planes of the vectors ~ni.

ii) pt-criterion
In order to �nd the regions of separability the states are scrutinized with the pt-criterion. It
interchanges the basis vectors of the ρ in each subsystem. Reordering the subsystems, that
consist of the identity matrix and the Pauli matrices, according to the pt criterion is equal
to switching the o�-diagonal elements of this four matrices. The result of this is therefore a
change of sign of the σy matrix. Hence also the separability depends on whether the number
of particles is even or odd.

a) For n being an odd number the pt-criterion leads to sign change of the whole state:
ρpt = −ρ.
The result however coincides with the positivity criterion |ci|2 ≤ 1, which is obvious since the
sign does not a�ect the absolute value of ~c. So according to the pt-criterion all states inside
the positivity sphere are entangled.

b) For n being an even number the sign change has no e�ects on the state, i.e. ρpt = ρ
Also for even number of particles the region of entangled states is given by the bounds of the
positivity, (1− ~c.~ni) ≥ 0.
Contrary to the positivity this equation allows an additional tetrahedron, mirrored to the
other one, such that the intersection forms an octahedron in which all ppt states are located

However it must be considered that the pt-criterion for this high dimensional problem is
only a necessary and no su�cient criterion for entanglement. So the ppt states inside the
octahedron might be entangled as well.
In order to �nd whether the state is entangled and between which subsystems entanglement
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can be found, a multipartite entanglement measure (chapter 7.3) is used. Since the geometry
for an odd amount of particles is rather trivial, it will be neglected in the following.

iii) multipartite entanglement measure
The measure allows to determine, which and how many parties are entangled with each

other. So the total amount of entanglement is composed by

E(ρ) = E2(ρ) + E3(ρ) + ...+ En(ρ) (166)

where the Ei(ρ) are called the i-partite Entanglement, expressing that i subsystems are
entangled. This obviously leads to the substructure of

E2(ρ) = E1,2(ρ) + E1,3(ρ) + ...+ En−1,n(ρ),

E3(ρ) = E1,2,3(ρ) + E1,2,4(ρ) + ...+ En−2,n−1,n(ρ),

... = ...

En(ρ) = E1,2,...,n(ρ) (167)

For the states under investigation the only non vanishing entanglement is the n-partite
entanglement En, which is a expected result, since by construction all local parameters were
set to zero. The values of the bounds (compare equation (134)), are exactly the same as in
the pt-criterion:

En = E1,2,...,n = Xmax
[
0,

1

2
max

[
−1 + ~c · ~n1,−1 + ~c · ~n2,−1 + ~c · ~n3,−1 + ~c · ~n4

] ]2

(168)

The letter X distinguishes between the two qubit (here X = 2) and and the the n > 2 qubit
case (here X = 1). The explanation of this di�erence lies in the generalization of maximally
entangled states to higher dimension. For the purest states (|ci|2 = 1), that are located at the
edges of the tetrahedron, the entanglement is maximal. For the bipartite case these states
are the Bell states. When reconsidering how this measure was constructed, the maximal
entanglement value of an n-partite system is n. This is given when all local obtainable
information S is zero as well as the lack of classical knowledge R of the state (compare Bohr
complementary relation (116)), which is the case for the two qubit Bell states. The n qubit
states are also constructed in such a way that no information is available by regarding one
subsystem (setting the traces over all subsystems except one to zero). This means S = 0 is
ful�lled, but when going further and restricting also the information that could be received
by two or more subsystems together (setting the traces over all subsystems except two, three,
...,n-1 to zero), the lack of classical knowledge R does not disappear. Therefore these states
can not be called maximally entangled for n > 2, as they obey

n = En +R = 1 +R, (169)

where R is a nonzero value, given for the edge states of the simplex by R = n− En.
Coming back to the result (169) one sees that the lower bounds of this measure give exactly
the same octahedron, that is already known as the inner shape of the two tetrahedrons in the
bipartite qubit case. According to this measure all state within this octahedron are separable
with respect n-2 cuts, i.e. the amount of entanglement does not vanish when all n particles
are investigated. How the measure for this states is constructed in detail can be seen in the
Appendix.
A more exciting question to answer is whether the n partite entanglement can be distilled to
a pure state, for n = 2, or to at least a more purer or the purest state, for n > 2. Therefore

64



III Geometry of Qudits

a distillation protocol might be useful.

iv) Distillation

The distillation protocol is a generalization of the 2 way protocol described in chapter
6.1. Obviously it is altered to an n way protocol such that every party will receive a copy of
the original state on which the common operations are applied. As previously described the
protocol works in three steps

I Copy the state and give each subsystem one copy:
Here the state is copied once to illustrate one cycle of the protocol.

ρ −→ ρ⊗2 =
1

2n
(1⊗n +

∑
ciσ
⊗n
i )⊗2 (170)

=
1

22n

(
(1⊗ 1)⊗n + ci(1⊗ σi)⊗n + cj(σj ⊗ 1)⊗n + cij(σi ⊗ σj)⊗n

)

II Every subsystem applies an LOCC operation:
In order to distill a totally entangled singlet out of this state the UXOR operation is
used (see chapter 6.1). Here the |Φ+〉 state for two particles and the generalization of
this state for higher dimensions are the aspired totally entangled singlets. Therefore
the operator, that is applied by each party on its two subsystems (the original and the
copy), can be explicitly written as

UXOR =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 . (171)

The copied system is then projected in the same direction in such a way that each party
applies the projector P = 1

2
(1 + σz) on each of their copy-subsystem. Summarizing all

operations the new state ρ̃ is obtained by

ρ̃ = (1⊗ P )UXORρ
⊗2(1⊗ P )† (172)

III Investigation of the distilled state
After these operators were applied the new, distilled state ρ̃ has changed its vector ~c:

~c =


cx

cy

cz

 −→ ~̃c =


c2x+c2y
1+c2x
2cxcy
1+c2x

cz
1+c2x

 (173)

This vector and its components, respectively, are responsible for the position in the
Euclidean space. Therefore the distillation can be seen as a geometrical shift of the
state (see Figure 9).

By running through this distillation circle several times the state is shifted more and more
to one of the totally entangled edge states (in this case the |Φ+〉 state and its generalizations,
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respectively). So obviously the amount of entanglement of the states inside the tetrahedron
can be increased by this protocol up to a certain level. In order to determine this level exactly
the generalized edge state singlets have to be inspected more precisely. Either the edge states
are maximally entangled states, just like the Bell states for n=2, or, although they posses the
highest level of entanglement in this simplex, they do not posses the maximal entanglement
compared to all states in the H2n Hilbert space. If the latter would be true the set of states
in the tetrahedron would be bound entangled, otherwise distillable states.

For easier calculations of this problem, the four particle case (n = 4) is used as an example.
The vertex or edge states of this simplex are characterized by |~c|2 = 3. It can be shown that
one of the four vertex states 56 is given by

ρvertex1 =
1

16
(1⊗4 +

∑
ciσ
⊗4
i )

=
1

16

{
(|0000〉+ |1111〉)(〈0000|+ 〈1111|) + (|0011〉+ |1100〉)(〈0011|+ 〈1100|)

+ (|0101〉+ |1010〉)(〈0101|+ 〈1010|) + (|1001〉+ |0110〉)(〈1001|+ 〈0110|)
}

(174)

As one can see the state can be composed by four states, whereas the �rst is the GHZ state
1√
2
|0000〉 + |1111〉 and the three others can be received by applying di�erent state �ips to

this GHZ state 57. This structure happens to be the case for all four vertex states.

Distillation Distillation

Figure 9: Distillation of GHZ states

All partial states are totally entangled pure singlets, as they are unitary equivalent to the
GHZ state, but the vertex state itself comprises a mixture of these state and is not pure
anymore. The question whether the edge states are maximally entangled and what kind
of entanglement they posses can therefore be answered: As mixtures of GHZ and unitary
equivalent states they are no longer pure states. That means, as it is also detected by the
measure, they carry n partite entanglement and as mixtures they can not be maximally en-
tangled states. Nevertheless the vertex states posses the highest amount of entanglement
compared to all states inside the simplex. And as the protocol can only distill entanglement
up to the vertex states, which are not maximally entangled, all states inside the simplex are

56c1 = c2 = c3 = −1
571⊗ 1⊗ σx ⊗ σx, 1⊗ σx ⊗ σx ⊗ 1, ...
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bound entangled.
For more detailed investigations, e.g. the exact proof of the separability of the states or why
the bounds of the measure are exact, it is referred to the original paper in appendix B.
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CHAPTER 11

A Simplex of Wk states

After a simplex comprising states, that consisted of states of the GHZ class and therefore
poseses only n partite entanglement, it would be interesting to see whether it is also possible
to visualize the other generalization of the maximally entangled Bell states, namely the Wk

states. As the Wk state simplex would not only consist of W states and Dicke states, it is
hard to say what kind of entanglement will be found and between which subsystems it will be
located, which makes it worth considering. Obviously the answers to these questions depend,
just like in the previous chapter, on how the simplex is constructed and which symmetries
the set of states posses, i.e. which constraints are chosen to restrict the parameters in order
to gain a geometrical structure.

The construction of an n partite qubit simplex consisting of Wk states is not as straight
forward as in the previous chapter, in which the similar pattern to the bipartite qubit case
could be used. Due to receiving a more di�erent type of entanglement, compared to the
GHZ simplex, the vertex states of the Wk simplex are modeled after the de�nition of the
Wk states (equation (30)). This will lead to the fact, that for every amount of particles n,
a di�erent simplex is received. Therefore all dimensions have to be treated and analyzed
di�erently, however, because of the same construction in general, commonalities will be elab-
orated. In the following two possible constructions of Wk-simplices are introduced, as after
that, examples like the special cases of three and four particles systems are investigated and
compared. However both constructions are founded on the same stand, that is introduced in
the following:

N particle qubit states are elements of a H2n Hilbert space and can be represented by the
convex sum of elements of this set of states:

Z := {|ij...n〉} with i, j, ..., n ∈ {0, 1} (175)

Because of the di�erent permutation of 1 and 0, all elements zi of Z are mutually orthogonal.
By considering in how many ways k 1�s (0 ≤ k ≤ n) can be permuted on n positions, the
number of elements zi yields(

n

0

)
+

(
n

1

)
+ ...+

(
n

n

)
, 2n possibilities, (176)

which makes Z to be a basis.
The construction of the simplex is completed, when n orthogonal vertex states, Vi, are found
that are the basis states of the desired Wk simplex. However it has to be noted that the
construction of these vertex states is not unique as these states consist of di�erent superposi-
tions comprising n of the possible 2n states of the set Z. There are two possible constructions
leading to the known two qubit case when they are restricted to two particles.

11.1 The First Construction

This construction follows an intuitive way. W.l.o.g. the �rst vertex state, |V0〉, is chosen
as the W-state itself (31). Furthermore another vertex state, |V1〉, can be built by taking n
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additional states out of the set Z other than the ones that have been taken for the W state,

i.e. states of the set Z /
{∣∣ 10...0︸ ︷︷ ︸

n

〉
, |010...0〉 , ..., |000...1〉

}
. This leads to many possible

combination and many vertex states, respectively, which are all unitary equivalent. In order
to avoid confusion, the additional vertex states, |Vi〉 with i > 0, are received by a certain
construction:
Considering an n particle system all other possible vertex states are received by starting with
the |V0〉, the W-state, on which the following operators are applied:

|V1〉 := σx ⊗ 1⊗n−1 |V0〉
|V2〉 := σ⊗nx |V1〉
|V3〉 := σx ⊗ σx ⊗ 1⊗n−2 |V2〉
|V4〉 := σ⊗nx |V3〉

...

|V2i−1〉 := σi+1 ⊗ 1⊗n−(i+1) |V2i−2〉
|V2i〉 := σ⊗nx |V2i−1〉 (177)

In this construction i < 2n

n
, with i ∈ N. Therewith vertex states can be created until less

than 2n − n states zi ∈ Z remain unused, as the remaining ones do not su�ce to build
another vertex state |Vi〉, i.e. a certain number of elements of Z (less then n), are not used.
In this �rst construction it turns out that the dimension of the simplices are not equal to
the dimension of the Hilbert spaces of the vertex states itself. This dimensional di�erence of
constructed simplex and the Hilbert space di�ers due to the number of particles and hence
due to the number of constructible vertex states. The two obvious possibilities occur:

ä The number of particles n is a multiple of 2n. Here 2n

n
vertex states can be constructed

ä The number of particles n is a not multiple of 2n. That means that
⌊

2n

n

⌋
58 vertex states

can be obtained and some of the {|ij...m〉} states remain unused. Therefore already at
this point it can be seen, that the resulting simplex will only be a subspace of the entire
space, which is given by the basis Z.

Considering the bipartite case, this construction would only give the two Bell states |V0〉 :=
|Ψ+〉 and |V1〉 := |Φ+〉, respectively. In order to gain all Bell states, two new state with a
di�erent sign on the second term are required. Hence for an arbitrary amount of particles
this sign change has to be generalized by adding proper 59 phases to the single basis states
{|ij...m〉}, which build the vertex states. Proper means that the phases have to be chosen in
such a way that that each vertex state is orthogonal to all other, 〈Vi|Vj〉 = 0. Theses phases
are obtained by dividing the complex unity circle into n equivalent parts. W.l.o.g the �rst
phase is chosen to be 1, so the phases in general are

αk := ekϕn with k ∈ {0, 1, ..., n− 1} and ϕn :=
2π

n
. (178)

It is easy to see that for n = 2 the two eligible phases lead exactly to the ± sign changes on
the second terms when the phases are multiplied with the states |V0〉 and |V1〉 is comprised,
i.e. α0 = e0ϕ2 = 1 attached to |00〉 and α1 = e1ϕ2 = −1 to |01〉 and therefore the two missing

58The bxc symbol denotes the next integer of x rounded down (compare Gaussian bracket [x] = max({k ∈ Z|k ≤ x)}).
59The phases are chosen in such a way that the states are all pairwise orthogonal.
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Bell states, |V0,1〉 := |Ψ−〉 and |V1,1〉 := |Φ−〉 are obtained.
However, the general n qubit situation is di�erent. For creating new vertex states on a multi
particle system similar to the bipartite case the existing vertex states |Vj〉, 1 ≤ j ≤

⌊
2n

n

⌋
, can

be doubled by adding the states |Vj,1〉:

|Vj,1〉 =
n∑
j̃=0

σ⊗j̃x ⊗ 1⊗n−j̃α01

∣∣ 10...0︸ ︷︷ ︸
n

〉
+ α11 |010...0〉+ ...+ α(n−1)1 |000...1〉 , (179)

with j = j̃ for j ≤
⌊

2n

n

⌋
. The di�erence between the bipartite and the multiqubit case lies in

the alignment of the phases αi. Whereas in the bipartite case only one possible con�guration,
regardless overall phases, exists more permutations with respect to the mutual orthogonality
are disposal in the general case. In order to mark the di�erent phases αik according to their
arrangement of the current vertex state the index i speci�es the a�liation to the pure states
of the set Z as well as the lower index k refers to the k-th vertex state. In the notation |Vj,1〉
of the previous equation the index `1' denotes the �rst state, that contains the �rst, canonical
phase arrangement. The number of vertex states and therefore the size of the simplex depends
on how many of this phase combinations are possible (again neglecting rotations by overall
phases). In order to �nd those and hence the existence of a further vertex states |Vj,2〉 the
mutual orthogonality can be used. Since the orthogonality of the states |Vk,1〉 and |Vk〉,
for k 6= j can be seen immediately by the orthogonality of the elements of Z, the crucial
constraint is given by

0 = 〈Vj,1|Vj,2〉 =
n−1∑

Π(j2)=0

n−1∑
i=0

α∗i1αj2 =
n−1∑

Π(j2)=0

n−1∑
i=1

exp [(j2 − i1)ϕn] with i1 6= j2. (180)

∑n−1
Π(j2)=0 denotes that the sum runs through all possible permutations of j2�s from 0 to

n− 1. The j2�s depend on the previously chosen phase arrangement of |Vj,1〉, which can be
represented here as the sum from 0 to n−1. If a new phase arrangement, �j2�, can be found,
a new vertex state,

|Vj,2〉 =
n∑
j̃=0

σ⊗j̃x ⊗ 1⊗n−j̃α02

∣∣ 10...0︸ ︷︷ ︸
n

〉
+ α12 |010...0〉+ ...+ α(n−1)2 |000...1〉 (181)

with j = j̃ for j ≤
⌊

2n

n

⌋
, is gained. It has to be noted that the phase α02 is not equal to the

value of α0, as its index `i2' is only related to the value `i' (equation (180)) for the �rst vertex
state |Vj,1〉. The orthogonality constraint, that is posed in equation (179) in order to receive
a new vertex state, is only true for the special case of receiving the |Vj,2〉 state. When this
construction is iterated to get further vertex states (|Vj,3〉 , |Vj,4〉 , ..., |Vj,k〉), the orthogonality
constraint increases due to the required orthogonality to all vertex states:

〈Vj,1|Vj,k〉 = 0

〈Vj,2|Vj,k〉 = 0

...

〈Vj,k−1|Vj,k〉 = 0 (182)
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One sees that the arrangements of the phases αik for the |Vjk〉-th vertex state depends on
k − 1 constraints:

|Vj,k〉 =
n∑
j̃=0

σ⊗j̃x ⊗ 1⊗n−j̃α0k(|Vj1〉 , |Vj2〉 , ... |Vjk−1〉)
∣∣ 10...0︸ ︷︷ ︸

n

〉
+ α1k(|Vj1〉 , |Vj2〉 , ... |Vjk−1〉) |010...0〉+ ...

+ α(n−1)k(|Vj1〉 , |Vj2〉 , ... |Vjk−1〉) |000...1〉 , with j = j̃ for j ≤
⌊

2n

n

⌋
, (183)

with α1k(|Vj1〉 , |Vj2〉 , ... |Vjk−1〉) being the phase arrangement depending on all phase combi-
nations of the previously constructed vertex states.
Before investigating special cases of bi-, tri- and four partite case a short repetition of the
construction of this multiqubit Wk-state simplex may be useful as well as some notable re-
marks shall be mentioned.

The construction of the Wk-simplex vertex states:

ä The canonical W-state is taken as the �rst vertex state |V0〉 comprising n elements of
the set of basis states Z, with n being the number of qubits.

ä The second orthogonal vertex state |V1〉 is created by �ipping the �rst subsystems of
|V0〉.

ä The third vertex state |V2〉 is constructed by �ipping all subsystems of the second state
|V1〉.

ä This process is repeated until all subsystems have been �ipped once.

ä Further vertex states are obtained by inverting the existing states. Inverting means here
exchanging the �0��s by �1��s and vice versa.

ä This gives
⌊

2n

n

⌋
vertex states, that can be doubled, tripled, etc. by attaching certain

phases to the elements of Z, which build the existing vertex states.

ä The total number of vertex states is gained by using all possible phase combinations
αik , with respect to the orthogonality constraint.

ä The number of vertex states created by this construction depends on the number of
particles or the dimension of the Hilbert space n and the maximal possible phase com-
binations k. So the total amount of vertex states is Nvertex(n, k) =

⌊
2n

n

⌋
(k + 1).

Remarks:

ä This construction does include the bipartite case itself, which gives the only Wk-simplex
whose dimension coincides with the dimension of the whole Hilbert space (see next
chapter).

ä The �rst vertex states |Vk〉, which carry no phases, are obtained by the �ipping operator
σx. Yet other ways of joining the elements of the basis set Z are possible, which leads to
di�erent vertex states and a di�erent simplices. However all these simplices are unitary
equivalent as the only di�er by a base transformation in the Hilbert space spanned by
Z.
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ä The constructed simplex di�ers from the dimension of the multipartite qubit system.
How much di�erence occurs depends on the one hand on whether the number of particles
is a multiple of 2n on the other hand how the unity circle is divided by the phases α,
whereas these two points are also related to each other. For up to 8 particles the
dimensions of the simplices are presented in this table.

Particles n States without phases
⌊
2n

n

⌋
Phase arrangements k Dim. simplex / Dim. Hilbert space

2 2 1 4/4

3 2 2 6/8

4 4 2 12/16

5 6 4 30/32

6 10 4 50/64

7 18 6 126/128

8 32 6 224/256

When regarding the number of di�erent phase combinations a certain pattern can be read out.
As previously stated, the combination are related to the orthogonality constraint, however
there is a geometrical aspect, that is revealed by investigating how the complex unity circle
is divided by the phases:

bipartite tripartite 4-partite

5-partite 6-partite 7-partite

Figure 10: Division of the com-
plex unit circle, n ≤ 7

For a n-partite qubit system the phases α are represented
by n complex numbers lying right on the unit circle in the
complex plane (Figure 10). When comparing the division of
the unit circle to the number of phase arrangements k a cer-
tain pattern arises. The number of phases, that comprise a
not vanishing complex part, equals exactly the number of ar-
rangements (except for the bipartite case). The reason for this
lies in the symmetry of the phases concerning the real and the
complex part, respectively. For an odd dimensional system the
symmetry is reduced to the real axis, whereas in the even case
it is expanded to the complex axis as well. A higher symmetry,
however, reduces the possible phase arrangements. This can
be seen by the fact that two phases di�er only by a complex
conjugation, Im(α) = Im(α)∗. This symmetry is also true for

the real part of a phase when an even qubit system is investigated, i.e. Re(α) = −Re(α)
for n being even. Therefore an odd system leads to more phase arrangements than an even
system and also to a higher dimensional simplex, compared to the the number of particles. In
the following the simplices are constructed for a given number of particles and investigated
by using the previously introduced methods in order to see what kind of geometry is received
concerning their entanglement and separability, respectively.

11.2 The bipartite Wk simplex

In this case the exact geometry is known and the previous construction should yield to the

very same results. The basis Z consists of
{
|00〉 ; |10〉 ; |01〉 ; |11〉

}
. The �rst vertex state,
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the W state, that coincides here with the |Ψ+〉 state, is constructed by the second and third
element of Z, whereas the second vertex state, |Φ+〉, by the remaining two:

|V1〉 =
1√
2

(|10〉+ |01〉) |V2〉 =
1√
2

(|00〉+ |11〉) (184)

The phases are e
0πi
2 = +1, which is attached on |10〉, and e 1πi

2 = −1, attached to |11〉:

|V3〉 =
1√
2

(|10〉 − |01〉) |V4〉 =
1√
2

(|00〉 − |11〉) (185)

As no further phase combinations are possible, the construction leads obviously to the same
geometry as it is shown in chapter 9 .

11.3 The tripartite Wk simplex

In this eight dimensional Hilbert space one follows again the previous construction by intro-
ducing the set of states Z, the canonical basis:

Z =
{
|000〉 ; |100〉 ; |010〉 ; |001〉 ; |110〉 ; |101〉 ; |011〉 ; |111〉

}
With

⌊
8
3

⌋
one sees immediately, that two orthogonal vertex states are available and with

them a 3 · 2 dimensional simplex is obtained due to two di�erent phase arrangements. The
W state and the resulting �ipped state 60 are the �rst two of the six vertex states :

|V0〉 =
1√
3

(|100〉+ |010〉+ |001〉) V1 =
1√
3

(|000〉+ |110〉+ |101〉) (186)

The phases are α0 = 1, α1 = e
2πi
3 and α2 = e

4πi
3 . In order to receive further vertex states the

phases are attached to the elements of the set Z of the vertex states:

|V01〉 =
1√
3

(|100〉+ e
2πi
3 |010〉+ e

4πi
3 |001〉) V11 =

1√
3

(|000〉+ e
2πi
3 |110〉+ e

4πi
3 |101〉)

(187)
For the last two states, |V02〉 and |V12〉, the constraint 〈V01|V02〉 = 0 or 〈V11|V12〉 = 0, respec-
tively, yield the second possible phase arrangement and hence

|V02〉 =
1√
3

(|100〉+ e
4πi
3 |010〉+ e

2πi
3 |001〉) |V12〉 =

1√
3

(|000〉+ e
4πi
3 |110〉+ e

2πi
3 |101〉).

(188)
This 6 orthogonal states give the edges of the simplex. In this construction the last two
states of the basis set of the H8 Hilbert space are not part of the vertex states. As stated in
the previous chapter the vertex states, and therefore the simplex, could have been composed
di�erently, e.g. by using 1 ⊗ σx ⊗ 1, 1 ⊗ 1 ⊗ σx, σx ⊗ σx ⊗ 1, etc. . This would lead to the
exclusion of two other basis vectors, but as the vertex states are all unitary equivalent the
simplex would have the same geometry.

60Here the �ip operator σx ⊗ 1⊗ 1 is applied.
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Figure 11: Phase space of the
three qubit case

Also a phase space structure can be drawn (see Figure 11), in
which the dots represent the six vertex states, that di�er ei-
ther by �ipping (horizontal axis) or by phase shifting (vertical
axis) or by both. In order to investigate the simplex, di�erent
states are determined, which consist of weighted superpositions
of vertex states. In this work two di�erent weights are used,
because of the possibility to �nd symmetries and geometrical
properties in a two dimensional picture, which is mathemati-
cally a projection of the whole simplex onto a two dimensional
plane.
This means in general that a an arbitrary state of a two di-
mensional projection of this simplex is given by |S〉 〈S| =
a
∑

kWk + b
∑

lWl + (1−a−b
6

)
∑

m6=k,6=lWm, with k, l, m
being elements of an index set and Wi := |Vi〉 〈Vi|, with
i ∈ {0, 01, 02, 1, 11, 12}.
It turns out that all two parameter states of the simplex can be classi�ed into �ve equivalence
classes, whereas within every class the same results are found concerning positivity, partial
transposition, realignment and application of the entanglement measure.

The �ve equivalence classes are given by this combination of states:

1st group 2nd group 3rd group 4th group 5th group

Figure 12: Equivalence classes of the 3 dim. Wk-simplex

Figure 12 only shows one representative of each class, as for example the �rst group
of states ρ1 contains two vertex states from one row, i.e. these states are the weighted
superposition of two vertex states, that di�er by a �ip operation, in this example ρ = a W0 +
b W1 + (1−a−b

6
)
∑

m6=06=1Wm.
It turns out that for all classes of states only entangled states can be found within every
two dimensional projection, which allows to deduce that this whole six dimensional simplex
consists of entangled states. This is due to the missing two dimensions in comparison to the
whole Hilbert space, as one will see in later. This means further that with the given vertex
states no separable states can be constructed, that can be represented in a geometrical picture.
However by allowing a mixture of this classes with the maximally mixed state 1, the properties
of the classes of states hence change, as by that the two missing dimensions are added.
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Therefore the class of states under investigation are then given by

|S〉 〈S| = a
∑
k

Wk + b
∑
l

Wl + (
1− a− b

6
) 1, (189)

with Wk/l being the previously denoted a vertex state. Via this `cheating' the �ve class of
states remain and a more interesting simplex is gained, as the di�erent classes are regarded.

First class of states

The �rst class of states can be stated in the form

ρ1(a, b) = aWleft + bWright +
1− (a+ b)

8
1, (190)

with
∣∣Vleft/right〉 being a state of the left/right column. Applying now di�erent criteria, as

they were introduced in the previous sections the following results are obtained.

Positivity

The positivity of the �rst class states, ρ1 > 0, depends on the weights (a, b) and leads to the
triangle embedding all states, as shown in Figure 13

PT-criterion

The partial transpose operation leads to positive eigenvalues for certain weights, i.e. to sep-
arable states bounded in region I. As it is shown in chapter 4, the partial transposition is
constructed for bipartite systems. However it also provides results for more qubit cases, as
every state can be seen as a combination of a bipartite state when a certain cut is introduced,
dividing the state into two parts (see chapter 2.2). That means that for these tripartite states
the combinations 1|23, 12|3,13|2 have to be considered, with 1,2 and 3 denoting the subsys-
tem of one qubit. The constructed bipartite state is hence an element of the Hilbert space,
H2 ⊗ H4. According to this separation three di�erent partial transposed matrices are re-
ceived. Due to the high symmetry of this class of states all transposed matrices lead to the
same positivity and therefore to the same region. It is obvious that via this approach only
bipartite entanglement can be detected.

Entanglement measure

The entanglement measure is detecting no entanglement in region II. That means on the
other hand that entangled states are found outside this region. It also has to noted that
entanglement between each combination of the two subsystems as well as three particle en-
tanglement is found in the same proportion. It can also be recognized that the detection of
the partial transposition is more exact for this case compared to the entanglement measure,
which obviously depends from the numerical bounds. It will turn out that this di�erence in
detection also depends on the states itself. It also has to be noted that the entanglement
measure is calculated numerically.

Realignment criteria

This criterion is just like the partial transposition, constructed for bipartite systems. When
following the same argument as used in the partial transposition case. also three di�erent
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cases have to be considered, that coincide again due to the high symmetry. In Figure 13 it
is given by the third region (III). Also for the realignment criteria a numerical method is
used. However the accuracy of discrimination between separable and entangled states is the
lowest, compared to the �rst two.

It also has to be noted that this class is completely symmetric according to the parameters
a and b. The whole geometry of this �rst class of states is shown in following �gure:

1st group
I II

a

b

III

Geometry of the 1st class

Figure 13: Geometry of the �rst equivalence class of states

Second class of states

The states of the second class are of the form

ρ2(a, b) = a Wleft/right + b Wleft/right +
1− (a+ b)

8
1, (191)

whereas two, but not the same two states of one column are taken for the superposition.
Regarding again the same properties as in the previous class, it can be seen (Figure 14),
that, beside the same positivity, a similar region of positive partial transposition (I) as well
as a similar amount of separability is found by the entanglement measure (II). Again the
realignment criterion (III) is detecting the fewest states compared to the other two. Another
notable phenomena that occurs in this class of states is given by the partial transposition.
The partial transposition is unlike in the previous case not completely symmetrical for the
transposition of the subsystem. The red region (I-A) indicated a small area that denotes
negative eigenvalues for states that are transposed with respect to the 1|23 cut, i.e transpo-
sition of the �rst subsystem.

76



III Geometry of Qudits

2nd group I
I-A

II

III

a

b

Geometry of the 2nd class

Figure 14: Geometry of the second equivalence class of states

Third class of states

The third class comprises states that consist of the superposition of a vertex state of the
left and the right column with the remaining four vertex states and the maximally mixed
state, i.e.

ρ3(a, b) =
a

2
(Wleft/right +Wright/right) +

b

4
(Wleft +Wleft +Wright +Wright) +

1− (a+ b)

8
1.

(192)

These states already di�er from the previous one by their positivity, as the left edge of the
triangle is enlarged to the (−2, 1) point. Also a larger area of separable states is obtained by
all criteria. A remarkable di�erence compared to the latter cases is that the bounds of the
entanglement measure (II) are close or even equal to the partial transposition criteria (I),
which di�ers again for the transposition of the �rst subsystem, marked by the (I-A) region.
On the other hand it can be seen that the area resulting from the realignment criteria is
hardly detecting any entanglement, as it can all be seen in Figure 15
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3rd group

I
II

III
III-A

a

b

Geometry of the 3rd class

Figure 15: Geometry of the third equivalence class of states

Fourth class of states

Similar to the third class the fourth class of states is given by the superposition of two
vertex states of one column with the remaining �ve vertex states (three from one column and
one from the other) and the maximally mixed state, i.e.

ρ4(a, b) =
a

2
(Wleft/right +Wleft/right) +

b

4
(Wleft +Wright/left +Wright/left +Wright) (193)

+
1− (a+ b)

8
1.

As the states are constructed similar to the latter equivalence class the resulting geometry is
also very similar. The lower bounds of the entanglement measure (II) are in this case even
closer to the positive partial transposition (I), while again the singular values of the realigned
matrix that are smaller than 1 give the third (III) bound.
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4th group

I

I-A

II
III

a

b

Geometry of the 4th class

Figure 16: Geometry of the fourth equivalence class of states

Fifth class of states

With the �fth equivalence class the remaining possible combinations of states with two
parameters is given. The states are comprising the superposition of two vertex states of one
and one vertex state of the other column, combined with the remaining three states and the
Identity. This means written in the density formalism,

ρ4(a, b) =
a

3
(Wleft/right +Wleft/right +Wright/left) +

b

3
(Wright/left +Wright/left +Wleft/right) +

1− (a+ b)

8
1.

(194)

The geometrical picture of this class is shown in the following picture.
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5th group

III

III

a

b

Geometry of the 5th class

Figure 17: Geometry of the �fth equivalence class of states

As one can see the geometry of this class is similar to the latter two classes, again with
the blue area (I) being the positive partial transpose, the orange region denoting the lower
bounds of the entanglement measure (II) and the green border giving the numerical results
of the realignment criteria (III)
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11.4 The Second Construction

Another alternative construction of a Wk state simplices is given by using the W basis that
was introduced by Briegl et al. for the case of multipartite distillation. As already stated in
chapter 6.2 this construction uses the stabilizer formalism which allows to write the vertex
sates of a n particle Wk state simplex as the W basis states. Therefor the vertex states are
constructed by applying the operator UW to all n elements zi of the set of the canonical basis
Z, i.e. the i-th vertex state is given by

|Wzi〉 := UW |zi〉 , (195)

with UW = 1√
n

∑n
l=1 σ

1
z⊗σ2

z ...⊗σl−1
z ⊗σlx⊗1l+1⊗1l+2...⊗1n containing the stabilizer operators.

The table, written on page 43 shows the three dimensional case of this basis explicitly. From
the geometrical point of view a higher symmetry of this simplex is found, since for simplex
cuts, similar to the previous choice, only two possibilities occur. Contrary to the previous
construction no phase space digram can be established as the distribution into state �ips by
the σx operator as well as the phase shifts are of a more complex form. However another
symmetry can be posed, when investigating the convex weighted sum of two vertex states
with the maximally mixed state, the identity. Using the notation of section 6.2 every vector
state can be uniquely addressed by a binary number. E.g. in the three qubit case the �rst
vector, the W-state is given by `000', the second by `001' and so on. When using again the
inverse operator I that switches the `0' to `1' and the `1' to `0', respectively, the geometry of a
state ρ = a |Wzi〉+b

∣∣Wzj

〉
+1n is equal to its inverted ρI = a I(|Wzi〉)+b I(

∣∣Wzj

〉
)+1n with

respect to the applied criteria, i.e. the partial transposition as well as introduced multipartite
measure.
As an example for this statement states are investigated that are given by the superposition of
two di�erent W basis states and the mixture of the remaining six. As in the previous simplex
di�erent classes of states can be determined. The following states are representatives of the
three di�erent classes of states:

ρ1 := a |000〉 〈000|+ b |001〉 〈001|+ 1− a− b
6

|remaining states〉

ρ2 := a |000〉 〈000|+ b |011〉 〈011|+ 1− a− b
6

|remaining states〉

ρ3 := a |000〉 〈000|+ b |111〉 〈111|+ 1− a− b
6

|remaining states〉

As it turns out, states of this form can be classi�ed by their amount of excited substates,
i.e. ρ1 represents states with one excited substate, as it contains one 1, ρ2 the class of states
with two excited subsystems and so on. States with four to six excited subsystems are un-
derlaying the same geometry as they can be lead back to the classes with one to three excited
subsystems by applying the inverse operator I. Therefore it is su�cient to investigate one of
the representatives of the three classes in order to determine its geometry according to the
above stated criteria.

First class of states

For ρ1 the geometry is given in Figure 18. As previously, marked spaces determine sep-
arable states, each received by di�erent methods. The �rst region (I) is determined by the
partial transposition, whereas it has to be noted that, due to the symmetry of the states,
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the partial transposition of one subsystem leads to a di�erent bound, indicated by the red
area (I-A). Which of the transposed subsystems leads to this symmetry breaking depends on
the subsystem that is in the excited state 1. The second area (II) shows the lower bounds of
the multipartite entanglement measure, which also determines, that the states outside this
area are three partite as well as two partite entangled. Furthermore the third region (III) is
received by the realignment criteria, which has to be distinguished whether the realignment
of this three qubit state is done via two dimensional (III-A) or four dimensional submatrices
(III). For this as well as for the following two classes of states the geometry of the states is
symmetrical concerning the exchange of the parameters a and b.

I

I-AII
III III-A

Geometry of the 1st class

Figure 18: Geometry of the �rst class of states

Second class of states
Also for states with two excited subsystems, as for example ρ2 the geometry is very similar to
the latter case, as the regions occur in almost the same way, again with the broken symmetries
for the partial transposition as well as for the realigned matrices. Figure 19 shows the di�erent
regions.
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I

I-A
II

III III-A

Geometry of the 2nd class

Figure 19: Geometry of the 2nd class of states

Third class of states
The states with three excited subsystems show the highest symmetry of the three classes.
This leads to the same partial transposed state regardless on which of the subsystem the
transposition is applied. Also the realignment of the states according to two and four di-
mensional submatrices lead to the same boundary. Figure 20 shows the geometry of the this
class.
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I

II
III

Geometry of the 1st class of states

Figure 20: Geometry of the �rst equivalence class of states

Other than the previous construction in section 4.3 no phase space structure is established,
as mentioned before. However beside these combinations of two states di�erent combinations
of W-basis state lead to a more complex geometry. As an example Figure 21 shows the
geometry of the state

ρ1 :=
a

2
(|000〉 〈000|+ |011〉 〈011|) +

b

2
(|001〉 〈001|+ |010〉 〈010|)

+
1− a− b

4
(|100〉 〈100|+ |110〉 〈110|+ |101〉 〈101|+ |111〉 〈111|). (196)
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I

II

III

Geometry of the 1st class of states

Figure 21: Geometry of the �rst equivalence class of states

For this case the partial transposition criterion is detecting entanglement also in the region
around a = b = 0, whereas the area of separable states (I) is shifted compared to the previous
states. However this di�erence is undetected by the entanglement measure (II) as well as by
the realignment criterion (III).
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CHAPTER 12

Magic Simplex

The Magic Simplex represents another generalization, namely the expansion to three and
more degrees of freedom within a bipartite quantum system, �rst shown in [74, 12]. This
means contrary to the previous chapters, the retention of two particles, each with d degrees
of freedom, and a Hd ⊗ Hd dimensional Hilbert space. Therefore the situation in terms of
maximally entangled states simpli�es, as they can be constructed uniquely. Similar to the
multiparticle cases these states denote the orthogonal vertices of the Magic Simplex.
The construction in detail starts with the state Ω0,0 :=

∑d−1
i=0 |i〉⊗|i〉, the �rst pure, maximally

entangled vertex state of a Hd2 Hilbert space. Further vertex states are obtained by applying
d2 di�erent Weyl-operators Wk,l (see equations (21), (22)) on one of the two subsystems of
the existing state Ω0,0 (here w.l.o.g on the �rst subsystem):

|Ωk,l〉 := Wk,l ⊗ 1
d−1∑
i=0

|i〉 ⊗ |i〉

|Ωk,l〉 := e
2π
d
l(i−k)

d−1∑
i=0

|i− k〉 ⊗ |i〉 (197)

With k, l ∈ k, l ∈ {0, 1, ..., d− 1} the Magic Simplex is given by the convex sum of d2

projectors Pk,l, which are the density matrices of Ωk,l�s, Pk,l = |Ωk,l〉 〈Ωk,l|. They project on
the subspaces spanned by all vertex states,

W =
{ ∑

ck,lPk,l | ck,l ≥ 0,
∑

ck,l = 1
}
. (198)

Geometrically the Magic Simplex W is, due to the constraints on the coe�cients ck,l, a
d2−1 dimensional hyperplane of a d2 dimensional Euclidean space {A =

∑
ak,lPk,l | ak,l ∈ R}.

On this Euclidean space a distance relation
√
Tr(A−B)2 with the associated norm

√
A2,

which is called the Hilbert-Schmidt Norm, as well as an inner product Tr(AB) =
∑
ak,lbk,l

can be established.
A further notable point is that the Magic Simplex contains by construction only locally
maximally mixed states. However it can be shown that W is just a subspace of the set of all
maximally mixed states, as the existence of maximally mixed states outside the simplex can
be proven [74, 12].
The most important property of W is the high symmetry of the states included in W .
For the sake of simplicity the following results are true for the 9 dimensional Hilbert space,
i.e. bipartite qutrits are investigated, but all results can be generalized to higher dimensional
degrees of freedom:
It can be shown that all unitary transformations of states inside the Magic Simplex have
its counterpart in this phase space, e.g. a vertical shear in the phase space is given by the
operator V , that cases an index shift on the �rst index of Pk,l → Pk+l,l. This fact can be
illustrated in a Phase space diagram (Figure 22) with each point referring to a Pk,l:
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Figure 22: Phase space diagram of the Magic Simplex

More general the following theorem can be stated:
Theorem:
The group of symmetry transformations in the Magic Simplex W is equivalent to the group
of a�ne index transformations in the phase space,(

k

l

)
→
(

m n

p q

)(
k

l

)
+

(
j

r

)
,

with mq− pn 6= 0 and with all indices being integers modulo 3. Note that for mq− pn = ±1
the transformations of the Hilbert space is unitary and anti-unitary, respectively.

Another theorem can be proven using the symmetry and the transformation equivalence of
this phase space representation:

Theorem:
When investigating the classes of subsets of phase space points it turns out that all subsets
containing a single point are equivalent. The same is true for a pair of points. For a triple or
a quadruple combinations of points there exist two equivalence classes each. Combinations
of 5-8 points are part of one of the complementary sets of these 6 equivalence classes as the
counterparts of the 1-4 combinations in this 9 dimensional phase space. It can be shown
further that permuting points pair- or triple wise has no e�ect, as there is total symmetry
under permutations.

With these symmetries in mind the geometry of the simplex concerning separability and
entanglement can be shown. The tools are the following:

ä Polytopes
An obviously separable state of the simplex is given by the maximally mixed state 1

9
1,

which can be written as the equally weighted superposition of all vertex states Pk,l,
1
9
1 = 1

9

∑
k,l Pk,l. Considering now the states with the larges possible distance from

this state, which are still separable. When these states are used to create hyperplanes
comprising these states a polytope is build, which gives an outer fence for all separable
states, as the used states had the maximal distance to maximally mixed states. These
states can be shown to have the form, ρline := 1

3

∑
(k,l)∈line Pk,l, whereas the indices k, l
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are restricted by a line of the phase space diagram. Because of the unitary equivalence
of point of the phase space each of this lines has three equivalence sets 61, which leads
to 12 outermost states ρline.
Then the hyperplanes are given by Bp,q =

{
(ck,l)|cp,q = 1

3

}
and Ap,q = {(ck,l)|cp,q = 0}.

Combined to the outer fence, the enclosure polytope is given as{
(ck,l)| all cp,q ∈

[
0,

1

3

]}
. (199)

Using the ρline states in a similar way, but combining the hyperplanes in a di�erent way
by using the di�erent intersections of the hyperplanes an inner fence can be posed as
well, which is called the kernel polytope{

ρ =
∑
linesα

λαρlineα|λα ≥ 0,
∑

λα = 1
}

(200)

ä Partial Transposition
Basically the task here is given by applying the partial transposition on a 9x9 matrix
and determine whether the resulting matrix is positive or negative. But as the matrices
of the Magic Simplex are build in a special way, a more elegant and easier method can
be introduced. As the basis vectors are given by |s− l, s〉 = |s− l〉 ⊗ |s〉 the resulting
density matrices can be ordered in groups of three, according to l, and inside each l
according to s. Therefore the entire Hilbert space can be split up into the direct sum of
these indices

H3
l=0 ⊕H3

l=1 ⊕H3
l=2. (201)

Also for the states these splitting is valid and an arbitrary density matrix inside the
simplex can be expressed by using the introduced Projectors Pk,l as

ρ =
∑
k,l

ck,lPk,l = (
∑
k

ck,0Pk)⊕ (
∑
k

ck,1Pk)⊕ (
∑
k

ck,2Pk), (202)

with P0 = 1
3

 1 1 1

1 1 1

1 1 1

 , P1 = 1
3

 1 ω∗ ω

ω 1 ω∗

ω∗ ω 1

 and P2 = 1
3

 1 ω ω∗

ω∗ 1 ω

ω ω∗ 1

 .

Or even more general in the present case for all states inside of the 9 dimensional simplex
Al=0 ⊕ Al=1 ⊕ Al=3 a representation with the matrix

A =
1

3

 d a∗ a

a d a∗

a∗ a d

 , dl =
∑
k

ck,l, al =
∑
k

ωkck,l (203)

is possible. As it is proved in [12] the partial transposition of states inside W reorders
the elements of the matrix A to a new matrix

B =
1

3

 d0 a2 a∗1
a2∗ d1 a∗0
a1 a0 d2

 . (204)

61The the horizontal line on the bottom is the same as the horizontal line using the three middle or top points, respectively.
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The positivity of B leads to constraints on the coe�cients ck,l and the regions of PPT,
NPT, respectively, as well as to the prospective regions of separability and entanglement.
It has to be reminded that the partial transpose criteria is no longer su�cient in this
case.

ä Entanglement Witnesses
Similar to the witnesses, introduced in chapter 8, a set of operators is de�ned, which
act as two di�erent types of witnesses. The structural witness (SW) is a convex set of
operators, that are de�ned by the action on a separable state σ:

SW :=
{
K = K† 6= 0|∀σ ∈ SEP : Tr(σK) ≥ 0

}
(205)

A subset of this de�nition is useful as it responds with the surface of this set and therefore
with the surface of the set of separable states. This subset is called the tangential witness
(TW) and can be posed by the action of an operator on a separable state σ as well as
on state ρ that is on the surface of SEP,

TWρ :=
{
K = K† 6= 0|∀σ ∈ SEP : Tr(σK) ≥ 0, T r(ρK) = 0

}
(206)

The symmetries of the Magic Simplex and the connection to the phase space structure
is formulated in the following Theorem:
Theorem:
For a density matrix ρ that is invariant under elements Vg of a symmetry group G 62,
VgρV

−1
g = ρ, these propositions hold:

I If ρ is entangled ⇒ ∃ EWρ, that is G-invariant

II If ρ is on the surface of SEP ⇒ ∃ TWρ, that is G-invariant

III The subset of SEP comprising all G-invariant density matrices is completely char-
acterized by the set of G-invariant TWρ

IV The previous results hold also for all ρ being elements of the PPT-set

Regarding these results with the group of unitary operators, namely Uk,l = 2Pk,l − 1
and products of it, the corresponding witness K =

∑
k,l κk,lPk,l is exactly the operator

that has to be chosen in order to determine the SEP and the set of PPT states, as all
Pk,l and its linear span, the simplex W , are point wise invariant under Uk,l. Based on
this operators a further relation is found:
Theorem:
The operator

K =
∑
k,l

κk,lPk,l (207)

is a structural witness for a state ρ ∈ W i� the operator

MΦ =
∑
k,l

κk,lWk,l |Φ〉 〈Φ|W−1
k,l ∀Φ ∈ H3 (208)

is not negative. I� ∃Φ such that detMΦ = 0 K is even a TW.

62This symmetry group consists of unitary and/or anti-unitary operators, which represent shifts and re�ections inside the
phase space structure.
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This theorem claims that every witness operator K ∈ H9 is connected to a set of
operatorsMΦ ∈ H3, whereas the more habileMΦs can be used to calculate the TW and
the borders of SEP and PPT, respectively. As a possible application of this theorem
one can consider states that are located on one of the three lines. W.l.o.g.63 the bottom
line of the phase space points is taken, which is invariant under these unitary operators∑

s e
iδ(s) |s〉 〈s| (compare Weyl-operators Wk,0). Also adding the unity does not change

this symmetry. Hence the corresponding witness for those states is given by

K = λ
1

3
1+

∑
k

γkPk,0 (209)

and referring to the previous theorem the operator MΦ

MΦ = λ
1

3
1+

2∑
k=0

γkPk,0. (210)

According to the theorem a state on the surface of SEP can be found by a TW, which
is characterized by detMΦ = 0, here

detMΦ = λ3 + ‖Φ‖2 (γ0 + γ1 + γ2)λ2

+ 3(|Φ0|2 |Φ1|2 + |Φ1|2 |Φ2|2 + |Φ2|2 |Φ0|2)(γ0γ1 + γ1γ2 + γ2γ0)λ

+ 27 |Φ0|2 |Φ1|2 |Φ2|2 γ0γ1γ2 (211)

Further investigation of this polynomial leads to four di�erent types of witnesses, spec-
i�ed by the variables λ, γ0 and γ = 1

2
(γ1 + γ2). From these operators four vertex states

σi are received corresponding to the linear regions of the witnesses.

1. λ = 1, γ ≥ 0, γ0 = −1 ⇒ σ1 = 1+
2

9
P0,0 −

1

9
P1,0 −

1

9
P2,0

2. λ = 1, 0 ≥ γ ≥ −2

3
, γ0 = −1− 2γ ≥ 1

3
⇒ σ2 =

1

3
(P0,0 +

1

9
P1,0 −

1

9
P2,0)

3. λ = 1, γ = −2

3
, γ0 ≥

1

3
⇒ σ3 =

3

4
(1− 1

9
P0,0 +

2

9
P1,0 +

2

9
P2,0)

4. λ = 0, γ ≥ 0, γ0 = 1− γ > 0 ⇒ σ4 =
3

2
(1− P0,0 +

1

3
(P1,0 + P2,0 + P3,0))

All results and observations, including the entanglement and separability criteria, can be
generalized to a bipartite system with an arbitrary degree of freedom [74] due the prepon-
derant analytical calculations. Even the helpful phase space structure is preserved, of course
conformed to the degree of freedom with more vertex points. For the H4⊗H4 case the region
of separability for states in the 16 dimensional Magic Simplex, which are combined by the
vertex states of one line, the witness K is given analogue to the 9 dimensional case before
(eq. 212) as

K = λ
1

4
1+

3∑
k=0

γkPk,0.

Due to the Theorem also the corresponding operator MΦ looks equal, considering that the
Unity has to be taken as a 4x4 matrix and the sum running from 0 to 3. Despite of the

63All lines are unitary equivalent due to the high symmetry.
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hopeful generalization problems arise when it comes to the geometry of a special class of
states in higher dimensions. Not only the size of the density matrices increases, which makes
the partial transposition to an awkward calculation, but also the witnesses cause problems.

CHAPTER 13

Conclusion and Outlook

As far as one can see from the presented theories and its geometrical illustration, it is
obvious that this is only a sketch from the great amount of results that have been found
and also will be in this theory of quantum mechanics. Due to the fact that we all are
more or less visual human beings these graphics may help to get another helpful perspective
on the rather puzzling and uninspiring mathematical theory. The only drawback of this
visualization, as already stated before, occurs when either more particles or more degrees of
freedom are taken into account, as the presented criteria are based on matrix analysis, which
is, even in the numerical case, hard to handle with the present programs. However from the
lower dimensional cases also a lot can be learned. For example the fact that the di�erent
equivalence classes of states, which are combined in di�erent simplices, and their individual
geometry are re�ecting the assumption that all introduced criteria are somehow connected.
Not only the fact that mostly every entanglement criteria presented in this thesis can be
deduced in more than way but also the peculiar point that the geometrical boarders of the
di�erent criteria are similarly shaped or even equal for the di�erent classes of state, gives rise
to this conjecture. Furthermore many exciting problems, like the existence of NPT bound
entangled states or even the behavior of entanglement under relativistic terms, are still open.
Hence on a more fundamental level, namely whether quantum mechanics is the right choice
of describing these problem, and even if this is the case the question to be asked is: Can or
will the wonders of quantum mechanics be fully or even partially understood?
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Simplex of bound entangled multipartite qubit states
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We construct a simplex for multipartite qubit states of even number n of qubits, which has the same
geometry concerning separability, mixedness, kind of entanglement, amount of entanglement, and nonlocality
as the bipartite qubit states. We derive the entanglement of the class of states which can be described by only
three real parameters with the help of a multipartite measure for all discrete systems. We prove that the bounds
on this measure are optimal for the whole class of states and that it reveals that the states possess only n-partite
entanglement and not, e.g., bipartite entanglement. We then show that this n-partite entanglement can be
increased by stochastic local operations and classical communication to the purest maximal entangled states.
However, pure n-partite entanglement cannot be distilled; consequently all entangled states in the simplex are
n-partite bound entangled. We study also Bell inequalities and find the same geometry as for bipartite qubits.
Moreover, we show how the �hidden� nonlocality for all n-partite bound entangled states can be revealed.

DOI: 10.1103/PhysRevA.78.042327 PACS number�s�: 03.67.Mn

I. INTRODUCTION

Entanglement is at the heart of the quantum theory. It is
the source of several new applications as quantum cryptog-
raphy or a possible quantum computer. In recent years the
study of higher-dimensional quantum systems and/or multi-
partite systems has shown that different aspects of the en-
tanglement feature arise. They may have new applications
such as multiparty cryptography.

In this paper we contribute to the classification of en-
tanglement in a twofold way, i.e., which kind of entangle-
ment a certain class of multipartite qubit states possesses,
using the multipartite measure proposed in Ref. �1�, and
whether this kind of entanglement can be distilled. Our re-
sults suggest that for multipartite systems one can distinguish
between different possibilities.

The class of states we analyze are a generalization of the
class of states which form the well-known simplex for bipar-
tite qubits �Sec. II�, i.e., all locally maximally mixed states
�2,3�. We make an obvious generalization and find an analo-
gous simplex for states composed of an even number of qu-
bits n, i.e., this class of states shows the same geometry
concerning positivity, mixedness, separability, and entangle-
ment �Sec. III�. Further, the used multipartite measure �1�
reveals that the kind of entanglement possessed is only
n-partite entanglement where n is the number of qubits in-
volved. The vertex states of the simplex are represented in
the bipartite case by the well-known Bell states; for n�2
they are equivalent to the generalized Smolin states proposed
by Refs. �4,6–8�.

Then we discuss the distillability of the entangled states
and find states for which the n-partite entanglement can be
increased by a protocol based only on copy states and sto-
chastic local operations and classical communications
�LOCC�. We show that the state is not distillable for any
subset of parties and hence bound entangled; however, the
n-partite entanglement can be enhanced to reach the maximal
possible purity and n-partite entanglement within the class of
states under investigation, i.e., the vertex states. For a subset
of these states it has been shown that they allow for quantum

information concentration �e.g., Refs. �4,5��, so we suggest
that it might still be advantageous to enhance the n-partite
bound entangled states for some applications.

Last but not least, in Sec. VI we address the question as to
which of the simplex states violate the generalized Bell in-
equality which was shown to be optimal in this case, and
draw its geometrical picture, Fig. 4.

II. THE SIMPLEX FOR BIPARTITE QUBITS

A single qubit state � exists in a two-dimensional Hilbert
space, i.e., H�C2, and any state can be decomposed into the
well-known Pauli matrices �i:

� =
1

2
�12 + ni�i� ,

with the Bloch vector components n� �R3 and �i=1
3 ni

2= �n� �2
�1. For �n� �2�1 the state is mixed �corresponding to Tr �2

�1� whereas for �n� �2=1 the state is pure �Tr �2=1�.
The density matrix of two qubits � on C2 � C2 is usually

obtained by calculating its elements in the standard product
basis, i.e., �00�, �01�, �10�, �11�. Alternatively, we can write
any two-qubit density matrix in a basis of 4�4 matrices, the
tensor products of the identity matrix 12, and the Pauli ma-
trices,

� =
1

4
�12 � 12 + ai�i � 12 + bi12 � �i + cij�i � � j�

with ai ,bi ,cij �R. The parameters ai and bi are called local
parameters as they determine the statistics of the reduced
matrices, i.e., of Alice’s or Bob’s system. In order to obtain a
geometrical picture one considers in the following only

states where the local parameters are zero �a� =b� =0��, i.e., the
set of all locally maximally mixed states, TrA���=TrB���
= 1

212 �see also Refs. �2,3��.
A state is called separable if and only if it can be written

in the form �ipi�i
A

� �i
B with pi�0, �pi=1, otherwise it is

entangled. As the property of separability does not change
under local unitary transformation and classical communica-
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tion, the states under consideration can be written in the form
�2�

� =
1

4
�12 � 12 + ci�i � �i� ,

where the ci are three real parameters and can be considered
as a vector c� in Euclidean space. Differently stated, for any
locally maximally mixed state � the action of two arbitrary
unitary transformations U1 � U2 can via the homomorphism
of the groups SU�2� and SO�3� be related to unique rotations
O1 � O2. Thus the correlation matrix cij�i � � j can be chosen
such that the matrix cij gets diagonal via singular value de-
composition. Therefore, three real numbers combined to a
vector c� can be taken as representative of the state itself.

In Fig. 1 we draw the three-dimensional picture, where
each point c� corresponds to a locally maximally mixed state

�. The origin c� =0� corresponds to the totally mixed state, i.e.,
1
412 � 12. The only pure states in the picture are given by
�c��2=3 and represent the four maximally entangled Bell
states �	
�= �1 /	2�
�01�
 �10��, ��
�= �1 /	2�
�00�
 �11��,
which are located at the vertices of the cube. The planes
spanned by these four points are equivalent to the positivity
criterion of the state �. Therefore, all points inside the tetra-
hedron represent the state space.

It is well known that density matrices which have at least
one negative eigenvalue after partial transpose �PT� are en-
tangled. The inversion of the argument is true only for sys-
tems with 2 � 2 and 2 � 3 degrees of freedom. The PT cor-
responds to a reflection, i.e., c2→−c2 with all other
components unchanged. Thus all points inside and at the
surface of the octahedron represent all separable states in the
set. Of course, one can always make the transformation c�
→−c�, and thus one obtains a mirrored tetrahedron, spanned
by the four other vertices of the cube. Clearly, the intersec-
tion of these two tetrahedra contain all states which have
positive eigenvalues after the action of the PT.

In Ref. �9–11� a generalization to higher-dimensional bi-
partite states is considered and a so-called magic simplex for
qudits is obtained. Here the class of all locally maximally
mixed states have to be reduced in order to obtain this gen-
eralized simplex. Already for bipartite qutrits many new
symmetries arise and regions of bound entanglement can be
found �see also Refs. �12–16��.

We also want to generalize the simplex of bipartite qubits;
however, in our case we increase the number of qubits.

III. A SIMPLEX FOR n-PARTITE QUBIT STATES

Assume we have n qubits. Then a generalization can be
written as

� =
1

2n�1 + � ci�i � �i � ¯ � �i� ª 1

2n�1 + � ci�i
�n� .

�1�

Obviously, for this generalization we follow the strategy to
set the local parameters of all subsystems j,
Tr1,2,. . .,j−1,j+1,. . .,n���, to zero, as well as the parameters shared
by two parties j ,k, Tr1,2,. . .,j−1,j+1,. . .,k−1,k+1,. . .,n���, zero and so
on until n−1 zero.

Again the state can be represented by a three-dimensional
vector c�. For n=3 the positivity condition ��0 requires1

�c��2 � 1. �2�

This turns out to be the case for all odd numbers of qubits
involved.

For even numbers of qubits the positivity condition �
�0 requires that the vector is within the following four
planes:2

1 + c� · n� �i� � 0 with n� �i�

= �− 1

+ 1

+ 1

, �+ 1

− 1

+ 1

, �+ 1

+ 1

− 1

, �− 1

− 1

− 1

 . �3�

These conditions are exactly the same ones as for the two-
qubit case n=2, i.e., the four planes above form the magic
tetrahedron.

1The result is obtained by using a standard computer programm.
2Note that for n=4,8 , . . . the mirrored tetrahedron �c�→−c�� is ob-

tained. Again the result is obtained by using a standard computer
programm.

FIG. 1. �Color online� Here the geometry of the state space of
even number of qubits is visualized. Each state is represent by a
triple of three real numbers c�, Eq. �1�. The four black dots at the
vertices of the cube represent four orthogonal “vertex” states. In the
case of two qubits these are the four maximally entangled Bell
states 	
 ,�
 and for higher n they are equal mixtures of 2n /4
Greenberger-Horne-Zeilinger �GHZ� states. The positivity condition
forms a tetrahedron �red� with the four “vertex” states and the to-
tally mixed state at the origin �black dot in the middle�. All sepa-
rable states are represented by points inside and at the surface of the
octahedron �dashed object�. The dashed line represents for n=2 the
Werner states and for n�2 the generalized Smolin states �becoming
separable when blue changes into green�.
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The purity Tr��2� gives �1 /2n��1+ �c��2�; thus the states
with �c��2=3 are the purest states of the class of states under
investigation and are located in the vertices of the tetrahe-
dron. Note that with increasing n the percentage of purity
decreases, i.e., only for n=2 do the vertices present pure
states. Further analysis of these vertex states follows later.

Now we want to investigate if the separability condition
also for n�2 corresponds to the octahedron. The partial
transpose of one qubit �PTone qubit� changes the sign in front
of the �2

�n matrix, i.e., the y component of the vector c�
changes sign. Therefore the states under investigation are
entangled by the necessary but not sufficient �one-qubit�
Peres criterion

n = 3,5, . . . , �c��2 � 1,

n = 2,4, . . . , 1 − c� · n� �i� � 0. �4�

Taking the partial transpose of two, four, …qubits changes
two, four, …times the sign and consequently one obtains the
positivity criterion �3�. Taking the partial transpose of odd
qubits is equivalent to PTone qubit.

For even number of qubits the above Peres criterion im-
plies a mirrored tetrahedron, analogously to the bipartite
case; however, we do not know if the intersection, the octa-
hedron, contains only separable states. For odd numbers of
qubits the situation is different and we will not investigate it
further.

Now two questions arise: first, are all states represented
by the octahedron separable and, second, what kind of en-
tanglement does this class of states possess?

Let us tackle the second question first. To analyze our
generalized states � further we use the multipartite entangle-
ment measure for all discrete systems introduced by Ref. �1�.
The main idea is that the information content of any n-partite
quantum system of arbitrary dimension can be separated in
the following form:

I��� + R���
single property

+ E���
entanglement

= n

�5�

where

I��� ª �
s=1

n

Ss
2���

single property of subsystem s �6�

contains all locally obtainable information �i.e., obtainable
information a party can measure on its particle�, E��� con-
tains all information encoded in entanglement, and R��� is
the complementing missing information, due to a classical
lack of knowledge about the quantum state. The total amount
of entanglement E��� can be separated into m-flip concur-
rences by rewriting the linear entropy of all subsystems in an
operator sum; thus one obtains

E��� ª C�2�
2 ���

two-flip concurrence

+ C�3�
2 ���

three-flip concurrence

+ �¯�

+ C�n�
2 ���

n-flip concurrence

.

�7�

These m-flip concurrences are useful for two reasons: first,
one can obtain bounds on the operators and thus handle
mixed states and, second, the authors of Ref. �1� showed �for
three qubits� that the m-flip concurrences can be reordered
such that they give the m-partite entanglement, which in ad-
dition coincides with the m-separability �17�.

Here we extend their result for the states under investiga-
tion. Due to the high symmetry of the class of states under
investigation the bounds of the m-partite entanglement can
be computed and herewith we can reveal the following sub-
structure of total entanglement E���,

E��� = E�2����

bipartite entanglement

+ E�3����

tripartite entanglement

+ ¯ + E�n� ���

n-partite entanglement �8�

with the subsubstructure

E�2���� = E�12���� + E�13���� + ¯ + E�1n���� + E�23���� + ¯

+ E�2n���� + ¯ + E�n−1,n���� ,

E�3���� = E�123���� + ¯ + E�n−2,n−1,n���� ,

¯ = ¯

E�n���� = E�12¯n���� . �9�

We find that for the states under investigation the only non-
vanishing entanglement is the n-partite entanglement and it
becomes �for details, see Sec. IV�

E�n� = E12,. . .,n = X max�0,
1

2
max�− 1 + c� · n� �1�,− 1 + c� · n� �2�,

− 1 + c� · n� �3�,− 1 + c� · n� �4���2

, �10�

where X=1 except for bipartite qubits, when it is X=2 �the
reason for this difference is explained later�. Hence, we find
the same condition for being entangled as given by the one-
qubit Peres criterion.

Now, if these bounds are exact also for n�2, then all
states represented by the octahedron are separable. Indeed, it
turns out that this is the case. We give the proof of separa-
bility separately in the Appendix.

In summary, we have found for an even number of qubits
the same geometry as in the case of bipartite qubits, also
depicted by Fig. 1. Moreover, we have shown that the mul-
tipartite entanglement measure proposed by Ref. �1� works
tightly as the bounds are exact and it reveals only n-partite
entanglement. Let us discuss this result more carefully.
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For the purest states, �c��2=3, located in the vertices of the
tetrahedron, the maximal n-partite entanglement results as
E�n�=1 except for n=2 when it is E�n�=2. Thus the amount of
entanglement for n�2 is independent of the number of qu-
bits involved. The reason for the difference can be found in
the information content of the multipartite system, Eq. �5�.
The maximal entanglement of an n-partite state is n. This is
the case if and only if the local obtainable information of all
subsystems is zero and the classical lack of knowledge of the
quantum state is also zero, i.e., the total state is pure. For
bipartite qubits, n=2, the vertex states are the Bell states,
which have maximal entanglement 2 whereas the locally ob-
tainable information S is zero, as well as the lack of classical
knowledge about the quantum state R=0.

By construction for n�2 we set the locally obtainable
information S of all subsystems to zero; however, also all
possible locally obtainable information shared by two, three,
…, n−1 parties is set to zero; obviously this is not compat-
ible with being maximally entangled. The information con-
tent for n�2 is given by

n = En + R = 1 + R , �11�

and consequently the lack of classical knowledge is nonzero,
i.e., R=n−1. Differently stated for n=4, any party has the
trace state and also any two parties and any three parties
share the trace state, therefore R=3.

Remark. The local information Ss��� of one subsystem s is
nothing else than Bohr’s quantified complementarity relation
�18–20�, with its well-known physical interpretation in terms
of predictability and visibility �coherence�. One can extend
this concept for two parties sharing a state; then the �bi�local
information of total multipartite system can be defined in
similar way and is complemented by the mixedness of the
shared bipartite system. Again this �bi�local information is
obtainable only if and only if the state is not the trace state.

Coming back to the simplex geometry we see that the
closer we get to the origin the more the amount of entangle-
ment is reduced by increasing the amount of classical uncer-
tainty R only.

For bipartite qubits the vertex states �c��2=3 are the four
Bell states. For n qubits we find for �c��2=3 also four unitary
equivalent states; however, they are no longer pure. For n
=4 the state is an equally weighted mixture of four �GHZ�
states. Starting with one GHZ state, e.g.,

�GHZ� =
1
	2


�0000� + �1111�� , �12�

one obtains another representation by applying two flips, i.e.,
1 � 1 � �x � �x, and then applying on the new GHZ state rep-

resentation the operator 1 � �x � �x � 1, and onto that new
GHZ state representation the operator �x � �x � 1 � 1, giving
the last GHZ state representation. The other three vertex
states are obtained by applying only one Pauli matrix. For
n=6 we have 26 GHZ states where 26 /4 GHZ states equally
mix for one vertex state.

Remark. We find the same symmetry for the bipartite qu-
bit case, one Bell state is mapped into another by one Pauli
matrix; however, applying two Pauli matrices maps a Bell
state onto itself, therefore we have no mixture of different
maximally entangled states.

In the next section we give the detailed calculation of the
measure and in the following section we investigate the
question whether the entangled states are bound entangled
and if so in what sense their entanglement is bound. In par-
ticular we discuss what it means that the substructure re-
vealed by the measure shows only n-partite entanglement.

IV. DERIVATION OF THE MULTIPARTITE MEASURE
FOR THE SIMPLEX STATES

In Ref. �1� a multipartite measure for multidimensional
systems as a kind of generalization of Bohr’s complementa-
rity relation was derived. Here, we give explicitly the results
for n=2 and 4 expressed in the familiar Pauli matrix repre-
sentation

It is well known that to compute the concurrence intro-
duced by Hill and Wootters �21� one has to consider

���y � �y��*��y � �y� �13�

where the complex conjugation is taken in the computational
basis. The concurrence is then given by the formula

C = max
0,2 max
�1,�2,�3,�4� − ��1 + �2 + �3 + �4��

�14�

where the �i’s are the square roots of the eigenvalues of the
above matrix. To obtain the information content we have to
multiply this measure by 2.

The first observation in Ref. �1� is that the linear entropy,
M���= 2

3 �1−Tr��2�� can be rewritten using operators. This
means, e.g., for any pure four-qubit state,

�	� = �
i,j,k,l=0

1

aijkl�ijkl� , �15�

the linear entropy of one subsystem can be written as

M2�Tr234�	��	�� = M2��1� = �
k,l=0

1

�

i1�i1��;
i2�i2��

��	���x � �x � 1 � 1���i1i2kl��i1i2kl� − �i1�i2�kl��i1�i2�kl���	*��2

+ �
k,l=0

1

�

i1�i1��;
i3�i3��

��	���x � 1 � �x � 1���i1ki3l��i1ki3l� − �i1�ki3�l��i1�ki3�l���	*��2
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+ �
k,l=0

1

�

i1�i1��;
i3�i3��

��	���x � 1 � 1 � �x���i1kli4��i1kli4� − �i1�kli3���i1�kli4����	*��2

+ �
k,l=0

1

�

i2�i2��;
i3�i3��

��	��1 � �x � �x � 1���ki2i3l��ki2i3l� − �ki2�i3�l��ki2�i3�l���	*��2

+ �
k,l=0

1

�

i2�i2��;
i4�i4��

��	��1 � �x � 1 � �x���ki2li4��ki2li4� − �ki2�li4���ki2�li4����	*��2

+ �
k,l=0

1

�

i3�i3��;
i4�i4��

��	��1 � 1 � �x � �x���kli3i4��kli3i4� − �kli3�i4���kli3�i4����	*��2

+ �
k

1

�

i1�i1��;
i2�i2��;
i3�i3��

��	���x � �x � �x � 1���i1i2i3k��i1i2i3k� − �i1�i2�i3�k��i1�i2�i3�k���	*��2

+ �
k=0

1

�

i1�i1��;
i2�i2��;
i4�i4��

��	���x � �x � 1 � �x���i1i2ki4��i1i2ki4� − �i1�i2�ki4���i1i2�ki4����	*��2

+ �
k=0

1

�

i1�i1��;
i3�i3��;
i4�i4��

��	���x � 1 � �x � �x���i1ki3i4��i1ki3i4� − �i1�ki3�i4���i1�ki3�i4����	*��2

+ �
k=0

1

�

i2�i2��;
i3�i3��;
i4�i4��

��	��1 � �x � �x � �x���ki2i3i4��ki2i3i4� − �ki2�i3�i4���ki2�i3�i4����	*��2

+ �

i1�i1��;
i2�i2��;
i3�i3��;
i4�i4��

��	���x � �x � �x � �x���i1i2i3i4��i1i2i3i4� − �i1�i2�i3�i4���i1�i2�i3�i4����	*��2, �16�

where, e.g., 
i1�� 
i1��, 
i2�� 
i2�� means that the set of indices are not the same, i.e., the sum is taken over


i1,i2;i1�,i2�� = 
0,1;0,0�,
0,0;0,1�,
0,1;1,0�,
0,0;1,1�,
1,1;0,0�,
1,0;0,1�,
1,1;0,0�,
1,0;0,1�,


0,0;1,0�,
1,0;0,0�,
0,0;1,1�,
1,0;0,1�,
0,1;1,0�,
1,1;0,0�,
0,1;1,1�,
1,1;0,1� . �17�

Likewise the linear entropies for the other subsystem can be
derived, i.e., separated into terms where the flip operator �x
is applied two, three, or four times. It is well known that for
pure states the sum over the entropies of all reduced density
matrices is an entanglement measure; therefore using the lin-
ear entropy we get the following entanglement measure:

E��	�� ª �
s=1

4

M2��s� = �
m=2

4

�Cm�	��2, �18�

where �Cm�2 is the sum of all terms of all reduced matrices
that contain m-flip operators. These quantities were called
�squared� m-concurrences, because they play a similar role as
the Wootters concurrence.

For mixed states � the infimum of all possible decompo-
sitions is an entanglement measure

E��� = inf
pi,�	i�

�
pi,�	i�

piE��	i�� . �19�

The problem of the whole entanglement theory is that this
infimum can in general not be calculated. Now we bring the

operator representation of the linear entropy into the game,
because for operators upper bounds can be obtained.

Let us start with the calculation of the four-flip concur-
rence C�4�, which is the sum of all terms containing four-flips
of the entropies of all reduced matrices, i.e.,

�C�4�����2 = inf
pi,�	i�

�
pi,�	i�

pi�C�4��	i��2. �20�

As shown in Ref. �1� one can derive bounds on the above
expression for any m-flip concurrence by defining, in an
analogous way to the Hill and Wootters flip density matrix
�21�, the m-flip density matrix

�̃s
m = Os��
in���
in�� − �
in����
in�����*

� Os��
in���
in�� − �
in����
in���� �21�

and calculating the �m
s ’s which are the squared roots of the

eigenvalues of �̃s
m�. The bound B�m� of the m-flip concur-

rence C�m� is then given by
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Bm��� ª ��
s

max�0,2 max�
�m
s �� − � 
�m

s ��2�1/2
.

�22�

From Eq. �16� we see that for the four-flip concurrence of
subsystem �1 four different operators occur, thus we have in
total 16 different operators listed in Appendix B.

Inserting our class of states we find that for each operator
Os the eigenvalues are the same, i.e., one obtains eight zeros
and the remaining four eigenvalues are exactly equivalent to
the Peres criterion Eq. �4�.

The same procedure has to be applied to calculate the
three-flip and the two-flip concurrence. As can be seen from
Eq. �16� here the unity and �z matrices are involved which
lead to no contribution for the states under investigation.
Remember that they are mixtures of the vertex states, which
are equal mixtures of such GHZ states that differ by two
flips. Therefore the total entanglement is given by the C�4�

concurrence only and is a four-partite entanglement. For n
=6,8 , . . . the scenario is the same, because of the same un-
derlying symmetry.

In Appendix A we show that all states not detected by the
measure are separable; thus the bounds are optimal and
therefore the measure detects all bound entangled states.

V. ARE THE ENTANGLED STATES BOUND
ENTANGLED?

In Refs. �4,6–8� the special states c=c1=−c2=c3 for n
�2, which were named generalized Smolin states �for n=2
these states are the Werner states�, are investigated and they
show that for 1�c�

1
3 these states are bound entangled. In

particular, the authors argued that these states are bound en-
tangled, because the states are separable against bipartite
symmetric cuts like 12�34…, 14�23…,… and therefore no
Bell state between any two subsystem can be distilled. This
is obviously also the case for the whole class of states under
investigation.

As the considered measure of entanglement revealed only
n-partite entanglement and, e.g., not, m-partite entanglement
�m�n�, it may not seem directly obvious that Bell states
�bipartite entanglement� cannot be distilled, because the class
of states does not possess any bipartite entanglement. Thus
the question could be refined to ask whether n-partite pure
entanglement can be distilled.

For the n-partite class of states under investigation we
consider a similar distillation protocol as the recurrence pro-
tocol by Bennett et al. �22�. For that we generalize it such
that each party gets a copy onto which a unitary bilateral XOR

operation is performed and afterward a measurement in, say,
the z direction, is performed. Only states are kept where all
parties found their copy qubit in say, the, up direction. This
protocol favors, as do, all protocols one state; in our case for
n=2 it is the 
+ state and for n�2 its equivalents.

In detail it goes as follows. We consider one state and its
copy

��2 = � 1

2n 
1�n + ci�i
�n���2

�23�

and all parties get a copy state. Therefore, we reorder the
state by a unitary transformation such that the first and sec-

ond terms in the tensor product belongs to Alice and the third
and fourth terms to Bob, and so on:

��2 → � 1

2n�2

��1 � 1��n + ci�1 � �i��n + ci��i � 1��n

+ cicj��i � � j��n� . �24�

Now each party performs on its two subsystems a unitary
XOR operation

UXOR =�
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 �25�

and then projects on the copy subsystem with P= 1
2 �1+�z�.

This gives again a state in the class of states under investi-
gation, i.e., one finds

c� = �cx

cy

cz

 → c�dis =�

cx
2 + cy

2

1 + cz
2

2cxcy

1 + cz
2

2cz

1 + cz
2


 . �26�

Comparing with the separability condition and with the posi-
tivity condition, one verifies that only separable states are
mapped into separable states.

Let us consider the Werner states and the generalized
Smolin states �c=cx=cy =cz�, for which we derive that the
n-partite entanglement is always increased after the above
protocol �see Fig. 2�. For −1 /	3�c�1 /3 the measure be-
fore and after the protocol is zero and for c=1 the state is
mapped onto itself. For 1 /3�c�1 the entanglement of the
distilled state is increased compared to the input state. In Fig.
3�a� we give the three-dimensional picture of how the initial
state c=0.5 moves after each step toward the vertex state.
Note that the states are no longer in the set of the generalized

�0.2 0.2 0.4 0.6 0.8 1.0
c

0.2

0.4

0.6

0.8

1.0
n�partite Entanglement

FIG. 2. �Color online� n-partite entanglement of the Werner
states n=2 �here the y axis has to be multiplied by 2� or the gener-
alized Smolin states n�2 before and after the application of the
introduced protocol �upper dashed green curve�. Note that the ver-
tex states are mapped onto themselves by the given protocol.
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Smolin sets, another advantage of the considered set of states
as no random bilateral rotation to regain the rotational sym-
metry is needed. In Fig. 3�b� we show the mixedness-
entanglement relation of this example. Note that all states of
the simplex are within the two curves and the middle curve is
the result for the generalized Smolin state after one step of
the protocol.

Remark. Not all states of the simplex are mapped into
more entangled states by this protocol. For example, the mix-
ture of two vertex states �c�T= �0,0 ,c� with c�1� is left in-
variant.

In summary, we have found a protocol that increases the
amount of entanglement with local operations and classical
communication only and the final states are always within
the class of states. Only for n=2 the final state is pure and
maximal entangled and therefore the above protocol is a dis-
tillation protocol, i.e., pure maximally entangled states can
be obtained. However, for n�2 the final state is no longer
pure, but has the maximal n-partite entanglement of the class
of states under investigation.

Thus the next logical step is to search for a distillation
protocol which distills the vertex states into pure maximally
entangled states, i.e., GHZ states. However, this is not pos-
sible for the following reasons. In general, any equally
weighted mixture of two maximally entangled states cannot
be distilled by mainly two observations. As for all maximally
entangled states �i obviously the entanglement can be re-
duced only by any completely positive map � :�i��i�, i.e.,
E��i���E��i�∀�. And as the entanglement E��� is convex,
i.e., E��i��+E�� j���2E��i��, we conclude that at least one �i
must be mapped unitary onto itself or another maximally
entangled state. Because all maximally entangled states are
equivalent by local unitaries, such a map consequently maps
also the other maximally entangled state of the mixture into
a �different� maximally entangled state. Hence, for no
equally mixture of maximally entangled states a maximally
entangled state can be distilled. Note that in the case of bi-
partite qubits this is trivially true, because any equally mix-
ture of Bell states is separable, however, for multipartite
states this is not necessarily the case �e.g., our vertex states�.

Thus we find that we can increase the amount of the
n-partite entanglement until the vertex state, but not further-

more, and therefore all entangled states are bound entangled,
i.e., no pure n-partite entanglement can be distilled among
any subset of parties using stochastic LOCC. The common
definition of distillation is that no pure maximally entangle-
ment among any subset of parties using LOCC can be ob-
tained; see, e.g., �23,24�. A different way to prove that the
entangled states are bound is given in Ref. �25�, where it is
shown that if no singlets can be distilled also no GHZ state
can be obtained. Therefore for the class of states under in-
vestigation we also can not distill any bipartite entanglement.

VI. THE GEOMETRY OF THE STATES VIOLATING THE
CHSH-BELL INEQUALITY

Analog to the bipartite qubit state one can derive a
�Clauser, Horne, Shimony, Holt� CHSH-Bell type inequality
for n qubit states �26�. Here n−1 parties measure their qubit

in the direction a� or a� and the nth party in the direction b� or

b�; then one obtains the following Bell inequality:

Tr�BBell-CHSH�� � 2 �27�

with

BBell-CHSH = a��� � a��� � . . . � a���

n−1

� �b� + b�����

+ a���� � a���� � . . . � a����

n−1

� �b� − b�����

�28�

where a� ,a� ,b� ,b�� are real unit vectors and the value 2 is the
upper bound on any local realistic theory.

It is known that for n=2 the maximal violation by quan-
tum mechanics can simply be derived by the state � itself
�27�. A matrix � violates the Bell-CHSH inequality if and
only if M����1, where M��� is the sum of the two largest
eigenvalues of the Hermitian matrix C†C with �C�ij =Tr��i
� � j��. A generalization for n qubits is simple, because the
matrix C is diagonal for the states under investigation, and
thus the same proof works.

0.05 0.10 0.15 0.20 0.25 0.30 0.35
Mixedness

0.2

0.4

0.6

0.8

1.0
n�partite Entanglement

(b)(a)

FIG. 3. �Color online� �a� Shows the final states after each step of the introduced protocol of an initial Werner or Smolin state c=0.5,
where each �green� point represents the obtained state after one step of the protocol. �b� Shows the mixedness �2n / �2n−1���1−Tr��2��, versus
n-partite entanglement diagram �for n=2 the y axis has to be multiplied by 2�, where the �blue� curve corresponds to the Werner or Smolin
state whereas the �red� curve is the state connecting two vertices. All states of the simplex have their mixedness-entanglement ratio between
these two curves. The middle �dashed, green� curve corresponds to the final states of a distilled Werner or Smolin state, and the �green� points
represent the final states after each step of an initial Werner or Smolin state c=0.5.
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In our case M��� is simply the sum of the two largest
squared vector components. In particular, if c1 and c2 are
greater than c3 we obtain the Bell inequality

c1
2 + c2

2 � 1. �29�

This gives a simple geometric interpretation of all states vio-
lating the Bell inequality. All possible saturated Bell in-
equalities give three different cylinders in the picture repre-
senting the state space �see Fig. 4�. All states outside of these
three cylinders violate the Bell inequality.

Furthermore, this result shows that an entangled state not
violating the Bell inequality �27� can be transformed via the
introduced protocol into a state violating the Bell inequality,
leading to the conclusion that all entangled states of the pic-
ture have nonlocal features. Moreover, in agreement with
Ref. �28�, the possibility to construct realistic local models or
not is no criterion for being bound entangled or not.

Let us also remark that Werner states �n=2� violate the
Bell inequality for c�1 /	2 whereas successful teleportation
requires only c�1 /2.

VII. SUMMARY AND DISCUSSION

We generalized the magic simplex for locally maximally
mixed bipartite qubit states such that we add even numbers n
of qubits and set all partial traces equal to the maximally
mixed states, i.e., no local information obtainable by any
subset of parties is available. This class of states can be
described by three real numbers, which enables us to draw a
three-dimensional picture. Interestingly, we find the same ge-
ometry concerning separability, mixedness, kind of entangle-
ment, amount of entanglement and nonlocality for all even
numbers of qubits �see also Figs. 1 and 4�.

For n�2 the purest states, located in the vertices of the
simplex, are not pure except in the case of bipartite qubits

�n=2�. We show how to derive a recently proposed measure
for all discrete multipartite systems �1� in this case. For
mixed states only bounds exist, however, we show that they
are for the class of states optimal by proving that all states
not detected by the measure are separable.

The measure reveals that these states possess only
n-partite entanglement and no other kind of entanglement,
e.g., bipartite entanglement. The information content of the
states can be quantified by the generalized Bohr’s comple-
mentarity relation for n�2

n = S + En + R = 1 + R , �30�

where R is lack of classical knowledge and S=0 the local
information obtainable by any party.

Then we investigated the question whether the n-partite
entanglement can be distilled. We find a protocol using only
local operation and classical communication which increases
the n-partite entanglement to the maximal entanglement of
the class of states under investigation. These states are the
vertex states of the simplex; for n=2 they are the Bell states
and for n�2 they are equal mixtures of such GHZ states
which are obtained by applying only two flips, �x.

For bipartite qubits n=2 this protocol is a distillation pro-
tocol, i.e., pure maximally entangled states are obtained. For
n�2 the vertex states are not pure, therefore we search for a
distillation protocol that leaves the class of states under in-
vestigation to obtain a pure n-partite maximally entangled
state, i.e., the GHZ states. Indeed, we argue that such a pro-
tocol cannot be found; more precisely, any equal mixture of
GHZ states cannot be distilled. Thus for the class of states
under investigation all entangled states are bound entangled
and herewith we found a simplex where all states are either
separable or bound entangled.

In detail, we show how an initial state moves after each
step of the protocol increasing the entanglement in the sim-
plex �see Fig. 2�. Moreover, we find that the states violating
the CHSH-Bell-like inequality, which was shown to be opti-
mal in this case, have for all even numbers of qubits the
same geometry �see Fig. 4�. These two results taken together
mean that one can enhance the n-partite bound entanglement
by using only LOCC until the Bell inequality is violated.
Therefore, for all n-partite bound entangled states its �hid-
den� nonlocality is revealed and in agreement with Ref. �28�
the possibility for a local realistic theory to be constructed is
not a criterion for distillability, and likewise whether its en-
tanglement can be increased by LOCC is also no criterion.

Our results suggest also that one can distinguish between
bound states for which a certain entanglement measure can-
not be increased by LOCC �in our case the vertex states� and
states for which the entanglement can be increased by
LOCC, which may be denoted as “quasibound” entangled
states �all bound entangled states of the class except the ver-
tex states�. The introduced �distillation� protocol distills
maximally entangled states within the set of states which are,
however, not pure, but the purest of the set of states.

Last but not least we want to remark that a subset of the
class of states has been considered in the literature, e.g.,
�4,6–8�, the so-called Smolin states. For which it was shown
that no Bell states may be distilled. The theorem in Ref. �25�

FIG. 4. �Color online� The three cylinders show the saturation of
the Bell inequality. All states outside these cylinders violate the Bell
inequality. The vertex states violate the Bell inequality maximally,
i.e., by 2	2.
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states that if and only if bipartite entanglement can be dis-
tilled then also GHZ states—in our terminology n-partite
entanglement—can be distilled.

In summary, we have shown in this paper explicitly that
the multipartite measure proposed by �1� detects all bound
entanglement in the class of states and that the states do not
possess bipartite entanglement and how the n-partite en-
tanglement can be increased to a certain value.

These results not only help to reveal the mysteries of
bound entanglement by refining the kind of entanglement,
but they may also help to construct quantum communication
scenarios where bound entangled states actually help to per-
form a certain process �29�. This is clearly important, when
one has future applications in mind, e.g., a multipartite cryp-
tography scenario.
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APPENDIX A: PROOF THAT ALL STATES
REPRESENTED BY THE OCTAHEDRON ARE

SEPARABLE

To prove that all states represented by the octahedron are
separable, we show that this is the case for the following
points in the octahedron

c� = �1

0

0

, �0

1

0

, �0

0

1

 . �A1�

As any convex combination of separable states have to be
also separable, we have finalized the proof. We start with n
=2 and show how this construction generalizes for n
=4,6 , . . ..

Suppose Alice prepares her qubits in the following two
states:

�i,

A =

1
	2

�12 
 ri
A�i� , �A2�

where ri is a Bloch vector pointing in the i direction and is
given by any number in �−1,1�. Bob does prepares his qubits
in the very same way. If Alices chooses the positive i axis
Bob does the same, and if Alice chooses the negative sign,
Bob does the same, thus they share the following separable
state if the preparation is done randomly with the same prob-
ability:

�i,+
AB =

1

2
�i,+

A
� �i,+

B +
1

2
�i,−

A
� �i,−

B =
1

4
�14 + ri

A · ri
B�i � �i� .

�A3�

These states represent three vertices of the octahedron, thus
the proof is finalized for n=2.

Explicitly, we find that for the generalized Smolin state
�c1=c2=c3=c�, the following state is derivesd:

�c = �
i

1

3
�i,+

AB =
1

4�14 + �
i

ri
A · ri

B

3
�i � �i� , �A4�

therefore as ri
A ·ri

B� �−1,1� the generalized Smolin state is
separable for p� �− 1

3 , 1
3 �.

For n=4 we remark that with the combination

�i,−
AB =

1

2
�i,+

A
� �i,−

B +
1

2
�i,−

A
� �i,+

B =
1

4
�14 − ri

A · ri
B�i � �i�

�A5�

one obtains the minus sign, and for the very same construc-
tion Alice, Bob, Charlie, and Daisy obtain the following
separable states:

�i,+
AB =

1

2
�i,+

AB
� �i,+

CD +
1

2
�i,−

AB
� �i,−

CD

=
1

4
�14 + ri

A · ri
B · ri

C · ri
D�i � �i � �i � �i� . �A6�

As the combination ��, �� gives again the minus sign,
this proof generalizes for any even n.

APPENDIX B: ALL FOUR-FLIP OPERATORS FOR n=4

For convenience of the reader we list all four-flip opera-
tors in the Pauli matrix representation:

O1 =
1

4

�y � �y � �y � �y − �y � �y � �x � �x − �y � �x

� �y � �x − �y � �x � �x � �y� ,

O2 =
1

4

�y � �y � �y � �y − �y � �y � �x � �x + �y � �x

� �y � �x + �y � �x � �x � �y� ,

O3 =
1

4

�y � �y � �y � �y + �y � �y � �x � �x − �y � �x

� �y � �x + �y � �x � �x � �y� ,

O4 =
1

4

�y � �y � �y � �y + �y � �y � �x � �x + �y � �x

� �y � �x − �y � �x � �x � �y� . �B1�

O5 =
1

4

�y � �y � �y � �y − �x � �y � �x � �y − �x � �y

� �y � �x − �y � �y � �x � �x� ,

O6 =
1

4

�y � �y � �y � �y − �x � �y � �x � �y + �x � �y

� �y � �x + �y � �y � �x � �x� ,
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O7 =
1

4

�y � �y � �y � �y + �x � �y � �x � �y − �x � �y

� �y � �x + �y � �y � �x � �x� ,

O8 =
1

4

�y � �y � �y � �y + �x � �y � �x � �y + �x � �y

� �y � �x − �y � �y � �x � �x� . �B2�

O9 =
1

4

�y � �y � �y � �y − �x � �x � �y � �y − �x � �y

� �y � �x − �y � �x � �y � �x� ,

O10 =
1

4

�y � �y � �y � �y − �x � �x � �y � �y + �x � �y

� �y � �x + �y � �x � �y � �x� ,

O11 =
1

4

�y � �y � �y � �y + �x � �x � �y � �y − �x � �y

� �y � �x + �y � �x � �y � �x� ,

O12 =
1

4

�y � �y � �y � �y + �x � �x � �y � �y + �x � �y

� �y � �x − �y � �x � �y � �x� , �B3�

O13 =
1

4

�y � �y � �y � �y − �x � �x � �y � �y − �x � �y

� �x � �y − �y � �x � �x � �y� ,

O14 =
1

4

�y � �y � �y � �y − �x � �x � �y � �y + �x � �y

� �x � �y + �y � �x � �x � �y� ,

O15 =
1

4

�y � �y � �y � �y + �x � �x � �y � �y − �x � �y

� �x � �y + �y � �x � �x � �y� ,

O16 =
1

4

�y � �y � �y � �y + �x � �x � �y � �y + �x � �y

� �x � �y − �y � �x � �x � �y� , �B4�
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