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Abstract

Boolean Networks have been used as highly non-linear dynamical models in biology, so-

ciology and economics. Together with the introduction as gene regulatory networks in the

late 1960s, Stuart Kauffman established two different phases of the dynamics in Boolean

Networks: the ordered phase, where eventual perturbations vanish rather quickly, and the

disordered phase, where a small perturbation might spread over the whole network. In

the 1980s statistical considerations by Bernard Derrida and coworkers yielded analytical

results for the dynamical behavior of those networks, especially a statistical characteriza-

tion of the critical condition for this phase transition was obtained. In this work, recent

developments have been compiled and presented in a rather formal way, with special em-

phasis on this critical condition, which is important, because many networks in nature

are believed to be close to this dynamical phase transition. An approach for the derivation

of coupled iteration equations of the macroscopic parameters magnetization and Ham-

ming distance is explained for arbitrary mixtures of Boolean functions and distribution of

in-degrees. From these iteration equations the critical condition is derived, showing that

this condition only depends on the average sensitivity of the mixture of Boolean functions.

Furthermore, the equivalence of using higher sensitivities in the construction of the poly-

nomial for the Hamming distance is established to be a restriction to the magnetization,

which cannot be maintained over time, and therefore fails to predict the fixed point in the

Hamming distance observed in computer simulations.

In the second part of this work, this formalism has been applied to Linear Threshold

functions. They are a subclass of all possible Boolean functions and an explicit projec-

tion to Boolean functions is given. Complete phase diagrams have been calculated for

several different Boolean Networks with all functions being Linear Threshold functions,

where an two parameters have been included, the threshold h and the asymmetry p in

the distribution of weights, which is an additional degree of freedom compared to several

earlier publications. Finally, it has been proven for a simple mixture of Linear Threshold

functions, that the parameter region corresponding to the ordered phase actually grows

with increased connectivity K, and the parameter region of the disordered phase shrinks

to a single value in the limit K → ∞. This is contrary to the Kauffman model, where the

opposite behavior is observed: the parameter region of the disordered phase spans the

complete interval in the limit K →∞. This is an interesting result, because biological net-

works usually have a connectivity larger than the critical value Kc = 2 in the (unbiased)

Kauffman model, so that a more realistic topology could be imposed on the BN, where

also nodes with a higher in-degree occur, without being restricted to extreme values of the

external parameters.
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Zusammenfassung

Boole’sche Netzwerke werden als hoch nicht-lineare dynamische Modelle in der Biolo-

gie, Soziologie und Wirtschaftwissenschaften verwendet. Schon bei der Einführung als

genetische Regelnetzwerke in den späten 1960ern durch Stuart Kauffman wurden zwei

Phasen in der Dynamik unterschieden: eine geordnete Phase, wo mögliche Störungen

rasch verschwinden, und die ungeordnete Phase, wo sich anfänglich kleine Störungen auf

das ganze Netzwerk ausbreiten können. In den 1980ern führten statistische Überlegun-

gen von Bernard Derrida und Kollegen zu einigen analytischen Ergebnissen für das dy-

namische Verhalten dieser Netzwerke, im Speziellen wurde eine statistische Charakter-

isierung der Kritischen Bedingung für den Phasenübergang abgeleitet. In dieser Arbeit

wurden einige neuere Ergebnisse und Entwicklungen gesammelt und formal präsen-

tiert, wobei ein Hauptaugenmerk auf die Kritische Bedingung gelegt wurde. Diese ist

für viele Netzwerke in der Natur von Bedeutung, da deren Dynamik oft in der Nähe des

Phasenübergangs liegt. Die Ableitung der gekoppelten Iterationsgleichungen für die bei-

den makroskopischen Parameter Magnetisierung und Hammingdistanz wird erklärt für

beliebige Mischungen von Boole’schen Funktionen und Verteilungen von Verknüpfungs-

graden. Aus diesen Iterationsgleichungen wird die Kritische Bedingung berechnet, und

gezeigt, dass diese nur von der gemittelten “Empfindlichkeit“ der Verteilung der Funktio-

nen abhängt. Weiters wird gezeigt, dass das Verwenden von ”Höheren Empfindlichkeiten”

in der Iterationsgleichung der Hammingdistanz äquivalent ist zu einer Beschränkung der

Magnetisierung, die aber nicht über die Zeit aufrecht erhalten werden kann, und daher

einen falschen Fixpunkt in der Hammingdistanz voraussagt.

Im zweiten Teil der Arbeit wird dieser Formalismus auf Lineare Schwellwertfunktionen

angewendet. Lineare Schwellwertfunktionen sind eine kleine Untermenge aller möglichen

Boole’schen Funktionen und eine explizite Projektionsgleichung auf diese allgemeinen

Funktionen ist in dieser Arbeit angegeben. Für verschiedene Boole’sche Netzwerke wurden

Phasendiagramme berechnet, wobei zwei verschiedene Parameter verwendet wurden, der

Schwellwert h und die Asymmetrie p in der Verteilung der Gewichte, was ein zusätzlicher

Parameter im Vergleich mit einigen früheren Arbeiten ist. Zum Schluss wird bewiesen,

dass für eine einfache Mischung aus Linearen Schwellwertfunktionen der Parameterbere-

ich der geordnete Phase mit steigender Konnektivität K wächst, und der Parameterbereich

der ungeordnete Phase auf einen einzigen Wert zusammenschrumpft im Grenzübergang

K →∞. Dieses Verhalten ist konträr zum Kauffman-Modell, wo das gegenteilige Verhalten

beobachtet wird: der Parameterbereich der ungeordneten Phase nimmt das ganze Inter-

vall im Grenzübergang K → ∞ ein. Das ist ein interessantes Ergebnis, weil biologische

Netzwerke normalerweise eine höhere Verknüpfungsrate als den kritischen Wert Kc = 2
im ursprünglichen Kauffman-Modell haben, so dass eine realistischere Topologie für das

Boole’sche Netzwerk verwendet werden kann. In diesen realistischeren Topologien können

dann auch höhere Verknüpfungsraten auftreten, ohne Extremwerte der Modellparameter

annehmen zu müssen.
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0 Introduction

How can biological processes be modeled? Questions about the nature around us have

driven scientists for centuries. However, only in the last decades (maybe already starting

with the discovery of the structure of the DNA molecule in 1953) it has become feasible

to model a few biological processes from first principles with the aid of computers, be-

cause the information load in biological systems is in most cases just overwhelming. Most

biological systems exhibit highly non-linear interactions, where an analytical treatment

if often almost impossible. However, there are a few systems where this can actually be

done. In his seminal paper, Stuart Kauffman proposed Boolean Networks as a simple

model for gene regulatory processes [Kauffman, 1969], which is just an example for the

wealth of biological and complex models emerging lately.

A brief synopsis of gene regulation might be appropriate here. The process of gene

expression and regulation described here is vastly simplified, a more detailed explanation

can be found in almost any textbook on molecular biology, e.g. [Alberts et al., 2002]. DNA

is a double helical molecule, with two backbone strands, consisting of phosphate and

sugar. On each of the sugars a base is attached. There are four different bases (adenine,

thymine, guanine and cytosine), where two are complementary to each other (A-T, G-C).

Only those two can be paired up on opposite positions on the two strands. The backbone

winds tightly around the bases in the center, protecting them from unwanted chemical

reactions. Between those windings, a major and minor groove exists, where each of the

pairings of bases can still be distinguished, due to the chemical nature of parts exposed.

The basic unit of information is a single base pair, which are grouped to bigger units,

genes, which constitute logically coherent units. Often such genes encode a single pro-

tein. To read out the information stored on the DNA, the helix is locally unfolded, the

two strands separated and one of them is complemented by a RNA molecule, which is

synthesized base by base using the complementarity of the 4 different bases. The RNA

polymerase is the protein complex catalyzing this synthesis. The new RNA molecule is

separated from the DNA and in most cases it attaches to a ribosome. There it is read in

triplets of bases, where each triplet is translated into a single aminoacid. The aminoacids

from consecutive triplets are covalently bonded to each other, forming a (long) chain. This

aminoacid sequence folds itself (or with help of other proteins) into its final structure, then

called a protein. Proteins constitute the tools for (almost) every task within a cell. These

tasks include of course metabolism, motility, structural functions and several others, but

also a large part is involved in inter- and intracellular signaling. Some of those signaling

proteins, the “transcription factors” (TF), have a special folded structure, which not only

fits exactly into the major or minor groove on the DNA, but also binds only to a specific

sequence of bases on the DNA. TF binding affects genes in the vicinity of the binding site.

1



0 Introduction

The activity of the RNA polymerase complex could probably increase, when a TF induces a

structural change, which then exposes certain important parts of the DNA. However, the

binding of a TF could also sterically circumvent a coupling of the transcription complex,

and therefore the proteins encoded on this section of DNA are not expressed. Each TF

could also be affected by direct or indirect interaction with other proteins, which might be

needed for the TF to work. Any interaction of certain proteins with one of the complexes

involved in either transcription or translation, as well as any intermediate process, could

be possible and have an effect on the amount of protein expressed.

In Boolean Networks this rather complicated processes are abstracted to a bare mini-

mum. Only parts of the genome, which are important for the regulation of other genes

are considered. Furthermore, all elements are then just modeled by a simple yes/no

choice. So a gene is either expressed or not, without accounting for the actual amount of

the protein, encoded by the gene, present in the cell. The specific process (transcription,

translation, etc.) where the actual interaction occurs, is not considered, only a combina-

tion of all genes having an effect determine the gene to be either expressed or not. This

interdependency induces a non-linear dynamic on the regulatory network.

A big part of the real system is missing in a Boolean Network. In a Boolean Network

no interactions with any signals from outside the modeled (small) network are considered.

They are modeled to form self-consistent dynamical systems, going on infinitely. Each of

the stable dynamical states, the “attractors“, in the Boolean Network is thought to be a

(cyclic) gene expression pattern in a cell. These patterns can be interpreted as different

cell types, as each cell has the complete information (DNA) inside, however, only parts of

the genome are actually expressed. The interaction with the environment is introduced,

when looking at the stability of such a dynamical state. Two different phases of behav-

ior can be distinguished if small, random perturbations are imposed on the states of the

genes. Either the dynamic behaves completely chaotically and the stable state is left, or

after a short transient time the original state is reached again. For biological systems both

extremes are unfavorable. When the slightest perturbation drives the cell to behave com-

pletely erratically, this is clearly not very competitive. On the other hand, if the dynamical

state never changes, no matter how strong the signals from outside, this might also cause

problems in a changing environment, because it cannot adapt to meet current conditions

better. Hence the ideal behavior would be something intermediate, close to the transition

between the two phases. The main aim of this work is to mathematically characterize this

phase transition.

However, the methods used in this work are still quite limited. It should be clear, that

a statistical treatment, which is used here, does not allow to calculate specific features of

the regulatory networks of single organisms, it just enables the general understanding of

such systems on a more global scale.

Besides this biological viewpoint, Boolean Networks have been used lately to model any

complex dynamical system, e.g. in economics and social sciences. But they are also of

pure mathematical interest, especially since a few properties can be derived analytically.

This work is organized as follows. The first chapter explains the basic concepts of

Boolean Networks, including the phase transition between the ordered and disordered dy-

2



namics. In chapter 2 a statistical approach, the Mean Field approximation, is developed,

where several quantities in the dynamics could be derived analytically. Furthermore the

explicit condition for the phase transition is stated and linked to other concepts. These

methods are applied to Linear Threshold functions, a special subclass of all possible func-

tions, in chapter 3.
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1 Boolean Networks

1.1 Preliminary definitions

To introduce the concepts of Boolean Networks (BN) it is convenient to do so via a graph

theoretical framework. A few definitions should suffice to explain the basic concepts. A

more elaborate introduction to Graph theory can be found e.g. in the textbook of Bollobás

[Bollobás, 1998], where the following definition of a graph is taken from:

Definition 1.1. A graph G is an ordered pair of disjoint, discrete sets G = (V,E) such that
E is a subset of the set of unordered pairs of V , E ⊆ V × V . The set V is the set of vertices
and E is the set of edges. The size of the graph is the number of edges, the order of the
graph is the number of vertices.

In this thesis vertices are denoted by numbers. If any vertex is meant, it is denoted by

a lower-case Latin letter, i.e. i, j, etc. Using this convention a simple example for a graph

would be a triangle: three points (the set of vertices) {1, 2, 3} connected via the three edges

{12, 23, 32}. In this case the edges are not directed, i.e. the edge 12 can be identified with

21. However, in the context of Boolean Networks, it is important to distinguish between

an incoming and outgoing connection/edge on a vertex. This leads to the definition of a

directed graph:

Definition 1.2. A directed graph is a graph G = (V,E), where the set of edges E consists
of ordered pairs. For pairs i, j ∈ V ij and ji denote different edges in E. The edge ij is a
connection from the vertex i to j, and ji is an edge from j to i.

Furthermore the notion of the degree of a vertex should be defined to be able to classify

them later:

Definition 1.3. In a graph G = (V,E), the degree ki of a vertex i ∈ V is the number of
other vertices connected to i by an edge ij ∈ E: ki = | {ij : j ∈ V, ij ∈ E} |. If the graph is
directed, one can distinguish the in-degree k

(in)
i and the out-degree k

(out)
i of a vertex. This

are the edges connecting to a vertex i, or coming from i, respectively. The values are given
by k

(in)
i = | {ji : j ∈ V, ji ∈ E} | and k

(out)
i = | {ij : j ∈ V, ij ∈ E} |

In Boolean Networks particularly the in-degree is of interest for many purposes. There-

fore, if the degree is mentioned, usually only the in-degree is meant and the convention

is used to denote the in-degree of a vertex i like the degree: k(in)
i ≡ ki. If the distinction

between in-degree and out-degree is to be made, it will be mentioned in the text and the

more explicit symbols k(in)
i and k

(out)
i will be used.

Moreover a few additional definitions are needed, which will be used later in explaining

the structure of the state space.

5



1 Boolean Networks

Definition 1.4. A i-j-path in a graphG = (V,E) is a sequence of vertices (i = z0, z1, . . . , zn = j),
zk ∈ V , k ∈ {1, . . . , n} where all vertices in the sequence are connected with edges zizi+1 ∈ E.

Equipped with this definition the concept of a connected graph can be introduced.

Definition 1.5. A graph G = (V,E) is called connected, if for each i, j ∈ V there exists a
i-j-path between those vertices. A graph is disconnected if it is not connected.

Definition 1.6. A closed path is a path (i = z0, z1, . . . , zn = j) with i = j.

Definition 1.7. A tree is a connected graph G = (V,E) where for each i, j ∈ V only a single
i-j-path exists.

As there is only one i-j-path, a tree can not have any closed paths in its structure, since

a closed path has always two different paths between any vertices in it. When visualizing

a tree, its name gets clear, as a single node can be chosen as the “root“ of the tree, with

all edges and vertices branching out from this root vertex.

These few definitions suffice to introduce the concept of Boolean Networks in the next

section.

1.2 Boolean Networks

Definition 1.8. A Boolean Network (BN) is a directed graph G = (V,E) with exactly N

vertices (or in the context of BN often called “nodes”), where each node i has a variable xi

with values in a discrete set M (e.g. spin-like M = {−1, 1}). A function fi : Mki → M is
defined on each node. ki is here the in-degree of node i.

A time-discrete dynamic is given by evaluating the functions fi on each node i and apply-
ing this result to xi:

x′i = fi(xi1 , . . . , xik), i = 1, . . . , N, (1.1)

where {i1, . . . , ik} = {j : ji ∈ E}. Hence the function fi depends only on the ki variables xij to
which node i is connected. The prime in x′i denotes the following timestep.

Many publications use the notation of explicit time-dependence of each node xi(t), where

the dynamics equations reads xi(t + 1) = fi (x(t)). As the dynamics depends only on the

previous timestep but not on any other past timesteps, the notation is held clean, and only

the prime in x′i is used for distinguishing between two following timesteps, not accounting

for the exact position in time of those two consecutive timesteps.

From this definition it should be clear, that the dynamics of a BN are a Markov chain

(of first order), exhibiting a highly nonlinear dynamic. To simplify the notation following

convention is introduced:

Definition 1.9. The variables (xi1 , . . . , xik) of a specific function fi are called input or input
tuple and will henceforth be denoted by

x = (xi1 , . . . , xik). (1.2)

6



1.2 Boolean Networks

Figure 1.1: Example of a Boolean Network. The directed graph has N = 100 nodes, where

each node has exactly 3 incoming edges, i.e. ∀i : k(in)
i = 3.

The size of this tuple x is ki and therefore dependent on the context in which it is used, as
the in-degree can vary from node to node.

The choice of the (two) elements in M is just convention. Depending on the application

and the calculations, either M = {−1, 1}, M = {0, 1} or even the abstract symbols M =
{+,−} are used. Sometimes one results in simpler formulas, sometimes a different one

and the choice mainly depends on the use and abuse of notation in these cases. For

example sometimes those symbols in M are used as elements of the real numbers in

certain coefficients, which will be seen in the following chapters. In the context of BN the

choice M = {0, 1} is the most convenient, and it will be used when introducing BNs in

this chapter. However, the main focus of the subsequent chapters is on Linear Threshold

functions, so the more convenient choice (in this case) M = {−1, 1} will be used. In this

work those different values in M should be identified, so

−1 ≡ 0 ≡ −, (1.3a)

+1 ≡ 1 ≡ +. (1.3b)

The set M can also be extended to include more than just two elements. Such exten-

sions resemble the Potts model in statistical physics, where also spin-like variables with

more than 2 values are considered. Most of the formulas in the second chapter extend

7



1 Boolean Networks

straightforward in this case.

Definition 1.8 leaves a few issues open, so in the following pages this definition will

be fleshed out, to obtain a working model. Two of the main points will be dealt with in

separate sections, viz. the Boolean Functions fi in section 1.4 and the topology of the

graph, i.e. how the degrees ki are distributed, in section 1.3.

Another important point is the update order of the nodes. It should be quite clear,

that the dynamics of a BN is affected by the order of updating each node. Two main

methods can be distinguished: simultaneous/synchronous or sequential/asynchronous

update order. If a simultaneous update order is used, all functions on the nodes are

iterated at the same time, i.e. each node is updated using the states of all neighboring

nodes from the previous iteration. A timestep is then defined as one of those iteration

cycles, with each node updated once. In the other method, sequential update order, the

notion of a timestep is not defined as clear as in the latter. The function on each node

is updated separately, i.e. using all the values of already updated nodes. If now each

node to be updated is chosen randomly from some distribution on all nodes, its obvious

that not each node might receive an update until a node is chosen a second time, so its

hard to speak of an global timestep as before. This would be called a stochastic update

scheme. However, if the constraint of so-called “epochs” is introduced, where each node in

the network is updated once before the cycle starts anew, a timestep in the simultaneous

update order is more or less the same as such an “epoch”, at least in the Mean Field

approximation introduced in the next chapter.

A classification of all possible update schemes is found in [Gershenson, 2003]. Accord-

ing to this classification, all BN considered here in this work are CRBN (“Classical Random

Boolean Networks”), using a sequential update order. So every time the acronym BN is

used, it should be replaced by CRBN.

1.2.1 Global formulation of the dynamics

The dynamics on BNs introduced in definition 1.8 with equation (1.1) can also be viewed

in a global fashion. Whereas (1.1) could be called local, because all functions are defined

locally on each node, the global description defines the function on the complete BN. The

advantage of this is an easier description of some of the properties and concepts in a BN

linked to the order-disorder phase transition introduced later in this chapter, although

the calculations done in later chapters are still in the local description.

In this global view, all N variables xi on the nodes are taken together as a tuple X =
(x1, . . . , xN ), which is called the state of the BN. Generalizing the Boolean functions fi

depends on the update order. When using a synchronous update order, a global Boolean

function F : MN → MN , F = (f1, . . . , fN ) can be defined straightforward. In the sequential

update order one defines intermediate functions Fi : MN →MN acting only on node i and

leaving all others invariant: Fi = (id, . . . , fi, . . . , id) with id being the identity. The global

dynamics for a single epoch is now the composition of these functions: F = Fπ(1)◦· · ·◦Fπ(N),

where π is the ordering of the updated nodes. The global version of equation (1.1) now

8



1.3 Network topology

reads

X′ = F(X). (1.4)

1.2.2 Additional notation

Moreover a few definitions to simplify the notation for calculations in this work are defined.

Definition 1.10. Two special states of X ∈ MN are 1 = (1, . . . , 1) and 0 = (0, . . . , 0), where
M = {0, 1}. If a different M is used, the symbols in 1 and 0 change accordingly. The size
of these tuples should be clear from context, as 1 and 0 are always associated either with
X ∈MN or x ∈Mki , so the sizes would be N and ki, respectively.

Definition 1.11. ei is the tuple ei = (0, . . . , 0, 1, 0, . . . , 0) with the 1 on the i-th position.

Furthermore an operation on those tuples is defined, which is used several times in

calculations in the next chapter.

Definition 1.12. The operation ⊕ : Mn ×Mn → Mn is defined as XOR operation on each
element of the tuples X,Y ∈Mn (with n ∈ N arbitrary):

X⊕Y = (x1, . . . , xn)⊕ (y1, . . . , yn) = (x1 XOR y1, . . . , xn XOR yn) , (1.5)

where XOR is the standard binary operation.

1.3 Network topology

The topology of the underlying graph in a BN has an important influence in the model.

Although a specific structure might capture the nature of a modeled system better, this is

in the majority of cases not mathematically treatable in a feasible way. So in most cases

the topology is represented by a distribution of connections or degrees:

Definition 1.13. A Random Graph is a graph G = (V,E) where the nodes are connected
randomly according to some probability distributions. In the case of BN those distributions
include the in-degrees ki of all nodes i. They are normalized∑

k

Pr [k|ρk] = 1, (1.6)

with the given distribution ρk of degrees ki.

As mentioned before, BN are directed graphs where the in-degree is of central impor-

tance, because it is the number of variables in the Boolean function, so usually only a

distribution of in-degrees is imposed onto the graph. The nodes from which those con-

nections are originating are usually drawn from a uniform distribution of all nodes. This

results in a Poissionian distribution for the out-degree.

The most convenient random graph for calculations has only a single degree for each

node, i.e. Pr [k|ρk] = δ(k −K) where ki = K for all i. As will be demonstrated in the next

9



1 Boolean Networks

chapter, in a Mean Field approximation a degree-distribution ρk embeds nicely into the

model. In this case the whole topology is introduced via ρk.

In the last decade scale-free topologies have attracted much interest [Barabási and Al-

bert, 1999]. In this case the degree distribution follows a power-law

Pr [k|ρk] = const
1
kγ
. (1.7)

As a scale-free distribution is heavy-tailed, there should be some highly connected nodes,

whereas the majority of nodes has only one or few incoming connections. This leads to the

absence of a favored size or scale in the system, as the name scale-free already suggests.

Compared to the exponential distribution, there is a non-vanishing probability for highly

connected nodes, which induces some problems in modeling. Many degree distributions

of networks observed in nature seem to have such a distribution ρk. However, in finite

systems this absence of a scale can only extend over a few orders of magnitude as many

new properties emerge with every step in the scale.

Scale-free distributions occur also in critical processes, as will be briefly mentioned in

section 1.5.3.

Applied to BNs, such a degree distribution shows many interesting features. [Aldana,

2003] showed that the dynamics on scale-free BNs is particularly stable, compared to

other networks with similar average degree kavg.

Further distributions often found in nature and natural processes include the binomial

distribution or an exponential distribution of degrees. However, the discovery of scale-free

networks [Barabási and Albert, 1999] has started a hype on those networks, that often

biased researchers to see such networks everywhere [Clauset et al., 2009].

The underlying graph could also have a more ordered structure. If it is a lattice, then

the Boolean Network would be a Cellular Automaton (CA). In that sense BNs are some

kind of generalization of a CA.

1.4 Boolean functions

Finally the concepts of one of the most influential factor in the dynamics of BN will be dealt

with, the Boolean functions fi on each node i. In the context of BN such a function is often

also called “update rule” or just “rule”. It determines how the connected nodes “interact”

with each other by evaluating the values of the neighboring nodes of i and applying the

result to xi, as given in the dynamics equation (1.1). As the topology of the network

needs not to be homogeneous, i.e. different nodes could have different in-degrees, so the

functions fi defined on those nodes might have a different number of variables. Therefore,

in the general case, one deals with classes or distributions of functions, instead of a single

function. One of the main tasks when modeling real interacting networks is finding a

suitable class of functions.

Definition 1.14. The distribution or class of functions on a BN is denoted by ρF.

This definition is already in preparation of the Mean Field approximation in the next

10



1.4 Boolean functions

chapter. It could also be true that there are fixed choices of the functions on each node.

For graphs G where each node has exactly in-degree ki = 2 on all nodes, the Boolean

functions are given by the well known bit operators AND, OR and XOR (and their nega-

tions) for interacting functions as well as the functions copying or inverting only one of

the input variables and the two constant functions (yielding always the same value in M ,

not depending on the input). If ki ≥ 3, one can represent the functions in a truth table,

described in the following section.

1.4.1 Truth table representation of Boolean functions

There are only discrete values allowed for Boolean functions, therefore it is feasible to write

all possible values of the input tuples x together with the corresponding function value

f (x) in a table, which is called truth or look-up table. An example is given in table 1.1.

The number of possible combinations of input values is 2K , as for each of the K variables

xi two values in M are possible. For each of those input tuples two values of f (x) ∈M are

possible, therefore the number of Boolean functions is 22K

. Later probabilistic functions

will be introduced, where the value of f (x) has just some probability to be one of the

values in M and is not fixed as in the truth table, therefore the following definition is

needed:

Definition 1.15. Boolean functions given by a truth table are denoted by f.

These functions f can be identified by a single number. When taking all the outputs

f (x) in a truth table and reading it from bottom to top a binary string is obtained. For the

example given in table 1.1 this string would be “11101000”. This string can be interpreted

as a binary number, therefore it can be converted to the decimal system, which would be

232 in this example. However this number is not yet unique, as the string can start with

zeros. So the string “0000000011101000” would also be a feasible function f (in this case with

K = 4) and have also the decimal representation 232. Therefore the number of variables,

i.e. the degree of the node on which the function is defined, is denoted as subscript to

uniquely determine the function. In the example of the Majority rule for K = 3 (table 1.1)

this would be (232)3.
This representation of a “Boolean“ function is also possible if |M | 6= 2.1 In such cases

the number of elements in M is taken as a basis for the number system and converted to

decimal. However, an additional subscript should denote |M | in this case.

In the remainder of this section and most of this work the notation f is used again for a

Boolean function, allowing Probabilistic Boolean functions again, not only those given by

a truth table. The distinction between f and f is used only to formalize a few statements

in chapter 2.

1.4.2 Probabilistic Boolean functions

In [Shmulevich et al., 2002] the concept of Boolean functions was further generalized. In

this model the result of a Boolean function fi on a specific input tuple x is not the defined
1In a strict sense such functions are not “Boolean“ anymore, as this term refers explicitly to a 2-state M .

11
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input output
x f(x)

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Table 1.1: Example of a Boolean function f represented in a truth table. Shown is the
Majority rule for ki = 3 or rule (232)3 for M = {0, 1}. Reading the output of the
function as string from bottom to top gives 11101000, which has the decimal
representation 232.

value of x′i ∈M , each output could be possible according to some probability distribution.

This means that there could be a non-zero probability such that fi(x) = 0 as well as a

nonzero probability such that fi(x) = 1. Such functions are easily incorporated into the

formalism, which will be presented in the next chapter. Even more so, in a Mean Field

description of a mixture of several functions, such a Probabilistic Boolean function would

be the natural way to describe the complete distribution of functions. Hence we can

expand definition 1.14:

Definition 1.16. The distribution of Boolean functions ρF can be seen as mixture of all
possible Boolean functions f, given by truth table. The probability for a specific Boolean
function is given by Pr [f|ρF], which is a normalized∑

f

Pr [f|ρF] = 1. (1.8)

In the Mean Field description, no node has a specific Boolean function, only a probability

for this function to be one in the mixture ρF. This probability for a function can be seen

naturally as a probability of the Boolean function to assume a specific value on a given

input tuple x.

1.4.3 The Kauffman model

An ubiquitous model in the treatment of BNs is the Kauffman model. It has been intro-

duced by Stuart Kauffman in his seminal paper [Kauffman, 1969], which can be seen as

one of the founding publications in the science of network dynamics. In the beginning

only treated by simulations, its nice properties allowed for some results to be derived

analytically, see e.g. [Derrida and Pomeau, 1986] for one of the first analytical treatments.

Definition 1.17. The underlying graph of the Kauffman model is a random graph, where
each of the N nodes has exactly in-degree K. The values of the nodes are xi ∈ M = {0, 1}.
The 22K

possible Boolean functions are distributed uniformly and randomly on all N nodes.

12
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All nodes are updated simultaneously. This can be formalized by the following distributions:

Pr [k|ρk] = δ (k −K) , (1.9a)

Pr [f|ρF] =
1

22K for all f. (1.9b)

The only two parameters in this model are N and K with this definition. An additional

parameter can be introduced by rephrasing the concept of the uniformly distributed func-

tions.

Lemma 1.18. The uniform distribution of all Boolean functions f is equivalent to a binomial
distribution on functions with i 1s in their truth table. Therefore the number of 1s is also
binomially distributed with mean 1

2 . There holds

Pr[f(x) = 1|x] = Pr[f(x) = 0|x] =
1
2
. (1.10)

Proof. In short consider the sum over the uniform distribution of all Boolean functions

and rewrite it as distribution over the 1s. Let F (i) denote the number of functions having

exactly i 1s in their truth table (and therefore k − i 0s). Counting permutations, F (i) =(
2k

i

)
. Writing the sum over the uniform distribution of functions:

1 =
∑

f

Pr [f|ρF] =
∑

f

1
22K =

1
22K

22K∑
i=1

1 =
1

22K

2K∑
i=0

F (i) =
2K∑
i=0

F (i)

(
1
2

)2K

=
2K∑
i=0

(
2k

i

)(
1
2

)i(1
2

)2K−i

=
2K∑
i=0

(
2k

i

)
pi (1− p)2

K−i
,

where p =
1
2

and therefore the variable which is summed over, the number of 1s in the

truth table of a function, is binomially distributed with mean p, which concludes the

proof.

The parameter p used in the proof can be seen as another parameter of the Kauffman

model:

Definition 1.19. The internal homogeneity p in the Kauffman model is defined as

p := Pr[f(x) = 1|x], (1.11)

and therefore ”skewing“ the distribution of all functions ρF towards a bias of the dynamics.

The term internal homogeneity was coined by Walker [Kauffman, 1984]. Those three

parameters (N , K, p) are encountered in most publications using this model.

13



1 Boolean Networks

1.5 Ordered and Chaotic Dynamics

Now lets reconsider what has been stated so far about BNs. They are a (vast, but finite)

network of interacting variables, too complicated to describe analytically as a whole, be-

cause they are essentially nonlinear. Important influences on the dynamics come from the

underlying topology and of course from the type of interaction between those variables, de-

scribed by the function or class of functions on the BN. As the complete dynamics of such

a BN is unfeasible to describe analytically, often only the long time behavior of the dy-

namics is considered. Again using the argument of finiteness (as there are only N nodes),

it is clear, that the state space of a BN is finite too, consisting of all states of the global

dynamics.

Definition 1.20. The state space of a BN is the set of all possible global tuples X

{X} = MN = {(00 . . . 0) , (10 . . . 0) , . . . , (11 . . . 1)} . (1.12)

Therefore after at maximum |M |N timesteps a state has to repeat itself. Each step in

the dynamics depends only on the previous timestep and hence this sequence of repeating

states is called an attractor of the dynamics, because once the state of the BN is on such an

attractor, it cannot leave it anymore. Every initial state inevitably runs into an attractor,

when the global function F is applied several times to it. The time before the dynamics

reaches a state on the attractor is called transient time.

Proposition 1.21. The structure imposed by the dynamics on the state space can be viewed
as a directed graph. Each vertex is a state X of the dynamics. Edges are directed and
defined by the global dynamics, i.e. two states X1 and X2 have an edge from X1 to X2 if
and only if X2 = F (X1). The attractors are either closed paths or self-connected vertices (in
which case the state X is a fixed point: X′ = F(X) = X). The transient time is represented
as trees with all edges pointing inward to a single node on one of the attractors.

Proof. By construction of the state space its structure is clear.

Note that this graph contains much more information in it, as the underlying graph of

the BN. In addition to this underlying graph G, it also has the complete time evolution

of the whole BN somehow encoded. The number of vertices in the underlying graph is

only N , whereas in this state space graph the number of vertices is |M |N . However,

this construction works only in one direction. It is possible to construct the state space

graph from a given underlying graph G and a global function F, but usually not feasible

to reconstruct those from a given state space graph, e.g. see [Delgado-Eckert, 2009]. A

recent study also tries to infer the structure and functions of small BNs from noisy data

[Liu et al., 2008], using the additional constraint of criticality on the BN.

From the construction in proposition 1.21 it should be clear, that the resulting graph

with vertices denoted by X ∈ MN is usually not connected, as each vertex has only a

single outgoing edge. The different connected sub-graphs are called basins of attraction,

consisting of the transient phase leading to the attractor and the attractor cycle itself.

In this graph-picture of the state space a few interesting properties can be seen directly.
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1.5 Ordered and Chaotic Dynamics

Using the global function F as equivalence relation, i.e. two points in MN are equivalent

if they are in the same basin of attraction. Therefore the set of these basins can be taken

as a quotient:

A := {A} ∼= MN/F, (1.13)

with A being a basin of attraction (or equivalently an attractor itself).

Another, even more important consequence is

Corollary 1.22. The dynamics on a BN is not invertible

@F−1 : MN →MN , such that X = F−1(X′) holds for all X ∈MN (1.14)

in the sense of equation (1.4).

Proof. This follows from the structure of the state space graph, given in the last proposi-

tion. The proof only works if the dynamics has a transient time for at least some initial

states.

There are two reasons why a global inverse F−1 : MN → MN does not exist. First

consider the ends of the trees representing the transient time. Such states are called

”garden-of-eden“-states, as they can only occur as initial conditions and cannot be reached

via the dynamics. Therefore F−1 cannot exist on those states.

Furthermore there are states which can be reached from more than one state. Take a

state in the attractor cycle. If a transient time tree reaches the attractor cycle in this state,

than there must be another state in the cycle itself, leading to the chosen state. Therefore

F−1 cannot be unique on such states.

There are special cases where a invertible map F−1 can exist, which are shown implicitly

in the proof. If the dynamics has no transient time, then all states are on attractor cycles,

and the two arguments used in the proof fail, because the states considered there do not

exist.

Examples of small BNs

A simple example for visualizing proposition 1.21 is given by the following BN. Consider a

graph G with just three vertices V = {1, 2, 3}. The variables are x1, x2, x3 ∈M = {0, 1} and

each of the nodes is connected to the two others. The three functions are f1 = OR, f2 = OR

and f3 = AND. This graph is depicted in figure 1.2(a). Looking at the truth tables (given

in table 1.2) of the functions, the global function F can be constructed and the whole

state space, consisting of the 8 states MN = {000, 001, . . . , 111}, is shown in figure 1.2(b),

with edges between two consecutive states in the dynamics. In this case there are three

attractors, the first one 000 just a single state, which is a fixed point without a transient

time. The second one is a period-2-cycle without a transient time, permanently switching

between the states 001 and 010. Finally, the third attractor is again a fixed point 111, with

4 states in the transient time.

Formally those attractors can be written as A = {{000} , {100, 010} , {111}}. The states

used in the proof of corollary 1.22 exist only in the third attractor. These are the three
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(a) Graph of the BN (b) State space structure

Figure 1.2: Graph and phase space structure of the BN with N = 3 and K = 2. The Boolean
functions are f1 = OR, f2 = OR and f3 = AND.

(a) f1 = OR

x2 x3 f1

0 0 0
0 1 1
1 0 1
1 1 1

(b) f2 = OR

x1 x3 f2

0 0 0
0 1 1
1 0 1
1 1 1

(c) f3 = AND

x1 x2 f3

0 0 0
0 1 0
1 0 0
1 1 1

Table 1.2: Representation of the BN N = 3, K = 2 with truth tables.

states 001, 011 and 101, which are the garden-of-eden-states, only occurring as initial

conditions, because they cannot be reached within the dynamics. The second type of

states used in the last proof would be state 111, as it lies on the attractor (which is the

fixed point in this case), but also a tree for the transient time enters the attractor cycle

there, so 111 has two predecessors (110 and 111) in the dynamics. Note that 110 would

also be a state with more than one predecessor, however, its existence is just by chance,

whereas the other two types of states exists already with the existence of a transient time.

x f(x)
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 0

Table 1.3: Truth table representation of rule (54)3.

Another, more sophisticated example is the state space graph depicted in figure 1.3. The

underlying graph of the BN consists of 6 nodes and is depicted on the left side. Each node

has the Boolean function fi = (54)3, explained in table 1.3. The structure imposed by the

dynamics on the state space is shown on the right side of the figure. Although the number
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(a) Graph of the BN (b) State space structure

Figure 1.3: Network structure and state space graph for a BN with N = 6, K = 3 and
fi = (54)3, 1 ≤ i ≤ 6.

of nodes only doubled from the previous example, the state space graph has a much more

complex structure with its 4 attractors (shown in dark blue). The basins of attraction for

those attractors are separated by the dashed red line. However, the number of attractors

did not change much, it increased only from 3 to 4. The four attractors in this case are

A = {{111010, 000110, 101100} , {011110, 000010, 101000} ,

{011100, 101011, 110100, 110111} , {000000}} .

1.5.1 The Hamming distance d

To look at phase transitions in the dynamics of a BN, a concept of measurability or dis-

tance on the state space MN is needed. One of the natural ways to do that is via the

so-called Hamming distance:

Definition 1.23. The Hamming distance D between two states X, Y ∈ MN is the number
of nodes, which are different in the two states

D (X,Y) := |
{
xi 6= yi : X = (x1, . . . , xN ) ∈MN ,Y = (y1, . . . , yN ) ∈MN

}
|. (1.15)

In most of the following text a normalized Hamming distance d ∈ [0, 1] is used

d (X,Y) :=
1
N
D (X,Y) . (1.16)

The special cases d = 0 corresponds to X = Y and d = 1 corresponds to two states which
are the exact complements to each other, i.e. X = Y ⊕ 1.

Note that this definition also extends to the limit N →∞, i.e. if the state space is infinite.

Moreover, also a local tuple x ⊆ X could be used as argument, e.g. from the dynamics
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equation (1.1). The size of the tuples should be identical for both arguments d(., .), which

is the only restriction in this definition.

The importance of the Hamming distance in BNs was first discovered by Derrida in

several of his works in the 1980s [Derrida and Pomeau, 1986, Derrida and Weisbuch,

1986] and is also used in Kauffman’s book [Kauffman, 1993] as a crucial parameter for

determining the stability of the dynamics in BNs.

1.5.2 Phase transitions

An important characterization of the dynamics is its stableness. If small perturbations in

the state force the dynamics to leave the current attractor, a BN is classified as unstable

or “chaotic“. A small perturbation in this context is, when only a few of the variables in

the initial state are flipped, i.e. (xi = 1) 7→ (xi = 0) or vice versa. The number n of such

flipped nodes is assumed to be tiny against the size of the complete BN, n� N . The term

“chaotic“ might be misleading here, as real chaotic behavior could only occur in infinite

BNs, when the dynamics is not constrained to reach an attractor cycle and can remain

in the transient time forever. However, for finite BNs the dynamics could be on a very

long periodic attractor, which is practically indistinguishable from chaos if the BN is large

enough, as its state space grows exponentially with N .

The stableness crucially depends on the distributions of functions ρF and the distribu-

tions of degrees ρk in the BN, hence the following definition is needed.

Definition 1.24. All parameters in the distributions ρF and ρk are taken together in the
abstract symbol γ, denoting the set of external parameters. Hence

ρF := ρF(γ), (1.17a)

ρk := ρk(γ). (1.17b)

Therefore, incorporating those parameters in the global Boolean function F : MN → MN , it
can be written as

F = F[γ]. (1.18)

The term stableness of a BN makes only sense in a long-time behavior, as the pertur-

bation settles down after a transient time and either the same or a different attractor is

reached. Formalizing this one looks at two identical BNs, one with initial state X, the

other with an ”almost identical” initial state Y.

Definition 1.25. The dynamics of a BN is classified as stable if

lim
t→∞

d
(
F[γ]t(X),F[γ]t(Y)

)
= 0, (1.19)

where X is “almost identical“ with Y. “Almost identical“ means 0 < d(X,Y) = O
(

1
N

)
� 1.

The exponent in the global Boolean function F is meant as composition, i.e. consecutive
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application of the function to the state:

F[γ]t = F[γ] ◦ · · · ◦ F[γ]︸ ︷︷ ︸
t times

. (1.20)

It makes sense to refer to the analogy to statistical mechanics now. In statistical me-

chanics a continuous phase transition is characterized by several properties. First of all,

a concise mathematical treatment of phase transitions is only possible in infinite systems.

This point will be circumvented by the Mean Field approximation in the next chapter,

as the completely statistical approach used there is more or less equivalent to such an

infinite size of the BN.

Furthermore, each continuous phase transition is accompanied by a order parameter,

which could be either a simple scalar, a vector, or even a tensor. In the case of BNs the

Hamming distance d takes the place of this order parameter, or to be more precise the

long time-behavior of d, e.g. the fixed point d∗. Such a continuous phase transition occurs

at a critical point, which is in BNs often not only a single point, but a manifold. In the

specific BNs studied in this work, where all nodes have a Linear Threshold function, the

parameters are γ = {p, h} (see chapter 3). For these parameters, this critical ”point“ is in

fact a one-dimensional line in the p-h-plane, depicted and explained in figure 3.8.

Another important feature at such critical points is, that several quantities of the system

exhibit scaling behavior, i.e. they follow a power-law q ∼ ταq (here q stands for the observed

quantity, τ is the distance to the critical point, usually a normalized temperature, and αq

is the so-called ”critical exponent“). The values of those critical exponents αq for the

quantities q are universal for several models exhibiting a continuous phase transition,

leading to the definition of universality classes of models. However, in this thesis only

the critical point in the parameters γcrit itself is treated and calculated, not those critical

exponents. This would be the topic of future work.

Now a concept of a dynamical phase transition can be defined for a BN, which is central

for this work:

Definition 1.26. A BN is said to be in an ordered phase if its dynamics is stable in the
sense of definition 1.25 and in a disordered (or “chaotic”) phase if it is unstable. When
varying the external parameters γ, a change between ordered and disordered phase is
called dynamical phase transition.

It should be clear, that this definition is problematic with finite BNs. The Mean Field

approximation introduced in the next chapter avoids this problem, by working just with

probabilities, and is therefore more or less equivalent to an infinite system.

1.5.3 Attractor basins structure A

The structure of simple BNs has already been shown in figures 1.2(b) and 1.3, where only

small finite BNs were considered. In general they are defined through equation (1.13). One

of the main goals is to derive properties of A = {A}, especially the number of attractors |A|
and the distribution of lengths of attractors |A|. A few first attempts were made for simple
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ρk and ρF, see e.g. [Kauffman, 1984], [Luque and Sole, 2000], [Greil and Bassler, 2009] or

[Greil and Drossel, 2005] and references therein, however, a general theory is still missing.

It can be conjectured (and is shown for this simple systems), that those quantities, the

number and length of attractors, scales with a power-law at the critical point, as predicted

by statistical mechanics.

A more graph theoretic approach was used by [Macauley and Mortveit, 2009], where the

authors show the equivalence of the attractors of a BN under a few transformations on

the update order.

It might be possible to find interesting results using Random Graph theory (RGT). RGT

was introduced by Erdös in several publications the 1960s, see e.g. [Erdös and Rényi,

1960], and a treatment can be found in almost all modern textbooks on Graph theory,

e.g. [Bollobás, 1998]. In RGT, Erdös also found a phase transition, when considering

completely random graphs, where each possible edge between all vertices is formed with

a given probability p. It should be clear, that for low p, the graph is usually not connected.

However, by increasing this probability, at some point pc almost all smaller components

of the graph merge, making the graph (almost completely) connected2. This result is rem-

iniscent of the phase transition described here in this work. When considering the graph

imposed by the dynamics on the state space, above the critical point, a (infinitely) small

perturbation of the dynamics forces it to leave the current attractor, i.e. the trajectory of

the dynamics is now on another, not connected component of the state space graph. So

above the critical point, the state space graph consists of mostly small, disconnected com-

ponents. However, at the critical point and below, small perturbations of the dynamics do

not change the attractor, i.e. almost the complete state space graph could be viewed as

a single connected component. This analogy is immediate, however, the structure of the

state space graph is much more than just those random wiring probability p, because each

node has exactly out-degree k(out) = 1. A real mathematical treatment of these questions

is not part of this work, and the problems remain open as part of possible future work.

2The parameter value for this phase transition is found to be pc = 0.5.
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2 Mean Field Approximation

2.1 Preliminaries

The ideas in the last few sections were presented in a more global fashion. With the

Mean Field (MF) approximation the original local description of the interaction of nodes

is used again (given in definition 1.8 of BNs). In MF this local description consists only

of the interactions of a single node and sets it in an averaged background of all other

nodes, therefore linearizing the usually highly complex and nonlinear dynamics. Using

a statistical approach it considers interactions of this whole background with the chosen

node. As each node is assumed to be equivalent to all others, the average over all nodes is

taken to be the background in the next timestep, resulting in a theory describing average

interactions in the system.

Figure 2.1: Mean Field approximation explained graphically. The highly complex and non-
linear interactions between the nodes are linearized by just taking a single
node in an averaged background. In the network on the left the states of the
nodes are xi ∈ M = {“blue“, “red“}, on the right side only probabilities for a
node (or the background) to be in a specific state is given. The mixed colors
should indicate that fact. From this picture it should be clear, that MF is some
kind of linearization over the ”borders“ of a node, shown as dashed line.

As seen in the last chapter, an analytical description of the number and length of attrac-

tors is still an open problem. A more subtle way to characterize the dynamics is looking

how small perturbations affect it. From there, equations for the stability of the dynamics
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2 Mean Field Approximation

can be derived, which are intimately coupled to the Hamming distance, described in the

last chapter. This concept has been introduced by Derrida and Pomeau in their seminal

paper [Derrida and Pomeau, 1986] under the name of “annealed approximation“ and later

refined in several works [Derrida and Weisbuch, 1986, Derrida and Flyvbjerg, 1987, Flyvb-

jerg, 1988]. More recent publications on this topic include [Moreira and Amaral, 2005] or

[Kesseli et al., 2006]. This chapter is based mainly on the ideas proposed in those works.

The first timestep in such a BN with random initial conditions and randomly connected

nodes can definitely treated by mere statistics, as the MF approximation is. For all con-

secutive timesteps an additional assumption has to be made to keep the validity of this

approximation, because the time evolution of the complete BN might have local correla-

tions, based on mutually connected nodes or on small cycles in the underlying graph. To

overcome this problem, the number of nodes in the BN has to be assumed large enough

compared to the connectivity. An estimation of this ”large enough“ can be found in [Der-

rida et al., 1987]:

Lemma 2.1. The MF approximation is valid as long the average connectivity K of a node
scales with

K / logN. (2.1)

Proof. Construct an ancestor tree for a given node for the backward evolution in time. In

the current timestep, only a single node has to be considered. In the previous timestep

K different nodes are in the input of the given node. In the timestep before that, each

of those K nodes had K input nodes, resulting in K2 nodes, etc. In the T th timestep

backwards KT nodes have to be considered. This yields

1 +K +K2 + · · ·+KT =
T∑
t=0

Kt =
KT+1 − 1
K − 1

T large
≈ KT .

If this number of nodes in the ancestor tree is small compared to the number of nodes N , it

can be assumed, that they are actually all different nodes in the BN: KT � N ⇒ K < N1/T .

As the T th root grows at a slower rate than the logarithm for large T , this can be bounded

by logN , resulting in the estimation above.

This restriction on the size of the underlying graph is primarily for computer simulations

of different BN models. Usually another additional technique is used when doing such

simulations. Because on a computer only finite systems can be treated, the topology of

the BN is reshuffled at every timestep, i.e. the input nodes are drawn randomly for each

evaluation of the Boolean functions. This further increases the apparent size of the BN,

resulting in a better agreement and less noise when comparing those simulations and the

calculations, which are presented in this chapter. When more than one Boolean function

f is present in the mixture ρF, the assignment of Boolean functions could also be drawn

randomly in every timestep. When either topology or Boolean functions is reshuffled in

such a manner, it is called ”annealed“, otherwise it is said to be modeled ”quenched“ (kept

constant for the complete simulation).

In the analytical calculations of the MF approximation such a reshuffling is more or less
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inherent in the theory. As only probabilities are considered, which are real numbers, the

MF approximation is again an exact description of an infinite system. So applying the MF

approximation can be seen as nothing else than imposing the thermodynamic limit on the

system, i.e.

N →∞, (2.2)

for which the condition from lemma (2.1) is clearly true.

In the description of the dynamics different orders can be distinguished. Each order

assumes an additional identical replica of the original BN to run in parallel, where the

identity is only in the topology and the Boolean functions, whereas each replica has its

own state X. In the first order, assuming a MF approximation, only the probabilities for a

node to be in one of the states of M are taken into account for the description of the whole

dynamics. Higher orders will be introduced and used later.

Definition 2.2. Let M = {−1,+1}, then the symbols z(+) and z(−) denote the probabilities
for a arbitrary node xi to be in state xi = +1 or xi = −1, respectively:

z(+) := Pr [xi = +1|i] , (2.3a)

z(−) := Pr [xi = −1|i] . (2.3b)

Using the analogy to statistical physics, these probabilities can be used to define a

”magnetization” m, as in many other spin- 1
2-models in statistical mechanics.

Definition 2.3. The magnetization m is the average over the all states of the nodes

m := 〈xi〉i∈{1,...,N} . (2.4)

In term of the probabilities the magnetization m is nothing else than

m = z(+) − z(−). (2.5)

There is also another approach to the magnetization. There is only one independent

variable in those probabilities z(±). Hence the magnetization m is just a transformation of

variables. Explicitly the transformation is

1 = z(+) + z(−)

m = z(+) − z(−)

}
⇒

{
z(+) = 1

2 (1 +m)
z(−) = 1

2 (1−m)
. (2.6)

A different transformation would be

m̃ = z(+). (2.7)

This would be the average of all the nodes when M = {0, 1}, which is given explicitly by

1 = z(+) + z(−)

m̃ = z(+)

}
⇒

{
z(+) = m̃

z(−) = 1− m̃
. (2.8)

This distinction between m and m̃ will be made throughout this work, so m corresponds
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2 Mean Field Approximation

always to M = {−1, 1}, whereas m̃ is the magnetization for M = {0, 1}.
Before starting with introducing the MF approximation, another symbol to simplify no-

tation should be introduced:

Definition 2.4. Let M = {−1,+1}. The bracket 〈·, ·〉 : MK ×MK → N is the number of +1s
occurring at same positions in the two tuples as arguments:

〈x,y〉 := | {i : xi = +1, yi = +1} |. (2.9)

The number of −1s could also be represented with this bracket. x ⊕ 1 gives just the

negative of x, i.e. x⊕ 1 = −x. Therefore

〈−x,−x〉 = 〈x⊕ 1,x⊕ 1〉 = K − 〈x,x〉 .

A simple example would be the following. Let x = (−1,+1,+1) and y = (+1,−1,+1). Then

〈x,y〉 = 1 and 〈x,x〉 = 〈y,y〉 = 2.

One of the central lemmas the MF approximation is the following

Lemma 2.5. Let M = {−1,+1}. The probability of occurrence for a random tuple x =
(x1, . . . , xK) with given probabilities z(+) and z(−) is

Pr
[
x|z(±)

]
= z
〈x,x〉
(+) z

〈x⊕1,x⊕1〉
(−) . (2.10)

Proof. In a random tuple x each position is independent. There are 〈x,x〉 +1s in the whole

tuple, and 〈x⊕ 1,x⊕ 1〉 −1s. Multiplying the independent probabilities for a single position

(z(±)), yields exactly the expression in the lemma. Hence

Pr
[
x|z(±)

]
= z
〈x,x〉
(+) z

〈x⊕1,x⊕1〉
(−) .

Using the transformations (2.6) and (2.8) above, the probability depends only on m or

m̃, respectively, and can be written as

Pr [x|m] =
(

1 +m

2

)〈x,x〉(1−m
2

)〈x⊕1,x⊕1〉
,

Pr [x|m̃] = m̃〈x,x〉 (1− m̃)〈x⊕1,x⊕1〉 .

At this point the second transformation (to m̃) seems simpler. However, for the application

to Linear Threshold functions in the next chapter, the first one is needed.

2.2 Dynamics or iteration equation

2.2.1 Magnetization m

The aim of a MF approximation is to start from Lemma 2.5 and obtain or construct the

state of the next timestep. At the beginning the iteration equations for the probabilities
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z(±) will be constructed, although at first this seems to introduce too much overhead

in the equations. However, using those probabilities already from the beginning, the

generalizations to higher orders of the dynamics will be obvious, as will be seen explicitly

later in section 2.2.4. The transformation to m, given by either equation (2.6) or (2.8), will

be applied to those iteration equations to arrive at the final expressions m′ (or m̃′).

First only a simple distribution of degrees ρk is assumed. This is done via the following

theorem:

Theorem 2.6. Let M = {−1,+1} and Pr [k|ρk] = δ(K − k), i.e. all nodes have the same
degree K. Furthermore consider a synchronous update order of all nodes. Then the iteration
equation for the probabilities z(±) in a MF approximation is given by

z′(±) =
∑
x

Pr [f(x) = ±1|x] Pr
[
x|z(±)

]
. (2.11)

The summation is taken over all possible K-tuples x ∈MK .

Proof. In principle the idea behind this theorem is quite simple. The probability of a single

node to be in either state (z′(+) or z′(−)) in the new timestep is the sum over all probabilities

of tuples, which lead to this state, when ”plugged into“ f .

From definitions 2.2 and 1.8 it is known that

z′(±) = Pr [x′i = ±1|i] = Pr [f (xi1 , . . . , xik) = ±1|i, {ij}] = . . .

Applying the MF approximation, it is possible to assume that the node i is equivalent to

each other node, therefore dropping the dependence on it. Additionally the concept of

neighbors (xi1 , . . . , xiK ) = x of node i cannot be used anymore, because in MF the node i

does not have any specific neighbors, only K connections to the averaged ”background“.

Therefore a sum over all possible tuples x as neighbors can be introduced, weighting them

according to their probability of occurrence, given by lemma 2.5:

· · · = Pr [f (xi1 , . . . , xik) = ±1|i, {ij}]
MF=

∑
x

Pr [f (x) = ±1|x] Pr
[
x|z(±)

]

When more than one different degree on the nodes occurs, the iteration equation has to

be weighted accordingly.

Corollary 2.7. For a more elaborate distribution of degrees ρk the iteration equation is

z′(±) =
∑
k

Pr [k|ρk]

 ∑
x∈Mk

Pr [f(x) = ±1|x] Pr
[
x|z(±)

] . (2.12)

Proof. Clear in a MF approximation, because the probability for a state in the next timestep

z′(±) is the average over all nodes, and hence weighted with the probability of a node having

k neighbors.
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2 Mean Field Approximation

If the distribution of functions ρF is known explicitly, i.e. for every Boolean function f

given by a truth table a positive frequency of occurrence is given

ρF 7→ Pr [f|ρF] , (2.13)

then this leads to a considerable simplification in the construction of the iteration equa-

tions.

Corollary 2.8. Let M = {−1,+1}. If the distribution of Boolean functions is given explicitly
by normalized and positive probabilities Pr [f|ρF], the iteration equations can be written as

z′(±) =
∑
k

Pr [k|ρk]

∑
f

∑
x

Pr [f|ρF] Pr [f(x) = ±1|x, f] Pr
[
x|z(±)

] . (2.14)

Proof. Follows immediately from the splitting

Pr [f(x) = ±1|x] =
∑

f

Pr [f|ρF] Pr [f(x) = ±1|x, f] , (2.15)

which is clear in a MF description, because everything is treated only statistically. The

simplification comes from the fact, that Pr [f(x) = ±1|x, f] can only be either one or zero,

which can be directly read from the truth table.

The last corollary also shows that each iteration equation can be seen as mixture of the

iteration equations for a specific Boolean function f:

z′(±) =
∑
k

Pr [k|ρk]
∑

f

Pr [f|ρF] z′(±) [f] . (2.16)

The iteration equations z′(±) [f] can be constructed by simple combinatorics using the

truth table. An example will be given later in this section. An example for a Boolean

function, which is not given by a truth table, would be a Linear Threshold function

f(x) = sign
(∑

{j} cijxj + h
)
. This is still a function f : Mki → M . However, if the coef-

ficients cij are not given explicitly, but rather are drawn randomly from a distribution ρc,

the explicit probabilities for a Boolean function f in Pr [f|ρF] are cumbersome to determine1.

In this case it is easier to calculate Pr [f(x) = ±1|x]. However, the complete chapter 3 is

devoted to this case, so it will be postponed until then.

Besides Linear Threshold functions there might be other classes of functions for which

Pr [f|ρF] is not known explicitly, because they depend on some external parameters γ. In

all those cases it is still possible to calculate Pr [f|ρF] ≡ Pr [f|γ] via

Pr [f|γ] =
∫
Dγ

(∏
x

Pr [f(γ; x) = f(x)]

)
, (2.17)

with Dγ an normalized measure over the external parameters γ. However, in most such

cases it is way easier to go the direct route via Pr [f(x) = ±1|x], than first calculate Pr [f|ρF],
1except for some special cases
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2.2 Dynamics or iteration equation

calculate all z′(±) for those Boolean functions f and weight them accordingly.

This should just illustrate, that Pr [f|ρF] is not always known explicitly to use in the

sense of corollary 2.8.

The iteration equation for the magnetization is introduced with the following definition:

Definition 2.9. The iteration equation for the magnetization m′ is denoted by M. If the
distributions of degrees ρk and functions ρF depend on the external parameters γ (as in
definition 1.24), it is given by

m′ =M (γ;m) . (2.18)

Here γ could mean anything from the internal homogeneity p and the connectivity K

in the Kauffman model (γ = {p,K}), to the two parameters p and h in the distributions

of weights and the connectivity K used in the Linear Threshold functions in next chapter

(γ = {p, h,K}) or even some other parameter in the distribution of degrees ρk or functions

ρF.

Hence we can state the “final” result for the magnetization:

Corollary 2.10. The iteration equation for the magnetization m′ =M (γ;m) is a polynomial
in m of maximal order O

(
mK

)
with K = max (ρk).

If only a single Boolean function f is used (and therefore also only a single degree on all
nodes), the iteration polynomial reads for M = {−1,+1}:

m′ =
∑
x

f(x)
(

1 +m

2

)〈x,x〉(1−m
2

)K−〈x,x〉
, (2.19)

where f(x) ∈ M is used as f(x) ∈ R. For M = {0, 1}, the iteration equation is m̃′ =∑
x

f̃(x)m̃〈x,x〉 (1− m̃)K−〈x,x〉. If the distributions of degrees ρk and Boolean functions ρF is

more complicated, and parameters in those distributions are taken together in the external
parameters γ, the iteration polynomial can be extended as

m′ =
∑
k

Pr [k|ρk]

∑
f

Pr [f|ρF]m′ [f]

 , (2.20)

where m′ [f] denotes the iteration polynomial from equation (2.19) above for a single Boolean
function f.

Proof. First recall the definition 2.3 of the magnetization m and the relation to the proba-

bilities, m = z(+) − z(−). This has to be valid also in the next timestep, m′ = z′(+) − z
′
(−). If

assuming a single Boolean function f and inserting the iteration equations from theorem

2.6 yields

m′ [f] = z′(+) [f]− z′(−) [f]

=

(∑
x

Pr [f(x) = +1|x] Pr
[
x|z(±)

])
−

(∑
x

Pr [f(x) = −1|x] Pr
[
x|z(±)

])
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2 Mean Field Approximation

=
∑
x

(Pr [f(x) = +1|x]− Pr [f(x) = −1|x]) Pr
[
x|z(±)

]
= . . .

Now note that Pr [f(x) = +1|x] can only be either zero or one, because a single Boolean func-

tion f can assume only one value in the truth table, and analogously for Pr [f(x) = −1|x].
Hence for the complete term

Pr [f(x) = +1|x]︸ ︷︷ ︸
∈{0,1}

−Pr [f(x) = −1|x]︸ ︷︷ ︸
∈{0,1}

= f(x)︸︷︷︸
∈{−1,1}

,

where f(x) ∈M is now taken as f(x) ∈ R. Note that this term consists only of Pr [f(x) = +1|x],
if the iteration equation for m̃′ is examined, which already yields the correct expression if

Pr
[̃
f(x) = +1|x

]
=: f̃(x) ∈ R is assumed. Hence the iteration equation for m′ (or m̃′) has the

correct form

. . . =
∑
x

f(x)
(

1 +m

2

)〈x,x〉(1−m
2

)〈x⊕1,x⊕1〉
.

As 〈x,x〉+ 〈x⊕ 1,x⊕ 1〉 = ki, this is a polynomial of order O
(
mki

)
. Using the mixture from

corollary 2.8, the complete iteration equation is of order O
(
mK

)
with K = max (ρk).

Example

A simple example for the construction of the iteration equation for m would be the Majority

rule (or rule (232)3) for K = 3, see table 2.1.

input output Pr
[
x|z(±)

]
x f(x)

−1 −1 −1 −1 z3
(−)

−1 −1 +1 −1 z(+)z
2
(−)

−1 +1 −1 −1 z(+)z
2
(−)

−1 +1 +1 +1 z2
(+)z(−)

+1 −1 −1 −1 z(+)z
2
(−)

+1 −1 +1 +1 z2
(+)z(−)

+1 +1 −1 +1 z2
(+)z(−)

+1 +1 +1 +1 z3
(+)

Table 2.1: Majority rule or rule (232)3

There are four states x, leading to +1: (+,+,+), (−,+,+), (+,−,+) and (+,+,−). These

have the probabilities Pr
[
(+,+,+)|z(±)

]
= z3

(+) for the first one, and Pr
[
(−,+,+)|z(±)

]
=

Pr
[
(+,−,+)|z(±)

]
= Pr

[
(+,+,−)|z(±)

]
= z2

(+)z(−) for the others to occur. These have the
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2.2 Dynamics or iteration equation

“coefficients“ Pr [f(x) = +1|x] = 1, for other input tuples this coefficient is Pr [f(x) = +1|x] =
0, so they do not have to be counted. Therefore the iteration equation for z′(+) is given by

the sum of these probabilities:

z′(+) = z3
(+) + 3z2

(+)z(−).

The iteration equation for z′(−) can be obtained analogously:

z′(−) = z3
(−) + 3z2

(−)z(+).

Inserting this into m′ = z′(+) − z
′
(−) and using the transformation given in equations (2.6)

yields

m′ =

[(
1 +m

2

)3

+ 3
(

1 +m

2

)2(1−m
2

)]
−

[(
1−m

2

)3

+ 3
(

1−m
2

)2(1 +m

2

)]

=
[

1
4
(
2 + 3m−m3

)]
−
[

1
4
(
2− 3m+m3

)]
=

3
2
m− 1

2
m3.

A transformation m 7→ m̃ would yield

m̃′ = 3m̃2 − 2m̃3.

2.2.2 Hamming distance d in MF

Similar to the magnetization m, an iteration equation for the Hamming distance d can

be derived in the MF approximation. The idea behind this is taking two variables xi and

yi on each node i, but keeping only a single function fi. The dynamics F is applied

independently on both states, X = (x1, . . . , xN ) and Y = (y1, . . . , yN ):

X′ = F(X), (2.21a)

Y′ = F(Y). (2.21b)

The update order is assumed to be simultaneous in both BNs, so the last two equations

can also be taken together as a single one

(X′,Y′) = (F(X),F(Y) = F(X,Y) (2.22)

with a new global function F : M2N → M2N . Therefore a state of a single node can be

described by the tuple (xi, yi), resulting in |M |2 = 4 possible states, instead of just two

before. This so-called ”4-state-model” has already been mentioned and used in [Kesseli

et al., 2006].

With the knowledge of both states X and Y, the Hamming distance d can be calculated at

every timestep in the dynamics. It is the aim of this section to take those coupled iteration

equations and arrive at an iteration equation for d′. Recall the definition of stableness of
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BNs from definition 1.25:

lim
t→∞

d
(
F[γ]t(X),F[γ]t(Y)

)
= 0. (2.23)

The MF approximation allows now for explicit calculation of the condition given by this

definition, as will be seen in this and later sections.

Extending the results of the previous section, the Hamming distance d could be called

a parameter of the second order of the dynamics, whereas the magnetization m is a pa-

rameter of the first order. To formalize this, the definition and lemma from the previous

section have to be adjusted as follows:

Definition 2.11. Let M = {−1, 1}, then the symbols z(++), z(+−), z(−+) and z(−−) denote the
probabilities for a arbitrary node i with variables (xi, yi) to be in the states (xi = +1, yi = +1),
(xi = +1, yi = −1), (xi = −1, yi = +1) or (xi = −1, yi = −1), respectively:

z(++) = Pr [xi = +1, yi = +1|i] , (2.24a)

z(+−) = Pr [xi = +1, yi = −1|i] , (2.24b)

z(−+) = Pr [xi = −1, yi = +1|i] , (2.24c)

z(−−) = Pr [xi = −1, yi = −1|i] . (2.24d)

The first index always corresponds to states X in the first BN, whereas the second one on
the second (identical) BN with the different state Y.

Lemma 2.12. Let M = {−1,+1}. The probability for a tuple (x,y) = ((x1, y1) , . . . , (xK , yK))
with given probabilities z(±±) is

Pr
[
x,y|z(±±)

]
= zn1

(++)z
n2
(+−)z

n3
(−+)z

n4
(−−), (2.25)

where the exponents ni (i ∈ {1, 2, 3, 4}) are given by the following expressions

n1 = | {i : xi = +1, yi = +1} | = 〈x,y〉 , (2.26a)

n2 = | {i : xi = +1, yi = −1} | = 〈x,y ⊕ 1〉 , (2.26b)

n3 = | {i : xi = −1, yi = +1} | = 〈x⊕ 1,y〉 , (2.26c)

n4 = | {i : xi = −1, yi = −1} | = 〈x⊕ 1,y ⊕ 1〉 , (2.26d)

using also the bracket 〈., .〉 from definition 2.4.

Proof. As before in lemma 2.5, each position (xi, yi) in the tuple (x,y) is independent,

therefore the complete probability is just the product of these probabilities for a single

position, yielding exactly the expression stated in the current lemma.

With this lemma the reason for the introduction of the bracket 〈., .〉 should be clear.

However, it works only up to the second order of the dynamics, higher orders, as treated

in section 2.2.4, need additional, heavier notation.

Similar to the first order of the dynamics (z′(±)), at the beginning only a simple distribu-

tion of degrees ρk is assumed in the iteration equations.

30



2.2 Dynamics or iteration equation

Proposition 2.13. Let M = {−1,+1} and Pr [k|ρk] = δ(k−K). The iteration equations for the
MF dynamics of the probabilities z(±±) is given by

z′(±±) =
∑
x,y

Pr [f(x) = ±1, f(y) = ±1|x,y] Pr
[
x,y|z(±±)

]
. (2.27)

Proof. By the same reasoning as in theorem 2.6 for the iteration equation of z′(±) it follows,

that

z′(±±) = Pr [x′i = ±1, y′i = ±1|i]

= Pr [f(xi1 , . . . , xiK ) = ±1, f(yi1 , . . . , yiK ) = ±1|i, {ij}]
MF=

∑
x,y

Pr [f(x) = ±1, f(y) = ±1|x,y] Pr
[
x,y|z(±±)

]
.

Corollary 2.14. The extension for arbitrary ρk and known Pr [f|ρF] is

z′(±±) =
∑
k

Pr [k|ρk]

∑
f

∑
x,y

Pr [f|ρF] Pr [f(x) = ±1, f(y) = ±1|x,y] Pr
[
x,y|z(±±)

] . (2.28)

Proof. Follows immediately from proposition 2.13 and the arguments used in the proofs

of the corollaries for the iteration equations in the first order of the dynamics (corollaries

2.7 and 2.8).

Note that in the case of a single Boolean functions f, the combined probability can

actually be factorized into a product:

Pr [f(x) = ±1, f(y) = ±1|x,y] = Pr [f(x) = ±1|x] Pr [f(y) = ±1|y] . (2.29)

This is possible, because for such Boolean functions f the values at different input tuples

x and y are independent from each other. However, if no explicit probabilities for sin-

gle Boolean functions f is given by Pr [f|ρF], this cannot be done and the complete term

Pr [f(x) = ±1, f(y) = ±1|x,y] has to be calculated at once.

After stating all those iteration equations for the probabilities z(±±), the Hamming dis-

tance d can be introduced:

Definition 2.15. The Hamming distance d in the MF approximation is

d := z(+−) + z(−+). (2.30)

Note that this is nothing else than the probability for the variables xi and yi to be

different at the same node i. The magnetizations m(X) and m(Y) could also be expressed

by z(±±):

m(X) = z(++) + z(+−) − z(−+) − z(−−),

m(Y) = z(++) + z(−+) − z(+−) − z(−−).
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2 Mean Field Approximation

The iteration equations for z(++), z(+−), z(−+) and z(−−) have already redundant informa-

tion in them. Another redundancy is introduced, when restricting both BNs to the same

attractor, i.e. setting

m(X) ≈ m(Y) =: m. (2.31)

This is valid, because in subsequent sections and chapters only the fixed points of the

iteration equations are considered. So when looking at the fixed point in the Hamming

distance d∗, it is assumed, that both of the two BNs have already reached their respec-

tive fixed points m(X)∗ and m(Y)∗, because the fixed point is reached in the infinite time

limit. Furthermore, only small perturbations of the initial conditions are considered. Both

fixed points m(X)∗ and m(Y)∗ are considered stable, so small perturbations should bring

the dynamics of the BN back to it, so if taking a complete replica of the first BN and only

perturbing a few nodes, i.e. the condition d(X,Y) = O
(

1
N

)
from definition 1.25, the as-

sumption m(X)∗ = m(Y)∗ is justified. Therefore the iteration equations should be seen as

algebraic expression, from which only the fixed point is obtained. However, simulations

indicate, that also the time evolution of the BNs can be expressed by those equations, as

they agree to an almost perfect extent.

The following transformation uses this fact and rewrites the probabilities z(±±) in terms

of only the magnetization m and the Hamming distance d.

1 = z(++) + z(+−) + z(−+) + z(−−)

m(X) = z(++) + z(+−) − z(−+) − z(−−)

m(Y) = z(++) + z(−+) − z(+−) − z(−−)

d = z(−+) + z(+−)

 ⇒


z(++) = 1

2 (1 +m− d)
z(+−) = 1

2d

z(+−) = 1
2d

z(−−) = 1
2 (1−m− d)

. (2.32)

The probability Pr
[
x,y|z(±±)

]
for the tuple (x,y) can be expressed in the new variables m

and d (or m̃ and d, respectively):

Pr [x,y|m, d] =
(

1 +m− d
2

)〈x,y〉(
d

2

)〈x,y⊕1〉+〈x⊕1,y〉(1−m− d
2

)〈x⊕1,y⊕1〉

,

Pr [x,y|m̃, d] =
(
m̃− d

2

)〈x,y〉(
d

2

)〈x,y⊕1〉+〈x⊕1,y〉(
1− m̃− d

2

)〈x⊕1,y⊕1〉

.

Note that because of setting m(X) ≈ m(Y), the magnetization is in fact given by m = z(++)−
z(−−). The central two terms cancel each other out, because with this restriction the

probabilities z(±±) are symmetric with respect to exchange of indices.

Using this transformation, the iteration equation for the Hamming distance d′ is a poly-

nomial in d and m. Similar to corollary 2.9 the polynomial for d is defined.

Definition 2.16. The function D is the iteration equation for the Hamming distance d. It is a
polynomial in m and d and of order O

(
midj

)
with i+ j ≤ K = max (ρk) and therefore O

(
dK
)
:

d′ = D (γ;m, d) (2.33)

where γ are the parameters in ρk and ρF.
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2.2 Dynamics or iteration equation

Corollary 2.17. In the case of M = {0, 1}, the iteration equation of the Hamming distance d
for a single Boolean function f̃ assumes a simple form

d′ =
∑
x,y

f̃(x)⊕ f̃(y) Pr [x,y|m̃, d] , (2.34)

where again f̃(x)⊕ f̃(y) ∈ {0, 1} ⊂ R.

Proof. Recall d′ = z′(+−) + z′(−+). Inserting the expressions for z′(±±) yields

d′ =

(∑
x,y

Pr
[̃
f(x) = 1, f̃(y) = 0|x,y

]
Pr
[
x,y|z(±±)

])

+

(∑
x,y

Pr
[̃
f(x) = 0, f̃(y) = 1|x,y

]
Pr
[
x,y|z(±±)

])

=
∑
x,y

(
Pr
[̃
f(x) = 1, f̃(y) = 0|x,y

]
+ Pr

[̃
f(x) = 0, f̃(y) = 1|x,y

])
Pr
[
x,y|z(±±)

]
Now we need to inspect the central term more closely:

Pr
[̃
f(x) = 1, f̃(y) = 0|x,y

]
+ Pr

[̃
f(x) = 0, f̃(y) = 1|x,y

]
=

{
1 if f̃(x) 6= f̃(y)
0 else

= . . .

Using now the definition of ⊕ (definition 1.12), it immediately follows that

· · · =

{
1 if f̃(x) 6= f̃(y)
0 else

}
= f̃(x)⊕ f̃(y)

when assuming f̃(x)⊕ f̃(y) ∈ R.

This form of the iteration equation for the Hamming distance will be needed later. It

should also be quite obvious, because it is nothing else than adding up all the probabilities

of input possibilities, which give a different output, when “plugged into” the function f̃.

Example

Continuing the example from the last section about the magnetization, the iteration equa-

tion of the Hamming distance d′ for the Majority rule is derived. The truth table (see table

2.2) is now considerably bigger than in the example for the magnetization, however, it can

still be analyzed using simple combinatorics.

The iteration equations for the probabilities z′(±±) are given by

z′(++) = z(−−)z(++)z(++) + z(−+)z(+−)z(++) + z(−+)z(++)z(+−) + z(−+)z(++)z(++)

+z(+−)z(−+)z(++) + z(++)z(−−)z(++) + z(++)z(−+)z(+−) + z(++)z(−+)z(++)

+z(+−)z(++)z(−+) + z(++)z(+−)z(−+) + z(++)z(++)z(−−) + z(++)z(++)z(−+)

+z(+−)z(++)z(++) + z(++)z(+−)z(++) + z(++)z(++)z(+−) + z(++)z(++)z(++),
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2 Mean Field Approximation

input output Pr
h
x, y|z(±±)

i
x y f(x),f(y)

−1 −1 −1 −1 −1 −1 −1,−1 z3
(−−)

−1 −1 +1 −1 −1 −1 −1,−1 z2
(−−)z(+−)

−1 +1 −1 −1 −1 −1 −1,−1 z2
(−−)z(+−)

−1 +1 +1 −1 −1 −1 +1,−1 z(−−)z2
(+−)

+1 −1 −1 −1 −1 −1 −1,−1 z2
(−−)z(+−)

+1 −1 +1 −1 −1 −1 +1,−1 z(−−)z2
(+−)

+1 +1 −1 −1 −1 −1 +1,−1 z(−−)z2
(+−)

+1 +1 +1 −1 −1 −1 +1,−1 z3
(+−)

−1 −1 −1 −1 −1 +1 −1, +1 z2
(−−)z(−+)

−1 −1 +1 −1 −1 +1 −1, +1 z2
(−−)z(++)

−1 +1 −1 −1 −1 +1 −1, +1 z(−−)z(+−)z(−+)

−1 +1 +1 −1 −1 +1 +1, +1 z(−−)z(+−)z(++)

+1 −1 −1 −1 −1 +1 −1, +1 z(+−)z(−−)z(−+)

+1 −1 +1 −1 −1 +1 +1, +1 z(+−)z(−−)z(++)

+1 +1 −1 −1 −1 +1 +1, +1 z2
(+−)z(−+)

+1 +1 +1 −1 −1 +1 +1, +1 z2
(+−)z(++)

−1 −1 −1 −1 +1 −1 −1,−1 z2
(−−)z(−+)

−1 −1 +1 −1 +1 −1 −1,−1 z(−−)z(−+)z(+−)

−1 +1 −1 −1 +1 −1 −1,−1 z2
(−−)z(++)

−1 +1 +1 −1 +1 −1 +1,−1 z(−−)z(++)z(+−)

+1 −1 −1 −1 +1 −1 −1,−1 z(+−)z(−+)z(−−)

+1 −1 +1 −1 +1 −1 +1,−1 z2
(+−)z(−+)

+1 +1 −1 −1 +1 −1 +1,−1 z(+−)z(++)z(−−)

+1 +1 +1 −1 +1 −1 +1,−1 z2
(+−)z(++)

−1 −1 −1 −1 +1 +1 −1, +1 z(−−)z2
(−+)

−1 −1 +1 −1 +1 +1 −1, +1 z(−−)z(−+)z(++)

−1 +1 −1 −1 +1 +1 −1, +1 z(−−)z(++)z(−+)

−1 +1 +1 −1 +1 +1 +1, +1 z(−−)z2
(++)

+1 −1 −1 −1 +1 +1 −1, +1 z(+−)z2
(−+)

+1 −1 +1 −1 +1 +1 +1, +1 z(+−)z(−+)z(++)

+1 +1 −1 −1 +1 +1 +1, +1 z(+−)z(++)z(−+)

+1 +1 +1 −1 +1 +1 +1, +1 z(+−)z2
(++)

input output Pr
h
x, y|z(±±)

i
x y f(x),f(y)

−1 −1 −1 +1 −1 −1 −1,−1 z(−+)z2
(−−)

−1 −1 +1 +1 −1 −1 −1,−1 z(−+)z(−−)z(+−)

−1 +1 −1 +1 −1 −1 −1,−1 z(−+)z(+−)z(−−)

−1 +1 +1 +1 −1 −1 +1,−1 z(−+)z2
(+−)

+1 −1 −1 +1 −1 −1 −1,−1 z(++)z2
(−−)

+1 −1 +1 +1 −1 −1 +1,−1 z(++)z(−−)z(+−)

+1 +1 −1 +1 −1 −1 +1,−1 z(++)z(+−)z(−−)

+1 +1 +1 +1 −1 −1 +1,−1 z(++)z2
(+−)

−1 −1 −1 +1 −1 +1 −1, +1 z2
(−+)z(−−)

−1 −1 +1 +1 −1 +1 −1, +1 z(−+)z(−−)z(++)

−1 +1 −1 +1 −1 +1 −1, +1 z2
(−+)z(+−)

−1 +1 +1 +1 −1 +1 +1, +1 z(−+)z(+−)z(++)

+1 −1 −1 +1 −1 +1 −1, +1 z(++)z(−−)z(−+)

+1 −1 +1 +1 −1 +1 +1, +1 z2
(++)z(−−)

+1 +1 −1 +1 −1 +1 +1, +1 z(++)z(+−)z(−+)

+1 +1 +1 +1 −1 +1 +1, +1 z2
(++)z(+−)

−1 −1 −1 +1 +1 −1 −1, +1 z2
(−+)z(−−)

−1 −1 +1 +1 +1 −1 −1, +1 z2
(−+)z(+−)

−1 +1 −1 +1 +1 −1 −1, +1 z(−+)z(++)z(−−)

−1 +1 +1 +1 +1 −1 +1, +1 z(−+)z(++)z(+−)

+1 −1 −1 +1 +1 −1 −1, +1 z(++)z(−+)z(−−)

+1 −1 +1 +1 +1 −1 +1, +1 z(++)z(−+)z(+−)

+1 +1 −1 +1 +1 −1 +1, +1 z2
(++)z(−−)

+1 +1 +1 +1 +1 −1 +1, +1 z2
(++)z(+−)

−1 −1 −1 +1 +1 +1 −1, +1 z3
(−+)

−1 −1 +1 +1 +1 +1 −1, +1 z2
(−+)z(++)

−1 +1 −1 +1 +1 +1 −1, +1 z2
(−+)z(++)

−1 +1 +1 +1 +1 +1 +1, +1 z(−+)z2
(++)

+1 −1 −1 +1 +1 +1 −1, +1 z(++)z2
(−+)

+1 −1 +1 +1 +1 +1 +1, +1 z2
(++)z(−+)

+1 +1 −1 +1 +1 +1 +1, +1 z2
(++)z(−+)

+1 +1 +1 +1 +1 +1 +1, +1 z3
(++)

Table 2.2: Truth table for rule (232)3 in the second order of the dynamics

z′(+−) = z(−−)z(+−)z(+−) + z(−−)z(+−)z(++) + z(−−)z(++)z(+−) + z(−+)z(+−)z(+−)

+z(+−)z(−−)z(+−) + z(+−)z(−−)z(++) + z(+−)z(−+)z(+−) + z(++)z(−−)z(+−)

+z(+−)z(+−)z(−−) + z(+−)z(+−)z(−+) + z(+−)z(++)z(−−) + z(++)z(+−)z(−−)

+z(+−)z(+−)z(+−) + z(+−)z(+−)z(++) + z(+−)z(++)z(+−) + z(++)z(+−)z(+−),

z′(−+) = z(−−)z(−+)z(−+) + z(−+)z(−−)z(−+) + z(−+)z(−+)z(−−) + z(−+)z(−+)z(−+)

+z(−−)z(−+)z(++) + z(−+)z(−−)z(++) + z(−+)z(−+)z(+−) + z(−+)z(−+)z(++)

+z(−−)z(++)z(−+) + z(−+)z(+−)z(−+) + z(−+)z(++)z(−−) + z(−+)z(++)z(−+)

+z(+−)z(−+)z(−+) + z(++)z(−−)z(−+) + z(++)z(−+)z(−−) + z(++)z(−+)z(−+),

z′(−−) = z(−−)z(−−)z(−−) + z(−−)z(−−)z(−+) + z(−−)z(−+)z(−−) + z(−+)z(−−)z(−−)

+z(−−)z(−−)z(+−) + z(−−)z(−−)z(++) + z(−−)z(−+)z(+−) + z(−+)z(−−)z(+−)

+z(−−)z(+−)z(−−) + z(−−)z(+−)z(−+) + z(−−)z(++)z(−−) + z(−+)z(+−)z(−−)

+z(+−)z(−−)z(−−) + z(+−)z(−−)z(−+) + z(+−)z(−+)z(−−) + z(++)z(−−)z(−−).
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2.2 Dynamics or iteration equation

Again, this is just summing up all lines in table 2.2, which give the corresponding proba-

bility z(±±) in the output, because Pr [f(x) = ±1, f(y) = ±1|x,y] ∈ {0, 1}. Inserting the trans-

formation (z(±±)) 7→ (m, d) yields

z′(++) =
1
2
− 3

4
d+

3
4
d2 − 1

2
d3 +

3
4
m+

3
4
dm2 − 1

4
m3,

z′(+−) =
3
4
d− 3

4
d2 +

1
2
d3 − 3

4
dm2,

z′(−+) =
3
4
d− 3

4
d2 +

1
2
d3 − 3

4
dm2,

z′(−−) =
1
2
− 3

4
d+

3
4
d2 − 1

2
d3 − 3

4
m+

3
4
dm2 +

1
4
m3.

This leads finally to the iteration equation for the Hamming distance d:

d′ = z′(+−) + z′(−+) =
(

3
2
− 3

2
m2

)
d− 3

2
d2 + d3.

As a check, also the iteration equation for the magnetization m should coincide with the

calculation in section 2.2.1:

m′ = z′(++) − z
′
(−−) =

3
2
m− 1

2
m3.

In this case (K = 3) it is still feasible to calculate the iteration equations for a single Boolean

function f by hand, however, for higher connectivities K ≥ 4 a scripted computer algebra

system might be very beneficial, as there are
(
2K
)2

different input tuples to consider for

the dynamics in the second order.

See appendix B for a list of iteration equations z′(±±) for all Boolean functions f with

K = 3.

2.2.3 Hamming distance d in the Kauffman model

The Kauffman model, introduced in section 1.4.3, was the first model for which the Ham-

ming distance in BN was computed analytically [Derrida and Pomeau, 1986]. Therefore

any model, which allows the calculation of d, should include this as special case. In the

formalism explained in the last section, this can be done in the following way.

Theorem 2.18. The Hamming distance d in the Kauffman model emerges naturally from
the formalism introduced in the last section:

d′ = 2p(1− p)
(
1− (1− d)K

)
. (2.35)

Proof. Start with the iteration equation for the probabilities z′(±±) and split the summation

over x and y into two parts:

z′(±±) =
∑
x

∑
y

Pr [f(x) = ±1, f(y) = ±1|x,y] Pr
[
x,y|z(±±)

]
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=

∑
x,y
x=y

Pr [f(x) = ±1, f(y) = ±1|x,y] Pr
[
x,y|z(±±)

]
+

∑
x,y
x 6=y

Pr [f(x) = ±1, f(y) = ±1|x,y] Pr
[
x,y|z(±±)

] = . . .

Recall the result of lemma 1.18. The distribution of Boolean functions ρF in the Kauffman

model is such that the functions with a specific number of +1s in the truth table are

distributed binomially with parameter p. Note that this is independent of the position in

the truth table, and therefore independent of the input tuple x (or y, respectively). This

means the dependence on x can be dropped in those probabilities:

Pr [f(x) = ±1, f(y) = ±1|x,y] = Pr [f(any) = ±1, f(any other) = ±1] .

Therefore those factors can be written in front of the sum

. . . = Pr [f(any) = ±1, f(any) = ±1]

∑
x,y
x=y

Pr
[
x,y|z(±±)

]
+ Pr [f(any) = ±1, f(any other) = ±1]

∑
x,y
x6=y

Pr
[
x,y|z(±±)

] .

Note that in the first term “any” means the same position in both functions, because x = y.

In the second term “any” and “any other” are distinct positions in the truth table, as x 6= y.

Now the summation
∑
x,y

can be calculated separately. First the term with the restriction

of equality x = y is derived:∑
x,y
x=y

Pr
[
x,y|z(±±)

]
=
∑
x,y
x=y

z
〈x,y〉
(++)z

〈x,y⊕1〉
(+−) z

〈x⊕1,y〉
(−+) z

〈x⊕1,y⊕1〉
(−−) = . . .

The central two exponents are 〈x,y ⊕ 1〉 = 〈x⊕ 1,y〉 = 0, because x = y. Furthermore x = y

reduces the summation to just a single summation:∑
x,y
x=y

7→
∑
x

.

Using transformation (2.32) (z(±±) 7→ (m, d)) the following result is obtained

. . . =
∑
x

(
1 +m− d

2

)〈x,x〉(1 +m− d
2

)〈x⊕1,x⊕1〉

=
K∑
i=0

(
K

i

)(
1 +m− d

2

)i(1−m− d
2

)K−i
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2.2 Dynamics or iteration equation

=
[(

1 +m− d
2

)
+
(

1−m− d
2

)]K
= (1− d)K

From the first to the second line it is used, that the number of +1s is distributed bino-

mially. From the second to third line the binomial expansion (a + b)K =
∑
i

(
K
i

)
aibK−i is

used.

The summation
∑
x,y

with restriction to x 6= y could be calculated analogously. However,

it has to be the counter-probability to before, therefore∑
x,y
x6=y

Pr
[
x,y|z(±±)

]
= 1−

∑
x,y
x=y

Pr
[
x,y|z(±±)

]
= 1− (1− d)K .

Now the probabilities for the functions to have a specific value in their truth table have

to be calculated. Again, the case x = y is treated first:

Pr [f(any) = +1, f(any) = +1] = p,

Pr [f(any) = +1, f(any) = −1] = 0,

Pr [f(any) = −1, f(any) = +1] = 0,

Pr [f(any) = −1, f(any) = −1] = 1− p.

Here, the first and last line have the same condition twice, therefore it is reduced to a

single condition, which are then just Pr [f(any) = ±1]. This is exactly definition 1.19. The

two central lines require the function to assume different values on the same input, which

is not possible, hence they are zero. Then the case x 6= y is treated:

Pr [f(any) = +1, f(any other) = +1] = p2,

Pr [f(any) = +1, f(any other) = −1] = p(1− p),

Pr [f(any) = −1, f(any other) = +1] = (1− p)p,

Pr [f(any) = −1, f(any other) = −1] = (1− p)2.

Inserting this in the iteration equations for z′(±±) yields:

z′(++) = p (1− d)K + p2
(

1− (1− d)K
)
,

z′(+−) = p(1− p)
(

1− (1− d)K
)
,

z′(−+) = (1− p)p
(

1− (1− d)K
)
,

z′(−−) = (1− p) (1− d)K + (1− p)2
(

1− (1− d)K
)
.

Taking all those terms together leads to the correct expression for the Hamming distance

d:

d′ = z′(+−) + z′(−+)
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2 Mean Field Approximation

= p(1− p)
(

1− (1− d)K
)

+ (1− p)p
(

1− (1− d)K
)

= 2p(1− p)
(

1− (1− d)K
)
.

Note that in the original paper [Derrida and Pomeau, 1986] much more was shown.

The equation from last theorem gives just a single value for the Hamming distance d.

However, Derrida and coworkers derived an iteration equation for the complete probability

distribution of possible Hamming distances d, which is just sharply peaked around the

value reproduced here.

2.2.4 Higher orders of the dynamics and multistate networks

Higher orders of the dynamics have been mentioned several times, but now they are in-

troduced formally:

Definition 2.19. The order n ∈ N of the dynamics of a BN is the number of variables on
each node i in otherwise identical BNs (the in-degree ki and all Boolean functions f on each
node are assumed to be the same). The iteration equations are given by z′(±···±) where the
index set (± · · ·±) has exactly n elements.

This is nothing else, than assuming n variables
(
x

(1)
i , x

(2)
i , . . . , x

(n)
i

)
on each node i, in-

stead of just one xi ≡ x(1)
i for the magnetization m or two (xi, yi) ≡

(
x

(1)
i , x

(2)
i

)
for the Ham-

ming distance d. In [Derrida and Weisbuch, 1986] the authors derive relations between

those orders in the constraint of constant magnetization, i.e. m(1) = m(2) = · · · = m(n).They

show that for |M | = 2 all odd orders depend only on the even orders. This is somehow

intuitively clear for n = 3, as the only possibilities are that all 3 variables on a node i are

equal or one is different than the other two, leading again to four different states on a

node. However, for higher orders this is not so obvious, but nevertheless true. This fact

does not hold when |M | ≥ 3, which corresponds to a Potts model, where each variable x(.)
i

can assume the values M = {1, 2, . . . , q}.
In their work the authors define the overlap on as follows2

on :=
∑
a∈M

z(a...a), | (a . . . a) | = n.

Note that the overlap is the fraction of nodes, which are the same in all n BNs. Therefore

the Hamming distance could also be expressed by those overlaps:

d = 1− o2.

These overlaps can be seen as generalized distances in the BN.

Further work [Derrida and Flyvbjerg, 1987] shows that those higher orders can also

be related to the moments of the distribution of the magnetization m in a single BN. As

2In the original work the overlap was defined with the symbol xn, however, here xi denotes the variable on node
i.
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2.2 Dynamics or iteration equation

already indicated at the end of last section, all formulas in this work only treat single

valued iteration equations, i.e. only the peak value of complete distributions on those

parameters (e.g. m or d). Regarding to the work of Derrida and coworkers, complete

distributions could be calculated by those higher orders of the dynamics3. Furthermore

they introduce in [Derrida and Flyvbjerg, 1987] the so-called “stable core”, which is the

fraction of nodes, which are the same in all BNs, independent of their initial condition and

do not change anymore in the time-evolution:

s := lim
n→∞

on

In [Flyvbjerg, 1988] an iteration equation for the stable core s is derived independently. It

is shown that the parameter s is another order parameter for a phase transition between a

so-called “frozen” and a “non-frozen” phase. The frozen phase corresponds to s = 1, where

all nodes are independent from their initial condition and do not change in time anymore.

All these higher orders could also be calculated in the formalism introduced so far in

this chapter.

Proposition 2.20. Let M be some set and n indices (a1a2 . . . an) with ai ∈ M . Then the
iteration equation for z(a1a2...an) is given by

z′(a1a2...an) =
∑

x(1),x(2),...,x(n)

Pr
[
f(x(1)) = a1, f(x(2)) = a2, . . . , f(x(n)) = an|x(1),x(2), . . . ,x(n)

]
×

×Pr
[
x(1),x(2), . . . ,x(n)|z(a1a2...an)

]
. (2.36)

This is nothing else than the canonical extension of the theorems 2.6 and 2.13. However,

calculating the stable core s with this formula is not that easy, rather impossible as the

order n tends to infinity.

The extension to |M | > 2 has been made by several authors so far. A recent study

[Wittmann et al., 2010] looks at a generalized Kauffman model, deriving the critical con-

dition for these networks. They also restrict their functions to a class, called single switch

functions, which resemble Linear Threshold functions, dealt with in the next chapter, and

also give the critical condition for this model.

Calculating higher orders of the dynamics could also be seen as just increasing the

size of M by a factor of |M | for each order. This is already indicated by the term “4-

state-model”, coined by [Kesseli et al., 2006]. However, not all possible functions on this

multistate network are allowed in this case, because already a “sub”-tuple of the complete

input tuple determines the (partial) output of the function, with no interactions at all

between those “sub”-tuples. Furthermore the function is symmetric with respect to each

of its “sub“-tuples. So higher orders of the dynamics are nothing else than a restricted

form of the dynamics in a multistate network.

3This is also reminiscent of statistical mechanics, where the partition sum could also be calculated in principle
by knowing all derivations of it (the correlation functions) up to infinite order.
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2 Mean Field Approximation

2.3 Attractors in the MF dynamics

In a MF approximation most of the information about attractors is lost, and usually only

fixed points of the iteration equations are calculated. Those fixed points are defined as

solutions of the equations

m∗ = M (γ;m∗) , (2.37a)

d∗ = D (γ;m∗, d∗) . (2.37b)

However, as explained in the first chapter, the attractors in BNs (without the MF approx-

imation) are often limit cycles. Those fixed points given by the last equations all have

period 1, so are no real cycles. Therefore the magnetization m∗ and Hamming distance

d∗ obtained by the MF approximation could be seen as the average values of those pa-

rameters in the actual limit cycle of a BN. However, attractors with higher periods could

somehow be constructed, as shown in later sections, but they are rather cumbersome to

derive explicitly.

Several solutions m∗ and d∗ of equations 2.37 could exist, up to a maximum of the order

of the polynomials M and D. However, not all these solutions might be in the correct

interval. For M = {0, 1} these correct intervals are m̃∗, d∗ ∈ [0, 1], whereas for M = {−1,+1}
they are m∗ ∈ [−1, 1] and d∗ ∈ [0, 1]. From the Brouwer fixed point theorem it is clear,

that at least one of the solutions has to be in the corresponding interval, because both

mappings m 7→ m′ =M(γ;m) and d 7→ d′ = D(γ;m, d) are smooth in their variables m and d

for a given set of parameters γ (since they are finite polynomials).

However, although such fixed points always exist, the main issue with those solutions

is their stability against small perturbations, i.e. if those fixed points are attractive or

repulsive. This stability can be determined with Linear Stability analysis. This stability of

the fixed points m∗ and d∗ could change when varying parameters γ in the distributions

ρk and ρF. This might lead to phase transitions between ordered and disordered phases

in the BN, when the fixed point d∗ = 0 changes from attractive to repulsive.

2.3.1 Linear Stability analysis

Determining the stability of a fixed point of the iteration equation can be done via a Linear

Stability analysis (LSA). A treatment of this method can be found in most textbooks on

dynamical systems, e.g. [Strogatz, 1994]. The main idea is to take the series expansion

of the iteration equation around the fixed point and looking only at the linear term. The

following proposition explains this method to classify the fixed point.

Proposition 2.21. Let x′ = P(x) be some iteration equation and let x∗ be a fixed point of
this equation (x∗ = P(x∗)). Then the fixed point x∗ is stable if∣∣∣∣∂P(x)

∂x

∣∣∣∣
x=x∗

< 1 (2.38)

Proof. As already mentioned, first expand the function P into a series around the fixed
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2.3 Attractors in the MF dynamics

point x∗

P(x) = P(x∗) +
∂P(x)
∂x

∣∣∣∣
x∗

(x− x∗) +
1
2
∂2P(x)
∂x2

∣∣∣∣
x∗

(x− x∗)2 + . . .

By definition, the first term in this series is equal to the fixed point itself x∗ = P(x∗).
Defining a variable ∆x := x− x∗ as the distance to the fixed point and subtracting x∗ from

both sides of the iteration equation and the series expansion, one arrives at the following

equation for the distance ∆x

∆x′ =
∂P(x)
∂x

∣∣∣∣
x∗

∆x+O
(
∆x2

)
Hence if starting with an infinitesimal distance to the fixed point, higher orders in ∆x can

be neglected, and only the linear term is of importance. This iteration converges to the

fixed point (∆x = 0 ) if the condition ∣∣∣∣∂P(x)
∂x

∣∣∣∣
x∗
< 1

is met, because then a small distance ∆x gets mapped to an even smaller one ∆x′.

If the first coefficient ∂P
∂x equals 1, then ∆x′ = ∆x and in first order of the expansion,

the distance stays at its original value. Higher orders have to be calculated to determine,

whether the fixed point x∗ is attractive or repulsive, but the convergence/divergence is at

a much lower rate, see also [Kürten, 1988a]. On the other hand, if the first coefficient

is negative (−1 < ∂P
∂x < 0), then the distance oscillates around the fixed point, but still

converges. If the coefficient is −1 then a bifurcation into a period-2 solution of the iteration

equation occurs.

2.3.2 Phase transition and critical condition

The phase transition between ordered and disordered dynamics occurs when the fixed

point d∗ = 0 changes its stability. The parameter d∗ could be seen as order parameter

of this dynamical phase transition, as d∗ = 0 “above“ the critical point γc and this is the

unique stable fixed point of D. “Below“ the critical point γc another stable fixed point d∗

emerges with d∗ > 0, whereas the fixed point d∗ = 0 becomes repulsive. However, as the

parameters approach their critical values γ → γc, this fixed point ”below” the critical point

also approaches the value of the stable phase

d∗
γ→γc−→ 0. (2.39)

Therefore the comparison to a continuous phase transition in statistical physics is justi-

fied. At and below this critical point γc small perturbations in the BN do not settle down

anymore, they propagate through the whole BN until a finite fraction of all nodes has a

different value compared to the original unperturbed BN.

One of the advantages of the MF approximation is, that the value of the external param-

eters γc can be calculated analytically.
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2 Mean Field Approximation

Definition 2.22. Let D (γ;m, d) be the iteration equation for the Hamming distance, intro-
duced in definition 2.16 and K = max (ρk). The coefficients in a binomial expansion in the
powers of d are denoted by λk (γ;m). The plain coefficients of dk are denoted by µk (γ;m):

d′ = D (γ;m, d)

=
K∑
k=0

(
K

k

)
λk (γ;m) dk (1− d)K−k (2.40a)

=
K∑
k=0

µk (γ;m) dk. (2.40b)

An expansion like in equation (2.40a) for the Hamming distance d has been first given

by Derrida in [Derrida, 1987], because the term
(
K
n

)
dn(1 − d)K−n has the interpretation

of the probability of having exactly n different positions in the inputs x and y. In some

cases, but not in all, the coefficients λn have also an interesting interpretation according

to damage spreading. This relation will be investigated further in the next section.

An example where the coefficients λn can be computed directly, and are not obtained by

constructing the complete iteration equation for the Hamming distance d, like in corollary

2.17, and then transforming the polynomial to the form of equation (2.40a) is given e.g. in

[Kürten and Clark, 2008].

The two different representations of the coefficients, λk and µk, can be transformed into

each other. The direction λk 7→ µk is given by

µk (γ;m) =
k∑

n=0

(
K

n

)(
K − n
k − n

)
(−1)k−n λn (γ;m) . (2.41)

The other direction, µk 7→ λk, can not be written as simple as above for arbitrary K.

However, it only involves inverting a lower triangular matrix. The entries in this matrix

consist only of the two binomial factors and a sign, so it has no zeros on the diagonal, i.e.

has full rank, and is therefore invertible. Therefore this direction of transformation exists

and is unique.

Recall from the remark after corollary 2.8, that every distribution on the functions could

be explicitly written in principle as probabilities Pr [f|ρF] for each Boolean function f. Al-

though it is not always straightforward to calculate them, it can be done with the projec-

tion of a generic function f to Boolean functions f defined by truth tables. This is already

given by equation 2.17. Hence in the following proofs only a single Boolean function f has

to be treated, because all expressions can always be weighted accordingly with Pr [f|ρF]
afterwards.

Note that just assuming single Boolean functions f is also valid for Probabilistic Boolean

functions, introduced in section 1.4.2. As already mentioned earlier, even if there are

multiple outputs of the function possible with different probabilities, this can always be

treated as a mixture of several single Boolean functions f. In each of the replicas of the BN

the choice of a function f has to be the same, because the BNs are identical, except only
their state xi or yi could be different. Hence this could also be modeled by just a single
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2.3 Attractors in the MF dynamics

Boolean function f at first, and the mixture of those functions is then introduced with the

explicit probabilities Pr [f|ρF] later on.

Now a few technicalities have to be stated in order to fully characterize the critical

condition, and therefore the phase transition, in the dynamics of the BN. However, these

lemmas are completely obvious from the interpretation, because they only show that d∗ = 0
is always a fixed point of the iteration equation. This is clear, because a perturbation

cannot arise out of nothing, so if inserting d = 0 into D, this should always yield d′ = 0.

Nevertheless this has to be proven for the abstract polynomial D, which has been defined

above.

Lemma 2.23. The zeroth coefficient in D vanishes:

λ0 (γ;m) = µ0 (γ;m) = 0. (2.42)

Proof. Because of the remark made before the lemma, only a single Boolean function f can

be treated. Recall d′ = z′(+−) + z′(−+) and the iteration equations for z′(±±):

z′(±±) =
∑
x,y

Pr [f(x) = ±1, f(y) = ±1|x,y] Pr
[
x,y|z(±±)

]
.

If x = y then it follows

Pr [f(x) = +1, f(y) = −1|x = y] = Pr [f(x) = −1, f(y) = +1|x = y] = 0

because the function f cannot have two different values for the same input. Hence the

sum in the iteration equation for d given above is in effectively only over all x and y with

x 6= y. Recall Pr
[
x,y|z(±±)

]
= z
〈x,y〉
(++)z

〈x,y⊕1〉
(+−) z

〈x⊕1,y〉
(−+) z

〈x⊕1,y⊕1〉
(−−) . With x 6= y it follows

〈x,y〉+ 〈x⊕ 1,y ⊕ 1〉 < K,

〈x,y ⊕ 1〉+ 〈x⊕ 1,y〉 ≥ 1.

and so there is at least one z(−+) or z(+−) in each of those terms. Using the transformation

from equations 2.32, which is (partially) given by z(+−) = z(−+) = d
2 , it follows immediately

that each term has at least a factor d in it and is therefore order O(d) or higher. Hence the

absolute term µ0(γ;m) in an expansion in orders of d has to be zero. Inserting this into

equation 2.41, it follows 0 = µ0 =
(
K
0

)(
K
0

)
λ0 and the proof is completed.

An immediate consequence of this lemma is the existence of at least one known fixed

point in the iteration equation for d:

Proposition 2.24. The iteration equation d′ = D (γ;m, d) has the fixed point

d∗ = 0. (2.43)

Proof. Inserting d = 0 into D gives D(γ;m, 0) = 0, because each term is at least of order

O(d). As from d = 0 it follows that d′ = 0, this is a fixed point d∗ = 0.
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2 Mean Field Approximation

The last proposition should be clear, because it says nothing else, that a perturbation

of the dynamics cannot come out of nothing, i.e. if the two BNs with states X and Y start

with the same initial conditions (X = Y), they will stay identical to each other forever.

Proposition 2.25. The critical condition γc for the stability of the dynamics in the BN is
given by the implicit equations

Kλ1 (γc;m∗) = µ1 (γc;m∗) = 1. (2.44)

Proof. The critical condition follows immediately from the LSA of the fixed point d∗ = 0:

∂D (γ;m, d)
∂d

∣∣∣∣
m=m∗,d∗=0

=
(
K

1

)
λ1 (γ;m∗) .

All other terms in D are at least of order O(d) after the derivation, hence vanish if the fixed

point d∗ = 0 is inserted into the equation.

From LSA this first coefficient has to be less than 1 and larger than −1 for the fixed

point to be attractive/stable. As Kλ1(γ;m∗) = −1 is no realistic solution, because at −1 the

fixed point bifurcates into a symmetric period-2 solution. The symmetry is with respect to

the original fixed point, oscillating above and below it with the same magnitude, at least

infinitesimally close to the bifurcation point. However, a negative solution of d∗ is not

possible, and hence the period-2 solution with a negative and positive accumulation point

is also not possible. Therefore the critical condition is

Kλ1(γc;m∗) = µ1(γc;m∗) = 1.

In fact, this first coefficient λ1 or µ1 can never be negative, as it has an interpretation as

probability, which is always positive. This relation to a probability will be investigated

further in the following pages.

The critical condition for stability of the dynamics is already well known. For the Kauff-

man model it was first derived in [Derrida and Pomeau, 1986].

2.3.3 Perturbation approach via Sensitivities S(n)

Another approach to derive the iteration equation for the Hamming distance has been ex-

plored in the literature, besides the construction of the probabilities z′(±±) and then the

transformation
(
z(±±)

)
7→ (m, d), see e.g. [Moreira and Amaral, 2005], [Shmulevich and

Kauffman, 2004] or [Greil and Drossel, 2005] among several others. The authors follow

closely the arguments given in [Derrida, 1987], where this derivation is made first. In

this publication non-symmetric spin-glass models are treated, that can be related to BNs

with Linear Threshold functions and a symmetric Gaussian distribution of weights. It

is mentioned that this can be generalized to any other distribution, however, this gen-

eralization is not as straightforward as expected and this specific approach is only valid

because of this specific class of Boolean function with the symmetric distribution, which
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2.3 Attractors in the MF dynamics

is not present in the aforementioned publications. This generalization is shown in the

next chapter and will be made clear in theorem 3.4, when all the concepts related to Lin-

ear Threshold functions are introduced. In this theorem the equivalence of the formalism

presented so far in this work to the integral formalism in [Kürten, 1988b], which also uses

symmetric distributions of weights in Linear Threshold functions.

This approach uses the so-called sensitivities and tries to derive the Hamming distance

directly from an analysis of how perturbations spread in the BN. So nodes are considered

perturbed or unperturbed with respect to their original attractor in each timestep. The

ansatz is an expression similar to equation (2.40a). Note that the term
(
K
n

)
dn(1− d)K−n is

exactly the probability to have n ”perturbed” nodes in the input, as mentioned before. If

this is multiplied by the probability that n changes in the input (or n perturbed nodes in

the input) results in a change of the output of the function, this yields exactly4:

d′S =
∑
n=1

S(n)

(
K

n

)
dnS(1− dS)K−n, (2.45)

where S(n) are the sensitivities, which are defined as follows:

Definition 2.26. The sensitivity Sj of variable xj in the Boolean function f : MK → M is
defined as the probability, that a change in the variable xj 7→ xj ⊕ 1 changes the output of
the function:

Sj := Pr [(xj 7→ xj ⊕ 1)⇒ (f 7→ f⊕ 1)] . (2.46)

For M = {0, 1} this statement can be written as f̃(x) ⊕ f̃(x ⊕ ej). Note that this expression
equals one iff the output of the function changes when the variable xj is flipped, and is zero
otherwise.

In MF the sensitivity Sj has to be weighted according to the state of the BN:

Sj =
∑
x

f̃(x)⊕ f̃(x⊕ ej) Pr
[
x|z(±)

]
. (2.47)

Note that this expression has also been called ”activities“ in [Shmulevich and Kauffman,

2004].

Definition 2.27. The average sensitivity S is defined as

S :=
1
K

K∑
j=1

Sj =
1
K

K∑
j=1

∑
x

f̃(x)⊕ f̃(x⊕ ej) Pr
[
x|z(±)

]
. (2.48)

Higher sensitivities S(n) are defined as the probabilities, that simultaneous change of more
than one variable in the input tuple x changes the output of the function. Note that S(1) ≡ S.
S(2) is the probability that the change of 2 variables changes f, etc. This can be stated with

4This quantity is labeled dS instead of d to hint at the fact, that the construction method is different from the
Hamming distance introduced earlier in this work.
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the expression

S(n) =
1(
K
n

) ∑
I
|I|=n

∑
x

f̃(x)⊕ f̃(x⊕ ei1 ⊕ · · · ⊕ ein) Pr
[
x|z(±)

]
. (2.49)

This definition of sensitivities is related to the concept of the Boolean derivative, ex-

plained in more detail in the next section.

However, this ansatz (equation (2.45)) brings some problems with it. When compared

to the iteration equation of the Hamming distance obtained by the formalism explained in

the last sections, this perturbation ansatz can be shown to neglect the actual dynamics

of the BN by looking only at this perturbation and the second BN (with state Y) is not

allowed to relax to its fixed point m∗ in the magnetization, but is rather restricted to keep

a certain distance to it (at least below the critical point with d∗ > 0). Therefore this iteration

equation yields a wrong fixed point in the Hamming distance. This fact will be proved in

theorem 2.30.

However, this perturbation ansatz is still quite useful. It can be shown, the the first

coefficients coincide, i.e.

λ1 = S(1), (2.50)

so that the critical condition is actually the same, obtained by both methods. As in this

perturbation ansatz, the expressions for the sensitivities are given explicitly, this yields a

method to obtain the critical condition, without having to compute the complete iteration

equations.

This calculation is rather technical, and it is easier to rewrite both, λ1 and S(1), to

a different form. Hence the proof is splitted into two parts to enhance readability of the

complete derivation. Note further, that this proof is actually written for M = {0, 1}, because

with this choice of M , the iteration equation for d could be stated as described in corollary

2.17. However, the statement is still true for M = {−1,+1}, but the derivation itself is

more complicated.

Note that these proofs only use a single Boolean function f, but due to the remark made

in the last section, all those terms could be weighted with Pr [k|ρk] and Pr [f|ρF] afterwards,

to obtain the correct expression.

Lemma 2.28. Let M = {0, 1}. The average sensitivity S(1) can be rewritten as

S(1) =
1

2K

∑
x

K∑
j=1

f̃ (x)⊕ f̃ (x⊕ ej) m̃〈x,x〉+〈ej,x⊕ej〉−1 (1− m̃)K−〈x,x〉−〈ej,x⊕ej〉 (2.51)

Proof. Begin with the expression given in definition 2.27:

S(1) =
1
K

∑
x

K∑
j=1

f̃ (x)⊕ f̃ (x⊕ ej) Pr
[
x|z(±)

]
=

1
2K

∑
x

K∑
j=1

f̃ (x)⊕ f̃ (x⊕ ej)
(
Pr
[
x|z(±)

]
+ Pr

[
x|z(±)

])
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=
1

2K

∑
x

K∑
j=1

f̃ (x)⊕ f̃ (x⊕ ej) Pr
[
x|z(±)

]
+
∑
x

K∑
j=1

f̃ (x⊕ ej)⊕ f̃ (x) Pr
[
x|z(±)

] = . . .

Now define y = x ⊕ ei. Since x ⊕ ej ⊕ ej = x it follows that also x = y ⊕ ei. When inserting

y in the second term above, the second sum is taken over y ⊕ ei and the second term

reads
K∑
j=1

∑
y⊕ej

f̃ (y) ⊕ f̃ (y ⊕ ej) Pr
[
y ⊕ ej|z(±)

]
. As the sum goes over all tuples in MK , the

summation over y ⊕ ei is the same as a summation over y. Then both terms have a

different summation variable x or y. However, they can be joined together again by just

replacing the symbols y 7→ x in the second term:

. . . =
1

2K

∑
x

K∑
j=1

f̃ (x)⊕ f̃ (x⊕ ej)
(
Pr
[
x|z(±)

]
+ Pr

[
x⊕ ej|z(±)

])
=

1
2K

∑
x

K∑
j=1

f̃ (x)⊕ f̃ (x⊕ ej)
(
z
〈x,x〉
(+) z

K−〈x,x〉
(−) + z

〈x⊕ej,x⊕ej〉
(+) z

K−〈x⊕ej,x⊕ej〉
(−)

)
= . . .

Now a closer look at the exponents of z(±) is needed. x⊕ ej changes exactly one variable in

the tuple x, therefore 〈x⊕ ej,x⊕ ej〉 = 〈x,x〉 ± 1. If the operation ⊕ej flips 1 7→ 0, then the

bracket is 1 less, if 0 7→ 1 then the bracket increases by 1. Note that

〈ej,x⊕ ej〉 = 1 ⇔ xj = 0 ⇔ 〈x⊕ ej,x⊕ ej〉 = 〈x,x〉+ 1,

〈ej,x⊕ ej〉 = 0 ⇔ xj = 1 ⇔ 〈x⊕ ej,x⊕ ej〉 = 〈x,x〉 − 1.

Using this, the term 〈x⊕ ej,x⊕ ej〉 can be written in closed form:

〈x⊕ ej,x⊕ ej〉 = 〈x,x〉+ 2 〈ej,x⊕ ej〉 − 1.

Inserting this into S(1) above

. . . =
1

2K

∑
x

K∑
j=1

f̃ (x)⊕ f̃ (x⊕ ej)
(
z
〈x,x〉
(+) z

K−〈x,x〉
(−) + z

〈x,x〉+2〈ej,x⊕ej〉−1

(+) z
K−〈x,x〉−2〈ej,x⊕ej〉+1

(−)

)
=

=
1

2K

∑
x

K∑
j=1

f̃ (x)⊕ f̃ (x⊕ ej) z
〈x,x〉+〈ej,x⊕ej〉−1

(+) z
K−〈x,x〉−〈ej,x⊕ej〉
(−) ×

×
(
z
1−〈ej,x⊕ej〉
(+) z

〈ej,x⊕ej〉
(−) + z

〈ej,x⊕ej〉
(+) z

1−〈ej,x⊕ej〉
(−)

)
︸ ︷︷ ︸

=:A

Now there are two cases to distinguish for the calculation of the last term A, which lead

to the same result:

〈ej,x⊕ ej〉 = 0 ⇒ A = z1−0
(+) z

0
(−) + z0

(+)z
1−0
(−) = z(+) + z(−) = 1,

〈ej,x⊕ ej〉 = 1 ⇒ A = z1−1
(+) z

1
(−) + z1

(+)z
1−1
(−) = z(−) + z(+) = 1.

As A = 1 the last term vanishes in the product. By replacing z(+) = m̃ and z(−) = 1− m̃, the
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proof is concluded.

The extension for arbitrary ρF and ρk is as follows

S(1) =
∑
k

Pr [k|ρk]
1
2k

∑
ef

Pr
[̃
f|ρF

]∑
x

k∑
j=1

f̃ (x)⊕f̃ (x⊕ ej) m̃〈x,x〉+〈ej,x⊕ej〉−1 (1− m̃)k−〈x,x〉−〈ej,x⊕ej〉

(2.52)

The structure of the expression in the last lemma becomes quite clear with the intro-

duction of the Boolean derivative in the next section. A Boolean derivative is more or less

nothing else than a mapping from a Boolean function to another Boolean function with

one fewer variable, and hence the order of m should be O(mK−1) in this expression, as

seen in the lemma. This order is also clear, when considering that every term in the ex-

pansion of the Hamming distance d is at maximum of order O(midK−i) with 0 ≥ i ≥ K, and

hence λ1 should be of order O(mK−1), too. This is now proved in the second part of the

equivalence.

Theorem 2.29. The first coefficient λ1 (γ;m) in the binomial expansion of D(γ;m, d) is equal
to the probability, that a single flip in the input changes the output:

S(1) = λ1 (γ;m) . (2.53)

Proof. Recall from corollary 2.17

d′ =
∑
x,y

f̃(x)⊕ f̃(y) Pr [x,y|m̃, d]

=
∑
x,y

f̃(x)⊕ f̃(y)
(
m̃+

d

2

)〈x,y〉(
d

2

)〈x,y⊕1〉+〈x⊕1,y〉(
1− m̃− d

2

)〈x⊕1,y⊕1〉

= . . .

As only the term of order O (d) is of importance, the central exponent can be fixed,

〈x,y ⊕ 1〉 + 〈x⊕ 1,y〉 = 1, ignoring higher orders in d. Note that it cannot be zero be-

cause of lemma 2.23. Both brackets can only be a natural number, therefore there are

two different cases: 〈x,y ⊕ 1〉 = 1, 〈x⊕ 1,y〉 = 0 and 〈x,y ⊕ 1〉 = 0, 〈x⊕ 1,y〉 = 1
Consider 〈x,y ⊕ 1〉 = 1, 〈x⊕ 1,y〉 = 0 first. The first equation states that y has exactly a

single 0 in a position, where x has none (x has a 1 in this position). The second equation

states that y has no more 1s than x. Therefore the only possibility is y = x⊕ej with xj = 1.

The second case (〈x,y ⊕ 1〉 = 0, 〈x⊕ 1,y〉 = 1) is analogous and results again in y = x⊕ ej,

but here xj = 0. Hence the summation over all y can be reduced to a summation over

those y such that y = x ⊕ ej. All other tuples y contribute only to higher orders O(d2).
Therefore the summation variable can be changed to j = 1, . . . ,K and hence

· · · =
∑
x

K∑
j=1

f̃ (x)⊕ f̃ (x⊕ ej)
(
m̃− d

2

)〈x,x⊕ej〉(d
2

)1(
1− m̃− d

2

)〈x⊕1,x⊕ej⊕1〉

+O
(
d2
)
.

This expression has still higher orders of d in the expansions of z(++) and z(−−). Therefore

the exponents 〈x,x⊕ ej〉 and 〈x⊕ 1,x⊕ ej ⊕ 1〉 have to be calculated. x⊕ ei has either one
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2.3 Attractors in the MF dynamics

more 1 or one less 1 in it, depending on xi. Therefore

xi = 0 ⇔ 〈x,x⊕ ei〉 = 〈x,x〉 ,

xi = 1 ⇔ 〈x,x⊕ ei〉 = 〈x,x〉 − 1.

Using again 〈ei,x⊕ ei〉 as in the last proof the two cases can be written in closed form:

〈x,x⊕ ei〉 = 〈x,x〉+ 〈ei,x⊕ ei〉 − 1.

Note that the following identity holds:

∀x,y ∈MK : 〈x,y〉︸ ︷︷ ︸
=〈x,x⊕ej〉

+ 〈x⊕ 1,y〉+ 〈x,y ⊕ 1〉︸ ︷︷ ︸
=1

+ 〈x⊕ 1,y ⊕ 1〉︸ ︷︷ ︸
=〈x⊕1,x⊕ej⊕1〉

= K

From this the second exponent can be obtained:

〈x⊕ 1,x⊕ ej ⊕ 1〉 = K − 〈x,x〉 − 〈ej,x⊕ ej〉 .

Expanding the two terms with d in them, neglecting first and higher orders O (d), the

expansion is

(
m̃− d

2

)〈x,x〉+〈ej,x⊕ej〉−1

= m̃〈x,x〉+〈ej,x⊕ej〉−1 +O (d) ,(
1− m̃− d

2

)k−〈x,x〉+〈ej,x⊕ej〉−1

= (1− m̃)K−〈x,x〉+〈ej,x⊕ej〉−1 +O (d) .

Reinserting this into the equation for d′, the final form is obtained:

d′ =

1
2

∑
x

K∑
j=1

f̃ (x)⊕ f̃ (x⊕ ej) m̃〈x,x〉+〈ej,x⊕ej〉−1 (1− m̃)K−〈x,x〉−〈ej,x⊕ej〉

 d+O
(
d2
)
.

The first order coefficient of d is µ1 = Kλ1, which is identical to the expression derived in

lemma 2.28 for KS(1). Therefore the proof is completed.

A different version of this proof of equivalence is given in the appendix of [Kesseli et al.,

2006].

This completes the fact, that the perturbation ansatz, e.g made by [Moreira and Amaral,

2005], is in fact an order parameter for the phase transition between the ordered and

disordered phase of the dynamics of BNs, because it shows the same behavior above the

critical point, where its stable fixed point is d∗ = d∗S = 0, and non-zero below the critical

point. The critical condition is given by

µ1 = Kλ1 = KS(1) = 1. (2.54)

However, this order parameter obtained by the perturbation ansatz is in general not the

Hamming distance.
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Theorem 2.30. The construction of the iteration equation for the Hamming distance by the
perturbation ansatz,

d′S =
K∑
n=1

S(n)

(
K

n

)
dnS(1− dS)K−n, (2.55)

does not allow the second BN to relax to its fixed point m(Y)∗. It is kept at a magnetization
of

m(Y) = m(1− 2d), (2.56)

which is usually not a fixed point in the magnetization. Therefore the fixed points in the
Hamming distances, d∗ and d∗S, are in general not identical.

Proof. Another detailed calculation of this lemma can be found in the appendix of [Kesseli

et al., 2006], however, the calculation here is slightly different.

The derivation here is more or less made backwards, so a brief synopsis is given here.

First the transformation from the probabilities
(
z(±±)

)
7→
(
d,m(X),m(Y)

)
is given, which

is a generalization of the transformation in equations (2.32), where the condition m(X) =
m(Y) = m is used. However, now the condition m(Y) = m(1− 2d) is imposed on the second

magnetization. This is then inserted into the probabilities Pr
[
x,y|z(±±)

]
, and after a short

calculation it can be shown, that with this transformation to (d,m), the coefficients λn in

the iteration equation are exactly the sensitivities S(n) defined in this section.

The general transformation of variables is given by

1 = z(++) + z(+−) + z(−+) + z(−−)

m(X) = z(++) + z(+−) − z(−+) − z(−−)

m(Y) = z(++) + z(−+) − z(+−) − z(−−)

d = z(−+) + z(+−)

 ⇒



z(++) = 1
2

(
1 + m(X)

2 + m(Y)

2 − d
)

z(+−) = 1
2

(
m(X)

2 − m(Y)

2 + d
)

z(+−) = 1
2

(
−m

(X)

2 + m(Y)

2 + d
)

z(−−) = 1
2

(
1− m(X)

2 − m(Y)

2 − d
) .

In the calculations before, both magnetizations are set equal to each other, because only

small perturbations to a fixed point in the magnetization are considered. As it is assumed,

that this fixed point m∗ is stable, the iteration equations in the second order of the dy-

namics have this restriction (m(X) = m(Y)), because for computing fixed points only the

long time behavior is of interest. This long time behavior is clearly m(X)∗ = m(Y)∗ = m∗.

However, the initial conditions to the perturbation amounts exactly to m(Y) = m(1− 2d).
This can be seen as follows: There are dz(+) changes from (+) 7→ (−) and dz(−) changes

from (−) 7→ (+) in the perturbation of the second BN. Therefore

z
(Y)
(+) = z(+) − dz(+) + dz(−),

z
(Y)
(−) = z(−) − dz(−) + dz(+),

and hence

m(Y) =
(
z(+) − dz(+) + dz(−)

)
−
(
z(−) − dz(−) + dz(+)

)
= m(1− 2d).

This restriction is here not used only as initial condition, but in the general transformation
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2.3 Attractors in the MF dynamics

above. Therefore the probabilities z(±±) are

z(++) =
1
2

(1 +m)(1− d),

z(+−) =
1
2

(1 +m)d,

z(−+) =
1
2

(1−m)d,

z(−−) =
1
2

(1−m)(1− d),

where the two variables m and d clearly factorize. This transformation with the condition

m(Y) = m(1−2d) accounts now for the fact, that the second BN is not allowed to relax to its

fixed point m∗, because m∗(1 − 2d∗) is usually no fixed point in the magnetization, except

for some special cases like m∗ = 0 or d∗ = 0. But the latter is above the critical point, and

it is clear, that in this parameter region the correct fixed point d∗S = 0 is obtained, because

the last theorem already established d∗S as an order parameter of the dynamical phase

transition.

Now this transformation above can be inserted into the probabilities Pr
[
x,y|z(±±)

]
in

iteration equation for the Hamming distance obtained already before in corollary 2.17:

d′ =
∑
x,y

f̃(x)⊕ f̃(y) Pr [x,y|m, d]

=
∑
x,y

f̃(x)⊕ f̃(y)
(

1
2

(1 +m)(1− d)
)〈x,y〉(1

2
(1 +m)d

)〈x,y⊕1〉
×

×
(

1
2

(1−m)d
)〈x⊕1,y〉(1

2
(1−m)(1− d)

)〈x⊕1,y⊕1〉
=

(
1
2

)K∑
x,y

f̃(x)⊕ f̃(y)
(

(1 +m)〈x,y〉+〈x,y⊕1〉(1−m)〈x⊕1,y〉+〈x⊕1,y⊕1〉
)
×

×
(
d〈x⊕1,y〉+〈x⊕1,y〉(1− d)〈x,y〉+〈x⊕1,y⊕1〉

)
= . . .

Note that 〈x,y〉 + 〈x,y ⊕ 1〉 = 〈x, 1〉 = 〈x,x〉 and also 〈x⊕ 1,y〉 + 〈x⊕ 1,y ⊕ 1〉 = K − 〈x,x〉.
Therefore the exponents of the terms with the magnetization are independent of y. Hence

the two terms including the magnetization equal the probability Pr
[
x|z(±)

]
for the tuple x,

see lemma 2.5.

. . . =
∑
x,y

f̃(x)⊕ f̃(y) Pr
[
x|z(±)

] (
d〈x⊕1,y〉+〈x⊕1,y〉(1− d)〈x,y〉+〈x⊕1,y⊕1〉

)
= . . .

Now a trick is used for calculating the exponents of the terms with d. When writing y as

the difference to the tuple x, then

y = x⊕ ei1 ⊕ · · · ⊕ ein

and denoting the index set I = {i1, . . . , in}. The summation over y can be written as a

summation over all possible index sets I. Rewriting y in that way, allows to calculate the
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exponents: 〈x,y ⊕ 1〉 + 〈x⊕ 1,y〉 = n where n is the size of the index set I, because this

is nothing else than summing up the positions which are different in the tuples x and y.

It immediately follows that 〈x,y〉 + 〈x⊕ 1,y ⊕ 1〉 = K − n. Inserting this in the calculation

yields:

. . . =
∑
I

∑
x

f̃(x)⊕ f̃(x⊕ ei1 ⊕ · · · ⊕ ein) Pr
[
x|z(±)

] (
dn(1− d)K−n

)
= . . .

Splitting the sum over all index sets I into equal-sized sets yields

. . . =
K∑
n=1

∑
x

∑
I
|I|=n

f̃(x)⊕ f̃(x⊕ ei1 ⊕ · · · ⊕ ein) Pr
[
x|z(±)

]
dn(1− d)K−n

=
K∑
n=1

S(n)

(
K

n

)
dn(1− d)K−n,

where the sensitivity S(n) is

S(n) =
1(
K
n

) ∑
I
|I|=n

∑
x

f̃(x)⊕ f̃(x⊕ ei1 ⊕ · · · ⊕ ein) Pr
[
x|z(±)

]
,

which is exactly the expression for the sensitivities S(n) from definition 2.27 and the proof

is concluded.

However, as has been already noted in [Kesseli et al., 2006], the restriction m(Y) =
m(1− 2d) can only be imposed on the initial condition. In the time evolution of the second

BN, the magnetization will not stay in this relation to the first BN, because the iteration

equations are independent of the variable d:

m(X)′ = M(γ;m(X)),

m(Y)′ = M(γ;m(Y)).

From there is should be clear, that keeping the restriction m(Y) = m(1− 2d) artificially over

the time, results in a usually wrong long time behavior of m(Y)∗, and inserting those fixed

points m(X)∗ and m(Y)∗ into

d∗ = D(γ;m(X)∗,m(Y)∗, d∗)

will yield often a deviating fixed point in the Hamming distance below the critical point,

γ < γc. However, there are some examples where the Hamming distances derived by the

perturbation ansatz and by the formalism presented earlier coincide. This is the case,

when all coefficients λn and the sensitivities S(n) are actually the same (and not only

λ1 = S(1)). The trivial cases m∗ = 0 and d∗ = 0 have already been mentioned in the proof.

Another example will be treated later in theorem 3.4, where a BN with Linear Thresh-

old functions and a symmetric distribution of weights is used. This system has been

investigated in detail in [Derrida, 1987] and [Kürten, 1988b], and theorem 3.4 shows the

equivalence of the formalism presented therein. It should be noted, that this coinciding
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order parameters d∗ and d∗S results in this case from the symmetry of the distribution of

weights. There might be other classes of Boolean functions, for which the order parame-

ters are the same, and giving detailed conditions on these classes might be part of future

work.

Comparison of calculation methods for the Hamming distance d with simulations

Consider a mixture of the four different Boolean functions (14)2, (13)2, (11)2 and (7)2 with

a mixture parameter p

ρF ∼ p2
(
14
)
2

+ p(1− p)
(
13
)
2

+ (1− p)p
(
11
)
2

+ (1− p)2
(
7
)
2
.

This mixture is equivalent to Linear Threshold functions with connectivity K = 2 and

threshold h = 0, where the weights are distributed according to

ρ(δ)
c = pδ(c− 1) + (1− p)δ(c+ 1).

Hence it is clear, that the mixture parameter p corresponds to the fraction of positive

weights in a Linear Threshold function. This connection between ρF and ρ
(δ)
c will be fur-

ther clarified in an example at the end of section 3.1. More results on this mixture/Linear

Threshold function can also be found in chapter 3. Moreover, this mixture has been used

as the example in [Greil and Drossel, 2007], where different ranges of the mixture param-

eter p are investigated. However, the authors in [Greil and Drossel, 2007] use the ansatz

λn = S(n) for calculating their Hamming distance d. To show that this gives the correct

critical condition, but not the correct value of the fixed point in the Hamming distance d∗,

several simulations are compared with the two methods to calculate the iteration equation

for d.

First of all, the iteration equation for the magnetization is needed. This is straightfor-

ward using the methods presented so far and yields

m′ =
1
2

+
(
2p− 1

)
m+

(
−1

2
+ 2p− 2p2

)
m2.

This iteration equation can be solved analytically to obtain the fixed point m∗,

m∗ =
−2 + 2p+

√
5− 12p+ 8p2

1− 4p+ 4p2
.

This fixed point m∗ gets unstable below p < pm
∗

c = 1
4

(
3−
√

7
)
≈ 0.0886, as can be shown

by a Linear Stability analysis. Below that point pm
∗

c , the fixed point in m bifurcates into a

period-2 solution.

As has been derived in [Greil and Drossel, 2007], the sensitivities S(1) and S(2) are5

S(1) =
1
2
(
1− (2p− 1)m

)
,

5Note that [Greil and Drossel, 2007] uses em ∈ [0; 1]. This has to be transformed to m ∈ [−1,+1] here: em = m+1
2

.
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S(2) =
1
2
(
1 + (2p− 1)2m2

)
.

This yields the following iteration equation for the ”Hamming distance“:

d′S =
(
1− (2p− 1)m

)
dS +

1
2
(
−1 + 2(2p− 1)m+ (2p− 1)2m2

)
d2
S .

As explained before and will be seen later when compared to simulations, this is not the

Hamming distance, so this quantity is denoted by dS to hint at the relation, that it is

constructed using the sensitivities.

When using the construction explained earlier in this work, i.e. using the restriction

m(X) = m(Y) = m, then the iteration equation for the Hamming distance d is

d′ =
(
1− (2p− 1)m

)
d− 1

2
d2,

and hence the coefficients λn are:

λ1 =
1
2
(
1− (2p− 1)m

)
,

λ2 =
1
2
(
1− 2(2p− 1)m

)
.

Using the fixed point solution for the magnetization m∗ from above, the fixed points d∗

and d∗S can be obtained analytically. Both have d∗ = d∗S = 0 as expected. The second fixed

point is given by

d∗ = −
2
(
−2 + 2p+

√
5− 12p+ 8p2

)
−1 + 2p

,

d∗S =
1− 2p
3− 4p

,

in the interval p ∈ [0.0886, 0.5]. Above that interval the only fixed point is d∗ = d∗S = 0, which

is also stable in this range. Below the interval the expressions are more complicated,

because they involve solving the period-2 iteration equations, and they are not explicitly

reproduced here, although the results are depicted in figure 2.2.

To decide which solution is correct, several simulations at different values for the mix-

ture parameter p are conducted (in the relevant range p ∈ [0.0; 0.6]. The code for the

simulation can be found in appendix C, although in lines 118 and 120 the weights have to

be set directly to ±1 instead of a random value in the ranges [−1, 0] and [0, 1], respectively.

All simulations are done with N = 10000 nodes. Neighbors and functions are drawn each

timestep randomly from all possible values. A simulation is run for s = 500 timesteps with

2 BNs in parallel, where the second BN is started with a distance dstart = 0.01 from the

first one. The values for the Hamming distance d in figure 2.2 are averaged over the last

200 steps.

As seen figure 2.2, the construction of the Hamming distance d from sensitivities clearly

fails to predict the correct fixed point in simulations. The restriction m(Y) = m(1 − 2d) to

the magnetization in the second BN does not allow the dynamics to relax to its correct
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Figure 2.2: Comparison of the two calculation methods for the Hamming distance d with
simulations. The black line is the fixed point of the Hamming distance d∗, the
grey line corresponds to the fixed point d∗S obtained by the perturbation ansatz.
Simulations are shown in orange, which agree with the first calculation. At
p = 0.1 the fixed point d∗S is off by roughly 27%.

fixed point. Therefore, using m(X) = m(Y) = m in the transformations is clearly to favor.

2.3.4 Non-fixed-point attractors

Non-fixed-point attractors, which are attractors that would have a periodical behavior with

a period > 1, could theoretically also be computed by the MF approximation. However, in-

creasing the period length under investigation, exponentially increases the effort to obtain

those solutions in most cases. This comes from the fact, that the iteration equations are

inserted into each other, yielding a polynomial which has a doubled order in their variables

m and d.

So for example, when calculating period-2 solutions of the magnetization m and the

Hamming distance d, the following equations have to be considered:

m′′ = M (γ;M (γ;m)) , (2.58a)

d′′ = D (γ;M (γ;m) ,D (γ;m, d)) . (2.58b)

It is clear, that those equations have all the fixed points, which are already present before.

All new fixed points of these equations usually occur in pairs. These pairs are either a

period-2 solution or two stable fixed points, depending on the first coefficient of the LSA,

whereas with ∂M
∂m = −1 the first and at ∂M

∂m = 1 the latter appears (or respectively ∂D
∂d for

the Hamming distance).

Repeated insertion of the iteration equation into itself gives all periodical solutions with

higher periods (or similarly another bifurcation to twice the number of stable fixed points).
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The definition of the polynomials is done recursively:

m′
... = M(n)(γ;m) =M

(
γ;M(n−1) (γ;m)

)
, (2.59a)

d′
... = D(n)

(
γ;M(n−1)(γ;m),D(n−1)(γ;m, d)

)
, (2.59b)

with the initial polynomialsM(1) =M and D(1) = D.

Although this gives in principle all possible solutions to the iteration equation, the poly-

nomial is of order O
(
mnK

)
or O

(
dnK

)
after n insertions, making it rather impossible to

solve for higher n. Even if n = 2, not many solutions can still be obtained analytically, also

for low connectivities like K = 2 or K = 3, and often only numerical solutions are available.

2.4 Boolean derivative

2.4.1 Definition and Properties

Several authors [Bazsó and Lábos, 2006, Luque and Sole, 2000, Kesseli et al., 2006] use

the concept of a Boolean derivative, which naturally occurred already in several calcula-

tions in this chapter. See also [Shmulevich and Kauffman, 2004], where some methods

presented here are already applied to BNs. An earlier treatment of those concepts in

connection with Cellular Automata is given in e.g. [Vichniac, 1990].

To begin with, the definition of the derivative is given.

Definition 2.31. The Boolean derivative of a Boolean function f with respect to its variable
xj is

∂f(x)
∂xj

:= f(x)⊕ f(x⊕ ej). (2.60)

Note how this resembles the definition of the partial derivative of a function f : Rn → R

in the direction of the unit vector v:

∂f(x)
∂v

= lim
h→0

f(x− hv)− f(x)
h

.

As the minimal step size h in the discrete Boolean case can only be h = 1, the resemblance

to the equation above is immediate, because also the subtraction and addition operation

are actually the same in F2.

A few properties of the Boolean derivative are as follows. It should be obvious, that

the derivative of a Boolean function f is again a Boolean function g, since it can also be

described by a truth table. Moreover, this new Boolean function is independent of its

variable xj, as this short calculation shows:

g(x) =
∂f(x)
∂xj

= f(x)⊕ f(x⊕ ej) = f(x⊕ ej ⊕ ej)⊕ f(x⊕ ej) =
∂f(x⊕ ej)

∂xj
= g(x⊕ ej).

In the crucial step the identity x ⊕ ej ⊕ ej = x is used. As now the function g is the same

on the inputs x and x⊕ ej, it can not depend on the value of the variable xj anymore. This
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leads immediately to another property of the derivative: the derivation ∂
∂xj

is a nilpotent

operator:
∂2f

∂x2
j

≡ (0)K . (2.61)

where (0)K describes the Boolean function with decimal representation 0 (see section 1.4.1

about truth tables). This follows from

∂2f(x)
∂x2

j

=
∂

∂xj
g(x) = g(x)⊕ g(x⊕ ej)︸ ︷︷ ︸

=g(x)

= 0.

With those two properties, the derivation operator ∂
∂xj

gets an important new interpre-

tation: It reduces the number of variables in a Boolean function, because the resulting

function is independent of xj. If the original function had K variables, the resulting func-

tion has only K − 1 variables (or is equal to the constant (0)K function, if it was already

independent of xj ). Moreover, the resulting function g has a 1 in the position, where f

depends on xj (i.e. a change in xj changes f) and g(x) = 0 if f was already independent of

the position of xj in the input x.

Now the concepts of the last section can be revisited. With those definitions the sensi-

tivity Sj of a function f can be rewritten. Recall from definition 2.26

Sj =
∑
x

f(x)⊕ f(x⊕ ej) Pr
[
x|z(±)

]
=
∑
x

∂f(x)
∂xj

Pr
[
x|z(±)

]
.

In this new light, the sensitivity Sj is nothing else than the partial derivative of the Boolean

function, weighted according to the actual state of the BN. The average sensitivity is then

given by

S(1) =
1
K

K∑
j=1

∑
x

∂f(x)
∂xj

Pr
[
x|z(±)

]
. (2.62)

Higher sensitivities S(n) lead to the introduction of a so-called “sensitivity operator”:

Definition 2.32. The sensitivity operator σI with an index set I = {i1, . . . , in} is defined as

σI f(x) := f(x)⊕ f (x⊕ ei1 ⊕ · · · ⊕ ein) . (2.63)

Hence the higher average sensitivities S(n) can now be written as

S(n) =
1(
K
n

) ∑
x

∑
I
|I|=n

σI f(x) Pr
[
x|z(±)

]
. (2.64)

The sensitivity operator represents exactly, what was stated in definition 2.27. The

resulting function g(x) = σI f(x) is equal to one, if a change of all variables in the index set

I changes the output of f, and zero otherwise. Therefore equation (2.64) is nothing else

than the probability for a change in the function f when n variables are changed, because

it is averaged over all possible index sets with size |I| = n.

Of special interest is of course the first sensitivity S(1), because it is directly linked to the
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2 Mean Field Approximation

phase transition. However, first the connection of this sensitivity operator to the Boolean

derivatives is shown:

Lemma 2.33. The following identities hold for a transformation from higher partial deriva-
tives to sensitivities. If I = {i1, . . . in} is an index set with n elements, then

∂nf(x)
∂xi1 . . . ∂xin

=
⊕

J⊆{i1,...,in}

σJ f(x), (2.65)

σI f(x) =
n⊕
k=1

 ⊕
{j1,...,jk}⊆I

∂kf(x)
∂xj1 . . . ∂xjk

 . (2.66)

Proof. First look at the transformation
(

∂n

∂xi1 ...∂xin

)
7→ (σI):

∂nf(x)
∂xi1 . . . ∂xin

=
∂n−1

∂xi2 . . . ∂xin

f(x)⊕ f(x⊕ ei1)︸ ︷︷ ︸
=:g(x)


=

∂n−2

∂xi3 . . . ∂xin

g(x)⊕ g(x⊕ ei2)︸ ︷︷ ︸
=:h(x)


= · · · = k(x) = . . .

Now by reinserting the explicit expression for each of those defined functions (k, . . . , h, g)

step by step, a binary tree is created, where one leg has the changed variable ⊕eik , the

other one not. Finally, this results in the function f XOR-ed with itself, with each possible

combination of inputs changed:

· · · = f(x)⊕ f(x⊕ ei1)⊕ · · · ⊕ f(x⊕ ein)⊕ f(x⊕ ei1 ⊕ ei2)⊕ · · · ⊕ f(x⊕ ei1 ⊕ · · · ⊕ ein) = . . .

Note that there are
(
K
n

)
terms with exactly n changed variables, so the whole expression

has
K∑
n=0

(
K
n

)
= 2K terms. By definition of ⊕, XOR-ing the same value twice is a neutral

operation, i.e. x ⊕ y ⊕ y = x. Hence the expression above could be expanded by 2K times

the original function f(x).
· · · = k(x)⊕ f(x)⊕ · · · ⊕ f(x)︸ ︷︷ ︸

2K times

= . . .

As the operation ⊕ is also associative and commutative, those expressions could be re-

arranged, so that each term with a changed variable is preceded by a plain term (f(x)).
Recalling the definition of the sensitivity operator σI , it is clear, that each of those tuples

(a plain term followed by a term with changed variables) can be written by this operator.

As there is each possible combination of changed variables, the transformation equation

above follows:

· · · =
⊕

I⊆{i1,...,in}

σI f(x).

58



2.4 Boolean derivative

The other direction of the transformation (σI) 7→
(

∂n

∂xi1 ...∂xin

)
can be obtained analo-

gously by XOR-ing the expressions with an even number of similar functions and using

the fact from the transformation above, that the higher partial derivative is nothing else

than XOR-ing the functions with all possible combinations of changed variables with each

other.

σI f(x) = f(x)⊕ f(x⊕ ei1 ⊕ · · · ⊕ ein) =

=
∂nf(x)

∂xi1 . . . ∂xin
⊕ f(x⊕ ei1)⊕ · · · ⊕ f(x⊕ ein)⊕ · · · ⊕

⊕ · · · ⊕ f(x⊕ ei1 ⊕ · · · ⊕ ein−1)⊕ · · · ⊕ f(x⊕ ei2 ⊕ · · · ⊕ ein) =

= · · · =

=
n⊕
k=1

 ⊕
{j1,...,jk}⊆I

∂kf(x)
∂xj1 . . . ∂xjk

 .

Thus both, higher derivatives and sensitivities, could be transformed into each other.

2.4.2 Continuity equation?

Now the focus is back on S(1), which is important for the critical condition. It is restated

here:

KS(1) = 1 (2.67)

A closer look to the sensitivities Sj reveals another concept. A variable xj could be called

“fictitious“ [Shmulevich and Kauffman, 2004], if the function does not depend on it, i.e.

f(x) = f(x ⊕ ej). On the other hand, a variable xj could be called “effective” if the function

depends on it. By inspecting the expression for Sj

Sj =
∑
x

∂f(x)
∂xj

Pr
[
x|z(±)

]
this is the probability that the variable has an influence on the outcome. Noting that

S1 + S2 + · · ·+ SK = KS(1)

the term KS(1) could be seen as the “effective” number of variables in the BN. Comparing

that to the critical condition above, allows for the statement, that if the effective number

of variables is exactly 1, the BN is in its critical state. This could be seen as preserving the

information in the flow of the critical perturbation, as one (effective) variable determines

the output on a single node (on which the function is defined), so it is in fact a 1 : 1
mapping from the input to the output. The analogy to classical flow equations goes even

further. Note that the divergence operator div is defined by

div ≡
∑
j

∂

∂xj
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2 Mean Field Approximation

Inserting this into S(1) and looking at the critical condition it follows

KS(1) =
∑
x

∑
j

∂f(x)
∂xj

Pr
[
x|z(±)

]
=
∑
x

div f(x) Pr
[
x|z(±)

]
= 〈div f〉 != 1 (2.68)

This can be rewritten as

−1︸︷︷︸
=??

+ 〈div f〉 = 0 (2.69)

which looks like a continuity equation for an incompressible fluid:

∂ρ

∂t
+ div(vρ) = 0 (2.70)

However, it still remains to show, what this quantity is, which changes over time. A first

naive guess might that it is somehow linked to the self-distance [Luque and Sole, 2000],

i.e. the probability that a node xi changes its value between two consecutive timesteps,

however, this seems not to work in all cases. About this idea of critical information flow

in BN has already been speculated in [Andrecut and Kauffman, 2010] and several other

publications.
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3 Linear Threshold Functions

Linear Threshold functions (LTF) are a special subset of all possible Boolean functions.

They are given in a local description by

x′i = fi

(
xj1 , . . . , xjki

)
= (3.1a)

= sign
(
ci1xj1 + · · ·+ cikixjki

− h
)

= (3.1b)

= sign
(∑
{j}

cijxij − h
)

(3.1c)

with xi ∈ M = {−1, 1} and cij are weights determined either by a fixed value or in most

cases by some distribution of weights ρc:

cij ∼ ρc (3.2)

The sum over {j} is over all neighbors of node i. Note that for the sign of h different

conventions exist. So depending on the publication or author, h is either added to or

subtracted from the sum
∑
cijxij . Although xi ∈ M are discrete, they are considered

to be real numbers in this calculation, i.e. it is assumed that M ⊂ R. Note that here

the choice of M = {−1, 1} instead of M = {0, 1} has an impact on the model. With M =
{0, 1} the two states could be interpreted as “has no effect“/“has an effect“, whereas with

M = {−1,+1} the two states correspond to “inhibiting“/“activating“, which are two clearly

distinct choices. However, the choice M = {0, 1} can be transformed into M = {−1,+1},
when another distribution is imposed on the threshold parameter, which involves the

distribution of weights ρc. This leads to an unnecessary complication of the expressions

later on, and the more symmetric case is chosen, where also the threshold h is only a

simple parameter and not given by a distribution. Additionally, weights cij are called

activating if cij > 0 and inhibiting if cij < 0.

Compared to arbitrary distributions of function ρF, Linear Threshold functions exhibit

a few interesting properties. First of all, they are a subset of all monotone functions

(either monotone increasing or monotone decreasing in all variables), where a monotone

increasing variable xi is given by

∀x : x ≤ x⊕ ei ⇒ f(x) ≤ f(x⊕ ei), (3.3)

and a monotone decreasing variable xi is given by

∀x : x ≤ x⊕ ei ⇒ f(x) ≥ f(x⊕ ei). (3.4)
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3 Linear Threshold Functions

Monotone increasing variables could then be called ”activating“, whereas monotone de-

creasing variables could be called ”inhibiting“. This gives an alternative defintion of these

terms, without the need of a distribution of weights ρc, directly from the truth table. This

class of functions is also called unate Boolean functions. However, as will be explained

later, such a truth table cannot be obtained easily for every ρc. Up to connectivity K = 3
all such monotone functions are Linear Threshold functions. However, from K ≥ 4 on, the

class of monotone functions is actually bigger.

In [Raeymaekers, 2002] a certain class of Boolean functions with connectivity K = 3 is

investigated and called ”biologically meaningful”, which can be shown to be an equivalent

definition of non-degenerate Linear Threshold functions1. It is assumed, that in such

biological systems only a single threshold exists, where the output switches once and

even if the input signal is increased, no switching back occurs [Wittmann et al., 2010].

These so-called “single-switch-functions“ are just another description of those monotone

functions (and therefore partially also LTFs) above. However, this characterization can

also be generalized for multistate networks, i.e. |M | > 2.

Another property of LTFs is, that because of the restriction to a certain class of func-

tions, the stability of the dynamics actually increases with increasing connectivity. This

depends crucially on a non-symmetric distribution of positive and negative weights cij, as

will be shown at the end of this chapter in section 3.3. However, this characterization with

positive and negative weights is not applicable anymore when considering the bigger class

of monotone Boolean functions, as there also higher orders occur in the argument of the

sign-function. Unate functions exhibit the same or similar characteristics of the dynamics

[Kürten, 2010a]. A detailed study on the dynamical properties of such restrictions on the

classes of Boolean functions is currently in preparation [Kürten and Raeymaekers, 2010].

The increased size of the stability region for this class of Boolean functions is contrary to

the Kauffman model, where all Boolean functions are allowed, leading to a higher critical

connectivity Kc. In the Kauffman model the stability region rapidly shrinks, since most

of the function exhibit highly non-linear or chaotic interactions. The number of Linear

Threshold functions for certain connectivities K is given in table 3.1. From this table it

should be clear, that the fraction of LTFs of all Boolean functions decreases rather fast,

so a restriction to LTFs takes only a small fraction of all possible Boolean functions. The

size of the class of monotone functions decreases not as fast as that, allowing for more

functions to be present in the mixture.

Before going into details a short remark on notation is made. To simplify the expres-

sions, the first index i is omitted from the local function f :

x′i = sign
(∑

j

cjxj − h
)

(3.5)

as in a Mean Field approximation the dependence on i and its specific neighbors ij are not

of importance anymore, because all calculations are treated only statistically.

1Non-degenerate Boolean functions depend on all their variables xj , so there is no index j, such that f(x) =
f(x⊕ ej) for all x.
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3.1 Integral formalism

K number of number of fraction
Boolean functions f LTFs

1 4 4 1.000
2 16 14 0.875
3 256 104 0.406
4 65536 1882 0.029
5 4.29 · 1010 94572 2.20 · 10−5

Table 3.1: Number of Linear Threshold functions compared to all Boolean functions for
connectivities up to K = 5 [Franco et al., 2006]

3.1 Integral formalism

In chapter 2 a way to construct the iteration equations for the magnetization m and for

the Hamming distance d was shown for general distributions ρF and ρk. Here a few ideas

already proposed earlier will be formulated explicitly in the form of integrals to incorporate

the distribution of weights ρc for Linear Threshold functions.

First recall the result of corollary 2.8 and the remark after it. In the iteration equations

for the probabilities z(±) (and also for all higher orders of the dynamics), the term including

the Boolean function can be splitted to a weighted sum over all single Boolean function f:

Pr
[
f(x(1) = ±1, . . . , f(x(n) = ±1|x(1), . . . ,x(n)

]
=
∑

f

Pr [f|ρF] Pr
[
f(x(1)) = ±1|x(1), f

]
. . .Pr

[
f(x(n)) = ±1|x(n), f

]
, (3.6)

where each of the terms Pr
[
f(x(k)) = ±1|x(k), f

]
is only either zero or one. Even if the

probabilities Pr [f|ρF] are not given explicitly in the model, they can be derived with the

projection of the function f on the single Boolean function f:

Pr [f|γ] =
∫
Dγ
∏
x

Pr [f(γ; x) = f(x)] , (3.7)

where Dγ is a measure over the external parameters γ of the model. In the case of LTFs

these external parameters would be the connectivity K, the distribution of weights ρc and

the threshold h, i.e. γ = {K, ρc, h}. In the next lemma this measure will be shown explicitly,

at least for LTFs.

Hence all results from the last chapter also apply to LTFs, although in most cases the

projection (and hence the explicit probabilities Pr [f|ρF]) will not be calculated. However,

this establishes a mapping from the distribution of weights ρc to a distribution of functions

ρF:

ρc 7→ ρF. (3.8)

So far only the existence and uniqueness of this mapping is made plausible. In the next

lemma, the direct probabilities Pr
[
f(x(1) = ±1, . . . , f(x(n) = ±1|x(1), . . . ,x(n)

]
for a LTF will

be rewritten to another form in which they are finally computed explicitly.
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3 Linear Threshold Functions

Lemma 3.1. For LTFs the probability for the function to have specific values at different
input tuples x can be expressed as an integral over the distribution of weights ρc:

Pr
[
f(x(1)) = ±1, . . . , f(x(n)) = ±1|x(1), . . . ,x(n)

]
(3.9)

=
∫
· · ·
∫
dc1 . . . dcKρc(c1) . . . ρc(cK)Θ

(
±
(∑

i

cix
(1)
i − h

))
. . .Θ

(
±
(∑

i

cix
(n)
i − h

))

=
∫
DKρcΘ

(
±
(∑

i

cix
(1)
i − h

))
. . .Θ

(
±
(∑

i

cix
(n)
i − h

))
,

introducing a complete, normalized measure DKρc over all K different weights ci to simplify
notation.

Proof. First assume n = 1, which are the integrals when calculating the magnetization m.

The probability for a function to have value ±1, given an input tuple x, is Pr [f(x) = ±1|x].
As the function has a special form, the following derivation can be made:

Pr [f(x) = ±1|x] = Pr

[
sign

(∑
i

cixi − h
)

= ±1|x

]
=

= Pr

[∑
i

cixi − h ≷ 0|x

]
= . . .

When the weights ci are distributed according to some distribution ρc, the probability is

the integral over all possible values in the distribution, but only counting those, which

give the correct output in the function f . Therefore a Heaviside-Theta-function Θ(. . . ) can

be introduced as a characteristic function:

. . . =
∫
· · ·
∫
dc1dc2 . . . dcKρc(c1)ρc(c2) . . . ρc(cK)Θ

(
±
(∑

i

cixi − h
))

=

=
∫
DKρcΘ

(
±
(∑

i

cixi − h
))

,

where the sign inside the Theta-function is + if the original condition is f(x) = +1 and −
if f(x) = −1.

For n > 1 the joint probability Pr
[
f(x(1)) = ±1, . . . , f(x(n)) = ±1|x(1), . . . ,x(n))

]
has to be cal-

culated. This term does not factorize into several single probabilities,
∏
i Pr

[
f(x(i)) = ±1|x(i)

]
,

when the function incorporates a distribution on a parameter2, here on the weights cj.

For the joint probability, the integral over the parameters incorporates several Theta-

functions, as characteristic functions for each of the conditions

Pr
[
f(x(1)) = ±1, . . . , f(x(n)) = ±1|x(1), . . . ,x(n)

]
=
∫
DKρcΘ

(
±
(∑

i

cix
(1)
i − h

))
. . .Θ

(
±
(∑

i

cix
(n)
i − h

))
.

2Note that in the case of a Boolean function f, given by a truth table, the probability factorizes again.
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This is exactly the statement of the lemma.

The calculations will be simplified by using another property of such LTFs:

Definition 3.2. A totalistic Boolean function does not depend on the order of its variables.
They can be switched without changing the output of the function:

∀i, j : f (x1, . . . , xi, . . . , xj , . . . , xK) = f (x1, . . . , xj , . . . , xi, . . . , xK) , (3.10)

resulting in an equivalence class of Boolean functions, which are dynamically identical.
Therefore only the number of +1s or −1s is important for the output, and hence the only

necessary argument of the function could be the number of +1s in the original input x:

f(x) 7→ f (〈x,x〉) . (3.11)

However, this is still the same Boolean function, and it should be clear from context, whether
the argument is an integer number or a tuple in Mk.

Since in LTFs the dependence on the variables x1, . . . , xK is only in a sum
∑
j

cjxj, which

is commutative, LTFs are totalistic functions. Therefore the calculation load can be greatly

reduced, if all integrals from lemma 3.1 are grouped together, where the number of +1s

in the input (or the number of the different states (++), (+−), (−+) or (−−) in the second

order) is identical.

Lemma 3.3. The number of terms to calculate in the iteration polynomial for d′ can be
reduced, when the Boolean function is totalistic.

z′(±±) =
∑
x

∑
y

Pr [f(x) = ±1, f(y) = ±1|x,y] Pr
[
x,y|z(±±)

]
= (3.12)

=
K∑

ni=0P
i ni=K

K!
n1!n2!n3!n4!

Pr [f(n1 + n2) = ±1, f(n1 + n3) = ±1|ni] zn1
(++)z

n2
(+−)z

n3
(−+)z

n4
(−−),

where the exponents ni are given in lemma 2.12, which characterize the input tuples x

and y completely. The expression Pr [f(n1 + n2) = ±1, f(n1 + n3) = ±1|ni] is just rewriting the
original probability to suit the new variables ni instead of the old ones x and y.

Proof. Follows immediately from the fact that there are K!
n1!n2!n3!n4!

permutations of the 4

possible states (++), (+−), (−+) and (−−), as this is a multinomial distribution on the

numbers n1, n2, n3 and n4 of those states.

This is exactly what was described above, as only the numbers of all input combinations,

which are (++), (+−), (−+) and (−−), are important.

Example of a projection of Linear Threshold functions to single Boolean functions f

Suppose a BN with Linear Threshold functions is given, where the distribution of weights

ρc is defined by

ρ(δ)
c = pδ(c− 1) + (1− p)δ(c+ 1).
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This distribution will also be used later in more elaborate calculations (and has also been

used in an example in last chapter). Furthermore assume the connectivity K = 2 and

the threshold h = 0.3 This is exactly the mixture of functions already used in an earlier

example and also in [Greil and Drossel, 2007].

Using equation (3.7), this LTF will be split up into several single Boolean functions f. In

the current case (with the distribution ρ
(δ)
c given above), this can be done in several ways.

The generic way would be explicitly calculating this integral for each of the 22K

Boolean

functions f separately. Hence

Pr [f|ρc,K = 2] =
∫
dc1dc2ρc(c1)ρc(c2)

∏
x

Pr [sign(x1c1 + x2c2) = f(x)] .

Here the probability Pr [sign(x1c1 + x2c2) = f(x)] can only be ∈ {0, 1}, because either the

functions (LTF and f) coincide on the input x or not. In this case this results in 2K = 4
conditions to be met.

However, if the distribution of weights ρc is as simple as above, the projection could also

be calculated easier. As cj can only assume the values cj ∈ {−1,+1}, there are only 4

possible combinations of c1 and c2, which have the following probabilities:

Pr
[
c1 = +1, c2 = +1|ρ(δ)

c

]
= p2,

Pr
[
c1 = +1, c2 = −1|ρ(δ)

c

]
= p(1− p),

Pr
[
c1 = −1, c2 = +1|ρ(δ)

c

]
= (1− p)p,

Pr
[
c1 = −1, c2 = −1|ρ(δ)

c

]
= (1− p)2.

Inserting those combinations into the LTF, gives a single value at every possible input x,

which are listed in table 3.2.

input output
x c1 = +1, c2 = +1 c1 = +1, c2 = −1 c1 = −1, c2 = +1 c1 = −1, c2 = −1

−1 −1 −1 +1 +1 +1
−1 +1 +1 −1 +1 +1
+1 −1 +1 +1 −1 +1
+1 +1 +1 +1 +1 −1

Table 3.2: Inserting all 4 combinations of c1 and c2 into the LTF.

The 4 Boolean functions in this table are (14)2, (13)2, (11)2 and (7)2, respectively. Hence

the distribution of functions ρF could be written as

ρF ∼ p2
(
14
)
2

+ p(1− p)
(
13
)
2

+ p(1− p)
(
11
)
2

+ (1− p)2
(
7
)
2
.

This example should also show, that except for such examples of distributions, like ρ
(δ)
c

above, the route via calculating Pr [f(x) = ±1|x] directly with lemma 3.1 is the simpler one,

3This requires that sign(0) is also defined and sign(0) ∈M . In this example it is set to sign(0) = +1.
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as then a smaller number of Θ-functions (which is the order of the dynamics) appears

in the integrals, that have to be calculated. So for the Hamming distance only 2 such

Θ-functions are present, whereas with the projection to single Boolean functions there are

2K Θ-functions in the integrals4.

3.1.1 Equivalence to other formalisms

The integral formalism presented so far can be used to establish the equivalence to the

formalism introduced in [Kürten, 1988b], where the sensitivities, which are already men-

tioned several times in the last chapter, are used to construct the iteration polynomial for

the Hamming distance d. Note that this is exactly one of the cases where the iteration

equation for the Hamming distance d can actually be constructed by the sensitivities S(n).

The reason for this is a symmetrical distribution of weights:

ρc(c) = ρc(−c). (3.13)

Recall that sensitivities S(n) are the probabilities, that a change in exactly n variables

in the input tuple x changes the output of the Boolean function f . In [Kürten, 1988b]

the symbol IKn (which is denoted with S⊥(n) in this work here) is used as the probability,

that n changes in the input do not change the output of the function. Hence here those

probabilities will be denoted S⊥(n) to distinguish them from the sensitivities S(n) before.

However, they are connected through the obvious relation

S(n) = 1− IKn = 1− S⊥(n). (3.14)

Theorem 3.4. The integral formalism, proposed first by [Kürten, 1988b], is equivalent with
the Mean Field description of the Hamming distance d, formalized in the last chapter, when
using the condition

ρc(c) = ρc(−c). (3.15)

If the weights are distributed symmetric, the iteration equation for the magnetization m

reduces to a constant, i.e. the fixed point m∗ is reached after a single timestep and the
Hamming distance d is given by:

d′ =
K∑
k=1

(−1)k+1

(
K

k

)
a(k)dk, (3.16)

where a(k) = 1 +
k∑

n=1
(−1)s

(
k
n

)
S⊥(n) and

S⊥(n) =
∫
· · ·
∫
dc1 . . . dcKρc(c1) . . . ρc(cK)Θ

(
(cn+1 + · · ·+ cK − h)2 − (x1 + · · ·+ xn)2

)
. (3.17)

4and K + 1 Θ-functions in the totalistic case.
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3 Linear Threshold Functions

Proof. First the iteration equation for the magnetization m′ is derived. Recall

m′ = z′(+) − z
′
(−)

=

(∑
x

Pr [f(x) = +1|x] Pr
[
x|z(±)

])
−

(∑
x

Pr [f(x) = −1|x] Pr
[
x|z(±)

])

=
∑
x

∫ DKρc
Θ

(∑
j

xjcj − h
)
−Θ

(
−
∑
j

xjcj + h

)Pr
[
x|z(±)

]
= . . .

Now the probabilities Pr
[
x|z(±)

]
=
(

1+m
2

)〈x,x〉 ( 1−m
2

)K−〈x,x〉
from lemma 2.5 are inserted. By

using the fact, that LTFs are totalistic, the summation over x can be changed into a simple

summation taken over a = 0, . . . ,K when using the binomial coefficient
(
K
a

)
and relabeling

the cj so that the first a coefficients have a positive sign:

. . . =
K∑
a=0

(
K

a

)[∫
DKρc

(
Θ (c1 + · · ·+ ca − ca+1 − · · · − cK − h)

−Θ (−c1 − · · · − ca + ca+1 + · · ·+ cK + h)
)](1 +m

2

)a(1−m
2

)K−a
= . . .

Using Θ(−x) = 1−Θ(x) the expression above simplifies:

. . . =
K∑
a=0

(
K

a

)[∫
DKρc

(
2Θ
(
c1 + · · ·+ ca − ca+1 − · · · − cK − h

)
− 1
)]
×

×
(

1 +m

2

)a(1−m
2

)K−a
= . . .

Now the symmetry of ρc is used. Therefore the integral can be written as∫
DKρcΘ (c1 + · · ·+ ca − ca+1 − · · · − cK − h) =

∫
DKρcΘ (c1 + · · ·+ cK − h) ,

and is independent of a. Furthermore using the normalization of the measure
∫
DKρc = 1

the following expression is obtained, by writing the integrals in front of the sum:

. . . =
[
−1 + 2

∫
DKρcΘ (c1 + · · ·+ cK − h)

] K∑
a=0

(
K

a

)(
1 +m

2

)a(1−m
2

)K−a
=

[
−1 + 2

∫
DKρcΘ (c1 + · · ·+ cK − h)

](
1 +m

2
+

1−m
2

)K
︸ ︷︷ ︸

=1

= −1 + 2
∫
DKρcΘ (c1 + · · ·+ cK − h) .

Hence the complete iteration equation is independent of m and the fixed point m∗ is

reached after a single timestep.

Now the equivalence of the iteration equation for the Hamming distance d has to be
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shown. Recall again

d′ = z′(+−) + z′(−+)

=
∑
x

∑
y

(Pr [f(x) = +1, f(y) = −1|x,y] + Pr [f(x) = −1, f(y) = +1|x,y]) Pr
[
x,y|z(±±)

]
=

∑
x,y

[∫
· · ·
∫
dc1 . . . dcKρc(c1) . . . ρc(cK)

(
Θ
(∑

i

cixi − h
)

Θ
(
−
∑
i

ciyi + h

)

+Θ
(
−
∑
i

cixi + h

)
Θ
(∑

i

ciyi − h
))]

Pr
[
x,y|z(±±)

]
= . . .

Using Θ(−A)Θ(B) + Θ(A)Θ(−B) = Θ(−AB) and further the totalistic property of LTFs

. . . =
∑
x,y

[∫
DKρcΘ

(
−
(∑

i

cixi − h
)(∑

i

ciyi − h
))]

Pr
[
x,y|z(±±)

]
=

∑
niP
ni=K

K!
n1!n2!n3!n4!

[∫
DKρcΘ

(
− (c1 + · · ·+ cn1+n2 − cn1+n2+1 − · · · − cK − h)×

× (c1 + · · ·+ cn1 − cn1+1 − · · · − cn1+n2 + cn1+n2+1 + · · ·+ cn1+n2+n3

−cn1+n2+n3+1 − · · · − cK − h)
)]
zn1
(++)z

n2
(+−)z

n3
(−+)z

n4
(−−)

=
∑
niP
ni=K

K!
n1!n2!n3!n4!

zn1
(++)z

n2
(+−)z

n3
(−+)z

n4
(−−)

[∫
DKρcΘ (− (−c1 − · · · − cK − h)×

× (−c1 − · · · − cn1 + cn1+1 + · · ·+ cn1+n2+n3 − cn1+n2+n3+1 − · · · − cK − h))
]

=
∑
niP
ni=K

K!
n1!n2!n3!n4!

zn1
(++)z

n2
(+−)z

n3
(−+)z

n4
(−−) ×

×
[∫
DKρcΘ

(
(cn1+1 + · · ·+ cn1+n2+n3)2 − (c1 + · · ·+ cn1 + cn1+n2+n3+1 + · · ·+ cK + h)2

)]
=

∑
niP
ni=K

K!
n1!n2!n3!n4!

zn1
(++)z

n2
(+−)z

n3
(−+)z

n4
(−−) ×

×
[∫
DKρc

(
1−Θ

(
(c1 + · · ·+ cn1 + cn1+n2+n3+1 + · · ·+ cK + h)2 − (cn1+1 + · · ·+ cn1+n2+n3)2

))]
︸ ︷︷ ︸

=1−S⊥(K−n1−n4),after relabeling the ci

=
∑
niP
ni=K

K!
n1!n2!n3!n4!

(
1− S⊥(K−n1−n4)

)(1
2

)K
(1 +m− d)n1dn2+n3(1−m− d)n4 = . . .

New summation variables are introduced instead of the ni:

a = n1 + n4 a = 0, . . . ,K
A = n4 A = 0, . . . , a
B = n2 B = 0, . . . ,K − a

n3 = K − a−B
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Therefore

. . . =
K∑
a=0

a∑
A=0

K−a∑
B=0

(
1
2

)K
K!

(a−A)!A!B!(K − a−B)!

(
1− S⊥(K−a)

)
×

×dK−a(1 +m− d)a−A(1−m− d)A

=
K∑
a=0

(
K−a∑
B=0

1
B!(K − a−B)!

)
︸ ︷︷ ︸

= 2K−a

(K−a)!

(
a∑

A=0

1
A!(a−A)!

(1−m− d)A(1 +m− d)A−a
)

︸ ︷︷ ︸
= 2a

a! (1−d)a

×

×K!
(

1
2

)K (
1− S⊥(K−a)

)
dK−a

=
K∑
a=0

K!
a!(K − a)!

(
1− S⊥(K−a)

)
dK−a(1− d)a

=
K∑
a=0

(
K

a

)(
1− S⊥(K−a)

)
dK−a

(
a∑
b=0

(
b

a

)
(−1)bdb

)

=
K∑
a=0

a∑
b=0

(
K

a

)(
a

b

)(
1− S⊥(K−a)

)
(−1)bdK−a+b = . . .

Now the summation variables are changed again

k = K − a+ b k = 0, . . . ,K
n = K − a n = 0, . . . , k

and hence

. . . =
K∑
k=0

k∑
n=0

(
K

K − n

)(
K − n
k − n

)(
1− S⊥(n)

)
(−1)k−ndk = . . .

Using
(
K

K−n
)(
K−n
k−n

)
=
(
K
k

)(
k
n

)
and inserting this in the expression for d′ gives

. . . =
K∑
k=0

(−1)k+1

(
K

k

)( k∑
n=0

(−1)−n−1

(
k

n

)(
1− S⊥(n)

))
︸ ︷︷ ︸

=a(k)

dk,

which is the final form in [Kürten, 1988b], except for the sum starting at k = 0 instead of

k = 1 in the original version and the expressions for a(k) are not yet matched completely:

a(k) =
k∑

n=0

(−1)−n−1

(
k

n

)(
1− S⊥(n)

)
=

= −

(
k∑

n=0

(−1)n
(
k

n

))
︸ ︷︷ ︸

=δ0k

+
k∑

n=0

(−1)n
(
k

n

)
S⊥(n) = . . .

Now the two cases a(k = 0) and a(k > 0) have to be distinguished. Before that we need an
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explicit calculation of S⊥(0):

S⊥(0) =
∫
DKρcΘ

(
(c1 + · · ·+ cK + h)2︸ ︷︷ ︸

≥0

)
=
∫
DKρc = 1,

and hence

a(0) = −δ00 +
(

0
0

)
(−1)0S⊥(0) = −1 + 1 = 0,

a(k) = −δ0k +
k∑

n=0

(−1)n
(
k

n

)
S⊥(n) =

(
k

0

)
(−1)0S⊥(0) +

k∑
n=1

(−1)n
(
k

n

)
S⊥(n)

= 1 +
k∑

n=1

(−1)n
(
k

n

)
S⊥(n).

Using a(0) = 0 the summation in the main expression starts with k = 1. Therefore the

equivalence of the formalisms under the condition ρc(c) = ρc(−c) is finally established.

The expressions proved in the last theorem are not used for calculations in this work,

because later on the distributions of weights ρc have an additional asymmetry parameter

p ∈ [0, 1], whereas in the derivation above the symmetry was used several times in crucial

steps. In this case the iteration equation for the magnetization m′ depends on m again,

and is not just a constant anymore. Moreover, the integrals do not simplify as above and

they are of the form

S
(n1,n2,n3,n4)
pseudo =

∫
DKρcΘ

(( n2∑
ci −

n3∑
ci

)2

−
( n1∑

ci −
n4∑

ci − h
)2
)

(3.18)

where
∑nj ci means adding nj of the weights ci. Since all weights have the same distribu-

tion, the index i of the ci does not matter, because they can be relabeled. An important

point here is, that those integrals are not sensitivities anymore, because sensitivities are

the probability of a sign reversal when changing a number of signs in the input. They

can depend on the magnetization m, as seen in the last chapter, section 2.4, whereas

the integrals of equation (3.18) are just numbers (and possibly depending on some model

parameters), and hence are somewhat just “pseudo-sensitivities“ Spseudo. Those pseudo-

sensitivities are coefficients in an expansion of the iteration equation of Hamming distance

d′ in both variables, the Hamming distance d itself and the magnetization m. Sensitivities

are the coefficients in an (binomial) expansion in d only, at least in the case of symmetric

distribution of weights ρc(c) = ρc(−c).

3.2 Results

One part in this work was the calculation of the iteration equations for Linear Threshold

functions with specific distributions of weights ρc. Results are available for two different

distributions and the connectivities K = 2 and K = 3. As shown in the previous chapter,
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3 Linear Threshold Functions

the polynomials are of order of the connectivity in m and d in those cases

M(γ;m) = O(mK),

D(γ;m, d) = O(dK),

and could still be solved analytically.

The two distributions, for which results are calculated in this work are as follows:

ρ(δ)
c = pδ(c− 1) + (1− p)δ(c+ 1), (3.19)

ρ(cont)
c =


p c ∈ [0, 1]
1− p c ∈ [−1, 0)
0 else

. (3.20)

With h > K or h < −K the iteration equations for both distributions are are quite

trivial, because no combination of weights cj and inputs x can exceed this value of the

threshold.Hence for h > K the iteration equation is m′ = −1 and for h < −K it is m′ = 1. For

intermediate values of h (−K < h < K), the iteration equations have different structures,

which change at certain values hJ of the threshold. For the distribution of weights ρ
(δ)
c

these “jumps” hJ in the threshold occur at even integers for odd connectivity K and at odd

integers for even K, since the sum of weights multiplied by the state (see equation 3.1a)

is also an integer. So for this ρ(δ)
c , the iteration equations are not explicitly dependent on

the threshold h5. The iteration equations for ρ(cont)
c contain an explicit dependence on the

threshold h, but also change their structure at hJ , which are all integers between −K and

K in this case. Although the terms change structurally, as will be seen in the following

pages, the change in the structure in the iteration equations is still “continuous”:

lim
ε→0
M
(
ρ(cont)
c , p, h = hJ − ε;m

)
= lim

ε→0
M
(
ρ(cont)
c , p, h = hJ + ε;m

)
,

lim
ε→0
D
(
ρ(cont)
c , p, h = hJ − ε;m, d

)
= lim

ε→0
D
(
ρ(cont)
c , p, h = hJ + ε;m, d

)
.

In the next few pages the iteration equations for the magnetization m and for the Ham-

ming distance d and their fixed point solutions for the two distributions of weights ρ(δ)
c and

ρ
(cont)
c are given. The value of the single integrals (for a specific choice of ni) is not shown,

as those give not very much insight into the construction of the iteration equations and

there would be too many of them to list them all.

Each possible combination of tuples x and y, which is 4K , combined with the fact,

that each integral has to be evaluated in each h-interval between those jumps separately

(which are 2K − 2 intervals for ρ(cont)
c and K intervals for ρ(δ)

c ) already introduces a quite

high number of integrals. Furthermore there are four different iteration equations, one for

each of z(±±). This leads to the following number of integrals to calculate:

ρ(δ)
c : K4K+1 integrals

5Because it does not change the sign of the term, when subtracting e.g. h = 1.4 or h = 1.5 from an integer.
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ρ(cont)
c : (2K − 2)4K+1 integrals

However, some symmetries could be used to reduce the number of integrals:

• The iteration equation for the magnetization m could be calculated from the proba-

bilities of second order z(±±), however probabilities of first order z(±) would suffice,

which are much easier to calculate, since they have only a single Θ-function.

• Furthermore, as z(+−) = z(−+) in MF, this leaves only a single of the four iteration

polynomials to be calculated in second order for the Hamming distance d.

• By using the fact that Linear Threshold functions are totalistic, lemma 3.3 reduces

the number of integrals again. The number of possible combinations of n1, n2, n3, n4

satisfying
∑
i ni = K is exactly

(
K+4−1

4−1

)
=
(
K+3

3

)
= (K+3)!

K!3! , hence the reduction is by a

factor of (K+3)!
K!3! 4−K , which is about 0.63 for K = 2 and about 0.31 for K = 3.

• If the distribution ρc has additional symmetries, the number of integrals to evaluate

can be reduced further. However, the two distributions of weights used in this work,

ρ
(δ)
c and ρ(cont)

c , are not of this type. Such a property, which has been used in previous

work, would be ρc(c) = ρc(−c), like in [Kürten, 1988b].

This reduction leaves the following numbers of integrals:

ρ(δ)
c : (K+3)!

6(K−1)! integrals ⇒ 20 for K = 2, 60 for K = 3

ρ(cont)
c : (2K−2)(K+3)!

6K! integrals ⇒ 20 for K = 2, 80 for K = 3

The integrals for ρ
(δ)
c are trivially evaluated, since the measure DKρ(δ)

c is a pure point

measure, i.e. it is just a sum. However, the evaluation for ρ(cont)
c involves more effort,

but can be done analytically, too. This evaluation of the integrals can be done e.g. ge-

ometrically, because the weights cj are bounded by ±1, and are therefore constrained to

a K-dimensional hypercube, where the Θ-functions correspond to (K − 1)-dimensional

hyperplanes.

Additionally to the iteration equations for m and d, the phase diagrams for the (stable)

fixed points m∗ and d∗ are shown in the coming sections (figures 3.1 to 3.4). Although

there might be more than one solution of the iteration equations m′ = M(p, h;m) and

d′ = D(p, h;m, d), only one of them is stable and in the range m ∈ [−1, 1] and d ∈ [0, 1],
except for the case where a white area is shown in those phase diagrams. These white

areas are usually around the parameter point (p, h) = (1, 0), where two stable fixed points

m∗ occur, and around the parameter point (p, h) = (0, 0), which corresponds to a period-2-

solution in the magnetization, i.e. no single stable fixed point m∗ exists.

The fixed point solutions are obtained by varying the the parameters p and h in small

step-sizes, and solving the equations m∗ = M(p, h;m∗) and d∗ = D(p, h;m∗, d∗) at those

parameters numerically. Therefore the results are only semi-analytically derived, because

no closed form for the surfaces m∗(p, h) and d∗(p, h) could be found, except for K = 2 and

ρ
(δ)
c , where those solutions are already given partially in the example at the end of section

2.3.2.
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This system, a BN with LTFs and the distribution of degrees ρ
(δ)
c , has already been

investigated by several other authors. Besides [Kürten and Clark, 2008] and [Greil and

Drossel, 2005], which have been mentioned earlier, also [Rohlf and Bornholdt, 2002] treats

this BN, and furthermore [Nakamura, 2003] and [Nakamura, 2004], which are based on

the latter. In [Rohlf and Bornholdt, 2002] the sensitivity S(1) is derived combinatorially.

However, it is then combined with the original iteration equation for the Hamming dis-

tance from [Derrida and Pomeau, 1986], which is only valid for the Kauffman model, but

not for this specific mixture of Boolean functions, which is a LTF. Furthermore, the au-

thors do not calculate any higher sensitivities S(n) or coefficients λn for their iteration

equation, and by combining the original iteration equation with their sensitivity, they just

set µn = (−1)n+1
(
K
n

)
S(1), where µn are the plain coefficients in the Hamming distance, see

definition 2.22. They still get the correct critical condition, as this only depends on S(1),

but the method does not yield the correct fixed point in the Hamming distance d∗, which

is clearly seen in their figure 3, which is explained by slow convergence below the critical

point. In [Nakamura, 2003] the latter approach is copied and a more complicated degree

distribution Pr [k|ρk], as well as a different mixture of Boolean functions, depending on

a parameter T , is incorporated into the model. Again, a correct critical condition, and

therefore the critical connectivity Kc, is obtained, but fails to predict the fixed point in the

Hamming distance.

Delta-peaked distribution of weights ρ(δ)
c and K = 2

(a) Magnetization m (b) Hamming distance d

Figure 3.1: Fixed point-solutions of the iteration equations m∗ = M(p, h;m∗) and d∗ =
D(p, h;m∗, d∗) for K = 2 and ρ

(δ)
c .

Iteration equations for the magnetization m for K = 2 and ρ
(δ)
c :

−∞ < h < −2 : m′ = 1

−2 < h < 0 : m′ =
[
1
2

]
+
[
2p− 1

]
m+

[
− 1

2 (2p− 1)2
]
m2

0 < h < 2 : m′ =
[
− 1

2

]
+
[
2p− 1

]
m+

[
1
2 (2p− 1)2

]
m2
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2 < h <∞ : m′ = −1

Iteration equations for the Hamming distance d for K = 2 and ρ
(δ)
c :

−∞ < h < −2: d′ = 0
−2 < h < 0: d′ =

[
1 + (2p− 1)m

]
d+

[
− 1

2

]
d2

0 < h < 2: d′ =
[
1 + (2p− 1)m

]
d+

[
− 1

2

]
d2

2 < h <∞: d′ = 0

Uniform distribution of weights ρ(cont)
c and K = 2

(a) Magnetization m (b) Hamming distance d

Figure 3.2: Fixed point-solutions of the iteration equations m∗ = M(p, h;m∗) and d∗ =
D(p, h;m∗, d∗) for K = 2 and ρ

(cont)
c .

Iteration equations for the magnetization m for K = 2 and ρ
(cont)
c :

−∞ < h < −2: m′ = 1

−2 < h < −1: m′ =
[
− 1

4h (4 + h)
]

+
[

1
2 (2 + h)2 (2p− 1)

]
m+

[
− 1

4 (2 + h)2 (2p− 1)2
]
m2

−1 < h < 0: m′ =
[
− 1

4h (4 + h)
]

+
[
− 1

2

(
−2 + h2

)
(2p− 1)

]
m+

[
1
4h (4 + 3h) (2p− 1)2

]
m2

0 < h < 1: m′ =
[
1
4h (−4 + h)

]
+
[
− 1

2

(
−2 + h2

)
(2p− 1)

]
m+

[
− 1

4h (−4 + 3h) (2p− 1)2
]
m2

1 < h < 2: m′ =
[
1
4h (−4 + h)

]
+
[

1
2 (−2 + h)2 (2p− 1)

]
m+

[
1
4 (−2 + h)2 (2p− 1)2

]
m2

2 < h <∞: m′ = −1

Iteration equations for the Hamming distance d for K = 2 and ρ
(cont)
c :

−∞ < h < −2: d′ = 0

−2 < h < −1: d′ =
[

1
2 (2 + h)2 − 1

2 (2 + h)2 (2p− 1)m
]
d+

[
− 1

4 (2 + h)2
]
d2

−1 < h < 0: d′ =
[
1
2

(
2− h2

)
+ 1

2h (4 + 3h) (2p− 1)m
]
d+

[
1
4h (4 + 3h)

]
d2
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0 < h < 1: d′ =
[
1
2

(
2− h2

)
− 1

2h (−4 + 3h) (2p− 1)m
]
d+

[
1
4h (−4 + 3h)

]
d2

1 < h < 2: d′ =
[

1
2 (−2 + h)2 + 1

2 (−2 + h)2 (2p− 1)m
]
d+

[
− 1

4 (−2 + h)2
]
d2

2 < h <∞: d′ = 0

Delta-peaked distribution of weights ρ(δ)
c and K = 3

(a) Magnetization m (b) Hamming distance d

Figure 3.3: Fixed point-solutions of the iteration equations m∗ = M(p, h;m∗) and d∗ =
D(p, h;m∗, d∗) for K = 3 and ρ

(δ)
c .

Iteration equations for the magnetization m for K = 3 and ρ
(δ)
c :

−∞ < h < −3 m′ = 1
−3 < h < −1 m′ =

[
3
4

]
+
[
3
4 (2p− 1)

]
m+

[
− 3

4 (2p− 1)2
]
m2 +

[
1
4 (2p− 1)3

]
m3

−1 < h < 1 m′ =
[
3
2 (2p− 1)

]
m+

[
− 1

2 (2p− 1)3
]
m3

1 < h < 3 m′ =
[
− 3

4

]
+
[
3
4 (2p− 1)

]
m+

[
3
4 (2p− 1)2

]
m2 +

[
1
4 (2p− 1)3

]
m3

3 < h <∞ m′ = −1

Iteration equations for the Hamming distance d for K = 3 and ρ
(δ)
c :

−∞ < h < −3 d′ = 0
−3 < h < −1 d′ =

[
3
4 −

3
2 (2p− 1)m+ 3

4 (2p− 1)2m2
]
d+

[
− 3

4 + 3
4 (2p− 1)m

]
d2 +

[
1
4

]
d3

−1 < h < 1 d′ =
[
3
2 −

3
2 (2p− 1)2m2

]
d+

[
− 3

2

]
d2 + [1] d3

1 < h < 3 d′ =
[
3
4 + 3

2 (2p− 1)m+ 3
4 (2p− 1)2m2

]
d+

[
− 3

4 −
3
4 (2p− 1)m

]
d2 +

[
1
4

]
d3

3 < h <∞ d′ = 0

Uniform distribution of weights ρ(cont)
c and K = 3

Iteration equations for the magnetization m for K = 3 and ρ
(cont)
c :
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(a) Magnetization m (b) Hamming distance d

Figure 3.4: Fixed point-solutions of the iteration equations m∗ = M(p, h;m∗) and d∗ =
D(p, h;m∗, d∗) for K = 3 and ρ

(cont)
c .

(a) Magnetization m∗ (b) Stability of m∗, ∂m′

∂m

˛̨̨
m∗

Figure 3.5: Fixed points in the magnetization m∗ and stability of this fixed point in the

range of low p for K = 3 and ρ
(cont)
c .

(a) Hamming distance d∗ (b) Stability of d∗, ∂d′

∂d

˛̨̨
m∗,d∗

Figure 3.6: Fixed points in Hamming distance d∗ and stability of this fixed point in the

range of low p for K = 3 and ρ
(cont)
c .
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Figure 3.7: Fixed points in the magnetization m∗ in the range of high p for K = 3 and

ρ
(cont)
c . The green line indicates the solutions on the line h = 0, also depicted in

figure 3.9(b).

−∞ < h < −3 m′ = 1

−3 < h < −2 m′ =
[
1− 1

24 (h+ 3)3
]

+
[
1
8 (h+ 3)3(2p− 1)

]
m+

+
[
− 1

8 (h+ 3)3(1− 2p)2
]
m2 +

[
1
24 (h+ 3)3(2p− 1)3

]
m3

−2 < h < −1 m′ =
[
1− 1

24 (h+ 3)3
]

+
[
− 1

8

(
h3 + 3h2 − 3h− 11

)
(2p− 1)

]
m+

+
[
1
8

(
3h3 + 15h2 + 21h+ 5

)
(1− 2p)2

]
m2+

+
[
− 1

24

(
5h3 + 27h2 + 45h+ 21

)
(2p− 1)3

]
m3

−1 < h < 0 m′ =
[

1
12h

(
h2 − 9

)]
+
[
− 1

4

(
h3 + 3h2 − 5

)
(2p− 1)

]
m+

+
[
− 1

4h
(
h2 − 3

)
(1− 2p)2

]
m2 +

[
1
12

(
5h3 + 9h2 − 3

)
(2p− 1)3

]
m3

0 < h < 1 m′ =
[

1
12h

(
h2 − 9

)]
+
[
1
4

(
h3 − 3h2 + 5

)
(2p− 1)

]
m+

+
[
− 1

4h
(
h2 − 3

)
(1− 2p)2

]
m2 +

[
− 1

12

(
5h3 − 9h2 + 3

)
(2p− 1)3

]
m3

1 < h < 2 m′ =
[
1− 1

24 (h− 3)3
]

+
[
1
8

(
h3 − 3h2 − 3h+ 11

)
(2p− 1)

]
m+

+
[
1
8

(
3h3 − 15h2 + 21h− 5

)
(1− 2p)2

]
m2+

+
[

1
24

(
5h3 − 27h2 + 45h− 21

)
(2p− 1)3

]
m3

2 < h < 3 m′ =
[
1− 1

24 (h− 3)3
]

+
[
− 1

8 (h− 3)3(2p− 1)
]
m+

+
[
− 1

8 (h− 3)3(1− 2p)2
]
m2 +

[
− 1

24 (h− 3)3(2p− 1)3
]
m3

3 < h <∞ m′ = −1

Iteration equations for the Hamming distance d for K = 3 and ρ
(cont)
c :

−∞ < h < −3 d′ = 0
−3 < h < −2 d′ =

[
1
8 (h+ 3)3 − 1

4 (h+ 3)3(2p− 1)m+ 1
8 (h+ 3)3(1− 2p)2m2

]
d+

+
[
− 1

8 (h+ 3)3 + 1
8 (h+ 3)3(2p− 1)m

]
d2+

+
[

1
24 (h+ 3)3

]
d3

−2 < h < −1 d′ =
[
1
8

(
−h3 − 3h2 + 3h+ 11

)
+ 1

4

(
3h3 + 15h2 + 21h+ 5

)
(2p− 1)m

− 1
8

(
5h3 + 27h2 + 45h+ 21

)
(1− 2p)2m2

]
d+

+
[
1
8

(
3h3 + 15h2 + 21h+ 5

)
− 1

8

(
5h3 + 27h2 + 45h+ 21

)
(2p− 1)m

]
d2+

+
[

1
24

(
−5h3 − 27h2 − 45h− 21

)]
d3
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−1 < h < 0 d′ =
[
1
4

(
−h3 − 3h2 + 5

)
− 1

2h
(
h2 − 3

)
(2p− 1)m+

+ 1
4

(
5h3 + 9h2 − 3

)
(1− 2p)2m2

]
d+

+
[
1
4

(
2h3 + 3h2 − 3

)
+ 1

4h
(
2h2 + 6h+ 3

)
(2p− 1)m

]
d2+

+
[

1
12

(
−4h3 + 9h+ 6

)]
d3

0 < h < 1 d′ =
[
1
4

(
h3 − 3h2 + 5

)
− 1

2h
(
h2 − 3

)
(2p− 1)m

− 1
4

(
5h3 − 9h2 + 3

)
(1− 2p)2m2

]
d+

+
[
1
4

(
−2h3 + 3h2 − 3

)
+ 1

4h
(
2h2 − 6h+ 3

)
(2p− 1)m

]
d2+

+
[

1
12

(
4h3 − 9h+ 6

)]
d3

1 < h < 2 d′ =
[
1
8

(
h3 − 3h2 − 3h+ 11

)
+ 1

4

(
3h3 − 15h2 + 21h− 5

)
(2p− 1)m+

+ 1
8

(
5h3 − 27h2 + 45h− 21

)
(1− 2p)2m2

]
d+

+
[
1
8

(
−3h3 + 15h2 − 21h+ 5

)
− 1

8

(
5h3 − 27h2 + 45h− 21

)
(2p− 1)m

]
d2+

+
[

1
24

(
5h3 − 27h2 + 45h− 21

)]
d3

2 < h < 3 d′ =
[
− 1

8 (h− 3)3 − 1
4 (h− 3)3(2p− 1)m− 1

8 (h− 3)3(1− 2p)2m2
]
d+

+
[
1
8 (h− 3)3 + 1

8 (h− 3)3(2p− 1)m
]
d2+

+
[
− 1

24 (h− 3)3
]
d3

3 < h <∞ d′ = 0

3.2.1 Phase diagrams

As can be seen in figure 3.8 (and also figures 3.1 to 3.4), the dynamics of the different

BNs exhibit several different phases: In the majority of the phase space (p, h) there exits a

single stable fixed point m∗ for the magnetization. Except for some area around the h = 0
line, the dynamics is also stable against perturbations, i.e. d∗ = 0. At p ≈ 1 and h ≈ 0 there

exist two different stable fixed points m∗ of the magnetization. The dynamics in this two

fixed point range is mostly ordered, however, for ρ(cont)
c at the borders (with h 6= 0) to the

single fixed point, one of those fixed points m∗ is associated with a increasing Hamming

distance d∗ 6= 0, until this fixed point m∗ vanishes and only a single fixed point is left6. In

the area around (p, h) = (0, 0) a period-2 solution for m′ exists. At the border to the stable

single fixed point solutions the dynamics is disordered (d∗ 6= 0). However, d∗ → 0 quickly

in this area when (p, h)→ (0, 0) is approached.

In figure 3.8 the information from figures 3.1 to 3.4 is reduced and relevant parts pre-

sented again. Blue lines show the phase-transition from disordered dynamics (d∗ 6= 0) in

the center to ordered dynamics (d∗ = 0) outside. The red and brown lines indicate the

already mentioned changes in m∗: in the top of the phase diagrams (p ≈ 1), the red line

separates the parameter range with a single stable fixed point from the two stable fixed

points in m. In the bottom the brown line shows the transition to the period-2 solution of

the dynamics.

From these results especially the dynamical behavior of the BNs on the line h = 0 is

of interest, because it can be compared to several already published works, for instance

[Kürten, 2008], [Kürten, 2010b] or [Galam, 2008]. As can be seen in figures 3.1(a) to 3.4(a),

the fixed point of the magnetization is m∗ = 0 on this h = 0 line in the central p-interval.

6This will also be explored with simulations later, see figures 3.14.
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(a) K = 2, ρ(δ)c (b) K = 2, ρ(cont)c

(c) K = 3, ρ(δ)c (d) K = 3, ρ(cont)c

Figure 3.8: Phase diagrams of the four systems. The parameter range corresponding to
the area within the blue curve is the disordered phase (d∗ 6= 0), outside is the
ordered phase (d∗ = 0). Brown lines separate the single stable fixed point in
the magnetization m∗ from the period-2 solution at low p. The red points/lines
indicate the area with two stable fixed points m∗1 and m∗2 at high p.

In fact this p-interval is symmetric with respect to p = 1
2 . Hence the stability of this fixed

point changes at pm
∗

c± with pm
∗

c+ = 1 − pm∗c− . Above this interval, i.e. p ∈
[
pm
∗

c+ , 1
]
, there exist

two stable solutions of the magnetization, and it depends on the initial condition, which

one is ultimately reached after the transient time. Below this interval, i.e. p ∈
[
0, pm

∗

c−
]
,

again a bifurcation occurs, however, here the two solutions are only accumulations points

of a period-2 solution. A further property of this change of stability of the fixed point

m∗ = 0 at p = pm
∗

c± is, that the two fixed points m∗1 and m∗2 above pm
∗

c+ are the same as

the accumulation points m
(acc)
1 and m

(acc)
2 below pm

∗

c− at the h = 0 line. Moreover those

two points (fixed points or accumulation points) on each side of the stable p-interval are

symmetric with respect to m = 0. As the fixed point is a function of the parameter p, i.e.

m∗ = m∗(p), it follows

m∗1(p) = −m∗2(p) p ≥ pm
∗

c+ (3.21a)
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m
(acc)
1 (p) = −m(acc)

2 (p) p ≤ pm
∗

c− (3.21b)

m
(acc)
1 (p) = m∗1(1− p) (3.21c)

However, those symmetry properties are not valid anymore if h changes, i.e. h 6= 0.

Although it is hard to distinguish in the figures 3.1(b) to 3.4(b), the fixed point d∗ of

Hamming distance is exactly d∗ = 1
2 in the interval where m∗ = 0 is stable at the h = 0

line, starting to decrease rapidly at the critical points pm
∗

c± for the magnetization, and

reaching d∗ = 0 shortly thereafter. This gives rise to another set of critical values pd
∗

c± for

the parameter p:

0 < pd
∗

c− < pm
∗

c− <
1
2
< pm

∗

c+ < pd
∗

c+ < 1 (3.22)

This critical condition pd
∗

c± indicates the order-disorder phase transition. Between these

two critical values pd
∗

c±, small perturbations percolate through the complete BN. The nu-

merical values for all those critical points are listed in table 3.3.

(a) K = 3, h = 0, ρ(δ)c (b) K = 3, h = 0, ρ(cont)c (c) K = 3, binary mixture of rules
(232)3 and (23)3

Figure 3.9: Fixed points for the Magnetization m∗ (red) and the Hamming distance d∗

(green) for K = 3 and h = 0 compared with the binary mixture of the Majority
and Minority rule used in [Kürten, 2008]

K pm
∗

c− pm
∗

c+ pd
∗

c− pd
∗

c+

ρ
(δ)
c K = 3 1

6 ≈ 0.17 5
6 ≈ 0.83 1

8 ≈ 0.13 7
8 ≈ 0.88

ρ
(cont)
c K = 3 1

10 = 0.10 9
10 = 0.90 1

14 ≈ 0.07 13
14 ≈ 0.93

[Kürten, 2008]
K = 3 1

6 ≈ 0.17 5
6 ≈ 0.83 1

8 ≈ 0.13 7
8 ≈ 0.88

K = 5 7
30 ≈ 0.23 23

30 ≈ 0.77 ≈ 0.18 ≈ 0.82

Table 3.3: Critical points pm
∗,d∗

c± for the change of stability (i.e. phase transition) in the
magnetization m∗ and the Hamming distance d∗ on the line h = 0.

Figure 3.9 compares the two distributions of weights ρ
(δ)
c and ρ

(cont)
c with the binary

mixture of the Minority and Majority rule [Kürten, 2008]. It depicts the same data as

in figures 3.3(b) and 3.4(b), however, here only the part for h = 0 is shown. All three
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of the figures are quite similar, with the stable m∗ = 0 range in the center, the period-2

solution for small p and the two stable fixed points for high p. From there the structure of

other distributions of weights and connectivity could be inferred. Every single-parameter

distribution of weights, where a high value of the parameter p coincides with a majority of

positive weights in the Boolean function, and a small value of p corresponds to a majority of

negative weights, should have the same or a similar structure at the h = 0 line. Moreover,

a high threshold value biases the function into complete triviality, as already mentioned

at the beginning of this section (M(h < −K, p;m) = 1 and M(h > K, p;m) = −1). These two

facts help to infer that all such BN with a generic class of Linear Threshold functions (and

even monotone Boolean functions) might have a phase diagram similar to those presented

in figure 3.8 for the distributions ρ(δ)
c and ρ

(cont)
c .

Such systems with a central parameter region, where a “tie”-phenomenon occurs (the

symmetric m∗ = 0 case), which then bifurcates at the borders of this region, has been ex-

tensively investigated by Galam and coworkers in the context of sociophysics, see [Galam,

2008] for a review of this research.

3.3 Binary mixture of Minority and Majority rule

As has been argued in the last section, general LTFs can be approximated by a simple

binary mixture of the Minority and Majority rule, at least for the threshold h = 0, because

they show similar dynamical behavior. Those two rules can be seen as prototypes of LTFs

with either all negative or all positive weights. The distribution of functions is in this case

given by

ρF ∼ p
[
fMAJ

]
+ (1− p)

[
fMIN

]
, (3.23)

where in the original description an asymmetry parameter p is linked to the fraction of

positive weights in the distribution ρc.

Due to the simple nature of this mixture, several results can be obtained analytically.

Special emphasis in this section is laid on the fact, that this BN actually exhibits a more

ordered dynamics when the connectivity K is increased.

Most of the results of this section have also been treated in [Kürten, 2010b] or in the

Galam models [Galam, 2008].

Lemma 3.5. The iteration equation for the magnetization m in the Majority rule for odd K is

m′MAJ = −1 + 2
K∑

n= K+1
2

(
K

n

)
zn(+)z

K−n
(−)

= −1 + 2
K∑

n= K+1
2

(
K

n

)(
1 +m

2

)n(1−m
2

)K−n
. (3.24)

As the Minority rule fMIN is just the inverse of the function fMAJ , its iteration equation is
given by

m′MIN = −m′MAJ . (3.25)
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Hence the final iteration equation for the mixture ρF is

m′ = (2p− 1)

−1 + 2
K∑

n= K+1
2

(
K

n

)(
1 +m

2

)n(1−m
2

)K−n . (3.26)

Proof. The iteration equation for the magnetization of the Majority rule follows immediately

from the fact that fMAJ is a totalistic function, and fMAJ(x) = +1 if 〈x,x〉 ≥ K+1
2 . Using

further m′ = z′(+) − z
′
(−) = −1 + 2z′(+), the iteration equation in the lemma follows, when

weighting this with the mixture of Boolean functions, given by equation (3.23).

Lemma 3.6. The fixed point m∗ = 0 is stable in the range p ∈
[
pm
∗

c− , p
m∗

c+

]
where

pm
∗

c± =
1
2
±

 2K

K
(K−1

K−1
2

)
 (3.27)

For large K this reaches the asymptotic value

pm
∗

c± =
1
2
±
√

π

8K
K→∞−→ 1

2
(3.28)

Proof. Recall the stability of the fixed point m∗ = 0:

∂m′

∂m

∣∣∣∣
m∗=0

!= ±1

Hence

∂m′

∂m

∣∣∣∣
m∗=0

= (2p− 1)

(
2

K∑
n= K+1

2

(
K

n

)[
n

2

(
1 +m

2

)n−1(1−m
2

)K−n

− K − n
2

(
1 +m

2

)n(1−m
2

)K−n−1
])∣∣∣∣∣

m∗=0

= (2p− 1)
(

1
2

)K−1 K∑
n= K+1

2

(
K

n

)[
n− (K − n)

]

= (2p− 1)
(

1
2

)K−1
(
−K

K∑
n= K+1

2

(
K

n

)
︸ ︷︷ ︸

=2K−1

+2
K∑

n= K+1
2

(
K

n

)
n

)
= . . .

Here the fact
∑
n

(
K
n

)
= 2K is used. With the symmetry of the binomial coefficients and K

odd, then the sum is exactly half of that, if it is started at n = K+1
n , i.e.

K∑
n= K−1

2

(
K
n

)
= 2K−1.

Therefore

. . . = (2p− 1)

−K +
(

1
2

)K−2 K∑
n= K+1

2

K!n
n!(K − n)!


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= (2p− 1)

−K +
(

1
2

)K−2

K

K∑
n= K+1

2

(K − 1)!
(n− 1)!

(
K − 1− (n− 1)

)
!

 = . . .

Rewriting the summation variable to j = n− 1 yields

. . . = (2p− 1)

−K +
(

1
2

)K−2

K

K−1∑
j= K−1

2

(
K − 1
j

) = . . .

Solving this with respect to p gives the critical values pm
∗

c± between which the fixed point

m∗ = 0 is stable:

. . . = (2p− 1)

(
−K +

(
1
2

)K−2

K

(
2K−2 +

1
2

(
K − 1
K−1

2

)))

= (2p− 1)

(
−K +K +

(
1
2

)K−1

K

(
K − 1
K−1

2

))

= (2p− 1)
(

1
2

)K−1

K

(
K − 1
K−1

2

)
.

Inserting in the critical condition above, leads to the critical condition for the stability of

the fixed point m∗ = 0:

pm
∗

c± =
1
2

1± 2K−1

K
(K−1

K−1
2

)


If K is large enough, the binomial coefficient can be expanded using Stirling’s formula,

yielding: (
K − 1
K−1

2

)
≈ 2K−1

√
2

π(K − 1)
.

Therefore

pm
∗

c± ≈ 1
2

1± 2K−1

K
(

2K−1
√

2
πK

)


=
1
2
±
√

π

8K
K→∞−→ 1

2

Which is finally the approximate expression above.

This is an important result, because it shows that the range of p actually decreases with

increased connectivity. This is used further to prove, that the range of the ordered phase

gets larger with growing K. This is done again via the concept of sensitivities. First the

sensitivity for a general LTF is derived, which is a new result compared to the publications

cited before, since it has not been treated in this generality there.

84



3.3 Binary mixture of Minority and Majority rule

Lemma 3.7. The sensitivity S(1) of a Linear Threshold function is

KS(1) =
K∑
n=0

(
K

n

)[
n

∫
DKρcΘ

(
−
( n∑

cj −
K−n∑

cj − h
)2

+ 2c1

( n∑
cj −

K−n∑
cj − h

))
(3.29)

+(K − n)
∫
DKρcΘ

(
−
( n∑

cj −
K−n∑

cj − h
)2

− 2c1

( n∑
cj −

K−n∑
cj − h

))]
zn(+)z

K−n
(−) .

Proof. Recall the definition of the sensitivity S(1), already weighted with a distribution of

Boolean functions ρF:

KS(1) =
∑

f

Pr [f|ρF]
∑
x

K∑
i=1

∂ f̃(x)
∂xi

Pr
[
x|z(±)

]
Now the Boolean derivative for a LTF has to be rewritten. Note that for LTFs a change in

a variable xi is nothing else than subtracting it twice:

(
xj 7→ xj ⊕ 1

)
⇒

(∑
j

cjxj − h
)
7→

(∑
j

cjxj − h− 2cixi

) .

One of the sums has to be positive, the other negative for the derivative to be +1. Using

again the relation Θ(−A)Θ(B) + Θ(A)Θ(−B) = Θ(−AB), it follows7

∂ f̃(x)
∂xi

= Θ

−(∑
j

cjxj − h
)(∑

j

cjxj − h− 2cixi

) .

With the fact, that weighting all functions with Pr [f|ρF] is nothing else than integrating

over all weights cj, the final result is obtained after a few steps:

KS(1) =
∑

f

Pr [f|ρF]
∑
x

K∑
i=1

∂ f̃(x)
∂xi

Pr
[
x|z(±)

]

=
∑
x

K∑
i=1

∫ DKρcΘ
−(∑

j

cjxj − h
)(∑

j

cjxj − h− 2cixi

)Pr
[
x|z(±)

]
=

K∑
n=0

(
K

n

)[
n

∫
DKρcΘ

(
−
( n∑

cj −
K−n∑

cj − h
)2

+ 2c1

( n∑
cj −

K−n∑
cj − h

))

+(K − n)
∫
DKρcΘ

(
−
( n∑

cj −
K−n∑

cj − h
)2

− 2c1

( n∑
cj −

K−n∑
cj − h

))]
zn(+)z

K−n
(−) .

where again the totalistic property of LTFs is used: x 7→ 〈x,x〉 = n.

This general result can be used to derive the sensitivity S(1) of the mixture of Minority

and Majority rule for arbitrary connectivity K:

7Note that the expression for the sensitivity stated above is only valid for M = {0, 1}, whereas LTFs are usually
defined with M = {−1,+1}. Hence the switch from sign 7→ Θ.
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3 Linear Threshold Functions

Theorem 3.8. Let ρF be a mixture of Minority and Majority rule with mixing parameter p,
like in equation (3.23). The sensitivity S(1) of this ρF for arbitrary (but odd) connectivity K is

KS(1) =
(

1
2

)K−1

K

(
K − 1
K−1

2

)(
1−m2

)K−1
2 . (3.30)

Therefore the BN is in its disordered phase as long as p ∈
[
pm
∗

c− , p
m∗

c+

]
, where the pm

∗

c± are
given by lemma 3.6, because with m = 0 ⇒ KS(1) > 1, but reaches its ordered phase soon
outside this interval at p = pd

∗

c±. These critical values pd∗c± are given by solving the critical
condition KS(1) = 1 with respect to m and inserting this required fixed point m∗ into the
iteration equation m∗

′′
= M

(
pd
∗

c±;M
(
pd
∗

c±;m∗
))

, since outside the interval p ∈
[
pm
∗

c− , p
m∗

c+

]
the

BN has either a period-2 solution or two stable fixed points.
For increasing connectivity K this interval shrinks to the point pd∗c± = 1

2 :

[
pd
∗

c−, p
d∗
c+

]
K→∞→

[
1
2
,

1
2

]
, (3.31)

leading to increased stability of the dynamics with increasing K.

Proof. Note that the Majority rule is also a LTF, where ρc(c) = δ(c − 1), i.e. all weights are

positive and cj = 1, and the threshold h = 0. Inserting this into the expression for the

sensitivity S(1) for general LTFs from lemma 3.7 yields:

KS(1) =
K∑
n=0

(
K

n

)[
n

∫
DKρcΘ

(
−
( n∑

cj −
K−n∑

cj − h
)2

+ 2c1

( n∑
cj −

K−n∑
cj − h

))

+(K − n)
∫
DKρcΘ

(
−
( n∑

cj −
K−n∑

cj − h
)
− 2c1

( n∑
cj −

K−n∑
cj − h

))]
zn(+)z

K−n
(−)

=
K∑
n=0

(
K

n

)[
nΘ
(
−
(
n− (K − n)

)2 + 2
(
n− (K − n)

))
+(K − n)Θ

(
−
(
n− (K − n)

)2 − 2
(
n− (K − n)

))]
zn(+)z

K−n
(−) = . . .

A closer look to the arguments of the Θ-functions reveals that Θ(. . . ) = 1 is obtained only

for a single argument. For the first this is:

Θ
(
−(2n−K)2 + 2(2n−K)

)
= 1 ⇐⇒ (2n−K)2 ≤ 2(2n−K).

This condition is only fulfilled if 2n−K = 1, because 2n−K can only be an odd number if

K is odd, and therefore n = K+1
2 . The second Θ-function leads analogously to n = K−1

2 , as

it requires 2n−K = −1. Hence the sensitivity reduces to a sum of this two terms:

. . . =
(
K
K+1

2

)(
K + 1

2

)
z

K+1
2

(+) z
K−K+1

2
(−) +

(
K
K−1

2

)(
K − K − 1

2

)
z

K−1
2

(+) z
K−K−1

2
(−)
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3.3 Binary mixture of Minority and Majority rule

=
(
K
K+1

2

)(
K + 1

2

)
z

K−1
2

(+) z
K−1

2
(−)

(
z(+) + z(−)

)︸ ︷︷ ︸
=1

=
K!(

K+1
2

)
!
(
K − K+1

2

)
!
K + 1

2
(
z(+)z(−)

)K−1
2

= K
(K − 1)!(

K−1
2

)
!
(
K−1

2

)
!

(
z(+)z(−)

)K−1
2

= K

(
K − 1
K−1

2

)((
1 +m

2

)(
1−m

2

))K−1
2

=
(

1
2

)K−1

K

(
K − 1
K−1

2

)(
1−m2

)K−1
2 .

Similar to the Majority rule, the Minority rule could also be computed this way. Here the

distribution of weights would be ρc(c) = δ(c+ 1), i.e. all cj = −1 and again h = 0. However,

this calculation is not necessary, as the Boolean derivative of a function is the same as

the derivative of its inverse function

∂

∂xi
f =

∂

∂xi

(
f⊕ 1

)
,

and hence the sensitivity of the Minority rule is the same as the sensitivity of the Majority

rule and therefore the mixing parameter p cancels out.

As the dynamics of a BN are disordered if KS(1) > 1, the interval p ∈
[
pm
∗

c− , p
m∗

c+

]
where

the fixed point m∗ = 0 is the only stable fixed point is always disordered, because inserting

m∗ = 0 into the expression above yields always a value for KS(1) larger than 1 for any

K. However, above this interval, i.e. p > pm∗c+ , a bifurcation into two stable fixed points

occurs, leading ultimately to the two fixed points m∗ = ±1 of the pure Majority rule for

p = 1. Below this interval, i.e. p < pm
∗

c− , the BN starts oscillating between two accumulation

points, which are also symmetric with respect to the solution m∗ = 0, as has already been

explained earlier. Hence, if the deviation from m∗ = 0 is large enough, which actually is

quite close to this solution if K is increased, the term (1−m∗2)
K−1

2 in the sensitivity damps

the other term,
(

1
2

)K (
K − 1

)(
K

K−1
2

)
, so that the average sensitivity KS(1) is equal or below

the critical value = 1 for only small deviations from m∗ = 0.

Formally this can be shown as follows. Expanding the binomial coefficient again with

Stirling’s formula yields

(
1
2

)K−1

K

(
K − 1
K−1

2

)
=

(
1
2

)K−1

K

√
2π(K − 1)

(
K−1
e

)K−1

2π
(
K−1

2

) (
K−1
2e

)K−1

=
(

1
2

)K−1

K

√
2

π(K − 1)
2K−1

≈
√

2K
π
.
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3 Linear Threshold Functions

And hence the approximated critical condition is√
2K
π

(
1−m∗2

)K−1
2 = 1.

Solving the original expression with respect to m∗ and inserting the approximation for

large K yields

m∗ = ±
√√√√1− 4(

K
(K−1

K−1
2

)) 2
K−1

≈ ±
√

1−
( π

2K

) 1
K−1 K→∞−→ 0

As the interval where m∗ = 0 is stable is shrinking from
[
pm
∗

c− , p
m∗

c+

]
to
[
1
2 ,

1
2

]
if K tends

to infinity, as given by lemma 3.6. For K large enough, the critical condition is already

fulfilled for infinitesimal deviations from m∗ = 0, and in the limit K → ∞ the dynamics of

the BN is in its ordered phase for the whole range of the mixing parameter p, except for the

central point p = 1
2 , albeit this value is approached very slowly. Therefore the stable range

of the dynamics gets actually larger with increasing K, which is contrary to the Kauffman

model, where the inverse behavior is observed.

The actual value of pd
∗

c± can be obtained, when inserting this expression for m∗ above as

fixed point into the iteration equation for m and solving with respect to p. Note that the

iteration equation has to be inserted into itself first

m′′ =M (p;M (p;m)) ,

because in the range p /∈
[
pm
∗

c− , p
m∗

c+

]
, either a period-2 solution (below this interval) or

two different stable fixed points (above this interval) occurs, and the “fixed point“ in the

magnetization m∗ (which deviates from m∗ = 0) is of that type outside this central p-

interval.

Figure 3.10 shows a comparison of the phase diagrams of the model derived here (a

binary mixture of the Minority and Majority rule with mixing parameter p as a prototype

model of LTFs) and the Kauffman model, with its internal homogeneity p. Recall that the

critical condition in the Kauffman model is 2Kp(1− p) = 1, resulting in

p
(Kauffman)
c± =

1
2

(
1±

√
K − 2
K

)
. (3.32)

Therefore in the Kauffman model, the parameter region of the disordered phase grows

with increasing connectivity K, spanning the complete range of the parameter p in the

limit K →∞.

This feature of the binary mixture of Minority and Majority rule, and also LTFs in

general, is quite interesting. Many biological networks have been modeled to exhibit a

dynamic like the Kauffman network, i.e. allowing all possible combinations of Boolean
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3.4 Simulations

(a) Kauffman model (b) Mixture of Minority and Majority rule

Figure 3.10: Comparison of the phase diagrams of the two BNs, Kauffman model and
LTFs (approximated by a simple mixture of Minority and Majority rule. The
blue line indicates the phase transition from ordered to disordered dynamics.
In the right figure, the red line shows the bifurcation from the single fixed
point m∗ = 0 to two stable fixed points, whereas the brown line shows the
bifurcation into the period-2 solution of the iteration equation. Grey areas
correspond to the ordered phase. Note that the external parameter p has
different interpretations in the two models.

functions, only with a single control parameter p, the internal homogeneity (see definition

1.19). The problem with this approach is that for non-extreme values of p, the phase

transition to the disordered phase occurs already at quite low Kc, whereas in biological

systems a higher connectivity is observed. Since in the Kauffman model only the average

connectivity is of importance, this problem could be solved by special degree distributions,

where a few highly connected nodes a majority of nodes with a low number of connections

appear. One of these distributions would be a scale-free distribution [Aldana, 2003], as al-

ready hinted at in section 1.3. A combination of these ideas, LTFs and a scale-free degree

distribution has been investigated in [Kürten, 2010a].

However, just recently a study of so-called ”single switch functions“, which are a general-

ization of LTFs to allow more that just the 2 states M = {−1,+1} has been made [Wittmann

et al., 2010]. The authors also describe this interesting property of these functions, where

the stable parameter range gets actually larger when the connectivity is increased.

The crucial point is, however, that the BN with LTFs has to be biased towards either

state, and is not in its equilibrium z(+) = z(−) = 1
2 . This point has been missed in several

publications so far, especially in the treatments of the sensitivity, see e.g. [Shmulevich

and Kauffman, 2004] or [Liu et al., 2008].

3.4 Simulations

To verify the calculation results, several simulation runs were done. In all 4 cases (ρ(δ)
c and

ρ
(cont)
c , K = 2 and K = 3) the simulation results coincide quite well with the calculations,

although only the most complex case with K = 3 and ρ
(cont)
c is shown here.

89



3 Linear Threshold Functions

Simulations are done with a small self-written C-program. The code is attached in

appendix C. Each simulation run had N = 10000 nodes with two possible states in M =
{−1, 1}. In each timestep the coefficients cij were drawn randomly from the distribution

ρ
(cont)
c for each of the nodes, i.e. the Boolean functions are annealed. The neighbors

were also drawn randomly from all possible N nodes each timestep. Each neighbor was

chosen independently from the others, so self-connections and multiple connections to

other nodes could occur, although this is not very likely. Hence the topology was also

modeled annealed. Simulations were run for s = 500 timesteps. As can be seen in figure

3.11, the simulation converges to stable values in m and d already within a small fraction

of the complete simulation time. Initial conditions where chosen independently on each

node to be xi = +1 with probability mstart = 0.5 and xi = −1 otherwise (except for the

simulations at p = 0.93 and p = 0.95 where two simulation runs were made with mstart =
0.33 and mstart = 0.66), so the distribution of initial conditions is binomial with mean 0.5.

On each parameter point (p, h) the simulation is run in five parallel replicas of the original

BN, although with changed initial conditions. Before starting the simulations, the state

of Ndstart nodes is flipped in the four replicas, with dstart = 0.01. Neighbor structures

(topology) and the coefficients cij are identical in those replicas. However, each system is

iterated independently on the states of its nodes. Data is collected in the last 100 steps of

the simulation. Magnetization m is averaged over all five replicas, the Hamming distance

d is calculated from the four replicas different from the first.

Figure 3.11: A single simulation run at (p, h) = (0.09, 0.8). The two runs with magnetiza-
tions m1 (blue) and m2 (green) are started with an initial distance dstart = 0.01
from each other. The Hamming distance d (red) between those two BNs is
also shown. Magnetization is fluctuating around the stable fixed point, as
indicated by the negative value of ∂m′

∂m

∣∣∣
m∗

, seen in figure 3.5(b).
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3.4 Simulations

Figure 3.12: Phase diagram of the BN with ρ
(cont)
c and K = 3, as already shown in figure

3.8(d). Green lines indicate the parameters (Simulation lines (1) - (6))where
the calculations are verified by simulations.

Several simulations along discrete points on lines in the phase space are conducted.

Those lines are shown in green in figure 3.12 and the numerical values are listed in table

3.4. The interval between simulations of those lines are ∆h = 0.02 and ∆h = 0.002 for low

and high values of p, respectively.

Simulation- start end
line h p ∆h h p

(1) −0.10 0.90 0.002 0.10 0.90
(2) −0.10 0.93 0.002 0.10 0.93
(3) −0.10 0.95 0.002 0.10 0.95
(4) −1.00 0.09 0.02 1.00 0.09
(5) −1.00 0.07 0.02 1.00 0.07
(6) −1.00 0.05 0.02 1.00 0.05

Table 3.4: Parameter lines of the phase space examined with simulations.

In figures 3.13 and 3.14 it is clearly visible, that the (semi-)analytical results presented

earlier are in good agreement with the numerical computer simulations. The parameters

(p, h) in the simulation are chosen to show that even in the more complicated areas of the

phase space (period-2 and two stable fixed points), the analytical calculation results can

be used to predict the simulations.

Figure 3.13 shows several outliers in the simulation around h = 0. In those simulation

the average of the Hamming distance d is far above the expected value in one or several

of the 4 replica simulations. Those could be explained by the simple observation, that the

period-2 solution, which is switching from an low magnetization to a high magnetization

every timestep, is shifted by a single step between the replicas. Therefore the distance

cannot converge to the expected low value.

The simulations for high p values in figure 3.14 are particularly accurate, except for the

highest value (p = 0.95). Here the two peaks in the Hamming distance from the calculation
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3 Linear Threshold Functions

(a) Simulationline (4), p = 0.09 (b) Simulationline (5), p = 0.07 (c) Simulationline (6), p = 0.05

Figure 3.13: Comparing Hamming distance d∗ in simulations (red) and analytical calcula-
tions (black line) at low p with varying h (h ∈ [−1, 1]). An explanation for the
outliers is given in the text.

(a) Simulationline (1), p = 0.90 (b) Simulationline (2), p = 0.93 (c) Simulationline (3), p = 0.95

Figure 3.14: Comparing Hamming distance d∗ in simulations (red) and analytical calcula-
tions (black line) at high p with varying h (h ∈ [−1, 1]). An explanation for the
outliers is given in the text.

belong to the different stable fixed points in the magnetization. In the simulation always

the stable fixed point with ordered dynamics d∗ = 0 is ultimately reached, but not the fixed

point associated with a Hamming distance d∗ 6= 0. To find this m∗ in the disordered region,

the simulation must be started very close to this fixed point, not at a more generic value of

mstart = 0.66 (or mstart = 0.33), as was used in the simulations performed here. Only at or

close to the border between ordered and disordered dynamics the “disordered” fixed point

m∗ is reached in some of the replicas of a single simulation, yielding those outliers in the

Hamming distance (see especially figure 3.14(c) and to some extend also figure 3.14(b)).

Overall the simulations are in good agreement with the calculation. Almost all error-

bars of the simulations contain the “correct“ analytical value of the Hamming distance.

However, not everything that could be derived analytically, can also be seen in the simula-

tions, as explained with the fixed point m∗ in the disordered dynamics region of the phase

space.
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4 Discussion

In this work the construction of the iteration equations for all orders of the dynamics of

Boolean Networks is shown, where the order is the number of parallel evolving networks

or also the number of variables on each node. As everything is treated only statistically,

the single macroscopic parameter of the first order is the magnetization m, for which the

iteration equation is described in theorem 2.6. For the second order the Hamming distance

d (see proposition 2.13) is one of the macroscopic parameters (or the single one with the

both magnetizations m(X) = m(Y) are set equal, as has been done in the transformations

in equation (2.32)). The extension of these first two orders is explained in proposition

2.20. An example for such a higher order parameter would be the frozen core s, which

could be seen as belonging to the infinite order. In all these equations the actual state of

the BN is important for the derivation. Here lemma 2.5 and 2.12 give expressions for the

probabilities of having a certain state in the BN, at least for the first and second order of

the dynamics. These probabilities and most expressions from chapter 2 in general have

already been proposed and used in [Kesseli et al., 2006], where several of the concepts in

chapter 2 are already explained as the so-called “4-state-model”.

Furthermore, it has been shown here, and also already in [Kesseli et al., 2006], that a

perturbation ansatz for the Hamming distance, which is given by

d′S =
K∑
n=1

S(n)

(
K

n

)
dn(1− d)K−n, (4.1)

does not allow the second BN to relax to its fixed point m(Y)∗, and is kept at an artificial

distance to it, at least below the critical point. The calculation of this property is given

in theorem 2.30. This form of the iteration equation of the Hamming distance has been

given first in [Derrida, 1987], but for a special BN, where each Boolean function is related

to a Linear Threshold function with a symmetric distribution of weights, ρc(cj) = ρc(−cj).
In theorem 3.4 it has been proved, that for these BNs the coefficients λn in the Hamming

distance are actually the sensitivities S(n). This might be due to the fact, that the iteration

equation for the magnetization does not depend on the magnetization itself, and is just a

constant. So the “fixed point” is reached after a single time step. This has also been shown

in theorem 3.4. However, it is still an open question, whether there are other classes of

functions, where the two order parameters d∗ and d∗S coincide, i.e. all coefficients are

sensitivities, λn = S(n).

The phase transition is defined as the change in the stability of the fixed point d∗ = 0,

for which only the first coefficient in the expansion of d is responsible. That the first

coefficient in the Hamming distance is actually the sensitivity S(1), has been shown in
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lemma 2.28 and theorem 2.29. With the aid of the Boolean derivative, which is in fact

similar to the sensitivities, this critical condition can be rewritten to an equation which

looks like a continuity equation:

(−1) + 〈div f〉 = 0. (4.2)

However, for the quantity, which changes over time and has to be equal to −1, no cor-

responding expression has been found so far. If this equation would hold, this would be

an interesting characterization of the critical condition, as in a critical BN an infinitesimal

perturbation neither settles down completely nor percolates through the whole network

until a finite fraction is reached, it just flows for an infinite time, giving it the notion of

“critical preserved information flow”.

This continuity equation could also be interpreted differently with the use of the concept

of “effective” variables, as in section 2.4.2. Recall that the sensitivities Sj for a single

variable xj are also the probabilities of this variable to occur in a position of an input tuple,

where it actually has an effect on the output of the function when changed. Therefore the

sum of those sensitivities
∑
j Sj = KS(1) is also the number of “effective” variables. As the

critical condition is KS(1) = 1, this can be seen as that only a single variable determines

the output of the function, constituting this critical flow from a single input to this (single)

node on which the function is defined.

These concepts of the Boolean derivative are not yet fully established, as for example the

Boolean derivative does not follow a Leibniz rule. This problem has been somehow solved

in [Bazsó and Lábos, 2006], where the derivative is expanded to Boolean Lie-algebras,

where the Leibniz rule is finally fulfilled. The introduction of this paper outlines this quite

nicely, so its first lines are reproduced here:

“The success in understanding the behavior of continuous dynamical systems

originates, to a great extent, from the power of infinitesimal calculus. Therefore,

it seems reasonable to expect that properly developed calculus can deepen our

understanding of iterative dynamics of Boolean functions, discrete dynamical

systems and dynamics of computation. [...]”

In the last part of this work Linear Threshold functions were treated with the formalism

presented until then. Linear Threshold functions provide an interesting small subclass of

all possible Boolean functions. The semi-analytical results in sections 3.2.1 make it plau-

sible, that some results could be extended from a simple binary mixture of the Minority

and Majority rule, for which analytical results are derived in section 3.3, to other, more

complicated distributions of weights. This is especially true, if a single parameter could

express the fraction of weights being either activating or inhibiting (cij > 0 or cij < 0, re-

spectively), as p in the two distributions ρ(δ)
c and ρ

(cont)
c . It has been shown in theorem 3.8,

that the parameter region of the ordered phase in this BN actually grows when the connec-

tivity is increased, resulting in a single value of the parameter space in the limit K → ∞,

see also [Kürten, 2010b]. This result is quite interesting, as in the Kauffman model,

where all Boolean functions are allowed in the mixture, the opposite behavior is observed,

where the parameter region of the disordered phase grows with increasing connectivity,
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spanning the complete parameter space in the limit K → ∞. This is important, because

biological networks usually have a connectivity larger than the critical value Kc = 2 in the

(unbiased) Kauffman model, so that a more realistic topology could be imposed on the BN,

where also nodes with a higher in-degree occur, without being restricted to extreme values

of the external parameters.
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A List of most used symbols

M discrete set, usually M = {0, 1} or M = {−1,+1}
N number of nodes

ki in-degree of node i

K constant in-degree for all nodes (sometimes maximal in-degree)

xi, yi variable on node i, xi, yi ∈M
x, y input tuple, x,y ∈Mki

X, Y state of the BN, X,Y ∈MN

fi Boolean function, fi : Mki →M

f Boolean function, given explicitely by a truth table (see definition 1.15)

F global Boolean function, F : MN →MN

⊕ XOR operation

ρk Distribution of in-degrees

ρF Distribution of Boolean functions

γ Set of all external parameters

z(±) Probability of an arbitrary node to be in state + or state −
z(±±) Probability of an arbitrary node with two variables xi and yi to be

in state (±±)
m Magnetization, m ∈ [−1,+1]
m̃ Magnetization, m̃ ∈ [0, 1]
f̃ Boolean function, with M = {0, 1} explicitely needed

d Hamming distance, d ∈ [0, 1]
〈·, ·〉 Number of +1s at same positions in the arguments (see definition 2.4)

M(γ;m) Iteration polynomial for Magnetization m

D(γ;m, d) Iteration polynomial for Hamming distance d

λn(γ;m) Coefficients in D(γ;m, d) (see definition 2.22)

µn(γ;m) Coefficients in D(γ;m, d) (see definition 2.22)

S(n) Sensitivities, probabilities that with a change of n variables in the input x,

the output of f changes

ρc Distribution of weights cij in Linear Threshold functions

Dγ measure for all external parameters γ

DKρc short for the measure of all weights,

usually
∫
DKρc · · · =

∫
dc1 . . . dcKρc(c1) . . . ρc(cK) . . .
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B List of iteration equations

In the following pages, the iteration equations for z′(++), z
′
(+−), z

′
(−+) and z′(−−) of all single

Boolean functions f with connectivity K = 3 are listed. The variables are already trans-

formed to magnetization m and Hamming distance d, i.e.
(
z(±±)

)
7→ (m, d). Note that here

M = {−1,+1}. The iteration equations for magnetization m′ and Hamming distance d′ itself

can be easily obtained by

m′ = z′(++) − z
′
(−−),

d′ = z′(+−) + z′(−+) = 2z′(+−).

The tables should be read in the follwing way. The columns separated by double lines are

the iteration equations for the four different probabilities z′(±±). The single lines separate

the coefficients in a expansion in powers of d, where the powers are 1(= d0), d, d2 and d3.

For example, rule (232)3, i.e. the majority rule, should read as follows:

z′(++) =
[
−m

3

4
+

3m
4

+
1
2

]
+
[

3m2

4
− 3

4

]
d+

[
3
4

]
d2 +

[
−1

2

]
d3,

z′(+−) =
[
−3m2

4
+

3
4

]
d+

[
−3

4

]
d2 +

[
1
2

]
d3,

z′(−+) =
[
−3m2

4
+

3
4

]
d+

[
−3

4

]
d2 +

[
1
2

]
d3,

z′(−−) =
[
m3

4
− 3m

4
+

1
2

]
+
[

3m2

4
− 3

4

]
d+
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All iteration equations are obtained by using proposition 2.13. Recall that in the case of

single Boolean functions f, given by a truthtable, the coefficients Pr [f(x) = ±1] Pr [f(y) = ±1]
in the sum over all possible tuples x and y are just either zero or one. Therefore they can

be easily obtained by a simple automated program.
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B List of iteration equations
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C Simulation program code

Compile the simulation program with

> gcc -o sim sim.c -lm -lgsl -lgslcblas -fopenmp

The parameter -fopenmp is optional, as it enables using multicore architectures, which

are present on almost all modern computers. However, only the different replicas are

run on different processors, so for a low replica count (< 5), this might actually slow the

simulation down, and the option should be omitted.

A default simulation run is started with

> ./sim -N 10000 -R 3 -s 500 -m 0.5 -d 0.01 -K 3 -p 0.3 -h 1.2 -r $RANDOM

where $RANDOM is a random variable obtained from the command line environment used

as randomseed.

1 #include <stdio .h>

2 #include <stdl ib .h>

3 #include <unistd .h>

4 #include <string .h>

5 #include <math.h>

6 #include <gsl/gsl rng .h>

7 #include <gsl/gsl randist .h>

8

9 int iterations = 100;

10 int N = 10000;

11 int K = 3;

12 double p = 0.5;

13 double h = 0.0;

14

15 double start_active = 0.50;

16 double start_dist = 0.01;

17 int replicas = 3;

18 int perturbation = 0;

19

20 int ∗∗nodes ,∗∗old_nodes ;

21 int ∗neigh ;

22 double ∗weight ;

23

24 const gsl_rng_type∗ T ;

25 const gsl_rng∗ rg ;
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C Simulation program code

26 unsigned long randseed = 1234567890;

27

28 int ∗active_nodes ;

29 int ∗dist ;

30 int ∗frozenness ;

31

32 void parsecommandline ( int argn , char∗ argv [ ] ) {
33 char c ;

34 while ( ( c = getopt (argn , argv ,"r:R:N:s:K:m:d:p:h:P:" ) ) != −1){
35 switch (c ){
36 case ’R’ : replicas = atoi (optarg ) ;

37 break ;

38 case ’r’ : randseed = atoi (optarg ) ;

39 break ;

40 case ’N’ : N = atoi (optarg ) ;

41 break ;

42 case ’s’ : iterations = atoi (optarg ) ;

43 break ;

44 case ’K’ : K = atoi (optarg ) ;

45 break ;

46 case ’m’ : start_active = atof (optarg ) ;

47 break ;

48 case ’d’ : start_dist = atof (optarg ) ;

49 break ;

50 case ’p’ : p = atof (optarg ) ;

51 break ;

52 case ’h’ : h = atof (optarg ) ;

53 break ;

54 case ’P’ : perturbation = atoi (optarg ) ;

55 break ;

56 default : exit ( 1 ) ;

57 break ;

58 }
59 }
60 }
61

62 int main ( int argn , char∗ argv [ ] ) {
63 int i ,j ,r ,k ;

64 double input ;

65

66 parsecommandline (argn ,argv ) ;

67

68 gsl_rng_env_setup ( ) ;

69 T = gsl_rng_default ;

70 rg = gsl_rng_alloc (T ) ;

71 gsl_rng_set (rg , randseed ) ;

72
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73 nodes = ( int ∗∗ )malloc (replicas∗ s izeo f ( int ∗ ) ) ;

74 old_nodes = ( int ∗∗ )malloc (replicas∗ s izeo f ( int ∗ ) ) ;

75

76 neigh = ( int ∗ )malloc (K∗ s izeo f ( int ) ) ;

77 weight = ( double ∗ )malloc (K∗ s izeo f ( double ) ) ;

78

79 dist = ( int ∗ )malloc (replicas∗ s izeo f ( int ) ) ;

80 active_nodes = ( int ∗ )malloc (replicas∗ s izeo f ( int ) ) ;

81 frozenness = ( int ∗ )malloc (replicas∗ s izeo f ( int ) ) ;

82

83 for (r=0;r<replicas ;r++) {
84 active_nodes [r ] = 0;

85 frozenness [r ] = 0;

86 nodes [r ] = ( int ∗ )malloc (N∗ s izeo f ( int ) ) ;

87 old_nodes [r ] = ( int ∗ )malloc (N∗ s izeo f ( int ) ) ;

88 }
89 for (j=0;j<N ;j++) {
90 i f (gsl_rng_uniform (rg ) < start_active ) {
91 nodes [ 0 ] [j ] = 1;

92 }else{
93 nodes [ 0 ] [j ] = −1;

94 }
95 active_nodes [ 0 ] += nodes [ 0 ] [j ] ;

96 }
97 for (r=1;r<replicas ;r++) {
98 memcpy(&nodes [r ] [0 ] ,&nodes [ 0 ] [ 0 ] ,N∗ s izeo f ( int ) ) ;

99 active_nodes [r ] = active_nodes [ 0 ] ;

100 }
101 printf ("# step m d frozen ...\n" ) ;

102 for (i=0;i<iterations ;i++) {
103 for (r=0;r<replicas ;r++) {
104 memcpy(&old_nodes [r ] [0 ] ,&nodes [r ] [ 0 ] ,N∗ s izeo f ( int ) ) ;

105 active_nodes [r ] = 0;

106 dist [r ] = 0;

107 frozenness [r ] = 0;

108 i f ( ( r>0) && (i==perturbation ) ) {
109 for (j=0;j<N∗start_dist ;j++) {
110 k=gsl_rng_uniform_int (rg ,N ) ;

111 old_nodes [r ] [ k ] ∗= −1;

112 }
113 }
114 }
115 #pragma omp para l le l for private (k , r , j )

116 for (j=0;j<N ;j++) {
117 for (k=0;k<K ;k++) {
118 neigh [k ] = gsl_rng_uniform_int (rg ,N ) ;

119 i f (gsl_rng_uniform (rg ) < p ) {
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C Simulation program code

120 weight [k ] = gsl_rng_uniform (rg ) ;

121 }else{
122 weight [k ] = −1.∗gsl_rng_uniform (rg ) ;

123 }
124 }
125 for (r=0;r<replicas ;r++) {
126 input = 0. ;

127 for (k=0;k<K ;k++) {
128 input += weight [k ]∗old_nodes [r ] [ neigh [k ] ] ;

129 }
130 input −= h ;

131 i f (input > 0) {
132 nodes [r ] [ j ] = 1;

133 }else{
134 nodes [r ] [ j ] = −1;

135 }
136 active_nodes [r ] += nodes [r ] [ j ] ;

137 frozenness [r ] += (nodes [r ] [ j ] ! =old_nodes [r ] [ j ] ) ;

138 i f (r>0) {
139 i f (nodes [ 0 ] [j ] != nodes [r ] [ j ] ) dist [r ]++;

140 }
141 }
142 }
143 #pragma omp barrier

144 printf ("%5d " ,i ) ;

145 for (r=0;r<replicas ;r++) {
146 printf ("%8.5lf " , (1 .∗active_nodes [r ]+1.∗N )/ (2 .∗N ) ) ;

147 printf ("%8.5lf " , (1 .∗dist [r ] ) / ( 1 . ∗N ) ) ;

148 printf ("%8.5lf " , (1 .∗frozenness [r ] ) / (1 .0∗N ) ) ;

149 }
150 printf ("\n" ) ;

151 }
152

153 for (r=0;r<replicas ;r++) {
154 free (nodes [r ] ) ;

155 free (old_nodes [r ] ) ;

156 }
157 free (nodes ) ;

158 free (old_nodes ) ;

159 free (active_nodes ) ;

160 free (dist ) ;

161 free (neigh ) ;

162 free (weight ) ;

163

164 return 0;

165 }
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