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Zussamenfassung  

Genomweite Transkriptomstudien haben unterschiedliche Klassen von Nicht-Protein-

kodierenden (nk) RNS offenbart und Fragen nach der Komplexität und Regulation 

des Genoms aufgeworfen. Genomische Prägung, ein epigenetisches Phänomen das 

die Exprimierung eines Gens in diploiden Zellen auf ein von zwei elterlichen 

Chromosomen beschränkt, ist ein Modellsystem um die Funktion der makro oder 

langen nkRNAs zu studieren. Sechs gut erforschte geprägte Gen- Cluster enthalten 

jeweils eine makro nkRNS die zwischen Maus und Mensch konserviert ist. Weiters 

wurde gezeigt, dass die zwei murinen makro nkRNAs Airn und Kcnq1ot1 die 

Exprimierung aller Protein-kodierenden Gene in den jeweiligen Gen-Clustern Igf2r 

und Kcnq1 unterdrücken. Beim Menschen exprimieren 8 von 27 bekannten 

geprägten Gen-Regionen geprägte makro nkRNAs. Um herauszufinden ob makro 

nkRNAs ein universelles Merkmal von allen menschlichen geprägten Gen-Regionen 

sind, habe ich individuell entwickelte Human Imprinted Tiling Arrays (HIRTA) und 

RNA-Sequenzierungstechnologien verwendet. Durch Hybridisierung von cDNA von 

menschlichen Geweben (20 normale und 23 Krebsgewebe) habe ich 

gewebespezifische Exprimierungsprofile von menschlichen geprägten Regionen 

erhalten. Dadurch konnte ich 101 neue Transkripte kartieren von denen 95% durch 

einen bioinformatische Analyse als macro nkRNS bestätigt werden konnten. Die 

RNA-Sequenzierung von nicht-ribosomaler RNA einer Fibroblasten Zelllinie ergab 

26,2 Millionen einmalig zugeordnete Sequenzfragmente. Damit konnte ich sowohl die 

Exprimierung bereits bekannter geprägter makro nkRNAs erfolgreich detektieren als 

auch die Exprimierung von 22/23 neuen makro nkRNAs bestätigen die ich mittels 

HIRTA gefunden habe. Sieben neue makro nkRNAs sind entwicklungsspezifisch 

reguliert wie ich mittels eines Differenzierungssystems in embryonalen Stammzellen 

zeigen konnte. Die weitere Charakterisierung von zehn makro nkRNAs hat gezeigt, 

dass 4/10 ausschliesslich im Zellkern vorliegen, 6/10 monoallelisch oder bevorzugt 

monoallelisch exprimiert werden und 2/10 einen CpG Insel Promoter haben der 

unterschiedlich stark auf den beiden elterlichen Chromosomen methyliert ist (DMR). 

Zusammengenommen habe ich Beweise für sechs neue geprägte makro nkRNAs. 

Weiters sind 22 der 101 neu kartierten Transkripte nur in Krebsgeweben exprimiert. 

Diese könnten einen wertvollen Startpunkt für weiterführende Biomarker Forschung 

darstellen. Weiters konnte ich zeigen, dass alle menschlichen geprägten Gen-

Regionen zumindest je eine makro nkRNA exprimieren welche geprägt sein könnte 

und diese daher möglicherweise eine Rolle in der Genregulation unter normalen als 

auch krankhaften Zuständen beim Menschen spielt. 
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Abstract 

 

Recent genome-wide transcriptome studies revealed diverse classes of non-protein-

coding (nc)RNAs and raised questions about the complexity and regulation of the 

genome. Genomic imprinting (an epigenetic phenomenon that restricts gene 

expression to one of two parental alleles in diploid cells) is a model system to study 

the function of an unusual class of macro or long ncRNAs. Six well-studied imprinted 

gene clusters contain a macro ncRNA that are mainly conserved between mouse 

and human. Furthermore, the mouse Airn and Kcnq1ot1 macro ncRNAs have been 

shown to repress all protein-coding genes, respectively in the Igf2r and Kcnq1 

imprinted gene clusters. In humans, 8 out of 27 known imprinted gene regions 

express imprinted macro ncRNAs. To determine if macro ncRNAs are universal 

features of all human imprinted gene regions I used a custom Human Imprinting 

Region Tilling Array (HIRTA) and RNA-seq technologies. By applying 20 normal and 

23 cancer human samples to HIRTA, I obtained the tissue-specific expression 

profiles of human imprinted gene regions and based on these profiles I mapped 101 

novel transcripts of which about 95% were confirmed as macro ncRNA using a 

bioinformatics approach. Using ribosomal RNA depleted RNA-seq in a fibroblast cell 

line, I obtained 26.2 million uniquely mapped reads, successfully detected the known 

imprinted macro ncRNAs and validated expression of 22/23 novel macro ncRNA 

transcripts detected by HIRTA. 7 novel macro ncRNAs were developmentally 

regulated in the human embryonic stem cells differentiation system. Characterization 

of 10 macro ncRNAs showed that 4/10 were exclusively nuclear localized, 6/10 had 

monoallelic or expression biased towards one parental allele and 2/10 had CpG 

island promoters that are differentially methylated regions (DMRs). Thus, I have 

partial evidence for 6 novel imprinted macro ncRNAs. Furthermore, 22 out of the 101 

mapped transcripts were expressed exclusively in cancer samples and may 

represent a valuable starting point for biomarkers research. In summary, all human 

imprinted gene regions express at least one macro ncRNA that may be imprinted and 

potentially play a role in gene regulation in normal or disease conditions in human. 
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1. Introduction 

 

1. 1. Epigenetics and non-protein coding RNAs 

 

1. 1. 1. Definition of epigenetics 

Epigenetics has been defined many times through history. Aristotle (384-322 BC) 

used the term epigenesis in order to define gradual development of individual organic 

form from unformed in his book “Generation of Animals”. The term epigenetics (epi-

greek: above-genetics) was for the first time defined by Conrad Waddington, 1942, 

as “the branch of biology which studies the causal interactions between genes and 

their products, which bring the phenotype into being” (Waddington, 1942). One of the 

phenomena explained as epigenetic by Waddingtons’ work is cellular differentiation. 

In 1957, he modeled the cellular differentiation process through his epigenetic 

landscape concept where a ball representing the cell is able to take different 

permitted trajectories leading to different cell fates (Figure 1).  

 

                   
Figure 1. Waddingtons’ epigenetics landscape. Taken unmodified from (Waddington, 
1957). 
 
One of the most accepted definitions of epigenetics, given by Arthur D. Riggs in 

1996, is: “the study of mitotically and/or meiotically heritable changes in genes 

function that cannot be explained by changes in DNA sequence”. Epigenetics today 

is a fast growing field. The epigenetic community took a collective effort to define and 

discuss epigenetics at a meeting hosted by the Banbury Conference Center and Cold 

Spring Harbor Laboratory which resulted in an operational definition of epigenetics 

being given by Ali Shilatifard and colleagues in 2009: “An epigenetic trait is a stably 

heritable phenotype resulting from changes in a chromosome without alterations in 

the DNA sequence” (Berger et al., 2009). The operational definition will further be 

discussed in the next section where the epigenetic pathway and its set of operational 
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steps will be dissected. Epigenetics can be defined in different ways but as a 

conclusion I would point to recent Denise Barlows’ quotation: ”Epigenetics has 

always been all the weird and wonderful things that cannot be explained by genetics” 

(http://epigenome.eu/en/1,1,0).  

 

1. 1. 2. The epigenetic pathway 

A recent conference and discussion including a number of leading scientists in the 

field led to an operational definition of epigenetics based on three categories of 

signals leading to a stably heritable epigenetic state (Berger et al., 2009). Signals 

named: “Epigenator”, “Epigenetic Initiator” and “Epigenetic Maintainer” are proposed 

to be parts of the epigenetic pathway (Figure 2). 

 

 
Figure 2. The epigenetic pathway. Includes epigenator that comes from enviroment and 
“activate” locus specific epigenetic initiator (e.g. ncRNA) leading to establishment of specific 
chromatin enviroment by action of epigenetic maintainer signals. 
 
The “Epigenator” comes from environment and “activates” the “Epigenetic Initiator”. 

This epigenator signal is transient and could be for example changes in temperature 

that affect paramutation in plants, where paramutation is a phenomenon in which one 

allele causes heritable expression change of the homologous allele. The “Epigenetic 

Initiator” is locus specific. By action of Initiators, such as non- protein coding RNAs 

(ncRNAs) and DNA binding proteins, a specific chromatin environment is established 

at a particular location in the genome. The Initiator is not necessarily transient as the 

“Epigenator” but may persist together with “Epigenetic Maintainer”. The “Epigenetic 

Maintainer” is not locus specific and could operate at any location where it is 
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recruited by an Initiator. Maintainers include a variety of epigenetic signals like DNA 

methylation, histone modifications, variants of histones and nucleosome positioning. 

The division of epigenetic pathways into three classes of signals provides a basis for 

understanding epigenetic pathways and their role in gene regulation through cellular 

generations. Further investigation of epigenetic pathways, signals and their 

interconnection is necessary and will provide a better understanding of a whole layer 

of information “above the genome” implicated in normal development and disease. 

 

1. 1. 3. Epigenetic roles of DNA methylation 

DNA methylation is a covalent modification of DNA, in mammals restricted to 

cytosine residues and almost exclusively found on CpG dinucleotides (Figure 3). 

 

Figure 3. Cytosine methylation. Modified from (Bernstein et al., 2007). 

 
CpG dinucleotides in the human genome are present at low density (93%) or 

concentrated in CpG islands (7%) (Fazzari and Greally, 2004). CpG islands were 

originally defined as regions of DNA of at least: 200bp length, 55% GC content and 

0.6 ratio of observed to expected CpG frequency. Today the CpG island length is 

usually set to more than 500bp since this lowers the number of false positives 

(Gardiner-Garden and Frommer, 1987; Takai and Jones, 2002). CpG island 

promoters are a feature of around 56% of genes in the human genome (Antequera 

and Bird, 1993). Large-scale studies of cytosine methylation in human showed that 

global DNA methylation is found throughout the genome: in gene bodies, 

transposons and intergenic DNA, while CpG islands are mostly unmethylated. No 

correlation between unmethylated CpG island promoters and expression state of the 

gene could be found. Exceptionally, methylated CpG islands are involved in X 

chromosome inactivation and genomic imprinting while their involvement in tissue 

specific gene silencing is starting to emerge (reviewed in (Suzuki and Bird, 2008)).  

 

DNA methylation is clearly an epigenetic modification as it provides heritable 

information not encoded by nucleotide sequence. Mouse embryogenesis research 
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has provided insights into the DNA methylation “cycle”. In the preimplantation embryo 

genome-wide loss of DNA methylation is observed (Monk et al., 1987). In the 

germline, DNA methylation patterns are set by de novo methyltransferases DNMT3A 

and DNMT3B (Okano et al., 1999). DNMT3A2 isoform and its cofactor DNMT3-like 

(DNMT3L) introduce DNA methylation to female gametes imprint control elements 

(ICEs) which are one of the key features of imprinted gene regions (Hata et al., 

2002). DNMT3L is not necessary for DNMT3A2 establishment of DNA methylation 

imprints in sperm (Kaneda et al., 2004). DNMT3B is shown to be required for 

methylation of pericentromeric repetitive DNA and CpG islands of the inactive X 

chromosome (Bird, 2002). Propagation of methylation patterns through cell divisions 

is achieved by involvement of the “maintenance” methyltransferase DNMT1. 

Specifically hemi- methylated CpG dinucleotides are targeted by this enzyme to 

methylate newly synthesized DNA strand based on complementary strand 

methylation (Bird, 2002). However, it was shown that DNMT1 is inefficient at 

maintaining methylation at some CpG dense regions (Liang et al., 2002), therefore 

current opinion is that DNMT3A and DNMT3B are also taking part in maintenance of 

the methylation (Miranda and Jones, 2007). 

 

One of the best-documented roles of DNA methylation is a role in transcriptional 

gene silencing. Reduction of DNA methylation has been shown to lead to 

derepression of LINE (Long Interspersed Nuclear Elements) and SINE (Short 

Interspersed Nuclear Elements) promoters in the human genome (Liu et al., 1994; 

Woodcock et al., 1997). For example artificial demethylation of promoters of Alu 

family elements stimulates their expression (Liu et al., 1994). Silencing of repetitive 

elements by DNA methylation gives support to the genome defense model (Yoder et 

al., 1997). According to this model DNA methylation has a biological role in silencing 

repetitive elements and thereby preventing DNA damage due to their transposition 

(Robertson and Wolffe, 2000).  

 

Long term silencing of transcription by DNA methylation of CpG islands is well 

established in two forms of non-Mendelian inheritance: X chromosome inactivation 

and genomic imprinting. During X-inactivation, one female X chromosome is 

inactivated. CpG island promoters are methylated within the inactive X chromosome 

by DNA methylation which stabilizes the repressed state of the corresponding genes 

(Chang et al., 2006). Interestingly, gene-body DNA methylation is two times more 

abundant on the active X than on the inactive X chromosome, which has been 

showed by allele-specific DNA methylation of more than 1000 informative loci on the 
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human X chromosome (Hellman and Chess, 2007). Thus, X-inactivation provides 

evidence of gene-body methylation association with transcriptional activity.  

 

In imprinted gene clusters DNA methylation is present in the form of DMRs 

(Differentially Methylated Regions) representing CpG islands methylated on one 

parental allele. DMRs have function as imprint control elements (ICE) if acquired in 

the primordial germline. The retention of the imprinted gene state through cellular 

generations is achieved by DNA methylation silencing of ICE that is a cis-acting 

repressor on one parental allele (Koerner and Barlow, 2010).  

 

Different models suggest mechanisms by which DNA methylation could be involved 

in transcriptional gene silencing. Two common views are that DNA methylation could 

impede the binding of transcription factors (e.g. CTCF (Bell and Felsenfeld, 2000)) or 

it could promote binding of MBPs (Methyl-Binding Proteins (Kass et al., 1997)) which 

by binding to repressors and histone deacetylases could lead to inactive chromatin 

formation (Harikrishnan et al., 2005).  

 

The epigenetic role of DNA methylation in development and differentiation is still not 

fully understood. Weber et al. (2007) found systematic methylation of germline-

specific gene promoters in somatic cells (fibroblasts) while this methylation was 

absent from mature sperm. This finding implicates DNA methylation as having a role 

in the silencing of germline specific genes that could contribute to cell differentiation. 

Homeobox (HOX) and paired box (PAX) genes play important roles in development. 

DNA methylation has been found on the CpG island promoters of these genes in 

human somatic tissues implying a role in development (Illingworth et al., 2008). 

Further, Lister et al. (2009) compared human stem cells and fetal fibroblasts at base 

resolution and identified hundreds of DMRs proximal to genes playing a role in 

pluripotency and differentiation. Several studies examined DNA methylation in 

human and showed that DNA methylation of CpG island promoters is more spread in 

somatic tissues than thought. For example, one group mapped DNA methylation 

genome-wide profiles in 13 human somatic tissues and proposed that promoter 

methylation could play role in the context of cell and tissue specific transcriptional 

programs (Rakyan et al., 2008). Tissue-specific differentially methylated regions 

(tDMR) are found in both gene-coding and intergenic regions. tDMRs, outside of 

annotated genes, could potentially play a role as cis- regulatory elements involved in 

gene expression control or as promoters of not yet annotated non-protein coding 

RNAs (Suzuki and Bird, 2008). The roles of DNA methylation in transcriptional gene 
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silencing, development and differentiation, together with the interplay with other 

“epigenetic maintainers” such as histone modifications and “epigenetic initiators” 

such as ncRNAs remain to be fully understood.  

 
1. 1. 4. Epigenetic roles of histone modifications 

DNA is wrapped around the histone octamer (two times of each H3, H4, H2A, H2B 

histone) forming the nucleosome, the basic unit of chromatin. Postranslational 

modifications can be found on the N-terminal tails or globular domains of histones. 

There is a debate in the field if histone modifications are epigenetic since it is not 

clear how and if chromatin modifications are heritable. Still, their roles in epigenetic 

processes are evident and recently they are recognized as potential “Epigenetic 

maintainers”. Histone modifications have roles in transcription regulation, repair, 

replication and condensation. Different classes of histone modifications in mammals 

are shown in Table 1. 

 
Histone modification 
classes 

Residues modified Histone modifications 

Acethylation K H3K9, H3K14, H3K18, H3K56, H4K5, H4K8, 
H4K12, H4K16, H2AK5, H2BK12, H2BK15 

Methylation  K, R H3K4, H3K9, H3K27, H3K36, H3K79, H4K20, 
H2BK5, H3R2, H3R8, H3R17, H3R26, H4R3 

Phosphorylation S, T H3S10, H3S28, H4S1, H2BS14, H3T3 
Ubiquitylation K H2AK119, H2BK120 
Sumoylation K H4 (Shiio and Eisenman, 2003) 
ADP ribosylation E H3, H4, H2A, H2B (Burzio et al., 1979) 
Deimination R>C H3, H2A, H4 (Hagiwara et al., 2002) 
Proline Isomerization P-cis>P-trans H3P30, H3P38 

Table 1. Eight classes of histone modifications are overviewed. Histone amino acid 
residues modified by different chemical reactions are: K(lysine), R(arginine), S(serine), 
T(threonine), E(glutamic acid), C(cysteine) and P(proline). Histone modifications found on 
specific positions of histones are shown (reviewed in (Kouzarides, 2007), (Barski et al., 
2007)). Lysine methylation and arginine methylation can show an even higher diversity as 
mono(me1), di(me2) and tri(me3) methylations are found (where one, two or three 
methylation groups are subsequently bound) on lysine and mono(me1) or two kinds of 
di(me2a, me2s) methylations are found on arginine.  
 
Genome wide approaches such as ChIP-chip and ChIP-Seq made it possible map 

histone modifications in different cell lines and tissues where different modification 

patterns can be correlated with transcription of the genes. An overview of 

modifications mapped on specific locations of active/inactive genes, specific 

regulatory regions and other genetic/epigenetic elements is shown in Table 2 

(reviewed in (Wang et al., 2009b)). Use of chromatin maps to map novel genes and 

regulatory regions is accepted on the basis of the strong correlation between certain 

histone modifications or their combinations with specific genomic regions. For 

example H3K4me3 is associated with promoters of expressed genes.  
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Specific 
genetic/epigenetic 
regions  

Histone modifications 

Promoters of active 
genes 

H3K4me3 (H3K4me2/me1 spreads towards transcribed regions of genes), 
H3K9ac, H3K14ac, H3K23ac, H2BK5me1, H3K9me1, H3K27me1, H4K20me1, 
H3K79me1 (H3K79me2/me3 spreads towards the transcribed regions of 
genes), H4K5/8/12/16ac (spreading through gene body), reviewed in (Wang et 
al., 2009b) 

Active genes body H3K36me3, H3K79, H3K9me1, H3K27me1, H4K20me1, H3K23ac (decreasing 
through the gene body), H2BK5me1, H3K9me1, H3K27me1, H3K36me3, 
H4K5/8/12/16ac, reviewed in (Wang et al., 2009b) 

Inactive genes body H3K9me2/me3, H3K27me2/me3, H4K20me3 reviewed in (Wang et al., 2009b) 
Repeats (e. g. LTRs 
(Long Terminal 
Repeats)) 

H3K9me3 + H4K20me3 (Mikkelsen et al., 2007) 

Enhancers H3K4me1 (absence H3K4me3) (Heintzman et al., 2007) 
H2A.Z  + H3K4me3 + H3K4me1 (Barski et al., 2007) 

Imprint control 
elements 
(ICE) 

Modifications depend on the differential methylation status: 
Methylated ICE: H3K9me3, H4K20me3; Unmethylated ICE: H3K4me3, 
H3K4me2, H3K9Ac (Regha et al., 2007) 
Methylated allele: H3K9me3, H4K20me3; Unmethylated allele: H3K4me2, H3ac 
(Delaval et al., 2007) 
H3K4me3 + H3K9me3 in ES cells (Mikkelsen et al., 2007) 

Table 2. Specific genomic regions enriched by characteristic histone modifications are 
listed. +; Histone modifications on the same locus on two parental chromosomes. 
 
Histone modifications are dynamic and set or reversed (except methylation of 

arginine for which demethylating enzyme is still not found) by a number of histone 

modifying enzymes (reviewed in (Kouzarides, 2007)). The role of histone 

modifications in DNA condensation and possibly change in higher order chromatin 

structure is expected and partially shown for acetylation and phosphorylation via their 

influence on charge changes. For example, Shogren-Knaak at al. (Shogren-Knaak et 

al., 2006) showed that H4-K16Ac controls chromatin structure. H4 that was 

homogenously acetylated on K16 by a native chemical ligation strategy after 

incorporation into nucleosomal arrays impedes formation of one of the levels of 

chromatin compaction (30-nanometar like fibers). Histone modifications are 

regulating transcription, repair and replication by recruiting number of other proteins 

on histones. For example Guccione at al. (Guccione et al., 2006) found that tethering 

of Myc transcription factor in human is restricted to a stretch of chromatin carrying H3 

K4/K79 and H3Ac. This is just one of the examples of proteins recruited by histone 

modifications functioning in the activation or repression of transcription (reviewed in 

(Li et al., 2007)). The question about inheritance of histone modifications remains to 

be answered. One of the models how the memory of specific chromatin states could 

be transmitted involves RNA as a molecule “carrying” the memory while histone 

modifications could be the executers of the epigenetic phenomena (Kouzarides, 

2007). This model is in agreement with already discussed “Epigenator-Initiator-

Maintainer” model of epigenetic pathway.  
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1. 1. 5. Epigenetic roles of ncRNAs 

The central dogma of molecular biology (Francis Crick, 1958, 1970) has been to see 

RNA as an intermediary molecule into which genomic information from DNA is 

transcribed and which is further translated into proteins. This dogma is based on the 

assumption that one gene is coding for one protein has been challenged by the 

finding that most of the genome is transcribed into non-protein coding RNAs, adding 

a new layer of complexity (Birney et al., 2007) (Figure 4). 

 

                                                  
Figure 4. New layer of complexity has been added to Cricks’ central dogma of 
molecular biology. Black; Original figure representing interconnections between DNA, RNA 
and protein, Orange; Solid arrow shows transcription of ncRNA from DNA, curved arrows 
represent impact of ncRNAs on DNA, RNA and proteins through different functions of 
ncRNAs. Modified from Crick (Crick, 1970). 
 
Non-protein coding RNAs (ncRNAs) are not translated into proteins but they are 

functional RNAs. ncRNAs could be grouped depending on their length (small<200bp 

and long or macro ncRNAs>200bp), location (nuclear enriched and cytoplasmic 

RNAs), orientation to protein coding genes (sense or antisense) and function (RNAs 

functioning in cis or in trans; housekeeping RNAs and regulatory RNAs). Already in 

1961, Jacob and Monod proposed potential interaction of sequence-specific ncRNAs 

with promoters, which could regulate genes (Jacob and Monod, 1961).  

 

Today it has been shown that a number of long/macro regulatory ncRNAs are gene 

regulators implicated in wide range of complex epigenetic phenomena such as X-

inactivation and genomic imprinting and that they are involved in development. Xist 

(X-Inactive-Specific-Transcript) ncRNA mediates whole chromosome transcriptional 

silencing during the dose compensation process in mammals. Dosage compensation 

involves inactivation of n-1 X chromosome in females, where n is the number of X 

chromosomes. Upregulation and coating of X chromosome by Xist ncRNA are the 

first signs of X-chromosome inactivation (XIC). After the coating numerous changes 

in chromatin modifications and enrichment in histone variant macroH2A are 

observed. Observed chromatin modifications on the inactive X chromosome include: 

loss of “active” modifications such as H3K9Ac and H3K4me3, H4 hypoacetylation 
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and H3K27 hypermethylation, H3K9 hypermethylation, H4K20 monomethylation as 

well as H2A K119 monoubiquitylation. The modifications lead to establishment of 

silent chromatin, which keeps X chromosome inactivated throughout the cell cycle 

(Prasanth and Spector, 2007). Xist deletion and transgene analyses showed that Xist 

ncRNA is essential for X-inactivation (Penny et al., 1996; Wutz and Jaenisch, 2000). 

Beside Xist ncRNA, Tsix, Xite (X-inactivation Intergenic Transcription Elements) and 

Jpx/Enox ncRNAs are involved in mouse dosage compensation. In mice Tsix and 

Xite together with part of the Xist 3’ region are regulating Xist ncRNA expression 

(Heard and Disteche, 2006). The exact mechanism of these RNAs involvement in X-

chromosome dosage compensation remains to be understood.  

 

The epigenetic roles of numerous macro ncRNAs involved in genomic imprinting 

show that imprinting is a valuable model in ncRNA research. An example of a long, 

non-imprinted RNA that has an epigenetic role and regulates development by 

transcriptional repression is the HOTAIR ncRNA. Human HOX genes are organized 

in 4 clusters (HOXA-D) localized on different chromosomes. HOX proteins are 

transcription factors regulating correct body axis development. Among 231 ncRNAs 

mapped in human HOX clusters in 11 fibroblast cell lines from distinct positions along 

the body axes, HOTAIR ncRNA was found in the HOXC cluster (Rinn et al., 2007). 

Knockdown of HOTAIR showed a loss of transcriptional repression, lost of 

H3K27me3 repressive histone modification and lost of PRC2 (Polycomb Repressor 

Complex 2) in a 40kb region of the HOXD cluster while expression of the HOXC 

cluster was not influenced. These findings by Rinn et al. (2007) and an experiment 

where PRC2 pull-down showed a specific interaction with HOTAIR, are suggesting 

the epigenetic pathway of the HOTAIR ncRNA action in development (Woo and 

Kingston, 2007).  

 

An example of a ncRNA that regulates development by transcription activation is Evf-

2. This 3.8kb long ncRNA is found in mouse to form a stable complex with Dlx-2 

(homeodomain protein important for development of neural system) that stabilizes an 

interaction between the Dlx-2 and Dlx5/6 enhancer leading to activation of 

transcription of target genes (Feng et al., 2006). 

 

Epigenetic roles have also been described for four small regulatory RNAs classes 

(small nucleolar RNAs (snoRNAs), micro RNAs (miRNAs), short interfering RNAs 

(siRNAs) and piwi- interacting RNAs (piRNAs)). SnoRNAs guide 2’-O-ribose 

methylation and pseudouridylation to nucleotides of ribosomal RNAs (rRNAs), 
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transfer RNAs (tRNAs), spliceosomal snRNAs and possiblly mRNAs (Bachellerie et 

al., 2002). SNORD115 (HBII-52) is a snoRNA with a different function: regulating 

alternative splicing of the serotonin receptor 2C (Kishore and Stamm, 2006). 

SnoRNAs can also be processed to small RNAs that can function as miRNAs as for 

example with the ACA45 snoRNA (Ender et al., 2008).  

 

MiRNAs have roles in post-transcriptional gene regulation, reviewed in (Malone and 

Hannon, 2009; Mattick and Makunin, 2005). MiRNAs are 21-25bp in length. They are 

transcribed by RNA Polymerase II (Borchert et al., 2006; Lee et al., 2004) or RNA 

Polymerase III (Borchert et al., 2006) as primary RNA (pri-miRNAs) and processed 

by a complex containing Drosha (RNaseIII) to pre-miRNAs (hairpin structured) and 

further transported to the cytoplasm where Dicer (RNaseIII) generate a short dsRNA 

that is unwound leading to a single stranded mature miRNA. MiRNAs are 

incorporated into miRNPs (micro ribonuclear particles) which in mammals usually 

target complementary or partially complementary 3’UTRs of protein coding genes 

mRNAs and can in most cases suppress translation (imperfect match) or cleave 

target mRNAs (perfect match). Alterations in their activities are associated with 

cancer and numerous diseases.  

 

SiRNAs are 20-25 nucleotides in length and processed similarly to miRNAs. 

Precursors of siRNAs are endogenous or exogenous double-stranded RNAs (e.g. 

viral). Dicer directly cuts these precursors and produces short RNAs that together 

with Argonaute (AGO) proteins form RISC (RNA-induced silencing complex) where 

just one strand of the short RNAs is retained (reviewed in (Mattick and Makunin, 

2005)). Endogenous siRNAs were found in mammals for the first time in 2008 when 

Tam et al. (Tam et al., 2008), as well as Watanabe et al. (Watanabe et al., 2008) 

showed their presence in mouse oocytes. Interestingly, Tam et al., found that 

endogenous siRNAs are processed from double-stranded RNAs formed when 

protein-coding transcripts are hybridized to their homologous pseudogene 

transcripts, or from inverted pseudogene transcripts alone. They showed regulatory 

activity of these siRNAs in repression of mobile genetic elements. Further, Watanabe 

et al., found that numerous 21bp endogenous siRNAs found in mouse oocytes 

correspond to mRNAs or retrotransposons and function in the regulation of gene 

expression. Synthetic siRNAs are used as an important tool in removal of targeted 

mRNAs and have potential to be used as therapeutic agents.  
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PiRNAs were discovered in 2006 (Aravin et al., 2006; Girard et al., 2006; Grivna et 

al., 2006; Watanabe et al., 2006). These small ncRNAs are associated with germline 

specific Piwi proteins (Argonaute protein family). Two classes of Piwi proteins (MIWI 

and MILI) have been found to associate with piRNAs. MIWI associated piRNAs are 

30-31 bp long while MILI associated are 26-28bp in length (reviewed in (Thomson 

and Lin, 2009)). The epigenetic roles of these small RNAs are still unclear. Xu at al. 

(2008) showed the potential role of piRNAs in repression of transposons since 

deletion of piRNA cluster in mice leads to increased transposon activity (Xu et al., 

2008). Evidence that piRNAs are involved in directing de novo DNA methylation by 

an as yet unknown mechanism are reviewed by Aravin and Bourc’his (Aravin and 

Bourc'his, 2008).  

 

Current understanding of epigenetic roles of long and small regulatory RNAs has 

been described. Regulatory RNAs are recently recognized as “Epigenetic Initiators” 

whose known role in epigenetic pathways are predicted to be the “tip of the iceberg” 

that remain to be uncovered.  

 

1. 2. Genomic imprinting as a model in ncRNA research 

 

1. 2. 1. Genomic imprinting is an epigenetic phenomenon 

Genomic imprinting is an epigenetic phenomenon that restricts expression of a gene 

to one of two parental chromosomes. While most genes are expressed from both 

parental alleles in diploid cells, imprinted genes show paternal or maternal 

monoallelic expression. Different epigenetic mechanisms involving DNA methylation, 

chromatin modifications and ncRNAs lead to monoallelic expression of imprinted 

genes from just one of two identical DNA copies. The imprinted status of genes is 

clearly a heritable epigenetic phenomenon that is passed through cell divisions.   

 

1. 2. 2. Discovery of genomic imprinting 

The discovery that the genomes of sperm and egg are different originates from the 

mid 1970’s. For example, Linder et al. (Linder et al., 1975) showed that the 

developmental potential of human oocytes depends on the parental genome driving 

that development. While normal ovarian germ cells have both the mothers’ and 

fathers’ set of chromosomes, Linder showed that they can give rise to two kinds of 

tumors: teratomas that are gynogenetic (two mothers’ chromosome sets) and 

hydatidiform mole that are androgenetic (two fathers’ chromosome sets). The 

observation that these two tumors are histopathologically very different: teratomas 
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are consisting of all three germinative layers while hydatiform mole contains only 

trophoblast elements, indicated a difference between the parental genomes. The 

development of nuclear transfer technology used in experiments examining mouse 

parthenogenesis in 1980’ directly showed that both parental genomes are required 

for the embryo to develop (McGrath and Solter, 1984; Surani et al., 1984). After 

removing the male or female pronucleus from one fertilized egg and adding one of 

two parental pronuclei to the same egg three kinds of diploid embryos were obtained: 

wildtype with one maternal and one paternal nucleus, gynogenetic with two maternal 

genomes and androgenetic with two paternal genomes. Both gynogenetic and 

androgenetic embryos were lethal, whereas the wild type survived. This explained 

why there is no parthenogenesis in mammals and posed the question of the 

difference between the parental genomes indicating that this difference could be in 

the parental specific expression of developmentally important genes. The first 

imprinted genes were found in 1991, when Igf2r (Insulin-like growth factor type 2 

receptor) was shown to be maternally expressed (Barlow et al., 1991), Igf2 was 

found to be paternally expressed (Insulin-like growth factor type 2) (DeChiara et al., 

1991; Ferguson-Smith et al., 1991) and H19 (Hepatic library clone 19) non-coding 

RNA was shown to be a maternally expressed imprinted gene in mouse (Bartolomei 

et al., 1991). These findings led to the discoveries of more imprinted genes and to 

the establishment of the genomic imprinting field. 

 

1. 2. 3. Evolution of genomic imprinting 

Genomic imprinting evolved independently at least three times. This phenomenon is 

present in angiospermic plants (e.g. Arabidopsis), in some Insecta (e.g. Sciara, 

Coccidae) and in Therian Mammals (Das et al., 2009). In plants a small subset of 

genes is imprinted in endosperm by a mechanism involving targeted demethylation 

leading to activation of the expressed allele (Scott and Spielman, 2006), while in 

Insecta the whole paternal genome heterochromatization is named genomic 

imprinting (Khosla et al., 2006).  

 

Genomic imprinting in Therian mammals is complex and a number of hypotheses 

have attempted to describe: 1) how the imprinting mechanism arose and 2) the 

evolutionary driving force that could explain why imprinting arose around 125 million 

years ago and is still present in Therian Mammals. “The host defense” hypothesis is 

one of the rare hypotheses addressing directly the mechanism of how imprinting 

arose (Barlow, 1993). This hypothesis raises the possibility that in order to defend the 

host genome retrotransposons and foreign DNA were DNA methylated and 
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repressed, and this system also methylated imprinted genes. The existence of 

retrotransposed imprinted genes e.g. PEG10 could support this theory.  

 

Theories about the potential adaptive advantage gained by imprinting in mammals 

are specially addressed in order to explain the obvious disadvantage resulting from 

the nature of imprinting: monoallelic expression of genes cause functional haploidy, 

thus all mutations of imprinted genes are dominant (imprinted expression leads to 

increased risk of genetic diseases and cancer). The “Parental conflict” hypothesis 

(Moore and Haig, 1991) proposes that paternally expressed imprinted genes 

increase growth leading to the enhancement of fitness of the offspring carrying the 

paternal genome while maternally expressed imprinted genes suppress fetal growth 

maximizing reproductive fitness of mother thus enhancing transmission of maternal 

genome to more offsprings with the potentially different paternal genomes. Imprinting 

has evolved in response to viviparity and polygamy according to this hypothesis.  

 

“Trophoblast defense” or “ovarian time bomb” hypothesis (Varmuza and Mann, 1994; 

Weisstein et al., 2002) propose that imprinting evolved in order to protect oocytes 

and thus female mammals from ovarian teratomas. Imprinted genes “defend” mother 

from potential malignant trophoblast formation that could arose from 

partenogenetically activated oocytes developing into ovarian teratomas. Thus 

selective pressure through evolution would favor females with imprinted genes not 

developing lethal trophoblast disease. Trophoblast is an invading part of the placenta 

that mediates implantation of fetus to the mothers’ uterus. Thus silencing of the 

genes functioning to promote placental development and activation of the genes 

limiting placental development by imprinting is expected to “defend” the mother from 

cancer development.  

 

Further, Kono hypothesized that imprinting may evolve as a defense against 

parthenogenesis to select for sexual reproduction (Kono, 2006). The hypothesis that 

imprinted expression has evolved in order to regulate development (the 

complementation hypothesis) is proposed by Kaneko-Ishino (Kaneko-Ishino et al., 

2006). Imprinting is proposed to evolve on the basis of dosage compensation 

required for duplicated genes by Walter and Paulsen (Walter and Paulsen, 2003). 

Recently, the theory of “coadaptation” links evolution of imprinting with its role in 

regulation of embryonic development and reproductive behavior (Keverne and 

Curley, 2008).  
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As described, theories deciphering the mechanism how imprinting arose and the 

evolution of imprinting are proposed and are more or less supported with novel 

findings in imprinting research. Potentially, imprinting could have evolved by different 

mechanisms at different loci (Renfree et al., 2009), but further analysis of the 

imprinting mechanism in different species and mammalian lineages is needed to fulfill 

our understanding of imprinting.  

 

1. 2. 4. Key features of genomic imprinting  

Genomic imprinting involves a cis-acting mechanism affecting one parental 

chromosome and leading to differences between paternal and maternal alleles. 

Genes affected by genomic imprinting are usually clustered. Imprinted gene clusters 

consists of protein-coding gene mRNAs and often include of macro ncRNAs that 

show reciprocical imprinted expression. Each set of imprinted genes residing in one 

cluster has a common regulator known as imprinting control element (ICE). Imprinted 

gene clusters are of different lengths that are up to 4Mb for the human PWS cluster 

(UCSC genome browser). Some imprinted genes are “orphans” and belong to micro-

imprinted gene clusters (e.g. Nap1l5 (Evans et al., 2001)).  

 

The presence of an imprint control element (ICE) is one of the key features of 

genomic imprinting. ICEs are defined by deletion experiments as DNA elements 

whose epigenetic state controls expression of all imprinted genes in their clusters 

(Koerner and Barlow, 2010). The ICE is DNA methylated on one allele where its 

function is repressed and is unmethylated on another allele where it can function as a 

repressor in three potential ways (Kaneda et al., 2004; Koerner and Barlow, 2010). In 

the mouse Igf2 (insulin growth factor 2) imprinted gene cluster, the unmethylated ICE 

binds the CTCF protein and acts as an insulator since its’ binding blocks influence of 

enhancers on the Igf2 gene leading to the absence of Igf2 expression from the 

chromosome with the unmethylated ICE (Hark et al., 2000). In mouse the Igf2r and 

Kcnq1 imprinted gene regions unmethylated ICEs contain promoters for Airn and 

Kcnq1ot1 macro ncRNAs respectively. These ncRNAs are expressed from 

unmethylated ICE and are repressing protein-coding genes in cis. A third possibility 

for the function of unmethylated ICE is shown in the mouse H13 imprinted gene 

cluster where the unmethylated ICE contains active promoter of the Mcts2 retrogene 

causing expression of truncated H13 transcripts (Wood et al., 2008).  

 

Gametic DMRs (Differentially Methylated Regions) are methylated on only one 

parental allele, are set in parental gametes (mechanism described in 1.1.3.) and 
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have a function as an ICE. After fertilization, genome-wide reprogramming of DNA 

methylation takes place, but gametic imprints are not reprogrammed and are 

maintained on the same parental chromosome in all cells up to the adult stage. Germ 

cells of embryonic gonads are the only cells where gametic imprints are erased at a 

stage before the sex of the embryo is determined. With the development of mature 

gonads parent specific imprints are again established in gametes (Barlow, 2007). 16 

gametic DMRs are found in mice and have been shown to be maternally (13) or 

paternally (3) methylated (Table 3, Table 4, section 1.2.5.). In human 6 gametic 

DMRs have been identified to be maternally (4) or paternally (2) mathylated (Table 3, 

Table 4, section 1.2.5.). The low number of known human gametic DMRs may be 

due to of difficulties in obtaining human oocytes.  

 

Gametic DMRs often contain a series of tandem direct repeats (Hutter et al., 2006; 

Neumann et al., 1995; Paoloni-Giacobino et al., 2007; Sleutels et al., 2002). The role 

of tandem direct repeats has been examined for Snurf/Snrpn, Kcnq1 and Igf2r DMRs 

using transgenic mice. Authors proposed that tandem repeats could have a role in 

the establishment and maintenance of parental specific methylation (Reinhart et al., 

2002; Reinhart et al., 2006).  

 

DMRs show common histone modification signatures named DHMs (Differential 

Histone Modifications). For example our lab showed that the DNA methylated alleles 

of DMRs are enriched in H3K9me3 and H4K20me3, whereas the unmethylated 

alleles have H3K4me3, H3K4me2 and H3K9Ac marks (Regha et al., 2007). Genome-

wide chromatin maps in mouse ES cells showed that overlapping H3K4m3 and 

H3K9me3 are common signatures of an ICE (Mikkelsen et al., 2007) (described in 

Table 2, 1.1.4). 

 

Second class of DMRs are somatic DMRs that are erased during post-fertilization 

reprogramming of DNA methylation marks and are set in somatic cells of post-

implantation embryos. Numerous human DMRs have been found, yet if they are 

somatic or gametic remains to be tested.  

 

One of the key features of genomic imprinting is cis-regulation of imprinted genes 

over long genomic distances leading to their parental specific monoallelic expression. 

Genes showing imprinted expression can be maternally or paternally expressed, 

from the mother or father’s chromosome respectively. Tissue and developmental 

stage specific differences in parent-of-origin specific imprinted expression are 
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proposed to exist due different “readers” of imprints. For example, specific 

transcription factors could influence imprinting expression and lead to expression 

variation of imprinted genes in tissues and in development. Both protein coding 

genes and non-protein coding RNAs can be imprinted and show parental specific 

imprinted expression.  

 

1. 2. 5. Human and mouse imprinted gene regions 

Imprinted gene regions could be defined as genomic regions where at least one gene 

showing imprinted expression has been located, although most regions contain more 

genes (between 2-15) that form an imprinted gene cluster. 26 imprinted gene regions 

exist in mouse according to the Harwell web site 

(http://www.mousebook.org/catalog.php?catalog=imprinting) while 27 imprinted gene 

regions are found in human (Figure 5). Although, the epigenetic initiator responsible 

for silencing has been identified in some clusters, the mechanisms of silencing are 

not so well defined and the borders of many imprinted gene regions are unclear. For 

example, some imprinted genes considered by one research group as parts of a 

separate imprinted regions are considered by other groups using different criteria as 

just border genes of an adjacent region. Thus, 25 to 30 imprinted gene regions in 

both mouse and human could be provisionally defined. 
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Figure 5. 8 out of 27 human imprinted gene regions express a macro ncRNA. Human 
imprinted gene regions are located on 14 out of 22 autosomes. Red filled boxes; locations of 
imprinted gene regions, Bold black letters; human imprinted gene regions named according to 
the gene with “central” position in the cluster, Blue; paternally methylated, Red; maternally 
methylated, Black non-filled boxes; Known macro ncRNAs. 
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1. 2. 5. 1. Six well-studied imprinted gene regions in human and mouse 

Six imprinted gene regions (e.g. mouse Igf2r, Igf2, Kcnq1, Dlk1, Gnas and Pws/As) 

have been well-studied in mouse and human and are used as valuable models for 

macro ncRNA research since each of them contain at least one macro ncRNA 

(Koerner et al., 2009). Table 3 shows a comparison between known gametic 

methylation marks that are imprint control elements (ICEs) in six well-studied 

imprinted gene regions in mouse and human. Gametic DMR locations in these 

regions are conserved, as well as, the pattern of parental specific methylation. 

Gametic DMRs found to be paternally methylated typically lie upstream of ncRNAs 

promoters, while maternally methylated DMRs contain macro ncRNAs promoters.  

 
Imprinted gene region 
(chromosome positon) Gametic DMR (gDMR) 

Mouse Human Mouse Human 

Gnas (chr2) GNAS (chr20) 
GNAS-

DMR(Williamson et al., 
2004) 

 
*EXON1A-DMR(Liu et 

al., 2000) 
 

Pws/As (chr7) PWS/AS (chr15) PWS-IC(Yang et al., 
1998) 

Bipartite IC: PWS-
SRO(Sutcliffe et al., 

1994; Zeschnigk et al., 
1997), AS-SRO(Buiting 

et al., 1999) 

Igf2 (chr7) IGF2 (chr11) H19 DMD(Tremblay et 
al., 1997) 

ICR1(Jinno et al., 
1996) 

Kcnq1 (chr7) KCNQ1 (chr11) KvDMR1(Fitzpatrick et 
al., 2002) 

ICR2(Beatty et al., 
2006) 

Dlk1 (chr12) DLK1 (chr14) IG-DMR(Lin et al., 
2003) 

IG-DMR(Geuns et al., 
2007) 

Igf2r (chr17) IGF2R (chr6) DMR2(Sleutels et al., 
2002) 

*CGI-2 (Smrzka et al., 
1995) 

Table 3. Gametic DMRs and parental origin of methylation are conserved between 
mouse and human. Names of the imprinted gene regions and chromosome positions have 
been shown. Gametic DMRs (gDMRs) residing in well-studied imprinted regions, designated 
with the common literature name are presented. Green; paternally methylated, Orange, 
maternally methylated, * DMRs not tested if gametic or somatic but predicted from mouse 
data to be gametic 

 
Our survey of genes showing imprinted expression in mouse and human well-studied 

imprinted gene regions shows global conservation of imprinted expression in these 

regions (Table 4). Each well-studied imprinted gene region contains at least one 

macro ncRNA. Some of these ncRNAs are hosts for small RNAs e.g. miRNAs and 

snoRNAs, which if tested show the same parental imprinted expression as their 

precursor macro RNAs. 
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Imprinted gene region 

(chromosome position) 
Imprinted 

protein coding genes Imprinted macro ncRNAs Small ncRNA 
host 

Mouse Human Mouse Human Mouse Human Mouse Human 

Gnas 
(chr2) 

GNAS 
(chr20) 

Nesp(Peters et al., 
1999) 

Gnasxl(Peters et al., 
1999) 

Gnas(Williamson et 
al., 1996) 

XLαS(Hayward et 
al., 1998a) 

NESP55(Hayward 
et al., 1998b) 

GS-α(Hayward et 
al., 2001) 

Nespas(Wroe et 
al., 2000) 
Exon1A 

(Li et al., 2000) 

SANG 
(Hayward and 

Bonthron, 2000) 
EXON1A 

(Liu et al., 2000) 

- hsa-mir-296, 
hsa-mir-298 

Pws/As 
(chr7) 

PWS/ 
AS 

(chr15) 

Atp10a∗ 
(Kashiwagi et al., 

2003; Kayashima et 
al., 2003a) 

Ube3a(Albrecht et al., 
1997) 

Snrpn(Leff et al., 
1992) 

Snurf(Gray et al., 
1999) 

Ndn(MacDonald and 
Wevrick, 1997; 

Watrin et al., 1997) 
Magel2(Boccaccio et 

al., 1999) 
Mkrn3(Jong et al., 

1999a) 
Peg12 

(Chai et al., 2001; 
Kobayashi et al., 

2002) 

ZNF127(Jong et al., 
1999b) 

NDN(MacDonald 
and Wevrick, 1997) 
MAGEL2(Boccaccio 

et al., 1999) 
SNURF(Gray et al., 

1999) 
SNRPN(Glenn et 

al., 1993) 
UBE3A(Rougeulle 

et al., 1998) 
ATP10A(Meguro et 

al., 2001) 
GABRG3∗ 

(Hogart et al., 2007; 
Meguro et al., 1997) 

GABRG5∗ 
(Hogart et al., 2007; 
Meguro et al., 1997) 

Zfp127as 
(Jong et al., 

1999b) 
AK014392 

(Nikaido et al., 
2003) 
[Lncat 

(Landers et al., 
2004; Le Meur et 

al., 2005) 
Ipw(Wevrick and 
Francke, 1997) 

Ube3a-
as(Chamberlain 
and Brannan, 

2001) 
Pec2(Buettner et 

al., 2005) 
Pec3 

(Buettner et al., 
2005)]*** 

 

ZNF127AS 
(Jong et al., 

1999b) 
[UBE3A-

AS(Rougeulle et 
al., 1998) 
PWCR1 

(de los Santos et 
al., 2000) 

IPW(Wevrick et 
al., 1994) 

PAR1(Sutcliffe et 
al., 1994) 

PAR5(Sutcliffe et 
al., 1994) 

PAR-SN(Ning et 
al., 1996))]*** 

 

Snord6 
(MBII-

13)(Cavaill
e et al., 
2000) 

Snord115(
MBII-

52)(Cavaill
e et al., 
2000) 

Snord116 
(MBII-85) 

 

HBII-85 
(Cavaille et 
al., 2000) 
HBII-52 

(Cavaille et 
al., 2000) 

Igf2 
(chr7) 

IGF2 
(chr11) 

Igf2(DeChiara et al., 
1991) 

Ins(Deltour et al., 
1995; Giddings et al., 

1994) 
 

IGF2(Giannoukakis 
et al., 1993) 

INS(Moore et al., 
2001) 

 

H19(Bartolomei 
et al., 1991) 

91H(Berteaux et 
al., 2008) 

Igf2as(Moore et 
al., 1997) 

H19(Zhang and 
Tycko, 1992) 

91H(Berteaux et 
al., 2008) 
IGF2AS 

(Okutsu et al., 
2000) 

- 

miR-675 
(Cai and 
Cullen, 
2007) 

Kcnq1 
(chr7) 

KCNQ1 
(chr11) 

Th(Schulz et al., 
2006) 

Ascl2(Guillemot et al., 
1995) 

Tspan32(Umlauf et 
al., 2004) 

Cd81(Umlauf et al., 
2004) 

Tssc4(Paulsen et al., 
2000) 

Kcnq1(Gould and 
Pfeifer, 1998; 

Paulsen et al., 1998) 
Cdkn1c(Hatada and 

Mukai, 1995) 
Msuit1(Onyango et 

al., 2000) 
Slc22a18(Dao et al., 

1998) 
Phlda2(Qian et al., 

1997) 
Nap1l4(Engemann et 

al., 2000) 
Tnfrsf23(Clark et al., 

2002) 
Osbpl15(Engemann 

et al., 2000) 
Dhcr7(Schulz et al., 

2006) 

KCNQ1(Lee et al., 
1997) 

KCNQ1DN 
(Xin et al., 2000) 

CDKN1C(Matsuoka 
et al., 1996) 

SLC22A18AS 
(Bajaj et al., 2004) 

SLC22A18 
(Dao et al., 1998) 

PHLDA2(Qian et al., 
1997) 

OSBPL5(Higashimo
to et al., 2002) 

TRPM5(Prawitt et 
al., 2000) 

Kcnq1ot1 
(Lee et al., 1999; 
Smilinich et al., 

1999) 

KCNQ1OT1 
(Smilinich et al., 

1999) 
- - 

Dlk1 
(chr12) 

DLK1 
(chr14) 

Begain(Tierling et al., 
2009) 

Dlk1(Schmidt et al., 
2000) 

Mico1(Labialle et al., 
2008) 

Mico1os(Labialle et 
al., 2008) 

Rtl1(Seitz et al., 
2003) 

Dio3(Tsai et al., 
2002) 

DLK1(Wylie et al., 
2000) 

[Gtl2(Miyoshi et 
al., 2000) 

Rtl1as(Seitz et 
al., 2003) 

Rian(Hatada et 
al., 2001) 
AK050713 

(Hagan et al., 
2009) 

AK053394 
(Hagan et al., 

2009)]*** 

GTL2(Miyoshi et 
al., 2000) 

C/D 
snoRNAs(C

availle et 
al., 2002) 

Mirg 
(Seitz et al., 

2004) 
miRNAs(Se

itz et al., 
2004; Seitz 
et al., 2003) 

has 
mir-

154(William
s et al., 
2007) 

hsa-mir-335 
SNORD 

113, 
SNORD 

114 

Igf2r 
(chr17) 

IGF2R 
(chr6) 

Igf2r(Barlow et al., 
1991) 

Slc22a2(Zwart et al., 
2001) 

Slc22a3(Zwart et al., 
2001) 

IGF2R∗∗(Xu et al., 
1993) 

SLC22A2(Monk et 
al., 2006) 

SLC22A3(Monk et 
al., 2006) 

Airn 
(Lyle et al., 

2000; Wutz et 
al., 1997) 

AIRN(Yotova et 
al., 2008) - - 

Table 4. Each well-studied imprinted gene region expresses at least one macro ncRNA 
in mouse and human. Imprinted expression of both protein coding genes and ncRNAs is 
globally conserved. Blue; paternally expressed genes, Red; maternally expressed genes, 
Black; genes showing imprinted expression in one of the species but not tested in another, ∗; 
Conflicting data, ∗∗; Polymorphic imprinting; [ ]***; Suggested to represent one long macro 
ncRNA. 
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Although most imprinted genes show conserved imprinted expression, the Igf2r 

imprinted gene region is an example that shows differences between human and 

mouse. In mouse, ubiquitous imprinted expression has been found for both Igf2r and 

Airn ncRNA in fetal, extra-embryonic and adult tissues (with the exception of neurons 

and ES cells), while the Slc22a2 and Slc22a3 genes have placental specific 

imprinted expression (Monk et al., 2006; Yamasaki et al., 2005). In human, the 

IGF2R, SLC22A2 and SLC22a3 genes are largely biallelically expressed, but show 

polymorphic imprinted expression in placenta, early fetal tissue, lymphoblastoid cells, 

cultured amniotic cells and Wilms’ tumors (Monk et al., 2006; Oudejans et al., 2001; 

Smrzka et al., 1995; Xu et al., 1993). Interestingly, the human IGF2R intron 2 CpG 

island (CGI-2) is maternally methylated, in the same position as the mouse gDMR 

(gDMR2, Table 3), in all tested fetal and adult tissues (Smrzka et al., 1995). Human 

AIRN ncRNA is expressed from the CGI-2 promoter in Wilms’ tumor cell line and 16-

40% of Wilms’ tumor patients, but has not been tested for imprinted expression 

(Yotova et al., 2008).  

 

The genomic organization of six well-studied human imprinted gene regions is shown 

in Figure 6. Differentially methylated regions (DMRs) are present in each region. 11 

DMRs including 7 maternally methylated and 4 paternally methylated are shown. 5 

are gametic DMRs (including 2 that are the parts of the bipartite IC in the PWS 

imprinted gene region), 2 are somatic, while for 4 it is still not tested if are gametic or 

somatic. Each of 6 well-studied imprinted gene regions has at least one macro 

ncRNA. 5 of these macro ncRNA are paternally expressed, 2 are maternally 

expressed while for AIRN imprinted status is not known.  
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Figure 6. Six well-studied human imprinted gene clusters. Each cluster expresses a 
macro ncRNA. Differentially methylated regions (DMRs) are present in each cluster. Red; 
transcription from mothers’ chromosome, Blue; transcription from fathers’ chromosome, Grey; 
parental origin not tested, Black arrow; transcription direction of protein coding gene, Wavy 
orange line; macro ncRNA expression, Pale orange box; small ncRNA (snoRNAs, miRNAs) 
clusters, Yelow circle; maternally specific methylation, Green circle; paternally specific 
methylation, gDMR; gametic DMR, sDMR; somatic DMR, *DMR; not tested if DMR is gametic 
or somatic 
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1. 2. 5. 2. Less-studied imprinted gene regions in human and mouse 

A survey of the literature for gametic DMRs (Table 5) and imprinted gene expression 

(Table 6A, Table 6B) in less-studied mouse and human imprinted gene regions 

shows that further study of these regions is necessary in order to understand the 

mechanisms of genomic imprinting in these regions.  While most of less-studied 

imprinted regions are conserved between mouse and human, some are not or still 

lack examination to the same extent in both species. In mouse 24 less-studied 

imprinted gene regions, 9 maternally methylated and 1 paternally methylated DMRs 

have been previously found and shown to be gametic, while in 21 human regions 8 

maternally methylated DMRs have been found (1/8 located in GRB10 region has 

been shown as gametic while 7 were not tested).  

 
Imprinted gene region 

(chromosome position) Gametic DMR (gDMR) 

Mouse Human Mouse Human 
Zdbf2 (chr1) ZDBF2 (chr2) DMR 10kb upstream 

Zdbf2(Kobayashi et al., 2009) - 

Sfmbt2 (chr2) - - - 
Gatm (chr2) - - - 

HM13 (chr2) HM13 (chr20) Mcts2 DMR(Wood et al., 2007b; 
Wood et al., 2008) - 

Nnat (chr2) NNAT (chr20) Nnat DMR(Kikyo et al., 1997) Nnat DMR not tested for gametic(Evans et al., 
2001) 

Mkrn1-ps1 (chr5) - - - 

Calcr-Dlx5 (chr6) CALCR-DLX5 
(chr7) 

Exon1 Peg10/SGCE DMR(Ono et al., 
2003) 

Exon1 SGCE DMR not tested for 
gametic(Grabowski et al., 2003) 

Mest (chr6) MEST (chr7) Mest promoter DMR(Lucifero et al., 
2002) 

5’ of MEST DMR not tested for 
gametic(Riesewijk et al., 1997) 

Nap1l5 (chr6) NAP1L5 (chr4) Nap1l5 promoter DMR(Smith et al., 
2003; Wood et al., 2007b) - 

Zim2 (chr7) ZIM2 (chr19) - - 
Ampd3 (chr7) - - - 

Inpp5f (chr7) INPP5F (chr10) CpG 5’Inpp5f_v2 DMR(Wood et al., 
2007b) - 

Rasgrf1 (chr9) - 30kb 5’Rasgrf1(Pearsall et al., 1999) - 

Plagl1 (chr10) PLAGL1 (chr6) Hymai DMR(Arima and Wake, 2006) HYMAI DMR not tested for gametic(Arima et 
al., 2001) 

Dcn (chr10) - - - 
Grb10 (chr11) GRB10 (chr7) Grb10 DMR(Arnaud et al., 2003) CGI2 DMR(Arnaud et al., 2003) 

Commd1 (chr11) - - - 
Pde4d (chr13) - - - 
Htr2a (chr14) HTR2A (chr13) - - 
Kcnk9 (chr15) KCNK9 (chr8) Peg13 DMR(Ruf et al., 2007) - 

Slc38a4 (chr15) - - - 
Impact (chr18) - - - 

Tbc1d12 (chr19) - - - 
Xist (chrX) - - - 

- TP73 (chr1) - - 

- DIRAS3 
(chr1) - DMRs CpGI,II,III in DIRAS3 gene not tested 

for gametic(Yu et al., 1999; Yuan et al., 2003) 
- PRIM2 (chr6) - - 
- ZNF215 (chr11) - - 

- WT1 (chr11) - WT1 ARR DMR not tested for 
gametic(Dallosso et al., 2004) 

- SDHD (chr11) - - 
- ZNF597 (chr16) - - 
- ZNF331 (chr19) - - 

- L3MBTL (chr20) - CPG 3, 4 promoter 2 L3MBTL DMR not tested 
for gametic(Li et al., 2004) 

Table 5. Methylation status of gametic DMRs in 24 mouse and 21 human less-studied 
imprinted gene regions is mostly conserved. Imprinted gene regions are named according 
to the gene located on the “central” position in the region. Parental methylation status is 
coserved between mouse and human but human typically lacks the test if observed 
methylation is set in gametes due to problems in obtaining human oocytes. 10 gametic DMRs 
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are listed for mouse imprinted gene regions (9 maternally methylated and 1 paternally 
methylated) while one gametic maternally methylated DMR is confirmed in human GRB10 
region and 7 more are found to be maternally expressed. Green; paternally methylated, 
Orange; maternally methylated, -; not tested. 
 

Imprinted gene region 
(chromosome position) 

Imprinted 
protein coding genes 

Imprinted macro 
ncRNAs 

Imprinted expression 
of  

small ncRNAs 
Mouse Human Mouse Human Mouse Human Mouse Human 
Zdbf2 
(chr1) 

ZDBF2 
(chr2) 

Gpr1(Mishima et al., 1990) 
Zdbf2(Kobayashi et al., 2009) 

ZDBF2(Kobayashi et al., 
2009) - - - - 

Sfmbt2 
(chr2) - Sfmbt2(Kuzmin et al., 2008) - - - - - 

Gatm 
(chr2) - Gatm(Sandell et al., 2003) 

No imprinted 
expression(Monk et al., 

2006) 
- - - - 

HM13 
(chr2) 

HM13 
(chr20) 

HM13a, b, c(Wood et al., 2007b; 
Wood et al., 2008) 

HM13d, e(Wood et al., 2008) 
Mcts2(Wood et al., 2007b) 

MCTS2(Wood et al., 
2007b) - - - - 

Nnat 
(chr2) 

NNAT 
(chr20) 

Nnat(Kagitani et al., 1997) 
Blcap_v1a(Schulz et al., 2009) 
Blcap_v2a(Schulz et al., 2009) 

NNAT(Evans et al., 2001) 
BLCAP_V1a,b,c 

(Schulz et al., 2009) 
BLCAP_V2a(Schulz et al., 

2009) 

- - - - 

Mkrn1-
ps1 

(chr5) 
- 

Mkrn1-ps1∗ 
(Gray et al., 2006; Hirotsune et 

al., 2003) 
- - - - - 

Calcr-
Dlx5 

(chr6) 

CALCR-
DLX5 
(chr7) 

Calcr(Hoshiya et al., 2003) 
Tfpi2(Monk et al., 2008) 

Casd1(Babak et al., 2008) 
Sgce(Monk et al., 2008) 
Peg10(Ono et al., 2001) 

Neurabin(Monk et al., 2008; Ono 
et al., 2001) 

Pon3(Ono et al., 2001) 
Pon2(Ono et al., 2001) 

Asb4(Mizuno et al., 2002) 
Dlx5∗(Horike et al., 2005; Schule 

et al., 2007) 

PEG10(Ono et al., 2001) 
GNGT1(Okita et al., 2003) 
CALCR(Okita et al., 2003) 
SGCE(Grabowski et al., 

2003) 
PPP1R9A(Nakabayashi et 

al., 2004) 
PON1(Okita et al., 2003) 
DLX5∗(Okita et al., 2003; 

Schule et al., 2007) 
APS(Okita et al., 2003) 

- - - - 

Mest 
(chr6) 

MEST 
(chr7) 

Mest(Kaneko-Ishino et al., 1995) 
Copg2(Lee et al., 2000) 

Klf14(Parker-Katiraee et al., 
2007) 

MEST(Kobayashi et al., 
1997) 

COPG2*(Blagitko et al., 
1999; Yamasaki et al., 

2000) 
CPA4(Kayashima et al., 

2003b) 
KLF14(Parker-Katiraee et 

al., 2007) 

Copg2as1 
(Lee et al., 

2000) 
Copg2as2 
(Lee et al., 

2000) 

MESTIT
1(Li et 

al., 
2002) 
MIT1 

(Yamasa
ki et al., 
2000) 

Mirn-
335(Royo 

and 
Cavaille, 

2008) 

- 

Nap1l5 
(chr6) 

NAP1L5 
(chr4) 

Nap1l5(Smith et al., 2003; Wood 
et al., 2007b) 

NAP1L5(Wood et al., 
2007b) - - - - 

Zim2 
(chr7) 

ZIM2 
(chr19) 

Zim2(Kim et al., 2004) 
Zim1(Kim et al., 1999) 

Apeg3(Choo et al., 2008) 
Peg3(Kaneko-Ishino et al., 1995) 

Usp29(Kim et al., 2000) 
Zim3(Kim et al., 2001) 

Zfp264(Kim et al., 2001) 

ZIM2(Kim et al., 2004) 
ITUP1(Maegawa et al., 

2004) 
PEG3(Murphy et al., 2001) 

- - - - 

Ampd3 
(chr7) - Ampd3(Schulz et al., 2006) - - - - - 

Inpp5f 
(chr7) 

INPP5F 
(chr10) 

Inpp5f_v2(Choi et al., 2005) 
Inpp5f_v3(Wood et al., 2007a)  

INPP5F_V2(Wood et al., 
2007b) - - - - 

Rasgrf1 
(chr9) - Rasgrf1(Plass et al., 1996) 

As4(Nomura et al., 2008) - 
A19(de la 
Puente et 
al., 2002) 

- 
Mir184 

(Nomura et 
al., 2008) 

- 

Plagl1 
(chr10) 

PLAGL1 
(chr6) 

Plagl1(Piras et al., 2000; Smith 
et al., 2002) 

PLAGL1(Kamiya et al., 
2000) 

Hymai(Arim
a and 
Wake, 
2006) 

HYMAI 
(Inoue et 

al., 
2001) 

- - 

Dcn 
(chr10) - Dcn(Mizuno et al., 2002) 

No imprinted 
expression(Monk et al., 

2006) 
- - - - 

Grb10 
(chr11) 

GRB10 
(chr7) 

Ddc_exon1a(Menheniott et al., 
2008) 

Grb10as(Babak et al., 2008) 
Grb10α,δ(Miyoshi et al., 1998) 

Grb10β1,β2 
(Arnaud et al., 2003; Hikichi et 

al., 2003) 
Cobl(Shiura et al., 2009) 

GRB10β,γ1,γ5,γ6,ε,δ(Blagit
ko et al., 2000) 

GRB10γ1,γ2 
(Blagitko et al., 2000; 
McCann et al., 2001) 

- - - - 

Commd1 
(chr11) - 

U2af1-rs1(Hatada et al., 1993; 
Zhang et al., 2006) 

Commd1(Zhang et al., 2006) 
- - - - - 

Pde4d 
(chr13) - Pde4d(Babak et al., 2008) - - - - - 

Htr2a 
(chr14) 

HTR2A 
(chr13) Htr2a(Kato et al., 1998) HTR2A∗(Kato et al., 1996; 

Pastinen et al., 2004) - - - - 

Kcnk9 
(chr15) 

KCNK9 
(chr8) 

Kcnk9(Ruf et al., 2007) 
Trappc9(Wang et al., 2008b) KCNK9(Ruf et al., 2007) 

Peg13(Smit
h et al., 
2003) 

- - - 

Slc38a4 
(chr15) - Slc38a4(Mizuno et al., 2002; 

Smith et al., 2003) - - - - - 
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Table 6A. Imprinted expression of protein-coding genes and macro ncRNAs is mostly 
conserved between human and mouse in less-studied imprinted gene regions. 9 mouse 
imprinted gene regions express imprinted genes while homologous human regions  are not 
tested or if in two cases tested did not express imprinted genes. Blue; paternally expressed 
genes, Red; maternally expressed genes, -; not tested, ∗; conflicting data. 
 

Imprinted gene region 
(chromosome position) 

Imprinted 
protein coding genes Imprinted macro ncRNAs 

Imprinted expression 
of  

small ncRNAs 
Mouse Human Mouse Human Mouse Human Mouse Human 
Impact 
(chr18) - Impact(Hagiwara et 

al., 1997) - - - - - 

Tbc1d12 
(chr19) - 

Tbc1d12(Babak et 
al., 2008) 

Ins1∗(Deltour et al., 
1995; Giddings et 

al., 1994) 

- - - - - 

Xist 
(chrX) - 

Fthl17(Kobayashi 
et al., 2010) 

Xlr3b(Raefski and 
O'Neill, 2005) 

Xlr4b(Raefski and 
O'Neill, 2005) 

Xlr4c(Raefski and 
O'Neill, 2005) 

Rhox5(Kobayashi 
et al., 2006) 

- 
Xist(Kay et al., 

1994) 
Tsix(Lee, 2000) 

No imprinted 
expression(Migeon 

et al., 2002) 
- - 

- TP73 (chr1) - TP73(Kaghad et 
al., 1997) - - - - 

- DIRAS3 (chr1) - DIRAS3(Yu et 
al., 1999) - - - - 

- PRIM2 (chr6) - PRIM2(Pant et 
al., 2006)  - - - 

- ZNF215 (chr11) - ZNF215(Alders 
et al., 2000) - - - - 

- WT1 (chr11) - 

WT1∗(Mitsuya et 
al., 1997) 

AWT1(Dallosso 
et al., 2004) 

WT1∗(Jinno et 
al., 1994) 

No imprinted 
expression(Dallosso 

et al., 2007) 

WT1-AS(Dallosso 
et al., 2004) - - 

- SDHD (chr11) - SDHD(Badenhop 
et al., 2001) - - - - 

- ZNF597 (chr16) - ZNF597(Pant et 
al., 2006) - - - - 

- ZNF331 
(chr19) - ZNF331(Pant et 

al., 2006) - - - - 

- L3MBTL 
(chr20) 

No imprinted 
expression(Li et al., 

2005) 

L3MBTL(Li et al., 
2004) - - - - 

Table 6B. Genes from imprinted gene regions (3 mouse and 9 human) show imprinted 
expression in mouse or human. 7 more mouse regions that also show imprinted expression 
in mouse, but not in human (mostly not tested in human) were already shown in Table 6A. For 
two paternally expressed human genes (L3MBTL and WT1-AS) no imprinted expression has 
been found in mouse, while imprinted mouse Xist and Tsix ncRNAs do not show imprinted 
expression in human. Blue; paternally expressed genes, Red; maternally expressed genes, 
Black; genes showing imprinted expression in one of the species, but not tested in another, ∗; 
conflicting data, -; not tested. 
 

A census of mammalian imprinting has been published in 2005 by Morison et al. 

(Morison et al., 2005) when 112 imprinted “functional components” were found (53 

human and 96 in mice with 37 overlapping). They found a number of discordances 

between human and mouse imprinting data. Interestingly a recent review by Frost 

and Moore (Frost and Moore, 2010) examined conservation of mouse genes 

imprinted in placenta and found that up to date most of the genes showing imprinted 

expression in mouse, but not in human are exactly those that are imprinted just in the 

mouse placenta.   
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By literature search I found 126 mouse and 88 human imprinted genes or gene 

variants (Table 4, Table 6A, B). I also observed certain number of discordances, but 

similarly to the conclusion from Morison et al. (Morison et al., 2005), most of them are 

due to lack of data in one of the species or a missing the orthologous gene. ZIM2 is 

an example of the gene that shows different parental expression in human and 

mouse. Interestingly, the basis for this difference has been found: the insertion of 

Zim1 between Peg3 and Zim2 in mouse lead to the different imprinted expression of 

these genes between the species (Kim et al., 2004). 

 

By looking into parental expression of human imprinted genes I observed that a large 

majority of genes that are found to be imprinted in both mouse and human show 

expression from the same parental allele in both species. Thus, human and mouse 

imprinted genes are mostly conserved considering parental expression status, but 

still with some exceptions and the necessity for further investigation in number of 

cases where expression has not been tested in one of the species. Interestingly, a 

number of human and mouse imprinted gene regions express imprinted macro 

ncRNAs. Functions of imprinted protein coding genes and imprinted macro ncRNAs 

will be further described. 

 

1. 2. 6. Imprinted protein coding genes have diverse functions 

The evidence for the functions of imprinted genes is gained from knockouts or rare 

random mutations in mice, while natural deletions and mutations are the basis for 

finding the function of imprinted genes in human. Imprinted protein coding genes 

have diverse functions but they can be grouped into genes that affect growth, those 

with no obvious role in development and those affecting behavior through their role in 

the nervous system (mouse imprinted genes and their functions are listed on the 

Harwell web site 

http://www.har.mrc.ac.uk/research/genomic_imprinting/function.html). Numerous 

imprinted genes have a function in development by acting as a growth regulators 

among which those paternally expressed promote growth and those maternally 

expressed act as growth repressors (e.g. Igf2 and Igf2r respectively) (Barlow, 2007). 

These genes are in agreement with the “parental conflict” theory of evolution of 

genomic imprinting (described in 1.2.3.). The group of by-stander genes (genes with 

no obvious role in development) remain to be understood since they cannot be easily 

explained by any of the theories about evolution of imprinting (introduced in 1.2.3.). A 

number of imprinted genes are expressed in brain and associated with cognitive, 

behavioral and neurological disorders (lists of these genes are available at Cardiff 
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University web site http://www.bgg.cardiff.ac.uk/imprinted_tables/index.html). 

Evolution of genomic imprinting, for some genes that affect maternal care 

(nourishment and protection of a newborn) also could be explained by “parental 

conflict” theory. An example of an imprinted gene associated with a neurological 

disorder is Ub3a, the maternally expressed gene involved in Angelman syndrome 

recently found to be required for experience-dependent synapse plasticity in the 

mouse visual cortex (Sato and Stryker, 2010). 

 

1. 2. 7. Atypical biology of imprinted macro ncRNAs? 

Imprinted macro ncRNAs show parent-of-origin specific expression, are unusually 

large (defined as more than 200bp in length, but typically several hundred thousand 

nucleotides long) and do not have a continuous open reading frame (ORF). In a few 

cases it has been showed that macro ncRNAs have a methyl-7-guanosine cap 

(7mGcap) and that are RNA Polymerase (RNAP) II transcripts with polyA-tail similar 

to RNAP II mRNA transcripts. Atypical features of macro ncRNAs e.g. reduced 

splicing potential, relative unstability and nuclear retention are overviewed for mouse 

macro ncRNAs in a Table 7. In human imprinted macro RNA research, the biology of 

the majority of ncRNA transcripts remains to be tested.  
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Nespas 
Unspliced >3.35 
Spliced 1.4-15.8 
Genomic size: 

>30 

Yes Yes - - - S and 
U - - 

Exon1A 

Unspliced 
>1.1kb 
Spliced 

>1.4 
Genomic size: 

19  

Yes Yes - - - S and 
U - - 

Lncat ∼1000 No Yes 

Yes 
(Paoloni-

Giacobino et 
al., 2007) 

- - S - 
C 

(Le Meur et 
al., 2005) 

H19 2.2, Genomic 
size: 2.5 No - - 

Yes 
(Brannan et 
al., 1990) 

Yes 
(Pachnis et 
al., 1988) 

S (low 
I/E)  - 

N, C 
(Brannan et 
al., 1990) 

Igf2as 4.8, Genomic 
size: 10.7 Yes - - - - S - - 

Kcnq1ot1 ∼90 Yes Yes 

Yes 
(Paoloni-

Giacobino et 
al., 2007) 

Yes 
(Redrup et 
al., 2009) 

- U 

Moderately 
stable 

(3.4h)(Redr
up et al., 

2009) 

N 
(Redrup et al., 

2009) 

Gtl2 
1.9-7 

Genomic size: 
30.7 

No - 
Yes 

(Dindot et al., 
2009) 

- - U - - 

Airn 108 Yes Yes 
Yes 

(Neumann et 
al., 1995) 

Yes 
(Seidl et al., 

2006) 

Yes 
(Seidl et al., 

2006) 

U 
95% 

Low S 
5% 

Unstable 
(1.6-

2.1h)(Seidl 
et al., 2006) 

N 
(Seidl et al., 

2006) 

Table 7. Macro ncRNAs may have atypical biology. Mouse macro ncRNAs from six well-
studied clusters are overwieved. -; Not tested, S; spliced, U; unspliced, I/E; intron/exon ratio, 
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C; cytoplasmic localization, N; nuclear localization. Length and splicing of macro ncRNAs 
were reviewed in (Koerner et al., 2009). 
 
The largest gene in the human genome, DYSTROPHIN has a genomic size of 

2.22Mb, but only 14.069kb is transcribed as a mRNA. The reason for this difference 

is the very high intronic content of most messenger RNAs (mRNAs), leading to the 

high intron/exon ratio of these transcripts. In comparison, macro ncRNAs are mostly 

unspliced or with a low intronic content that leads to the unusual length of their 

mature transcripts. For example, mouse Airn ncRNA is 108kb long while Lncat could 

be the longest mature transcript known to date at around 1000kb in length. Since 

their mature transcripts are covering large genomic regions macro ncRNAs are rich 

in transposons that are normally depleted from mature mRNAs (Latos and Barlow, 

2009). Unspliced forms of mouse Airn and Xist imprinted macro ncRNAs are found to 

be relatively unstable. Seidl et al. (Seidl et al., 2006) for example used Actinomycin D 

in order to determine the stability of mouse Airn ncRNA and Igf2r mRNA and found 

that unspliced Airn had a 2.1h half-life while spliced Airn had a 15-17h half-life and 

Igf2r mRNA 14.3h half-life. Furthermore, some of these ncRNA transcripts (especially 

those found to be unspliced) are nuclear localized since they escape nuclear export 

by still unclear mechanism (Redrup et al., 2009; Seidl et al., 2006). Human 

KCNQ1OT1 is similarly to mouse Kcnq1ot1 found to be unspliced and nuclear 

localized transcript (Murakami et al., 2007).  

 

Interestingly, mouse Airn and Kcnq1ot1 imprinted macro ncRNAs that are long; 

transposon rich, unspliced and nuclear localized transcripts have a function in gene 

regulation. The roles of macro ncRNAs will be the focus of the next section. 

 

1. 2. 8. Imprinted macro ncRNAs are transcriptional regulators 

Studies of imprinted macro ncRNAs function have been performed on mouse 

embryonal stem (mES) cells and knockout mice models. Three types of experiments 

involving deletions of ICEs, replacements of ncRNAs promoters and deletions or 

truncations of ncRNA genes have been done for a restricted number of imprinted 

macro ncRNAs. Those experiments showed clearly in cis silencing of protein coding 

genes by two tested imprinted macro ncRNAs (Airn and Kcnq1ot1) and in one case 

(H19), in trans regulation of at least 16 co-expressed imprinted genes belonging to a 

recently defined “imprinted gene network” (Gabory et al., 2009; Mancini-Dinardo et 

al., 2006; Sleutels et al., 2002).  
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Lost of macro ncRNA expression and de-repression of imprinted protein coding 

genes in their clusters are found after deletions of the unmethylated ICE containing 

the promoters of Airn, Kcnq1ot1 and Nespas ncRNAs (Fitzpatrick et al., 2002; Shin et 

al., 2008; Williamson et al., 2006; Wutz et al., 1997). For example, a 3.7kb deletion of 

the unmethylated ICE expressing Airn ncRNA led to loss of imprinted expression of 

Igf2, Slc22a2 and Slc22a3 genes (Wutz et al., 2001; Zwart et al., 2001). These 

experiments show the ICE is important, but they do not distinguish between the role 

of the ICE as a ncRNA promoter (e.g. KvDMR1 for Kcnq1ot1 ncRNA) or regulator 

(e.g. IG-DMR for GTL2 ncRNA) and other possible functions of the ICE.  

 

The second group of experiments involving promoter replacements showed that high 

ncRNA expression is necessary for silencing. For example, when the Airn promoter 

was replaced with a strong PGK promoter, these cells gained Igf2r promoter DNA 

methylation in differentiated ES cells and silenced Igf2r in cis, while cells where the 

Airn promoter was replaced with a weak TET promoter resulting in low Airn 

expression failed to establish Igf2r methylation and silence Igf2r (Stricker et al., 

2008). These experiments showed that the Airn promoter itself has no role in 

silencing, while the expression level of Airn macro ncRNA is a key factor in silencing.  

 

Truncations are the third group of experiments that further examined the function of 

ncRNAs in silencing. Airn ncRNA has been truncated from 108kb to 3kb length by 

inserting 1.2kb long polyadenylation cassette without changing the ICE. 3kb Airn 

remained paternally expressed and the promoter maternally methylated, while loss of 

imprinted expression was observed again for all three genes in the Igf2r cluster 

(Sleutels et al., 2002). Similarly, Kcnq1ot1 ncRNA truncated on the paternal 

chromosome from about 90kb to 1.5kb led to a derepression of the seven genes 

(located over 775kb of DNA sequence) from the Kcnq1 region in ES cells (Mancini-

Dinardo et al., 2006). These kinds of experiments showed that the initiation of 

ncRNAs transcription is not critical for silencing, while transcriptional elongation or 

the transcript itself are the critical factors for silencing in cis. 

 

Interestingly, deletion of H19 ncRNA gene in the Igf2 locus showed that this macro 

ncRNA does not have a role in imprinted gene regulation in cis in liver, while it 

showed small effect in skeletal muscle (Schmidt et al., 1999). Instead this locus is an 

example of the insulator model of cis-acting silencing in imprinted clusters. Deletion 

of the paternally methylated DMR 2kb upstream from H19 led to loss of imprinted 

expression of both H19 and Igf2 (Thorvaldsen et al., 1998). This experiment showed 
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that this gametic DMR is the ICE, which has been further shown to have insulator 

function. The unmethylated ICE located on the maternal chromosome binds CTCF 

and enhancers located downstream of H19 activate expression of this ncRNA, while 

their interaction with Igf2 and Ins is blocked. In contrast, methylation of ICE on the 

paternal chromosome does not allow binding of CTCF allowing the enhancers 

activate Igf2 and Ins expression (Bell and Felsenfeld, 2000; Hark et al., 2000).  

 

Models of cis-mediated ncRNA imprinted silencing are the Igf2r and Kcnq1 clusters 

where truncations of macro ncRNAs led to loss of imprinted expression of protein 

coding genes in the cluster. The exact mechanism how cis-mediated ncRNA 

silencing takes place is still under debate and number of hypothesis that are less or 

more supported by current evidence are present in the literature (reviewed in (Pauler 

et al., 2007)). Two main types of hypotheses are that the ncRNA product or ncRNA 

transcription per se, leads to cis-imprinted silencing. Recent evidence provide 

support for the ncRNA itself recruiting Polycomb group (PcG) and G9a (functions as 

H3K9me2 histone methyltransferase) proteins and targeting them to silence 

imprinted genes in placenta. For example, interaction of G9a with Kcnq1ot1 and Airn 

macro ncRNAs has been found and in the case of Airn it has been shown that this 

macro ncRNA targets G9a to chromatin of Slc22a3 promoter in placenta suggesting 

this may epigenetically silence transcription of the genes that show imprinted 

expression only in placenta (genes like Igf2r that shows ubiquitous imprinted 

expression were not affected) (Nagano et al., 2008; Pandey et al., 2008). Further 

careful examinations of all epigenetic players in imprinting gene regions will be 

necessary for further understanding of the mechanism how macro ncRNAs silence 

imprinted genes.  

 

Insulator model and RNA-mediated silencing model showed that macro ncRNAs 

present in imprinted regions could have role in silencing in cis (macro ncRNAs like 

Airn, Kcnq1ot1) or do not have this role (macro ncRNAs like H19). Interestingly, a 

role for H19 regulation of imprinted gene network in trans has been found in mice. 

After deletion of H19 macro ncRNA in two knock out models, upregulation of five 

imprinted genes located on different chromosomes was shown (Gabory et al., 2009). 

The role of macro ncRNAs in regulation of imprinting are clear, but the exact 

mechanisms of ncRNA mediated epigenetic regulation remain to be fully understood. 

Important functions of imprinted protein coding genes and imprinted macro ncRNAs 

imply that if disrupted they may be involved in disease and next section will focus on 

this subject. 
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1. 2. 9. Human genomic imprinting and disease 

Disruption of genomic imprinting by diverse genetic and epigenetic causes leads to 

human disease. Uniparental disomies (UPDs), deletions, translocations and point 

mutations are genetic causes affecting imprinted genes or ICEs in diverse imprinted 

gene clusters found to be involved in imprinting disorder syndromes. Epigenetic 

causes leading to disease are found to involve changes in DNA methylation. 

Interestingly, genetic and epigenetic causes leading to disease can be combined, 

such as genetic mutations in MeCP2 (methyl CpG binding protein 2) gene, that lead 

to a failure to read the DNA methylation imprint and cause changes in histone 

modifications in Rett syndrome (reviewed in (Arnaud and Feil, 2005)). 

 

Involvement of genomic imprinting in about ten human syndromes and cancer is well 

documented (e.g. Beckwith Wiedmann, Prader-Willi (PWS), Angelman, Silver-

Russel, Transient Neonatal Diabetes Mellitus (TNDM), McCune-Albright syndrome 

(MAS), Albrights hereditary osteodystrophy (AHO), pseudohypothyroidism type 1a 

and 1b (PHP1a and PHP1b), reviewed in (Murrell, 2006; Robertson, 2005)). 

Numerous complex genetic diseases e.g. autism, diabetes, Alzheimer disease and 

schizophrenia are showing parent-of-origin effects by linkage studies (reviewed in 

(Das et al., 2009)). The potential role of imprinting in these kinds of genetic disorders 

remains to be elucidated. There is a controversy in the field about the association 

between diseases caused by perturbations in imprinting and assisted reproductive 

technologies (AST). A number of papers showed that there is an increased risk of 

different imprinting diseases in babies born after AST (reviewed in (Laprise, 2009)), 

however other studies, like Danish large study involving around 450,000 babies born 

naturally or by AST, found no risk (Lidegaard et al., 2005). 

 

1. 2. 9. 1. Selected human disorders of genomic imprinting 

Human syndromes involving genomic imprinting could be grouped into three main 

types: those that affect growth and development, neurological and 

hormonal/metabolic disorders (Arnaud and Feil, 2005). Here I describe three well-

studied imprinted clusters (PWS, IGF2 and KCNQ1) where disturbances are 

documented to cause Prader-Willi (PWS), Angelman (AS) and Beckwith-Wiedemann 

(BWS) syndrom. 

 

Prader-Willi (PWS) is a neuro-developmental disorder with an incidence of about one 

in 10,000-20,000 individuals (Butler, 1990) (reviewed in (Horsthemke and Wagstaff, 

2008)). The clinical presentation includes infantile hypotonia, childhood obesity, small 
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hands and feet, hypogonadism, behavior problems and mental retardation. Genetic 

defects like deletion of 15q11-q13 on the paternal chromosome (70% cases) and 

maternal UPD of chromosome 15 (29% cases) are involved in PWS. An imprinting 

defect involving DNA methylation change on the ICE in the PWS imprinted cluster is 

found in ∼1% of PWS patients. Interestingly, there is an increased risk for myeloid 

leukemia in PWS patients (Davies et al., 2003).  

 

Angelman (AS) syndrome is a neurological disorder that also involves the 15q11-q13 

chromosome region including the PWS imprinted cluster, and occurs with the same 

frequency as PWS (reviewed in (Horsthemke and Wagstaff, 2008; Van Buggenhout 

and Fryns, 2009). This disorder is characterized by mental retardation, microcephaly, 

ataxia, behavioral problems including hyperactivity, a happy personality, and sleeping 

problems. Approximately 60-75% of AS patients show maternal deletion or re-

arrangement on 15q11-q13; 2-5% show paternal UPD, while around 10% shows 

mutation in the UBE3A imprinted gene. An imprinting centre (IC) defect is found in 3-

5% of AS where both alleles show unmethylated SNRPN, NDN and MKRN3 

imprinted genes promoter regions (Horsthemke and Wagstaff, 2008).  

 

Beckwith-Wiedmann (BWS) is a growth disorder with an incidence of one in 13,700 

(Weksberg et al., 2010). Major clinical findings of BWS involve e.g. macroglossia, 

visceromegaly, renal abnormalities and abdominal wall defects. The molecular basis 

of 75-80% of BWS involves changes to the 11p15.5 chromosome region including 

IGF2 and KCNQ1 imprinted clusters. Uniparental disomies, parent-of-origin specific 

duplications, translocations/inversions, microdeletions and mutations in the CDKN1C 

imprinted gene are genetic alterations found in BWS patients (Weksberg et al., 

2010). Epigenetic alterations involve the loss of methylation on ICR2, that involves 

promoter of KCNQ1OT1 ncRNA (Table 3, Figure 6, section 1.2.5) in 50% of BWS 

cases and gain of methylation on ICR1 in 2-7% of cases, while loss of ICR2 

methylation happens in 95% of BWS patients born following assisted reproduction. 

Interestingly, BWS patients have 7.5-9% overall risk for developing embryonic tumors 

within 5-8 years of age (Murrell, 2006). 

 

Imprinted non-protein coding RNAs, linked with human syndromes involving 

imprinting, are overviewed in Table 8. Different molecular mechanisms might disturb 

macro ncRNAs in disease, for example there are some cases of BWS where a 

microdeletion of the KCNQ1OT1 ncRNA gene is found (Niemitz et al., 2004) while in 

other cases KCNQ1OT1 shows biallelic expression (Lee et al., 1999). 
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Imprinted macro ncRNA Imprinting disorder Reference 

H19 Beckwith-Wiedemann Syndrome (Sparago et al., 2004) 
KCNQ1OT1 Beckwith-Wiedemann Syndrome (Niemitz et al., 2004) 

MESTIT1 Russell-Silver syndrome (Nakabayashi et al., 2002) 
MIT1 Russell-Silver syndrome (Yamasaki et al., 2000) 

UBE3A-AS Angelman syndrome (Chamberlain and Brannan, 2001) 
IPW Prader-Willi syndrome (Wevrick et al., 1994) 

Table 8. Imprinted macro ncRNAs are involved in human imprinting disorders.  

 

1. 2. 9. 2. Human genomic imprinting and cancer 

Loss of imprinted expression (LOI), based on the changes in parent-of-origin specific 

DNA methylation leading to gain of biallelic expression, is common in cancer. 

Demethylated mouse ES cells and chimeric mice derived from these ES cells 

showed that LOI may lead to widespread tumorigenesis (Holm et al., 2005). In 

humans, complete hydatiform moles that are mostly androgenetic (two fathers’ 

chromosome sets) and partial moles that are triploid (usually two paternal and one 

maternal chromosome sets) have predominant paternal imprints and show the 

potential to develop into malignant choriocarcinomas. Gynogenotes, on the other 

hand (two mothers’ chromosome sets) form benign ovarian teratomas (reviewed in 

(Murrell, 2006; Paoloni-Giacobino, 2007)). Interestingly, some imprinting disorders 

predispose suffers to cancers, e.g. BWS patients are most commonly predisposed to 

Wilms’ tumor and hepatoblastoma.  

 

LOI of several studied genes occurs in high frequency in spontaneous tumors that 

commonly include the activation of a normally silent growth-promoting gene or 

silencing of a normally active growth-inhibitory gene. The most common gene 

exhibiting LOI is the IGF2 gene coding for growth a factor, that has been found in 

100% of chronic myeloid leukemia, 66% of colorectal cancer and 70% of Wilms’ 

tumors (reviewed in (Jelinic and Shaw, 2007)). It has been shown that LOI of IGF2 

occurs in the nephrogenic embryonic cells (potentially stem cells) in Wilms’ tumors 

and that LOI is an early event in cancer progression (Yuan et al., 2005). Interestingly, 

LOI also shows an increased occurrence in normal tissue surrounding the Wilms’ 

tumor and colorectal cancers (Kaneda and Feinberg, 2005; Nakagawa et al., 2001). 

These studies support the epigenetic origin of cancer hypothesis according to which 

epigenetic disruption of progenitor cells is the first step in the cancer progression 

(Feinberg et al., 2006). The question if LOI has the causal role in cancer progression 

is still open, but it is clear that understanding how disruptions of genomic imprinting 

occur will have a further impact on cancer research. Except for the IGF2 gene, LOI of 

the human protein coding genes has been suggested for PLAGL1 in ovarian cancer 
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(Abdollahi et al., 2003; Kamikihara et al., 2005) and MEST in lung, colon and breast 

cancers (Kohda et al., 2001; Nakanishi et al., 2004; Pedersen et al., 2002; Pedersen 

et al., 1999). 

 

Certain imprinted macro ncRNAs that show altered expression in cancer suggest a 

link between aberrant genomic imprinting and cancer. For example, KCNQ1OT1 

ncRNA shows LOI in 40% of colorectal cancer patients (Tanaka et al., 2001) while 

WT1-AS ncRNA disply biallelic expression in Wilms’ tumors, but monoallelic 

expression in normal kidney also suggesting LOI (Malik et al., 2000). Furthermore, 

overexpression of the imprinted IGF2AS macro ncRNA is found in Wilms’ tumors 

(Okutsu et al., 2000), while the imprinted H19 macro ncRNA is upregulated in 

carcinogenesis and found to be an oncogene in hepatocellular and bladder 

carcinoma (Matouk et al., 2007). 

 

1. 3. Human transcriptome research and ncRNAs 

 

1. 3. 1. New high-throughput technologies and surprises from transcriptomics 

The human transcriptome (complete set of transcripts of cell under a specific 

physiological condition) is much more complex than estimated ten years ago. The 

encyclopedia of DNA Elements (ENCODE) pilot project examined 1% of human 

genome by three high-throughput approaches: tilling arrays hybridizations, tag 

sequencing of cap-selected RNAs (CAGE) and integrated annotation of cDNAs and 

ESTs. ENCODE showed that less than 2% of the genome codes for proteins but 

more than 90% is transcribed (Birney et al., 2007). The first surprise of human 

transcriptomics data was the unexpectedly low number of protein coding genes 

(previously estimated to be 30-70,000 (Harrison et al., 2002) and by this research to 

be 20,000-25,000) and the high overall transcription with more than 88% of genome 

transcribed into unannotated transcripts named by ENCODE as ‘transcripts of 

unknown function’ (TUF), today recognized as putative ncRNAs with a possible 

regulatory function (Birney et al., 2007).  

 

Large intervening non-coding RNAs (lincRNAs) have been recently identified 

genome-wide using a combination of chromatin maps (overlapping H3K4me3 and 

H3K36me3 domains) and a tiling array approach. In mouse ~1600 lincRNAs have 

been mapped across 4 cell types with more than 95% of them beeing evolutionarily 

conserved (Guttman et al., 2009), while in human the same group found ~3300 

highly conserved lincRNAs across 6 cell types (Khalil et al., 2009). 
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By using next generation mRNA-seq by Illumina technology 66% of polyadenylated 

human transcriptome has been mapped to annotated genes and 34% to unannotated 

regions, where these unannotated regions again have the potential of representing 

regulatory ncRNAs (Sultan et al., 2008). The second surprise of the transcriptomics 

data came with the discovered complexity of both the coding and non-coding portion 

of the transcriptome. Even less abundant than thought, the protein-coding 

transcriptome is highly diverse through alternative splicing, alternative initiation of 

transcription and alternative polyadenylation. For example, by combining mRNA-Seq 

and EST sequence data it has been estimated that ∼95% of multiexon genes in 

human undergo alternative splicing (Pan et al., 2008) and two or more alternative 

promoters are used by ∼58% of mouse protein coding transcripts (Carninci et al., 

2006).  

 

Furthermore, complexity is found in the abundance of overlapping transcripts where it 

has been estimated for the mouse that an average 7.6 transcripts are overlapping 

from the same strand and could be grouped into one transcription unit (Carninci et 

al., 2005), while overlapping antisense transcription has been found in mouse for 

72% of all transcriptional units (Katayama et al., 2005). Overlapping transcription is a 

feature of both coding and non-coding regions and supports a new model of genomic 

organization in higher Eukaryotes as discussed by Kapranov et al. (2007). They 

suggest the old ‘collinear’ model based on Jacob and Monod description of lac 

operon in Bacteria (Jacob and Monod, 1961) needs to be replaced by an ‘interleaved’ 

model where: “multiple functional elements can overlap in the same genomic space” 

(Kapranov et al., 2007b). Underestimated complexity has been found also in the non-

protein coding transcriptome (Kapranov et al., 2007a). This complexity is not 

completely understood or defined and challenges in defining this portion of 

transcriptome will be further described.  

 

1. 3. 2. Challenges in defining the non-protein coding transcriptome 

Next generation RNA Sequencing, tiling arrays and full-length cDNA sequencing 

projects together with bioinformatics has shown that the greatest portion of the 

mammalian genome is non-protein coding. When the majority of the transcription 

was revealed to map outside of annotated regions the first question was if all new 

transcriptional units are novel protein coding genes or if they are non-coding. 

Transcripts that did not have open reading frame (ORF)>300bp have been classified 

as non-coding. For example, in one of the first large studies of full-length cDNAs in 

the mouse genome it was found that 35% of 33,400 of clustered ‘transcriptional units’ 
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were new non-coding transcripts on the basis of the ORF criteria (Okazaki et al., 

2002), while even ∼70% of 7500 full-length human cDNA sequences were shown to 

be non-coding by another group (Ota et al., 2004).  

 

The ORF criterion has been useful but there could still be problems with this 

approach. For example, the SRA gene was first characterized as a ncRNA on the 

basis of ORF criteria, while later it was found that this transcript has multiple isoforms 

including some protein coding. Today we know that SRA has in the same RNA both 

regulatory and the protein coding functions (Chooniedass-Kothari et al., 2004). The 

second possible weakness of the ORF definition of ncRNA is based on the finding 

that in Drosophila transcripts with an ORF of 33bp could be translated, so it is not 

clear if 300bp is a valid number for the cut off of the ORF length for all cases. A third 

potential obstacle with the ORF criteria is possibility that ORF>300bp present in a 

transcript could be spurious (ORF that occur just by chance), something that could 

only be examined further by mutational analysis. Evolution favors synonymous over 

non-synonymous mutations in protein-coding genes and on that basis true ORF 

(protein coding gene) can be distinguished from spurious (non-coding RNA) (Lin et 

al., 2007).  

 

Conservation is a second often used criteria for ncRNA mapping from any kind of the 

transcription data. NcRNAs are generally not conserved as highly as protein coding 

genes, although ncRNAs often have shorter stretches of sequence conserved, while 

whole ORF need to be conserved in protein coding genes (reviewed in (Mercer et al., 

2009)). One of the explanations for these different conservation patterns is the 

finding that ncRNAs evolution is less restricted than for protein coding genes (Pang 

et al., 2006). The conservation approach in defining ncRNAs can be based on two 

measurements: reading frame conservation (RFC) and codon substitution frequency 

(CSF) (Clamp et al., 2007). RFC shows what is the percentage of nucleotides of an 

open reading frame that is conserved among species, while CSF score shows 

different patterns in nucleotide substitutions between protein coding genes and non-

protein coding genes. For example, mouse linc (long intervening non-coding) RNAs 

have CSF<0 while known protein coding genes are showing CSF>0 scores (Guttman 

et al., 2009).  

 

Guttman et al. (2009) developed a method that combines the rate of mutations with 

the level of constraint, where the calculated Pi LOD (logarithm of the odds) score 

represents the comparison of sequence evolution to neutrally evolving sequence. By 
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using this method they found that lincRNA sequence conservation score is in the 

middle between lowly conserved introns and highly conserved protein-coding genes 

for both mouse (Guttman et al., 2009) and human (Khalil et al., 2009) lincRNAs.  

 

The PhastCons score from the UCSC annotation is another measure of the 

sequence conservation where number of phastCons elements is counted across 

each ncRNA candidate region and compared with random regions scores. 

PhastCons scores>0.8 were used in a computational pipeline where non-coding 

RNAs were mapped from human low abundance expressed sequence tags (EST) 

(Xue and Li, 2008).  

 

One group used secondary structure prediction criteria in combination with 

conservation to identify small ncRNAs (Weile et al., 2007). They used the RNAz 

program to filter out conserved secondary structured RNAs from multispecies 

conserved sequences and further they combined these data with their tiling array 

expression data from human neuroblastoma cell line. By this approach novel non-

coding, structured and conserved RNA genes have been found, but what needs to be 

considered is that this kind of approach is optimized for detecting small ncRNAs (e.g. 

miRNAs and snoRNAs), while previous “ORF” and conservation approaches have 

been used also for macro ncRNA prediction. The ideal approach to computationally 

define a portion of the transcriptome as non-coding is still not available since all 

mentioned approaches are predictions with possible exceptions and need further 

experimental validation. Still, these approaches are highly valuable since they have 

increased our understanding of the transcriptome. 

 

Wide-spread transcription outside of annotated regions has been named pervasive 

transcription, and if this transcription is functional (reviewed in (Mercer et al., 2009)) 

or represents transcriptional ‘noise’ (Ebisuya et al., 2008; Struhl, 2007) has been the 

focus of debates in the field. Today, research of many groups is showing supporting 

evidence towards functionality of the biggest part of ncRNA transcriptome. 

Developmental regulation, specific localization in the cell, evolutionary selection and 

the association with disease of many ncRNAs are supporting a functional role 

(Wilusz et al., 2009). Roles of the non-coding portion of the genome in disease will 

be further described. 
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1. 3. 3. Non-protein coding RNAs and disease 

Non-protein coding RNAs have numerous regulatory roles in the cell and have been 

linked with diseases. The roles of micro ncRNAs in diverse human diseases from 

cardiovascular and muscular diseases to cancer are well established. Numerous 

micro ncRNAs are regulating cell growth and differentiation and are specifically 

involved in cancer where some of them are acting as oncogenes, while some are 

found to have tumor suppressor roles (reviewed in (Trang et al., 2008)). Involvement 

of imprinted macro ncRNAs in human syndromes and cancers has been discussed 

already in sections: 1.2.9.1 and 1.2.9.2, while in this section the main focus will 

consider non-imprinted macro ncRNAs and their role in disease.  

 

The involvement of macro ncRNAs in disease is mainly based on correlative data 

showing deregulation of ncRNA expression in numerous diseases and cancer. 

Examples of macro ncRNAs altered in disease are reviewed in (Prasanth and 

Spector, 2007). Still, there are just few reports showing a causative role of ncRNA in 

disease. An interesting example is a report of an individual with α-thalassemia where 

deletion of HBA1 and HBQ1 genes juxtaposes a region normally located 18kb 

downstream from α-globin (HBA2) gene, next to the HBA2 gene, leading to 

expression of a newly formed ncRNA transcript. This novel ncRNA formed by this 

deletion is antisense to HBA2 and has been shown to cause de novo DNA 

methylation on the CpG island promoter of HBA2 and silencing of the HBA2 gene 

that further cause the disease (Tufarelli et al., 2003). A second interesting example 

has been found in Lynch syndrome patients where germline deletion of the 3’ exons 

of the EPCAM gene cause transcriptional read through that leads to promoter DNA 

methylation and silencing of the MSH2 gene (Ligtenberg et al., 2009; Niessen et al., 

2009). Germline inactivation of one of the mismatch repair genes (MLH1, MSH2, 

MSH6 and PMS2) is the known cause of Lynch syndrome, therefore the newly 

formed EPCAM-MSH2 fusion ncRNA that silence MSH2 has a causative role in 

Lynch syndrome (Ligtenberg et al., 2009; Niessen et al., 2009). In the past few years, 

there is more and more evidence supporting the roles of macro ncRNAs in disease 

and the possibilities of their use in medicine as biomarkers and potentially drug 

targets will be further described. 

 

1. 3. 4. Non-protein coding RNAs as biomarkers and drug targets 

There is evidence about the involvement of different classes of ncRNAs in human 

disease and especially in cancer. An emerging question is the possibility of their use 

as diagnostic or prognostic markers. The micro ncRNA field already widely 
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recognized the potential for the use of these small ncRNAs as biomarkers and 

companies like Rosetta Genomics and Exiquon are focused on revealing novel 

miRNA biomarkers for various cancers. Macro ncRNAs are emerging as new 

molecules with a potential in prognostics. Numerous macro ncRNAs have been 

found up or downregulated in various multigenic diseases and cancer and just some 

of them will be discussed here.  

 

The DD3 macro ncRNA is expressed specifically in prostate and over-expressed in 

prostate cancer (Bussemakers et al., 1999). DD3 was found to be a sensitive and 

specific marker for early detection of prostate cancer (de Kok et al., 2002). aHIF is a 

ncRNA found after exposure of cells to hypoxia and over-expressed in renal (Thrash-

Bingham and Tartof, 1999) and breast cancer where is established as a strong 

predictor for poor breast cancer prognosis (Cayre et al., 2003). MALAT-1 ncRNA is 

significantly associated with metastasis in non-small cell lung cancer (NSCLC) and 

has prognostic potential for the survivals of patients in stage I of NSCLC (Ji et al., 

2003). The same ncRNA has been found to be over-expressed in endometrial 

sarcoma (Yamada et al., 2006) and in hepatocellular carcinomas (HCCs) where the 

possibility of using MALAT-1 as a marker of neoplastic cells has been proposed (Lin 

et al., 2007). P15AS macro ncRNA is overexpressed in two forms of leukemia where 

it correlates with antisense silencing, and heterochromatization of the p15 tumor 

suppressor gene showing the potential role of this macro ncRNA in cancerogenesis 

and potential use as a biomarker (Yu et al., 2008). Interestingly, fragments of 

ncRNAs can be detected from human blood by two approaches used by Semenov et 

al., which supports the possibility of biomarker ncRNAs usage in medical practice 

(Semenov et al., 2008).  

 

The growing evidence of the role of macro ncRNAs in gene regulation suggests they 

could be potential molecular targets for epigenetic therapy. In the past, most of the 

drugs were directed towards proteins and delivering drugs to target ncRNAs will be a 

completely new challenge. Macro ncRNAs deregulated in disease have a potential to 

be targeted by siRNAs, antisense oligonucleotides, ribozymes or small molecules, 

but still there are many shortcomings in usage of these approaches, especially in 

patients. β-secretase-1 antisense (BACE1-AS) is a ∼2kb long macro ncRNA involved 

in Alzheimer’s disease that has the potential to be used as drug target. This ncRNA 

is upregulated in Alzheimer’s patients and importantly its’ function in regulating the 

BACE1 enzyme crucial for cleavage of amyloid precursor protein (APP) is 

established (Faghihi et al., 2008). This ncRNA is directly implicated in increased 
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abundance of plaque formation, one of the key features of Alzheimers’ disease 

(Faghihi et al., 2008). A company named CuRNA was founded in 2008 with the goal 

of identifying of new biomarkers and drugs based on macro ncRNAs deregulated in 

disease (http://www.curna.com/). Further development of new technologies like tiling 

arrays and RNA Sequencing will lead to the identification of novel macro ncRNAs 

deregulated in disease e.g. cancer, potentially resulting in numerous benefits for 

medicine, in diagnostics, prognostics, and development of new drugs. 

 

1. 4. Aims of the study 

Recent development of new technologies: next generation RNA Sequencing and 

Tilling arrays hybridizations, led to a break through in the transcriptomics field and 

changed our perception of the complexity of genome. The majority of the transcripts 

in the human genome are non-protein coding, but still little is known about the 

diversity and functional potential of these transcripts. In order to give my contribution 

to the understanding of that diversity, I focused on the identification and 

characterization of one of the ncRNAs classes: macro ncRNAs. Mapping of macro 

ncRNAs by new technologies has been in itself the challenge since at the time I 

started this project the exact methodology for this kind of transcriptome research was 

not fully established.  

 

My first goal was to establish methodologies and data analysis procedures based on 

Tiling array and RNA sequencing in order to reliably map novel macro ncRNAs and 

this part of project has been done in collaboration with Ru Huang and Florian Pauler 

in the lab. Focus on this specific ncRNAs class came from ten years expertise of our 

lab in the field of imprinted macro ncRNAs. In this thesis I use genomic imprinting as 

a model for macro ncRNA research based on the fact that well-studied imprinted 

gene regions express macro ncRNAs and that for two of these ncRNAs a direct role 

in gene regulation has been shown. Current understanding of the imprinting 

phenomenon and the role of macro ncRNAs in imprinted gene regulation is mainly 

based on 6 out of about 30 imprinted gene clusters. Thus, my second goal was to 

analyze transciption of all human imprinted gene clusters in different tissues and 

developmental stages and map and characterize novel macro ncRNA transcripts in 

these regions in order to address the question if macro ncRNAs are a universal 

feature of imprinted gene regions in human. Characterization of novel imprinted 

macro ncRNAs is valuable in broadening our knowledge about the biology of these 

transcripts and could be helpful in predicting their functions. With the recent 

development of ncRNA field it became clear that macro ncRNA transcripts are 
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associated with a spectrum of human diseases and in a few cases a causative role of 

a macro ncRNA in disease development has been found. Numerous macro ncRNAs 

are biomarkers for different cancer types and some of them are proposed as 

potential drug targets. Thus, my third goal was to investigate deregulation of novel 

macro ncRNAs found in imprinted gene regions in different types of cancer. In 

conclusion, this PhD thesis aims to broaden our knowledge of macro ncRNAs from 

imprinted gene regions in both normal and disease conditions and will be a valuable 

resource for further functional studies of human macro ncRNAs. 
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2. Results 

 

2. 1. HIRTA (Human Imprinted Region Tiling Array) technology successfully 

detects macro ncRNAs 

 

2. 1. 1. Selection of regions of interest and design of HIRTA  

The Human Imprinted Region Tiling Array (HIRTA) was designed with the aim of 

mapping novel macro ncRNAs in human regions containing imprinted genes. HIRTA 

is a NimbleGen custom tiling array with one 50bp oligonucleotide (further referred as 

a tile) per 100bp of single copy sequence from selected gene regions (Figure 7A). 

HIRTA covers around 2% of the human genome. 4% of all HIRTA probes cover 

exons of annotated genes, 3% cover intron-exon junctions, 49% cover intronic 

regions while 43% of the HIRTA cover intergenic regions (Figure 7B). Note that 

interspersed repeats identified by Repeat Masker (http://www.repeatmasker.org/) 

were excluded from HIRTA (black bars in Figure 7A). 

 

 
Figure 7. HIRTA covers ~2% of the human genome. A. UCSC snapshot showing a 3kb 
region of human chromosome 6 and HIRTA oligonucleotide probes 50bp in length (short 
black bars) that cover each 100bp of a single copy sequence. RefSeq genes UCSC track 
shows part of SLC22A1 gene (dark blue) indicating that HIRTA oligonucleotide probes cover 
both genic and intergenic regions. Repeat Masker track shows that interspersed repeats 
(black bars) are not covered by HIRTA oligonucleotide probes. B. 49% of the sequence 
covered by HIRTA oligonucleotide probes are positioned in intronic regions, 43% in 
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intergenic, 4% in intron-exon junctions and 3% in exonic regions of annotated genes. HIRTA 
is a NimbleGen array that covers ∼2% of human genome. 
 
The 2% of human genome covered by HIRTA includes three types of regions 

containing imprinted genes: 1) well-studied regions containing genes imprinted in 

both human and mouse, 2) less-studied regions containing genes imprinted in 

mouse, human or both and 3) the XIST region that is well-studied but imprinted just 

in mouse extraembryonic tissues (Table 9; genes showing imprinted expression in 

these regions were described in section 1.2.5.). Regions contained on HIRTA map 

on 16 human chromosomes and range in length from 1-5Mb (Table 9). The HIRTA 

regions contain centrally positioned genes known to be imprinted in human and/or 

mouse and cover the known imprinted gene cluster plus flanking regions containing 

non-imprinted genes. 

 

HIRTA REGION Chr. REGION START REGION END LENGTH (Mb) 
REGION  

imprinting  
status 

TP73 1 2,900,000 3,900,000 1 L (H) 
DIRAS3 1 67,800,000 68,800,000 1 L (H) 

COMMD1 2 61,500,000 62,500,000 1 L (M) 
NAP1L5 4 89,300,000 90,300,000 1 L (M, H) 
PLAGL1 6 143,830,000 144,830,000 1 L (M, H) 
IGF2R 6 160,000,000 161,000,000 1 W (M, H) 
GRB10 7 50,200,000 51,200,000 1 L (M, H) 
CALCR 7 92,400,000 97,400,000 5 L (M, H) 
MEST 7 129,500,000 130,500,000 1 L (M, H) 

KCNK9 8 139,600,000 142,600,000 3 L (M, H) 
SFMBT2 10 5,800,000 8,800,000 3 L (M) 
INPP5F 10 121,100,000 122,100,000 1 L (M, H) 
BAZ2 11 6,000,000 8,000,000 2 L (H) 

AMPD3 11 10,000,000 11,000,000 1 L (M) 
IGF2, KCNQ1 11 1,700,000 3,700,000 2 W (M, H) 

WT1 11 31,830,000 32,830,000 1 L (H) 
SDHD 11 110,800,000 111,800,000 1 L (H) 

SLC38A4 12 45,000,000 46,000,000 1 L (M) 
DCN 12 89,600,000 90,600,000 1 L (M) 

HTR2A 13 45,800,000 46,800,000 1 L (M, H) 
DLK1 14 99,600,000 101,600,000 2 W (M, H) 
PWS 15 20,170,000 25,170,000 5 W (M, H) 

GATM 15 42,900,000 43,900,000 1 L (M) 
RASGRF1 15 76,600,000 77,600,000 1 L (M) 
IMPACT 18 19,900,000 20,900,000 1 L (M) 

ZIM2 19 61,600,000 62,600,000 1 L (M, H) 
HM13 20 29,200,000 30,200,000 1 L (M, H) 
NNAT 20 35,080,000 36,080,000 1 L (M, H) 
GNAS 20 56,500,000 57,500,000 1 W (M, H) 

L3MBTL 20 41,100,000 42,100,000 1 L (H) 
XIST X 70,700,000 75,700,000 5 X (M) 

 
Table 9. HIRTA oligonucleotide probes are covering 32 genomic regions with at least 
one gene having imprinted expression in human or mouse. Names of the HIRTA regions 
(given according to the RefSeq name of the gene that shows imprinted expression and is 
centrally positioned within the region), positions on human chromosomes (Chr.) in the human 
build NCBI36/hg18, starts and ends of the regions, their length (in mega bases) and grouping 
according to the imprinting status in human and mouse (into well-studied imprinted (W), less-
studied imprinted (L) and XIST (X) region) is shown. M; region cointains genes showing 
imprinted expression in mouse, H; region contains genes showing imprinted expession in 
human. 



 
Irena Vlatkovic PhD Thesis 
 

51 

2. 1. 2. Normal and cancer samples were hybridized on HIRTA 

HIRTA was hybridized with cDNA from 43 normal or cancer human samples 

including cells, tissues and patient tissue samples (Figure 8).  

                                   
Figure 8. 43 human samples were hybridized to HIRTA. cDNA from three types of 
samples: cultured cells, tissues and patient samples were hybridized to HIRTA.  
 
The 20 normal cells/tissues hybridized to the HIRTA array are described in Table 10. 

Undifferentiated human embryonic stem cells (HES2d0) and day 7 differentiated 

human embryonic stem cells (HES2d7) were hybridized to HIRTA in order to test the 

developmental regulation of known and novel macro ncRNAs. Normal human 

fibroblast cell line, samples from 3 fetal human tissues, placenta (extraembryonic 

tissue) and 13 different adult tissues were hybridized to HIRTA with the aim of testing 

tissue specific expression of the macro ncRNAs (Table 10). RNA from human tissues 

was purchased from Clontech and in most cases only pooled tissues were available. 

While this does not allow individual variation to be assessed, it has the advantage of 

reducing effects of biological variation at the level of the gene expression that is 

relatively high in human (Cheung et al., 2003).  

 
NORMAL 

Cell line/tissue Description 
Hs27 Normal male human fibroblasts 

HES2d0 Undifferentiated female embryonic stem cells  
HES2d7 7 days differentiated female embryonic stem cells  

Fetal Brain 21 male/female: Caucasian fetuses, ages: 26-40 weeks 
Fetal Liver 63 male/female Caucasian fetuses, ages: 22-40 weeks 

Fetal Kidney 34 Caucasian male/female fetuses, ages: 12-31 weeks 
Placenta Obtained from 4 female Caucasians, ages: 21-39  

Adult Brain 2 male Caucasians, ages: 47-55 
Adult Lung 3 male/female Caucasians, ages: 32-61 

Adult Uterus 8 female Caucasians, ages: 23-63 
Adult Heart 10 male/female Caucasians, ages: 21-51 

Adult Kidney 14 male/female Caucasians, ages: 18-59 
Skeletal Muscle 7 male/female Caucasians, ages:20-68 

Bone Marrow 8 male/female Caucasians, ages: 18-56 
Colon 1 female Caucasian, age: 23 
Cervix 1 female African American, age: 40 

Mammary Gland 1 female Caucasian, age: 27 
Adult Liver 1 male Caucasian, age: 51 

Whole Blood 1 female Caucasian, age: 30 
Testis 39 male Caucasians, ages: 14-69 

Table 10. 20 normal human cells/tissues has been hybridized to HIRTA. Names of used 
samples and their description is presented. 
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Further, 17 cell lines from 6 different cancer types (cervical, breast, colon, 

teratocarcinoma, rhabdomyosarcoma and neuroblastoma) and 6 patient samples  (4 

acute myeloid leukemias and 2 myeloproliferative disorders) were hybridized to 

HIRTA in order to test regulation of macro ncRNAs in cancer (Table 11).  

 
CANCER 

Cell line/tissue Description 
HeLa Cervical cancer cell line, adenocarcinoma 
HT3 Cervical cancer cell line, carcinoma 
C4I Cervical cancer cell line, carcinoma 
C4II Cervical cancer cell line, carcinoma 
SiHa Cervical cancer cell line, squamous cell carcinoma, grade II 
C33A Cervical cancer cell line, carcinoma 
DoTc2 Cervical cancer cell line, carcinoma 
ME180 Cervical cancer cell line, epidermoid carcinoma 
SW756 Cervical cancer cell line, squamous cell carcinoma 
HCT116 Colon cancer cell line, colorectal adenocarcinoma 
Caco2 Colon cancer cell line, colorectal adenocarcinoma 
MCF7 Breast cancer cell line, adenocarcinoma 

CAMA-1 Breast cancer cell line, adenocarcinoma 
Tera2 Malignant embryonal carcinoma 
NCCIT Teratocarcinoma 
A201 Rhabdomyosarcoma 

SH-SY-5Y Neuroblastoma 
AML5_BMMC Acute myeloid leukemia patient, bone marrow mononuclear cells 
AML5_PBMC Acute myeloid leukemia patient, periferal blood mononuclear cells 

AML7 Acute myeloid leukemia patient, bone marrow mononuclear cells 
AML8 Acute myeloid leukemia patient, bone marrow mononuclear cells 

MP_0351B Myeloproliferative disorder patient, periferal blood  
MP_0363 Myeloproliferative disorder patient, periferal blood  

Table 11. 23 cancer samples including: cervical, colon, breast, teratocarcinoma, 
rhabdomyosarcoma, neuroblastoma, acute myeloid leukemia and myeloproliferative 
disorder cancer types have been hybridized to HIRTA. Names of the cell lines, patient 
tissue samples and short descriptions are shown. 
 

2. 1. 3. Reproducibility of HIRTA 

HIRTA reproducibility was tested by performing five replicates of HIRTA 

hybridizations. Three biological (Hs27, Adult uterus and HeLa) and 2 technical 

replicates (HES2d0 and HES2d7) were tested. Scatter plots of the replicates that 

showed near linear relationships between replicates and Pearson’s correlations 

ranging from r= 0.885 to 0.951 (where +1 is a perfect linear correlation) 

demonstrated that HIRTA is highly reproducible (Figure 9A). Looking at the single 

gene level, the Decorin (DCN) gene was showing no (HES2d0, HES2d7), low 

(HeLa), medium (Hs27) or high (Adult uterus) expression in both replicates of each of 

five tested samples (Figure 9B). High reproducibility of highly expressed and 

saturated DCN gene was indicated by its intronic signal that showed similar levels of 

expression in two biological replicates (DCN expression in Adult uterus, Figure 9B). 

As the HIRTA hybridization technique is highly reproducible for 5 examples, 

replicates were not performed for other tissues and cell lines. 
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Figure 9. HIRTA hybridizations show high reproducibility. A. Comparissons of log2 
expression signals from two replicates of Hs27, HES2d0, HES2d7, Adult uterus and HeLa are 
represented using scater plots. Each black dot represents log2 expression from one HIRTA 
tile. Scatter plots show a nearly linear relationship of two replicates for five HIRTA samples, r; 
Pearson’s correlations. B. Decorin (DCN) expression for five tested HIRTA samples in two 
replicate hybridizations. HIRTA hybridization results were loaded on the UCSC browser in the 
form of custom track where X-axis represents position in the genome (hg18), while Y-axis is a 
log2 ratio of cDNA normalized to genomic DNA. Name of the custom track is shown on the left 
side of the figure. Publicaly available UCSC track for RefSeq genes is shown, as well as scale 
and hg18 chromosome positions. 
 

 2. 1. 4. Dynamic range of HIRTA 

Tiling arrays have been shown to display limited dynamic range with signal saturation 

of highly expressed genes (Wang et al., 2009a). The dynamic range of HIRTA was 

tested by comparing expression of Decorin gene (DCN) from three different cell lines 

by HIRTA hybridization and RT-qPCR. DCN showed high expression in Hs27 (value 

of DCN gene expression in fibroblasts was 8.21, while maximal saturated value of 

HIRTA expression in fibroblasts was 8.38, observed for COL1A2 gene), medium 

expression in HeLa (value of 6.05) and no expression in HESd7 cells (values down to 

minus 6.14 over the exonic regions) by HIRTA hybridizations (Figure 10A). RT-qPCR 

data for the same gene using four exonic (DCNEx1-4) and four intronic primer pairs 

(DCNIn1-4) confirmed the relatively high expression in Hs27 cell line (set to 100) 

while expression in HeLa was about 50 fold less in exons and 100 fold less in introns. 

DCN was not expressed in HES2d7 by both RT-qPCR and the tiling array (Figure 

10B).  
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Figure 10. Tiling arrays can distinguish high, medium and no expression but has a low 
dynamic range and a saturation limit. A. Tissue specific expression of the Decorin in Hs27, 
HeLa and HES2d7 cells. Tracks are displayed on UCSC as on Figure 9. B. RT-qPCR primers 
positions are also shown.  B. RT-qPCR validation of tiling array data using the human Decorin 
(DCN) gene was done in cell lines with different expression levels. Expression is assayed by 
eight primer pairs, four of which were located in exons (blue) and four in introns (orange) of 
the Decorin gene. Negative exonic and intronic expression showed by these primer pairs are 
indicated using blue and orange arrows respectivelly. Each primer pair is set to 100 in Hs27 
cells and normalized to expression of the RPLPO gene. 
 
The dynamic range of HIRTA was ~250 fold expression difference (Table 12). DCN 

expression values in Hs27 and HeLa, obtained from HIRTA hybridizations, were 

about a 5 fold different, while RT-qPCR showed a 50 fold difference in DCN 

expression between the cell lines, indicating that DCN expression on HIRTA was 

saturated (Table 12).   

 
The dynamic range and saturation of HIRTA Chip based on RT-qPCR and HIRTA 

expression of Decorin gene 
 Hs27 expression  

values 
HeLa expression  
values 

Difference in expression 
values between the cell lines 

HIRTA Log2n=8.21  
n= 296.11 

Log2n=6.05 
n=66.26 

= ∼4.5 fold 
 

RT-qPCR  100  ∼2  = ∼50 fold  

If HIRTA data range from Log2n=0, n=1 to Log2n=8, n=256, than by HIRTA we are able to 
observe ~250 fold difference in expression (potential background not taken into account) 
Note that HIRTA hybridizations have different saturation limit but typically they have 
maximal observed log2 expression in range of 7.5 to 8.5.  
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Table 12. Comparisson of HIRTA data and RT-qPCR in different tissues shows that 
dynamic range of HIRTA is about 250 and that HIRTA has a saturation limit.  
 

2. 1. 5. Single cDNA hybridization on HIRTA 

Total RNA from cell lines, tissues or patient samples was converted to double 

stranded cDNA, labeled with a flourochrome Cy5 and co-hybridized with sonicated 

DNA from the Hs27 cell line, labeled with a fluorochrome Cy3 (Figure 9A). This type 

of hybridization was named “single cDNA hybridization”. The raw data was Tukey bi-

weight normalized and the HIRTA hybridization results are displayed on the UCSC 

(University of California Santa Cruz) genome browser using the human Mar. 2006 

(NCBI 36/hg18) assembly with the position in the genome on the X-axis and log2 

signal values from HIRTA hybridizations on Y-axis (Figure 9). HIRTA probe 

intensities were log2 transformed in order to enable visualization of lowly transcribed 

genes. Log2 signal values displayed in orange and positioned above the zero line 

represent enrichment of cDNA over genomic DNA and indicate RNA expression. The 

blue signal below the zero line shows that there is more genomic DNA than cDNA 

and that RNA is not expressed. Zero line represents equal amounts of cDNA and 

genomic DNA. The results of human fibroblasts hybridizations (Hs27) for a typical 

imprinted macro ncRNA and a typical protein coding gene show different tiling array 

patterns (Figure 11B). Protein coding genes (e.g. DCN) typically show high signals 

matching to exons and low to moderate signals over introns. The high exonic signals 

are often saturated, depending on the expression in examined tissue.  This observed 

signal pattern of protein coding genes is based on their high intron/exon ratio, typical 

of most mammalian genes. Macro ncRNAs (e.g. GTL2) are found to show a HIRTA 

pattern with most of the tiles strongly positive through whole body of macro ncRNA 

gene (they have low intron/exon ratio), with the HIRTA signal that is typically not 

saturated. On the basis of these distinct tilling array patterns macro ncRNA can be 

differentiated from protein coding genes by visual inspection of tiling array 

hybridization results displayed on the UCSC genome browser.  
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Figure 11. Single cDNA hybridizations on HIRTA can detect macro ncRNAs and 
distinguish them from protein coding genes. A. Short overview of the sample preparation 
using “single cDNA hybridization” on HIRTA. ds cDNA; double stranded cDNA B. The figure 
is displayed as in Figure 9B. In addition, publically available UCSC tracks for sno/miRNA and 
CpG islands are shown. Sno/miRNA UCSC track display miRNAs in red and snoRNAs in blue 
color. The upper panel shows a typical known macro ncRNA, the GTL2 transcript expressed 
from the DLK1 imprinted gene region that is also precursor to miRNAs and snoRNAs. The 
lower panel shows Decorin (DCN) as an example of typical protein coding gene showing high 
expression signals (orange focal peaks) matching the exons of DCN (shown as dark blue 
blocks on RefSeq gene track) and moderately expressed introns.  

 
The expression patterns of already known macro ncRNAs and their differences to 

annotated protein coding genes, that resulted from single cDNA hybridizations on 

HIRTA, were used to develop criteria for mapping novel variants of known or novel 

macro ncRNAs. HIRTA macro ncRNA mapping by visual inspection criteria include: 

1) high coverage of positive expressed probes through the body of the transcript 

(coverage was used as a relative measure of low intron/exon ratio with typical 

coverage >90%, and in the case of lowly transcribed transcripts >70% coverage); 2) 

absence of typical protein coding exons visualized as highly expressed focal signals, 

that typically consist of 1-2 tiles as the average human exon is <200bp in length, and 

are often positioned on the distances of about 2-8kb typically resembling introns 

(Lander et al., 2001; Sakharkar et al., 2004)); 3) more than 1kb in length; 4) 

Simultaneous analysis in 43 cells/tissues/patients. The first two criteria are based on 

the already shown difference between macro ncRNAs and protein-coding genes in 

the HIRTA expression pattern (Figure 11) while the third criteria limits the analysis to 

very long/macro ncRNAs; potential 200bp to 1kb long ncRNAs were not analysed 
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since transcription of these lengths are more difficult to distinguish from cross-

hybridizations, pseudogenes or background. Further, the fourth criteria requiring 

simultaneous detection from all HIRTA hybridizations resolves three potential 

problems: a) difficulties in distinguishing macro ncRNAs from protein coding genes 

showing high transcription rate, which can have introns expressed to the similar 

extent as exons, b) potential overlapping transcripts c) distinguishing between low 

transcription (less than log2=1) and tilling array background, if a transcript is highly 

expressed in one of the tissues and a low expression from another tissue maps to 

the same position, then this expression was recognized as a ncRNA. Positions of the 

first and the last HIRTA oligonucleotide probe giving high expression were defined as 

the start and the end of the macro ncRNA transcript. Positions of intergenic 

transcripts were reliably mapped while the positions of overlapping and very lowly 

expressed transcripts were given provisionally since exact mapping of these 

transcripts on the basis of tiling array data was not possible.  
 

2. 1. 6. Double cDNA hybridization on HIRTA 

In order to test the cellular localization of macro ncRNAs, double hybridizations on 

HIRTA were performed using two-color labeling of double stranded (ds) cDNA from 

nuclear and cytoplasm fractions of a normal human fibroblasts cell line (Hs27) 

(Figure 12A). The raw data was normalized by method implemented by Dr. Florian 

Pauler (unpublished data). The normalized hybridization results were loaded into 

UCSC genome browser as the custom track with black bars above the zero line 

indicating nuclear enriched RNA regions and grey bars below the zero line indicating 

the cytoplasmic enriched RNA. As expected, exons of protein coding genes were 

enriched in cytoplasmic fraction (e.g. DCN exons, gray bars below the zero line), 

while a known nuclear KCNQ1OT1 macro ncRNA (Murakami et al., 2007) was 

enriched in the nucleus (Figure 12B). Thus, we further used this technique for testing 

cellular localization of novel macro ncRNAs. 
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Figure 12. Double cDNA hybridization shows nuclear enrichment of the KCNQ1OT1 
macro ncRNA and cytoplasmatic enrichment of the Decorin protein coding gene. A. 
Short overview of the sample preparation using “double cDNA hybridization” on HIRTA. ds 
cDNA; double stranded cDNA B. The upper panel shows result of double cDNA hybridization 
on HIRTA for known nuclear localized KCNQ1OT1 imprinted macro ncRNA indicated with the 
black arrowed line. The lower panel shows example of cytoplasmic localization of typical 
protein coding gene. Black signals above the zero line represent nuclearly localized introns 
while gray signals below the zero line correspond to exons of the DCN gene indicated by the 
blue arrowed lines. Names of the double cDNA hybridization custom tracks are shown on left 
part of both panels as well as names of displayed UCSC custom tracks (RefSeq Genes, 
sno/miRNA, CpG islands). 
 

2. 2. Macro ncRNAs in six well-studied human imprinted gene regions  

 

2. 2. 1. Known human macro ncRNAs from the HIRTA well-studied regions 

 

2. 2. 1. 1. Mapping and tissue specific expression of known macro ncRNAs 

Six well-studied regions in mouse cointaining imprinted genes are: Igf2, Kcnq1ot1, 

Igf2r, Pws/As, Gnas and Dlk1 (Koerner et al., 2009). Analysis of the same regions in 

human, using HIRTA, showed that six known human imprinted macro ncRNAs (H19, 

KCNQ1OT1, GTL2, UBE3A-AS, NESPAS, EXON1A) were successfully detected in 

five of well-studied regions (Figure 13). No single tissue expressed all six well-

studied macro ncRNAs and the human AIRN macro ncRNA (that is described in 

section 2.6.3.) was not detected in any of tissues studied by HIRTA. The detected 

macro ncRNAs were used as positive controls for HIRTA and based on their 
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expression pattern, criteria for mapping novel macro ncRNAs were established 

(described in section 2.1.5.). 

 

 
Figure 13. Macro ncRNAs in well studied human imprinted gene regions.  Expression of 
H19, KCNQ1OT1, GTL2, UBE3A-AS, GNAS1-AS and EXON1A macro ncRNAs is shown by 
presentation of one HIRTA track from a cell line/tissue that highly expressed each ncRNA. 
Known macro ncRNAs orientation is depicted with black arrowed lines while their lengths in 
kilobases (kb) are shown in brackets. Names of HIRTA regions and screenshot positions in 
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hg18 are shown on the top of each box. Custom HIRTA tracks as well as RefSeq genes, 
sno/miRNA and CpG islands UCSC tracks are shown. 
 
H19, KCNQ1OT1, GNAS1-AS and EXON1A are macro ncRNAs annotated by 

RefSeq with gene lengths of 2.3kb, 59.5kb, 32kb and 22kb respectively and the 

relatively same lengths were mapped by HIRTA except in the case of the 

KCNQ1OT1 ncRNA when the repetitive region positioned downstream of ncRNA 

transcript was not spoted on the HIRTA Chip, therfore the exact end of this ncRNA 

could not be determined (Table 13).  

 

Mapping of the GTL2 and UBE3A-AS macro ncRNAs in the DLK1 and PWS HIRTA 

regions respectively showed a complex transcriptional pattern in different tissues that 

resulted in the mapping of 6 tissue specific transcripts that are novel variants of, or 

transcripts overlapping GTL2 (Figure 14), and 4 novel tissue specific transcripts that 

are variants of, or are overlapping with the UBE3A-AS macro ncRNA (Figure 16). 

GTL2 (MEG3) is by RefSeq Genes as a ∼35kb long transcript. GTL2var1 (Figure 13, 

14) was mapped using HIRTA as ∼250kb transcript, overlapping known miRNAs and 

snoRNA clusters. In diverse tissues, different novel variants were mapped using 

HIRTA: GTL2var2 overlapping both annotated MEG3 and miRNA cluster, GTL2var3 

that may be short variant of annotated MEG3, GTL2var4 coresponding to the second 

miRNA cluster in the region, GTL2var5 that is lowly expressed and corresponds to 

two known snoRNA clusters (14qI and 14qII) and GTL2var6 that is positioned next to 

the retrotransposon like-1 (RTL1) and may be overlapping this gene (Figure 14).  

Interestingly, GTL2 long and short variants may use different promoters in different 

tissues. The GTL2 long transcripts (GTL2var1 and GTL2var2) use one promoter in 

Hs27 and adult brain, while the GTL2var3 uses another promoter in adult lung and 

heart (Figure 15).  

 
HIRTA 
REGION 
 

Chr. NAME of macro 
ncRNA 

POSITION (hg18) Length 
(kb) 

COV 
(%) 

Position to 
annotated 
PC genes 

IGF2 11 H19 chr11:1972982-1975641 (RefSeq) 2.6 100 IG 
KCNQ1  KCNQ1OT1 chr11:2618344-2677804 (RefSeq) 59.5 99.7 IN 
DLK1 14 GTL2var1 chr14:100362198-100609108 246.9 99.3 IG 

  GTL2var2 chr14:100362198-100473308 111.1 93 IG 
  GTL2var3 chr14:100364721-100372481 7.7 98.4 IG 
  GTL2var4 chr14:100537556-100609108 71.5 74.9 IG 
  GTL2var5 chr14:100459386-100536578 77.2 72.3 IG 
  GTL2var6 chr14:100420937-100440719 19.8 85.5 IG 

PWS 15 UBE3A-ASvar1 chr15:22751163-23171714 420.5 97.3 OV 
  UBE3A-ASvar2 chr15:22751163-22960127 209 99.5 OV 
  UBE3A-ASvar3 chr15:22751163-22918716 167.5 98.3 OV 
  UBE3A-ASvar4 chr15:22954110-23050454 96.4 58.3 IG 

GNAS 20 GNASAS chr20:56827368-56859353 (RefSeq) 32 98.1 5’/OV 
  EXON1A chr20:56897575-56919642 (RefSeq) 22 98.5 OV 
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Table 13. Known macro ncRNAs in five well-studied imprinted gene regions. H19, 
KCNQ1OT1, GNASAS and EXON1A are mapped by HIRTA to positions annotated as 
RefSeq genes on UCSC. GTL2 and UBE3A-AS show a complex transcription patterns and 
number of tissue specific variants of these macro ncRNA are detected by HIRTA. The length 
of visualy mapped macro ncRNAs ranges between 2.6 and 420kb. HIRTA regions named in 
accordance to Table 9, chromosome positions according to hg18, name of macro ncRNAs 
and their length (in kilobases) were shown. Coverage (COV) represents % of positive probes 
in a tissue expressing high level of the macro ncRNA candidate. Macro ncRNAs were 
grouped according to their position in relation to annotated protein coding genes: intergenic 
(IG)= non-overlapping, 5’/OV= 5’ exons or overlapping, 3’/OV= 3’UTRs or overlapping, 
OV=overlapping, IN=inside of annotated protein-coding genes. PC; protein-coding gene 
 

 
Figure 14. Tissue specific expression of the GTL2 macro ncRNA complex transcription 
unit. GTL2 variants or overlapping macro ncRNA transcripts ranging in length from 7.5 to 
247kb (marked by the black boxes) show tissue specific expression. Note positions of miRNA 
(red) and snoRNA clusters (blue). Black lines show expressed macro ncRNAs. Custom 
HIRTA tracks as well as RefSeq genes, sno/miRNA and CpG islands UCSC tracks are 
shown. 
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Figure 15. GTL2 macro ncRNA long and short variants use different promoters. Long 
GTL2 variants are present in Hs27 and adult brain, while short lung and heart GTL2 variants 
use another promoter. Short GTL2 transcript partially map to the previously annotated MEG3 
(GTL2) ncRNA. Custom HIRTA tracks as well as RefSeq genes, sno/miRNA and CpG islands 
UCSC tracks are shown. 
 

Four variants or transcripts overlapping UBE3A-AS macro ncRNA were expressed in 

representative tissues in lengths ranging from 96 to 420kb (Figure 16). The existence 

of UBE3A-ASvar1 has been previously suggested in mouse where Ube3a-as has 

been mapped to ∼1000kb (Landers et al., 2004) and here in human was visualized 

using HIRTA as about 420kb long. Two imprinted snoRNA clusters (HBAII-85 or 

SNORD116 and HBAII-52 or SNORD115) have been mapped in this region 

previously (Cavaille et al., 2000). Interestingly, UBE3A-ASvar2 that overlaps the 

HBII-85 and the 40kb shorter UBE3A-ASvar3 RNAs, were ubiquitously expressed in 

all cells/tissues hybridized to HIRTA. The UBE3A-ASvar4 overlapping to HBAII-52 in 

contrast had tissue specific expression and showed developmental upregulation (it 

was not expressed in human undifferentiated embryonic stem cells while it was lowly 

expressed in day 7 differentiated ES cells). High expression of HBAII-52 was 

restricted to fetal and adult brains that were also the same two tissues uniquely 

expressing 420kb UBE3A-ASvar1.  

 

One of possible explanations for complexity of both GTL2 and UBE3A-AS macro 

ncRNA regions could be based on the presence of overlapping micro and snoRNA 
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clusters. Thus some of the mapped variants could represent primary miRNA or 

snoRNA transcripts.  

 

 
Figure 16. UBE3A-AS macro ncRNA tissue specific expression. Five cells/tissues 
(undifferentiated and differentiated embryonic stem cells, adult brain, uterus and cervix) were 
chosen in order to depict four different UBE3-AS variants or overlapping transcripts that range 
in length from 96 to 420kb (lengths depicted in brackets). The red line highlights 
developmental upregulation (in human ES cell system) of UBE3A-ASvar4 that is 
corresponding to HBII-52 snoRNA cluster. Black boxes highlight macro ncRNA variants while 
black lines show expressed macro ncRNAs. Custom HIRTA tracks as well as RefSeq genes, 
sno/miRNA and CpG islands UCSC tracks are shown. 
 

Tissue specific expression of 6 known and novel macro ncRNAs based on tiling array 

expression in 43 samples is depicted on Figure 17. Level of macro ncRNAs 

expression in different tissues was assessed by visual inspection of HIRTA 

hybridization profiles. Since tiling arrays have potential background and saturation 
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limitations, tissue specific expression of macro ncRNAs is shown as two clear 

expression states: ON and OFF, where ON represents low, medium or high 

expression whereas OFF means no expression. The exact level of ON expression of 

each transcript can be further assessed by loading available .wig tracks for specific 

tissues showing ON expression into hg18 of UCSC browser and by searching macro 

ncRNA position.  

 

 
Figure 17. Tissue specific expression of well-studied macro ncRNAs in normal and 
cancer cells. Expression of known and novel variants macro ncRNAs from well known 
imprinted regions in 20 normal and 23 cancer samples is shown. Names of the HIRTA 
regions and macro ncRNAs that are previously defined in Table 9 and Table 13, respectively 
are shown on the left. 20 normal and 23 cancer cells/tissues/ patients are named below and 
grouped with corresponding normal and cancer white boxes. Yellow boxes; transcript 
expressed, Red boxes; transcript is not expressed. 
 
The EXON1A, KCNQ1OT1 and H19 macro ncRNAs are largely ubiquitously 

expressed (exceptions: H19 is not expressed in fibroblasts and whole blood while 

KCNQ1OT1 is downregulated in two cervical cancers lines). GNAS1-AS and most 
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GTL2 and UBE3A-AS variants have diverse tissue specific patern. GTL2var6 is 

specific for neuroblastoma (SHSY5Y) while UBE3A-AS long variant (var1) is 

specifically expressed in brain (both fetal and adult) (Figure 17). 
 

2. 2. 1. 2. Nuclear versus cytoplasmic localization of known macro ncRNAs 

Nuclear versus cytoplasmic localization of six well-known macro ncRNAs was 

assessed by double cDNA hybridization on HIRTA in normal human fibroblasts cell 

line (Hs27)  (Figure 12, section 2.1.6). KCNQ1OT1 and GTL2var1 macro ncRNAs 

were highly expressed in fibroblasts and were clearly nuclearly enriched by double 

HIRTA hybridization (Figure 18). Nuclear localization of KCNQ1OT1 was also 

confirmed by RT-PCR and RT-qPCR and has been used as a positive control in 

further experiments testing localization of novel macro ncRNA candidates. GNASAS 

was lowly expressed and showed both nuclear and cytoplasmic localization while 

EXON1A localization was difficult to determine since this ncRNA differs just in the 

first exon (that corresponds to one HIRTA probe) from the overlapping protein coding 

gene GNAS. H19 and UBE3A-ASvar1 localizations could not be determined since 

they showed no expression in fibroblasts. Human tissues were not available for 

nuclear versus cytoplasmic study of macro ncRNA localization.  

 

 
Figure 18. KCNQ1OT1 and GTL2var1 macro ncRNAs are nuclear-enriched. A. 
Expression of KCNQ1OT1 ncRNA in fibroblasts is shown in orange while its nuclear 
enrichment is visible as black bars probe (enrichment in double nucleus and cytoplasmic 
hybridization) B. GTL2var1 ncRNA is nuclearly enriched in fibroblasts. Tracks are displayed 
on UCSC as on the Figure 12B, section 2.1.6.  
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2. 2. 1. 3.  5’-3’ slope as a feature of macro ncRNA expression by HIRTA 

HIRTA mapping of known macro ncRNAs led to the observation of that tile 

expression intensity decreases through the macro ncRNA body in a 5’ to 3’ direction. 

This feature was typically observed for highly expressed and very long macro 

ncRNAs like KCNQ1OT1, GNASAS, GTL2var1 and UBE3A-ASvar1 (Figure 19) in 

different tissues and cell lines. SLOPE function (that assess the slope of a linear 

regression line through the data points, where the slope is defined as vertical 

distance divided by horizontal distance between any two points on the line showing 

rate of the change along the regression line) was used to calculate decreases in tile 

expression intensities through macro ncRNA bodies. Interestingly, positive/negative 

value of the calculated slope and the known strand orientation of the transcript 

showed an opposite correlation. If the calculated slope was negative, transcript was 

expressed from plus (+) DNA strand (strand defined by UCSC) while positive slope 

indicated transcription from minus (-) DNA strand. Thus, the decrease in the HIRTA 

probes intensity has a 5’ to 3’ direction and this feature was named the 5’-3’ slope. 

This shows that the slope has potential in predicting macro ncRNAs transcription 

orientation and promoter location. Correlation between slope and strand was shown 

for four known macro ncRNAs showing low to moderate non-saturated expression, 

while H19 ncRNA was showing high, saturated level of expression and did not show 

the slope and EXON1A could not be tested since it highly overlaps with the GNAS 

protein coding gene. Wheather this correlation is a universal feature of long ncRNAs 

will be further tested in the section 2.5.3, where prediction of transcriptional 

orientation, based on 5’-3’ slope and other genetic/epigenetic features, for novel 

macro ncRNAs will be described.  
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Figure 19. Reverse correlation between 5’-3’ slope and transcriptional orientation. Log2 
tile expression intensities through the length of macro ncRNA from cells/tissues highly 
transcribing macro ncRNAs are ploted to the HIRTA probes (number of tiles through the 
macro ncRNA region) and shown in orange. Trendline corresponding to signal intensities is 
depicted in black. KCNQ1OT1 and GNASAS macro ncRNAs known to be transcribed from 
the - DNA strand show positive SLOPE values while GTL2var1 and UBE3A-ASvar1 macro 
ncRNas are known to be transcribed form the + DNA strand and show negative SLOPE 
values.  
 

2. 2. 2. Novel macro ncRNA candidates in well-known imprinted gene regions 

In addition to the six macro ncRNAs presented on Figure 13, in six well-studied 

imprinted clusters there is a number of less-studied macro ncRNAs (AIRN in IGF2R 

cluster, 91H and IGF2AS in IGF2 gene cluster, LOC650368 and LOC100133545 in 

KCNQ1OT1 cluster, NCRNA00239 in DLK1 and PWRN1 in PWS imprinted gene 

cluster (described in introduction or annotated by RefSeq genes)). HIRTA also 

detected expression of less-studied macro ncRNAs except for AIRN ncRNA, which 

was not detected in the tissues and cell lines that were used (data not shown).  

 

28 novel macro ncRNA candidates that range from 3.9 to 666kb in length (Table 14) 

were mapped in six well-known human imprinted gene regions based on criteria 

described in section 2.1.5. Positions of the candidate macro ncRNAs, their lengths, 

% of positive probes covered and their positions corresponding to annotated genes 

are shown.  
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HIRTA 
REGION 
 
 

Chr. NAME of macro 
ncRNA 

POSITION (hg18) Length 
(kb) 

COV (%) Position to  
annotated PC 
genes 

IGF2R 6 SLC22A2up chr6:160616598-160620501 3.9 100 IG 
  MAS1down chr6:160249097-160257182 8 95.9 3’/OV 
  MAS1ov chr6:160171198-160260777 89.6 89.9 OV 

IGF2 11 H19down chr11:1930616-1972982 42.4 94 3’/OV 
  H19up chr11:2019588-2048590 29 100 IG 
  ASCL2ov chr11:2167733-2255607 87.8 89.5 OV 
  ASCL2up chr11:2261646-2270383 8.7 100 3’/OV 
  TSPAN32down1 chr11:2296006-2355798 59.8 100 IG 

KCNQ1 11 ZNF195down1 chr11:3225444-3318834 93.4 87.6 IG 
  ZNF195down2 chr11:3321897-3329926 8 100 IG 
  ZNF195down3 chr11:3311198-3317597 6.4 92.3 IG 
  ZNF195down4 chr11:3303912-3308999 5 97 IG 
  ZNF195up1 chr11:3379056- 3421678 42.6 86.5 IG 
  ZNF195up2 chr11:3463567-3560541 97 89.1 IG 

DLK1 14 BEGAINup chr14:100105884-100123177 17.2 100 5’/OV 
  PPP2R5Cup1 chr14:101163838-101268901 105 86.6 OV 
  PPP2R5Cup2 chr14:101262293-101297952 35.6 100 OV 

PWS 15 NIPA1up1 chr15:20647107-20666695 19.5 92 IG 
  WHAMML1up chr15:20759798-20797989 38.2 94.7 5’/OV 
  WHAMML1up1 chr15:20800834-20804904 4 100 IG 
  SNRPNup1 chr15:21621941-21834998 213 87.6 IG 
  SNRPNup2 chr15:21887504-22553483 666 98.2 IG 
  GABRB3down1 chr15:24040777-24097047 56.3 75 IG 
  GABRB3down2 chr15:24191839-24252220 60.4 93 IG 

GNAS 20 APCDD1Lup1 chr20:56523841-56628352 104.5 84.3 OV 
  APCDD1Lup2 chr20:56633435-56655122 21.7 85.4 IG 
  ZNF831up1 chr20:57154647-57199470 44.8 99.3 5’/OV 
  ZNF831up2 chr20:57070823-57103486 32.6 91 IG 

Table 14. 28 novel macro ncRNA candidates are mapped in six well-known imprinted 
gene clusters in a total of 43 tissues/cell lines. The columns are as described in Table 13., 
section 2.2.1.1.  
 
To illustate these candidates, six examples of novel macro ncRNAs: MAS1down from 

the IGF2R imprinted gene region, H19up from the IGF2 imprinted gene region, 

ASCL2up from the KCNQ1 region, PPP2R5Cup2 from the DLK1 region, 

WHAMML1up from the PWS region and ZNF831up2 from GNAS region are shown 

(Figure 20). Relative to RefSeq and UCSC annotated genes, 17 macro ncRNAs do 

not overlap, 5 overlap with annotated genes, 3 are located next to the gene from its’ 

5’ end and 3 are located adjacent to the 3’end of a gene. Transcripts located next to 

the genes could be overlapping ncRNAs, novel 5’ exons or 3’UTRs. For example 

PPP2R5Cup2 and WHAMML1up could be novel 5’ exons or overlapping ncRNA 

while MAS1down and ASCL2up could be novel 3’UTRs or novel overlapping macro 

ncRNAs (Figure 20). From 28 mapped transcripts H19up is the only that showed very 

slight upregulation through human embryonic cell differentiation (log2=1.5 in HESd0 

and log2=2.1 in HES2d7). Eight novel macro ncRNA candidates have CpG islands 

that may be their promoters. Interestingly, five of the candidates are overlapping with 

annotated Expression Sequenced Tags (ESTs) that do not have coding potential in 

UCSC description while PPP2R5Cup2 that is exclusively expressed in testis partially 
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overlaps NCRNA00239 ncRNA. Thus, these evidences straighten the hypothesis that 

these transcripts are indeed non-protein coding RNAs.  

 

         

Figure 20. Typical examples of novel macro ncRNA candidates from 6 well-known 
imprinted gene regions. Diverse examples of macro ncRNA candidates expressed in 
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different cell lines/tissues from six well-known imprinted regions are noted by black boxes. 
PPP2R5Cup2 is an example of a group of macro ncRNA candidates rich in repetitive regions. 
Name of the HIRTA region and viewed UCSC screen position in hg18 is shown on the top of 
each gray box. The name and the lengths of the novel transcripts are showed below the 
boxes. Custom HIRTA tracks as well as RefSeq genes, sno/miRNA and CpG islands UCSC 
tracks are shown. 
 
Expression of novel candidate macro ncRNAs mapped by HIRTA in 6 well-known 

imprinted gene regions was analysed using the described ON/OFF system showing if 

ncRNA candidates are expressed or not expressed in normal and cancer cells or 

tissues (Figure 21). 
 

Among these 28 mapped novel ncRNAs there were no ubiquitously expressed 

transcripts. Five transcripts (MAS1ov, PPP2R5Cup2, GABRB3down1, 

GABRB3down2 and ZNF831up2) were expressed in a single cell line/tissue. 6 

transcripts were expressed exclusively from cancer cell lines/ tissues (MAS1ov, 

ZNF195down1, 2, 3, 4 and PPP2R5Cup1). Examples of cancer specific and cancer 

dowregulated transcripts will be further shown in section 2.6. Fetal liver and placenta 

do not express any of the 28 macro ncRNA candidates althow they do express other 

macro ncRNAs (Figure 17, section 2.2.1.1.), which is the same for two cervical 

cancer cell lines (DoTc2 and ME180).  
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Figure 21. Tissue specific expression of macro ncRNA candidates from the 6 well-
known imprinted gene regions. Expression of 28 macro ncRNA candidates in 43 normal 
and cancer cells/tissues. Description of the figure is as for Figure 17., section 2.2.1.1. Yellow; 
ON- expressed transcripts, Red; OFF-no expression. 
 

2. 3. Human XIST region  

The XIC (X Inactivation Centre) region is included here as an example of region 

containing a wel-studied Xist/XIST macro ncRNA. The XIC was genetically identified 

as a locus on the X chromosome that is required and sufficient for the X chromosome 

inactivation (Russell, 1963). However the human XIC has several differences 

compared to mouse XIC. The mouse XIC region contains Xist macro ncRNA that is 

expressed exclusively from inactivated X chromosome in female, shows imprinted 

expression in extraembryonic tissues and has silencing function in X-inactivation 
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(reviewed in (Wutz and Gribnau, 2007)). The human XIST ncRNA is also expressed 

exclusively from inactivated X chromosome in female cells containing at least two X 

chromosomes and has a silencing function in X-inactivation but it does not show 

imprinted expression in extraembryonic tissues (Brown et al., 1991; Migeon, 2002). 

Expression of the XIST macro ncRNA was shown by HIRTA single hybridizations in a 

number of human cells/tissues (one example of high XIST expression is shown on 

Figure 22A). The undifferentiated human embryonic stem cell line HES2 did not 

express XIST while after seven days of differentiation XIST was expressed in the 

same cell line (Figure 22B).  

 

 
Figure 22. Xist macro ncRNA is developmentally regulated in HES2 cell line. A. HIRTA 
expression of XIST macro ncRNA corresponds to the annotated gene. TSIX ncRNA is not 
expressed. B. XIST macro ncRNA was not expressed in HESd0 cells but showed expression 
after 7 days of differentiation in HES2d7 cell line. Custom HIRTA tracks as well as RefSeq 
genes, sno/miRNA and CpG islands UCSC tracks are shown. 
 

Mouse Tsix and human TSIX macro ncRNA show different expression patterns and 

possibly different roles between mouse and human (Chang and Brown, 2010; 

Migeon et al., 2002). The mouse Tsix is expressed early in development and 

silenced upon differentiation (Debrand et al., 1999; Lee and Lu, 1999). The Tsix 

completely overlaps Xist ncRNA, and was found to have a role in regulating Xist 

expression and in partitioning chromatin domains within the mouse Xic (Navarro et 
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al., 2009). The human TSIX macro ncRNA just partially overlapps XIST and is 

expressed in chorionic villus cells, embryonal bodies and the human embryonal 

carcinoma N-Tera2D1 cell line (Chow et al., 2003; Migeon et al., 2002). The role of 

human TSIX is not fully elucidated but it was proposed that the TSIX is not a 

regulator of XIST in humans (Chang and Brown, 2010). Using HIRTA analysis TSIX 

was not expressed in undifferentiated and differentiated HES2 cells (Figure 22B) or 

in two tested embryonal carcinoma cell lines (Tera2 and NCCIT) as well as any other 

tested cells/tissues (data not shown). Surprisingly, the N-Tera2D1 cell line that was 

previously found to express TSIX was derived by cloning the NTERA-2 cell line that 

was itself established from the nude mouse xenograft of Tera-2 

(http://www.lgcstandards-atcc.org/), the cell line that was hybridized to HIRTA and 

did not show TSIX expression. 
 

The Jpx that is also known as Enox ncRNA is the first gene expressed upstream of 

the Xist ncRNA and it was found to partially escape X-inactivation in mouse 

(Johnston et al., 2002). Similarly, human JPX/ENOX was also found to be expressed 

from both inactive and active X chromosomes (Chow et al., 2003). In the UCSC 

RefSeq genes JPX/ENOX ncRNA is annotated as NCRNA00182 that is located 

about 90kb upstream of XIST. NCRNA00183 ncRNA is another ncRNA that 

overlapps NCRNA00182 and was recently annotated by UCSC RefSeq genes. 

Ubiquitous expression in all tested normal and cancer tissues of both overlapping 

NCRNA00182 and NCRNA00183 macro ncRNAs, was found by HIRTA (typical 

expression pattern in one of the tissues is shown on Figure 23). These ncRNAs were 

not developmentaly regulated after seven days of differentiation in ES cell system 

(data not shown). Both NCRNA00182 and NCRNA00183 were rich in repeats and 

NCRNA00183 overlapped with three annotated miRNAs (Figure 23).  

 

 
Figure 23. NCRNA00138 and NCRNA00182 macro ncRNAs are expressed from XIC 
region. HIRTA detects two overlapping macro ncRNAs (NCRNA00182 and NCRNA00183) 
that are positioned more than 90kb upstream of XIST. Custom HIRTA tracks as well as 
RefSeq genes, sno/miRNA and CpG islands UCSC tracks are shown. 
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2. 4. Macro ncRNAs in 26 less-studied imprinted gene regions  
 
2. 4. 1. Mapping of known and novel macro ncRNAs in less-studied regions 

In the previous sections six well-studied imprinted gene clusters and the XIST 

genomic region were shown to express already known or novel macro ncRNAs 

(sections 2.2.; 2.3.). To examine whether all human imprinted gene clusters express 

macro ncRNAs, we analysed 26 less-well studied imprinted gene regions spotted on 

HIRTA (less-studied regions were defined in Table 9, section 2.1.1.). Mapping of 

novel macro ncRNAs in 43 cells/tissues/patients in 26 less-studied regions was done 

on the basis of the already presented criteria (section 2.1.5.). 11/26 tested regions 

had been shown previously to express macro ncRNAs (e.g. WT1 region: WIT1 

ncRNA, MEST region: MESTIT1 and MIT1 ncRNAs, PLAGL1: HYMAI ncRNA, 

CALCR region: DLX6AS ncRNA) (introduced in Table 6A and Table 6B, section 

1.2.5.2.).  

 

HIRTA Chip confirmed expression of the paternally expressed, 2.4kb long WIT1 

ncRNA although the size of this ncRNA could not be precisely mapped since a new 

∼39kb long transcript overlapping WIT1 or presenting novel variant of WIT1, was 

found (WIT1down). This new 39kb transcript showed specifically high expression in 

fetal kidney, similar to WIT1 (Figure 24A).  

 

MESTIT1 ncRNA is 3.2kb long, paternally expressed and overlaps the MEST gene 

(Li et al., 2002). Expresion of this transcript was confirmed by HIRTA and showed 

tissue specific expression (Figure 24B). MIT1, from the same MEST imprinted gene 

region was previously identified as a ncRNA mapping to intron 20 of COPG2 and 

having an antisense orientation to this protein-coding gene (Yamasaki et al., 2000). 

Since the reference sequence, from the hg18 version of the UCSC human genome 

that was used for HIRTA design, has a gap of about 80kb including 10 previously 

mapped COPG2 exons, MIT1 expression could not be confirmed.  

 

HYMAI is a paternally expressed 5kb long ncRNA previously shown to overlap the 

PLAGL1 protein-coding gene in the sense orientation. HIRTA showed high 

expression signals over the known HYMAI region, but since the PLAGL1 gene is 

simultaneously highly expressed and shows high intronic signals in the region 

overlapping HYMAI, the expression of HYMAI itself could not be independently 

elucidated. 
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DLX6AS ncRNA expression was detected from the CALCR imprinted gene region by 

HIRTA. But simultaneously, two novel macro ncRNA candidates could be mapped in 

the DLX6AS region: the ∼11kb long DLX6up1 positioned upstream of DLXAS and the 

∼26kb long DLX6up2 ncRNA overlapping DLX6AS. These results indicate, DLX6 is a 

region with potentially highly complex overlapping transcriptional units that are still 

not fully elucidatet (Figure 24C).  

 

 
Figure 24. Examples of known macro ncRNAs from 26 less studied imprinted gene 
regions. A. 2.4kb long known WIT1 macro ncRNA positioned downstream of WT1 protein-
coding gene is expressed in fetal kidney. WIT1down is a 39kb long macro ncRNA candidate. 
B. In the MEST region the MESTIT1 macro ncRNA is expressed in undifferentiated ES cells. 
C. The DLX6 region is part of the CALCR imprinted gene region and may contain a number of 
overlapping transcripts (e.g. DLX6up1, DLX6AS, DLX6up2, DLX6). Custom HIRTA tracks as 
well as RefSeq genes, sno/miRNA and CpG islands UCSC tracks are shown. 
 

Mapping of novel macro ncRNAs in 26 less-studied regions revealed 73 novel macro 

ncRNA candidates in 43 tested cell lines/tissues (Table 15). Overall positions in the 

human genome, lengths, coverage and positions in accordance to protein coding 

genes were mapped. Novel macro ncRNA transcripts that were identified from were 

in between 6 and 460kb in length. Five of these candidates are found to be between 

1kb and 10kb, 51 between 10 and 100kb and 17 more than 100kb in length. 19 of 
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these transcripts have potential CpG island promoters on one of the mapped ends, 

and 13 of them are partially overlapped with ESTs annotated with RefSeq genes 

where 10 of these ESTs are showing non-protein coding potential according to the 

UCSC description.  
HIRTA REGION 
 

Chr. NAME of macro 
 ncRNA 

POSITION (hg18) Length 
(kb) 

COV 
(%) 

Position to 
annotated PC 
genes 

TRP73 1 LRRC47down chr1:3679188- 3686484 7.1 99 IG 
DIRAS3 1 GADD45Aup chr1:67842948-67867981 25 92.4 IG 
  GPR177up chr1:68530492-68571923 41.4 97.4 IG 
  RPE65ov chr1:68626430-68712423 85.9 100 OV 
  RPE65down1 chr1:68484480-68624258 139.7 96.9 3’/OV 
  RPE65down2 chr1:68530492-68571923 41.4 89.6 IG 
COMMD1 2 B3GNT2down1 chr2:62376964-62498341 121.3 99.2 IG 
  B3GNT2down2 chr2:62305370-62373270 67.9 93 3’/OV 
  FAM161Adown chr2:61794031-61845495 51.4 83.1 IG 
NAP1L5 4 TIGD2down chr4:90255075-90296601 41.5 91.9 3’/OV 
PLAGL1 6 PHACTR2ov chr6:143899928-144040795 140.8 98 OV 
GRB10 7 COBLdown1 chr7:50948084-51023474 75.4 87.9 IG 
  COBLdown2 chr7:50902101-50930499 28.4 98.7 IG 
CALCR 7 DLX6up1 chr7:96422607-96434058 11.4 100 IG 
  DLX6up2 chr7:96446866-96472851 25.9 97.8 IG 
  COL1A2up chr7:93758984-93858857 99.8 97.7 IG 
MEST 7 KLF14up1 chr7:130121904-130170014 41.8 89.7 IG 
  KLF14up2 chr7:130186541-130248421 61.8 99.7 IG 
  KLF14up3 chr7:130248421-130279459 31 100 IG 
KCNK9 8 PEG13 chr8:141173723-141180357 6.6 100 IN 
  PTK2up chr8:142107593-142163814 56.2 92 IG 
  KIAA1126up chr8:142333407-142388337 54.9 99.2 5’/OV 
SFMBT2 10 PFKFB3down chr10:6317511-6509111 191.6 99.9 3’/OV 
  SFMBT2down1 chr10:6866778-6926405 59.6 99.6 IG 
  SFMBT2down2 chr10:6820088-6866778 46.7 99.3 IG 
  SFMBT2down3 chr10:7185016-7201477 16.5 87.6 IG 
  SFMBT2down4 chr10:6915718-7015793 100 95.9 IG 
  SFMBT2down5 chr10:6929387-6964245 34.8 99.4 IG 
  GATA3down chr10:8452227-8487562 35.3 73.8 IG 
INPP5F 10 BAG3down chr10:121427002-121475599 48.6 92.6 3’/OV 
  SEC23IPdown1 chr10:121922168-122083651 161.5 90.7 IG 
  SEC23IPdown2 chr10:122068853-122096845 28 99.3 IG 
  SEC23IPdown3 chr10:121922168-122085936 163.8 90.6 IG 
BAZ2 11 OR556B4up1 chr11:6000641-6087607 87 98.5 OV 
  OR56A1down chr11:6020186-6041034 20.8 99.3 IG 
  PRKCDBPup chr11:6298316-6323682 25.4 100 5’/OV 
  PRKCDBPdown chr11:6272107-6296751 24.6 93.9 3’/OV 
  HPXdown chr11:6400477-6409017 8.5 100 3’/OV 
  ZNF215up chr11:6724246-6904230 180 95.3 OV 
  RBMXL2down chr11:7068955-7116437 47.5 93 3’/OV 
  OR5P2ov chr11:7684517-7876797 192.3 99 OV 
AMPD3 11 AMPD3up chr11:10325169-10428800 103.6 78.5 5’/OV 
  LYVE1ov chr11:10519395-10551214 16.6 98.8 OV 
  MRVI1up chr11:10672111-10707462 35.5 83.8 5’/OV 
WT1 11 WIT1down chr11:32418196-32457422 39.2 96.3 3’/OV 
SDHD 11 SDHDdown chr11:111471727-111514225 42.5 97.9 3’/OV 
  PTSdown chr11:111645888-111756700 120 97.4 3’/OV 
SLC38A4 12 SLC38A4down1 chr12:45063900-45174483 110.6 83.52 IG 
  SLC38A4down2 chr12:45063900-45527065 463.2 94.3 OV 
  SLC38A4up chr12:45563328-45661331 98 98 IG 
DCN 12 EPYCov chr12:89855372-89888024 32.6 83.8 OV 
  DCNup1 chr12:90400030-90416192 16.1 87.1 IG 
  DCNup2 chr12:90469318-90484664 15.3 93.2 IG 
  DCNup3 chr12:90538500-90546595 8 92.7 IG 
HTR2A 13 LRCH1up1 chr13:45925127-45939792 14.6 92.7 IG 
  LRCH1up2 chr13:45947398-46015616 68.2 87.6 5’/OV 
  HTR2Aup1 chr13:46364433-46472289 107.8 85.5 5’/OV 
  HTR2Aup2 chr13:46364433-46405913 41.4 90.8 OV 
  HTR2Ain chr13:46317545-46333910 16.4 94.1 IN 
GATM 15 SQRDLdown chr15:43784646-43889432 104.8 74.4 IG 
  C15orf43up chr15:42962890-42998200 35.3 93.4 IG 
RASGRF1 15 ADAMTS7down chr15:76830029-76836494 6.4 96.7 IG 
  TMED3down chr15:77402383-77490747 88.4 98.5 3’/OV 
  KIAA1024up chr15:77492611-77511913 19.3 89 5’/OV 
  CHRNB4up chr15:76739929-76826996 87 88.6 5’/OV 
IMPACT 18 ZNF521up chr18:20555579-20779652 224 94.4 IG 
ZIM 19 ZNF71down1 chr19:61824857-61835672 10.8 100 3’/OV 
  ZNF71down2 chr19:61835974-61866765 30.8 91.3 3’/OV 
HM13 20 ID1up1 chr20:29623883-29635995 12.1 91.7 IG 
  ID1up2 chr20:29639171-29654648 15.4 95.6 5’/OV 
NNAT 20 BLCAPov chr20:35547467-35583161 35.7 99.5 3’/OV 
L3MBTL 20 L3MBTLup chr20:41552855-41572354 19.5 100 IG 
  TOX2up chr20:41817556-41913383 95.8 72.7 IG 
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Table 15. 73 novel macro ncRNA candidates have been mapped in 26 less-well studied 
imprinted gene regions in 43 cells/tissues/patients by HIRTA. The columns are as 
described in Table 13., section 2.2.1.1. 
 

2. 4. 2. Developmental regulation of macro ncRNAs in less-studied regions 

We tested developmental regulation of macro ncRNA candidates by differentiating 

human ES cells and testing candidate gene expression using HIRTA single 

hybridizations before and after differentiation. Among 73 mapped macro ncRNA 

candidates in 26 less-well studied imprinted gene regions, 6/22 that were expressed 

in ES cells showed some degree of developmental regulation.  

 

The OR56B4up1 ncRNA candidate was expressed from the BAZ2 region in 

undifferentiated ES cells while after seven days of differentiation expression of this 

gene was not detected (Figure 25A). Interestingly, another macro ncRNA candidate 

that also overlaps olfactory receptor genes, OR5P2ov was upregulated after seven 

days of ES cells differentiation (Figure 25B). SLC38A4down2 is ∼463kb long ncRNA 

expressed from SLC38A4 region and was downregulated to a lesser extent during 

ES cells differentiation. Three other candidates (PKCDBPup, ZNF521up, ID1up1) 

that show downregulation during HES2 differentiation were lowly expressed in 

undifferentiated ES cells and by day 7 of differentiation of HES2 they did not show 

expression (data not shown). 
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Figure 25. Comparison of novel macro ncRNAs expression before and after day 7 of 
human embryonal stem cells differentiation. A. The OR56B4up1 macro ncRNA expressed 
from the BAZ2 imprinted gene region is downregulated upon differentiation of HES2 cell line. 
B. OR5P2ov shows upregulation upon ES cells differentiation. Both OR56B4up1 and 
OR5P2ov are overlapping olfactory receptor genes. Custom HIRTA tracks as well as RefSeq 
genes, sno/miRNA and CpG islands UCSC tracks are shown. 
 

2. 4. 3. Nuclear versus cytoplasmic localization of novel macro ncRNAs in less-

studied regions 

Nuclear versus cytoplasmic localization of macro ncRNA candidates in less-studied 

imprinted gene regions was first tested by the double cDNA hybridization procedure 

in normal human fibroblasts cell line (Hs27) (section 2.1.6). 14 out of 73 transcripts 

showed expression in Hs27 cell line. For 5 macro ncRNAs  (KLF14up2, KLF14up3, 

OR5P2ov, ADAMTS7down, TMED3down) double HIRTA hybridization showed 

nuclear enrichment, 7 (TIGD2down, PEG13, KIAA1126ov, PRKCDBPup, PTSdown, 

KIAA1024up, BLCAPov) were found to be both nuclear and cytoplasmic and one 

appeared to be cytoplasmic enriched (LRRC47down). To illustrate these findings, 

examples of double cDNA hybridizations on HIRTA for novel macro ncRNAs will be 

shown under section 2.4.5., where ten novel macro ncRNAs will be characterized 

using different techniques. 

 

Further, SLC38A4down2 and ADAMTS7down macro ncRNAs nuclear enrichment 

relative to the RPLPO housekeeping gene was shown using quantitative RT-PCR 

(qRT-PCR) (Figure 25). RNA from nuclear (N) and cytoplasmic (C) fractions of the 

Hs27 cell line and total Hs27 RNA (T) were tested by primers specific for these 

macro ncRNA candidates. The H19 macro ncRNA was used as a control as it was 

previously found in both nucleus and cytoplasm (Brannan et al., 1990). H19 

expression showed a N/C ratio of 1.5/1 as expected. Similarly, the GAPDH 

housekeeping gene N/C ratio was 0.8/1. Two primer pairs were used to test 

localization of KCNQ1OT1, which was used as a positive control known to be nuclear 

enriched (Murakami et al., 2007). KCNQ1OT1 was entirely found in nuclear fraction 

of the Hs27 fibroblast cell line (with ratios N/C=208/1 and N/C=142/1 depending of 

the primer pair), while SLC38A4down2 and ADAMTS7down were present in both the 

nuclear and cytoplasmic fractions, but enriched in nucleus with N/C ratios of 5:1 and 

11:1 respectively. Still, it cannot be excluded that cytoplasmic aboundance was 

under estimated due to presence of rRNA. 
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Figure 26. qRT-PCR showed nuclear enrichment of the ADAMTS7down and 
SLC38A4down2 macro ncRNAs relative to the RPLPO housekeeping gene. Hs27 cells 
were fractionated to nuclear (N) and cytoplasmic (C) fractions. Total (T) RNA from the same 
cell line was set to 1 and used for comparisson. The H19 macro ncRNA was found to be 
partially exported to the cytoplasm as previously published. The GAPDH housekeeping gene 
(GAPDH primer pair) showed the same kind of distribution showing both nuclear and 
cytoplasmic localization. KCNQ1OT1 ncRNA was tested by two primer pairs (KCNQ1OT1q1 
and KCNQ1OT1q2) and found to be nuclearly localized. ADAMTS7down macro ncRNA 
candidate has been tested with ADAMTS7Cq3 primer pair and found to be nuclearly enriched 
same as SLC38A4down2 macro ncRNA tested with SLC38A4Cq1 primer pair. Standard 
deviation bars represent three technical replicates.  
 

2. 4. 4. Tissue specific expression of macro ncRNAs from less-studied regions 

Tissue specific expession of 73 novel macro ncRNA candidates in 43 tested 

cells/tissues/patients was examined from HIRTA single hybridization data by the 

ON/OFF system where ON means expressed at any level and OFF no expression of 

a ncRNA candidate (Figure 27). 2/73 transcripts (ADAMTS7down and KLF14up3) 

showed ubiquitous expression in all tested samples, while two other macro ncRNA 

candidates: KIAA1126ov and BLCAPov were expressed in most of the cells/tissues. 

The SEC23IPdown3 expression was restricted to fetal and adult kidney and 

L3MBTLup restricted to fetal and adult brain tissue. 13/73 transcripts showed 

expression detected just in one of the 43 tested cells/tissues/patients, and 7 out of 

these 13 transcripts were testis specific. 56 transcripts showed different levels of 

expression or lack of expression in different tissues. 16 macro ncRNA candidates 

were found to be cancer specific (not expressed in any of tested normal tissues). 

From these candidates 9 were found exclusively in one cancer cell line; for example 

SFMBT2down5 was cervical cancer specific and OR56A1down was AML5 patient 

specific. Examples of cancer specific expression of these transcripts will be shown in 

the section focused on macro ncRNA expression changes in cancer (2.6). 
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Figure 27. Tissue specific expression of novel macro ncRNAs in normal and cancer 
cells. Tissue specific expression of 73 macro ncRNA candidates from 26 less-known 
imprinted gene regions is shown for 43 tested cells/tissues. Description of the figure is as for 
Figure 17, section 2.2.1.1. Yellow; ON- expressed transcripts, Red; OFF-no expression. 
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2. 4. 5. Examples of characterization of novel macro ncRNAs  

Ten novel macro ncRNA candidates expressed from less-studied imprinted gene 

regions were selected for further characterization. Characterization included 

assessment of: 1) Length of macro ncRNA, 2) Tissue specific expression and 

subcellular localization, 3) Annotation, 4) CpG island features, 5) 

Monoallelic/Imprinted expression of macro ncRNA. 

 

Length of macro ncRNA transcripts as well as tissue specific expression was 

assessed by analyzing HIRTA hybridization data, or by Northern blots using diverse 

cells/tissues and probes specific for macro ncRNA of interest (for details about the 

method see section 5.8.6.). Mouse Airn and Kcnq1ot1 ncRNAs that have function in 

gene silencing in cis are both nuclearly localized (Redrup et al., 2009; Seidl et al., 

2006). Thus, characterization of transcripts included the test of subcellular 

localization for transcripts expressed in normal human fibroblasts using double cDNA 

hybridization (section 2.1.6.) and RT-PCRs on nuclear, cytoplasmic and total RNA.  

 

Annotation of transcripts orientation was done using 5’-3’ slope feature, CpG islands, 

H3K4me3, RNAP II. CpG islands, visualized using CpG island track available on 

UCSC browser (Gardiner-Garden and Frommer, 1987), overlapping one of the 

transcript ends are potential promoters of the transcripts. CpG islands and/or borders 

of macro ncRNA candidate transcription were compared with maps of H3K4me3 

histone modification peaks from 9 cell lines (GM12878, H1-hESC, HepG2, HMEC, 

HSMM, HUVEC, K562, NHEK and NHLF) and with maps of RNAP II peaks from 3 

cell lines (HUVEC, K562 and NHEK), visualized using ENCODE Histone 

Modifications by Broad Institute ChIP-seq track available on UCSC browser, 

http://genome.ucsc.edu/cgibin/hgTrackUi?hgsid=168678869&c=chr1&g=wgEncodeB

roadChipSeq, (Bernstein et al., 2005; Bernstein et al., 2006). The large intergenic 

non-coding (linc) RNAs (Khalil et al., 2009) were compared with HIRTA mapped 

transcripts expressed from Hs27 and HeLa cell lines. Since Khalil et al. data also 

include tracks of lincRNA association with Polycomb repressive complex (PRC)2 and 

chromatin-modifying protein CoREST complexes, indication of this association was 

also investigated for three novel HIRTA mapped macro ncRNAs overlapping with linc 

ncRNAs.  

 

The assessed CpG island features were: test of CpG island promoter methylation 

status (if the CpG island is a DMR), test for presence of Differential Histone 

Modifications (DHM) and test for presence of tandem direct repeats in the CpG 



 
Irena Vlatkovic PhD Thesis 
 

83 

island. A number of imprinted macro ncRNA (e.g. KCNQ1OT1) have promoter CpG 

islands that are also Differentially Methylated Regions (DMRs) with one 

unmethylated and one methylated allele depending of parent-of-origin. Methylation 

status of CpG islands mapping to ends of novel macro ncRNAs was tested using 

methylation sensitive enzymes in Southern blot method and the Southern probe 

specific for tested macro ncRNA (for details about the method see section 5.5.). 

Deletions of DMRs showed previously that they could function as Imprint Control 

Elements (ICEs), controlling imprinted expression in the entire gene cluster 

(introduced in section 1.2.4.). Two known features of ICEs are: 1) presence of 

Differential Histone Modifications (DHM) including both activation H3K4me3 and 

repressive H3K9me3 chromatin modifications, 2) often direct repeats are present. 

Presence of DHM was tested comparing HIRTA expression profiles with ChIP-Seq 

profiles, published for both H3K4me3 and H3K9me3 in T cells by Barski (Barski et 

al., 2007). Presence of tandem direct repeats in the CpG island promoters of novel 

macro ncRNAs was assessed using dotmatcher program (EMBOSS).  

 

The imprinted gene expression was assessed by a combination of PCR/Proofreading 

RT-PCR and sequencing. In the first step, DNA from the cell lines that express genes 

of interest, was amplified using PCR with primers overlapping with known SNPs from 

the dbSNP build 129 database (Sherry et al., 2001) and sequenced on the Applied 

Biosystems 3730xl DNA Analyzer. Results of sequencing were analyzed using 

Sequencher 4.7. The heterozygous SNPs were visualized as two sequencing peaks 

at one base pair (bp) position and the same primer pairs were further used in the 

proofreading RT-PCR reaction using cDNA as a template. If two peaks were 

overlapping on Sequencher tracks gained from both DNA and cDNA sequencing 

than biallelic, and if one peak was present on the cDNA than monoallelic expression 

was found. The blood from one family and three lymphoblastoid cell lines that 

originated from families genotyped from the international HapMap project 

(http://hapmap.ncbi.nlm.nih.gov/) were assessed using the same method (for details 

see section 5.8.5). Macro ncRNA candidates that were assessed for listed 

characteristics and that will be presented through the section are: LRRC47down, 

KLF14up3, PEG13, KIAA1126up, PRKCDBPup, SLC38A4down2, ADAMTS7down, 

TMED3down, KIAA1024up and BLCAPov. 

 

2. 4. 5. 1. HIRTA REG TP73 (chr1): LRRC47down macro ncRNA characterization 

TP73 is expressed from human chromosome 1 and encodes the p73 transcription 

factor involved in cellular response to stress and development (Dickman, 1997). 



 
Irena Vlatkovic PhD Thesis 
 

84 

TP73 is the only known imprinted gene in the HIRTA TP73 region and shows 

expression from maternal chromosome in neuroblastoma cells (Kaghad et al., 1997). 

No macro ncRNAs and DMRs have been mapped previously to this region.  

 

1) Length of macro ncRNA 

The LRRC47down macro ncRNA candidate is ∼7kb long. It is positioned ∼ 40kb 

downstream of the TP73 gene and immediately downstream from LRRC47 (Leucine-

rich repeat containing protein 47). LRRC47down partially overlaps the hypothetical 

protein LOC388588 (Figure 28A).  

 

2) Tissue specific expression and subcellular localization 

LRRC47down macro ncRNA candidate was expressed in 16/20 normal cells/tissues 

while in cancer downregulation was apparent since just 2/23 cancer samples 

expressed LRRC47down (Figure 27, section 2.4.4). Double cDNA hybridization in 

Hs27 fibroblast cell line indicated potential cytoplasmic enrichment for this candidate 

(Figure 28A). 

 

3) Annotation 

The LRRC47down macro ncRNA candidate did not show clear presence of 5’-3’ 

slope, but it had CpG island 92 located at one of the ends of the transcript that could 

be a potential promoter of this macro ncRNA candidate, as well as H3K4me3 in 9/9 

(shown for H1-hESC) and RNAP II in 1/3 (shown in K562) Broad Histone cell lines 

(Figure 28A).  

 

4) CpG island features 

The CpG island 92 was shown to be unmethylated in fibroblasts (Hs27) and HeLa 

cells using three methylation sensitive enzymes (BstUI, BssHII and EglI) in Southern 

blot hybridization with LRRC47SBP probe (Figure 28C). Presence of DHM could not 

be observed on this CpG island (data not shown). Direct repeats were present in the 

CpG island 92 (Figure 28D). 

 

5) Monoallelic/Imprinted expression of macro ncRNA 

One heterozygous SNP (rs12061931, C/T) was found in fibroblast, Hs27 DNA using 

sequencing of PCR products from LRRC47CIE1 and LRRC47CIE2 primer pairs. 

Sequencing of RT-PCR band containing heterozygous SNP showed that 

LRRC47down macro ncRNA candidate was bialelically expressed in fibroblasts Hs27 

cell line (Figure 28B).  
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Figure 28. LRRC47down macro ncRNA candidate characterization. A. Expression of 
LRRC47down ncRNA candidate from normal fibroblasts (Hs27) and fetal liver is shown. This 
candidate is ∼7kb in length and has a potential CpG island promoter (CpG 92) overlapped 
with H3K4me3 in H1-hESC cell line and RNAP II in K562 cell line. This candidate is 
potentially cytoplasmically enriched since gray cytoplasm signals could be observed in the 
Hs27, N/C track. Positions of the Southern blot probe LRRC47SBP and heterozygous SNP 
(rs12061931) are shown in the hg18 build on UCSC browser by loading the custom .wig 
track. UCSC browser position is shown on the top. Tracks presented as on Figure 11B, 
section 2.1.5. and Figure 12B., section 2.1.6. B. Primer pair used for PCRs and RT-PCRs is 
shown on the top. Products were sequenced and sequencing tracks from Hs27 DNA and 
RNA showing five nucleotides from both sides of heterozygous SNP are shown.  rs12061931 
express both C and T alleles in the Hs27 cell line. *; heterozygous SNP, blue box; position of 
the SNP. C. Map of the genomic region surrounding CpG island 92 is shown. Positions where 
enzymes cut are shown using vertical gray lines while numbers on the left side from vertical 
lines represent expected lengths (in kilobases) of the DNA fragments digested with 
corresponding enzymes and recognized with the probe that is shown in red. Southern blot 
using three methylation sensitive enzymes (BstUI, BssHII and EglI) in combination with EcoRI 
and LRRC47SBP probe showed that both alleles of CpG 92 are unmethylated in HeLa and 
Hs27 cell lines, since three methylation senzytive enzymes cutted DNA producing 2.4kb, 
1.8kb, 1.7kb and 1.3kb bands while 4.7kb band expected from digestion of EcoRI enzyme 
alone was not present (indicated with arrow). D. CpG island 92 shows presence of direct 
repeats using dotmatcher program (EMBOSS) with following criteria, window size: 30 and 
treshold: 65. 
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In summary, LRRC47down was shown to be ~7kb long transcript expressed in most 

of the tested normal tissues (16/19) and not expressed in most of the tested cancer 

cell lines (21/23) that had unmethylated CpG island promoter and was biallelically 

expressed in fibroblasts. 

 

2. 4. 5. 2. HIRTA REG MEST (chr7): KLF14up3 macro ncRNA characterization 

The HIRTA MEST region is positioned on human chromosome 7 and includes four 

known protein coding genes showing imprinted expression (MEST and COPG2 that 

are paternally expressed and CPA4 and KLF14 that are maternally expressed) and 

two macro ncRNAs: MESTIT1 and MIT1, both previously found to be paternally 

expressed imprinted genes (introduced in Table 6A, section 1.2.5.2.).  

 

1) Length of macro ncRNA 

The KLF14up3 macro ncRNA candidate was a part of complex transcription unit 

potentially containing numerous overlapping transcripts expressed in both 

transcriptional orientations. The KLF14up3  (∼30kb long) alone was located directly 

upstream of Homo sapiens hypotetical LOC378805 (FLJ43663), transcript variant 1, 

ncRNA (RefSeq genes, UCSC) and could be part of this transcript (Figure 29A).  

 

2) Tissue specific expression and subcellular localization 

KLF14up3 was ubiquitously expressed in all 43 tested cells/tissues (Figure 27, 

section 2.4.4). HIRTA double cDNA hybridization (Figure 29A) and RT-PCRs on 

nuclear and cytoplasmic fractions of normal human fibroblasts (Figure 29B) both 

showed nuclear enrichment of KLF14up3 macro ncRNA candidate. 

 

3) Annotation 

The presence of H3K4me3 in GM12878 lymphoblastoid cell line (and in 7 more cell 

lines mapped by Broad Histone, UCSC track, section 2.4.5.) at the distal end of the 

KLF14up3 transcript, argues for plus (+) strand transcription that is opposite to 

transcription orientation of FLJ43663 ncRNA transcript. KLF14up3 has been 

previously mapped as linc ncRNA, associated with PRC2 and CoREST complexes 

(Figure 29A). 

 

4) CpG island features 

KLF14up3 did not show presence of a CpG island promoter (Figure 29A). 
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5) Monoallelic/Imprinted expression of macro ncRNA 

Despite the nuclear localization and genome position close to known imprinted 

genes, KLF14up3 was biallelically expressed in fibroblasts on the basis of three 

heterozygous SNPs (rs17165272, rs205712 and rs13230391) (data shown for 

rs17165272, Figure 29B).  

 

 
Figure 29. KLF14up3 (~31kb) is nuclear enriched biallelic macro ncRNA. A. Expression 
of KLF14up2 (~52kb) and KLFup3 (~31kb) in Hs27 cells and bone marrow from single HIRTA 
hybridizations is shown. This macro ncRNA is enriched in nucleus by double cDNA 
hybridization and overlapps to previousy found linc RNAs that are associated with PRC2 and 
CoREST complexes. Positions of heterozygous SNP (rs17165272) and PCR product 
(KLF14CIE3) used for sequencing of SNPs and for testing cellular localization are shown in 
the hg18 build on UCSC browser by loading the custom .wig track. Tracks presented as on 
Figure 11B, section 2.1.5. and Figure 12B., section 2.1.6. B. KLF13up3 nuclear localization 
has been confirmed using RT-PCR on nuclear (N), cytoplasmic (C) and total (T) fibroblasts 
RNA. GAPDH is used as a loading control. +; +RT reaction, -; -RT reaction, NT; no template 
C. KLF14up3 is biallelically expressed in fibroblasts based on rs17165272 SNP. For detailed 
description look at the Figure 28B, section 2.4.5.1. 
 
In summary, KLF14up3 was ∼30kb long, ubiquitous, nuclear, biallelically expressed 

macro ncRNA that is associated with PRC2 and CoREST complexes. 

 
2. 4. 5. 3. HIRTA REG KCNK9 (chr8): PEG13 and KIAA1126up ncRNA 

characterization 

KCNK9 (potassium chanel, subfamily K, member 9) is the only known gene showing 

imprinted expression (maternally expressed (Ruf et al., 2007)) in HIRTA region 

KCNK9. In mouse this imprinted gene region contains two imprinted protein coding: 

maternally expressed genes Kcnk9 and Trappc9 (Ruf et al., 2007; Wang et al., 

2008b) and one paternally expressed non-protein coding RNA, Peg13 (Smith et al., 

2003). The CpG island promoter of mouse Peg13 is a gametic DMR (Ruf et al., 
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2007). Previously human PEG13 was not identified, despite the in silico mapping of 

the orthologous human region of the Peg13 DMR, to intron 17 of the TRAPPC9 gene 

(Ruf et al., 2007).  

 

1) Length of macro ncRNAs 

HIRTA single hybridizations showed expression of the human ∼ 6.6kb long transcript 

from intron 17 of TRAPPC9, overlapping the CpG island corresponding to mouse 

Peg13 DMR and with specifically high expression in fetal and adult brain (Figure 

30A). Thus, I named this transcript PEG13. The second macro ncRNA candidate 

identified in the KCNK9 region, KIAA1128up was ∼55kb long macro ncRNA, located 

upstream of KIAA1126, a putative uncharacterized protein (that is annotated by 

UCSC gene track with eight annotated exons, but not present in RefSeq genes) with 

no reports about its imprinted expression in both human or mouse (Figure 31A). 

 

2) Tissue specific expression and subcellular localization 

Normal human fibroblasts (Hs27) showed low expression of PEG13. In the same cell 

line this ncRNA candidate was present in both nuclear and cytoplasm fractions by the 

double cDNA hybridization (Figure 30A). Except from fibroblasts, PEG13 was 

expressed from the whole blood, and it showed especially high expression from fetal 

and adult brain (Figure 27, 2.4.4.). The KIAA1126up, candidate was highly expressed 

from the whole blood, while fibroblasts showed low expression (Figure 31A). The 

KIAA1126up was expressed from 15/20 of normal and from 14/23 cancer cell lines 

(Figure 27, section 2.4.4.). This macro ncRNA candidate was present in both nuclear 

and cytoplasm fractions of fibroblasts, based on the double cDNA HIRTA 

hybridizations (Figure 31A).  

 

3) Annotation 

The CpG island that overlapps PEG13 (CpG: 210, UCSC) showed presence of 

H3K4me3 in 7/9 Broad Histone Modification tracks (presence of H3K4me3 in H1-

ESC is shown on Figure 30A). The KIAA1026up had a potential CpG island promoter 

(CpG: 77, UCSC) that was overlapped by H3K4me3 in 8/9 cell lines on the Broad 

UCSC track.  

 

4) CpG island features 

A Southern blot using methylation sensitive enzyme BssHII in combination with 

EcoRI or EcoRI alone as a control, and specific probe (PEG13SBP) revealed that the 

CpG island 210 is a DMR in the Hs27 cell line where the methylated and 
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unmethylated alleles respectively were visually present as bands of similar intensities 

indicating a 50%: 50% ratio (feature of a DMR) (Figure 30C). In the same time this 

CpG island shows hypermethylation in HeLa cells (Figure 30C). A dotplot of CpG 210 

showed the presence of numerous direct repeats (Figure 30D). KIAA1026up CpG 

island was not tested for presence of methylation.  

 

5) Monoallelic/Imprinted expression of macro ncRNA 

To test potential monoallelic expression of PEG13, I used 4 primer pairs (P13CIE1-4) 

and were able to map one known heterozygous SNP (rs35257944) (dbSNP build 

130, UCSC) and one novel heterozygous SNP on position chr8: 141176581-

141176581 in Hs27 DNA by sequencing PCR products with both forward and reverse 

primers. Both SNPs showed a strong bias towards one allele (preferential monoallelic 

expression) being expressed in the fibroblast cell line (Figure 30B, rs35257944 

presented). To test allelic expression of KIAA1126up transcript, I used five primer 

pairs (KIAA1126CIE1-5) positioned through the body of the KIAA1126up gene and 

mapped three heterozygous SNPs in the Hs27 cell line (rs62524186, rs67307958 

and rs72681595). rs62524186 was heterozygous in Hs27 and had A nucleotide 

present on one parental chromosome (allele) and G nucleotide present on the same 

position on another parental chromosome. By using the KIAA1126CIE4 primer pair 

and sequencing RT-PCR products, biallelic expression of KIAA1126up was shown 

since both A and G alleles were expressed at the rs62524186 SNP  (Figure 31B).  
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Figure 30. PEG13 is a human homolog of mouse Peg13 gene that shows preferential 
expression from one allele and the presence of Differentially Methylated Region (DMR) 
in normal human fibroblasts. A. Expression and nucleus vs. cytoplasmic localization of 
PEG13 (∼6.6kb long transcript) in fibroblasts (Hs27) and expression in adult brain is shown. 
CpG island 210 (UCSC, CpG island track) position and H3K4me3 presence in H1-ESC is 
shown (UCSC, Broad Histone Modifications). Positions of heterozygous SNP (rs35257944) 
and Southern blot probe (PEG13SBP) are presented using orange and brown boxes. Tracks 
presented as on Figure 11B, section 2.1.5. and Figure 12B., section 2.1.6. B. CpG 210 is a 
DMR in Hs27 fibroblasts while in HeLa cells this CpG island is hypermethylated. Methylation 
was tested by Southern blot using BssHII methylation sensitive enzyme in combination with 
EcoRI and EcoRI alone as a control while hybridization was done with specific probe 
(PEG13SBP). 10kb and 3.3kb bands represent methylated and unmethylated alleles 
respectively. D. Preferential monoallelic expression of PEG13 ncRNA was found in Hs27 
fibroblasts using the P13CIE4 primer pair flanking the rs35257944 SNP. For detailed 
description look at the Figure 28B, section 2.4.5.1. C. Numerous direct repeats are present in 
CpG 210 using Dotmatcher with criteria: window size=30 and threshold=65. 
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Figure 31. KIAA1126up macro ncRNA candidate is ∼55kb long, both nuclear and 
cytoplasmic biallelically expressed transcript. A. Expresssion profiles in Hs27 and whole 
blood, double cDNA hybridization (Hs27, N/C) and presence of CpG: 77 island mapping to 
the distal end of the candidate and marked with H3K4me3 from H1-hESC CHIP-seq is shown. 
Tracks presented as on Figure 11B, section 2.1.5. and Figure 12B., section 2.1.6. B. 
KIAA1126up is biallelically expressed from Hs27 cell line. For detailed description look at the 
Figure 28 B, section 2.4.5.1. 
 

In sumary, PEG13 was a novel ~6.6kb long, nuclear macro ncRNA that was highly 

expressed from brain, showed biased expression towards one parental allele in 

fibroblasts and had CpG island that was a DMR. The KIAA1126up was a novel 

~55kb long ncRNA candidate that is expressed in most of the tested tissues and cell 

lines, had both nuclear and cytoplasmic localization, had a CpG island promoter and 

was biallelically expressed in fibroblasts. 

 

2. 4. 5. 4. HIRTA REG BAZ2 (chr11): PRKCDBPup macro ncRNA 

characterization 

The HIRTA region named BAZ2 contains the ZNF215 gene showing maternal 

imprinted expression in human while in the same region there is no known imprinted 

genes in mouse (Alders et al., 2000). Eight novel macro ncRNA candidates were 

mapped in this region. Macro ncRNA candidate PRKCDBPup will be presented in 

this section.  

 

1) Length of macro ncRNA 

PRKCDBPup was ∼25kb in length and could represent novel 5’ exons of PRKCDBP 

protein coding gene or macro ncRNA that overlapps this gene in the same direction.  

 

2) Tissue specific expression and subcellular localization 

The PRKCDBPup showed tissue specific expression and was expressed in 9/20 

normal cells/tissues and 5/23 cancer samples (Figure 27, section 2.4.4.). The 
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transcript showed high expression in adult uterus and it was very lowly expressed in 

fibroblasts where it showed both nuclear and cytoplasmic localization (data not 

shown). 

 

3) Annotation 

The CpG island 108 island could be a bidirectional promoter for both PRKCDBPup 

and PRKCDBP (Protein kinase C, delta binding protein). This CpG island was 

marked with H3K4me3 in 7/9 Broad Histone Modifications tracks with the example of 

H1-hESC shown in Figure 32A.  

 

4) CpG island features 

A Southern blot using BssHII methylation sensitive enzyme in combination with 

EcoRI and HindIII enzymes and the PRKCDBPSBP probe showed that CpG 101 is 

unmethylated in both the HeLa and Hs27 cell lines (Figure 32D), and therefore is not 

a DMR, since 14.8kb band and 4.3kb bands predicted to be observed from the 

methylated allele were not observed. The CpG island 108 showed presence of a low 

number of direct repeats using previously described criteria for the dotmatcher 

program (Figure 32E).  

 

5) Monoallelic/Imprinted expression of macro ncRNA 

By using both forward and reverse sequencing of PCR bands with two primer pairs 

(PRKCDBPCIE1 and 2) one known heterozygous SNP (C/T, rs12807110)(dbSNP 

build 130, UCSC) and one novel heterozygous SNP (T/A, chr11: 6314801- 6314801) 

were mapped in HeLa cells.  Interestingly, these two SNPs were positioned with 

three base pairs in between. Both SNPs showed slight bias towards one allele in 

HeLa cells (Figure 31B). In order to test if these two SNPs are showing imprinted 

expression (both are expressed always from one parental allele) or they show 

random monoallelic expression (situation when some cells in the population 

transcribe one allele while other cells transcribe other allele, thus expression of two 

SNPs could be: both from the first allele, both from the second allele or one from the 

first and another SNP from the second allele (Krueger and Morison, 2008)), RT-PCR 

bands from HeLa cells using the PRKCDBPCIE2 primer pair were isolated and 

cloned into pGEM-T-Easy vector and sequenced from the T7 promoter. If candidate 

macro ncRNA shows expression from one allele uniformly (and thus could be 

imprinted) linkage of C and A alleles and linkage of T and T alleles (CA/TT SNPs 

combination) or linkage of C and T alleles and linkage of T and A alleles (CT/TA 

SNPs combination) would be expected in each tested case, while if the macro 
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ncRNA has random monoallelic expression mixture of possible SNPs combinations  

(CT/TA and CA/TT SNPs combinations) would be expected (Figure 32C). Nine 

tested clones all showed CA/TT SNPs combinations, showing that these two SNPs 

are linked and thus indicating imprinted expression of PRKCDBPup (Figure 32C).  
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Figure 32. PRKCDBPup is a ∼25kb long macro ncRNA candidate showing slight biased, 
but non-random expression towards one allele. A. Expression of PRKCDBPup in the adult 
uterus and in HeLa cells. CpG island 108 is marked with H3K4me3 in H1-hESC (Broad, 
UCSC). Positions of the Southern probe PRKCDBPSBP and rs12807110 SNP are shown as 
previously described. B. C/T known SNP and novel T/A SNP are mapped in HeLa DNA. Both 
SNPs show slight biased expression towards one allele in HeLa cells. C. On the left side 
possible combinations of expression from two close SNPs are shown. Sequencing from T7 
promoter is shown. Nine clones show that two heterozygous SNPs are linked on the same 
chromosome (CA/TT SNPs combination) and argue against random expression of 
PRKCDBPup ncRNA candidate. D. Southern blot using BssHII methylation sensitive enzyme 
in combination with EcoRI and HindIII enzymes and PRKCDBPSBP probe in Hs27 and Hela 
cells.  E. Dotplot of CpG island 108 is shown as previously. 
 

In summary, PRKCDBPup was ∼25kb long macro ncRNA candidate showing biased 

imprinted expression in HeLa cells and potentially having unmethylated bidirectional 

CpG island promoter.  

 

2. 4. 5. 5. HIRTA REG SLC38A4 (chr12): SLC38A4down2 macro ncRNA 

characterization 

Imprinted expression of human genes residing in the SLC38A4 HIRTA region is 

unknown while mouse Slc38a4 (Solute carrier family 38, member 4) has paternal 

imprinted expression (Smith et al., 2003).  

 

1) Length of macro ncRNA 

The SLC38A4down2 macro ncRNA candidate was ∼463kb long and the candidate 

was located about 10kb downstream of the human SLC38A4 gene (Figure 33A).  

 

2) Tissue specific expression and subcellular localization 

The SLC38A4down2 transcript was expressed in 14/20 HIRTA hybridizations of 

normal cells/tissues and in 19/23 cancer cells/patients (Figure 27, section 2.4.4.). 

Relative high expression of SLC38A4down2 in HES2d0 was shown by both HIRTA 

single hybridizations and by qRT-PCR (normalized to RPLPO gene) using two primer 

pairs, SLC38A4Cq1 and SLC38A4Cq3 (Figure 33A). Fetal liver and Hs27 showed 

very low but no negative expression signals (blue signals) by HIRTA. This was in 

agreement with qRT-PCR that also showed low expression in both tissues. The 

SLC38A4down2 showed 5:1 nuclear enrichment in Hs27 cells using qRT-PCR 

(shown on Figure 26, section 2.4.3.) 

 

3) Annotation 

Part of SLC38A4down2 transcript was a lincRNA associated with PRC2 and 

CoREST complexes (Figure 33A). Since both lincRNA data and HIRTA data did not 
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show strand specific information the strand of SLC38A4down2 candidate was 

predicted as plus (+) since a CpG island 106 was observed on one end of the 

mapped transcript and the slope of the HIRTA expression through the body of the 

novel ncRNA was negative (reverse correlation between slope and transcriptional 

orientation was shown previously on Figure 19, section 2.2.1.) (Figure 33B). In order 

to further check the reliability of the predicted transcript strand I looked into published 

chromatin modification maps and RNAP II maps at the CpG island 106 (Figure 34A). 

In both examples shown in Figure 34A: T cells (examined by Chip-seq method 

(Barski et al., 2007)) and Normal Human Keratinocytes (NHEK) cell line from Broad 

Histone track (UCSC), enrichment of H3K4me3 and RNAP II was found on the CpG 

island 106 position supporting its function as a promoter of SLC38A4down2. Similar 

H3K4me3 methylation enrichment of the CpG island position was present in a range 

of cell lines on the Broad Histone track, UCSC.  

 

4) CpG island features 

The CpG island 106 adjacent to SLC38A4down2 does not show the features of a 

DHM since no H3K9me3 was present on this island (Figure 34A), but this CpG island 

showed presence of direct repeats when dotmatcher program using following criteria: 

window=30 and threshold=65, was used. In order to experimentally test if CpG island 

106 is a DMR, Southern blot using two methylation sensitive enzymes (BstUI and 

BssHII) and specific probe (SLC38A4SBP) located upstream of CpG island was 

performed in two cell lines (Hs27 and HeLa). Methylation sensitive enzymes were 

used in combination with the EcoRI enzyme where a 15kb band recognized with 

specific probe would be expected if allele is methylated (when BstUI and BssHII can 

not cut) while 3.1 or 3.3kb bands would be expected from unmethylated alleles (when 

BstUI and BssHII are able to cut DNA). If a DMR is present both 15kb and 3.1kb 

bands or 15kb and 3.3kb bands are expected showing presence of unmethylated and 

methylated allele. Both alleles of the CpG island promoter of SLC38A4down2 were 

unmethylated by two methylation senzytive enzymes in both Hs27 and HeLa cell 

lines (Figure 34C). Thus, CpG island promoter of SLC38A4 down2 is not a DMR and 

cannot have a function as an ICE in this region.  

 

5) Monoallelic/Imprinted expression of macro ncRNA 

In order to test if SLC38A4down2 macro ncRNA is biallelic or shows imprinted 

expression 23 primer pairs for PCR/RT-PCR were designed. By doing PCRs with 

these primers on Hs27 cell line DNA and sequencing products, I was not able to map 

any heterozygous Single Nucleotide Polymorphism (SNP) in those tested 23 regions 
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that range in length from 130 to 990bp, of the SLC38A4down2 gene body. Therefore, 

I further tested these primers on the blood from a volunteer whose mother also 

volunteered blood. After sequencing, 7 heterozygous SNPs from 4 primer pairs were 

found. Expression of 4 heterozygous SNPs (rs12814298, rs11183486, rs2131371, 

rs2408497) was further tested using forvard plus reverse primers (SLC38A4CIE1 and 

SLC38A4CIE12) to sequence the SNPs and in all eight cases preferential expression 

of one allele was found (Figure 33D). In order to reveal parent-of-origin of 

SLC38A4down2 expression we tested the Mothers’ blood and on the basis of 

rs2408497 SNP, a bias towards the Fathers’ G allele was found. Thus, preferential 

paternal expression of SLC38A4down2 was detected. 
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Figure 33. SLC38A4down2 is macro ncRNA candidate predicted to be expressed in 
plus (+) transcriptional orientation and showing preferentially paternal imprinted 
expression. A. Expression of SLC38A4down2 (~463kb long) macro ncRNA candidate is 
shown using HIRTA and qRT-PCR (primer pairs: SLC38A4Cq1 and SLC38A4Cq3) in 
fibroblasts, HES2, d0 cells and fetal liver. qRT-PCR expression relative to RPLPO gene. Linc 
RNAs exons, Hs27/HeLa expression, PRC2 and CoREST association tracks as well as 
custom SNP and qPCR primers tracks are shown. Tracks presented as on Figure 11B, 
section 2.1.5. B. Slope of SLC38A4down2 in HES, d0 cells predicts + strand expression of 
this candidate. Details as on Figure 19, section 2.2.1. C. SLC38A4down2 contains SNP 
(rs2408497) showing bias towards paternal allele in one family whole blood. For detailed 
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description look at the Figure 28B, section 2.4.5.1. D. Forward and reverse sequencing from 
SLC38A4CIE1 and SLC38A4CIE12 primers revealed 4 heterozygous SNPs (rs12814298, 
rs11183486, rs2131371 and rs2408497) in blood DNA and showed biased expression from 
blood RNA. 
 

 
Figure 34. The CpG island 106 matches to the proximal end of SLC38A4down2 HIRTA 
expression, is enriched for H3K4me3 and RNAP II, direct repeats and is unmethylated. 
A. CpG island 106 region on chromosome 12 shows enrichment of H3K4me3 in T cells and 
NHEK cells and RNAP II peaks over the same region. Peak of H3K9me3 repressive mark is 
found upstream, but not matching the CpG island. B. Dotplot of CpG island 106 is shown as 
previously. C. Southern blot using BstUI and BssHII in combination with EcoRI and 
SLC38A4SBP in HeLa and Hs27 cells.  
 

In sumary, SLC38A4down2 was ~463kb long macro ncRNA that was predicted to 

have plus (+) strand transcriptional orientation, partially overlapped to lincRNAs 

associated with PRC2 and CoREST complexes, showed paternal biased imprinted 

expression and had unmethylated CpG island promoter. 
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2. 4. 5. 6. HIRTA REG RASGRF1 (chr15): ADAMTS7down, TMED3down and 

KIAA1024up macro ncRNA characterization 

Rasgrf1 and RASGRF1 regions are located on mouse chromosome 9 and human 

chromosome 15 respectively. Previous studies showed that mouse Rasgrf1 region 

contains four genes showing paternal imprinted expression: Rasgrf1, As4, A19 and 

miR-184 (de la Puente et al., 2002; Nomura et al., 2008; Plass et al., 1996). 

Imprinting status of genes residing in human RASGRF1 region is not known. I 

characterized three macro ncRNA candidates (ADAMTS7down, TMED3down and 

KIAA1024up), found in the human RASGRF1 region by HIRTA single cDNA 

hybridizations.  

 

1) Length of macro ncRNA 

ADAMTS7down macro ncRNA was ∼6kb long and located downstream of ADAMTS7 

protein coding gene (ADAM metallopeptidase with thrombospondin type 1, motif, 7) 

(Figure 35A). The length of the candidate mapped from the HIRTA hybridization data, 

was further confirmed in fibroblasts using Northern blot with a specific 

ADAMTS7downNOR probe. ß-Actin was used as a loading control for the Northern 

blot (Figure 35C). The Northern blot was repeated using fibroblasts and HeLa and 

same ~6kb band was found in both Hs27 and HeLa (data not shown). In addition to 

ADAMTS7down, I mapped two more candidates in human RASGRF1 region: 

TMED3down  (~88kb in length) and KIAA1024up (~19kb in length) (Figure 39A). 

 

2) Tissue specific expression and subcellular localization 

The ADAMTS7down was ubiquitously expressed in all cells/tissues hybridized to 

HIRTA, including skeletal muscle that was the only tissue showing very low 

expression of this candidate (Figure 27, section 2.4.4. and Figure 35A). Expression 

of ADAMTS7down was also assessed by qRT-PCR using the ADAMTS7Cq3 primer 

pair in three different tissues and showed the expected profile matching to HIRTA 

hybridizations of the same tissues (Figure 35A, B). Cellular localization of 

ADAMTS7down was tested and its preferential nuclear localization using double 

HIRTA hybridization (Figure 35A), RT-PCR (Figure 35D) and qRT-PCR (11:1 ratio of 

nuclear to cytoplasmic) (Figure 25, section 2.4.1.) was shown.  

 

TMED3down and KIAA1024up candidates were expressed in fibroblasts, blood and 

human embryonic stem cells but were not expressed in any other tested normal 

cells/tissues (Figure 27, 2.4.1). Both candidates showed upregulation in different 

cancer types (Figure 27, 2.4.1). To test nuclear versus cytoplasmic localization of 
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these candidates double cDNA hybridization and RT-PCRs were used. TMED3down 

was enriched in the nuclear compartment by both techniques. KIAA1024up also 

showed nuclear enrichment, but in this case I was also able to detect substantial 

amount of this transcript in cytoplasmic fraction by RT-PCR, showing both nuclear 

and cytoplasmic localizations (Figure 39B).  

 

3) Annotation 

The CpG island 17 maps to the ADAMTS7down proximal position. The same CpG 

island was marked with the H3K4me3 histone in 6/9 cell lines from the Broad Histone 

track (Figure 36A). However, the H3K4me3 activation mark of promoters was not 

only found on the CpG island 17 position in ADAMTS7down region, but also on a 

distal position where 3/9 cell lines mapped by Broad Histone track showed its 

presence (Figure 36A). TMED3down and KIAA1026up showed no presence of CpG 

island. H3K4me3 were not found in any of 9 Broad cell lines on both ends of 

TMED3down while 7/9 cell lines showed peaks of H3K4me3 coresponding to the 

minus (-) strand transcriptional orientation of KIAA1026up. 

 

4) CpG island features 

In mouse, the 252bp long DMR located about 30kb upstream of Rasgrf1 is paternally 

methylated in both monoallelic and biallelic tissues while in human there is no data 

about the presence of a DMR in the RASGRF1 gene region that contains ADAMTS7 

and the novel ADAMTS7down transcripts. To test the methylation status of CpG 

island 17, which is potential promoter of ADAMTS7down, Southern blot with the 

BstUI methylation sensitive enzyme in combination with EcoRI and specific 

ADAMTS7downSBP probe, was used. The CpG 17 island was a DMR in both 

fibroblasts and HeLa cells since from BstUI/EcoRI digestion were gained both a 

10.6kb band representing the methylated allele and a 1.6kb band representing the 

unmethylated allele (Figure 36B). By using EcoRI alone as a control, a 10.6kb band 

coming from the methylated allele and a 1.9kb band originating from the 

unmethylated allele were observed (Figure 36B). The CpG island 17 did not show 

any existence of direct repeats using dotmatcher program with standard criteria (data 

not shown). 

 

5) Monoallelic/Imprinted expression of macro ncRNA 

To determine if ADAMTS7down macro ncRNA candidate shows monoallelic 

expression I tested 11 primer pairs (ADAMTS7CIE1-11) on DNA from the Hs27 cell 

line and found two heterozygous SNPs (rs7174572 and rs34019568). Both SNPs 
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showed monoallelic expression of ADAMTS7down in fibroblasts (Figure 37B). To see 

whether ADAMTS7down shows imprinted expression, same 11 primer pairs were 

tested on DNA from whole blood of one family consisting of the child and its mother 

(family described in section 2.4.5.5.). Two heterozygous SNPs were found in the 

child’s DNA (rs71211234 and rs12908299) and after testing its RNA I observed 

monoallelic expression of ADAMTS7down in blood. The child’s RNA showed 

expression of the G allele in both SNPs and the mothers DNA showed a bias towards 

the expression of A allele in both cases, indicating paternal expression of 

ADAMTS7down candidate on the basis of these two SNPs in blood (Figure 37C). To 

confirm imprinted expression of this candidate two more families were tested using 

RNA from lymphoblastoid cell lines (GM108054 and GM108046). Genotypes of the 

Utah families (father, mother and children) have been published by the international 

Haplotype Map of the Human Genome (HapMap) project (http://snp.cshl.org/) (Frazer 

et al., 2007). Two heterozygous SNPs in HapMap data from the children  (SNP_A-

8391868 and SNP_A-8407002) were found and RNA from lymphoblastoid cells 

originated from the same children was tested. Sequencing from both the forward and 

reverse primers ADAMTS7CIE11 in the GM108054 cell line showed C allele 

expressed on the position of SNP_A-8391868. This expression confirmed 

monoallelic expression of ADAMTS7down in lymphoblastoid cells and by assessing 

HapMap genotyping data of parents, paternal expression of ADAMTS7down was 

found.  

 

However, in contrast to this, sequencing from both forward and reverse primers 

ADAMTS7CIE10 showed only the A allele expressed on the position of SNP_A-

8407002, which according to the HapMap genotyping data indicated maternal 

expression of ADAMTS7down (Figure 37D). The same heterozygous SNPs were 

tested on RNA from the second lymphoblastoid cell line (GM108046) originating from 

another family. In this case SNP_A-8391868 showed maternal while SNP_A-

8407002 showed paternal expression of ADAMTS7down (Figure 37E). In summary 

my results show clear monoallelic expression of ADAMTS7down from fibroblasts, 

blood and lymphoblastoid cell lines. Concerning the imprinted expression we tested 

three families and found paternal expression on the basis of four SNPs and maternal 

expression on the basis of two SNPs. Possible expleantions for these findings could 

be monoallelic random expression of ADAMTS7down macro ncRNA or potential 

artefacts in HapMap whole genome genotyping data (discussed in section 3.6.1.). 
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To test if the ADAMTS7 protein coding gene positioned ~2kb from ADAMTS7down 

also shows monoallelic expression four primer pairs (ADAMTS7GIE1-4) were tested 

and one heterozygous SNP (rs7173267) positioned in exon2 of ADAMTS7 protein 

coding gene in fibroblasts (Hs27) was found. The ADAMTS7 protein-coding gene 

was biallelically expressed in fibroblasts (Figure 38).  

 

To examine monoallelic expression of TMED3down and KIAA1024up ncRNA 

candidates I tested seven primer pairs (TMED3CIE1-7) and six primer pairs 

(KIAA1024CIE1-6) on normal fibroblasts cell lines, respectively. By using 

TMED3CIE4 primer pair on Hs27 DNA the rs1532968 heterozygous SNP (T/G) that 

showed preferential expression of one allele (T bias) in fibroblasts was mapped 

(Figure 39C). Further, by using the KIAA1024CIE3 primer pair the heterozygous 

rs769770 (A/G) SNP that also showed preferential expression from one allele (G 

bias) in fibroblasts was mapped (Figure 39C). In summary, both TMED3down and 

KIAA1024up were expressed preferentially from one allele in fibroblasts and 

therefore may show imprinted gene expression.  

 

 
Figure 35. ADAMTS7down is a ~6kb long preferentially nuclearly localized macro 
ncRNA candidate.  A. ADAMTS7down expression is high in fibroblasts (Hs27), medium in 
HeLa cells and low in skeletal muscle by HIRTA single cDNA hybridizations. Double cDNA 
hybridization of nuclear versus cytoplasmic fractions of Hs27 (Hs27, N/C) shows preferential 
nuclear localization. Positions of the Northern blot probe (ADAMTS7downNOR), qPCR 
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primers (ADAMTS7Cq3) and CpG island 17 and 24 are shown together with the RefSeq 
genes UCSC track in hg18 human build. B. qRT-PCR using ADAMTS7Cq3 primer pair and 
normalized to the RPLPO gene in three tissues confirmed findings from HIRTA single 
hybridizations. C. Northern blot on fibroblasts (Hs27), bone marrow (BM) and skeletal muscle 
(SM) RNA using ADAMTS7downNOR probe, detects a strong band ~6kb in length in 
fibroblasts and very faint (*) ~4kb long band that is likely an artefact of 28S rRNA. Northern 
blot using a ß-Actin specific probe was used as a loading control. D. RT-PCR of nuclear, 
cytoplasmic and total fibroblasts RNA using ADAMTS7downNOR primer pair (967bp band) 
showed nuclear enrichment of ADAMTS7down macro ncRNA candidate. GAPDH was used 
as a loading control (176bp band). 
 
 

 
Figure 36. CpG island promoter of ADAMTS7down is a differentially methylated region 
(DMR) in fibroblasts and HeLa cells. A. HIRTA expression of ADAMTS7down in fibroblasts 
and HeLa cells. The proximal end of ADAMTS7down expression overlaps with CpG island 17 
and H3K4me3 from 6/9 cell lines displayed by Broad Histone, UCSC track. The distal-end of 
ADAMTS7down HIRTA expression overlaps with H3K4me3 in 3/9 cases. Tracks presented 
as on Figure 11B, section 2.1.5. B. Southern blot using BstUI methylation sensitive enzyme in 
combination with EcoRI and EcoRI alone as a control and ADAMTS7CSBP specific probe, 
showed that CpG island 17 is a DMR in Hs27 and HeLa cells. The 10.6kb band represents 
the methylated allele, the 1.6kb band the unmethylated allele and a 1.9kb band is a result of 
an unusual EcoRI digestion: when G is present after GAATTC EcoRI cutting site this enzyme 
is methylation sensitive and cuts just the unmethylated allele. 
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Figure 37. The ADAMTS7down macro ncRNA candidate region is monoallelically 
expressed in all tested cells/tissues. A. Positions of 6 heterozygous SNPs in hg18 
assembly coresponding to HIRTA expression of ADAMTS7down in fibroblasts (Hs27). B. 
Sequencing tracks showed as previously. Monoallelic expression in normal human fibroblasts 
shown using two SNPs (rs7174572 and rs34019). C. ADAMTS7down mapped region shows 
paternal expression based on two SNPs (rs71211234 and rs12908299) from the whole blood 
of one family. D. ADAMTS7down mapped region shows paternal expression based on 
SNP_A-8391868 when lymphoblastoid cell GM108054 RNA from the child was sequenced  
and compared to the parents’ genotypes from the HapMap project. The same region shows 
maternal expressin based on SNP_A-8407002. E. ADAMTS7down mapped region shows 
maternal expression based on SNP_A-8391868 when lymphoblastoid cell GM108046 RNA 
from the child was tested and compared to the parents’ genotypes from published the 
HapMap consortium. The same region shows paternal expression based on SNP_A-
8407002. 
 

 
Figure 38. ADAMTS7 protein coding gene is biallelically expressed in fibroblasts. A. 
HIRTA expression in fibroblasts in ADAMTS7 gene region. The position of ADAMTS7down is 
marked by gray box. The positions of four ADAMTS7GIE primers are shown by orange 
boxes. Position of heterozygous rs7173267 SNP is marked by a star. B. Sequencing of PCR 
and RT-PCR products from primer ADAMTS7GIE3F showed biallelic expression of 
ADAMTS7 in fibroblasts on the basis of rs7173267 SNP.  
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Figure 39. TMED3down and KIAA1024up are nuclearly enriched macro ncRNA 
candidates that show preferential expression from one allele in fibroblasts. A. 
Expression of TMED3down (~88kb in length) and KIAA1024up (~19kb in length) in fibroblasts 
and two cervical cancer cell lines and nuclear enrichment using double HIRTA hybridization is 
shown. Positions of mapped heterozygous SNPs and PCR products of primer pairs used for 
testing nuclear vs. cytoplasmic fractionations are shown. Tracks presented as on Figure 11B, 
section 2.1.5. and Figure 12B., section 2.1.6.B. RT-PCR with primer pairs TMED3CIE1 and 
KIAA1024CIE3 on nuclear, cytoplasmic and total RNA from fibroblasts shows nuclear 
enrichment of TMED3down, while KIAA1024up is both nuclear and cytoplasm enriched. 
GAPDH has been used as a loading control. *; Spill over. C. TMED3down shows expression 
bias towards one allele in fibroblasts using the rs1532958 heterozygous SNP. For detailed 
description look at the Figure 28B, section 2.4.5.1. D. KIAA1024up is preferentially expressed 
from one allele in fibroblasts using the rs769770 heterozygous SNP. 
 

2. 4. 5. 7. HIRTA REG NNAT (chr20): BLCAPov macro ncRNA characterization 

Human HIRTA region NNAT, paternally expresses NNAT (Neuronatin) and BLCAP 

v2a (Bladder cancer-associated) protein-coding genes while other variants of 

BLCAP: v1a, b and c are maternally expressed (Evans et al., 2001; Schulz et al., 

2009).  

 

1) Length of macro ncRNA 

The only macro ncRNA candidate I mapped in the NNAT region was the ∼36kb long 

BLCAPov transcript that was potentially overlapping and mapping also downstream 

of BLCAP protein coding gene. 

 

2) Tissue specific expression and subcellular localization 

The BLCAPov was expressed in 40/43 tested samples (Figure 27, 2.4.1). Double 

cDNA hybridization of nuclear versus cytoplasmic Hs27 RNA together with RT-PCR 

(using primer pair BLCAPCIE3) on fractionated fibroblasts cells showed both nuclear 

and cytoplasmic localization of BLCAPov (Figure 40A, B). Double cDNA hybridization 

showed cytoplasmic enrichment of three consecutive probes (typical for exons), thus 

we cannot exclude that BLCAPov represents part of the BLCAP gene.  

 

3) Annotation 

Taking into consideration the 5’-3’ slope through its’ gene body and 6/9 cell Broad 

lines that showed enrichment of H3K4me3, BLCAPov was predicted to be 

transcribed from minus (-) strand (same as BLCAP) (Figure 40A). However, a linc 

RNA expressed in Hs27 and HeLa partially maped to BLCAPov and indicated that 

this region is a complex transcriptional unit consisting of a number of overlapping 

protein coding and non-coding transcripts (Figure 40A).  

 

4) CpG island features 
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BLCAPov did not show presence of potential CpG island promoter (Figure 40A). 

 

5) Monoallelic/Imprinted expression of macro ncRNA 

10 tested primer pairs (BLCAPCIE1-10) failed to identify a heterozygous SNP in the 

Hs27 fibroblasts cell line. Thus, I used the HapMap data (Frazer et al., 2007) from 

GM108046 lymphoblastoid cell line where the authors found both the A and G alleles 

present in DNA at the position of the A-2275664 SNP. I used primer pair 

BLCAPCIE11 covering this SNP and by sequencing of the RT-PCR product from 

both forward and reverse primers I showed BLCAPov biallelic expression in the 

lymphoblastoid cell line. 

 

In summary, BLCAPov was ∼36kb long, both nuclear and cytoplasm enriched 

transcript showing biallelic expression in a lymphoblastoid cell line. 

 

 
Figure 40. BLCAPov is a nuclear localized biallelic macro ncRNA candidate. A. 
Expression of BLCAPov in fibroblasts and whole blood using single HIRTA hybridizations and 
enrichment in fibroblasts nuclear fraction using double HIRTA hybridization is shown. 
BLCAPov partially overlaps a lincRNA expressed in Hs27 and HeLa (blue colored linc Hs27, 
HeLa track). H3K4me3 and RNAP II enrichments from HUVEC cell line (Broad Histoane 
modifications, UCSC track) in this region are shown. Positions of a SNP (A-2275664) 
heterozygous in GM108046 lymphoblastoid cell line and PCR primer product used for testing 
of nuclear versus cytoplasmic localization (BLCAPCIE3) are shown. Tracks presented as on 
Figure 11B, section 2.1.5. and Figure 12B., section 2.1.6. B. RT-PCR confirms nuclear 
enrichment of BLCAPov already shown using HIRTA double cDNA hybridization. 819bp 
product from primer pair BLCAPCIE3 shows nuclear enrichment while very faint band (*) 
could also be detected in cytoplasm. GAPDH has been used as a loading control where the 
expected 176bp band was observed in both fractions and total RNA from Hs27. C. BLCAPov 
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is biallelic since A and G alleles are both present in heterozygous SNP (A-2275664) from the 
HapMap data of Child DNA (NA10846) and in RNA from lymphoblastoid cell line originating 
from the same Child (GM108046). Sequencing from both forward and reverse primer 
BLCAPCIE11 is shown. 
 

2. 4. 5. 8. Summary of characteristics for ten examined macro ncRNAs 

Ten macro ncRNAs from 7 gene regions containing imprinted genes were 

characterized. These transcripts had lengths in a range from 6 to 463kb. 2/10 

samples showed ubiquitous expression in all 43 tested cells/tissues while 8 were 

tissue specifically expressed. From 10 tested candidates that were all expressed in 

Hs27, 4 were enriched in the nuclear fraction, 5 were present in both nuclear and 

cytoplasmic and one was cytoplasmically localized by RT-PCRs or HIRTA double 

nuclear versus cytoplasm cDNA hybridizations. Three out of ten selected macro 

ncRNA candidates were mapping to previously published linc (large intergenic non-

coding) RNAs (Khalil et al., 2009).  

 

6/10 candidates had CpG islands, while 9/10 showed presence of H3K4me3 peaks 

on one of the transcript ends. The methylation of CpG islands promoters was tested 

on 5 candidates and 3 CpG island promoters were found to be unmethylated while 

two (PEG13 and ADAMTS7down) showed the presence of Differentially Methylated 

Region (DMR) in tested cell lines. Direct repeats were present in 4/5 tested CpG 

island promoters of macro ncRNA candidates. 

 

Characterization of 10 macro ncRNA candidates showed that ADAMTS7down was 

exclusively monoallelically expressed while 5 other candidates showed biased 

expression and 4 were found to be biallelically expressed from tested cells and/or 

tissues. SLC38A4down2 macro ncRNA candidate was found to be paternally 

expressed from the blood.  

 

2. 5. Each human imprinted gene region express macro ncRNA 

 

2. 5. 1. Overview of macro ncRNAs in human imprinted gene regions 
 
Previous studies have shown that all human well-studied imprinted gene regions 

contain macro ncRNAs (Table 4 and Figure 6, section 1.2.5.1.). To see whether 

macro ncRNAs could be a universal feature of all human imprinted gene regions 43 

different cells/tissues/patients were hybridized and novel macro ncRNAs in 32 HIRTA 

regions were mapped. I showed that each of the 32 studied HIRTA regions contains 

at least one known or candidate macro ncRNA in human normal and cancer tissues 
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(Figure 41). 18/32 HIRTA regions that were previously shown to contain a macro 

ncRNAs were grouped into well-studied (H19, KCNQ1OT1, GTL2, UBE3A-AS, 

GNASAS, EXON1A, XIST and TSIX) and other known (HYMAI, AIRN, 

LOC100129427, DLX6AS, MIT1, MESTIT1, FLJ4663, 91H, IGF2AS, LOC650368, 

LOC100133545, WT1AS, LOC100233209, NCRNA00239, PWRN1, LOC145663, 

PEG3AS, NCRNA00028, NCRNA00182 and NCRNA00183) macro ncRNAs. GTL2 

and UBE3A-AS are highly complex transcriptional units that contain a number of 

known overlapping ncRNAs of different length that were previously extensively 

studied and were not considered separately in this analysis. 27/30 known macro 

ncRNAs were detected by HIRTA while 3 were not (TSIX, HYMAI and AIRN). 101 

novel macro ncRNA candidates in 32 HIRTA regions from 43 tested 

cells/tissues/patients were mapped. The results illustrate that regions with a high 

number of macro ncRNAs are: KCNQ1 and PWS with 9 macro ncRNAs each, and 

SFMBT2, BAZ2 and IGF2, with 8 ncRNAs each. Regions with only one mapped 

macro ncRNA candidate were: TRP73, NAP1L5, IMPACT and NNAT. In total, 131 

known or candidate macro ncRNAs were expressed from 32 HIRTA regions. 

 
Figure 41. Distribution of known and novel macro ncRNAs from 32 HIRTA regions. 
Number of novel macro ncRNA candidates per HIRTA region (TRP73 to XIC region) is shown 
in orange (101 candidates), while we grouped known macro ncRNAs in two groups (well-
studied; red color (8), and known; green color (22)).  
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Novel macro ncRNA candidates were grouped according to their position in 

accordance with RefSeq and UCSC annotated genes. 55/101 novel transcripts were 

positioned intergenically which means they did not overlap any annotated gene, 

12/101 were positioned 5’ to an annotated gene and had the potential to be novel 

5’exons of annotated genes or distinct upstream ncRNAs that are overlapping these 

transcripts, 18/101 were mapped 3’ to annotated transcripts and could represent 

novel 3’UTRs or macro ncRNAs that overlaped these transcripts. Further, 2/101 were 

positioned inside of an intron of an annotated gene, while 14/101 overlapped one or 

more short genes, for example long transcripts overlapping olfactory receptor genes 

(Figure 42).  
 

 
 
Figure 42. Grouping of novel macro ncRNA candidates in accordance with positions of 
annotated genes. 5 groups of positioning could be distinguished with a certain number of 
candidates mapping to these categories: non-overlapping (55/101), 5’exons or overlapping 
(12/101), 3’UTR or overlapping (18/101), inside of annotated genes (2/101) and overlapping 
annotated genes (14/101). 
 
The GNASAS macro ncRNA expressed from the GNAS region, GTL2var1 from the 

DLK1 region and UBE3A-ASvar1 from PWS imprinted gene regions were overlapped 

by a large intergenic noncoding (linc) RNA published by Khalil et al. (Khalil et al., 

2009). Comparison of 101 macro ncRNA candidates mapped from HIRTA 

hybridizations with large intergenic noncoding (linc) RNA showed that 9/101 

transcripts were previously mapped in fibroblasts and HeLa cells. From these 

transcripts, two were fully overlapped with linc RNAs while 7 others were partially 

overlapped. 5/9 transcripts that overlap between our study and previously published 

linc RNAs were associated with PRC2 and CoREST complexes (Khalil et al., 2009).  

 
2. 5. 2. Overview of tissue specific expression of macro ncRNA candidates 

20 normal cells/tissues were hybridized to the HIRTA Chip using the single cDNA 

hybridization technique. These samples included undifferentiated and differentiated 

embryonic stem cells (HES2), 3 fetal tissues, placenta as extra embryonic tissue and 

13 adult tissues. With 29 novel mapped macro ncRNAs in 32 HIRTA regions, testis 
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was a tissue with the highest number of macro ncRNA candidates (Figure 43A). 

Further, undifferentiated ES cells had 28 and adult uterus, 27 candidates. Tissues 

showing 10 or less macro ncRNA candidates were: fetal liver, placenta, adult lung 

and adult heart.  

 

HIRTA was hybridized with 23 cancer samples including 9 cervical, 2 colon, 2 breast, 

1 teratocarcinoma, 1 rhabdomyosarcoma, 1 neuroblastoma cell line and 6 patients (4 

AML (Acute lymphoid leukemia) and 2 MPD (Myeloproliferative disorder)). Overall, 

20/23 samples expressed more than 15 novel macro ncRNA candidates with the 

highest number in C4II, one of the cervical cancer cell lines (25) (Figure 43B). On 

average, 18.65 candidates were expressed per normal and 19 candidates per tested 

cancer sample showing no overall difference in number of expressed macro ncRNA 

candidates in imprinted gene regions in human between normal and cancer samples.  
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Figure 43. Distribution of novel macro ncRNAs in normal and cancer cells/tissues. A. 
Number of macro ncRNA candidates in 20 normal human cells/tissues are shown. NC; 
normal cell line, ES; embryonic stem cells, EE; extraembryonic tissue B. Number of macro 
ncRNA candidates in 23 human cancer cells/patients is presented.  
 
 
2. 5. 3. Strand prediction of macro ncRNA candidates 

To determine the expression of known and novel transcripts from imprinted gene 

regions I used single cDNA hybridizations to the HIRTA tiling array. We co-hybridized 

double-stranded cDNA and sonicated DNA, to the HIRTA Chips and mapped 101 

novel macro ncRNA candidates in 43 tested samples. As this approach did not allow 
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the orientation of transcription to be determined for these candidates I developed a 

novel approach in order to predict the strand of the novel macro ncRNA candidates. 

This approach was based on the usage of 4 features (Tabe 16). The CpG islands 

(CpG island track, UCSC (Gardiner-Garden and Frommer, 1987)), H3K4me3 and 

RNAP II enrichments (Broad Histone tracks, UCSC; ENCODE Histone Modifications 

by Broad Institute ChIP-Seq, Peaks from 9 cell lines for H3K4me3 and 3 cell lines for 

RNAP II) were used as indicating of promoters.  To these three criteria feature based 

on the reverse correlation between the SLOPE and the strand, was added (Figure 

19, 2.2.1.) and to each criteria a relative value was assigned (Table 16).  

 
Presence of Overlapping Feature  Given Value (Sum= -4 to +4) 
CpG island inside of +/- 1kb from transcript 
start or end +1 or -1 

SLOPE value negative or positive +1 or -1 
H3K4me3 peak inside of +/- 1kb from 
transcript start or end (9 cell lines) 

+1 (for each cell line positive on the start add +0.11)  
or -1 (for each cell line positive on the end add –0.11) 

RNAP II peak inside of +/- 1kb from 
transcript start or end  
(3 cell lines) 

+1 (for each cell line positive on the start add +0.33)  
or -1 (for each cell line positive on the end add –0.33) 

Table 16. Four criteria used in prediction of macro ncRNA candidates orientation and 
their assigned values. Each feature has value +1 if present on proximal or -1 if present on 
distal end of the novel transcript.  
 
The starting hypothesis was that each criterion has the same value (+1 if present on 

the position +/- 1kb from the proximal end of the transcript and -1 if present on the 

position +/- 1kb from the distal end of the transcript) and thus showed equal 

prediction importance. Thus, the maximal sum from the criteria values was +4 if the 

transcript showed plus (+) strand orientation or -4 if the transcript showed minus (-) 

strand orientation. In order to calculate the Score depicting likelihood of the transcript 

orientation prediction I used the value of: (sum of criteria values)/4. Thus +1 was the 

score showing highest probability that transcript is plus (+) strand while -1 is the 

highest probability that the transcript had minus (-) strand orientation based on used 

criteria. Further, the scores were grouped into: high probability score (+/- 0.5 to +/- 1), 

medium probability (+/- 0.25 to +/- 0.5) and low probability (- 0.25 to + 0.25). This 

approach does not allow potential novel overlapping transcripts transcribed in the 

opposite directions to be distinguished since for these transcripts low probability for 

each strand is expected. Thus, a separate group of transcripts was formed (marked 

with *) that were showing a low/medium probability prediction for certain transcription 

orientation, but at the same time were overlapping at least one tested feature on 

each end. I first tested this approach on 6 well-studied macro ncRNAs from imprinted 

gene regions and found that prediction based on the four used criteria’s matched the 

known strands of all these transcripts (Table 17).  
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H19 -1 -1 0.11 0 -0.33 0 -2.22 -0.555 - - 
KCNQ1OT1 -1 -1 0 0 -0.99 -0.66 -3.65 -0.912 - - 
GTL2var1 1 1 0.55 0.33 -0.11 -0.33 2.44 0.61 + + 
UBE3A-
ASvar1 1 1 0.88 0.66 0 0 3.54 0.885 + + 
GNASAS -1 -1 0 0 -0.77 0 -2.77 -0.692 - - 
EXON1A 1 -1 0.99 0.99 0 -0.99 0.99 0.247 + + 

Table 17. Predicted orientations of 6 well-known macro ncRNA are matching to known 
orientations using approach based on four epigenetic/genomic features that associate 
with promoters. Calculations are done according to the scheme described in Table 16. 
 

Interestingly, a low probability prediction also matched to the known transcription 

orientation as shown on the example of the well-known EXON1A macro ncRNA. 

Further, we predicted the strands for 101 novel macro ncRNA candidates (Table 18) 

where distribution of candidates in each category is shown on Figure 44.  

 

 
Figure 44. Orientation is confidently predicted for 43 macro ncRNA candidates. Number 
of candidates per each of three prediction categories is shown. Nine candidates that are 
predicted to represent overlapping transcripts of opposite orientations are marked with star 
(*).  
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Macro ncRNA 
candidate 

Score C P.
S. 

Macro ncRNA 
candidate 

Score C P.
S. 

Macro ncRNA 
candidate 

Score C P.
S. 
 

SLC22A2up 0.222 L + B3GNT2down1 0.387 M + OR5P2ov -0.25 L - 
MAS1down 0.25 L + B3GNT2down2 0.195 L + AMPD3up -0.302 M - 
MAS1ov 0.222 L + FAM161Adown -0.995 H - LYVE1ov 0.495 M + 
H19down 0.582 H + TIGD2down 0.305 M + MRVI1up -0.5 M - 
H19up 0.25 L + PHACTR2ov -0.025 L -* WIT1down 0.555 H + 
ASCL2ov -0.25 L - COBLdown1 0.25 L + SDHDdown -0.167 L - 
ASCL2up -0.222 L - COBLdown2 -0.25 L - PTSdown 0.36 M + 
TSPAN32down1 -0.385 M - DLX6up1 -0.25 L - SLC38A4down1 0.385 M + 
ZNF195down1 0.222 L + DLX6up2 -0.692 H - SLC38A4down2 0.995 H + 
ZNF195down2 -0.222 L - COL1A2up -0.305 M - SLC38A4up -0.25 L - 
ZNF195down3 0.222 L + KLF14up1 0.25 L + EPYCov 0.277 M + 
ZNF195down4 0.25 L + KLF14up2 -0.607 H - DCNup1 0.25 L + 
ZNF195up1 -0.167 L - KLF14up3 -0.222 L -* DCNup2 0.25 L + 
ZNF195up2 0.14 L + PEG13 -0.082 L - DCNup3 -0.222 L - 
BEGAINup 0.085 L +* PTK2up 0.332 M + LRCH1up1 -0.25 L - 
PPP2R5Cup1 -0.275 M -* KIAA1126ov -0.08 L -* LRCH1up2 0.25 L + 
PPP2R5Cup2 -0.967 H - PFKFB3down 0.332 M + HTR2Aup1 0.387 M + 
NIPA1up1 -0.137 L -* SFMBT2down1 0.222 L + HTR2Aup2 0.387 M + 
WHAMML1up 0.995 H + SFMBT2down2 0.415 M + HTR2Ain 0.25 L + 
WHAMML1up1 0.25 L + SFMBT2down3 -0.277 M - SQRDLdown 0.912 H + 
SNRPNup1 -0.25 L - SFMBT2down4 -0.25 L - C15orf43up -0.14 L - 
SNRPNup2 0.25 L + SFMBT2down5 0.25 L + ADAMTS7down 0.472 M +* 
GABRB3down1 -0.25 L - GATA3down 0.222 L + TMED3down 0.332 M + 
GABRB3down2 -0.25 L - BAG3down -0.72 H - KIAA1024up -0.22 L -* 
APCDD1Lup1 0.39 M + SEC23IPdown1 -0.25 L - CHRNB4up 0.25 L + 
APCDD1Lup2 0.25 L + SEC23IPdown2 0.25 L + ZNF521up 0.332 M + 
ZNF831up1 -0.582 H - SEC23IPdown3 -0.25 L - ZNF71down1 0.5 M + 
ZNF831up2 -0.14 L - OR556B4up1 0.25 L + ZNF71down2 0 - No 
LRRC47down 0.247 L +* OR56A1down 0.25 L + ID1up1 0.967 H +* 
GADD45Aup 0.222 L + PKCDBPup 0.885 H + ID1up2 -0.247 L - 
GPR177up -0.112 L - PKCDBPdown -0.885 H - BLCAPov -0.747 H - 
RPE65ov 0.277 M + HPXdown -0.167 L - L3MBTLup 0.305 M + 
RPE65down1 -0.497 M - ZNF215up -0.692 H - TOX2up -0.277 M - 
RPE65down2 0.387 M + RBMXL2down 0.25 L +     

Table 18. Strand of 100 macro ncRNA candidates is predicted based on four 
epigenetic/genomic features. Score for each candidate and predicted strand (P. S.) is 
shown. Strand of ZNF1down2 could not be predicted since the score was equal to zero. 
Candidates that could represent two overlapping transcripts expressed in opposite directions 
are marked by *. C; confidence, H; High, M; Medium, L; Low. 
 
2. 5. 4. Non-coding potential of macro ncRNA candidates 

To further examine the non-coding potential of macro ncRNA candidates we used 

RNAcode (Washietl et al., 2010, unpublished data) that predicts protein-coding 

regions based on evolutionary signatures. Jan Engelhart, a visiting MSc student from 

Peter Stadlers’ laboratory, Institut für Informatik, Universität Leipzig, conducted 

RNAcode over 44 vertebrate species using Multiz Align from UCSC and obtained 

whole genome predictions of protein-coding regions. RNAcode was found to be 

highly reliable in mapping known protein coding exons, while there was no RNA code 

predictions mapping through the body of known macro ncRNAs from imprinted gene 

regions in human (in some cases 1-2 “orphan” RNAcode predicted exons were 

found). The “orphan” RNAcode predictions were short, positioned centrally in the 

body of ncRNA, alone or paired with one more exon (Lander et al., 2001). The 

“orphan” prediction could represent exon of overlapping protein-coding gene (this 

exon could splice to another distant exon, if non-annotated gene has introns longer 

than average), but it is unlikely to represent exons of tested macro ncRNA candidate. 
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Examples of typical protein coding genes: DCN and KCNQ1 (Figure 45A, B), and 

typical macro ncRNAs: KCNQ1OT1 and H19, are shown (Figure 45B, C).  

 

 
Figure 45. RNAcode protein-coding predictions match to exons of known protein 
coding genes and do not find any protein coding potential in known non-coding RNAs. 
A. RNAcode mapped 7/9 known DCN exons. B. RNA code mapped 10/10 known and two 
novel exons for the KCNQ1 protein-coding gene, while no exons mapping to the start and end 
of the KCNQ1OT1 ncRNA were mapped. C. RNAcode did not find any protein-coding region 
in H19 and LOC100133545 ncRNAs. RNA code predictions are presented as black filled 
boxes and are highlited with light brown boxes. 
 
I further analyzed results of the RNAcode predictions over 101 macro ncRNA 

candidates from imprinted gene regions in human. I found that 89/101 macro ncRNA 

transcripts mapped from HIRTA expression data were predicted to be non-protein 

coding since no RNAcode output could be found through the body of mapped genes. 

From these candidates 63 had no overlap with any of RNA code predictions (group 

1) while for 27 others, part overlapped RNAcode exons matching known overlapping 

protein coding genes (group 2- macro ncRNA candidates overlapping annotated 

genes, Figure 42, 2.5.1) or 1-2 short exons (“orphans”) were detected located in the 
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central part of a mapped ncRNA gene (group 3) (examples of each of the three 

groups are shown in Figure 46).  

 

 
Figure 46. Examples of HIRTA macro ncRNA candidates confirmed to be non- protein 
coding using RNAcode. A. TMED3down and KIAA1024 are 2/63 macro ncRNAs that do not 
overlap any RNAcode protein-coding region. B. RNAcode finds exons of annotated RPE65 
protein-coding gene while does not find any other region mapping to RNA65ov macro ncRNA. 
C. ZNF521up  is an example of ncRNA that overlaps with 1 “orphan” RNAcode region.  
 
The 12 macro ncRNAs that were found to have protein-coding potential could be also 

further subgrouped. The first subgroup included those where potentially both a non-

protein coding and coding RNA could be present in the same time in the mapped 

HIRTA region (7 candidates: OR556B4up1, OR56A1down, OR5P2ov, AMPD3up, 

SLC38A4down2, SQRDLdown, CHRNB4up). The second subgroup of 5 candidates: 

ZNF195up1 (RNAcode=9), ZNF195up2 (RNAcode=4), SNRPNup2 (RNAcode=7), 

RPE65down1 (RNAcode=5) and SLC38A4up (RNAcode=3) had protein-coding 

potential with RNAcode regions positioned at distances resembling typical introns 

(Lander et al., 2001) and could potentially present novel exons of novel genes 

(number of RNAcode regions mapping to candidates shown in brackets) (examples 
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are shown on Figure 47). In summary, 96/101 mapped HIRTA candidates are macro 

ncRNAs that are intergenic or overlap known or potentially novel protein-coding 

genes, while 5/101 candidates have protein-coding potential. Thus, RNAcode 

indicated that the HIRTA expression macro ncRNA mapping approach had 4.5% 

false positives while 95.5% of the HIRTA mapped macro ncRNAs were predicted to 

be non-coding. 

 

 
Figure 47. Examples of 3/12 HIRTA candidates with both non-coding and coding, or 
protein-coding potential alone. A. RNAcode predicts two known olfactory genes and three 
new protein-coding regions that could to also represent olfactory receptor genes, while 
ORF56B4up1 macro ncRNA positioned in this region could be a precursor or it may overlap 
short olfactory receptor genes. B. RNAcode finds known exons of SLC38A4 and SLC38A2 
protein-coding genes and 4 regions overlapping SLC38A4down2 showing that part of this 
macro ncRNA could be overlapped with a novel protein coding gene. C. RNAcode regions are 
potential novel exons of ZNF195up2 transcript showing the protein-coding potential of this 
transcript. 
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2. 6. Macro ncRNAs from imprinted regions are deregulated in cancer 

Macro ncRNA expression can be deregulated in cancer through genetic and 

epigenetic mechanisms as introduced in sections 1.2.9.2 and 1.3.3. Macro ncRNA 

deregulation in cancer could be valuable for prognostics since macro ncRNAs have 

the potential to be used as biomarkers (introduced in section 1.3.4). Among 20 

normal and 23 tumor samples, cancer cell lines/patients matching normal tissues 

(from which the cancer originated), were distinguished. Thus, it was possible to 

correlate expression in mammary gland and two breast cancer cell lines (MCF7 and 

Cama1), cervix and 9 cervical cancer cell lines, colon and two colon cancer lines 

(HCT116 and Caco2), skeletal muscle and rhabdomyosarcoma (A201) line, and 

whole blood or bone marrow and 6 AML/MPD patients.  

 
2. 6. 1. Well-studied macro ncRNAs are deregulated in cancer  

Imprinted macro ncRNAs can be deregulated in cancer through loss of imprinted 

expression (LOI). Examples of H19 upregulation in bladder and hepatocellular 

carcinoma and IGF2AS overexpression in Wilms’ tumor were introduced in section 

1.2.9.2. Analysis of expression of 6 well-known macro ncRNAs (H19, KCNQ1OT1, 

GTL2, UBE3A-AS, GNAS and EXON1A) in pairs of normal and the corresponding 

cancer cell lines/patients was performed.  

 

An overview of expression of 6 well-known macro ncRNAs is shown in the Figure 17, 

section 2.2.1.1. and here details of the observed deregulation of the ncRNAs are 

presented.  In the IGF2 imprinted gene region, the H19 macro ncRNA was expressed 

in cervix, colon and mammary gland while 3/9 cervical cancer cell lines, 1/2 colon 

cancer and 1/2 breast cancer cell lines did not show expression of H19. We found 

KCNQ1OT1 macro ncRNA to be a widely expressed ncRNA that was downregulated 

in 2/9 cervical cancer cell lines (Figure 48).  
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Figure 48. KCNQ1OT1 ncRNA is downregulated in HeLa and the C4I cervical cancer 
cell line and expressed from normal cervix. HT3 and 6 more cervical cancer cell lines that 
are not shown express KCNQ1OT1. UCSC position shown on the top. Custom HIRTA tracks 
as well as RefSeq genes, sno/miRNA and CpG islands UCSC tracks are shown. 
 

In the DLK1 HIRTA region, the GTL2var1 macro ncRNA is expressed from cervix 

and mammary gland while in 9/9 cervical cancer cell lines and 2/2 breast cancer cell 

lines hybridized to HIRTA this macro ncRNA was fully downregulated (examples in 

Figure 49A). Interestingly, the same ncRNA was not expressed in skeletal muscle, 

but expressed in a A201 cell line (Figure 49B). One of the GTL2 variants (GTL2var6) 

was characteristic for neuroblastoma cell line (Figure 17, section 2.2.1.1.).  
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Figure 49. GTL2var1 macro ncRNA is deregulated in cancer. A. GTL2var1 expressed in 
normal cervix and mammary gland tissues is downregulated in cervical and breast cancers. 
B. GTL2var1 shows upregulation in rhabdomyosarcoma (A201) compared to the skeletal 
muscle sample. UCSC position shown on the top. Custom HIRTA tracks as well as RefSeq 
genes, sno/miRNA and CpG islands UCSC tracks are shown. 
 

UBE3-ASvar4 ncRNA from PWS imprinted gene region was expressed in diverse 

normal tissues, but not expressed in any of tested cancer cells. In the GNAS 

imprinted gene region, GNASAS ncRNA was not expressed in cervix but showed 

upregulation in 6/9 cervical cancer cell lines (Figure 50A). The same ncRNA was 

expressed in normal colon, but showed downregulation in 2/2 colon cancer cell lines 



 
Irena Vlatkovic PhD Thesis 
 

122 

(Figure 50B).  EXON1A ncRNA was ubiquitously expressed in all tested normal and 

cancer samples and did not show cancer deregulation. In summary, 5/6 well-known 

macro ncRNAs were deregulated in cancer. 

 

 
Figure 50. GNASAS ncRNA is deregulated in cervical and colon cancers. A. GNASAS is 
not expressed in cervix but it is upregulated in HeLa and HT3 (and 4 more cervical not shown 
cancer cell lines). B. GNASAS is expressed from colon and downregulated in 2/2 colon 
cancer cell lines hybridized to HIRTA. UCSC position is shown on the top. Tracks presented 
as on Figure 11B, section 2.1.5.  
 
2. 6. 2. Novel macro ncRNAs are deregulated in cancer   

101 novel macro ncRNA candidates were found to be expressed using HIRTA in 43 

cell lines/tissues/patients. I showed previously that there was no overall difference in 

number of macro ncRNAs in imprinted gene regions between normal and cancer 

samples since on average ~19 novel macro ncRNA candidates are expressed per 

both normal or cancer sample (section 2.5.2.), but I found a number of samples 
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expressed exclusively in cancer cells or in normal cells as well as candidates 

showing different levels of expression between a normal tissue and the 

corresponding cancer of that tissue.   

 

22 macro ncRNAs were expressed exclusively in cancers (Table 19). From these 

macro ncRNAs 10 were expressed in only one tested cancer cell line. 16 of these 

transcripts were characteristic for one type of cancer while 6 others were expressed 

from more than one type of cancer but not expressed from any normal tissue. In 

11/22 cases macro ncRNAs were not expressed in normal cervix (or any other tested 

normal tissue), but expressed from 1-3 cervical cancer cell lines. Cancer deregulation 

of RPE56ov and RPE65down1 is presented on Figure 51. OR56A1down and 

PPP2R5Cup1 (low expression) were expressed in acute myeloid leukemia patients, 

but not expressed in whole blood and bone marrow.  

 
Cancer specific 
macro ncRNA 
candidates  
 

Cell line expressing macro ncRNA 
 

Cancer type 

GPR177up C33A, Tera2, A201 cervical, teratocarcinoma, rhabdomyosarcoma 
RPE65ov C4I, C33A, DoTc2, HCT116, A201 cervical, colon, rhabdomyosarcoma 
RPE65down1 C33A, A201 cervical, rhabdomyosarcoma 
RPE65down2 Tera2 teratocarcinoma 
MAS1ov NCCIT teratocarcinoma 
PTK2up DoTc2 cervical 
SFMBT2down5 HeLa, C4I, C4II cervical 
GATA3down Cama1 breast 
SEC23IPdown2 SHSY5Y neuroblastoma 
OR56A1down AML5_BMMC, AML5_PBMC, AML7 acute lymphoid leukemia 
PKCDBPdown A201 rhabdomyosarcoma 
ZNF195down1 C4I, C4II cervical 
ZNF195down2 HCT116, C33A colon, cervical 
ZNF195down3 C4I, C4II, C33A, HCT116 cervical, colon 
ZNF195down4 C4I, C4II cervical 
SLC38A4down1 Hela, SW756 cervical 
EPYCov DoTc2 cervical 
DCNup3 MCF7 breast 
LRCH1up2 Tera2 teratocarcinoma 
PPP2R5Cup1 AML7, MP_0351B, MP_0363 acute lymphoid leukemia, myeloproliferative 

disorder 
ZNF831up2 A201 rhabdomyosarcoma 
TOX2up Cama1 breast 

Table 19. 22 novel macro ncRNAs are cancer specific. Cancer specific macro ncRNAs are 
not expressed in any of 20 tested normal tissues, but are expressed in presented cell lines or 
patients of a specific cancer type.  
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Figure 51. RPE65ov and RPE65down1 macro ncRNAs are not expressed in any of 20 
tested normal tissues, but show cancer specific expression. RPE65ov is a ~86kb long 
macro ncRNA not expressed in normal cervix, colon and skeletal muscle, but expressed in 
corresponding cancers (3/9 cervical, 1/2 colon and 1/1 rhabdomyosarcoma cell lines). 
RPE65down1 is specifically expressed in C33A and A201 cell lines. Predicted orientation of 
macro ncRNAs is shown with black arrows. UCSC position is shown on the top. Custom 
HIRTA tracks as well as RefSeq genes, sno/miRNA and CpG islands UCSC tracks are 
shown. 
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Figure 52. OR56A1down macro ncRNA lacks expression in normal blood and bone 
marrow (as well as any of tested 20 normal tissues), but shows upregulation in 3/4 
acute myeloid leukemia patient samples. This ncRNA is ~20kb in length, predicted to be 
expressed from + strand (black arrow) and expressed from ZNF215 HIRTA region on 
chromosome 11. UCSC position is shown on the top. Custom HIRTA tracks as well as 
RefSeq genes, sno/miRNA and CpG islands UCSC tracks are shown. 
 

A number of macro ncRNAs were expressed in both normal and cancer samples, but 

showed deregulation in cancer. For example, SFMBT2down1 was not expressed in 

cervix, but expressed in 4/9 cervical cancer cell lines, or B3GNT2down2 was not 

expressed in colon, but showed upregulation in 1/2 colon cancer cell lines. Further, 

SLC38A4up was not expressed in cervix, mammary gland and colon but is 

upregulated in 2/9 cervical cancer cell lines, 1/2 breast and 1/2 colon cancer cell 
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lines. In contrast, LRCH1up macro ncRNA was expressed in 9/20 normal samples, 

but not expressed in any of examined cancers while C15orf43up showed expression 

in normal blood, but was downregulated in 1/3 AML and 2/2 MPD patients. Since 

tiling arrays have limitations (in background and dynamic range) numerous subtle 

changes in expression were not examined but rather I focused on candidates fully 

silenced or fully upregulated in cancers. Therefore, I expect that the expression 

change of presented transcripts is at least equal to the dynamic range of HIRTA and 

possibly higher, meaning that the expected fold difference in transcript expression 

between normal and corresponding cancer tissue was <= 200 fold (based on 

previous RT-qPCR experiments, Table 10, section 2.1.4.) 

 
2. 6. 3. Identification of the human homolog of the mouse Airn ncRNA in Wilms’ 

tumors 

Previously it was shown that the CpG island in intron 2 of IGF2R (CGI-2), similar to 

the mouse CpG island located on the same position of Igf2r, carries a maternal-

specific DNA methylation imprint (Smrzka et al., 1995). Since this CpG island is 

associated with the transcription start site of paternally expressed Airn ncRNA in 

mouse we tested if the human CpG island could also act as a promoter for a macro 

ncRNA (Figure 53A). While mouse Igf2r shows ubiquitous imprinted expression in 

fetal, extra-embryonic and adult tissues (except post-mitotic neurons) (Yamasaki et 

al., 2005), human IGF2R shows polymorphic imprinted expression in early fetal 

tissue, amniotic and lymphoblastoid cells, placenta and Wilms’ tumors (Oudejans et 

al., 2001; Smrzka et al., 1995; Xu et al., 1993; Xu et al., 1997). No evidence of a 

human AIRN has been previously found in placenta (Oudejans et al., 2001). I 

focused on Wilms’ tumors that were not previously tested for AIRN expression, but 

had polymorphic imprinted expression of human IGF2R gene.  
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Figure 53. AIRN is expressed from a Wilms’ tumor. A. Map of human chromosome 6q27 
region showing IGF2R and flanking genes. Transcription orientation of protein coding genes 
and predicted AIRN transcripts is indicated by arrows. Exons of IGF2R are marked by 
numbers (1-3) and position of CGI-2 is marked by an asterisk. Positions of RT-PCR (pp9) and 
qRT-PCR assays (IGF2R QPCR and AIRN QPCR1 and 2) are indicated underneath. B. 
Expression of spliced AIRN in Wilms’ tumor cell lines using primer pair pp9 amplifying a 
160bp product (1: Sk-Nep1, 2: G-401, 3: STA-WT3ab). The Hs27 normal human fibroblasts 
cell line (4) was used as a negative control and plasmid SV1 containing the spliced human 
AIRN product from mouse transgenes known to express AIRN as a positive control. Human 
GAPDH was used as a loading control (178bp band). NT; no template control. C. Summary of 
expression of AIRN by RT-PCR using pp9 in 120 Wilms’ tumor samples from the German 
SIOP/GPOH 93-01 study (see Figure 54). D. Quantitative RT-PCR of unspliced AIRN (AIRN 
QPCR1 assay) and IGF2R (IGF2R QPCR assay) expression in human cell lines (1: Sk-Nep1, 
2: G-401, 3: STA-WT3ab, 4: Hs27) using assays shown in A. Values average three technical 
replicates normalized to GAPDH. (Modified from Yotova IY, Vlatkovic IM et al., 2008 (Yotova 
et al., 2008)) 
 
AIRN was expressed from 1 in 3 tested Wilms’ tumor cell lines (Figure 53B) by using 

RT-PCR and primer pair pp9 that amplified the expected 160bp band. Further, using 

same assay I tested 120 Wilms’ tumor samples and found that 42.5% Wilms’ tumor 

patients expressed spliced AIRN (Figure 53C, Figure 54A). pp9 assay examining 
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spliced AIRN expression in these samples was used since 65% of the samples were 

DNA contaminated (data not shown) and thus could not be tested for unspliced AIRN 

expression (to examine DNA contamination, primer pair CON located intergenically 

between IGF2R and SLC22A1 and amplifying 509bp band by RT-PCR was used). 

 

Quantitative RT-PCR in cell lines confirmed AIRN expression from the STA-WT3ab 

Wilms’ tumor cell line using the AIRN QPCR1 assay for unspliced AIRN (Figure 

53D). Since expression of mouse Airn correlates with silencing of Igf2r on one 

parental allele I further tested if in human similar correlation was observed. qRT-PCR 

using IGF2R QPCR primer pair showed the lowest expression of IGF2R in the STA-

WT3ab cell line that expressed AIRN compared with other 3 tested cell lines that did 

not express AIRN (Figure 53D). When we applied the AIRN QPCR2 assay 

(corresponding to pp9 primer pair) for spliced AIRN and the IGF2R QPCR assay, on 

20 Wilms’ tumor patient samples and the Hs27 cell line that expressed no AIRN or 

showed medium or high AIRN expression from RT-PCR data, no correlation between 

no or medium expressed AIRN and IGF2R in same samples was found, while 3/6 

samples with high AIRN showed reduced IGF2R (Figure 54B). The data did not show 

a clear correlation between human AIRN and IGF2R, however, since Wilms’ tumor 

patient samples most likely contain mixtures of cells expressing, or not expressing 

AIRN the data does not exclude a correlation and thus potential silencing of IGF2R 

by AIRN in cis.  
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Figure 54. AIRN expressed in Wilms tumor patients do not show clear correlation to 
IGF2R in same patients. A. RT-PCR assay of spliced AIRN in 123 human Wilms' tumor 
samples using primer pp9. GAPDH was used as a loading control. M: Size markers, C; the 
plasmid pSpIF containing the SV1 AIRN spliced variant was used a positive control for the 
pp9 primers and HS27 cDNA used as the GAPDH primer control. 51 out of 120 samples 
(excluding 3 samples negative for both GAPDH and AIRN) were positive for spliced AIRN 
(black type). X, insufficient material to assay GAPDH, *spill over from control lane. B. 
Quantitative RT-PCR assay for human IGF2R and AIRN in 20 Wilms' tumor samples selected 
for no, medium or high AIRN expression. AIRN QPCR2 assay amplified spliced AIRN from 
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exons 1-2 (these AIRN exons were also amplified by the primer pair pp9 shown above), and 
assay IGF2R QPCR amplified IGF2R from exons 1-2. Hs27 cells were used as a negative 
control for AIRN expression. qRT-PCR data was normalized to 18S rRNA. Sample 43 with 
maximal IGF2R expression and sample 48 with maximal AIRN expression, were each set to 
100 (*). Error bars indicate the standard deviation of three technical replicates. Three 
independent experiments (each with 3 technical replicates) were performed with the same 
sample set. The measurements of AIRN abundance from the non-quantitative and 
quantitative assays were in general agreement with some exceptions (e.g. sample 38). 
(Modified from Yotova IY, Vlatkovic IM et al., 2008 (Yotova et al., 2008)) 
 
Normal human tissues showed the presence of maternally methylated CGI-2 that we 

found to be the promoter for human AIRN macro ncRNA in all tested fetal and adult 

tissues (Riesewijk et al., 1996; Smrzka et al., 1995). To determine if AIRN expression 

is specific for Wilms’ tumors or could be also found in normal tissues, I tested 20 

normal human tissues (placenta; fetal brain and liver; adult: brain, liver, heart, lung, 

uterus, thyreoidea, bone marrow, skeletal muscle, salivary gland, adrenal gland, 

prostate, testis, spinal cord, trachea, thymus, kidney and cerebellum) using the pp9 

primer pair for spliced AIRN. I could not detect expression of AIRN in any of 20 

tested normal tissues (data not shown). Further, I tested both undifferentiated (d0) 

and differentiated (d7) human embryonic stem cells (HES2) for expression of spliced 

AIRN and found that spliced AIRN was not expressed in these cells (data not 

shown).  

 

To determine if AIRN could be present in other cancers we focused on embryonic 

cancers expected to show polymorphic expression of IGF2R. I tested four cancer cell 

lines: Tera2, NCCIT, PA1 and A201, for the presence of differentially methylated 

region on the CpG island in intron 2 of IGF2R (CGI-2) shown to be the promoter of 

AIRN in Wilms’ tumors. By using Southern blot with methylation sensitive enzyme 

Not1 combined with EcoRI digestion and the specific Bx probe, both alleles of the 

CpG island were methylated in the four tested cell lines (Figure 55). The CpG island 

in intron 2 of IGF2R in Tera2 cell line was confirmed to be methylated using three 

more methylation sensitive enzymes (BstUI, XhoI and HpaII) in Southern blot with the 

same Bx probe. Additionally I confirmed existence of both methylated alleles of the 

same CpG island in the A201 cell line, using BstUI, HpaII, Eco52I and PauI 

methylation sensitive enzymes (data not shown). It was previously shown that DNA 

methylation is a repressor of transcription if found on promoter regions (reviewed in 

(Koerner and Barlow, 2010)) , thus it is expected that AIRN would not be expressed 

from tested cancer cell lines. In summary, AIRN could be a cancer and particularly 

Wilms’ tumor specific macro ncRNA. Partially this work has been published in Yotova 

IY, Vlatkovic IM et al., 2008 (Yotova et al., 2008). 
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Figure 55. Lack of DMR2 in four teratocarcinoma and rhabdomyosarcoma cell lines. 
Southern blot analysis using NotI methylation sensitive enzyme in combination with EcoRI 
using specific Bx probe showed the methylation of both alleles (presence of 5.7kb band) of 
CpG island in intron 2 of IGF2R in four tested cancer cell lines. Hs27 normal human 
fibroblasts cell line was used as a positive control and showed a 5.7kb methylated and 3.3kb 
unmethylated bands (presence of CGI-2 DMR) as expected.  
 

2. 7. Ribosomal RNA-depleted RNA-sequencing detects macro ncRNAs in 

human fibroblasts 

Transcriptome sequencing (RNA-seq) using next-generation technologies e.g. 

illumina has a great potential in whole genome research. I examined part of the 

human RNA-seq data from diverse tissues published during 2008, in order to 

compare them to our HIRTA tiling arrays expression results. First I examined if 

published RNA-seq data could detect known imprinted macro ncRNAs. Interestingly, 

published RNA-seq data poorly detected expression of well-known macro ncRNAs 

(shown in Figure 56) even in tissues and cells that are known to express these 

transcripts. For example in Pan et al. (Pan et al., 2008) where a mRNA-seq dataset 

consisting of 17-32 million 32bp reads that examined whole brain, cerebral cortex, 

liver, lung, skeletal muscle and heart was published, I was not able to detect known 

macro ncRNAs. For example, expression of KCNQ1OT1 and UBE3A-AS macro 

ncRNAs was clearly detectable by HIRTA, but poorly detectable using RNA-seq 

(Figure 56A, B). The only known imprinted macro ncRNA that could be clearly 

detected in Pan et al., 2008, was the 2.6kb H19 macro ncRNA that differs from 

KCNQ1OT1 in that it has small introns and a cytoplasm localization. Similarly, I found 

almost no expression of known imprinted macro ncRNAs in RNA-seq data from 

Sultan et al. (Sultan et al., 2008) where poly (A) RNA was extracted from human 

embryonic kidney (HEK cell line) 293T and B cells (RAMOS cell line) and produced 
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8.6 million and 7.6 million of 27bp sequencing reads respectively. This analysis of 

public data indicated that RNA-seq using poly A selected RNA does not allow optimal 

macro ncRNA detection and I tested if total RNA could potentially improve macro 

ncRNA detection using normal human fibroblasts, a cell line that express most of the 

known macro ncRNAs. Ru Huang, a PhD student in the lab developed a protocol for 

RNA-seq of the mouse cells using total RNA depleted of ribosomal RNA (rRNA) and 

hydrolyzed prior to double stranded (ds) cDNA preparation. I performed the rRNA 

depletion RNA-seq protocol, on normal Hs27 human fibroblast sample and 

performed double stranded (ds) cDNA. The sample was further processed (see 

section 5.8.8.5.) by Andy Sommer, GENAU consortium, applied on 4 flowcells and 

runned on Illumina Genome Analyser obtaining in total 58.8 milion 36bp sequence 

reads (13.1-15.5 million reads per flowcell). 

 

 

Figure 56. Imprinted macro ncRNAs were not detectable in mRNA-Seq data published 
prior to our RNA-Seq experiment. A. KCNQ1OT1 macro ncRNA is clearly expressed from 
adult brain hybridization on HIRTA while it is poorly detected from the same tissue in mRNA-
Seq from Pan et al., 2008 data. B. UBE3A-AS is highly expressed in adult brain by HIRTA, 
but shows very low, not continuous expression in mRNA-seq data from Pan et al., 2008. 
UCSC view of RNA-seq (black) and HIRTA (orange) expression data on specified UCSC 
position (hg18). HIRTA tracks are presented as previously (Figure 11B, section 2.1.5.). Black: 
RNA-seq track; RNA-seq with cut off of 25 reads. 

 
2. 7. 1. Statistics of rRNA depleted RNA-seq reads in fibroblasts 

From 58.8 milion reads, 44.6% (26.2 million reads) were uniquely mapped on the 

NCBI36/hg18 using the Bowtie alignment program (the alignment was done by Ido 

Tamir, GENAU consortium). Further, 49.95% of unique mapped reads were mapping 

to rRNA genes after the depletion. This showed that depletion was not complete, but 
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considering that rRNA consists ~95% of the cell RNA, depletion was enriched for 

non-rRNA. 

 

To examine the distribution of the reads through different categories of genomic 

regions the TopHat (Trapnell et al., 2009) program that aligns reads from the RNA-

Seq to the reference genome (hg18) without relying on known splice sites, was used. 

This program finds potential exons in Bowtie aligned data and further it builds a 

database of possible splice junctions that the program further confirms by mapping 

the experimentally gained reads to the junctions. This program was used to find 

known and novel splice junctions (across “GT-AG” introns) and to determine the 

distribution of the spliced and by extracting from the starting Bowtie data, the 

unspliced portion of the human genome.  

 

The TopHat algorithm aligned ∼11 million reads to the hg18, consisting of reads that 

are complete  (they contiguously align to the hg18) and that are spliced 

(discontinuous alignment). Approximately 8.3 million complete reads and 0.5 million 

of spliced reads that map to genic regions (annotated exons and introns of the 

RefSeq genes), and 2.1 million of complete and 0.13 million of spliced reads that 

map to intergenic regions (Figure 57A), were found. As expected, most of spliced 

reads partially map to exons and introns. Reads found to map to intergenic regions 

represented potential novel spliced transcripts in the human genome. This analysis 

showed that there are about 20% more spliced transcripts than annotated by RefSeq 

genes genes, and about 25% of novel exons mapping to introns (new spliced 

variants of known genes).  

 

The results of RNA-Seq were visualized on the UCSC browser (NCBI36/hg18) with 

the X-axis representing position in the genome and Y-axes representing number of 

reads. Representation of the Bowtie and the TopHat outputs are shown with the 

example of the DCN protein coding gene where 7/9 known exons have been found 

using exon-exon mapping (Figure 57B). As expected, the number of reads matching 

to exons of protein coding genes was very high in the RNA-Seq data, for example for 

DCN, 553 reads were mapped to the exon 5 showing highest expression (note that 

on Figure 57B a cut off of 25 reads was used). 
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Figure 57. TopHat alignment of fibroblasts RNA-seq finds novel splice-junctions in 
intergenic and intronic regions. A. Comparison of TopHat complete and spliced reads with 
RefSeq genes (reads that are completely or partially within exons, introns, genic and 
intergenic regions are shown). B. UCSC screenshot of Bowtie and TopHat aligned RNA-seq 
fibroblasts data. TopHat alignment is shown in the form of splice junctions where exons are 
represented as vertical lines. 7/9 exons of DCN were found using TopHat. Black RNA-seq 
track; RNA-seq reads with cut off of 25 reads. 

 

To examine the number of Hs27 RNA-seq reads that are represented in the 

unspliced fraction of the genome, I extracted the TopHat spliced fraction (based on 

Bowtie alignment) from uniquely mapped reads mapped with Bowtie and found that 

57.4% (~15 millions) of reads were unspliced (Figure 58). This rather large fraction 

potentially contains exons that are spliced in the tested cell line, but were not 

detected by TopHat (false negative rate), known unspliced transcripts (e.g. Kcnq1ot1 

macro ncRNA lacks any spliced products (Pandey et al., 2008)) and novel unspliced 

transcripts e.g. macro ncRNAs.  
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Figure 58. Using different aligners mapping spliced and total unique reads, 42.6% of 
the fibroblasts transcriptome has been found to be spliced while 57.4% is unspliced. 
Note that unspliced fraction contains TopHat false negatives, but also novel macro ncRNAs. 
 

2. 7. 2. Known macro ncRNAs by RNA-seq 

I further examined expression of known imprinted macro ncRNAs by RNA-seq and 

found that KCNQ1OT1, GTL2var1, UBE3A-ASvar2 and EXON1A that were 

expressed in fibroblasts by HIRTA hybridization, also showed expression in the Hs27 

RNA-seq data (examples in Figure 59). Previously, exact mapping of KCNQ1OT1 

was not possible with HIRTA mapping since the end of KCNQ1OT1 macro ncRNA is 

highly repetitive and was not spotted on the Chip. Using RNA-seq, I found the end of 

the human KCNQ1OT1, that is annotated RefSeq transcript of 59.5kb, and mapped 

the KCNQ1OT1 transcript as a 100kb long. The H19 and GNASAS macro ncRNAs 

that were very lowly expressed in fibroblasts using HIRTA compared to other 

cells/tissues e.g. liver for H19 and fetal kidney for GNASAS, could not be mapped 

using RNA-seq (these macro ncRNAs were covered with a very low number of 

reads). Interestingly, I observed that using RNA-seq, all known imprinted macro 

ncRNAs were lowly expressed (below 20 uniquely mapped reads) compared to 

protein coding genes. 

 

Further, expression of known non-imprinted macro ncRNAs expressed from 

fibroblasts was analysed and it was found that RNA-seq clearly detected the HOTAIR 

and MALAT1 macro ncRNAs (Figure 60A, B). Interestingly, MALAT1 was among the 

most highly expressed genes excluding rRNA genes, having the expression 

maximum of 5052 mapped reads (Figure 60B).  
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Figure 59. Known imprinted macro ncRNAs are detected by rRNA depleted RNA-seq. A. 
Both RNA-seq and HIRTA detect expression of KCNQ1OT1 with RNA-seq mapping a longer, 
100kb KCNQ1OT1 variant. B. GTL2var1 ncRNA is detected using RNA-seq. C. UBE3A-
ASvar2 is expressed in Hs27 using HIRTA and RNA-seq. UCSC view of RNA-seq (black) and 
HIRTA (orange) expression data on specified UCSC position (hg18). HIRTA tracks are 
presented as previously (Figure 11B, section 2.1.5.) Black: RNA-seq track; RNA-seq reads 
with cut off of 25 reads.  
 
 

 
Figure 60. rRNA depleted RNA-seq in normal human fibroblasts detects known non-
imprinted macro ncRNAs. A. HOTAIR macro ncRNA maps to annotated RefSeq genes 
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track. B. MALAT1 macro ncRNA maps to annotated ncRNA gene and shows very high 
expression with maximum of 5052 uniquely mapped reads. UCSC view of RNA-seq (black) 
expression data on specified UCSC position (hg18). Black RNA-seq track; RNA-seq reads  
 

2. 7. 3. Novel HIRTA macro ncRNAs validation by RNA-seq  

24 novel macro ncRNAs that were found by HIRTA in the fibroblast cell line were 

compared to rRNA depleted RNA-seq of the same cell line (Table 20). 6/24 

transcripts found by HIRTA were also clearly expressed by RNA-seq, 16 were very 

lowly expressed (with few sequencing reads mapping to regions annotated by HIRTA 

expression) and expression of two macro ncRNA was not found using RNA 

sequencing (Table 20). Three examples of novel macro ncRNA transcripts RNA-seq 

expression are shown in Figure 61, where KLF14up2 and KLF14up3 (Figure 61A) 

were clearly expressed and SLC38A4down2 example of lowly expressed transcript 

(Figure 61B).  

 

Since previously published RNA-seq data (shown in 2.7) could not detect expression 

from known imprinted macro ncRNAs, I looked into RNA-seq data recently integrated 

by UCSC (Burge RNA-seq (Wang et al., 2008a), CSHL Long RNA-seq, GIS RNA-

seq, Caltech RNA-seq and Helicos RNA-seq). These RNA-seq data examined 

expression in brain, breast, heart, lymph node, lymphoblastoid cells and K562 

myelogenous leukemia cell line, but there were no available fibroblasts sequencing 

data to which I could compare our Hs27 RNA-seq. Therefore, RNA-seq was 

compared to global run-on sequencing (GRO-seq) data (Core et al., 2008) which 

shows the positions of transcriptionally-engaged RNA polymerases in IMR90 lung 

fibroblasts. In total, 18/24 macro ncRNAs expressed from HIRTA were also 

transcribed by GRO-seq and similarly to RNA-seq of Hs27, they showed very low 

transcription of macro ncRNAs. GRO-seq data are strand specific and I found that 

7/18 GRO-seq transcripts showed transcription from both plus (+) and minus (-) 

UCSC strands indicating transcriptional orientation of probably overlapping 

transcripts, while 11 were transcribed from one of the UCSC strands (Table 20). 

When GRO-seq expression data was compared with the strand prediction data 

(section 2.5.3), overall agreement between these datasets was found, with exception 

of SDHDdown transcript that was predicted as expressed from - strand (with low 

probability score of -0.167), but found by GRO-seq data to be lowly expressed from + 

strand. Three more examples: PHACTR2ov, KIAA1024up and ADAMTS7down were 

similarly predicted as one strand transcripts and found as opposite strand by GRO-

seq, but they were all in the group of transcripts marked with a star (Table 18, section 

2.5.3.) representing probable overlapping transcripts of opposite orientations.  
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Macro ncRNAs expressed 
in fibroblasts (Hs27) by 
HIRTA  

RNA-seq in fibroblasts 
(Hs27) 

GRO-seq + 
(Core et al., 2008) in 
fibroblasts (IMR90) 

GRO-seq - 
(Core et al., 2008) in 
fibroblasts (IMR90) 

H19down + (low) + (low) - 
TSPAN32down1 + (low) - - 
ZNF195up1 + (low) - - 
ZNF195up2 + (low) - - 
SNRPNup2 + (low) - - 
APCDD1Lup1 + (low) + (low) + (low) 
 LRRC47down + (low) + (low) + (low) 
TIGD2down + (low) + (low) - 
PHACTR2ov + (low) + (low) - 
COL1A2up + (low) + (low) + (low) 
KLF14up2 + - + 
KLF14up3 + + + (low) 
PEG13 + (low) - + (low) 
KIAA1126up - - + (low) 
ZNF215up + (low) - - 
OR5P2ov + - - 
SDHDdown + (low) + (low) - 
PTSdown + (low) + (low) + (low) 
SLC38A4down1 + (low) + (low) + (low) 
SLC38A4down2 + (low) + (low) + (low) 
ADAMTS7down - - + (low) 
TMED3down +  + (low) - 
KIAA1024up +  + (low) - 
BLCAPov + - + 

Table 20. RNA-seq in fibroblasts validated 22/24 macro ncRNAs mapped by HIRTA. 16 
transcripts show low expression (<= 5 reads and usually low coverage that could not allow us 
mapping of transcript borders) while 6 show low expression, but with >5 reads and coverage 
that could be visually distinguished as a transcript. GRO-seq data confirmed 18/24 transcripts 
in IMR90. GRO-seq shows that most of the transcripts are lowly transcribed (<= 5 reads and 
usually low coverage). Transcriptional orientation of 9 transcripts could be determined from 
GRO-seq data. RNAs that are transcribed from both strands (columns GRO-seq + and GRO-
seq -) represent probably overlapping transcripts of opposite transcriptional orientation. 
 

 
Figure 61. Novel macro ncRNAs are detected by RNA-seq. A. Region upstream of KLF14 
protein coding gene is complex transcriptional unit consisting of annotated FLJ43663 ncRNA 
and KLF14up2 and KLFup3 macro ncRNAs expression detected by both HIRTA and RNA-
seq. RNA-seq expression is shown in black while tiling array expression is orange. B. 
SLC38A4down2 is a macro ncRNA expressed between SLC38A2 and SLC38A4 protein 
coding genes. This ncRNA shows low expression using HIRTA, but is still found to be 
expressed using RNA-seq with 26.2 millions of uniquely mapped reads. UCSC view of RNA-
seq (black) and HIRTA (orange) expression data on specified UCSC position (hg18). HIRTA 
tracks are presented as previously (Figure 11B, section 2.1.5.) Black: RNA-seq track; RNA-
seq reads with cut off of 25 reads.  
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I analyzed 24 macro ncRNA candidates expressed in fibroblasts by HIRTA with 

TopHat alignment in order to test if this program could find exon-exon junctions in our 

candidates directly from our experimental RNA-seq fibroblasts data. 23/24 

candidates did not show any presence of the splice junctions while the only exception 

was found in the complex transcription unit on chromosome 7 where 2 splice 

junctions were found in the KLF14up3 macro ncRNA. These splice junctions were 

just partially overlapping KLFup3 and thus potentially represent a novel overlapping 

protein-coding gene in this region. 
 

2. 7. 4. Novel primary small ncRNA transcripts in the human fibroblasts 

Macro ncRNAs can be precursors for different classes of small RNAs. Among six 

well-known imprinted macro ncRNAs four are known precursors of small ncRNAs, for 

example: H19 hosts hsa-mir675, GNASAS hosts hsa-mir296, hsa-mir298, GTL2var1 

hosts a cluster of miRNA and the 14I and 14II snoRNAs, and, UBE3A-ASvar1 hosts 

clusters of SNORD115 and SNORD116 snoRNAs. RNA preparation used for the 

RNA-Seq did not allow detection of RNAs smaller than 200bp, but the precursors of 

small RNAs should be detectable. To find novel primary micro (pri-mi) and primary 

snoRNA (pre-sno) transcripts I used miRBase Release 13 (March 2009) and mapped 

transcription overlapping these micro and snoRNAs on ten human chromosomes 

(chr1- chr10) in normal human fibroblasts from RNA-seq data. 

 

282 miRNAs and 121 snoRNAs have been annotated from miRBase on the first 10 

human chromosomes and I found 26 transcripts overlapping these small RNAs on 

the first 9 human chromosomes while chromosome 10 was negative (Table 21; 

names of transcripts will be shown as chromosome number, number of candidate 

from proximal end of chromosome). 25 were novel while one (chr 9-3) was 

overlapping the recently validated RefSeq gene LOC554202 ncRNA. 25 were miRNA 

precursors (overlapping 1-3 miRNAs) and one pre-snoRNA was also mapped. 

Lengths of these transcripts were 0.5 to 884kb (for those that are lowly expressed the 

exact positions of start and end was only provisionally determined). 16/26 transcripts 

had a CpG island on one of their ends. I used RNAcode prediction to determine non-

coding versus coding status of these transcripts and found 20 to be non-coding, 4 

protein coding and 2 possibly overlapping both coding and non-coding transcripts. 

According to the position of novel transcripts to the annotated genes (RefSeq) in the 

region 16 were intergenic, 5 potential novel 5’exons or overlapping, 3 potential 

3’UTRs or overlapping transcripts and 2 intronic transcripts.  
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1 46, 40 6 1 chr1:9131097-9185835 54.7 hsa-mir-34a yes IG NC 
   2 chr1:65271069-65305978 34.9 has-mir-101-1 yes IG NC 
   3 chr1:206037598-

206108847 
71.2 hsa-mir-29c,  

hsa-mir-29b-2 
yes IG NC 

   4 chr1:197084516-
197173082 

88.6 hsa-mir-181a-1,  
hsa-mir-181b-1 

no IG NC 

   5 chr1:170374221-
170380725 

6.5 hsa-mir-214, 
hsa-mir-199a-2 

no IN NC 

   6 chr1:98159044-98283926 124.9 hsa-mir-137 yes 5’/OV NC (1) 
2 24, 14 1 1 chr2:132727100-

132755758 
28.6 hsa-mir-663b yes 5’/OV PC 

(11) 
3 31, 15 3 1 chr3:44016047- 44141886 125.8 hsa-mir-138-1 yes IG NC (1) 
   2 chr3:115516049-

115540802 
24.7 has-mir-568 no 3’/OV NC 

   3 chr3:196898055-
196932703 

34.6 has-mir-570 no 5’/OV NC (1) 

4 25, 5 1 1 chr4:24118111-24138849 20.7 hsa-mir-573 no 3’/OV NC 
5 30, 9 1 1 chr5:148766576- 

148793784 
27.2 hsa-mir-143, 

hsa-mir-145 
no IG NC 

6 15, 13 4 1 chr6:72136483- 72187456 51 hsa-mir-30c-2, 
hsa-mir-30a 

yes IG NC (1) 

   2 chr6:126753203-
127481933 

728.3 hsa-mir-588 yes IG PC 
(12) 

   3 chr6:155876033-
156759776 

883.7 hsa-mir-1202 yes IG NC/PC 
(2) 

   4 chr6:18636712-18860589 223.9 hsa-mir-548a-1 no IG NC (1) 
7 34, 8 4 1 chr7:22859996-22876600 16.6 HBII-336 yes IG PC (3) 
   2 chr7:27176401-27173373 3 hsa-mir-196b yes IG NC 
   3 chr7:32733372- 32851180 117.8 hsa-mir-550-2 yes IG PC (8) 
   4 chr7:130207753-

130252350 
44.6 hsa-mir-29a, 

hsa-mir-29b-1 
no IG NC/PC 

(2) 
8 29, 4 4 1 chr8:135866372-

135914313 
47.9 hsa-mir-30b,  

hsa-mir-30d 
yes IG NC 

   2 chr8:105552966-
105570604 

17.6 hsa-mir-548a-3 no 3’/OV NC 

   3 chr8:22158068- 22158541 0.5 hsa-mir-320a yes 5’/OV NC 
9 26, 11 3 1 chr9: 95968398- 96001224 32.8 hsa-let-7a-1,  

hsa-let-7f-1,  
hsa-let-7d 

yes IG NC 

   2 chr9:130045825-
130047020 

1.2 hsa-mir-199b no IN NC 

   3* chr9:21444267-21549697 105.43 hsa-mir-31 yes 5’/OV NC (1) 
10 22, 3 - - - - - - - - 

Table 21. 26 novel primary mi/sno transcripts are mapped on first 10 human 
chromosomes in normal human fibroblasts. Total number of mi/snoRNAs per human 
chromosome is shown (using miRBase, Release13, March 2009). Positions (in hg18) and 
lengths (in kb) of novel transcripts named according to number starting from proximal end of 
the chromosome they are transcribed from are shown. Overlapping small RNAs, CpG island 
located on one of the end of the mapped transcript, position according to annotated genes 
(RefSeq) and RNAcode prediction for these transcripts is presented. * LOC554202 ncRNA 
 
The example of the novel LET-7-pri-miRNA (chr 9-1) overlapping three miRNA (hsa-

let-7a-1, hsa-let-7f-1, hsa-let-7d) and of novel SNORD93-pre-snoRNA (chr 7-1) 

overlapping HBII-336 are showed on Figure 62A, B. Both of those have a CpG island 

at one end putatively identifying the transcriptional start site. Positions of 26 mapped 

transcripts on 10 human chromosomes are depicted on Figure 62C.  
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Figure 62. Positions of novel primary small RNA transcripts on 10 human 
chromosomes and examples of SNORD93pre-snoRNA (chr 7-1) and LET-7-pri-miRNA 
(chr 9-1). A. LET-7-pri-miRNA in length of 38.7kb is found by RNA-seq in Hs27, maps to 
three miRNAs and has a CpG island positioned on the proximal end of the transcript. B. RNA-
seq in fibroblast cell line shows 16.6kb transcription overlapping SNORD93. Novel transcript 
has a CpG island promoter (green). C. Positions of novel transcripts expressed in fibroblasts 
that map to ten human chromosomes (transcripts are numbered from the proximal end of the 
chromosome). 

 

2. 7. 5. Novel SHOX protein coding gene variants 

The SHOX gene consists of 7 exons. This gene is located on the pseudoautosomal 

region 1 on chromosomes X and Y and encodes a transcription factor. In 

collaboration with Claudia Durand from the lab of Gudrun Rappold (Heidelberg, 

Germany) who had performed a systematic screen of 41 human tissues and 

identified novel SHOX gene variants including four exon variants named 2a, 7-1, 7-2 

and 7-3, I verified these findings using RNA-seq. Since the Hs27 normal human 

fibroblasts cell line expressed some novel SHOX variants in levels detectable by RT-

PCR, I analyzed rRNA depleted RNA-seq whole genome data from Hs27. I 

confirmed novel SHOX exons in the SHOX gene region on chromosome X in Hs27 

cell line by RNA-seq (Figure 63A). Applying a cut-off of 5 unique mapped reads, 

expression of novel SHOX exon 2a and variants of the known exon 7:  7-1, 7-2 and 

7-3, were detected by RNA-seq (Figure 63B). In summary, novel SHOX exon 2a and 

three variants of exon 7 were validated by RNA-seq technique in the Hs27 cell line. 

This work has been submitted as: Durand C, Roth R, Vlatkovic I, Dweeph H, Decker 

E, Schneider K, Rappold G, Alternative splicing and nonsense-mediated RNA decay 
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contribute to the regulation of SHOX expression. The analysis shows usefulness of 

RNA-seq to identify novel spliced variants. 
 

Figure 63. RNA-seq of diploid human fibroblasts (Hs27) confirms novel 2a, 7-1, 7-2 and 7-3 
exons of SHOX gene. A. UCSC browser screenshot of Hs27 RNA-seq on the chromosome X 
genomic region covering SHOXa and SHOXb genes (RefSeq UCSC track) shows expression 
of known and novel SHOX exons. The X-axis represents the number of mapped reads; the Y-
axis shows the position in the NCBI36/hg18 release of the human genome. Known and novel 
exons of SHOX variants are numbered below. B. UCSC browser screenshot focused on 
novel exons 2a and 7-1, 7-2 and 7-3, shows that more than 5 unique reads could be mapped 
on the genome positions of these exons confirming their expression in the Hs27 cell line.  
(Modified from Durand C, Roth R, Vlatkovic I, et al., submitted) 
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3. Discussion  

 

3. 1. Summary of results 

I successfully used tilling array (HIRTA) and RNA-seq approaches to map novel 

macro ncRNAs in human imprinted gene regions. From 20 normal and 23 cancer 

human samples hybridized to HIRTA, tissue specific profiles of human imprinted 

gene regions were obtained and 101 novel macro ncRNA candidates were identified. 

Furthermore, rRNA depleted RNA-seq of a fibroblast cell line validated the 

expression of 22/24 transcripts detected by HIRTA in fibroblasts. 7 novel macro 

ncRNAs were developmentally regulated in a human embryonic stem cell 

differentiation system. Characterization of 10 novel macro ncRNAs showed that 6 

had preferentially or exclusively monoallelic expression, 5 were exclusively nuclear 

localized indicating their potential role in gene silencing and 2 (ADAMTS7down and 

PEG13) had CpG island promoters that were found to be differentially methylated 

regions (DMRs). Furthermore, 22 out of 101 mapped transcripts were cancer 

specific. These results indicate that macro ncRNAs could be a universal feature of 

human imprinted gene regions since each human imprinted gene region analyzed 

expressed at least one macro ncRNA. 

 

3. 2. HIRTA and RNA-Seq successfully detects macro ncRNAs 

 

3. 2. 1. Macro ncRNAs could be mapped from their expression features on the 

tiling array 

Tiling arrays have been used for obtaining expression profiles of limited number of 

cell lines from selected genomic regions (e.g. Cheng (Cheng et al., 2005)) or in 

whole genome expression studies (e.g. Bertone and colleagues used liver polyA 

RNA (Bertone et al., 2004) and Kapranov polyA RNA from HeLa and HepG2 cell 

lines (Kapranov et al., 2007a)). These studies with some exceptions utilized 

Affymetrix technology and polyA RNA cell fractions and showed that the non-

annotated portion of the human genome is still substantial and that high proportion of 

transcription consists of non-protein coding RNAs. These studies found numerous 

novel non-annotated transcripts from a small number of tested cell lines, but they did 

not examine if any novel transcripts were macro ncRNAs of the type found in 

imprinted gene clusters.  

 

In this thesis, I applied total RNA to a custom NimbleGen tilling array (HIRTA) and 

showed that known imprinted macro ncRNAs are successfully detected using “single 
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cDNA hybridization on HIRTA”. Focusing on imprinted gene regions (HIRTA contains 

2% of the human genome) allowed a higher probability of finding novel imprinted 

macro ncRNAs and also lowered the cost of applying higher number of samples than 

if the whole genome tiling arrays were used. The expression profile of macro ncRNAs 

from HIRTA hybridizations showed specific characteristics: a continuous high signal 

through the whole ncRNA gene body, a 5’-3’ slope and a non-saturated transcription 

level. These features distinguish macro ncRNAs from protein-coding mRNA genes 

that typically showed a peaked pattern with a high, saturated signal over exons and a 

low non-saturated signal over introns. I discuss below how these features of macro 

ncRNA and protein coding mRNA genes may originate from differences in macro 

ncRNA and pre-mRNA biology and how they were used to develop a strategy for 

mapping novel macro ncRNAs.  

 

3. 2. 1. 1. “Continuous high HIRTA signal” over macro ncRNA body may 

originate from differences in splicing  

The first macro ncRNA feature observed from the six well-studied imprinted gene 

clusters were continuous non-saturated signals from typically more than 90% of 

HIRTA tiles, through the whole length of macro ncRNA gene. In contrast, most pre-

mRNAs showed focal saturated signals matching exons and typically low to 

moderate non-saturated intronic signals. Continuous high signals from macro 

ncRNAs most probably results from their low level of splicing (e.g. Airn is mostly 

unspliced and Kcnq1ot1 lacks any spliced products (Pandey et al., 2008; Seidl et al., 

2006)).  

 

Nonsense-mediated decay (NMD) is the mechanism that selectively eliminates 

aberrant RNAs that have premature transcription termination codons in eukaryotic 

cells. Splicing is coupled with NMD since specific protein complexes that mark 

premature codon deposited to the RNA during splicing had been found (reviewed in 

(Chang et al., 2007)). Thus, previously it was proposed that macro ncRNAs could 

loose their capacity to be spliced during evolution, to escape the nonsense mediated 

decay pathway (Ponting et al., 2009). 

 

Continuous high signals may also originate from the low intron/exon ratio that had 

been previously shown to characterize some known macro ncRNAs, e.g. H19 and 

Xist are spliced but have short introns relative to exon length (Brannan et al., 1990; 

Brown et al., 1991). These short introns were more difficult to visualize in comparison 

to the typical long protein-coding introns (protein coding genes are showing high 
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intron/exon ratio (Lander et al., 2001)). Thus when expressed, short introns could not 

be distinguished from “continuous high signals” appearance of macro ncRNAs, while 

protein-coding genes that typically splice out long introns had a clearly different high-

exonic/low-intronic HIRTA expression pattern.  

 

Potential obstacles in differentiating between ncRNAs and protein coding genes 

based on the “continuous high signal” criterion were: 1) protein coding genes that 

consist of one exon (12% of human annotated genes are single-exon genes 

(Sakharkar et al., 2005), e.g. NDN located on chr15) and 2), protein coding genes 

that show high intronic signals. Based on the HIRTA profile alone I could not exclude 

that some of the novel mapped transcripts are single-exon protein coding genes and 

thus I used the RNAcode algorithm (Washietl et al., unpublished data) that predicts 

exons based on evolutionary signatures, to show that no single-exon genes were 

among novel mapped transcripts. Protein coding genes that show high intronic 

expression on the tiling array may represent transcripts with a high transcriptional 

rate (Ebisuya et al., 2008). I excluded these potential false positives from the mapped 

macro ncRNA candidates since I compared all 43 hybridized samples 

simultaneously. This approach maximizes possibility to exclude protein-coding genes 

with high transcriptional rate since these genes are expected not to have high intronic 

expression, but typical high-exonic/low-intronic HIRTA expression pattern in most of 

the tissues. 

 

3. 2. 1. 2. 5’-3’ slope macro ncRNA feature may originate in alternative 

polyadenylation 

By visual examination of the HIRTA macro ncRNA expression profiles, as a second 

feature, the decreases of the HIRTA expression through the body of known macro 

ncRNAs were observed. These decreases showed opposite correlation with the 

transcription orientations of the known ncRNA transcripts and thus were named as 

5’-3’ slope. In this section I will discuss how 5’-3’ slope macro ncRNA feature may 

originate in alternative polyadenilation. 

 

The biology of macro ncRNAs is still poorly characterized. For a few tested imprinted 

macro ncRNAs it has been shown that they are RNA Polymerase (RNAP) II 

transcripts (e.g. mouse H19, Airn, Kcnq1ot1 (Brannan et al., 1990; Redrup et al., 

2009; Seidl et al., 2006)) and that have low level of splicing (e.g. Airn) or that they are 

unspliced (e.g. Kcnq1ot1) (Pandey et al., 2008; Seidl et al., 2006).  

 



 
Irena Vlatkovic PhD Thesis 
 

146 

Mammalian pre-mRNA transcription termination is directed by sequence elements on 

the pre-mRNA (Mandel et al., 2008). Primary sequence elements consist of 

polyadenylation signal sequence, the cleavage site and the G/U rich downstream 

element (Zhao et al., 1999). The auxiliary elements were found downstream of the 

RNAP II cleavage site or upstream of the polyadenylation sequence (Zhao et al., 

1999). Downstream auxiliary elements are generally G-rich while upstream auxiliary 

elements are usually U-rich (UUUU, UGUA or UAUA) (Bagga et al., 1995; Hu et al., 

2005). Interestingly upstream auxiliary elements that enhance efficiency of cleavage 

and polyadenilation of primary transcript RNAs by binding auxiliary polyadenylation 

factors are mostly found together with enhanced transcription of intronless genes (Le 

Hir et al., 2003; Moreira et al., 1995). Thus, we speculate that auxiliary elements may 

be potentially more often found in intronless macro ncRNAs than in pre-mRNAs 

containing long introns, enhancing their transcription and promoting their 

polyadenylation.  

 

If macro ncRNAs are RNA polymerase (RNAP) II transcripts, three non-mutually 

exclusive hypothesis could explain the 5’-3’ slope of macro ncRNAs: 1) very long, 

macro ncRNAs may have a number of polyA signals that are usually not functional 

through the genomic region, but could potentially be more often used by RNAP II 

when the coupling with the splicing machinery does not take place, 2) macro ncRNAs 

may have a higher number of additional termination elements (auxiliary elements) in 

3’ regions that will advance RNAP II termination on different polyA sites comparing to 

pre-mRNAs 3), macro ncRNAs may be characterized by a higher level of alternative 

polyadenylation than pre-mRNAs and thus different cells will produce macro ncRNA 

transcripts of different lengths that could be seen as 5’-3’ slope in the RNA pool 

detected by the HIRTA array (Figure 64).  
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Figure 64. Model showing how 5’-3’ HIRTA feature of macro ncRNAs may originate in 
macro ncRNA biology. A number of macro ncRNA variants may be transcribed from one cell 
by RNAP II, when different polyadenylation sites are more efficiently recognized with the help 
of auxiliary factors and in the potential absence of splicing machinery each cell of the 
population may transcribe macro ncRNA variant of different length by using different 
polyadenylation and cleavage site for transcription termination. TSS; transcriptional start site, 
pA; polyadenylation site. See key for further details. 
 

These hypothesis remain to be tested, for example by using RNA FISH with different 

probes for potential diverse 3’ ends, it could be tested if each cell transcribe just one 

alternatively polyadenylated macro ncRNA transcript or each cell transcribes a pool 

of macro ncRNA transcripts of different lengths. Further, sequences of high number 

of macro ncRNAs and pre-mRNAs could be tested for statistical difference in number 

of G-rich and U-rich auxiliary elements. 

 

3. 2. 1. 3. 5’-3’ slope macro ncRNA feature as a criteria for the transcript 

orientation prediction 

HIRTA hybridizations did not allow strand specific information to be obtained, since 

double stranded cDNAs were applied to the HIRTA chips. In order to indirectly gain 

this information, I used 5’-3’ slope expression feature as one of the criteria in 

prediction of the macro ncRNA strand. In addition to the slope criteria, I based 

prediction of the transcript orientation on three more published genomic/epigenomic 

features: CpG island, H3K4me3 enrichment and RNAP II binding site. I used these 

features since they are known marks of promoters (described in section 1.) and thus 

could predict the 5’ ends of the transcripts. I found overall agreement between 

transcript orientation predictions of the novel macro ncRNAs based on these four 

features and the GRO-Seq data that mapped the amount, position and orientation of 

transcriptionally engaged RNA polymerases in the IMR90 fibroblast cell line (Core et 
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al., 2008). Further, I found that around 50% of the macro ncRNAs that were 

overlapping with GRO-seq data showed presence of RNA polymerases in both 

directions. Thus, a certain percentage of novel macro ncRNAs that I mapped may 

represent overlapping transcripts supporting the “interleaved” model (extensive 

overlap of transcriptional units and regulatory regions on the same genomic space) 

proposed by Kapranov and colleagues (Kapranov et al., 2007b).  

 

3. 2. 1. 4. Differences in HIRTA mapping for macro ncRNAs having diverse 

positions to the annotated genes 

101 novel macro ncRNAs that were grouped as: 1) intergenic, 2) intronic, 3) adjacent 

to the 5’ end of annotated genes (5’/OV), and 4) adjacent to the 3’ end of annotated 

genes (3’/OV), were mapped using the described strategy (section 2.1.5.) based on 

the HIRTA expression patterns. The intergenic transcripts were mapped reliably 

since borders of these transcripts could be easily visualized. The borders of potential 

intronic transcripts could not be assigned in most of the cases when high expression 

was observed through the whole length of the host gene intronic regions. The intronic 

macro ncRNAs I was able to distinguish from the host gene expression were PEG13 

where I knew the orthologous position from the mouse, and HTR2Ain where the 

HTR2A host protein-coding gene was not expressed in number of tissues. Human 

introns have been found as a source of regulatory RNAs (Mattick and Gagen, 2001), 

and among imprinted macro ncRNAs some are intronic e.g. MESTIT1 macro ncRNA 

(Figure 24, section 2.4.1.). Thus, there is a high potential for existence of a more 

intronic macro ncRNAs than already known or mapped by HIRTA in imprinted 

regions and for study of these transcripts strand specific mapping technology in 

numerous tissues would be necessary.  

 

Many known macro ncRNAs overlap protein-coding genes (e.g. KCNQ1OT1, 

UBE3A-AS, GNAS1-AS, EXON1A), thus I also mapped transcription longer than 1kb 

positioned adjacent to 5’ and 3’ ends of known genes. This transcription could 

represent macro ncRNAs that overlap annotated genes or alternatively novel 5’UTRs 

or 3’ UTRs of annotated genes. Further examination of each specific example would 

be necessary to reveal the origin of mapped transcription. However, I showed that 29 

transcripts that are positioned 5’ and 3’ to the known protein-coding gene are 

predicted to be non-coding by using the RNAcode algorithm (Washietl et al., 

unpublished data) where no protein coding potential could be found in these regions 

based on evolutionary signatures in 44 species.  
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3. 2. 2. Ribosomal RNA depleted RNA-seq successfully maps macro ncRNAs 

Previous RNA-seq studies from poly (A) selected RNAs have been focused on 

alternative splicing of protein coding genes while the macro non-protein coding 

portion of the genome was not directly assessed (Pan et al., 2008; Sultan et al., 

2008). Visual inspection of mRNA-seq data from these studies showed that imprinted 

macro ncRNAs were poorly detected showing the necessity for employment of 

modified RNA-seq sample preparation in order to improve the macro ncRNAs 

detection. Thus, RNA-seq using the Illumina/Solexa technology on total rRNA 

depleted RNA from fibroblasts was performed, and successfully detected the known 

macro ncRNAs such as KCNQ1OT1, GTL2var1, UBE3A-ASvar2, HOTAIR and 

MALAT1 and 22/24 of the novel macro ncRNAs that I detected by tiling array.  

 

With some exceptions, most of the known and novel macro ncRNAs were relatively 

lowly expressed in comparison to annotated protein coding genes by rRNA depleted 

RNA-seq. Low expression of macro ncRNAs was also shown by HIRTA 

hybridizations indicating that low macro ncRNA expression reflects their biology and 

not technical problems. Both HIRTA and RNA-seq detect the steady-state level of 

gene expression. The steady-state level is expected to be a result of the combined 

rate of transcription and degradation (stability) of the transcript. The low expression 

of macro ncRNAs could be based on the low stability of macro ncRNAs measured by 

their relatively short half-life (e.g. mouse unspliced Airn half-life was 2.1h, whereas 

Igf2r mRNA had half-life of 14.3h (Seidl et al., 2006)), while in the same time macro 

ncRNA transcription may be high. To examine if low expression of novel mapped 

macro ncRNAs results from combined rate of transcription and degradation, measure 

of transcription rate using nuclear-run on assays in diverse cells/tissues and measure 

of macro ncRNA stability for example by using actinomicin D for each novel lowly 

expressed macro ncRNA would be necessary. 

 

In the RNA-seq data, the read coverage of the 16/24 lowly expressed novel macro 

ncRNAs was also often low. Due to this low coverage in 66% of the novel transcripts, 

if HIRTA mapping data would not be available, RNA-seq alone would not allow us to 

map 5’ and 3’ macro ncRNA boundaries. This indicates that the 26.2 million of 

uniquely mapped reads provided by the RNA-seq data was not deep enough to 

completely cover lowly expressed macro ncRNAs and this could be further improved 

by more efficient rRNA depletion of total RNA prior to the RNA-seq procedure.   
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The ∼45% of the total read number was uniquely mapped in the Hs27 cell line by 

rRNA depleted RNA-seq. This number was in overall agreement with other RNA-seq 

data. For example Sultan et al. (Sultan et al., 2008) had 50% uniquely mapped reads 

using mRNA-seq. In the rRNA depleted RNA-seq from the Hs27 cell line, 20% more 

spliced transcripts than annotated by RefSeq genes and 25% novel exons mapping 

to introns of known genes, were found by TopHat alignment. This result was in 

concordance with previous findings that alternative splicing is one of the key factors 

on which complexity of higher eukaryotes is based (Matlin et al., 2005). For example, 

Pan et al. detected novel splice junctions in about 20% of multiexon genes from six 

human tissues (Pan et al., 2008). Novel spliced transcripts and exons that were 

detected in Hs27 cells and described in section 2.7.1., further add to the human 

alternative splicing complexity. 

 

The ∼60% of the unspliced reads found in Hs27 cell line after extracting TopHat 

spliced transcripts from Bowtie aligned uniquely mapped reads, contained known 

unspliced transcripts, potentially TopHat false negative transcripts, but also showed 

that high percentage of uniquely mapped reads may represent novel unspliced 

macro ncRNAs. The finding of a high proportion of unspliced transcripts in the human 

genome from RNA-seq data, was in the overall agreement with HIRTA study based 

on 2% of the genome, where 101 novel transcripts, that showed “continuous high 

signal” patterns and thus were potentially unspliced macro ncRNAs, were mapped. 

RNA-seq using rRNA depleted total RNA successfully detected macro ncRNAs but 

further advancement in detection is expected from more efficient rRNA depletion, 

paired-end sequencing, strand-specific sequencing and from further development of 

technology towards the longer reads lengths.  
 

3. 3. Pervasive transcription or functional ncRNAs? 

Rapid development of technologies such as tiling arrays and next-generation RNA-

sequencing in the last years led to novel insights into the genome complexity. These 

findings led to the use of the term “pervasive transcription” that refers to widespread 

unannotated transcription arising over most of the human genome (reviewed in 

(Kapranov et al., 2007b)). In the literature the term “pervasive transcription” was not 

uniquely defined and fully understood and become a matter of debate in the field (for 

publications see: http://pervasivetranscription.com/). For example, Jacquier et al., 

(Jacquier, 2009) referred to pervasive transcription as transcription not restricted to 

well-defined functional features, such as genes, and Ponting et al. (Ponting et al., 

2009) noted that pervasive transcription does not necessarily imply an abundance of 
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functional RNAs. Oppositely, Beretta and Morillon predicted a crucial role of 

pervasive transcription in controlling gene expression and genomic plasticity while 

Mattick also suggests a functionality of transcripts (ncRNAs), derived from pervasive 

transcription (Berretta and Morillon, 2009; Dinger et al., 2009; Mattick and Makunin, 

2006). The overall picture is that there are different possibilities of what pervasive 

transcription could represent: novel transcripts (coding or non-coding) that have 

currently unknown functional roles, spurious products of transcription (junk RNAs) 

that do not have a function and represent side products of functional processes in the 

cell, novel 5’ and 3’ UTRs of annotated genes, transcriptional read through or even 

experimental artifacts (reviewed in (Huttenhofer et al., 2005; Johnson et al., 2005; 

Mendes Soares and Valcarcel, 2006; Wilusz et al., 2009)).  

 

Global transcription resembling pervasive transcription, but found specifically in 

undifferentiated mouse ES cells on the whole genome level, was proposed to be the 

key mechanism that could keep the pluripotent state of the cells. The same authors 

found that after 7 days of ES cell differentiation total and mRNA levels were ∼2 fold 

lower compared to undifferentiated ES cells (Efroni et al., 2008). Global transcription 

of undifferentiated human ES cells in imprinted gene regions was not observed in my 

HIRTA studies since transcribed and silenced genomic regions were present at 

similar level to the differentiated ES cells.   

 

In this study 101 unannotated transcripts were mapped in cell lines and tissues with 

95% of them showing non protein coding potential as assessed by RNAcode 

(Washietl et al., unpublished data). It could not be fully excluded that some of these 

transcripts are UTRs of annotated genes, transcriptional read through, junk RNAs or 

experimental artifacts (originating from cross-hybridization on the tiling arrays or 

being background signals). However, newly mapped macro ncRNA transcripts were 

found in gene regions containing imprinted genes, with a number of them showing 

different indices of functionality that will be discussed through this section. 

 

3. 3. 1. Novel macro ncRNAs that show tissue specific expression and 

subcellular localization may be functional 

Tissue specific expression and a specific subcellular localization of macro ncRNAs 

are indices of functionality of macro ncRNAs (reviewed in (Mattick, 2009)). I tested 

expression of 20 normal and 23 cancer cells/tissues on HIRTA and found differential 

tissue specific expression of 99/101 novel macro ncRNA candidates in imprinted 

gene regions. Most of the macro ncRNAs (29%) were expressed in testis. This 
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observation was in agreement with work of Sasaki where they found that 29% of their 

tested mRNA-like ncRNAs were expressed in testis where the testis macro ncRNA 

fraction was the largest among 11 human tissues. Together with similar mouse data 

this implies that macro ncRNAs could potentially have specific roles in complex 

regulatory mechanisms in testis (Ravasi et al., 2006; Sasaki et al., 2007).  

 

I used a “double cDNA HIRTA hybridization” (section 2.1.6.) approach to identify 

nuclear-enriched macro ncRNAs. I confirmed the subcellular localization of the 

KCNQ1OT1 macro ncRNA and identified the subcellular localizations of 15 other 

known and novel macro ncRNAs using this technique. I observed a limitation in the 

reliable interpretation of subcellular localization for very lowly expressed transcripts 

since correct interpretation highly depends on the position of the base line and the 

used normalization, however those with higher expression macro ncRNAs were 

reliably assigned to the nuclear or cytoplasmic compartment. A second difficulty was 

the reliable interpretation of cytoplasm (grey) signals that only spanned one tile and 

were located in non-annotated regions. These signals may represent novel exons of 

cytoplasm-enriched transcripts. Additionally, it cannot be excluded that one tile 

cytoplasmic signals observed by double cDNA HIRTA hybridization may originate 

from cross-hybridizations with partially complementary transcripts mapping to other 

genomic regions. Overcoming the limitations in the data interpretation, double cDNA 

HIRTA hybridization reliably detected that 8/15 transcripts were localized in both 

cytoplasm and nucleus of the Hs27 cells while 6 transcripts were exclusively nuclear 

indicating their potential role in gene regulation. 

 

3. 3. 2. Developmentally regulated macro ncRNAs overlapping olfactory 

receptor genes may be functional 

HIRTA expression profiling of undifferentiated and day 7 differentiated human ES 

cells showed that 7 novel transcripts were developmentally regulated and thus may 

have regulatory functions. Two of these transcripts (OR56B4up1 and OR5P2ov) 

overlapped olfactory receptor genes (Figure 25, section 2.4.2.). Olfactory receptor 

genes are known as typical example of randomly monoallelically expressed genes 

and in mouse it has been previously shown that monoallelic expression of olfactory 

receptors is regulated by enhancer element H that is methylated on one chromosome 

and that can act in cis or in trans (Chess et al., 1994; Lomvardas et al., 2006). 

Further it was proposed that in mouse this enhancer element interacts just with one 

olfactory receptor (OR) gene per nucleus leading to expression of just this one OR 

gene out of 1300 OR genes, in one olfactory neuron (Serizawa et al., 2003). The 
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mapping of two macro ncRNAs that overlap a number of OR genes raises the 

question if these macro ncRNAs contribute to random monoallelic expression in a 

similar manner as found for imprinted macro ncRNA in inducing imprinted monoallelic 

expression? It would be interesting to test if the macro ncRNAs overlapping OR 

genes expressed in human ES cells are also present in olfactory neurons, and if they 

have the same transcription profiles in olfactory neurons expressing different 

olfactory genes. One of the possibilities how macro ncRNAs may regulate OR gene 

monoallelic expression is by transcription through enhancer elements where macro 

ncRNAs could potentially set a methylation mark on enhancer of one parental 

chromosome, that would further activate OR gene by known mechanism involving 

intra or interchromosomal interaction with promoter of OR gene. 

 

3. 3. 3. A small number of HIRTA mapped macro ncRNAs overlap with 

lincRNAs associated with PRC2 and CoREST complexes 

Large intergenic transcripts (lincRNAs) have been mapped in human fibroblasts and 

HeLa cells by approach based on finding of evolutionary conserved domains where 

H3K4me3 and H3K36me3 overlap (Khalil et al., 2009). Only 9 out of the 101 HIRTA 

mapped transcripts overlapped with lincRNAs. Interestingly, 5 out of these 9 

transcripts have been found to associate with PRC2 and CoREST complexes in the 

lincRNA study (Khalil et al., 2009). PRC2 is a methyltransferase that trimethylates 

H3K27 and has a function in repressing transcription of specific genes (Bracken et 

al., 2006). Recently, it has been shown that PRC2 interacts in mouse placenta with 

the imprinted Kcnq1ot1 ncRNA (Pandey et al., 2008) that is known to have a function 

in silencing imprinted genes in the Kcnq1 mouse imprinted cluster (described in 

section 1). The HOTAIR macro ncRNA that is transcribed from the HOXC cluster has 

been shown to bind PRC2 and to repress genes in trans in the HOXD cluster (Rinn et 

al., 2007). The CoREST complex is another chromatin-modifying complex known as 

a repressor of neuronal genes (Andres et al., 1999). The 5 transcripts found by both 

HIRTA and lincRNAs study that are physically associated with PRC2 and CoREST 

complexes may have a function as epigenetic initiators and target histone 

methylation at specific genomic location (epigenetic pathway model was described in 

1.1.2. (Berger et al., 2009)). 
 

3. 3. 4. Macro ncRNAs may function independently and as precursors for small 

ncRNAs 

Macro ncRNAs have different roles in the cell, but one function is to act as precursors 

for different classes of small ncRNAs, since macro ncRNAs as well as protein-coding 
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genes (especially their introns) can be post-transcriptionally processed into small 

RNAs (Fejes-Toth, 2009). Imprinted macro ncRNAs are known precursors for 

miRNAs and snoRNAs (e.g H19, GNASAS, UBE3A-AS, GTL2, described in section 

2.7.4.), as well as some non-imprinted macro ncRNAs e.g. MALAT1, ∼7kb nuclear 

macro ncRNA known to generate mascRNAs (MALAT1 associated small cytoplasmic 

RNA). It is becoming apparent that macro ncRNAs and their processed small 

ncRNAs can have different biology (e.g. cellular localization, half-life) and possibly 

different functions (Wilusz et al., 2008; Wilusz et al., 2009). 

 

The only large snoRNA clusters found in the human genome up to now are those 

embedded into the imprinted UBE3A-AS and GTL2 macro ncRNAs. The UBE3A-AS 

macro ncRNA that is expressed from PWS imprinted gene cluster contains two large 

snoRNA clusters: HBAII-85 and HBAII-52. The HBAII-85 has a significant role in the 

Prader-willi Syndrome (PWS) (Duker et al., 2010) and the HBAII-52 could be 

involved in the editing and/or alternative splicing of the pre-mRNA of 5-

hydroxytryptamine 2C (5-HT2C) receptor that plays a role in serotonergic signal 

transduction (such a regulatory role has been found for corresponding mouse MBAII-

52 snoRNA cluster) (Kishore and Stamm, 2006; Nicholls and Knepper, 2001). In this 

thesis UBE3A-ASvar4 macro ncRNA overlapping exclusively HBAII-52 snoRNA 

cluster (Figure 16, section 2.2.1.1.) that could be a potential precursor for HBAII-52 

was found in a small number of tissues including fetal and adult brain and 

developmentally upregulated in hES cell system correlating with a previously shown 

functional role in brain. 

 

In the DLK1 imprinted gene region, GTL2var5 overlapping the 14qI and 14qII 

snoRNA clusters (Figure 14, section 2.2.1.1.) was expressed only in adult heart and 

uterus and could also represent precursor for those snoRNA clusters. The question 

for the future work is if these macro ncRNAs that overlap small RNAs function 

exclusively as a precursors of small RNAs or they could have in the same time other 

roles in the cell, presumably in gene regulation in cis (Figure 65).  
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Figure 65. Macro ncRNAs can be precursors of small RNAs. Macro ncRNAs could 
function as small ncRNA precursors but may also have independent functions.  
 

The methodology of sample preparation for rRNA depleted RNA-seq did not preserve 

small RNA species (less than 200bp long), but by examining 10 human 

chromosomes (chr1 to chr10), 25 potential primary miRNAs transcripts (novel 

transcripts found to overlap known miRNAs) and 1 potential precursor for snoRNA 

(novel transcript that overlaps known snoRNA) were mapped, of which 20 were 

predicted to be macro ncRNAs, 4 predicted to be novel protein-coding genes and 2 

possibly overlapping both non-coding and coding transcripts. 

 

The number of novel precursors for small RNAs that were mapped was dependent 

on already known small RNAs from the miRBase, thus it could be predicted that 

more unknown precursors and small ncRNAs may be mapped in normal human 

fibroblasts. An interesting question will be if these precursors always have the same 

expression profiles as the small RNAs processed from them in different tissues, or 

they could be also transcribed in the tissue specific manner without processing into 

the small ncRNAs. For resolving of this question RNA-seq expression profiles of both 

small and precursor RNAs in number of tissues should be compared. 
 

Mapping of novel macro ncRNAs in human and indirect evidence implying their 

function are a valuable resource and the beginning point for direct testing of function 

of mapped macro ncRNAs, that is certainly the important challenge of future work 

(further discussed in section 3.8.). 
 

3. 4. Developmental upregulation of XIST macro ncRNA in HES2 cells 

X-chromosome inactivation takes place in female mammals and requires the X 

Inactive Specific Transcript (Xist/XIST) (Lee et al., 1996; Penny et al., 1996). Not all 

human ES cell lines have the ability to show developmental regulation of XIST 

ncRNA and to recapitulate X-inactivation in an in vitro system (Silva et al., 2008). The 

human XIST macro ncRNA was not expressed in the female undifferentiated human 

embryonic stem HES2 cell line by HIRTA, while was developmentally upregulated 

and showed relatively low expression after 7 days of HES2 differentiation (section 

2.3.). Interestingly, Silva et al. could not detect any expression of the XIST in the 

same HES2 cell line in any time point before or after differentiation, using the RNA 

FISH technique (Silva et al., 2008). The same study classified HES2 cells to be 

“class III” human embryonic cell lines that have lost the capacity to express XIST and 

that do not have a counterpart in mouse ES cells (all mouse ES cells express Xist 
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after differentiation). Silva et al., hypothesized that class III cells are prone to lose 

XIST expression once X inactivation is initiated in the culture, since they found that 

class III cells even if Xist was lost, still showed inactivation of X chromosome. A 

possible explanation for the differences in XIST expression through HES2 

differentiation observed between HIRTA and Silva et al. studies is that RNA FISH 

technique used in the Silva study was not sensitive enough to detect the low levels of 

XIST expression in differentiated HES2 cells. Thus, other human embryonic stem cell 

lines that were explored for the XIST expression by the Silva study and grouped as 

class III cell lines, should be also examined by techniques that detect RNA 

expression other than RNA FISH. This could potentially show that all human 

embryonic cell lines have a property to show developmental regulation of XIST 

ncRNA as found for mouse ES cells (Chaumeil et al., 2002). Potentially, human 

HES2 cells showing upregulation of XIST and X-inactivation may provide a model for 

in vitro studies of epigenetic changes during early human development. 

 

3. 5. Further support to the lack of conservation between mouse and human 

Tsix/TSIX function 

In the mouse the Tsix macro ncRNA is transcribed antisense to and regulates Xist 

macro ncRNA during both random and imprinted X-inactivation (Lee, 2000; Sado et 

al., 2001). Human TSIX transcripts have been found to be co-expressed with XIST 

only from the inactive X-chromosome in human fetal cells using RNA FISH technique 

indicating that TSIX does not have the same function as mouse Tsix in repressing 

Xist (Migeon et al., 2002). Further, Chang and Brown found lack of conservation of 

regulatory elements for human TSIX and thus also showed that TSIX is most 

probably not a regulator of XIST in humans (Chang and Brown, 2010). Previously 

TSIX was found expressed from small number of cells types: chorionic villus cells, 

embryonal bodies and one human embryonal carcinoma cell line (Chow et al., 2003; 

Migeon et al., 2002). In this thesis TSIX was found not to be expressed in 

undifferentiated and differentiated human embryonic stem cells (HES2), in three fetal 

tissues and in all other tested cancer cell lines including teratocarcinoma and 

malignant embryonal carcinoma. This finding further suggests that human TSIX lacks 

a conserved function as a regulator of XIST macro ncRNA and if functional, TSIX 

may have function specific for the cell type where it is expressed. 

 

3. 6. Are macro ncRNAs one of the key features in genomic imprinting? 

Genomic imprinting is an epigenetic phenomenon that utilizes different mechanisms 

of gene regulation and thus represents a valuable model system enabling deeper 
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understanding of how genes and genomic regions may be regulated. Genome 

regions that contain imprinted genes also contain different numbers of usually 

clustered imprinted genes, and show certain key features. The well-established key 

features of imprinted gene regions in human and mouse are: the presence of a short 

element known as the Imprint Control Element (ICE) that carries a parental specific 

methylation mark set in the germline (gametic Differentialy Methylated Region 

(DMR)) and cis-regulation over long distances that leads to monoallelic expression of 

clusters of flanking imprinted genes. In last years, it has been hypothesized that 

macro ncRNAs could be one of the key features of imprinted gene regions since they 

are expressed from the six-well characterized imprinted gene clusters and two, the 

mouse Airn and Kcnq1ot1 have been shown to play a role in silencing of protein 

coding genes in cis (introduced in section 1.2.5.1. and 1.2.8.). Thus, we tested known 

human gene regions containing imprinted genes, by using tiling array (HIRTA) and 

found that each of the 32 tested regions containing imprinted genes also contain 

macro ncRNAs. Since it was previously shown that non-coding portion of the human 

genome is substantial (introduced in section 1.3.) it could be that macro ncRNAs are 

not specifically enriched in the imprinted gene regions when compared to other 

randomly selected genomic regions. This could be directly tested by statistically 

comparing macro ncRNAs expression in 32 imprinted and the same number of 

randomly selected genomic regions of the same length. The question that remains is 

if at least one of the mapped macro ncRNAs per imprinted gene region shows 

imprinted expression. Thus, while HIRTA mapping of macro ncRNAs that showed 

that macro ncRNAs are expressed from each of 32 tested imprinted gene regions to 

some extent supports the idea that imprinted macro ncRNAs may be universal, key 

feature of imprinted gene regions in human, the additional evidence will come from 

further testing of imprinting expression status of novel macro ncRNAs that were 

mapped in human regions containing imprinted genes (Figure 66). 
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Figure 66. Macro ncRNAs may be a universal feature of human imprinted gene regions. 
Hypothetical imprinted gene region contains ICE that carries parental specific methylation 
mark set in the germline and monoallelically expressed clustered imprinted genes of which at 
least one could be a macro ncRNA. Black box points ICE. See key for further details.  
 

The two novel Differentially Methylated Regions (DMRs) corresponding to 

ADAMTS7down2 and PEG13 macro ncRNA CpG island promoters were found and 

could represent ICEs or somatic DMRs in corresponding RASGRF1 and KCNK9 

regions. For testing if this DNA methylation has germline origin and was set in 

mother’s or father’s germ lines, analysis of oocytes and sperm cells would be 

necessary.  

 

Monoallelic expression has been found in X-inactivation, genomic imprinting and as 

random monoallelic expression (reviewed in (Krueger and Morison, 2008)). 

Monoallelic imprinted expression that originates from a maternal or a paternal allele 

is one of the key features of imprinted genes. Imprinted genes can show ubiquitous 

or tissue specific monoallelic expression. In humans, monoallelic gene expression is 

usually tested from blood samples from families while testing of other tissues is 

highly restricted by the availability of the human samples. 6 out of 10 tested HIRTA 

mapped macro ncRNAs were found to show monoallelic or biased expression 

towards one allele based on expression of one to six Single Nucleotide 

Polymorphisms (SNPs), in fibroblasts and/or blood samples (section 2.4.5.). Further 

testing using higher number of SNPs, in more families and in other diverse tissues 

would further clarify imprinted status of novel HIRTA mapped macro ncRNAs. Two 

examples of human regions that may possess all the key features of imprinted gene 

regions will be further discussed below. 
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3. 6. 1. RASGRF1 may be novel human imprinted gene region 

The Mouse Rasgrf1 imprinted gene region (chr9) contains four paternally expressed 

imprinted genes: Rasgrf1 (monoallelic in brain and liver and biallelically in lung, 

thymus, kidney and stomach), As4, A19 ncRNA (that is monoallelically expressed in 

brain but biallelic in testis) and miRNA184 (described in section 2.4.5.6.). A paternally 

methylated DMR located 30kb upstream of Rasgrf1 that was shown to binds CTCF 

when unmethylated, functions in cis to silence maternal Rasgrf1 allele by blocking 

enhancers located further upstream from the DMR (section 2.4.5.6., (Yoon et al., 

2005)). Human genes from syntenic RASGRF1 region on chromosome 15 were not 

previously tested for imprinted expression and in this thesis no orthologous A19 

ncRNA expression could be seen in any of the 43 tested human samples (section 

2.4.1.). However, I could detect biased expressed of the TMED3down and 

KIAA1024up macro ncRNAs, monoallelic expression of the ADAMTS7down macro 

ncRNA and finally, I identified a DMR located on the ADAMTS7 down CpG island. 

Thus I show, for the first time that the human RASGRF1 region is an imprinted gene 

region (a comparison of mouse and human Rasgrf1/RASGRF1 imprinted gene 

regions is shown in Figure 67).  

 

 

Figure 67. Mouse Rasgrf1 and human RASGRF1 region both contain imprinted macro 
ncRNAs. In mouse brain Rasgrf1, A19 ncRNA and Mir184 show paternal expression while in 
human fibroblasts ADAMTS7down, TMED3down and KIAA1024up show biased or 
monoallelic expression. Paternally methylated DMR has been found in mouse about 30kb 
upstream of Rasgrf1 gene while in human CpG island promoter of ADAMTS7down ncRNA is 
a DMR. This DMR is positioned 500bp downstream of a chromosome break point in the 
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mouse syntenic region. Both mouse and human chromosomes are presented as on UCSC, 
placing chromosomal centromere always on the right side of the figure and thus inversion in 
the gene positions could be seen between mouse and human. Black boxes show differentially 
methylated region. See key for further details. 
 

Surprisingly, expression of the ADAMTS7down macro ncRNA showed clear 

monoallelic expression in fibroblasts and blood, but paternal expression was seen 

based on 4 SNPs and maternal expression was seen based on 2 SNPs, by testing 

cells and blood of 3 families. The first possibility that could explain these findings, 

was random monoallelic expression combined with clonal expansion from a single 

cell (Krueger and Morison, 2008). Since we used polyclonal lymphoblastoid cells for 

RNA isolation but exclusively found monoallelic expression, this disagreement of 

parental origin is not expected to be due to the random monoallelic expression. The 

second possibility that could explain finding of both maternal and paternal imprinted 

expression could be due to the technical artifacts originating from the whole genome 

HapMap genotyping data (described in 2.4.5.6.). While finding that 4 SNPs mapping 

to ADAMTSdown were paternally expressed based on both direct examining DNA 

and RNA from blood of one family and from examination of HapMap data, the finding 

that 2 SNPs were maternally expressed came solely from examination of parental 

genotypes available from the HapMap data. Thus, there may be a possibility that 

HapMap data could misinterpret small percentage of genotypes and thus also by 

chance these 2 maternally expressed SNPs even if it was shown that HapMap 

genotyping data had been passed very strict quality control filters (2005; Frazer et al., 

2007). The quality score of the each nucleotide assignment by the HapMap data to 

ADAMTS7down SNP positions could be further assessed by reanalyzing the 

HapMap raw data using the Genome Console, Affymetrix.   

 

When comparing mouse and human Rasgrf1/RASGRF1 regions, it can be observed 

that mouse syntenic region of chromosome 15 RASGRF1 human imprinted gene 

region, consists mostly of chromosome 9 where mouse Rasgrf1 imprinted gene 

region maps, but have a break point where 25kb of the chromosome 2 was inserted 

(Figure 67). Similar break point was observed through other mammalian genomes 

(data not shown) but was not present in Primates. This break point maps to the very 

distal end of human ADAMTS7down macro RNA and thus there is the possibility that 

this transcript and/or its regulation could be exclusively feature of Primates. Further 

testing of imprinted expression of genes from this region in human brain and in 

mouse fibroblasts could show if this imprinted gene region is conserved between 

human and mouse. 
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3. 6. 2. Identification of PEG13, the human homologue of the mouse Peg13  

ncRNA 

The mouse Kcnk9 imprinted gene region contains the maternally expressed Kcnk9, 

Trappc9 genes and the paternally expressed Peg13 ncRNA found to be ∼4kb long, 

highly expressed in brain and unspliced (section 1.2.5.2., (Smith et al., 2003)). In 

human, KCNK9 imprinted gene region contains the maternally expressed KCNK9 

(Ruf et al., 2007). In the study of Ruf et al., methylation from both parental alleles has 

been detected in human blood and brain on the CpG island orthologous to the mouse 

germline maternally methylated Peg13 DMR (Ruf et al., 2007).  

 

In this thesis, for the first time a PEG13 macro ncRNA of ∼6.6kb in length, consistent 

with mouse Peg13, expressed highly in brain, but also highly expressed in blood and 

fibroblasts, was found. In human fibroblasts, the DMR corresponding to the mouse 

Peg13-DMR was found while in HeLa cells only a methylated allele was detected 

(Figure 30, section 2.4.5.3.). Finding of only a methylated allele in HeLa may be due 

to Uniparental disomy (UPD) that could retain two copies of the chromosome 

carrying methylated allele. Mapping of UPDs in HeLa cells would be necessary to 

further investigate the origin of both chromosome methylation on the examined 

PEG13 CpG island.  

 

The PEG13 CpG island promoter was differentially methylated in a ratio that 

indicated allele specific methylation in fibroblasts and the same cell line also showed 

biased monoallelic expression of PEG13. Expression of PEG13 in blood from 

families and human brain needs to be examined to test if the parental origin of 

human PEG13 expression is same as found for mouse and to address if PEG13 

macro ncRNA has ubiquitous or a tissue-specific imprinted expression.  

 

In summary, I show that macro ncRNAs are expressed from all tested human regions 

containing imprinted genes and suggest this may represent one of the key features of 

imprinted gene regions. Further testing of the imprinted expression and methylation 

status and direct testing of macro ncRNA function will lead to a better understanding 

of the imprinting process and its role in mammalian biology. 

 

3. 7. Conservation of imprinted gene regions between human and mouse? 

The question of conservation of imprinted gene regions in mammals is still the matter 

of debate in the field since it is necessarily based on provisionally set cut off of how 

many of genes could show differences in imprinting status between the species. 
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Different laboratories have different opinions if these differences indicate a general 

lack of conservation or just sporadic exceptions from the overall conservation of 

imprinted gene regions (Frost and Moore, 2010; Luedi et al., 2007; Morison et al., 

2005). An interesting recent suggestion is that most of the differences between 

imprinted genes in mouse and human may have their origin in differences in their 

reproductive biology, e.g. multiple offspring compared to single offspring, that leads 

to a larger number of genes with imprinted expression in mouse placenta compared 

to human placenta (Frost and Moore, 2010). The question of conservation further 

gains on complexity when not only imprinted expression but also differential 

methylation is taken into account when comparing species. It is evident that there are 

differences between human and mouse in imprinted expression of certain genes but 

as an overall picture imprinted expression of these species may be conserved 

(introduced in section 1.2.5.1. and 1.2.5.2.), especially since the human imprinting 

field still suffers from the lack of tissue specific imprinted expression reports due to 

the difficulties in obtaining normal tissues from families. Thus, regions selected for 

the HIRTA array were not just those containing known human imprinted genes but 

also those whose imprinted status was only known in mouse. The identification here 

of novel human PEG13 ncRNA homologue that is expressed preferentially from one 

allele and has a DMR, also supports the conservation between mouse and human 

imprinted regions.  

 

3. 8. Macro ncRNAs from imprinted regions are deregulated in cancer 

The role of macro ncRNAs in disease started to come into view with findings of a few 

macro ncRNAs that showed deregulation correlating with disease (introduced in 

section 1.3.3.). Deregulation of macro ncRNAs were usually reported as sporadic 

cases but few studies showed this process on the large scale. For example one 

study showed that number of non-coding ultraconserved expressed regions that were 

longer than 200bp (UCRs) were deregulated in chronic lymphocytic leukemia’s, 

colorectal and hepatocellular carcinomas when compared with their normal 

counterparts, indicating their possible involvement in tumorigenesis (Calin et al., 

2007). Perez et al. also showed that 15 ncRNAs that were >400bp in length, were 

deregulated in breast and ovarian cancers (Perez et al., 2008). In this thesis (in 

section 2.6.) finding of 22 macro ncRNAs expressed exclusively in cancers and a 

number of known and novel ncRNAs showing complete upregulation or 

downregulation when normal and cancer tissues were compared, provided additional 

evidences that macro ncRNAs may be involved in tumorigenesis of tested 

rhabdomyosarcoma, AML, MPD, cervical, breast and colon cancers.  
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The observed lack of expression of macro ncRNAs in cancer compared to normal 

counterpart tissues could be caused by both genetic (e.g. Uniparental disomies, 

deletions) and epigenetic (e.g. DNA methylation/ repressive histone modifications on 

regulatory regions) changes. For example my results show the imprinted GTL2var1 

macro ncRNA was not expressed in 9/9 cervical cancer and 2/2 breast cancer lines, 

but was expressed in normal colon and breast tissues. This raises the possibility that 

GTL2var1 expression or the genomic region, from which it was expressed, may be 

changed in cancers comparing to the tested normal tissues. Further, this change 

could happen early in tumorigenesis since all tested cancer cell lines resembling 

different stages and/or cell types of the cervical and breast cancers showed lack of 

GTL2var1 expression. In order to resolve the potential cause of observed lack of 

macro ncRNA expression further genetic and methylation tests of the examined cell 

lines and patients would be necessary. In particular since GTL2var1 is only 

expressed from the maternal chromosome it would be necessary to investigate if 

cells still retained this parental chromosome.  

 

Macro ncRNAs from imprinted gene regions found to be upregulated in cancers by 

HIRTA are valuable resource for further examination involving patients having 

different stages of disease, in order to study their potential usage as biomarkers for 

specific grades of different cancer types. Most valuable candidates for this type of 

research are the 16 macro ncRNAs that were found to be upregulated uniquely in 

specific cancer types.  

 

AIRN macro ncRNA was shown to be expressed in the STA-WT3ab Wilms’ tumor 

cell line and in 42.5% of Wilms’ tumor patient samples, but it was not expressed in 

two other cancer cell lines nor in 20 tested normal tissues. Mouse Airn has a function 

in silencing of Igf2r in cis leading to its' imprinted expression. IGF2R loss of function 

genetic mutations accompanied by loss of heterozygosity are often seen in human 

tumors, suggesting its role as a tumor suppressor gene (De Souza et al., 1997; 

Sleutels et al., 2002). However, no clear correlation between high AIRN and low 

IGF2R expression in Wilms’ tumors could be seen (Figure 54, section 2.6.3., (Yotova 

et al., 2008)) and, to date there is no evidence that IGF2R could undergo epigenetic 

inactivation during tumorigenesis.   

 

Expression changes in cancer of 5/6 well-studied imprinted macro ncRNAs were 

identified. Imprinted macro ncRNAs could be also subjected to loss of imprinted 

expression (LOI) (introduced in section 1.2.9.2.). Imprinted macro ncRNAs that show 
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LOI have biallelic expression and thus their expression is expected to be two-fold 

upregulated in comparison to their monoallelic imprinted expression. Macro ncRNAs 

expression detected by HIRTA showed numerous subtle changes between normal 

and cancer cells but these changes remain to be quantified using for example qRT-

PCR that can reliably detect the two fold changes. In order to examine if LOI and not 

upregulation from the same allele that monoallelically express macro ncRNA 

occurred RNA FISH could be used.  

 
Myeloproliferative disease (MPD) can evolve into acute myeloid leukemia (AML). The 

higher number of macro ncRNAs found in all AML samples comparing to all MPD 

samples may indicate a globally upregulation during progression of MPD towards 

AML. Since only 6 patient samples were tested, number of the patients should be 

expanded to gain further evidence for potential global upregulation of macro ncRNAs 

through leukemia development. The OR56A1down macro ncRNA that was found 

exclusively in 2 AML patients and the PPP2R5Cup1 macro ncRNA found in 1/3 AML 

and 2/2 MPD patients could be potential biomarkers of these diseases since they 

were not found in any of normal and cancer tissues. Further investigation of these 

macro ncRNA would be necessary to reveal more about their potential function in 

tumorigenesis.  

 

Further detailed examination of each of 22 specific macro ncRNAs candidates, using 

a number of cancer patients as well as over-expression studies and testing their 

potential function in proliferation and/or apoptosis cell-based assays, may enlarge 

our knowledge about the role of macro ncRNAs in gene regulation and disease and 

show if these macro ncRNAs may have potential as novel biomarkers or drug 

targets. 

 

3. 9. Finding function of macro ncRNAs in development and disease 

In this thesis 101 novel macro ncRNAs were mapped in 43 tested cells/tissues and a 

number of them showed indices of functionality that were discussed through section 

3.3. These findings are a valuable resource for further functional tests of mapped 

macro ncRNAs. Functional tests could involve the macro ncRNA knock down. RNA 

interference (RNAi) knock down of macro ncRNAs using small interfering RNAs 

(siRNAs) has been found restricted to cytoplasm in human cells and thus not useful 

in degradation of nuclear macro ncRNAs (Zeng and Cullen, 2002). One of the recent 

possibilities for targeting macro ncRNA in human cells involves custom designed 



 
Irena Vlatkovic PhD Thesis 
 

165 

zinc-finger nucleases, but still this method is not widely used because of high costs 

(Hockemeyer et al., 2009). A second possibility for the knock down of macro ncRNAs 

and examination of their function may be chemically modified chimeric antisense 

oligonucleotides (ASO) that have been found efficient in degradation of nuclear 

ncRNAs in mammalian cells in culture (Ideue et al., 2009).  

 

Some of the novel mapped macro ncRNAs identified in this thesis may be involved in 

imprinting where they could silence genes in cis as shown for the mouse Airn and 

Kcnq1ot1 ncRNAs, by mechanisms such as transcriptional interference (TI) or RNA-

mediated targeting (reviewed in (Koerner et al., 2009; Pauler et al., 2007)). Although 

expressed from regions containing imprinted genes, macro ncRNAs may also have 

functions independent to imprinting. Examples of roles played by non-coding RNAs 

include: 1) as regulatory RNAs regulating gene expression in trans through 

mechanisms as targeting proteins to specific genomic loci to control transcription, 2) 

modulating activity of proteins that are bound to macro ncRNA, 3) modulating 

alternative splicing, 4) altering protein localization, 5) novel housekeeping RNAs 

fulfilling structural roles (reviewed in (Wilusz et al., 2009)). In numerous human 

imprinted gene regions more than one macro ncRNA was mapped per cluster and 

thus it may be possible that while one of the mapped macro ncRNA has a function in 

silencing in cis (on the parental chromosome from which the macro ncRNA is 

expressed) leading to imprinted expression of all protein coding genes in the 

imprinted gene cluster, other macro ncRNAs from the same cluster may have diverse 

other functions that are independent of imprinting (Figure 68).  
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Figure 68. Models showing how macro ncRNAs from imprinted gene regions may 
function in or independently of imprinting. Transcriptional interference and RNA-mediated 
silencing are shown as most common models for macro ncRNA imprinted gene silencing in 
cis. In transcriptional interference transcription of a macro ncRNA through the promoter or an 
enhancer leads to the silencing of a protein coding gene by interfering with binding of 
necessary transcription factors. In RNA-mediated silencing the macro ncRNA acts as a locus 
specific epigenetic initiator inducing recruitment of repressive proteins and inducing chromatin 
remodeling and histone modifications. Some of the potential macro ncRNA functions 
independent of imprinting induced by hybridization to complementary RNA or binding to 
specific proteins are shown. Further, macro ncRNAs may regulate gene expression on both 
parental chromosomes in cis, but also on other chromosomes in trans. See key for further 
details. 
 

Mechanisms how and when during cancer progression macro ncRNAs may be 

involved in tumorigenesis are still far from understood, and different models could be 

proposed how these transcripts may have a role in cancer progression (Figure 69). 

Imprinted macro ncRNAs can lose their imprinted expression (LOI) and become 

biallelic in cancer (e.g. KCNQ1OT1 in colorectal cancer and WT1-AS in Wilms’ tumor 

(Malik et al., 2000; Tanaka et al., 2001)) while in normal tissues biallelic macro 

ncRNAs potentially could gain imprinted expression (GIE) in cancer, further adding to 

the complexity of potential roles of macro ncRNAs in cancer (Figure 69). Cancer is a 

genetic disease generally based on the changes involving tumor suppressors and 

oncogenes. Up to date two examples of a macro ncRNAs correlating with silencing of 

tumor suppressor genes were found: P15AS that silence P15 in leukemia (Yu et al., 

2008) and EPCAM-MSH2 fusion ncRNA that silence MSH2 in Lynch syndrome 

(Ligtenberg et al., 2009; Niessen et al., 2009), while no example of activation of 

oncogenes by macro ncRNAs was found even if macro ncRNAs may act as 
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transcriptional activators, as shown for mouse Evf-2 macro ncRNA (Feng et al., 

2006). Further investigation of novel macro ncRNAs expressed form human gene 

regions containing imprinted genes, that were deregulated in cancer may provide 

novel biomarkers and/or potential drug targets (see section 1.3.4.). 

 

 
Figure 69. Macro ncRNAs are deregulated in cancer and their role in cancer 
progression remains to be tested. Genetic and methylation changes, loss or gain of 
imprinted expression (LOI or GIE) may deregulate macro ncRNA expression and in 
combination with other genetic and epigenetic factors lead to silencing of tumor suppressor 
genes or potentially activation of oncogenes. Deregulated macro ncRNAs may potentially be 
used as biomarkers and/or drug targets. 
 

4. Conclusion 

In this thesis I showed that novel macro ncRNAs could be successfully mapped from 

their expression features on a tiling array and by using rRNA depleted RNA-seq 

technology. Mapping of 101 novel macro ncRNAs that showed different indications of 

functionality and were located in human regions containing imprinted genes further 

supports the idea that imprinted macro ncRNAs may be a universal feature of 

imprinted gene regions in human. The 22 novel macro ncRNAs that were expressed 

exclusively in cancer cells/tissues may provide the starting point for biomarker 

research. The data presented in this thesis overall broadens the knowledge about 

macro ncRNAs from human imprinted gene regions in both normal and disease 

conditions and will be an valuable resource for further studies of the function of 

macro ncRNAs in regulating imprinting and potentially in other cellular processes. 
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5. Materials and methods  

The overview of used chemicals, other materials and kits, with information about 

manufacturers, is shown in Appendix table I. Primers used for the allelic expression 

tests are listed in the Appendix table II, at the end of the section. 

 

5. 1. Human samples 

 

5. 1. 1. Cell lines 

Cell lines were purchased from the ATCC, http://www.lgcstandards-atcc.org/ (Table 

22), Coriell Cell Repositories, http://ccr.coriell.org (Table 23), or obtained from Peter 

Ambros’s laboratory, St. Anna Kinderspital, Vienna (STA-WT3ab human Wilms’ 

tumor cell line). The ATCC purchased cell lines were grown as adherent cultures 

under cell culture conditions using media, 10%-15% FBS, gentamicine (50µg/ml) and 

supplements recommended by repository (used media are listed in Tables 22 and 

23). The adherent STA-WT3ab cells were cultured in RPMI-1640, 25ml FBS (12.5%), 

supplemented with 5ml of HEPES (25mM) and 2.5ml of sodium pyruvate (1mM) per 

200ml of media.  Cells were subcultured by trypsinization before they reach a 80% to 

90% confluence and media was renewed twice a week.  

 
ATCC purchased 

Designations ATCC Number Media Designations ATCC Number Media 
Hs27 CRL-1634 DMEM HT-3* HTB-32 McCoy’s 5a 
HeLa CCL-2 DMEM C-4 I* CRL-1594 Waymouth’s 752/1 

HCT116 CCL-247 McCoy’s 5a C-4 II* CRL-1595 Waymouth’s 752/1 
Caco-2 HTB-37 MEM SiHa* HTB-35 MEM 
MCF7 HTB-22 MEM C-33 A* HTB-31 MEM 

CAMA-1 HTB-21 MEM DoTc2* CRL-7920 MEM 
Tera2 HTB-106 McCoy’s 5a ME-180* HTB-33 McCoy’s 5a 
NCCIT CRL-2073 RPMI-1640 SW756* CRL-10302 Leibovitz’s L15 
A-204 HTB-82 McCoy’s 5a SK-NEP1* HTB-48 McCoy’s 5a 

SH-SY5Y CRL-2266 MEM G-401* CRL-1441 McCoy’s 5a 
PA-1 CRL-1572 MEM    

 Table 22. Designations and ATCC number of 21 ATCC purchased cell lines are shown.   
* Cell lines that were grown by Dr. Iveta Yotova, Medical University Vienna 
 
The Corriel purchased lymphoblastoid cell lines were grown as suspension cultures 

in RPMI-1640, 15%FBS media. Cultures were typically seeded at a concentration of 

about 250,000 viable cells/ml (concentration of viable cells was measured using 

Casy Cell Counter, Scharfe System) and split after 2-4 days before the cultures 

reached confluence. 

 
Coriel purchased 

Designations Catalog ID CEPH/UTAH pedigree Media 
Lymphoblastoid GM12878 1463 RPMI-1640 
Lymphoblastoid GM10854 1349 RPMI-1640 
Lymphoblastoid GM10846 1334 RPMI-1640 
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Table 23. Lymphoblastoid cell lines were purchased from the Coriell Cell Repositories. 
Listed cell lines originated from the three pedigrees of the CEPH/UTAH collection used in the 
international HapMap project. 
 

5. 1. 2.  Differentiation of the human embryonic stem cells 

Human embryonic stem cells HES-2 (NIH code ESO2) were grown as 

undifferentiated for one day on ES cell media supplemented with basic fibroblast 

growth factor (bFGF). Further, cells were differentiated on gelatinized dishes in ES 

cell media without bFGF. Human embryonic stem cells were differentiated by Dr. 

Helia Berrit Schonthaler from laboratory of Erwin Wagner, IMP, Vienna (present 

address: CNIO, Madrid).  

 

5. 1. 3. Collection of human normal and patient tissue samples 

Whole blood was obtained from two healthy volunteers (mother and child) in the 

AKH, Vienna. Blood was collected in EDTA anticoagulant tubes to prevent clotting 

and processed for DNA and RNA isolation on the same day. The 24 normal tissue 

RNAs used for preparation of samples for HIRTA hybridizations and RT-PCR testing 

of AIRN expression were obtained from Clontech as a Human Total RNA Master 

Panel II or as separate Total RNAs. 

 

The peripheral blood and bone marrow tissue samples from Acute Myeloid Leukemia 

patients and Myeloproliferative disorder patients (see description in Table 11, section 

2.1.2.) were obtained from the Robert Kralovics laboratory, CeMM, Vienna and 

further processed for RNA isolation.  

 

The 123 Wilms’ tumor patient cDNA samples that were screened for the expression 

of AIRN ncRNA, were obtained from the laboratory of Prof. Martin Gessler, TBI, 

Wuerzburg. The Wilms’ tumor samples were part of the German SIOP/GPOH 93-01 

study and the patients were predominantly with preoperative chemotherapy as 

mandated by the European protocol.  

 

5. 2. DNA isolation  

 

5. 2. 1. DNA isolation from the cell lines 

The cells (presented in sections 5.1.1. and 5.1.2.) were washed twice with 1XPBS 

and lysed using 1ml of DNA Lysis buffer per T75 flask. Lysates were incubated 

overnight at 55ºC. 300µl of saturated (>5M) NaCl was added per 700µl of the lysed 

cells and mixed by inversion. The samples were spun for 10min using 14000rpm at 
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room temperature. The supernatant was added to 0.6V of 4ºC isopropanol and 

shaker by inverting to precipitate the DNA. The sample was spun 10min using 

14000rpm at 4ºC and the supernatant was discarded. In order to free the pellet of 

salt, samples were washed with 1ml of 70% ethanol for 15min at room temperature. 

The sample was spun for 10min using 14000rpm at 4ºC, the supernatant was 

removed, and the spin was repeated for 1min. After complete removal of the 

supernatant, the sample was resuspended in 200µl of TE buffer and further 

incubated overnight at 55ºC to dissolve the DNA. Concentration of the samples was 

measured using the NanoDrop ND-1000 Spectrophotometer, Peqlab. 

 

Solutions:  
DNA Lysis buffer 
1xTEN pH 9.0 (50mM Tris pH 9.0, 20mM EDTA pH8.0, 40mM NaCl in MQ H20) 
1% SDS 
0.5mg/ml Proteinase K 
 
TE buffer 
10mM Tris-Cl pH8.0 
1mM EDTA 
 

5. 2. 2.  DNA isolation from blood  

DNA was isolated from blood samples according to the manufacturer instructions 

using Wizard Genomic DNA Purification Kit, Promega. Briefly, 3ml of the blood from 

the anticoagulant EDTA tubes was mixed, red blood cells were lysed using 9ml of 

Cell Lysis Solution for 10min at room temperature and samples were centrifuged 

using 2000g for 10min at room temperature. For the RNA isolation the white pellet 

was resuspended in TRI Reagent (further processed as in the section 5.6.1.). For the 

DNA isolation, the white pellet, consisting mostly of the white blood cells, was 

resuspended in 3ml of the Nuclei Lysis solution supplemented with RNase Solution 

(15µl per 3ml sample volume) and the sample was incubated for 15min at 37ºC. After 

incubation, Protein Precipitation Solution was added (1ml per 3ml sample volume), 

vortexed for 20sec and centrifuged using 2000g for 10min at room temperature. RNA 

was further extracted using isopropanol (3ml of isopropanol per 3ml of the sample 

volume) and washed with 75% ethanol. DNA was dissolved in DNA Rehydratation 

Solution (250µl per 3ml sample volume) according to the manufacturer 

recommendations. DNA was stored at 4ºC. 

 

5. 3. Non-quantitative polymerase chain reaction (PCR) 

DNA isolated from fibroblasts was used as a template in Polymerase Chain Reaction 

(PCR). Non-quantitative PCR was used for the preparation of Southern blot probes 
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for testing methylation status of CpG island promoters of macro ncRNAs. Primers 

were designed using Primer3 (http://frodo.wi.mit.edu/primer3/) or using Primer-

BLAST (http://www.ncbi.nlm.nih.gov/tools/primer-blast/) and synthesized by VBC-

Biotech Service GmbH (http://www.vbc-biotech.at/) by Standard DNA-

Oligonucleotide Synthesis protocol. Primers for the Southern probes were specifically 

placed in the genomic region of interest with the goal to amplify single copy 

sequences in length from 300bp to 1kb (probes and primers listed in Table 24). In a 

typical PCR reaction: 5µl 5X GoTaqPol buffer, 1µl 25mM MgCl2, 0.5µl 10mM dNTP, 

1µl 10pmol/µl forward primer, 1µl 10pmol/µl reverse primer, 2µl 5M Betaine, 0.125µl 

5U/µl GoTaqPol and H2O, were used in a 25µl reaction. The PCR cycle conditions 

were: 95ºC, 3min; 35 cycles of 95ºC, 30sec; 59ºC, 30sec; 72ºC, 45sec and final 

extension of 72ºC, 7min (with optimization of the annealling temperature and the 

extension time depending on the primer pair). PCR was performed using the Peltier 

Thermal Cycler PTC-200.  

 
Name of the 
probe 

Primer 
Name 

Sequence Length of the probe 
(bp) 

LRRC47SBP LRRC47SBPF AAGCCTCTCTGGAGGAGGAG 381 
 LRRC47SBPR AGAAAAAGGTGGGACAGTGC  
PEG13SBP P13SBP1F TGCATTCAGGCTCACGCGCT 451 
 P13SBP1R GCTGCCTGGCCAAAAGATGGCT  
PRKCDBPSBP PRKCDBPSBPF AGGCAGCGGCTGTATTAGAA 801 
 PRKCDBPSBPR CTTGCGCTCACCATCAATAA  
SLC38A4SBP SLC38ASBPF CCTTTTCATTTGACCCTGGA 865 
 SLC38ASBPR ACTCAAAGGGGGTTGTTGTG  
ADAMTS7CSBP ADAMTS7SBPF ATCCGTATATCCCCTGGACC 384 
 ADAMTS7SBPR CCCAGTACAGAACTGAGGGC  

Table 24. Primers for the Southern blot probes  

 

5. 3. 1. Dissolving the gel slice 

PCR reactions and marker (GeneRuler 100bp Plus DNA Ladder) were loaded into a 

2% agarose gel in 1xTAE, electrophoresed and stained using ethidium bromide 

solution (1mg/l). Fragments corresponding to expected probes lengths were excised 

from the gel under UV light and DNA was purified from the gel slice using Wizard SV 

Gel and PCR Clean-Up System, Promega according to manufacturers’ protocol.  

 

Solutions:  
TAE Buffer 
40mM Tris 
0.1142% glacial acetic acid 
1mM EDTA pH8.0 
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5. 4. Cloning 

Cloning of the Southern and Northern blot probes and of the PRKCDBPCIE2 band 

(section 2.4.5.4.) was done using the pGEM-T Easy Vector System I, Promega. In 

the first step, PCR products isolated from the agarose gel were ligated into the pGEM 

T-Easy vector as recommended by manufacturer. 1:1 and 1:3 ratios of vector to 

fragment were used, and 10µl ligation reactions were assembled using 2X Rapid 

Ligation buffer, T4 DNA Ligase, pGEM T-Easy vector and the fragment of interest. 

Ligation was performed at 16ºC overnight. 

 

In the second step, transformation of E.coli (JM109 competent cells) with ligated 

plasmid containing insert of interest, by heat shock, was performed. Bacteria were 

mixed with plasmids and incubated on ice for 30min. Heat shock was performed at 

42ºC for 1min. The reaction was placed on ice for 2min and 250µl of LB media per 

tube was added. Reactions were shaked at 37ºC for 1h. The reactions were plated 

on Ampicilin plates containing IPTG and X-Gal and growned on 37ºC overnight. 

Colonies containing inserts of interest were selected as white colored colonies, while 

negative colonies were blue colored. 

 

The positive white colonies were inoculated in 3ml LB with Ampicilin cultures and 

grown on 37ºC for 16h. The plasmid minipreps were prepared using Alkaline Lysis 

Protocol, Sambrook and Russel, Molecular Cloning, 2001. 1.5ml from each 3ml 

overnight culture were centrifuged using 14000rpm for 1min at room temperature. 

The supernatant was removed and the cells were resuspended on ice in 225µl of 

Alk-1, than 450µl of Alk-2 was added, mixed by inverting and after 5min 340µl of Alk-

3 was added. The reaction stayed 5min on ice prior to centrifugation at 14000rpm for 

7min at room temperature. The DNA pellet was washed in 1ml of 75% ethanol for 

5min at room temperature and centrifuged again using 14000rpm for 7min at room 

temperature. The plasmid DNA pellet was resuspended in 100µl of TE buffer and 

dissolved at 55ºC overnight. Concentrations were measured using the Nano Drop. 

Plasmids were sent to Agowa (http://www.agowa.de/) for sequencing from the T7 

promoter and the sequences of all DNA fragments that were further used as 

Southern blot probes, were confirmed. 

 
Solutions: 
 
Alk-1 
50mM glucose 
25mM Tris pH 8.0 
10mM EDTA pH 8.0 
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Alk-2 

0.2M NaOH 
1% SDS 

 
Alk-3 
3M KAc 
11.5% glacial acetic acid 
 

5. 5. DNA methylation analysis by the Southern blot 

 

5. 5. 1. DNA digestion for the Southern probe preparation 

The DNA fragments for the Southern probes were cloned into pGEM T-Easy vector 

(probes LRRC47SBP, PEG13SBP, PRKCDBPSBP, SLC38A4SBP and 

ADAMTS7CSBP), or were already available in the laboratory as a part of pE3Up 

vector (pBlueskript II SK with 5.7kb IGF2R region containing CGI2-DMR, X83701) 

(probe Bx). The probes were digested from the plasmids using the EcoRI enzyme for 

pGEM T-Easy cloned probes or the BstXI enzyme for excision of the 600bp long Bx 

probe from the pE3Up vector. Digestion reactions using recommended buffers 

(EcoRI buffer or O buffer for BstXI) in total volume of 20µl or 40µl were set up and 

digestion of DNA took place at 37ºC (with EcoRI) or 55ºC (with BstXI) overnight. DNA 

digestions were separated on 2% agarose gels together with a marker (GeneRuler 

100bp Plus DNA Ladder) and DNA probes were isolated from the bands of expected 

sizes (as described in the section 5.3.1.). 

 

5. 5. 2. Labeling, cleaning and assessing of Southern probes activity 

Labeling of the Southern probes was done using 32P radioactive isotope. 20ng of the 

DNA probe was made up to 14µl with MQ H2O, denatured for 5min at 100ºC and to 

the labeling reaction was added: 20µl LS, 6µl CTG mix, 1µl Klenow fragment and 2µl 

α32P dATP (total reaction volume=43µl). The labeling mixture was incubated 

overnight (not more than 18h) at room temperature. Cleaning of the probe to remove 

unincorporated nucleotides, salts and contaminants was done using G50-Sephadex 

columns prepared as 1ml syringes stuffed with glass wool and filled with Sephadex 

glass beads dissolved in TE by centrifugation using 3000rpm for 3min. Labeled 

probes were diluted with 60µl TE, loaded into the column and respun at 3000rpm for 

3min. A 1:100 dilution of the cleaned probe in TE was measured by Liquid 

Scintillation Analyzer 1600 TR and probes showing 20,000 to 100,000 cpm were 

further used. 
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Solutions: 
LS 
25ml 1M Hepes pH 6.6 
25ml of OL (25ml 1M Tris pH 8.0 + 10ml 25mM MgCl2+ 350µl ß-merkaptoethanol) 
1ml of TM (50units of pd(N)6 Random Hexamer Primer in 1.6ml TE, pH 8.0) 
 
CTG mix 
100µM dTTP 
100µM dCTP 
100µM dGTP 
2mg/ml BSA  
 

5. 5. 3. DNA digestion using the methylation sensitive enzymes 

DNA methylation analysis was done using methylation sensitive enzymes (BstUI, 

BssHII, EglI, NotI) and non-methylation sensitive enzymes (EcoRI, HindIII) in single 

or double enzyme digestions. The 20µg of genomic DNA from Hs27, HeLa, A-201, 

Tera2, NCCIT and PA-1 cells, were digested with 2µl of the enzyme in 40µl reaction 

using buffers recommended for single or double digestions with chosen enzymes 

(http://www.fermentas.com/en/tools/doubledigest). Each digestion reaction was 

separated on a 0.8% agarose gel in 1XTBE. The gels were stained using ethidium 

bromide and photographed with the ruler. DNA methylation assays are presented in 

Table 25. 
 

Region tested Enzymes Name of the probe Tested cell lines 
LRRC47down,  
CpG island: 92 

BstUI/EcoRI 
BssHII/EcoRI 
EglI/EcoRI 

LRRC47SBP Hs27, HeLa 

PEG13,  
CpG island: 210 

BssHII/EcoRI PEG13SBP Hs27, HeLa 

PRKCDBPup, 
CpG island: 108 

BssHII/EcoRI 
BssHII/HindIII 

PRKCDBPSBP Hs27, HeLa 

SLC38A4down2,  
CpG island: 106 

BstUI/EcoRI 
BssHII/EcoRI 

SLC38A4SBP Hs27, HeLa 

ADAMTS7down, 
CpG island: 17  

BstUI/EcoRI ADAMTS7CSBP Hs27, HeLa 

AIRN,  
CGI2-DMR 

NotI/EcoRI Bx A-201, Tera2, NCCIT, PA-1, 
Hs27 

Table 25. DNA methylation assays. CpG islands that are potential promoters of macro 
ncRNAs were tested for methylation status using double digestions with methylation sensitive 
and non-methylation sensitive enzymes. Names of the probes used for Southern blot and 
positions of the probes according to UCSC (hg18) are shown. 
 

Solutions: 
 
TBE buffer 
89.1 mM Tris 
89 mM Boric acid 
1mM EDTA pH8.0 
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5. 5. 4. DNA Blotting and hybridization with the probe 

The digested DNA from section 5.5.3. was electroforesed and photographed under 

UV light and the DNA were further denaturated into single stranded DNAs by shaking 

agarose gels twice for 30min covered with Denaturing solution. First three sheets of 

3MM Whatman paper pre-wet in Denaturing solution were placed on the glass plate 

with the overhanging ends dipped into the solution. Than the gel was placed upside 

down on the top of the Whatman papers and the edges of the gel were covered with 

plastic strips in order to prevent buffer short circuits. The Hybond XL membrane that 

was prewet in MQ H2O and than in denaturing solution was placed on the gel and 

two Whatman papers, a stack of the paper towels, glass plate and a weight were 

placed on the top. DNA was transferred from the gel to the membrane by capillary 

transfer that take place over at least 18h. 

 

The blots were disassembled and neutralized with 200ml of 20mM Na2HPO4 for 

2min. The blots were pre-hybridized with Church buffer for 1 to 3h at 65ºC in 

hybridization tubes. After removing the pre-hybridization solution, Hybridization buffer 

(Church buffer containing denatured, cleaned and labeled Southern blot probe) was 

placed into the hybridization tube containg the membrane, for at least 18h.  The 

membrane was washed twice with Wash buffer at 65ºC for 30min. The sealed 

membrane was exposed to the Phosphoimager screen overnight. The membrane 

was scanned using Typhoon Scanner 5600, Amersham.  

 

Solutions: 
 
Denaturing solution 
0.5M NaOH 
1.5M NaCl 
 
Church buffer 
500ml 0.5M Na2HPO4 
350ml 20% SDS 
2ml 0.5M EDTA  
Filled up to 1l with MQ H2O 
 
Wash buffer 
40ml 0.5M Na2HPO4 
50ml 20% SDS 
Filled up to 1l with MQ H2O 
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5. 6. RNA isolation  

 

5. 6. 1. RNA isolation using TRI Reagent 

RNA work was done under strict RNA-free conditions. RNA was isolated from 

samples listed in section 5.1, using TRI Reagent, according to the manufacturers’ 

protocol. Briefly, cells and tissues were lysed in TRI Reagent, for 5min on the room 

temperature. 1ml of TRI Reagent per 10cm2 of culture dish area for adherent or per 

5-10x106 viable cells for suspension cells was used. 0.1ml of 1-bromo-3-

chloropropane (BCP) was added per 1ml of TRI Reagent, shaked and left 15min at 

room temperature. The mixture was centrifuged at 12,000g for 15min at 4ºC and 

RNA was separated as colorless upper aqueous phase. The RNA was isolated from 

the aqueous phase using isopropanol (0.5ml per 1ml TRI Reagent), the vortexed 

sample was incubated for 10min at room temperature and than centrifuged using 

12,000g for 10min at 4ºC. The RNA pellet was washed using 75% ethanol, air dryed 

3-5min and dissolved in RNA Storage Solution. RNA was precipitated using 2.5X 

96% ethanol and 0.1 volumes 3M NaAc, and stored at -20ºC.  

 

5. 6. 2. RNA isolation from nuclear and cytoplasmic cell fractions 

Normal human fibroblast cells (Hs27) were cultured under the standard conditions. 

Nucleus versus cytoplasmic fractionation was adapted from Sambrook and Russel, 

Molecular Cloning, 2001. The cells (4x T75 flasks) were washed three times with ice 

cold PBS on ice and cell suspensions were centrifuged using 2,000g for 5min at 4ºC. 

The cells were lysed using N/C Lysis buffer, underlayed with an equal volume of the 

N/C Lysis Buffer containing sucrose (24% w/v) and NP-40 (1%) and centrifuged 

using 10,000g for 20min at 4ºC. 2xProteinase K Buffer and proteinase K (200µg/ml) 

was added to the cytoplasmic fraction that was recovered as upper turbid layer and 

incubated at 37ºC for 30min. The nuclear fraction that was in the form of the pellet 

was sheared by squirting through a needle and further proteinase K treated as 

above. Proteins were removed by phenol/chloroform extraction and further RNA was 

extracted using Acid Phenol/chloroform. Nucleus and cytoplasm RNA fractions were 

recovered as upper, aqueous phases after centrifugation using 13,000g for 10min at 

4ºC and were precipitated (by adding 2.5 volumes of 96% ethanol and 0.1 volumes 

of 3M NaAc pH 5.5). RNA was recovered by centrifugation, subject to a 75% ethanol 

wash and resuspended in RNA storage solution. RNA preparation from nuclear and 

cytoplasmic cell fractions was done two times, once by Federica Santoro, PhD 

student in the laboratory and once by myself. 
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Solutions: 
 
N/C Lysis Buffer 
0.14M NaCl 
1.5mM MgCl2 
10mM Tris HCl pH 8.6 
0.5% NP-40 
10mM Vanadyl-Ribonucleoside Complex 
 
Proteinase K Buffer 
0.2M Tris-HCl pH7.5 
25mM EDTA pH8.0 
0.3M NaCl 
2% SDS 
 

5. 7. DNaseI treatment 

DNaseI treatments were done for all RNAs prior to Reverse transcriptase (RT) 

reactions using the DNA-free Kit, Ambion. Typically DNAseI treatment was done in 

50µl or in 300µl reactions. For a routine 50µl reaction, 10µg of the RNA, 10X DNaseI 

Buffer and 1µl of DNaseI was incubated at 37º for 30min and a further 5µl of DNase 

Inactivation Reagent was added and mixed for 2min at room temperature. Reaction 

was centrifuged using 10,000g for 1.5min at room temperature. The supernatant 

containing RNA was precipitated and stored at -20ºC. In 300µl reactions rigorous 

DNaseI treatments were done, with 250µl of sample RNA, 30µl 10x Buffer, 10µl 

DNaseI and 10µl H2O. These reactions were inactivated using 60µl of DNase 

Inactivation Reagent. Specifically, nuclear fractions of Hs27 were DNaseI treated two 

times (the first time in a 50µl reaction with 1µl of DNaseI for 30min at 37ºC and the 

second time 1µl of DNaseI was again added to the same reaction and incubated for 

another 30 min at 37ºC). DNaseI treated RNAs were precipitated and recovered prior 

to reverse transcription reactions. 

 

5. 8. Expression analysis 

 

5. 8. 1. Reverse transcription (RT) reaction 

DNaseI treated RNAs were processed into cDNAs using the RevertAid First Strand 

cDNA Synthesis Kit, Fermentas. Reactions were performed according to the 

“Synthesis of First Strand cDNA Suitable for Second Strand Synthesis” protocol. 

Briefly, about 1µg of total RNA was mixed with 1µl of random hexamer primers 

(0.2µg/µl) and DEPC-treated H2O, in 12µl reactions, and incubated at 70ºC for 5min. 

The following components were added to the reaction: 4µl of 5x reaction buffer, 1µl 

of 20 u/µl of RiboLock Ribonuclease Inhibitor, 2µl of 10mM dNTP mix. Reactions 
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were incubated at 25ºC for 5min. 1µl of 200u/µl of RevertAid M-MuLV Reverse 

Transcriptase was added to +RT reactions while 1µl of DEPC-treated H2O was 

added to control –RT reactions and incubated on 25ºC for 10min, 42ºC for 60min and 

finally reaction was stopped by heating on 70ºC for 10min. Reactions were placed on 

ice and stored in -20ºC prior to RT-PCRs, proofreading RT-PCRs or qRT-PCRs. 

 

5. 8. 2. Non-quantitative RT-PCR 

Reverse transcription polymerase chain reactions (RT-PCRs) were done similarly as 

PCR reactions (section 5.3.), with the exception that as a template, cDNAs were 

used. These reactions were done to test expression of KLF14up3, ADAMTS7down, 

TMED3down, KIAA1024up and BLCAPov macro ncRNAs in nuclear and cytoplasmic 

fractions of Hs27 cell line, where GAPDH expression was used as a loading control 

and expression of KCNQ1OT1 macro ncRNA as a positive control (section 2.4.5.). 

Further, AIRN expression was tested by RT-PCRs in three Wilms’ tumor and Hs27 

cell lines and in 123 Wilms’ tumor patients (Figure 53 and 54 in section 2.6.3.). 

 

RT-PCR results were typically separated on 2% agarose gels in 1xTAE. An 

exception to this was for the 123 Wilms’ tumor samples, where a 160bp band was 

expected using the pp9 primer pair. There the separation was done using 12% 

polyacrylamide gel electrophoresis (PAGE) in 1xTAE. The RT-PCR results were 

visualized by ethidium bromide staining. 

 

5. 8. 3. Quantitative RT-PCR using SYBR and TaqMan Assays 

Quantitative RT-PCRs (qRT-PCR) were done using SYBR® Assays and TaqMan® 

Assays. Primer pairs were designed using PrimerExpress. The SYBR® Assays were 

performed with 100mM primers (listed in the Table 26) and MESA Green qPCR 

MasterMix Plus for SYBR Green assays. The reactions were amplified on the ABI 

PRISM 7000 Sequence Detection System, Applied Biosystems with cycling 

conditions: 95ºC for 5min, 40 cycles of 95ºC for 15sec, 60ºC for 1min. The standard 

curve method of analysis using serial dilutions of cDNA was used as a basis for the 

quantification of RNA. Data was normalized to RPLPO gene expression. 
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qRT-PCR Assay Primer Name Sequence  
DCNEx1 DCNEx1F CCACAGGAGCCCTCAAAG 
 DCNEx1R CTACCCCCTCCTCCTTTCCA 
DCNEx3 DCNEx2F GTCGCGGTCATCAGGAACTT 
 DCNEx2R ACAGAGAGGCTTATTTGACTTTATGCT 
DCNEx3 DCNEx3F CAGGTTCTTAAAGTCTCCATCTTTGA 
 DCNEx3R GGATCTTCCCCCTGACACAA 
DCNEx4 DCNEx4F TCGCACTTTGGTGATCTCATT 
 DCNEx4R GCCAGAAAAAATGCCCAAAA 
DCNIn1 DCNIn1F TGTATCTGTTTCCCATTAAAAATGCA 
 DCNIn1R GCAATGACTTTGCTTCATTTTTCTT 
DCNIn2 DCNIn2F TCTTCATCTGTTACTGCATATAATCATCA 
 DCNIn2R TCTTAGAAATCCTATTAATCGTGTGAGGTA 
DCNIn3 DCNIn3F AAAACTCCTTCCTCGCATATTCTC 
 DCNIn3R GTAGTGAGTGTTATGGACTTAAAGTAAAAGAAA 
DCNIn4 DCNIn4F GAAAAAGACTATTAGTGAAAGCAATACCAA 
 DCNIn4R AAGATGGGAATTGTAAACTTGCTTTAG 
GAPDH GAPDHF TGAAGGTCGGAGTCAACGG 
 GAPDHR ACCAGAGTTAAAAGCAGCCCT 
H19q1 H19q1F GTGTGACGGCGAGGACAGA 
 H19q1R TCCGTGGAGGAAGTAAAGAAACA 
KCNQ1OT1q1 KCNQ1OT1q1F ATTCCTCAAGTGTTGACCATTTTG 
 KCNQ1OT1q1R TGGTCCTGTGGGCTCCATT 
KCNQ1OT1q2 KCNQ1OT1q2F CTGCCTTCTCAGGTTATGGTCAT 
 KCNQ1OT1q2R GCTGGGCCTCCTTTGGA 
ADAMTS7q3 ADAMTS7Cq3F TGTTATGTGTGTGACTCCCTTGTG 
 ADAMTS7Cq3R GGGCCAGAGGGAAAAGCA 
SLC38A4q1 SLC38A4Cq1F AAGGCTCTAGGAGCTGTCAGATTAA 
 SLC38A4Cq1R CCACGCTCACCGAAGCTT 
SLC38A4q3 SLC38A4Cq3F TTTTCTATTCTCAGCCCCACTAAAG 
 SLC38A4Cq3R CTGAGATGAGCACTTGGATCCA 
RPLPO1 RPLPO1F CCACGCTGCTGAACATGCT 
 RPLPO1R TCGAACACCTGCTGGATGAC 

Table 26. Primers used in the SYBR® Assays. 

 

The TaqMan® Assays were performed using the primers and TaqMan probes listed 

in the Table 27. Primer pairs and TaqMan probes were designed using 

PrimerExpress. Primers were synthesized by VBC-Biotech Service GmbH, and 

TaqMan probes by Eurogentec (http://www.eurogentec.com/). The TaqMan qRT-

PCR reaction was set with 900mM primers and 200nM probe using qPCR MasterMix 

Plus, Eurogentec. The reaction was amplified on a ABI PRISM 7000 Sequence 

Detection System using following cycle conditions: 50ºC for 2min, 40 cycles of 95ºC 

for 15sec, 60ºC for 1min. Quantification was done using the standard curve method. 

RNA expression was normalized to GAPDH or 18S rRNA gene expression. To 

evaluate GAPDH expression the same primer pair as for the SYBR® Assay was 

used, with a GAPDH TaqMan probe (Table 27). For assessment of expression of 

18S rRNA, 18S rRNA Control kit (FAM-TAMRA), Eurogentec was used according to 

the manufacturers’ recommendations.  
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qRT-PCR Assay Primer/Probe Name Sequence 
AIRN QPCR1 H2354F TCAGATGCAGGAAGATTGGGT 
 H2354R AGGCTTGGCATCCAGGTG 
 H2354 CTCACAACAGGGCGGTGGTTGGA 
AIRN QPCR2 P4HuSplF GGCTCAGCCAAAAGGACACA 
 P4HuSplR TCGAACTGGGAGCCATGG 
 P4HuSpl AAGCCCTGCAGAGGCTCTGAAACCAA 
IGF2R QPCR P8HuF CACGCAGGCCCAGGC 
 P8HuR TGGTATCAACAGCTTCCCATGT 
 P8Hu CCCGTTCCCCGAGCTGTGCA 

Table 27. Primers and probes used in the TaqMan® Assays. 

 

5. 8. 4. Long range RT-PCR/ Proofreading RT-PCR  

Non-quantitative RT-PCRs and PCRs were done using the Long PCR enzyme Mix, 

Fermentas, when further allelic expression using Single Nucleotide Polymorphisms 

(SNPs) was tested. Long PCR enzyme Mix contains highly processive Taq DNA 

polymerase and second thermo stabile polymerase that exhibits 3’ to 5’ exonuclease 

activity. The proofreading activity was important to have greater protection against 

depurination and nicking and give good quality template for further sequencing 

through the genomic region containing SNPs. In the standard reaction: 5µl of 10x 

Long PCR Buffer with MgCl2, 1µl of 10mM dNTPs, 2.5µl of forward and reverse 

primers (10pmol/µl), 1µl DMSO, 0.25µl of Long PCR Enzyme Mix (1.25u) and 2µl of 

template cDNA were used per 50µl reaction. The reaction was amplified in the Peltier 

Thermal Cycler PTC-200, under the cycling conditions: initial denaturation on 94ºC 

for 1.5min, 35 cycles of 94ºC for 15sec, 59ºC for 30sec, 68ºC for 45sec and final 

elongation at 68ºC for 7min. Reactions were separated on a 2% agarose gel and 

stained using the ethidium bromide solution. The bands of expected size were further 

cleaned as in section 5.3.1.  

 

5. 8. 5. Allelic expression analysis using SNPs 

In order to test gene expression from parental alleles, a combination of 

PCR/Proofreading RT-PCR and sequencing was done. In the first step, specific 

primers for the known and novel macro ncRNAs and the ADAMTS7 protein coding 

gene were designed using Primer-BLAST on the genomic regions overlapping with 

known SNPs from the dbSNP build 129 database (Sherry et al., 2001) (primers are 

listed in Appendix Table II). In the second step, DNA from the cell lines (Hs27, HeLa) 

that were known to express genes of interest, were PCR amplified with specific 

primers; bands of expected size were cleaned (section 5.3.1.) and sent to the 

AGOWA, GmbH, for sequencing on the Applied Biosystems 3730xl DNA Analyzer. 

Results of the sequencing were further analyzed using Sequencher 4.7 

(http://www.genecodes.com/). The heterozygous SNPs were visualized as two 
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overlapping sequencing peaks at one base pair (bp) position. If a heterozygous SNP 

was observed for the tested genomic locus, the same primer pairs were used in the 

proofreading RT-PCR reaction (section 5.8.4) using cDNA as a template. 

Sequencing tracks were further visualized on Sequencher enabling analysis of 

expression at the genomic position where heterozygous SNP was previously 

detected in the DNA. If two peaks were overlapping on both Sequencher tracks 

gained from DNA and cDNA sequencing then biallelic expression was found. If one 

peak was present after cDNA sequencing on the position where two peaks were 

present in the DNA, monoallelic expression was observed. The same analysis was 

done in one family blood and in three lymphoblastoid cell lines that originated from 

families genotyped from the international HapMap project 

(http://hapmap.ncbi.nlm.nih.gov/). 

 

5. 8. 6. Northern blotting  

Northern blots were done on the Hs27, bone marrow, skeletal muscle and HeLa, 

cells and tissues using ADAMTS7downNOR and ß-Actin NOR probes (loading 

control). The probes were amplified using RT-PCR from Hs27 cDNA with specific 

primers (listed in Table 28). The probes were cloned into the pGEM T-Easy vector, 

confirmed by sequencing and excised from the plasmid by digestion prior to labeling 

with α32P dATP (as previously described in the sections 5.4. and 5.5.1).  

 
Name of the probe Primer 

Name 
Sequence Length of the 

probe (bp) 
ADAMTS7downNOR ADAMTSNORF1 GCCGCTGATTCTCTTGTCTC 967 
 ADAMTSNORR1 ACAGAGCAGCCCAGTGATCT  
ß-Actin NOR ß actinNORF CAGGCACCAGGGCGTGATGG 994 
 ß actinNORR GATGGAGGGGCCGGACTCGT  

Table 28. Primers for the Northern blot probes. 

 
The Northern blotting was done under strict RNase-free conditions. The agarose gel 

was prepared using 2g of Agarose-LE with 20ml of NorthernMax 10x Denaturing Gel 

Buffer and 180ml of DEPC-treated H20. 20µg of the RNA sample was dissolved in 

6µl of RNA Storage Solution and 3 volumes of Formaldehyde loading dye and 1µl of 

ethidium bromide were added to the mixture. Millennium marker RNA was similarly 

prepared. The RNA and marker samples were denatured for 15min at 65ºC and than 

put on ice briefly until loading. The denaturing gel was loaded with samples and 

electrophoresed at 100V for 2h, in MOPS 1xRunning Buffer. 

 

The northern blot was assembled similar as described for Southern blots in section 

5.5.4. with the exception that as the blotting buffer: 50mM Na2HP04 freshly treated 
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with DEPC (1:1000) was used. After the capillary transfer of RNA to the Hybond XL 

membrane took place, the membrane was dried for 15min in the 55ºC oven. The 

RNA was cross linked to the membrane by AUTO cross linking in the UV Stratalinker 

1800. The membrane was pre-hybridized with Church Buffer at 65ºC for 3h, 

hybridized at 65ºC for 18h with Church buffer containing the denatured labeled probe 

and washed using the Washing buffer (as described in section 5.5.4.). The 

membrane was exposed to the Phosphoimager screen and after 4 days scanned by 

the Typhoon Scanner 5600, Amersham. 

 

5. 8. 7. Sample preparation for the HIRTA hybridization 

The dscDNA samples used for the HIRTA hybridization, were prepared from the cell 

lines and tissues listed in Table 10 and Table 11 (section 2.1.2.) by first and second 

strand reverse transcription. The genomic DNA was sonicated and hybridized 

together with the dscDNA to HIRTA in order to enable normalization. 

 

5. 8. 7. 1. First strand reverse transcription using SuperScript II Reverse 

Transcriptase 

Typically 6µg of total DNaseI treated RNA was dissolved in 16µl of DEPC-treated 

H2O and incubated together with 2µl of pd(N)6 Random Hexamer 5’Phosphate, 

Sodium Salt prepared to 2.5µg/µl, at 70ºC for 10min. The mixture was placed on ice 

for 5min. To the mixture: 7µl of 5X First Strand cDNA Buffer, 3.5µl of 0.1M DTT, 3µl 

10mM dNTP, 1µl of 40u/µl RNase Inhibitor and 2µl of SuperScript II Reverse 

Transcriptase were added and filled with DEPC-treated H2O up to a total volume of 

35µl. The reaction was incubated at 42ºC for 1h and placed on ice prior to second 

strand synthesis. 

 

5. 8. 7. 2. Second strand reverse transcription 

20 µl of cDNA prepared using SuperScript II reverse Transcriptase was further mixed 

with: 30µl of 5X Second Strand Buffer, 10mM dNTP, 4µl DNA Polymerase I, 1µl 

E.coli DNA Ligase, 1µl RNase H and filled with DEPC-treated H2O up to a 150µl total 

reaction volume. The mixture was incubated at 16ºC for 2h. Further 2µl of 5u/µl T4 

DNA Polymerase was added and incubated at 16ºC for 10min and further on 70ºC 

for 10min to stop the reaction.  

 

The dscDNA was cleaned using QIAquick PCR Purification Kit, Qiagen using the 

procedure recommended by manufacturer. Briefly, 600µl of PBI Buffer was added 

per reaction, sample was applied onto QIAquick column and centrifuged using 
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13,000rpm for 1min. Reactions were washed for two times using 700µl of PE Buffer 

and centrifuged using 13,000rpm for 1min. Each sample was eluted with two times 

50µl of EB buffer and precipitated according to standard procedures. 

 

5. 8. 7. 3. Preparation of sonicated genomic DNA  

100µg of DNA isolated from Hs27 cells was first RNaseA treated (final concentration 

25µg/ml) and than incubated at 37ºC overnight. Further, the DNA was Proteinase K 

treated (to final concentration of 200µg/ml) at 55ºC for 3h and phenol-chloroform 

extracted by adding the same volume of phenol-chlorophorm to the sample and 

centrifuging at 14,000rpm for 15min at 4ºC. Collected supernatants were chloroform 

extracted, centrifuged 14,000rpm for 10min on 4ºC and filled with MQ H2O up to 1ml. 

Samples were sonicated on ice. 18 sonication cycles at 20sec “on”, 1min “off”; with 

the Power set on 40% and Cycle set at 90% were performed. Sonicated genomic 

DNA from the Hs27 cell line was cleaned according to standard procedures using 

QIAquick PCR Purification Kit, Qiagen, with 10µg of sonicated DNA per QIAquick 

column.  

 

5. 8. 7. 4. Quality control using Agilent DNA 7500 Bioanalyzer 

The quality of dscDNA and sonicated genomic DNA were tested using the Agilent 

DNA 7500 Kit, Agilent Technologies. Agilent DNA Chip 7500 was prepared according 

to the manufacturers recommendations and 1µl of the sample was loaded onto the 

Chip. The chip was run in the Agilent 2100 bioanalyzer and analyzed using 2100 

Expert Software for the DNA 7500 Assay. Sonicated genomic Hs27 DNA in a range 

from 100 to 800bp was used for the HIRTA hybridization. 

 

5. 8. 7. 5. Hybridization to the HIRTA chip 

The dscDNA samples and sonicated genomic DNA samples dissolved in nuclease 

free water with concentrations of 100 to 500ng/µl and OD260/280 ratios>= 1.7 

(measured using NanoDrop), that showed no signs of degradation through visual 

inspection of Agilent Bioanalyzer gel results and the 2% agarose gel electrophoresis 

of the sample, were send to ImaGenes (http://www.imagenes-bio.de). The dscDNA 

samples were labeled using Cy5 and genomic DNA using Cy3 fluorochromes. 

Samples were hybridized in Cy5/Cy3 pairs to HIRTA (as presented on Figure 11, 

section 2.1.5.). The HIRTA Chip was further washed and scanned by ImaGenes. 
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5. 8. 7. 6. Visualization of the HIRTA hybridization data 

The raw data from HIRTA hybridizations were normalized by Tuckey bi-weight 

normalization and prepared as .gff files by Ido Tamir, GENAU consortium. The data 

were further transformed into .wig files and visualized on the UCSC genome browser. 

 

5. 8. 7. 7. Bioinformatics analysis of the HIRTA reproducibility 

Assessment of HIRTA reproducibility was performed by comparison of HIRTA 

hybridization replicates, visualized by scatter plots of two numerical columns. Each 

column was a normalized biological or technical replicate HIRTA hybridization data. 

Pearsons’ correlation was the statistical test used to show correlation coefficients 

between the columns. Display of the data and statistics were done using Galaxy 

(http://main.g2.bx.psu.edu/). 

 

5. 8. 8. Sample preparation for the rRNA depleted total RNA Sequencing 

RNA was isolated from Hs27 fibroblasts using TRI Reagent. Quality of RNA was 

assessed using the Agilent RNA 6000 Nano Kit, Agilent Technologies, according to 

the manufacturers’ instructions. The Hs27 RNA sample had a RNA Integration 

Number (RIN)>9. The Hs27 RNA was DNaseI treated in a routine 50µl reaction and 

RNA quality was again assessed on the Agilent 2100 Bioanalyzer, showing RIN>9. 

DNaseI treated Hs27 RNA was than further depleted of ribosomal RNA. 

 

5. 8. 8. 1. Ribosomal RNA depletion  

Ribosomal RNA was depleted from the high quality Hs27 RNA sample using 

RiboMinus Transcriptome Isolation kit (Human/Mouse), Invitrogen according to the 

manufacturers’ recommendations. Briefly, 10µg of RNA was hybridized with the 

RiboMinus Human/Mouse Probe, RNA was denatured by heating at 70ºC for 5min 

and further cooled down to 37ºC during 30min in the water bath. The prepared 

RiboMinus Magnetic Beads were mixed with the RNA/RiboMinus probe sample and 

incubated at 37ºC for 15min. The supernatant containing RiboMinus RNA fraction 

was separated using a magnetic stand. The RiboMinus RNA fraction was 

concentrated using RiboMinus Concentration module, Invitrogen by a procedure 

recommended by manufacturer. Depletion efficiency was assessed using Agilent 

RNA 6000 Pico kit and Eukaryote Total RNA Pico Series II program on the 2100 

Agilent bioanalyzer.  
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5. 8. 8. 2. Hydrolysis of rRNA depleted total RNA 

100ng of the rRNA depleted Hs27 total RNA in nuclease free H20 was hydrolyzed 

using 5xHydrolysis buffer (200mM Tris pH8.2, 500mM KAc and 150mM MgAc2). The 

reaction mixture was heated at 94ºC for 3, 3.5 and 4min. The reaction was cleaned 

using RNasy MinElute Kit, Qiagen according to the manufacturers’ protocol. Cleaned 

RNA was diluted from the RNase Spin column in two times 50µl of nuclease free 

H20, precipitated according to standard procedures and further recovered in 10µl of 

nuclease free H20. The hydrolyses of rRNA depleted total Hs27 RNA was assessed 

using Agilent RNA 6000 Pico kit and the Eukaryote Total RNA Pico Series II program 

on the 2100 Agilent bioanalyzer. RNA that was hydrolyzed at 94ºC for 4min had the 

peak between 200 and 500bp and was further used for cDNA preparation. 

 

5. 8. 8. 3. First strand cDNA preparation for RNA Sequencing 

100ng of the hydrolyzed, rRNA depleted Hs27 sample was used in a 14µl reaction 

where 1.67µl of the pd(N)6 Random Hexamers 5’-Phosphate, Sodium Salt, dissolved 

to 3µg/µl and 1µl of 10mM dNTPs were added. The mixture was heated for 5min at 

65ºC. In the second step, 5µl of 5xFirst Strand Buffer, 2.5µl of 0.1M DTT, 1µl of 

40u/µl RNaseOUT and 1.5µl of nuclease free H20 were added and the mixture was 

heated for 2min on 25ºC. Finally, 1µl (200u) of SuperScript II Reverse Transcriptase 

was added and mixture was heated for 10min at 25ºC and further for 1h at 42ºC, to 

synthesize the Hs27 cDNA. 

 

5. 8. 8. 4.  Second strand cDNA preparation for RNA Sequencing 

To the first strand cDNA preparation, 90.5µl of nuclease free H20 was added 

together with: 1µl of DNA Polymerase I, 0.5µl of RNase H, 30µl of the 5xSecond 

strand buffer and 3µl of 10mM dNTPs, and than the mixture was heated for 2h at 

16ºC. 1µl of T4 DNA Polymerase was further added to the mixture. The mixture was 

heated for 10min at 16ºC and further for 10min at 70ºC. The dscDNA prepared from 

the hydrolyzed rRNA depleted Hs27 total RNA was cleaned using MinElute Reaction 

Cleanup kit, Qiagen according to the manufacturers’ protocol. The dscDNA was 

eluted from the MinElute column using two times 10µl of EB buffer.  

 

The concentration of the Hs27 dscDNA was examined using PicoGreen® Assay for 

dscDNA. The assay was performed according to the manufacturers’ protocol and 

analyzed on a NanoDrop ND-3300 Fluorospectrometer.  

 

 



 
Irena Vlatkovic PhD Thesis 
 

186 

5. 8. 8. 5. Library preparation and Illumina/Solexa sequencing 

Library preparation and Illumina/Solexa RNA Sequencing were performed by 

Andreas Sommer, GENAU consortium. Library preparation was done using ChIP-

Seq DNA Sample Prep Kit, Illumina according to the manufacturers’ protocol. The 

library was loaded on four lines of the flowcell and RNA Sequencing was performed 

by the Illumina Genome Analyzer II. Image analysis and base calling were performed 

using Illumina Pipeline and 36bp single-reads were obtained.  

 

5. 8. 8. 6. Bioinformatics analysis of the RNA Sequencing data 

rRNA depleted total RNA Sequencing 36bp single-reads were aligned to the 

NCBI36/hg18 genome build using ELAND (http://bioit.dbi.udel.edu/howto/eland), 

Bowtie (http://bowtie-bio.sourceforge.net/) and TopHat (http://tophat.cbcb.umd.edu/) 

allowing two mismatches. Alignments were performed by Andreas Sommer and Ido 

Tamir from the GENAU Bioinformatics team. 

 

5. 9. Bioinformatics analysis of macro ncRNA potential 

The RNAcode, program that predicts regions with protein coding potential based on 

evolutionary signatures (Washietl et al., 2010, unpublished data) was performed over 

44 vertebrate species using Multiz Align from UCSC, by Jan Engelhart, a visiting 

MSc student from Peter Stadlers’ laboratory, Institut für Informatik, Leipzig. RNAcode 

predictions were in the form of a .wig track that was loaded into UCSC browser and 

compared with visually mapped macro ncRNAs expressed by HIRTA.  

 

5. 10. Bioinformatics analysis of direct repeats 

Presence of direct repeats in the CpG island promoters of macro ncRNAs was 

assessed using Dotmatcher program (http://emboss.bioinformatics.nl/cgi-

bin/emboss/dotmatcher). All CpG islands were tested using the same criteria: 

window size=30 and Threshold=65 and presented in the form of dotplots where dots 

from regions of similarity align to form diagonal lines and repeats are visualized as 

parallel diagonal lines. 

 

 

 

 

 

 

 



 
Irena Vlatkovic PhD Thesis 
 

187 

5. 11. Appendix table I- Materials 
Chemicals, enzymes and other materials Company 
α 32PdATP PerkinElmer 
ß-merkaptoethanol Sigma 
Acid Phenol Chlorophorm Ambion 
Agar AppliChem 
Agarose  Biozym 
Agarose-LE Ambion 
Ampicilin Roche 
BCP MRC 
Betaine Fermentas 
Boric Acid  AppliChem 
Bovine Serum Albumine (BSA) Sigma 
BstXI Fermentas 
BstUI Fermentas 
BssHII Fermentas 
Chlorophorm Merck 
Diethyl pyrocarbonate (DEPC) Sigma 
Dimethyl sulfoxide (DMSO) Sigma 
Dithiothreitol (DTT) Invitrogen 
DNA polymerase I Invitrogen 
dCTP Bioron 
dGTP Bioron 
dNTP mix Fermentas 
dTTP Bioron 
Dulbecco’s Modified Eagle Medium (DMEM) Gibco 
E.coli DNA Ligase Invitrogen 
EcoRI Fermentas 
EglI Fermentas 
Ethanol Merck 
Ethidium Bromide Merck 
Ethylendiaminetetraacetic acid (EDTA) Merck 
Fetal bovine serum (FBS) Gibco 
First strand cDNA buffer, 5x Invitrogen 
Formaldehyde loading dye Ambion 
GeneRuler 100bp Plus DNA Ladder Fermentas 
Gentamicine Gibco 
Glacial Acetic Acid VWR 
Glucose Gibco 
GoTaq DNA Polymerase Promega 
HCl Merck 
Hepes Roth 
Hind III Fermentas 
Hybond XL Amersham 
Isopropanol Merck 
Isopropyl-ß-D-thiogalactopyraniside (IPTG) AppliChem 
KAc Sigma 
Klenow Fragment Fermentas 
L-Glutamin Gibco 
LB Medium Bio101 
McCoys’ media Gibco 
Minimum Essential Medium Eagle (MEM) Gibco 
Mesa Green qPCR MasterMix Plus Eurogentec 
MgAc2 Sigma 
MgCl2 Sigma 
MgCl2 (25mM) Fermentas 
NaAc, 3M, pH5.5 Ambion 
NaCl Neo Lab 
Na2HPO4 Sigma 
NaOH AppliChem 
NorthernMaxTM 10x Denaturing gel buffer Ambion 
NorthernMaxTM 10x MOPS gel running buffer Ambion 
NotI Fermentas 
NP-40 Calbiochem 
Nuclease free wather Ambion 
pd(N)6 Random Hexamer 5’ Phosphate, Sodium salt GE Healthcare 
Phosphate buffered saline (PBS) Qbiogene 
Proteinase K Qbiogene 
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qPCR MasterMix Plus Eurogentec 
Random hexamer primers (for RT-PCR) Invitrogen 
Random hexamer primers (for radioactive probe labeling) Pharmacia 
RiboLockTM RNase Inhibitor Fermentas 
Ribonucleoside Vanadyl Complex New England Biolabs 
RNA Millenium Marker Ambion 
RNA Storage Solution Ambion 
Rotiphorese Gel 30 Roth 
RNaseA Fermentas 
RNaseH Invitrogen 
RNaseOUT Invitrogen 
RPMI 1640 Media Gibco 
Second strand cDNA Buffer, 5x Invitrogen 
SephadexTM G-50 Amersham 
Sodium Dodecyl Sulfate (SDS) AppliChem 
Sodium Pyruvate Sigma 
SuperScript II Reverse Transcriptase Invitrogen 
TEMED Roth 
T4 DNA Ligase Fermentas 
T4 DNA Polymerase Invitrogen 
TRI Reagent Sigma 
Tris AppliChem 
Tris-Cl QBiogene 
Trypsin-EDTA Gibco 
X-Gal Roth 

 
Kits Company 
18S rRNA Control Kit (FAM-TAMRA) Eurogentec 
Agilent DNA 7500 Kit Agilent Technologies 
Agilent RNA 6000 Nano Kit Agilent Technologies 
Agilent RNA 6000 Pico Kit Agilent Technologies 
DNA-free Kit Ambion 
ChIP-Seq DNA Sample Preparation Kit Illumina 
Long PCR enzyme mix Fermentas 
MinElute Reaction Cleanup Kit Qiagen 
pGEM T-Easy Vector System I Promega 
PicoGreen Assay NanoDrop technologies 
RevertAid First Strand cDNA Synthesis Kit Fermentas 
RiboMinus Concentration Module Invitrogen 
RiboMinus Transcriptome Isolation Kit (Human/Mouse) Invitrogen 
RNasy MinElute Kit Qiagen 
QIAquick PCR Purification Kit Qiagen 
Wizard Genomic DNA Purification Kit Promega 
Wizard SV Gel and PCR Clean-Up System Promega 

 

5. 12. Appendix table II- Primers for testing allelic expression 
Candidate 

ncRNA 
F_Primer_Name F_Primer_Sequence R_Primer _Name R_Primer_Sequence Product 

Length (bp) 
Product 

position (hg18) 
LRRC47down LRRC47CIE1F CACCCAGATCGTAAGGCAGT LRRC47CIE1R CATATCATGCCAGGATGCAG 634 chr1 3685834 

3686467 
 LRRC47CIE2F ATCTGTCTGGCTGCATCTGG LRRC47CIE2R GTTCGTGAGTCTCTGGGAGG 341 chr1 3684319 

3684659 
KLF14up3 KLF14CIE1F GACGTGCGCAGACACAGGCT KLF14CIE1R TCATGGGGCCCGAGCTCTCC 743 chr7 130232070 

130232812 
 KLF14CIE2F GGTAGAGCACCTCCGGGCCA KLF14CIE2R GCCTCACTCCTGGGCAGCCT 473 chr7 130239881 

130240353 
 KLF14CIE3F CGCCTGGGTCCCGACCTGTA KLF14CIE3R CAGTGGGCCCCCAGCAAAGG 623 chr7 130262960 

130263582 
KIAA11264up 

(SLC45A4down) 
SLC45A4CIE1F ACGCCTGCTTTTGGGGTCCT SLC45A4CIE1R ATGCGTGCTGCAGCTTTGGC 849 chr8 142384577 

142385425 
 SLC45A4CIE2F TGCCACTTGCCGCCTGGTAA SLC45A4CIE2R ACAGTGAACTGCTGGCGTGC 429 chr8 142371976 

142372404 
 SLC45A4CIE3F AAACCAGCCAGGTGCGCGAT SLC45A4CIE3R AGTTGGCTCTTGGTGGGCTCCT 787 chr8 142368363 

142369148 
 SLC45A4CIE4F TGGCCAGCTGCTCTGAACGA SLC45A4CIE4R TGCAGCTTTGCCGCAGGTCT 641 chr8 142361627 

142362267 
 SLC45A4CIE5F GCACAGCACTGCACTCACAGGT SLC45A4CIE5R CGGCGTGTGTGGCTTTGCAT 529 chr8 142355919 

142356447 
PEG13 P13CIE1F TCAGCGCGCAGCTTCAGCAT P13CIE1R TTAGCGCTGACGCCTCCGAA 931 chr8 141179240 

141180170 
 P13CIE2F AGCTGCAGAATTGCCGCCGT P13CIE2R GCTGAAGCCGCGCTTGAAGA 534 chr8 141177184 

141177717 
 P13CIE3F GCACGGGGCAGGGCAAAGAT P13CIE3R GGCACAGCTGCGACTGCGTA 764 chr8 141176319 

141177082 
 P13CIE4F TAAACACGCCCACCGGGGTT P13CIE4R ATGCTGAAGCCGCGCACTGA 726 chr8 141178345 

141179070 
 P13CIE5F GGGAGGGCGCACATTCCACC P13CIE5R GCTGCAGGAGGAGCTGCGAG 908 chr8 141175322 

141176229 
 P13CIE6F CGGTGCCCTGGCAAGCAAGA P13CIE6R TCCCCTTCCTGCAGCCTCCC 827 chr8 141173975 
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141174801 
PRCDBPup PRKCDBPCIE1F TATCCCATTACCCAGGATGC PKCDBPCIE1R GTAGAGACAGAGGGCCACCC 395 chr11 6303553 

6303947 
 PRKCDBPCIE2F AGAGTATGTTCAGTGCGGAGC PKCDBPCIE2R CCAATTGACAGTGGATTTTTGA 330 chr11 6314515 

6314844 
SLC38A4down2 SLC38CIE1F GGCATGGCGTAGGTGTAGAT SLC38CIE1R CAACAGGTGGAGCCAGGTAT 708 chr12 45123429 

45124137 
 SLC38CIE2F ATCATTCCCTTGATGATGCC SLC38CIE2R CCCCAAAAATGACCATTCAC 714 chr12 45306921 

45307634 
 SLC38CIE3F TGGGAAGAGAAATTGAACGG SLC38CIE3R TTTCGTTTGTGCTGCACTTC 678 chr12 45141873 

45142551 
 SLC38AIE4F TACACCATTGCCAATTCCAG SLC38AIE4R ACATCGACGTTCTCCCTTGA 255 chr12 45292045 

45292299 
 SLC38AIE5F ATGGGGTACCAAAAAGGGAC SLC38AIE5R TTGCTAAACCCCAAAAGAACA 424 chr12 45198803 

45199226 
 SLC38AIE6F ACAGAAGGCCAGTGTTCAGG SLC38AIE6R AAGTCCCCCAGGGTTGTAAG 386 chr12 45339237 

45339622 
 SLC38AIE7F GGATTTTCCCCCTCGTTTTA SLC38AIE7R CCTGGAGGATTCACCATTTG 258 chr12 45065055 

45065312 
 SLC38AIE8F TTCAAATTGGAGGGAGCTTG SLC38AIE8R GGCTAAAGGCATAGCTGACG 312 chr12 45067607 

45067918 
 SLC38AIE9F GATGTGGCCTAAATTGGGAA SLC38AIE9R AGCTGGGGTTCAAGGTTCTC 230 chr12 45072960 

45073187 
 SLC38AIE10F TTACCCTGGCAACACCATTT SLC38AIE10R AGTGATGGGGACACAACCAT 433 chr12 45075519 

45075951 
 SLC38AIE11F TTCTGGGCTAATCCTCTCCA SLC38AIE11R TCCAAAAGGGAACAAAGCAG 196 chr12 45081679 

45081874 
 SLC38AIE12F ATGGGCTTGTTTGGAGACTG SLC38AIE12R ATGGTGTGGGGACTGTGTTT 491 chr12 45082671 

45083161 
 SLC38AIE13F TTCCCCCAGCACCTCCACCC SLC38AIE13R GGGTGGGGGCACGCATCTTC 678 chr12 45086582 

45087259 
 SLC38AIE14F TCCCTGCATCCTTCCTGGCT SLC38AIE14R TGTCGGAATGTGGCACTTGGCAG 850 chr12 45134077 

45134926 
 SLC38AIE15F ACAGCAGGTTTGCTGGCCCC SLC38AIE15R AGCCAGGACTGAGGGATGGCA 931 chr12 45253825 

45254755 
 SLC38ACIE16F TGTGCAATTCCCCACCCTGTGC SLC38ACIE16R ACCAGCTCAGGCTCCATGTTCCT 839 chr12 45091399 

45092237 
 SLC38ACIE17F GCCCGGGGAATTGCCTCTCC SLC38ACIE17R ACAGCACCATTGCTCCTGCGG 593 chr12 45153862 

45154454 
 SLC38ACIE18F AGGCAGGGTGTGGCTGGAGA SLC38ACIE18R CCATCACAGGGCACCGCAGG 864 chr12 45156579 

45157442 
 SLC38ACIE19F TCCCTTCCTTCCCTGCCTTGCT SLC38ACIE19R GGGGGTGAGAAGGGTGGTCCT 509 chr12 45172401 

45172906 
 SLC38ACIE20F CAGGAGGGCCTGTGGAGCCT SLC38ACIE20R CTGCCAGCAGCAGGGTGGTC 975 chr12 45203656 

45204630 
 SLC38ACIE21F TGGCAGGGTGGGAGGTGGAA SLC38ACIE21R TTGCCCTTTCTGGCTGGCCT 876 chr12 45226838 

45227713 
 SLC38ACIE22F ACCCTCCAGGCACTCCCACC SLC38ACIE22R TGCCGGTCCCTCTCTGCTGG 991 chr12 45332357 

45333347 
 SLC38A4CIE23F TGAGCAAAGGTTGCGGGCGT SLC38A4CIE23R GCCACCAGGGTCCACAGGTC 900 chr12 45216764 

45217663 
ADAMTS7down ADAMTS7CIE1F CCCTGCAGCTTGCTTTAGAA ADAMTS7CIE1R ATTTGGGAGACGATGCTCAG 325 chr15 76830664 

76830988 
 ADAMTS7CIE2F CACCAGCTGCCCTTAGGTT ADAMTS7CIE2R GAGGGAGGGGAAGTGTTAGC 419 chr15 76834538 

76834957 
 ADAMTS7IE3F TTGGGCGTTCTCTGTTCTCT ADAMTS7IE3R GACGTCTGTGTCCCAGGATT 723 chr15 76831349 

76832071 
 ADAMTS7IE4F CAGTGCTCCTGGTGTCTCCT ADAMTS7IE4R CTAAAGACACGAAGCCGGAG 549 chr15 76833701 

76834249 
 ADAMTS7IE5F CTGACCATGGGACACCTTCT ADAMTS7IE5R GCGTGTGGATTTCTCAGGTT 342 chr15 76830990 

76831347 
 ADAMTS7IE6F TCGTGGAAATCATTCACCAA ADAMTS7IE6R AGCTGTCCAAGACCGTTCAC 175 chr15 76833499 

76833673 
 ADAMTS7IE7F CTCCGGCTTCGTGTCTTTAG ADAMTS7IE7R AAAACCTAAGGGCAGCTGGT 329 chr15 76834230 

76834558 
 ADAMTS7IE8F CACCAGCTGCCCTTAGGTT ADAMTS7IE8R CTGAGGCTGGCACAGATACA 859 chr15 76834538 

76835396 
 ADAMTS7IE9F GGAGACGGTTCTGGTTTCAA ADAMTS7IE9R TCTGGGAATCCTTGATGGAG 885 chr15 76835542 

76836425 
 ADAMTS7IE10F AGGACTGCCTGGGCCTGTGT ADAMTS7IE10R TCAGCGGCGCTCCAGAGAGT 464 chr15 76832016 

76832479 
 ADAMTS7CIE11F CCTGCTGTGCCTGTGAGGGC ADAMTS7CIE11R AGGCAGCAACCCTCTGGCCT 743 chr15 76832429 

76833171 
TMED3down TMED3CIE1F CGCAGCCAGAACCCTCAGCC TMED3CIE1R TCGGCCTCCTGGGATTGGCA 327 chr15 77433842 

77434168 
 TMED3CIE2F CCCAGGCTGAGAGGGCAGGT TMED3CIE2R AGCCTGGGGAAGGCCAGAGG 992 chr15 77460995 

77461986 
 TMED3CIE3F AGTGGCTGTCAAATGCAGTG TMED3CIE3R CCGTGATCCTGGTCTTGAAT 443 chr15 77413645 

77414087 
 TMED3CIE4F TCGGCTTCTCTGTGAGCATA TMED3CIE4R TCACAGGGTTGTGAGACAGC 249 chr15 77437400 

77437648 
 TMED3CIE5F AAGCTAAGCTCGTGGTGGCAGC TMED3CIE5R AGCAGCTGGGGTCAGGAGAA 382 chr15 77446103 

77446484 
 TMED3CIE6F ATCCTGAGTCCCCCAGCCCC TMED3CIE6F AGGCCTCTGCACTGGGGACA 345 chr15 77397874 

77398218 
 TMED3CIE7F TGCCTGCTTGCAGTGGGACA TMED3CIE7R GGGCCTCAGCCACCAGGAGT 696 chr15 77412460 

77413155 
KIAA1024up KIA1024CIE1F GCAAACGCACACAGCAGGGC KIA1024CIE1R TGCCCCCAGCTTTTGCCACC 979 chr15 77497123 

77498101 
 KIA1024CIE2F GGGCTCTGTCCCTGGGGAGG KIA1024CIE2R AGGCCAGGGCCAAGTGGTCA 518 chr15 77510515 

77511032 
 KIA1024CIE3F TGTGCTGGGGTTTCCTGCCT KIA1024CIE3R AGGGTGCTGGTTTGTACCCGT 725 chr15 77493565 

77494289 
 KIA1024CIE4F AGGGTGCATTCAGGCCAGGT KIA1024CIE4R ACCAGCTGCCAATTCAGGGCT 657 chr15 77495061 

77495717 
 KIA1024CIE5F ACAGCTGCCAGGCGTCACAT KIA1024CIE5R TTGGCCCTGCTGTGTGCGTT 731 chr15 77496415 

77497145 
 KIAA10246F GGCTCCCTGGGACCAGCCTT KIAA10246R GCAGCCCAGTGCTCACAAAGGG 180 chr15 77506036 

77506215 
BLCAPov BLCAPCIE1F GGCCTTAGCACCTGCCTGCC BLCAPCIE1R CAGCGCTTACGCCCTGCCTT 836 chr20 35575145 

35575980 
 BLCAPCIE2F CAGGCAGCCCTCCACCTCCT BLCAPCIE2R TTGGGCCTCCCGATCCCTGG 960 chr20 35572583 

35573552 
 BLCAPCIE3F ACTGACAATGCAGGCCCCCT BLCAPCIE3R TCCTGTGGCGACACCTGGATGA 819 chr20 35577256 

35578074 
 BLCAPCIE4F TCAGCCAGCTCCTGCCAAGT BLCAPCIE4R AGGAAGGCCAGGAACCACCCTT 777 chr20 35570967 

35571743 
 BLCAPCIE5F AAAGGGCCTGCCGAGCATCT BLCAPCIE5R AGCATGGTGGCCCTGCTGAT 957 chr20 35563865 

35564821 
 BLCAPCIE6F ACTGGGTCATGGGAGCCCTCT BLCAPCIE6R TTTGGCCACCCACTGCCACC 549 chr20 35558111 

35558659 
 BLCAPCIE7F TCCTGCAAGCTCACCTGCCT BLCAPCIE7R TGGGCCCAATCCCTTGGCTT 576 chr20 35574201 

35574776 
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 BLCAPCIE8F TTGGGTGGGTGGGTCGTTGC BLCAPCIE8R AGGAGGTGGAGGGCTGCCTG 391 chr20 35572212 
35572602 

 BLCAPCIE9F TTGTTGCAGTAGCCGGGCTTT BLCAPCIE9R ACCACTGCCACTCCATTCTGCT 696 chr20 35554657 
35555352 

 BLCAPCIE10F TGGGCAGCACCAGCATTGGA BLCAPCIE10R ACATTTCCAGCCCTCCAGCCCT 786 chr20 35547819 
35548604 

 BLCAPCIE11F GCTGCTGCCACAGCGAGGAT BLCAPCIE11R CTCCAAGGAGGGGGCAGGCA 766 chr20 35574415 
35575180 

Protein coding 
gene 

F_Primer_Name F_Primer_Sequence R_Primer _Name R_Primer_Sequence Product 
Length (bp) 

Product 
position (hg18) 

ADAMTS7 
ADAMTS7GIE1F GACCGTCCCCACTGCACAGC ADAMTS7GIE1R TGCAGACACCTGCCACCCCT 984 

chr15 76844774 
76845757 

 
ADAMTS7GIE2F GGCTGTGCCTGCCCCACTTC ADAMTS7GIE2R CACATACGCACGCAGGGGCA 520 

chr15 76850535 
76851054 

 
ADAMTS7GIE3F AGGGTCCTGCACCTCGCCAA ADAMTS7GIE3R CTCTCCCTGCAGGACGTGCAAC 323 

chr15 76879634 
76879956 

 
ADAMTS7GIE4F CCTTGCTCAGGGTTCCGCCG ADAMTS7GIE4R GGCCAGTGAGCTTGCAGGGG 847 

chr15 76867241 
76868114 

 

 

5. 13. Abbreviations 
bp             basepairs 
cpm          counts per minute 
g               gram 
h               hour 
kb              kilobasepairs 
rpm           rounds per minute 
l                 litre 
mg            milligram 
min           minute 
ml             mililitre 
µg             microgram 
µl              microlitre 
MQ           milliq 
ng             nanogram 
u               units 
sec           seconds 
V              volts 
w/v           weight/volume percentage 
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