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Zusammenfassung: 

 
Neue elektrophysiologische und bildgebende Messmethoden haben in den vergangenen 

Jahrzehnten neue Erkenntnisse über die neurofunktionalen Strukturen, die bilingualer 

Sprachverarbeitung zugrunde liegen, geliefert. Vor allem die Schnittstelle von Lexikon 

und Semantik lässt in der neurolinguistischen Forschung noch viele Fragen offen. Ziel 

der vorliegenden experimentellen Studie war es, die funktionalen Verarbeitungspfade 

und kortikalen Strukturen zu erkunden, die der lexikalischen und semantischen Analyse 

sprachlichen Inputs zugrundeliegen, sowie zu untersuchen, ob es gemeinsame 

Repräsentationen oder funktionale Interaktion in der Verarbeitung der beiden Sprachen 

im bilingualen Gehirn gibt.  

Dazu wurde eine experimentelle Studie mit 6- bis 7-jährigen Kindern durchgeführt: 

Mittels funktionaler Nahinfrarot-Spektroskopie wurde die kortikale Aktivierung 

während der Verarbeitung auditiv präsentierter deutscher und englischer Wörter 

gemessen. Die Abfolge der Stimuli folgte einem Priming-Design, wobei sowohl exakte 

Wiederholungen einzelner Wörter in einer Sprache, als auch Übersetzungen vom 

Englischen ins Deutsche und umgekehrt in der listenartigen Präsentationsabfolge der 

Wörter vorkamen. Die statistische Auswertung zeigte erhöhte Aktivierung für die 

Verarbeitung deutscher Wörter in linker temporaler Messposition, einen Priming-Effekt 

bei der Wiederholung von englischen Stimuli in temporalen Positionen bilateral, sowie 

Priming bei der Übersetzung Wörtern vom Englischen ins Deutsche in rechts-

temporaler Position. Diese Ergebnisse werden im Bezug auf psycholinguistische 

Modelle interpretiert, und im Zusammenhang mit aktuellen Ergebnissen 

neurolinguistischer Studien diskutiert.  
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Abstract:  
 

During the last decades the continuously improving neuroimaging methods have shed 

some light on the neurofunctional architecture of the bilingual brain. Especially the 

organization of the bilingual lexicon and semantic system remains a major question in 

neurocognitive research. The aim of this study was to analyze the functional pathways 

and anatomical structures underlying lexical and semantic processing in the respective 

languages, and to test whether there are functional interconnections or common mental 

representations between the two languages in the bilingual brain.  

The experimental study with 6 to 7 year old German-English bilingual children used a 

repetition and translation priming design: The single words were presented auditorily in 

blocks of German and English. The presentation sequence contained exact repetitions of 

words in both languages respectively, as well as translated word pairs. The cortical 

activation was measured with near infrared spectroscopy (NIRS). The statistical 

analysis revealed greater activation for German words in left temporal position, a 

within-language priming effect for English in temporal positions bilaterally, and a cross-

language priming effect from English to German items in right temporal position. The 

results are discussed in the light of psycholinguistic models of lexical-semantic 

processing and with respect to current neurophysiological research.  
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1.  Introduction 
 

What happens in our brain when we hear speech in a language that we know? As any 

human can, from pure introspection, confirm: we understand it. But what does it mean 

to understand a word?  

When we hear a word in a language we know, our brain starts off a sequence of 

complex cognitive mechanisms, which pick up the acoustic signal, identify it as a word 

– thus, an arbitrary, meaningful phonetic code –, decompose it into morphological 

components – the smallest linguistic units carrying semantic meaning – and, considering 

the way these morphemes are assembled, retrieve the meaning of the perceived word, 

thus, the semantic concept which the word stands for in our mind.  

 

But the internal functioning of these processing steps is not unambiguous: Obviously, 

we do not only associate different meanings to the same word form, when used in 

different contexts, but we can also have several words at our disposal representing, 

mainly, one and the same concept.  

And this referential plurality becomes even more drastic and complex in the case of 

bilingualism: If an individual masters more than one language, their lexical entries 

virtually double up; also, these lexemes can apparently be distinguished in a mutually 

exclusive manner by the context of their usage, or rather respective compositional 

incompatibility. This observation gave rise to further debate on the organisation of this 

mapping process between a lexical entity and its semantic meaning, or in general, the 

crossroads between the so called lexicon – our mental vocabulary store –, and the 

semantic memory – the network storing the concepts we have established in our mind to 

represent entities in the real world.  

 

Thus arises the general question of this thesis, which aims to investigate, if and in what 

way the processing of the different languages in the bilingual brain differ from each 

other, and to which extent these respective linguistic systems interact.  

 

In order to investigate the neurofunctional organisation of this lexical-semantic 

interface, we will specifically try to explore the cortical basis of its processing steps and 

pathways, and track possible qualitative or quantitative, developmental or structural 
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differences of the cortical substrate responsible for the processing of different languages 

in the bilingual brain.  

As a means for contributing to these questions an experimental study with six to seven 

year old German-English bilingual kids was conducted, monitored by near infrared 

spectroscopy (NIRS), a brain imaging method working with near infrared light; the 

findings from this study will be presented and discussed.  

 

In order to sketch out the theoretical background of the subject, we will first give a brief 

introduction on linguistic symbols and their meanings, and present models accounting 

for the functional components of language processing; after restricting our point of view 

on the lexical-semantic mapping process in bilingual language processing, a description 

of the empirical experimental study will prepare the final discussion of the obtained 

results.  

 

To preliminarily clarify the discussed variables, the next chapter will be dedicated to a 

thorough look at different attempts to classify bi- and multilingualism.  
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2. THEORETICAL PART 

 

2.1. Defining Bilingualism 

 

The first terminological issue that needs to be discussed in the context of this thesis is a 

working definition of bilingualism. The term ‘bilingual’ with its prefix ‘bi-’ clearly 

refers to someone speaking exactly two languages. Obviously, the models and 

mechanisms discussed here could refer just as well to the case of multilingual speakers, 

or polyglots. Since the below discussed experimental study has been conducted with 

German-English bilingual children, I will continue to use the term bilinguals, with the 

implication, that the findings of the study could also be applied to multilingual cases, an 

assumption I will, however, not explore further.  

 

In a conservative understanding of the term bilingualism, a true bilingual was a person 

having been raised with two languages simultaneously, for example because the parents 

had two different mother tongues, or because of the family language being different 

from the one spoken in their home country. Also, these kinds of bilinguals were, and are 

still being seen as exceptional, as a minority compared to the amount of monolinguals in 

our societies.  

Taking a less euro-centric and more current look at the language situation worldwide, it 

is clearly noticeable that multilingualism is not an exception, but reality for probably 

more that 50% of the worlds population (Grosjean 1982; Tucker 1999): Many post-

colonial countries have one official, administrative language, being spoken in all 

schools and official institutions or in bigger cities, and many different local languages 

and dialects spoken in the families, on markets and streets, in informal everyday-life 

situations – a fact making it necessary for the population to be fluent in at least two 

languages, simply in order to participate in their country’s social life. On the other hand, 

in the “western”, or “first” worlds countries, in spite of them being organised as nation-

states, and sharing one main language and culture, as a result of globalisation and 

internationalisation nearly every child starts learning a second language at a very early 

age in school, and a majority of the people ameliorate their second language 



12 

competence travelling abroad, thus making pure monolingualism a decreasing 

phenomenon.   

 

All these cases, in spite of them subsuming people speaking more than one language in 

their everyday life, differ from each other in several factors, which have been used by 

scientists to classify types of bilingualism:  

Concerning the manner of acquisition, bilinguals have been classified as compact, 

coordinated, and subordinate bilinguals. Following this distinction, a compact bilingual 

has learned both languages before an age of more or less 6 years, in his immediate 

environment. A person will be classified as coordinated bilingual if he or she learned a 

second language before puberty, mostly due to changes in the family or place of 

residence. Finally, a subordinate bilingual has learned an additional language after 

puberty, and uses his second language to translate concepts and utterances structured in 

his mother tongue (Fabbro 1999).  

Weinreich 1953 (as cited in Appel et al. 2006) used the same terminology to 

characterize the mental representation of the two languages, as well as their functional 

interaction: According to his definition, in a compound bilingual the two languages 

would function autonomously, each having established their own connection to 

semantic memory, and working independently of each other. For a coordinate bilingual, 

the semantic concepts of his two languages are shared, and some domains of the second 

language are mediated by L1 structures. In a subordinate bilingual system the L2 was 

acquired - and thus is also processed - through the mediation of the L1, which has been 

learned earlier and is typically spoken with higher fluency.  

A common, though very imprecise terminology, based on age of acquisition of the two 

languages, differentiates between early bilingualism, thus acquisition of both languages 

at a very early age, late bilingualism to refer to the case of a second language being 

learned significantly later than the mother tongue, and adult learning of a second 

language.    

Finally, a classification emphasizing the proficiency of the two languages in a bilingual 

person defines a balanced bilingual as the ideal case of equally high native competence 

in two languages, while a dominant bilingual has superior competence in one, his first 

language.  
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All of these classifications have proven to be useful to interpret some scientific 

questions or explain some empirical results, but none of them could have ubiquitous 

validity.  

Returning to the quest of a definition of bilingualism, it becomes clear, that we can only 

try to trace out the range of the possible cases, in order to get an overview over the 

phenomenon of bilingualism: While the ‘maximal’ definition represents a bilingual, also 

called ambilingual (Halliday et al. 1964), with “native-like control of two languages” 

(Bloomfield, 1933 p.56, as cited in Bhatia 2008 p.114), a ‘minimal’ definition, 

describing the very beginning of bilingualism in an individual, would define a person as 

bilingual from the point where he or she “can first produce complete meaningful 

utterances in the other language” (Haugen, 1953 p.7, as cited in Bhatia 2008 p.114).  

Most bilinguals cases are, obviously, situated somewhere in between these two 

extremes.  

 

2.2. The lexical-semantic interface 

 

Umberto Eco (1990) points out the importance of semiotics, the science of signs and 

symbols, by proposing, that the entirety of cultural acts and entities can be ascribed to 

acts of signification and communication. Following this definition and taking a closer 

look at what Eco called acts of communication and signification, we clearly see the 

implication for langage, which is by far our strongest tool for both of these acts: We use 

words, just like semiotic units or symbols, to refer to entities in the real, or any 

imagined world – thus, objects, situations, ideas, acts, or other issues –, and to convey 

these topics to an eventual listener, independently of a deictic origo.  

But how does this mapping process, this encoding of semantic information to arbitrary 

linguistic codes, function on a cognitive level? We need to establish mental concepts, 

acting as references (see figure 1) of the concrete or abstract entities, which we want to 

refer to in the world (see referent, figure 1); these references, or mental concepts, 

constitute our semantic memory. Each mental concept is then mapped to one or more 

corresponding lexemes (or, in general, symbols). And this cognitive crossroads will be 

referred to as the lexical-semantic interface.  
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Figure 1: The so-called Semiotic Triangle, also called Semantic Triangle.  
From “The Meaning of Meaning. A Study of the Influence of Language upon Thought and of 
the Science of Symbolism” by Ogden (Ogden et al. 1927, p.11) 
 

Now, if attempting to draw a neurofunctional model of this interface, we need to know 

what the interaction between items from the lexicon and from semantic memory could 

look like. Clearly, the tempting image of a dictionary-like one-to-one relationship from 

each concept to one single lexeme, unambiguous and complete, does not reflect what 

experience and empiricism show: Firstly, a single concept can often be verbalised in 

more than one way; the subtle difference between the competing expression equivalents 

can reflect the speakers age (youth language), social context (sociolect), emotional 

relation to the subject (e.g. vulgar expressions, etc.), and so on. Secondly, one word can 

often represent more than one concept – depending on the context of usage, prosody, or 

position in the sentence.  

 

The bilingual brain shows this referential ambiguity to an even bigger extent, but 

assumingly with one additional feature: The huge amount of lexemes is organised in 

such a manner, that lexemes from one language are usually not used in syntagmatic 

combination with lexemes from another language. Even though several questions 

concerning the comparability of the bilingual and monolingual brain are still 

unanswered (Are different sociolects or registers, just like different languages, not 

mutually exclusive concerning their usage, and thus syntagmatically incompatible, too? 

Is the difference between the realisations of one concept in two languages really 
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‘bigger’ than the divergence of its expressions in different situational registers? Does 

being bilingual totally alter the neurofunctional setup, or can bilingual language use be 

managed by an extended form of the normal language processing structures?), studies 

on bilingual language processing are often used to shed some light not only on the 

structure of the bilingual lexicon, but possibly on the functional and neurophysiological 

organisation of the lexical-semantic interface in general.  

 

After sketching out this basic semiotic model, the next chapter will present different 

functional models of lexical-semantic processing.  

 

2.3. Modelling the lexical-semantic interface 

2.3.1. Models of monolingual language processing 

 

Before discussing the neurofunctional mechanisms of bilingual speech processing, a 

brief description of the research on monolingual lexical-semantic processing shall be 

given.  

Many models have been proposed to account for the sometimes very divergent 

empirical results on speech processing in healthy or aphasic subjects. Two of the most 

influential models from the last three decades, each representing a different 

neurofunctional architecture, shall be presented here. 

 

2.3.1.1. Logogen Model 

 

The Logogen model was first proposed by John Morton (1969). Morton originally 

designed it to account specifically for the phonological or graphemic word recognition 

process, thus constituting a passive system, responding to provided input. He introduces 

a basic processing unit in his model and calls it logogen – from Greek logos (“word”) 

and genus (“birth”). This unit is a device which accepts information from the sensory 

analysis mechanisms, concerning the properties of linguistic stimuli, and from another 

mechanism, called the context system, concerning the probability of occurrence of a 

word in a specific context. Each logogen is thus defined through the kind of information 
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it can accept, and by the response it makes available. When the amount of linguistic and 

contextual properties of the input matching a certain logogen exceed its threshold level, 

its specific response is made available.  

 
Figure 2: Flow-diagram for the Logogen Model.  
(From Morton 1969, p.166, fig.1) 
 

This flow diagram provided by Morton 1969 shows the basic components of the system: 

The language input is first processed by either an auditory or a visual analysis 

mechanism, which dissects the information in its phonological or graphemic properties 

and passes this information on to the logogen system. Additionally, the context system 

can increase or decrease the logogen’s activation level by processing information about 

the language context created by the arriving stimuli and matching it with contextual 

properties of the specific logogen. This new device was introduced by Morton to 

account for the effect of context on word recognition, as will be explained further on.  

Another strength of the model is, that word frequency effects can be explained using the 

above-mentioned notion of threshold levels of activation: Through continuous language 

input the activation levels of the different logogens rise and fall. The activation level of 

logogens, whose properties occur frequently in the received input, will frequently reach 
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threshold level, and make their response available. Thus, the resting level of these 

frequently needed logogens will be lastingly raised, as a result of an adjustment process 

of the system affected by the processed input, which makes less additional activation 

necessary in order to reach threshold level. This explains the empirically proven shorter 

reaction times in the processing of highly frequent words in comparison to less frequent 

words.  

Note, that in the original model in figure 2 no separate semantic system as such is 

provided – information concerning semantic properties of words is said to be stored in 

the logogens, just as information on phonetic or graphemic properties.  

An important limitation of the logogen model, however, lies in the fact that, since one 

logogen is presupposed to store information about one single linguistic unit, only the 

recognition of monomorphemic words can be explained. Morton’s model provides no 

morphological composition mechanism for logogens.  

 

In subsequent research, the logogen model has been extended to account for more 

cognitive linguistic tasks such as reading aloud, auditory word repetition, or writing and 

picture naming, thus also for active speech or writing processes. A developed form of 

the logogen model, as designed by De Bleser and colleagues (1997) is depicted in figure 

3:   
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Figure 3: Logogen model for the processing of monomorphemic words (after Patterson, 1988) 
APC = auditory-phonological conversion; GPC = grapheme-phoneme-correspondence; PGC = 
phoneme-grapheme-correspondence.  
(From De Bleser et al. 1997, p344, fig.1) 
 

Here the different information stored in the logogens has been split up into different 

functional units: In the middle of the graph, we now see a semantic system, which stores 

word meanings, while phonetic, graphemic, syntactic or word form information is 

stored in the respective lexicons. The functional dissociation between phonological 

input, phonological output, graphemic input and graphemic output lexicon, like many 

other implications on functional processing in this model, has been proven mostly by 

double dissociations in studies with aphasic patients, showing language deficits in one 

isolated processing unit or pathway only.  

Since this thesis is especially interested in phonological word recognition processes, 

figure 4 shows a close up on the mechanisms responsible for this cognitive process in 

the logogen model.  
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Figure 4: Detail from the Logogen model for the processing of monomorphemic words (after 
Patterson, 1988): Components responsible for phonological word recognition. 
(From De Bleser et al. 1997, p344, fig.1)  
 

Another interesting expansion of the logogen model, especially describing the 

phonological input lexicon, has also been proposed by De Bleser et al. (1990) on the 

basis of some earlier models in the framework of lexical morphology theories, e.g. by 

Kiparsky (1982). To account for the processing of polymorphemic words they described 

the phonological input lexicon as a set hierarchically, modularly organised units, 

processing lexemes on the basis of their word class and can deal with processes of 

inflection, derivation and compounding.  
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Figure 5: Expanded lexical system for the processing of polymorphemic words in the logogen 
model (after De Bleser & Bayer, 1988)  
(From De Bleser et al. 1997, p.353, fig.2) 
 

But since the stimuli used in the experimental study as part of this thesis were generally 

monomorphemic words, we will not describe the morphological processes proposed by 

this expanded model.  

 

2.3.1.2. Interactive activation model 

 

The interactive activation model (IAM) by McClelland and Rumelhart (McClelland et 

al. 1981; Rumelhart et al. 1982) adopts a totally different approach to the modelling of 

language processing: The logogen model, as described above, is composed of modular 

processing units, where information is stored as a whole, and can be passed on 

hierarchically. Interactive network models, on the contrary, try to model cognitive 

processes as the complex interaction of many computationally primitive elements in a 

parallel network. Firstly, this approach seems to account better for the actual 

neurophysiological structure of the human brain: the functioning of the primary 

elements of an interactive network, also called nodes, is similar to that of neurons, as 

each one can receive a certain type of information – thus, neurologically speaking, 
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receive activation from other neurons – and will pass this information in the form of 

activation on to other elements of the network. Secondly, the functioning of these 

network models, assuming a vast number of elements governed by relatively simple 

rules, can be well simulated by computational programs, thus producing quantitative 

assumptions about the impact of different input or about the malleability of the system 

through learning processes.  

While network models were originally adopted to explain human memory processes in 

general, they were soon found very suitable to explain perception and linguistic 

processes: In the early eighties, McClelland and Rumelhart (McClelland et al. 1981; 

Rumelhart et al. 1982) present an interactive activation model for the reading process; in 

1983 (Elman et al.) and 1986 (McClelland et al.) an equivalent model for the speech 

perception process is proposed.  

 

 
Figure 6: The four main processing levels of the interactive activation model, accounting for 
visual and auditory word recognition.  
(From McClelland et al. 1981, p. 378, fig.1) 
 

As sketched in the graph in figure 6, four processing levels, each forming a 

representation of the presented input at a different level of abstraction, are assumed to 

account for visual and auditory word perception: on the “lowest” level, basic visual (e.g. 

vertical, horizontal, or diagonal lines) or acoustic features (sounds of different 
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frequencies, containing specific formants, etc.) of the perceived input are being 

detected; this information is being passed on to the subsequent level, which recognises 

letters or phonemes; finally words are being identified on one common level, fed also 

with so-called higher level “top down” input of conceptual nature.  

 

Within each one of these levels, every relevant informational unit of the system, thus 

every word we know, or every letter in its specific position, etc., is represented by an 

element called a node. Every node is connected to other nodes on his own and on 

neighbouring levels by a two-way connection, which is either of excitatory or inhibitory 

nature: When a unit, for example the word the, suggests the existence of another unit, 

for example the initial letter t, on its neighbouring level, and vice versa, the nodes 

representing these two features are connected by an excitatory connection – when two 

units cannot be involved in the processing of the same input, for example in the case of 

the nodes of two different words, they will inhibit each other.  

 

This network, constituted of nodes and excitatory or inhibitory connections, works in a 

parallel way, that is, different levels can operate at the same time. Additionally, so 

called “top-down”, or “conceptually driven” processes, transmitting activation from 

higher to lower levels of the model, and “bottom-up” or “data driven process”, passing 

on information from lower to higher levels, both contribute to the processing of a 

stimulus and thus determine what we perceive. This kind of network interaction, where 

activation from one level is spreading to neighbouring levels, is called spreading 

activation mechanism.  

 

Concerning word frequency and context effects, the IA design describes a functional 

pattern similar to that proposed by Morton (see Logogen model, above), in that the 

frequency of processing of specific input, and thus the frequency of activation of 

specific nodes, can enhance the processing of familiar input, relative to unfamiliar input, 

resulting in reduced reaction times, or lower processing effort necessary. The difference 

between the logogen model’s predictions and the IA framework include the idea, that 

according to McClelland and Rumelhart not only the logogen, thus, in the IA model, the 

lexical node of a word itself, can obtain a higher resting level activation through 

frequent activation, making it easier for that node to reach recognition threshold (or, in 

other interpretations, obtain a lower threshold level, resulting in the same processing 
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advantage through less activation needed to make the node “fire”), but all higher-level 

or lower-level nodes connected to that specific word node and making up its context – 

established through formal similarities as well as experienced context of usage etc. – 

develop stronger or weaker excitatory or inhibitory connections to that specific word 

node, through the influence of the specific contexts in which the word was used before! 

This functional architecture is capable of accounting not only for priming effects in 

simple repetition paradigms, but can explain also semantic-, context-, or translation-

priming, because the direct pre-activation of the specific word node itself is not the only 

factor of processing efficiency.  

 

However, in the further description of processing details, occurring effects and 

empirical support of the model, McClelland 1981 concentrate on the interaction 

between a (visual or acoustic) feature level, a letter or phoneme level, and a so-called 

word level, and gives only a sketchy description of the organisation of semantic memory 

or conceptual feature nodes, under the vague term higher level input, thus giving no 

clear answer to our questions on the lexicon-semantic interface.  

 

Still the interactive activation model remains very influential in research on visual and 

auditory language perception, and has been further developed and tested. 

 

2.3.2. Models of bilingual language processing 

 

A further challenge to the investigations on the neurofunctional mapping of form to 

meaning is the question, how this mapping process takes place in bilinguals. 

Considering performance, L1 and L2 representations seem to be functionally separate – 

most people can choose to speak only one language. But if one hears speech in two 

languages, which are both known to him, he will still be able to understand both – thus, 

to switch from one to the other language during the perception process. Research has 

been trying to show, whether word form and semantic meaning in two different 

languages are represented independently, or stored in a shared system. Two different 

approaches, one modular hierarchical model and one connectionist model, will be 

discussed in this chapter.  
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2.3.2.1. (Re-)revised hierarchical model 

 

Potter and colleagues (1984) hypothesized two alternative models of bilingual lexical-

semantic processing and tested them in a study with more or less fluent bilinguals. Both 

models assume a lexical level, which contains information about word form and 

syntactical features of words, and a concept level, containing real world knowledge 

about the objects and issues that words refer to. Also, in both models the concept level 

is shared by the L1 and the L2 language.  

In the so-called concept-mediation model, the lexical levels of both languages have no 

direct connection, but both access the same concept level.  

 

 
Figure 7: The concept mediation model, as proposed by Potter et al. 1984 
 

The tasks carried out in the empirical experiments in order to test this model were 

picture naming and translation; if both of these should be accomplished via concept 

mediation, they would take more or less equally long to perform.  

On the contrary, the word association model assumes that L2 words can access 

conceptual information only through their L1 translation equivalents. In this case, 

translation tasks could be accomplished through the direct link between the two 

lexicons, and should thus take significantly less time than picture naming in L2, which 

would need to take the longer route over the L1 lexicon.  

 

 
Figure 8: The word association model, as proposed by Potter et al. 1984 
 

Subsequent research has shown, that it is not possible to prove only one of these models 

to be right for all kinds of bilinguals: Chen & Leung (1989) and Kroll & Curley (1988) 
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found, that less fluent bilinguals in an early stage of their L2 acquisition process 

performed translation tasks faster than picture naming, in accordance with the word 

association model, while more proficient bilinguals performed equal reaction times, in 

accord with the predictions of the concept mediation model.  

These findings lead to a developmental hypothesis, suggesting that there is a shift from 

a lexical to a conceptual mapping strategy, entailed by the factor of second language 

proficiency: At an early stage of L2 acquisition, L2 word meanings are accessed via the 

L1 lexicon, and as the speaker becomes more fluent, L2 words gradually strengthen 

their direct conceptual mediation route.  

This new hypothesis, incorporating the two originally alternative models, has been 

described by Kroll & Stewart (1994) under the name revised hierarchical model: While 

both L1 and L2 lexicons have a conceptual link to the semantic system, and are also 

interconnected by a lexical link, the L1’s lexical link is stronger than the L2’s, and the 

lexical link from L2 to L1 lexicon is stronger than the opposite one.  

 

     
Figure 9: The revised hierarchical model, as proposed by Kroll and Stewart 1994 
 

First and second language in the model depicted above are commonly defined on the 

basis of age of acquisition. But experimental findings from the mid 90s (e.g. De Groot 

et al. 1994; Heredia 1997; La Heij et al. 1996) reported no translation time differences 

for concrete words in different proficiency groups, suggesting both translation 

directions to be sensitive to semantic processing, or even reversed translation times (L1 

to L2 translation faster than L2 to L1 translation) for abstract words! These findings 

started calling into question some basic assumptions about the revised hierarchical 

model’s components. Heredia (1996; 1997) proposed a modification of Kroll & 

Stewards revised hierarchical model: Instead of L1 and L2, the re-revised hierarchical 

model labels the two languages of a bilingual “most dominant language” and “least 

dominant language”, assuming that the dominance between them is not a stable 

relationship based on the age of acquisition but can change throughout a lifetime: The 
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dominance of a languages is seen as a function defined by individual word frequency, 

which is dependant on the intensity of usage.  

 

  
Figure 10: The re-revised hierarchical model, as proposed by Heredia 1996; 1997  

  

2.3.2.2. Bilingual interactive activation (plus) model 

 

In the nineties, Dijkstra and Van Heuven (1998) extended the interactive activation 

framework to account for bilingual language processing. Based on the interactive 

activation model for visual word recognition, they proposed the bilingual interactive 

activation (BIA) model, originally also only for the visual processing modality. The 

model maintains the IA model's concept of feature, letter, and word level, all of which 

contain units representing both L1 and L2 features, letters or words. Additionally the 

BIA assumes a fourth, the language node level, which contains a single node for each 

language, to which all word items from the lower level are connected, thus specifying 

the language context of the processed input. The shared letter level assumes that the 

specific letters and positions, activated by visual input, will pass on their activation to 

both L1 and L2 words, a phenomenon in the bilingual literature usually referred to as 

unselective access. But, since all items on the word level are also interconnected, they 

mutually inhibit each other's activation, a phenomenon referred to as lateral inhibition.  
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Figure 11: The bilingual interactive activation (BIA) model word recognition. The arrow heads 
indicate excitatory connections, the black circle heads indicate inhibitory connections. 
(From Dijkstra et al. 2002, p.117, fig.1) 
 

Four years after their first paper on the BIA model, Dijkstra and Van Heuven (2002) 

presented a new model, the BIA+ model, extending the ideas of the BIA model to 

orthographic and phonological recognition; its functioning is also adapted to new 

findings by Green (1998) and his idea of an additional task/decision system, but these 

aspects of the model will not be explained here.  
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Figure 12: The BIA+ model for phonological and orthographical word recognition. Lexical 
level processing is divided in a sublexical and a lexical level.  
(From Dijkstra et al. 2002, p.182, fig.2) 
 

In order to account for the context-sensibility effect in some languages’ mapping 

process between graphemes and phonemes, the authors introduce a sublexical and a 

lexical level of each orthography and phonology (see fig. 12), segmenting the input first 

in clusters, then in syllables, and finally into words. 

 

2.4. Neurofunctional basis of language processing 

 

The different models presented in the last chapter try to explain the functional 

architecture of language processing. But what do the neuroanatomical structures 

underlying language processing look like? 
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2.4.1. Monolingual Language Processing 

2.4.1.1. Anatomical Structure of the Cortex 

 

Most areas responsible for language processing, but also most structures important for 

memory, perception or consciousness are situated in the cerebral cortex, the outermost 

part of the brain, a 2 to 4 mm thick layer of neurons. Four regions have been defined to 

describe the neurofunctional architecture of the cortex: The frontal, temporal, parietal 

and occipital lobe.  

 

 
Figure 13: The five main regions of the cortex. 
From http://www.deryckthake.com/psychimages/cerebral_cortex.jpg, on 20.8.2010. 
 

Most of these gross areas can be further divided into superior, middle and inferior 

cortex, gyrus (the ridges on the cortical surface) or sulcus (the fissures on the cortical 

surface, surrounding the gyri).  

 

To further classify smaller regions of the cerebral cortex, Korbinian Brodmann, a 

German neurologist, elaborated a numbered map, dividing the cortical surface into so-

called Brodmann areas (BA) based on each site’s specific cytoarchitecture, thus the 

organisation of neural cells in the tissue.  
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Figure 14: The Brodmann areas, a numbered categorization of brain regions by K. Brodmann. 
From http://en.wikipedia.org/wiki/File:Gray726-Brodman.png, on 20.08.2010.  
 

These maps will serve to unambiguously describe different language areas in the course 

of the following chapters.  

 

2.4.1.2. Language processing in the adult brain 

2.4.1.2.1. Evidence from the study of lesions and behaviour 

 

The earliest contributions to the question of localization of language functions have 

been published by Paul Broca and Carl Wernicke, who studied the brains of patients 

with brain lesions post mortem, in the 19th century.  

Broca’s patient suffered of severe speech impairment, being able to utter only one 

syllable. The brain region injured in this patient, the left inferior frontal gyrus, was thus 

hypothesized to play a major role in speech production, and has become known as 

Broca’s area (BA 44 and 45).  

The patients studied by Wernicke had preserved relatively intact and natural sounding 

speech production, but were unable to understand spoken or written language; as a 

result of their lexical-semantic impairment, their utterances were syntactically correct, 

but semantically meaningless. Wernicke thus described the region injured in these 

patients, the posterior section of the superior temporal gyrus of the left (or dominant) 

hemisphere (mainly BA 22), as responsible for spoken and written language perception 

– a view which has been more or less maintained for a long time, but seriously 
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challenged in the course of the last decades by neurophysiological studies showing the 

involvement of much more widespread areas in the temporal lobe as well as parts of 

Broca’s area around the inferior frontal cortex in language perception.  

 

2.4.1.2.2. Evidence from neuroimaging- and electrophysiological 

studies 

 

Since the development of neuroimaging methods like fMRI or NIRS new studies have 

further specified the localization of language functions. These new measuring methods 

can be applied on the intact, healthy brain, and are capable of differentiating the loci of 

different stages of language processing.  

Generally, the left hemisphere is said to play a major role for most language related 

cognitive functions. According to Friederici (2006b), syntactic processing takes place 

mainly in the left inferior frontal cortex and the anterior portion of the temporal cortex. 

Different neuroimaging studies have reported specific activation in Brodmann areas 44 

and 45, as well as in the frontal operculum adjacent to inferior portion of BA 44 (Caplan 

et al. 1998; Friederici et al. 2000a; Inui et al. 1998) upon processing of local phrase 

structure and sentence structure.  

Also in the processing of phonological information mainly increased activation in the 

left hemisphere, specifically in BA 44, thus Broca’s area, has been observed.  

Lexical-semantic processing has been generally associated with the left temporal as well 

as inferior frontal cortex: Specific involvement of the superior and middle temporal as 

well as the inferior frontal gyrus has been repeatedly reported (Fiez 1997; Poldrack et 

al. 1999; Price et al. 1997).  

Processes relying mainly on right hemispheric cortical structures are emotional, and 

partly lexical prosody: For the processing of pitch information at the segmental, for 

example syllable level, and at the suprasegmental, for example syntactic level, recent 

studies found increased activation in the right prefrontal, right superior temporal and the 

right fronto-opercular cortex (Meyer et al. 2002; Wildgruber et al. 2002). On the other 

hand, when prosodic features were relevant parameters for the discrimination between 

different lexical items, like in tonal languages, also left hemispheric activation, for 

example in the left frontal operculum (adjacent to Broca’s area) has been reported 

(Gandour et al. 2000).  
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Since the subjects of the experimental study for this thesis were children, the next 

chapter will take a closer look on the neuroanatomic development of language functions 

and on eventual differences in the lateralization of language functions in the not yet 

mature brain.  

 

2.4.1.3. Language processing in children 

 

Observing the language behaviour of babies and young infants might convey the 

impression that children start to process language only after more or less one year of 

life, when they start to utter their first words and phrases. But in fact, already new-born 

babies process certain basic structures of their mother tongue, and gain more and more 

competence about linguistic structures long before they actively start to speak. Many 

recent studies have attempted to take a look at the neurofunctional architecture of the 

infant brain. Obviously, to measure cortical activity in babies requires very gentle and 

non-invasive methods: While functional magnetic resonance imaging (fMRI) or 

magnetoencephalography (MEG) for example cannot be applied on very young 

children, electroencephalography (EEG) and near infrared spectroscopy (NIRS) are 

methods approved and established for studies with children. These methods have been 

successfully used, and the respective studies have shed some light on the functional 

lateralization of cognitive functions in infants:  

 

2.4.1.3.1. Phonology 

 

Already new born babies show activation patterns specific to language processing upon 

hearing speech, in contrast to music or speech played backwards, thus non language 

sounds. These phonological abilities serve as a first clue to language learning. Few 

months old babies are able to distinguish between different phonemes, and seem to 

specifically pay attention to syllable structure typical for their mother tongue. 

Processing of syllables differing in the first consonant showed increased cortical 

activation in the temporal and frontal lobes, thus areas specific for language processing, 

already in three-month-old infants (Dehaene-Lambertz et al. 1994). Also the recognition 
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of word-stress is a phonological competence crucial for example for the segmentation of 

continuous speech, in order to extract single words and thus be able to build up a 

vocabulary. Indeed this ability is developed early and elicits left-hemispheric activation 

already in 10-month-old children (Kooijman et al. 2005).  

 

2.4.1.3.2. Lexicon and semantics 

 

After the phonological analysis of continuous speech input, children begin to understand 

and eventually produce first single words. Studies testing the electrophysiological 

reaction to known versus unknown words in infants between age one and two found 

bigger amplitudes for the processing of known words, with local distribution in bilateral 

hemispheres till the age of 13 months, but shifting to predominant processing in the left 

hemisphere at the age of 20 months. The discrimination of familiar from unfamiliar 

words indicates a clear processing of lexical information, but implications on beginning 

of adult-like processing of semantic properties of words remain uncertain for children of 

less than two years.  

In a series of studies Friedrich and Friederici (2004; 2005a; 2005b) tested a design 

differentiating between lexical and semantic processing of single words on children 

between 12 and 19 months. While the 12-month-olds showed increased fronto-central 

activity indicating a lexical familiarity effect, the 14- and 19-month-old group showed 

specifically semantic processing, in addition to the lexical familiarity effect. The fact 

that the effects in these infants peaked slightly later and lasted longer than in the adult 

brain reflects slower semantic processing; the more widespread local distribution of 

activation in semantic processing tasks, especially the involvement of additional frontal 

areas, has been interpreted as an involvement of increased attention processes due to not 

yet developed automaticity and routine in this modality.  

Studies with five to fifteen year old kids, requiring semantic judgement on auditorily 

presented words, found activation in bilateral temporal, left middle temporal, and in 

bilateral inferior frontal gyri, with decreasing local distribution, especially in right 

frontal regions, with the factor of age (Balsamo et al. 2006; Chou et al. 2006). These 

studies generally indicate that semantic processing in children is lateralized in the left 

hemisphere in similar regions as in the adult brain from an age of approximately 5 

years.   
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2.4.1.3.3. Syntax 

 

So far very few studies on early syntactic processing in children are available, and most 

of them used EEG, a method which has a very precise resolution of electrophysiological 

activation changes over time, but a rather poor resolution of spatial localization of the 

measured activation. The electrophysiological studies reviewed by Friederici (2006a) all 

found a rather adult-like neurophysiological signature of mapping of syntactic and 

thematic structure, processing of temporally syntactic ambiguities and syntactic 

complexity in general in children from an age of two years. The so-called early left 

anterior negativity (ELAN), a specific electrophysiological syntactic processing 

component, occurring in adult processing of language stimuli later after stimulus onset, 

and mostly responsible for automatic initial structure building, was not found in early 

stages of language development till the age of two years, but occurred in a delayed but 

adult-like form in children from the age of two and a half years. These findings indicate 

that while highly automatic processes of syntactic analysis develop in children from the 

age of two and a half years, more controlled processes of syntactic and thematic 

integration are established in an adult-like manner from the age of two years.  

 

2.4.1.3.4. Prosody 

 

A NIRS study from 2006 (Homae et al.) measured the haemodynamic response to 

normal speech versus speech with flattened intonational contours in three-months-old 

infants, and found activation in bilateral fronto-parietal and frontal lobes for both 

conditions, and specific right temporo-parietal activation for the normal speech 

condition, containing prosodic information. These and other results investigating the 

neuroanatomical basis of prosodic processing in infants (e.g. Pannekamp et al. 2006) 

indicate, that already in infants of less than one year of age processing of prosody of 

speech is lateralized to the right hemisphere.   

 

In general, taking into account the current state of research, we can conclude that the 

processing systems underlying language processing change quantitatively but not 
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qualitatively during early development, and the underlying neuroanatomical structures 

are established in a rather adult-like manner already in infants.  

 

2.4.2. Bilingual language processing 

2.4.2.1. Evidence from clinical and behavioural studies 

 

Throughout the history of studies of bilingual language processing different models of 

neurofunctional organisation of two languages in one brain have been proposed, some 

on the basis of anatomical evidence drawn from post mortem examinations of lesioned 

brains, some on the base of mere psycholinguistic speculations. Still, the different 

models have remained influential for the further experimental research over the 20th 

century, and will therefore be described here in a short overview, in a classification 

taken from Paradis and Libben (1987).  

 

According to the dual-system hypothesis, the two 

languages of a bilingual are stored in two different 

subsystems, and processed independently of each other. 

Since, especially if the two languages have a similar 

linguistic structure, some grammatical information or 

lexical items might be equal in both language systems, a certain proportion of linguistic 

information is encoded twice, thus constituting a redundancy of the system. Most 

studies which seem to confirm this kind of neurofunctional organisation report the cases 

of aphasic patients which lost their competence in one language, but have preserved 

linguistic abilities in the other one. The first patient with this selective recovery pattern 

has been reported in 1867 by Scoresby-Jackson, who therefore proposed differential 

localization for the two languages, but nearly without anatomical knowledge. Rapport, 

Tan and Whitaker (1983) used two invasive methods on a group of Chinese-English 

bilingual stroke patients requiring awake craniotomy: With Wada-testing, a method 

where an anaesthetic substance is injected in one hemisphere, it is possible to test 

cognitive functions of the single hemispheres differentially; intraoperative 

electrocortical stimulation (stimulation of language relevant regions on the open brain 

with electrodes with biphasic electrical current) was performed on very small cortical 

Figure 15:  
The dual system hypothesis 

L1   L2 

Figure 15:  
The dual system hypothesis 
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areas known to be crucial for language processing, while the patients were subjected to 

do object naming and reading tasks, and lead to specific language inhibition and 

switching effects. From the results of these invasive methods, and from observations on 

language loss and recovery patterns of the patients after the stroke the authors found, 

that both languages were lateralized in the left hemisphere, but in different areas, thus 

supporting the dual-system hypothesis of differential localization of the two languages.  

 

The counterpart to the proposed differential localization has 

been formulated as the extended-system hypothesis, claiming 

that there is no qualitative difference between a bilingual 

language processing system and the monolingual 

neurofunctional setup, except for the bilingual system having 

more elements – more different phonemes, morphemes, or 

syntactic rules – which are organized complementarily and are used in a mutually 

exclusive manner, just like different terminology, dialects or registers in a monolingual. 

This model is often referred to by studies reporting non-language-specific access, or 

other cross-linguistic effects. Minkowski, a Swiss neurologist at the beginning of the 

20th century, claimed that it is not necessary to assume differential localization for the 

different languages in order to explain the different recovery patterns from aphasia: ‘‘If 

we assume no spatially separate centers or areas in the cortex for the different 

languages, but instead assume that within the same area, the same elements are active, 

though in different combinations and interacting with a differential linguistic 

constellation, it is easy to explain the phenomena occurring in polyglot aphasia in terms 

of the interaction of such a large set of factors’’(Minkowski 1927 p.229).  

 

The tripartite system hypothesis attempts to meet the 

criticism of redundancy in the dual system hypothesis by 

suggesting three different subsystems, one of which is 

storing the common items and rules of the two languages, 

while the language-specific information of L1 and L2 are 

again stored individually.  

 

 

 

  L1 
  L2 

Figure 16: Extended 
system hypothesis 

  L1 
 
    L2 

L1 L2 

Figure 17: The tripartite 
system hypothesis 
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The subset or subsystems hypothesis implies that extended and dual system hypothesis 

are not mutually exclusive: While there are stronger links between items from one 

respective language, both are included in one 

superordinate system, and can thus have also direct cross-

linguistic links. This model can explain most of the 

reported recovery patterns from bilingual aphasia, since 

the respective languages can be activated or inhibited 

differentially, but also the superordinate system can be 

disturbed, thus causing disorders in all languages.  

 

Another approach, first proposed by Pötzl 1925 based on observations of involuntary 

language switching in aphasic patients, claims the existence of a so-called switch-

mechanism, which functions independently of the two languages’ memory 

representations, and controls their respective activation and inhibition. This model has 

also been used to account for the longer reaction time in the so-called bilingual stroop 

test, where a colour name is visually presented, written with ink of a different colour 

then the one denotated by the written word, and the subject is asked to name the ink 

colour in his other language, which leads to extended reaction times, because the 

language of the visually presented item is first activated by the input, and  the voluntary 

inhibition of one language leads to very extended reaction times. This „switch-time“ has 

been interpreted as an additional activation of the switch mechanism.  

Fabbro and colleagues (2000) reported another bilingual patient showing pathological 

language switching, in the absence of language mixing (thus, the use of two languages 

within a single utterance) or any other linguistic impairment. Since the lesion in this 

patient was situated in the left anterior cingulate, a region adjacent to the corpus 

callosum, and in the frontal lobe, Fabbro et al. suggested, that language switching 

should be considered as a discrete mechanism, neuroanatomically situated in the frontal 

lobe.  

Evidence from intraoperative cortical stimulation has lately renewed the discussion 

about a possible language-independent switch-mechanism: Kho et al. (2007) reported 

selective inhibition of one language or involuntary language switching of a French-

Chinese bilingual patient during stimulation of the pars opercularis, in the inferior 

 L1 
L2 

Figure 18: The subsystem 
hypothesis 
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frontal gyrus. From the fact, that the language switching occurred immediately upon 

stimulation, and that the switching effect was reversible, the authors concluded that this 

cortical region might be the locus of the switch-mechanism. Holtzheimer et al. (2005) 

reported spontaneous language switching in two depressive multilingual patients upon 

non-invasive transcranial magnetic stimulation of the dorsolateral prefrontal cortex.  

 

While these described clinical and behavioural studies mostly aim at analyzing 

anatomical differences in bilingual aphasics, studies using electrophysiological and 

neuroimaging methods can monitor language processing in the healthy brain, and are 

thus capable of addressing the more general question whether there are qualitative or 

quantitative differences in the functional processes and underlying cerebral structures 

between a bilingual’s different languages, and between the bilingual and the 

monolingual brain. Electrophysiological methods, like EEG, have a very high temporal 

resolution, and can, when applied in studies with specific stimulus designs, discriminate 

between the cortical activation elicited during processing of different levels of the 

linguistic input, like phonological, lexical, syntactic or semantic analysis; but, since 

non-invasive EEG measures electrical activation changes through electrodes placed on 

the outside of the skull and skin, and the measured signal is highly scattered during 

transition of these tissues, EEG cannot identify the exact cortical areas from which the 

received signal originates. Neuroimaging methods like fMRI and PET, on the other 

hand, also have their specific limitations: While their spatial resolution is generally very 

high, they can monitor neurological activation changes over time only in a rate of 

seconds, but the specific processing steps of linguistic analysis proceed in milliseconds.  

 

Still, due to their strength in spatial resolution neuroimaging studies deliver stronger 

evidence for answering the question of differential or analogue localization of languages 

in the bilingual brain.  

 

2.4.2.2. Evidence from neuroimaging studies 

 

Most neuroimaging studies on bilinguals showed very similar patterns of activation for 

the respective languages, but some found single areas of differential activation, but with 

rather heterogeneous intensity and interpretation.  
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In one of the first neuroimaging studies on bilinguals, Klein et al. (1995) found higher 

activation for the less dominant language in the left putamen. In a subsequent study in 

1999 (Klein et al.), however, the authors did not find the previously reported difference 

between the languages, in spite of the subjects being late bilinguals. Numerous other 

studies found no significant differences upon processing of two languages in bilingual 

subjects (Chee et al. 1999; Illes et al. 1999).  

Kim et al. (1997) found similar cortical activation around Wernicke’s and Broca’s area 

for an early bilingual group of subjects; in late bilingual subjects they found similar 

activation in Wernicke’s area, but two distinct regions in the left Broca’s area, separated 

from each other by approximately 8mm, one active only for L1 stimuli, and the other 

only during processing of stimuli in the L2. The authors attributed these differences in 

the neurofunctional architecture to the factor of age of acquisition, which varied over 

the two subject groups. However it needs to be noted, that the authors give no detailed 

description of the specific phonetic and syntactic competence of the late learners in their 

L2, and thus the influence of the factor of proficiency could not be correctly evaluated.  

Several other studies, like Perani et al. (1996) and Dehaene et al. (1997), also found 

strong and discrete activation for the subjects’ dominant language, with considerably 

reduced active volume, and high inter-individual variability of activated regions 

(varying from predominant right to standard left hemispheric lateralization), upon 

processing of the less dominant language of bilingual test groups. Perani et al. (1998) 

compared the activation patterns of two groups of subjects, one with early acquisition 

onset (L2 acquisition before the age of 4 years), the other with late age of acquisition 

(L2 acquisition after the age of 10 years) for the second language, but both highly 

proficient in  both languages. Interestingly, for the high proficiency late acquisition 

group no significant difference of activated brain areas was found over the two 

languages, but the high proficiency early acquisition group showed significant 

differences in the processing of L1 versus L2 in the right hemisphere, with a region in 

the right middle temporal gyrus being active specifically during L1 processing, and 

right superior parietal areas responding to L2 processing only. By comparing the results 

of this study, especially the activation patterns found in the high proficiency late 

acquisition group, with the results found by the same authors in 1996 in subjects with 

late age of acquisition and low proficiency, the authors found that the neurofunctional 
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architecture of the bilingual brain seems to be influenced stronger by the actual 

proficiency level in the respective languages, than by the relative age of acquisition.  

 

Especially the last two decades of research, using highly developed neuroimaging 

methods, started to shed some light on the anatomical and neurofunctional structures 

underlying bilingual language processing. In most studies very similar areas were active 

for processing of the dominant and a less dominant language. Since every bilingual is 

different in many factors concerning his language history and communicative 

behaviour, the eventual differences in neurofunctional representation of L1 and L2 

should be further examined with respect to the influencing factors of language exposure, 

proficiency and age of acquisition.   

 

2.5. Priming 

 

Priming is an implicit memory effect, used extensively in experimental settings to 

investigate the architecture of the neural networks underlying perception and memory. It 

describes the facilitated processing of a perceived stimulus, when preceded by 

perception of another stimulus working as a prime. The influence of the prime item on 

the second item, also called target, results in reduced intensity or distribution of cerebral 

activity, which can be measured by electrophysiological (e.g. reduced amplitudes in 

signal measured by EEG) or imaging methods (e.g. reduced local cerebral blood flow 

measured by fMRI), or in shorter reaction times for execution of control tasks.  

 

From the many different types of priming repetition priming is the most direct form of 

priming. If the same stimulus is presented twice, because its perceptual as well as 

conceptual properties are activated upon processing of the first presentation, processing 

of the stimulus upon the second presentation will be faster or elicit less neural activity, 

than upon the first time it was processed.  

 

Perceptual priming subsumes different types of experimental designs, in which the 

prime – the stimulus presented earlier, which will influence the processing of the later 

stimulus – and the so-called target stimulus – the stimulus who’s processing is 

facilitated by the prime stimulus – share certain form features, like, in the case of 



41 

linguistic stimuli, phonemic or graphemic similarities. For example, after visual 

perception of a word list containing the word table, subjects confronted with a word 

completion task (complete a given syllable to form the first word, that comes to your 

mind) are more probable to name the word table, than if not primed by the word list, 

and will complete the syllable tab more quickly than unprimed syllables.  

Perceptual priming effects are shown to be sensitive to the modality of presentation, 

thus even if a word pair is phonetically and graphemically similar, priming will be 

higher if the prime and the target are presented in the same modality.  

 

The processing of a word can also be primed through prior presentation of a 

semantically related word: For example, the word pear will prime the processing of the 

word apple, because they are both from the same semantic category. This type of 

priming design is called semantic or conceptual priming. Control tasks used 

frequently to monitor this kind of priming are the semantic categorization task, as well 

as the lexical decision task: When previously visually primed through a word list 

containing the word pear, subjects asked to decide, whether a string of letters is a word 

of a given language or not will respond more quickly to, for example, to the word apple, 

than to semantically unrelated words or non-words.  

This kind of semantic or conceptual priming has been explained by spreading activation 

in neural networks: When we think of a word, not only the neurons representing the 

word itself become active, but we activate also other words from the same semantic 

category, or similar semantic contexts.  

 

A similar effect was found when processing of a target item was primed by words or 

sentences which are frequently encountered together with the target item, thus when the 

stimuli used as prime constitute a context predicting the target with a high probability. 

This so-called associative or context priming is also involved in normal processes of 

reading sentences: Each words in a sentence acts as a contextual cue for the next words, 

and the more a given sentence is typical, the faster the processing of, for example, the 

last word in the sentence, which might act as target in a priming experiment, will be, in 

comparison to a single presentation of that word.  

 

Finally, translation priming is a specific form of priming developed for studies on 

bilingual language processing. It is being used to investigate the neural pathways 
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involved in the processing of two different languages, and on the possible 

interconnections between the semantic, lexical or perceptual levels of representations of 

items from the different languages. When an item from one language is primed by its 

translation equivalent from another language known to the subject, its processing is 

facilitated.  

 

In the stimulus design of the experimental study carried out in the course of this thesis 

repetition priming and translation priming have been used to monitor processing of 

German and English individually as well as the interaction of the two language systems. 

A further description of the stimulus sequences will be given in the empirical part of the 

study (chapter 3.3.2.).  
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3. EMPIRICAL PART 

3.1. Questions and hypotheses 

 

To shed light on the processing of two languages in the bilingual brain has been the aim 

of many studies during the last decades. This study has concentrated on the neural 

processes during language perception, and thus applied an experimental design with a 

passive listening task.  

To monitor neural activity in the cortex the study used near infrared spectroscopy 

(NIRS), an imaging method measuring cortical activity through the correlated 

oxygenation changes. Neural activation in the cortex, for example during the processing 

of a word in a passive listening task, results in an increase in oxygenated haemoglobin 

and a decrease in deoxygenated haemoglobin in the blood of the responsible cortical 

areas. This metabolic dynamics can be measured by NIRS and are expected to be found 

in this study after every stimulus, be it English or German, prime or target, primarily in 

left hemispheric temporal cortical regions (see e.g. Bortfeld et al. 2007).  

The functional differences in the processing of words in the subject’s first versus second 

language were measured using a so-called priming paradigm. Semantic or repetition-

priming effects – a facilitation in the processing of a target stimulus preceded by a 

conceptually similar or identical stimulus (see chapter 2.5.) – have been found 

frequently in monolingual experiments (e.g. Dehaene et al. 1998); in this study’s 

experimental design monolingual repetition priming in English and German 

respectively is thus expected to produce reduced oxygenation levels for prime items. 

Further analysis will show if the intensity of the priming effect differs between repeated 

English word pairs and repeated German word pairs. 

Moreover this study used cross-linguistic translation priming in order to investigate the 

functional differences in the processing of the bilingual’s two languages. Translation 

priming effects have been reported reliably for example by Alvarez et al. (2003); the 

results will show if, in spite of the comparatively big lags between the prime items and 

the translated targets in the stimulus design of this study, cross-linguistic priming effects 

were elicited. Furthermore, if cross-linguistic priming effects reach significance, it is of 

major significance for the evaluation of functional differences and interaction between 
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the two languages, if the intensity or localisation of the measured cross-linguistic 

priming effects differs according to the direction of cross-linguistic priming from L1-L2 

or L2-L1.  

 

Finally, activation during processing of English versus German words in general will be 

compared, to track processing differences between a bilingual’s languages, 

independently of a priming paradigm.  

 

Following the considerations discussed above, the following hypotheses and explorative 

questions for the experimental study shall be deduced:  

 

3.1.1. Hypotheses tested 

 

o During the acoustic presentation of a stimulus, in contrast to phases of 

silence, a haemodynamic response (resulting in a measured increase in 

[oxy-Hb] and decrease in [deoxy-Hb], see chapter 3.2.1.1.) is expected, 

primarily in left hemispheric temporal cortical regions (see e.g. Bortfeld 

et al. 2007).   

 

o The signals measured during presentation of primes and of the repeated 

targets significantly differ from each other in respect of intensity of the 

elicited activation: Prime items elicit a stronger activation than target 

items in temporal regions (see e.g. Rissman et al. 2003).  

 

3.1.2. Experimental questions 

 

o Is there a difference between the intensity or localization of the priming 

effect in English within-language repetition word-pairs versus German 

within-language repetition word-pairs? 
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o Is there a difference concerning the intensity of the priming effect 

between cross-linguistic priming from L1-L2 and cross-linguistic 

priming from L2-L1?  

 

o Is there a difference in the intensity or localisation of the elicited 

activation during the processing of German versus English items?  

 

3.2. Methods 

3.2.1. Near infrared spectroscopy (NIRS) 

 

Brain Imaging Methods aim to depict neuronal activity during the processing of a 

stimulus. An active neuron processes information by transmitting electrical impulses – it 

“fires”. The most direct and immediate way to record neuronal activity would thus be to 

measure these electrical activation changes in single neurons. This procedure has been 

carried out directly on the open brain in animal experiments, but, for obvious ethical 

reasons, cannot be carried out on healthy humans. Besides, considering the huge amount 

of neurons constituting the cortex, only a very small area of it can be measured by this 

procedure.  

Electroencephalography (EEG) is a method which is being mostly applied in a non-

invasive manner, measuring electrical activation changes through the skull, with 

electrodes being placed on the outside of the head. Electroencephalography provides 

very good temporal resolution: Even in the non-invasive setup, the Electrodes can 

record activation changes within a range of milliseconds. But the skull, skin, meninges 

and other tissue, separating the cortex from the electrodes, scatters the signal, so that the 

localisation of the origins of the measured signal is pretty inaccurate.  

During the last decades, another approach to measuring brain activity has been 

developed, based not on the neuronal firing itself, but on the vascular and metabolic 

response, that it elicits. Near infrared spectroscopy (NIRS), which was used to obtain 

the data for this study, is a non-invasive imaging method, which measures changes in 

the oxygenation level of the haemoglobin, caused by changes in the regional blood 

flow.  
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3.2.1.1. Physiological basis of NIRS 

 

Activated neurons, like any other active cells in our body, need more resources than in 

resting state. Therefore neuronal firing is associated with a regional increase of blood 

flow, to supply neurons with glucose and oxygen, which is carried by the haemoglobin. 

Fox et al. (1986) measured the regional cerebral blood flow (rCBF) and the rate of 

cerebral oxygen metabolism - which is the parameter measured with NIRS - during 

neuronal activation evoked by somatosensory stimulation in the form of a simple finger 

tapping task. In resting state the cerebral blood flow volume and the rate of oxygen 

uptake by the cerebral cells were well balanced. During activation, though rCBF 

increased by 29% on average in the activated cortical areas, oxygen metabolism 

increased only by an average of 5%. This uncoupling leads to a focal increase in 

oxygenated haemoglobin ([oxy-Hb]) and a simultaneous decrease in deoxygenated 

haemoglobin ([deoxy-Hb]), altogether resulting in a locally increased concentration of 

oxygen in the blood ([tot-Hb]), thus a temporary hyperoxygenation. This correlation 

between neuronal activity, blood flow, and blood oxygenation level is called the 

neurovascular coupling. It has first been described in 1890 (Roy et al.), and today there 

is no doubt about its existence. Still, it should be noted, that its exact functioning and all 

influencing factors could not yet be explained.  

 

The amount of [oxy-Hb] and [deoxy-Hb] in the blood, measured with near infrared 

spectroscopy as one feature of the complex process of neurovascular coupling, is an 

indirect measure of cortical activation: The temporary regional increase in blood flow, 

also called haemodynamics, and its focal hyperoxygenation, occur as a physiological 

response to neuronal firing, and, being a much slower process than the latter, with a 

notable ‘delay’. Still, because of their temporal correlation, it is possible to model this 

latency and calculate time, location and strength of the eliciting activation from the 

oxygenation data with good precision, with a function called the haemodynamic 

response function (HRF).  
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Figure 19: Model of the haemodynamic response function (HRF) 
From http://www.math.mcgill.ca/keith/BICstat/fighrf0.jpg, 27.02.2010. 
 

The haemodynamic response starts rising about 2 s after stimulus onset, reaches its 

climax between second 5 and 7, and falls back to its initial intensity circa 16 seconds 

after stimulus onset (see figure 19). Zhang et al. (2005) showed, that this function can 

also be used to model the concentration changes of oxygen in the blood, measured by 

NIRS: They imaged the motor cortex of subjects performing a simple finger tapping 

exercise over a period of 1-2 seconds (red bar), and found that both the concentration 

changes of [oxy-Hb] (black curve) and of [deoxy-Hb] (grey curve) can be modelled by 

the HRF.  
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Figure 20: Time course of concentration changes in [oxy-Hb] and [deoxy-Hb] throughout a 
fingertapping task (duration 2 seconds, see red bar). 
(From Zhang et al. 2005, p.4634, fig.2) 
 

Thus, an increase in oxygenated haemoglobin and simultaneous decrease in 

deoxygenated haemoglobin can be seen as an indicator for neuronal activity.  

 

3.2.1.2. Methodology of NIRS 

 

So the aim of NIRS is to measure the changes of concentration of oxygenated and 

deoxygenated haemoglobin in the blood of activated brain areas – with light.  

Even a simple flashlight pointed at the finger will, to a certain extend, penetrate the 

skin, muscles etcetera and illuminate the tissue. In invasive experiments, when the 

cortex is laid bare, even photons from a light bulb can penetrate its upper layers and 

illuminate the cells. So the idea of optical imaging methods, working with light, is to 

investigate the properties of a tissue by pointing a ray of light into the texture to be 

examined, and detecting the scattered and reflected photons, altered by their travel 

through the tissue. The quantity and quality of the reflected light measured by a detector 

would give information about the matter it has traversed.  
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Figure 21: Light with an intensity I0 is being emitted into the tissue, scattered and absorbed by 
the skin, skull, etc., and eventually detected by the detector with an intensity Ix. d stands for the 
so called inter-optode distance, which is at the same time the assumed maximal depth of the 
travelling photons.  
(From Obrig et al. 2003, p.9, fig.5) 
 

The difficulty of non-invasive experiments lies in the fact, that the tissue of interest is 

covered by a solid layer of 1-2 cm of skin, bone, meninges etc. Jöbsis (1977) was the 

first one to prove the possibility of illuminating cortical tissue through the intact head. 

In this case, the light beam, on its way from the light source to the cortical cells, is 

obstructed by numeral layers of tissue. In order for the light to reach cortical tissue, 

NIRS uses near infrared light, which is capable of penetrating the biological tissue. In 

brain imaging studies with humans, the wavelengths used lie between 650 and 950 nm. 

Light from a shorter-waved spectre, lying under 650 nm, would be too strongly 

absorbed by the haemoglobin. For long-wave light over 950 nm the absorption rate of 

water is too high. Therefore, the spectre between 650 and 950 nm is in this context also 

referred to as the “optical window”.  

Pairs of optodes emitting the near infrared light and detectors taking in the reflected 

light are placed on the skull in a distance of few centimetres: The bigger the inter-

optode distance, the longer the travelled distance of the photons detected by the 

detector, and the deeper their assumed route (see figure 22). Therefore an ideal inter-

optode distance to detect photons that have passed deep enough to transit the cortex, but 

not so deep as to get totally absorbed by the deeper neuronal layers, lies between 2-3cm. 
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Figure 22: The inter-optode distance corresponds to the depth of the travel route of the detected 
photons: The bigger the inter-optode distance, the deeper the assumed course of the photons. 
(left: 3 cm; right: 0,5 cm)  
(From Obrig 2002, p.18, fig.6b) 
 

So near infrared light is being sent into the cortex, and the amount and wavelength of 

the reflected photons gives information about the illuminated cortical area of neurons. 

But how is it possible to differentiate between signal changes caused by the 

haemoglobin and other components of the tissue, or even between [oxy-Hb] and 

[deoxy-Hb]?  

The part of a substance, more precisely of its molecules, which is responsible for its 

light absorbing or scattering properties, is called the chromophore. When a substance 

absorbs certain wavelengths of light and reflects or transmits others, it has a colour. As 

we can observe also in other parts of our body, our blood changes its colour according 

to the concentration of the containing oxygen: When straining ones body, the skins turns 

red, due to the high concentration of [oxy-Hb], which has a reddish colour. When the 

blood circulation in our fingers or lips is slow or blocked, the skin turns blue, due to the 

bluish colour of the deoxygenated haemoglobin. These ‘colour’ properties, or rather 

their equivalents in the near infrared, thus invisible spectre, of [oxy-Hb] and [deoxy-Hb] 

are also used for NIRS:  

Haemoglobin, or rather its chromophore, changes its specific absorption pattern for 

different wavelengths according to its concentration rate of oxygen. Thus NIRS uses 

two wavelengths, one of which is absorbed characteristically by [oxy-Hb], the other by 

[deoxy-Hb]. Through the changes in absorption of these two wavelengths of 690 nm 

and 830 nm the concentration of [oxy-Hb] and [deoxy-Hb] in the haemoglobin can be 

calculated: The Beer-Lambert law calculates the concentration of a substance as being 

proportional to the weakening of the intensity of light, which passed through the 

examined substance, for a certain wave length. Some modifications of the formula are 

necessary to account for the non-invasive setting: The scatter caused by the skull, skin, 
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etc. diminishes the quantity of photons, which can be registered by the detector. But 

since this scattering factor is steady for all detecting optodes, it can be added to the 

Beer-Lambert law as a constant factor G.  

Many studies investigating oxygen metabolism and its temporal and local functioning as 

part of the haemodynamic response have convincingly proven that focal oxygenation 

changes of haemoglobin can be seen as a reliable indicator for neural activity.  

 

In comparison to other methods like fMRI, which is also based on vascular processes, 

NIRS has both advantages and disadvantages: The spatial resolution of NIRS is 

comparatively vague, allowing differentiations only within a range of centimetres. 

Further, only cortical issue within a depth of 2-3 cm maximum can be illuminated with 

NIRS, while fMRI can depict activation throughout the brain. A clear advantage of 

NIRS is its undemanding setup, which provides a relaxed and unpretentious measuring 

situation even for very small kids or patients confined to bed, who cannot be measured 

in the narrow and intimidating fMRI scanner. Available even in wireless form, and less 

susceptible to movement artefacts, NIRS can also be of great use in studies needing a 

mobile and flexible setting, providing free movement possibility for the subject. Finally, 

studies with a research interest in auditory processing (for example language studies 

with children, like the one carried out in the course of this thesis, where the use of 

visual, orthographic stimuli would result in data possibly influenced by differences in 

reading competence as an additional confounding factor) might prefer to use NIRS due 

to its totally silent functioning.  

 

3.3. Experimental study 

3.3.1. Participants 

Twenty-eight early German-English bilingual children, aged between five and eight 

years (mean 6.71; SD (standard deviation) 0.71), all of them right handed (assessed by 

means of the Edinburgh Handedness Inventory, Oldfield 1971), took part in the study. 

Due to technical problems during the measurements three of them had to be excluded 

from further analysis.  

The remaining sample of 25 children - 17 boys and 8 girls - had a mean age of 6.72 

years (range 5 to 8 years, SD 0.74) at the time of the measurement. None of them had 
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any hearing disorder (assessed with a self report of the parents). All of the children had 

started learning both languages (i.e. German and English) from a very early age on 

(mean 0.8; SD 1.61) and lived in Germany at the time of the study.  

Their proficiency in German and English was first rated by the parents on a scale from 1 

to 5 (1= native, 2= very good, 3= good, 4= moderate, 5= not good) (see appendix), 

revealing a main proficiency of 1.15 for German (SD 0.35), and 1.72 in English (SD 

0.92). Second, a picture-naming test in English carried out with all participants after the 

measuring session resulted in a mean of 82 percent of correct answers (SD 0.14).  

All participants attended one of Berlin’s English-German bilingual schools at the time 

of the study.  

 

3.3.2. Stimuli and experimental design 

 

During the experiment, participants passively listened to German and English words, 

recorded by a female English-German bilingual person. These items were arranged in a 

design combining repetition priming and cross-linguistic priming: The stimulus material 

consisted of 120 different concrete, mainly monomorphemic, nouns (Woodcock 

Language Proficiency Battery-Revised (WLPB-R)), each in German and in English. 

The 120 German nouns were translation equivalents of the 120 English nouns; these 

translation word pairs were matched for frequency according to the CELEX database 

(http://celex.mpi.nl/), and cognate word pairs were excluded.  

To obtain priming within one language, 48 nouns from each language were presented 

twice – the first presentation serving as a prime, the second as target item – with one to 

three filler words from the same language in between the two presentations. Due to this 

repeated presentation the total number of presented stimulus tokens per language was 

160.  

All stimuli were grouped into 8 German and 8 English monolingual blocks, containing 

20 words each; these blocks were presented in an alternating manner, each English 

block being followed by a German one, being followed by an English one, and so on. 

Within each block there were pairs of prime and target, in German or English 

respectively, forming the repetition priming design.  

Distributed over the whole presentation, each prime and target pair occurred twice, in 

German and in English, thus providing a cross-linguistic priming design. Additionally, 
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each filler item’s translation equivalent reoccurred in another block, providing a further 

opportunity for cross-linguistic priming.  

Altogether, half of these cross-linguistic repetitions had the German item(s) presented 

first, in the other half of the cases German followed English.  

 
German block 1 English block 1 German block 2 English block 2 

glocke schiff leaf thumb blatt hase coat can 

nagel zitrone church bread dose spiegel ant sink 

hexe hund pumpkin thumb degen esel bridge rope 

ameise mantel leaf goat blatt hase coat can 

glocke schiff sock sword strumpf maedchen dog bell 

ameise mantel donkey bread dose spiegel ant sink 

spuele brot boat rabbit ast daumen mirror witch 

fenster seil sock potato strumpf kartoffel lemon kite 

ziege drachen window branch kirche kuerbis mirror bell 

spuele brot boat rabbit bruecke daumen nail girl 

 
Table 1: The first 4 blocks (80 items) from randomisation 1 of the experiment, to be read 
vertically, column by column, starting from the left. Two exemplary pairs of prime and target in 
cross-linguistic repetition 1 and 2 are printed in green; two exemplary filler words in German 
and English translation are printed in blue colour in italics.   
 

The stimuli were presented in a pseudo-randomised manner, with an inter-stimulus-

interval (ISI) varying between 2 and 4 seconds, and an inter-block-interval of 10 

seconds.  

 

3.3.3. Realization of the NIRS measurement 

 

The experimental study and the realization of the measurement were approved by the 

local ethics committee. The NIRS measurement has been accomplished with the NIRS 

System Omniat Tissue Oxymeter (ISS Inc., Champaign, IL, U.S.A.). To monitor 

oxygenation changes in the cortical areas relevant for semantic and lexical processing, 2 

detecting optodes and 4 emitting optodes were placed each on both hemispheres over 

frontal, temporal and parietal areas, with a distance of 2.5 cm between each emitter and 

detector.  
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Figure 23: Positions of emitting and detecting optodes for the NIRS measurement.  
 

Due to the NIRS methodology and optodes setup, which has been explained above, the 

de facto measured positions lie each between an emitter and a detector. 

 

 
Figure 24: Model of the NIRS optodes setup: The measured volume of tissue lies 
approximately crescent-shaped between the emitter and the detector.  
(Adapted from Obrig et al. 2003, p.9, fig.5) 
 

The used optodes configuration results in 12 measured positions, 6 over each 

hemisphere, covering fronto-temporal (positions 1 and 2), temporal (positions 3 and 4) 

and temporo-parietal (positions 5 and 6) areas.  
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Figure 25: The 12 measured positions, in fronto-temporal, temporal and temporo-parietal 

regions.  

 

Each emitter consisted of a bundle of fibre optic cables, with two ends of 1 mm 

diameter each, one of which was sending light at a wavelength of 690nm, the other one 

at a wavelength of 830nm onto the participants head and into the tissue. The detectors, 

consisting of one 3mm fibre optic cable, measured the reflected photons continuously at 

a rate of 10 Hz. 

Simultaneously to the NIRS measurement we measured also the EEG response; but the 

electrophysiological measurement, analysis and resulting data will not be discussed in 

this thesis (see Hernandez et al., in preparation).  

The NIRS optodes were fixed in a soft cloth cap (www.easycap.de), which held also the 

EEG electrodes. The cap had ready-made plastic attachments for the electrodes placed 

according to the 10-20 System (Jasper 1958). The NIRS detector fibres were placed into 

plastic rings, which were sewn into the cap to hold the annular electrodes. For the 

emitting optodes new holes were cut into the easycap in a distance of 2.5 cm from each 

detector (for exact configuration see figure 23).  

 

3.3.4. Situation and procedure of the experimental session 

 

All children were recruited from one of Berlin’s English-German bilingual primary 

schools. The measurements took place in the Charité Berlin, Campus Virchow.  
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Each session lasted approximately 2 hours, of which the measurement itself took about 

30 minutes.  

Parents gave their informed consent prior to the measurements. At the beginning of each 

session the subject’s parent(s) or legal guardian(s) were once more informed about the 

methods used, possible risks and how they were prevented. While the team started to 

prepare the cap and electrodes, parents were asked to fill out a questionnaire enquiring 

handedness, behavioural data concerning the development of the child, basic health 

issues, and communicational habits in the social sphere of the family (see appendix).  

To provide a comforting measuring situation, the child was placed in an armchair, and 

given a book or paper and pencils during the preparations of the cap. The cloth cap for 

EEG and NIRS was adjusted to the head circumference. To assure comparable electrode 

and optode positions over all participants, the positioning of the cap on the child’s head 

was determined by the 10-20 System (Jasper 1958) by adjusting the cap relatively to 

nasion1 and inion2, and preventing it from getting out of place by an additional chest 

strap. In order to diminish the obstacles in the way of the travelling near infrared light, 

the hair on the small spots designated as optode positions was gently pushed apart with 

cotton buds, and eventually the skin was prepared with electrode gel (consisting of 

sodium chloride, hydroxyethyl cellulose, propanediol, and distilled water). Optodes and 

electrodes were additionally fixed by an elastic net.  

Before starting the measurement, the child was told, that there was nothing special it 

needed to do, just try to keep as still and relaxed as possible. If the child was confident 

and calm, the measurement was started.  

While the participants listened to the stimuli, which were played through small speakers 

set up in front to the left and right of the subject, they were shown a relaxing silent 

nature film, to prevent eye motion. After half of the experiment, they were given the 

possibility to make a small pause.  

After the NIRS recording, a member of the staff carried out a vocabulary test, 

containing the previously acoustically presented items, as well as a picture naming test, 

to examine the participants’ proficiency in English (see appendix).  

Participants were given an expense allowance in the amount of 30€ for the participation 

in the study.  

                                                
1 Intersection of the frontal bone with the nasal bones of the human skull. Visible in the face as a 
distinctly depressed area directly between the eyes, just superior to the bridge of the nose.  
2 Most prominent protrusion of the occipital bone, at the posterioinferior, thus lower rear, part of the skull. 
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3.3.5. Data analysis 

3.3.5.1. Artefact correction 

 

Artefacts are undesired alterations in the signal; they are undesired, because they did not 

occur due to the physiological processes that one wants to measure, but because of 

accompanying physiological reactions, movement, or technical interferences. The 

amount of these artefacts in the measured data is also called noise.  

In the case of NIRS, artefacts arise due to the heartbeat, breath, and movement of the 

subject during the measurement.   

Of course, an ideal setup, study design and measurement procedure can minimize 

artefacts to a certain extent. Preventive steps taken in our study were, as described 

above, technical aids like the chest strap and the elastic net, and precaution in the 

procedure like a relaxing position of the participants, the instruction to hold still, a silent 

measuring environment and the silent movie which served to prevent eye movement 

(see chapter 3.3.4.). But, especially in studies with children, artefacts are still inevitable. 

So it is necessary to get rid of the disturbing artefacts in the signal, or in other words, to 

improve “signal-to-noise ratio”.   

Signal changes induced by the concentration changes of haemoglobin after the 

presentation of a word, and thus really depicting an activation change that happened due 

to the processing of a stimulus, are known to fluctuate only within a range of few 

percent of intensity. Thus, signal changes outside this assumed relevant frequency 

window were removed: By filtering the data with both a “high-pass filter” and a “low-

pass filter”, only oscillations faster than 0.04 Hz and slower than 0.3 Hz were included 

in further analysis. This step improves the “signal-to-noise ratio”.  

Furthermore, the signal recorded during the break in the experiment, which in most 

cases lasted a few minutes, was cut out, since in that time no stimuli were presented.  

 

As described before, changes in both oxygenated and deoxygenated haemoglobin have 

been measured by NIRS. Theoretically, their simultaneous occurrence, and the resulting 

focal hyperoxygenation, constitute the oxygenation response typically expected over an 

activated cortical area. Still, the decrease in [deoxy-Hb] and the increase in [oxy-Hb] 



58 

are measured separately by means of the two different wavelengths, so that certain 

dissociations can occur. Other vascular-based methods, for example in fMRI, a method 

better explored and longer in use than NIRS, use the [deoxy-Hb] signal, whose 

deactivation is correlated with BOLD-contrast3, as an indicator for cortical activation. 

So in accordance with others, like Obrig et al. (2003), also for NIRS the [deoxy-Hb] 

signal was chosen as a more reliable measure for cortical activation, and thus only 

[deoxy-Hb] data were subjected to further analysis.  

 

3.3.5.2. Statistic analysis 

 

Statistical analysis of the received data consisted of different analyses and calculations. 

The aim was to determine the influence of the stimulus factors ‘language’ (German vs. 

English), ‘repetition’ (1st vs. 2nd cross-linguistic repetition) or ‘condition’ (prime vs. 

target) on the elicited neural activation level, measured in concentration changes of 

[deoxy-Hb], which here constitute the dependent variable.  

 

By convolving the actual signals for different stimulus conditions with the theoretical 

model of the haemodynamic response function (see chapter 3.2.1.1.), independent 

predictors for the time courses of the signal for the different conditions were 

determined. These show the theoretically expected time course for every condition. 

Beta-values are estimates for the accordance of the measured signal with the modelled 

predictor; for each condition they are thus proportional to the concentration changes of 

[deoxy-Hb] (Goebel et al. 2005).  
 

To assess the influence of the stimulus factors on the cortical activation, a repeated 

measures 2*2*2 ANOVA (Analysis of Variance) with the factors ‘language’ (German 

vs. English), ‘repetition’ (1st vs. 2nd cross-linguistic repetition) and ‘condition’ (prime 

vs. target) was conducted for all positions for [deoxy-Hb] separately.  

Significance values (p-value) were computed with Greenhouse-Geisser correction.  

                                                
3 Blood-oxygenation-level-dependent (BOLD), a measure used in magnetic resonance studies, measuring 
neural activity.  
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In case the ANOVA showed a significant main effect or a significant two-way or three-

way interaction (p ≤ 0.05), paired t-tests for the relevant single optode positions were 

computed, comparing the relevant conditions.   

 

For the two-levelled factor ‘condition’ there is a clear assumption, that items 

characterized as targets should elicit a lower activation than prime items. As described 

above, this expected difference in processing is due to the so-called priming effect. 

Therefore in evaluating the factor condition a directional hypothesis was used, resulting 

in the application of a one-tailed t-Test for effects affected by the factor condition. All 

other T-statistics were analyzed using two-tailed t-Test.  

 

By pronouncing a directional hypothesis, the research question, addressed to measured 

data with the factor ‘condition’, is restricted to the question, if prime items elicit a 

bigger activation than target items. Data showing other effects, are considered not 

relevant for the research question. Since all four rear positions of NIRS (temporo-

parietal positions 5 and 6 for both hemispheres) showed inverse main effects of 

condition, and no other significant effects or interactions, these positions will not be 

displayed in the results.  
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4. Results 
 

Figure 25 shows the actual location of the measured positions. In the diagrams depicting 

the results, the time courses or beta values of the signal at the 12 measured positions 

will be arranged in a simplified grid (see figure 26).  

 

 
Figure 26 : The approximate, simplified measured positions, numbered and arranged in a grid, 
as they will appear in the following figures, displaying the obtained effects. The bilateral 
temporo-parietal position 5 and 6, coloured in grey, will not be included into further analysis. 

4.1. Stimulation vs. silence 
 

The mean time courses of the NIRS signal of all subjects during all stimuli were 

compared to the NIRS signal during phases of silence, for each position. As expected, 

the time courses of concentration changes show a typical haemodynamic response 

pattern: While the concentration of  [oxy-Hb] increases shortly after stimulus onset 

(time 0 on the x-axis in fig. 20), [deoxy-Hb] shows a simultaneous decrease in 

concentration. This indicates the typical physiological response rooted in the cortical 

processing of the presented stimuli.  
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Figure 27: Grand Average plot of the time courses for mean of all stimuli versus rest, in [oxy-
Hb] and [deoxy-Hb].  
 

4.2. ANOVA and t-test analyses 
 

The three-factorial ANOVA, with the factors language, repetition and condition, with 

repeated measures verifies, if the variance of the dependent variable – thus, the 

concentration changes of haemoglobin – can be ascribed to main effects of one single 

factor, or of an interaction between the factors. Paired t-tests calculate the specific 

orientation of the significant contrasts, found before in the ANOVA.   

 

4.2.1. Main effect of condition (prime vs. target) 
 

The ANOVA with the beta values of the [deoxy-Hb] signal revealed a marginally 

significant (p≤0.1) main effect of condition in the temporal position DL3 for the left 

hemisphere; for the right hemisphere the ANOVA became marginally significant in 

fronto-temporal positions DR1 and DR2, and in temporal position DR3 (for F-values 

and p-values see table 4).  
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The t-tests, comparing the means of the conditions 

prime and target, should verify the hypothesis, if the 

processing of target items elicits less activation than the 

processing of prime items. Indeed, paired t-tests 

revealed a significantly higher activation for prime than 

for target items over all tested positions (for T-values 

and significance values see table 2). 
 

prime vs. target 
hemisphere position 

T-value p-value orientation 
df 

left DL3 -1.81 0.04 * prime > target 1 (24) 

DR1 -1.89 0.04 * prime > target 1 (24) 

DR2 -1.78 0.04 * prime > target 1 (24) right 

DR3 -2.01 0.03 * prime > target 1 (24) 

* ... p ≤ 0.05  = significant 
° … p ≤ 0.10 = marginally significant 
 
Table 2: Paired t-tests comparing the means of the conditions prime and target. 
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Figure 29: Time courses for fronto-temporal(1, 2) and temporal(3, 4) positions: prime versus 
target.  
 

4.2.2. Main effect of language (German vs. English) 
 

Interestingly, a highly significant main effect of 

language (German vs. English) (p=0.001) was found for 

temporal position DL3 in the left hemisphere, 

accompanied by a marginally significant main effect of 

language for the same position in the right hemisphere. 

This effect indicates, that the processing of German 

versus English items differed concerning the required 

activation level. To find out, which language elicited 

higher activation intensity, progressive t-tests for 

positions DL3 and DR3 were computed.  
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The t-test computed bilaterally for the temporal positions DL3 and DR3 showed a 

higher activation for German than for English stimuli (for T-values and significance 

values see table 3).  
 

German vs. English 
hemisphere position 

T-value p-value orientation 
df 

left DL3 -3.84 0.00 * German > English 1 (24) 

right DR3 -1.74 0.09 ° German > English 1 (24) 

* ... p ≤0.05  = significant 
° … p ≤ 0.10 = marginally significant 
 
Table 3: Paired t-tests comparing the means of the conditions German and English. 
 

 
Figure 31: Time courses and beta-values for positions DL3 and DR3: German vs. English.     
 

4.2.3. Interaction of language and condition 
 

Significant differences could also detected for the interaction of the factors language 

(German vs. English) and condition (prime vs. target): bilateral activation in fronto-

temporal positions DL2 and DR2 showed significance. Again, the specific meaning of 

this interaction was subsequently resolved using paired t-tests.  
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* ... p ≤0.05  = significant 
° … p ≤ 0.10 = marginally significant 
 
Table 4: ANOVA calculating the main effect of the factor condition (prime vs. target), the main 
effect of the factor language (German vs. English), and the interaction of the two factors 
language and condition. 
 

To test the interaction of the factors language and condition in positions DL2 and DR2, 

four paired t-tests were calculated (see table 5): The first compared German to English 

items within the condition prime, the second did the same within the condition target. 

Furthermore, prime versus target was tested for all English items, and for all German 

items.  

The t-test comparing German with English target items, thus the influence of the factor 

language on the condition target, showed a marginally significantly higher activation for 

German targets than for English targets in position DL2. This result supports the idea 

suggested by the effect in positions DL3 and DR3, showing significantly higher 

activation for German items in general than for English ones.  

 

main effect of condition main effect of language interaction lang.*cond. hemis-

phere 
position 

F-value p-value F-value p-value F-value p-value 
df 

DL1 0.97 0.34 0.08 0.78 2.64 0.12 1 (24) 

DL2 1.15 0.30 0.01 0.91 4.93 0.04 * 1 (24) 

DL3 3.28 0.08 ° 14.75 0.00 * 0.16 0.69 1 (24) 
left 

DL4 1.87 0.18 1.89 0.18 0.38 0.54 1 (24) 

DR1 3.58 0.07 ° 0.21 0.65 2.36 0.14 1 (24) 

DR2 3.16 0.09 ° 0.61 0.44 4.12 0.05 * 1 (24) 

DR3 4.04 0.06 ° 3.04 0.09 ° 1.23 0.28 1 (24) 
right 

DR4 0.04 0.85 0.32 0.57 0.49 0.49 1 (24) 
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More importantly, the t-test calculating English prime versus target items showed a 

strong significance for both tested positions, revealing a stronger difference between 

prime and target items for the English language, thus a stronger priming effect in 

English! The implications and possible explanations for this interesting result will be 

discussed in the next chapter.  
 

Germ. prime  

vs. 

 Engl. prime 

Germ. target  

vs. 

 Engl. target 

Engl. prime  

vs. 

 Engl. target 

Germ. prime  

vs. 

 Germ. target 

hem
isphere 

position 

T-value p-value T-value p-value T-value p-value T-value p-value 

df 

left DL2 0.85 0.20 0.66 0.26 -1.98 0.03 * 0.65 0.26 1 (24) 

right DR2 0.18 0.43 -1.56 0.07 ° -2.29 0.02 * 0.38 0.35 1 (24) 

* ... p ≤ 0.05  = significant 
° … p ≤ 0.10 = marginally significant 
 
Table 5: Paired t-tests calculating the interaction of the factors language and condition. 
 

 
Figure 33: Time courses and beta-values for positions DL2 and DR2: Engl. prime vs. Engl. 
target.    
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4.2.4. Main effect of repetition 
 

A marginally significant main effect of repetition (repetition 1 vs. repetition 2) was 

found bilaterally in fronto-temporal position DL2 for the left and DR2 for the right 

hemisphere.   

 

The t-test comparing the means of all items 

presented as cross-linguistic repetition 1 versus 

all items presented as cross-linguistic repetition 

2 revealed a marginally significantly higher 

activation for repetition 1 items, in fronto-

temporal positions; this data possibly suggests, 

that, even though the amount of filler words 

between the corresponding repetition 1 and 

repetition 2 items was much bigger than the lags 

between prime and target (which were 1 to 3 

filler words), the experimental design could have elicited a certain cross linguistic 

priming effect.  
 

repetition 1 vs. repetition 2 
hemisphere position 

T-value p-value orientation 
df 

left DL2 -1.936 0.07 ° repetition 1 > repetition 2 1 (24) 

right DR2 -1.713 0.10 ° repetition 1 > repetition 2 1 (24) 

* ... p ≤0.05  = significant 
° … p ≤ 0.10 = marginally significant 
 
Table 6: t-test comparing the means of all items presented as cross-linguistic repetition 1 versus 
all items presented as cross-linguistic repetition 2. 
 

4.2.5. Interaction of language and repetition 
 

Finally, the interaction of language (German vs. English) and repetition (repetition 1 vs. 

repetition 2) gained significance only in right-hemispheric position DR4.  
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main effect of repetition interaction language * repetition 
hemisphere position 

F-value p-value F-value p-value 
df 

DL1 2.14 0.16 0.87 0.36 1 (24) 

DL2 3.75 0.07 ° 2.16 0.15 1 (24) 

DL3 0.07 0.79 0.01 0.94 1 (24) 
left 

DL4 0.50 0.49 1.97 0.17 1 (24) 

DR1 1.98 0.17 0.02 0.90 1 (24) 

DR2 2.94 0.10 ° 0.66 0.43 1 (24) 

DR3 0.03 0.87 1.69 0.21 1 (24) 
right 

DR4 1.21 0.28 9.35 0.01 * 1 (24) 

* ... p ≤ 0.05  = significant 
° … p ≤ 0.10 = marginally significant 
 
Table 7: ANOVA calculating the main effect of the factor repetition (cross-linguistic repetition 
1 versus cross-linguistic repetition 2), and the interaction of the factors language (German vs. 
English) and repetition. 
 

Of the four paired t-tests conducted to specify the interaction language - condition, only 

one gained significance: In right-hemispheric temporal position DR4 significantly 

higher activation for German repetition 1 items in comparison to German repetition 2 

items also seems to support a possible cross-linguistic priming effect in the L2-L1 

direction.   
 

germ.1 

vs. 

germ.2 

engl.1 

vs. 

engl.2 

germ.1 

vs. 

engl.1 

germ.2 

vs. 

engl2 

hem
isphere 

position 

T-value p-value T-value p-value T-value p-value T-value p-value 

df 

right DR4 -2.59 0.02 * 1.73 0.10 ° -1.51 0.14 0.73 0.47 1 (24) 

* ... p ≤ 0.05  = significant 
° … p ≤ 0.10 = marginally significant 
 
Table 8: Paired t-tests calculating the interaction of the factors language and repetition. 
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5. Discussion 
 

5.1. Critique of the stimulus material 
 

The choice of stimulus material as part of the experimental design has a major influence 

on the results of an experimental study, and thus it is important to review the influence 

of certain characteristics or weaknesses of the stimulus design on the discussed findings.  

While the repetition priming word-pairs were presented with a controlled lag of one to 

three filler words between prime and target item, the cross-linguistic priming word-pairs 

were presented with strongly variable and partly very long lags, which moreover were 

randomised but not encoded differentially according to their length, and thus cross-

linguistic priming over different lag sizes could not be evaluated separately. In some 

studies cross-linguistic priming was found also in priming designs containing 

comparatively long lags, but in other studies cross-linguistic priming reached 

significance only in a design condition presenting the prime immediately before the 

target item. Thus it cannot be excluded, that, had we used smaller lags for the cross-

linguistic prime-target word-pairs, cross-linguistic priming would have reached 

significance also in the forward-priming condition. Nevertheless, backward cross-

linguistic priming obviously proved to be the stronger and more robust effect in the 

experiment.  

 

Another critical point in the interpretation of the processing of our stimuli in general, 

and the cross-linguistic priming design in particular, is that the experimental design did 

not demand any specific behavioural response task from the subjects upon hearing the 

stimuli. As described in chapter 3.3.4., the subjects were told they would hear words 

from speakers, and were instructed to sit comfortably and watch the screen. This choice 

of experimental setting was taken due to our subjects’ young age (mean age of 6,72 

years): A linguistic decision task requiring explicit knowledge of a linguistic meta-level, 

like a lexical decision or semantic categorisation task, would have been not only 

emotionally intimidating for the children, but would probably have overstrained their 

attentional and intellectual capacities. But the lack of on-line behavioural instruction 
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controlling the processing depth of the stimuli leaves us with speculations on which 

levels of information were actually activated – Did the subjects access lexical level 

information (as would be granted for in the case of the subjects performing a lexical 

decision task)? Did they activate semantic information from their conceptual level (as 

would be requested in a semantic categorisation task)? The typical haemodynamic 

responses found in all measured positions, and the widely distributed main effect of 

condition (priming effect irrespectively of the language) clearly show, that some 

specific word information has been retrieved. What the other results of the study suggest 

concerning the processing depth and pathways will be discussed below.  

 

5.2. Evaluation of the hypotheses 
 

The overall mean of measured oxygenation changes, thus cortical activation, during 

stimulus presentation versus phases of silence showed the typical haemodynamic 

response pattern with [oxy-Hb] increasing shortly after stimulus onset and [deoxy-Hb] 

showing a simultaneous decrease in concentration in all fronto-temporal and temporal 

positions. According to the hypothesis, this shows, that the presented words have indeed 

been processed by the subjects.  

 

The t-tests contrasting the activity during processing of prime versus target items, 

regardless of the specific language, shows a clear tendency towards reduced activity for 

target items in two bilateral temporal positions as well as in right-hemispheric fronto-

temporal positions; thus the hypothesized within-language repetition priming effect 

occurred faintly but steadily for all stimuli.  

 

5.3. Discussion of explorative questions 

5.3.1. Higher activation for German than for English items in 
left temporal position 

 

As described in chapter 3.3.1., all subjects were early bilinguals, thus they started 

learning both language at an early age. Nevertheless, the fact that all of them lived in 

Berlin at the time of the study – and most of them had been doing so for all or the 
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majority of their lifetime – results in a clearly higher amount of exposure to the German 

language in comparison to English, especially in the modality of passive listening. This 

difference between the languages is reflected also by the behavioural data on language 

proficiency: While, in the parents’ ratings, the children’s proficiency in German scored 

1.15 (on a scale from 1=native till 5=not good) (SD 0.35), their proficiency in English 

reached only a mean of 1.72 (SD 0.92). Thus, in spite of the subjects being early 

bilinguals, German should be considered as the dominant language, and English as the 

less dominant one.  

 

On this basis the main effect of language, showing significantly higher activation for 

German items in comparison to English items (highly significant effect in left temporal, 

marginally significant effect in right temporal position), means a higher activation 

during the processing of the dominant language, mainly in left temporal position. These 

findings coincide with the results of several studies on lexical-semantic processing in 

bilinguals, reporting a highly distinct area in the left hemisphere specialized on L1 

processing: Perani et al. (1996) assessed bilinguals’ cortical activation during passive 

listening to words and sentences in Italian (the subjects’ L1) and English (L2), and 

found significantly more activation for Italian language items over a large set of areas, 

including the left and right temporal poles. In an imaging study Dehaene et al. (1997) 

measured French-English bilinguals’ cortical activity, also during a passive listening 

task; their findings correspond closely with our results, showing an area in the left 

temporal lobe, clustering along the left superior temporal sulcus as well as superior and 

middle temporal gyri till the temporal pole, active specifically - and very consistently 

over all subjects - during processing of French, the subjects’ dominant, native language.  

The lack of a preferentially activated region for the less dominant language, gaining 

significance over all subjects, might be due to a higher inter-individual variability for 

the neurofunctional architecture of the less dominant language. Indeed, by evaluating 

activity observed in the single subjects, Dehaene et al. found that the less dominant 

language activated a highly variable network of areas, none of which gained 

significance over subjects. Such neurofunctional variability has often been attributed to 

the influence of age of acquisition; the measured physiological difference between 

processing of the two language in our study emphasizes the importance of relative 

language proficiency as a factor influencing the neurofunctional setup, even if age of 
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acquisition does not significantly differ across a bilingual’s languages – a fact also 

emphasized by both above mentioned studies.  

Furthermore, considering the position of the measured higher activation for German in 

left temporal position, a region repeatedly identified as crucial for semantic processing, 

suggests a qualitative analysis of the pathways underlying German and English item 

processing: As discussed at the beginning of this chapter, English acts as the less 

dominant language for our subjects, because they have been exposed to English 

language input less frequently in their lives than to German input. Speaking in terms of  

the (bilingual) interactive activation framework (see chapter 2.3.2.2.), English items 

have a lower (subjective) word frequency for our subjects, resulting in a lower resting-

level activation, than German items; in this respect L2 words, in comparison to L1 

words, in a bilingual, behave similarly to low-frequency words, in comparison to high-

frequency words, within one language (Thomas et al. 2009), in that they need more 

excitatory resources in order to reach recognition threshold and fully process the 

associated information. This surplus of needed activation, especially for higher level 

information, for items from the less dominant language could be explained in terms of 

the re-revised hierarchical model (RRHM, see chapter 2.3.2.1.) by their access of 

conceptual information preferentially by an indirect, lexically mediated pathway,  

through the dominant language’s lexicon. Keeping in mind the undemanding 

experimental context of the word processing, due to lack of a response task instruction 

controlling processing depth, discussed at the beginning of this chapter, the fact that 

English items elicited less activation in our experiment suggests that the English words 

could have been processed less deeply by our subjects, than the German ones. 

Considering that it needs more cortical activation for less dominant language words to 

process higher level information, the low amount of attention on the auditory stimuli in 

our experiment might not have recruited sufficient resources to retrieve all form, lexical 

and semantic information. It can be concluded, that while in the processing of German 

words information from lexical as well as conceptual level has been retrieved, in the 

processing of English words mainly lexical level information got activated, while 

significantly less conceptual information was recruited by the subjects, resulting in less 

measured activation for English items mainly in left temporal position. This 

interpretation gets support from studies investigating the neuroanatomical areas 

responsible for semantic processing: Demonet et al. (1992) conducted a study to isolate 

the functional anatomy of semantic processing in a passive listening task with semantic 
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categorization, and found highly significant and differentiated activation in the left 

middle and inferior temporal gyri. Price et al. (1997) also identified the left middle 

temporal cortex specifically with semantic processing. It should also be mentioned, that 

both Perani et al. 1996 and Dehaene et al. 1997, who found a neurofunctional 

distribution for processing of dominant and less dominant language similar to our 

results, used passive listening tasks without requirement of an immediate response task, 

and hence a different processing depth for the two languages could have influenced 

their experimental data analogically to our experiment.  

 

5.3.2. Within-language repetition priming in English items in 
fronto-temporal positions 

 

The statistical analysis comparing German to English items within the conditions prime 

and target revealed a bigger within-language repetition priming effect for English, the 

less dominant language. This effect occurred with high significance in left and right 

superior fronto temporal positions. To account for this effect we will again refer to the 

(bilingual) interactive activation framework, which indeed predicts an interaction of 

word frequency and repetition priming effects: Low-frequency words, while initially 

needing more excitatory input to reach recognition threshold, gain a significantly higher 

processing advantage through repetition, than high-frequency words, having a higher 

resting-level activation anyway, do! Several ERP studies have confirmed this prediction 

for high- and low-frequency words of one language (Rugg 1990), but the paradigm has 

also been used to generate predictions for bilingual priming studies (e.g. Alvarez et al. 

2003), and can thus explain the greater within-language priming effect, thus stronger 

benefit from repetition, in English items in our study.  

We have to bear in mind, that, since we assume the English items in general to have 

activated mainly lower, lexical level information, the reduced activation through 

repetition priming can obviously concern only these processes. Taking into account the 

localisation of the within-language priming effect in bilateral fronto-temporal regions 

this is indeed probable: Several studies have found the inferior frontal cortex, more 

specifically the inferior frontal and inferior precentral sulcus, to play a role in lexical 

processing during presentation of word-lists (Friederici et al. 2000a), morphosyntactic 

processing of single words (Friederici et al. 2000b), or retrieval of segmental 
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information (Hickok et al. 2000). In addition, some lower-level processing facilitation 

through priming could stem also from Broca’s area, lying in the inferior frontal gyrus, 

and being known to be involved in phonological processing (Demonet et al. 1992; Price 

et al. 1997).  

 

5.3.3. Backward cross-linguistic translation priming from L2 to 
L1 in right temporal position 

 

The interaction of the factors language and repetition revealed a facilitation in the 

processing of German items, if they were preceded by their English translation. To 

interpret this cross-linguistic priming effect in the L2-L1 direction, also called backward 

translation priming effect, we will again draw upon the RRHM, an approach also 

applied by Alvarez et al. 2003 in formulating the hypotheses for their translation 

priming paradigm. According to the RRHM both the dominant and less dominant 

language have a shared conceptual store, but are represented separately on the lexical 

level. While both languages’ lexical entries have a connection to the concepts as well as 

to the other language’s lexical entries, the L1 lexicon has a stronger connection directly 

to the conceptual store, while the L2 lexicon has a stronger connection to the L1 

lexicon, activating the respective L1 translation equivalents. The absence of forward 

translation priming and the strong measured backward translation priming effect in our 

study match the predictions of this configuration of functional interaction in bilingual 

language processing: Assuming that L2 words activated mainly lexical level 

information, in the case of forward translation priming, the concepts pre-activated by 

the L1 primes did not help the processing of the subsequent L2 translation equivalent, 

because the L2 word accessed only lexical information, and not the concept level. On 

the other hand, and independently of processing depth, if an L2 prime automatically 

activates its L1 translation equivalent, the observed priming effect in the processing of 

the subsequent L1 target item is similar to a within-language L1 repetition priming 

effect! In fact, a study conducted by Menenti et al. (2006) confirmed the strong lexical 

connection from L2 to L1 items, also in highly proficient bilinguals: The subjects were 

presented L2 word pairs, in which the L1 translation of the first presented L2 word 

rhymed with the second L2 word. Thus, only if the L2 prime item automatically 

activated its L1 translation equivalent, the phonological form priming effect could be 
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observed. That a priming effect was in fact found by Menenti et al. suggests, that even 

high proficient bilinguals make use of their direct lexical connection to lexical 

representations of their dominant language when processing words in their less 

dominant language.  

 

6. Conclusion 
 

The thorough discussion of the obtained results, in the light of the many influencing 

factors of the study, has shown a responsible interpretation of the neurofunctional 

processes elicited by the experimental stimuli, and drawn implications for a general 

understanding of the bilingual lexical-semantic interface. The differential activation for 

German and English stimuli has shown, that different amount of exposure to the two 

languages, and the resulting different proficiency level, has an influence on the 

neurophysiological architecture of the bilingual brain, even for equal age of acquisition 

for both languages. Speaking of the physiology of the cortical substrate underlying 

language processing in the different languages, it seems that while the dominant 

language is represented in similar cortical regions over all tested subjects, the cortical 

regions activated by the less dominant language possibly displayed a high inter-

individual variability, reflecting the differences in each subject’s communication 

experience and behaviour in that less dominant language, which is not determined by 

society or other institutional factors common to all children. Speaking of the functional 

pathways underlying language processing, the obtained priming effects indicate that 

even early bilinguals rely more on a lexically mediated pathway in order to access 

meaning in their less dominant language, a conclusion which supports the qualitative 

prediction of the RRHM. Also, in order to access not only lexical level information, but 

also the semantic level of less dominant language items, more excitatory activation is 

needed; this effect matches the quantitative predictions of the BIA+  model (see chapter 

2.3.2.2.) for less frequent words, like words from the less dominant language.  

 

For further research on the lexical-semantic interface in bilingual children it might be 

useful to find an experimental setting which allows to distinguish more clearly between 

lexical and semantic neurofunctional processes. Speaking of methodological factors, it 

needs to be considered that near infrared spectroscopy is a very non-invasive and 
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convenient measuring method for children, but, since the measured activation changes 

are calculated indirectly on the basis of haemodynamic concentration changes, which 

occur with a delay of several seconds after stimulus onset, it cannot distinguish between 

different levels of input processing, like phonological, lexical and semantic processes, 

which occur in a course of milliseconds. Speaking about the stimulus design, a more 

accurate distinction between lexical and semantic processes could also be achieved 

through the use of response tasks, like lexical decision or semantic categorization, 

controlling the depth of processing of the speech input.  
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8. Indices 

8.1. List of figures 
 

Figure 1:  The so-called Semiotic Triangle, also called Semantic Triangle.  p.14 
From “The Meaning of Meaning. A Study of the Influence of 
Language upon Thought and of the Science of Symbolism” by 
Ogden (Ogden et al. 1927, p.11) 

 
 
Figure 2:  Flow-diagram for the Logogen Model.     p.16 

(From Morton 1969, p.166, fig.1) 
 
Figure 3: Logogen model for the processing of monomorphemic words p.18 

(after Patterson, 1988). APC = auditory-phonological 
conversion; GPC = grapheme-phoneme-correspondence; 
PGC = phoneme-grapheme-correspondence.  
(From De Bleser et al. 1997, p344, fig.1) 

 
Figure 4:  Detail from the Logogen model for the processing of   p.19 

monomorphemic words (after Patterson, 1988):  
Components responsible for phonological word 
recognition. 
(From De Bleser et al. 1997, p344, fig.1) 

 
Figure 5: Expanded lexical system for the processing of polymorphemic  p.19 

words in the logogen model (after De Bleser & Bayer, 
1988)  
(From De Bleser et al. 1997, p.353, fig.2) 

 
Figure 6:  The four main processing levels of the interactive activation  p.21 

model, accounting for visual and auditory word recognition.  
(From McClelland et al. 1981, p. 378, fig.1)  

 
Figure 7:  The concept mediation model, as proposed by Potter et al. 1984 p.24 
 
Figure 8:  The word association model, as proposed by Potter et al. 1984 p.24 
 
Figure 9:  The revised hierarchical model, as proposed by Kroll and   p.25 

Stewart 1994 
 
Figure 10:  The re-revised hierarchical model, as proposed by Heredia  p.25 

1996; 1997 
 
Figure 11:  The bilingual interactive activation (BIA) model word   p.27 

recognition. The arrow heads indicate excitatory 
connections, the black circle heads indicate inhibitory 
connections. 
(From Dijkstra et al. 2002, p.117, fig.1) 
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Figure 12:  The BIA+ model for phonological and orthographical   p.28 

word recognition. Lexical level processing is divided in a 
sublexical and a lexical level.  
(From Dijkstra et al. 2002, p.182, fig.2) 

 
Figure 13:  The five main regions of the cortex.     p.29 

From 
http://www.deryckthake.com/psychimages/cerebral_cortex.jpg
, on 20.8.2010. 

 
Figure 14:  The Brodmann areas, a numbered categorization of brain   p.30 

regions by K. Brodmann. 
From http://en.wikipedia.org/wiki/File:Gray726-Brodman.png, 
on 20.08.2010. 

 
Figure 15:  The dual system hypothesis      p.35 
 
Figure 16:  Extended system hypothesis      p.36 
 
Figure 17:  The tripartite system hypothesis     p.36 
 
Figure 18:  The subsystem hypothesis      p.37 
 
Figure 19:  Model of the haemodynamic response function (HRF)  p.47 

From 
http://www.math.mcgill.ca/keith/BICstat/fighrf0.jpg, 
27.02.2010. 

 
Figure 20:  Time course of concentration changes in [oxy-Hb] and   p.48 

[deoxy-Hb] throughout a fingertapping task (duration 2 
seconds, see red bar). 
(From Zhang et al. 2005, p.4634, fig.2) 

 
Figure 21:  Light with an intensity I0 is being emitted into the tissue,   p.49 

scattered and absorbed by the skin, skull, etc., and eventually 
detected by the detector with an intensity Ix. d stands for the so 
called inter-optode distance, which is at the same time the 
assumed maximal depth of the travelling photons.  
(From Obrig et al. 2003, p.9, fig.5) 

 
Figure 22:  The inter-optode distance corresponds to the depth of the   p.50 

travel route of the detected photons: The bigger the inter-
optode distance, the deeper the assumed course of the 
photons. (left: 3 cm; right: 0,5 cm)  
(From Obrig 2002, p.18, fig.6b) 

 
Figure 23:  Positions of emitting and detecting optodes for the NIRS   p.54 

measurement. 
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Figure 24:  Model of the NIRS optodes setup: The measured volume   p.54 
of tissue lies approximately crescent-shaped between the 
emitter and the detector.  
(Adapted from Obrig et al. 2003, p.9, fig.5) 

 
Figure 25:  The 12 measured positions, in fronto-temporal, temporal   p.55 

and temporo-parietal regions. 
 
Figure 26:  The approximate, simplified measured positions,    p.60 

numbered and arranged in a grid, as they will appear in the 
following figures, displaying the obtained effects. The bilateral 
temporo-parietal position 5 and 6, coloured in grey, will not be 
included into further analysis. 

 
Figure 27:  Grand Average plot of the time courses for mean of all   p.61 

stimuli versus rest, in [oxy-Hb] and [deoxy-Hb]. 
 
Figure 28: The ANOVA revealed a marginally significant main effect  p.61 

of condition in positions DL3, DR1, DR2, and DR3. 
 
Figure 29:  Time courses for fronto-temporal(1, 2) and temporal(3, 4)   p.61 

positions: prime versus target. p.62 
 
Figure 30: The ANOVA revealed a significant main effect of    p.63 

language in position DL3, and a marginally significant main 
effect of language in position DR3. 

 
Figure 31:  Time courses and beta-values for positions DL3 and   p.64 

DR3: German vs. English. 
 
Figure 32: The ANOVA calculating the interaction of the factors   p.64 

language and condition turned significant in position DL2, and 
marginally significant in position DR2. 

 
Figure 33:  Time courses and beta-values for positions DL2 and   p.66 

DR2: Engl. prime vs. Engl. target. 
 
Figure 34: The ANOVA revealed a marginally significant main effect  p.66 

of repetition in positions DL2 and DR2; the interaction of 
language and repetition turned significant in position DR4.  
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8.2. List of tables 
 

 
Table 1:  The first 4 blocks (80 items) from randomisation 1 of the   p.53 

experiment, to be read vertically, column by column, 
starting from the left. Two exemplary pairs of prime and 
target in cross-linguistic repetition 1 and 2 are printed in 
green; two exemplary filler words in German and 
English translation are printed in blue colour in italics. 

 
Table 2:  Paired t-tests comparing the means of the conditions prime  p.62 

and target. 
 
Table 3:  Paired t-tests comparing the means of the conditions German  p.63 

and English. 
 
Table 4:  ANOVA calculating the main effect of the factor condition  p.65 

(prime vs. target), the main effect of the factor language 
(German vs. English), and the interaction of the two 
factors language and condition. 

 
Table 5:  Paired t-tests calculating the interaction of the factors   p.65 

language and condition. 
 
Table 6:  t-test comparing the means of all items presented as   p.67 

cross-linguistic repetition 1 versus all items presented as 
cross-linguistic repetition 2.  

 
Table 7:  ANOVA calculating the main effect of the factor repetition  p.67 

(cross-linguistic repetition 1 versus cross-linguistic 
repetition 2), and the interaction of the factors language 
(German vs. English) and repetition.  

 
Table 8:  Paired t-tests calculating the interaction of the factors   p.68 

language and repetition. 
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8.3. List of abbreviations 
 

[deoxy-Hb]   deoxygenated haemoglobin 

[oxy-Hb]    oxygenated haemoglobin 

[tot-Hb]    total haemoglobin 

ANOVA   analysis of variance 

BA    Brodmann area 

BIA   bilingual interactive activation 

BIA+   bilingual interactive activation plus 

BOLD    blood-oxygenation-level-dependent  

cm   centimeter 

EEG   electroencephalography 

ELAN    early left anterior negativity 

fig.    figure 

fMRI    functional magnetic resonance imaging 

HRF    haemodynamic response function 

Hz   hertz 

IAM    interactive activation model 

ISI    inter-stimulus-interval 

L1   first language 

L2   second language 

MEG    magnetoencephalography 

mm   millimeter 

NIRS    near infrared spectroscopy 

nm   nanometer 

PET   positron emission tomography 

rCBF    regional cerebral blood flow 

RRHM   re-revised hierarchical model 

s   second 

SD   standard deviation 

vs.    versus 

WLPB-R    Woodcock Language Proficiency Battery-Revised 
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9.4. Language test  
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9.5. Picture naming test 
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9.6. NIRS measurement record 
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9.7. Receipt for expense allowance 
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9.8. Flyer 
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9.9. Informative handout 
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