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Abstract

This thesis studies entropies of the following models in the thermodynamic limit: spanning trees
and the associated essential spanning forest process, dimer covers, the abelian sandpile model
and the harmonic model. These models arise from various fields in mathematics, but all of them
can be interpreted as dynamical systems in higher dimensions and as examples from statistical
mechanics. Tools of operator theory and harmonic analysis will be used to express entropy as
logarithm of the Fuglede-Kadison determinant, which was originally defined on operators in a
factor of type II1. Similar methods (although in a more algebraic setting) will be used to calculate
the entropy of expansive actions of discrete residually finite amenable groups by automorphisms
of compact abelian groups.

Deutsche Zusammenfassung

Diese Diplomarbeit behandelt die Entropien der folgenden Modelle im thermodynamischen Limes:
Spanning Trees und der damit verbundene Essential Spanning Forest Prozess, Dimer Überdeck-
ungen, das Abelsche Sandhäufchen Modell und das Harmonische Modell. Diese Modelle aus
verschiedenen Disziplinen der Mathematik können als dynamische Systeme oder als Beispiele
aus der statistischen Mechanik interpretiert werden. Methoden aus der Operatoren Theorie und
der harmonischen Analysis werden zur Darstellung der Entropie als Logarithmus der Fuglede-
Kadison Determinante verwendet, wobei die Fuglede-Kadison Determinante ursprünglich für
Operatoren in einem Faktor vom Typ II1 eingeführt wurde. Ähnliche Methoden werden zur
Berechnung der Entropie von expansiven Wirkungen von diskreten, residuell-endlichen, mittel-
baren Gruppen durch Automorphismen von kompakten, abelschen Gruppen verwendet; wobei
diese Wirkungen auch in einem eigenen Kapitel beschrieben werden.
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Introduction

This introduction outlines the interaction between statistical mechanics and dynamical systems,
which allows one to switch between these two theories. This idea will be demonstrated by means
of an example from combinatorics.
A dimer cover on the lattice Z2 is a subset of edges which covers every vertex exactly once.

Two interpretations of this model will be discussed to analyse the complexity of dimer covers:

• Physical interpretation: If one looks at a vertex n ∈ V(Z2), then there are only four possi-
bilities a dimer can be placed on this vertex. These degrees of freedom will be represented
by an alphabet {N,E, S,W}. A configuration η is a map from Z2 to {N,E, S,W}; with
the intuitive picture that every vertex n ∈ V(Z2) is in one of the four possible states
{N,E, S,W}. Clearly, not every configuration is allowed because it could happen that
two dimers lie on the same vertex, which is forbidden by definition. There are infinitely
many points in the set A of allowed configurations and so the entropy per vertex will be
introduced to measure the complexity of this system. Let Qn(A) denote the number of dis-
tinguishable quadratic boxes with side length n appearing in the points (or configurations)
of A. The entropy per vertex is defined by

h(A) = lim
n→∞

logQn(A)

n2

and will be interpreted as exponential growth rate of the number of allowed configurations
in finite quadratic boxes with side length n as n goes to infinity. Roughly, Qn(A) grows
like eh(A)n2 .

• Dynamical interpretation: The dimer model can be interpreted as a dynamical system by
constructing a shift of finite type as follows:

A =

{
η ∈ {N,E, S,W}Z

2

: let n,m ∈ Z2 if m− n = (1, 0)⇒ (ηn, ηm) /∈ F1;

if m− n = (0, 1)⇒ (ηn, ηm) /∈ F2

}
,

where
F1 = {(N,W ), (E,N), (E,E), (E,S)(S,W ), (W,W )}

and
F2 = {(N,N), (N,E), (N,W ), (S, S), (E,S), (W,S)} .

The shift action σ is defined by (σnη)m = ηn+m, i.e. a translation of the configuration
in direction n. The entropy of this transformation will be defined informally as follows:
The distance between η, η′ ∈ A is given by 2−k, where k is the largest integer such that
η[−k,k]2 = η′[−k,k]2 . Let Bn := {m ∈ Z2 : maxi∈{0,1}mi ≤ n}. The orbit segments of two
elements η, η′ ∈ A are ε-distinguishable if there is a coordinate m ∈ Bn such that the
distance between σmη and σmη′ is at least ε. The value s(Bn, ε) will denote the number
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of ε-different orbit segments with translation vectors in Bn. The quantity

h(σ, ε) := lim sup
n→∞

log s(n, ε)

n2

is the exponential growth rate of the number of ε-distinguishable orbit segments of the
dynamical system as n goes to infity. The entropy is defined by

h(σ) = lim
ε→0

h(σ, ε) .

Since the shift action simply translates configurations, it is clear that this general definition
of the dynamical entropy coincides with the definition of entropy given above. In the case
of the dimer model (A, σ) the entropy can be expressed as the exponential growth rate of
the number of periodic points. And so one gets

h(σ) = lim sup
n→∞

logFixnσ
n2

,

where Fixnσ = {η ∈ A : σmη = η for every m ∈ Bn}.

There are many ways to define entropy, but with the above explanatory notes one should have
a better idea what entropy measures. In general there is no easy way to calculate entropy. The
aim of this thesis is to study entropies of several models.

In the first chapter the entropy of spanning trees on infinite graphs will be calculated with
the help of von Neumann algebras and harmonic analysis. Such methods will be used in the
third chapter for expansive algebraic actions, where the commutativity of the symmetry group
is no longer required. In both chapters a generalised determinant, the so called Fuglede-Kadison
determinant will appear and it will turn out that the logarithm of this determinant is equal to
the entropy of these two models.

Entropy has another important feature: if two dynamical systems are isomorphic (in the mea-
sure theoretical or topological sense), then their entropies coincide. This property will be used in
the second chapter to find the entropy of the abelian sandpile model (when restricting to finite
regions the model is isomorphic to the model of spanning trees) and of the dimer model (which is
isomorphic to the essential spanning forest process, which is associated to the model of spanning
trees).

In the last chapter the abelian sandpile model will appear as a symbolic cover of the so called
harmonic model, which is an algebraic dynamical system with a non-expansive action.

At the beginning of each chapter (or section) the main references for the chapter (or section)
will be cited without any further comments.
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1 Spanning Trees

In this chapter the asymptotics of the number of spanning trees on a graph will be studied. First
the Matrix Tree Theorem will be proved. Then a convergence principle for sequences of graphs
will be introduced to define the tree entropy, which will be an indicator for the complexity of
an infinite graph. Finally, operator algebra methods will be used to find a helpful expression for
the tree entropy.

1.1 Basics And The Matrix Tree Theorem

Reference(s): [16, chapter 13] and [25, section 3]

Let G be a graph with countable vertex set V and edge set E. A loop is an edge that connects
a vertex to itself. A cycle is a closed path with no repeated vertices except the starting and
ending vertices. Let x, y ∈ V, write x ∼ y if x and y are connected by an edge. The degree
of a vertex x ∈ V is the number of edges which connect x to vertices in V; this number will
be denoted by degG(x) and it is assumed that all degrees are finite. The following matrices are
indexed by the vertices of G:

Definition. The degree matrix DG is the diagonal matrix, whose (x, x)-entry is equal to
degG(x), for all x ∈ V. The matrix AG, whose (x, y)-entry is equal to the number of edges
connecting x and y, will be called adjacency matrix. The matrix difference DG−AG is denoted
by ∆G and is called the graph Laplacian matrix. The matrix product PG := D−1

G ·AG is the
transition matrix of a Markov chain. This Markov process has state space V and is called the
simple random walk on G. Let pk(x;G) denote the probability that the simple random walk
on G started at x is back at x after k steps.

A graph H, whose vertex set is a subset of that of G and whose adjacency relation is a subset
of that of G restricted to the subset of vertices of H, is called a subgraph of G. A subgraph H
of G spans G if H has the same vertex set as G. A graph is a forest if it has no cycles and is
simple (i.e. an undirected graph that has no loops and no more than one edge between any two
different vertices). If a forest is connected, i.e. every pair of distinct vertices in the graph can be
connected by some path, then the forest is called a tree. The complexity of a graph G is the
number of spanning trees and is denoted by τ(G). The entropy of a finite graph G is given
by log τ(G) and will serve as a measure for the complexity.
The Matrix Tree Theorem leads to an easy calculation of the number of spanning trees of a

graph G. Some definitions are necessary to formulate and prove the Matrix Tree Theorem: Let
G be a graph, x and y vertices in V and e an edge in E connecting x and y. The graph G\e
is obtained by deleting the edge e (V(G\e) = V(G), E(G\e) = E(G)\e). The graph G/e is
constructed by identifying x and y and then deleting e. If z is a vertex which is connected to
both x and y, then multiple edges will occur between z and the new identified vertex. If there
are multiple edges between x and y, then they will become loops on the new identified vertex.
Let M be a symmetric matrix and x ∈ V; the submatrix M [x] is obtained by deleting the rows
and columns indexed by x.

Theorem 1.1. (Matrix Tree Theorem): Let G be a graph with Laplacian matrix ∆G. If x is an
arbitrary vertex of G, then τ(G) = det ∆G[x].

3



1 Spanning Trees

Proof: Induction on the number of edges of G:

• base case: |E(G)| = 0:
– If |V(G)| = 1, then G has one spanning tree and ∆G[x], x ∈ V, is a 0× 0-matrix the

empty-matrix, which by convention has determinant 1.
– If |V(G)| > 1, then G has no spanning tree and ∆G[x] is an all-zero matrix of order

at least 1 which has determinant 0.

• inductive step: |E(G)| > 0:
If e is an edge of G, then every spanning tree either contains e or does not contain e. There
is a one-to-one correspondence between spanning trees of G that contain e and spanning
trees of G/e. On the other hand any spanning tree of G which does not contain e is a
spanning tree of G\e. Therefore,

τ(G) = τ(G/e) + τ(G\e)

(In this situation multiple edges are retained during contraction and loops are ignored
because they cannot occur in a spanning tree).
Let e be an edge connecting x and y and M be the n× n diagonal matrix with Myy equal
to 1, and all other entries equal to 0. Then

∆G[x] = ∆G\e[x] +M

from which
det ∆G[x] = det ∆G\e[x] + det ∆G\e[x][y]

is deduced by substituting the term (∆G[x])yy by (∆G[x])yy−1+1 in the Laplace expansion
of det ∆G[x]. The first two terms of this expression lead to the first term on the right hand
side and the third term leads to the second term (∆G\e[x][y] = ∆G[x][y]).
The graph G/e will be formed by contracting x onto y, so that V(G/e) = V(G)\x; this
preference was chosen because x is the vertex which should be eliminated. Then ∆G/e[y]
has rows and columns indexed by V(G)\{x, y} with the uv-entry being equal to (∆G)uv;
and so one has that ∆G/e[y] = ∆G[x][y]. The formula above can be rewritten as

det ∆G[x] = det ∆G\e[x] + det ∆G/e[y] .

By induction hypothesis, det ∆G\e[x] = τ(G\e) and det ∆G/e[y] = τ(G/e); hence
det ∆G[x] = τ(G).

If A and B are square n× n matrices and S a subset of {1, . . . , n}, then let AS be the matrix
obtained by replacing the rows of A indexed by elements of S with the corresponding rows of B
(A∅ = A). It can be easily seen that

det(A+B) =
∑

S⊆{1,...,n}

detAS ,

by looking at the Leibniz formula of det(A+B) and expanding products and reorder sums. By
applying this to A − tI, it is deduced that the coefficient of tn−k in det(A − tI) is (−1)k times
the sum of the determinants of the principal k × k submatrices of A.

Theorem 1.2. Suppose that G is a finite connected graph with n vertices. Then

log τ(G) = − log(2|E(G)|) +
∑

x∈V(G)

log degG(x)−
∑
k≥1

1

k

( ∑
x∈V(G)

pk(x;G)− 1

)
.

4



1.1 Basics And The Matrix Tree Theorem

Proof: First, the following identity will be proved:

τ(G) =

∏
x∈V(G) degG(x)∑
x∈V(G) degG(x)

det′(I − PG) , (1.1)

where det′M denotes the product of the nonzero eigenvalues of a matrixM . Let φ(t) = det
(
(I−

PG) − tI
)
be the characteristic polynomial of (I − PG). The zeros of φ(t) are the eigenvalues

of I − PG. Since λ1 = 0, the constant term of the characteristic polynomial is zero and the
coefficient of t is

(−1)n−1
n∏
i=2

λi = (−1)n−1det′(I − PG) .

On the other hand, by the remark just above the theorem the coefficient of the linear term in
φ(t) is

(−1)n−1
∑

x∈V(G)

det
(
(I − PG)[x]

)
.

The term (I − PG) is equal to D−1
G (DG − AG) and the fact that D−1

G is a diagonal matrix will
be used to get ∑

x∈V(G)

det
(
(I − PG)[x]

)
=

∑
x∈V(G)

det
(
D−1
G (DG −AG)[x]

)
=

∑
x∈V(G)

det
(
D−1
G [x]

)
det
(
(DG −AG)[x]

)
.

Now using the Matrix-Tree-Theorem 1.1 in the last term yields to∑
x∈V(G)

det
(
(I − PG)[x]

)
= τ(G) ·

∑
x∈V(G)

det
(
D−1
G [x]

)
= τ(G) ·

∑
x∈V(G)

1∏
y∈V(G)\x degG(y)

= τ(G) ·
∑

x∈V(G) degG(x)∏
x∈V(G) degG(x)

.

The identity follows immediately from the last equation and

det′(I − PG) =
∑

x∈V(G)

det
(
(I − PG)[x]

)
.

From (1.1) and the fact that the sum of the degrees of a graph equals twice the number of its
edges one gets that

log τ(G) = − log
(
2|E(G)|

)
+

∑
x∈V(G)

log degG(x) + log det′(I − PG) .

Let Λ be the multiset of eigenvalues of PG other than 1 (with multiplicities). Since Λ ⊂ [−1, 1),

log det′(I − PG) =
∑
λ∈Λ

log(1− λ) = −
∑
λ∈Λ

∑
k≥1

λk

k
= −

∑
k≥1

∑
λ∈Λ

λk

k
= −

∑
k≥1

trP kG − 1

k
.

In the last step the following facts were used: (1) The eigenvalue 1 of P has multiplicity 1
since G is connected and (2) the trace is similarity invariant. The formula now follows from
trP kG =

∑
x∈V(G) p

k(x;G).

5



1 Spanning Trees

1.2 Tree Entropy

Reference(s): [7, section 1] and [25, section 3]

Definition. A graph homomorphism ϕ : G1 → G2 from one graph G1 = (V1,E1) to another
G2 = (V2,E2) is a pair of maps ϕV : V1 → V2 and ϕE : E1 → E2 such that ϕV maps the
endpoints of e to the endpoints of ϕE(e), for every edge e ∈ E1. If both maps ϕV and ϕE are
bijections, then ϕ is called a graph isomorphism.

To define the limit of a sequence of graphs it is necessary to keep an eye on a base point, which
will be called the root.

Definition. A rooted graph (G, o) is a graph G with a distinguished vertex o of G, called
the root. A rooted isomorphism of rooted graphs is an isomorphism of the underlying graphs
that maps the root of one graph to the root of the other graph. Let G• denote the set of rooted
isomorphism classes of rooted connected locally finite graphs.

Next define the following metric on G•. Let (G, o), (G′, o′) ∈ G• and denote, for all r ∈ N
with r > 0, by BG(o, r) the closed ball of radius r about the root, i.e. the union of all minimal
paths on G starting at o of length less or equal to r. Let k be the supremum of all r such that
there exists a rooted isomorphism between BG(o, r) and BG′(o′, r). A metric δ on G• can now be
defined by setting δ((G, o), (G′, o′)) = 2−k. This metric induces a topology on G•, which induces
a Borel σ-algebra S on G•.
Now let R be a positive integer, H be a finite rooted graph, and ρ a probability distribution

on (G•,S). Then let p(R,H, ρ) denote the probability that H is rooted isomorphic to the ball
of radius R about the root of a graph chosen with distribution ρ. If (G, ρ) is a fixed graph with
probability distribution ρ on its vertices, then ρ induces naturally a distribution on rooted graphs
(also denoted by ρ), i.e. the probability of (G, x) is ρ(x). For a finite graph G, let U(G) denote
the distribution of rooted graphs obtained by choosing a uniform random vertex of G as root of
G.
The concept of random weak convergence is as follows:

Definition. Let (Gn) be a sequence of finite graphs with distributions U(Gn) and ρ a probability
measure on rooted infinite graphs (possibly induced by a probability distribution on the vertices
of a fixed infinite graph). If limn→∞ p

(
R,H,U(Gn)

)
= p(R,H, ρ), for any positive integer R and

any finite rooted graph H, then ρ is called the random weak limit of (Gn). If ρ is induced
by a distribution on the vertices of a fixed transitive graph G, then the random weak limit only
depends on G and not on the root. In this case the random weak limit of (Gn) will be denoted
by G.

Remark 1.3. The name and concept of this convergence principal become clearer if one compares
it with the concept of weak convergence; because the random weak limit ρ can be seen as the law
of (G, o) and being the weak limit of the law of (Gn, on) as n → ∞. But one should have in
mind that random weak convergence on (G•,S) is a local concept because only neighbourhoods
around the root are regarded. This definition can be generalised by requiring only convergence
in probability. The convergence to ρ only depends on the component of the root, so it is wise to
demand that ρ concentrates on connected graphs.

Example. Let Γ be a group with a given generating set S and let l(Γ) denote the length of the
smallest reduced word in the generating elements that represents the identity. Suppose that Γn
are finite groups, each generated by s elements, such that limn→∞ l(Γn) =∞. Then the Cayley
graphs Gn of Γn have a random weak limit equal to the usual Cayley graph G of the free group
Γ on s letters, i.e. the regular tree of degree 2s.

6



1.2 Tree Entropy

Definition. The expected degree of a probability measure ρ on rooted graphs is given by

deg(ρ) :=

∫
degG(x) dρ(G, x) .

When the following integral converges, define the tree entropy of ρ by

h(ρ) :=

∫ (
log degG(x)−

∑
k≥1

pk(x;G)

k

)
dρ(G, x) . (1.2)

If ρ is induced by a fixed transitive graph G of degree d, then the tree entropy can be written as

h(G) := h(ρ) = log d−
∑
k≥1

pk(o;G)

k
,

where o is any vertex of G.

The main theorem of this section, which will be proved with the help of several lemmas,
suggests thinking of h(ρ) as a sequence of entropies per vertex of finite graphs.

Theorem 1.4. If Gn are finite connected graphs with bounded average degree whose random
weak limit is a probability measure ρ on infinite rooted graphs, then

lim
n→∞

1

|V(Gn)|
log τ(Gn) = h(ρ) .

Lemma 1.5. Let P be a transition matrix of a Markov chain. For α ∈ [0, 1), define the transition
matrix Q := αI + (1− α)P . For a state x, let pk(x) and qk(x) denote the return probabilities to
x after k steps when the Markov chain starts at x, where the transition matrices are P and Q,
respectively. Then ∑

k

qk(x)

k
= − log(1− α) +

∑
k

pk(x)

k
.

Proof: Let (·, ·) denote the standard inner product on `2(V). For x ∈ V and z ∈ (0, 1), one gets

∑
k

qk(x)zk

k
= −

([
log(I − zQ)

]
1{x},1{x}

)
= −

([
log
(
(1− zα)I − z(1− α)P

)]
1{x},1{x}

)
= −

([
log

(
I − z(1− α)

1− zα
P

)]
1{x},1{x}

)
− log(1− zα)(1{x},1{x})

= − log(1− zα) +
∑
k

pk(x)

k

(
z(1− α)

1− zα

)k
.

The first equation follows by expressing the logarithm as integral of a geometric series. The
lemma follows now by letting z ↑ 1.

Definition. AMarkov chain is said to be reversible if there is a measure π such that π(x)p(x, y) =
π(y)p(y, x), for all states x and y.

Lemma 1.6. [25, Lemma 3.4] Suppose that Q is a transition matrix of a Markov chain that
is reversible with respect to a positive finite measure π (π will always be normalised to be a
probability measure).

7



1 Spanning Trees

Setting a := infxQ(x, x) > 0 and c := inf{π(x)Q(x, y);x 6= y and Q(x, y) > 0} > 0, then, for
all states x and all k ≥ 0, the following estimate holds∣∣∣∣Qk(x, x)

π(x)
− 1

∣∣∣∣ ≤ min

{
1

ac
√
k + 1

,
1

2a2c2(k + 1)

}
.

Lemma 1.7. Suppose that Yn are real-valued random variables that converge in distribution
to Y and that supn E[|Yn|] < ∞. Then for all continuous functions f : R → R such that
lim|x|→∞ |f(x)|/|x| = 0 one gets limn→∞E[f(Yn)] = E[f(Y )].

Proof: The given assumptions imply that f(Yn) form a uniformly integrable set of random vari-
ables. The continuity of f ensures that f(Yn) converge in distribution to f(Y ). The conclusion
follows by combining the last two statements.

Proof of Theorem 1.4: First, new graphs G′n will be constructed by adding degG(x) loops at the
vertex x, for all x ∈ Gn. If Pn is the transition matrix of Gn, then Qn := (I + Pn)/2 is the
transition matrix of G′n. A consequence of this construction is that Qn(x, x) > 0, for every
x ∈ Gn and so infx∈V Qn(x, x) > 0; the latter inequality is a necessary condition for Lemma 1.6.
The random weak limit of G′n is ρ′, where ρ′ is obtained from ρ by doubling the degree of each
vertex by adding loops. Lemma 1.5 implies that h(ρ) = h(ρ′) by just looking at the definition
of h. Since τ(Gn) = τ(G′n), it suffices to show that

lim
n→∞

1

|V(G′n)|
log τ(G′n) = h(ρ′) .

Now let d be an upper bound for the average degree of G′n, i.e. for all n,

2|E(G′n)| ≤ d|V(G′n)| , (1.3)

so that |V(G′n)|−1 log(2|E(G′n)|) → 0 as n → ∞. Since the degree of a random vertex in G′n
converges in distribution to the degree of the root under ρ′, it follows by Lemma 1.7 (with
f := log+ and Yn to be the degree of a uniform vertex in G′n) that

1

|V(G′n)|
∑

x∈V(G′n)

log degG′n(x)→
∫

log degG(x) dρ′(G, x) .

Now looking at the conclusion of Theorem 1.2 the last step is to show that

lim
n→∞

∑
k≥1

1

|V(G′n)|
1

k

( ∑
x∈V(G′n)

pk(x;G′n)− 1

)
=

∫ ∑
k≥1

1

k
pk(x;G′n) dρ′(G, x) .

By definition and the requirement of the theorem, for every k, the following equation holds:

lim
n→∞

1

|V(G′n)|

( ∑
x∈V(G′n)

pk(x;G′n)− 1

)
=

∫
pk(x;G′n) dρ′(G, x) .

Hence, by Lemma 1.6 applied to G′n with stationary probability measure
x 7→ degG′n(x)/(2|E(G′n)|) and constants a ≥ 1/2, c ≥ 1/(4|E(G′n)|); and by (1.3) one gets

1

|V(G′n)|

∣∣∣∣ ∑
x∈V(G′n)

pk(x;G′n)− 1

∣∣∣∣ ≤ 4d√
k + 1

.
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1.3 Fuglede-Kadison-Determinant Entropy Formula I

Weierstrass’s M-test justifies the interchange of limit and summation and so the statement of
the theorem is proved.

1.3 Fuglede-Kadison-Determinant Entropy Formula I

Reference(s): [1, section 5], [2, section 5.2], [11], [25, section 4] and [26]

For a weighted graph some definitions must be extended: Therefor, let w : E(G)→ [0,∞) be
a weight function, then the new graph Laplacian is defined as follows:

∆G(x, y) :=

{
−
∑

e∈E1(x,y)w(e) if x 6= y with E1(x, y) := {e : e is an edge between x and y}∑
e∈Ex2

w(e) if x = y with Ex2 := {e : e is incident to x and not a loop}.

Assuming ∆G(x, x) < ∞ for all x; the associated random walk has the transition probability
from x to y of −∆G(x, y)/∆G(x, x). Finally, the tree entropy becomes

h(ρ) :=

∫ (
log ∆G(o, o)−

∑
k≥1

pk(o;G)

k

)
dρ(G, o) .

Let G∗ denote the set of rooted isomorphism classes of rooted weighted connected locally finite
graphs. Let G̃ = (G, o; v) ∈ G̃∗ = G∗ × V be a rooted graph with a distinguished directed
edge, where v is a neighbour of the root o of G. Next define the following involution ι : G̃∗ → G̃∗,
which maps G̃ to ι(G̃); this is the same graph but with reversed directed edge. And so v can
be interpreted as new root and o as new distinguished neighbour. Let ρ be any measure on G∗.
Now define a new measure µ̃ on G̃∗ by (1) taking the marginal measure of µ̃ on G∗ to be µ and
by (2) taking the conditional measure µ̃G on the neighbours of the root of G to be the counting
measure.

Definition. A probability measure µ on G∗ is called unimodular if the induced measure µ̃ is
involution invariant, i.e.

µ̃(A) = µ̃
(
ι−1(A)

)
for all Borel subsets A ⊆ G̃∗ .

If a graph G was randomly chosen, then let pG(o) be the probability that o is the root of
G. The marginal measure µ̃G puts mass pG(o) on the edge ov and mass pG(v) on the edge vo.
Involution invariance implies that pG(o) = pG(v). Clearly, if the graph G is connected, then
pG(·) is constant on G and so the concept of unimodularity means that every vertex is equally
likely to be chosen as root.

Theorem 1.8. [1, Proposition 2.2] Let G∗∗ the space of isomorphism classes of weighted locally
finite connected graphs with an ordered pair of distinguished vertices. Let ρ be a probability
measure on G∗. The measure ρ is unimodular if and only if∫ ∑

x∈V(G)

f(G, o, x) dρ(G, o) =

∫ ∑
x∈V(G)

f(G, x, o) dρ(G, o) ,

for all measurable functions f : G∗∗ → [0,∞) that are invariant under isomorphisms, i.e.
f(φ(G), φ(o), φ(x)) = f(G, o, x) for all graph-isomorphisms.

In [2, Chapter 5] or [7, Section 3.2] it was shown that the weak limit of unimodular measures
is again a unimodular measure. In the definition of random weak limits only sequences of finite
graphs with uniformly distributed roots occur and so random weak limits are always unimodular.
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1 Spanning Trees

Definition. Let H be a Hilbert space. A set of vectors (vi)i∈I in H is a quasi-orthonormal
basis if the non-zero elements of the set form an orthonormal basis of H.

Let (X,S, µ) be a measure space. A Hilbert bundle over X is a family of Hilbert spaces
(Hx)x∈X and a family of maps vi : X →

⊔
x∈X Hx with vi(x) ∈ Hx, such that for each x ∈ X

the family (vi(x)) is a quasi-orthonormal basis of Hx, and for each i ∈ I the set of all x ∈ X
with vi(x) = 0 is measurable.

Definition. A section is a map s : X →
⊔
x∈X Hx with s(x) ∈ Hx, for every x ∈ X. A section

is a measurable section if for every j ∈ I the function x 7→ 〈s(x), vj(x)〉 is measurable on
X, and there exists a countable set Is ⊂ I, such that the function x 7→ 〈s(x), vi(x)〉 vanishes
identically for every i /∈ Is. A measurable section s is called a nullsection if it vanishes outside
a set of measure zero.

The direct integral is the vector space of all measurable sections s, which satisfy

‖s‖2 :=

∫
X
‖s(x)‖2 dµ(x) <∞ ,

modulo the space of nullsections and will be denoted by

H =

∫ ⊕
X
Hx dµ(x) .

One can show that this space is a Hilbert space with inner product

〈s, t〉 =

∫
X
〈s(x), t(x)〉 dµ(x) .

Let ρ be a unimodular probability measure on rooted weighted graphs.
Choose the canonical representative for each weighted graph, i.e. a graph with V(G) = N.
Let H :=

∫ ⊕
`2
(

V(G)
)
dρ(G, o) be a direct integral, this is the set of ρ-equivalence classes

of ρ measurable functions f defined on canonical rooted graphs (G, o) that satisfy f(G,o) ∈
`2
(

V(G)
)
and

∫
‖f(G,o)‖ dρ(G, o) < ∞, which will be denoted by f =

∫ ⊕
f(G,o) dρ(G, o). Let

T : (G, o) 7→ TG,o be a measurable mapping of bounded linear operators on `2
(

V(G)
)

= `2(N)
with finite supremum of the norms ‖TG,o‖. Then T induces a bounded linear operator T :=

T ρ :=
∫ ⊕

T(G,o) dρ(G, o) on H via

T ρ :

∫ ⊕
f(G,o) dρ(G, o) 7→

∫ ⊕
TG,of(G,o) dρ(G, o) .

The norm ‖T ρ‖ of T ρ is the ρ-essential supremum of ‖TG,o‖.
A graph isomorphism φ induces an operator Φ : H → H. Since ρ is unimodular one gets

〈Φf,Φg〉 =

∫
〈Φ(G,o)f(G,o),Φ(G,o)g(G,o)〉 dρ(G, o) =

∫
〈f(G,o), g(G,o)〉 dρ(G, o) = 〈f, g〉 .

And so Φ is an isometry (and therefore bounded) and clearly the range of Φ is dense in H;
whence Φ is unitary. Let Alg be the commutant of the set

U = {Φ ∈ B(H) : Φ is an operator induced by a graph isomorphism φ} ,

i.e.
Alg := U ′ = {T ∈ B(H) : TΦ = ΦT for all Φ ∈ U} .
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1.3 Fuglede-Kadison-Determinant Entropy Formula I

The set of operators Alg coincides with its bi-commutant. Therefore, Alg is the von Neu-
mann algebra (i.e. a subalgebra of B(H) which is closed under ∗ and which is equal to its
double commutant) of such (ρ-equivalence classes of) operators T that are equivariant in the
sense that for all isomorphisms ϕ : G1 → G2 and all o1, x, y ∈ V(G1) and all o2 ∈ V(G2):
(TG1,o11{x},1{y}) = (TG2,o21{ϕx},1{ϕy}). This property induces that TG,o does not depend on
the root o.

Theorem 1.9. Let ρ be a unimodular measure and T ∈ Alg, then

Trρ(T ) := E
[
(TG1{o},1{o})

]
:=

∫
(TG1{o},1{o}) dρ(G, o)

is a trace on Alg.

Proof: If T ∈ Alg and T ≥ 0, then Tr(T ) ≥ 0 because the integrand is non-negative for T ≥ 0.
The linearity of Tr(.) follows from the linearity of the inner product and the integral. At last
Tr(TS) = Tr(ST ) must be proved for S, T ∈ Alg:

Trρ(TS) = E
[
(S1{o}, T ∗1{o})

]
= E

[ ∑
x∈V(G)

(S1{o},1{x})(1{x}, T ∗1{o})
]

= E

[ ∑
x∈V(G)

(S1{o},1{x})(T1{x},1{o})
]

= E

[ ∑
x∈V(G)

(S1{x},1{o})(T1{o},1{x})
]

= E

[ ∑
x∈V(G)

(T1{o},1{x})(1{x}, S∗1{o})
]

= Trρ(ST ) .

The unimodularity property of the measure can be used because of absolute integrability:

E
[
(TS1{o},1{o})

]
≤
(

E

[ ∑
x∈V(G)

|(S1{o},1{x})|2
]

E

[ ∑
x∈V(G)

|(1{x}, T ∗1{o})|2
])1/2

=
(
E
[
‖S1{o}‖2

]
E[‖T ∗1{o}‖2

])1/2 ≤ ‖S‖‖T‖ <∞
Here the identities above and the Cauchy-Schwarz-inequality for expectation values were used.

Definition. Let VNA be a von Neumann algebra and

VNA+ := {T ∈ VNA : T is self-adjoint and T ≥ 0} .

Let tr be a trace on VNA+. The trace tr is called faithful if tr(T ) = 0 implies T = 0. The trace
is said to be semifinite if, for any 0 6= S ∈ VNA+, there is a 0 6= T ∈ VNA+ with T ≤ S such
that tr(T ) <∞. If the trace tr fulfils

tr(sup
i
Ti) = sup

i
tr(Ti)

for any bounded increasing net (Ti) of VNA+, then tr is called a normal trace.

A von Neumann algebra with a faithful, finite and normal trace will be called finite. Clearly,
the von Neumann algebra Alg with trace Tr is finite. Next a larger class of operators will be
defined and the definition of the trace will be extended to this larger class of operators. Therefor,
the following definitions for unbounded operators will be recalled:
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1 Spanning Trees

Let X,Y be two Hilbert spaces and let T : X → Y be an unbounded linear operator. The
operator T is said to be densely-defined if its domain Dom(T ) is a dense subset of X. If the
graph of T , this is the set Graph(T ) := {(x, Tx) ∈ X × Y : x ∈ Dom(T )}, is a closed subset
of X × Y , then T is called closed in X. An operator T ′ extends T , which will be written as
T ⊆ T ′, when Dom(T ) ⊆ Dom(T ′) and T ′x = Tx for all x ∈ Dom(T ). The operator T is said to
be closable if the closure of the graph of T is the graph of another operator T . The operator
T will be called closure of T . A densely defined operator T is symmetric if 〈Tx, y〉 = 〈x, Ty〉
for all x, y ∈ Dom(T ). The adjoint T ∗ of a densely-defined operator T is defined as follows. Its
domain consists of those elements y ∈ Y such that for some element z ∈ X, 〈Tx, y〉 = 〈x, z〉 for
all x ∈ Dom(T ). For these elements y ∈ Y , T ∗y = z. The operator T is said to be self-adjoint
if X = Y and T = T ∗.
Let Alg be the set of closed densely-defined operators that are affiliated with Alg, i.e. those

closed densely-defined operators that commute with all unitary operators that commute with
Alg.
The Laplacian ∆G induces an operator

f 7→
(
x 7→

∑
y∈V

∆G(x, y)f(y)

)
for functions f on V with finite support. This operator extends by continuity to a bounded linear
operator on all of `2(V) when supx ∆G(x, x) <∞. If

ρ− ess sup
G,o

sup
x∈V(G)

∆G(x, x) <∞ ,

then (G, o) 7→ ∆G defines an operator in Alg. If such a uniform bound does not exist, then
proceed as follows. Let

D0 := {f ∈ H : |suppfG,o| <∞ , for all (G, o)}.

The operator ∆ is defined on the dense subspace D0, where it is symmetric. LetD be the diagonal
weighted degree operator on D0, i.e. DG(x, x) := ∆G(x, x) and DG(x, y) := 0 for x 6= y. Its
closure D is symmetric and affiliated with Alg and so D is self-adjoint by the following theorem:

Theorem 1.10. [20, Exercise 6.9.53] and [19, Solution 6.9.53]
Let S be a symmetric operator affiliated with a finite von Neumann algebra. Then S is self-
adjoint.

Define δ := D(I − P ); since D ∈ Alg and I − P ∈ Alg, it follows that δ ∈ Alg. It will be
shown that ∆ is closable and δ = ∆. An easy calculation shows that δ and ∆ agree on D0 and so
δ extends ∆. The operator δ is closed, whence ∆ is closable. Since ∆ is symmetric and affiliated
with Alg, it is self-adjoint by Theorem 1.10. The next theorem guarantees that ∆ and δ are
equal.

Theorem 1.11. [20, Exercise 6.9.54] and [19, Solution 6.9.54]
Let A and B be operators affiliated with a finite von Neumann algebra. Suppose A ⊆ B, then
A = B.

Since Alg is a finite von Neumann algebra and ∆ ⊆ δ, it follows that ∆ = δ. For the remainder
of this section D and ∆ will also denote the closures of D and ∆.

Definition. Let H be a Hilbert space B(H) the algebra of bounded linear operators on H and
(X,S) a measurable space. A spectral measure on X is a function E : S → B(H) such that
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1.3 Fuglede-Kadison-Determinant Entropy Formula I

1. E(S) is a projection in B(H), for every S ∈ S and E(∅) = 0.

2. E(X) = I, where I denotes the identity operator in B(H).

3. If S1 ∩ S2 = ∅ with S1, S2 ∈ S, then E(S1) and E(S2) are orthogonal.

4. E
(⋃∞

n=1 Sn
)

=
∑∞

n=1E(Sn) for every sequence (Sn) of disjoint sets in S.

Let T ∈ Alg be a self-adjoint operator. The operator T has a polar decomposition

T = U

∫ ∞
0

λ dE|T |(λ)

by [20, Theorem 6.1.11], where U ∈ Alg is unitary and E|T | is a spectral measure. Define the
measure µρ,|T | by

µρ,|T |(B) := Trρ
(
E|T |(B)

)
for Borel subsets S ⊆ R. The trace Tr will be extended by

Trρ(T ) :=

∫ ∞
0

λ dµρ,|T |(λ)

for positive operators T ∈ Alg and then by linearity to all of Alg when it makes sense.
Write Ãlg for the set of T ∈ Alg for which

Trρ(log+ |T |) =

∫ ∞
0

log+ λ dµρ,|T |(λ) <∞ .

For T ∈ Ãlg, define its Fuglede-Kadison determinant by

Det(T ) := Detρ(T ) := exp

∫ ∞
0

log λ dµρ,|T |(λ) ∈ [0,∞) .

Theorem 1.12. If ρ is a unimodular probability measure on rooted connected infinite weighted
graphs with ∫

logDG(o, o) dρ(G, o) ∈ [−∞,∞) , (1.4)

then
h(ρ) = log Det∆ ∈ [−∞,∞) . (1.5)

Proof: The hypothesis is equivalent to D ∈ Ãlg. Since I − P ∈ Alg ⊆ Ãlg, it follows that
∆ = D(I − P ) ∈ Ãlg with

Det∆ = DetD ·Det(I − P ) (1.6)

by [17, Proposition 2.5]. By the assumption (1.4) of the Theorem it follows that

DetD = exp

∫
logDG(o, o) dρ(G, o) . (1.7)

Next define the measure topology of a von Neumann algebra VNA to be the topology whose
fundamental system of neighbourhoods around 0 is given by

V (ε, δ) = {T ∈ VNA : there exists a projection E ∈ Alg s.t. ‖TE‖ ≤ ε and Tr(1− E) ≤ δ} ,

where ε, δ run over all strictly positive numbers. Since ‖P‖ ≤ 1, one gets for 0 < c < 1 that
log |I − cP | ≤ (log 2)I and so |I − cP | converges to |I − P | in the strong operator topology as
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1 Spanning Trees

c ↑ 1. Therefore log |I − cP | will converge to log |I − P | in the measure topology. Thus,

Det(I − P ) = lim
c↑1

Det(I − cP )

by the generalised Monotone Convergence Theorem [13, Theorem 3.5]. For 0 < c < 1, one has

log Det(I − cP ) = <Tr log(I − cP )

by [15, Theorem 1] and
log(I − cP ) = −

∑
k≥1

ckP k/k

(in the norm topology). Hence,

log Det(I − cP ) = −
∑
k≥1

<Trρ c
kP k/k = −

∑
k≥1

Trρ c
kP k/k ,

whose limit as c ↑ 1 is

−
∑
k≥1

Trρ P
k/k =

∫
−
∑
k≥1

1

k
pk(o;G) dρ(G, o) (1.8)

by the Monotone Convergence Theorem. The entropy formula (1.5) follows now by comparing
(1.2) with (1.6), (1.7) and (1.8)

The concept of an infinite periodic graph is the following: Let K = {0, 1, . . . , k} be a finite set
and G be a graph with vertex set Zd ×K and with edge set that is invariant under the natural
action of Zd. That is, (x, i) ∼ (y, j) if and only if (0, i) ∼ (y − x, j). This construction leads
to the following simplification of the graph-Laplacian, i.e. for each x ∈ Zd there is a |K| × |K|
matrix Lx such that

∆G

(
(x, u), (y, v)

)
= Ly−x(u, v) ,

for all x,y ∈ Zd and u, v ∈ K. Let ρ be a measure that puts equal mass on each rooted
graph (G, (o, u)), with u ∈ K. Consider ∆G as operating on `2(Zd × K) as an operator T on
`2
(
Zd; `2(K)

)
. The space `2

(
Zd; `2(K)

)
is isometrically isomorphic to L2

(
[0, 1]d; `2(K)

)
via the

Fourier transformation. The Fourier transform of the operator T becomes the matrix-valued
function

M : (s1, s2, . . . , sd) 7→
∑
x∈Zd

Lx exp2πx·s (
s = (s1, s2, . . . , sd) ∈ [0, 1]d

)
and the vector 1{(o,u)} becomes the function 1{u} ∈ `2(K). Finally, the entropy can be rewritten
as

h(ρ) =
1

|K|
∑
u∈K

(
(log ∆G)1{(o,u)},1{(o,u)}

)
=

1

|K|
∑
u∈K

∫
[0,1]d

((
logM(s)

)
1{u},1{u}

)
ds

=
1

|K|

∫
[0,1]d

tr
(

logM(s)
)
ds =

1

|K|

∫
[0,1]d

log detM(s) ds .

The final part of this chapter is the calculation of the classical tree entropy of the nearest-
neighbour graph and the triangle lattice graph(d = 2) with the method above.

Example. Let G be the nearest neighbour graph on Z2 and K = {0}, then M becomes a 1× 1

14



1.3 Fuglede-Kadison-Determinant Entropy Formula I

operator. When perceiving Lx as Lx−0 one easily gets:

M(s) = 4− exp2πs1 − exp−2πs1 − exp2πs2 − exp−2πs2

and
h(ρ) = h(Z2) =

∫
[0,1]2

log
(
4− 2 cos(2πs1)− 2 cos(2πs2)

)
ds1 ds2 .

Example. Let G be the triangle lattice and K = {0}. This graph does not fulfil the conditions
of an infinite periodic graph but the graph is isomorphic to the nearest neighbour graph with ad-
ditional edges connecting a vertex with the nearest vertices which lie in northeast and southwest
direction. And so one gets,

M(s) = 6− 2 cos(2πs1)− 2 cos(2πs2)− 2 cos
(
2π(s1 + s2)

)
and

h(ρ) =

∫
[0,1]2

log

(
6− 2 cos(2πs1)− 2 cos(2πs2)− 2 cos

(
2π(s1 + s2)

))
ds1 ds2 .
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2 Dynamical Systems That Are Related To
Spanning Trees

In this chapter the essential spanning forest process, the dimer model and the abelian sandpile
model will be introduced. These models are related to spanning trees or are connected by
isomomorphisms. Therefore, the detailed treatment of spanning trees in the first chapter will
ease the elaboration of these dynamical systems.

2.1 The Essential Spanning Forest Process

Reference(s): [25, section 5] and [27]

2.1.1 Uniform Spanning Forest Measures

In this section two probability measures will be introduced which arise as weak limit of measures
of finite graphs; and some of their properties will be stated.
Given any graph G = (V,E), let {0, 1}E denote the measurable space of all subsets of E with

the Borel σ-field that is generated by sets of the form {F ⊆ E : e ∈ F}, with e ∈ E. An
elementary cylinder is an event A ⊆ {0, 1}E of the form

A =

{
F ∈ {0, 1}E : B1 ⊆ F, B2 ∩ F = ∅

}
,

whereB1, B2 ⊂ E are finite disjoint sets. A cylinder event is a finite union of elementary cylinders.
A sequence of measures µn on the Borel σ-algebra converges weakly to µ if µn(C) → µ(C), for
every cylinder set C. Let G = (V,E) be an infinite connected graph. Let V1,V2, . . . be finite
connected subsets of V with

⋃∞
n=1 Vn = V. Let Gn = (Vn,En) be the subgraph spanned by Vn,

i.e. an edge of G appears in En ∈ E if its endpoints are in Vn. A sequence of such graphs 〈Gn〉
is called an exhaustion of G.
Let µn be the uniform spanning tree probability measure on Gn; that is the measure

which puts equal mass to every spanning tree in Gn. Since Gn is finite there are only finitely
many spanning trees. Given a finite set B of edges with B ⊆ En, for n large enough. The
limit limn→∞ µn(B ⊆ T ) = µ(B ⊆ T ) exists because µn(B ⊆ T ) is a decreasing sequence in
n by Rayleigh‘s monotonicity principle [27, Chapter 2 and Chapter 10]. It follows from the
inclusion-exclusion principle

µ(B1 ⊆ F, B2 ∩ F = ∅) :=
∑
S⊂B2

µ(B1 ∪ S ⊆ F)(−1)|S| =
∑
S⊂B2

lim
n→∞

µn(B1 ∪ S ⊆ F)(−1)|S|

= lim
n→∞

µn(B1 ⊆ T,B2 ∩ T = ∅)

that µ is defined on all elementary cylinders and therefore for cylinder events and hence uniquely
defines a probability measure µ on {0, 1}E. This measure will be denoted by FSF and will be
called free uniform spanning forest measure (the name will be clear later).
An alternative approach will be made because boundary conditions could have an effect on the

connections within Gn. This problem will be avoided by forcing all connections outside of Gn.
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Therefor, let G∗n be the graph obtained from G by contracting the vertices outside Gn to a single
vertex zn. The vertex zn will be called root, too, but this time with the above interpretation.
Let µ∗n be the random spanning tree measure on G∗n. The limiting probability measure WSF
does not depend on the exhaustion and it will be called the wired spanning forest measure
(because the boundary is "wired" together).
Both FSF and WSF are invariant under any automorphisms that G may have and they are

concentrated on the set of essential spanning forests of G; that are those spanning forests whose
components are infinite trees.
An end of an infinite graph G is an equivalence class of infinite simple paths in G, where two

paths are equivalent if, for every finite subgraph K ⊂ G, there is a connected component of G\K
that intersects both paths.
Let G be a graph. For a subgraph H, let its (internal) vertex boundary ∂VH be the set of

vertices of H that are adjacent to some vertex not in H. The graph G is amenable if there is
an exhaustion G1 ⊂ G2 ⊂ . . . with

⋃
nGn = G and

lim
n→∞

|∂VGn|
|V(Gn)|

= 0 ,

where |.| is the counting measure. Such an exhaustion (or the sequence of its vertex sets) is
called a Følner sequence.
The group of all automorphisms of G will be denoted by Aut(G). The action of a group Γ on a

graph G by automorphisms is said to be transitive if there is only one Γ-orbit in V(G) and to be
quasi-transitive if there are only finitely many orbits in V(G). A graph G is transitive or quasi-
transitive according as whether the corresponding action of Aut(G) is. A locally compact group
is called unimodular if its left Haar measure is also right invariant. A graph G is unimodular
if Aut(G) is unimodular, where the weak topology of Aut(G) is generated by its action on G.
Suppose that the finite group Γ ∈ Aut(G) acts on a countable or a finite vertex set of a graph

and preserves the measure µ. Then the entropy of the pair (µ,Γ) is

H(µ,Γ) := |Γ|−1 H(µ) .

A countable locally compact group Γ with Haar measure |.| is called amenable if there is a
sequence of finite sets 〈Γn〉 with

lim
n→∞

|γΓn∆Γn|
|Γn|

= 0 ,

for all γ ∈ Γ; the sequence 〈Γn〉 will be called Følner sequence. Suppose Γ is a countable
amenable finitely generated subgroup of Aut(G). Let µ be a probability measure on {0, 1}E that
is preserved by Γ. Let 〈Γn〉 be a Følner sequence in Γ and H be a finite subgraph of G such that
ΓH = G, provided such an H exists. Then the metric-entropy of the pair (µ,Γ), also called
the Γ-entropy of µ, is

H(µ,Γ) := lim
n→∞

|Γn|−1 H(µ � ΓnH) ,

where H(µ � (ΓnH)) is the restriction of µ to the σ-field generated by the restriction E(ΓnH).
Let X be a closed subgroup of Aut(G). The stabiliser of an element g ∈ G is the subgroup
given by S(g) := {x ∈ X : xg = g}. The action of a group is called free if the stabiliser of each
element of the set is just the identity element of the group.

Lemma 2.1. [6, 18, 25] For every quasi-transitive amenable graph G, FSFG = WSFG.

Lemma 2.2. [25] Let G be an infinite quasi-transitive unimodular connected graph. If G has
2 ends, then F is a tree with exactly 2 ends WSF-a.s., while otherwise, for WSF-a.e. F, each
component tree of F has exactly one end.
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2.1 The Essential Spanning Forest Process

Remark 2.3. [6, 29] Since the most examples of the following chapters live on Zd some concrete
results of graphs on Zd will be stated: The uniform spanning forest (USF) has no cycles WSF-a.s.
If d ≤ 4 the USF is a single tree a.s.. For 2 ≤ d ≤ 4 the USF has one end a.s. If d > 4 then a.s.
the USF has infinitely many components, each component is infinite and has a single end.

2.1.2 The Entropy Of The Essential Spanning Forest Process

Let F ⊂ {0, 1}E(G) be the set of all essential spanning forests of G and Γ ⊆ Aut(G) a countable
group acting freely on V(G) with a finite number of orbits I. The set F is closed, compact and
Γ-invariant. The dynamical system (F,Γ) is called the essential spanning forest process
and has entropy H(WSFG,Γ). In this section a coincidence between this Γ-entropy and the tree
entropy will be shown.
Suppose that G is an infinite quasi-transitive amenable connected graph. Let x ∈ V and

Γ ⊆ Aut(G), then the orbit of x is given by Γx = {γx : γ ∈ Aut(G)}. Choose a complete set
O = {o1, o2, . . . , oL} of representatives in V of the orbits of G. Let µi := |S(oi)| and normalize the
Haar measure | · |, i.e. the cardinality of a set, such that ρ(O) =

∑
i µ
−1
i = 1, where ρ(oi) = µ−1

i .
By [5, Proposition 3.6] for any Følner sequence 〈Hn〉 and all i:

lim
n→∞

|Γoi ∩Hn|
|Hn|

= µ−1
i .

So the relative frequency of vertices in Hn that are in the same orbit oi converges to ρ(oi). The
measure ρ is called the natural frequency distribution of G.

Theorem 2.4. Let G be an infinite quasi-transitive amenable connected graph with natural fre-
quency distribution ρ. Let Gn be a Følner sequence of finite connected subgraphs of G. Then

lim
n→∞

1

|V(Gn)|
log τ(Gn) =

∑
x∈V(G)

ρ(x) log degG(x)−
∑
k≥1

1

k

∑
x∈V(G)

ρ(x)pk(x;G) = h(G, ρ) .

(2.1)

If Γ ⊆ Aut(G) is a countable group acting freely on V(G) with a finite number I of orbits, then

H(WSFG,Γ) = I h(G, ρ) . (2.2)

Given a finite subgraph H of a graph G and a configuration ω of E(G), let H(ω) denote the
cylinder event consisting of those configurations of E(G) that agree with ω on E(H). Now let ω
be a configuration of E(G)\E(H), then two finite graphs from certain vertex identifications on
H are defined as follows: (1) H ◦ ω for the graph obtained by identifying all vertices of H that
are connected to each other in the graph (V(G), ω); (2) and let H ∗ ω be the graph obtained
by identifying all vertices of H that are connected to each other in the graph (V(G), ω) and by
identifying all vertices of H that belong to any infinite connected component in (V(G), ω).

Lemma 2.5. Let G be an infinite quasi-transitive unimodular connected graph and let H be a
finite connected subgraph of G. If G has 2 ends, then

WSF

(
H
(
F
) ∣∣∣∣ F �

(
E \E(H)

))
= τ

(
H ◦

(
F �

(
E \E(H)

)))−1

WSF-a.s,

while otherwise,

WSF

(
H
(
F
) ∣∣∣∣ F �

(
E \E(H)

))
= τ

(
H ∗

(
F �

(
E \E(H)

)))−1

WSF-a.s.
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Proof: The proof will only be given for the case when G has other than 2-ends. Let Z be the
event that each tree of F has exactly one end, Lemma 2.2 says that WSF(Z) = 1. Let BR be a
ball of radius R about some fixed vertex of G. Choose RH so that H ⊂ BRH . Let AR be the
following event: for all x, y ∈ ∂VH and z, w ∈ ∂VBR if in F �

(
E(BR)\E(H)

)
x is connected to

z, y is connected to w and x is not connected to w, then x and y are not connected in F � E(H).
Thus, AR ⊆ AR+1 for all R ≥ RH and

Z ⊆
⋃
R

AR

whence limR→∞WSF(AR) = 1. Define

CR :=

{
F

∣∣∣∣ WSF(AR | F � (E(BR)\E(H))) ≥
1−

√
1−WSF(AR)

(WSF(F � (E(BR)\E(H))))2

}
,

and since
WSF(AR) =

∫
WSF

(
AR

∣∣∣∣ F �
(

E(BR)\E(H)
))

dWSF ,

it follows (proof by contradiction and using Chebyshev’s inequality) that, for all large R,

WSF(CR) ≥ 1−
√

1−WSF(AR) .

In particular, WSF(lim supR→∞CR) = 1. By definition,

WSF

(
H (F)

∣∣∣∣ F �
(

E \E(H)
))

= lim
R→∞

WSF

(
H (F)

∣∣∣∣ F �
(

E(BR)\E(H)
))

WSF-a.s .

Fix a forest ω ∈ Z ∩ lim supR→∞CR for which the limit above holds. Choose ε > 0 arbitrarily
small. Choose R ≥ RH so large that∣∣∣∣WSF

(
H(ω)

∣∣∣∣ ω �
(

E \E(H)
))
−WSF

(
H(ω)

∣∣∣∣ ω �
(

E(BR)\E(H)
))∣∣∣∣ < ε , (2.3)

that ω ∈ CR, that
√

1−WSF(AR) < ε, and that each vertex in ∂VH that is connected in
ω �

(
E(BR)\E(H)

)
to ∂VBR belongs to an infinite component in ω �

(
E \E(H)

)
. This last

requirement, in combination with ω ∈ Z, implies that ω ∈ AR. Consider the cylinder set

D :=
(
BR\E(H)

)
(ω) =

{
F

∣∣∣∣ F �
(

E(BR)\E(H)
)

= ω �
(

E(BR)\E(H)
)}

.

Let µN be the uniform spanning tree measure on B∗N . By definition,

WSF
(
H(ω)

∣∣ D) = lim
N→∞

µN
(
H(ω)

∣∣ D)
and

WSF(AR | D) = lim
N→∞

µN (AR | D) .

Since ω ∈ CR and
√

1−WSF(AR) < ε, it is clear that WSF(AR | D) > 1−ε
WSF(D)2 ≥ 1 − ε. Let

N > R be so large that ∣∣WSF
(
H(ω)

∣∣ D)− lim
N→∞

µN
(
H(ω)

∣∣ D)∣∣ < ε
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2.1 The Essential Spanning Forest Process

and µN (AR | D) > 1− ε. Since

µN
(
H(ω) | D

)
= µN (AR | D)µN

(
H(ω)|AR ∩D

)
+ µN (ACR | D)µN

(
H(ω)|ACR ∩D

)
,

and so one has ∣∣µN(H(ω) | D
)
− µN

(
H(ω) | AR ∩D

)∣∣ < 2ε .

Given AR ∩D, the configurations inside H and outside BR are µN -independent. Since ω ∈ AR,
it follows that

µN
(
H(ω) | AR ∩D

)
= τ(H ∗ ω)−1 ,

and so ∣∣WSFN
(
H(ω) | D

)
− τ(H ∗ ω)−1

∣∣ < 3ε .

Therefore, ∣∣∣∣WSF

(
H (ω)

∣∣∣∣ ω �
(

E \E (H)
))
− τ (H ∗ ω)−1

∣∣∣∣ < 4ε

by (2.3). Since ε is arbitrary and ω is an arbitrary element of a set of measure 1, the result
follows.

Definition. Let A and B be random variables with state spaces A and B and joint distribution
µ(a, b). The joint entropy of A and B is defined by

H(A,B) := −
∑
a∈A

∑
b∈B

µ(a, b) logµ(a, b) .

Lemma 2.6. Let Y be a finite set and m be a positive integer. Write α := m/ |Y |. Suppose that
µ is a probability measure on {0, 1}Y ×{0, 1}Y that is supported on the set of pairs (ω1, ω2) with
|ω1∆ω2| ≤ m. Let µ1 and µ2 be the coordinate marginals of µ. Then

∣∣H(µ1)−H(µ2)
∣∣ ≤ log

m∑
k=0

(
|Y |
k

)
≤ |Y |

(
− α logα− (1− α) log(1− α)

)
.

The proof mainly follows [10, Lemma 6.2].

Proof: Let A and B be binary random vectors with distribution µ1 respectively µ2. Define the
random vector C with Ci := 1{Ai 6=Bi} and distribution µ3 which puts equal mass to every allowed
state of C. Then H(A) ≤ H(A,C) = H(B,C) ≤ H(B)+H(C). By symmetry

∣∣H(A)−H(B)
∣∣ ≤

H(C). By definition of µ3, H(C) = log
∑m

k=0

(|Y |
k

)
. For the last inequality see [8, Bollobas

p.11].

Lemma 2.7. Let H be a finite connected graph and W be a subset of vertices of H. Let H ′

be any graph obtained from H by making certain identifications of the vertices in W with each
other. When α := (|W | − 1)/|E(H)|, then

| log τ(H)− log τ(H ′)| ≤ |E(H)|
(
− α logα− (1− α) log(1− α)

)
.

Proof: Let µ and µ′ be the uniform spanning tree measure on H respectively H ′. It follows from
Feder and Mihail [14] that µ stochastically dominates µ′. By Strassen’s theorem [36] this means
that there is a probability measure on pairs (T, T ′) such that the law of T is µ, the law of T ′

is µ′ and T ⊇ T ′ a.s. In [27, Exercise 4.5., Proposition 4.5., Lemma 10.3., Exercise 10.7. and
Theorem 10.4.] the results of the cites above are proved in the setting of graph theory. Now
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2 Dynamical Systems That Are Related To Spanning Trees

|E(T )| = |V(H)| − 1 and |E(T ′)| = |V(H ′)| − 1. It follows that a.s.

|E(T )∆ E(T ′)| = |V(H)| − |V(H ′)| ≤ |W | − 1 .

Lemma 2.6 deduces that

|H(µ)−H(µ′)| ≤ |E(H)|
(
− α logα− (1− α) log(1− α)

)
.

The inequality now follows from H(µ) = log τ(H) and H(µ′) = log τ(H ′).

Lemma 2.8. Let G be an infinite quasi-transitive unimodular connected graph and H be a finite
connected subgraph of G. Write α := (|∂VH| − 1) / |E (H)|. For WSF-a.e. F one gets∣∣ log WSF

(
H(F)

)
− log τ(H)−1

∣∣ ≤ |E(H)|
(
− α logα− (1− α) log(1− α)

)
.

This result follows from Lemma 2.5 and Lemma 2.7. For details consult [25, Lemma 5.5].

Proof of 2.4: By definition of ρ, the graphs Gn have a random weak limit (G; ρ). And (2.1)
is a consequence of 1.4. To prove (2.2) choose a ball BR(o) of vertices and edges such that
ΓBR(o) = G. Let

Γn :=
{
γ ∈ Γ

∣∣ γBR(o) ∩Gn 6= ∅
}

and put
G′n := ΓnBR(o) .

Since 〈Gn〉 is a Følner sequence in G, it follows that 〈Γn〉 is a Følner sequence in Γ. Therefore,

H(WSF,Γ) = − lim
n→∞

|Γn|−1 log WSF
(
G′n(F)

)
in L1(WSF) by the generalised Shannon-McMillan Theorem of Kieffer [22]. Since Γ acts freely
on V one gets

lim
n→∞

|V(G′n)|/|Γn| = I .

Hence,
H(WSF,Γ) = − lim

n→∞
I|V(G′n)|−1 log WSF

(
G′n(F)

)
(2.4)

in L1(WSF). Every quasi-transitive amenable graph is unimodular (see [31, 35] or [5]). The
result now follows from Lemma 2.8 together with (2.4).

Remark 2.9. Sheffield [34] showed that WSF is the unique measure of maximal entropy.

2.2 Dimer Model

Reference(s): [29] and [10, section 7]

A dimer cover or domino tiling or one factor of a graph G is a partition of the vertices
into sets of size 2, where each set contains two adjacent vertices. From another point of view, a
dimer covering is a subset of edges, which covers every vertex exactly once, i.e. every vertex is
endpoint of exactly one edge.

2.2.1 Connection Between ESFP And Dimer Covers

Dual graphs are necessary to develop a correspondence between ESFP of a planar graph and
domino tilings of a related graph: Let G be a locally finite planar graph such that every face is
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2.2 Dimer Model

bounded by finitely many edges (including the exterior face). A graph with these properties is
said to be nice. The dual graph G∗ is obtained from the nice graph G by putting a vertex at
each face of G and joining two such vertices by an edge if their corresponding faces in G share
an edge.
Next define the superposition G̃ of G and G∗ by the following properties: The vertex set of G̃

is the union of V(G), V(G∗) and E(G) (the "vertex set" E(G) is the set of intersections of E(G)
and E(G∗)). There is an edge of G̃ joining v ∈ V(G) and e ∈ E(G) if and only if e is incident
to v. Likewise v ∈ V(G∗) and e ∈ E(G) are joined by an edge if v is a vertex of the edge in G∗

identified with e. May someone should think of the edge set of G̃ as a subset of "broken" edges
of the original edge sets.
If T is a subgraph of G, let T ∗ be the subgraph of G∗ so that e∗ ∈ T ∗ if and only if e 6∈ T .

This construction is crucial for the connection below.
A directed essential spanning forest is a spanning forest together with a choice of root

for each component, where only the ends of the components are allowed as roots. Edges of a
directed spanning forest are oriented toward this root. If F and F∗ are dual essential spanning
forests of a nice infinite planar graph, then a pair (F,F∗) is called directed if a root has been
chosen of each component of F and of F∗.
Let G be a nice infinite planar graph G; a bijection between domino tilings of G and directed

pairs of essential spanning forests of G and G∗ is described as follows: If (F,F∗) is a directed
pair, then let Ψ(F,F∗) be the dimer cover A ⊆ E(G̃) such that:

1. The edge from v ∈ V(G) to e ∈ E(G) is in A if and only if e ∈ F and ve is oriented away
from v, and

2. the edge from v∗ ∈ V(G∗) to e ∈ E(G∗) = E(G) is in A if and only if e ∈ F∗ and is oriented
away from v∗.

It is easy to see that A is a dimer cover: Each vertex v ∈ V(G) is in precisely one edge of A,
corresponding to the unique edge in F out of v; similarly each v∗ ∈ V(G∗) is in a unique edge of
A; and each e ∈ E(G) is in a unique edge of A since e is in precisely one of F,F∗.
Conversely, if A ⊂ E(G) is a dimer cover, then each edge f ∈ A connects some e ∈ E(G)

either to some v ∈ V(G) or some v∗ ∈ G∗. Let Φ(f) be the edge e in either G or G∗ accordingly
and orient it away from v or v∗. The collection of all {Φ(f): f ∈ A} is the union of a subgraph
G′ of G and the corresponding dual subgraph G′∗ of G∗. If G′ would have a cycle, then inside
the cycle is a component of G′∗. Starting anywhere in this component of G′∗ and following the
orientation creates a cycle since the component is finite. This cycle encloses a cycle of G′ inside
the original cycle. But this cannot continue forever because of the finite-conditions on G which
are required at the beginning of the chapter, whence G′ (and G′∗) has no cycle. Thus G′ and
G′∗ are essential spanning forests with each component directed toward a root.
Let Π be the map that takes a directed pair of ESFs (F,F∗) and produces the undirected ESF

F, by forgetting about F∗ and about the arrows. So the following correspondence was established:

Dimer Cover
Φ−→
←−
Ψ

Directed ESF’s Π−→ ESF’s .

2.2.2 Uniform Measure Of Maximal Entropy

Fix a Z2-periodic planar graph G, so the vertex set is Z2. There is a well defined map Ψ ◦ Π−1

from one-ended spanning trees of G to domino tilings of G̃ (which is also Z2 periodic).
The uniform spanning forest measure WSF on G is supported on the set of one-ended trees

(see Pemantle [29]) so the preceding correspondence gives a transported measure µ on domino
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2 Dynamical Systems That Are Related To Spanning Trees

tilings of G. In the remainder of this chapter H(.) will always denote the Kolmogorov-Sinai
entropy per vertex.

Theorem 2.10. The measure µ is the unique measure of maximal entropy among all shift invari-
ant probability measures on domino tilings and its entropy per fundamental domain is H(WSF).

Proof: Since µ is well defined and Z2-invariant, it remains to prove the assertions about its
entropy. Suppose that ν̃ is a translation invariant probability measure on domino tilings of
G̃. This will be transported to a measure ν on essential spanning forests of G by ν(B) =
ν̃(Ψ(Π−1(B))).
First it will be shown that the Kolmogorov-Sinai-entropy per fundamental domain is preserved.

Therefor, note that ν is translation invariant so with probability 1 the components of the essential
spanning forest have one or two ends (see [9]). There is only one way that a one-ended tree may
be covered with dominoes and there are two ways a two-ended tree may be covered. Thus the
ambiguity in determining the domino tiling is one bit for a two-ended component in the forest in
G plus one bit for each two-ended component in the dual spanning forest of G∗. Since there are
O(n) such components in every box B(n) of side length n which has on the order of n2 vertices,
the entropy of ν and ν̃ are the same since

1

|Bn|
H(ν̃ � Bn) ≤ 1

|Bn|
H(ν � Bn) +O

(
log n

n2

)
.

At this point the paper of Sheffield [34] must be cited again. Now H(ν̃) per fundamental domain
= H(ν) ≤ H(WSF) = H(µ) per fundamental domain with equality only when ν = WSF. But
WSF is concentrated on one-ended spanning trees [see [29]] and hence µ is the only measure
which transports to WSF, which establishes that µ is the unique measure of maximal entropy
on domino tilings.

The entropy per fundamental domain of the domino tiling on G̃ is the same as the entropy
per vertex of the essential spanning forest process on G. From the construction of G̃ one gets
1+NE +NF for the number of vertices per fundamental domain, where and NE is the number of
edges and NF the number of faces per fundamental domain. To convert the entropy per vertex
formula of the spanning forest process to the entropy per vertex of the domino process on G it
must be multiplied by 1/(1+NE +NF ). If G is the nearest neighbour graph on Z2, then NE = 2
and NF = 1 and so the entropy per vertex of the dimer cover is H(µ) = h(Z2)/4.

2.3 Abelian Sandpile Model

Reference(s): [30] and [33]

After a short introduction to the abelian sandpile model (ASM) a one-to-one correspondence
on finite regions between recurrent configurations and rooted spanning trees will be given.

2.3.1 Basics

Let d ≥ 2 and Zd be the d-dimensional integer lattice and γ ≥ 2d. Let C = NZd be the height
configuration space and think of η ∈ C as a map η : Zd → N with the intuitive picture that
every vertex is occupied with a number of grains of sand or building bricks which form a sandpile
or tower.
Next a dynamical system on these height configurations will be introduced. Therefor, let

K ⊆ Zd be a nonempty set and denote byNK(n) the number of nearest neighbours (abbreviation:
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2.3 Abelian Sandpile Model

n.n.) of n ∈ K. The set Λγ = {0, 1, . . . , γ−1}Zd will be called the set of stable configurations.
Given a stable configuration, then add grains at uniformly randomly chosen vertices n. By adding
grains it could happen that η(n) ≥ γ and the system becomes unstable. If this happens, then
all unstable sites will topple. Let n be an unstable site of η the toppling rule Tn is a map C→ C
and acts as follows:

Tn(η)k =


ηk − γ if k = n

ηk + 1 if k,n are n.n. in K
ηk otherwise.

Note that at the boundary of K grains can be lost and for two different unstable sites m,n ∈ K,
Tm and Tn will commute. If unstable sites are created by toppling these will be toppled as
well. This procedure will, in general, lead to a stable configuration if K is finite or γ > 2d.
In both cases the system is dissipative. The addition of a grain at n and the relaxation of the
system afterwards will be expressed by an operator an; again these operators commute. Since
n is random one gets a Markov-process with state space Λγ . The set of recurrent configurations
will be denoted by R. The presented model is the so called abelian sandpile model (ASM).
There are many dynamical and algebraic aspects of the abelian sandpile model which could

be explored, but the discussion here will concentrate on the interface between the ASM and
spanning trees and the ASM and the Harmonic model, which will be introduced in Chapter 4.

2.3.2 Connection And Entropy

Let γ = 2d. The burning test: Given η ∈ Λ, now "burn" all vertices n with ηn ≥ NK(n). The
result is a stable configuration with vertex set K(1) ⊆ K. This procedure will be repeated until
K(i) = K(i+1). If K(i) = K(i+1) 6= ∅, then η fails the burning test and is not recurrent (see [28]).
Let G be a periodic graph. The graph G will be extended by adding an extra vertex z, which

will be called the root. The extended graph G∗ = (V∗,E∗) is then defined by adding extra edges
from the boundary sites to the root, for x ∈ ∂V , 2d−NV(x) edges go from x to the root.
Given a recurrent configuration, burning times will be assigned to every vertex in the following

way: Start with extending the graph by all vertices which are n.n. to a vertex in the boundary
of G and give them burning time 0. The burning time 1 is given to the boundary vertices which
can be burnt in the first step of the algorithm, burning time 2 is given to the vertices which
can be burnt after those, etc. The edges in the spanning tree are between sites with burning
time t and t + 1, with the interpretation that the site with burning time t + 1 receives his
fire from the neighbouring site with burning time t. In G∗ every vertex in V has exactly 2d
outgoing edges. In the case of ambiguity, i.e. t + 1 has more than one neighbour with burning
time t, the edge will be chosen according to a preference rule, depending on the height. This
means that the edges will be ordered, this order defines a preference (e.g. d = 1:left < right or
d = 2 west<south<east<north,...). Once a preference has been fixed, the new vertices will be
identified with the root z without deletion of edges. Given the spanning tree and the preference
rule, then one can reconstruct the height configuration. And so there is a bijection between R
and the set of wired spanning trees. Since the cardinality of R is equal to τ(G∗), the number
of recurrent configurations is obtained by using the Matrix-Tree-Theorem and so one gets the
following theorem:

Theorem 2.11 (Dhar’s formula).

|R| = det ∆G∗ [z] = det(2dI|V |×|V | −AG) .

The entropy per vertex of the ASM can be obtained easily by the results of this section and
Chapter 1.
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2.3.3 An Infinite Volume Measure For The ASM

Recall the results of [6, 29] stated in Remark 2.3.

Theorem 2.12. Let νM denote the measure on recurrent configurations RM , which puts equal
mass to every recurrent configuration in M ⊆ Zd. Then for all d ∈ N as M → Zd, νM → ν; in
the sense that, for all local functions f ,

lim
M↑Zd

νM (f)→ ν(f) .

Proof: Let M be a finite set in Zd, FM a rooted spanning tree on M and A = {n1,n2, . . . ,nk} a
finite set of vertices. The set Ā of vertices is obtained from A by adding all the n.n. of A. Suppose
M is big enough such that Ā ⊆M . Let ηn(M)(FM ) be the height of site n corresponding to the
rooted spanning tree FM .
If an infinite tree has just one end, then the height ηn(F) can be reconstructed. All paths

starting from A or Ā and going to infinity (the root) coincide from some point anc(A) on, this
means that anc(A) is a common ancestor of the set Ā.
Consider the subtree FM (A) of all descendants of anc(A). This is a finite tree, and the height

ηn is reconstructed from the lengths of the paths, from anc(A) to n and his n.n., and a preference
rule.
Let FM (A, η) be the edge configuration of the tree FM (A) corresponding to the height config-

uration ηA on A and V a fixed finite subset of Zd, then one has

νM (ηA) = µM
(
FM (A) = FM (A, η)

)
= µM

(
{FM (A) = FM (A, η)} ∩ {FM (A) ⊆ V }

)
= µM

(
{FM (A) = FM (A, η)} ∩ {FM (A) * V }

)
.

The indicator 1{FZd (A)⊆V } is local and so

lim sup
M↑∞

νM (ηA) ≤WSF
(
{FZd(A) = FM (A, η)} ∩ {FZd(A) ⊆ V }

)
+ WSF

(
{FZd(A) * V }

)
(2.5)

and

lim inf
M↑∞

νM (ηA) ≥WSF
(
{FZd(A) = FM (A, η)} ∩ {FZd(A) ⊆ V }

)
−WSF

(
{FZd(A) * V }

)
.

(2.6)

Therefore, since FZd(A) is finite WSF-a.s., one obtains from combining (2.5) and (2.6) and letting
V ↑ Zd:

lim
M↑∞

νM (ηA) = WSF
(
{FZd(A) = FM (A, η)}

)
.

So one finally gets a unique probability measure ν. Translation invariance for any v ∈ Zd:

lim
M↑Zd

νM (σvE) = lim
M↑Zd

νσ−vM (E) = lim
M↑Zd

νσM (E) = ν(E).

In dimension d > 4 the correspondence above fails because the components of the USF are not
connected. For a proof see [4] and the erratum [3].
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3 Algebraic Actions

Reference(s): [12]

In this chapter generalised shifts will be studied. These shifts with alphabet T have expansive
shift actions and symmetry groups Γ, which can be non-commutative. Algebraic properties of
the dual space of TΓ will be used to analyse the dynamics of these systems.

3.1 Introduction

Definition. Let Γ be a group and M a ring. The group ring M [Γ] of Γ over M is the set of
mappings f : Γ→M of finite support with sum γ 7→ (f + g)(γ) := f(γ) + g(γ) and convolution
γ 7→

∑
γ′γ′′=γ f(γ′)g(γ′′) with f, g ∈M [Γ]. The elements ofM [Γ] can be written as formal linear

combinations of elements of Γ, with coefficients in M . And so an element f ∈ M [Γ] can be
expressed as

∑
γ f(γ)γ.

Now let Γ be a countable group with identity element 1 and integral group ring Z[Γ]. Let

`∞(Γ) :=

{
w : Γ→ R : ‖w‖∞ = sup

γ∈Γ
w(γ) <∞

}
,

and denote by wγ the value w(γ) ∈ R, with w ∈ `∞(Γ) and γ ∈ Γ. For p ∈ [1,∞) set

`p :=

{
w ∈ `∞(Γ) : ‖w‖p :=

(∑
γ∈Γ

|wγ |p
)1/p

<∞
}
.

An element h ∈ `1(Γ) can be uniquely written as a convergent series

h =
∑
γ∈Γ

hγe(γ) ;

where e(γ) ∈ `1(Γ), for every γ ∈ Γ, is defined by

e(γ)γ′ :=

{
1 if γ = γ′

0 otherwise.

The multiplication or convolution in `1(Γ) takes the form

h · h′ =
∑
γ,γ′∈Γ

hγh
′
γ′e(γγ

′) =
∑
γ∈Γ

(∑
γ′∈Γ

hγ′h
′
γ′−1γ

)
e(γ) .

The involution h 7→ h∗ in `1(Γ) is defined by

h∗ =
∑
γ∈Γ

hγ−1e(γ) =
∑
γ∈Γ

hγe(γ
−1) .

27



3 Algebraic Actions

The integral group ring Z[Γ] can be viewed as subring of `1(Γ) by identifying
∑

γ∈Γ aγγ ∈ Z[Γ]
with

∑
γ aγe(γ).

The left shift action (γ,w) 7→ Lγ(w) and right shift action (γ,w) 7→ Rγ(w) of Γ on `∞(Γ)
are given by

(Lγw)γ′ = wγ−1γ′ (3.1)
(Rγw)γ′ = wγ′γ , (3.2)

for every w ∈ `∞(Γ) and γ, γ′ ∈ Γ.
These actions can be extended to (h,w) 7→ Lhw and (h,w) 7→ Rhw of `1(Γ) on `∞(Γ) by

setting

Lhw =
∑
γ∈Γ

hγLγw = h · w (3.3)

Rhw =
∑
γ∈Γ

hγRγw = w · h∗ , (3.4)

for every h ∈ `1(Γ), w ∈ `∞(Γ) and γ ∈ Γ.
For v ∈ `p(Γ) and w ∈ `q(Γ) with 1

p + 1
q = 1, 1 ≤ p, q ≤ ∞, set

〈v, w〉 =
∑
γ∈Γ

vγwγ .

A sequence vn in `p(Γ) converges in the weak*-topology to v if and only if limn→∞〈vn, w〉 = 〈v, w〉
for all w ∈ `q(Γ).
Before defining the dynamical system the following identities will be noted:

〈v,Rhw〉 = 〈v, w · h∗〉 = 〈v · h,w〉 , (3.5)
〈v,Lhw〉 = 〈v, h · w〉 = 〈h∗ · v, w〉 . (3.6)

Definition. Let Γ be a countable discrete group. An algebraic Γ-action is a homomorphism
α : γ 7→ αγ from Γ into the group Aut(X) of continuous automorphisms of a compact abelian
group X.

Let X be the compact abelian group TΓ under point-wise addition (that are maps from Γ to
T = R /Z). Under the pairing

〈f, x〉 = e2πi
∑
γ∈Γ fγxγ ,

where f =
∑

γ∈Γ fγγ ∈ Z[Γ] and x = (xγ) ∈ X, the Pontryagin dual X̂ of X can be identified
with the group ring Z[Γ]. The left and right shift actions L and R of Γ on TΓ are defined
analogously to (3.1) and (3.2); and just as in (3.3) and (3.4) these actions will be extended to
homomorphisms Lf and Rf to actions of Z[Γ] on X with f ∈ Z[Γ].
For fixed f ∈ Z[Γ] set

Xf = ker(Rf ) = {x ∈ X : Rfx = 0} = ̂Z[Γ]/Z[Γ]f

and denote by
αf = L|Xf

the restriction of the Γ-action L on X to Xf .
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3.2 Entropy

3.2 Entropy

An algebraic Γ-action on a compact abelian group X is expansive if there exists an open
neighbourhood U of the identity 0X = 0 in X with

⋂
γ∈Γ α

γ(U) = 0.
Next a characterization of the expansive actions αf will be given, therefor a few definitions

will be needed. Set

`∞(Γ,Z) = {w ∈ `∞(Γ) : wγ ∈ Z for every γ ∈ Γ} .

The map ρ : `∞(Γ)→ X given by

ρ(w)γ = wγ (mod 1) ,

for every w ∈ `∞(Γ) and γ ∈ Γ, is a continuous surjective group homomorphism with

ρ ◦ Lγ = Lγ ◦ ρ, ρ ◦ Rγ = Rγ ◦ ρ ,

for every γ ∈ Γ. Define the linearization of Xf by

Wf = ρ−1(Xf ) = R−1
f

(
`∞(Γ,Z)

)
= {w ∈ `∞(Γ) : Rfw ∈ `∞(Γ,Z)} ;

which is weak*-closed and a L invariant subgroup with ker(ρ) = `∞(Γ,Z) ⊂Wf .
For every h ∈ `1(Γ) and 1 ≤ p ≤ ∞, set

Kp(h) = {g ∈ `p(Γ) : Rhg = 0}, Vp(h) = Rh(`p(Γ)) .

Theorem 3.1. Let Γ be a countable group and f ∈ Z[Γ]. The following conditions are equivalent

1. The action αf is expansive;

2. K∞(f) = {0};

3. f is invertible in `1(Γ).

Proof: Let δ be a metric on T defined by

δ(s1, s2) = min{|s̃1 − s̃2| : s̃i ∈ R si = s̃i(mod 1) for i = 1, 2} .

(2 ⇒ 1) Assume that there exists a nonzero element v ∈ K∞(f). For every c ∈ R one gets
ρ(cv) ∈ Xf . So |c| can be chosen sufficiently small such that for every ε > 0 there exists a
nonzero element x(ε) ∈ Xf with δ(0, x(ε)

γ ) < ε for every γ ∈ Γ. And so αf is nonexpansive.
(1 ⇒ 2) If αf is nonexpansive, then there exists a nonzero element x ∈ Xf with δ(0, xγ) <
(3‖f‖1)−1 for every γ ∈ Γ. Next choose an element x̃ ∈ ρ−1({x}) ⊂ Wf = ρ−1(Xf ) with
‖x̃γ‖ < (3‖f‖1)−1, for every γ ∈ Γ. By definition of Xf and Rf x̃ ∈ `∞(Γ,Z), and the smallness
of the coordinates of x̃ one gets x̃ ∈ K∞(f).
(2 ⇒ 3) If K∞(f) = {0} then V1(f∗) is dense in `1(Γ) by (3.5) and the Hahn-Banach theorem.
The group of units in `1(Γ) is open [11, Lemma 2.1.5], and since V1(f∗) is dense in `1(Γ) it
must intersect with the open subset of units and therefore contains a unit. Hence there exists a
g ∈ `1(Γ) with g · f = 1 and so f is invertible in `1(Γ) by [21, p. 122]. Sketch of the proof of
the last argument: Let H be the closure of C[Γ] and A be the closure of {Lf}f∈C[Γ] w.r.t. the
operator norm in B(H). Then a trace tr on the group-C∗-algebra A will be defined. It can be
shown that if h ∈ C[Γ] is an idempotent, then tr(h) = 0 ⇒ h = 0 and tr(h) = 1 ⇒ h = 1. The
result follows by setting h = f · g which is an idempotent because g · f = 1 and the defining
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3 Algebraic Actions

property tr(g · f) = tr(f · g) of a trace.
(3⇒ 2) If f is invertible in `1(Γ), then Rf is invertible with inverse Rf−1 .

Definition. Let α be an algebraic action of a countable discrete group Γ on a compact abelian
group X with identity element 0. A point x ∈ X is a α-homoclinic if limγ→∞ α

γx = 0, i.e. for
every neighbourhood U of 0 in X there is a finite subset F of Γ with αγx ∈ U for all γ ∈ Γ\F .

The set Hα(X) of all α-homoclinic points in X is a subgroup of X, called the homoclinic
group of α. A homoclinic point x ∈ X is called fundamental if the homoclinic group Hα(X)
is generated by the orbit {αγx : γ ∈ Γ} of x.

Theorem 3.2. Let Γ be a countable group and f ∈ Z[Γ] an element which is invertible in
`1(Γ). If wH

f = f−1 ∈ `1(Γ) and ξ = ρ ◦ RwH
f

: `∞(Γ,Z) → Xf , then ξ is a surjective group
homomorphism with the following properties.

1. ker(ξ) = Rf (`∞(Γ,Z));

2. ξ ◦ Lγ = αγf ◦ ξ for every γ ∈ Γ

3. ξ is continuous in the weak*-topology on closed, bounded subsets of `∞(Γ,Z).

Proof: Set w̃ = (f∗)−1 = (f−1)∗. By defintion, Rf w̃ = w̃ · f∗ = e(1) and hence w̃ ∈ Wf and
xHf = ρ(w̃) ∈ Xf . Since w̃ ∈ `1(Γ), xHf ∈ Hαf (Xf ).
The L-invariance of Wf implies that RwH

f
h = Lhw̃ ∈ Wf , for every h ∈ Z[Γ]. Since Wf is

weak*-closed and RwH
f
is weak*-continuous on bounded subsets of `∞(Γ,Z) it follows that

RwH
f
(`∞(Γ,Z)) ⊆Wf .

For proving RwH
f
(`∞(Γ,Z)) = Wf fix w ∈ Wf , set v = Rfw ∈ `∞(Γ,Z) and obtain that w =

RwH
f
v. The group homomorphism

ξ = ρ ◦ RwH
f

: `∞(Γ,Z)→ Xf

is thus surjective, and the equivariance of ξ is obvious and (1.) follows by the definition of ρ. If
B ⊂ `∞(Γ,Z) is a closed, bounded subset, then the weak*-topology coincides with the topology
of coordinate-wise convergence, and ξ is obviously continuous in that topology.

Let Γ be a countable discrete group and K ⊂ Γ a finite set. A finite set Q ⊂ Γ is left
(K, ε)-invariant if ∑

γ∈K
|γQ∆Q|/|Q| < ε ,

and right (K, ε)-invariant if ∑
γ∈K
|Qγ∆Q|/|Q| < ε .

If Q satisfies both these conditions it is (K, ε)-invariant.
A sequence (Qn, n ≥ 1) of finite subsets of Γ is a left Følner sequence if there exists, for

every finite subset K ⊂ Γ and every ε > 0, an N ≥ 1 such that Qn is left (K, ε)-invariant for
every n ≥ N . The definitions of right and two-sided Følner sequences are analogous. The group
Γ is amenable if it has a left Følner sequence.
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3.2 Entropy

Definition. Let X be a compact topological group with a left X-invariant metric δ. Let Γ be an
amenable group that operates form the left on XΓ by Lγ . Let Y be a closed Γ-invariant subset
of X. For F ⊂ Γ, a subset E ⊂ Y is called (F, ε)-separated if for all x, y ∈ E with x 6= y
there exists a γ ∈ F with δ(xγ , yγ) ≥ ε. Denote by sF (ε) the maximum of the cardinalities of all
(F, ε)-separated subsets. The topological entropy of L is defined by

h := hsep := h(L|Y ) := lim
ε→0

lim sup
n→∞

1

|Fn|
log sFn(ε) .

Definition. Let Γ′ ⊂ Γ and denote by FixΓ′(Xf ) = {x ∈ Xf : αγfx = x for every γ ∈ Γ′} the
subgroup of Γ′-invariant points in Xf .

The subgroup FixΓ′(Xf ) is Γ′-invariant, and FixΓ′(Xf ) is Γ-invariant if and only if Γ′ is a
normal subgroup of Γ.
Set

`∞(Γ)Γ′ = {w ∈ `∞(Γ) : Lγw = w for every γ ∈ Γ′} ,

WΓ′
f = Wf ∩ `∞(Γ)Γ′ and

`∞(Γ,Z)Γ′ = `∞(Γ,Z) ∩ `∞(Γ)Γ′ .

Definition. A countable group Γ is said to be residually finite if there is a sequence Γn of
normal subgroups of finite index with ⋂

n6=1

Γn = {1} .

Let Γ be a countable residually finite discrete group. If (Γn, n ≥ 1) is a sequence of finite index
normal subgroups in Γ, then

lim
n→∞

Γn = {1}

will denote the fact that for every finite setK ⊂ Γ there exists anN ≥ 1 with Γn∩(K−1K) = {1},
for every n ≥ N .

Theorem 3.3. Let Γ be a countable residually finite group, f ∈ Z[Γ]. For every subgroup Γ′ ⊂ Γ
of finite index

FixΓ′(Xf ) = ξ(`∞(Γ,Z)Γ′) ∼= `∞(Γ,Z)Γ′/Rf (`∞(Γ,Z)Γ′) .

Proof: From the equivariance of ξ it is clear that ξ(`∞(Γ,Z)Γ′) ⊆ FixΓ′(Xf ). Conversely, if
x ∈ FixΓ′(Xf ), then there exists a w ∈WΓ′

f ⊆ `∞(Γ)Γ′ with ρ(w) = x, and the point v = Rfw ∈
`∞(Γ,Z)Γ′ satisfies that ξ(v) = x. This proves that ξ(`∞(Γ,Z)Γ′) = FixΓ′(Xf ) and Theorem 3.2
guarantees that ker(ξ) ∩ `∞(Γ,Z)Γ′ = Rf (`∞(Γ,Z)Γ′). The last equation is obvious.

Corollary 3.4. If |Γ′\Γ| < ∞, where Γ′\Γ denotes the right coset space, then |FixΓ′(Xf )| =
|det(Rf |`∞(Γ,Z)Γ′ )|.

Proof: If the right coset space Γ′\Γ is finite then `∞(Γ)Γ′ ∼= `(Γ′\Γ,R). Let Rf |`∞(Γ,Z)Γ′ be
the restriction to `∞(Γ,Z)Γ′ . Then Rf (`∞(Γ,Z)Γ′) ⊆ `∞(Γ,Z)Γ′ and the absolute value of the
determinant | det(Rf |`∞(Γ,Z)Γ′ )| is equal to |`∞(Γ,Z)Γ′/Rf (`∞(Γ,Z)Γ′)|.

Definition. Let Γ′ ⊂ Γ be a subgroup with finite index. A finite subset Q ⊂ Γ is said to be a
fundamental domain of the right coset space Γ′\Γ if {γQ : γ ∈ Γ′} is a partition of Γ.
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3 Algebraic Actions

Remark 3.5. Since αf is expansive, ker(Rf ) = 0 by Theorem 3.1, and so there is a γ ∈ Γ
with δ(xγ , xγ′) ≥ (3‖f‖1)−1 for every pair of distinct points x, x′ ∈ Xf . For Γ′ ⊂ Γ and Q a
fundamental domain one gets that FixΓ′(Xf ) is (Q, (3‖f‖1)−1)-separated.

Theorem 3.6. [12, Proposition 5.5] and[37] Let Γ be a countable residually finite amenable group
and let (Γn, n ≥ 1) be a sequence of finite index normal subgroups with limn→∞ Γn = {1}. Then
there exists, for every finite subset K ⊂ Γ and every ε̄ > 0, an integer M = M(K, ε̄) ≥ 1 such
that every Γn with n ≥ M has a (K, ε̄)-invariant fundamental domain Qn of the coset space
Γ(n) = Γn\Γ.

Corollary 3.7. [12, Corollary 5.6] Let Γ be a countable residually finite amenable group and let
(Γn, n ≥ 1) be a sequence of finite index normal subgroups with limn→∞ Γn = {1}. Then there
exists a Følner sequence (Qn, n ≥ 1) such that Qn is a fundamental domain of Γ(n) for every
n ≥ 1.

Lemma 3.8. For x ∈ Xf there exists an element v ∈ `∞(Γ,Z) with ξ(v) = x and ‖v‖∞ ≤
‖f‖1/2.

Proof: Choose w ∈ Wf ⊂ `∞(Γ) with ρ(w) = x and −1/2 ≤ wγ ≤ 1/2 for every γ ∈ Γ. Then
v = Rfw ∈ `∞(Γ,Z), ‖v‖∞ ≤ ‖f‖1/2 and ξ(v) = x by Theorem 3.2.

Theorem 3.9. Let Γ be a countable residually finite amenable group and let (Γn, n ≥ 1) be a
sequence of finite index normal subgroups with limn→∞ Γn = {1}. If f ∈ Z[Γ], and if the algebraic
Γ-action αf on Xf is expansive, then

h(αf ) = lim
n→∞

1

|Γ(n)|
log |FixΓn(Xf )| = lim

n→∞

1

|Γ(n)|
log
∣∣`∞(Γ,Z)Γn/Rf (`∞(Γ,Z)Γn)

∣∣
= lim

n→∞

1

|Γ(n)|
log |det(Rf |`∞(Γ,Z)Γn )| .

Proof: Choose a Følner sequence (Qn, n ≥ 1) in Γ such that Qn is a fundamental domain of Γ(n),
for every n ≥ 1, this can be done because of Corollary 3.7. Theorem 3.3 and Corollary 3.4 show
that there exists, for every n ≥ 1, a (Qn, (3‖f‖1)−1)-separated set of cardinality

|FixΓn(Xf )| = |`∞(Γ,Z)Γn/Rf (`∞(Γ,Z)Γn | = |det(Rf |`∞(Γ)Γn )| .

Since (Qn, n ≥ 1) is a Følner sequence and |Qn| = |Γ(n)| this implies that

h(αf ) ≥ lim sup
n→∞

1

|Qn|
log |FixΓn(Xf )| , (3.7)

by the definition of h.
Conversely, let δ > 0, ε < δ/3, and let Fε be a finite symmetric set with

∑
γ∈Γ\Fε |w

H
γ | <

ε/‖f‖1. The sets Pn = Qn ∩
⋂
γ∈Fε Qnγ, n ≥ 1, form a Følner sequence with limn→∞

|Pn|
|Qn| = 1.

Fix n ≥ 1 and choose a maximal set Sn,δ ⊂ Xf which is (Pn, δ)-separated. For every x ∈ Sn,δ
there is a w(x) ∈ Wf ⊂ `∞(Γ) with ‖w(x)‖∞ ≤ ‖f‖1/2 and ρ(w(x)) = x by Lemma 3.8 and
write v(x) ∈ `∞(Γ,Z)Γn for the unique point with v(x)γ = (Rfw(x))γ for every γ ∈ Qn. This
choice of Fε implies that the points {ξ(v(x)) : x ∈ Sn,δ} ⊂ FixΓn(Xf ) are (Pn, δ/3)-separated
and therefore distinct, Theorem 3.3 shows that |Sn,δ| ≤ |FixΓn(Xf )|. Since (Pn, n ≥ 1) is Følner
sequence and limn→∞

|Pn|
|Qn| = 1 this implies that

h(αf ) = lim
n→∞

1

|Pn|
log |Sn,δ| ≤ lim inf

n→∞

1

|Qn|
log |FixΓn(Xf )| . (3.8)
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3.3 Fuglede-Kadison-Determinant Entropy Formula II

The theorem follows by combining (3.7) and (3.8).

3.3 Fuglede-Kadison-Determinant Entropy Formula II

Let `p(Γ,C) denote the complex `p-space of Γ for 1 ≤ p ≤ ∞ with its conjugate linear involution
w 7→ w∗ given by (w∗)γ = wγ−1 , γ ∈ Γ. The group von Neumann algebra NΓ of a discrete
group Γ can be defined as the algebra of left Γ-equivariant bounded operators of `2(Γ,C) to itself.
The homomorphism of C-algebras with involution:

R : `1(Γ,C)→ NΓ

mapping f to the operator Rf with Rf (v) = v · f∗ is injective because Rf (e(1)) = f∗. The von
Neumann trace on NΓ is the linear form

trNΓ : NΓ→ C

mapping A to trNΓ(A) = (A(e(1)), e(1)).
The trace is faithful in the sense that trNΓA = 0 for a positive operator A in NΓ implies that

A = 0. Moreover trNΓ vanishes on commutators and satisfies the estimate | trNΓA| ≤ ‖A‖. On
`1(Γ,C) it is given by trNΓ(w) = w(1).
The Fuglede-Kadison determinant DetNΓ of A ∈ (NΓ)× is defined as in Chapter 1. If the

group Γ is finite one has NΓ = C[Γ] and

DetNΓA = | detA|1/|Γ| (3.9)

by [24, Examples 1.3., 2.5., 3.12.].

Theorem 3.10. Let Γ be a countable discrete amenable and residually finite group and f ∈ Z[Γ]
which is invertible in L1(Γ). Then

h(f) = logDetNΓf .

Let Γ be a countable residually finite discrete group and let (Γn, n ≥ 1) be a sequence of finite
index normal subgroups with limn→∞ Γn = {1}.
For f in `1(Γ,C) the bounded operator Rf : `2(Γ,C) → `2(Γ,C) given by right convolution

with f∗ satisfies the norm estimate
‖Rf‖ ≤ ‖f‖1 . (3.10)

The group Γ acts via L on `∞(Γ,C) and so there is an isomorphism of finite dimensional C-vector
spaces

`∞(Γ,C)Γn ∼= `∞(Γ(n),C)

given by viewing left Γn-invariant functions on Γ as functions on Γ(n). Since Rf is left Γn-
equivariant it induces an endomorphism of `∞(Γ,C)Γn and hence an endomorphism of `∞(Γ(n),C) =
C[Γ(n)] = `2(Γ(n),C) which will be denoted by:

R(n)
f : `2(Γ(n),C)→ `2(Γ(n),C) .

Consider the map:
`1(Γ,C)→ `1(Γ(n),C) (3.11)
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3 Algebraic Actions

given by sending f : Γ→ C to the function f (n) : Γ(n) → C defined by

f (n)(δ) =
∑
γ∈δ

f(γ) ,

for all congruence classes in δ in Γ(n). Clearly, (3.11) is a homomorphism of C-algebras with
involution such that ‖f (n)‖1 ≤ ‖f‖1. And so

R(n)
f = Rf (n) : `2(Γ(n),C)→ `2(Γ(n),C) .

By the estimate (3.10) applied to f (n) and Γ(n) one gets ‖Rf (n)‖ ≤ ‖f (n)‖1. Using the last
estimate one gets for all n ≥ 1 that

‖R(n)
f ‖ ≤ ‖f‖1 .

From the definition of R(n)
f the relation R(n)

fg = R(n)
f R(n)

g follows. Hence R(n)
f is invertible if f is

invertible in `1(Γ,C) and one gets (R(n)
f )−1 = R(n)

f−1 and

‖(R(n)
f )−1‖ ≤ ‖f−1‖1 for f in `1(Γ,C)× and all n ≥ 1 .

By equation (3.9)

log DetNΓ(n)f (n) =
1

|Γ(n)|
log |detRf (n) | =

1

|Γ(n)|
log |det(Rf |`∞(Γ,C)Γn )| .

Theorem 3.11. Let Γ be a countable discrete residually finite group and (Γn, n ≥ 1) a sequence
of finite index normal subgroups with limn→∞ Γn = {1}. If f in `1(Γ,C)×, then

DetNΓf = lim
n→∞

DetNΓ(n)f (n) .

Proof: Because of the relation (ff∗)(n) = f (n)f (n)∗ the assertion means:

trNΓ logRg = lim
n→∞

trNΓ(n) logRg(n)

for g = ff∗ in `1(Γ,C)×. But Rg = RfR∗f and Rg(n) = Rf (n)R∗f (n) are positive operators on
`2(Γ,C). By the remarks just above the theorem applied to g and g−1 instead of f it follows
that the spectra σ(Rg) and σ(Rg(n)) lie in the closed interval I = [‖g‖−1

1 , ‖g‖1]. Fix ε > 0. By
the Weierstrass approximation theorem there exists a real polynomial Q such that

sup
t∈I
| log t−Q(t)| ≤ ε .

Since the spectra of Rg and Rg(n) lie in I it follows that

‖ logRg −Q(Rg)‖ ≤ ε and ‖ logRg(n) −Q(Rg(n))‖ ≤ ε .

Using the estimate | trNΓA| ≤ ‖A‖ one has:

| trNΓ logRg − trNΓ(n) logRg(n) |
≤ | trNΓ(logRg −Q(Rg))|+ | trNΓQ(Rg)− trNΓ(n) Q(Rg(n))|+ | trNΓ(n)(logRg(n) −Q(Rg(n)))|
≤ ‖ logRg −Q(Rg)‖+ | trNΓQ(Rg)− trNΓ/Γn Q(Rg(n))|+ ‖ logRg(n) −Q(Rg(n))‖

≤ 2ε+ | trNΓQ(g)− trNΓ(n) Q(g(n))| .
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3.3 Fuglede-Kadison-Determinant Entropy Formula II

The formula is a consequence of the following Lemma 3.12.

Lemma 3.12. For any f in `1(Γ,C) and any complex polynomial Q(t) the following limit holds

trNΓQ(f) = lim
n→∞

trNΓ(n) Q(f (n)) .

Proof: Since Q(f) is in `1(Γ,C) and Q(f)(n) = Q(f (n)) it suffices to prove the assertion for
Q(t) = t, i.e.

trNΓ f = lim
n→∞

trNΓ(n) f (n) ,

for all f in `1(Γ,C). Writing f =
∑

γ fγe(γ), one gets f (n) =
∑

γ fγe(γ) where γ = Γnγ. Hence,

trNΓ f = f1 and trNΓ(n) f (n) =
∑
γ∈Γn

fγ .

Fix some ε > 0. If, f is in `1(Γ,C), then
∑

γ∈Γ |fγ | < ∞. Hence there is a finite subset K of Γ
with 1 ∈ K and so one gets

∑
γ∈Γ\K |fγ | < ε. Since limn→∞ Γn = {1} there is an index N ≥ 1

such that Γn ∩ K−1K = {1} for all n ≥ N . Since 1 ∈ K it follows that Γn ∩ K = {1} for all
n ≥ N as well. For n ≥ N the following estimate holds:

| trNΓ f − trNΓ(n) f (n)| = |f1 −
∑
γ∈Γn

fγ | ≤
∑

γ∈Γn\{1}

|fγ | ≤
∑

γ∈Γ\K

|fγ | < ε .

Proof of Theorem 3.10: The theorem follows by combining the results of Theorem 3.1, Theorem
3.9 and Theorem 3.11.

At the end of this chapter the case Γ = Zd will be regarded. An element n ∈ Zd acts
isometrically on L2(Td) by pointwise multiplication with the function Td → C which maps
(z1, z2, . . . , zd) to (zk1

1 , zk2
2 , . . . , zkdd ). The Fourier transform provides an isometric Zd-equivariant

isomorphism of Hilbert spaces F : `2(Zd)→ L2(Td).

Definition. For every n = (n1, . . . , nd) ∈ Zd and t = (t1, . . . , td) ∈ Td let 〈n, t〉 =
∑d

i=1 niti.
The Fourier transform of f ∈ C[Zd] is given by

F(f)(t) =
∑
n∈Zd

fne
2πi〈n,t〉 .

Let f ∈ L∞(Td) and define an Zn-equivariant operator Mf : L2(Td) → L2(Td) which sends
g ∈ L2(Td) to g · f . And so one obtains an isomorphism

L∞(Td)
∼=−→ N Zd .

The trace trN Zd can be rewritten as

trN Zd(A) = (A(e(1)), e(1)) =

∫
Td
F(A(e(1))) dµ .

If f ∈ C[Zd], then F(Rf (0)) = F(f∗) = f and so one gets the following entropy for f ∈
L1(Zd)×:

h(f) =

∫
Td

log |f(z)| dµ(z) .
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3 Algebraic Actions

In [23] it was shown that this entropy formula holds for general Zd-actions. For a detailed
study of Zd-actions consult [32].
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4 The Harmonic Model

Reference(s): [33]

First, the model will be introduced and the ASM will be used to find a symbolic cover of this
dynamical system. Then the entropy of the harmonic model will be calculated.

4.1 Introduction

Let Rd = Z
[
u±1

1 , u±1
2 , . . . , u±1

d

]
⊂ `1(Zd) be the ring of Laurent polynomials. An element of this

space will be written as h = (hn) =
∑

n∈Zd hnu
n.

Let d > 1. Define the shift-action α of Zd on TZd by

(αmx)n = xm+n ,

for every m,n ∈ Zd and x = (xn) ∈ TZd . To every h ∈ Rd a group homomorphism will be
associated by

h(α) =
∑
m∈Zd

hmα
m : TZd −→ TZd .

Let f (d) ∈ Rd and Xf (d) ⊂ TZd be the subgroup

Xf (d) = ker f (d)(α) =
{
x = (xn) ∈ TZd :

(
f (d)(α) · x

)
n

= 0 for everyn ∈ Zd
}
.

The restriction of α to Xf (d) will be denoted by αf (d) . The Zd-action of αf (d) preserves the
normalised Haar measure λX

f(d)
of Xf (d) , which is the measure of maximal entropy [32, Theorem

13.3].
Let G be an unweighted graph with vertex set Zd and bounded edge degree. Now a Laurent-

polynomial is associated to this graph G. Let y ∈ Zd and write uy = uy1
1 u

y2
2 · · ·u

yd
d . The

Laplace-polynomial of a graph G is defined by

∆G(u) =
∑
y∼0

(u0 − uy) .

The Laplace polynomial of the nearest neighbour graph on Z2 is given by:

∆Z2(u) = 4− u1
1 − u−1

1 − u
1
2 − u−1

2 .

For the remainder of this chapter fix f (d) = ∆Zd(u) = 2d−
∑d

i=1(ui + u−1
i ). Elements x ∈ Xf (d)

can be viewed as harmonic (mod 1) w.r.t G because, for every n ∈ Zd, degG(n) · xn is the
sum of its degG(n) neighbouring coordinates (mod 1). The dynamical system (Xf (d) ,Zd) or
(Xf (d) , αf (d)) will be called the harmonic model.

In the next section a symbolic cover of Xf (d) will be constructed by a shift-equivariant group
homomorphism from `∞(Zd,Z) to Xf (d) . For this purpose a few preparations must be made.
Many definitons and concepts of the last chapter will be used, but often with other descriptions or
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4 The Harmonic Model

stronger restrictions. These restrictions are necessary because the action αf (d) is non-expansive.

The cartesian product Wd = RZd will be identified with the set of formal real power series in
the variables u±1

1 , u±1
2 , . . . , u±1

d by viewing each w = (wn) as the power series∑
n∈Zd

wnu
n

with wn ∈ R and un = un1
1 · · ·u

nd
d , for every n = (n1, . . . , nd) ∈ Zd. The involution w 7→ w∗ on

Wd is defined by
w∗n = w−n,n ∈ Zd .

It is clear that the Laurent polynomials Rd lie in Wd. For E ⊆ Zd denote the projection onto
the coordinates in E by πE : Wd → RE .
Next automorphic representations of Zd will be introduced: The map (m, u) 7→ um · w with

(um · w)n = wn−m is a Zd-action by automorphisms of the additive group Wd which extends
linearly to an Rd-action on Wd given by

h · w =
∑
n∈Zd

hnu
n · w ,

for every h ∈ Rd and w ∈Wd.
Next a fundamental solution w(d) of the equation

f (d) · w = e(1) (4.1)

will be defined as follows:

1. For d = 2,

w
(2)
n :=

∫
Td

e−2πi〈n,t〉 − 1

F(f (2))(t)
for every n ∈ Z2.

2. For d > 2,

w
(d)
n :=

∫
Td

e−2πi〈n,t〉

F(f (d))(t)
for every n ∈ Zd .

Let
Id =

{
g ∈ Rd : g · w(d) ∈ `1(Zd)

}
⊇ (f (d)) ,

where (f (d)) = f (d) · Rd is the principal ideal generated by f (d). Consult [33, Theorem 2.2] and
the references cited there to see that w(d) is a solution of (4.1) and behaves asymptotically well
(for ‖n‖ → ∞). In [33, Theorem 2.4] it was shown that the ideal Id is of the form

Id = (f (d)) + J3
d , (4.2)

where

Jnd :=
{
h ∈ Rd :

∂|α|h

∂α1u1 . . . ∂αdud
(1) = 0, for all α ∈ Nd with |α| =

d∑
i=1

αi = n− 1
}
.

Next a linearization of Xf (d) will be constructed. Therefor, define the surjective map ρ : Wd =

RZd → TZd by
ρ(w)n = wn (mod 1) ,
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4.2 Symbolic Cover

for every n ∈ Zd and w ∈Wd and let

(σmw)n = (u−mw)n .

Set Wd(Z) = ZZd ⊂Wd and define the linearization of Xf (d) by

Wf (d) := ρ−1(Xf (d)) = {w ∈Wd : ρ(w) ∈ Xf (d)} (4.3)

= {w ∈Wd : (f (d)(α)(ρ(w)))n = 0 for alln ∈ Zd}
= {w ∈Wd : (f (d) · w)n ∈ Z for alln ∈ Zd} = {w ∈Wd : f (d) · w ∈Wd(Z)} .

Let
|t|mod1 = min{|t− n| : n ∈ Z}, t ∈ R

and
H(1)
α (Xf (d)) =

{
x ∈ Xf (d) : lim

‖n‖→∞
αn
f (d)x = 0 and

∑
n∈Z
|xn|mod1 <∞

}
be the subset of homoclinic points of αf (d) with αn

f (d)x → 0 sufficient fast as ‖n‖ → ∞. Next
recall the definition of Wf (d) and set xH = ρ(w(d)) ∈ Xf (d) .

Theorem 4.1. Every homoclinic point z ∈ Xf (d) of αf (d) is of the form z = ρ(h ·w(d)) for some
h ∈ Rd and

H(1)
α (Xf (d)) = ρ({h · w(d) : h ∈ Id}) .

Proof: Let z ∈ Xf (d) be a homoclinic point of αf (d) . Choose w ∈ `∞(Zd) with ρ(w) = z and
lim‖n‖→∞wn = 0. The smallness of most of the coordinates of w together with the fact that
f (d) · w ∈ Wd(Z) (see (4.3)) guarantee that f (d) · w ∈ Rd. The first part of the Theorem follows
from

f (d) · w · w(d) = w · f (d) · w(d) = w · 1 = w ,

where the commutativity of the convolution was used. If z ∈ H(1)
α (Xf (d)), then w ∈ `1(Zd) and

hence h ∈ Id. Conversly, if h ∈ Id, then h ·w(d) ∈ `1(Z) and so z = ρ(h ·w(d)) ∈ H(1)
α (Xf (d)).

4.2 Symbolic Cover

The next step is to construct for every homoclinic point z ∈ H(1)
α (Xf (d)) a shift equivariant

group homomorphism from `∞(Zd,Z) to Xf (d) , which will be used to find symbolic covers of
(Xf (d) , αf (d)). Therefor fix g with ρ(g · w(d)) = z and define the group homomorphisms ξ̄g :

`∞(Zd)→ `∞(Zd) and ξg : `∞(Zd)→ TZd by

ξ̄g(w) = (g · w(d))(σ)(w) = (g∗ · w(d))(w) and ξg(w) = (ρ ◦ ξ̄g)(w) . (4.4)

It is clear that
ξ̄g(w)n =

∑
k∈Zd

wn−k · (g∗ · w(d))k

converges for every n by the definitions and constructions of this chapter, hence the homomor-
phisms above are well defined and fulfil the following equivariance conditions:

ξg ◦ σn = σn ◦ ξg , ξg ◦ σn = σn ◦ ξg , (4.5)

ξg ◦ h(σ) = h(σ) ◦ ξg , ξg ◦ h(σ) = h(σ) ◦ ξg .
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4 The Harmonic Model

Lemma 4.2. For every w ∈ `∞(Zd) and g ∈ Id

(f (d)(σ) ◦ ξg)(w) = f (d) · (g∗ · w(d)) · w = g∗ · (f (d) · w(d)) · w = g∗ · w = g(σ) · w (4.6)

and ξg(`∞(Zd,Z)) ⊆ Xf (d) .

Proof: By the remarks about w(d) at the beginning of the chapter one gets

f (d) · (h∗ · w(d)) · v = h∗ · (f (d) · w(d)) · v = h∗ · v , (4.7)

for every h, v ∈ Rd. Fix g ∈ Id and let K ≥ 1 and VK = {−K + 1, . . . ,K − 1}Zd . Then VK is
shift-invariant and compact in the topology of coordinatewise convergence, and the set V ′K ⊂ VK
of points with only finitely many nonzero coordinates is dense in VK . For v ∈ V ′K ⊂ Rd one has

ξg(v) = (g∗ · w(d)) · v

and

(f (d)(σ) ◦ ξg)(v) = f (d) · (g∗ · w(d)) · v = g∗ · (f (d) · w(d)) · v = g∗ · w = g(σ) · v (4.8)

by (4.4) and (4.7). Since both ξg and multiplication by g∗ are continuous on VK , (4.8) holds
for every v ∈ VK . By letting K → ∞ one obtains (4.8), for every `∞(Zd,Z), hence for every
v ∈ 1

M `
∞(Zd,Z) with M ≥ 1, and finally, again by coordinatewise convergence, for every w ∈

`∞(Zd,Z).
For the second statement use the fact that, for every v ∈ V ′K ,

ξg(v) = ρ((g∗ · w(d)) · v) = (g · v∗)(α)(xH) ∈ Xf (d) .

The continuity argument above yields that ξg(v) ∈ Xf (d) , for every v ∈ `∞(Zd,Z).

Theorem 4.3. If g ∈ Ĩd = Id\(f (d)) then

ξg(`
∞(Zd,Z)) = ξg(Λ2d) = Xf (d) .

Proof: Let x ∈ Xf (d) and define w ∈ Wf (d) by ρ(w) = x and 0 ≤ wn < 1, for every n ∈ Zd. If
v = f (d)(σ)(w), then −2d+ 1 ≤ vn ≤ 2d− 1, for every n ∈ Zd. Since ξg commutes with f (d)(σ)
by (4.5), (4.8) shows that

ξg(v) = (ρ ◦ ξg)(v) = g(α)(x) . (4.9)

Hence

g(α)(Xf (d)) ⊆ ξg(V2d) ⊆ ξg(`∞(Zd,Z)) ⊆ Xf (d) . (4.10)

It will be shown that Z = g(α)(Xf (d)) = Xf (d) . Consider the exact sequence

{0} → Y = ker g(α) ∩Xf (d) → Xf (d)

g(α)→ Xf (d) → {0} . (4.11)

Let αY and αZ be the restrictions of α to Y and Z, and α′ the action induced by α on Xf (d)/Z.
Yuzvinskii‘s addition formula [32, Theorem 14.1] implies that

h(αf (d)) = h(αY ) + h(αZ) = h(α′) + h(αZ) ,
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4.2 Symbolic Cover

where the fact is used that topological entropies of these actions coincide with their metric
entropies with respect to the Haar measure. Since g ∈ Ĩd, g and f (d) have no common factors,
h(αY ) = 0 by [32, Corollary 18.5] hence h(αf (d)) = h(αZ) and 0 < h(αf (d)) < ∞. The Haar
measure λX

f(d)
of Xf (d) is the unique measure of maximal entropy for αf (d) as mentioned at the

beginning of this chapter and so λX
f(d)

(g(α)(Xf (d))) = 1 and g(α)(Xf (d)) = (Xf (d)) as claimed.
So far one has

g(α)(Xf (d)) = ξg(V2d) = ξg(`
∞(Zd,Z)) = Xf (d) .

Let v′ ∈ `∞(Zd,Z) with v′n = 2d − 1, for every n ∈ Zd, then v′ + V2d = Λ4d−1 and so
ξ(Λ4d−1) = ξg(V2d) + ξg(v

′) = Xf (d) + ξg(v
′) = Xf (d) . For M ≥ 1 set

QM = {−M, . . . ,M}d ⊂ Zd .

For every v ∈ `∞(Zd,Z+) and n ∈ Zd define

h(v,n) =

{
un · f (d) if vn ≥ 2d

0 otherwise,

H(v,n) =
∑

n∈QM

h(v,n), T (v) = v −H(v,n) .

If

DM (v) =
∑

n∈QM

vn‖n‖2max , (4.12)

where ‖·‖max is the maximum norm on Rd, then T (v) = v if and only if n < 2d for every n ∈ QM
and

DM (T (v)) ≥ DM (v) + 2 .

Define inductively Tn(v) = T (Tn−1(v)), for n ≥ 2, then there exists for every v ∈ `∞(Zd,Z+)
an integer KM (v) ≥ 0 with

ṽ(M) = T k(v) , for every k ≥ KM (v) .

For v ∈ Λ4d−1 and any M ≥ 1 , ṽ(M) satisfies

0 ≤ ṽ(M)
n ≤ 2d− 1 if n ∈ QM ,

ṽ
(M)
n ≥ vn if ‖n‖ = M + 1 ,∑
{n:‖n‖=M+1}

ṽ
(M)
n − vn ≤ (2d− 1) · (2M + 1)d ,

ṽ
(M)
n = vn if ‖n‖ > M + 1.

It is clear that v − ṽ(M) ∈ (f (d)) by construction of H(v,n). And so ξg(v − ṽ(M)) = 0 because
v − ṽ(M) = f (d) · h for an h ∈ Rd and therefore (g∗ · w(d)) · f (d) · h ∈ Z for every g ∈ Ĩd and
v ∈ Λ4d−1; hence ξg(v) = ξg(ṽ

(M)). Since g ∈ Ĩd, (4.2) implies that there exists a constant C > 0
with

|(g∗ · w(d))n| ≤ C‖n‖d−1
max , for every nonzero n ∈ Zd.
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4 The Harmonic Model

Therefore,

|ξg(ṽ(M))0 − ξg(v(M))0| ≤ 4d · (2M + 1)d · C · (M + 1)d−1 → 0

as M →∞ and where

v(M) =

{
ṽ

(M)
n if n ∈ QM
vn otherwise.

And so
lim
M→∞

ξg(v − v(M)) = 0

in the topology of coordinatewise convergence. Since

v(M) ∈ {v ∈ Λ4d−1 : 0 ≤ vn ≤ 2d− 1 for every n ∈ QM} ,

for every v ∈ Λ4d−1 and M ≥ 1 one can conclude that ξg(Λ2d) is dense in Xf (d) . Since ξg(Λ2d)
is closed ξg(Λ2d) = Xf (d) .

In the last proof a toppling argument has occurred already - in the next step the Abelian Sand-
pile Model will be embedded in the algebraic setting of this chapter. First recall the definition
of the ASM and put, for a finite set K ⊂ Zd,

PK =
{
v ∈ {0, . . . , 2d− 1}K : vn ≥ NK(n) for at least one n ∈ K

}
,

then recurrent configurations on K can be written as

RK =
⋂

∅6=F⊂K,
0<|F |<∞

PF .

Lemma 4.4. Let d ≥ 2. The following conditions are equivalent for every v ∈ Λ2d.

1. v ∈ R∞.

2. For every nonzero h ∈ Rd with hn ∈ {0, 1} for every n ∈ Zd, (f (d) · h)n + vn ≥ 2d for at
least one n ∈ supp(h) = {m ∈ Zd : hm 6= 0}.

3. For every nonzero h ∈ Rd with hn > 0 for every n ∈ Zd, (f (d) · h)n + vn ≥ 2d for at least
one n ∈ {m ∈ Zd : hm > 0}.

Furthermore, if v, v′ ∈ R∞ and 0 6= v − v′ ∈ Rd, then v − v′ 6∈ (f (d)).

Proof: (2⇒ 1) Fix v ∈ Λ2d. If h ∈ Rd with hn ∈ {0, 1}, for every n ∈ Zd and E = supp(h), then
(f (d) · h)n + vn ∈ {0, 1, . . . , 2d − 1}, for every n ∈ E if and only if vn ≤ NE(n) − 1. for every
n ∈ E, in this case πE(v) 6∈ PE and v 6∈ R∞.
Let h ∈ `∞(Zd,Z) and Mh = maxm∈Zd hm > 0 and that (f (d) · h) + v ∈ Λ2d. Set

Smax(h) = {n ∈ Zd : hn = Mh}

and observe that
vn + (f (d) · h)n ≥ vn +Mh(2d−NSmax(h)) < 2d ,

for every n ∈ Smax(h) so that

vn ≤ NSmax(h) − 1 , for every n ∈ Smax(h) . (4.13)
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4.2 Symbolic Cover

If h ∈ Rd, then Smax(h) is finite and so (4.13) yields to contradiction to the definition of R∞.
This proves the implication (1 ⇒ 3) and the reverse implication (3 ⇒ 2) is obvious. The last
asseration is a consequence of (3).

Theorem 4.5. For every g ∈ Ĩd, ξg(R∞) = Xf (d). Furthermore, the shift-action σR∞ of Zd on
R∞ has topological entropy

h(σR∞) = lim
N→∞

1

|QN |
log

∣∣πQN (R∞)
∣∣ = h(αf (d)) . (4.14)

For every Q ⊂ Zd v ∈Wd set

S(Q)(v) = {v′ ∈Wd : πZd \Q(v′) = πZd \Q(v)} .

If V ⊂ Wd is a subset S(Q)
V (v) = S(Q)(v) ∩ V . Fix g ∈ Ĩd. Let 0 < ε < 1/4d. Since g∗ · w(d) ∈

`1(Zd), there is a K ≥ 1 with

|ξg(v)0 − ξg(v′)0| < ε , for every v, v′ ∈ Λ2d with πQK (v′) = πQK (v) . (4.15)

Lemma 4.6. Let v ∈ Λ2d, Q ⊂ Zd a finite set and v′ ∈ S(Q)
Λ2d

(v).

1. ξg(v′) = ξg(v) if and only if v′ − v ∈ (f (d)).

2. If ξg(v′) 6= ξg(v), then
|ξg(v′)n − ξg(v)n|mod1 ≥ 1/4d

for some n ∈ Q+QK .

Proof: Assume that

|ξg(v′)n − ξg(v)n|mod1 < 1/4d , (4.16)

for every n ∈ Q+QK . Since (4.16) holds automatically for n ∈ Zd \(Q+QK) by (4.15) it holds
for every n ∈ Zd. Choose z ∈ Wf (d) with ρ(z) = ξg(v

′) − ξg(v) and ‖zn‖max < 1/4d. Then
f (d) · z ∈ `∞(Zd,Z) and the smallness of the coordinates of z implies that f (d) · z = 0. Since
ρ(z) = ρ(ξg(v

′)− ξg(v)), z − (ξg(v
′)− ξg(v)) ∈ `∞(Zd,Z). As the coordinates of z are small and

lim‖n‖→∞ |ξg(v′)−ξg(v)| = 0 due to the continuity of ξg, conclude that h = z−(ξg(v
′)−ξg(v)) ∈

Rd. According to (4.6)

f (d) · (z − (ξg(v
′)− ξg(v))) = f (d) · h = g∗ · (v′ − v) .

As Rd has a unique factorization and g∗ is not divisible by f (d), v′ − v must lie in the ideal
(f (d)) ⊂ Rd. The definitions of w(d) and ξ imply that ξg(v′) = ξg(v).

For Q ⊂ Zd set

R(Q) = {h ∈ Rd : supp(h) ⊂ Q} ,
R+(Q) = {h ∈ R(Q) : hn ≥ 0 for every n ∈ Zd} .

For L ≥ 1, v ∈ Λ2d and q ≥ 0 set

Yv(q) =
{
w ∈ S(QL+K+1)(v) : for every n ∈ Zd, 0 ≤ wn < 2d if ‖n‖max 6= L+K + 1

and − q ≤ wn < 2d if ‖n‖max = L+K + 1
}
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and

Y ′v(q) = {w ∈ Yv(q) : πQL+K
(w) ∈ πQL+K

(R∞)} .

The proofs of the next two lemmas are very technical and will not be given, but they can be
found in [33, Lemma 5.5 und Lemma 5.6].

Lemma 4.7. [33, Lemma 5.5.] Let L ≥ 1, q ≥ 0 and v ∈ Λ2d. Then

Y ′v(q) = Yv(q)\
⋃

0 6=h∈S+(QL+K)

(Yv(q + 1)− h · f (d)) .

Lemma 4.8. [33, Lemma 5.6.] For every v ∈ Λ2d and L ≥ 1 there exists an h ∈ R+(QL) with
v′ = v + h · f (d) ∈ Y ′v((2d− 1) · (2L+ 1)d).

Proof of Theorem 4.5. The same arguments as in the proof of Theorem 4.3 show that ξg(R∞) =
Xf (d) . For this purpose only a few changes are required. Fix ε > 0 and choose K according to
(4.15). From Lemma 4.8 one gets Xf (d) = ξg(Λ2d) = ξg(Λ2d(L+K+1, (2d−1) ·(2L+2K+1)d)),
where

Λ2d(M, q) =

{
v ∈ `∞(Zd,Z) : vm < 2d , for every n ∈ Zd,

vn ≥ 0 , for every n ∈ Zd with ‖n‖max > M + 1,∑
{n∈Zd:‖n‖max=M+1}

vn ≥ −q and πQM (v) ∈ πQM (R∞)

}
.

Since ξg(R∞) = Xf (d) one has
h(σR∞) ≥ h(αf (d)) .

Conversly, the map ξg is injective on S
(QL)
R∞ (v), for every v ∈ R∞ and L ≥ 1. The set

ξg(S
(QL)
R∞ (v)) is a (QL+K , 1/4d)-separated subset of Xf (d) , by Lemma 4.4 and Lemma 4.6. If

v̄ ∈ R∞ is given by
v̄n = 2d− 1 for every n ∈ Zd ,

then
∣∣πQL(S

(QL)
R∞ (v̄))

∣∣ =
∣∣πQL(R∞)

∣∣, for every L ≥ 1.
For every L ≥ 0 denote by n(L + K) the maximal size of a (QL+K , 1/4d)-separated set in

Xf (d) . From the definition of topological entropy one gets that

h(σR∞) = lim
L→∞

1

|QL|
log

∣∣πQL(R∞)
∣∣ = lim

L→∞

1

|QL|
log

∣∣S(QL)
R∞ (v̄)

∣∣
= lim

L→∞

1

|QL|
log

∣∣ξg(S(QL)
R∞ (v̄))

∣∣ ≤ lim
L→∞

1

|QL|
log n(L+K)

= lim
L→∞

1

|QL+K |
log n(L+K) = h(α

(d)
f ) ,

which completes the proof of the theorem.

It is still an unresolved problem whether the mappings from the recurrent configurations of
the ASM to the harmonic model are almost one-to-one or not.
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