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INTRODUCTION 

1. Chromatin and histone core post-translational modifications 

In eukaryotic cells, DNA is a part of a nuclear structure called chromatin. Chromatin 

was found to contain both nucleic acids and a series of acid soluble proteins that 

were termed “histone” by Albert Kossel (Kossel, 1911). The histones and other 

chromosomal proteins are responsible for the proper packaging of the DNA into the 

chromosomes. In addition to its role in compacting DNA, chromatin structure also has 

an important function in regulating accessibility to DNA and therefore transcription 

and silencing of genes, recombination, DNA repair, replication, kinetochore and 

centromere formation and many more DNA-related processes (Li et al., 2007).  

A single nucleosome is composed of 146 base pairs of DNA wrapped around the 

histone octamer (two copies each of H2A, H2B, H3 and H4) in a left-handed super-

helix, and the linker histones referred to as H1 (Kornberg and Lorch, 1999). The DNA 

has 14 contact points with the core histone octamer which makes the nucleosome a 

very stable structure (Luger and Hansen, 2005).  

Histones are among the most conserved proteins known in evolution, but are also 

among the most variable in covalent post-translation modification (PTMs) which 

include acetylation, methylation, ubiquitination, ADP-ribosylation and sumoylation ( 

Kouzarides et al., 2007). These modifications take place in the globular domains of 

the histones and especially on the protruding, unstructured, basic N-terminal tails of 

the 8 core histones (Figure 1). 

 PTMs on histone tails, especially methylation of lysine residues, were hypothesised 

to play an important role in the storage of epigenetic information (Zhang and 

Reinberg, 2001).  

There are over 60 amino acid (aa) residues in histones on which modifications have 

been detected so far (Kouzarides, 2007) and acetylation and methylation appear to 

be the most common. These modifications differ in two ways: histone acetylation 

results in a negative charge of the modified lysine residue, causing a decresed 

interaction between the histone and DNA that is generally associated with less 

condensed and transcriptionally active regions of the genome (euchromatin). In 

contrast, methylation of histones occurs at both arginine and 
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Figure 1: Core histone tails are subject to numerous post-translational modifications 

 

lysine residues, and does not influence the net charge of the affected residues, and 

hence has no effect on DNA-histone interactions. Rather the effect of histone 

methylation impacts on the transcriptional activity of the underlying DNA by acting as 

a recognition template for effector proteins modifying the chromatin environment and 

leading to either repression or activation. Thus, histone methylation can be 

associated with either activation or repression of transcription depending on which 

effector protein is being recruited. Methylated lysine residues are specifically 

recognised and bound by several protein domains including the chromo, Tudor, 

WD40 repeat and PHD finger domains (Martin and Zhang, 2005). Therefore, proteins 

or protein complexes containing these domains can bind to specific chromatin 

domains indexed by histone lysine methylation and trigger a plethora of different 

effects. Depending on the particular lysine residue, the degree of methylation at the 

same lysine residue and the location of the methylated histone within a specific gene 

locus, histone methylation can induce either repression or activation (Lachner et al., 

2002).  

Generally, H2K4, H3K36 and H3K79 methylation are found in active regions of 

chromatin (Martin and Zhang, 2005; Schubeler et al., 2004), whereas methylation of 

H3K9, H3K27 and H4K20 is associated with silenced regions (Nielsen et al., 2001; 
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Reinberg et. al., 2004). Depending on its context though, the same modification can 

result in different effects (Kouzarides, 2007; Zhang and Reniberg, 2001).  

Methylation is catalysed by histone methyltransferases (HTMTs) and affects 

transcriptional activation and repression as well as other fundamental processes 

such as X-chromosome inactivation, genomic imprinting and DNA repair (Lachner, 

2002; Margueron et al., 2005; Zhang and Reinberg, 2001). Because it has been 

linked to a diverse set of biological processes, lysine methylation of histones has long 

been of particular interest (Margueron et al., 2005; Zhang and Reinberg, 2001).  

Previously, methylation has been considered to constitute a permanent and 

irreversible histone modification that defined epigenetic programs in concert with 

DNA methylation. Only the discovery of lysine specific demethylases 1 (LSD1) (Shi 

et. al, 2004) and the family of JumonjiC (JmjC) domain containing histone 

demethylases (Tsukada et al., 2006) changed this dogma. Recently, however, a 

large number of enzymes have been discovered with the ability to demetlyate 

methylated histone lysine residues. 

 

2. JumonjiC (JmjC) family  

The largest class of demethylase enzymes contain a JumonjiC (JmjC) domain and 

catalyse lysine demethylation of histones through an oxidative reaction that requires 

iron Fe(II) and α-khetoglutarate (αKG) as cofactors (Tsukada et a., 2006). 

Unlike LSD1, which can only remove mono- and dimethyl lysine modifications, the 

JmjC-domain-containing histone demehylases (JHDMs) can remove all three histone 

lysine-methylation states. There are 27 different JmjC domain proteins within the 

human genome ,of which 15 have been published to demethylate specific lysines or 

arginines in the H3 tail.  Categorization based on JmjC-domain homology and protein 

domain architecture resulted in seven distinct JmjC-protein subfamilies (see Table 1). 

In general, it appears that each cluster has specificity for demethylating a certain 

histone mark. Currently, more then 11 000 sequence entries of JmjC domain 

containing proteins are present in Uniprot, PFAM Interpro and SMART, thus 

demonstrating the tremendous expansion of members in this protein superfamily 

(Hahn and Boese, 2008).  
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Enzymatic 

family 

 Subfamily Enzyme(s) Specific activity 

PADI  PADI4 H3R2, R8, R17, R26 

H4R3 

Amine 

oxidase 

 LSD1 H3K4me2, me1 

JmjC JHDM1 JHDM1A, 

JHDM1B 

H3K36me2, me1 

 PHF2/PHF8 PHF2, PHF8 Unknown 

 JARID JARID1A/RBP2 

JARID1B/PLU-1 

JARID1C/ 

SMCX1 

JARID1D/SMCY   

H3K4me3, me2 

 JHDM3/JMJD2    JMJD2A 

JMJD2B 

JMJD2C/GASC1 

JMJD2D 

H3K9me3/2,H3K36me2/3  

H3K36me3, me2 

 UTX/UTY  JMJD3  

UTX  

H3K27me3, me2 

 JHDM2 JHDM2A 

JHDM2B 

JHDM2C  

H3K9me3, me2 

 JmjC only  MINA53 

JMJD4 

JMJD5  

Unknown 

Table 1:  Enzymes that demethylate histones, subsequent subfamilies and 
specific substrates. D. melanogaster JMJD2A enzyme studied in this work 

is marked in red.  

 

http://www.abcam.com/PADI1-PAD1-antibody-ab24008.html
http://www.abcam.com/PADI4-PAD4-antibody-ab38772.html
http://www.abcam.com/KDM1-LSD1-antibody-ChIP-Grade-ab17721.html
http://www.abcam.com/index.html?t=60519&pt=1
http://www.abcam.com/KDM4A-JHDM3A-JMJD2A-antibody-ChIP-Grade-ab24545.html
http://www.abcam.com/index.html?t=161750&pt=1
http://www.abcam.com/index.html?t=124721&pt=1
http://www.abcam.com/index.html?t=124721&pt=1
http://www.abcam.com/index.html?t=60519&pt=1
http://www.abcam.com/PHF8-antibody-ab35471.html
http://www.abcam.com/index.html?t=8097&pt=1
http://www.abcam.com/PHF8-antibody-ab35471.html
http://www.abcam.com/index.html?c=4153
http://www.abcam.com/index.html?t=125887&pt=1
http://www.abcam.com/index.html?t=125887&pt=1
http://www.abcam.com/KDM5C-Jarid1C-SMCX-antibody-ab34718.html
http://www.abcam.com/KDM5C-Jarid1C-SMCX-antibody-ab34718.html
http://www.abcam.com/KDM5D-Jarid1D-SMCY-antibody-ab35492.html
http://www.abcam.com/index.html?t=60519&pt=1
http://www.abcam.com/index.html?t=124721&pt=1
http://www.abcam.com/KDM4D-JMJD2D-antibody-ab35668.html
http://www.abcam.com/KDM4D-JMJD2D-antibody-ab35668.html
http://www.abcam.com/KDM4D-JMJD2D-antibody-ab35668.html
http://www.abcam.com/KDM4D-JMJD2D-antibody-ab35668.html
http://www.abcam.com/index.html?t=60519&pt=1
http://www.abcam.com/index.html?t=60519&pt=1
http://www.abcam.com/index.html?t=60519&pt=1
http://www.abcam.com/index.html?t=142474&pt=1
http://www.abcam.com/index.html?t=60519&pt=1
http://www.abcam.com/KDM4A-JHDM3A-JMJD2A-antibody-ChIP-Grade-ab24545.html
http://www.abcam.com/JMJD4-antibody-ab35272.html
http://www.abcam.com/JMJD4-antibody-ab35272.html
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Figure 2: Schematic representation of the JMJD2 family of histone lysine 
demethylases. (Adopted from Klose et al., 2006) 
 
 
 
3. JMJD2A 
 
The first JmjC domain demethylase described was JMJD2A (also named: JHDM1, 

KDM4, CG15835, lysine (K)-specific demethylase 4A, Jumonji domain-containing 

protein 2A, JMJD2(1)), which was shown to specifically demethylate mono- and 

dimethylated H3K36 (Tsukada et al., 2006).  

The JMJD2 cluster consists of four genes, JMJD2(A-D) in the human genome, each 

of which has orthologues from yeast to humans. In higher eukaryotes, proteins of this 

family contain JmjN, PHD and Tudor domains in addition to the JmjC domain (Fig. 2). 

JMJD2A was purified and characterized by Yamane et al. in 2006. They 

demonstrated that the enzymatic activity of JMJD2A depends on an intact JmjC 

domain and requires cofactors Fe(II) and α-ketoglutarate (α-KG). JMJD2A is capable 

of demethylating mono and dimethyl-H3K9 in vitro and in vivo, but it fails to 

demethylate trimethyl-H3K9. 
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Lloret- Llinares et al. showed that they are capable of demethylating H3K9me3 and 

H3K36me3 when over-expressed in D. melanogaster. 

Structural analysis of JMJD2A has shown that three distinct domains, in addition to 

the JmjC domain, are necessary for catalytic activity (Chen et al., 2006). 

JMJD2A orthologues are found from yeast to human and all group members contain 

a JmjC (Jumonji C) and JmjN (Jumonji N) domain. Members of this group contain 

additional C-terminal domains, which are probably involved in protein targeting (PHD, 

plant homeobox domain) (Fig. 2). Tudor domains found in JMJD2A is the only 

functionally-characterized member of the mammalian JMJD2 family (Huang at al., 

2006). Due to the homology of mammalian JMJD2A histone lysine demethlyses and 

JMJD2A/CG15835 histone lysine demethlyases in fly (Fig. 2) we investigated if there 

is a demethylation activity of mammalian JMJD2A homologue targeting H1K27me2 

also in Drosophila. 

 

3. Histone H1 

As it was already mentioned, the histone octamer moiety of the core particle consists 

of two copies of each of the four histones H2A, H2b, H3 and H4. The fifth histone, 

termed H1 or linker histone,very lysine-rich protein, interacts with DNA entering and 

exiting the nucleosomal core particle. (Noll et al., 1977, Allan et al., 1980) (Fig. 3).  

 

Figure 3. Molecular assembly of nucleosomes (picture taken from 
http://148.216.10.83/CELULA/ 4,2_chromosomes_and_chromatin.htm). The DNA 
(red) is wrapped around the histone octamer (blue) and both form the nucleosome 
core particle. This structure is locked in mammals by the linker histone H1 (yellow). 
The chromatin fiber is further folded into a thicker fiber, the so-called solenoid that is 
30 nm in diameter. 
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The binding of the nucleosomal array promotes and stabilises the folding of the 

nucleosomal array into the 30nm fibre (Bednar et al., 1998) and prevents the 

unpeeling of DNA from the histone octamer. H1 can stabilise the position of 

nucleosomes by suppressing spontaneous transitions in the nucleosomal structure 

and ATP dependent chromatin remodeling (Ramachandran et al., 2003). Histone 

linker H1 has roles in many different processes in different organisms, such as  gene 

expression regulation in mammals, position effect variegation in mouse, etc. (Fig. 4). 

 

 

Figure 4. Schematic rapresentation of roles of histone H1 

 

The H1 family of linker histones is the most divergent class of histone proteins. 

Mammals express at least eleven H1 subtypes that can be gruped according to their 

temporal and spatial expression. The mammalian H1 variants are paralogs, i.e. their 

genes originated from gene duplication events. The expression of H1 varies between 

different cell types, with H1.2 and H1.4 being the predominant variants in most 
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human cells (Meergans et al., 1997). The existance of these variants in mouse or 

humans adds an additional level of complexitiy when studying H1 function.  

To date, many knockouts of H1 in different organisms were done. The complete 

knockout done in unicellular organisms (Tetrahymena thermophila (Ramon et al., 

2000), Saccharomyces cerevisiae (Patterton et al., 1998) and Ascobolus nidulans 

(Ramon et al., 2000) did not affect growth or viabiliy. Although H1 is not essental for 

survival in unicellular organisms, distinct phenotypes were observed (Shen et al., 

1996, Hellauer et al., 2001, Barra et al., 2000).  

Inactivation of individual H1 variants in higher organisms was done on 

Ceanorhabditis elegans (Jedrusik et al., 2001), Nicotiana tabacum (Prymakowska-

Bosak et al., 1999), Xenopus tropicalis (Crane-Robinson 1999; Bouvet et al., 1994; 

Kandolf, 1994; Steinbach et al., 1997) and mice (Fan et al.,2003).  

Linker histones are essential for embyonic development in mice. The existence of 

multiple, non-allelic mouse H1 variant genes, it impeded to study the effects 

decresing H1 expression in this species (Fan et al., 2005). To study the role of H1 in 

vivo, mouse embryonic stem cells depleated for three H1 isoforms were derived and 

were found to have 50% of the normal level of H1. H1 depletion caused dramatic 

chromatin structure changes, incuding decresed global nucleosome spacing, 

reduced local chromatin compaction and decreases in certain core histone 

modifications. (Fan et al., 2005). 

Recently H1 mutant in Drosophila was made and it was seen that H1 linker histone is 

1) an essential protein in Drosophila,  2) a major determinant of heterochromatin 

formation and function and 3) an important biochemical component of the machinery 

that maintains sister chromatid alignment in Drosophila polytene chromosomes 

(Xingwu Lu et al., 2009). In addition, ISWI chromatin-remodelling factors regulates 

higher-order chromatin structure by promoting the association of H1 with chromatin 

(Siriaco et al. 2009).  
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4. Posttranslational modifications of histone H1 

H1 histones are, just as the core histones, targets of several posttranslational 

modifications (PTMs), including phosphorylation, lysine methylation and ADP-

ribosylation. 

Reversible phosphorylation of H1 histones has been discovered a long time ago 

(Balhorn et al., 1972) and is the most intensively studied modification of H1 histones 

(Villar-Garea and Imhof, 2008). 

Most of the acetylated lysines identified in the globular domain of H1.4 have been 

considered to be directly involved in DNA binding (Goytisolo et al., 1996; Wisniewski 

et al., 2007). Deacetylation of the highly conserved lysine- 26 (K26) in H1 could be 

linked to the formation of facultative heterochromatin.  

The first evidence for H1 lysine methylation was obtained from the analysis of the 

protozoan Euglena gracilis (Tuck et al., 1985). Later, the first mammalian H1 

methylation site was identified on isoform 4 (also known as isotype H1b in human 

and H1e in mouse) at lysine 26 (H1.4K26) (Ohe et al., 1986).  

H1.4 confers transcriptional repression and Lysine 26 methylation was found to be 

important in this context (Kuzmichev et al., 2004) 

These are some of many evidences that also H1 histones contribute to the, so called, 

Histone code, combinatorial nature of histone amino- terminal modifications that 

many considerably extend the information potential of the genetic (DNA) code 

(Jenuwein and Allis, 2001),  and just as in the case of core histones further studies 

are necessary to decipher this code and to identify the proteins that interact with the 

modified sites and thus are “reading” this code. 

Recently, Trojer and collegues discovered and showed that members of the 

JMJD2/KDM4 subfamily of jumonji-C type histone demethlylases reduce mammalian 

trimethylated H1.4K26 to di- and monomethylated states. They showed for the first 

time that H1 can be demetyhlated in mammals (Trojer et al., 2009). 

However, to date there is no report describing demethylation of histone H1 in D. 

melanogaster. 
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5. Objectives 

In my project we investigated posttranslational modification (potential demethylation 

of lysine at position 27) of linker histone H1 and we used Drosophila melanogaster as 

a model organism. 

Mass spectrometry mapping done in Ferran Azorin’ s laboratory revealed different 

posttranslational modification of Histone H1, such as Serine 10 phoshorylation, 

Serine3 and/or  6 phosphorylation, N-terminal acetylation, ubiquitination, and the 

most important one for my work, dimethylation at Lysine 27 position (Figure 5. Taken 

from Olivera Vujatovic). 

 

Figure 5. Schematic rapresentation of posttranslational modifications of N terminus in 
histone H1 found by mass spectometry in prof. Azorin´s laboratory 

 

Troyer and collegues in 2009 identified members of the JMJD2A subfamily of 

JumonjiC histone demethylases as being responsable for the removal of 

H1.4K26methlylation mark in mammals. 

Taking in consideration homology between mammalian histone H1.4 sequence and 

histone H1 in fly (Fig. 6), and a homology of mammalian JMJD2A histone lysine 

demethlyses and JMJD2A/CG15835 histone lysine demethlyases in fly (Fig. 2), we 

wanted to investigate if there is a demethylation activity of mammalian JMJD2A 

homologue targeting H1K27me2 also in Drosophila. 

To date there was no evidence of demethylation of histone H1 in D. melanogaster. 
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H1.4            MSETAPAAPAA-----PAPAEKTPVKKKARKSAGAAKRKASG----PPVSELITKAVAAS 

His1_CG31617    MSDSAVATSASPVAAPPATVEKKVVQKKASGSAGTKAKKASATPSHPPTQQMVDASIKNL 

                **::* *:.*:     **..**. *:***  ***:  :***.    **..:::  ::    

 

H1.4            KERSGVSLAALKKALAAAG-YDVEKNNSRIKLGLKSLVSKGTLVQTKGTGASGSFKLN-- 

His1_CG31617    KERGGSSLLAIKKYITATYKCDAQKLAPFIKKYLKSAVVNGKLIQTKGKGASGSFKLSAS 

                ***.* ** *:** ::*:   *.:*  . **  *** * :*.*:****.********.   

 

H1.4            -KKAASGEAKPK--------------AKKAGAAKAKKPAGAAKKPKKATGAATPKKSA-- 

His1_CG31617    AKKEKDPKAKSKVLSAEKKVQSKKVASKKIGVSSKKTAVGAADKKPKAKKAVATKKTAEN 

                 **  . :**.*              :** *.:. *...***.*  **. *.:.**:*   

 

H1.4            KKTPKKAKKPAAAAG---AKKAKSPKKAKAAKPK----KAPKSPAKAKAVKPKAAKPKTA 

His1_CG31617    KKTEKAKAKDAKKTGIIKSKPAATKAKVTAAKPKAVVAKASKAKPAVSAKPKKTVKKASV 

                *** *   * *  :*   :* * :  *..*****    **.*: . ..*   *:.*  :. 

 

H1.4            KPKAAKPK-KAAAKKK 

His1_CG31617    SATAKKPKAKTTAAKK 

                ...* *** *::* ** 

 

Figure 6: Here is shown alignement of the protein sequences of human H1.1 and 
histone H1 (accession no. His1_CG31617) of D. melanogaster. Sequences were 
allined using multiple sequence allinement program T-coffee Version_5.05 

[http://www.tcoffee.org]. The two senquences are homologs. Symbols below the 
letters are denoting the degree of conservation observed in each column: ” * “ meens 
that the residues or nucleotides in that column are identical in all sequenes in the 
alignement. “ : “ meens that conserved substitutions have been observed. “. “ meens 
that semi-conserved substitutions are observed. 
 

 

MATERIAL AND METHODS 

Immunofluorescence in polytene chromosomes 

Salivery glands of third-instar larvae were dissected in Cohens buffer (10mM MgCl2, 

25mM sodium glycerol 3P, 3mM CaCl2, 10mM KH2PO2, 0.5% NP-40, 30mM KCl, 

160mM sacarosa). They were further incubated with fix solution 1 (PBS 

supplemented with 18.5% formaldehyde) for 2min and fix solution 2 (50% acetic acid, 

18.5% formaldehyde) for 3 min. 

The salivary glands were then transferred onto cover glasses and mounted onto 

microscope slides. They were squashed as described (Paro, 2000). Before 

hybridisation with antibodies the microscope slides were washed three times 5min in 

PBS supplemented with 0.05% Tween®-20. 

Primary antibodys were diluted in PBS supplemented with Tween®-20 PBS (1:30 for 

αH1K27 and to 1:1000 for ). A drop of 15μl primary antibody solution was placed 
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onto each microscope slides and covered with a cover glass. The slides were then 

left to incubate in a humid box for 1hr at RT and over night at 4ºC. 

The microscope slides were washed three times 5min in PBS supplemented with 

0.05% Tween®-20. 

The secondary Cy3-conjugated antibody (Jackson Laboratories) was diluted 1:400 in 

PBS supplemented with 0.05% Tween®-20. A drop of 15ul secondary antibody 

solution was placed onto each microscope slides and covered with a cover glass. 

The slides were then left to incubate in a humid box for 1.5hrs at RT without 

exposure to light.  

Again, the microscope slides were washed three times 5min in PBS supplemented 

with 0.05% Tween®-20. 

Cover slips were the mounted using 20μl Mowiol (Calbiochem-Novabiochem) 

containing 10% DAPI (2ng/μl) and the pictures were taken using a Leica SPE 

confocal microscope and formatted using GIMP software. 

 

Immunofluorescence in impacted cells 

Cells were detached from plates by pipetting and mixed with hypotonic medium MAC 

(50mM glycerol, 5mM KCl, 10mM NaCl, 0.8mM CaCl2, 10mM sucrose) in a dilution of 

2:5. They were incubated for 5min in order to inflate before adding 200μl to each 

cytocentrifuge tube. The cells were impacted onto microscope slide by centrifugation 

for at 500rpm for 10min at RT (ThermoShandon Cytospin 4). The slides were then 

dried 30-60min at RT before fixation of the cells with 4% paraformaldehyde for 10min 

at RT. After a single wash with PBS for 15min at RT the slides were dried and stored 

at 4ºC. Before hybridisation with antibodies the slides were permealised two times 

10min in PBS supplemented with 0.1% TritonX-100 and blocked  2 times with PBS 

supplemented with 0.1% TritonX-100 and 0.1% BSA. 

The primary antibody was diluted (1:250 to 1:1000) in PBS supplemented with 0.1% 

TritonX-100 and 1% BSA. After drying the slides for 5-10min at RT, 10μl of primary 

antibody solution were added onto each slide. A cover glass was mounted and the 

slides were incubated in a wet chamber for 1hr at RT and over night at 4ºC. After 
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incubation the slides were washed again two times 10min with PBS supplemented 

with 0.1% TritonX-100 and 1% BSA. 

The secondary Cy3-conjugated antibody was diluted 1:400 in PBS supplemented 

with 0.1% TritonX-100 and 1% BSA. After drying the slides for 5-10min at RT, 10μl of 

primary antibody solution was added onto each slide. A cover glass was mounted 

and the slides were incubated in a wet chamber for 45min without exposure to light. 

The slides were washed as described above with the addition of two final 10min 

washes in PBS only.  They were left to dry for 10min at RT before adding mounting 

with 15μl Mowiol (Calbiochem-Novabiochem) containing 10% DAPI (2ng/μl).  

The pictures were taken using a Leica SPE confocal microscope (High-Throughput 

image acquisition with 60x water objective and analised using  self-made ImageJ 

macro software. 

 

Immunofluorescence in attached cells 

Cells were diluted to a concentration of 106cells/ml, seeded on concavalina coated 

cover glasses and left at 25ºC for few hours (1-2h). The cells were washed 10min 

with PBS and fixed in 4% paraformaldehyde for 12 min at RT. After two washes with 

PBS and two further washes with PBS supplemented with 0.1% TritonX-100 and 

0.1%BSA 200μl primary antibody solution (1:250 – 1:1500) was added to each well. 

The cells were incubated with gentle agitation at 4ºC over night. The cells were 

washed two times with PBS supplemented with 0.1% TritonX-100 and 0.1%BSA 

before adding 200ul secondary antibody solution (1:400) to each well. They were 

incubated with gentle agitation and without exposure to light for 45min at RT. After 

the incubation with antibodies the cells were washed two further times with PBS 

supplemented with 0.1% TritonX-100 and 0.1%BSA and two times with PBS only. 

They cover slips were the mounted onto microscope slides using 4μl Mowiol 

containing 10% DAPI (2ng/μl). 

The microscope slides were stored at 4ºC before visualization using Leica SPE 

confocal microscope (High-Throughput image acquisition with 60x water objective) 

and analised using  self-made ImageJ macro software. 
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Antibodies 

Antibodies against recombinant JMJD2A were raised in rats and antibodies against 

H1K27 and H1K27me2 were raised in rabbits. They were used in dilutions ranging 

from 1:250 to 1:1000. The α-unmodified antibody recognizes total H1 (predominatly 

H1K27 and also H1K27me2), while α-H1K27me2 recognise specifically H1K27me2. 

Purification of K27 and characterization od antibodies was done by Olivera Vujatovic 

in our laboratory (Figure 7.). Secondary antibody for IF experiments was Cy3/Cy2-

conjugated anti-rabbit/anti-rat (Jackson Laboratories) which was always used at a 

dilution of 1:400. 

 

 

Figure 7. Characterisation of α-H1K27me2 and α-unmodified antibodies (work done 
by Olivera Vujatovic) 

 

 

Overexpression in S2 cells   

 

For overexpression in S2 cells, cDNAs were Flag-tagged at C-terminal, cloned into 

the Drosophila expression vector pActPPA, where expression is driven by the 

actin5C promoter, and transfected (15 µg) into S2 cells by the calcium-phosphate 

method. Immunolocalization experiments were performed 48h after transfection 

according to standard procedures. using primary antibodies and were added at the 

same time than the secondary antibody against GFP. Cy3-conjugated anti-rat, Cy3-

conjugated anti-rabbit and Cy2-conjugated anti-rabbit secondary antibodies were 

obtained from Jackson ImmunoResearch. The pictures were taken using a Leica 
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SPE confocal microscope (High-Throughput image acquisition with 60x water 

objective) and analised using  self-made ImageJ macro software. 

 

Visualisation analysis by ImageJ macro software 

As was mentioned above, the pictures of immunostained recombinant JMJD2A were 

taken using a Leica SPE confocal microscope (High-Throughput image acquisition 

with 60x water objective) and analised using  self-made ImageJ macro software. In 

average about 100 filds from each slide were visualized by the confocal microscope 

and analysed by ImageJ macro (Figure 8.). Filds showing no cells were excluded.  

 

Figure 8. Immunostaining of JMJD2A-flag fusion protein overesxpressed in 
Drospohila S2 cells. 100 filds visualized by ImageJ macro software. 

 

The software was analysing  marged images of DAPI, Cy3 and Cy2 stainings, than 

choosing  the cells that were in good conditions (Figure 9a.) and calculating the 

intensity of their signal which would than be transformed in numbers and presented 

as “mean”.  Mean1 was showing a mean grey value of Cy3 (secondary antibody used 

to stained JMJD2A), while mean2 was showing a mean grey value of Cy2 (used to 

stain H1K27me2 and H1K27.(Figure 9b). 
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Figure 9. a) Merged image of DAPI staining (gray) and ROIs (cells in good 
conditions) found by Analyze particles plugin (red); b) Mean1 showing a mean grey 
value of Cy3 (secondary antibody used to stain JMJD2A), while mean2 was showing 
a mean grey value of Cy2 (used to stain H1K27me2 and H1K27). 
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         RESULTS 

In order to determine potential histone H1 demethylase activity of the Drosophila 

JMJD2A proteins, overexpression experiments in Drosophila cultured S2 cells were 

performed. We used a cell line stably harboring the JMJD2A-flag fusion on its 

genome: the JMJD2A-flag expression was induced by adding copper sulphate 

(CuSO4). Than cells were stained with α-flag antibodies, to identify cells expressing 

the fusion protein, and with antibodies that recognize specifically H1K27me2 (α-

H1K27me2) , and those recognizing H1K27 (α-unmodified). 

The cells were analysed by ImageJ macro software, as described previously in 

Material and methods. The intensity of each signal was rappresented as “mean” 

(Figure 9.). Since not all the immunostainings were done in the same experiment and 

the pictures could not have been taken with the same conditions, and ImageJ could 

not analyse the data with the same parameters in all the cases, it was necessary to 

normalize the data. A significant number of pictures was taken with Leica SPE 

confocal microscope (Figure 8.). Pictures containing a large number of cells were 

selected for ImageJ software analysis. Since ImageJ was used for the very first time, 

it was improved step by step until the point in which the software was capable to 

automaticaly eliminate false cells and avoid false signals not considering the the 

overlapping cells. Intensity values of the cells for H1K27me2 and H1K27 stainings 

were uniform in all the experiments, specially in wild type cells. These cells were 

chosen randomly out of all the analyzed cells; such random choice was possible 

since the values detected were highly uniform from cell to cell (no significant standard 

deviation was observed). As mentioned previously, all the cells had a signal which 

was transformed  by the software into a number. All the data were normalized at the 

first step of the analysis. In the next step it was decied which cells were transfected 

and which one were not. The cells with the strong signal for JMJD2A were clearly 

transfected while those with the weak signal were cosidered as not transfected.  

Immunofluorescence staining revealed that overexpression of wild-type-flag- JMJD2A 

resulted in a decrease in the level of H1K27me2 (Fig. 10), while in control cells, 

which were not transfected, there was not observed any significant reduction of 

H1K27me2 levels.  
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Immunostaining of H1K27me2 in cells that are overexpressing JMJD2A revealed that 

80% of transfected cells were having an decrease in H1K27me2 signal compared to 

the non transfected ones, (Figure 11. left chart, see appendix 1 for more 

informations).  At contrary, the staining of H1K27 showed no decrease of the signal in 

transfected cells compared to non transfected cells (Figure 11. right graph, for more 

informations see appendix 2).  

 

α-flag-JMJD2A α-H1K27me2 DAPI 

   

α-flag-JMJD2A α- H1K27 DAPI 

   

 

Figure 10.  A JMJD2A-flag-fusion protein was overexpressed in Drosophila S2 cells 
and transfected cells were stained with α-flag (shown in green) and αH1K27 (shown 
in red). DNA was stained with DAPI. In the second row endogenous H1 was stained 
with α-unmodified antibody (shown in red). There is a decrease in the signal for 
H1K27me2 (first row), while no descrese in signal for H1K27 was observed with the 
antibody for H1K27 (second row). Cells labbeled with the white circle are transfected. 
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Figure 11. The charts show normalized mean values of H1K27me2 (left chart) and of 
H1K27 (right chart) stainings in 40 (in case od H1K27me2) and  around 50 (in case of 
H1K27) randomly chosen cells that are  overexpressing JMJD2A  (blue) and about 
the same number of cells that were not transfected (control cells). The chart on the 
right shows no significant difference in mean values of H1K27 signal between 
transfected and non transfected cells. Y ordinate is showing normalized values of the 
grey signals. More informations about the data and analysis are in appendix 1 and 
appendix 2. 
 

 

 

Figure 12. Immunostaining of H1K27 with unmodified antibody (red line) and of 
H1K27me2 with α-H1K27me2 in wild type S2 cells (1-141) (blue line) (showed is the 
sample of 141 cells). Y ordinate is showing normalized values of the signals. More 
informations about the data and analyses are in appendix 3. 
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Figure 13. Transfected cells (1-33) stained with the antibody for H1K27me2 (blue 
line) and with the unmodified antibody for H1K27 (red line). Y ordinate is showing 
normalized values of the signals. 

 

 

Figure 14. Non transfected cells (1-47) stained with the antibody for H1K27me2 (blue 
line) and with the unmodified antibody for H1K27 (red line). Y ordinate is showing 
normalized values of the grey signals. 
 

 

Immunostaining results with both antibodies for H1K27me2 and unmodified for 

H1K27 in wild type cells, showed no significant difference between the two stainings 

(Figure 13., for more informations see appendix 3). 
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When the two stainings in transfected cells were compared, it was possibile to 

observe that the staining with H1K27me2 showed a decrease in the signal compared 

to the transfected cells stained with H1K27, in 95% of cells (Figure 13.). On the other 

hand, comparing the two stainings in non transfected cells, in 98% of these cells was 

observed the higher signal for H1K27me2 than the signal for H1K27 (Figure 14.). 

 

 

CONCLUSIONS 

 

As mentioned previously, mass spectrometry mapping, done in Prof. Dr. Ferran 

Azorin’ s laboratory, revealed dimethylation at Lysine 27 of histone H1, among other 

posttranslational modifications at the same histone.  

In my project we investigated if JMJD2A proteins exibit demethylase activity toward 

dimethylated H1K27, since few studies showed that the mammalian JMJD2A 

proteins are functional histone demethylases that target H3K9 and H3K36 (Cloose et 

al., 2006; Fodor et al., 2006; Kim et al., 2007; Klose et al., 2006; Whetstine et al., 

2006), and recently was also shown that the same proteins demethylate mammalian 

homologues of the protein JMJD2A, which was the trigger for the idea of my project, 

also due to the sequence similarity between H1 in fly and mammalian H1.4, as 

mentioned above in the text. 

Overexpression of JMJD2A in S2 cells and immunostaining with α-H1K27me2 

(Figure 10. and 11.) showed a decrease of H1K27me2 signal in transfected cells in 

80% of cells, compared to the staining with the same antibody in non transfected 

cells. To confirm the specificity of JMJD2A demethylase activity toward H1K27me2 

and to exclude the possibility that this observed change in dimethylation level  could 

be the consequence of the changes in the total H1K27 amount, we performed the 

immunostaining experiments with α-unmodified antibody (that recognizes total 

H1K27) in induced cells that are overexpressing JMJD2A, and we found no 

significant decrease of the signal in transfected cells compared to non transfected 

cells (Figure 11. right graph). This data are suggesting that the decrease observed in 

80% of the cases in H1K27me2 in transfected cells could be due to demethylase 

activity of JMJD2A on lysine 27 of the linker histone H1.  
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Staining of the H1K27me2 and H1K27 in wild type cells (Figure 12.) revealed general 

higher signal of H1K27me2 than the signal of H1K27me2 observed in the transfected 

cells, which additionaly confirms our hypothesis. 

Comparing the two stainings with the different antibodies only in transfected cells, in 

95% of the cells stained for H1K27me2 was observed a decrese in the signal, while 

no significant number of the cells with decreased signal was observed in the staining 

with H1K27. Thus, in non transfected cells was seen that almost no cell stained for 

H1K27me2 showed an deacrese in signal (Figure 14.). All these data together are 

strongly suggesting that the JMJD2A could perform a demethylase activity toward 

histone H1 at Lysine 27 position. 

To date there was no evidence of demethylation of histone H1 in D. melanogaster. 

Our data is indicating that there is probably existence of demethylase of histone H1 in 

D. melanogaster at Lysine27 position. However, additional controls and experiments 

in D. melanogaster  tissues should be performed, to confirm this data. 
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APPENDIX 1: Data and analysis of H1K27me2 signals  in induced cells 
 
 
 
 
 
 
 

JMJD2A H1K27me2     

Min 650.96 Min 246.27 2.15    

max3202.14 max688.51 normalized normalized  <2 roi1 NT >2 roi1 T 

ROI 1 ROI 2 roi1 roi2   

2296.94 253.78 3.55 1.03 1 1.03 

2447.9 282.03 3.78 1.15 1.21 1.15 

1113.01 247.45 1.72 1 1.04 1.04 

3080.29 255.4 4.76 1.04 1.48 1.08 

2526.16 265.76 3.9 1.08 1.95 1.06 

1874.7 261.65 2.9 1.06 1.78 1.01 

1378.21 249.96 2.13 1.01 1.83 1.03 

2034.93 254.2 3.14 1.03 1.66 1.01 

2317.71 248.77 3.58 1.01 1.63 1.02 

1990.42 251.14 3.08 1.02 1.44 1.01 

3202.14 248.03 4.95 1.01 1.64 1.03 

1427.23 252.98 2.21 1.03 1.77 1.01 

1021.29 298.4 1.58 1.21 2.1 1.05 

1166.82 256.55 1.8 1.04 1.7 1.05 

1786.48 248.02 2.76 1.01 2.15 1.03 

1629.7 257.65 2.52 1.05 1.82 1.08 

2022.11 258.37 3.12 1.05 1.55 1.06 

2246.14 253.9 3.47 1.03 1.74 1 

1993.31 265.06 3.08 1.08 1.44 1.03 

2069.28 261.55 3.2 1.06 1.78 1.03 

1621.04 246.27 2.51 1 1.69 1.05 

1519.96 253.3 2.35 1.03 1.96 1.05 

2880.79 254.76 4.45 1.03 1.72 1.03 

2760.99 259.56 4.27 1.05 1.74 1.05 

2298.04 259.3 3.55 1.05 1.67 1.05 

1837.99 252.63 2.84 1.03 1.71 1.04 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ROI1:Normalized 

values of grey 

signal of JMJD2A 

ROI2:Normaliz

ed values of 

grey signal of 

H1K27me2 

Values of 

H1K27me2 of 

non transfected 

cells(ROI1<2)  

Values of 

H1K27me2 of 

transfected 

cells (ROI1>2) 

Each row rappresents one cell data, here is shown a 

rapresentative number of cells, in total 105 randomly taken 

cells were analysed 
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APPENDIX 2: Data and analysis of H1K27 signals in induced cells 
 
 
 
 
 
 
 
JMJD2A H1K27 1.7  NT T  

ROI1 ROI2 normalized normalized <1.40 >1.40  

  roi1 roi2    

350.21 247.95 1.18 1.02 1.02 1.33  

327.86 262.35 1.1 1.08 1.08 1.14  

376.5 268.67 1.27 1.11 1.11 1.08  

699.7 268.64 2.35 1.11 1.11 1.14  

382.62 256.67 1.29 1.06 1.06 1.05  

398.81 248.88 1.34 1.03 1.03 1.19  

386.13 258.69 1.3 1.07 1.07 1.13  

632.41 322.87 2.13 1.33 1.04 1.04  

470.88 276.31 1.58 1.14 1.06 1.05  

488.6 261.01 1.64 1.08 1.05 1.04  

1635.32 276.61 5.5 1.14 1.1 1.1  

480.49 254.99 1.61 1.05 1.06 1.1  

470.9 536.12 1.58 2.21 1.45 1.16  

1402.3 288.8 4.71 1.19 1.04 1.14  

465.94 273.33 1.57 1.13 1.13 1.32  

378.46 252.77 1.27 1.04 1.09 1.13  

374.57 255.5 1.26 1.06 1.09 1.11  

747.97 252.67 2.51 1.04 1.04 1.08  

594.77 255.19 2 1.05 1.03 1.19  

401.78 266.37 1.35 1.1 1.14 1.17  

403.97 257.16 1.36 1.06 1.1 1.13  

467.29 495.94 1.57 2.05 1.11 1.12  

411 349.86 1.38 1.45 1.06 1.13  

345.05 250.74 1.16 1.04 1.01 1.06  

449.09 253.89 1.51 1.05 1.16 1.06  

561.12 490.37 1.89 2.03 1.06 1.08  

503.55 252.37 1.69 1.04 1.04 1.1  

347.54 274.26 1.17 1.13 1.02 1.06  

378.54 263.54 1.27 1.09 1.16 1.1  

357.33 264.8 1.2 1.09 1.1 1.04  

331.31 251.11 1.11 1.04 1.2 1.07  

514.58 266.03 1.73 1.1 1.06 1.13  

439.4 265.67 1.48 1.1 1.05 1.11  

502.03 281.42 1.69 1.16 1.07 1.58  

483.2 276.78 1.62 1.14 1.02 1.16  

 
 
 
 

ROI1:Normalized 

values of grey 

signal of JMJD2A 

ROI2:Normalized 

values of grey 

signal of H1K27 

Values of 

H1K27 of non 

transfected 

cells 

(ROI1<1.4)  

Values of 

H1K27 of 

transfected 

cells 

(ROI1>1.4) 

Each row rappresents one cell data, here is shown a 

rapresentative number of cells, in total 105 randomly taken 

cells were analysed 
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APPENDIX 3: Data and analysis of H1K27me2 and H1K27 signals in wild-type cells 
 
 
 
 
 
 

325.11 328.26    

wt H1K27me2 wt unmodif normalized normalized  

334.89 457.32 wt H1K27me2 wt unmodif  

372.55 461.75 1.03 1.39  

361.54 442.67 1.15 1.41  

392.35 431.81 1.11 1.35  

384.27 459.6 1.21 1.32  

377.43 445.82 1.18 1.4  

362.74 457.71 1.16 1.36  

409.1 429.8 1.12 1.39  

408.88 512.98 1.26 1.31  

427.15 464.66 1.26 1.56  

401.85 394.51 1.31 1.42  

417.07 440.73 1.24 1.2  

463.78 423.31 1.28 1.34  

403.51 397.7 1.43 1.29  

408.83 427.55 1.24 1.21  

413.47 366.16 1.26 1.3  

405.75 567.62 1.27 1.12  

355.54 399.64 1.25 1.73  

418.72 392.09 1.09 1.22  

353.6 400.47 1.29 1.19  

390.34 435.42 1.09 1.22  

387.25 408.4 1.2 1.33  

375.89 431.93 1.19 1.24  

381.29 462.77 1.16 1.32  

381.64 447.18 1.17 1.41  

396.76 424.79 1.17 1.36  

431.59 577.75 1.22 1.29  

417.22 445.39 1.33 1.76  

382.77 416.24 1.28 1.36  

352.38 399.79 1.18 1.27  

 
 
 
 
 
 
 
 
 
 
 

Normalized values 

of grey signal of 

H1K27me2 in wt 

cells 

Normalized 

values of grey 

signal of H1K27 in 

wt cells 

Each row rappresents one cell data, here is shown a 

rapresentative number of cells, in total 141 randomly taken 

cells were analysed 
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