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Abstract

Massless bosonic string-localized quantum fields are studied. After reviewing some

facts about massive fields, the corresponding intertwiners for vector- and tensor po-

tentials and for more general representations are constructed. These fields are fixed

by the requirement that they are generalized potentials for the field strengths. Fur-

thermore it is proven that they satisfy generalized versions of the Lorentz- and axial

gauge and certain symmetry properties. It is also illustrated why they need addi-

tional indices. In the end their two-point function is analyzed and it is shown that

their short-distance behavior is independent of the helicity.

Zusammenfassung

Masselose bosonische string-lokalisierte Quantenfelder werden untersucht. Nach

einem kurzen Überblick über massive Felder werden die Intertwiner für Vektor- und

Tensor-Potentiale und für allgemeinere Darstellungen konstruiert. Diese Felder sind

eindeutig festgelegt durch die Forderung, dass sie verallgemeinerte Potentiale für die

Feldstärken sind. Weiters wird bewiesen, dass sie verallgemeinerte Versionen der

Lorentz- und der axialen Eichung erfüllen und gewisse symmetrie Eigenschaften be-

sitzen. Es wird außerdem erläutert, warum sie zusätzliche Indizes benötigen. Zum

Schluss wird noch deren Zwei-Punkt Funktion untersucht und es wird gezeigt, dass

ihr Verhalten für kleine Abstände unabhängig von der Helizität ist.





CONTENTS 4

Contents

1 Introduction and Motivation 6

2 Modular Localization 9

2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Construction of localization spaces . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Construction of a net of von Neumann algebras . . . . . . . . . . . . . . . . 14

3 Wigner particle theory 17

3.1 Representations of the Lorentz Group . . . . . . . . . . . . . . . . . . . . . 17

3.2 Single Particle States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Quantum Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 String-localized Fields 25

4.1 Definition and General Construction . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Necessity of Additional Tensor (Spinor-) Indices . . . . . . . . . . . . . . . . 28

4.3 Previous Results on String-Localized Fields . . . . . . . . . . . . . . . . . . 29

5 Massless String-Localized Fields 32

5.1 String-Localized Intertwiners . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.2 Intertwiners for λ = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.3 Intertwiners for Higher Helicities . . . . . . . . . . . . . . . . . . . . . . . . 37

5.3.1 General Intertwiners . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.3.2 Example: λ = 2, Gravitons . . . . . . . . . . . . . . . . . . . . . . . 39

5.4 Description by Line-Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.5 General Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.5.1 Spinor-Representations . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.5.2 Relation between Spinors and Tensors . . . . . . . . . . . . . . . . . 44

5.5.3 String-localized Intertwiners for General Representations . . . . . . . 46

5.6 Two-Point Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.7 Short Distance Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6 Conclusion 56

References 59





6

1 Introduction and Motivation

The principle of locality is one of the most important in modern quantum field theory.

It states that observables are measurable in bounded space-time regions and that mea-

surements of space-like separated observables are compatible. Typically one uses point-

localized quantum fields (or more precisely quantum fields that are located in bounded

space-time regions). To implement locality they should commute for space-like separated

arguments. But in the modern formalism of local quantum field theory [8] only the ob-

servables have to be localized in bounded regions, the (usually unobservable) fields can

have different localization properties.

One possibility to generalize the notion of localization are the recently studied string-

localized fields [16]. The basis for their analysis is provided by the paper of Brunetti,

Guido and Longo [4], where they establish a connection between irreducible positive en-

ergy representations of the Poincaré group and localization in space-like cones. This is

achieved by using the formalism of modular localization, which is summarized in chapter

2. The cores of this space-like cones are then the localization regions of the string-localized

fields, which are the subject of the present work.

While for representations of the Poincaré group for finite helicity the localization region

can be tightened to a double cone (i.e. point-like localization), this is not possible for

the so-called infinite spin representations (also called “continuous spin”) [32], where the

sharpest possible localization regions are space-like cones with arbitrarily small opening

angles. Nevertheless, string-like generating fields for massless particles and finite helicity

can also be useful and are interesting to investigate for the following reasons:

• For massless particles it is well known, that in the classical point-like formalism the

number of possible intertwiners between the canonical Wigner representation and

a covariant representation is strongly limited [30, p.254]. By using string-like in-

tertwiners one is able to recover the full spectrum of representations. Particularly

interesting is the case of helicity ±1 (Photons), where one has to give up either

covariance or positivity of the Hilbert space norm in order to work with a vector po-

tential [27]. Using string-localized intertwiners one can construct a covariant vector

field acting on the photon Hilbert space, which is a potential for the (point-localized)

field strength.

• The string-localized vector (or tensor) potentials offer a better short distance behav-

ior. While the short distance dimension (sdd) of the point-localized field strengths
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is increasing with the helicity, the sdd of the string-localized potentials is indepen-

dent of the spin. This fact also guarantees that the p-dependence of the two-point

function does not get worse with increasing spin.

• Although string-localized fields could not yet be implemented in perturbation theory,

they are expected to admit a larger class of interactions, because of their nice short

distance behavior [14].

Despite the interesting possibility to incorporate string-localized fields in perturbation

theory, only non-interacting fields will be considered in this work.

The first time that string-like objects appeared was 1935, when P. Jordan [9] used expo-

nential line-integrals over electromagnetic vector potentials to construct gauge invariant

terms out of matter fields. Some decades later Mandelstam [11] used expressions involving

integrals over local gauge fields to formulate quantum electrodynamics. In more recent

times Buchholz and Fredenhagen [5] systematically analyzed the properties of semi-infinity

string-like objects in the formalism of algebraic quantum field theory. At about the same

time it was discovered that string-localized fields appear naturally (for massive represen-

tations of the Poincaré group) in space-time dimension d = 1+2, where non-half-integer

spins are possible. These particles, which obey neither Bose nor Fermi statistics, but more

general braid group statistics, are called anyons. String-localized anyon states were con-

structed and studied e.g. in [12] by J. Mund.

Due to the popularity of String Theory, the name “string-localized” fields can be a bit

misleading. The string-localized fields considered in this paper have very little to do with

the strings of String Theory. The construction of string-localized objects in this work fits

perfectly into the well-known framework of quantum field theory. The only difference lies

in the more general localization properties of the fields considered.

The content of the present work is the following: At first, after reviewing some basic facts

about modular localization and Wigner particle theory, some results about massive string-

fields from the paper by Mund, Schroer, Yngvason [16] are recapitulated. In their work

they show a detailed construction of string-localized fields for massive representations and

especially for the massless infinite spin representation. Then, string-localized intertwiners

for massless representations of the Poincaré group to arbitrary (integer) helicity λ are con-

structed. In contrast to the massive “scalar” string fields in [16], the fields for mass zero

need additional tensor (or spinor) indices. They also obey certain “gauge”-conditions, like
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a generalization of the Lorentz-gauge and the axial gauge. However, the use of the word

“gauge”-conditions is incorrect in the present framework, because they are not due to a

gauge-freedom but are fixed by the desired properties of the fields.

The string-localized tensor potentials transform according to the D[λ
2
,λ
2
] representation of

the Lorentz group, which would not be possible in the classical point-like formalism [30,

sec. 5.9]. The requirement that they are potentials for the point-localized field strengths

fixes them almost uniquely. Interestingly, there is also the possibility to write these fields

as infinite line-integrals over the field-strengths.

After that, intertwiners for general representations of the Lorentz group D[A,B] are pre-

sented in the spinor formalism and their connection with the tensor fields is established.

Also some properties of these fields are analyzed, e.g. their short distance behavior and

their two-point functions.

The whole work is mainly based on the article by J. Mund, B. Schroer and J. Yngvason

[16] (and other related articles by these authors [13, 14, 15, 23]), because these are almost

the only rigorous treatments of the topic of constructing string-localized quantum fields.
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2 Modular Localization

2.1 Motivation

In his famous paper from 1939 [31] E. Wigner established the general connection between

relativistic particles and irreducible positive energy representations of the Poincaré group

P. This was one of the first steps toward a formulation of relativistic quantum theory

without classical analogies. In this setting there are two different notions of localization:

The Born-Newton-Wigner localization [17] and the modern approach called modular lo-

calization [4, 7].

The Newton-Wigner localization uses Born’s quantum mechanical probability density in

Wigner’s representation theoretical setting. One introduces position operators and their

spectral projectors, which are supposed to measure the probability to find a particle at a

specific space-time point. For a fixed time one gets orthogonality of states with different

spatial support. The problem is, that this is not consistent with relativistic covariance and

causality (although approximately for distances larger than the Compton wave length).

Moreover it’s impossible to have any localization concept, where states localized in a given

space-time region are orthogonal to those in the causal complement, if one wants to stay

compatible with covariance and positivity of the energy [10, 19]. Despite this shortcomings

of the Newton-Wigner localization, it is well-suited for scattering theory, because of its

validity for large space-time separation.

A way to illustrate the Newton-Wigner localization [8] is to consider a wave function Ψ̃(p)

and Fourier transform it with the Lorentz invariant measure on the mass-shell dµ(p) 1 to

get a covariant wave function in x-space,

Ψ(x) =
1

(2π)2

∫
Ψ̃(p)e−ipxdµ(p) :=

1

(2π)2

∫
Ψ̃(ǫp, ~p)e

−i(ǫpt−~p~x)d
3p

2ǫp
, (2.1)

where ǫp is the relativistic energy ǫ2p = m2 + ~p2. This is a covariant wave function, but

using it to write down the scalar product, one gets

〈Ψ′,Ψ〉 =
∫

Ψ′(x)Ψ(y)K(x− y)d4xd4y, (2.2)

with the non-local kernel K(x− y), which is proportional to the Fourier transform of the

energy factor 1
2ǫp

.

Even if the wave functions Ψ′(x),Ψ(x) have disjoint support, their scalar product doesn’t

1an explicit expression for this measure will be given later on
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vanish, because of the non-local factor K(x − y). To get a scalar product that takes

the same form as in the Schrödinger theory, one can introduce the Newton-Wigner wave

function

Ψ̃NW (p) :=
1

(2ǫp)1/2
Ψ̃(p), (2.3)

and correspondingly the Newton-Wigner wave function in x-space as its Fourier transform.

The scalar product then takes the usual form

〈Ψ′,Ψ〉 =
∫

x0=t
Ψ′NW (x)ΨNW (x)d3x. (2.4)

One could now regard ΨNW (x) as the probability amplitude for finding the particle at

time x0 = t at the position ~x, but this definition of locality is dependent on the Lorentz-

frame and not strictly compatible with causality [19, 10].

A more recent concept of localization, which is compatible with covariance and causality,

is the modular localization. Here one uses the formalism of algebraic quantum field theory

[8], where localization refers to local measurements of observables, not to particle posi-

tions. The observables in quantum field theory form a net of algebras O 7→ A(O), where

O is a space-time region and A(O) is the associated von Neumann algebra, e.g. A(O)

could be the algebra of smeared field operators A(O) = {φ(f) | supp(f) ⊂ O}, acting on

the Fock space F(H1).

Important in this context is the famous Reeh-Schlieder property [20], the fact that apply-

ing the operators A(O) (for any open space time region O) to the vacuum results in a

dense set in the Hilbert space. Therefore the subspaces of the Hilbert space obtained in

this way can never be orthogonal, even if the space-time regions are spacelike separated.

That’s why locality is implemented through commutativity of observables, localized in

spacelike separated regions, and not through orthogonality of Hilbert space vectors with

disjoint spatial support.

2.2 Construction of localization spaces

The concept of modular localization does not need any external assumptions, but is intrin-

sically defined within the representation theory of the Poincaré group P. (The following

treatment on modular localization is based on [4] and [16, sec. 2].)

Following Wigner [31] one starts with a unitary irreducible representation U1 of P+ on
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the one-particle Hilbert space H1 (For explicit expressions for H1 and U1 see chapter 3).

One then defines a standard wedge region

W0 := {x ∈ R
4 |x3 > |x0|}. (2.5)

Other more general wedges W can be constructed by Poincaré-transforming the standard

wedge W0. Moreover, because P↑
+

2 acts transitively on the family of wedges, every wedge

can be obtained by a suitable Poincaré-transformation of W0:

for every wedge W , ∃ g ∈ P↑
+ : W = gW0. (2.6)

Now consider the family of Lorentz boosts ΛW0(t), which leave W0 invariant (they form a

one-parameter subgroup t 7→ ΛW0(t)) and the reflection jW0 ∈ P+ across the edge of the

wedge, where the edge of W0 is the two-dimensional plane {x ∈ R
4 : x0 = x3 = 0}. Their

explicit representation as 4× 4 matrices is,

ΛW0(t) :=




cosh(t) 0 0 sinh(t)

0 1 0 0

0 0 1 0

sinh(t) 0 0 cosh(t)



, (2.7a)

jW0 :=




−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1



. (2.7b)

Since P↑
+ acts transitively on the family of wedges, one can assign to each wedge W such

a one-parameter subgroup ΛW (t), which leaves W invariant, and a time reversing reflec-

tion jW , mapping W into its causal complement W ′. Using the Poincaré transformation

gW0 =W , they are defined according to

ΛW := gΛW0 g
−1 (2.8a)

jW := g jW0 g
−1 , for gW0 =W (2.8b)

2
P

↑
+ denotes the proper, orthochronous part of the Poincaré group. In this work only the part P+ will

be of importance.
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Using the (anti-)unitary representation U1 of P+
3 one can then define the operators [16,

sec. 2]

∆it
W := U1(ΛW (−2πt)) (2.9a)

JW := U1(jW ) (2.9b)

SW := JW∆
1
2
W (2.9c)

If ∆W is written in exponential form ∆W = eHW one gets the so-called modular Hamil-

tonian HW [8]. For its connection to thermal states and the Unruh effect, the reader

is referred to [8, chapter 5]. The operator SW is the so-called Tomita involution. The

connection between its polar decomposition (JW ,∆
1
2
W ) and the geometric interpretation

in terms of the Poincaré group is the application of the spatial Bisognano-Wichmann the-

orem [2] to the Wigner one-particle theory.

The operators (2.9a)-(2.9c) have the following properties: (the proofs can be found in [4])

• ∆W is a densely defined, closed, positive and in general unbounded operator.

• JW is anti-unitary with J2
W = 1.

• JW∆it
WJ

−1
W = ∆it

W =⇒ JW∆WJ
−1
W = ∆−1

W

• From these properties follows: SW is a densely defined, closed, anti-linear and un-

bounded operator with Ran(SW ) = Dom(SW ) and S2
W ⊂ 1

The Tomita involution SW is uniquely defined by its eigenspace to the eigenvalue 1,

K(W ) := {ψ ∈ Dom(∆
1
2
W ) |SWψ = ψ}. (2.10)

This is a closed, real-linear standard subspace ofH1 in the sense of [21], where standardness

means that,

K(W ) + iK(W )4 = H1 (2.11a)

K(W ) ∩ iK(W ) = 0. (2.11b)

Because of U1(g)SWU1(g)
−1 = SgW , the representation U1 acts covariantly on this family

of standard subspaces, i.e.

U1(g)K(W ) = K(gW ) , g ∈ P+ (2.12)

3For m = 0 and finite helicity, an irreducible representation of P↑
+ has to be doubled in order to allow

for representing the anti-unitary reflection [30]
4The bar denotes closure in the Hilbert space norm.
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Furthermore the subspaces K(W ) satisfy the important property [4, Thm. 2.5]

JWK(W ) = K(W ′) = K(W )⊥ (2.13)

where ⊥ refers to the symplectic complement

K(W )⊥ := {ψ ∈ H1 | Im(ψ, φ) = 0, ∀φ ∈ K(W )}. (2.14)

This is the spatial version of the so-called Haag-duality.

Conversely every real standard subspace K defines a unique involution S, according to

S(ψ + iφ) = ψ − iφ, for ψ, φ ∈ K.

It is important to note here that the Tomita operators SW only differ in their domains

KW , while their action on Hilbert space vectors looks the same for every wedge W . The

unboundedness of the operators SW makes it possible to encode geometric localization

properties into the domain of SW .

Another crucial fact, which makes modular localization such a useful concept, is that

positivity of the energy implies isotony [4, Thm. 3.4], where isotony means that

W1 ⊂W2 ⇒ K(W1) ⊂ K(W2). (2.15)

Until now only wedge regions have been considered, but a sharpening of the localization

can be obtained for causally complete convex regions O. For this purpose one simply

intersects the localization spaces for all wedges that include the region O [4]:

K(O) :=
⋂

W⊃O

K(W ) (2.16)

Some important properties like covariance, isotony, locality and Haag duality also hold for

these smaller subspaces (for a proof see [4]). But the important question is for which O one

can also prove standardness. In their paper [4] Brunetti, Guido and Longo showed, that

standardness (among some other properties) holds, for every positive energy representation

of the Poincaré group, if O is a space-like cone C, i.e. [16, sec. 2]

C := a+
⋃

λ

λD, (2.17)

with D a double cone5 and a the apex of the space-like cone.

Using this theorem one gets a resulting net C → K(C) of standard subspaces K(C) with

the following properties (for a proof see [4]):

5A double cone can be equally defined as the intersection of a forward light-cone with a backward

light-cone, or the causal completion of a 3-dimensional sphere.
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• Covariance: U1(g)K(C) = K(gC) , g ∈ P+

• Locality: C1 ⊂ C′
2 ⇒ K(C1) ⊂ K ′(C2)

• Isotony: C1 ⊂ C2 ⇒ K(C1) ⊂ K(C2)

• Haag duality: K(C′) = K ′(C)

It may seem at first sight, that locality follows trivially by isotony, but this is not the case,

because the causal complement C′ of a spacelike cone is not a convex region.

After the construction of these standard subspaces, one can also define the corresponding

Tomita operators according to

SC(Ψ + iΦ) = Ψ− iΦ , ∀Ψ,Φ ∈ K(C). (2.18)

The modular objects ∆C and JC can then be obtained by forming the polar decomposition

SC = JC∆
1
2
C . In contrast to the operators for wedge regions though, there is in general no

geometrical interpretation for these operators.

So far only the one-particle Hilbert space H1 and subspaces thereof have been considered,

but for quantum field theory one needs the Fock space over H1 and operator algebras

acting on it. In the next section it will be explained how to get von Neumann algebras

from the above standard subspaces.

2.3 Construction of a net of von Neumann algebras6:

After having constructed such a family of real subspaces K(O) one can use the CCR/Weyl

second quantization functor to get a (bosonic) net of von Neumann algebras O 7→ A(O)

on the Fock space H = F(H1) over H1. The bosonic Fock space is defined according to

F(H1) :=

∞⊕

n=0

H⊗sn
1 , (2.19)

where H⊗sn
1 denotes the symmetrized tensor product of n factors H1 and H0

1 := C by

definition.

Given any open region O of Minkowski space, one can then define the corresponding von

Neumann algebra,

A(O) := {Weyl(ψ) | ψ ∈ K(O)}′′, 7 (2.20)

6This is only a brief outline. A more thorough treatment can be found in [8] or [7]
7
A

′ denotes the commutant of A in B(H)
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by introducing the Weyl operators [16]

Weyl(ψ) := exp i(a∗(ψ) + a(ψ)) ∈ B(H). (2.21)

These operators are elements of B(H), which denotes the algebra of all bounded operators

acting on H, and a∗(ψ)/a(ψ) are the creation/annihilation operators on the Fock space.

The double commutant theorem of von Neumann guarantees that the algebra A(O) is

weakly closed.

Because the functorial relations (2.20) and (2.21) relate the orthocomplemented lattice of

real subspaces to that of von Neumann algebras, the algebras A(O) satisfy the following

properties [1]:

• A(O) =
⋂

W⊃O

A(W ), i.e. the Weyl functor commutes with the sharpening of local-

ization.

• Haag duality: A(O′) = A(O)′

• Covariance: A(gO) = U(g)A(O)U(g)−1, where g ∈ P+ and U(g) is the second

quantization of the operator U1(g).

• Isotony: O1 ⊂ O2 ⇒ A(O1) ⊂ A(O2)

• Locality: O1 ⊂ O′
2 ⇒ A(O1) ⊂ A(O2)

′

The last three points, together with positivity of the energy, are often called the Haag-

Kastler axioms of algebraic quantum field theory. These are the desired properties of a

net of local observables in local quantum physics.

Using the Weyl functor one can also define the second quantization of the operators

∆W , JW and SW acting on the Fock space H [7, sec. 3]. Their adjoint action on the

algebra A(W ) is given by

JW A(W ) J−1
W = A(W )′, (2.22a)

∆it
W A(W )∆−it

W = A(W ). (2.22b)

So the anti-unitary JW maps the algebra on it’s commutant and the operators ∆it
W define

a family of automorphisms of the algebra.

The Bisognano-Wichmann theorem now states that the above definition of the operator
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SW coincides with the following one, which is possible for a large class of quantum field

theories:

SWφ(f)Ω = φ(f)∗Ω , if supp(f) ⊂W (2.23)

Here φ(f) is the considered quantum field and Ω is the Poincaré invariant vacuum vector.

For the representations of the Poincaré group to mass m, spin s and to mass 0 and

finite helicity the localization can be tightened to double cones by using the well known

point-like fields in the Wightman framework [26]. The only fields where this isn’t possible

are the fields transforming according to the infinite spin representation. However, string-

like generating fields are nevertheless interesting for m = 0 and finite helicity, for reasons

that will be explained later in this work.
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3 Wigner particle theory

3.1 Representations of the Lorentz Group

Transformations of Minkowski space, which leave the metric ds2 = dt2 − d~x2 invariant,

lead to the Poincaré-group [3]. It is the semi-direct product of the Lorentz group L and

the translation group R
4

P = R
4
⋊ L. (3.1)

The Lorentz group consists of real 4× 4 matrices Λ, that satisfy the condition

Λ⊤ηΛ = η, (3.2)

where η is the Minkowski metric η = diag(1,−1,−1,−1). Because of this product struc-

ture, elements of P will be denoted by (a,Λ), where a ∈ R
4 and Λ ∈ L. The product of

two elements of the Poincaré group reads

(a1,Λ1) ◦ (a2,Λ2) = (a1 + Λ1a2 ,Λ1Λ2), (3.3)

which is why it is called a semi -direct product.

The Lorentz group is composed of four disconnected components

L = L↑
+ ∪ L↓

+ ∪ L↑
− ∪ L↓

−, (3.4)

and in this chapter mainly the proper orthochronous part L↑
+ will be considered. (For an

introduction to relativistic symmetry in particle physics see [30, chapter 2 and 5] or [24].)

To determine the representations U of P↑
+, it is comfortable and customary to consider

infinitesimal transformations U(a,Λ) ≈ id − i
2ωµνJ

µν + iaµP
µ, with a 4-vector aµ and

an anti-symmetric matrix ωµν . The generators of the translations Pµ and the generators

of Lorentz transformations Jµν are elements of the Lie-algebra of the Poincaré group. A

representation of this Lie-algebra is provided by a 4-vector Pµ and a set of antisymmetric

matrices Jµν , satisfying the commutation relations [24, p.280]

i[Jµν , Jρσ] = Jνσ ηµρ + Jρν ηµσ − Jµσ ηνρ − Jρµ ηνσ, (3.5a)

i[Jµν , Pρ] = ηρµPν − ηρνPµ, (3.5b)

i[Pµ, Pν ] = 0. (3.5c)

The anti-symmetric generators Jµν can be divided into an angular momentum part

J1 = J23, J2 = J31, J3 = J12 (3.6)
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and a boost part

K1 = J10, K2 = J20, K3 = J30. (3.7)

It is, however, more convenient to introduce a new basis in the (complexified) Lie-algebra

by forming the linear combinations [30, p.230]

A =
1

2
(J+ iK) (3.8a)

B =
1

2
(J− iK). (3.8b)

These new generators now satisfy the simpler commutation relations

[Ai, Aj ] = iǫijkAk (3.9a)

[Bi, Bj ] = iǫijkBk (3.9b)

[Ai, Bj ] = 0. (3.9c)

The Lie-algebra of the Lorentz group therefore decomposes as the direct sum of two Lie-

algebras, which have the structure of the rotation algebra SO(3) or its universal covering

group SU(2). Thus its representations can be classified as follows: The irreducible repre-

sentations of L↑
+ are of the form

D[A,B] := D(A) ⊗D(B), (3.10)

where D(A), D(B) are the irreducible representations of the covering of the rotation group

SU(2) to highest weight (which corresponds to the spin) A,B. Hence the product repre-

sentation has dimension (2A + 1)(2B + 1). This is a proper representation of L↑
+, if the

values of A and B are both integer or both half-integer. Otherwise one obtains a repre-

sentation of SL(2,C), the universal covering group of the Lorentz group. Representations

of SL(2,C) then lead to ray representations (representations up to a phase) of L↑
+ (see

section 5.5).

A general Lorentz transformation Λ(~v, ~α) with boost vector ~v and rotation axis ~α is then

represented by [24, p.232]

D[A,B](Λ(~v, ~α)) = D(A)(~α)D(A)(−i~u)⊗D(B)(~α)D(B)(i~u), (3.11)

where the rapidity ~u := ~v
|~v|artanh(|~v|) has been introduced. More explicit expressions for

D(j)(~α) will be given in chapter 3.2. and 5.5.

When restricted to the rotation subgroup, such a representation decomposes as [24, p.232]

D[A,B](L(0, ~α)) = D(A+B)(~α)⊕ . . .⊕D(|A−B|)(~α), (3.12)
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which is known as the Clebsch-Gordon decomposition.

In chapter 5 it will be shown how to construct string-localized fields that transform under

general [A,B] representations.

3.2 Single Particle States

In this section the classification of one-particle states according to their transformation

under the Poincaré group is considered. (The summary given here is based on chapter 2

of Weinberg’s book [30]). This classification dates back to the famous paper from Wigner

[31], where he established the general connection between particles and irreducible ray

representations of the Poincaré group. His work was a first step toward an intrinsic

formulation of relativistic quantum physics without the use of classical analogies. In

the present work mainly bosons will be considered, so only proper representations of the

Poincaré group will be needed.

To obtain these representations U1 one fixes the mass value m, which determines the

energy-momentum spectrum of the corresponding particle. This is the joint spectrum of

the generators of the translation subgroup. For positive mass m it has the form of a

mass-hyperboloid

H+
m := {p ∈ R

4 : p2 = m2, p0 > 0}, (3.13)

and for mass zero it is the forward light cone H+
0 .

Then a point p ∈ H+
m is fixed, the so-called standard momentum, which determines its

stabilizer subgroup (also called “little group”) Gp of L↑
+, i.e.

Gp := {Λ ∈ L↑
+ : Λp = p}. (3.14)

For mass m > 0 the standard momentum is usually taken to be p = (0, 0, 0,m), which is

the momentum of the particle in its rest frame. In this case the group Gp is isomorphic

to the three-dimensional rotation group SO(3) [24, p.291].

If massless particles are considered, there is no rest frame, so a possible and convenient

choice for the standard momentum is e.g. p = (1, 0, 0, 1). The group Gp is then isomor-

phic to the Euclidean group in two dimensions E(2) [24, p.294]. This group E(2) consists

of rotations R(θ) and translations S(α, β) of the two-dimensional plane. In contrast to

SO(3) this group is not semi-simple, which causes interesting complications.

The massless case then leads to the so-called infinite spin representations if Gp is repre-

sented faithfully, and to a helicity representation if it is not faithfully but non-trivially
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represented. The infinite spin representations have usually been discarded as “not used by

nature” [30]. But although a localization in the sense of point-like fields is not possible for

them [32], there is no reason why they shouldn’t be considered as string-like localized fields.

Besides the value for the mass m, one needs an additional data to fully characterize

an irreducible positive energy representation of P↑
+, namely a unitary irreducible repre-

sentation D of the stabilizer group Gp. This representation acts in the so-called “little

Hilbert space” h, which determines the full representation space of U1,

H1 := L2(H+
m, dµm(p))⊗ h = L2(H+

m, dµm(p); h), (3.15)

where dµm(p) is the Lorentz invariant measure on H+
m. It can be written as

dµm(p) = δ(p2 −m2)Θ(p0)d4p.8 (3.16)

Now the representation U1 acts on vectors Ψ(p, σ) ∈ H1, according to

(U1(a,Λ)Ψ)(p, σ) = eiap
∑

σ′

D(R(Λ, p))σσ′Ψ(Λ−1p, σ′). (3.17)

The dependence on σ corresponds to the spin or the helicity of the particle respectively,

and R(Λ, p) denotes the Wigner-rotation ([30, p.65], but note that Weinberg uses the

notation W (Λ, p) = R(Λ,Λp)!)

R(Λ, p) := L−1
p ΛLΛ−1p, (3.18)

where Lp is a Lorentz-boost that maps p to p, i.e. Lp p = p. (For a detailed derivation of

these equations see e.g. [30, sec. 2.5].) The representation U1 of P↑
+ obtained in this way

is said to be induced by the representation D of Gp.

For m > 0 the irreducible unitary representations of Gp
∼= SO(3) are given by the well-

known spin j representations D(j)(R) of dimensionality dimh = 2j+1, with j = 0, 12 , 1, . . ..

(Again, a proper representation of the rotation group is only obtained for j = integer. For

j = half-integer one gets a representation of SU(2), which leads to a representation up to

a phase of SO(3) (see section 5.5).)

These irreducible representations are generated by the standard matrices for infinitesimal

rotations J
(j)
k ∈ so(3) [30, p.68],

(J
(j)
1 ± J

(j)
2 )σ′σ = δσ′,σ±1

√
(j ± σ)(j ± σ + 1), (3.19a)

(J
(j)
3 )σ′σ = σδσ′σ, (3.19b)

8For mass m = 0 the subscript 0 will be omitted for convenience.
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where σ can take the values j, j − 1, . . . ,−j. Hence a rotation about the axis ~α can be

written as

D(R(~α)) = e−i~α ~J . (3.20)

For m = 0 a general element of Gp
∼= E(2) can be written as [30, p.69-73]

W (α, β, θ) = S(α, β)R(θ), (3.21)

where S(α, β) is a combined rotation and boost in the x-y plane and R(θ) is a rotation

around the z-axis by the angle θ:

S(α, β) =

(
1+γ α β −γ
α 1 0 −α
β 0 1 −β
γ α β 1−γ

)
, γ =

α2 + β2

2
(3.22a)

R(θ) =

(
1 0 0 0
0 cos θ sin θ 0
0 − sin θ cos θ 0
0 0 0 1

)
(3.22b)

For infinitesimal transformations one gets

W (α, β, θ) = 1− iαM − iβN − iθJ3, (3.23)

where the generators M , N are defined according to

M = K1 + J2, (3.24a)

N = K2 − J1. (3.24b)

From (3.5a) their commutation relations can be read off:

[J3,M ] = iN, (3.25a)

[J3, N ] = −iM, (3.25b)

[M,N ] = 0. (3.25c)

Due to this commutation relations one can see that both the S- and theR-part are Abelian

subgroups, but only the S-part is a normal subgroup, so there are two different kinds of

representations. On the one hand faithful representations, which lead to so-called infinite

spin particles [32], and on the other hand the helicity representations, where the part

S(α, β) is represented trivially. In the second case the general element W (α, β, θ) is then

represented by the one-dimensional matrix [30, p.72]

D(σ)(W (α, β, θ)) = eiσθ. (3.26)
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This is the representation of E(2) that will be important in this work.

Because the helicity is invariant under L↑
+, one could think of massless particles of each

different helicity as different types of particles and only work in the Hilbert space for one

specific helicity. However, particles of opposite helicity are related by space or time inver-

sions. Thus, assuming the PCT-Theorem holds, one has to extend a representation U1 of

P↑
+ to a representation of P+, the proper Poincaré group (see [16, sec.3]).

In the relevant case of m = 0 and finite helicity, however, the Hilbert space has to be dou-

bled. One takes the direct sum of the Hilbert spaces , H(λ)
1 , H(−λ)

1 for helicities σ = +λ

and σ = −λ:
H1 := H(λ)

1 ⊕H(−λ)
1 (3.27)

On this Hilbert space the extended representation of P+ acts as follows. Taking the

reflection j0 at the edge of the wedge W0 from chapter 2, one can form an anti-unitary

involution D(j0), which extends D to a representation of L+. (For explicit expressions

and a proof of the representation property see [16, Lemma B1].) Now an anti-unitary

involution U1(j0) can be defined by

(U1(j0)Ψ)(p, σ) = D(j0)Ψ(−j0p,−σ). (3.28)

This U1(j0) extends U1 to a representation of P+.

3.3 Quantum Fields

After having constructed the single particle spaceH1 and the representation U1, one can go

over to the corresponding quantum field Φ(x) by introducing the creation and annihilation

operators a∗(Ψ)/a(Ψ) on the Fock space F(H1) over H1. Taking a homogenous element

of the Fock space φ1 ⊗s . . .⊗s φn ∈ H⊗sn
1 ⊂ F(H1), they act on it in the following way:

a∗(ψ)(φ1 ⊗s . . .⊗s φn) =
√
n+ 1(ψ ⊗s φ1 ⊗s . . .⊗s φn), (3.29a)

a(ψ)(φ1 ⊗s . . .⊗s φn) =
1√
n

n∑

k=1

〈ψ, φk〉(φ1 ⊗s . . . φ̂k . . .⊗s φn), (3.29b)

where the hat means that φ̂k is omitted and of course a(ψ)Ω = 0, where Ω is the Fock

vacuum. These creation and annihilation operators satisfy the commutation relations

[a(ψ), a(φ)] = [a∗(ψ), a∗(φ)] = 0, (3.30a)

[a(ψ), a∗(φ)] = 〈ψ, φ〉idF . (3.30b)
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Then, to define operators a∗(p, σ), a(p, σ), one can write symbolically [16, sec. 3.1]

a∗(Ψ) =:
∑

σ

∫
dµ(p)Ψ(p, σ)a∗(p, σ), (3.31a)

a(Ψ) =:
∑

σ

∫
dµ(p)Ψ(p, σ)a(p, σ). (3.31b)

Under the representation U they transform according to [30, sec. 5.1]:

U(Λ)a∗(p, σ)U(Λ−1) =
∑

σ′

a∗(Λp, σ′)D(R(Λ,Λp))σ′σ. (3.32)

This can be seen by using the transformation behavior (3.17) of the single particle state

Ψ(p, σ) in the expression

U(Λ)a∗(Ψ)U(Λ)−1 = a∗(U(Λ)Ψ). (3.33)

Now, if the quantum field Φ(x) is written as a Fourier-transform,

Φ(x) =
∑

σ

∫
dµ(p)

[
eipx u(p, σ) a∗(p, σ) + e−ipx u(p, σ) a(p, σ)

]
, (3.34)

with the “wave function” eipxu(p, σ), one gets a non-local transformation behavior in x,

because of the p-dependent transformation matrix D(R(Λ, p)) in (3.32).

To overcome this, the “Wigner bases” are replaced by “covariant bases”. This is achieved

by demanding that the wave functions u(p, σ) in (3.34) obey the intertwiner equation [30,

p. 195]
∑

σ′

D(R(Λ, p))σσ′ u(Λ−1p, σ′) = u(p, σ)D′(Λ). (3.35)

The representation D′(Λ) then specifies the transformation behavior of the field Φ(x). A

similar intertwiner relation also holds in the string-localized case for string-like intertwiners

u(p, e, σ) (see section 5.1). With the intertwiner function u(p, σ), satisfying (3.35), the

quantum field Φ(x) transforms according to

U(a,Λ)Φ(x)U(a,Λ)−1 = Φ(Λx+ a)D′(Λ). (3.36)

All of these relations will be calculated explicitly in the string-localized case in chapter

5. The main idea for the construction of such intertwiners is to first specify them for the

standard momentum p and then apply an appropriate boost to obtain the intertwiner for

arbitrary momentum.
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An important result (which can be found in [30, sec. 5.7]) is, that these intertwiner

functions u(p, σ) exist for massive particles with spin j for every representation D[A,B],

satisfying the relation

|A−B| ≤ j ≤ A+B (cf. equation (3.12)). (3.37)

For massless particles, however, the possible representations are more restricted. For

helicity σ, intertwiners can only be constructed for representations satisfying [30, sec. 5.9]

σ = B −A. (3.38)

Because photons have helicity σ = ±1, vector potentials, transforming according to D[ 1
2
, 1
2
],

are in principle excluded from this formalism. This is why one usually has to use the

formalism of quantum gauge theory [22], including unphysical ghost degrees of freedom, to

incorporate vector potentials for photons into quantum field theory. Another possibility to

overcome the restriction (3.38) is to use string-localized intertwiners for massless particles,

which will be constructed in chapter 5. That way one can recover the full spectrum of

possible intertwiners (3.37).
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4 String-localized Fields

4.1 Definition and General Construction

In this chapter the exact definition of a string-localized quantum field will be given and

some of the results of [16] will be recapitulated.

The term “string” in string-localized fields denotes a ray, which starts at a point x of

Minkowski space and extends to infinity in a space-like direction e. The vector e is an

element of the three-dimensional manifold of space-like directions, denoted by H3:

H3 := {e ∈ R
4 : e · e = −1}9 (4.1)

H3 is a submanifold of Minkowski space and can be seen as a three-dimensional deSitter

space. The string can be written as Sx,e = x + R
+e and can be envisaged as the core of

a space-like cone. These space-like cones can then be seen as the localization regions of

chapter 2.

To properly define what is meant by a string-localized quantum field, one considers the

Fock space H = F(H1) over the one-particle Hilbert space H1 with Poincaré invariant

vacuum vector Ω. Furthermore one has a unitary representation of the Poincaré group U1

on H1 and its second quantization on the Fock space.

The following definition is a slight generalization of the definition given in [13, Definition

1]. The only difference is, that the fields considered here are allowed to have additional

indices (subsumed in the index r) and thus are not scalar, but transform according to a

certain representation D of the Lorentz group.

Definition 1. A free string-localized quantum field is an operator valued distribution

Φr(x, e) over R
4 ×H3 acting on H = F(H1), satisfying the following properties:

i) String-locality: If the strings x1+R
+e′1 and x2+R

+e2 are space-like separated for all

e′1 in an open neighborhood of e1, then the fields Φr(x1, e1),Φr′(x2, e2) commute, i.e.

[Φr(x1, e1),Φr′(x2, e2)] = 0. (4.2)

ii) Covariance: Given (x, e) ∈ R
4×H3 and an element of the Poincaré group (a,Λ) ∈ P↑

+,

then the field has the following transformation behavior for a certain representation

9Here and in the following only four-dimensional Minkowski space will be considered.
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of the Lorentz group D(Λ):

U(a,Λ)Φr(x, e)U(a,Λ)−1 =
∑

r′

D(Λ−1)rr′Φr′(Λx+ a,Λe) (4.3)

iii) Positivity of the energy: The restriction of the representation U to the translation sub-

group satisfies the spectrum condition. This means that the spectrum of the generators

of the translation group lies in the forward light cone.

iv) Free fields: The field creates only single particle states when acting on the vacuum

vector Ω, i.e.

Φr(f, g)Ω ∈ H1, (4.4)

where f, g are functions over R
4, H3 respectively.

The definition of string-locality given in i) is equivalent to demanding that the strings

x1 + R
+e1 and x2 + R

+e2 are space-like separated and that the directions e1 and e2 are

space-like separated, cf. [16, Lemma A1].

Using the Jost-Schroer theorem for string-fields [25], one can reduce the problem of con-

structing such fields to the construction of single particle vectors Ψr(f, h) = Φr(f, h)Ω ∈ H1

[13]. However, it has to be noted that in [25] the Jost-Schroer theorem has only been proven

for fields with a fixed direction e. Work in proving it for string-localized fields, where e can

vary over all space-like directions (in the sense of Definition 1), is currently in progress.

The requirement of string-locality (4.2) for the field Φr(f, h) can then be translated to the

following one-particle version: Given a space-like cone C, then [13, Definition 2]

Ψr(f, h) = Φr(f, h)Ω ∈ Dom(SC) , whenever supp(f) + R
+supp(h) ⊂ C, (4.5)

where SC is the Tomita operator defined in (2.18). This means that for supp(f) and

supp(h) bounded, the wave function Ψr(f, h) is localized in the so-called truncated space-

like cone supp(f) + R
+supp(h).

Due to the concept of modular localization, this property is intrinsic to the representation

U1 of the Poincaré group and it does not need any reference to the field Φr(x, e). Such a

covariant and local H1 valued distribution Ψr(x, e) is called a string-localized wave func-

tion for U1 [13, Definition 2].

This facts suggest to reverse the strategy, namely to construct such a Ψr(x, e) first and
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then obtain the field Φr(x, e) via second quantization. A detailed construction of scalar

one-particle vectors Ψ(x, e) and a mathematically rigorous treatment of their properties

can be found in [16, sec. 3]. The difference to the case of massless, finite helicity particles

lies mainly in just writing more indices.

To get a covariant transformation behavior of Φr(x, e) after second quantization, one uses

so-called intertwiner functions uσ(p, e)r (see section 5.1), which satisfy the intertwiner

relation
∑

σ′

D(R(Λ, p))σσ′ uσ′(Λ−1p, e)r =
∑

r′

D[A,B](Λ−1)rr′ uσ(p,Λe)r′ , (4.6)

whereD is the Wigner representation of the little group and R(Λ, p) is the Wigner rotation.

These intertwiners uσ(p, e)r have to obey certain bounds and analyticity properties (see

[16, Definition 3.1]) in order to guarantee the desired localization properties of Ψr(f, h).

For f ∈ S(R4) and h ∈ D(H3) one can then define the single-particle wave functions

Ψr(f, h, σ) by [16, sec. 3]

Ψr(f, h, σ)(p) := (Ef)(p)uσ(p, h)r, (4.7)

where Ef denotes the restriction to the mass shell of the Fourier transform of f :

(Ef)(p) :=
1

(2π)2

∫
d4x eipxf(x)

∣∣∣
p∈H+

0

(4.8)

The smeared uσ(p, h)r is defined according to

uσ(p, h)r :=

∫
dσ(e)h(e)uσ(p, e)r, (4.9)

where dσ(e) is the Lorentz invariant measure on H3: dσ(e) = δ(e2 + 1)d4e.

The main part of this work will therefore be dedicated to the problem of constructing such

intertwiner functions for different possible massless representations of the Poincaré group.

After their construction, the fields Φr(x, e) can be defined as follows: Let a∗(Ψ)/a(Ψ)

denote the creation and annihilation operators on the Fock space. Then a∗(p, σ)/a(p, σ)

can be defined implicitly by [16, sec. 3]

a∗(Ψ) =:
∑

σ

∫
dµ(p)Ψ(p, σ)a∗(p, σ) (4.10a)

a(Ψ) =:
∑

σ

∫
dµ(p)Ψ(p, σ)a(p, σ). (4.10b)
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The field Φr(x, e) can then be written as

Φr(x, e) =
∑

σ

∫
dµ(p)

(
eipx uσ(p, e)r a

∗(p, σ) + e−ipx uσ(p, e)r a(p, σ)
)
. (4.11)

This field satisfies the requirement of locality, it is covariant and it satisfies the Reeh-

Schlieder property [16, Theorem 3.3].

4.2 Necessity of Additional Tensor (Spinor-) Indices

In contrast to [16, 13] the massless fields Φr(x, e) in this work need additional indices

(except for helicity λ = 0) to guarantee a covariant transformation behavior. All possible

(spinor or tensor) indices will be subsumed in the index r here for reasons of simplicity.

Therefore these fields are not “scalar” in the sense of [16], but transform under a certain

representation of the Lorentz group. This is one of the main differences to most of the

fields considered in [16] and it is necessitated by the different stabilizer groups of massive

and massless particles (see chapter 3).

The reason that one needs additional indices in the case of massless particles is the fol-

lowing. In section 3.2, the authors of [16] describe the general idea of constructing scalar

intertwiner functions for faithful representations of the Poincaré group (i.e. the massive

and the massless infinite spin case). They consider the pullback representations of the

stabilizer subgroups G on specific G-orbits Γ,

Γ = {q ∈ H+
0 : q · p = 1}, (4.12)

where p is the standard momentum, satisfying Rp = p , ∀R ∈ G. In the case of massive

fields, i.e. p = (0, 0, 0,m), this G-orbit Γ is isomorphic to the two-dimensional sphere S2,

and in the case of massless fields, i.e. p = (1, 0, 0, 1), it is isomorphic to the euclidean

plane R
2.

Considering functions v(q) on L2(Γ, dν), where dν is the G-invariant measure on Γ, one

gets a unitary representation D̃ of G,

(D̃(R)v)(q) := v(R−1q) , R ∈ G. (4.13)

Now they exploit the fact that D̃ decomposes into the direct sum (or direct integral for

m = 0) of all faithful representations of G. Hence for every faithful representation D of G
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there is a partial isometry V , which intertwines D̃ and D,

D(R)V = V D̃(R) , R ∈ G. (4.14)

Introducing the function F (w) = wα, for suitable α ∈ C, one can define intertwiner

functions u(p, e)

u(p, e) := V F (q · L−1
p e), (4.15)

where Lp denotes the Lorentz boost which maps p to p. It is then easy to see, that this

u(p, e) satisfies the desired intertwiner relation

D(R(Λ, p))u(Λ−1p, e) = u(p,Λe). (4.16)

The massless finite helicity representations, however, are not faithful representations of

the stabilizer group G = E(2), because the translations in E(2) are represented trivially

there. Therefore the above procedure for constructing intertwiners cannot work. That’s

why it is not possible to have “scalar” intertwiners for m = 0, but needs to introduce

additional indices and a more general transformation behavior and thus gets a slightly

more complicated intertwiner relation.

4.3 Previous Results on String-Localized Fields

In [16] Mund, Schroer and Yngvason proved a lot of important properties, which the scalar

versions of the above intertwiners and the corresponding massive and massless infinite spin

fields obey. The following is a brief summary of their major results.

• Free covariant string-localized fields can be constructed in dimension d = 4 and

d = 3 for all irreducible representations of the Lorentz group with faithful or trivial

representation of the little group. This is true especially for the massless infinite spin

representations, which do not allow for a description in the sense of point-localized

fields.

Apart from covariance and string-locality these fields obey the Reeh-Schlieder and

the Bisognano-Wichmann properties [16, Theorem 3.3, i)].
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• Every string-localized field is (up to unitary equivalence) of the form

∫
dµ(p)

[
eipxu(p, e) · a∗(p) + h.c.

]
10. (4.17)

and the intertwiner functions u(p, e) are unique up to multiplication with a function

F (e · p) [16, Theorem 3.3, ii) and iii)], which has to be meromorphic in the upper

half of the complex plane. This means, if u(p, e) and û(p, e) are both intertwiners,

then there is a function F (e · p), such that u(p, e) = F (e · p)û(p, e).

• The string-localized fields for massive representations can be written as infinite line

integrals over point-like tensor fields [16, Theorem 4.4],

φ(x, e) =

∫ ∞

0
f(t)

∑

r

Φr(x+ te)w(e)r, (4.18)

with a function f(t), supported in the interval [0,∞). The last factor w(e)r is a

tensor in e, which satisfies the condition

w(e)r = D′(Λ−1)rr′w(Λe)r′ , (4.19)

where D′(Λ) is the representation of the Lorentz group according to which the ten-

sor field Φr(x) transforms. For the infinite spin representation this is not possible,

because there exist no point-localized fields to integrate over.

• The massive string-localized fields have a better UV-behavior than the point-like

realization of these fields. More precisely the distributional character of the free

fields is less singular than that of the point-like fields, especially in the direction of

the string e.

For large p the intertwiner functions u(p, e) are bounded in p, independent of the

spin s, whereas the intertwiners for point-like fields go at least like |p|s. [16, sec. 4.3].

• Photons can also be described by a string-localized field, but it needs an additional

4-vector index, Aµ(x, e). It can be defined as an infinite line integral over the field

strength tensor,

Aµ(x, e) =

∫ ∞

0
dtf(t)Fµν(x+ te)eν . (4.20)

10Here and in the following, h.c. stands for hermitian conjugate
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The function f(t) turns out to be the Heaviside function Θ(t) and it is essentially

fixed by the requirement that Aµ(x, e) is a vector potential for Fµν(x) [16, sec. 5],

i.e. the expression

∂µAν(x, e)− ∂νAµ(x, e) = Fµν(x) (4.21)

has to be independent of the string direction e.

Furthermore, the photon field satisfies the Lorentz (∂µAµ(x, e) = 0) and the axial

gauge condition (eµAµ(x, e) = 0).

The last result was the motivation and the starting point for the present work, where string-

localized tensor fields for higher helicities and different representations of the Poincaré

group will be studied and the above results for the photon field will be generalized to

higher helicities.
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5 Massless String-Localized Fields

5.1 String-Localized Intertwiners

In chapter 3 point-localized fields were constructed for different representations of the

Lorentz-group, by introducing intertwiner functions u(p, σ), which intertwine the Wigner

bases with covariant bases. The same procedure is possible for string-localized fields,

introducing string-localized intertwiner functions u(p, e, σ).

One starts with string-like one particle states [16, sec. 3.1]

Ψ(f, h)(p, σ) : S(R4)×D(H3) → H1 = L2(H+
m, dµ; h) (5.1)

and their corresponding creation and annihilation operators on Fock space a∗(Ψ), a(Ψ),

where a∗(p, σ) is again implicitly defined by

a∗(Ψ) =
∑

σ

∫
dµ(p)Ψ(p, σ)a∗(p, σ). (5.2)

Inserting the transformation behavior of the state into this equation one gets:

U(Λ)a∗(Ψ)U(Λ)−1 =
∑

σ

∑

σ′

∫
dµ(p)Dσσ′(R(Λ, p))Ψ(Λ−1p, σ′)a∗(p, σ)

=
∑

σ′

∫
dµ(p)Ψ(Λ−1p, σ′)

∑

σ

a∗(p, σ)Dσσ′(R(Λ, p))

=
∑

σ

∫
dµ(p)Ψ(p, σ)

∑

σ′

a∗(Λp, σ′)Dσ′σ(R(Λ,Λp))

(5.3)

From this the transformation behavior of a∗(p, σ) can be read off:

U(Λ)a∗(p, σ)U(Λ)−1 =
∑

σ′

a∗(Λp, σ′)Dσ′σ(R(Λ,Λp)) (5.4)

Using this creation and annihilation operators and certain string-like intertwiner functions

uσ(p, e), one can define the string-localized quantum field by [16, Thm. 3.3]

Φ(x, e)r =
∑

σ

∫
dµ(p)

(
eipxuσ(p, e)ra

∗(p, σ) + e−ipxuσ(p, e)ra(p, σ)
)
. (5.5)

This field should transform covariantly under a certain representation of the Lorentz group

D′(Λ)

U(a,Λ)Φ(x, e)rU(a,Λ)−1 =
∑

r′

D′
rr′(Λ

−1)Φ(Λx+ a,Λe)r′ . (5.6)
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Using equation (5.4) one can derive the necessary intertwiner relation for uσ(p, e)r, that

guarantees that the field Φ(x, e)r transforms as in (5.6).

U(Λ)Φ(x, e)rU(Λ)−1 =
∑

σ

∫
dµ(p)eipxuσ(p, e)r

∑

σ′

a∗(Λp, σ′)Dσ′σ(R(Λ,Λp)) + h.c.

=
∑

σ′

∫
dµ(p)eipx

∑

σ

Dσ′σ(R(Λ,Λp))uσ(p, e)r a
∗(Λp, σ′) + h.c.

=
∑

σ

∫
dµ(p)eip·(Λx)

∑

σ′

Dσσ′(R(Λ, p))uσ′(Λ−1p, e)r a
∗(p, σ) + h.c.

!
=
∑

σ

∫
dµ(p)eip·(Λx)D′

rr′(Λ
−1)uσ(p,Λe)r′a

∗(p, σ) + h.c.

Thus the intertwiner relation that uσ(p, e)r must fulfill reads

∑

σ′

Dσσ′(R(Λ, p))uσ′(Λ−1p, e)r =
∑

r′

D′
rr′(Λ

−1)uσ(p,Λe)r′ . (5.7)

This is a generalization of the point-like intertwiner relation (3.35).

The stratey to find such uσ(p, e)r, satisfying (5.7), is to first consider the intertwiner

uσ(p, e)r for the standard momentum p (cf. [30, sec. 5.1]). Inserting Λ = L−1
p and

p = p into (5.7) one sees that the intertwiner for arbitrary momentum p is fixed by the

intertwiner for standard momentum p by the equation

uσ(p, e)r =
∑

r′

Drr′(Lp)uσ(p, L
−1
p e)r′ . (5.8)

The intertwiner for standard momentum p then has to satisfy the relation

∑

σ′

Dσσ′(W )uσ′(p, e)r =
∑

r′

Drr′(W
−1)uσ(p,We)r′ , (5.9)

for every little group element W ∈ Gp. This equation is obtained by inserting p = p and

Λ =W ∈ Gp into (5.7), and using the fact that R(W, p) =W for W ∈ Gp.

So in general one can first try to find intertwiners for the standard momentum p, satisfying

the simpler relation (5.9), and then obtain the intertwiner for arbitrary momentum p by

using the equation (5.8).

Because only massless particles will be concerned here, the representation matrix

Dσσ′(R(Λ, p)) will always be just eiσθ(Λ,p)δσσ′ , where θ(Λ, p) is defined according to the

decomposition R(Λ, p) = S(α, β)R(θ), with the rotation around the z-axis R [30, sec.

2.5]. Also, the standard momentum p is always taken as p = k = (1, 0, 0, 1), and in the

following will be denoted by k for convenience.
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5.2 Intertwiners for λ = 1

Before deriving the expressions for the intertwiners for general representations of L↑
+, they

are constructed for helicity σ = ±1, which describes photons. More explicitly, intertwiners

for the D[ 1
2
, 1
2
] representation will be given, because this allows one to describe photons as

a vector field, which is not possible in the usual point-like approach [30, p. 249-251].

To get these intertwiners, one first tries to find the u(k, e, σ)µ for standard momentum k,

satisfying

e±iθu±(k, e)µ = (Λ−1) ν
µ u±(k,Λe)ν , (5.10)

where u±(k, e)µ is the intertwiner for helicity σ = ±1. They are constructed using the

polarization vectors

ê± :=




0
1
±i

0


 (5.11)

Restricting the transformation W (α, β, θ) to rotations around the z-axis R(θ) they satisfy

the relation [30, p.249]

R(θ)−1ê± = e±iθê±, (5.12)

but for a general little group element W (α, β, θ) = S(α, β)R(θ) one gets [30, p.250]

R(θ)−1S(α, β)−1ê± = e±iθ(ê± + f±(α, β)k), (5.13)

with a certain function f(α, β), whose detailed form is not important here. To cancel the

second term one forms the antisymmetric combination [30, p. 251]

ũ±(k)µν := (ê±µkν − kµê±ν) = ê±[µkν], (5.14)

which is the usual intertwiner for the D[1,0] or D[0,1] representation respectively and trans-

forms according to

(W (α, β, θ)−1) ρ
µ (W (α, β, θ)−1) σ

ν ũ±(k)ρσ = e±iθũ±(k)µν . (5.15)

To get rid of the second tensor index and arrive at the desired vector potential, one now

goes over to a string-like intertwiner u±(k, e)µ, by contracting (5.14) with eν and defining

[16, sec. 5]

u±(k, e)µ = F (e · p)ũ±(k)µνeν = F (e · p) [ê±µ(k · e)− kµ(ê± · e)] , (5.16)
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with an appropriate function F (e · p), which is not determined by (5.9). It will be shown

below that it has to be taken as F (e · p) = 1
(e·p) to make the field a vector potential for

the field strength tensor.

This string-like vector-intertwiner now satisfies the correct intertwiner relation

(W (α, β, θ)−1) ν
µ u±(k, e)ν = e±iθu±(k,W (α, β, θ)e)µ, (5.17)

because the second factor W (α, β, θ)−1 in (5.15) gets canceled by trading it for an addi-

tional transformation of the vector e.

To go over to intertwiners for arbitrary momentum, one needs the polarization vectors

for momentum p,

ê±(p) := Lpê± , with Lpp = p. (5.18)

Using them, the general intertwiners for σ = ±1 and the representation D[ 1
2
, 1
2
] can be

defined as

u±(p, e)µ =
1

(e · p) [(e · p)ê±(p)µ − (e · ê±(p))pµ] . (5.19)

They now satisfy the full intertwiner relation [16, sec. 5]

e±iθ(Λ,p)u±(Λ
−1p, e)µ = (Λ−1) ν

µ u±(p,Λe)ν , (5.20)

which guarantees a covariant transformation law for the corresponding field.

With these intertwiners the string-localized vector field for photons can now be written as

A(x, e)µ =
∑

σ=±1

∫
dµ(p)

[
eipxuσ(p, e)µa

∗(p, σ) + e−ipxuσ(p, e)µa(p, σ)
]
. (5.21)

Due to the intertwiner relation (5.20) this field transforms under the Poincaré-group ac-

cording to

U(a,Λ)A(x, e)µU(a,Λ)−1 = (Λ−1) ν
µ A(Λx+ a,Λe)ν . (5.22)

Now this vector field should be a potential for the point-localized electromagnetic field

strength,

F(x)µν =
∑

σ=±1

∫
dµ(p)

[
eipxũσ(p)µνa

∗(p, σ) + e−ipxũσ(p)µνa(p, σ)
]
. (5.23)

This means that the expression

∂µA(x, e)ν − ∂νA(x, e)µ = F(x)µν (5.24)
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has to be independent of the direction e. In p-space, this condition translates to

e-independence of the expression [16, Proposition 5.1]

pµu±(p, e)ν − pνu±(p, e)µ = F (e · p)(e · p) [ê±(p)νpµ − ê±(p)µpν ] . (5.25)

This is independent of e if and only if the function F (e · p) equals c
(e·p) , with an unspec-

ified constant c, which can be adjusted for correct normalization. This now leads to the

intertwiner (5.19).

The vector potential (5.21) satisfies the following conditions [16, Proposition 5.1]:

• Lorentz “gauge”: ∂µA(x, e)µ = 0

• Axial “gauge”: eµA(x, e)µ = 0

The proof of this properties is very simple, because in p-space they translate to

pµu±(p, e)µ = 0 and eµu±(p, e)µ = 0, which can be checked easily by using the facts

that p2 = 0, ê±(p)
2 = 0 and p · ê±(p) = k · ê± = 0.

The word “gauge” is a bit of a misnomer here, because these are not actual gauge con-

ditions, but are satisfied by every free vector field A(x, e)µ, transforming as in (5.22) and

acting in the physical Hilbert space. The proof of this statement and the uniqueness of

the field (5.21) can be found in [16, Proposition 5.1].

Such axial gauge fields have already been discussed in the literature before, but the di-

rection e has always been considered fixed. The transformation behavior then becomes

non-covariant and one gets additional gauge terms [16, sec. 5],

U(Λ)A(x, e)µU(Λ)−1 = (Λ−1) ν
µ A(Λx, e)ν + gauge term. (5.26)

Another disadvantage of these fields is that they create divergences at momenta orthogonal

to e ( 1
(e·p) → ∞, for e ·p→ 0), when used in perturbative calculations. The string-localized

fields A(x, e)µ studied in the present setting overcome these difficulties, because they are

considered as a distribution in e. To emphasize this fact, one could write the intertwiners

(5.19) as [14]

u±(p, e)µ = ê±(p)µ − lim
ǫ→0

ê±(p) · e
e · p+ iǫ

pµ, (5.27)

but the ǫ-part will be omitted here for brevity.
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5.3 Intertwiners for Higher Helicities

5.3.1 General Intertwiners

The method from the previous section for constructing intertwiners for the string-localized

photon field can now be generalized to higher helicities σ = ±λ. The corresponding

intertwiners will be denoted u
(λ)
± (p, e)µ1...µλ

. They can be generated by simply forming

tensor products of the fundamental λ = 1 intertwiners u±(p, e)µ, which leads to the

definition

u
(λ)
± (p, e)µ1...µλ

:= F (λ)(e · p)
[
ê±(p)[µ1

pν1] . . . ê±(p)[µλ
pνλ]

]
eν1 . . . eνλ

= F (λ)(e · p)ũ(λ)± (p)µ1ν1...µλνλe
ν1 . . . eνλ .

(5.28)

The function F (λ)(e · p) will be determined below and ũ
(λ)
± (p) denotes the point-like inter-

twiner for the generalized field strength F (λ)(x)µ1ν1...µλνλ to helicity λ and representation

D[λ,0], D[0,λ] respectively.

It can easily be seen that the intertwiner (5.28) satisfies the desired relation

e±iλθ(Λ,p) u
(λ)
± (Λ−1p, e)µ1...µλ

= (Λ−1) ρ1
µ1

. . . (Λ−1) ρλ
µλ

u
(λ)
± (p,Λe)ρ1...ρλ . (5.29)

To convince oneself that this is true, one first notes that the ũ
(λ)
± (p) satisfy the relation

e±iλθ(Λ,p) ũ
(λ)
± (Λ−1p)µ1ν1...µλνλ =

(Λ−1) ρ1
µ1

(Λ−1) σ1
ν1 . . . (Λ−1) ρλ

µλ
(Λ−1) σλ

νλ
ũ
(λ)
± (p)ρ1σ1...ρλσλ

.
(5.30)

The additional factors eν1 . . . eνλ in (5.28) then cancel λ factors of Λ−1, by trading them

for a transformation e 7→ Λe in (5.29). With the yet undefined function F (λ)(e ·p) equation
(5.28) defines the general intertwiners for helicity λ and the representation D[λ

2
,λ
2
] of the

Lorentz-group.

With these intertwiners one can now define the string-localized quantum fields for general

helicity λ:

A(λ)(x, e)µ1...µλ
=
∑

σ

∫
dµ(p)

[
eipxu(λ)σ (p, e)µ1...µλ

a∗(p, σ) + e−ipxu
(λ)
σ (p, e)µ1...µλ

a(p, σ)
]

(5.31)

Due to the general intertwiner relation (5.29) these fields transform like a covariant tensor

of degree λ,

U(a,Λ)A(λ)(x, e)µ1...µλ
U(a,Λ)−1 = (Λ−1) ν1

µ1
. . . (Λ−1) νλ

µλ
A(λ)(Λx+ a,Λe)ν1...νλ . (5.32)
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Like the photon field they also have certain properties:

• Total symmetry: A(λ)(x, e)µ1...µr...µk...µλ
= A(λ)(x, e)µ1...µk...µr...µλ

∀k, r

• Generalized Lorentz condition: ∂µ1A(λ)(x, e)µ1...µλ
= 0

• Axial gauge condition: eµ1A(λ)(x, e)µ1...µλ
= 0

• A(λ)(x, e) is “trace free”: A(λ)(x, e)µ1
µ1...µλ

= 0

Just as in the previous section, the last three can easily be verified by just translating

them to the corresponding properties for the u
(λ)
± (p, e) in p-space, inserting the definition

(5.28) and then using that p2 = 0, ê±(p)
2 = 0 and ê±(p) ·p = 0. Total symmetry obviously

follows by definition.

Of course there is also a point-like field strength for helicity λ,

F (λ)(x)µ1ν1...µλνλ =
∑

σ

∫
dµ(p)

[
eipx ũ(λ)σ (p)µ1ν1...µλνλ a

∗(p, σ) + h.c.
]
, (5.33)

transforming according to the D[λ,0], D[0,λ] representation respectively. Again, one wants

the field A(λ)(x, e) to be a generalized potential for the field strength (5.33). More explic-

itly, this means that if one takes the expression

∂µ1 . . . ∂µλ
A(λ)(x, e)ν1...νλ (5.34)

and antisymmetrizes it in every index pair µk, νk (denoted by ”AntiSym[...]” below), the

result should be independent of the direction e and should yield the field strength F (λ)(x).

In p-space this again amounts to e-independence of the expression

pµ1 . . . pµλ
u
(λ)
± (p, e)ν1...νλ (5.35)

when antisymmetrized in all the index pairs µk, νk. Using (5.28) and recalling the defini-

tion of ũ
(1)
± (p)µ one can calculate this antisymmetrized product in the following way:

AntiSym
[
pµ1 . . . pµλ

u
(λ)
± (p, e)ν1...νλ

]
=

= F (λ)(e · p)
{
p[µ1

ũ
(1)
± (p)ν1]σ1

. . . p[µλ
ũ
(1)
± (p)νλ]σλ

}
eσ1 . . . eσλ

= F (λ)(e · p)(e · p)λ ũ(λ)± (p)µ1ν1...µλνλ

(5.36)

For the choice

F (λ)(e · p) = 1

(e · p)λ (5.37)
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this is clearly independent of e and the desired relation

AntiSym
[
∂µ1 . . . ∂µλ

A(λ)(x, e)ν1...νλ

]
= F (λ)(x)µ1ν1...µλνλ (5.38)

holds. Therefore the full expression for the intertwiner (5.28) reads

u
(λ)
± (p, e)µ1...µλ

=
1

(e · p)λ
[
ê±(p)[µ1

pν1] . . . ê±(p)[µλ
pνλ]

]
eν1 . . . eνλ . (5.39)

Again, this has to be seen as a distribution in e, so that the divergence for e · p = 0 gets

regularized.

5.3.2 Example: λ = 2, Gravitons

Another interesting example, besides the photon field, is the string-localized field for he-

licity σ = ±2, describing hypothetical gravitons. The field h(x, e)µν describes the pertur-

bation of the metric gµν = ηµν + hµν and is a potential for the linearized (point-localized)

Riemann tensor R(x)µνρσ (see e.g. [29, sec. 4.4]). This means that the classical relation

between Rµνρσ and the field hµν holds, i.e.

R(x)µνρσ =
1

2
[∂µ∂ρh(x, e)νσ + ∂ν∂σh(x, e)µρ − ∂ν∂ρh(x, e)µσ − ∂µ∂σh(x, e)νρ] , (5.40)

which is a special case of the general relation (5.38).

The intertwiner for the case σ = ±2 can be written as

u±(p, e)µν = ê±(p)µê±(p)ν −
e · ê±(p)
e · p

(
ê±(p)µpν + pµê±(p)ν

)
+

(e · ê±(p))2
(e · p)2 pµpν . (5.41)

It satisfies the intertwiner relation

e±2iθ(Λ,p)u±(Λ
−1p, e)µν = (Λ−1) ρ

µ (Λ−1) σ
ν u±(p,Λe)ρσ, (5.42)

so that the field

h(x, e)µν =
∑

σ

∫
dµ(p)

(
eipx uσ(p, e)µν a

∗(p, σ) + h.c.
)

(5.43)

transforms like a second rank covariant tensor field, i.e.

U(a,Λ)h(x, e)µνU(a,Λ)−1 = (Λ−1) ρ
µ (Λ−1) σ

ν h(Λx+ a,Λe)ρσ . (5.44)

The field (5.43) has all the desired properties, one demands a quantum field describing

(linearized) gravity to have. Namely it is symmetric, it satisfies the axial gauge condition
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eµh(x, e)µν = 0 and the remaining properties ∂µh(x, e)µν = 0 and h(x, e)µµ = 0 are usually

called harmonic gauge.

In the formalism of point-like localization such a field h(x)µν does not exist in a Hilbert

space representation with positive energy [28]. In [28] it is shown that under the general

assumptions (1) existence of an invariant vacuum, (2) the fields transform as tensors and

(3) the two-point function is analytic in the forward tube, the Einstein equations have no

solutions apart from Rµνρσ = 0.

A possible solution to this problem is to give up covariance and use a field that does not

transform as a tensor,

U(Λ)h(x)µνU(Λ)−1 = (Λ−1) ρ
µ (Λ−1) σ

ν h(Λx)ρσ + gauge terms. (5.45)

Another solution could be to use string-localized fields h(x, e)µν , where all the desired

conditions can be met. The problem is, that it is still unclear how to realize interacting

string-localized fields and how to use such fields in perturbation theory [14].

5.4 Description by Line-Integral

Interestingly it is also possible to describe the fields (5.31) as an infinite line integral along

the string direction e. In [16, Thm. 4.4] it is shown that in the massive case, every

string-localized field can be written as a line integral over a point-localized tensor field

Φ(x, e) =

∫ ∞

0
dtf(t)

∑

r

Φr(x+ te)w(e)r , (5.46)

where f(t) has support in the interval [0,∞) and w(e)r is a tensor in e which is subject

to the condition

w(e)r =
∑

r′

D′(Λ−1)rr′w(Λe)r′ . (5.47)

Such a description is also possible for the above tensor potentials. It has also been shown

in [16], that the string-localized photon field A(x, e)µ can be written as a line integral over

the point-localized field strength F(x)µν , according to

A(x, e)µ =

∫ ∞

0
dtf(t)F(x+ te)µν e

ν , (5.48)

where f(t) again is supported in [0,∞). Clearly, eν is the simplest tensor satisfying (5.47).

This could also be taken as the definition of A(x, e)µ.
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The properties ∂µA(x, e)µ = 0 and eµA(x, e)µ = 0 then follow by the vacuum Maxwell

equations ∂µF(x)µν = 0 and the antisymmetry of F(x)µν .

By inserting the definition of F(x)µν into equation (5.48), one can check the equivalence

with the prior definition.

A(x, e)µ =

∫ ∞

0
dtf(t)F(x+ te)µνe

ν

=

∫ ∞

0
dtf(t)

∑

σ

∫
dµ(p)

(
eip(x+te)ũσ(p)µνa

∗(p, σ) + h.c.
)
eν

=
∑

σ

∫
dµ(p)

[
eipx

(∫ ∞

0
dtf(t)eitp·e

)
ũσ(p)µν e

ν a∗(p, σ) + h.c.

]

=
∑

σ

∫
dµ(p)

[
eipx uσ(p, e)µ a

∗(p, σ) + h.c.
]
,

(5.49)

where u±(p, e)µ = F (e · p) ũ±(p)µν eν and the function F (e · p) = F(f)(e · p) is obvi-

ously proportional to the Fourier-transform of the function f(t). To get the usual choice

F (e · p) = 1
e·p , one has to take f(t) as the Heaviside function Θ(t) (cf. [16, Proposition

5.1]). With this choice for f(t), A(x, e)µ is again a potential for F(x)µν in the sense that

∂µA(x, e)ν − ∂νA(x, e)µ = F(x)µν .

This can even be checked without first inserting the definition of F(x)µν , by using the

homogeneous Maxwell equation

∂µF(x)νρ + ∂νF(x)ρµ + ∂ρF(x)µν = 0, (5.50)

and the antisymmetry of F(x)µν . The idea is as follows:

∂µA(x, e)ν − ∂νA(x, e)µ =

∫ ∞

0
dt
[
∂µF(x+ te)νρ e

ρ − ∂νF(x+ te)µρ e
ρ
]

= −
∫ ∞

0
dt eρ ∂ρF(x+ te)µν

= −
(
F(x+ te)µν

∣∣
t=∞

−F(x+ te)µν
∣∣
t=0

)

= F(x)µν ,

(5.51)

if one assumes that the field strength F(x) is zero at spatial infinity.

In the case of the gravitational field, h(x, e)µν can also be defined according to

h(x, e)µν =

∫
dtf (2)(t)R(x+ te)µνρσ e

µeνeρeσ , (5.52)

with f (2)(t) = Θ(t) · t. The proof that this h(x, e) is a potential for the linearized Riemann

tensor is a bit tedious and uses the Bianchi identity.
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For higher helicities λ, the definition by a line-integral like (5.48) of the fieldsA(λ)(x, e)µ1...µλ

can be slightly generalized to

A(λ)(x, e)µ1...µλ
=

∫
dtf (λ)(t)F (λ)(x)µ1ν1...µλνλe

ν1 . . . eνλ , (5.53)

where f (λ)(t) is proportional to the inverse Fourier transform of F (λ)(e · p) = 1
(e·p)λ

for

t > 0, when interpreted as the distribution F (λ)(ω) = lim
ǫ→0

1
(ω+iǫ)λ

.

The function f (λ)(t) then results in

f (λ)(t) =




tλ−1, if t > 0

0, if t ≤ 0 .
(5.54)

With this choice for f (λ)(t), the definition of A(λ)(x, e)µ1...µλ
by a line integral is again

equivalent to (5.31) and it is a potential for F (λ)(x)µ1ν1...µλνλ . The proof of the equiv-

alence is essentially the same as in the case of the photon field, and amounts simply to

keeping track of more indices.

By using this infinitely extended line-integrals, one can get string-localized potentials,

transforming according to the D[λ
2
,λ
2
]-representation, from point-localized field strength,

transforming according to D[λ,0], D[0,λ] respectively. In contrast to the massive case this

is not possible for other representations of the Lorentz-group D[A,B]. This is because the

only potential massless fields for helicity λ are the D[λ+b,b] or D[b,λ+b] fields, with a half-

integer b ≥ 0, because the relation λ = |B − A| has to be satisfied. However, it can be

shown that these fields are just linear combinations of the 2bth derivatives of fields of type

D[λ,0] or D[0,λ], and so they don’t offer any new alternatives [30, sec. 5.9].

5.5 General Representations

5.5.1 Spinor-Representations

To construct general representations of the Lorentz group it is convenient to work in the

spinor formalism [18, 24]. Thus one considers the universal covering group of L↑
+, the

group SL(2,C), because every representation of SL(2,C) is related to a multivalued rep-

resentation of L↑
+ [24]. This simply connected group consists of two-dimensional complex

matrices A with detA = 1.

The relationship between SL(2,C) and L↑
+ is given by a 2:1 homomorphism

SL(2,C) −→ L↑
+, (5.55)
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i.e. two elements of SL(2,C) (more precisely the elements A and −A) are mapped to the

same Lorentz transformation Λ ∈ L↑
+.

The fundamental representations of SL(2,C) are D[ 1
2
,0] and D[0, 1

2
], which are generated

by trace-free 2× 2 matrices, so the representation matrix D[ 1
2
,0](~α,~v) of a rotation around

~α and a boost in direction ~v can be written as [24, sec. 8.2]

D[ 1
2
,0](~α,~v) = e−i~α~σ/2e−~u~σ/2 ≡ A(~α,~v), (5.56)

where again ~u = (~v/v)artanh(v). This matrix is hermitian for ~α = 0 and anti-hermitian

for ~v = 0.

Again, it has to be noted here, that the rotational part e−i~α~σ/2 does not yield the identity

for a rotation around 2π, but minus the identity matrix. Thus it is not a proper represen-

tation of SO(3) but only of SU(2). Equation (5.56) is just a special case of the general

representation matrix (3.11), that has been discussed in section 3.1.

The representation D[ 1
2
,0] acts on so called spinors u ∈ S = C2 (see [24, sec. 8.3] for

an introduction to the topic of spinor algebra), according to

u′ = Au, (5.57)

This can also be written using the index notation

u′J = AJ
Ku

K , (5.58)

where capital letters now denote spinor indices, which can have the values 1 or 2.

One can get spinors of higher degree by forming tensor products of these fundamental

spinors. They transform according to

u′JK... = AJ
MA

K
N . . . uMN.... (5.59)

To get irreducible representations, these spinors have to be totally symmetrized

u(K1...Kn) =
1

n!

∑

π∈Sn

uKπ(1)...Kπ(n) , (5.60)

where the sum is taken over all permutations of (1, . . . , n). This spinor then transforms

according to the irreducible representation D[n
2
,0].
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An analogous formalism exists on the conjugate spinor space S, where the complex conju-

gate representation D[0, 1
2
] acts. The complex conjugate spinors then transform according

to

u′ = Au = uA†. (5.61)

Elements of the representation space of D[0, 1
2
] are also often written with dotted indices,

so using the index notation again equation (5.61) reads

u′J̇ = A
J̇
K̇u

K̇ . (5.62)

A general irreducible representation D[A,B] then acts on spinors with A undotted and B

dotted indices, which are totally symmetric in the undotted and dotted parts respectively,

u′(AB...)(J̇K̇...) = AA
MA

B
N . . . A

J̇
ẊA

K̇
Ẏ u(MN...)(ẊẎ ...). (5.63)

The intertwiners for general D[A,B] representations will be constructed as such dotted and

undotted spinors.

5.5.2 Relation between Spinors and Tensors

To illustrate the homomorphism SL(2,C) → L↑
+ and the relation between spinors and

tensors, one usually considers a 4-vector vµ and forms the following hermitian 2×2 matrix

from it,

ṽ :=
∑

k

vkσk := 1v0 + ~v~σ =


 v0 + v3 v1 − iv2

v1 + iv2 v0 − v3


 , (5.64)

where σk = {1, ~σ}. (For a more detailed treatment of the relation between spinors and

tensors see [24, sec. 8.4].) Conversely, every hermitian 2 × 2 matrix can be written like

that and one can get back to the 4-vector by the following equation,

vµ =
1

2
Tr(ṽσµ). (5.65)

From the definition (5.64) it can easily be seen that the relation

det ṽ = vµv
µ (5.66)

holds. Now the important fact is, that this determinant is invariant when ṽ is being

transformed, using an arbitrary complex unimodular 2× 2 matrix, according to

ṽ′ = A ṽ A†, (5.67)

v′µv
′µ = det ṽ′ = det ṽ = vµv

µ. (5.68)
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Because of (5.68), equation (5.67) defines a Lorentz transformation, which is given by [24,

p.236]

Λµ
ν =

1

2
Tr(AσνA

†σµ). (5.69)

This is the desired homomorphism SL(2,C) → L↑
+, which is only 2:1 because A and −A

clearly lead to the same Lorentz transformation.

The above scheme of passing from a 4-vector vµ to a spinor ṽ can also be generalized

to tensors and spinors of higher degree [24, sec. 8.4]. If the value of A+B is integer, the

representation D[A,B] is single valued, i.e. it is a proper representation of L↑
+. Then there

exists a relation between the tensor and the spinor representations, and as a matter of

fact, every 4-tensor can be constructed from a certain spinor.

In general it is also possible to introduce spinors with lower indices, also called covariant

spinors,

uJ := ǫJK uK , ǫ =

(
0 1

−1 0

)
, (5.70)

where the two-dimensional epsilon tensor ǫ has been introduced. They transform according

to

u′J = A K
J uK . (5.71)

The simplest case, which has already been defined above, is the relation between a 4-vector

and a 2× 2 matrix, transforming according to the D[ 1
2
, 1
2
] representation

ṽJK̇ = vµ (σµ)JK̇ . (5.72)

Another interesting example is the D[1,0] representation, whose representation space con-

tains the anti-symmetric field strength tensor Fµν . In the spinor formalism it is carried

by symmetric spinors uJK . Introducing the self-dual extension of Fµν ,

fµν := Fµν −
i

2
ǫµνρσF

ρσ, (5.73)

one can write down the relation between the tensor fµν and the spinor uJK [24, p.248],

fµν =
1

2
uJKǫṀṄ (σµ)JṀ (σν)KṄ . (5.74)

Of course these two examples can be generalized to higher spinors and tensors. To each
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4-tensor T of degree p, one can construct an equivalent spinor t [24, p.249],

tJṀKṄ... = 2−p/2 Tµν... (σµ)JṀ (σν)KṄ . . . , (5.75)

and conversely there is a 4-tensor for every spinor with equal numbers of dotted and

undotted indices 2A = 2B = p [24, p.249],

Tµν... = 2−p/2 tJṀKṄ... (σµ)JṀ (σν)KṄ . . . (5.76)

The tensors formed that way transform according to the D[ p
2
, p
2
] representation and are

totally symmetric and trace free, which serves to characterize them as irreducible.

Considering spinors with an uneven number of dotted and undotted indices, carrying

the representation D[A,B], but still satisfying A + B = integer, one can also generalize

equation (5.74) [24, p.249]. If a spinor uJK...ṀṄ has more indices of one type, one just fills

up the number of indices of the other kind by multiplying it with an appropriate number

of factors ǫAB or ǫẊẎ and then uses equation (5.76).

For example consider the representation D[2,0], generated by symmetric spinors uJKLM .

To get the corresponding 4-tensor, one simply forms the expression

Tµνρη =
1

4
uJKLM ǫȦḂǫĊḊ(σµ)JȦ(σν)KḂ(σρ)LĊ(ση)MḊ. (5.77)

This tensor is antisymmetric in µν and ρη and symmetric under the substitution µν ↔ ρη,

just like the Riemann-tensor Rµνρη.

In the next section string-localized intertwiners for general representations of L↑
+ will be

constructed in the spinor formalism and the above formulas can then be used to get back

to a tensor representation.

5.5.3 String-localized Intertwiners for General Representations

In this section string-localized intertwiners for general representations of the Lorentz group,

respectively the group SL(2,C), will be constructed, i.e. intertwiners u±(p, e) will be given

that satisfy the relation

e±iλθu±(Λ
−1p, e) = D[A,B](Λ−1)u±(p,Λe). (5.78)

To achieve this, at first intertwiners for the fundamental representations D[ 1
2
,0] and D[0, 1

2
],

for helicity σ = ±1
2 , have to be found and by taking tensor products of them, intertwiners
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for other representations can then be constructed. Of course these fundamental intertwin-

ers no longer define bosonic fields, because of the half-integer helicity. But it will turn

out that there is not really a difference between the construction of bosonic and fermionic

intertwiners in the spinor formalism.

Again, one first tries to find intertwiners for the standard momentum k = (1, 0, 0, 1),

because they fix the intertwiners for arbitrary momenta. These standard intertwiners

u±(k, e) =: u±(e) have to satisfy the simpler relation

e±
i
2
θu±(e) = A(c, θ)−1 u±(Λe), (5.79)

where A(c, θ) is an element of the (covering of the) little group Gk
∼= Ẽ(2). The intertwiner

for the complex conjugate representation D[0, 1
2
] is then given by the complex conjugate

u±(e).

These u±(e) are maps between the standard Wigner particle space and the spinor space

S = C2. Because of their spinorial nature their explicit dependence will not be on the

4-vector e, but on the 2× 2 matrix ẽ, which can be formed from it using equation (5.64).

ẽ =


 e0 + e3 e1 − ie2

e1 + ie2 e0 − e3


 . (5.80)

Thus the intertwiner relation reads

e±
i
2
θu±(ẽ) = A(c, θ)−1 u±(A ẽA

†). (5.81)

The general form of the matrix A(c, θ) ∈ Ẽ(2) is given by [24, p.294]

A(c, θ) =


e

i θ
2 c e−i θ

2

0 e−i θ
2


 =


 1 c

0 1




e

i θ
2 0

0 e−i θ
2


 , (5.82)

where 0 ≤ θ < 4π is again the angle of the rotation around the z-axis and the complex

number c parametrizes the “translational” part of the Euclidean group. It can easily be

seen that it is really an element of the stabilizer group Gk, because

A(c, θ) k̃ A(c, θ)† = k̃, for k̃ =

(
2 0

0 0

)
(5.83)

ThisA(c, θ) is the SL(2,C) version of the Lorentz transformationW (α, β, θ) = S(α, β)R(θ)

from chapter 3.
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The trick to find such intertwiners is similar to the construction of the tensor intertwiners

in section 5.3. There one used the well known point-like intertwiners for the represen-

tations D[λ,0], ũ±(p), and contracted them with an appropriate number of factors e to

get string-like intertwiners for the representation D[λ
2
,λ
2
]. In simple terms, these factors e

cancel out half of the transformation matrices Λ−1 and trade them for a transformation

e→ Λe. A similar procedure can be applied here.

First define the point-like intertwiners u− and u+, where u− intertwines the D[ 1
2
,0] rep-

resentation with the σ = −1
2 Wigner representation and u+ the D[0, 1

2
] with the σ = +1

2

representation. This is in accordance with the rule, that there can only be point-like

intertwiners for σ = B −A. These standard intertwiners are given by

u− =

(
1

0

)
, u+ =

(
0

1

)
, (5.84)

where possible factors of 1/
√
2 are omitted for simplicity. With the matrices

A(c, θ)−1 =


e

−i θ
2 −c e−i θ

2

0 ei
θ
2


 , A(c, θ)−1 =


e

i θ
2 −c ei θ2
0 e−i θ

2


 (5.85)

one can immediately see that the u± satisfy the relations

A(c, θ)−1 u− = e−i θ
2 u−, (5.86a)

A(c, θ)−1 u+ = e+i θ
2 u+. (5.86b)

Now, to get an intertwiner for D[ 1
2
,0] and σ = +1

2 as well, simply multiply the spinor

u+ with a factor ẽ, to get the string-like intertwiner u+(ẽ). The final intertwiners (for

standard momentum k) for the fundamental representation D[ 1
2
,0] are then given by

u+(ẽ) := ẽ u+ =

(
e1 − ie2

e0 − e3

)
, (5.87a)

u−(ẽ) := u− =

(
1

0

)
. (5.87b)

It is straightforward to check that they satisfy the desired relation

e±i θ
2 u±(ẽ) = A(c, θ)−1 u±(A ẽA

†). (5.88)

Indeed the u− part is trivial and the u+ part can be proven by inserting the definitions:

A−1 u+(A ẽA
†) = A−1A ẽA† u+ = ẽ A† u+ = ei

θ
2 ẽ u+ = ei

θ
2 u+(ẽ), (5.89)
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because A† u+ = ei
θ
2 u+.

The intertwiners for the D[0, 1
2
] representation are then just the complex conjugates of

these, and they satisfy the complex conjugate intertwiner relation,

e∓i θ
2 u±(ẽ) = A(c, θ)−1 u±(A ẽA†). (5.90)

The proof can be seen immediately by just conjugating equation (5.89).

After having constructed these standard intertwiners, one can get the intertwiners for

arbitrary momentum by the spinorial version of the general formula (5.8),

u±(p, ẽ) := Ap u±(A
−1
p ẽ (A†

p)
−1), (5.91)

where Ap is an element of SL(2,C), which maps the 2×2 matrix of the standard momentum

k to that of the momentum p:

Ap k̃ A
†
p = p̃ (5.92)

A possible choice for this Ap is

Ap =
1√
2



√
p0 + p3

√
p0+p3

p1+ip2

p1+ip2√
p0+p3

2√
p0+p3


 . (5.93)

Finally, one has found spinors u±(p, ẽ), that intertwine the fundamental representation

D[ 1
2
,0] with the canonical Wigner representation for helicity σ = ±1

2 :

e±
i
2
θ(p,A) u±(Λ

−1p, ẽ) = A−1 u±(p,A ẽA
†), (5.94)

where A now is an arbitrary element of SL(2,C).

With the above intertwiners u±(p, ẽ) one could now construct a string-localized massless

fermionic spinor field,

φ(x, e) =
∑

σ

∫
dµ(p)

[
eipx uσ(p, ẽ) a

∗(p, σ) + h.c.
]
, (5.95)

for helicity λ = 1
2 . Of course its creation and annihilation operators have to obey anti-

commutation relations instead of commutation relations. This field then transforms ac-

cording to

U(a,A)φ(x, e)U(a,A)−1 = A−1 φ(Λ(A)x+ a,Λ(A)e). (5.96)
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However, the main subject here are only bosonic fields, so this will not be pursued any

further.

What’s important now, is that one can find intertwiners for more general representations

and higher helicities by just forming tensor products of these fundamental intertwiners.

For example, the intertwiners u
(1)
± (p, ẽ) ∈ C4 for helicity σ = ±1 and representation D[ 1

2
, 1
2
]

would be

u
(1)
± (p, ẽ) = u∓(p, ẽ)⊗ u±(p, ẽ), (5.97)

or in index notation

u
(1)
± (p, ẽ)JK̇ = u∓(p, ẽ)J u±(p, ẽ)K̇ . (5.98)

Because of the product structure, it satisfies the correct intertwiner relation

(A−1) M
J (A−1) Ṅ

K̇
u
(1)
± (Λ−1p, ẽ)MṄ = e±iθ u

(1)
± (p,A ẽA†)JK̇ . (5.99)

For the representation D[1,0], one gets on the one hand the usual point-like intertwiner for

σ = −1

u
(1)
− (p, ẽ) = u−(p, ẽ)⊗ u−(p, ẽ) = u−(p)⊗ u−(p) = u

(1)
− (p) (5.100a)

(A−1 ⊗A−1) u
(1)
− (p) = e−iθ u−(Λ

−1p) (5.100b)

which is independent of e, and on the other hand an additional string-like intertwiner for

σ = +1

u
(1)
+ (p, ẽ) = u+(p, ẽ)⊗ u+(p, ẽ) (5.101a)

(A−1 ⊗A−1) u
(1)
+ (p,A ẽA†) = e+iθ u−(Λ

−1p, ẽ). (5.101b)

Using the tensor product notation, one can check immediately that they in fact satisfy

the correct intertwiner relations.

To get intertwiners for more general representations D[A,B] and helicity ±λ, one has to

combine the fundamental intertwiners u±(p, ẽ) and their complex conjugates in such a

way, that all the A+B coefficients e±i θ
2 in each tensor factor add up to e±iλθ. This means

that in the expression
[
(A−1 ⊗ . . .⊗A−1
︸ ︷︷ ︸

A−times

)⊗ (A−1 ⊗ . . .⊗A−1
︸ ︷︷ ︸

B−times

)

][
(u? ⊗ . . .⊗ u?︸ ︷︷ ︸

A−times

)⊗ (u? ⊗ . . .⊗ u?︸ ︷︷ ︸
B−times

)

]

= e±iλθ (u? ⊗ . . .⊗ u?︸ ︷︷ ︸
A−times

)⊗ (u? ⊗ . . .⊗ u?︸ ︷︷ ︸
B−times

),

(5.102)
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one has to adjust all the u? in such a way, that the correct factor e±iλθ comes out on the

right side. Of course, this is only possible if λ < A + B, which is also the case for the

point-like intertwiners for massive particles.

If the intertwiner, assembled in that way, has an integer number of indices (i.e.

A+B = integer), one can go back to a tensor intertwiner, using the scheme described after

equation (5.76). First, the intertwiner has to be multiplied with an appropriate number of

factors ǫJK or ǫṀṄ to adapt the number of dotted and undotted indices. Then the tensor

intertwiner can be obtained according to

u±(p, e)µν... = 2−p/2 u±(p, ẽ)
JK...ṀṄ...(σµ)JṀ (σν)KṄ . . . , (5.103)

where p is again the number of indices and the spinor u±(p, ẽ)
JK...ṀṄ... already contains

the additional factors of ǫ.

After knowing how to construct these general intertwiners in the spinor formalism, one

has to check if they lead to the same results as the 4-tensor intertwiners for the D[λ
2
,λ
2
]

representations. That this is actually true will be shown in the special case of the photon

intertwiners uµ±(p, e).

For the standard momentum k = (1, 0, 0, 1) they read

uµ±(k, e) =
1

(e · k)
[
êµ±(e · k)− kµ(e · ê±)

]
. (5.104)

To compare them with the spinor intertwiners for σ = ±1 and D[ 1
2
, 1
2
], one translates them

into the corresponding 2× 2 matrix ũ±(k, e):

ũ±(k, e) =
∑

µ

uµ±(k, e)σµ = u0±(k, e)1+ ~u±(k, e)~σ

=
1

(e · k)
[
(−σ1 ∓ iσ2)(e

0 − e3)− (σ0 + σ3)(e
1 ± ie2)

] (5.105)

⇒ ũ+(k, e) =
1

(e · k)
[
−
(
0 2

0 0

)
(e0 − e3)−

(
2 0

0 0

)
(e1 + ie2)

]

= − 2

(e · k)


e

1 + ie2 e0 − e3

0 0




(5.106a)
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ũ−(k, e) =
1

(e · k)
[
−
(
0 0

2 0

)
(e0 − e3)−

(
2 0

0 0

)
(e1 − ie2)

]

= − 2

(e · k)


e

1 − ie2 0

e0 − e3 0




(5.106b)

The explicit matrices of the spinor intertwiners are:

u
(1)
+ (ẽ) = u+(ẽ)⊗ u−(ẽ) =

(
1

0

)
⊗
(
e1 + ie2

e0 − e3

)
=


e

1 + ie2 e0 − e3

0 0




= −(e · k)
2

ũ+(k, e)

(5.107a)

u
(1)
− (ẽ) = u−(ẽ)⊗ u+(ẽ) =

(
e1 − ie2

e0 − e3

)
⊗
(
1

0

)
=


e

1 − ie2 0

e0 − e3 0




= −(e · k)
2

ũ−(k, e)

(5.107b)

It can be seen that the two versions of the intertwiners only differ in the factor −(e · k)/2,
which is acceptable, because in general the intertwiners are only unique up to multiplica-

tion with a function F (e · p).
To get the same intertwiners in both cases, one can redefine the spinorial intertwiners

according to

u
(1)
± (p, ẽ) := − 2

(e · p)
[
u∓(p, ẽ)⊗ u±(p, ẽ)

]
, (5.108)

where u±(p, ẽ) are the same intertwiners as in equation (5.91). The factor 1/(e · p) again
servers to improve the short distance behavior and guarantees that the corresponding field

is a potential for the field strength.

5.6 Two-Point Function

For potential applications for these string-localized quantum fields, one needs their two-

point functions and the corresponding Feynman propagators. The simplest case is the

photon field, where the two-point function takes the form [14]

〈
Ω, A(x, e)µA(x

′, e′)νΩ
〉
=

∫
dµ(p)eip(x−x′) M(p, e, e′)µν , (5.109)
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where the tensor M(p, e, e′) is defined according to

M(p, e, e′)µν := π(p)µν − π(p)ρµ
e′ρpν
(e′ · p) − π(p)ρν

eρpµ
(e · p) + π(p)ρη

eρe′ηpµpν
(e · p)(e′ · p) , (5.110a)

π(p)µν :=
∑

σ

êσ(p)µêσ(p)ν . (5.110b)

The sum over the polarization vectors π(p)µν has the form [30, p.354]

π(p)ik = δik −
pipk
|~p|2 ,

π(p)0i = π(p)i0 = π(p)00 = 0 .

(5.111)

The two-point function (5.109) with e = e′ has the same form as in the ordinary point-like

formalism when using the axial gauge, with the difference that there e is a fixed direction.

However, the usual axial gauge field has two disadvantages compared with the string-like

field A(x, e)µ. Since the direction e is fixed, the field and also the two-point function are

not covariant. The other problem are the singularities (e · p)−1, which have to be regular-

ized in a certain way, whereas in the string-like approach the fields are also distributions

in the string direction e and the factors (e ·p+ iǫ)−1 are regular after smearing with a test

function (cf. [14]).

The two-point function of the general fields can be calculated the following way:

〈
Ω, A(λ)(x, e)µ1...µλ

A(λ)(x′, e′)ν1...νλΩ
〉
=

=

∫
dµ(p)eip(x−x′)

∑

σ=±

u
(λ)
σ (p, e)µ1...µλ

u(λ)σ (p, e′)ν1...νλ

=

∫
dµ(p)eip(x−x′) e

ρ1 . . . eρλ

(e · p)λ
e′η1 . . . e′ηλ

(e′ · p)λ
∑

σ=±

ũ
(λ)
σ (p)µ1ρ1...µλρλ ũ

(λ)
σ (p)ν1η1...νληλ

≡
∫
dµ(p)eip(x−x′) 1

(e · p)λ(e′ · p)λ

(
s∏

k=1

eρke′ηk

)
M̃ (λ)(p)µ1ρ1...µλρλν1η1...νληλ

≡
∫
dµ(p)eip(x−x′) M (λ)(p, e, e′)µ1...µλν1...νλ

(5.112)

In the last two lines the “spin sum” of the point-like intertwiners, M̃ (λ)(p), and of the

string-like intertwiners, M (λ)(p, e, e′), have been defined.

The first one, M̃ (λ)(p), is a polynomial in p of degree 2λ, because the intertwiners ũ
(λ)
± (p)

are polynomials of degree λ. The second one, M (λ)(p, e, e′), includes the factor 1
(e·p)λ(e′·p)λ

which is proportional to 1
|p|2λ

, so M (λ)(p, e, e′) is bounded for large p. This suggests that

the Fourier transform of the Feynman propagator goes like |p|−2 for large |p|, independent
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of the helicity. This is a significant improvement over the point-like field strengths, whose

large p behavior of the two-point function gets worse with increasing spin.

5.7 Short Distance Behavior

In this section it will be shown, that the string-localized fields A(λ)(x, e) have a nice short

distance behavior, namely that their short distance dimension (sdd) is always sdd = 1 and

it does not get worse with increasing spin.

By “short distance behavior” the behavior of the field under dilations is meant (cf. [16,

sec. 5]). Therefore one extends the representation U(a,Λ) of the Poincaré group to the

dilations dα, α > 0. The operator U1(dα), representing dα on the one particle space H1,

is defined according to

(U1(dα)Ψ)(p) := αΨ(αp) ≡ Ψα(p), (5.113)

Using the fact that

dµ(αp) = Θ(αp0)δ(α2p2)α4d4p = α2dµ(p) (5.114)

one can calculate the norm of the state Ψα(p),

∫
dµ(p)α2|Ψ(αp)|2 =

∫
dµ(α−1p)α2|Ψ(p)|2 =

∫
dµ(p)|Ψ(p)|2, (5.115)

which shows that U1(dα) really is a unitary operator.

The definition (5.113) then determines the transformation behavior of the creation oper-

ators a∗(Ψ) and a∗(p):

U(dα)a
∗(Ψ)U(dα)

−1 = a∗(Ψα) =

∫
dµ(p)Ψα(p)a

∗(p)

=

∫
dµ(p)αΨ(αp)a∗(p) =

∫
dµ(α−1p)αΨ(p)a∗(α−1p)

=

∫
dµ(p)Ψ(p)α−1a∗(α−1p) =

∫
dµ(p)Ψ(p) U(dα)a

∗(p)U(dα)
−1

(5.116)

So under dilations the creation operators a∗(p) behave according to

U(dα)a
∗(p)U(dα)

−1 = α−1a∗(α−1p). (5.117)

Knowing this one can now calculate the behavior of the fields A(λ)(x, e)µ1...µλ
under dila-
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tions (the cumbersome indices will be omitted in this calculation):

U(dα)A
(λ)(x, e)U(d−1

α ) =

∫
dµ(p)

[
eipx u(λ)(p, e) U(dα)a

∗(p)U(dα)
−1 + h.c.

]

=

∫
dµ(p)

[
eipx u(λ)(p, e) α−1a∗(α−1p) + h.c.

]

=

∫
dµ(αp)α−1

[
ei(αp)x u(λ)(αp, e)a∗(p) + h.c.

]

=

∫
dµ(p)α

[
eip(αx) u(λ)(p, e) a∗(p) + h.c.

]

= αA(λ)(αx, e)

(5.118)

This is because the intertwiners (5.28) satisfy the relation

u
(λ)
± (αp, e) = u

(λ)
± (p, e), (5.119)

which can be seen right away by making the substitution p 7→ αp in the definition (5.28).

Therefore under dilations the fields behave according to

U(dα)A
(λ)(x, e)U(d−1

α ) = αA(λ)(αx, e), (5.120)

and this is what is meant by “the field has short distance dimension sdd = 1”.

In contrast to this nice behavior of the potentials A(λ)(x, e), the fields strengths F (λ)(x)

have a short distance behavior that gets worse with increasing spin, i.e.

U(dα)F (λ)(x)U(d−1
α ) = αλ+1F (λ)(αx). (5.121)

The worse short distance dimension stems from the fact that the fields F (λ)(x) have point-

like intertwiners ũ
(λ)
± (p) that satisfy the relation

ũ
(λ)
± (αp) = αλ ũ

(λ)
± (p), (5.122)

because of the missing factor 1
(e·p)λ

, which reduces the short distance dimension to one in

case of the potentials A(λ)(x, e).
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6 Conclusion

After reviewing some previous results on massive string-localized quantum fields, string-

like intertwiners and the corresponding quantum fields for massless bosonic particles have

been constructed. It has been shown that, in contrast to the massive string-localized fields,

they cannot be introduced as scalar fields, but need additional tensor- or spinor indices.

After the calculation of the intertwiner relations they have to obey, two important exam-

ples have been considered. These are the string-localized vector potential for the photon

field and the tensor potential for the gravitational field. They are potentials for the elec-

tromagnetic field strength and the Riemann tensor in the usual sense. It has also been

shown that, apart from the axial gauge condition, they satisfy the Lorentz and the har-

monic gauge conditions respectively.

After that, the intertwiners for general helicities λ for the representations D[λ
2
,λ
2
] have

been given as tensor products of the fundamental photon intertwiner, and it has been

shown, that they satisfy generalized Lorentz-, axial gauge- and symmetry conditions. Fur-

thermore it has been proven that the string-localized potentials, transforming according

to these representations, can all be written as infinite line integrals over the corresponding

point-localized tensor field strengths, just like it is possible in the massive case.

Using the more general spinor formalism to obtain representations of SL(2,C), intertwin-

ers for arbitrary representations D[A,B] could also be constructed for general helicities,

which are subject to the restriction |A− B| < λ < A+ B. This construction is also pos-

sible for massless fermions with half-integer helicity. The difference lies mainly in using

anti-commuting annihilation/creation operators instead of commuting ones.

In the end, other important properties of the string-localized D[λ
2
,λ
2
] fields have been dis-

cussed, like the short distance behavior and the two-point function of the fields. It turned

out that the tensor potentials all have the same short distance dimension, sdd = 1, which

also makes sure the propagator of these fields behaves like |p|−2 for large |p|, independent
of the helicity.

The two-point functions of the fields can be written as the Fourier transform of the point-

like spin sum M̃ (λ)(p) times a factor (e · p)−λ(e′ · p)−λ, which causes the nice large p

behavior. Although this expression looks quite singular for e · p → 0, it becomes regular

after smearing with a test function, which is an advantage over the usual axial gauge fields.
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Until now only free fields have been considered, because they can be easily constructed by

second-quantizing free single particle states. What would be interesting in the next step,

is to incorporate these fields into a perturbative scheme, like the causal construction of

Epstein and Glaser [6]. There are some difficulties, which prevent this approach from bee-

ing generalized straightforward to string-localized fields. For example the time-ordering

prescription of products of fields must take the strings Sx,e into account and one has to

assure that string-locality stays valid in every order of the perturbation series. Some ideas

in this direction have been proposed by Mund in [14], but there are currently no rigorous

results about the possibility of using string-localized fields to describe interactions.
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Quantum Field Theory, Commun. Math. Phys. 18 (1970), 195–203.



62

Curriculum Vitae

Persönliche Daten:

Name: Matthias Plaschke

Geburtstag: 03. September 1985

Geburtsort: Bregenz, Vorarlberg

Nationalität: Österreich
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