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Abstract

At the present day, imaging methods are very important in medical diagnos-
tics. A new promising method is Thermoacoustic Tomography, which is a
hybrid imaging technique that is capable of imaging light absorption proper-
ties of biological objects. The main emphasis of this thesis is the derivation of
reconstruction formulas that can be used to convert data, collected by circular
integrating detectors, into an image of the desired absorbtion properties. The
derived formulas lead to fast and stable reconstruction algorithms. Further,
we present numerical results from simulated data that show the robustness
of our algorithms.

Zusammenfassung

Heutzutage sind bildgebende Verfahren sehr wichtig für die medizinische Di-
agnostik. Ein neues vielversprechendes Verfahren ist die Thermoakustische
Tomographie, die in der Lage ist, Lichtabsorbtionseigenschaften biologischer
Objekte darzustellen. Der Schwerpunkt dieser Doktorarbeit liegt in der Her-
leitung von Rekonstruktionsformeln, die dazu benützt werden können Daten,
die mit zirkulär integrierenden Detektoren gesammelt wurden, in ein Bild
der gewünschten Absorptionseigenschaften umzurechen. Die hergeleiteten
Formeln führen zu stabilen und schnellen Rekonstruktionsalgorithmen. Im
weiteren presentieren wir numerische Resultate die zeigen, dass unsere Algo-
rithmen robust und stabil sind.

Introduction

Thermoacoustic tomography (TAT), which is also known as opto- or pho-
toacoustic tomography, is a new non–invasive imaging modality with various
applications in medicine and biology. This imaging technique utilizes the
fact that an object that it is illuminated by electromagnetic radiation emits
sound waves. These waves are recorded by pressure sensitive detectors and
converted into a three dimensional image of the object. To obtain an image
from pressure data, a mathematical model is needed that describes acoustic
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wave propagation. Once such a model is chosen reconstruction algorithms
can be derived that convert data into images.

The main emphasis of this thesis is the derivation of explicit reconstruction
formulas for TAT, in the case that acoustic pressure is measured with circu-
lar integrating detectors. The implementation of these formulas will lead to
fast reconstruction algorithms. Besides this practical reason, explicit recon-
struction formulas can also provide insight into the underlying mathematical
problem.

As its name implies, a circular integrating detector in TAT is a device that
measures a quantity that is proportional to the integral of acoustic pressure
over a circle. We will derive two different kinds of reconstruction formulas
that use data which are collected by circular integrating detectors. The first
type uses the circular integrals directly for imaging, whereas the second type
reconstructs acoustic pressure pointwise first. Once the pressure is known
pointwise, reconstruction formulas are applied that are based on pointwise
data.

Moreover, we investigate the problem that in practice only approximate
circular, or toroidal, detectors can be fabricated, which measure inexact pres-
sure integrals. We apply a model that describes a toroidal detector and use it
for analyzing the influence, of erroneous measurements, on the reconstructed
images.

The outline of this thesis is as follows:

Chapter 1. Overview. We shortly explain the physical context and pro-
vide the mathematical model of TAT that we use in this thesis. Moreover, we
give an overview of existing works in TAT and present some reconstruction
formulas.

Chapter 2. Circular Integrating Detectors and presentation of the
main results. We shortly motivate and explain circular integrating detec-
tors, and present the main results that are derived in this thesis. Further-
more, we present new reconstruction formulas derived from the limiting case
when the radius of a circular integrating detector approaches zero.

Chapter 3. Two step reconstruction Algorithms. This chapter con-
tains detailed explanations and derivations of reconstruction formulas that
are derived for special measuring configurations of circular detectors.

Chapter 4. Conversion of Measurement data. We consider integrals of
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acoustic pressure over two families of circles in the plane and derive pointwise
reconstruction formulas for each family.

Chapter 5. Resolution of Circular Integrating Detectors. A model
that describes the inaccuracy of an approximate circular integrating (toroidal)
detector is presented. Based on this model the blurring in reconstructed im-
ages caused by inaccurate measurements is studied.

Chapter 6. Numerical Results. We simulate the data that are collected
by the arrangement of circles considered in chapter 3. Two dimensional
sections, of the initial pressure, derived from reconstruction formulas in this
chapter, are shown.

Appendix. We give a list of the integral transforms that are used in this
thesis. Further we proof some results that were used in the thesis and present
the derivation of the model that is commonly used in TAT with homogeneous
sound speed.

Attachment. Moreover, two additional works where the author was in-
volved, on TAT with linear integrating detectors, are attached to this thesis
[20, 21]. These works are related to the present topic, as a circular integrating
detector approximates a linear detector when its radius is large enough.
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Chapter 1

Overview

1.1 Physical context and mathematical model

TAT is a new imaging method that is attractive to medicine and biology be-
cause it is capable to provide a three dimensional image of electromagnetic
absorbtion properties of biological tissue. These properties are of consid-
erable interest for medical diagnostics as they are related to the molecular
composition of tissue and reveal its pathological condition [13, 27].

In TAT we assume that a small sample of biological tissue is placed inside
a water tank and is illuminated by a short pulse of electromagnetic radiation,
see figures 1.1 and 1.2. Electromagnetic energy is absorbed by the object and
causes a thermoelastic expansion [33, 30, 31, 32]. A consequence of this ex-
pansion is an acoustic ultrasound wave that is related to the electromagnetic
absorbtion properties of the object. Pressure changes due to the ultrasound
wave can be measured by an arrangement of detectors that is also assumed
to be contained in the water tank.

Ultrasound in TAT carries information about the electromagnetic absorb-
tion properties of tissue, which are also imaged in optical tomography by
algorithms that require the intensity of backscattered light from tissue as
measurement data [7, 51, 8]. By this means, TAT combines optical and ul-
trasound imaging and thus represents a hybrid imaging technique [56, 15].
TAT is capable of imaging electromagnetic absorption properties with high
resolution because of the information conserving propagation of sound waves.

1



2 CHAPTER 1. OVERVIEW

Figure 1.1: An experimental setup for TAT fixed on a laboratory bench. An
object, contained in the water tank, is illuminated by an excitation laser.

Figure 1.2: An object (for instance a sample of tissue) is exposed to a short
laser pulse (rays from the left) that is absorbed inside the object (gray
shaded areas) which causes the propagation of a sound wave (concentric
circles around gray shaded areas).
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The conversion of pressure measurements into a three dimensional image
requires a model that describes acoustic wave propagation. Mathematically,
the propagation of sound waves in tissue is modeled as a Cauchy Problem for
the wave equation with constant sound speed. A derivation of this model,
from the governing equations of fluid–and thermodynamics can be found in
the appendix.

Throughout this thesis we assume that thermoacoustic pressure p satisfies
the Cauchy problem

∂2t p(x, t) = Δp(x, t) , (x, t) ∈ R
3 × (0,∞) , (1.1)

p(x, 0) = f(x) , x ∈ R
3 , (1.2)

∂tp(x, 0) = 0 , x ∈ R
3, (1.3)

for the three dimensional wave equation where x denotes a point in three
dimensional space R

3 and t ≥ 0 denotes the time variable. Further we refer
to f(x) ∈ C∞

0 (Ω) as the initial density or initial pressure of the considered
Cauchy problem, where C∞

0 (Ω) denotes the space of infinitely differentiable
functions that are compactly supported in the domain Ω ⊂ R

3.

We mention here that also more complicated models, which investigate
inhomogeneous sound speed and attenuation effects, have been studied [2,
12, 28, 29].

1.2 TAT with pointlike detectors

Several explicit reconstruction formulas for the initial pressure have been
derived in TAT for pointwise measurement data. As examples we present two
particular reconstruction formulas and mention practical problems for TAT
with approximate point, or pointlike, detectors. Because of these problems
researchers have been motivated to develop linear–and circular integrating
detectors.

The presented formulas relate the initial density and the measurement
data by means of integral transforms. A list of these transforms can be
found in the appendix of this thesis.

Classically, the inverse problem in TAT is to recover the function f from
pointwise pressure data recorded over time on the boundary ∂Ω, which is as-
sumed to be smooth. The considered inverse problem for point like detectors
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deals with the inversion of the operator

P : C∞
0 (Ω) → ran(P ) ⊂ C∞(∂Ω × R>0), P (f) = p |∂Ω×R>0, (1.4)

where p is a solution of the Cauchy problem (1.1) -(1.2). For special ge-
ometries, for instance when ∂Ω is either a sphere, a cylinder, or a plane,
several exact frequency domain reconstruction formulas have been derived
[59, 58, 55, 54, 60]. Also Fourier series formulas that expand f in the basis
of eigenfunctions of the operator ΔΩ have been derived in [57, 36]. An ex-
tensive review of reconstruction methods and recent progress in TAT can be
found in [34]. Moreover, when Ω is a sphere and the spaces in equation (1.4)
are equipped with appropriate norms, it is known that the operator P is an
isometry [16].

The examples we present here were derived in [59, 58, 55]. Furthermore, we
will see that reconstruction formulas derived for circular integrating detectors
have a similar form.

Firstly, assume that pointwise data g = P (f) are given on the surface of
the cylinder ∂Ω = ∂(BR(0)×R). Further, we denote by fm(z, r) and gm(z, t)
them−th Fourier coefficient of the initial pressure and the measurement data
(described in cylindrical coordinates which are introduced in section 3.1) with
respect to the angular variable. Then the relation,

Hr {Fz {fm}} (k, v) = 2

π

Ft {Fz {gm}} (k,
√
k2 + v2)

H
(2)
n (Rv)

√
k2 + v2

, (k, v) ∈ R×(0,∞),

(1.5)

holds, where H, F and H
(2)
n denote the Hankel–and Fourier transform and

the second order Hankel function of order n respectively. As outlined in
the appendix the subscripts r, z and t indicate to which variable an integral
transforms is applied.

Secondly, we assume that pointwise measurements are given on a sphere
SR of radius R. We denote pointwise measurements again by g and by
fm(r, ϑ) and gm(ϑ, t) the m−th Fourier coefficients of f and g (described in
spherical coordinates which are introduced in section 3.2) with respect to the
angular variable. We obtain the following relation,

Hl
r{fm

l }(ω) = 2

π

Ft{gml }(ω)
ω2 h

(1)
l (Rω)

, ω ∈ R, l ∈ N , (1.6)
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where h
(1)
l denotes the spherical Hankel function.

Finally, we mention practical problems that are related to TAT with point-
like detectors. The formulas above assume that acoustic pressure is known
pointwise. However, in practice, acoustic pressure is measured by piezoelec-
tric transducers, which can only provide approximate pointwise (pointlike)
measurements. For this reason, the formulas above yield images with a spa-
tial resolution that is essentially limited by the size of the piezoelectric trans-
ducers [56]. The size of a piezoelectric detector, which is typically a square of
a side length of about 400µm, can in principle be reduced. However, reducing
the size of a pointlike detector also decreases its signal–to–noise ratio.

1.3 TAT with linear integrating detectors

A first approach that tried to overcome the problem of finite aperture size
of piezoelectric transducers has been given by M. Xu and L. Wang in [56].
Therein the spatial blurring caused by detectors is modeled as a convolution
with a point–spread function of ultrasonic transducers and is used to improve
reconstructions by deconvolution.

A practical approach, that tries to overcome the limitations due to finite
aperture sice of detectors, was proposed in [11], where linear integrating, or
shortly, linear detectors were introduced. A linear integrating detector in
TAT that measures the integral of acoustic pressure over a line is, for in-
stance, realized by a thin laser beam. A linear detector reduces the problems
caused by finite aperture size because it is capable to approximate a line very
accurately [44, 23].

The inverse problem in TAT with linear integrating detectors is to recover
the initial density from a two dimensional family of line integrals. Different
measurement configurations for linear integrating detectors are considered in
[18, 47, 10, 16, 46, 11].

As an example for TAT with linear detectors we present the setup con-
sidered in [11] because it motivates a similar setup for circular detectors.
In [11] line integrals of acoustic pressure are given by the two dimensional
family of lines that are tangential to a cylinder of radius R and are parallel
to the xy−plane, see figure 1.3. For the sake of simplicity we assume that
the cylinder is centered at the origin. Moreover we require that the initial
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σR

�σz
z

Figure 1.3: A one dimensional family of lines tangential to a cylinder.

pressure is supported inside the cylinder. For every σ ∈ S1 denote by (x, y, z)
the coordinates of a point x ∈ R

3 with respect to the basis (σ̌, σ̌⊥, e3), where
σ̌ = (σ, 0) and σ̌⊥ = (σ⊥, 0). For the considered family of line integrals,
TAT with linear integrating detectors is concerned with the inversion of the
operator

L : C∞
0 (BR(0)× R) −→ ran(L) ⊂ C∞(S1 × R× R>0) (1.7)

(Lf)(σ, z, t) :=

∫
R

p(Rσ̌ + yσ̌⊥ + ze3, t) dy,

where x = R and BR(0) denotes the ball of radius R that is centered at the
origin.

In the following, we use the abbreviation

GL
σ (z, t) := (Lf)(σ, z, t) (1.8)

to denote the integral line over the line �σz , see figure 1.3. Further denote by

FL
σ (x, z) :=

∫
R

f(xσ̌ + yσ̌⊥ + ze3)dy (1.9)
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the integrated initial pressure f .

One of the main results in [11] states that the line integrals (1.8), i.e. our
measurements, and the integrated initial data satisfy the relation

Cx

{
Fz

{
FL
σ

}}
(k, v) = Ct

{
Fz

{
GL

σ

}}
(k,

√
k2 + v2)

k√
k2 + v2

, (1.10)

where the cosine transform C can be found in the appendix. Using for-
mula (1.10) we propose the following reconstruction procedure for the initial
pressure f :

Assume the function FL
σ is be determined by formula (1.10) for all σ ∈ S1.

Subsequently, we fix the variable z and consider the function

(σ, x) �→ FL
σ (x, z), (1.11)

which in fact, see definition (1.9) and figure 1.4, is the 2D Radon transform
of the initial pressure f restricted to the plane R2×{z}. Applying the inverse
2D Radon transform

f(x, y, z0) =
−1

(2π)2

∫
R

1

q

(∫
S1

∂

∂s
Fσ(s, z0)

∣∣∣
s=σ·

(
x
y

)
+q
dσ

)
dq

in each plane R
2 × {z0} yields the desired reconstruction of f , where the

notation in [41].

Besides explicit reconstruction formulas, the influence of measurement er-
rors is investigated in [20, 23]. More precisely, two kinds of errors are consid-
ered, where the first one is due to the finite width of a laser beam that is used
to measure a line integral. Secondly, the effect of imprecise time measure-
ments, which are modeled by a impulse response function, are investigated.
Since a linear detector approximates a line accurately, approximation errors
due to the width of the laser beam can be neglected. Nevertheless, it is
interesting to analyze the influence of inaccurate measurements.

The results in [23] hold for very general two dimensional families of line
integrals. However, to explain the results, we assume that line integrals are
given by the two dimensional family of lines which is considered in (1.7).

For this setup we model approximate measurements by

(Lϕ,ω f) (σ, z, t) = ϕ ∗t
∫
R3

ω(d(�σz,x)) p(x, t)dx. (1.12)



8 CHAPTER 1. OVERVIEW

∂BR(0)× {z0}

x

y

x
xσ̌ + Rσ̌⊥ + z0e3

Figure 1.4: For z = z0 fixed F
L
σ (x, z0) is the integral over the line in direction

σ̌⊥ that has distance x from the (outward pointing) z−axis, which is indicated
by the black dot in the figure.

The weight ω is a function which describes the radial profile of a linear
detector, ϕ denotes the impulse response function of the detector and d is
the normal distance of a point x ∈ R

3 to the line �σz.

In order to determine an approximate solution fore the present setup for
TAT with linear detectors usually the inverse L−1 of the operator (1.7) is
applied to approximate measurements, which yields a blurred version of the
desired initial pressure f . The main result in [20, 23] states that this blurred
version is given by the identity(

L−1Lϕ,ω

)
(f) = Φ ∗W ∗ f, (1.13)

where the W and Φ are radially symmetric functions that are determined for
ω and ϕ as outlined in [20]. Since Φ and W are known equation (1.13) can
be used to determine f from the blurred version Φ ∗W ∗ f by deconvolution.

We will give a similar analysis for circular integrating detectors. In this
case the result (1.12) also holds true but its proof is harder.



Chapter 2

Circular Integrating Detectors
and presentation of the main
results

We shortly explain circular integrating detectors and summarize the main
results of the thesis. Once more we bring to attention that a list of integral
transforms is given in the appendix. Detailed derivations and explanations
of the presented results can be found in the chapters 3, 4 and 5.

In applications an arrangement of detectors is positioned, or attached,
beside an object in order to collect acoustic pressure data. The positioning
of linear integrating detectors can be impractical because of their length
[50]. Therefore in [62, 64] circular integrating, or circular, detectors, which
are an alternative to pointlike and linear detectors, were introduced. As its
name implies, such a detector measures a quantity that is proportional to
the integral of acoustic pressure over a circle. Practically, they are realized
by a laser beam which is guided along a circle in an optical fiber.

We mention that the use of circular integrating detectors was indepen-
dently proposed by X. Yang and others in [61]. However, this study was
limited to two spatial dimensions, where the circular shaped detector can be
used as a virtual point detector.

If we use circular integrating detectors, instead of pointlike or linear de-
tectors, the reconstruction process in TAT changes. Circular integrals of

9
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r

z
rd

stack

σBR(0)× R

Figure 2.1: Scanning geometry: A stack of circles centered on the boundary
of BR(0)× R is rotated around the e3-axis.

acoustic pressure are measured for a two dimensional family of circular de-
tectors and are used to obtain a three dimensional reconstruction of the initial
pressure. In the following, we will present reconstruction formulas that were
derived in this thesis and have been published in [64, 65, 62, 63]:

Firstly, we generalize the setup which is shown in figure 1.3. We consider
a stack of coaxial circles which are rotated around an object like depicted in
figure 2.1. In order to obtain a reconstruction of the initial pressure we have
to invert the operator

C : C∞
0 (BR(0)× R) −→ ran(C) ⊂ C∞(S1 × R× R>0) (2.1)

(Cf)(σ, z, t) :=
1

2π

∫ 2π

0

p((rd cos(α), rd sin(α), 0) +Rσ̌ + ze3) dα,

where σ̌, σ̌⊥, e3 and BR(0) have the same meaning as in (1.7) and rd denotes
the radius of a circular integrating detector. If R3 is parameterized in cylin-
drical coordinates, see equation (3.2), it turns out that C can be inverted by
solving a sequence of inverse problems, for a two dimensional wave equation,
like explained in Proposition 3.1. We use the abbreviation

GC
σ (z, t) := (Cf)(σ, z, t)
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and

FC
σ (z, r) =

1

2π

∫ 2π

0

f((r cos(α), r sin(α)) +Rσ̌ + ze3)dα, (2.2)

denotes the circular mean of f over the circles α �→ (r cos(α), r sin(α), z)+Rσ̌.

The main result of section 3.1.2 states that Fσ and the measurement data
satisfy the relation

Hr

{
Fz

{
FC
σ

}}
(k, v) =

2

π

Ct

{
Fz

{
GC

σ

}}
(k,

√
k2 + v2)

J0(rdv)
√
k2 + v2

, (2.3)

whenever J0(rdv) 
= 0. It is interesting to note that formula (2.3) is quite
similar to the inversion formula (1.10) for linear integrating detectors but
where Cx and k are replaced by Hr and 1/J0(rv) respectively.

The left side of formula (2.3) defines a C∞ function since f ∈ C∞
0 (Ω).

Therefore the fraction in (2.3) has to be defined whenever its denominator
vanishes. Formally, applying the inverse Fourier and Hankel transforms (that
can be found in the appendix) to formula (2.3) yields the explicit reconstruc-
tion formula

FC
σ (z, r) =

1

π2

∫
R

∫ ∞

0

Ct

{
Fz

{
GC

σ

}}
(k,

√
k2 + v2)

J0(rdv)
√
k2 + v2

vJ0(rv) e
ikzdvdk, (2.4)

where the latter integral converges since f ∈ C∞
0 (Ω).

However, in practice the implementation of (2.4) causes problems due to
the roots of its denominator. This problem can be circumvented in the case
when the detector radii rd become so large that the cylindrical stack of circles
encloses the initial pressure. In this case a simple formula can deduced from
(1.5), by observing that FC

σ (z, r) = f 0(z, r) and G(z, t) = g0(z, t), which is
given by

Hr

{
Fz

{
FC
σ

}}
(k, v) =

2

π

Ft

{
Fz

{
GC

σ

}}
(k,

√
k2 + v2)

H
(2)
0 (rdv)

√
k2 + v2

. (2.5)

Applying the inverse Hankel and Fourier transform to the right hand side
gives a stable reconstruction formula since the absolute value of H

(2)
0 never

vanishes, see figure 2.2. Moreover, in the present case we know that Fσ(z, ·) is
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Figure 2.2: Left: Absolute value of the 0−th order Hankel function of the
second kind. Right: The 0−th order Bessel function.

supported on (0, rd), which implies that Fz {Fσ} (k, ·) can be expanded into
a Fourier Bessel series on (0, rd). This series expansion allows us to prove
the inversion formula

FC
σ (z, r) =

2

π2r3d

∫
R

(∑
n∈N

St {tFz {Gσ}}
(
k,
√
k2 + v2n

)
vn

k2 + v2n

J0(rvn)

J1(rdvn)3

)
eikzdk

(2.6)
in section 3.1.3, where the vn are the roots of the function v �→ J0(rdv).
Further, we can use relation (2.5) to derive an additional Fourier Bessel type
inversion formula which is given by

FC
σ (z, r) =

2

π2r2d

∫
R

(∑
n∈N

Ft

{
Fz

{
GC

σ

}}
(k,
√
k2 + v2n)

H
(2)
0 (rdvn)

√
k2 + v2n

J0(rvn)

J1(rdvn)2

)
eikzdk .

(2.7)
The last two formulas allow for a stable reconstruction, see remark 3.3, of
the integrated initial pressure FC

σ . Numerical examples based on an imple-
mentation of these formulas are presented in chapter 6.

If we assume that the FC
σ are determined by one of the reconstruction

formulas above and that the variable z is fixed, it is not hard to see that the
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map

(σ, r) �→ FC
σ (r, z), (2.8)

is the circular mean transform over circles which are centered on the circle
R ·S1. Reconstruction formulas for f from this integrals were found recently
in [16, 17, 35, 36] and a back projection type formula is given explicitly in
remark 3.1.

In section 3.2 we derive reconstruction formulas for a two dimensional
family of circles of latitude on the sphere SR = ∂BR of radius R, which is
centered at the origin. The proposed proposed family is generated from the
family depicted in figure 2.3 by rotating it around the x-axis.

This family of circles is beneficial for data acquisition since an acoustic
pulse generated inside BR passes through its surface in finite time T . There-
fore, we don’t expect artifacts, through to missing data, for the considered
setup.

Note that this is contrarily to the case of a cylindrical stack of circular
detectors. In this case, at least in applications, pressure signals, due to the
finite hight of the stack, are lost.

Detailed proofs and explanations of the presented results can be found in
section 3.2.

We are concerned with the inversion of the operator

S : C∞
0 (BR) −→ ran(S) ⊂ C∞(S1 × [0, π]× [0, T ]) (2.9)

(Sf)(σ, ϑ, t) :=
1

2π

∫ 2π

0

p(Dσ · Φ(R, ϑ, φ), t) dφ,

where Dσ denotes

Dσ =

⎛⎝1 0 0
0 cos(σ̃) − sin(σ̃)
0 sin(σ̃) cos(σ̃)

⎞⎠ (2.10)

the rotation around the x−axis, σ̃ = arg(σ) and

Φ(r, ϑ, φ) = r sin(ϑ)

⎛⎝cos(φ)
sin(φ)

0

⎞⎠+ r

⎛⎝ 0
0

cos(ϑ)

⎞⎠
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z

y

x

Figure 2.3: Scanning geometry: Circles of latitude on a sphere enclose an
object and are rotated around it.

where (r, ϑ, φ) ∈ R≥0 × [0, π]× [0, 2π]. Further, we use the abbreviation

GS
σ(ϑ, t) := (Sf)(σ,R, ϑ) (2.11)

to denote the integrals over circles of latitude of hight r cos(ϑ) and the inte-
grated initial pressure by

F S
σ (r, ϑ) =

1

2π

∫ 2π

0

f(Dσ · Φ(r, ϑ, φ)).

The l−th Fourier coefficients F S
σ,l and GS

σ,l of F
S
σ and GS

σ for the l−th
Legendre polynomial Pl, satisfy the relation

Hl
r

{
F S
σ,l

}
(ω) =

2

π

Ct

{
GS

σ,l

}
(ω)

ω2jl(Rω)
, (2.12)

where Hl denotes the spherical Hankel transform of order l and jl the l−th
order spherical Bessel function, which can be found in the appendix of this
thesis. The implementation of formula (2.12) is problematic because of the
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roots of its denominator. A stable alternative to (2.12) can be derived from
a frequency domain formula derived in [55]. This formula is given by

Hl
r{F S

σ,l}(ω) =
2

π

Ft{GS
σ,l}(ω)

ω2 h
(1)
l (Rω)

, ω ∈ R, l ∈ N . (2.13)

With analogous arguments as in the case of a cylindrical stack of circles we
can show the following two stable reconstruction formulas. They are stated
by

F S
σ (r, ϑ) =

2

π

∑
l∈N

∑
n∈N

Ft

{
GS

σ,l

}
(ωnl)

ω2
nl h

(1)
l (Rωnl)

jl(rvn)Pl(cos(ϑ))

jl+1(Rωnl)2
(2.14)

and

F S
σ (r, ϑ) =

√
2

π

∑
l∈N

∑
n∈N

St

{
tGS

σ

}
l
(ωnl)jl(rωnl)

ω2
nljl+1(Rωnl)3

Pl(cos(ϑ)), (2.15)

where in the formulas above the ωnl denote the roots of the function ω �→
jl(Rω). The formulas and their proofs are given in section 3.2.4. Moreover,
section 3.2.5 contains a convergence result, for the series expansions (2.14)
and (2.15) for noisy measurement data.

Once the function F S
σ is known for all σ ∈ S1 we define, for a fixed

0 < r ≤ R, the map

(σ, ϑ) �→ F S
σ (r, ϑ). (2.16)

It is not hard to figure out, see figure 2.3, that the map (2.16) consists of
the circular means of f |Sr over circles on Sr, which are centered on the great
circle that lies in the yz−plane. Note that we refer to a center on Sr when
we use the phrase “centered on”.

In section 3.2.3 a new reconstruction formula for f |Sr from the considered
family of circular means is derived. The formula is based on stereographic
projection from the north pole on Sr, which maps a circle resp. great circle
on Sr onto a circle resp. a line in the plane, see figure 2.4. Therefore the
projection of the considered family of circles is the family of circles in the
xy−plane that are centered on the y−axis. For the circular means of a
function over the latter family reconstruction formulas are known [6]. They
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z

y

x

Figure 2.4: Stereographic projection of a circle centered on the great circle
in the yz−plane (dotted line). The result is a circle in the centered on the
y−axis in the plane.

can be used to derive new reconstruction formulas for the proposed family
on Sr since stereographic projection is a factorable map [45].

In chapter 4 we assume that the initial pressure f is supported in the
upper half plane H = {x ∈ R

3 : x ≥ 0} and that circular means of the
acoustic pressure are given in the plane R

2 = ∂H for two specific families of
circles. Our aim is to reconstruct acoustic pressure pointwise from its circular
means over these families. Once acoustic pressure is known pointwise we can
apply pointwise reconstruction formulas [54, 57, 58].

The first family consists of circles of fixed radius rd and center x ∈ R
2,

which is depicted in figure 2.5. Let Ga(x, t) denote the circular mean, of
acoustic pressure p(x, t), over a circle centered at x. Note that the time
variable is omitted in the following to keep our notation simple.

The main result in section 4.1 is based on a Fourier series expansion of
the functions Ga and p and the Funk–Hecke theorem which can be found in
the appendix. It states that the Fourier coefficients of the measurement data
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Figure 2.5: Scanning geometries. Left: Circular integrating detectors of fixed
radius rd centered in the plane. Right: The family of circles tangential to
another circle.

Ga
λ and the pressure pλ are related by the integral equation

Ga
λ(R) =

1

2π

∫ 1

−1

pλ

(√
R2 + r2d + 2rdRt

)
T|λ|(t)√
1− t2

dt , (2.17)

where R = |x| and Tλ denotes the Tchebychev polynomial of order λ. Equa-
tion (2.17) shows that the pressure p can be found from Ga by solving a
sequence of one dimensional integral equations. However, since it is difficult
to derive an explicit solution of equation (2.17) we solve it numerically for
each λ.

The second family consist of circles, see figure 2.5, which are tangential
to another (fixed) circle of radius ρ. The circular mean over a circle of this
family, that is centered at x and has radius r = |x|−ρ, is denoted by Gb(x, r).

In this case it is possible to derive the equation

gλ (k) =

∫ ∞

1

uλ(k/σ)dp√
σ2 − 1

T|λ|
(√

σ2 − 1
) 1

σ
dσ. (2.18)

where gλ(k) := Gb
λ

(
ρ+
√

k2+ρ2

2
,

√
k2+ρ2−ρ

2

)
and uλ(k) := pλ

(√
k2 + ρ2

)
. In-

tegral equation (2.18) is a convolution product for the Mellin transform M.
Applying this transform, we obtain an equation that can be solved forM {uλ}
like explained in section 4.2.
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In chapter 5 we address the fact that in applications circular integrating
detectors are approximated by toroidal shaped optical fibers. Moreover the
quantity measured by a toroidal detector, is recorded in an ultrasound de-
tection system. Since this system does not immediately respond to acoustic
pressure, blurred temporal measurements are caused.

The results in chapter 5 hold for general measurement configurations of
toroidal detectors but we assume here the configuration depicted in figure
2.1 to explain the results. We model approximate measurements, due to
erroneous time measurements the detection system and the thickness of a
toroidal detector, as

(Cϕ,ω f) (σ, z, t) = ϕ ∗t
∫
R3

ω(x(σ, z), z) p(z, t)dz, (2.19)

where ϕ denotes the impulse response function of a detection system and ω
is a function that models the sensitivity of a toroidal detector. This function
depends on the position of a point z to the center x(σ, z) of the circle cσz,
which is given by α �→ (rd cos(α), rd sin(α) +Rσ̌ + ze3).

Usually the inverse C−1 of (2.1) is applied to erroneous measurements
which results in a blurred version of the initial pressure. The main result in
chapter 5 states that the blurred initial pressure is given by(

C−1Cϕ,w

)
(f) = Φ ∗ U ∗ f ,

where Φ is given in explicitly in Theorem 5.1 and U is a radial function that
is related to the sensitivity function ω of a toroidal detector like explained in
chapter 5.

2.1 The limiting case rd → 0

In TAT with circular detectors an obvious limiting case occurs.

• The radius rd of a circular integrating detector approaches 0.

The results for circular integrating detectors, which were presented in this
chapter, provide new reconstruction formulas for pointlike detectors in the
limiting case rd → 0.
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Note that formula (2.3) still holds when the stacks of circular detectors are
not placed on the circle R ·S1, like depicted in figure 2.1, but on an arbitrary
point x ∈ R

2. Also formula (2.12) holds for any sphere SR,x , centered at an
arbitrary point x ∈ R

3. Thus, we will use the notations gCx and gSx , for point
measurements, in the limiting case for formulas (2.3) and (2.12). According
to this, also the integrated initial pressures are denoted by FC

x and F S
x .

Since J0(0) = 1, reconstruction formula (2.3) still makes sense when rd →
0, and the formal limit is

Hr

{
Fz

{
FC
x

}}
(k, v) =

2

π

Ct

{
Fz

{
gCx
}}

(k,
√
k2 + v2)√

k2 + v2
, (2.20)

which is very similar to formula (1.5). However, the meaning of formula
(2.20) is quite different. It establishes a relation between the circular means
FC
x , of f , and pointwise data gCx on the line Re3+Rx. If x ∈ R·S1 we obtain a

new reconstruction formula for point detectors on a cylindrical surface, where
f has to be recovered from FC

x by the reconstruction procedure described in
remark 3.1.

If x = xe1 lies on the x−axis FC
x (r, z) is the integral over the circle,

centered at (x, 0, z), with radius r that is perpendicular to the xz−plane.
Thus, for z fixed, the map

(r, x) �→ Fxe1(r, z)

is the circular mean transform of f |R×{z} over circles centered on the line
Re1 + ze3 with radius r. A reconstruction formula, for such a family of
circles, can be found in [6]. Applying these formula in each pane R × {z}
yields the function f .

In the limiting case R→ 0 of a sphere SR,x we obtain the relation

H0
r

{
F S
x

}
0
(ω) =

2

π

Ct

{
gSx
}
0
(ω)

ω2
, (2.21)

between 0−th order Legendre coefficients from formula (2.12). However, we
do not obtain a relation for higher order coefficients of F S

x since the pointwise
data gSx do not depend on ϑ, which implies that Ct

{
gSx
}
l
(ω) = 0 for l > 0.

Moreover, note that

F S
x,0 =

∫ π

0

(∫ 2π

0

f(Φ(r, ϑ, φ))dφ

)
sin(ϑ)dϑ =

1

r2
M(f)(x, r), (2.22)
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where M(f)(x, r) denotes the spherical mean of the initial pressure. More-
over, since gSx,0(t) = gSx (t)

∫ π

0
sin(ϑ)dϑ we can rewrite (2.21) as

H0
r

{
r−2M(f)(x, ·)} (ω) = 4

π

Ct {gx} (ω)
ω2

. (2.23)

The last expression establishes a new relationship between pointwise mea-
surements and the spherical means M(f).

The series expansion formulas (2.15) and (2.6) assume that the functions
FC
x (·, z) resp. F S

x (·, ϑ) are supported in the intervals (0, rd) resp. (0, R).
Clearly, this assumption can not be satisfied in the limiting case when rd and
R approach 0. However, for a r1 large enough we can expand the functions
Fz

{
FC
x

}
(k, ·) and F S

0 (·) = r−2M(f)(x, ·) into Fourier Bessel series, given by

Fz

{
FC
x

}
(k, r) =

2

r21

∑
n∈N

Hr

{
Fz

{
FC
x

}}
(k, ṽn)

J0(rṽn)

J1(r1ṽn)2
, (2.24)

where (ṽn)n∈N denote the zeros of v �→ J0(r1ṽ) and

r−2M(f)(x, r) =
∑
n∈N

H0
r

{
r−2M(f)(x, ·)} (v̄n) j0(rv̄n)

j1(r1v̄n)2
(2.25)

where (v̄n)n∈N denote the zeros of v �→ j0(r1v̄). Together with formulas (2.20)
and (2.23) we obtain the new series expansion formulas

Fz {Fσ} (k, r) = 2

r21

∑
n∈N

Hr {Fz {Fσ}} (k, ṽn) J0(rṽn)
J1(r1ṽn)2

, (2.26)

and

r−2M(f)(x, r) =
4

π

∑
n∈N

Ct {gx} (ω)
w2

j0(rv̄n)

j1(r1v̄n)2
, (2.27)

where J1 and j1 denote the Bessel and spherical Bessel functions, which can
be found in the appendix.

Unfortunately, formulas (2.5), (2.15), (2.6) and (2.7) do not yield new
reconstruction formulas since their denominator is not bounded for rd → 0.



Chapter 3

Two step reconstruction
Algorithms

This chapter contains detailed derivations and explanations of the formulas
which were derived for the experimental setups depicted in figures 2.3 and
2.1. Both formulas utilize the effect that the three dimensional wave equation
in cylindrical or spherical coordinates reduces to a two dimensional wave
equation when it is integrated over its azimuthal angle. In both cases the
three dimensional reconstruction process requires the solution of a sequence
of two dimensional inverse problems for the two dimensional wave equation.

In the following sections the notation slightly differs from the notation that
has been used in chapter 1. More precisely, we omit the upper indices S and
C that were used in chapter 1 to distinguish the measurement configurations
described by the operators 2.1 and 2.9. In the following it will be clear which
measurement configuration is investigated and thus the simplified notation
does not cause confusion.

3.1 Circular Integrating Detectors in Cylin-

drical geometry

We consider the TAT with circular integrating detectors for the setup de-
picted in figure 2.1. Acoustic pressure p satisfies the Cauchy problem (1.1)-
(1.3).

21
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further, we assume here that f is supported in the cylinder BR(0) × R,
where R is a fixed positive number and where p(x, t) denotes the unique
solution of (1.1)-(1.3).

For σ ∈ S1, we define the integral of acoustic pressure over a circle as

Pσ(z, r, t) :=
1

2π

∫ 2π

0

p(Φσ(z, r, α), t) dα , (z, r, t) ∈ R× (0,∞)2 , (3.1)

where

Φσ : R× (0,∞)× [0, 2π] → R
3

(z, r, α) �→ (Rσ, 0) + (r cos(α), r sin(α), z)T . (3.2)

With terminology the integrated initial pressure and the measurement data
are given by

Fσ(z, r) :=
1

2π

∫ 2π

0

f(Φσ(z, r, α)) dα , (z, r) ∈ R× (0,∞) , (3.3)

Gσ(z, t) := Pσ(z, rd, t) , (σ, z, t) ∈ S1 × R× (0,∞) (3.4)

where

This notation is consistent with the notation introduced in chapter 1.

Our goal is to recover the unknown initial data f from measured data
(Gσ)σ∈S1 .

3.1.1 Two Stage Reconstruction

Reconstruction with circular integrating detectors is based on the following
reduction to the axial symmetric wave equation:

Proposition 3.1. Let f ∈ C∞
0 (BR(0)×R) and define Pσ and Fσ, σ ∈ S1 by

(3.1), (3.3). Then Pσ satisfies the axial symmetric wave equation

∂2t Pσ(z, r, t) =
(
r−1∂rr∂r + ∂2z

)
Pσ(z, r, t) , (z, r, t) ∈ R× (0,∞)2 , (3.5)

Pσ(z, r, 0) = Fσ(z, r) , (z, r) ∈ R× (0,∞) , (3.6)

∂tPσ(z, r, 0) = 0 , (z, r) ∈ R× (0,∞) . (3.7)

Moreover Pσ remains bounded as r → 0.
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Proof. Equations (3.6), (3.7) and the boundedness of Pσ for r → 0 imme-
diately follow from (1.2), (1.3), the requirement that f ∈ C∞

0 (Ω) and the
definitions of Pσ and Fσ. Moreover, in cylindrical coordinates the Laplace
operator is given by the expression

Δ = r−1∂rr∂r + ∂2z + r−2∂2α.

Integrating the equation Δp = ∂2t p with respect to α gives (3.5).

Note that (3.5)-(3.7) is uniquely solvable if we require that its solution
remains bounded as r → 0.

Remark 3.1. Proposition 3.1 is the basis of the following two-stage proce-
dure which reconstructs the initial pressure f in (1.1)-(1.3) from the data
(Gσ)σ∈S1 :

(i) For σ ∈ S1 (fixed position of the stack of circles) we determine the
initial pressure Fσ of (3.5)-(3.7) using the data Gσ.

Repeating this procedure for every σ, we obtain a family of func-
tions Fσ, σ ∈ S1, corresponding to averages over circles centered on
∂(BR(0)× R).

(ii) Next we observe that for fixed z = z0, the function

(σ, r) �→ Fσ(z0, r)

is the circular mean transform of f |{z=z0} with centers on a circle. For
the circular mean transform stable analytic inversion formulas have
been discovered recently [3, 16, 18, 35, 36]. Exemplarily, one of the
formulas in [16, Theorem 1.1] reads

f(x′, z0) =
1

2πR

∫
S1

(∫ 2R

0

(∂rr∂rFσ)(z0, r) log
∣∣r2 − |x′ − Rσ|2∣∣ dr) dσ ,

(3.8)
where x′ denotes the coordinates in the plane R

2 × {z0}.

The key task for recovering f is to derive stable and fast algorithms to
reconstruct the initial data in (3.5)-(3.7) from measurement data Gσ. A
possible reconstruction method is based on time reversal (back-propagation)
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similar to [12, 25]. However, the degeneration of r−1∂rr∂r at r = 0 and the
finite hight of the stack of circular integrating detectors may cause difficulties
in such procedures. The inversion approach in this paper is based on analytic
inversion formulas for reconstructing Fσ.

3.1.2 Exact Inversion Formula

The formula, which we derive, describes a relationship between several inte-
gral transforms of the measurement dataGσ and Fσ. The integral transforms,
and the meaning of the subscripts, can be found in the appendix of this thesis.

Proposition 3.2. Let f ∈ C∞
0 (BR(0)× R) and define Fσ(z, r) and Gσ(z, t)

by (3.3), (3.4). Then the relation

Hr {Fz {Fσ}} (k, v) = 2

π

Ct {Fz {Gσ}} (k,
√
k2 + v2)

J0(rdv)
√
k2 + v2

(3.9)

holds whenever J0(rdv) 
= 0.

Proof. The zero order Bessel function J0 is an Eigenfunction of the operator
r−1∂rr∂r with eigenvalue −1. Then the function r �→ J0(rv) is an eigenfunc-
tion of the same operator with eigenvalue −v2. To appreciate this denote by
Ĵ(r) = J0(rv) and compute(

r−1∂rr∂r
)
Ĵ(r) = r−1Ĵ ′(r) + Ĵ ′′(r),

where the prime denotes the derivative with respect to r. Using the relations
Ĵ ′(r) = vJ ′

0(rv), Ĵ
′′(r) = v2J ′′

0 (rv) and substitute u = rv we have

r−1vJ ′
0(rv) + v2J ′′

0 (rv) = v2
(
u−1∂uJ0(u) + ∂2uJ0(u)

)
= −v2J0(u) = −v2J0(rv).

Further, separation of variables shows that the functions

(z, r, t) �→ eikz cos
(
t
√
k2 + v2

)
J0(rv), (k, v) ∈ R× (0,∞) ,

solve (3.5), (3.7). Since the system (3.5)-(3.7) is linear a general solution can
formally be written as

Pσ(z, r, t) :=
1

2π

∫
R

∫ ∞

0

F̄ (k, v)eikzJ0(rv) cos
(
t
√
k2 + v2

)
vdvdk. (3.10)
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The latter integral converges if we at least assume that F̄ is contained in
L1(R × R>0) ∩ C∞(R × R>0). In order to obtain a solution to our problem
we set t = 0 in equation (3.10) which shows that the initial condition Fσ of
the Cauchy Problem (3.5)-(3.7) is the inverse Hankel and Fourier transform
of F̄ . Since we can apply the Fourier and Hankel inversion theorems in the
considered function spaces we conclude that equation (3.10) is a solution of
the system (3.5)-(3.7) for F̄ (k, v) := Hr {Fz {Fσ}} (k, v). It is easy to check
that the substitution ω =

√
k2 + v2 implies the identity ωdω = vdv, which

can be used to rewrite (3.10) as

Pσ(z, rd, t) =

Gσ(z, t) =
1

2π

∫
R

(∫ ∞

|k|
J0
(
rd
√
ω2 − k2

)
ωF̄
(
k,
√
ω2 − k2

)
cos(ωt)dω

)
eikzdk,

(3.11)

where we set r = rd. The inversion formulas for the Fourier and Cosine
transforms now imply that

Ct {Fz {Gσ}} (k, ω) = π

2

{
J0
(
rd
√
ω2 − k2

)
ωF̄
(
k,
√
ω2 − k2

)
, if ω > k ,

0, otherwise .

Solving the last equation for F̄ shows (3.9).

Proposition 3.2 leads to an algorithmic procedure for the reconstruction of
Fσ from the data Gσ:

1. Apply the Fourier and cosine transform to the data Gσ.

2. Determine Hr {Fz {Fσ}} from Ct {Fz {Gσ}} according to (3.9)

3. Apply the inverse Fourier and Hankel transforms to obtain

Fσ(z, r) =
1

2π

∫
R

∫ ∞

0

Hr {Fz {Fσ}} (k, v)J0(rv)eikz vdvdk .

Remark 3.2 (Instability of (3.9)). Inversion formula (3.9) is not defined
when J0(rdv) equals 0. From the proof of the above theorem it is clear that
for exact data

Ct{Fz{Gσ}}
(
k,
√
v2n + k2

)
= 0 , n ∈ N , (3.12)
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for the zeros (vn)n∈N of the zero order Bessel function r �→ J0(rdv). In
practice, however, only noisy (approximately measured) data Gδ

σ  Gσ are
available. In this case equation (3.12) is not necessarily satisfied and we have

Ct{Fz{Gδ
σ}}
(
k,
√
v2n + k2

) 
= 0 .

It is therefore difficult to evaluate the quotient in (3.9) in a stable way in
practice.

R
rd

R − rd R
rd

Figure 3.1: Cross section of experimental buildup when rd < R (left) and
rd ≥ 2R (right). In both cases the object has to be supported in the gray
disc.

We can overcome this difficulty when we place circles around the object
which are large enough to enclose it. The cases when the measuring circles
are strictly outside the object or enclosing it are the only two situations that
can be realized in practical applications and are summarized, see Figure 3.1,
as follows:

(i) The stack of circles is strictly outside the object. In this case rd < R
and supp(f) ⊂ BR−rd(0)× R.

(ii) The object is enclosed in the stack of circles. In this case rd ≥ 2R.
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For the case rd ≥ 2R we will provide two stable formulas based on expansions
of Fσ into Fourier Bessel series. Unfortunately, when rd < R we can not
derive such expansions since in this case the function r �→ F {Fσ} (k, r) is
not supported in the interval (0, rd) and thus it cannot be expanded into
a Fourier Bessel series which is crucial in the proofs of Theorems 3.1 and
3.2. Although no expansion formula is available we will show reconstructions
based on an implementation of formula (3.9) in chapter 6. However, in the
limiting case rd � R a stable reconstruction formula is obtained, compare
with Remark 3.5 below.

3.1.3 Stable Inversion Formulas

In the following we fix σ ∈ S1, define Fσ, Gσ by equations (3.6) and (3.4)
and let (vn)n∈N denote the zeros of the function v �→ J0(rdv). A treaties and
a table of the zeros of Bessel functions can be found in [9]. In the following
series expansion it is essential that Bessel functions of different order do not
have common zeros.

Our first stable inversion formula is as follows:

Theorem 3.1 (The D’Hospital trick). Assume rd ≥ 2R. Then

Fσ(z, r) =
2

π2r3d

∫
R

(∑
n∈N

St {tFz {Gσ}}
(
k,
√
k2 + v2n

)
vn

k2 + v2n

J0(rvn)

J1(rdvn)3

)
eikzdk

(3.13)
for any (z, r) ∈ R× (0,∞).

Proof. The assumptions f ∈ C∞
0 (BR(0)) and rd ≥ 2R imply that Fz{Fσ}(k, ·)

is compactly supported in (0, rd) like it is depicted in figure 3.2. It can there-
fore be expanded into a Fourier Bessel series [52]

Fz {Fσ} (k, r) = 2

r2d

∑
n∈N

Hr {Fz {Fσ}} (k, vn) J0(rvn)
J1(rdvn)2

. (3.14)

Note that the latter formula holds pointwise since the function Fσ is continues
and compactly supported. According to (3.9) we have

Hr {Fz {Fσ}} (k, v) = 2

π

Ct {Fz {Gσ}}
(
k,
√
k2 + v2

)
J0(rdv)

√
k2 + v2

, v 
∈ {vn : n ∈ N} .
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Applying the rule of D’Hospital gives

Hr {Fz {Fσ}} (k, vn) = 2

π
lim
v→vn

∂/∂v
[
Ct {Fz {Gσ}}

(
k,
√
k2 + v2

)]
∂/∂v

[
J0(rdv)

√
k2 + v2

]
=

2

π
lim
v→vn

St {tFz {Gσ}}
(
k,
√
k2 + v2

)
v√

k2+v2

J1(rdv)rd
√
k2 + v2

=
2

πrd

St {tFz {Gσ}}
(
k,
√
k2 + v2n

)
vn

J1(rdvn)
(
k2 + v2n

) . (3.15)

Inserting (3.15) in (3.14) and using the Fourier inversion formula shows
(3.13).

rd
R

x

y

Figure 3.2: Since f is supported inside BR(0) the values of the function
Fe1(z, ·) vanish for r > rd. The gray shaded area illustrates the initial density
f restricted to a horizontal plane.

Remark 3.3. [Stability of (3.13)] From the asymptotic approximation (see
[1])

Jm(rdv) 
√

2

πx
cos
(
rdv − mπ

2
− π

4

)
, for v → ∞ ,
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of the m-th order Bessel function it follows that the roots of v �→ J0(rdv)
approximately satisfy the equation

rdvn − π/4 = (2n+ 1)π/2.

Thus

vn  π(n+ 3/4)

rd
, |J1(rdvn)| 

√
2

πrdvn
, for n→ ∞ .

Moreover the summands in (3.13) take the asymptotic form∣∣∣∣St {tFz {Gσ}}
(
k,
√
k2 + v2n

) vn
k2 + v2n

J0(rvn)

J1(rdvn)3

∣∣∣∣

∣∣∣St {tFz {Gσ}}

(
k,
√
k2 + v2n

)∣∣∣ 1

vn

∣∣cos (vn − π
4

)∣∣ (2/(πrvn))1/2
(2/(πrdvn))3/2

≤ r1/2

4r
3/2
d

∣∣∣St {tFz {Gσ}}
(
k,
√
k2 + v2n

)∣∣∣ .
Consequently, the terms that do not depend on the data Gσ are bounded,
and (3.13) can be implemented in stable way.

In the sequel we derive an additional inversion formula that circumvents
the division by zero problem. In fact, our formula will be a consequence of
the following result derived in [60].

Proposition 3.3. Let p denote the unique solution of (1.1)-(1.3) and let fm
σ

and gmσ denote the Fourier coefficients of f(Φσ(z, r, α)) and

gσ(α, z, t) :=

{
p(Φσ(z, r, α), t), for t > 0 ,
0, otherwise ,

with respect to α. Then

Hr {Fz {fm
σ }} (k, v) = 2

π

Ft {Fz {gmσ }} (k,
√
k2 + v2)

H
(2)
m (rdv)

√
k2 + v2

, (k, v) ∈ R×(0,∞) ,

(3.16)

with H
(2)
m denoting the m-th order second kind Hankel function.
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Now the second stable inversion formula can be stated as follows:

Theorem 3.2. Assume rd ≥ 2R. Then

Fσ(z, r) =
2

π2r2d

∫
R

(∑
n∈N

Ft {Fz {Gσ}} (k,
√
k2 + v2n)

H
(2)
0 (rdvn)

√
k2 + v2n

J0(rvn)

J1(rdvn)2

)
eikzdk .

(3.17)
Here Gσ is extended by Gσ(z, t) = 0 for t < 0.

Proof. We use again the Fourier–Bessel series (3.14) of proof of Theorem 3.1.
Recalling the definitions of Fσ, Gσ and the Fourier coefficients fm

σ , gmσ one
notices that Fσ = f 0

σ , Gσ = g0σ. Therefore (3.16) for m = 0 implies

Hr {Fz {Fσ}} (k, v) = 2

π

Ft {Fz {Gσ}} (k,
√
k2 + v2)

H
(2)
0 (rdv)

√
k2 + v2

, (k, v) ∈ R×(0,∞) .

(3.18)

Inserting (3.18) in (3.14) and using the Fourier inversion formula shows
(3.17).

Equation (3.18) is quite similar to (3.9). However, in the denominator in
(3.18) the zero order second kind Hankel function appears (instead of the
zero order Bessel function) which cannot be zero for a finite argument [1].
Moreover, the asymptotic expansion of the Bessel and the second kind Hankel
function show that the summands in (3.17) that do not depend on the data
Gσ remain bounded as n→ ∞.

Remark 3.4. The derivation of (3.16) is based on the following Green func-
tion expansion in cylindrical coordinates [60]

e−iω|Φσ(z,r,α)−Φσ(z0,rd,α0)|

|Φσ(z, r, α)−Φσ(z0, rd, α0)|

=
−iπ
2

∫
R

(∑
m∈Z

Am(vr, vrd)e
−im(α−α0)

)
e−iω(z−z0) dz , (3.19)
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with v = sign(ω)
√|ω2 − k2|,

Am(vr, vrd) =

{
H

(2)
m (vrd)Jm(vr), if ω2 > k2 ,

2i/π Km(|v| rd)Im(|v| r), otherwise ,

and Im, Km denoting the m-th order modified Bessel functions of first and
second kind, respectively. Here its is assumed that rd > r.

Interchanging the roles of r and rd implies that for rd > r the Green
function expansion (3.19) holds with

Am(vr, vrd) =

{
Jm(vrd)H

(2)
m (vr), if ω2 > k2 ,

2i/π Im(|v| rd)Km(|v| r), otherwise .

Similar to the proof of (3.16) in [60] this leads to a formula for reconstructing
Fσ in the case rd ≤ 2R, however again an unstable one with J0(vrd) in the
denominator.
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Figure 3.3: The first 50 denominators J0(rdvn/K) in (3.22) for K = 4 (left)
and K = 100 (right).

Remark 3.5. Suppose that rd < R and that f is supported in BR−rd(0)×R.
For r1 ≥ 2R− rd let (ṽn)n∈N denote the zeros of v �→ J0(r1ṽ). Then one can
expand Fz {Fσ} (k, ·) in a Fourier Bessel series (see [52])

Fz {Fσ} (k, r) = 2

r21

∑
n∈N

Hr {Fz {Fσ}} (k, ṽn) J0(rṽn)
J1(r1ṽn)2

, (k, r) ∈ R×(0,∞) .

(3.20)
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According to (3.9) we have

Hr {Fz {Fσ}} (k, v) = 2

π

Ct {Fz {Gσ}} (k,
√
k2 + v2)

J0(rdv)
√
k2 + v2

v 
∈ {vn : n ∈ N} .
(3.21)

If we assume that r1 is a integer multiple of rd, i.e., r1 = Krd, then ṽn =
vn/K 
∈ {vm : m ∈ N} for any n ∈ N. Therefore, inserting (3.21) in (3.20)
yields

Fz {Fσ} (k, r) = 2

π2r21

∑
n∈N

Ct {Fz {Gσ}} (k,
√
k2 + ṽ2n)

J0(rdṽn)
√
k2 + ṽ2n

J0(rṽn)

J1(r1ṽn)2
(3.22)

In general, (3.22) is a again sensible to noise when ṽn gets close to a zero of
J0(rdv).

In the limiting case rd � R and for n not too large, the denominators
J0(r1ṽn) are well bounded from below (see right image in Figure 3.3). In
this case, truncating (3.22) at a certain index n0 leads to a stable inversion
formula. In particular, for rd = 0 one obtains

Fz {Fσ} (k, r) = 2

π2r21

∑
n∈N

Ct {Fz {Gσ}} (k,
√
k2 + ṽ2n)√

k2 + ṽ2n

J0(rṽn)

J1(r1ṽn)2
(3.23)

for every r1 ≥ 2R. Together with (3.8) this provides a novel inversion formula
for TAT using point-like detectors on a cylindrical recording surface.

3.2 Circular Integrating Detectors in spheri-

cal geometry

In this section we assume that the circular means over a two dimensional
family of circles of latitude on a sphere, like depicted in figure 2.3, are given.
Collecting measurements with circular detectors on a sphere might be par-
ticulary useful to image a small object that is enclosed by it. In TAT, the
sound that is emitted by an enclosed object, passes through the boundary of
the sphere in finite time. Thus no shadowing effects in reconstructions due
to missing data are expected.
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Let acoustic pressure p again satisfy equations (1.1)-(1.3) and assume that
initial pressure f is supported inside the ball BR(0), which is centered at the
origin of R3 and has radius R. In this section we will derive reconstruction
formulas similar to (3.9) and (3.13).

For σ ∈ S1, define

Pσ(r, ϑ, t) :=
1

2π

∫ 2π

0

p(Φσ(r, ϑ, φ), t) dφ , (r, ϑ, t) ∈ R>0 × [0, π]× R≥0 ,

(3.24)

where

Φσ(r, ϑ, ·) : [0, 2π] → R
3 (3.25)

φ �→ Dσ · (r sin(ϑ) cos(φ), r sin(ϑ) sin(φ), r cos(ϑ))T ,
and where Dσ, given by equation (2.10), denotes the rotation around the
x−axis. For convenience, we give again the definitions of the integrated
initial pressure and measurement data

Fσ(r, ϑ) :=
1

2π

∫ 2π

0

f(Φσ(r, ϑ, φ))dφ (σ, ϑ, t),∈ S1 × [0, π]× R≥0

(3.26)

Gσ(ϑ, t) := Pσ(R, ϑ, t) . (3.27)

Note that the data Gσ(ϑ, ·) are supported in a bounded interval [0, T ] since
acoustic waves in R

3 pass every bounded region in finite time. More precisely
acoustic pressure leaves BR(0) at a time less that T = 2R.

Remark 3.6. The measurement data defined in (3.27) are not what is di-
rectly measured by a family of parallel circles. To appreciate this, suppose
for a moment that the pressure is caused by a small sphere at the origin con-
tained in BR(0). Then Gσ(·, t) is a constant function for a fixed time t which
would mean that the measurements are independent of the circumferences of
the measuring circles. However, measurement data can easily be transformed
into (3.27) by weighting each circular measurement by its circumference.

The next section outlines an algorithm to recover the integrated initial
data Fσ from the data (Gσ)σ∈S1 .
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3.2.1 Reconstruction Process

Recovering the initial pressure from data collected with circular integrating
or line detectors is based on a reduction of equations (1.1)-(1.3) to a two
dimensional wave equation which finally leads to a two-stage reconstruction
procedure. The following result is the basis of the 2D reconstruction algo-
rithm.

Proposition 3.4. Let f ∈ C∞
0 (Ω) and define Pσ and Fσ, σ ∈ S1, by (3.24),

(3.26). Then Pσ satisfies the wave equation

∂2t Pσ(r, ϑ, t) = LPσ(r, ϑ, t), (r, ϑ, t) ∈ R>0 × [0, π]× R≥0 , (3.28)

Pσ(r, ϑ, 0) = Fσ(r, ϑ), (r, ϑ) ∈ R>0 × [0, π] , (3.29)

∂tPσ(r, ϑ, 0) = 0, (r, ϑ) ∈ R>0 × [0, π] . (3.30)

where the operator L is defined by

L := r−2∂rr
2∂r + r−2 sin(ϑ)−1∂ϑ sin(ϑ)∂ϑ. (3.31)

Proof. The proof is almost analogous to the proof of Proposition 3.1. Equa-
tion (3.28) follows here from integrating the equation Δp = ∂2t p with respect
to the azimuthal angle φ where the Laplace operator is given in spherical
coordinates as

Δ = r−2∂rr
2∂r + r−2 sin(ϑ)−1∂ϑ sin(ϑ)∂ϑ + r−2 sin−2(ϑ)∂2φ.

Remark 3.7. Proposition 3.4 is the basis of the following two-stage proce-
dure for the reconstruction of f in (1.1)-(1.3) from the data (Gσ)σ∈S1 :

(i) For σ ∈ S1 (fixed position of the circles of latitude on BR(0)) we de-
termine the initial pressure Fσ of (3.28)-(3.30) using the data Gσ. An
exact inversion formula for Fσ in terms of the measurement data Gσ

will be derived in the next section.

Repeating this procedure for every σ, we obtain a family of functions
Fσ, σ ∈ S1, corresponding to averages of f over circles Φσ(r, ϑ, ·)given
by (3.25).
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(ii) Next one recognizes that for fixed r ≤ R, the function

(σ, ϑ) �→ Fσ(r, ϑ)

is the mean of f |Sr over circles on the sphere Sr of radius r which are
centered on a great circle. In section 3.2.3 an inversion formula for the
function f |Sr from this means is derived. Once the functions f |Sr are
known on all spheres Sr with r < R we know the function f and the
reconstruction process is finished.

3.2.2 Inversion Formula for the 2D Problem

In the following we use the spherical Hankel Hl transform and φl denotes the
l−th fourier coefficient of the function φ with respect to the l−th normalized
Legendre polynomial Pl(cos(ϑ)). The integral transforms are explained in
more detail in the appendix.

Theorem 3.3. Let Fσ(r, ϑ) and Gσ(r, t) be given by (3.3), (3.27). Then Fσ

is related to the measurement data Gσ by the Formula

Hl
r {Fσ,l} (ω) =

√
2

π

Ct {Gσ}l (ω)
ω2jl(r0ω)

(3.32)

whenever jl(r0ω) 
= 0.

Proof. Applying the separation AnsatzR(r)S(ϑ) cos(ωt) to equation to (3.28)
and performing some manipulations, yields the ode’s

cot(ϑ)∂ϑS + ∂2ϑS + l(l + 1)S = 0

r2

R

[
2

r
∂rR + ∂2rR

]
+ r2ω2 − l(l + 1) = 0,

for R and S. It is well known that the first equation is solved by the Legendre
polynomials Pl(cos(ϑ)) whereas the solutions of the second equation are given
by the spherical Bessel functions jl(rw). Thus for all l ∈ N the function

(r, ϑ, t) �→ ω2jl(rω)Pl(cos(ϑ)) cos(ωt)
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is a bounded solution of (3.28) and (3.30). A general solution of equations
(3.28)-(3.30) can be written as superposition

Pσ(r, ϑ, t) =
∞∑
l=0

∫ ∞

0

F̄σ,l(ω)ω
2jl(rω)Pl(cos(ϑ)) cos(ωt)dω, (3.33)

where it is assumed that the Legendre Polynomials are already normalized,
i.e. ‖ Pl ‖2= 1. Evaluating this expression at t = 0 yields

Fσ(r, ϑ) =
∞∑
l=0

∫ ∞

0

F̄σ,l(ω)ω
2jl(rω)Pl(cos(ϑ))dω.

Therefore its scalar product with the l−th Legendre Polynomial is given by

Fσ,l(r) =

∫ ∞

0

F̄σ,l(ω)ω
2jl(rω)dω.

The latter equation shows that F̄σ,l(ω) = Hl
r {Fσ,l} (ω) where the spherical

Hankel transform of order l, Hl, can be found in the appendix. Substituting
r = R in (3.33) one has Pσ(r0, ϑ, t) = Gσ(ϑ, t) and therefore

Ct {Gσ} (ϑ, ω) =
√
π

2

∞∑
l=0

Hl
r {Fσ,l} (ω)ω2jl(r0ω)Pl(cos(ϑ)). (3.34)

Using the orthogonality relation for Legendre polynomials implies

Ct {Gσ}l (ω) = (π/2)1/2Hl
r {Fσ,l} (ω)ω2jl(r0ω) , (3.35)

and thus (3.32) follows.

It is interesting to note that this formula has got the same structure as
Norton’s famous inversion formula [43] which has been applied to photoa-
coustic tomography, e.g., in [5, 18].

3.2.3 Solving the 2nd Problem: Factorization Method

Once the inverse problem for the 2D problem (3.28)-(3.30) is solved for each
σ, the second reconstruction step in the algorithm, described in remark 3.7,
is concerned with the determination of f from its integrals over the family
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of circles crϑσ := Φσ(r, ϑ, ·), where (r, ϑ, σ) ∈ [0, R] × [0, π]2. For a fixed
radius r ≤ R the circular means of f |Sr over the circles crϑσ are then given
by Fσ(r, ϑ). Further, note that this family of circles is arranged along a great
circle on Sr so that their spherical midpoints lie on it. Then this family of
circles can be related to the average of a function over circles centered on a
line via stereographic projection like shown in figure 3.4.

To state the results some notation is introduced:

• Let Cr denote the great circle on Sr that is parameterized by ϕr(σ) =
(0, r cos(σ), r sin(σ)) which means that it is contained in the yz−plane.

• Let p = (0, 0, r) ∈ Cr and z
⊥ be the xy−plane and denote by

πr : Sr \ {p} → z⊥, x �→
(

x

r − z
,

y

r − z

)
(3.36)

the stereographic projection from Sr onto z⊥.

• Let C∞
0 (Sr) be the space of infinitely differentiable functions with all

derivatives vanishing at the north pole p and define the circular mean
transform on Sr

(Rrh)(ϑ, σ) :=

∫ 2π

0

h(Φσ(r, ϑ, φ))dφ (3.37)

over the circle crϑσ for every h ∈ C∞
0 (Sr).

• Moreover for g ∈ L2(R2) let the integral

Fxy {g} (ξ1, ξ2) :=
∫
R2

g(x, y)e−i(xξ1+yξ2)dxdy,

denote its 2D Fourier transform.

• Finally let for an absolutely integrable function g

(Rrg)(y, t) =

∫
Cyt

g(x, y)dCyt (3.38)

denote the circular mean of g over a circle Cyt centered at (0, y) and
radius t.
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f |Sr

Cr

crϑσ

f |Sr ◦ π−1
r

Cyt

Figure 3.4: The circles crϑσ on Sr. After Stereographic projection one obtains
the means over circles centered on a line of the function f |Sr ◦ π−1

r .

Remark 3.8. Since the stereographic projection πr is a conformal map the
image πr(crϑσ) := Cyt of every circle is a circle again. Further, with (3.37)
and (3.38) the relation

(Rrf |Sr)(ϑ, σ) =

∫
crϑσ

f(x)dcrϑσ(x)

=

∫
Cyt

(f |Sr ◦ π−1
r )(x, y)

2dCyt

r2 + x2 + y2
= Rr(g)(y, t), (3.39)

where g is the is defined by

g(x, y) :=
2

r2 + x2 + y2
(f |Sr ◦ π−1

r )(x, y), (3.40)

betwenn the circular means on the sphere and on the plane holds. The
relation between Rr and Rr given by equation (3.39) can be interpreted
as follows: If there is an inversion formula for the circular means over the
family of circles πr (crϑσ) in the plane one is also able to reconstruct the
desired function f |Sr(π

−1
r (x, y)).

The next lemma tells us how the circles crϑσ are mapped onto the circles
Cyt in the xy−plane.
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Lemma 1. Consider a circle Cyt in the xy plane with midpoint (0, y) on the
y−axis and radius t. Then π−1

r (Cyt) = crϑσ is the circle with

σ(y, t) =
1

2
arctan

(
2yr

y2 − t2 − r2

)
,

ϑ(y, t) =
1

2
arctan

(
2tr

y2 − t2 + r2

)
.

Proof. The antipodal points (y ± t, 0) of a circle Cyt are mapped onto those
points on Sr by π

−1
r which have the spherical coordinates (r, σ±, 0) = (r, 2 arctan(r/(y±

t), 0). The spherical midpoint of crϑσ has got the coordinates (r, σ(y, t), 0)
with σ(y, t) = (σ+ + σ−)/2. Further its radius, the arclength on Sr from
its midpoint to its boundary, is given as ϑ(y, t) = (σ− − σ+)/2. The circle
on Sr with this midpoint and radius is just given by Φσ(r, ϑ, ·) = crϑσ. The
simplified expressions for ϑ(y, t) and σ(y, t) are given in lemma 1.

Theorem 3.4 (Factorization method). Let r > 0, f |Sr ∈ C∞
0 (Sr) be sym-

metric with respect to the yz−plane and let g be as in (3.40). Then g can be
reconstructed from the formula

Fxy {g} (ξ1, ξ2) = π |ξ2| Fyt {Rrg} (
√
ξ21 + ξ2

2, ξ2), (3.41)

where

(Rrg)(y, t) := (Rrf |Sr)(ϑ(y, t), σ(y, t)).

Proof. Let Cyt be any circle in z⊥ like in the previous lemma and g be the
function (3.40). Then with lemma 1 its circular mean over Cyt is given by

(Rrf |Sr)(ϑ(y, t), σ(y, t)) = (Rrg)(y, t)

=

∫
Cyt

g(t cos(α), y + t sin(α))dα (3.42)

Further note that the function g is symmetric with respect to the y−axis
since f was symmetric with respect to the yz−plane and due to [24] from
f ∈ C∞

0 (Sr) it follows that g is a rapidly decreasing function on R
2. The

reconstruction of such functions from their means over circles with midpoints
on a line is well treated for instance in [6]. The fourier inversion formula which
is stated in the theorem is derived in there.
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Remark 3.9. Although the reconstruction method above requires that f |Sr

is symmetric with respect to the yz−plane in practice it is sufficient if it is
supported in only one of the half spheres separated by the yz−plane. Then
one can always interpret the values of the integrals Fσ(r, ϑ) as integrals over
a symmetric object.

3.2.4 Stable Formulas for Wave Inversion

A direct implementation of formula (3.32) will cause serious numerical prob-
lems since the denominator becomes zero for certain values of ω. Similar to
the cylindrical case [18, 64] this problem will be circumvented by expanding
Fσ into a spherical Bessel series and employing reconstruction formula (3.32).

In the following let (ωnl) for l ∈ N denote the zeros of the function ω �→
jl(Rω).

Theorem 3.5. The function Fσ from (3.6) is reconstructed from the mea-
surement data (3.27) by the formula

Fσ(r, ϑ) =

√
2

π

∑
l∈N

∑
n∈N

St {tGσ}l (ωnl)jl(rωnl)

ω2
nljl+1(Rωnl)3

Pl(cos(ϑ)). (3.43)

Proof. Since f ∈ C∞
0 (Ω) the functions Fσ,l(·) are supported in [0, R] and thus

can be expanded into a series of spherical Bessel functions

Fσ,l(r) =
∑
n∈N

Hl
r {Fσ,l} (ωnl)

jl(rωnl)

jl+1(Rωnl)2
. (3.44)

For exact measurement data the enumerator in (3.32) has to be zero whenever
the denominator is zero. Thus one can use the rule of D’Hospital to evaluate
Hl

r {Fσ,l} at ωnl:

(π/2)1/2Hl
r {Fσ,l} (ωn) = lim

ω→ωnl

∂ω Ct {Gσ}l (ω)
∂ω ω2jl(Rω)

= lim
ω→ωnl

−St {tGσ}l (ω)
2ωjl(Rω) + ω2 ∂ωjl(Rω)

=
St {tGσ}l (ωnl)

ω2
nljl+1(Rωnl)

,

where the last expressions follow from the identities ∂ωjl(ω) = l
ω
jl(ω) −

jl+1(ω) and ∂ω Ct {tGσ} = −St {tGσ}.
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The expansion into a series of spherical Bessel functions in formula (3.43)
can be implemented stable and can also be used to derive a second inversion
formula. The following result can easily be obtained from the expansion
formulas in derived in [59].

Proposition 3.5. Let fm
σ and gmσ denote the Fourier coefficients of the func-

tions f(Φσ(z, r, φ)) and gσ(ϑ, φ, t) := p(Φσ(r0, ϑ, φ), t), where f and p are the
unique solution of (1.1)-(1.3), with respect to φ. Then

Hl
r{fm

σ,l}(ω) =
2

π

Ft{gmσ,l}(ω)
ω2 h

(1)
l (Rω)

, ω ∈ R, l ∈ N , (3.45)

with h
(1)
l denoting the l-th order Hankel function of the first kind.

Due to Fσ,l = f 0
σ,l and Gσ,l = g0σ,l and the fact that in the denominator

of (3.45) this proposition leads immediately to a second inversion formula,
given in the following

Theorem 3.6. With the same assumptions as in Theorem 3.5

Fσ(r, ϑ) =
2

π

∑
l∈N

∑
n∈N

Ft {Gσ,l} (ωnl)

ω2
nl h

(1)
l (r0ωnl)

jl(rvn)Pl(cos(ϑ))

jl+1(Rωnl)2
. (3.46)

Proof.

Remark 3.10. In Xu and Wang [59] they use the source term formulation

Δp(x, t)− ∂2t p(x, t) = f(x)
dδ(t)

dt
p(x, t) = ∂tp(x, t) = 0, t < 0

of the wave equation which for is equivalent to the initial value problem
(1.1)-(1.3) for t > 0. Then their derivation of (3.45) is based on a series
expansion of a Green function, which arises in an integral representation for
the temporal Fourier transform of p [39]:

eiω(|Φσ(R,ϑ,φ)−Φσ(r,ϑ,φ)|)

|Φσ(R, ϑ, φ)− Φσ(r, ϑ, φ)| =
∞∑
l=0

jl(ωr)h
(1)
l (ωR)Pl(cos(ϑ)). (3.47)

Then (3.45) is derived straight forward using orthogonality relations for the
Legendre polynomials and Bessel functions.
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3.2.5 Noisy Data

In practise only noisy measurement data, write Gδ := Gδ
σ, are available and

generically there is no solution of system (3.28)-(3.30) such that P (r0, ϑ, t) =
Gδ(ϑ, t). However, we can show that inversion formulas (3.43) and (3.46)
still make sense in the case of noisy data Gδ.

Theorem 3.7. Formulas (3.43) and (3.46) define continuous operators

F : L2([0, π]× [0, T ], sin(ϑ)dϑdt) → L2([0, π]× R>0, sin(ϑ)dϑr
2dr)

where F (Gδ) is either defined by formula (3.43) or (3.17).

Proof. The assertion in the theorem 3.7 is proven here for formula (3.43)
only since the proof for (3.46) is almost analogous. Note that for any Gδ ∈
L2([0, π] × [0, T ], sin(ϑ)dϑdt) the function ω �→ St

{
tGδ
}
(ω) is continuous

and thus it makes sense to evaluate it at the discrete points ωnl. Since the
Legendre polynomials Pl form an orthonormal basis in L2([0, π], sin(ϑ)dϑ)
the coefficients Gδ

l defined by (7.1) are in �2(N). Moreover for each l ∈ N the
sequence

(
St

{
tGδ
}
(ωnl)

)
n
also belongs to �2(N): To see this note that the

roots ωnl, for each l, increase in such a way that there is a c > 0 such that
ωnl > l + cn. Moreover for each ωnl we can choose a k ∈ N such that 2kπ/T
is as close to ωnl as possible from below and write 2kπ/T + ε = ωnl. Then for
each l ∈ N it follows that the k are unbounded since the ωnl are unbounded
and the estimate∣∣St

{
tGδ
}
(ωnl)

∣∣ = ∣∣∣∣∫ T

0

tGδ(t) sin((2kπ/T + ε)t)dt

∣∣∣∣ ≤∣∣∣∣∫ T

0

tGδ(t) sin(2ktπ/T )dt

∣∣∣∣+ ∣∣∣∣∫ T

0

tGδ(t) cos(2ktπ/T )dt

∣∣∣∣
holds. Therefore |St

{
tGδ
}
(ωnl)| is bounded by the sum of the absolute

values of the k’th Fourier coefficients of tG(ϑ, t) with respect to the basis
{sin(2kπ/T ), cos(2kπ/T )} and so the sequence

(
St

{
tGδ
}
(ωnl)

)
n
belongs to

�2(N). Putting all together we see that also the sequence
(
St

{
tGδ
}
l
(ωnl)

)
nl

lies in �2(N×N). The remaining term in the series expansion (3.43) with re-
spect to the basis functions Pl(cos(ϑ)) and jl(rωnl)/jl+1(Rωnl) is 1/(ω

2
nl j

2
l+1(Rωnl)).

From the asymptotic formula for the Bessel function

jl+1(Rωnl) ≈ cos

(
Rωnl − (l + 2)π

2
− π

4

)
1

Rωnl
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and the fact that the ωnl are the roots of jl it follows that the sequence(
1/(ω2

nl j
2
l+1(Rωnl))

)
nl
is bounded and thus

(
1/(ω2

nl j
2
l+1(Rωnl)St

{
tGδ
}
l
(ωnl)

)
nl

also lies in �2(N × N) and so the series in (3.43) converges for any Gδ ∈
L2([0, π]× [0, T ], sin(ϑ)dϑdt). Since we know that formula (3.43) converges it
can easily be checked that F is continues at 0 and since F is a linear operator
the continuity of F follows.

The result above guarantees that for each of the formulas above there is
a constant M such that

‖ F − F δ ‖≤M ‖ G−Gδ ‖< Mδ,

which means that the reconstruction error becomes small if the measurements
are accurate enough.

The last theorem guarantees the convergence reconstruction formulas (3.43)
and (3.46) for data in space L2([0, π]× [0, T ], sin(ϑ)dϑdt). As an application
of this result we derive a series expansion identity for characteristic function
in the appendix. Moreover, this identity leads to a new series expansion for
the dirac distribution.
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Chapter 4

Conversion of Measurement
Data

In this part of the thesis we suppose that initial pressure f is supported in
the half space H = {x ∈ R

3 : x ≥ 0}. Further we assume that we know
the circular means, of the acoustic pressure p over two particular families
of circles in E = ∂H . Our aim is, to determine the pressure p pointwise
from this circular means, so that we can apply reconstructions formulas that
require pointwise data on E, [54, 57, 58].

The first family of circles consists of the circles which have (fixed) radius
rd and are centered at x ∈ R

2. Pointwise inversion formulas for this family
are of particular interest since these circular integrals are relatively easy to
measure in applications. Secondly, we consider the family of circles which
are tangential to another circle of fixed radius. Both families are depicted in
the figure 2.5.

We define the operator

G : C∞
0 (R2 × R≥0) → ran (G) ⊂ C∞

0 (R2 × R≥0 × R≥0) (4.1)

G(p)(x, r, t) =
1

2π

∫ 2π

0

p(x+ (r cos(α), r sin(α)), t)dα,

where G(p)(x, r, t) is the circular mean over the circle with center x and
radius r like depicted in figure 4.1.
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Moreover we define the operator

Ga : C∞
0 (R2 × R≥0) → ran (Ga) ⊂ C∞

0 (R2 × R≥0) (4.2)

by Ga(p)(x, t) := G(x, rd), which maps the function p onto the circular mean
over the circle with center x and radius rd. Circular means, over the second
family of circles, are described by the operator

Gb : C∞
0 (R2 × R≥0) → ran (Gb) ⊂ C∞

0 (R2 × R≥0) (4.3)

where Gb(p)(x, t) := G(x, r) is the circular mean over the circle centered at
x and radius r = |x|−ρ > 0. Such a circle is tangential to the circle of radius
ρ, which is centered at the origin.

In the following we will use the abbreviations

Ga(x) := Ga(p)(x, t), Gb(x) := Gb(p)(x, t) (4.4)

G(x, r) := G(p)(x, r, t),

were we also omit the time parameter since it is only a dummy variable in
following computations.

4.1 Pointwise reconstruction for circles with

fixed radius

Firstly, we are concerned with the inversion of the operator (4.2). The in-
jectivity of this operator has been investigated in [53]. From the results
therein we know that the operator Ga is injective for functions p in Lp(Rn)
for p < 2n/(n − 1). Since p is compactly supported in the present case we
know that its reconstruction from its circular has a unique solution. The first
reconstruction method, which we present, is based on the simple observation
that the integral over a circle, of fixed radius rd and center x, can be written
as a convolution with a delta distribution. Although this method has already
been investigated in [4] we present it here since it was found independently
by the author.

In the following the abbreviations (4.4) are used and F denotes the Fourier
transform which is defined in the appendix.
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Theorem 4.1. Let Ga(x) denote the circular means, over circles of radius
rd and center x. Then the pressure p is reconstructed point wise by

F {p} (ξ) = F {Ga} (ξ)
rdJ0(rd|ξ|) , (4.5)

whenever J0(rd|ξ|) 
= 0.

Proof. It is not hard to see that Ga(x) can be rewritten as

Ga(x) =
1

2π

∫ 2π

0

p(x+ rd(cos(α), sin(α))) dα

=
1

2π

∫
R2

p(x)δ(|x− y| − rd)dy = p(x) ∗ δ(|x| − rd). (4.6)

The Fourier transform of the convolution product is equal to the product
of the Fourier transforms of each of the factors. We compute the fourier
transform of the distribution, which is given by

F {δ(|x| − rd)} (ξ) =
∫
R2

δ(|x| − rd)e
−ixξdx =

∫
|x|=rd

e−ixξdx.

The latter integral is invariant under rotation since for any A ∈ SO(2) the
equation

F {δ(|x| − rd)} (ξ) =
∫
|x|=rd

e−ixξdx =

∫
|y|=rd

e−iA−1yξdy

=

∫
|y|=rd

e−yAξdy = F {δ(|x| − rd)} (Aξ)

holds. Introduce ξ̃ = |ξ|(1, 0), then, because of rotation invariance, we have

F {δ(|x| − rd)} (ξ) = F {δ(|x| − rd)} (ξ̃) = (4.7)∫
|x|=rd

e−ixξ̃ dx = rd

∫ π

0

cos(rd|ξ| sin(t)) dt− ird

∫ π

0

sin(rd|ξ| sin(t)) dt.

On the other hand we conclude, again by rotation invariance, that

F {δ(|x| − rd)} (ξ) = F {δ(|x| − rd)} (−ξ̃) = (4.8)

= rd

∫ π

0

cos(rd|ξ| sin(t)) dt+ ird

∫ π

0

sin(rd|ξ| sin(t)) dt.
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Finally, after adding equations (4.7) and (4.8) we arrive at∫
|x|=rd

e−ixξ = rd

∫ π

0

cos(rd|ξ| sin(t)) dt = rdJ0(rd|ξ|).

The last equality is an integral representation for the Bessel function J0 which
for instance can be found in [48].

The fraction in equation (4.5) causes problems at the roots of the de-
nominator J0(rd|ξ|) which makes the reconstruction sensitive to noise. A
possibility to evaluate the fraction, near a root of if its denominator, is to
apply the rule of D’Hospital. However, numerical experiments indicate that
this does not significantly improve the quality of reconstructions which mo-
tivates to search for a new formula.

In the following we parameterize R
2 in polar coordinates. Further we em-

ploy the Fourier series expansion of a compactly supported function with
respect to its angular variable like explained in the appendix. In polar coor-
dinates the operator 4.1 has the form

G(R, φ, r) =
1

2π

∫ 2π

0

p(x + r(cos(α), sin(α)))dα, (4.9)

where x = R(cos(φ), sin(φ)).

The next theorem establishes a relationship between the Fourier coeffi-
cients of the function G and the pressure p.

Theorem 4.2. Let G and p be expanded as Fourier series with respect to
their angular variable. Then the Fourier coefficients satisfy the relation

Gλ(R, r) =

∫ 1

−1

pλ

(√
R2 + r2 + 2rRt

) T|λ|(t)√
1− t2

dt . (4.10)

Proof. Expanding p into a Fourier series

p(x+ r(cos(α), sin(α))) =
∑
λ∈Z

pλ(|x+ r(cos(α), sin(α))|)eiλα

together with equation (4.9), it follows that

G(R, φ) =

∫ 2π

0

∑
λ∈Z

pλ

(√
R2 + r2 + 2rR cos(α− φ)

)
eiλαdα
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φ

R

x

r

G(R, φ, r)

Figure 4.1: Circular mean over the circle centered at R(cos(φ), sin(φ)) with
radius r.

With the Funk–Hecke theorem we have

G(R, φ) =
∑
λ∈Z

(∫ 1

−1

pλ

(√
R2 + r2 + 2rRt

) T|λ|(t)dt√
1− t2

)
eiλφ

and the result follows after expanding G into a Fourier series.

In the case when the detector radius is fixed we have that Ga(R, φ) =
G(R, φ, rd). In order to reconstruct acoustic pressure p from measurement
data Ga, we have to solve the integral equation

Ga
λ(R) =

1

2π

∫ 1

−1

pλ

(√
R2 + r2d + 2rdRt

)
T|λ|(t)√
1− t2

dt (4.11)

for each λ. Solving a sequence of one dimensional problems is a simplification
of the original problem, where one would have to solve the two dimensional
equation Ga(x) = 1

2π

∫ 2π

0
p(x+ rd(cos(α), sin(α)))dα directly. Unfortunately,

for each λ, the one dimensional problems have to be solved numerically, since
we were not able to derive an exact solution of equation (4.11).
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4.2 Reconstruction over circles tangential to

another circle

Secondly, we consider the circular means over the family of circles that are
tangential to a circle of fixed radius ρ. Note that for r = |x|−ρ we have that
G(x, |x| − ρ) = Gb(x). According to Theorem (4.2) the Fourier coefficients
of Gb satisfy the relation

Gb
λ(R, r) =

∫ 1

−1

pλ

(√
R2 + r2 + 2Rrt

) T|λ|(t)√
1− t2

dt, (4.12)

with r = R − ρ. The next result establishes a relationship, between the
coefficients Gb

λ and the pressure pλ, outside the circle of radius ρ, in terms of
the Mellin transform. The Mellin transform M, which is a very useful tool
in the field of integral equations, is introduced in the appendix of this thesis.

In order to state our result in a compact form we use the following abbre-
viations

gλ(k) := Gλ

(
ρ+

√
k2 + ρ2

2
,

√
k2 + ρ2 − ρ

2

)
(4.13)

uλ(k) := pλ

(√
k2 + ρ2

)
, (4.14)

hλ(k) :=

{
T|λ|

(√
k2 − 1

)
/
√
k2 − 1 if |k| > 1

0 else.
(4.15)

Theorem 4.3. Let the Fourier coefficients of G and p satisfy the integral
equation (4.10). This integral equation can be written as Mellin convolution
product when it is assumed that ρ = R − r is constant. In this case the
following relation

M {uλ} (s) M {hλ} (s) = M {gλ} (s) (4.16)

holds, where the functions gλ, uλ and hλ ere defined by equations (4.13),
(4.14) and (4.15) respectively.

Proof. We introduce the new integration variable s2 = R2+ r2+2rRt. Then
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the right side of equation (4.12) transforms into

∫ R+r

R−r

pλ(s) T|λ|
(

s2−R2−r2

2rR

)
sds√

((r +R)2 − s2) (s2 − (R− r)2)
.

To proceed note that for −1 ≤ x ≤ 1 the identities

T|λ|(x) = cos(λ arccos(x)), arccos(x) = 2 arctan

(√
1− x2

1 + x

)
hold and since −1 ≤ s2−R2−r2

2rR
≤ 1 for R − r ≤ s ≤ R + r the latter integral

becomes∫ R+r

R−r

pλ(s) sds√
((r +R)2 − s2) (s2 − (R− r)2)

T|λ|

(√
(R + r)2 − s2

s2 − (R− r)2

)
.

Now set ρ = R− r and ρ̃ = R + r and introduce the relations

ρ̃2 − ρ2 = k2, s2 − ρ2 = p2. (4.17)

by our assumption the variable ρ is fixed which implies that equations (4.13)
and (4.14) are functions of k only. Moreover using the relation (4.17), with
abbreviations (4.13) and (4.14), we can be rewrite (4.12) as

gλ(k) =

∫ k

0

uλ(p)√
k2 − p2

T|λ|

(√
k2 − p2

p

)
dp. (4.18)

We proceed by rewriting the latter integral to

gλ (k) =

∫ k

0

uλ(p)dp

p
T|λ|

(√
(k/p)2 − 1

) dp√
(k/p)2 − 1

.

Introduce the a new integration variable σ, by the relation σp = k, the latter
expression becomes

gλ (k) =

∫ ∞

1

uλ(k/σ)dp√
σ2 − 1

T|λ|
(√

σ2 − 1
) 1

σ
dσ. (4.19)

This, is the Mellin convolution of the functions uλ and hλ. Thus applying
the mellin transform to equation gives the desired result.
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Rearranging formula (4.16) as

M {uλ} (s) =
M {gλ} (s)
M {hλ} (s) , (4.20)

whenever M {hλ} (s) 
= 0, and applying the inverse Mellin transform yields
uλ. Unfortunately, we could not derive an analytic expression for M {uλ}.
However, this is not a problem since its Mellin transform can be computed
numerically and stored in a lookuptable for implementation issues. Once uλ
is determined, according to (4.13) pλ is given and thus p can be computed
from its Fourier series outside the circle with radius ρ.



Chapter 5

Resolution of Circular
Integrating Detectors

In applications circular integrating detectors are approximated by toroidal
shaped optical fibers with a certain thickness. As a result, pressure integrals,
which are measured with approximate circular (toroidal) detectors, are only
approximations to a circular integral. Moreover, the integral, measured by
a toroidal detector, is recorded in an ultrasound detection system. This sys-
tem does not immediately respond, when acoustic pressure is collected by
a toroidal detector, which causes inaccurate temporal measurements. Both
factors, the thickness of a toroidal detector and the inexactness of the ul-
trasound detection system, cause errors in the measurement data. Thus,
a reconstruction algorithm, that uses this erroneous data yields a blurred
version of the initial data f . In the following we present a model, that in-
vestigates the thickness of a toroidal detector and the time inaccuracy of the
detection system, which can be used to describe the blurring of initial data
explicitly.

In this section W3D(f)(x, t) will denote the solution of the problem (1.1)-
(1.3) and Σ denotes the set of all two dimensional families of circles in R

3.
Further, we assume that a particular family Σ0 ⊂ Σ is parameterized by a
map Q → Σ0, q �→ cx(q), where q = (q1, q2) and Q ⊂ R

2 is an open set of
parameters. Here cx(q) denotes the circle that is centered at the point x(q) ∈
R

3 that is contained in the affine plane ε : x(q) + Rv1(x(q)) + Rv2(x(q))
and has radius rx(q), where the vectors v1(x) and v2(x) form an orthonormal
basis of ε. Further, we assume that the circles Σ0 do not intersect with a
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Ω

cx

x

Figure 5.1: A cross section of ring shaped detectors placed around Ω.

domain Ω that contains the support of the initial pressure f as depicted in
figure 5.1.

Suppose we know the circular means of acoustic pressure over a two di-
mensional family of circles. Then we are concerned with the inversion of the
operator

C : C∞
0 (Ω) → ran(C) ⊂ C∞(Q× R≥0) (5.1)

C(f)(x(q), t) =
1

2π

∫ 2π

0

W 3D(f)(cx(q)(α), t)dα,

that maps the initial density f onto the circular mean of acoustic pressure
W 3D(f)(x, t) := p(x, t) (where p is the solution of (1.1)-(1.3)) over the cir-
cle cx(q), where the circle cx(q) is parameterized by the map cx(q) : α �→
rx(q) cos(α)v1(x(q)) + rx(q) sin(α)v2(x(q)) + x(q). We assume that the oper-
ator (5.1) possesses an inverse C−1 for a certain family of circles Σ0. Explicit
formulas for the inverse can only be given in very special cases. For instance
these families Σ0 are given by one of the families considered in the Sections
3.1 and 3.2.

In the following calculations the variable q will be omitted.
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z

xrx

Figure 5.2: Cross section of a toroidal shaped detector. The weight ω as-
signed to the point z depends on the relative position of the point z to the
center x of the toroidal detector.

The next operator models the inexactness in measurement data, which are
caused by the thickness of a toroidal detector and the temporal inaccuracy
of the ultrasound detection system.

Cϕ,w : C∞
0 (Ω) → ran(C) ⊂ C∞(Q× R≥0) (5.2)

Cϕ,w(f)(x, t) := ϕ ∗t
∫
R3

w(x, z)W 3D(f)(z, t) dz,

where ϕ denotes the impulse response function that describes blurred time
measurements and w is a weight function that describes the sensitivity of a
toroidal detector as explained in figure 5.2.

The following theorems investigate influence of erroneous data, caused
by the ultrasound detection system, onto the reconstruction of the initial
pressure f . The first theorem establishes, that it is equivalent to either
convolve the function C(f) in time, with ϕ, or to apply the operator C to
the initial data f , convolved with −πϕ(|x|)/(|x|).
Theorem 5.1. Let f ∈ C∞

0 (Ω) and let ϕ : R → R be even, absolutely
integrable, compactly supported and differentiable. Then the equality

ϕ ∗t C(f)(x, t) = C(f ∗ Φ)(x, t), (5.3)
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where

Φ(x) = −π
2

ϕ′(|x|)
|x|

holds for all (x, t) with x outside the support of Φ ∗ f .

Proof. Let the function Φ(x) = ϕ̃(|x|) be radially symmetric, absolute inte-
grable and continues. First we will adjust Φ in such a way that the equation

W 3D(f ∗ Φ)(x, t) = ϕ ∗t W 3D(f)(x, t)

holds. From the definition (5.1) it is then easy to see that the last expression
implies (5.3).

We apply D’Alemberts formula for the solution of the three dimensional
wave equation [26], to the function Φ ∗ f , which gives

W 3D(Φ ∗ f)(x, t) = 1

4π
∂tt

∫
S2

(f ∗ Φ) (x+ tω)dS(ω)

=
1

4π
∂tt

∫
S2

(∫
R3

f(x′)ϕ̃(|x+ tω − x′|)dx′
)
dS(ω).

To proceed we substitute x′ = x+ ρσ with ρ ∈ R>0 and σ ∈ S2, in the inner
integral and apply Fubini’s theorem which leads us to

W 3D(Φ ∗ f)(x, t)

=
1

4π
∂tt

∫
S2

(∫
S2

∫ ∞

0

f(x+ ρσ)ϕ̃(|ρσ − tω|)ρ2dρdS(σ)
)
dS(ω)

= ∂tt

∫ ∞

0

∫
S2

f(x+ ρσ)

(
1

4π

∫
S2

ϕ̃(|ρσ − tω|)dS(ω)
)
ρ2dρdS(σ).

The last expression in the parenthesis

1

4π

∫
S2

ϕ̃(|ρσ − tω|)dS(ω)

is the mean value the of the function ϕ̃(|x|) over a sphere with radius t
centered ρσ. Let IΦ denote a primitive of s �→ ϕ̃(

√
s ), then the we have

1

4π

∫
S2

ϕ̃(|ρσ − tω|)dS(ω) = IΦ((ρ+ t)2)− IΦ((ρ− t)2)

4tρ
, (5.4)



57

for t, ρ > 0. This identity can be found in [22] and the proof therein is
presented in the appendix. Using (5.4) we have that

W 3D(Φ ∗ f)(x, t) =
1

4
∂t

∫ ∞

0

(
IΦ((ρ+ t)2)− IΦ((ρ− t)2)

)
ρ

∫
S2

f(x+ ρσ)dS(σ)dρ. (5.5)

Since the time derivative of the function t �→ IΦ((ρ + t)2) − IΦ((ρ − t)2) is
continues we can interchange the order of differentiation and integration in
equation (5.5) an we have that

W 3D(Φ ∗ f)(x, t) = 1

2

∫ ∞

0

(ρ− t)ϕ̃(|ρ− t|)
(
ρ

∫
S2

f(x+ ρσ)dS(σ)

)
dρ.

(5.6)

The term ∂tIΦ((ρ+ t)2) vanishes since x 
∈ supp(Φ ∗ f). On the other hand,
again by D’Alemberts formula, we have

ϕ ∗t W 3D(f)(x, t) =
1

4π
ϕ ∗ ∂tt

∫
S2

f(x+ tσ)dS(σ) (5.7)

=
1

4π

∫ ∞

0

ϕ′(t− ρ)

(
ρ

∫
S2

f(x+ ρσ)dS(σ)

)
dρ.

Comparing equations (5.6) and (5.7) we see that they coincide if sϕ̃(|s|) =
(−π/2)ϕ′(s) for s ∈ R. Since the functions ϕ′ and s �→ sϕ̃( |s|) are odd the
last equation is equivalent to

ϕ̃(s) = −π
2

ϕ′(s)
s

, for s ≥ 0.

Thus Φ(x) = ϕ̃(|x|) has the desired properties.

The left side of equation (5.3) models the temporal inaccuracy of toroidal
measurements. Since, in applications only inaccurate time measurements are
available, usually the inverse C−1 is applied to equation (5.3) which results
in a blurred reconstruction of the initial pressure f .

A similar result can be derived for the circular mean ofW 3D(f ∗U), where
f ∗ U is the initial pressure convolved with a radial function U . In order to



58 CHAPTER 5. RESOLUTION

prove this result we introduce cylindrical coordinates (r, z, α) for each circle
cx,

Ψx :R>0 × R× (0, 2π) → R
3 (5.8)

(r, z, α) → x+ z(v1(x)× v2(x)) + r cos(α)v1(x) + r sin(α)v2(x),

in such a way that the center of the circle is the origin of that coordinate
system and its symmetry axis is normal to the plane x + Rv1(x) + Rv2(x),
where v1 and v2 are assumed to be orthonormal.

Theorem 5.2. Let U(x) = u(|x|) be a radially symmetric and absolute in-
tegrable function, rx > 0. Then the following relation

C(U ∗ f)(x, t) = 1

2π

∫
R3

w(x, z)W 3D(f)(z, t)dz (5.9)

holds, where the weight, described in cylindrical coordinates (5.8), is given by

w(r, z) =
1

2π

∫ 1

−1

u(
√
r2x + r2 − 2rxrv + z2)√

1− v2
dv. (5.10)

Proof. With the acoustic reciprocal principle, which can be found in the
appendix of this thesis, we have

C(U ∗ f)(x, t) = 1

2π

∫ 2π

0

(W 3D)(U ∗ f)(cx(α̃), t)dα

=
1

2π

∫ 2π

0

U ∗W 3D(f)(cx(α̃), t)dα̃

=
1

2π

∫ 2π

0

(∫
R3

u(|cx(α̃)− z|)W 3D(f)(z, t)dz

)
dα. (5.11)

The distance, in cylindrical coordinates, of the points cx(α̃) and z is given
by

|cx(α̃)− z|2 = r2x + r2 − 2rxr cos(α− α̃) + z2

With the latter expression we have

C(U ∗ f)(x, t) =
1

2π

∫ 2π

0

∫ 2π

0

∫
R>0

∫
R

u
(√

r2x + r2 − 2rxr cos(α− α̃) + z2
)

W 3D(f)(r, z, α)rdrdαdzdα̃.
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Applying Fubini’s and the Funk–Hecke theorem, see appendix, leads to

C(U ∗ f)(x, t) =

1

2π

∫
R>0

∫
R

∫ 2π

0

(∫ 1

−1

u(
√
r2x + r2 − 2rxrv + z2)dv√

1− v2

)
W 3D(f)(r, z, α, t)

dαrdrdz, (5.12)

which finishes the proof.

The last theorem shows how the function ω is computed for a known
radial function U with equation (5.10). In the following we will discuss the
properties of the weight function ω.

Assume that a point detector records the pressure signal of a spherical
sound source. By the acoustic reciprocal principle, we know that the same
signal would be measured by a spherical shaped detector, if the spherical
source is replaced by a point source, see figure 5.3.

Figure 5.3: Left: A point detector, measures the signal from a spherical
sound source. Right: A spherical detector, which measures the integral of
acoustic pressure over its volume, records the signal emitted from a point
source. According to the acoustic reciprocal principle this signals are equal.

As a consequence, a circular detector, measures the integral of the signals,
measured by spherical detectors, placed along it, if the spherical source is
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rx

d

Figure 5.4: The circular annulus that results from a cross section, with the
plane z = 0, of the family of spheres along a circle. The density of spheres
nearby the inner radius is greater than the density nearby the outer radius.

interchanged by a point source. The result is a weighted integral of acoustic
pressure over a torus. In figure 5.4 a cross section of the family of spheres,
placed along a circle, is shown. We see that the density of the spheres nearby
the inner radius of the circular annulus is greater than the density near the
outer radius. This asymmetry around rx has to be reflected by the sensitivity
function ω in equation (5.9). However, an asymmetric sensitivity profile
around rx is quite natural. To appreciate this, assume that an optical fiber
is bend into a toroidal loop. Bending the fiber squeezes the material on its
inner and outer boundaries in an asymmetric way.

For a fixed z a reasonable sensitivity function is depicted in the lower
picture in figure 5.5.

In the following we will make considerations above more rigorous. Suppose
that an absolutely integrable function u ∈ L1(R) is given which is supported
in the interval [0, d], where d < rx is the half width of the circular annulus
in figure 5.4. Moreover we can assume that z = 0 since all the are the same
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u

rx

rx

ω

dd

d

rx − d

rx − d

r

s

Figure 5.5: The image illustrates how ω is constructed from u according to
equation (5.13).

for any z. It is not hard to figure out that the equation

w(r, 0) =

∫ 1

−1

u(
√
r2x + r2 − 2rxrv)√

1− v2
dv,

can be transformed into

ω (r, 0) = 2

∫ rx+r

|rx−r|

u(s)sds√
((rx + r)2 − s2) (s2 − (rx − r)2)

, (5.13)

if the new integration variable s2 = r2x + r2 − 2rxrv is introduced. Further,
since u is compactly supported in [0, d] it can be seen from the integration
limits in (5.13) and figure 5.5 that ω is supported in [rx−d, rx+d]. Moreover,
we see from equation (5.13) that ω evaluated at r = rx ± λ gives

ω (rx ± λ, 0) = 2

∫ d

λ

u(s)sds√
((2rx ± λ)2 − s2) (s2 − λ2)

,

which implies that ω can not be symmetric around rx like explained above.

The considerations above can be used to find a function u for a sensitivity
profile of a toroidal detector with desired properties. For instance, if a desired
profile w(r, 0) should increases on the interval [rx − d, rx− d+ ε] and remain
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almost constant on [rx−d+ ε, rx+d−ε] the choice u = cχ[d−ε,d], for a c > 0,
will give an ω with the desired properties.

However, it is not possible to find an u for an arbitrary sensitivity function
w (for instance if ω is symmetric around rx), which means that equation
(5.10) has no solution. If it has a solution we are able solve it explicitly and
its solution is given in the appendix.

In the following we assume that a radial function U(x) = u(|x|) for the
sensitivity profile ω of a toroidal detector is given. By combining Theorems
5.2 and 5.1 we obtain the main result of this chapter.

Theorem 5.3. Let f ∈ C∞
0 (Ω) and let ϕ and ω denote the impulse response

and sensitivity functions of a toroidal detector. Then Cϕ,w(f) ∈ ran (C) and
the equation

C(Φ ∗ U ∗ f)(x, t) = Cϕ,ω(f)(x, t)

holds.

Proof. According to the theorems 5.2 and 5.1 we have

C(Φ ∗ U ∗ f) = ϕ ∗t C(U ∗ f) = Cϕ,ω(f)

and therefore Cϕ,w(f) ∈ ran(C) which concludes the proof.



Chapter 6

Numerical Results

In this chapter we present numerical results for the two step reconstruc-
tion algorithms in cylindrical and spherical geometry which were deduced in
chapter 3 for the scanning geometries presented in figures 2.3 and 2.1. In
both cases we simulate pressure data from a simple configuration of spheres
and compute projections with respect to the families (3.25) and (3.2) with
the stable reconstruction formulas which were derived in sections 3.1.3 and
3.2.4. The results show that that TAT with circular integrating detectors
can be successfully implemented and provides an accurate reconstruction of
the desired initial pressure.

6.1 Cylindrical stack of circles

In practice one deals with discrete measurement data

Gl[m, n] := Gσl(zm, tn) , (l, m, n) ∈ {1, . . . , Nσ} × {1, . . . , Nz} × {1, . . . , Nt} ,
where Gσ is as in (3.4), and where σl = 2π(l − 1)/Nσ, zm = H(m − 1)/Nz
and tn = T (n − 1)/Nt are discrete samples of the angle, hight and time,
respectively. Here H > 0 represents the finite height of the stack of circular
integrating detectors (see Figure 2.1) and T is such that Gσ(z, t) = 0 for
t ≥ T and z ∈ [0, H ].

In this section we outline how to implement (3.13) in order to find an
approximation

Fl[m, n]  Fσl(zm, rn) , (m, n) ∈ {1, . . . , Nz} × {1, . . . , Nr} ,

63
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with rn = rd(n − 1)/Nr. Having calculated such an approximation, one can
reconstruct a discrete approximation to f by applying the filtered back–
projection algorithm of [16] for fixed m, see Remark 3.1.

A numerical reconstruction method based on (3.13) is as follows:

(i) The discrete Fourier transform (with respect to the first component) of
the data

F {Gl} [m, n] :=
Nz∑

m′=1

Gl[m
′, n] e−i2πm(m′−1)/Nz (6.1)

with (m, n) ∈ {−Nz/2, . . . , Nz/2 − 1} × {1, . . . , Nt}, is considered as an
approximation to F {Fσl} (2πm/H, tn).

(ii) The sine transform S {tF {Fσl}}, evaluated at

ωm,n =
√

(2πm/H)2 + v2n , (m, n) ∈ {−Nz/2, . . . , Nz/2−1}×{0, . . . , Nr−1} ,
is approximated by the trapezoidal rule, leading to

S {tF {Gl}} [m, n] :=
Nt∑

n′=1

tn′F {Gl} [m, n′] sin
(
ωm,ntn′

)
. (6.2)

(iii) Finally, truncating the Fourier Bessel Series and approximating the in-
verse Fourier transform with the trapezoidal rule leads to the following
discrete version of (3.13):

Fl[m, n] :=
4T

πr3dNt

Nz/2−1∑
m′=−Nz

Nr−1∑
n′=0

vn′S {tF {Gl}} [m′, n′]
ω2
m′,n′J1(rdvn′)

3
J0(rnvn′)e

−i2πm′(m−1)/Nz ,

(6.3)
with (m, n) ∈ {−Nz/2, . . . , Nz/2− 1} × {0, . . . , Nr − 1}.

A numerical reconstruction method using (3.13) can be obtained in an
analogous manner. In this case one replaces (3.17) by

Fl[m, n] :=
4T

πr2dNt

Nz/2−1∑
m′=−Nz

Nr−1∑
n′=0

F {F {Gl}} [m′, n′]
ωm′,n′H

(2)
0 (rdvn′)J0(rdvn′)2

J0(rnvn′)e
−i2πm′(m−1)/Nz ,

(6.4)
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which is the discrete analogue of (3.17).

To give a rough estimate of the computational complexity for the previous
calculations let us assume Nz = Nr = Nt = Nσ =: N and that the values of the
sine function and the Bessel function are pre–computed and stored in lookup
tables. Then the evaluation (6.1) needs O(N2 log N) floating point operations
(FLOPS) whereas (6.2) and (6.3) require O(N3) FLOPS. The filtered back
projection formula (3.8) also requires O(N3) FLOPS, see [16]. For three
dimensional reconstruction (6.1), (6.2), (6.3) and the filtered back–projection
formula have to be applied N times. Hence the total number of FLOPS is
estimated as

NFLOPS = N
(O(N2 log N) +O(N3) +O(N3)

)
= O(N4) . (6.5)

Note that three dimensional back–projection type formulas which use point
measurement data have complexity O(N5).

In the following numerical experiments we take R = 0.4, H = 3.75 and
T = 4. The synthetic initial data f is assumed to be a superposition of
radially symmetric objects around centers xn, i.e.,

f(x) =
∑
n

fn
(‖x− xn‖

)
, x ∈ R

3 .

The acoustic pressure generated by a single radially symmetric object at
position x and time t is given by (see [22])

pn(x, t) =
‖x− xn‖ − t

2 ‖x− xn‖ fn

(∣∣‖x− xn‖ − t
∣∣). (6.6)

By the superposition principle the total pressure is

p(x, t) =

N∑
n=1

pn(x, t) , (x, t) ∈ R
3 × (0,∞) . (6.7)

The measurement data Gσ(z, t) = 1/(2π)
∫ 2π

0
p(Φσ(z, rdet, α), t)dα, see (3.1),

(3.27), were generated by evaluation of (6.6) followed by numerical integra-
tion over α. The radius rd of the circular integrating detectors is chosen to
be 2R. In this case the stack of circular integrating detectors fully encloses
the synthetic initial data f , see right image in in Figure 3.1.
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Figure 6.1 shows a vertical cross section of the initial pressure f and the
measurement data Gσ where Gaussian noise with a variance of 10% of the
maximal data valued is added. The stack of circular integrating detectors is
centered to the left of the objects. The reconstructions of Fσ with (6.3) and
(6.4) from exact and noisy data are depicted in Figures 6.2 and 6.3. In the
reconstructed images one notices some blurred boundaries which are limited
data artifacts [38, 49] arising from the finite height of the stack of circular
integrating detectors.

6.2 Array of circles of latitude on the Sphere

In this section we reconstruct a projection from the family of circles (3.25).
We consider here the measurement data

Gs[m, n] := Gσl(ϑm, tn) , (s, m, n) ∈ {1, . . . Nσ} × {1, . . .Nϑ} × {1, . . .Nt} ,
which are a discrete version of (3.27). Here σs = π(s−1)/Nσ, ϑm = π(m−1)/Nϑ
and tn = 2R(n − 1)/Nt are discrete samples of the variables for which a
measurement is performed. The aim is to find an approximation for the
integrated initial pressure (3.3)

Fs[m, n] = Fσs(rn, ϑm) , (s, m, n) ∈ {1, . . . Nσ} × {1, . . .Nϑ} × {1, . . .Nr} ,
where rn = R(n − 1)/Nr and Nr = Nt/2. After such an approximation is
calculated one can reconstruct a discrete approximation to f by applying
the Fourier inversion formula of [6] for a fixed fixed n.

First a discretization of formula (7.1) applied to the measurement data is
given by

Gs[l, n] :=

Nϑ∑
m=1

Gs[m, n] Pl(cos(ϑm)) sin(ϑm), l ∈ {0, . . . , Nϑ} (6.8)

where the Pl are the normalized Legendre polynomials. The discrete sine
transform, applied to the second component of the measurement data mul-
tiplied by t evaluated at ωnl is implemented by

St {tGs} [l, j] :=
(
2

π

)1/2 Nt∑
n=1

tnGs[l, n] sin
(
tnωlj

)
, j ∈ {0, . . . , Nr − 1} .(6.9)
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The Fourier transform with respect to the time variable is as usually imple-
mented by

Ft {Gs} [l, j] =
(

1

2π

)1/2 Nt∑
n=1

Gs[l, n] e
itnωlj , j ∈ {−Nt

2
, . . . ,

Nt

2
− 1} (6.10)

and evaluated with the FFT algorithm. This finally leads to the discrete
versions of inversion formula (3.43)

Fs[n, m] :=

√
2

π

Nϑ∑
l=0

Nr−1∑
j=0

St {tGs} [l, j]
ω2
jl

jl(rnωjl)Pl(cos(ϑm))

jl+1(Rωjl)3
(6.11)

and (3.17)

Fs[n, m] :=
2

π

Nϑ∑
l=0

Nr−1∑
j=0

Ft {Gs} [l, j]
ω2
jl h

(1)
l (Rωjl)

jl(rnωjl)Pl(cos(ϑm))

jl+1(Rvj)2
. (6.12)

We also include here short discussion of the computational complexity of the
previous implementation. For simplicity assume that the same number of
samples, i.e. Nϑ = Nr = Nt = Nσ =: N, for each variable is taken and that
the values of the sine the spherical Bessel function and those of the Legendre
polynomials are pre–computed and stored in lookup tables. Then the eval-
uation (6.1) needs O(N2 log N) floating point operations (FLOPS) whereas
(6.9), (6.8), (3.43) and (3.17) require O(N3) FLOPS. Applying the inversion
formula (3.41) also requires O(N3) FLOPS. For three dimensional imaging
(6.1), (6.9),(6.8), (3.43), (or inversion formula (3.17) ) and the filtered back-
projection formula have to be applied N times. Thus the total number of
FLOPS is estimated as

NFLOPS = N
(O(N2 log N) +O(N3) +O(N3) +O(N3)

)
= O(N4) . (6.13)

which is the same amount of FLOPS like in the last section.

Numerical experiments are performed here for the values R = 1 and T = 2
are performed. The synthetic initial data f is again assumed to be a superpo-
sition of radially symmetric objects around centers xn. The acoustic pressure
generated by each of those radially symmetric objects is given by formula
(6.6) and the total pressure, by the superposition principle, is given by for-

mula (6.7). The measurement data Gσ(z, t) = 1/(2π)
∫ 2π

0
p(Φσ(R, ϑ, φ), t)dφ,
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see (3.1), (3.27), were generated by evaluating of (6.6) followed by a numerical
integration over φ.

Figure 6.4 shows a vertical cross section of the initial pressure f and the
measurement data Gσ where Gaussian noise with a variance of 10% of the
maximal data value is added.

The reconstructions of Fσ with (6.11) from exact and noisy data are de-
picted in Figure 6.5 from formula (6.11) and with formula (6.12) in Figure
(6.6). Note that the reconstructed images do not have blurred boundaries.
Moreover the images reconstructed with (3.43) are less sensitive to noise.
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Figure 6.1: Left: Cross section of five absorbing spheres (z versus r). Right:
The measurement data with 10% Gaussian noise added (z versus t).
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Figure 6.2: Reconstruction from simulated (left) and noisy data (right).
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Figure 6.3: Reconstruction with (3.17) from simulated (left) and noisy data
(right).
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Figure 6.4: Left: Cross section of an ensemble of 6 absorbing spheres (x
versus z). Right: The measurement data with 10% Gaussian noise added (ϑ
versus t).
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Figure 6.5: Reconstruction from simulated (left) and noisy data (right) with
formula (6.3).



74 CHAPTER 6. NUMERICAL RESULTS

Figure 6.6: Reconstruction from simulated (left) and noisy data (right) (6.4).
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Figure 6.7: Cross section through the lower three spheres in the reconstructed
images from simulated data. Left from formula (3.43) and right from formula
(3.17).
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Figure 6.8: Cross section through the lower three spheres in the reconstructed
images from noisy data. Left from formula (3.43) and right from formula
(3.17).



Chapter 7

Appendix

Integral transforms

In the following we give a list of the integral transforms that are used in this
thesis. The transforms are given by

S {φ} (ω) :=
∫ ∞

0

φ(t) sin(ωt)dt , φ ∈ L1((0,∞)) , ω > 0 ,

C {φ} (ω) :=
∫ ∞

0

φ(t) cos(ωt)dt , φ ∈ L1((0,∞)) , ω > 0 ,

F {φ} (k) :=
∫
R

φ(z)e−ikzdz , φ ∈ L1(R) , k ∈ R ,

H {φ} (v) :=
∫ ∞

0

φ(r)J0(vr) rdr , φ ∈ L1((0,∞), r1/2dr) , v > 0 ,

Hl {φ} (ω) :=
∫ ∞

0

φ(r)jl(ωr) r
2dr , φ ∈ L1((0,∞), r2dr) , ω > 0 ,

M {φ} (s) :=
∫ ∞

0

φ(x) xs−1dx , φ ∈ C0(R≥0), s > 0 ,

φl :=

∫ π

0

φ(ϑ)Pl(cos(ϑ)) sin(ϑ)dϑ , φ ∈ L1((0, π), sin(ϑ)dϑ) , l ∈ N ,

77
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where the letters denote the sine, cosine, Fourier, Hankel, spherical Hankel
and Mellin transform, respectively. The value φl is the l−th Fourier coeffi-
cient with respect to the basis {Pl}l∈N of normalized Legendre polynomials.
Further, J0 is the zero order Bessel function [1] and jl denotes spherical Bessel
function of the l−th order.

When the transforms above are applied to functions depending on several
variables the transformed variable is added as subscript. For instance we
write

Hr {Fσ} (z, v) =
∫ ∞

0

Fσ(z, r)J0(vr)rdr, (7.1)

where the subscript indicates that r is transformed here.

The Mellin transforms M above is defined in as in [42]. Tables for the
Mellin transform and its basic properties and can be found in [48, 42]. For
simplicity we define the Mellin transform on the space piecewise continues
and compactly supported functions, which we denote by C0(R≥0). The re-
maining integral transforms are defined on the L1 spaces with appropriate
weights.

The Mellin transform is often considered as a multiplicative version of the
Fourier transform since it satisfies a multiplication theorem associated with
the convolution product

(f ∗ g)(s) =
∫ ∞

0

f(r) g
(s
r

) dr
r
. (7.2)

According to [48, 42] we have that the Mellin transform satisfies

M(f ∗ g) = M(f)M(g). (7.3)

In several parts of this thesis the inverse integral transforms are applied
in order to obtain reconstructions of the initial pressure. We explain that
applying the inverse transforms is justified exemplarily with the relation that
is given by equation (2.3). The general assumption that f ∈ C∞

0 (Ω) implies
that the left side of (2.3) is a rapidly decreasing C∞ function, which also
implies that the right side has to be a function of the same type. Applying
the inverse transforms above is justified for this class of functions.
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Fourier series expansion

Consider a function h ∈ L2(R2) and assume x ∈ R
2 is given in polar coordi-

nates x = (r cos(φ), r sin(φ)). Then h is expanded into a Fourier series, with
respect to its angular variable, by

h(r, φ) =
∑
λ∈Z

hλ(r) e
iλφ, hλ(r) =

∫ 2π

0

h(r, φ)eiλφ.

The acoustic reciprocal principle

We prove the acoustic reciprocal principle which is used in theorem 5.2.

Theorem 7.1. Let f ∈ C∞
0 (Ω) and Ψ be a compactly supported and absolutely

integrable function. Then Ψ ∗W 3D(f) =W 3D(f ∗Ψ).

Proof. Using D’Alemberts formula we can write the solution of the 3D wave
equation as W 3D(f) = ∂t

1
4πt

(f ∗ h) as convolution with the distribution h
given by

h(x) = δ(|x− y| − t).

Then the symmetry of the convolution implies

Ψ ∗W 3D(f) = Ψ ∗ ∂t 1

4πt
(f ∗ h)

= ∂t
1

4πt
(Ψ ∗ f ∗ h) = h ∗ ∂t 1

4πt
(Ψ ∗ f) =W 3D(Ψ ∗ f),

which concludes the proof.

Funk–Hecke theorem

We state the Funk–Hecke theorem for n = 2 only since this is the only case
in which it is applied in this thesis.
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Let h be an integrable function on [−1, 1]. For n = 2 the Funk–Hecke, see
for example [41], theorem states that the equality∫ 2π

0

h(cos(φ− ψ))eilφdφ = 2

∫ 1

−1

h(t)T|l|(t)(1− t2)−1/2dteilφ, (7.4)

where T|l| denotes the Tchebychev polynomial of degree l, holds.

Proof of formula 5.4

We state here the proof of equation (5.4) as in [22].

Let ϕ be an absolute integrable function and denote by Iϕ a primitive of
the function s �→ ϕ(

√
s).

1

4π

∫
S2

ϕ(|ρσ − tω|)dS(ω) = Iϕ((ρ+ t)2)− Iϕ((ρ− t)2)

4tρ
, (7.5)

Proof. We compute

1

4π

∫
S2

ϕ(|ρσ − tω|)dS(ω) = 1

4π

∫
S2

ϕ(
√
ρ2 + t2 − 2tρ (σ · ω))dS(ω)

=
1

2

∫ 1

−1

ϕ(
√
ρ2 + t2 − 2tρs)ds,

where the last equality follows from the Funk–Hecke theorem. Since Iϕ is a
primitive of ϕ(

√
s) it follows

1

4π

∫
S2

ϕ(|ρσ − tω|)dS(ω) = Iϕ(ρ
2 + t2 − 2tρs)|1−1

4tρ

=
Iϕ((ρ+ t)2)− Iϕ((ρ− t)2)

4tρ
,

which finishes the proof.
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Solution of equation 5.10

As it was discussed in chapter 5 integral equation (7.6)∫ 1

−1

u
(√

r2x + r2 − 2trrx + z2
) dt√

1− t2
= w (r, z) (7.6)

is not solvable for an arbitrary ω. However, in the case equation 7.6 has a
solution we are able to compute it explicitly.

Theorem 7.2. Let rx > 0 and w be an absolutely integrable function that
solves 7.6. Then equation 7.6 can be transformed into the simpler integral
equation

ω̃ (α, β) = −2

∫ β

α

u(s)sds√
(α2 − s2) (s2 − β2)

. (7.7)

where α2 = (rx + r)2 + z2 and β2 = (rx − r)2 + z2 and

w̃(α, β) = ω

(
α2 − β2

4rx
,

√(
α2

2
+
β2

2

)
(1− 1

2rx
)− rx

)
. (7.8)

Proof. After introducing the integration variable s2 = r2x+r
2−2trrx+z

2 we
have that dt = −sds/(rrx) and we recognize that the term 1− t2 becomes

(2rxr + (r2x + r2 + z2 − s2)) ((2rxr − (r2x + r2 + z2 − s2))

4r2xr
2

.

Therefore the left side of equation (7.6) transforms into

∫ √
(rx−r)2+z2

√
(rx+r)2+z2

−2u(s)sds√
((rx + r)2 − s2 + z2) (s2 − (rx − r)2 − z2)

.

Now substitute α and β like in the theorem and express r, z in terms of α, β
equation (7.7) follows.

With the last theorem it follows.
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Theorem 7.3. The integral equation (7.7) can be transformed into an Abel
integral equation and its solution is given by

u
(√

α2 − v2
)
=

1

2

d

dv

∫ v

0

k w̃(
√
α2 − k2 )dk√
v2 − k2

. (7.9)

Proof. We consider equation (7.7) for a fixed α and introduce the relations

α2 − β2 = k2, α2 − s2 = p2, (7.10)

g(p) := u
(√

α2 − p2
)
, h(k) := w̃

(
α,

√
α2 − k2

)
. (7.11)

With this relations (7.7) transforms into the simpler equation

h(k) = 2

∫ k

0

g(p)dp√
k2 − p2

. (7.12)

This, is the well known Abel’s integral equation. It is solvable and its solution
is given by

g(v) =
1

2

d

dv

∫ v

0

k h(k)√
v2 − k2

dk.

where the latter equation expressed in terms of u and ω̃ is given in (7.9).

An application of theorem 3.7

Since theorem (3.7) guarantees that formulas (3.43) and (3.17) still make
sense for square integrable functions it yields new series expansion formulas
for the characteristic function as a byproduct. We present here such an
expansion based on formula (3.17). In the following the abbreviation ωn :=
ωn0 is used.

Corollary 1. The characteristic function on [0, a] can be expanded as

χ[0,a](r) =
∑
n∈N

[
e−iω(R−a) (1− iaω)− e−iω(R+a) (iaω + 1)

] j0(rωn)

2Rω3
nj1(Rωn)3

,(7.13)

where the equality has to be understood in the L2 sense.
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Proof. Consider the pressure emitted by a characteristic sphere centered at
the origin of radius a

p(x, t) =
r − t

2r
χ[0,a] (|r − t|) , ‖ x ‖= r.

In this special case the measurement data are given by G(t, ϑ) = P (R, ϑ, t).
Since there is no dependence on the angular variable ϑ in formula (3.43) it
is summed over n only. Computation of the integral

Ft {G} (ω) =
∫ R+a

r0−a

R− t

2R
e−iωtdt (7.14)

and inserting in (3.17) gives (7.13).

The sequence χ[0,a]/a converges to the dirac measure δ in the distributional
sense when a approaches 0. Using the expansion formula (7.14) and the rule
of de L’hospital we have a new series expansion formula for the dirac measure
given by

δ(r) =
2

i

∑
n∈N

e−iωnR
1 + ω2

n

ω3
n

j0(rωn)

j1(Rωn)3
. (7.15)

Derivation of thermoacoustic wave equation

Since all computations in this thesis rely on the mathematical model given
by equations (1.1)-(1.3) we present here the standard derivation for acoustic
wave propagation, caused by a short pulse of electromagnetic radiation, in
an acoustically homogeneous medium.

The Model in TAT is deduced from fundamental equations in fluid dynam-
ics [14, 40] and a heating model. The governing equations, which are based
on very evident physical assumptions like the principle of mass conservation
and Newton’s law of motion, are the continuity and the Euler equation. If we
assume a fluid with density ρ pressure p and velocity vector field v, described
by twice differentiable functions, the governing equations are given by

∂tρ+∇ · (ρv) = 0 (7.16)

∂tv + (v · ∇) v +
1

ρ
∇p = 0. (7.17)
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We assume that the considered functions depend on the arguments x ∈ R
3

and t ∈ R, which will almost always be omitted in the notation.

Additionally let T, s and r denote differentiable functions that describe
the temperature, the entropy and the energy absorbtion of the fluid. The
heating model in TAT is given by the equation

ρ T ∂ts = r. (7.18)

Acoustic waves are small amplitude perturbations in the density field of a
quiescent fluid around its static state which for tissue is assumed to be v = 0,
ρ0 and p0. We model this small perturbations from the static state by the
ansatz

v(x, t) = εv1(x, t) + . . .

p(x, t) = p0 + εp1(x, t) + . . .

ρ(x, t) = ρ0(x) + ερ1(x, t) + . . .

(7.19)

where 0 < ε << 1. Substituting the latter equations (7.19) into the Euler
equation (7.17) and the continuity equation (7.16) yields

ε∂tv1 + ε2 (v1 · ∇) v1 +

(
1

ρ0
− ε

ρ1
ρ20

+O(ε2)

)
ε∇p1 = 0

ε∂tρ1 + ε∇ · (ρ0v1) + ε2∇ (ρ1v1) = 0,

where in the first equation the Taylor expansion

1

ρ
=

1

(ρ0 + ερ1)
=

1

ρ0
− ε

ρ1
ρ20

+O(ε2)

is used. Neglecting terms of order higher than O(ε) we arrive at the linearized
versions of equations (7.16) and (7.17)

∂tv1 +
∇p1
ρ0

= 0 (7.20)

∂tρ1 +∇ · (ρ0v1) = 0. (7.21)

Since only a small amount of energy is absorbed by an object when it is
illuminated by a rapid pulse of electromagnetic radiation its energy absorb-
tion function is modeled as r(x, t) = εr1(x, t) for 0 < ε << 1. The pulse
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also causes an increase of its temperature and its specific entropy which are
modeled as

s(x, t) = s0 + εs1(x, t)

T (s (x, t) , ν(x, t)) = T0 + εT1(s(x, t), ν(x, t)),

where
ν(x, t) = 1/ρ(x, t).

Inserting the expressions (7.19) and the perturbation equations for T̃ and s
above into (7.18) leads to the linearized heat equation

ρ0T0∂ts1 = r1. (7.22)

In order to relate our heating model with the pressure we express acoustic
pressure in terms of s and ν by p(x, t) = p̃(s(x, t), ν(x, t)) and use Taylor
expansion of p̃, which is given by

p̃(s, ν) = p̃(s0 + εs1, 1/(ρ0 + ερ1)) = p̃(s0 + εs1, ν0 − ε
ρ1
ρ20
)

= p̃(s0, ν0) + εs1∂sp̃(s0, ν0)− ε
ρ1
ρ20
∂ν p̃(s0, ν0) +O(ε2).

By assumption the pressure satisfies the perturbation ansatz p(x, t) = p0 +
εp1(x, t) and therefore also p̃(s, ν) does. Therefore we have

p̃(s, ν) = p̃(s0, ν0) + ε

(
s1∂s0 p̃(s0, ν0)− ε

ρ1
ρ20
∂ν0 p̃

)
:= p̃(s0, ν0) + εp̃1(s, ν)

and comparing coefficients of order ε gives

s1 =
p̃1
∂sp̃

+
ρ1
ρ20

∂ν p̃

∂sp̃
, (7.23)

where, according to [37, 19], the terms ∂ν p̃ and ∂sp̃ are related to the heat
capacity cp, thermal expansion coefficient β and the sound speed c by the
equations

c2 := − 1

ρ20
∂ν p̃(s0, ν0), ∂sp̃(s0, ν0) =

T̃0c
2ρ0β

cp
.
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With this relations we can write equation (7.23) as

s1 =
cp

T̃0ρ0β

(
1

c2
p̃1 − ρ1

)
and differentiating with respect to the time and employing equation (7.22)
yields

1

c2
∂tp̃1 − ∂tρ1 =

β

cp
r1.

Now rewrite p̃1(s(x, t), ν(x, t)) as p(x, t) again and apply a further differenti-
ation with respect to the time variable and with (7.20) and (7.21) it follows
that

1

c2
∂2t p1 −Δp1 =

β

cp
∂tr. (7.24)

In TAT the energy absorbtion function r(x, t) depends on the electromagnetic
radiation intensity Iem(x, t) and the spatial varying absorbtion coefficient
ψ(x, t)

r(x, t) := Iem(x, t)ψ(x). (7.25)

Since in TAT pulsed electromagnetic radiation is used to illuminate an object
we write

Iem(x, t) := j(t)I(x) (7.26)

where j(t) is a function which models the temporary shape of the electromag-
netic pulse. Commonly j ∈ C1(R) is a function of small temporal support,
i.e. supp j ⊂ [0, τ ] for τ << 1, which satisfies∫

R

j(t)dt = 1. (7.27)

Combining the latter equations we recognize that (7.24) can be rewritten as

1

c2
∂2t p1 −Δp1 =

β

cp
I(x)ψ(x)

dj

dt
(7.28)

Finally to ensure uniqueness of the latter equation we impose the initial
conditions

p1(x, 0) = 0,
∂

∂t
p1(x, 0) = 0. (7.29)

The physical meaning of this initial conditions is that there is no pressure
field present before the an object is illuminated which is very reasonable.
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Fourier Bessel series, 12, 27
Fourier series expansion, 16, 79
Fourier transform, 78
Funk–Hecke theorem, 79

Green function, 30, 31

Hankel transformation, 78

impulse response function, 7, 18
initial density or initial pressure, 3
integral equation, 17, 50, 81
inverse problem, 3
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INFLUENCE OF DETECTOR BANDWIDTH AND DETECTOR SIZE TO THE
RESOLUTION OF PHOTOACOUSTIC TOMOGRAPHY
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Abstract. High spatial resolution is one of the major aims in photoacoustic tomography. Two main
factors limiting the resolution of photoacoustic tomography are the detector size and the finite band-
width of the ultrasound detection system. We present a quantitative analysis of those effects for “ap-
proximate point detectors” and for “approximate line detectors”.
Keywords. Photoacoustic tomography; image reconstruction; wave equation; resolution; bandwidth.
AMS classifications. 44A12, 65R32, 35L05, 92C55.

1 Introduction
Photoacoustic tomography (PAT) is a novel imaging method for visualizing the electromagnetic absorption coeffi-
cient of a medium at low frequencies. It is based on the excitation of high bandwidth acoustic waves by illuminating
a probe with pulsed electromagnetic energy, and combines the advantages of optical (high contrast) and ultrasonic
imaging. We refer the reader to [22, Section 1.5] for a detailed mathematical description. PAT has proven great
promise for a variety of biomedical applications, such as imaging of animals [15, 23], early cancer diagnostics
[16, 19], and imaging of vasculature [4, 14]

heat

deposited

illuminated volume

Figure 1: Thermoelastic effect: Parts of a specimen are illuminated with electromagnetic energy and react with expansion

If a probe is illuminated with a short pulse of non-ionizing electromagnetic radiation, it absorbs a fraction of energy,
heats up, and reacts with an expansion (the so called thermoelastic effect; see figure 1). This in turn induces an
acoustic wave, which is recorded outside of the object. Other than in conventional ultrasound imaging, where the
source of the acoustic wave is an external transducer, in PAT the source is the imaged object itself. The frequency
bandwidth of the recorded signals is therefore generally broad and depends on the size and the shape of illuminated
structures.

If we assume that the probe is acoustically homogeneous, then the excited acoustic pressure p : R3 × (0,∞) → R
satisfies (

∂ 2
t −Δ

)
p(x,t) = 0 , (x,t) ∈ R3 × (0,∞) , (1a)

p(x,0) = f (x) ,∂t p(x,0) = 0 , x ∈ R3 , (1b)

where Δ denotes the Laplacian with respect to the spatial variable x and ∂t is the derivative with respect to the
temporal variable t. For simplicity of presentation we assume throughout that f ∈ C∞

c (BR), where BR ⊂ R3 is
the ball with radius R centered at the origin. Here and in the following, C∞

c (Ω) denotes the space of all smooth
functions f : R3 → R with have compact support in the set Ω ⊂ R3.

In the following we denote by W
3D : C∞

c (R3) → C∞(R3 × (0,∞)) the operator that takes smooth compactly sup-
ported initial data to the solution of (1a), (1b). The goal of PAT is to reconstruct the initial pressure f (representing
the probe) from measurements of (W 3D f )(x,t) taken outside of BR.
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Figure 2: Photoacoustic tomography with piezoelectric transducer as an “approximate point detector”.

1.1 Approximate point-detectors

The classical approach in PAT is to assume that point data

(P f )(z,t) := g(z,t) := (W 3D f )(z,t) , (z,t) ∈ ∂BR × (0,∞) ,

are given (∂BR denotes the boundary of BR). The operator P : C∞
c (BR) →C∞(∂BR × (0,∞)) that maps a compactly

supported initial data to the data measured by an ideal point detector can be inverted uniquely [1, 2]. In [6, 7] it
is shown that P is an isometry with respect to the inner products

∫
Br f1 f2 and 2/R

∫
∂BR×(0,∞) tg1g2 on C∞

c (BR) and
C∞(∂BR × (0,∞)), respectively. The inversion is therefore even stable with respect to the L2 topologies. Exact
expressions for its inverse

P−1 : ran(P) ⊂C∞(∂BR × (0,∞)) →C∞
c (BR)

are derived in [6, 17, 25]. Here and in the following ran(P) := {P f : f ∈C∞
c (BR)} denotes the range of P.

In practical applications, the detection system has a finite bandwidth. Moreover, standard ultrasound transducers,
which integrate the pressure over its surface, are used to approximate point data. If we assume that the transducer
surface is part of the measurement surface and rotationally symmetric (see Fig. 2), then the measured data are
given by

(Pφ ,w f )(z,t) =

[
φ ∗t

∫
∂BR

w
(
|z− z′|

)
(W 3D f )(z′, ·)dS(z′)

]
(t) , (z,t) ∈ ∂BR × (0,∞) .

Here w(r) represents the sensitivity of the detector surface, φ(t) denotes the impulse response function of the
ultrasound detection system, and ∗t is the convolution with respect to t.

Insufficient knowledge of w and φ , as well as the severe ill-posedness of deblurring problems make it impossible
to stably invert Pφ ,w. It is therefore common to apply the exact inverse of P to the data Pφ ,w f . This results in a
blurred reconstruction, where the blurring depends, e.g., on the detector size. Exact blurring kernels will be given
in Subsection 1.3.

1.2 Approximate line-detectors

In order to partly overcome the size and shape limitations of point detectors, in [3, 11, 21] we propose PAT with
line integrals

(L f )(z,t) :=
∫

�z
(W 3D f )(x,t)dS(x) , (z,t) ∈ ∂BR × (0,∞) ,

where �z is the unique line passing through z, being tangential to ∂BR, and orthogonal to e3. The inversion of L
requires a two step reconstruction procedure:

• For fixed orientation of �z, the data (L f )(z,t) is the solution of the two dimensional wave equation where
the initial data are given by the linear projection of f in that direction [11]. Hence linear projections of f can
be obtained by recovered the initial data of the two dimensional wave equation from values of its solution
on a circle.

• In a second stage, a three dimensional image is reconstructed from the projection images by applying the
inverse two dimensional classical Radon transform in planes orthogonal to the rotation axis.
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Figure 3: Photoacoustic tomography with a laser beam as “approximate line detector”.

The operator L : C∞
c (BR) → C∞(∂BR × (0,∞)) that maps a compactly supported initial data to the data measured

by an ideal line detector can be inverted uniquely. Exact inversion formulas have been derived in [5, 11, 17, 18].

In practical applications the line detector is approximated by a cylindrically symmetric laser beam that is part of an
interferometric setup (see Fig. 3). Such a laser naturally integrates the pressure over its volume [9, 21], and thus

(Lφ ,w f )(z,t) =

[
φ ∗t

∫
R3

w
(
dist(�z,x)

)
(W 3D f )(x,t)dx

]
, (z,t) ∈ ∂BR × (0,∞)

are the actually available data. Here w(r) represents the radial profile of the detecting laser beam, φ(t) is the
impulse response function of the ultrasound detection system, and dist(�z,x) denotes the distance between line �z
and point x.

Again, application of L−1 : ran(L) → C∞
c (BR) to the data Lφ ,w f leads to a blurred reconstruction. However,

the laser beam can be made very thin, suggesting that the one dimension approximation with approximate line
detectors gives less blurred images than the zero dimension approximation with approximate point detectors. Our
aim is to make such statements precise, by calculating analytical blurring kernels and to investigate the resolution
for both kind of detectors.

1.3 Analytic expressions for blurring kernels

Our first result explicitly characterizes the blurring kernel of point detectors:
Theorem 1. Let f ∈ C∞

c (BR), and let φ ,w : R → R be even function such that x ∈ R3 �→ φ ′(|x|)/ |x| and z ∈
∂BR �→ w(|z− z0|), are absolutely integrable, for some z0 ∈ ∂BR. Moreover, assume that supp(φ)⊂ [−τ,τ], where
τ := dist

(
supp( f ),∂BR

)
and supp(φ) := {t : φ(t) �= 0}.

Then Pφ ,w f ∈ ran(P) and

(
P−1 Pφ ,w f

)
(x) =

[
Φband ∗

∫
R3

Wpoint(·,x′) f (x′)dx′
]
(x) , x ∈ BR , (2)

with the blurring kernels

Φband(x) := −πφ ′(|x|)/(2 |x|) , x ∈ R3 , (3)

Wpoint(x,x′) :=
R2

|x|2
δ

(
|x|−

∣∣x′∣∣)w
(∣∣x−x′

∣∣ R/ |x|
)

, x,x′ ∈ R3 . (4)

Proof. See Section 2.

As a consequence of Theorem 1, the detector aperture causes blurring in the lateral direction, which becomes more
severe near to the recording surface. The finite bandwidth, on the other hand, causes spatially invariant blurring.

We will also prove a corresponding result for approximate line detectors:
Theorem 2. Let f ∈ C∞

c (BR), and let φ ,w : R → R be even functions such that x ∈ R3 �→ φ ′(|x|)/ |x| and x ∈

R3 �→
∫ ∞
|x| ∂ξ w(ξ )/

√
ξ 2 −|x|2 dξ are absolutely integrable. Moreover, assume that supp(φ ∗w) ⊂ [−τ,τ], where

τ := dist
(
supp( f ),∂BR

)
.
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Then Lφ ,w f ∈ ran(L) and (
L−1 Lφ ,w f

)
(x) = (Φband ∗Wline ∗ f )(x) , x ∈ BR , (5)

where Φband is as in (3), and

Wline(x) := −
1
π

∫ ∞

|x|

∂ξ w(ξ )√
ξ 2 −|x|2

dξ , x ∈ R3 . (6)

Here both blurring effects are spatially invariant.

Proof. See Section 3.

1.4 Prior work and innovations

Analytic expressions for the blurring kernels with approximate line detectors are presented for the first time. Exact
blurring kernels for approximate point detectors have also been derived in [24]. However, we present a completely
different and probably simpler analysis, which is based on geometric arguments and the rotational invariance of the
wave equation. Moreover, in [24] the authors did not show that Pφ ,w f ∈ ran(P). Instead, they applied a particular
inversion formula (i.e. an extension of P−1

point outside the range of Ppoint) to the blurred data. Hence their results
depend on the used extension, whereas our results are independent of any particular inversion formula. On the
other hand, the results of [24] can be applied even if φ is non-symmetric, in which case φ ∗t (Ppoint f ) �∈ ran(P).

2 Blurring kernels for approximate point detectors
The main goal in this section is the derivation analytic expressions for the blurring kernels due to the detector size
and bandwidth. The proof of of Theorem 1 will follow from the following Propositions 2.1 and 2.2 and will be
given at the end of this section.
Proposition 2.1. Let f ∈C∞

c (BR), let w : R→ R be an even function such that z ∈ ∂BR �→ w(|z− z0|) is absolutely
integrable for some z0 ∈ ∂BR, and define

fw(x) :=
∫

R3

[
R2

|x|2
δ (|x|−

∣∣x′∣∣)w(∣∣x−x′
∣∣R/ |x|

)]
f (x′) dx , x ∈ BR .

Then
(P fw)(z,t) :=

∫
SR

w(
∣∣z− z′

∣∣)(P f )(z′,t)dS(z′) , (z,t) ∈ SR × (0,∞) . (7)

Proof. Our first goal is to calculate an expression for fw without the Dirac δ function. To that end, denote x = ρσ ,
x′ = ρ ′σ ′ with ρ ,ρ ′ ∈ (0,∞) and σ ,σ ′ ∈ S2. Then

fw(x) = R2
∫

S2

(∫ ∞

0
δ (ρ −ρ ′)w

(∣∣ρσ −ρ ′σ ′
∣∣R/ρ

)
f (ρ ′σ ′) dρ ′

)
dσ ′

= R2
∫

S2
w
(∣∣σ −σ ′

∣∣R
)

f (ρσ ′) dσ ′ .

Now define
pw(ρσ ,t) := R2

∫
S2

w
(∣∣σ −σ ′

∣∣R
)
(W 3D f )(ρσ ′,t) dσ ′ .

We will show that pw = W
3D fw, which then implies (7), since∫

SR
w(

∣∣Rσ − z′
∣∣)p(z′,t)dS(z′) = R2

∫
S2

w(R
∣∣σ −σ ′

∣∣)p(Rσ ′,t)dσ ′ = (P fw)(Rσ ,t) , (Rσ ,t) ∈ SR × (0,∞) .

To that end, let Q[θ ,φ ] : R3 → R3 be a rotation with

Q[θ ,φ ]e3 = (sin θ cosφ ,sin θ sinφ ,cosθ ) , (θ ,φ) ∈ (0,π)× (0,2π) .

Introducing spherical coordinates around axis σ shows that

pw(ρσ ,t) = R2
∫ π

0

∫ 2π

0
w
(
|σ −Q[θ ,φ ]σ |R

)
(W 3D f )(ρQ[θ ,φ ]σ ,t)sin θdθdφ

= R2
∫ π

0
w
(
2R(1− cosθ )

)
sinθ

∫ 2π

0
(W 3D f )

(
Q[θ ,φ ](ρσ),t

)
dθdφ .
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The rotational invariance of the wave equation implies that (ρσ ,t) �→ (W 3D f )
(
Q[θ ,φ ](ρσ),t

)
is a solution of

the wave equation and its linearity implies that so is pw(ρσ ,t). Since the initial conditions pw(x,0) = fw(x)

and ∂t pw(x,0) = 0 immediately follow from the definition of pw this implies pw = W
3D fw and concludes the

proof.

The next proposition deals with the blurring to the finite bandwidth of the detection system.
Proposition 2.2. Let f ∈C∞

c (R3) and let φ : R→R be an even compactly supported function such that Φband(x) :=
−πφ ′(|x|)/(2 |x|) is absolutely integrable. Then W

3D(Φband ∗ f )(x,t) = (φ ∗t W
3D f )(x,t), for x outside the sup-

port of Φband ∗ f .

Proof. Let Ψ(x) = ψ(|x|) be a radially symmetric absolutely integrable function. Our aim is to find an analytic
expression for W

3D(Ψ∗ f ) in terms of the solution W
3D f of (1a), (1b) and the to adjust Ψ such that W

3D(Ψ∗ f ) =

φ ∗t W
3D f outside the support of Ψ∗ f .

D’ Alemberts formula for the solution of the three dimensional wave equation (see [13]) applied to initial data
Ψ∗ f reads

W
3D(Ψ∗ f )(x,t) =

1
4π

∂t t
∫

S2

(∫
R3

f (x′)ψ(
∣∣x + tω −x′

∣∣)dx′
)

dS(ω) .

Substituting x′ = x + ρσ , with ρ > 0 and σ ∈ S2, in the inner integral, and applying Fubini’s Theorem leads to

W
3D(Ψ∗ f )(x,t) =

1
4π

∂t t
∫

S2

(∫
S2

∫ ∞

0
f (x + ρσ)ψ(|ρσ − tω |)ρ2dρdS(σ)

)
dS(ω)

= ∂t t
∫ ∞

0

∫
S2

f (x + ρσ)

(
1

4π

∫
S2

ψ(|ρσ − tω |)dS(ω)

)
ρ2dρdS(σ)

The inner integral in the last expression is the (spherical) mean of Ψ(x) = ψ(|x|) over a sphere with radius t
centered at ρσ . Denoting by Iψ a primitive of s �→ ψ(

√
s), then [12, Lemma 5.1] assures that

1
4π

∫
S2

ψ(|ρσ − tω |)dS(ω) =
Iψ

(
(ρ + t)2)− Iψ

(
(ρ − t)2)

4tρ
,

provided ρ ,t > 0. Consequently

W
3D(Ψ∗ f )(x,t) =

1
4

∂t

∫ ∞

0

(
Iψ

(
(ρ + t)2)− Iψ

(
(ρ − t)2))ρ

∫
S2

f (x + ρσ)dS(σ) dρ .

Differentiating under the integral leads

W
3D(Ψ∗ f )(x,t) =

1
2

∫ ∞

0
(ρ − t)ψ(|ρ − t|)

(
ρ

∫
S2

f (x + ρσ)dS(σ)

)
dρ , x �∈ supp(Ψ∗ f ) . (8)

On the other hand, again by D’ Alemberts formula, we have

(φ ∗t W
3D f )(x,t) =

1
4π

∫ ∞

0
φ ′(t −ρ)

(
ρ

∫
S2

f (x + ρσ)dS(σ)

)
dρ . (9)

Equations (8) and (9) coincide if sψ(|s|) = − π
2 φ ′(s) for all s ∈ R. Since φ is assumed to be an even function, this

is the case if
ψ

(
s
)

= −
π
2

φ ′(s)
s

, s ≥ 0 .

This concludes the proof by taking Ψ = Φline.

Proof of Theorem 1. Propositions 2.1 and 2.2 imply that

(Pφ ,w f )(x,t) =

(
φ ∗t

∫
SR

w(
∣∣z− z′

∣∣)(W 3D f )(z′, ·)dS(z′)
)

(t)

=
(
φ ∗t (W

3D fw)(x, ·)
)
(t) =

(
W

3D(Φband ∗ fw
)
(x,t) , x �∈ supp(Φband ∗ f ) .

Together with support hypothesis on φ this shows that Pφ ,w f = P(Φband ∗ fw). Therefore Pφ ,w f ∈ ran(P) and
P−1 Pφ ,w f = Φband ∗ fw which concludes the proof.
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3 Blurring kernels for approximate line detectors
The main goal in this section is the proof analytic expressions for the blurring kernels due to the detector size and
bandwidth of Theorem 2. In the following let W

2D : C∞
c (R2) →C∞

c (R2 × (0,∞)) denote the operator that takes a
compactly supported initial data to the solution of the two dimensional wave equation(

∂ 2
t −Δ

)
p(x,t) = 0 , (x,t) ∈ R2 × (0,∞) , (10a)

p(x,0) = f (x) ,∂t p(x,0) = 0 , x ∈ R2 . (10b)

First we calculate the blurring kernel due to the detector size. To that end, we will make use of the following
Lemma:
Lemma 3.1 (Acoustic reciprocal principle in two dimensions). Let f ∈C∞

c (R2) and let Ψ be a compactly supported
absolutely integrable function. Then Ψ∗ (W 2D f ) = W

2D(Ψ∗ f ).

Proof. D’Alemberts formula for the solution of (10a), (10b) is (W 2D f )(x,t) = ∂t (g∗ f )(x,t) with

g(x,t) :=

{
1
/(

2π
√

t2 −|x|2
)

, if t > |x| ,
0 , otherwise ,

see [13]. The symmetry of the convolution implies that

Ψ∗ (W 2D f ) = Ψ∗ ∂t(g∗ f ) = ∂t(Ψ∗g∗ f ) = g∗ ∂t(Ψ∗ f ) = W
2D(Ψ∗ f ) ,

and concludes the proof.

Proposition 3.2. Let f ∈ C∞
c (R3), let w : R → R be a compactly supported even function such that Wline(x) =

−1/π
∫ ∞
|x| ∂ξ w(ξ )/

√
ξ 2 −|x|2 dξ is absolutely integrable.

Then, for any line � ⊂ R3,∫
R3

w
(
dist(�,x)

)
(W 3D f )(x,t)dx =

∫
�
W

3D(Wline ∗ f )(x,t)dS(x) . (11)

Proof. Without loss of restriction we shall assume that � is of the form � = R(1,0,0)+ (0,z1,z2). Moreover we
write x = (x1,x2) with x1 ∈ R and x2 in R2 and denote by X the X-ray transform restricted to lines pointing in
(1,0,0) direction,

(Xh)(x2) :=
∫

R
h(x1,x2)dx1 , h ∈C∞

c (R3) .

The commutation relation of the Laplacian with the X-ray transform implies that W
2D X = XW

3D, see [10, The-
orem 1]. Therefore∫

R3
w(dist(�,x)(W 3D f )(x,t)dx =

∫
R2

∫
R

w(|z2 −x2|)(W
3D f )((x1,x2),t)dx1dx2

=

∫
R2

w(|z2 −x2|)(XW
3D f )(x2,t)dx2

=
(
w(|·|)∗ (XW

3D f )
)
(z2,t) =

(
w(|·|)∗ (W 2D X f )

)
(z2,t) . (12)

Let U(x) = u(|x|) be a radially symmetric integrable function. Writing x′ = (x′1,x′2) with x′1 ∈ R and x′2 in R2, and
applying Fubini’s theorem shows

X(U ∗ f )(z,t) =
∫

�
(U ∗ f )(x,t)dS(x)

=

∫
R

(∫
R

∫
R2

u
(
((x1 −x1)

2 +
∣∣x2 −x′2

∣∣2
)1/2) f (x′1,x′2)dx′2dx′1

)
dx1

=
∫

R

∫
R2

(∫
R

u
(
((x1 −x1)

2 +
∣∣x2 −x′2

∣∣2
)1/2)dx1

)
f (x′1,x′2)dx′2dx′1

=

∫
R

∫
R2

(∫
R

u
(
(s2 +

∣∣x2 −x′2
∣∣2

)1/2)ds
)

f (x′1,x′2)dx′2dx′1

=
∫

R2

(∫
R

u
(
(s2 +

∣∣x2 −x′2
∣∣2

)1/2)ds
)

(X f )(x′2)dx′2

=

∫
R2

Iu(
∣∣x2 −x′2

∣∣)(X f )(x′2)dx′2 =:
(
Iu(|·|)∗X f

)
(x2) , (13)
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where we defined Iu(ξ ) :=
∫
R u

(
(s2 + ξ 2)1/2)ds.

The relation XW
3D = W

2D X, identity (13), and the acoustic reciprocal principle Lemma 3.1, imply∫
�
W

3D(U ∗ f )(x,t)dS(x) =
(
(XW

3D(U ∗ f )
)
(z,t) =

(
W

2D X(U ∗ f )
)
(z,t)

=
(
W

2D(Iu(|·|)∗X f )
)
(z,t) =

(
Iu(|·|)∗ (W 2D X f )

)
(z,t) . (14)

Consequently the left hand sides of (12) and (14) coincide, if

w(ξ ) = Iu(ξ ) =

∫
R

u
(
(s2 + ξ 2)1/2)ds = 2

∫ ∞

ξ
u(η)

ηdη√
η2 − ξ 2

.

This is an Abel integral equation for the function W . Its solution is (see [8, 20])

u(η) = −
1
π

∫ ∞

η

∂ξ w(ξ )√
ξ 2 −η2

dξ .

This concludes the proof by taking U = Wline.

Next we calculate the point spread function due to finite bandwidth.
Proposition 3.3. Let f ∈C∞

c (R3) and let φ : R→R be an even compactly supported function such that Φband(x) :=
−πφ ′(|x|)/(2 |x|) is absolutely integrable. Then

φ ∗t

∫
�
(W 3D f )(x,t)dx =

∫
�
(W 3D Φband ∗ f )(x,t)dx (15)

for any line � outside the support of Φband ∗ f .

Proof. Proposition 2.2 states that φ ∗t (W
3D f ) = W

3D(Φband ∗ f ) outside the support of of Φband ∗ f . Integrating
this identity over � proves (15).

Proof of Theorem 2. According to Propositions 3.2 and 3.3

φ ∗t

∫
R3

w
(
dist(�,x)

)
(W 3D f )(x,t)dx = φ ∗t

∫
�
W

3D(Wline ∗ f )(x,t)dx =
∫

�
W

3D(φ ∗t Wline ∗ f )(x,t)dx .

By taking � = �z, z ∈ BR, and using the support hypothesis on φ ∗w, this shows Lφ ,w f = L(Φband ∗Wline ∗ f ).
Therefore Lφ ,w f ∈ ran(L) and L−1 Lφ ,w f = Φband ∗Wline ∗ f which concludes the proof.

4 Discussion and Conclusion
In this note we derived analytic expression for the point spread functions in PAT due to the finite detector size and
the finite bandwidth of the ultrasound detection system. We showed that the point spread functions due to the finite
bandwidth is spatial invariant. The point spread functions due to the detector size is only spatial invariant in the
case of approximate line detectors.

The full with half maximum of the point spread function is a typical parameter to measure spatial resolution.
Ignoring effects of finite bandwidth, Theorems 1 and 2 show that the lateral resolution of PAT with “approximate
point detectors” is atransducer |x|/R, where atransducer is the diameter of the ultrasound transducer, and the (uniform)
resolution of PAT with “approximate line detectors” is approximately alaser, the width of the detecting laser beam
(See Figure 4). Typical values atransducer = 2 cm and alaser = 0.1 cm point out the improved spatial resolution of
PAT with integrating line detectors.
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function Wline(x). One recognizes that the full with half maximum of both functions are similar.
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A Reconstruction Algorithm for Photoacoustic
Imaging Based on the Nonuniform FFT
Markus Haltmeier*, Otmar Scherzer, Associate Member, IEEE, and Gerhard Zangerl

Abstract—Fourier reconstruction algorithms significantly out-
perform conventional backprojection algorithms in terms of com-
putation time. In photoacoustic imaging, these methods require in-
terpolation in the Fourier space domain, which creates artifacts
in reconstructed images. We propose a novel reconstruction algo-
rithm that applies the one-dimensional nonuniform fast Fourier
transform to photoacoustic imaging. It is shown theoretically and
numerically that our algorithm avoids artifacts while preserving
the computational effectiveness of Fourier reconstruction.

Index Terms—Fast Fourier algorithm, image reconstruction,
nonuniform FFT, photoacoustic imaging, planar measurement
geometry.

I. INTRODUCTION

P HOTOACOUSTIC imaging (PAI) is a novel promising
tool for visualizing light absorbing structures in an opti-

cally scattering medium, which carry valuable information for
medical diagnostics. It is based on the generation of acoustic
waves by illuminating an object with pulses of nonionizing
electromagnetic radiation, and combines the high contrast of
pure optical and the high resolution of ultrasonic imaging.
The method has demonstrated great promise for a variety of
biomedical applications, such as imaging of animals [1], [2],
early cancer diagnostics [3], [4], and imaging of vasculature
[5], [6].

When an object is illuminated with short pulses of nonion-
izing electromagnetic radiation, it absorbs a fraction of energy
and heats up. This in turn induces acoustic (pressure) waves, that
are recorded with acoustic detectors outside of the object. Other
than in conventional ultrasound imaging, where the source of
acoustic waves is an external transducer, in PAI the source is the
imaged object itself. The frequency bandwidth of the recorded
signals is therefore generally broad and depends on the size and
the shape of illuminated structures.
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Fig. 1. Photoacoustic imaging for planar recording geometry. The object is
illuminated by a pulse of electromagnetic radiation, and reacts with an expan-
sion. Induced acoustic waves are measured with an array of acoustic detectors
arranged on a plane (or a line) and used to from an image of the object.

A. Planar Recording Geometry

Throughout this paper, we assume a planar recording geom-
etry, where the acoustic signals are recorded with omnidirec-
tional detectors arranged on planes (or lines); see Fig. 1. The
planar geometry is of particular interest since it can be realized
most easily in practical applications. The recorded acoustic sig-
nals are then used to reconstruct the initially generated acoustic
pressure which represents optically absorbing structures of the
investigated object.

For the planar recording geometry, two types of theoretically
exact reconstruction formulas have been reported: Temporal
backprojection [7]–[10] and Fourier domain formulas [11], [7],
[9], [12]–[15]. Numerical implementations of those formulas
often lead to fast and accurate image reconstruction algorithms.

In temporal backprojection formulas, the signals measured
at time are back projected over spheres of radius with the
detector position in the center ( denotes the speed of sound).
In Fourier domain formulas this backprojection is performed by
interpolation in the frequency domain. Reconstruction methods
based on Fourier domain formulas are attractive since they
reconstruct an image in floating
point operations by using of the fast Fourier transform (FFT).
Straightforward implementations of backprojection type for-
mulas, on the other hand, require operation counts; see
[16] and [17].

The standard FFT algorithm assumes sampling on an equally
spaced grid and therefore, in order to implement the Fourier
domain formulas, interpolation in the Fourier space is required.
Interpolation in the Fourier domain is a critical issue, and
creates artifacts in reconstructed images, see the examples in
Section V. One obtains significantly better results by increasing

0278-0062/$26.00 © 2009 IEEE
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the sampling density in the Fourier space. This is achieved
by either zero-padding [13] or by symmetrizing the recorded
signals around (which is equivalent to using the fast
cosine transform instead of the FFT). In this paper, we propose
an efficient reconstruction algorithm that uses the nonuniform
(or unevenly spaced) FFT [18]–[23] and further increases the
quality of reconstruction.

B. Prior Work and Innovations

The nonuniform FFT has been applied to a variety of medical
imaging problems, such as standard X-ray CT, magnetic reso-
nance imaging, and diffraction tomography [24]–[26], and has
also been used implicitly in gridding algorithms [27], [28]. All
those algorithms deal with the problem of recovering a two (or
higher) dimensional object function from samples of its multi-
dimensional Fourier transform on a non-Cartesian grid.

Our approach is conceptually quite different to the above
mentioned references: The special structure of our problem al-
lows to perform several one-dimensional nonuniform FFTs in-
stead of a single higher dimensional one. This leads to a re-
duced numerical cost, compared to the above algorithms. The
proposed algorithm is more closely related to a reconstruction
algorithm for X-ray CT suggested in [29, Sec. 5.2], which also
evaluates the Fourier transform on irregular samples by means
of the one-dimensional FFT.

C. Outline

This paper is organized as follows. In Section II, we present
the mathematical basics of Fourier reconstruction in PAI. In
Section III, we review the nonuniform FFT which is then used
to derive the nonuniform FFT based reconstruction algorithm
in Section IV. In Section V, we present numerical results of the
proposed algorithm and compare it with existing Fourier and
backprojection algorithms. The paper concludes with a discus-
sion of some issues related to sampling and resolution in the
Appendix.

II. PHOTOACOUSTIC IMAGING

Let denote the space of smooth functions with
bounded support in the half space .
Consider the initial value problem

with . Here denotes the Laplacian in and is
the derivative with respect to . We write

, and define the operator by

Photoacoustic imaging for planar recording geometry is con-
cerned with reconstructing from incomplete and
possibly erroneous knowledge of . Of practical interest are
the cases and , see [30]–[33].

A. Exact Inversion Formula

The operator can be inverted analytically by means of the
exact inversion formula

(1)

where , and denotes the -dimensional
Fourier transform

Equation (1) has been derived in [12], [13] for three spatial di-
mensions. It can be proven in any dimension by using the in-
version formula for the spherical mean Radon transform of [7],
[9]. A related formula using the Fourier cosine transform in-
stead of the Fourier transform has been obtained in [34], [15]
for .

B. Partial Fourier Reconstruction

The inversion formula (1) yields an exact reconstruction of ,
provided that is given for all . In practical
applications, only a partial (or limited view) data set is avail-
able [35]–[37]. In this paper we assume that data are
given only for (see Fig. 1) which are modeled
by

(2)

where is a smooth nonnegative cutoff function that van-
ishes outside . Using data (2), the function cannot be
exactly reconstructed in a stable way (see [38] and [37]). It is
therefore common to apply the exact inverse of to the partial
data and to consider the result as an approximation of the ob-
ject to be reconstructed. More precisely, the function defined
by

(3)

is considered an approximation of . The function is called
partial Fourier reconstruction.

Fourier reconstruction algorithms in PAI name numerical im-
plementations of (3). In this paper, we apply the one-dimen-
sional nonuniform FFT to derive a fast and accurate algorithm
for implementing (3).

III. NONUNIFORM FAST FOURIER TRANSFORM

The discrete Fourier transform of a vector
with respect to the nodes (with even)
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is defined by

(4)

Direct evaluation of the sums in (4) requires opera-
tions. Using the classical fast Fourier transform (FFT) this effort
can be reduced to operations. However, application
of the classical FFT is restricted to the case of evenly spaced
nodes .

The one-dimensional nonuniform FFT (see [18]–[20], [29],
and [21]–[23]) is an approximate but highly accurate method for
evaluating (4) at arbitrary nodes ,
in operations.

A. Derivation of the Nonuniform FFT

To derive the nonuniform FFT we closely follow the presen-
tation of [29], which is based on the following lemma.

Lemma 1 [29, Prop. 1]: Let and .
Assume that is continuous in , vanishing
outside , and positive in . Then

(5)

where denotes the one-dimensional
Fourier transform of .

Proposition 2: Let , and be as in Lemma 1. Then,
for every and we have

(6)

with

(7)

Proof: Taking in (5), gives

and therefore

Interchanging the order of summation in the right-hand side of
the above equation shows (6), (7) and concludes the proof.

In the following, we assume that is an even number. Then

(8)

where for , is an oversampled discrete Fourier
transform with the oversampling factor . Moreover, we assume
that is concentrated around zero and decays rapidly away
from zero. The nonuniform FFT uses the formulas (6) and (8) to
evaluate at the nodes . The basic steps of the algorithm
are as follows.

i) Append zeros to the vector and
evaluate , in (8) with the
FFT algorithm.

ii) Evaluate the sums in (6) approximately by using only
the terms with , where the interpolation
length is a small positive parameter.

Since is assumed to decay rapidly, the truncation error in Step
ii) is small.

Algorithm 1 Nonuniform FFT with respect to the nodes
, using input vector ,

oversampling , interpolation length , and window
function .

1) precomputations
2)
3)
4) function nufft
5)
6) zero-padding
7) one-dimensional FFT
8) for do
9) interpolation

10) end for
11) return
12) end function

The nonuniform Fourier transform is summarized in Al-
gorithm 1. All evaluations of and are precomputed and
stored. Moreover, the classical FFT is applied to a vector of
length . Therefore the numerical complexity of Algorithm 1
is . Typically , in which case the numerical
effort of the nonuniform FFT is essentially twice the effort of
the one-dimensional classical FFT applied to an input vector of
the same length. See [29, Sec. 3] for an exact operation count,
and a comparison between actual computation times of the
classical and the nonuniform FFT.

B. Kaiser Bessel Window

In our implementation we choose for the Kaiser Bessel
window
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where is the modified Bessel function of order zero. The one-
dimensional Fourier transform of is

if and otherwise.
The Kaiser Bessel window is a good and often used candidate

for , since becomes extremely small for .
For example, with the parameters , and , we have
for

Remark 3: Take and let be the characteristic function
of the interval . Then and (6), (7)
reduce to the sinc series

which is a discretized version of Shannon’s sampling formula
[39], [40]

applied to the Fourier transform of a function that
vanishes outside .

See Fig. 2 for a comparison of sinc and , with
and . One realizes that decays much faster than
sinc and is therefore much better suited for truncated interpo-
lation. In fact, for ,
whereas only for .

An error estimate for the nonuniform FFT using the Kaiser
Bessel window is given in [29]. The result is

For example, taking and , the above error
is as small as .

IV. FOURIER RECONSTRUCTION ALGORITHM BASED ON THE

NONUNIFORM FFT

In this section, we apply the one-dimensional nonuniform
FFT to photoacoustic imaging. Throughout the following we
restrict our attention to two dimensions, noting that the general
case can be treated in an analogous manner.

Assume that is a smooth function that vanishes outside
, and set , where is as in (2). Fourier

reconstruction names an implementation of (3), that uses dis-
crete data

(9)

Fig. 2. Top: Kaiser-Bessel window � ��� and characteristic function of the
interval ���� ��. Bottom: Fourier transforms �� ��� and ���	
���� in deci-
bels. Here, dB denotes the logarithmic decay � ��� ������������ of some
quantity ����.

with and reconstructs an approxi-
mation

(10)

with . Here is defined by (3),
is an even number, and . In the Appendix, we
show that the sampling in (10) and (9) is sufficiently fine, pro-
vided that , where is the essential bandwidth
of .

Discretizing (3) with the trapezoidal rule gives

(11)

where
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One notices that the inner sums in (11)

(12)

can be exactly evaluated with one-dimensional FFTs, and the
outer sums

(13)

can be approximately evaluated with one-dimensional
nonuniform FFTs. Denoting the resulting approximation by

and setting

(14)

we finally find

(15)

with the inverse two-dimensional FFT algorithm.

Algorithm 2 Nonuniform FFT based algorithm
for calculating using data

, oversampling factor , interpolation
length , and window function .

1) precomputations
2)
3)
4) function FouRecNufft
5) for do
6)
7) one-dimensional FFT
8) end for
9)

10) for do
11)
12) nonuniform FFT
13)
14) end for
15)
16) two-dimensional inverse FFT
17) return
18) end function

The nonuniform FFT based reconstruction algorithm is
summarized in Algorithm 2. Its numerical complexity can
easily be estimated. Evaluating (12) requires
operations ( one-dimensional FFTs), evaluating (12) re-
quires operations ( nonuniform FFTs), and
(15) is evaluated with the inverse two-dimensional FFT in

operations. Therefore the overall complexity of
Algorithm 1 is .

In the next section we numerically compare Algorithm 2
with standard Fourier algorithms presented in the literature

[41], [13], which all differ in the way how the sums in (13) are
evaluated.

1) Direct Fourier algorithm. Equation (13) cannot be eval-
uated with the classical FFT algorithm because the nodes

are nonequispaced. The most simple way to evaluate
(13) is with direct summation. Because there are such
sums, direct Fourier reconstruction requires oper-
ations. Consequently it does not lead to a fast algorithm.
However, since (13) is evaluated exactly, it is optimally
suited to evaluate the image quality of reconstructions with
fast Fourier algorithms.

2) Interpolation based algorithm. A fast and simple alterna-
tive to direct Fourier reconstruction is as follows: Choose
an oversampling factor and exactly evaluate

at the uniformly spaced nodes
, with the one-dimensional FFT al-

gorithm. In a next step, linear interpolation is used to find
approximate values , see [13]. Evaluating

with linear interpolation requires operation
and therefore the overall numerical effort of linear inter-
polation based Fourier reconstruction is .
Algorithms using nearest neighbor interpolation instead
of the linear one have the same numerical complexity and
have also been applied to PAI (see, e.g., [42]). Higher
order polynomial interpolation has been applied in [43]
for a cubic recording geometry.

3) Truncated sinc reconstruction. If the function in Al-
gorithm 2 is chosen as the characteristic function of the
interval , then the nonuniform fast Fourier
transform reduces to the truncated sinc interpolation con-
sidered in [41]. However, due to the slow decay of ,
truncation will introduce a nonnegligible error in the recon-
structed image (see Remark 3).

The Fourier algorithms are also be compared with a numer-
ical implementation of the backprojection formula

(16)

where denotes the distance between the
detector location and the reconstruction point .
Equation (16) has been obtained in [8] by applying the method
of descent to the three-dimensional universal backprojection
formula discovered by Xu and Wang [10]. Again (16) gives
an exact reconstruction only if it is applied to complete data

. In the numerical experiments the
backprojection formula is applied to the partial data ,
see (2), and implemented with operation counts as
described in [8, Sec. 3.3].

V. NUMERICAL RESULTS

In the following we numerically compare the proposed
nonuniform FFT based algorithm with standard Fourier algo-
rithm and the backprojection algorithm based on (16).
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Fig. 3. Reconstruction with interpolation based Fourier algorithms. White cor-
responds to function value 1, black to function value����. Top Line: Phantom
and analytic data. Middle line: Reconstruction without oversampling �� � ��.
Bottom line: Reconstruction with oversampling �� � ��.

The cutoff function is constructed by convolution of

with the characteristic function of , where is a small pa-
rameter and is chosen in such a way that

. Typically, is chosen as a “small” multiple of the sampling
step size .

In all numerical experiments, we take , and
. The window width is chosen to be slightly smaller than

, where is the oversampling factor that determines
the accuracy of the Fourier reconstruction algorithms.

A. Circular Shaped Object

As first case example we use a circular shaped object

centered at (see top left image in Fig. 3). For such
a simple object reconstruction artifacts can be identified very
clearly. Moreover, the data can be evaluated analytically

Fig. 4. Improved reconstructions. Top Line: Backprojection (left) and direct
reconstruction (right). Middle Line: Truncated sinc (left) and nonuniform FFT
based Fourier algorithm (right). Here, white corresponds to function value 1,
black to function value ����. Bottom Line: Difference images between direct
and truncated sinc reconstruction (left), and direct and nonuniform FFT based
reconstruction (right). Here, white (resp. black) corresponds to function value
0.04 (resp. �0.04).

(see [8, (B.1)]) as

Here, is the prin-
cipal branch of the complex logarithm, and denotes the
real part of complex number . The reconstruction results are
depicted in Figs. 3 and 4. Table I and Fig. 5 compare run times
with the relative -error

were denotes the discrete image obtained by direct
Fourier reconstruction. Run times were measured for Matlab
implementations on a personal computer with 2.4 GHz Athlon
processor.

In order to demonstrate the stability of the Fourier algo-
rithms, we also performed reconstructions from noisy data,
where Gaussian noise was added with a variance equal to
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Fig. 5. Reconstruction time versus error. The points on the graphs be-
long to runtimes and errors for reconstruction with oversampling factors
� � ��� �� �� �� ��� ���.

TABLE I
RUN TIMES AND ERROR OF DIFFERENT RECONSTRUCTION METHODS

20% of the maximal data value. The reconstruction results are
depicted in Fig. 6.

B. Shepp-Logan Phantom

In the next example, we consider the Shepp-Logan phantom
, which is shown in top left image in Fig. 7. The data were

calculated numerically by implementing d’Alemberts formula
[44]

with

denoting the spherical mean Radon transform of . The re-
construction results from simulated data are depicted in Fig. 7.

C. Discussion

We emphasize that none of the above Fourier algorithms are
designed to calculate an approximation of but an approxi-
mation to the partial Fourier reconstruction defined in (3).
Therefore, even in the direct reconstruction (top right image
in Fig. 4) and in the backprojection reconstruction one can see
some blurred boundaries in the reconstruction. Such artifacts are
expected using limited view data (2); see [38] and [37].

The results of interpolation based reconstruction without
oversampling are quite useless. The reconstructions

Fig. 6. Reconstruction from noisy data. Top Line: Noisy data. Second line:
Nearest neighbor interpolation based reconstruction �� � �	. Third line: Linear
interpolation based reconstruction �� � �	. Fourth line: Reconstruction with
backprojection algorithm. Bottom line: Reconstruction with nonuniform FFT
algorithm �� � �	. The horizontal profiles on the right are taken at �� � � �.

are significantly improved by using a larger oversampling
factor . However, even then, the results never reach the quality
of the nonuniform FFT based reconstruction. Moreover, the
numerical effort of linear interpolation based reconstruction is
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Fig. 7. Reconstruction of Shepp Logan phantom. Top line: Phantom and sim-
ulated data. Second line: Interpolation based reconstruction. Bottom line: Re-
construction with backprojection algorithm (left) and proposed nonuniform FFT
algorithm (right).

proportional to the oversampling factor, which prohibits the use
of “very large” values for (see Fig. 5). In the reconstruction
with (bottom line in Fig. 3 and middle line in Fig. 7)
artifacts are still clearly visible.

The images in the middle line of Fig. 4 suggest that truncated
sinc and nonuniform FFT based reconstruction seem to perform
quite similar. However, the differences to the direct Fourier re-
constructions, shown in the bottom line in Fig. 4, demonstrate
the higher accuracy of the nonuniform FFT based algorithm.

The results in Fig. 6 show that all applied reconstruction algo-
rithms are quite stable with respect to data perturbation. In par-
ticular, the filtered backprojection algorithm produces images
with the highest signal to noise ratio. However, only at the cost
of a nearly 100 times longer computation time (see Table I).

VI. CONCLUSION

We presented a novel fast Fourier reconstruction algorithm
for photoacoustic imaging using a limited planar detector array.
The proposed algorithm is based on the nonuniform FFT. Theo-
retical investigation as well as numerical simulations show that
our algorithm produces better images than existing Fourier algo-
rithms with a similar numerical complexity. Moreover the pro-
posed algorithm has been shown to be stable against data per-
turbations.

APPENDIX

SAMPLING AND RESOLUTION

Let be smooth function that vanishes outside , and
define by (2) and (3). We further assume that is
concentrated around zero and, that is essentially bandlimited
with essential bandwidth , in the sense that is negli-
gible for . Note that since has bounded support,
cannot vanish exactly on .

• Sampling of . Equation (1) implies that

(17)

with

if and otherwise. The as-
sumption that has essential bandwidth and (17) imply
that is negligible outside the set

Now Shannon’s sampling theorem [39], [40] states that
is sufficiently fine sampled if the step size in and in
satisfies the Nyquist condition .

• Sampling of . Similar considerations as above again
show that is essentially bandlimited with essential band-
width . Shannon’s sampling theorem implies that can
be reliable reconstructed from discrete samples taken with
step size .

If has essential bandwidth larger than , the function
has to be filtered with a low pass-filter before sampling. Other-
wise, sampling introduces aliasing artifacts in the reconstructed
image.

Theoretically, the resolution (at least of the visible parts)
can be increased ad infinity by simply decreasing the sampling
size . In practical applications, several other factors
such as the bandwidth of the ultrasound detection system limit
the bandwidth of the data, and therefore the resolution of
reconstructed images [33]. This, however, also guarantees that
in practice a moderate sampling step size gives correct
sampling without aliasing.
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