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Abstract 
Gene therapy holds its promises to silence dysfunctional genes on either 

transcriptional or translational level or by replacement with functional genes. Not long 

ago it has revolutionized modern medicine and since then thousand clinical trials 

have been authorized worldwide.  

 To put the medical profit of gene therapy and DNA vaccination into practice, 

methods to produce highly pure plasmid DNA (pDNA) free from bacterial 

chromosomal DNA, RNA, proteins and endotoxins have to be developed. Since it is 

known that plasmid copy number (PCN) and plasmid stability are affecting the 

success of gene therapy to a large extent, the rational design of an optimized vector 

is an ultimate ambition. To prevent excessive plasmid replication, posing metabolic 

burden resulting in growth inhibition right up to cell death to the workhorse 

Escherichia coli (E. coli), regulation of PCN is to be considered in the rational design 

of any vector as well.  

In this work the main goal was to elaborate a system that regulates plasmid 

replication of ColE1-type plasmids in Escherichia Coli (E. coli) by overexpressing 

tRNAAlaU and rssB encoding genes. In the first approach the wt and mutated tRNAAlaU 

gene, whose expression was controlled by the T7 promoter, was inserted into the E. 

coli chromosome. In shake flask experiments overexpression of the tRNAAlaU gene 

was induced by addition of IPTG and subsequently its effect on three different ColE1-

type plasmids has been tested. In the second approach, overexpression of rssB, 

whose expression was also controlled by the T7 promoter, should result in enhanced 

plasmid concentration after IPTG induction whereas the biological mechanism 

remains unclear. In shake flask experiments, rssB overexpression was also induced 

by adding IPTG. 

 All in all, the experimentally gained data have demonstrated clearly that 

overexpression of rssB and tRNAAlaU encoding genes resulted in enhanced plasmid 

concentration of ColE1-type plasmids. 
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Zusammenfassung 
Die Gentherapie erscheint viel versprechend, fehlerhafte Gene auf transkriptioneller 

oder translationeller Ebene stillzulegen oder diese durch Rekombination mit 

funktionellen Genen zu korrigieren. Vor nicht allzu langer Zeit revolutionierte die 

Gentherapie die moderne Medizin und mehr als tausend vorgeschlagene oder 

laufende klinische Versuche wurden weltweit genehmigt. 

 Um das Potential der medizinischen Gentherapie und DNA-Impfung in die 

Praxis umzusetzen, muss die Herstellung hochreiner Plasmid-DNA (pDNA) 

sichergestellt werden, die frei von jedweder bakteriell chromosomaler DNA, RNA, 

Proteine und Endotoxine sein muss. Es ist bekannt, dass die Plasmidkopienzahl und 

Plasmid-Stabilität wesentliche Determinanten sind, die die Gendosis in der Wirtszelle 

beeinflussen. Daher ist das rationale Design eines pDNA Vektors ein großes Ziel im 

Rahmen der Gentherapie. Weiters ist bekannt, dass die Regulierung der PCN 

entscheidend ist, um eine metabolische Belastung der Wirtszelle zu verhindern, da 

sich eine übermäßige Plasmidreplikation wachstumshemmend auswirkt bis hin zum 

Zelltod führen kann. 

 

In dieser Arbeit sollte die Konzentration von Plasmiden des ColE1-Typs durch 

Überexpression des Gens rssB sowie tRNAAlaU in Escherichia Coli (E. coli) reguliert 

werden, die sich in der Literatur als erfolgreich erwiesen haben. 

 Im ersten Ansatz wurde das für die tRNAAlaU codierende Gen, das unter die 

Kontrolle des T7 Promoters gebracht wurde, in das E. coli Genom inseriert. In 

Schüttelkolbenexperimenten wurde die Überexpression des tRNAAlaU-Gens durch 

Zugabe von IPTG induziert und anschließend wurde dessen Auswirkung auf drei 

verschiedene Plasmide des ColE1-Typs getestet. 

 In einem zweiten Ansatz sollte die Überexpression des Gens rssB, das 

ebenso unter der Kontrolle des T7 Promotors stand, zu einer Erhöhung der 

Plasmidkonzentration nach IPTG-Zugabe führen, wobei der biologische 

Mechanismus bisher noch nicht vollständig geklärt ist. In 

Schüttelkolbenexperimenten wurde eine rssB-Überexpression durch Zugabe von 

IPTG induziert. 
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 Insgesamt konnte in dieser Arbeit gezeigt werden, dass eine Überexpression 

von rssB und tRNAAlaU zu einer sichtbaren Erhöhung der Plasmidkonzentration des 

ColE1-Typs geführt hat. 
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1 Introduction 
 

1.1 Bacterial Plasmids 
According to a present definition plasmids are no life form similar to viruses. 

Plasmids can be accounted for up to 50 % of bacterial DNA and they vary in their 

size: usually plasmids are small (up to 100 kb) but sometimes a precise distinction 

between plasmid and bacterial chromosome is hardly possible (e.g. Vibrio cholerae 

and Rhizobium meliloti). 

 Plasmids are extrachromosomal, circular and double-stranded (ds) DNA 

molecules. These so-called episomes are represented by a specific copy number 

within a convenient host as well as by its autonomous and self-controlled replication 

and have been observed in Archaea, Bacteria and Eukarya. Many plasmids contain 

adequate features making them suitable for a wide host range. Furthermore, 

plasmid-encoded genes are not essential but grant various advantages for the host 

such as antibiotic resistance, degradation/conversion of specific substances, 

pathogenicity and production of virulence factors (12). Plasmids can bring along 

genes by mechanisms like transposition or recombination contributing to genetic 

variety in bacterial population and new gene functions. Some plasmids can even 

break down genetic barriers of different species (26). So, plasmids can be regarded 

as a reservoir of extrachromosomal DNA which can be interchanged between 

bacterial populations but despite of various profits, plasmids are still a metabolic 

burden for the host. 

 

1.1.1 Replication of ColE1 plasmids 

In molecular biology derivatives of the ColE1-type plasmids pBR322, originated from 

the natural isolate pMB1, are frequently used tools for cloning purposes in E. coli 

(Balbas et al., 2004). According to Cesareni et al., the interaction between Repressor 

of primer (Rop) and RNAI and/or RNAII is determining the replication of ColE1-type 

plasmids (17). At least since the turn of the millennium, RNA has highlighted its 

biologically significance and various regulatory roles in different cellular processes 

including transcription, translation, RNA processing, and regulation of DNA 
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replication. Presumptively, plasmid copy number and incompatibility are depending 

on RNAI/RNAII interactions.  

 According to Eguchi et al., replication of ColE1-type replicons is a complex 

regulated process which starts 555 bp upstream of the ORI with the expression of 

plasmid-encoded RNAII species. RNAII persists in cis and form a stable duplex with 

its template DNA only when RNAII fold into a unique tertiary structure. In the next 

step, a free 3’-OH end of the RNA is generated by RNase H-mediated cleavage of 

the DNA –RNA hybrid leading to attachment and leading strand synthesis catalyzed 

by DNA polymerase I (DNAPI) (30).  

 Negative regulators of plasmid replication are RNAI and Rop/Rom. The 

plasmid-encoded RNAI is a 108-nt ColE1-encoded antisense RNA that is, in contrast 

to RNAII, active in trans. RNAI is exactly complementary to the 5’ part of RNAII and 

by hybridization to it (known as “kissing structure”) it prevents the formation of the 

RNAII-DNA hybrid (fig.1) (18). Subsequently, after RNAI hybridized with RNAII it will 

lead to conformational changes in the 5’-end of RNAII and end until the 3’-end of 

RNAII is reached. As a consequence, RNAII can not act as a primer (25) 

 The fast and reversible hybridization between these two RNA species has 

been studied for a long time but if the formation of the kissing complex alone can 

prevent primer formation or if a complete hybridization between the two RNA species 

is sufficient is not clear until now.  

According to Want et al., RNAI decay or cleavage itself is regulated by four 

factors: (1) RNaseE impairs endonucleolytic or exonucleolytic activity leading to 

RNAI decay; (2) polynucleotide phosphorylase act as an exonuclease involved in 

RNAI decay; (3) RNaseIII participated in RNAI degradation; and (4) poly(A) 

polymerase I is regulating ColE1-like PCN and RNAI degradation (8). 
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Fig.1: Binding of RNAI to RNAII is a multi-step process involving interaction at their loops. The 
hybridization process is initiated at the 5’-end of RNAI and comes to a standstill when both, RNAI and 
RNAII are completely hybridized (30). 
 

Expression of RNAI and RNAII is controlled by a constitutive promoter so that 

their intracellular concentration correlates always with the plasmid concentration. 

However, up to now experiments could not make clear the absolute rates of 

RNAI/RNAII. Lin-Chao et al. have measured that RNAI and RNAII molecules are 

expressed in a ratio of 3 to 1 whereas Polaczek et al. suggested that synthesis occur 

in a ratio of about 5.5 to 1 (41).  

 The Rop protein is also a negative regulator involved in PCN control. As 

shown in fig.2, Rop is a small dimeric protein, whose monomers show two tightly 

packed α-helices connected by a sharp bend (Banner et al., 1987). Helmer-Citterich 

et al. suggested that the Rop protein is facilitating loop-loop interactions between 

both RNA species and, thus, is directly regulating replication frequency and PCN. 

They could also show experimentally that Rop binds specifically to RNAI and RNAII 

stem sequences (and therefore prevents RNAI and RNAII from RNase-mediated 
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digestion) but they failed to identify the nucleotides that are involved in the 

interaction. However, they have no proof that the ratio of Rop, RNAI and RNAII is 

1:1:1 ratio but several models propose that a number of Rop proteins are to be found 

in the complex. It is also proposed that the Rop protein is dissociating subsequently 

after formation of the complex (17).  

 

 
Fig.2: According to structural analysis of the Rop protein, it consists of two helices (helix I in red and 
helix II in blue). Amino acid residues, involved in RNA binding, are shown in yellow. (B) Loop-loop 
interaction of RNAI-RNAII leads to formation of minor and major groove (adapted from 
www.marinolab.umbi.umd.edu). 
 

In vivo and in vitro studies have demonstrated that Rop is not acting as a repressor 

as initially thought rather it enhances RNAI inhibitory activity (Cesareni et al., 1984; 

Lacatena et al., 1984).  

In 1984, Tomizawa and Som could show that Rop increases and accelerate 

RNAI and RNAII hybridization. Therefore they renamed Rop to Rom (“RNA One 

Modulator”) due to its newly observed function. Though, Rop/Rom is not the only 

factor involved in regulation of the RNAI-RNAII hybridization. According to current 

findings the initiator protein of the ColE1-unrelated plasmid R6K and the avian 

retroviral NBP.P12 protein can regulate the hybridization of the two RNA species as 

well (16). pBR322 and its derivatives applied in the molecular biology field contain 

the ColE1-type origin but lack the Rop encoding gene frequently. ColE1-type 

plasmids and its derivatives like pBR322 are low-copy plasmids (about 15 per cell). 

Deleting the rop encoding gene, PCN is increased 3-4 times (25). 
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1.1.2 Inheritance of bacterial plasmids 
Resolution of plasmid oligo- or multimers into monomers, regulated plasmid 

partitioning and killing of plasmid-free descendents are evolved mechanisms 

essential for stable maintenance of bacterial plasmids (12). 

 
1.1.3 PCN control 
Any plasmid has a specific copy number in different bacterial species. The initiation 

of replication, and thus PCN, is regulated by plasmid-encoded elements. To stably 

coexist with its host, guarantee stability, maintenance and to reduce the metabolic 

burden to a minimum extend, plasmids must develop subtle mechanisms to control 

their replication (Del Solar et al., 2000). To maintain and “sense” the copy number, 

plasmids implement negative regulatory mechanisms. To be established in the new 

host, the concentration of the negative regulators is insignificant in this context. This 

seems to be essential since uncontrolled plasmid replication favours normal copy 

number immediately. After achieving a specific copy number, it has to be maintained 

or adjusted to fluctuations by increasing or decreasing the frequency of replication 

per plasmid copy. Thereby, randomly chosen plasmids are selected for replication. 

However, plasmids with the same replicons can not be maintained in the same host 

without selective pressure (Del Solar et al., 1998). Mechanisms such as 

hemimethylation and supercoiling facilitate identification of newly synthesized 

plasmids (21, 26). 

 In response to fluctuations, E. coli evolved different mechanisms to control and 

maintain the PCN: (i) directly repeated sequences (iterons); (ii) binding of antisense 

RNA to essential RNAs (termed countertranscribed RNAs or ctRNAs); and (iii) 

antisense RNA in combination with a protein, which can play either an auxiliary or a 

regulatory role. Especially in Gram-positive bacteria and for few rolling circle-

replicating plasmids and theta-replicating plasmids the third type of mechanism 

prevails.  

 PCN in R1- and ColE1-type plasmids is mainly maintained and regulated by 

ctRNAs and negatively regulating proteins such as Rom/Rop (21). ColE1-type 

plasmids and its derivatives are popular tools for cloning and transgene expression 
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since they are small in size and for replication they utilize host-encoded enzymes 

(19). 

 
1.1.4 Plasmid segregation in E. coli 

According to Gordon et al., replication of the single E. coli chromosome starts at a 

unique ORI and proceeds bidirectionally until the termination site is reached. In E. 

coli and in Bacillus subtilis this process is finished after approximately 40 minutes at 

37°C and both, the old and newly synthesized chromosomes are partitioned between 

the mother and daughter cell. Although the partitioning systems works highly 

accurate, chromosomeless cells occur with a frequency of less than 10-4. However, it 

remains unclear if chromosomes are partitioned by either active or passive 

mechanisms. In bacterial cells there is no proof for the existence of the mitotic 

apparatus, microtubules or microtubule-like structures as it is well known for 

eukaryotic cells. To test chromosome and low-copy plasmid segregation in E. coli, 

Gordon et al. engineered chromosomes containing tandem lac operator sequences 

close to the ORI as well as plasmids P1 and F.  

 Due to the expressed green fluorescent protein (GFP)-LacI fusion protein the 

partitioning process of chromosomes and plasmids could be followed by fluorescent 

microscopy. According to their gained results both, chromosomes and plasmids differ 

in their partitioning behaviour since they are differently localized within the cell. In 

contrast to the chromosomal oriC region, which stays in touch with the cell pole 

throughout the entire “cell cycle”, the plasmids P1 and F associate quickly with the 

site of septum after their replication. After chromosomal duplication, one 

chromosome continues its association with the old pole and the other is transported 

to the new cell pole (20). 

 
1.2 Gene therapy 
Since genetics proceeded in the 1980s, gene therapy opened a new avenue to treat 

genetic defects. The identification of genetic abnormalities that effect inherited 

diseases make the progress of gene therapy possible. Since clinical trials indicated 

that genetically inherited diseases (such as intestinal cancer, heart disease, diabetes 

etc.) are passed on to next generation family members gene therapy seems a 
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promising tool for its treatment. However, not only genetic defects but also 

environmental factors may affect many diseases and health conditions but it is safe 

to say that genetic defects make living organisms even more proned to it and that 

most diseases have a genetic cause.  

 In contrast to DNA vaccines, whose intentions are to stimulate the immune 

system of an individual within a short time, gene therapy is usually targeted at 

persisting expression of the therapeutic gene avoiding stimulation of the immune 

system. Sometimes, gene therapy is directed at incorporation of the therapeutic gene 

into the host's chromosome. Unlike DNA vaccines, the therapeutic DNA must be 

internalized by the target cells and guarantee it’s finely tuned and long-lasting activity 

when gene therapy is applied. For that reasons gene therapy has not yet achieved 

success as DNA vaccines did. However, application of gene therapy is focussing on 

different purposes: (i) the therapeutic gene is encoding proteins to exert new 

functions in the patient’s cell or to restore the function of mutated proteins; (ii) the 

therapeutic gene aims to knock down or off the expression of a default gene (38).  

For now, both DNA-based (in vivo) treatments and cell-based (ex vivo) 

treatments are objects of intense research in the United States. The transfer of the 

therapeutic gene to the host’s cells can be conducted by applying vectors including 

viruses or pDNA (“DNA-based gene therapy”). Cell-based gene therapy is 

characterized by taking patient’s cell from the body to restore dysfunctional genes in 

vitro and to return the restored genes to the patient’s body. Clinicial trials for the 

treatment of cystic fibrosis (using adenoviral vector), HIV (Human immunodeficiency 

virus) infection (cell-based), malignant melanoma (cell-based), kidney cancer (cell-

based), Gaucher's Disease (retroviral vector), breast cancer (retroviral vector), and 

lung cancer (retroviral vector) has been conducted until now (14).  

At the beginning of gene therapy scientists brought in genes directly into 

human cells to repair single-gene defects causing cystic fibrosis, haemophilia, 

muscular dystrophy and sickle cell anemia. This approach has turned out to be more 

difficult as initially thought since the therapeutic gene prefers recombining randomly 

in the host genome instead of replacing the dysfunctional gene (36). 
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1.2.1 Classification of gene therapy 
Gene therapy may be classified into two types: 

Germ line gene therapy 

Reproductive cells (sperm or eggs) are genetically modified to correct inherited 

genetic defects and the manipulated genome would be transmitted on to the next 

generations. However, germline therapy would have a lasting effect on the gene pool 

of the human species. Current laws have put a ban on this kind of application in 

human beings for ethical and technical reasons. 

 

Somatic gene therapy 

Somatic gene therapy targets at modifying the genome of the somatic cell and is 

restricted only to the person treated with gene therapy. The genetic modification will 

not be transmitted to the next generations. 

 

1.2.2 Vectors used in gene therapy 

1.2.2.1 Viruses 

Viral vectors 

Viruses attach and transfer their genetic material into their host cells. To ensure 

replication of viral DNA they hijack the host’s cellular machinery. Consequently, the 

host cell will produce many copies of the virus leading to increasing infection of 

uninfected cells. To become a permanent component of the host’s chromosome 

some specific viral types evolved mechanisms to insert their genetic material. 

 

Retroviruses 

Retroviruses introduce their ribonucleic acid (RNA) including the reverse 

transcriptase, integrase and other enzymes into the cell. Subsequently, the RNA 

molecule is reverse transcribed to DNA (known as copy-DNA or cDNA) promoted by 

the reverse transcriptase. The viral cDNA must enter the nucleus of the host cell by 

using specific mechanisms to be chromosomally integrated catalyzed by the 

integrase. Division of the host cell will pass this recombinant genome on to its 

descendant cells. It can be assumed that insertion of viral genes can occur randomly 

into the host's genome leading to insertional mutagenesis or even to uncontrolled cell 
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division. Strategies such as the design of zinc finger nucleases and insertion of 

specific sequences such as the beta-globin locus control region to facilitate site-

specific integration should circumvent this problem. Sometimes gene expression of 

the retrovirus takes place at a later time. 

 In the year 1999, 11 boys with X-linked severe combined immunodeficiency 

(XSID), also known as “bubble-baby syndrome”, were treated with their own bone 

marrow, which previously was transduced with retroviral vectors to restore the 

deficient Adenosine Deaminase (ADA) allele (fig.3). XSID is known to be a X-

chromosomal linked disease characterized by a rare and disastrous immune 

disorder. For years, this gene therapy represented a story of success, the immune 

system was restored but in 2002 2 of the 11 patients came down with a leukemia-like 

disease. This is probably due to insertional mutagenesis close to the oncogene LMO-

2 which is known to provoke several human T cell acute lymphoblastic leukemias (T-

ALL). Authorities prohibited temporarily this clinical trial together with similar gene 

transfer trials but the hypothetical risk of random integration into potentially harmful 

sites has been estimated to be low (Kay et al., 2001). In 2002, after protocol review, 

clinical trials were continued in the United States, the United Kingdom, France, Italy, 

and Germany. According to significant hints development of the leukemia-like 

diseases may have been disease- and protocol-specific. 
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Fig.3: Procedure of cell-based gene therapy. (1) Vectors, mostly crippled viruses, are used as vehicles 
to transfect patient’s cells with the therapeutic gene. (2) Isolated bone marrow cells from the patient 
are transfected ex vivo with the virus. After viral transfection the patient receive transplants of his own 
bone marrow. (3) Repaired cells restore the patient's immune system (5). 
 

Adenoviruses 

Adenoviruses contain a ds DNA. Usually, they cause respiratory (such as common 

cold), intestinal, and eye infections in humans. The DNA of the adenovirus is neither 

inserted into the host cell's genome nor is replicated when the replication of the 

eukaryotic genome is induced, thus leading to transient gene expression. Therefore, 

successful treatment needs readministration. In China, Gendicine, an adenovirus 

vector harbouring the tumor suppressor gene p53, is the first gene therapy product to 

treat cancer and was permitted by the Chinese Food and Drug Administration (FDA) 

in 2003 to cure head and neck cancer. Application of Gendicine together with 

chemotherapy and radiotherapy could cure cancer to some extent. By contrast, 

Advexin, a similar gene therapy administration from Introgen, was denied by the US 

FDA in 2008. The death of Jesse Gelsinger, a patient participating in a gene therapy 

trial, caused distrust about the safety of adenovirus vectors leading to preferential 

treatment with genetically crippled viruses. 

 

Adeno-associated viruses 

Adeno-associated viruses (AAV) are small viruses containing single stranded (ss) 

DNA. The wt type AAV can incorporate DNA site-specifically whereas the 

recombinant AAV, which is harbouring only the therapeutic gene, does not integrate 

into the host's chromosome but is producing episomal forms by recombination. 

These “episomes” guarantee expression of the therapeutic gene in the long run. 

However, AAV's largest disadvantage as a gene therapy vector could be its low 

packaging capacity due to the limited size of the AAV virion and technical problems 

in its manufacturing. AAV is non-pathogenic and, in contrast to wt adenoviruses, it 

will not be removed by the host's immune system. Nowadays, AAV vectors are used 

in clinical trials to treat muscle and eye diseases as well as cerebral diseases since 

dormant cells (such as neurons) are target cells of AAVs as well.  

 The retroviral encoded env gene facilitate recognition of cells which represent 

a specific receptor on their surface (Adams et al., 1995). So, in contrast to 
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adenoviruses and adeno-associated viruses, retroviral infection is limited to specific 

cells. 

 

Replication Vectors 

Retroviral vectors are known to be either replication-competent or replication-

defective. ONYX-015 (previously called CI-1042) is a replication-competent vector 

modified to replicate in and induce rapid apoptosis in cells harboring p53 mutations. 

Replication-defective vectors with multiple deletions of essential genes infect their 

target cells but after transgene delivery cells will undergo lysis and death. 

 

Cis- and trans-acting elements 

Replicative-defective vectors contain always a “transfer construct” including the 

transgene as well as the packaging sequence, sequences for replication and, 

sometimes, sequences for reverse transcription. Thus, these sequences are 

characteristic cis-acting elements, they contain viral sequences on the same 

chromosome in contrast to the viral trans-acting elements, which can be located not 

only on the same DNA. 

 

Herpes Simplex Virus 

Herpes simplex virus 1 and 2 (HSV-1 and HSV-2) are members of the Herpesviridae 

family known to infect humans. The wt HSV-1 can infect neuronal cells, which are 

usually ignored by the immune system after infection. 

 Many worries arose since an attenuated viral strain could revert to its 

pathogenic version (Clark et al., 2008) making gene therapy applications with live 

viruses even complicated. Some specific live viruses can even circumvent or 

suppress the immune response. 

 

1.2.2.2 Non-viral methods 

Oligonucleotides 

Therapeutic oligonucleotides are used in gene therapy to silence the expression of a 

gene, causing a particular disease, on its transcriptional or translational level. 

Oligonucleotides include the synthesis of nucleic acids of DNA, RNA or chemical 
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analogues to knock down or knock off a disease causing messanger RNA (mRNA). 

However, antisense therapy (such as applications with siRNAs) is a way to treat 

genetic disorders or infections but is not strictly a kind of gene therapy. Another 

strategy uses ds oligodeoxynucleotides to titrate transcription factors from the 

promoter of the default gene leading to decreased expression rates. Furthermore, 

application of ss DNA oligonucleotides targets at induction of a single-base pair 

mutation within the disease-causing gene (“targeted gene repair or targeted 

nucleotide alteration”). 

 

Lipoplexes and polyplexes 

Lipoplexes (DNA complexed with cationic lipids) and polyplexes (DNA complexed 

with synthetic polycationic polymers) aim at efficient delivery of DNA into the patient’s 

cells and stabilizing DNA by preventing its degradation. However, DNA-lipid 

complexes form structures such as micells or liposomes.  

 In contrast to cationic lipids, the elaborating production of anionic and neutral 

lipids was neglected. Several features making cationic lipids (because of their 

positive charge) a proper tool in biopharmaceutical applications such as association 

with and condensation of the negatively charged DNA, formation and stabilization of 

lipoplexes and facilitate uptake due to higher affinity to the cell membrane. Still, 

cationic lipids can cause toxicity in a dose dependent manner making them 

unsuitable for gene therapy purposes.  

 Mostly polyplexes can not set their DNA cargo free into the cytoplasma. 

Therefore, cotransfection with endosome-lytic agents is necessary. Since polymers 

such as polyethylenimine have intrinsic endosomal activity, they can trigger 

endosome destruction as well.  

 

Hybrid methods 

Some gene transfer techniques are combined such as virosomes (derived from 

inactivated HIV or influenza virus) complexed with liposomes. It has turned out that 

virosomes can overcome the epithelial airway barrier easier than application of viral 

or liposomal methods alone. Viral vectors complexed with cationic lipids or 

hybridising virus could be used as alternatives in gene therapy applications as well.  
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Dendrimers 

A dendrimer is a spheric synthetic macromolecule which is highly branched. 

Recently, it has been observed that the use of highly branched macromolecules has 

significant effects on gene therapy success in contrast to the traditionally used linear 

polymers. The positive charge of cationic dendrimers enhances its complextion with 

the negatively charged DNA and the dendrimer-nucleic acid complex may then be 

internalized by a clathrin-dependent endocytosis (36). 

 

Synthetic vehicles (SV) 

For the improvement of therapeutic approaches, synthetic delivery systems are 

considered promising tools as non-viral vehicles. Chemical bonds of the non-viral 

vector are only cleaved in response to various stimuli such as environmental or 

external triggers. Using masked endosomolytic agents (MEAs) is one example for 

this approach: a pH-labile bond of the vector is only opened when MEAs are entering 

the acidic endosome. Subsequently, the nucleic acids must be released from the 

endosome to avoid its lysosomal degradation. Similar to the delivery methods 

mentioned in 1.3.4, SVs can be used to transport pDNA in vivo as well. Recently, 

MEA-dynamic PolyConjugates (DPCs) have been used as vehicles in clinical trials to 

provide hepatocytes with siRNAs in vivo. (42). 

 

Naked DNA 

Unlike viruses, plasmids are "naked" DNA used as gene medicine or DNA vaccine to 

fight viral, bacterial, parasitic diseases, or cancer (57). Transfection of cells with 

naked DNA is the easiest method of non-viral transfection since pDNA is chemically 

simple, easy to produce and characterize, and host cells can be transfected either 

with naked pDNA, coated with gold or as lipid-DNA complexes (Ledwith et al., 2000). 

 

1.2.2.3 Bacterial gene transfer vectors 

Since lately, the bacterial gene transfer vector has been proposed as a third type of 

vector to be used in gene therapy. Bacterial strains such as Salmonella, Shigella, 

Listeria, Yersinia, and E. coli could be qualified for the use as a vehicle for the 

therapeutical gene. Although the mechanism of how the DNA is passed on from the 
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bacterial cell to the mammalian cell is yet not clear but in vitro and in vivo studies 

demonstrated it definitely (fig.4) (43). 

 

 
Fig.4: Different methods of application in gene therapy. After removal and in vitro transfection of host 
cells, the “repaired” cells are then returned into the patient’s body. Replication deficient and attenuated 
virus or bacteria deliver the therapeutic gene via transfection of the host cell. Alternatively, cells are 
transfected with pDNA by using different delivery methods (31). 
 
1.2.2 Optimization of plasmid vectors 
According to Carnes et al. the production of highly pure pDNA for applications in 

gene therapy starts with prudent considerations about (i) the rational design of the 

plasmid vector, (ii) plasmid composition, (iii) yield and quality, and (iv) purity after 

downstream processing, to be approved by regulatory authorities (13).  

 It is a fact that PCN is correlating with the choice of the ORI. In general, pDNA 

for therapeutic purposes contain the ColE1 or pMB1 ORI but, according to Carnes 

the use of pMB1-derived pBR322 plasmids with a G-to-A mutation or the truncated 

origin in pUC derived plasmids such as p15A multiplicate the PCN. In small scale 

fermentations temperature-sensitive origins occurring in pMM1, pMM7 and pUC are 

preferred because PCN can be increased 30- to 40-fold after temperature rise from 

30°C to 42°C (10, 44). However, it could be clarified that the G → A transition in the 

ORI of pUC vectors leads to minor or even no loop-loop interaction between RNAI 

and RNAII because the point mutation somehow influence the proper folding of the 

RNAII (Lin-Chao et al., 1992; Herman et al., 1994). Furthermore, the Rom/Rop 

protein or a drop in temperature finally leads to normal plasmid concentration. To 

sum up, the temperature-sensitive G → A transition can be employed on any 

pBR322-derived plasmid to multiply pDNA production enormously (33). 
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1.2.2.1 Rational vector design 

The demand for large quantities of highly pure pDNA is arising since gene therapy 

and DNA vaccines are playing more and more a central role in preclinical studies. 

The field of therapeutic application of pDNA (DNA vaccines, DNA replicon vaccines, 

short hairpin RNA (shRNA) vectors, AAV helper plasmids, therapeutic plasmids, 

gene targeting plasmids) is broad including prevention (viral, bacterial, or parasitic 

diseases), immunization, therapeutic vaccination (infectious diseases, allergy, 

autoimmunity), cancer vaccination, or its use as gene therapy vehicles. In contrast to 

conventional vaccines, new pDNA vaccines can be designed and produced to be 

applied against new biological pathogens (13) within a short time instead of years. 

As a shuttle vector pDNA has to fulfil standardized criteria such as elements 

essential for its upkeep and reproduction in the bacterial and mammalian host as well 

as elements crucial for expression of the target gene in the human or animal host (4). 

Construction of pDNA vectors, which are to be used in gene therapy or DNA vaccine 

applications, requires observance of certain criteria in the course of its rational 

design. Thus, pDNA vectors have to obtain: (1) a constitutive, inducible, or tissue-

specific promoter with transcriptional activity and a transcription terminator; (2) 

elements necessary for optimized mRNA processing and translation inclusively 

Kozak sequence, translational termination, mRNA cleavage, polyadenylation and 

mRNA-splicing sites; (3) prokaryotic ORI for propagation in E. coli; and (4) selection 

marker for maintaining and positive selection of cells harbouring the pDNA or, 

alternatively, antibiotic-free selection mechanisms (fig.5). All these pDNA 

components should be reduced as much as possible to obtain vectors, which vary 

between 3 and 12 kb without the gene of interest (GOI). Furthermore, in the course 

of time it became apparent that removing toxic or disturbing sequences from the 

vector have a beneficial effect on pDNA production. To sum up, the rational vector 

design is affecting both the production of pDNA and its effective application (2). 
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Fig.5: Vector design strategies. For accumulation of pDNA in E. coli, selectable markers such as the 
kanamycine resistance (KanR) or alternatively, antibiotic-free selection mechanisms, and the pUC ORI 
(whereas other ORIs could also be used) are crucial. In the mammalian system, eukaryotic elements 
such as the promoter/enhancer, the transgene, and polyadenlyation signals are playing a key role in 
the design of a pDNA vector (7). 
 

Production of plasmid-encoded pharmaceuticals requires specific design of 

bacterial strains and plasmids. Improvement of plasmid stability, advancement of 

product safety, accumulation of plasmid amount and simplification of downstream 

purification processes are getting central objects of strain and vector engineering. At 

present, for pDNA production E. coli strains and plasmid backbones are used that 

are not specifically suited for production of pDNA. Overall, bacterial strains and 

pDNA design require alterations to maximize copy number, genetic fidelity, and 

segregational stability (7). 

 

1.2.2.1.1 Antibiotic-free selection systems 

For the propagation, maintenance and selection of recombinant cells, antibiotics and 

antibiotic resistance genes have been the single choice for a long time. However, 

their use in gene therapy or other biotechnological fields is more than questionable. 

For safety reasons, WHO, FDA and the American federal regulation strongly advised 

against the use of antibiotics and antibiotic resistance genes to prevent undesirable 

spread of antibiotic resistance in non-resistant bacteria. Constant expression of the 
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resistance protein is a heavy metabolic burden for the host cell and the antibiotic 

itself contaminate the final product. Several experiments made clear that removing 

bla (or other antibiotic resistance genes) and other sequences from therapeutic 

plasmids enhance expression of the transgene clearly and promote pDNA stability 

and yield in the fermentation process. Furthermore, some patients are hypersensitive 

to β-lactam antibiotics causing allergic reactions even up to anaphylaxis.  

 Circumventing the use of conventional antibiotics makes sense for several 

reasons since resistant bacteria fail to respond, antibiotics are unsuitable for vaccine 

production and expensive for industrial scale production (Goh et al., 2008). As a 

result, antibiotic-free selection systems are objectives of research and development 

and recently many antibiotic-free selection systems are patented. However, non-

antibiotic systems demand mutant host strains, specific media or expensive 

reagents. In the first known antibiotic-free selection system only those auxotrophic 

bacteria could grow on specific media whose defect gene was complemented by a 

plasmid-encoded gene. Repression-titration is another method avoiding the use of 

antibiotics and antibiotic-resistance genes where the lac operator “de-represses” an 

endogenous essential gene.  

 

 
Fig.6: Strain design strategies. The E. coli parent strain, presented here in the model, can be any E. 
coli K-12 strain. Gene knockouts, the use of antibiotic-free selection systems, genomic reduction, 
removal of mobile elements and, expression of heterologous nucleases to degrade host genomic DNA 
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(gDNA) and RNA after cell lysis are just a few strategies to engineer strains to be used for the 
production of pDNA (7). 
 

1.2.2.2 DNA Structure 

Besides its canonical Z-form and B-form, DNA can adopt conformations which are 

known as the noncanonical A-DNA-, C-DNA-, D-DNA- and E-DNA-form. 

Consequently, for gene therapy only the canonical B-DNA form is relevant since 

specific DNA structures and sequences can cause instability problems (2). However, 

the rational vector design requires a clear understanding of both the DNA sequence 

and DNA structure.  

 

1.2.2.3 Transformation efficiencies 

According to Kreiss et al. the uptake of pDNA into the nucleus across the nuclear 

pore complex is influenced clearly by its size. Experimental data demonstrated that 

transformation with larger plasmids such as the P1 artificial chromosome (PAC) 

decreases transfection efficiency significantly in contrast to small vectors. Walker et 

al. investigated that the PAC vectors showed lower transformation rates resulting in a 

consequent lower expression rate of the GOI. However, these effects demand further 

explanations (35). Furthermore, for pDNA endolysosomal inclusions and 

degradation, cytosolic sequestration, nuclear exclusion of pDNA, and metabolic 

degradation are further obstacles to overcome (Lechardeur et al., 2004). 

 Many barriers provide a biological hindrance to the entry of exogenous DNA 

including the extracellular matrix, the endosomal/lysosomal environment, the 

endosomal membrane, and the nuclear membrane making the application of non-

viral gene therapy difficult. However, the permeability of the nuclear membrane itself 

impeding the successful entry of pDNA especially in non-dividing cells where the 

nuclear envelope is not dissolving due to missing mitosis. However, Dean et al. could 

show experimentally that the 72-bp repeats of the SV40 enhancer is a clear benefit 

for the delivery of pDNA into the nucleus whereas the activity of the promoter and the 

ORI are insignificant for the its nuclear localization (44). 
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1.2.2.4 Plasmid stability 

It is safe to assume that specific sequences somehow negatively affect the 

production of supercoiled plasmids, which are recommended by FDA to prevail in the 

fermentation process. AT rich regions are proned to the host ss nucleases leading to 

nicking. Repeats as well as direct or inverted palindrome sequences are affecting 

pDNA stability in batch fermentation. The same is true for Z DNA-forming sequences 

such as CpG repeat sequences or formation of multimers. Dimerization of pUC 

plasmids is promoted by oligopyrimidine or oligopurine sequences leading to 

unconventional DNA conformations such as triple helices.  

 However, factors causing segregational instability, such as plasmid size, 

promote formation of plasmid-free-cells (Mathur et al., 2009). Many high copy 

plasmids are irregularly disseminated between descendant cells since they lack 

controlled partitioning systems. Furthermore, high-copy plasmids can overwork the 

metabolism of their host providing plasmid-free cells with a growth advantage within 

a fermentation process (10, 13). 

 According to Yamaguchi et al., OriC-containing plasmids cannot be stably 

maintained in specific recA strains of E. coli (due to incompatibility) unlike other E. 

coli recA strains. In many cases it has been noticed that plasmids, having an 

evolutionary ancestor in common, cannot co-exist in the same host cell and exclude 

each other (Chakrabarty, 1973). This process is called “incompatibility”. It appears 

that the quantity of determinant(s), responsible for incompatibility, is directly involved 

in the loss of plasmids (15). 

 
1.3 DNA Vaccines 

1.3.1 Definition of DNA vaccines 
According to the definition of FDA DNA vaccines are highly purified plasmids 

encoding antigens to protect individuals against infectious agents by boosting and/or 

triggering efficient immune response. In 1990, Wolff et al. were among the first 

suggesting the idea of DNA vaccination. The idea was to synthesize the antigen, 

delivered by the pDNA molecule, directly in the target organism to stimulate the 

immune system. To do so, they injected the pDNA-encoded antigen into murine 
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skeletal muscle. Since then, DNA vaccination is an object of intense research but 

some DNA vaccine trials have failed due to inappropriate transgene expression (48). 

 To date, various diseases have not been kept under control by conventional 

vaccines. Millions of people succumb to fatal diseases every year such as HIV/AIDS 

(Acquired Immune Deficiency Syndrome), malaria, cancer, and many others. 

However, viral vectors and DNA vaccines are only used in preclinical trials and 

currently there are no DNA vaccines as licensed products available (31). Hitherto, 

FDA has permitted DNA vaccine applications for various infectious diseases such as 

malaria, Hepatitis B and HIV in phase 1 clinical trials (9).  

 According to Krishnan, pDNA vaccines provide numerous advantages in 

contrast to conventional vaccines, such as (i) ease of production, (ii) stability and 

transport, (iii) no cultivation of pathogens, (v) vaccination against multiple pathogens 

in a single dose (48). 

 
1.3.2 The immune response to DNA vaccines 
DNA vaccination seems to be attractive since both arms of the immune system are 

involved (Jechlinger, 2006). Complex intracellular and intercellular interactions are 

necessary for an antigen to promote antibody production and cellular/humoural 

responses (see fig.7). Recombinant proteins or inactivated virus vaccines fail to 

stimulate the cytotoxic T lymphocyte (CTL) response, important for an immune 

response, because in the endolysosome the antigen is degraded into peptides which 

are incorporated subsequently into major histocompatibility complex (MHC) Class II 

molecules. T-helper cells (TH cells) are specifically induced by the peptide-MHC-

conglomerate important for both antigen recognition and initiation of immune 

response.  

However, to induce CTL response, association of peptides with MHC Class I 

molecules are essential. Finally, these MHC Class I-peptide complexes are detected 

by specific cytolytic T cells that trigger complete destruction of the infected cell. Thus, 

the idea in DNA vaccine technology is to induce CTL production by expressing 

antigenic fragments in the MHC Class I receptor leading to apoptosis of the infected 

cell (31, 45). 

 



1 Introduction 
 
 
 
 

 - 29 - 

 
Fig.7: Mechanism of antigen-specific humoural and cellular responses. Professional APCs recognize 
exogenous antigens and induce its degradation to peptides which are then presented on the surface 
of MHC Class II molecules. The antigen peptide/MHC Class II conglomerate is detected by specific 
helper T cells (CD4+ T cells) which will be activated subsequently. Activated CD4+ T cells secrete 
cytokines to activate B cells and amplification of CTL responses. After recognition of peptide-MHC 
Class I complexes, presented by APCs, CTL (CD8+ T cells) are activated and induce apoptosis of the 
infected cell. After detection of extracellular antigens, B cells induce antibody production (31). 
 

 
1.3.4 Delivery methods 
Various delivery methods have been developed to improve and/or ease pDNA 

applications: 

(i) Ballistic delivery or “Gene-Gun delivery” facilitate gene transfer into a broad 

range of targets and is supposed to stimulate immune response most 

efficiently. In contrast to injections via syringes, applications with gene-guns 

are repeatable due to controlled adjustment of gas pressure and do not cause 

pain. 

(ii) Delivery by liposomes: injection, oral or intranasal absorption of cationic 

liposomes that include pDNA molecules 
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(iii) Electroporation-assisted delivery: In the first step, nucleic acids are injected in 

muscle or skin and to speedup pDNA molecules as well as to promote their 

uptake, an electric current is applied by using electrodes. 

(iv) In vitro transfection 

 Among various delivery methods for DNA vaccines, two approaches are 

currently favoured: injection via a syringe or application of gene gun technique. The 

mechanism of nucleic acid uptake is still not clear, but it is suggested that DNA 

uptake occurs via caveolae and/or might involve keratinocytes, fibroblasts and 

epithelial Langerhans as well, which migrate quickly to regional lymph nodes (Lewis 

et al., 1999). Furthermore, phagocytosis and/or pinocytosis or specific receptors like 

a 30 kDa surface receptor or a macrophage scavenger receptor could also play a key 

role in DNA uptake.  

 In DNA vaccine applications, intramuscular injections are favoured because 

muscle cells are considered to take up DNA highly efficient but they fail to generate 

immune response since they are no professional APCs (31, 32, 46). 

 
1.4 Problems and ethical aspects of gene therapy and DNA 
vaccination 
In gene-based therapy, opinion about the Weissman barrier is divided on its safety 

issue because, according to this theory, genetic information is only passed on from 

germ line cells to somatic cells and never the other way round (Sullivan). However, if 

this soma-to germ line barrier does not exist than genetic information, derived from 

gene therapy, can be spread to germ cells (“germline transmission”), and would lead 

to a change in the genetic pool of the human species.  

 Current problems of gene therapy involve: 

• Short-lived nature of gene therapy – the therapeutic DNA must persist in the 

patient’s cells, expressed at constant levels, and cells harbouring the 

therapeutic gene must be stable and long-living to be profitable for the patient 

in the long run.  

• Theoretical concerns rise since therapeutic genes can be randomly inserted 

into the host’s genome leading to activation of oncogenes or inactivation of 
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tumor suppressor genes. In addition, insertion might lead to chromosomal 

instabilities by breaking or rearranging DNA.  

• Reduction in efficacy of the gene therapy effect – Invaders that already 

induced immune response are recognized faster by the immune system after 

a second infection. Thus, using e.g. viral vectors in gene therapy seem 

impossible when repeated in patients. 

• Problems with viral vectors – Viruses used in gene therapy trials can cause 

problems such as toxicity, immune and inflammatory responses. Since 

attenuated viral strains could revert to wt their use in gene therapy, to treat 

specific viral infections such as HIV, is doubted. Furthermore, some viral 

species evolved strategies to escape or downregulate the host immune 

response. 

• Multigene disorders – Frequently emerging genetic diseases are multifactorial 

such as heart disease, high blood pressure, Alzheimer's disease, arthritis, and 

diabetes (36).  

• In transient expression assays David Peterson et al. identified sequence 

elements within pBR322 that negatively influence expression of eukaryotic 

transgenes in cis. This region interferes with a negative element, a poison 

sequence that is known to inhibit DNA replication. Furthermore, Courey et al. 

announced that specific pBR322 sequences can downregulate the activity of 

the human β-globin promoter. Peterson et al. considered these negative 

elements to act as silencers on eukaryotic genes (47). 

 
1.4.1 Potential safety concerns of DNA vaccines 
According to Hodgson et al., careful consideration and questioning is necessary 

when it comes to pDNA applications in humans depending on approval of WHO, US 

FDA, or European Agency for the Evaluation of Medicinal Products (EMEA) (57). 

 Preclinical studies imply that after DNA vaccine application glycoprotein 

immunoglobulin G (IgG) anti-DNA autoantibodies are secreted due to activated 

autoreactive B cells but it is unlikely that systemic autoimmunity is generated by DNA 

vaccination. Concerns are raised that organ-specific autoimmunity could be induced 

or even declined after DNA vaccine application (9). 
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 Experiences gained by veterinary DNA vaccines might be useful for human 

DNA applications. Though, reproduction of immune responses, noticed in animal 

models, in humans is not possible in general but many approaches have been made 

to improve the human immune response such as enhanced uptake, stabile 

expression, modulation of the immune response, or in adjuvanting (49).  

 

1.5 Strategies to increase plasmid concentration by overexpression 
of rssB and tRNAAlaU 
1.5.1 rssB leading to enhanced ColE1 PCN in pcnB mutants 
By screening multicopy library harbouring randomly integrated chromosomal 

fragments in pcnB mutants, Jain et al. found the rssB encoding gene that significantly 

increased ColE1 PCN after its induced overexpression. So far, the mechanism how 

rssB might regulate PCN remains unclear. In E. coli, PcnB shows its homology to the 

cca gene encoding the tRNA nucleotidyltransferase which binds tRNA. So, one might 

guess PcnB might be an RNA-binding protein. By binding to RNAI, it blocks the 

RNAI-RNAII hybrid formation finally leading to enhanced plasmid replication. 

Alternatively, after sequence analysis Cao and Sarkar identified the pcnB locus to be 

homologous to the E. coli poly(A) polymerase I (PAP I) which catalyzes 

polyadenylation of RNA. So, polyadenylated RNAI is unable to bind RNAII because it 

is proned to degradation. Deletion of PAPI showed that RNAI intermediates are 

strongly accumulating within the cell leading to decreased pDNA replication and, 

thus, decreased PCN of ColE1-type plasmids (He et al., 1993; Xu et al., 1993). 

However, PcnB is known to regulate plasmid replication since strains with deletion in 

the PcnB locus reduce PCN at very low levels and cause plasmid instability. 

 It is presumed that the pcnB defect is suppressed by overexpressing RssB 

either caused by PAPI-independent polyadenylation (such as the PNPase) of RNAI 

or by enhanced degradation of nonpolyadenylated RNAI species (Carabetta et al., 

2009). Carabetta et al. consider the PCN of ColE1-derived plasmids is clearly 

regulated by the RssB-PAPI collaboration (1, 50). It is known that RssB, the ClpXP 

protease and a cis-acting turnover element (somewhere between methionine 159 

(M159) and histidine187 (H187) are somehow involved in the controlled degradation 

of σS (a subunit of RNA polymerase in E. coli) (53).  
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1.5.1.1 RssB 

In E. coli, the master response regulator RssB (also known as SpreE or MviA) is an 

element of a two-component signal transduction pathway. The RssB protein is 

homologous to the N-terminal domain of the response regulator family, but its C-

terminal output domain is not homologous to any identified protein. However, 

depending on phosphorylation of the N-terminal RssB receiver domain RssB 

recognizes the turnover element (see 1.5.1) within σS (53). It is speculated that stress 

somehow stabilizes σS and promote inactivation of RssB by dephosphorylation of its 

receiver domain.  

Hitherto, two interaction partners of σS are known: (i) RNAP core enzyme; and 

(ii) RssB, which mediates σS degradation. It is worth noting that the binding site for 

RssB in σS is adjacent to the crucial – 10 promoter element. 

 Hengge-Aronis et al. could clarify experimentally that RssB can be an anti-

sigma factor for σS in vivo as well. When σS is accumulating, RssB can act as a 

repressor of σS-dependent genes (28, 29).  

 

Cis-acting element 

This cis-acting turnover element is to be detected somewhere between M159 and 

H187. By site-directed mutagenesis Gisela Becker et al. confirmed lysine 173 (K173) 

and the amino acids around as the turnover element in σS. Substitution of K173E 

(glutamate abbreviated as E) has turned out to prevent ClpPX-mediated proteolysis. 

However, K173 in σS has dual functions: it is essential for σS proteolysis but it may 

play a role in promoter recognition as well (53). 

 

ClpPX 

According to Muffler et al., it is not clear if σS degradation is catalyzed by either RssB 

itself or by the ClpPX protease, a complex ATP-dependent protease composed of 

proteolytic (ClpP) and chaperone (ClpX) subunits. However, there are hints that the 

protease is only active in the presence of RssB or that RssB might expose σS to the 

ClpPx protease machinery. Experiments in the near future will establish clarity (24). 
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1.5.1.2 Stability of RpoS/σS 

Lange et al. verified experimentally that rpoS/σS (σS, a subunit of RNAP, is encoded 

by RpoS) expression is enormously complex and is controlled on (i) transcriptional 

level; (ii) translation level; and (iii) protein stability. RpoS expression is governed by 

various extrinsically signals such as cAMP, ppGpp, cell density signals, osmotic 

signals, and starvation signals (fig.8.). Increasing medium osmolarity does not induce 

necessarily rpoS transcription but rather some post-transcriptional mechanisms. Not 

only σS is controlling stationary phase-induced gene expression but various 

regulating factors as well such as 3’, 5’-cyclic AMP-cAMP receptor complex (cAMP-

CRP) cAMP-CRP complex, Lrp and integration host factors. Each factor is revealed 

to be part of a complex regulatory network regulating expression of many genes 

induced in the stationary phase (27). Both, entry into stationary phase and increased 

medium osmolarity are enhancing RpoS translation intensely. However, in 

exponentially growing cells σS is a highly unstable protein with a half-life of 1.4 

minutes but its clearly more stable in stationary phase (~10.5 min) (27).  

 All in all, stress signals and transition into stationary phase bring about up-

regulation of RpoS and as a transcriptional activator it enhances transcription of 50-

100 genes leading to stress resistance and other physiological and/or morphological 

modifications (53). 

 

 
 
Fig.8: Model of regulation of rpoS/σS expression. Various extrinsically signals (indicated in the model) 
are regulating its expression on transcriptional, translational level as well as its stability (27). 
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1.5.2 Uncharged tRNAAlaU(UGC) in relA mutants 

tRNA is not only involved in translation, moreover novel functions has been revealed 

recently e.g. retroviruses and long terminal repeats (LTR) retrotransposons utilize 

priming tRNAs for reverse transcription (Marquet et al., 1995), in amino-acid starved 

E. coli tRNAs interact with RNAI and/or RNAII, thus regulating replication of ColE1-

type plasmids (Wróbel et al., 1997, 1998; Wegrzyn, 1999; Wang et al., 2002). 

Furthermore, it was shown that the T helper immune response in mice was stronger 

stimulated after application with tRNAAla adjuvants (Wang et al., 2006) (8).  

 It took many years, until a model for tRNA-dependent regulation of ColE1-like 

plasmids replications has been recommended by Yavachev and Ivanov. Before then, 

Hecker et al. were among the first stating that the copy number of the ColE1-like 

plasmid pBR322 was clearly enhanced in amino acid starved E. coli. 1994, Herman 

et al. declared that depending on what kind of amino acid was missing in the media, 

ColE1-type plasmids varied in their replication behaviour. The same is true for other 

ColE1-like plasmids (Wróbel and Wegrzyn, 1998). However, still it is not clear why 

lack of different amino acids result in different replication behaviour of ColE1-like 

plasmids. It has been considered that ppGpp, a global regulator of gene expression 

in bacteria, can somehow prevent replication of ColE1-like plasmids (Herman et al., 

1994) (55).  

 In 1988, Zavachev and Ivanov studied sequence similarity between all 21 

tRNAs and RNAI/II, encoded on the ColE1 plasmid. According to their homology to 

RNAI/RNAII, all tRNAs were divided into three classes: (i) tRNAs homologous to 

RNAI (Arg, His, Leu, Lys, Phe, and Thr); (ii) tRNAs homologous to RNAII (f-Met, Try, 

and Gly); and (iii) tRNAs homologous to RNAI and RNAII (Met and Val) (Zavachev et 

al., 1988). The anticodon loop of all tRNAs own seven nucleotides (Hjalt and 

Wagner, 1992) (18, 56). 

According to the model of Wang et al., RNAI-RNAII interaction could be 

hampered by accumulated uncharged tRNA present in bacterial cells during the 

relaxed response leading to enhanced plasmid replication. Other experiments argue 

for primer extension of the 3’ CCA sequence of uncharged tRNAs necessary to 

induce replication (Maizels and Weiner, 1994; Chen and Lambowitz, 1997) (55, 56). 

In 2006, experiments in amino-acid-starved RelA mutants (“relaxed response”) 

http://mic.sgmjournals.org/cgi/content/full/152/12/3467#R49�
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suggested that uncharged tRNAAlaU(UGC) catalyze cleavage of RNAI leading to 

enhanced ColE1-like PCN in vitro and in vivo. The ACCA motif at the 3’-terminus of 

the tRNAAla (UGC) is crucial for cleavage of RNAI because those effects have not 

been seen when the 3’-ACCA sequence was deleted. Based on these data, Wang et 

al. assumed 3’-ACCA of tRNA together with the UGGU motif within the RNAI loops 

generate a catalytic structure capable of cleaving RNAI molecules only in the 

presence of Mg2+ ions. Want et al. stated that both, UGGU sequences and the 3’-

ACCA sequences may exert catalytic activity (8). 

 

1.5.2.1 Aminoacylation of tRNA 

Aminoacylation is a two-step process where a specific amino acid is attached to its 

cognate tRNA catalyzed by aminoacyl-tRNA synthetases (aaRS). To generate 

aminoacyl-tRNA molecules, ATP and the cognate amino acids have to bind to 

specific aaRS sites. After attachment, inorganic pyrophosphate (PPi) is released.  

To physically link the amino acid to the trinucleotide sequence of its cognate tRNA, 

the amino acid has to be transmitted from the aa-AMP to the 2’- or 3’-OH group of 

the 3’-end of the tRNA acceptor stem.  

 The 20 known aaRS differ in size, differ mostly in their sequences and can 

occur either as dimeric, trimeric or tetrameric complexes. The aaRS GlnRS, TyrRS, 

MetRS, GluRS, ArgRS, ValRS, IleRS, LeuRS, TrpRS belong to the class I having the 

conserved sequence motifs “HIGH” and “KMSKS” in common. According to crystal 

structures both motifs contain the Rossman fold, a nucleotide binding fold that binds 

ATP. Aminoacylation of the 2’-OH of an adenosine nucleotide is conducted by the 

class I synthetases. In contrast to class II synthetases, the class I molecules share 

two highly conserved sequence motifs. Class II synthetases contain three highly 

conserved sequence motifs and they catalyze aminoacylation of the 3'-OH of an 

adenosine nucleotide. Some synthetases conduct proofreading, a process to ensure 

highly accurate tRNA charging. Non-cognate amino acids are rapidly removed by 

hydrolyzation of the aminoacyl-tRNA bond (23, 58). 

 All 21 tRNAs have a trinucleotide sequence in their anticodon loop that can 

pair with several codons. To conduct correct tRNA aminoacylation, many aaRS do 
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not confide only in the trinucleotide sequence but utilize identity elements in the 

acceptor stem of the tRNA as auxiliary device as well.  

Recent experiments revealed that the G3•U70 base pair, located in the 

acceptor stem of tRNAAlaU, is an important but not solely identity element to be 

recognized by a cognate Alanyl-tRNA synthetase (AlaRS). According to McClain et 

al. the recognition mechanism of tRNAAlaU is both, directly and indirectly and not only 

catalyzed by AlaRS alone, but rather by several synthetases. Concluding from this, 

minihelices, duplexes, and smaller RNA helices, mimicking the acceptor stem, can 

be aminoacylated by AlaRS as well (59). 

To be recognized by the AlaRS, the first 4 bp encoded on the acceptor stem 

and the discriminator base A 73 of the tRNAAlaU molecule are critical as it has been 

shown in in vivo and in vitro experiments. According to that, base transversion in 

G2:C71, which is located close by the G3:U70 position, has a tremendous effect on 

recognition by AlaRS leading to a significant loss of aminoacylation activity. This is 

true for in vitro experiments (6).  

 
1.6 Chromosomal integration of linear DNA fragments via the Red 
Disruption System 

According to Lorenz et al. most bacteria refuse the uptake of linear DNA because it is 

consequently degraded by host encoded exonucleases. However, Datsenko and 

Wanner had the idea to amplify linear DNA by using PCR primers that are 

homologous to the target DNA region. To promote homologous recombination with 

linear DNA, the plasmid-encoded phage λ Red recombinase (fig.9) is necessary, 

which is controlled by the well-regulated OriR101 promoter. After shifting temperature 

to 42°C, pKD46 is simply excluded from the cells due to the temperature-sensitive 

ORI.   

Bacteriophages evolved their own homologous recombination system. In 

contrast to recD, recBC or sbcB mutants the recombination frequency was intensified 

when the Red-mediated recombination system together with linear DNA fragments 

was applied. However, the Red system encodes three genes, which are regulated by 

the ParaB promoter: γ, β and exo. After induction with arabinose, the final products 
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called Gam, Bet and Exo are expressed. The endogenous RecBCD exonuclease V is 

blocked by Gam facilitating recombination at DNA ends catalyzed by Bet and Exeo 

(3). 

 

 
Fig.9: The Red helper plasmid pKD46 enables efficient homologous recombination with linear DNA 
fragments (adapted from university of Sheffield/Wet Lab). 
 

1.7 Induced gene expression from T7 promoters 

In biotechnology, transcription of cloned genes is often initiated by T7 DNA-

dependent RNAP. This enzyme is recognizing its promoter highly specifically and 

relatively few T7 RNAP molecules are sufficient to drive high-level expression. 

Furthermore, transcription can be reinitiated several times leading to enhanced levels 

of stable RNAs. According to Studier et al. only few hours post induction the protein 

level will accumulate up to 50% or even more of the entire cell protein concentration  

Although highly active, the T7 RNAP is overstressing the translational machinery 

and, thus, the translational efficiency.  

 T7 RNAPs can direct all basic steps necessary for transcription autonomously 

independently from host-encoded transcription factors (Ferrari et al., 2004). 

Structural analysis suggests that transition from initiation to elongation go along with 

conformational rearrangements particularly in the N-terminal domain of the 

polymerase (Theis et al., 2004). Compared to the complex RNAPs, the architecture 

of T7 DNA-dependent RNAPs is rather ordinary with a molecular mass of about 100 

kD. According to structural and functional analysis the T7 RNAP, eukaryotic 
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mitochondrial, chloroplast, other phagelike RNAPs and DNAP of the polymerase I 

family are not homologous (39, 51).  

 The chromosomal integrated lambda DE3 prophage is expressing T7 RNAP 

after induction with IPTG. However, expression of T7 RNAP is controlled by the 

lacUV5 promoter, which is, compared to the wt lac promoter, even active when 

glucose is added to the media (known s catabolite repression). Because of this, 

expression of the transgene in DE3 strains might occur. Normally chromosomally 

integrated λDE3 is inactive in bacterial cells but induction of the SOS cascade may 

lead to its activation leading to cell lysis. Strains expressing T7 polymerase but 

lacking integrated DE3 prophages, are rather insensitive after SOS response 

induction (54). However, it is demonstrated that T7 expressing systems enhance 

gene expression in untreated cells (despite the high specificity for its own promoter), 

influence growth of host cells and its effect on induction is rather low compared with 

gene expression in uninduced cells (Spehr et al., 2000).  
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2 Objectives 
 

The demand for large quantities of highly pure pDNA is arising since gene therapy 

and DNA vaccines make their way into preclinical studies (Carnes et al., 2006). 

Factors such as PCN, structural and segregational stability of plasmids influence the 

efficiency of recombinant protein production in E. coli to a considerable extend (Skulj, 

2008). Expression systems such as the T7 system probably cause exhaustion of the 

protein synthesis machinery but maintenance of the producing population is of 

particular importance in a fermentation process. Excessive overload of the metabolic 

burden of the host can be kept within bounds by regulating PCN. However, upkeep of 

the segregational stability of plasmids is often an intricate problem during the 

fermentation process. Segregational instability usually leads to the emerging and 

enhancement of a plasmid-free population resulting in constrained productivity. All in 

all, retaining low metabolic burden during accumulation of biomass and induction of 

high PCN in the final part of the fermentation process will lead to enhanced plasmid 

yield and plasmid quality. 

 The major object of this work was to evolve a system to regulate the copy 

number of ColE1 plasmids. Two different approaches have been explored: in the first 

approach, upregulation of plasmid concentration by induced expression of tRNAAlaU 

wt and mutated tRNAAlaU (mut) should be carried out. For that reason, tRNAAlaU wt 

and tRNAAlaU mut has been integrated into the E. coli chromosome and its 

expression was controlled by the T7 polymerase. Those strains were transformed 

with 3 different ColE1-plasmids to test if overexpression leads to an enhanced 

plasmid concentration. However, in the majority of IPTG-induced and uninduced cells 

plasmid concentration was marginally increased or even decreased. This was also 

true for uninduced cells due to the leaky T7 promoter. 

 In a second attempt rssB was cloned in a pBSK plasmid to test whether its 

overexpression, induced by the T7 polymerase, lead to enhanced plasmid 

concentration. As in the previous approach, even uninduced cells showed some 

upregulation of plasmid concentration due to the leaky T7 polymerase.
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3 Materials and Methods 
 
3.1 Media 

3.1.1 Media and growth conditions 
All E. coli strains (table 1) used in this work were grown in liquid Luria-Bertani (LB) 

media (table 2) at 37°C and shaken at 190 rpm. Media was supplemented with 

antibiotics or other additives as recommended (table 2). Cells were plated on LB-

agar-plates containing antibiotics (table 3) in case of need. After electroporation, cells 

were transferred into SOC medium (table 4) and incubated with agitation at 37°C 

unless otherwise noted. All media were sterilised by autoclaving for 20 minutes at 

121 °C and 2 bar. 

 

Table 1: Bacterial strains 

Host  Source Genotype Resistance 

JM109 Lab stock recA1 supE44 endA1 hsdR17  

gyrA96 relA1 ∆(lac-proAB) 

- 

MG1655 Lab stock F- lambda- ilvG- rfb-50 rph-1 - 

BL21 (DE3) Novagen F-, ompT, hsdSB(rB-, mB-), dcm, gal,  

λ(DE3) 

- 

HMS174 (DE3) Novagen F- recA1 hsdR(rK12
– mK12

+) (DE3) RifR 

 

Table 2: LB media: 

Tryptone 10 g/l 

Yeast extract   5 g/l 

NaCl 10 g/l 

 

LB media components were dissolved in 950 ml sterile deionized water, pH value 

was set to 7.0 with 5 molar (M) NaOH and volume was adjusted to 1 liter (l) with 

deionized water. For LB agar, 15 gram (g) agar-agar was added per 1l LB media. 
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The autoclaved media was cooled down to 50°C in a water bath before adding 

antibiotics. 

 

Table 3: Antibiotics and other additives: 

  
Stock solution 

 
End Concentration 

Ampicillin 100 mg/ml 100 µg/ml 

Chloramphenicol 25 mg/ml 25 µg/ml 

IPTG 0.1 M 100 µmol 

Na-Citrate (pH 5.5)  1 M 10 mM 

CaCl2 1 M 5 mM 

Glucose 20% 0.2% 

MgSO4 1 M 10 mM 

 

Antibiotics and other additives were sterilfiltrated (0,22 µm) or autoclaved and stored 

at -20°C. 

 

Table 4: SOC medium 

A bacto tryptone  20 g/l 

 yeast extract    5 g/l 

 NaCl  10 mM 

 KCl    3 mM 

 MgCl2  10 mM 

B glucose*H2O  20 mM 

C MgSO4*7H2O  10 mM 

 

A, B and C were autoclaved separately and mixed subsequently. 
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3.1.2 Shake flask cultures 
The overnight cultures were grown at 37°C with agitation (190 rpm) for 16 hours. 

After overnight incubation, cultures were diluted 1:1000 in 50 ml LB media containing 

the corresponding antibiotics. Gene expression was induced by addition of 100 µmol 

IPTG at an OD600 of 0.5. In parallel, uninduced control cells were considered in all 

experiments.  

 
3.1.3 Bacterial cryostock 
For E. coli conservation at -80°C cryostocks have been prepared. Cells from a single 

colony were incubated in 4 ml LB media supplemented with antibiotics at 37°C 

shaked at 190 rpm. After incubation for 16 hours, 600 µl of cell suspension and 300 

µl glycerine (86%) were transferred into a 1.5 ml sterile Eppendorf tube, immediately 

inverted and frozen at -80 °C. 

 
3.1.4 Bacterial strains and plasmids 
Strains 

All strains and plasmids used in this work are listed in Table 1 and Table 5. 

 
Table 5: Plasmid list 

 
Plasmids  Source Resistance 

 
pBluescript KSII+ 

 
Stratagene 

 
AmpR 

pkD46 kindly provided by Joseph Peters AmpR, temperature 

sensitive 

pBR322 MBI Fermentas AmpR, TetR 

pUC19 MBI Fermentas AmpR 

pET11a Novagen AmpR 
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3.2 Molecular biological Methods 

3.2.1 Polymerase Chain Reaction (PCR) 
All DNA amplification reactions were carried out in Biometra T3-Thermocycler by 

using the high-fidelity Phusion polymerase (Finnzymes) or Taq polymerase (Biotools 

B&M Labs) according to the manufacturer’s instruction. Lyophilized primers have 

been mixed with sterile water to obtain a stock solution with a final concentration of 1 

ng/µl. A 1:100 dilution of the primer stock solution gave a final concentration of 10 

pmol/µl ready to be used as a primer working solution for PCR reactions. 

Additionally, 2.5 % dimethyl-sulfoxide (DMSO) was applied in the PCR reaction to 

avoid formation of secondary structures in the DNA template and DNA primers. The 

melting temperature (Tm) is the temperature where DNA double helix is separated 

into its single strands and is necessary to determine the stability of a primer-template 

hybrid. A simple formula for calculating Tm is: 

Tm = 4(G + C) + 2(A + T) °C 

3.2.1.1 Colony PCR 

Colony PCR techniques have been employed to screen for positive clones by using 

Taq polymerase. This technique enabled a screening of 8 randomly chosen colonies. 

Individual colonies were picked with a sterile pipette tip and were inoculated in 10 µl 

sterilized water. 3 µl of inoculated cells were pipetted into PCR tubes containing the 

PCR reaction mix. 

 

3.2.1.2 Cloning PCR 

To clone genes, the phusion high-fidelity DNAP is a superior choice since it has 

proofreading function. It has a unique ds-binding domain, fused to a Pyrococcus-like 

proofreading polymerase, which increases the affinity for ds DNA. 

 
3.2.2 Agarose gel electrophoresis and extraction of DNA fragments from 
acrylamid gels 
To separate DNA fragments according to their seize gel electrophoresis (Biorad) was 

performed using a 1 % agarose gel. To obtain 500 ml of liquid agarose solution, 5 g 
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agarose and 10 ml of 50x TAE was mixed and filled up to 500 ml with sterile water. 

For complete dissolution, the solution was heated up in a microwave. After a cool 

down period, 18 µl ethidium bromide was added. Gels were running using 1x TAE 

running buffer after 1:50 dilution of a 50x TAE stock solution (table 6). For sizing ds 

DNA λ DNA EcoRI/HindIII markers are suitable. 6x DNA loading dye (Fermentas) 

contains glycerol that causes samples to sink to the bottom of the wells. Analytical 

gels were run at 130 Volts and preparative gels at 90 Volts. DNA fragments were cut 

out from preparative gels, purified and used for digestion or cloning. For gel 

documentation DNA was visualized under UV-light (Bio-Rad). 

 

Table 6: 50x TAE stock solution 

Tris base 242 g/l 

glacial acid 57.1 ml/l 

0,5 M EDTA (pH 8.0) 100 ml/l 

 

3.2.3 Purification of DNA fragments and PCR products 
PCR products and DNA fragments were purified with commercially available 

products (illustra GFXTM PCR DNA and Gel Band Purification Kit from GE Healthcare 

and Wizard® Plus SV Minipreps DNA Purification System from Promega). The 

purified nucleic acids were eluted in HPLC-clean water. 

  

3.2.4 Plasmid preparation 
pDNA was extracted from 12 ml overnight bacterial culture with the Wizard® Plus SV 

Minipreps DNA Purification System. Finally, pDNA was eluted with 30 µl nuclease 

free water. To gain higher pDNA yield, the Promega Wizard® Plus Midipreps DNA 

Purification System was applied and pDNA was eluted in 600 µl nuclease free water. 

 

3.2.5 Determination of ds-DNA concentration 

DNA-concentration was determined in a spectrophotometer by exposing DNA to 

ultraviolet light at 260 nm. The ratio of A260/A280 reflects the purity of a nucleic acid 

(DNA, RNA) sample and in solution, it averages between 1.8 to 2. 
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3.2.6 Restriction enzyme digestion of DNA 
Restriction digestion with restriction enzymes (NEB) was applied for vector 

linearization, isolation of insert DNA for cloning purposes and control digestions. 

Digestions were conducted with restriction enzymes in reaction buffers that came 

with the restriction enzyme. Some restriction enzymes need Bovine Serum Albumin 

(BSA) to enhance performance and stabilization of the restriction enzymes. All 

restrictions were carried out at 37°C (Eppendorf heating block) for two hours. 

Agarose gel electrophoresis was necessary for analysing or preparation of DNA 

fragments. 

 

3.2.7 Ligation 
To perform successful ligation of insert and vector DNA the T4 DNA Ligase (NEB) 

was used. The standard ligation reaction for DNA was conducted as follows: a 5:1 

molar ratio of insert DNA to vector DNA in a 10 µl set-up is believed to be very 

efficient. The ligation mix containing T4 DNA ligase, T4 ligase buffer, pDNA, insert 

and water, was incubated overnight at 16°C and purified and concentrated with 2-

butanol precipitation as mentioned in section 3.2.9. 

 
3.2.8 Preparation of electrocompetent cells 
A single colony of cells were picked up with a sterile pipette tip and incubated in 20 

ml LB medium containing antibiotics overnight at 37°C with agitation (190 rpm). The 

overnight culture was diluted 1:1000 in a 50 ml fresh LB media and incubated at 

37°C with agitation (190 rpm). The OD600 was measured every thirty minutes. Once 

the OD600 reached 0.5, the culture was transferred in ice-cold Falcon tubes. The cells 

have been harvested by centrifugation at 5000 g for 5 minutes at 4°C. The 

supernatant was decanted and the cell pellet was resuspended in 1 ml ice-cold 

sterile HPLC-water. The suspension was transferred in an ice-cold Eppendorf tube 

and centrifuged at 5000 g for 5 minutes at 4°C (the washing step was repeated 5 

times). Finally, the pellet was resuspended in 50 µl ice-cold sterile HPLC-water. Cells 

were prepared freshly for every electroporation. 

 

 



3 Materials and Methods 
 
 
 
 

 - 47 - 

3.2.9 Concentration and purification of pDNA 
Further concentration and purification steps necessary for electroporation of ligated 

plasmids were carried out with 2-butanol precipitation according to a standard 

protocol: an equal volume of isopropanol (2-butanol) was added to the DNA as well 

as 3 M Na-Acetate and 2-butanol. The sample was incubated at room temperature 

for 10 minutes, and subsequently on ice for further 10 minutes. Centrifugation at full 

speed for 30 minutes at 4°C was carried out. The supernatant was removed and the 

pellet was precipitated with 70% ethanol followed by another centrifugation step for 

10 minutes at 4°C at top speed. The supernatant was removed and the precipitated 

DNA was dried at room temperature for 20 minutes. The purified and concentrated 

DNA was then resuspended in 20 µl sterile water. 

 

3.2.10 Electroporation of purified plasmids 
Electroporation was performed by using Biorad gene pulser at 2.5 kV, 1000 Ω and 25 

µF. For electroporation, self made and ice-cold cuvettes were used by pasting up 

cuvettes with aluminium foil. After electroporation, cells were recovered at 37°C in 

950 µl SOC-medium for 1 hour with agitation (Eppendorf, Thermomixer) and plated 

on LB-Agar plates containing antibiotics for selection. The plates were inversely 

incubated overnight in a 37°C incubator (Heraeus). 

 

3.2.11 Sequencing 
DNA sequencing was performed by AGOWA GmbH (Berlin, Germany). Samples had 

to be diluted with sterile water to the concentrations according to manufacturer’s 

protocol: 

 

 

 

 

 

If sequencing with a custom primer was required, 4 µl of a 5 pmol/µl primer solution 

was added. Universal primers were provided by AGOWA. The sequencing data was 

available in the download area of the AGOWA online order system. 

Template DNA Volume Concentration  

Plasmids 10 µl 100 ng/µl 

PCR products:   

200 – 500 bp 10 µl 10 ng/µl 
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3.3 Genomic engineering 
3.3.1 Construction of the pBR322::TN7<CAT-T7-tRNAAlaU wt> and 
pBR322::TN7<CAT-T7-tRNAAlaU mut> vector 
To construct pBR322::TN7<CAT-T7-tRNAAlaU wt> and pBR322::TN7<CAT-T7-

tRNAAlaU mut> pBR322-MCS was used as the backbone vector (fig.10). To create 

pBR322-MCS, PCR was carried out with the primers KpnI_MCS_for_pBR322 and 

KpnI_MCS_back_pBR322, the Phusion polymerase and pBR322 as a template. After 

PCR, fragments were purified (1874 bp) (see 3.2.3) and subsequently restricted with 

DpnI and KpnI. The KpnI restriction site was located on both primer overhangs 

essential for religation of pBR322-MCS. In the next step, the linear pBR322-MCS 

was religated, transformed in electrocompetent JM109, amplified and isolated. After 

isolation, restriction with SacI and KpnI was done to proof correct ligation because 

only the correct plasmid can be linearised with these enzymes. After isolating the 

correct pBR322-MCS, restriction with SacI and KpnI was carried out to clone 

tRNAAlaU wt and tRNAAlaU mut genes in the plasmid backbone. 

 To gain the inserts, CAT-T7-tRNAAlaU wt and CAT-T7-tRNAAlaU mut were 

excised from the vector pBSK::TN7<CAT-T7-tRNAAlaU wt> and pBSK::TN7<CAT-T7-

tRNAAlaU mut> by using the restriction enzymes SapI and KpnI. After electrophoresis, 

the 1800 bp long fragments have been isolated from the preparative gel and purified. 

Ligation was carried out at 16°C (see 3.2.7) and further concentration and purification 

steps, necessary for electroporation in electrocompetent cells, were conducted with 

2-butanol precipitation (see 3.2.9). Finally, for validation both vectors were cut with 

the restriction enzymes SacI, KpnI as well as SapI and ZraI and have been sent to 

AGOWA for sequencing (see 3.2.11). The correct vectors pBR322::TN7<CAT-T7-

tRNAAlaU wt> and pBR322::TN7<CAT-T7-tRNAAlaU mut> (see fig.10) have been 

electroporated in BL21(DE3) and HMS174(DE3). 

 Construction of the vector pBR322::TN7<CAT-T7-tRNAAlaU mut> could not be 

conducted in this work. 
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Fig.10: The linear cassette including <CAT-T7-tRNAAlaU wt> was inserted into the backbone vector 
pBR322-MCS. 
 

3.3.2 Construction of the pBSK::TN7<CAT-T7-rssB> vector 
To clone rssB in the vector backbone pBSK::TN7<CAT-T7-GFP> (fig. 11), GFP (56 

bp) was eliminated through restriction with BamH1 and NdeI. After restriction, the 

linearised plasmid has been loaded on a preparative gel to cut out the correct band 

(4833 bp) after electrophoresis. rssB was amplified by conducting colony PCR of 
JM109 using Phusion DNAP as well as BamH1 rssB_for and NdeI rssB_back as 

primers. After PCR, rssB fragments (1014 bp) have been loaded on a gel and 

isolated fragments have been purified. Subsequently, rssB has been restricted with 

BamH1 and Nde1, cloned in the linear pBSK::TN7<CAT-T7> vector and ligated at 

16°C (see 3.2.7). After ligation, pBSK::TN7<CAT-T7-rssB> (fig.11) was 

electroporated in electrocompetent JM109 for amplification. To identify correct 

plasmids, restriction analysis was performed by using BamH1 and XbaI as restriction 

enzymes. The proper plasmids have been sequenced by AGOWA and afterwords 

electroporated in HMS174(DE3) and BL21(DE3). 
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Fig.11: GFP from pBSK::TN7<CAT-T7-GFP> was replaced by the gene rssB to create 
pBSK::TN7<CAT-T7-rssB>. 
 

3.3.3 Chromosomal integration via P1 vir phage transduction 
To amplify linear DNA fragments encoding tRNAAlaU and tRNAAlaU mut genes (fig.12) 

pBSK::TN7<CAT-T7-tRNAAlaU wt> and pBSK::TN7<CAT-T7-tRNAAlaU mut> served as 

a template in the PCR reaction using the primers m1320 and T3 blue script. After 

PCR, the DNA fragments have been loaded on a preparative gel. After gel 

electrophoresis bands (1800 bp) were cut out and purified. According to Sauer’s P1 

transduction protocol, MG1655 cells containing pKD46 were cultivated over night in 

LB-amp media and the next day, cells were diluted 1:100 in 50 ml LB-amp containing 

1% arabinose. Cells were grown at 28°C, shaked until the OD600 reached 0.5 and 

made competent (see 3.2.8). For transformation 400 ng of linear DNA fragments 

have been used. After electroporation in MG1655, cells have been inoculated in SOC 

medium for 2 hours at 30°C with agitation and plated on cm-agar plates. Plates have 

been incubated over night at room temperature. Randomly chosen colonies have 

been screened with PCR, using m1320 and T3 blue script primers, for the presence 

of integrated tRNAAlaU wt and tRNAAlaU mut genes and sent to AGOWA for 

sequencing. Recombinant colonies were cured from pKD46 by incubation at 42°C. 
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Fig.12: The linear T7-tRNAAlaU-casette, obtained by PCR, contains the cm resistance gene (CAT) to 
select positive clones. Furthermore, the cassette includes homologous sequences on both ends 
facilitating integration into the hosts BL21(DE3) and HMS174(DE3).  
 
 

The donor strains MG1655::TN7 <CAT-T7-tRNAAlaU wt> and MG1655::TN7<CAT-T7-

tRNAAlaU mut> have been inoculated in an overnight culture (LB media) containing 

cm. The next day the MG1655 strains have been diluted 1:100 in fresh LB medium 

containing 5 mM CaCl2 and 0,2% glucose and incubated with agitation at 37°C for 1 

hour. 50 µl of the P1 page lysate was added to the culture and grown at 37°C until 

the culture has been lysed completely. Several drops of chloroform were added to 

the lysate and vortexted. The debris was centrifuged away (14,000 rpm for 2 

minutes) and the supernatant was transferred to a new tube. A few drops of 

chloroform was added to the lysate and stored at 4°C. 

 The recipient strains BL21(DE3) and HMS174(DE3) were grown overnight in 

12 ml LB medium. The day after, the cells have been harvested by centrifugation 

(6,000 rpm for 2 minutes) and resuspended in the original culture volume in fresh 50 

ml LB media containing cm, 100 mM MgSO4 and 5 mM CaCl2. 100 µl recipient cells 

and 100 µl P1 lysate have been mixed and incubated at 37°C for 30 minutes. 200 µl 

1 M Na-Citrate (pH 5.5) and 1 ml LB media have been added to the lysate and then 

incubated at 37°C for 1 hour to enable expression of cm gene. Subsequently, the 

cells were centrifuged at 6,000 rpm for 3 minutes, resuspended in 100 µl LB media 

containing 100 mM Na-Citrate (pH 5.5) and plated on cm-containing agar plates. The 

agar plates have been incubated at 37°C overnight and, the day after, re-streaked on 

a new plate to isolate cells covering with P1 phage. The re-streaked colonies have 

been screened with PCR (primers m1320, T3 blue script) for the presence of the 

tRNAAlaU wt and tRNAAla mut genes (fig.13) and subsequently sequenced by 

AGOWA. BL21(DE3) and HMS174(DE3) have been transformed with three different 

plasmids (pUC19, pBR322 and pET11a). 
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Fig.13: Chromosomal integration of tRNAAlaU wt/mut in BL21(DE3) via P1 transduction. Site-directed 
point mutations (shown here in green) have been introduced by using mutagenic PCR-primers.  
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4 Results and Discussion 
 

4.1 Regulation of PCN via IPTG-induced expression of tRNAAlaU wt, 
tRNAAlaU mut and rssB 
The object of the following experiments was to increase the PCN in BL21(DE3) and 

HMS174(DE3) by stable chromosomal integration of tRNAAlaU wt and tRNAAlaU mut 

controlled by the IPTG-inducible T7 promoter. Homologous recombination at the 

bacterial transposon Tn7 donor site was conducted by P1 transduction (see 3.3.3). 

To investigate the impact of chromosomally integrated tRNAAlaU wt and mut on the 

replication of ColE1-type plasmids, cells have been electroporated with three 

different plasmids (pET11a, pUC19 and pBR322). A further approach to increase 

PCN of ColE1-derived plasmids was to overexpress rssB, cloned in pBSK. 

In routine shake flask experiments these transformed strains were grown in LB 

medium with and without IPTG induction. For selection cm has been used. pDNA 

concentration was determined at hourly intervals and its concentration was estimated 

by both gel electrophoresis and spectrophotometry. Shake flask experiments and 

plasmid preparations were always conducted in triplicates. 

 

4.1.1 Shake flask experiments and determination of plasmid concentration 
BL21(DE3)::TN7<CAT-T7-tRNAAlaU wt>, BL21(DE3)::TN7<CAT-T7-tRNAAlaU mut>, 

HMS174(DE3)::TN7<CAT-T7-tRNAAlaU wt>, HMS174(DE3)::TN7<CAT-T7-tRNAAlaU 

mut> containing pUC19, pBR322 and pET11a, as well as BL21(DE3) 

pBR322::TN7<CAT-T7-tRNAAlaU wt>, HMS174(DE3) pBR322::TN7<CAT-T7-

tRNAAlaU wt>, BL21(DE3) pBSK::TN7<CAT-T7-tRNAAlaU wt>, BL21(DE3) 

pBSK::TN7<CAT-T7-tRNAAlaU wt>, BL21(DE3) pBSK::TN7<CAT-T7-rssB> and 

HMS174(DE3) pBSK::TN7<CAT-T7-rssB> have been inoculated in an overnight 

culture (12 ml LB-cm media). After 16 hours inoculation, cells have been diluted 

1:1000 in fresh LB-cm media. After cells have reached an OD600 of 0.5, the 

expression of the target gene has been induced with 100 µM IPTG. Uninduced 

control cells have always been considered in this work. In one-hour intervals OD600 

was measured (see table 7), normalized cells have been isolated and centrifuged at 

room temperature. After centrifugation plasmids have been isolated and their 
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concentration has been measured with spectrophotometry. 4 µl of the extracted 

plasmids have been loaded onto an agarose gel to estimate plasmid concentration. 

 

4.1.1.1 OD600 measurement to evaluate bacterial growth 

To measure the optical density of bacterial cultures, overnight cultures were diluted 

1:1000 in 50 ml media containing antibiotics and 100 µM IPTG was added to induce 

overexpression of the candidate gene. In parallel, uninduced control cultures have 

always been included. At one-hour intervals (0h, 1h, 2h, 3h) normalized cells have 

been isolated and OD600 was quantified with a spectrophotometer. Measured OD600 

growth values are listed in table 7. 

 

Table 7: OD600 measurement to evaluate bacterial cell growth 

 
  

- IPTG 
 

 
+ 100 µM IPTG 

 
HOST STRAIN 
 

 
  0h   1h   2h   3h 

  
  0h   1h   2h   3h 

 
BL21(DE3) pBR322-MCS 
 

 
0.518 1.432 2.864 4.034 

 
0.548 1.344 2.526 3.760 

 
HMS174(DE3) pBR322-MCS 
 

 
0.550 1.006 1.614 2.292 

 
0.514 0.940 1.390 1.962 

 
BL21(DE3) pBSK  
 

 
0.542 1.492 3.160 3.876 

 
0.556 1.278 2.936 3.716 

 
HMS174(DE3) pBSK 
 

 
0.528 0.928 1.458 1.870 

 
0.546 0.835 1.424 1.854 

 
BL21(DE3) pBSK::TN7<CAT-T7-
rssB> 
 

 
0.547 1.421 1.983 3.259 

 
0.521 1.298 2.490 3.631 

 
HMS174(DE3) pBSK::TN7<CAT-
T7-rssB> 
 

 
0.502 1.510 2.628 3.692 

 
0.502 1.512 2.600 3.500 

 
BL21(DE3) pBR322::TN7<CAT-T7- 
tRNAAlaU wt> 
 

 
0.512 1.090 2.496 3.516 

 
0.501 0.990 1.000 1.042 
 

 
BL21(DE3)::TN7< CAT-T7-RNAAlaU 
wt> pET11a 

 
0.506 1.394 2.242 3.396 

 
0.589 1.514 2.362 3.378 
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BL21(DE3)::TN7< CAT-T7-RNAAlaU 
mut> pET11a 
 

 
0.584     1.509    2.748     3.760 

 
0.592      1.457     2.718     3.750 

 
BL21(DE3)::TN7<CAT-T7-tRNAAlaU 
wt> pBR322 

 
0.552 1.406 2.414 3.134 

 
0.558 1.288 2.206 2.860 

 
BL21(DE3)::TN7<CAT-T7-tRNAAlaU 
mut> pBR322 

 
0.594 1.422 2.326 3.080 

 
0.576 1.368 2.184 2.826 
 

 
BL21(DE3)::TN7<CAT-T7-tRNAAlaU 
wt> pUC19 
 

 
0.581 1.522 2.211 2.981 

 
0.513 1.499 2.598 3.265 
 

 
BL21(DE3)::TN7<CAT-T7-tRNAAlaU 
mut> pUC19 
 

 
0.532 1.606 2.606 3.872 

 
0.548 1.554 2.512 3.676 
 

 

In BL21(DE3) pBSK::TN7<CAT-T7-tRNAAlaU wt> and BL21(DE3) pBSK ::TN7<CAT-

T7-tRNAAlaU mut> decreasing cell growth rate could be noted (data not shown). 

However, the data obtained from spectrophotometry and gel electrophoresis, where 

plasmid concentration was permanently reduced in the course of shake flask 

experiments, correspond to the decreasing OD600 values. One might conclude that 

overexpression of tRNAAlaU, which may have toxic effects, is the main reason leading 

to reduced or even decreasing growth.  

 However, using the same strain BL21(DE3) but transformed with 

pBR322::T7<CAT-T7-tRNAAlaU wt> showed increasing growth rates in contrast to the 

strains containing pBSK::TN7<CAT-T7-tRNAAlaU wt> and pBSK::TN7<CAT-T7-

tRNAAlaU mut>. In conclusion it is assumed that tRNAAlaU exerted a gene dosage-

dependent effect. Furthermore, HMS174(DE3) pBR322::T7<CAT-T7-tRNAAlaU wt and 

mut> (data not shown), BL21(DE3) pBSK::T7<CAT-T7-rssB>, HMS174(DE3) 

pBSK::T7<CAT-T7-rssB> and the chromosomally inserted wt and mut tRNAAlaU 

genes resulted in enhanced cell growth as well. 

 

4.1.1.2 Determination of plasmid concentration 

According to Summers et al., under most growth conditions natural multicopy ColE1 

plasmids are sustained at steady levels whereas related cloning plasmids are rather 

instable and are frequently lost (10-2-10-5 per cell per generation) because plasmids 

are irregular distributed between daughter cells. Due to this instability, plasmids are 
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lost, PCN is constantly decreasing but multimerization is enhanced. However, natural 

ColE1 plasmids encode cer promoting resolution of multimers to monomers by 

XerCD-mediated recombination. Summers et al. isolated factors affecting 

monomerization and stabilisation of ColE1 when cloned into vectors (37). 

The cloning vectors pBSK and pBR322, used in this work, do not contain the 

stability region cer to maintain plasmids as monomers. In E. coli, Chiang and Bremer 

studied the stability of pBR322-derived plasmids. According to their results, 

multimerization of those plasmids does not impact instability when cells are growing 

in antibiotic-free media. However, pBR322 and its derivatives are low copy-number 

vectors. 

 

4.1.1.2.1 Plasmid concentration of BL21(DE3) pBSK::TN7<CAT-T7-rssB> and 

BL21(DE3) pBSK::TN7<CAT-T7-rssB> 

BL21(DE3) and HMS174(DE3) have been electroporated with the vector 

pBSK::TN7<CAT-T7-rssB>. After isolation of normalized cells, pDNA was isolated 

and 4 µl of the extracted plasmids has been loaded onto an agarose gel to estimate 

plasmid concentration (fig.14). 
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Fig.14: BL21(DE3) and HMS174(DE3) cells have been electroporated with pBSK::TN7‹CAT-T7-rssB› 
whereas rssB was under the control of the T7 promoter. 
 

 According to the results after electrophoresis, rssB was downregulating the 

plasmid concentration in BL21(DE3) leading to segregational plasmid instability and 

loss. However, measurement of cell density during shake flask experiments 

demonstrated stable growth of BL21(DE3) pBSK::TN7‹CAT-T7-rssB› (see table 7). 

Concluding from the control BL21(DE3) pBSK, the plasmid concentration was 

constantly reduced after IPTG induction. After all, results indicated that rssB itself 

was not causing segregational instability but the plasmid pBSK itself in the host 

BL21(DE3). 
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 In contrast to BL21(DE3), plasmid concentration in HMS174(DE3) 

pBSK::TN7‹CAT-T7-rssB› was enhanced despite of decreasing plasmid 

concentration in the control cells HMS174(DE3) harbouring pBSK. That implies that 

rssB expressed in HMS174(DE3) is a factor contributing to enhanced plasmid 

concentration. Furthermore, in both cases rssB was expressed with and without 

induction due to the T7 promoter. 

Results from Sarkar et al. results revealed when rssB was overexpressed in a 

K-12 strain, PCN increased four-fold. In contrast to the procedure implemented in this 

work, they transformed a pcnB::kan K-12 strain with the ColE1 pET19b-based T7-

expression vector containing the rssB gene. So, rssB was overexpressed in a pcn- 

background by IPTG-induction but in our experimental set-up both strains are pcn+. 

Concluding from that, rssB could not perform its suppressor function in a pcn+ 

background and four-fold upregulation of plasmid concentration was not possible in 

that extent. 

 

4.1.1.2.2 Plasmid concentration of BL21(DE3) pBR322::TN7<CAT-T7-tRNAAlaU wt 

Genetically engineered BL21(DE3) cells have been electroporated with the vector 

pBR322::TN7<CAT-T7-tRNAAlaU wt>. After isolation of normalized cells, pDNA was 

isolated. To determine plasmid concentration, spectrophotometry was applied and 4 

µl of the extracted plasmids have been loaded onto an agarose gel (fig.15). 
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Fig.15: BL21(DE3) cells have been electroporated with pBR322::TN7<CAT-T7-tRNAAlaU wt> whereas 

tRNAAlaU was under the control of the T7 promoter. 

 

Both data gained from spectrophotometry and gel electrophoresis demonstrated 

clearly increasing plasmid concentration after IPTG induction. Concluding from that 

tRNAAla wt might contribute to increasing plasmid concentration. Results gained from 

BL21(DE3) pBR322::TN7<CAT-T7-tRNAAlaU mut> could not be demonstrated in this 

work. 

 Viacheslavov and Mosevitskiĭ could show that the plasmid pBR322 in E. coli B exist 

in two forms after its isolation as it could be demonstrated in this work (see fig.15): 

monomers as well as multimers. It is a fact that plasmid multimerization contribute to 

decreased plasmid concentration still tRNAAla wt could play its role as an enhancer of 

plasmid concentration. 

 

4.1.1.2.3 Plasmid concentration of BL21(DE3)::TN7<CAT-T7-tRNAAlaU wt/mut> 

pBR322, pUC19 and pET11a 

BL21(DE3)::TN7<CAT-T7-tRNAAlaU wt> and BL21::TN7<CAT-T7-tRNAAlaU mut> have 

been electroporated with the plasmids pBR322, pUC19 and pET11a. After isolation 

of normalized cells, pDNA was isolated, 4 µl of the extracted plasmids have been 

loaded onto an agarose gel to estimate plasmid concentration (fig.16). 
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Fig.16: BL21(DE3)::TN7<CAT-T7-tRNAAlaU wt> and BL21::TN7<CAT-T7-tRNAAlaU mut> have been 
electroporated with the plasmids pBR322, pUC19 and pET11a. 
 

Electrocompetent BL21(DE3)::TN7<CAT-T7-tRNAAlaU wt> and BL21::TN7<CAT-T7-

tRNAAlaU mut> cells have been electroporated with three different ColE1-type 

plasmids (pBR322, pET11a and pUC19). The impact of induced overexpression of 

tRNAAlaU wt and mut on plasmid concentration has been tested in shake flask 

experiments. Comparing the OD600 values of induced, uninduced and control cell 

lines showed clearly no major difference (see table 7) while overexpression of 

tRNAAlaU wt and mut had an enhancing effect on plasmid concentration according to 

the digital photo taken after gel electrophoresis (see fig.16). 

 Furthermore, experimentally gained data have demonstrated definitely that 

overexpression of tRNAAlaU wt as well as tRNAAlaU mut influenced plasmid 

concentration in the same extent in all 6 strains. Contradictory to our assumption 

tRNAAlaU molecules with mutations in G2 and C71 should result in enhanced plasmid 
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concentration compared to tRNAAlaU wt. In vivo and in vitro experiments confirmed 

that AlaRS is recognizing both the discriminator base A73 of tRNAAlaU and the first 4 

bp of the acceptor stem (Beuning et al., 2002) to initiate the aminoacylation process. 

Recognition of tRNAAlaU helix by AlaRS is clearly reduced after the base transversion 

G2:C71 and the same is true for its aminoacylation status (6). Concluding from that 

both point mutations of tRNAAlaU mut should contribute to increasing unloaded 

tRNAAlaU molecules. 

 Wang et al. have chosen tRNAAlaU(UGC) as a model tRNA to enhance PCN by 

its overexpression in amino-acid starved RelA mutants. It is believed that the majority 

of tRNAAlaU(UGC) molecules remain uncharged when media lacking amino-acids 

have been used. Furthermore, they assumed that the interaction between 3’-ACCA 

of the uncharged tRNA and the UGGU sequences within the RNAI loops are 

necessary to produce a catalytic structure that somehow cleave RNAI only in the 

presence of Mg2+ (8). The chosen strains in this work were all RelA+ in contrast to the 

RelA mutants applied in this paper. Furthermore, cells used in this work did not grow in 

amino-acid starved media but to imitate the amino-acid starved situation, the tRNAAlaU 

encoding gene was mutated by a base transversion at G2:C71 at the second position in 

the tRNAAlaU helix (6). According to the publication the base transversion turned out to 

have a tremendous effect on recognition by AlaRS leading to a significant loss of 

aminoacylation, Thus, mutated tRNAAlaU molecules, used in this work, should be 

uncharged under these conditions. 

 Despite the high specificity of the T7 promoter for its own phage-like promoter, 

expression of the transgene in uninduced cells has been observed as well. 
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5 Conclusion and Outlook 
Most individuals are carriers of defective, usually recessive, genes and some of them 

have or will come down with genetic diseases or disorders. By now, 2800 

monofactorial genetic diseases are known to affect people’s medical condition. 

Nevertheless, diagnostic tests have to be available to allow treatment of genetic 

diseases.  

 About $200 million per year will support the Human Genome Program in the 

U.S. to localize and determine all human genes, thus gaining information which is 

beneficial for gene therapy progress and prospect. Until now, gene defects causing 

Duchenne muscular dystrophy, cystic fibrosis, and retinoblastoma have been 

determined, and further relevant information about various genetic defects will be 

received in the future. Furthermore, several organizations such as the genetic 

disease foundation (GDF) have been founded to assist in diagnosis and treatment of 

genetic disorders. People expect that improvements in the field of molecular 

medicine will contribute to identification and treatment of various diseases within the 

next years to improve people’s medical condition. Many clinical trials have been 

successful, whereas other failed. 

  Nearly all gene therapy trials include treatment of cancer and many of these 

progress to an advanced stage, involving Phase III. Although serious progress has 

been made on gene therapy in less than two decades, there is still necessity to 

evolve enhanced and safer methods to deliver genes into cells. Using naked DNA in 

gene therapy approaches has turned out as a convenient method but to be applied in 

individuals, pDNA has to be highly pure and homogenous.  

 Basically, various factors could raise PCN involved in reducing intracellular 

concentration of RNAI, increasing RNAII levels or involved in preventing RNAI-RNAII 

complexes (Sarkar et al., 2002).  

 In this work the main goal was to elaborate a system that regulates plasmid 

replication of ColE1-type plasmids in E. coli. However, both overexpression of the wt 

and mut tRNAAlaU molecules as well as rssB resulted in increased plasmid 

concentration.
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7 Appendix 
 
 
Primer sequences: 
 
 

TN7 extern1 5'-ACCGGCGCAGGGAAGG-3' 

TN7 extern2 5'-TGGCGCTAATTGATGCCG-3' 

KpnI_MCS_for_pBR322 5'-GGCGGGGTACCCGGGGATCCT 

CTAGAGATAAGCTGTCAAA-3' 

Kpn_MCS_back_for_pBR322 5'-ATGATGGGTACCGAGCTCGAAT 

TCGCACCATTATGTTCCGGATC-3' 

m1320 5‘-TGTAAAACGACGGCCAGTG-3’ 

T3 blue script 5’-CGCGAGCGATTGTACTGAAG-3’ 

catbeginfor 5’-TACCTTTTAAGCTTCCTTAGCT-3’ 

T7prom 5‘-CAACGGTGGTATATCCAGTG-3’ 

pJensnestedfor 5’-TAATACGACTCACTATAGGG-3’ 

T7term 5’-GCTAGTTATTGCTCAGCGG-3' 
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8 Abbreviations 
 
 
aaRS aminoacyl-transfer RNA synthetases 

AAV Adeno-associated viruses 

ADA Adenosine Deaminase 

AIDS  Acquired Immune Deficiency Syndrome 

amp ampicillin 

AmpR ampicillin resistance 

APC antigen-processing cell 

ATP Adenosine triphosphate 

Bp base pairs 

BSA Bovine Serum Albumin  

Cm chloramphenicol 

CmR chloramphenicol resistance 

CTL cytotoxic T lymphocyte 

ctRNAs countertranscribed RNAs 

DMSO dimethyl-sulfoxide 

DNA  desoxyribonucleic acid 

DNAP DNA polymerase 

dNTP deoxy nucleotide triphosphates 

DPCs MEA-dynamic PolyConjugates 

E. coli Escherichia coli 

EMEA European Agency for the Evaluation of 

Medicinal Products 

FDA Food and Drug Administration 
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GFP Green Fluorescent Protein 

GOI gene of interest  

G gram 

H hours 

HIV  Human immunodeficiency virus 

HSV Herpex simplex virus 

IgG Immunoglobulin G 

ITR inverted terminal repeats 

IPTG isopropyl β-D-thiogalactopyranoside 

Kan kanamycin 

KanR kanamycin resistance 

L liter 

LB media Luria-Bertani media 

M molar  

MEAs masked endosomolytic agents 

MHC major histocompatibility complex 

mRNA messenger RNA 

mut mutated  

NaCl sodium chloride 

OD600 optical density at a wavelength of 600 nm 

ORI origin of replication 

PAC P1 artificial chromosome 

PCN plasmid copy number 

PCR polymerase chain reaction 

pDNA plasmid DNA 
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PPi inorganic pyrophosphate 

ppGpp guanosine tetraphosphate 

RNA ribonucleic acid 

Rom RNA One Modulator  

Rop Repressor of primer  

rRNA ribosomal RNA 

SCID severe combined immunodeficiency 

Ss single-stranded 

SV Synthetic vehicles 

SV40 Simian-Virus 40 

Tet tetracycline 

TetR Tetracycline resistance  

Tm melting temperature 

tRNA transfer ribonucleic acid 

WHO World Health Organization 

Wt wild type 

XSID X-linked severe combined 

immunodeficiency 
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