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1. Introduction

Since at least Adam Smith, human's attitude towards time has been of utmost impor-
tance to social scientists: Adam Smith himself thought that it determined the Wealth
of Nations. Norbert Elias (1988) even went one step further and hypothesizes that
a "linear and homogeneous" notion of time is a central pillar of none other than the
"civilizing process" of modern man.
Building on Smith's insights, economists John Rae (1834), Eugen von Böhm-Bawerk

(1884) and Irving Fisher (1930) sought to analyze the motives that in�uenced in-
tertemporal decisions. They attributed a central role to impatience - "the marginal
preference for present over future goods" (Fisher, 1930, part II, chapter 4). Impatience,
in turn was said to be the product of numerous factors � objective or subjective in na-
ture. Irving Fisher (1930, part II, chapter 4) names the following six subjective factors
("characteristics") that in�uence a person's impatience in the obvious directions:

1. Foresight

2. Self-control

3. Habit

4. Expectation of life

5. Concern for the life of other persons

6. Fashion

However, after Paul Samuelson published his "A Note on the Measurement of Utility"
in 1937, all these considerations where compressed into the discount factor. Although
Samuelson himself raised concern against the overly simplistic formulation of time
preferences in this very paper, the vast majority of economic models that involved in-
tertemporal decisions adopted his approach, that became known as the "exponentially
discounted utility model".
Although the model lacked an empirical or normative foundation, it was not until

the 1990s that economists turned to alternative models of time preference in increasing
numbers. And quite often, they reverted to the "(neo-)classics" mentioned above.
Part I of the present thesis tries to review some of this recent research in the area of

time preferences. The structure is as follows:
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1. Introduction

Chapter 2 brie�y treats the axiomatic derivation of time preferences over outcome-
date pairs in general and discusses some of the most important characteristics of time
preferences. The following chapter then shows how these can be adopted to model pref-
erences over dated streams of outcomes. Chapter 4 presents a number of alternatives
to the exponentially discounted utility model and surveys their empirical evidence.
Part II then adopts the least "drastic" among these alternatives (with regard to

exponential time preferences) � quasi-hyperbolic time preferences � and discusses how
economic analysis changes: as it turns out, this will have dramatic consequences on
the structure of most intertemporal models and will even require a di�erent solution
concept.
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Part I.

Time Preferences

What then is time? If no one

asks me, I know what it is. If I

wish to explain it to him who

asks, I do not know.

(Saint Augustine)
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2. Classi�cation of Preferences over
Outcome-Date Pairs

In this chapter we give an axiomatic derivation and a characterization of preferences
over outcome-date pairs. We will do so along the lines of Ok and Masatlioglu (2007)
who came up with a novel approach dubbed 'relative discounting'. Their framework
allows for a comprehensive classi�cation of a broad range of time preferences that
have been introduced in the literature, while maintaining a certain degree of concrete-
ness and cohesiveness. In particular it captures a certain class of non-transitive time
preferences.
In section 2.1 we establish the notation and preliminaries, while section 2.2 states and

discusses the assumptions necessary for the important theorem of relative discounting.
In the last section of this chapter we then examine the implications of characteristics
of time preferences, such as transitivity or stationarity. Preferences over streams will
be treated separately in chapter 3.

2.1. Preliminaries

In economics, the standard way to analyze time preferences is to model them as binary
relations, �, over outcome-date pairs. A generic pair being (x, t), where x denotes a
'prize' that is to be obtained in period t. Prizes are undated and are elements of an
unidimensional1 outcome space X ⊆ R. In this section it will be convenient to employ
a continuous and in�nite notion of time, i.e. t ∈ T = [0,∞). Therefore, preferences are
binary relations over the outcome-date space X ≡ X × T .
As usual in this context, (x, t) � (y, s) means "not to prefer (y, s) over (x, t)", while
∼ denotes that both, (x, t) � (y, s) and (y, s) � (x, t) hold, which we interpret as "the
decision maker is indi�erent between (x, t) and (y, s)."
Moreover, let �t denote the tth (canonical) projection of �, i.e. the ordering of

outcomes that are both due at time t, which we can interpret as thematerial tastes for
outcomes that will be obtained at t. Formally, �t is de�ned as x �t y ⇔ (x, t) � (y, t).
In this notation, �0 are for instance the material tastes at time 0.
Following Ok and Masatlioglu (2007, pp.217) we stress that the preferences, denoted

by �, are the commitment preferences of an agent, i.e. we interpret (x, t) � (y, s) as
1Note however, that all results brought forward in this section also generalize to multidimensional
prizes
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2.1. Preliminaries

"if she could commit in period 0 to either 'consume' x in period t or y in period s,
she would (weakly) prefer the former". Troughout part I of the thesis we will assume
that the decision maker is indeed able to commit to an action in period 0. In part II
we will then drop this assumption and discuss the implications. Additionally, we will
facilitate the analysis by explicitly ruling out a dimension of risk or uncertainty, i.e. we
say that if a the decision maker opts for (x, t) she receives the pair with certainty.
We are now ready to de�ne time preferences in the following sense (Ok and Masatli-

oglu, 2007, p.218):

De�nition For an outcome space X, a binary relation � on X is a time preference
on X , denoted by (X ,�) if

1. � is complete: For every (x, t) and (y, s) in X either (x, t) � (y, s) or (y, s) �
(x, t) or both (which also implies re�exivity).

2. � is continuous in the following sense:2 Let an and bn be convergent sequences
in X in the Eucledian Norm, s.t. am � bn, ∀n, then it we require that also
lim an � lim bn has to hold.

3. �0 is complete and transitive, where transitivity of �0 means that for x, y, z ∈
X: x �0 y and y �0 z ⇒ x �0 z. So we assume that the ranking over the goods
that are available right now is transitive and complete.

4. �0=�t for all t. Therefore the material tastes are the same throughout
time. This restriction explicitly rules out, say, changing tastes as the decision
maker becomes older. Likewise, this assumption does not allow for an increased
"demand" of for a bottle champagne on New Year's Eve (in the realm of multi-
dimensional prizes).

Note that transitivity of � does not follow from the transitivity of �t. So, the
preferences may generate cycles like (x, t) � (x, t + 2) ∼ (x, t + 1) ∼ (x, t) but not
cycles like (x, t) � (y, t) ∼ (z, t) ∼ (x, t). In other words, we restrict ourselves to cycles
that "arise due to the passage of time" (Ok and Masatlioglu, 2007, p. 218). Moreover,
the assumptions we make below only permit cycles that involve three or more time
periods.
Furthermore, when (X ,�) is not transitive, we cannot represent the preferences

by a utility function, say, w(x, t), in the usual manner: (x, t) � (y, s) ⇔ w(x, t) ≥
w(y, s): for preference relation to be represented by a utility function it necessary
that it is transitive and complete (see e.g. Mas-Colell, Whinston and Green, 1995,

2This concept of continuity is often called "sequential continuity". There is, however, a variety of
other concepts of continuity for binary relations. For an overview see e.g. Baroni and Bridges
(2008).
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2. Classi�cation of Preferences over Outcome-Date Pairs

p.9). However, as Ok and Masatlioglu showed, we are able to represent them in a
di�erent way, provided that some additional assumptions hold: Theorem 1 says that
(x, t) ≥ (y, s)⇔ u(x) ≥ η(s, t)u(y).

2.2. The Relative Discounting Representation and its
Axioms

The following assumptions on (X ,�) will allow us to represent the time preferences by
a combination of a (static) outcome utility function and a relative discount function,
given in 1.

Axiom RD1 (Time Sensitivity): For any x, y ∈ X and t ≥ 0 there exists an s ≥ 0
s.t. (x, t) � (y, s)

Roughly speaking, this assumption ensures that the decision maker will not prefer
an outcome-date pair that is delayed by a su�ciently large amount of time. Implicitly,
this assumption already rules out negative time preferences (which would be that the
decision maker always favours delays): Suppose for example that t = 0 and that y �0 x,
s.t. (x, 0) � (y, 0). Then, it does not follow from assumption RD1 that delaying y makes
it more desireable. Note however, that although this assumption treats delaying and
expediting asymmetrically, it does not say that a delay always results in a loss of
"attractiveness".

Axiom RD2 (Outcome sensitivity): For any x ∈ X and s, t ≥ 0, there exist
y, z ∈ X\{x} s.t. (z, s) � (x, t) � (y, s)

This assumption is the natural counterpart of axiom RD1 and rules out e.g. lexico-
graphic preferences over outcome-date pairs. Intuitively, this axiom states that delay
can always be compensated with higher outcomes.

Axiom RD3 (Monotonicity): For any x, y, z ∈ X and s, t, r ≥ 0, if t ≥ r and z �0 x
then (x, t) � (y, s)⇒ (z, r) � (y, s).
This assumption strengthens the antecedents in the way that it brings forward the

obvious notion of positive time preferences (or impatience): attributed to human pref-
erences since at least Irving Fisher's Theory of Interest (1930): People always prefer
sooner pleasures to deferred ones. If we assume for a second that X is a space of mon-
etary outcomes, then assumption RD3 may be bluntly interpreted as: more money is
always good whereas delay is always bad.
The next two assumptions guarantee that we can separate the e�ects of outcomes

on preferences from the e�ects of time in the certain sense of Theorem 1.

Axiom RD4 (Separability): For any x, y, z, w ∈ X and s1, s2, t1, t2 ≥ 0 if (x, t1) ∼
(y, s1), (z, t1) ∼ (w, s1) and (x, t2) ∼ (y, s2)⇒ (z, t2) ∼ (w, s2)

6



2.2. The Relative Discounting Representation and its Axioms

As Ok and Masatlioglu (2007, p.220) put it, axiom RD4 ensures that the premium
for delay is separated from the particular reward:
For the sake of argument suppose t1 < s1, t2 < s2 and that the decision maker told

us that she is indi�erent between getting x at period t1 and getting y at s1. Therefore
we can think of y−x > 0 a premium that is needed to compensate the decision maker
for delaying x from t1 to s1. Similarly, she can be compensated by a premium w − z
for postponing z from t1 to s1. If we additionally know, that the compensation for
delaying x from t2 to s2 is also y − x, then axiom RD4 ensures that the compensation
of delaying z is the same as before: w − z.
If we adopt a multidimensional prize space, this assumption ensures that discounting

for, say, one's physical health, is the same as discounting for cigarette pu�s.

Figure 2.1.: An illustration of Axiom RD5 (Path Independence). Source: Ok and Masatlioglu
(2007, p.221)

Axiom RD5 (Path Independence): For any x, y, z, w ∈ X and t1, t2, t3 ≥ 0 if
(x, t1) ∼ (y, t2), (z, t1) ∼ (w, t2) and (y, t2) ∼ (w, t3)⇒ (x, t2) ∼ (z, t3)

This path independence property ensures that the aggregate premium for delaying
rewards are independent of their order (p.221): For the sake of illustration, suppose
that t1 < t2 < t3 and that x < y < z < w (as depicted in �gure 2.1). We will now
"extract" premia in two di�erent ways: First, let us assume that x is postponed twice:

7



2. Classi�cation of Preferences over Outcome-Date Pairs

from t1 to t2 and then again from t2 to t3. In order to make the decision maker willing
to accept these two delays, we have to compensate her with a premium of at least y−x
for the �rst delay and then with w − y for the second one. Therefore the aggregate
premium involved is w − x.
Second, let consider a di�erent order: We start with z and delay it from t1 to t2

requiring a premium of w − z. Next, we postpone x from t2 to t3. The associated
aggregate premium would be (w − z) + (ξ − x).
The aggregate premia are the same if ξ = z, which is precisely what axiom RD5

requires. Since this is quite an unintuitive assumption it is hoped that �gure 2.1 brings
some clari�cation.

Axiom RD6 (Monotonicity in prices): �0 is strictly increasing on X.
Axiom RD6 simply states that the elements of X are ordered according to their

"attractiveness", which in a sense is a matter of convention.
We are now ready to formulate

Theorem 1 [Relative Discounting] (Ok and Masatlioglu, 2007) Let X be an open
interval and � a binary relation on X . � is a time preference that satis�es axioms RD1-
RD6, if and only if, there exists an homeomorphism u : X → R++ and a continuous
map η : R2

+ → R++ such that, for all x, y ∈ X and s, t ≥ 0,

(x, t) � (y, s)⇔ u(x) ≥ η(s, t)u(y), (2.1)

where

η(s, t) is strictly decreasing in its �rst argument and lim
s→∞

η(s, t) = 0 (2.2a)

η(t, s) = 1/η(s, t) (2.2b)

u(x)is increasing. (2.2c)

One important feature of this representation is that � given axioms RD1-RD6 hold �
when evaluating the ranking of two outcome-date pairs, we can separate the "material
ranking" from the timing: A static, undated utility u(·) and a relative discount factor
η(·). In the light of this representation, (x, t) � (y, s) is then interpreted as (Ok and
Masatlioglu, 2007, pp.222-223):

From the perspective of time 0, the worth at time t of the utility of y that
is to be obtained at time s is strictly less than the worth at time t of the
utility of x that is to be obtained at time t.

Again, we stress that these are commitment preferences, i.e. the decision maker commits
to her decision in period 0.

8



2.3. Uniqueness

Furthermore, we observe that by (2.2b) η(t, t) = 1/η(t, t) ⇒ η(t, t) = 1 since
η(s, t) > 0, which corresponds to the assumption that time does not alter the ma-
terial preferences.
Moreover, our assumption of positive time preferences, i.e. impatience at every period

in time, is re�ected by 0 < η(s, t) < 1 ⇔ s > t: To see why this holds, suppose �rst
that 0 ≤ t < s < ∞, then by the monotonicity of the discounting term: 0 < η(s, t) <

η(t, t) = 1 Conversely, suppose 0 < η(s, t) < 1
(2.2b)⇒ 0 < η(s, t) < η(t, t)

(2.2a)⇒ s > t.
Figure 4.7 (on page 59) shows six plots of the relative discount function, η, each one

corresponding to a di�erent kind of time preference.

2.3. Uniqueness

Theorem 2 [Uniqueness] If a time preference (�,X ) that satis�es RD1-RD6 is
represented by (u, η) then it is also represented by (v, θ) if, and only if, v = bua and
θ = ηa for a, b > 0.

This indicates that the structure of the preferences, imposed by RD1-RD6, restricts the
permissible transformations up to simultaneous exponential transformations and multi-
plication with a positive constant. In other words, once we �xed the functional form of
the relative discounting term, the static utility function is unique up to a proportional
transformation. Therefore, we have to adopt a concept of "cardinal utiltiy" similar
to von Neumann-Morgenstern utility in expected utility theory. But compared with
von Neumann-Morgenstern utility we have one degree of freedom less when comparing
outcome-date pairs.

2.4. Characteristics of Time Preferences

Theorem 1 is able to deal with a fairly broad class of time preferences. In this section
we will discuss how characteristics of time preferences relate to the discount term, η(·, ·)
in the relative discount representation.

2.4.1. Transitivity and Absolute Discounting

Up to now, we only assumed the material tastes �t on X to be transitive. Now we will
strengthen this assumption and discuss how "global" transitivity of � on X changes our
analysis. Since "global" transitivity implies transitivity of�t for all t, axioms RD1-RD6
still hold and we are therefore able to analyse such preferences within the framework
of relative discounting. On top of that, we expect this assumption to facilitate our
analysis and indeed, we observe that the transitivity of time preferences is interrelated
with the relative discount function in the following way:

9



2. Classi�cation of Preferences over Outcome-Date Pairs

η(t, r) = η(t, s)η(s, r) ∀r, s, t ≥ 0 (2.3)

We will show the "if" part of the proof for the case of indi�erence, "∼":

(x, t) ∼ (y, s), (y, s) ∼ (z, r)⇒ (x, t) ∼ (z, r)

which, by Theorem 1⇐⇒
u(x) = u(y)η(s, t), u(y) = u(z)η(r, s)⇒ u(x) = u(z)η(r, t)

therefore, η(r, t) = η(s, t)η(r, s)

which, by part (2) of Theorem 1:⇔ η(t, r) = η(t, s)η(s, r)

We can therefore exploit the transitivity in order to obtain the usual formulation
of absolute discounting, where the time-perspective only enters in an absolute manner
(Ok and Masatlioglu, 2007, p.224):

Theorem 3 [Absolute Discounting] Let X be an open interval and � a transitive
binary relation on X . Then � is a transitive time preference that satis�es axioms
RD1-RD6 if, and only if, there exist an increasing homemorphism u : X → R++ and
a decreasing and continuous map δ : R+ → (0, 1] s.t. δ(0) = 1, lim

t→∞
δ(t) = 0 and

(x, t) � (y, s)⇔ δ(t)u(x) ≥ δ(s)u(y) (2.4)

for all outcome-date pairs in X .

Transitivity, as embodied in equation 2.3 allows us to separate the relative discounting
function η(s, t) into the quotient of two absolute discount functions: δ(s)/δ(t). Put
di�erently, we de�ne a new function δ(t) ≡ η(t, 0).
From another perspective, the assumption of transitivity together with the de�ni-

tion of time preferences and axioms RD1-RD3 ensure that the conditions of Debreu
(1954)'s Theorem II are satis�ed. Therefore, the ranking of outcome-date pairs can
be represented by a utility function, say, w(x, t) in the usual manner. The continuity
assumptions of the time preferences even ensure that the utility function is continuous
in both arguments. Furthermore, the separability assumptions RD4 and RD5 enable
us to write w(·) as δ(t)u(x).3
The notion of absolute discounting (or just "discounting") also gives rise to a di�erent

interpretation of the preferences: We call the utility associated with an outcome-date
pair, δ(t)u(x), the present value of x and say that (x, t) � (y, s) whenever the present
value of x exceeds the present value of y.
3In the presence of transitivity, one may derive this result with a somewhat simpler set of assumptions.
In particular, one can impose a single separability condition that is less restrictive then RD4 and
RD5 (see e.g. the "Thomsen Condition" (condition A6) presented in Fishburn and Rubinstein,
1982).
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2.4. Characteristics of Time Preferences

Virtually all economic models employ transitive time preferences, the most important
being exponential discounting and (quasi-)hyperbolic disounting (see section 4).

2.4.2. The Discount Rate and the Discount Factor

For this class of transitive time preferences it is useful, to describe the shape of the
(absolute) discount functions by two measures: the discount rate and the discount
factor.

The discount rate describes the "rate of impatience" that is induced by the rate
of decline of the discount function. It seems natural to capture this e�ect by its
(negative) instantaneous growth rate, which for discount functions is usually refered
to as the discount rate (e.g. Chabris, Laibson and Schuldt, 2008):

De�nition In continuous time the discount rate, denoted by ρ(t), of a di�erentiable
discount function, δ(t), is given by

ρ(t) ≡ −δ
′(t)

δ(t)
∀t > 0 (2.5)

Obviously, in the case of non-di�erentiable discount functions (see e.g. section 4.4) this
is not a viable de�nition. Moreover, if we have a discrete notion of time, we are not
interested in the rate of impatience for in�nitesimal changes in time, but for the change
from one period to another4 (Laibson, 2003):

De�nition In discrete time the discount rate of a discount function δ(t) is given by5

ρ(t) ≡ −δ(t)− δ(t− 1)

δ(t)
=
δ(t− 1)

δ(t)
− 1 (2.6)

Another, perhaps more intuitive way to motivate the discount rate is the following:
Suppose a decision maker can consume x in period 0, giving him a utility of u(x). The
discount rate, ρ(1) tells us, how much more utility (in percentage terms) we have to
o�er her, so that she is just indi�erent between consuming x now or in the next period.
Put di�erently, ρ(t) tells about the minimum compensation required for delaying a

4More general, we have to de�ne the frequency of our observations �rst: suppose that time is mea-
sured in years. Then of course, we could decide to partition every year into twelve months. The
length of the periods is then given by ∆ (e.g. ∆ = 1/12 years). The discount rate is then given

more generally by: ρ(t) ≡ − (δ(t)−δ(t−∆))/∆
δ(t)

. As time is measured �ner and �ner, i.e. ∆ → 0,
the continuous and the discrete formulation coincide. For simplicity, we use the de�nition where
∆ = 1.

5Note that some authors, e.g. Read (2003), give the alternative de�nition ρ(t) ≡ − δ(t)−δ(t−1)
δ(t−1)

, which
captures the change of the discount function relative to the previous period.
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2. Classi�cation of Preferences over Outcome-Date Pairs

prize from period t−1 to t. Therefore the discount rate can be interpreted as the "rate
of impatience": the higher the discount rate the higher the impatience of the decision
maker.
Note, that it follows from assumptions RD1 (time sensitivity) and RD3 (monotonic-

ity) that the discount rate ρ(t) is strictly positive � in other words the decision maker
always needs a premium so that she is willing to postpone consumption.
By construction, the discount rate is independent of the size of the prize (it only

depends on the discount function, which in turn has only time as its argument). This
can also be seen as a direct consequence of assumption RD4 (separability), where we
explicitly required that the compensation for delay can be seperated from the size of
the prize that is to be delayed.

Another useful concept to capture the impatience that is induced by a discount func-
tion is the discount factor. Again, we provide the de�nitions for both, the continuous
and the discrete case:

De�nition In continuous time, the discount factor of a di�erentiable discount
function is de�ned in the following way (Chabris, Laibson and Schuldt, 2008):

φ(t) ≡ lim
h→0

(
1

1 + ρ(t)h

) 1
h

= [ lim
g→∞

(
1 +

ρ(t)

g

)g
]−1 = e−ρ(t) ∀t > 0 (2.7)

De�nition In discrete time, the discount factor is de�ned in the following way
(Laibson, 2003)

φ(t) ≡ 1

1 + ρ(t)
=

δ(t)

δ(t− 1)
for t = 1, 2, . . . (2.8)

The interpretation of the discount factor in discrete time is straightforward: From
the perspective of period 0, the discount factor for period t tells us, how much additional
discounting is involved between period t− 1 and period t.
Clearly, assumptions RD1 and RD3 require that 0 < φ(t) < 1, i.e. the decision maker

is always sensitive to additional delay.
Furthermore, note that the value of the discount factor is inversely related to the

discount rate: therefore, a high (close to 1) discount factor at period t+ 1 shows that
delaying an outcome for one more period is not perceived as very harmful. On the
other hand, a discount factor of close to zero implies that the decision maker does not
care much about future satisfaction.

It might seem as a trivial observation, but it will proof to be very useful to note that
in discrete time this allows us to write any (absolute) discount function in terms of
discount factors: Starting at period 0 the discounting involved in waiting an additional
period is

12



2.4. Characteristics of Time Preferences

φ(1) = δ(1)/δ(0) = δ(1) (2.9)

An additional delay of one period gives us

δ(1)

δ(0)︸︷︷︸
φ(1)

δ(2)

δ(1)︸︷︷︸
φ(2)

= δ(2) (2.10)

Iterating brings us to the result that we can write every discount function in terms
of discount factors:

δ(t) =
t∏
i=1

φ(i) t = 1, 2, . . . (2.11)

If it is the case that the sequence {φi}ti=1is decreasing, i.e. φ(t + 1) < φ(t) then we
can say that from the perspective of period 0 the decision maker perceives additional
delays as increasingly harmful and we can therefore say that the rate of impatience is
increasing. Conversely, if the sequence is increasing, then the decision maker is more
patient for longer planning horizons.

If we plug this representation of the discount function into equation 2.4 of Theorem
3 we yield that for s ≥ t ≥ 1

(x, t) � (y, s)⇔ u(x) ≥ u(y)
s∏

i=t+1

φ(i) (2.12)

Equation 2.12 is of course nothing else but a special case of the relative discount
representation given in equation 2.1 for transitive time preferences: here, η(s, t) =
s∏

i=t+1
φ(i). However, in the case of transitivity, we may interpret η(s, t) as the condi-

tional discount function:

δ(s|s ≥ t) ≡ δ(s)

δ(t)
(2.13)

Analogously, also in continuous time we can write (di�erentiable) discount functions
in terms of discount factors: We take the de�nition of the discounting rate (equation
2.5) and solve the �rst order di�erential equation:

− ρ(t) ≡ δ′(t)

δ(t)
∀t > 0 (2.14)

We integrate both sides with respect to time:

13



2. Classi�cation of Preferences over Outcome-Date Pairs

−
t∫

0

ρ(τ)dτ + c = ln |δ(t)| (2.15)

C exp

− t∫
0

ρ(τ)dτ

 = δ(t) ∀t > 0 (2.16)

normalizing C = 1 gives us the desired result. Again, we observe that an increasing
function of discount factors implies a declining "rate of impatience".
As in the case of discrete time, we can use this identity to express the discount

representation of preferences in the following way:

(x, t) � (y, s)⇔ u(x) ≥ u(y) exp

− s∫
t

ρ(τ)dτ

 ∀s > t > 0 (2.17)

These observations may seem as tautologies but are clearly a direct consequence
of the transitivity of the time preferences: The discounting that is "shared" by two
outcome-date pairs, (or: takes place up to period t) does not play a role in the decision
process. We stress that this is not to be confused with stationarity (see following
section)!

2.4.3. Stationarity

Stationarity is a feature of time preferences that ensures a certain degree of temporal
homogeneity, where the time e�ect is incorporated only by the di�erence between the
dates on which prizes are obtained, formally

De�nition (Fishburn and Rubinstein, 1982) A time preference on X is called sta-
tionary if

(x, t) � (y, s)⇔ (x, t+ τ) � (y, s+ τ)

∀(x, t), (y, s) ∈ X and τ ∈ R s.t s+ τ, t+ τ ≥ 0
(2.18)

Within the framework of relative discounting this translates into

Theorem 4 [Stationarity] (�,X ) is a stationary time preference that satis�es
axioms RD1-RD6 if, and only if, there exists an increasing homeomorphism u : X →

14



2.4. Characteristics of Time Preferences

R++ and a decreasing and continuous map ζ : R→ R++ s.t.

(x, t) � (y, s)⇔ u(x) ≥ ζ(s− t)u(y) ∀(x, t), (y, s) ∈ X (2.19)

with lim
a→∞

ζ(a) = 0 and ζ(a) = 1/ζ(−a), ∀a ≥ 0

Again, we stress that stationarity should not be confused with the result of equation
(2.12): While stationarity means that the only way that timing in�uences the ranking
of outcome-date pairs is by the di�erence of their receival times, transitivity merely
requires that it does not matter how much the decision maker only focuses on the e�ect
of the additional delay of the pair that is to be received later. This e�ect will in general
be di�erent across time.

Taken together with transitivity this poses enough structure on the time preferences
so that the discount function δ(·) is pinned down to an exponential function. To sketch
why this is the case, note that by stationarity of (�,X ), (x, t) � (y, s) ⇔ (x, 0) �
(y, s− t). By transitivity and Theorem 3 this holds if, and only if δ(s)/δ(t) = δ(s− t).
By de�ning r ≡ s−t this can be rewritten to δ(r)δ(t) = δ(r+t), which gives rise to the
conjecture that δ(t) = δt. Since we required 0 < δ(t) ≤ 1 and that δ is decreasing in
t, it must be the case that 0 < δ < 1. Moreover, it can be shown that this is the only
continuous and decreasing function that satis�es the (exponential Cauchy) equation
f(s+ t) = f(s)f(t).6

The consequences for discounting when both, transitivity and stationarity, jointly
hold are summarized in the following Theorem (Ok and Masatlioglu, 2007):

Theorem 5 [Exponential Discounting] Let X be an open interval and � be a bi-
nary relation on X . Then � is a transitive and stationary time preference that
satis�es axioms RD1-RD6 if and only if there exists an increasing homeomorphism
u : X → R++ and a δ ∈ (0, 1) s.t.

(x, t) � (y, s)⇔ δtu(x) ≥ δsu(y) ∀(x, t), (y, s) ∈ X (2.20)

One way to see, that only the di�erence of the receival-dates of the outcomes matters,
divide both sides of the above equation by δt in order to obtain u(x) ≥ δ(s−t)u(y).
Therefore in the case of transitivity the discounting function ζ(s − t) (see Theorem 4
equals δ(s−t).
One important point is that due to the ambuiguity of the discount representation

(see Theorem 2), δ can vary freely in the interval (0, 1) unless the discount function u
is �xed (up to multiplication with a positive constant).

6The constant solution f(t) ≡ 0 is ruled out since we only look for decreasing functions.
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2. Classi�cation of Preferences over Outcome-Date Pairs

This relatively simple representation of stationary and transitive preferences also
gives rise to a di�erent interpretation of the discounting term (Manzini and Mariotti,
2007, p. 4): First we rescale the present values by taking logs of the present values
which gives

log u(x) + t log δ ≥ log u(y) + s log δ

Dividing by − log δ and de�ning v(·) ≡ − log u(x) log δ/ (whereby we exploit that the
utility function is only unique up to multiplication with a positive constant) we obtain
the form:

(x, t) � (y, s)⇔ v(x)− t ≥ v(y)− s ∀(x, t), (y, s) ∈ X (2.21)

2.4.4. Present Bias

One natural counterpart of stationarity is what economists came to call present bias:
Special weight is attached to outcomes that are due today. One way7 to formalize this
idea is (Ok and Masatlioglu, 2007, p. 225)

De�nition A time preference (�,X ) exhibits present bias if

(x, t) � (y, s) ⇒ (x, 0) � (y, s− t) ∀x, y ∈ X, s > t ≥ 0 (2.22)

and if moreover, for any s > t > 0 there exist x, y ∈ X such that

(x, t) ∼ (y, s) ⇒ (x, 0) � (y, s− t) (2.23)

The framework of relative discounting can not only accomodate preferences of that
kind, there is also the following connection between a present bias and the relative
discounting term:

Theorem 6 [Present Bias] (Ok and Masatlioglu, 2007) (�,X ) is a time preference
that satis�es axioms RD1-RD6 and has present bias if, and only if, � is represented
by some (u, η) s.t. η(s, t) ≥ η(s − t, 0) holds whenever s > t > 0 for all with strict
inequality (>) for some dates.

When a time preference exhibits present bias, we can therefore say that the di�erence
in the timing of two future outcomes is certainly not getting less important when both
are speeded up so that the sooner one is can be obtained today. In the class of transitive
time preferences that allow for an (absolute) discount representation, this translates
to a lower discount factor at period 0 than at other points in time:

7see e.g. Hayashi (2003, p.348) for a slightly di�erent de�nition
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2.4. Characteristics of Time Preferences

Present biased time preferences are one form of time preferences that allow for "pref-
erence reversals". For some outcome-date pairs (x, t) and (y, s) the preferences are
reversed when both outcomes are delayed or speeded up. The classic example is due
to Thaler (1981): Although a decison maker might choose one apple today over two
apples tomorow, she as well might choose two apples in 101 days over one apple in 100
days. Stationarity on the other hand would require that she picked one apple in both
choices: Applying the de�nion of stationarity as given in equation 2.18 yields

(one apple, 0 days) � (two apples, 1 day)⇒
(one apple, 0 + 100 days) � (two apples apple, 1 + 100 days) (2.24)

The simplest type time preferences that exhibit such a present bias is called "quasi-
hyperbolic" time preference and is discussed in section 4.4.
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3. Time Preferences over In�nite
Streams of Outcomes

So far we discussed preferences over outcome-date pairs. In this chapter we will focus on
preferences over dated streams of outcomes, which we will sometimes call "schedules".
Also in this chapter, we will restrict ourselves to deterministic streams and assume
that the decision maker has commitment power, i.e. once the decision maker has made
a decision, she cannot alter it as time goes by. Therefore it su�ces to analyze the
decision makers preferences at time 0. From now on we will restrict ourselves to the
case of discrete time, whenever possible.
We say that a stream of outcomes attributes an outcome at ∈ At ⊆ Rn to every

point in time t ∈ T . We employ a discrete notion of time i.e. break down time into
periods of equal length: T = N0. Furthermore, we require the outcome space to be
the same in every period As = At = A ∀s, t ∈ T . A stream of outcomes, or schedule,
a = (a0, a1, . . .), is an element of

∏
t≥0A ≡ A, where

∏
denotes the cartesian product.

Sometimes we will denote parts of streams that start in period s (and end in period t)
with sa (sat).
In economics, streams are for example, bundles of goods (at)t≥0 where at =

(at1, at2, . . . , atn)∈ Rn+. In a broad range of dynamic models economists conveniently
assume that there is only a single consumption good ct ∈ R+. Due to the in�nite
number of periods, the decision maker is often called "dynasty".

3.1. Aggregation of Present Values

Ever since its introduction by Paul Samuelson in 1937, the overwhelming majority of
economics models implemented preferences over such in�nite streams in the following
way, which is often referred to as "additive discounted utility" or simply "discounted
utility" (DU) representation of the preferences over streams:1

a � b⇔
∑
t≥0

δ(t)u(at) ≥
∑
t≥0

δ(t)u(bt) ∀a, b ∈ A (3.1)

with 0 < δ(t) < 1 for t > 0 and δ(0) = 1.

1see Weibull (1985) for the derivation of a "general discount representation" of preferences over
streams, that also allow for negative discount rates
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3.1. Aggregation of Present Values

3.1.1. Intertemporal Noncomplementarity

As we will see, this is of course the most straightforward way to model time preferences
over in�nite streams of outcomes. But despite its popularity it was not until the 1960's
that economists started to provide an axiomatic foundation, which indicated a highly
restricted domain:
With respect to the classi�cation in section 2.4 one assumes transitivity over date-

outcomes pairs, so that their rankings can be represented by their present value,
δ(t)u(at), where δ(t) is for example one of the discounting functions, discussed in sec-
tion 4 � Samuelson himself formulated the DU model with an exponential discounting
function. In addition we postulate (Weibull, 1985):

Axiom S1 (strict intertemporal noncomplementarity): For every a, b, c ∈ A it
holds that

a � b⇔ a+ c � b+ c (3.2)

Note that up to now, intertemporal complementarities were not an issue, since the
decision maker received only single outcomes that were mutually exclusive: She either
gets (x, t) or (y, s). In the realm of streams, however, there is room for this highly
disputed assumption: As Koopmans (1960), who was probably the �rst to come for-
ward with an axiom like this, put it, "[o]ne cannot claim a high degree of realism for
such a postulate, because there is no clear reason why complementarity of goods could
not extend over more than one time period." Samuelson (1952, p.674) made this point
somewhat more crisply: "The amount of wine I drank yesterday and will drink tomor-
row can be expected to have e�ects upon my today's indi�erence slope between wine
and milk."

3.1.2. Critique: Habit Formation and Anticipated Utility

Concerns like these motivated economists (e.g. Constantinides, 1990) to study con-
sumption under habit formation: Roughly speaking, habit formation tries to capture
the e�ect that over time, people get used to a certain standard of consumption, a
habit, therefore consumption in one period also directly in�uences the marginal utility
of future consumption. Wathieu (1997) used a model model of habit formation in a
�nite time-framework to explain some of the anomalies of the exponential discounting
model discussed in section 4.1.
Other authors adopted a similar approach but posited models where individuals also

gain grati�cation from the anticipated utility (Frederick, Loewenstein and O'Donoghue,
2002, p.371). To indicate how this can be formulated formally, let c ∈ A denote,
say, an in�nite consumption stream and v(ct) be the utility derived from "actual"
consumption in period t. Then the (total) utility that the individual perceives at period
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3. Time Preferences over In�nite Streams of Outcomes

t is given by u(tc) = v(ct) + α(γv(ct+1) + γ2v(ct+2) . . . with γ < 1. This introduction
of anticipated utility of course implies that people will sometime voluntarily in fact
postpone grati�cations into the future.
This is also consistent with the �ndings of Loewenstein and Sicherman (1991), who

confronted subjects with several wage pro�les, some of them decreasing, some of them
increasing. The overwhelming majority of the respondents chose an increasing wage
pro�le, even after being made aware of the fact that via appropriate saving the decreas-
ing wage pro�les could be converted into wage pro�les that dominated the increasing
ones. Unusual in the profession of economics, Loewenstein and Sicherman chose to
report the respondent's reasons for choosing the increasing wage pro�les. A large frac-
tion reported either an "aversion of decrease", "in�ation" or an (intrinsic?) "pleasure
from increase".

3.1.3. Critique: Preference for Spreading Consumption

Loewenstein and Prelec (1993) argue that psychologically, individuals perceive choices
over sequences of outcomes fundamentally di�erent from choices over outcome-date
pairs. They argue that decision makers have an intrinsic preference for the spread
of consumption within a given period. They support this hypothesis by a series of
mini-studies, two of which we will discuss here:
In one mini-study (Prelec and Loewenstein, 1991, p.95-96) they asked respondents

the following question (original phrasing given):

Suppose you were given two coupons for fancy dinners for two at the restau-
rant of your choice. The coupons are worth up to $100 each. When would
you choose to use them? Please ignore considerations such as holidays,
birthdays, etc.

The authors told one group that the coupons were valid for two years and another
group that the coupons were valid for four years. Yet another group was given no
constraint. On average, subjects that were given a constraint scheduled both dinners
later than the control group (the one without an explicit constraint), con�rming the
hypothesis.
In another mini-study (Loewenstein and Prelec, 1993, example 5) presented subjects

with the following pairs of questions (original phrasing given):

Imagine that over the next �ve weekends you must decide how to spend your
Saturday nights. From each pair of sequences of dinners below circle the
one you would prefer. "Fancy French" [F] refers to dinner at a fancy French
restaurant. "Fancy lobster" [L] refers to an exquisite lobster dinner at a
four-star restaurant. Ignore scheduling considerations (e.g., your current
plans).
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3.2. Intergenerational Equity and Impatience

The authors assumed that the subjects ate at home [H] on the remaining weekends.
The results of this study are presented in table 3.1.

Option Weekend 1 Weekend 2 Weekend 3 Weekend 4 Weekend 5
A F H H H H (11%)
B H H F H H (89%)
C F H H H L (48%)
D H H F H L (51%)

Table 3.1.: Questions in Example 4 of Loewenstein and Prelec (1993) (answers in parentheses)

When asked to choose between options A and B the majority chose B, a result
which the EDU model rationalizes with a negative rate of impatience, but can also
be made sense of by insinuating a preference for spread. This hypothesis is con�rmed
when in addition to the fancy-french dinner, a lobster-dinner is scheduled on weekend
5: Suddenly the option where the french dinner is scheduled earlier becomes more
attractive. The authors obviously interpreted the result in the way that adding the
lobster dinner triggered a preference for spread of consumption and made some people
chose the option with the french dinner on weekend 1.
The authors interpret both results as a straightforward violation of axiom S1 (strict

intertemporal noncomplementarity) and suggest that the preferences over streams are
in fact qualitatively di�erent from preferences over outcome-date pairs in the sense
that decision makers exhibit an intrinsic preference for spreading consumption.
Although these studies could easily be dismissed as circumstantial evidence and

explained by entirely di�erent factors (for instance the imputed income e�ect from
adding a lobster dinner), the hypothesis is con�rmed by our intuition.

3.2. Intergenerational Equity and Impatience

Axiom S1 makes it possible to aggregate the (static) utilities of every point in time
and we can simply sum up over all present values the outcomes. For this reason, it is
also admissible to speak of in�nite utility streams (Diamond, 1965, see e.g.). This in
itself brings about another issue: Since we sum over an in�nite number of periods, it
does not follow from any of the assumptions we made so far that

−∞ <
∑
t≥0

δ(t)u(at) < +∞ (3.3)

So, if the limit does not exist, we cannot infer the ranking of two streams from simply
comparing their accumulated present values. This motivated economists to employ a so
called overtaking criterion to evaluate streams with in�nite utility (Acemoglu, 2009,
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3. Time Preferences over In�nite Streams of Outcomes

p.261): From a set of alternative streams, the decision maker is said to choose the
stream that gives a higher payo� at all times from a certain (�nite) period onwards.
This problem of "in�nite utility" also has implications of a di�erent kind: Suppose

that the static utility of each period corresponds to the well-being of a generation. We
then aggregate them into a function, which we interpret as a "social welfare function",
W , of, say, a country, that maps in�nite utility streams into the real numbers. We
require social welfare functions to satisfy the following (innocuous) axioms:

• (Weak) Pareto: Whenever it holds for two utility streams, that all generations
are strictly better o�, i.e. obtain higher utility from one stream, a, than in the
other b, it follows that W (a) > W (b).

• Intergenerational equity: W does not discriminate between the generations
in the sense that if two generations "swap" their levels of utility, it leaves the
social welfare function unchanged.2

• Continuity in the sup-metric3

From Koopmans (1960) and Diamond (1965) onwards a number of studies showed
that there is no social welfare function that jointly satis�es all three axioms: "Intu-
itively, the reason is that if there is in all circumstances a preference for postponing
satisfaction-or even neutrality toward timing- then there is not enough room in the set
of real numbers to accommodate and label numerically all the di�erent satisfaction lev-
els [...][of] an in�nite future." (Koopmans, 1960, p. 288). In a more recent paper Basu
and Mitra (2003) showed that the Pareto Axiom alone precludes an equal treatment
of all generations.

3.3. An Alternative Approach

In section 3.1 we derived time preferences over in�nite streams that were induced by
time preferences over outcome-date pairs. We will now approch the issue of intertem-
poral utility of in�nite streams from a di�erent, perhaps more natural vantage point:
We do not explicitly assume that axioms RD1-RD6 hold, so in a sense we will start
from scratch and follow Koopmans (1960) in his axiomatic derivation of preferences
over in�nite utility streams. Our goal is to derive preferences over in�nite streams
directly (i.e. not as induced by preferences over outcome-date pairs). In addition to
axiom S1 Koopmans makes the following assumptions:

2This particular notion of intergenerational equity is often refered to as the "anonymity axiom" (see
e.g. Basu and Mitra, 2003, p.1559).

3Due to the in�nite number of periods, streams are elements of an in�nite dimensional vector space,
which makes the concept of continuity sensitive to the metric employed.
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3.4. Uniqueness

K1 (Continuity): The preference relation (�,A) can be represented by a continuous
(in the sup-metric) utility function

This implies transitivity, completeness and continuity of � in X .

K2 (Sensitivity): The utility function is sensitive to changes in any period-utility. In
the case of period 0 this requires that there exist c0 and c′0 ∈ A s.t. (c0, 1a) � (c′0, 1a)
for all 1a. This assumption not only excludes the trivial case where the decision maker
is indi�erent between all streams, but also excludes the (somewhat pathological) case of
a decision maker, who has the following "heroic" (Koopmans, 1960, p.291) preferences:

U(a) = lim
τ→∞

( sup
t≥τ

(at)) (3.4)

Further, we assume a form of temporal homogeneity in the form of

K3 (Stationarity of in�nite streams): for all c0 and all a, b ∈ A it holds that:

(c0, a) � (c0, b)⇔ a � b (3.5)

As in section 2.4.3 stationarity of streams says that the ranking of the alternatives
does not change as both of them are speeded up or delayed by the same number of
periods.
This allows us to write the utility function U in the form

U(0a) = V (u(a0), U(1a)) (3.6)

where V (·) is called the aggregator function that can be shown to be continuous
and increasing in both of its arguments: u (instantaneous utility) and U (prospective
utility). The crucial point is, that due to stationarity, neither u, nor U are dependent
on time! This recursive form gives rise to the idea of dynamic programming, which we
will make use of heavily in part II of this thesis.
Moreover, it follows that the decision maker has to exhibit a su�cient degree of

impatience, in the sense that less weight is given to future utility as to immediate
utility. Otherwise the previous axioms are incompatible with each other.

3.4. Uniqueness

In the case of streams the static utility function u(·) is comparable to von Neumann-
Morgenstern utility functions in the sense that it is unique up to positive linear trans-
formations. Formally, we say that the preferences over streams of outcomes, denoted
by (�,A), that can be represented by the additive discount representation (δ, u):

23



3. Time Preferences over In�nite Streams of Outcomes

a � b⇔
∑
t≥0

δ(t)u(at) ≥
∑
t≥0

δ(t)u(bt) ∀a, b ∈ A (3.7)

can also be represented by an additive discount representation (δ, v) where v = ku+d
and k > 0. The main reason for this result is the linearity of the summation operator.
In this case of in�nite streams the discount function, δ(t), is unique.
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4. Types of Time Preferences and their
Empirical Evidence

In this chapter we discuss a number of time preferences that have been introduced in
the literature. The �rst section will be devoted to the "top-dog": the exponentially
discounted utility (EDU) model. Ever since its introduction by none other than the
late Paul Samuelson it has been the most widely used model of intertemporal choice.
But from the 1960s onwards, empirical evidence was mounting up against this model
and the list of "anomalies" that the EDU model failed to explain became longer and
longer. In section two we will review these �ndings and discuss in greater detail the
issue of measuring discount rates empirically. The evidence led to a spate of papers
that proposed to adopt di�erent (absolute) discount functions that are hyperbolic in
shape and that could explain most of these "anomalies". Two of these alternative
discount functions will be discussed in sections three and four. As we will see, the
empirical evidence does not point unequivocally in their direction if assessed critically.
The following two sections will then provide us with models of time preferences that
di�er from the EDU model even more in the sense that they drop the assumption of
transitivity, but still have a relative discount representation, i.e. they can be incorpo-
rated into the framework introduced in chapter 2. This will not be possible anymore
in the case of the two types of time preferences discussed in sections seven and eight,
which is why they therefore serve as examples of time preferences that violate one or
more of the axioms of relative discounting.

4.1. Exponential Discounting

The exponential discount function is given by

δE(t) ≡ δt δ ∈ (0, 1) (4.1)

As we saw in chapter 2 the exponential discount function (EDF) is the only discount
function that represents time preferences that are both, stationary and transitive. Due
to the stationarity it exhibits a constant discount rate. Therefore, it is in a sense
formulated in an analogy to a constant interest rate: In every period, the decision
maker can be compensated for an additional delay of a prize x that gives static utility
of u(x) by an increase of ρu(x). Therefore the decision maker exhibits the same rate
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4. Types of Time Preferences and their Empirical Evidence

of impatience, independent of the planning horizon. Conversely, the discounted value
or present value of a prize x that is obtained in period t is simply given by(

1

1 + ρ

)t
u(x) (4.2)

The second measure of impatience introduced in section 2.4.2 was the discount factor,
φ(t). The discount factor of the exponential discount function is given by

φE(t) ≡
δE(t)

δE(t− 1)
=

δt

δt−1
= δ ∀t > 0 (4.3)

that is, the discount factor is also constant across time. Moerover, it is relatively
easy to show that the exponential discount function is the only discount function that
exhibits a constant discount factor φ:

Proof

φ(t) ≡ δ(t)

δ(t− 1)
= φ

δ(t) = φδ(t− 1) (4.4)

So δ(t) has to be a solution to the homogenous �rst-order linear di�erence equation
with constant coe�cients. The general solution of this di�erence equation is given by:

δ(t) = bφt (4.5)

The intial value problem is δ(0) = 1 and �xes b = 1, which gives us the solution
δ(t) = φt. Moreover, since δ(t) is a discount function, we require δ(t) to be decreasing
and nonnegative. These two conditions together imply that φ ≡ δ ∈ (0, 1), which
brings us to the exponential discount function and completes the proof.

Since the EDF represents transitive time preferences over outcome-date pairs, it may
also be used to represent preferences over in�nite streams. Plugging the exponential
discount function into equation (3.1) gives us the exponentially discounted utility
model (EDU):

a � b⇔
∑
t≥0

δtu(at) ≥
∑
t≥0

δtu(bt) ∀a, b ∈ A (4.6)

On as few as seven pages this model was introduced by Samuelson and given an
axiomatic foundation by Koopmans (1960) (see section 3.3). Owing its popularity
perhaps to its simplicity, the exponentially discounted utility model was adopted in
virtually every model that involved intertemporal trade-o�s: from project evaluation to
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4.2. On Eliciting Time Preferences

micro-funded growth models. The manifold applications nonwithstanding, Samuelson
himself saw the model merely as a starting point for further research and certainly did
not endorse its widespread use as the following quote shows:

In conclusion, any connection between utility as discussed here and any
welfare concept is disavowed. The idea that the results of such a statistical
investigation could have any in�uence upon ethical judgments of policy
is one which deserves the impatience of modern economists. (Samuelson,
1937, p.161)

Moreover, neither Samuelson nor any other author ever adopted the exponential dis-
counting function on empirical grounds or even pretended that it is a realistic model.
On the contrary: in their axiomatic derivation of the exponential discounting repre-
sentation Fishburn and Rubinstein say that "[they] know of no persuasive argument
for stationarity as a psychologically viable assumption." (p.681).
In the next session we will assess how the exponentially discounted utility model

holds up against reality.

4.2. On Eliciting Time Preferences

From about 1980 onwards economists and psychologists sought to infer discount rates
from human1 decisions. From hindsight, the �rst tentative steps to do so were not
particularly successful in identifying the discount rates. But before we discuss in detail
the issue of eliciting discount functions (see section 4.2.2) it may be useful to have
a look at one of the pioneering studies, in particular since they are still quoted as a
motivation for adopting discount functions that di�er from the exponential one. We
are therefore going to discuss the �ndings of Thaler (1981):

4.2.1. The �rst tentative steps

Thaler asked respondents the hypothetical question of how much money they had to
be given in one month/one year/ten years in order to be indi�erent to receiving $15
now. In addition, he asked subjects, about the dollar amount that would make them
indi�erent to getting $250 and to getting $3000 in a year. The median responses and
the implied discount rates are given in table 4.1.
Thaler calculated separately the average annual discount rates for each response

given. He did so in the following way (Frederick, Loewenstein and O'Donoghue, 2002):
In the case of ($15, now) ∼ ($50, one year) this means that $15 = δ(one year)$50.
Using the identity that we can express every discount function as a product of its dis-
count factors (equation 2.17) the average annual discount rate is then given by the

1see section 4.3.2 for evidence of discount rates of pidgeons
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Indi�erent to one month one year ten years

$15
Median Response $20 $50 $100
Annual Average Discount Rate 345% 120% 19%
Annual Average Discount Factor .03 .30 .83

$250
Median Response $350
Annual Average Discount Rate 34%
Annual Average Discount Factor .71

$3000
Median Response $4000
Annual Average Discount Rate 29%
Annual Average Discount Factor .75

Table 4.1.: Results of the experiment in Thaler (1981)

equation: $15 = exp(−ρ 1)$50 So ρ = 1.20. Analogously, $15 = exp(−3.45 1/12)$20 =
exp(−.19 10)$100. That is we calculate an average discount rate as if the discount

rate were constant in the interval for given time horizons: Therefore,
t∫
0

ρ(τ)dτ = ρt.

Alternatively we could calculate average per period discount rates: If we already
now, that the average discount rate for a one month horizon is 345%, then the average
discount rate in the period of between one month from now to one year from now is
given by the equation $15 = exp(−3.45 1/12) exp(−ρ 11/12)$50. So ρ equals 100%.
Likewise, a similar calculation yields that the average discount rate for the period
starting at one year from now and ending ten years from now is about 7.7%.
These results suggest that discount rates decline in both, the planning horizon and

the money involved.

4.2.2. Methodology

After having discussed the particular approach of Thaler (1981), it may be a good
idea to lay out in a more general fashion, how one can measure time preferences.
There is of course a large number of possibilities to elicit (average) discount rates
from decisions: First of all, these decisions can be either observed in real life or in a
laboratory environment.
Studies that base their estimations of discount rates on data from real life experience

are often called �eld studies. One of the �rst studies to infer discount rates from real
world decisions that involved intertemporal trade o�s, was conducted by Hausman
(1979) who collected data about the purchase of air conditioners: The intertempo-
ral trade-o� was given by the fact that the lower priced air conditioners had larger
operating costs.
By the same token, the termination of about 66 000 military servicemen provided a

cause for rejoicing for economists Warner and Pleeter: The employees faced the choice
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of either accepting a lump-sum payment of about $25 000 or an annuity that - on the
basis of a seven-percent interest rate - was "worth" about $50 000. The overwhelming
majority chose the lump-sum payment, which can only be rationalized within the EDU-
model if the average discount rates were at least 17%. In nominal terms, this saved
the government about $1.7 billion in compensations.
One important drawback of �eld studies is that it may be di�cult to isolate the

e�ect of time preferences from other considerations: In the case of Hausman's study
one could for instance argue that decision makers were not aware of the operating costs
in the �rst place or that individuals simply found themselves liquidity constraint.
Therefore, the majority of studies tried to elicit discount rates in in experimental

situations in order to control the decision environment and suppress the "background
noise" of other economic considerations. These lab-experiments range from hypo-
thetical "paper-and pencil" tests to experiments involving sizable monetary rewards.
Frederick, Loewenstein and O'Donoghue (2002, p.386-389) distinguish between four
di�erent experimental procedures:

• Choice Tasks: In the case of choice tasks subjects are given the choice between
two outcome-date pairs, where one outcome is smaller and due sooner than an-
other one that is larger but due later. Suppose for instance that the smaller
amount is $100 due today, whereas the other amount is $120 due in one year. If
the subject choses the smaller, sooner amount, then the experimenter concludes
that the discount rate is at least 20%. In order to narrow down the discount
rate to a single number, subjects are often given a series of choices.2 That in
itself brings about the problem of the so called anchoring e�ect : suppose for
instance that there are two test schedules, each consisting of two questions. One
test schedule �rst gives the subject the choice between $100 now vs. $103 next
year and then the choice between $100 now vs. $120 in one year. In the other
schedule, the second question is the same, but the �rst question gives the choice
between $100 now vs. $140 next year. The anchoring e�ect states that subjects
tend to stick to the decision, "the anchor", they made in the �rst round and
therefore a person is more likely to choose $100 over $120 in the �rst schedule
than in the second.

• Matching tasks ask people for the corresponding value $x that would make
them indi�erent between, say, $100 now and $x in one year. The study of
Richard Thaler (1981) discussed above elicited discount rates in this manner.
The advantage over choice tasks is that it gives one discount rate and excludes

2In a recent paper, Chabris, Laibson, Morris et al. (2008) also recorded the response time of subjects,
i.e. the time it took subjects to answer questions. The authors surmise that longer response times
indicate that subjects found it harder to give a ranking of the two options and therefore the two
are perhaps perceived to be more similar.
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the anchoring e�ect. The disadvantages are that subjects tend to give very crude
responses that are just mulitples of the other outcome (here: n ∗ $100)

• In rating tasks subjects have to indicate the attractiveness of an outcome date-
pair. In the case of a transitive model of time preferences this can be thought
of as a proxy for the utility (the present value) of an outcome-date pair (i.e.
δ(t)u(x)).

• Pricing tasks are similar to rating tasks but ask subjects for their willingness
to pay for a dated outcome.

Although it is not clear of wether it makes much of a di�erence (see e.g. Frederick,
Loewenstein and O'Donoghue (2002) on this issue) to use either real or hypothetical
rewards in experiments, it is certainly the case that studies that involve real rewards
have to be incentive compatible: Just image matching tasks were people demand ridicu-
lously huge sums in order to be compensated for a single day of delay. From a di�erent
perspective, the experimental procedures should be seen as mechanisms that should
implement truthtelling. Therefore it seems only natural to resort to the best known
mechanisms in economics: auctions. Manzini and Mariotti (2007) list three di�erent
types of auctions where truthtelling is a (weakly) dominant strategy:

• Second Price Sealed Bid (Vickrey) auction: The bidder that places the
highest bid wins the prize, but pays the only the bid of the second highest bidder.
It can be easily shown that truthtelling (here: stating the "correct" discount rate
or indi�erence outcome) is a weakly dominant strategy. In addition, this auction
format has the advantage that it is relatively easy to understand and "close" to
a direct mechanism (i.e. an incentive compatible mechanism where the strategy
space of the agents is identical to the type space)

• English (ascending bid) auction: The price of the good to be auctioned o�
increases steadily with time. Bidders may drop out at any time. When only one
bidder is left, the auction stops and the remaining bidder gets the item at the
last price. This auction is strategically equivalent to the Second Price Sealed Bid
auction.

• Becker-DeGroot-Marschak (BDM) procedure: The decision maker "plays
against" a uniform probability distribution. When the price drawn is lower than
the price stated by the decision maker, she obtains the item for the price drawn,
otherwise she gets nothing.

Note that while the �rst two auctions are robust to risk-aversion, the third one is not.
Although experimenters usually put a lot of emphasis on explaining the procedures to
the subjects, one might doubt wether this really implements the desired outcomes.
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Furthermore, Manzini and Mariotti (2007, p.20-21) argue that "these elicitation meth-
ods su�er from serious incentive [problems] in the neighborhood of the truth telling
[...] strategy: deviations may be 'cheap' enough".

4.2.3. Findings - Four "Anomalies" of the EDU model

A myriad of studies (Hausman, 1979; Benzion, Rapoport and Yagil, 1989; Kirby, 1997,
just to mention a few) elicited discount rates in one of the ways described above. These
studies were thought to document patterns that constitute "anomalies" of the (E)DU
model. The most cited of these anomalies are the following (Loewenstein and Prelec,
1992):

Decreasing Discount Rates

Subsequent studies con�rmed the �ndings of Thaler (1981): The average discount
rates are strictly declining with time horizon. This implies that the discount rates
themselves, ρ(t) are also declining with time. Conversely, the discount factor, φ(t) is
increasing with time. In other words, individuals are more patient for longer planning
horizons. In their meta-study, Frederick, Loewenstein and O'Donoghue (2002) evaluate
the reported discount rates of a plethora of studies. They then regressed the discount
rates against the reported time horizon and found that across studies the discount
factors increase with the time horizon (see �gure 4.1).

Figure 4.1.: Discount Factors and Time Horizons reported by empirical studies. The solid
line is the least squares �t. Source: Frederick, Loewenstein and O'Donoghue
(2002, p.362)
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The (absolute) Magnitude E�ect

The Magnitude E�ect says that discount rates are lower for higher amounts of money
relative the small amounts of money. As mentioned above, the magnitude e�ect can
also be observed in the data presented by Thaler: The average one-year discount rates
decline with the dollar amounts: Whereas the median annual discount rate for the
$15 prize was a whopping 120%, increasing the stakes to $250 and $3000 yielded by
far lower discount rates of 34% and 29%, respectively. More elaborate studies (e.g.
Benzion, Rapoport and Yagil, 1989) reproduced these results.

The Sign E�ect

The Sign E�ect or Gain-Loss Asymmetry captures the pattern found in experimental
evidence that decision makers discount losses at a lower rate than gains. Sometimes
this e�ect is so pronounced that researches reported negative discount rates for losses.
Loewenstein and Prelec (1992, p.575) present evidence from earlier studies were re-
spondents, on average, were indi�erent between receiving $10 now and reiceiving $21
in one year, implying an average annual discount rate of 110%. In the case of losses
on the other hand, individuals declared to be indi�erent between losing $10 now and
losing $15 one year later on average, implying a discount rate of only 50%.

The Delay-Speedup Asymmetry

Several studies (for instance Loewenstein, 1988) documented a framing e�ect that is
present in intertemporal choice: In a typical study respondents are asked two questions:
in question number one, they are asked for the minimum amount required to be willing
to delay the receipt of, say, $100 from period s to period t. Suppose that this premium
is $x. In question number two they are asked to speed up the receipt of $100+x from
period t to period s. As it turns out, the amount required for delay is by far larger
(about three to four times) than the amount required for speeding up consumption.
The choice pairs, however, are clearly the same: (100, s) and (100 + x, t), respectively.

4.2.4. Critique: Confounding Factors

Although most of these anomalies are robust �ndings across studies, it may be a good
idea to pause for a second and assess what these studies are actually measuring. In
recent years various scholars raised their concerns wether the empirical �ndigs really
manage to identify time preferences, or if the �ndings are merely due to other, con-
founding factors. Frederick, Loewenstein and O'Donoghue (2002) mention the following
points of critique:
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Risk Aversion/Concave Utility Functions

The most important challenge to the �ndings is that almost all of the empirical studies
explicitly or implicitly assumed risk neutrality of the agents. Within the context of the
normative von Neumann-Morgenstern theory of decision under risk, an agent is risk
neutral if and only if her preferences over certain monetary outcomes can be represented
by a linear utility function. As mentioned in chapter 3, von Neumann-Morgenstern
utility functions are only unique up to monotone a�ne transformations. Therefore, the
utility function over static and certain monetary outcomes can be written as the identity
function, u(x) = x, without loss of generality. In words, the decision maker values every
additional euro the same. As a consequence, the wealth level of an economic agent can
be ignored in the analysis of decision under risk: it does not matter if the �rst or
the 1000th $ is at stake. By the same token, the baseline consumption is also not
important when evaluating the ranking of two outcome-date pairs, each one of which
increasing consumption on top of the baseline consumption level. We will now discuss
the possible implications on the measurement of discount rates, when the assumption
of risk neutrality is violated.

Most studies try to measure the present value of outcome-date pairs in one of the
following two ways (Loewenstein and Prelec, 1992, p.576).
They either try to elicit the equivalent present value of a delayed outcome, (x, t),

which we denote by ψ(x, t). It is usually de�ned implicitly as:

u(c+ ψ) + δ(t)u(c) = u(c) + δ(t)u(c+ x) (4.7)

In words, the equivalent present value is the increase in immediate consumption that
makes the decision maker indi�erent to x additional units of consumption later. Ex-
plicitly, ψ(x, t) is then given by

ψ(x, t) ≡ u−1[(1− δ(t))u(c) + δ(t)u(c+ x)]− c (4.8)

Alternatively, experimenters elicited the compensating present value, κ(x, t), which
is (implicitly) de�ned as:

u(c− κ) + δ(t)u(c+ x) = u(c) + δ(t)u(c) (4.9)

Let us focus on the equivalent present value, ψ(x, t): As we saw in the case of
Thaler (1981) experimenters then obtained their estimates of discounting by dividing
the equivalent present value by x. Noor (2009a, p.871) refers to this function as the
money-discount function:

D(x, t) ≡ ψ(x, t)

x
∀x 6= 0 (4.10)
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It is easy to see, that in general, the money-discount function, D(x, t) does not
coincide with the discount function, δ(t), if u(x) 6= x, i.e. the decision maker is not
risk neutral. Let us simplify things by assuming for a second that c = 0 and let us
normalize u(0) = 0. Clearly, not even then do the money-discount function, D(x, t)
and the discount function, δ(t), coincide:

D(x, t) =
u−1[δ(t)u(x)]

x
∀x 6= 0 (4.11)

From another perspective, what most empirical studies did is to work with a di�erent
underlying model of time preferences. Instead of working with the "usual" model of
(absolute) discounting,

(x, t) � (y, s)⇔ δ(t)u(x) ≥ δ(s)u(y) (4.12)

which we introduced in section 2.4.1, the studies implicitly operated with the follow-
ing representation

(x, t) � (y, s)⇔ D(x, t)x ≥ D(y, s)y (4.13)

To put it di�erently, this speci�cation acts as if the decision maker was risk neu-
tral. As Noor (2009a, p.874) demonstrates, in principle there is nothing "wrong" with
this formulation in the sense that D(x, t)x ≥ D(y, s)s represents the same underlying
preference relation. But then of course "discounting" is di�erently "de�ned" and D(·)
clearly captures something entirely di�erent than what one usually refers to as the
"discount function", δ(t). Intuitively, the money-discount function has to incorporate
all "non-linearities" of the outcome-evaluation.
So what happens to the discount-rate estimates if the utility function is not linear in

x? For instance, if the decision maker is risk averse for every level of wealth, i.e. u(x)
is strictly concave? If this is the case, the "anomalies" of the (E)DU model, might
be none at all and also the estimates of the discount rates are seriously biased in one
direction:

• Magnitude E�ect: By construction, the money discount function, D is depen-
dent on x per se. Therefore the magnitude e�ect itself does not constitute an
anomaly. In section 4.3.5 we will derive a condition on the utility function, that
ensures that the magnitude e�ect holds (for money-discount functions).

• Decreasing Impatience: Likewise, there is also no reason to expect the money-
discount function, D(x, t), to be exponential in t, even if the underlying discount
function, δ(t), in fact is. Therefore, decreasing impatience by itself does also
not constitute an anomaly. However, as Noor (2009a) showes, the magnitude
e�ect and decreasing impatience (of the money-discount function) are jointly
incompatible with stationarity and therefore the exponential discount function.
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• Level of discount rates: The strict concavity of the discount function means
that additional units of money are ever less appreciated. In order to compensate
for the postponement of a monetary reward, the decision maker will demand a
certain increase in utility. This increase in utility on the other hand, corresponds
to an increase of money that -in proportion- is higher than the increase in utility
since every additional euro "buys" ever less units of utility. Formally,

D(x, t) =
u−1[(1− δ(t))u(c) + δ(t)u(c+ x)]− c

x

<
(1− δ(t))c+ δ(t)(c+ x)− c

x
(4.14)

= δ(t)

where we made use of Jensen's inequality3. Therefore, depending on the degree
of risk aversion4 the estimates of the discount factors will be seriously bias down-
wards (conversely, estimates of the discount rates will be upwards). Andersen,
Harrison, Lau et al. (2008) jointly elicited discount rates and attitudes towards
risk and conclude that on average the "true" discount rates (i.e. controlling for
risk-aversion) are at about 10.1% per year. When assuming risk neutrality, how-
ever, the imputed discount rates are about 25.2%.

• Non-constant baseline consumption: Decision makers might anticipate
higher future baseline consumption. This might exacerbate the upward bias of
the discount rate estimates because the value of the compensation is even more
diminished. Noor (2009b) conductes a calibration exercise and demonstrates that
relatively "small" changes in anticipated baseline consumption have dramatic ef-
fects on the bias of discount rates that ignore these changes (see table 1 on page
2082). In the same way, a non-constant baseline consumption can "rationalize"
virtually any discount function for any observed choice pattern, rendering the
usual elicitation of discount rates meaningless if there the experimenter does not
know about the anticipated baseline consumption.

In a nutshell, the validity of the �ndings cited above hinges greatly on the as-
sumption of risk neutrality.

Intertemporal Arbitrage and Consumption Reallocation

When calculating discount rates, experimenters usually assume that the outcomes
are consumed on the very same day/in the very same year they are due. In theory,
given perfect capital markets, the outcomes could be "shifted" through time at

3the assumed strict concavity of u implies strict convexity of u−1

4measured by, say, the Arrow-Pratt index
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the cost of the prevailing interest rate. One of the few studies that actually takes
this e�ect into account is Harrison, Lau and Williams (2002). The authors argue
that the discount rates might be censored by the market interest rate: Once
again let us ignore risk aversion and assume that in a choice task (see above) the
decision maker has to choose between ($100, now) and ($103, one year), further
let the true annual discount rate of the decision maker be 2% and the (risk-free)
interest rate 5%. Then, the decision maker will rationally choose to take $100
now, invest them and consume $105 in one year. But without controlling for this
censoring e�ect, the experimenter would infer from the decision that the discount
rate exceeds 3%.

Risk, Uncertainty and Hidden Costs

Although subjects in experiments are usually assured that they get postponed
rewards for sure, they might have their doubts, which of course increase the
attractiveness of immediate outcomes and bias the disount rates upwards. Note
that this e�ect is not to be confused with risk aversion per se: If subjects think
that they might not be paid the postponed rewards at all, they face the lottery
(p, x; 1 − p, 0) with an expected value that is clearly smaller than x � therefore
the results are also biased upwards for risk neutral decision makers.

Other authors argue that decision makers had to incure additional (mental or
otherwise) cost when they pick up the postponed rewards that were guarenteed
in experiments: Decision makers have to come again to the facility where the
experiments took place or simply have to think about to pick up the rewards
when they are due. In section 4.8 we will discuss a model of time preferences
that explicitly incorporates such "�xed costs". For this reason, more recent
studies (e.g. Harrison, Lau and Williams, 2002) tried to eliminate this potential
factor by presenting the subjects with choices, where all alternatives where due
in the future, so that the attractiveness of all alternatives is diminished by the
�xed cost.

In�ation

If one assumes that decision makers do not have "money illusion", discount rates
might be biased upwards when the experimenter does not account for the dimin-
ished real value of future outcomes. Moreover, the longer the planning horizon,
the more pronounced this e�ect would be.

All confounding factors presented here suggested an upward bias of the estimated
discount rates. Certainly, discount rates as high as 345% (as reported by Thaler (1981),
see above) seem unrealistic.
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Although these confounding factors by all means weaken the �ndings cited above,
they should not be interpretated as a con�rmation of the exponentially discounted
utility model. Therefore, it should be worthwile to discuss alternatives to the EDU
model, that were brought forward in the literature.

4.3. Hyperbolic Discounting

4.3.1. De�nition

As the evidence against the exponentially discounted utility model was mounting up,
economists and psychologists turned to di�erent models of intertemporal choice: It
seemed only natural to make the slightest possible change, i.e. retain the discounted
utility model and simply replace the exponential discount function with another dis-
count function. One of the functions that come to mind is a hyperbolic function, which
in its most general speci�cation is parameterized as:

δH(t) = (1 + αt)−
γ
α α, γ > 0 (4.15)

A plot of this function with parameters α = 4 and γ = 1 can be found on page
52. Clearly, the function is a discount function as it is continuous on R+, is strictly
decreasing and has domain (0, 1].
We see that (in continuous time) the discount rate is given by:

ρH(t) ≡ −
δ′H(t)

δH(t)
=

γ

α(1 + αt)
(4.16)

That is, the discount rate of a hyperbolic discount function is decreasing with time
and is therefore consistent with the �ndings discussed above, i.e. additional delays are
seen less and less harmful. Therefore, in the case of continuous time (discrete time)
the discount rate function (sequence) is strictly decreasing with time.
When we discussed the motivation for exponential discunting (section 4.1) we em-

ployed an analogy to the formulation of interest rates. A similar interpretation is possi-
ble in the case of hyperbolic discounting, when we set α = γ, so that δH(t) ≡ (1+αt)−1:
Suppose that the decision maker is risk neutral, s.t. u(x)=x without loss of generality.
Suppose further, that she can be made indi�erent by an absolute increase of exactly
αx for every period that the consumption of x is postponed to the future. Therefore

(x, 0) ∼ ([1 + αt]x, t)⇔ x = δ(t)[1 + αt]x (4.17)

We can then conclude that δ(t) = (1 + αt)−1, which gives rise to an interpretation
as "linear" discounting (as opposed to exponential) in the case of α = γ.
Back to the generalized hyperbola, note that the parameter α determines how fast

the discount rate goes to zero and we observe that for "extreme" values of α the
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hyperbola

1. becomes the exponential discount function (α ↘ 0): lim
α↘0

(1 + αt)−
γ
α =

lim
a→∞

(1 + t
a)
−aγ = [ lim

a→∞
(1 + t

a)
a]−γ = e−γt ≡ δE(t) where we made the substi-

tution a ≡ 1/α.

2. or approximates a step function: (α, γ →∞)5

δH(t)=

{
1 for t = 0,

0 < c(α, γ) < 1 for t > 0

Apart from the empirical �ndings of decreasing discount rates, at least three other
motivations or justi�cations for adopting a hyperbolic discount function are often
brought forward in the literature: Herrnstein's Matching Law, Preference Reversals
and Second-Order Stationarity.6

4.3.2. Herrnstein's Matching Law

Ever since its �rst formulation by Richard Herrnstein in 1961, the Matching "Law"
has been one of the central paradigms in operant research, a branch of psychology.
Roughly speaking it says that "[...] if an interval of time may be divided into more
than one alternative activity [...], animals (nonhuman and human alike) will allocate
their behavior to the activities in exact proportion to the value derived from each"
(Herrnstein, 1997). To illustrate its content suppose that on a given day, a person
can decide at the beginning of every hour if she wants to spend her time either eating
or sleeping. Then the matching law says that after, say, one day the "average rein-
forcement rate of eating" will equal the "average reinforcement rate of sleeping". The
"average reinforcement rate of eating" is the overall utility derived from eating divided
by the number of hours spent eating.
Unfortunately, humans do not carry with them an apparatus that measures utility,

like Edgeworth's hedonimeter. Therefore psychologists resorted to experiments with
pigeons and equalized "utility" with food intake. Without going into the details of
the experimental setups,7 it should su�ce to say that pigeons were given the choice to
peck on one of two disks, each of which triggered the dispension of food after a random
number of periods ("variable interval schedule"). Herrnstein documented that the

5To see this, note that, lim
α→∞

δ′H(t) = 0 for t > 0. The value of the constant c(α, γ) then depends on

the relative speed of convergence of α and β.
6For an "evolutionary" motivation of Hyperbolic Time Preferences that stems from uncertain payo�s
see Dasgupta and Maskin (2005).

7For a detailed description of the experimental design and operant research in general, see Herrnstein
(1997)
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relative number of pecks (P/P') equaled the relative rate of reward from this schedule,
i.e. (R/R') (Ainslie, 1992):

P

P ′
=
R

R′
(4.18)

In a follow-up study8 Chung and Herrnstein (1967) added a time dimension to the
experiment and proposed the following relationship

P

P ′
=
A

A′
t′

t
(4.19)

where the As are the amounts of food delivered and ts are the delays. Ainslie (1975) was
the �rst to note the relationship to discounting and was quick to state that therefore
the "value" of a schedule is given by the following hyperbolic function:

V =
A

t
(4.20)

A couple of years later evidence, again from experiments with pigeons, brought forward
by Mazur and Herrnstein (1988) then showed that the equation

V =
A

1 + αt
(4.21)

�tted the data better. Clearly, equation 4.21 constitutes the special case of the (gen-
eralized) hyperbola given in equation 4.15 where α = γ.
One could argue that these experiments with animals can only have very limited

implications on how time preferences of humans can be seen or as Ariel Rubinstein
(2001, p.1209) puts it: "the connection between �ndings on pigeons or even monkeys
and the behavior of humans seems rather tenuous. We commonly believe that an
animal does not understand the choice it is facing in the same way that a human
being does." This critique nonwithstanding, economists and psychologists often refer
to Herrstein's Matching Law and the �ndings discussed above as a justi�cation for
adopting hyperbolic discount functions.

4.3.3. Preference Reversals

One important assumption in the axiomatic derivation of the exponentially discounted
utility model is stationarity (see section 2.4.3). A number of experiments showed that
the assumption of stationarity does not hold up very well against reality. (Green,
Firstoe and Myerson, 1994) presented 24 students with the choice of two outcome-date
pairs: one smaller and sooner, the other larger, but later. The prices were such that the
smaller sooner was preferred to the larger later. Stationarity requires that the ranking

8see Ainslie (1992, chapter 3) for a comprehensive discussion
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is preserved when both outcomes are delayed or expedited by the same number of
periods:

(x, t) � (y, s)⇒ (x, t+ τ) � (y, s+ τ) t < s, x < y, ∀τ s.t. s+ τ, t+ τ ≥ 0 (4.22)

The researchers, however, observed that most students reversed the rankings for
a large enough τ , a choice that exponential discounting fails to explain. Hyperbolic
discounting, on the other hand is able to "rationalize" these choices:

First, assume discrete timing and recall that we can write every discount function
in terms of the product of discount factors (equation (2.11)) and we therefore have

(x, t) � (y, s)⇔ u(x) ≥ u(y)
s∏

i=t+1

φ(i) (4.23)

Now, while the sequence φ(i) is constant in the case of exponential discounting it is
increasing in the case of hyperbolic discounting (the discount rates are decreasing with
time, therefore the discount factors are increasing with time). Since lim

t→∞
φ(t) = 1 and

u(x) < u(y) it has to hold that from a certain period, say t∗, onwards, the ranking is
reversed: As both outcomes are delayed, their di�erence in timing is getting ever less
important for the decision maker and she chooses the pair with the better outcome.
Moreover, this reversal occurs exactly once.

Figure 4.2 illustrates such a preference reversal graphically: Hyperbolic functions
are more "bowed" (determined by the value of the parameter α) than exponential
functions, which allows for the present value curves to intersect.

Figure 4.2.: "Preference reversals" are ruled out when time is discounted exponentially (sub-
�gure A), but occur when time is discounted hyperbolically (sub�gure B).
Source: Ainslie (1975, p.471)

Moreover, hyperbolic discounting functions exhibit present bias (see section 2.4.4),
which is just a special form of preference reversals.
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4.3.4. Second-Order Stationarity

In a recent paper al Nowaihi and Dhami (2005) established an axiomatic derivation of
the hyperbolic discounting function, largely building on the prior attempts of Loewen-
stein and Prelec (1992). As it turns out the crucial assumption for hyperbolic discount-
ing is the following:

Assumption HD1: The time preference exhibits second order stationarity:

y � x, and(x, 0) ∼ (y, s)⇒ (x, t) ∼ (y, s+ t+ αst), α > 0 ∀t > 0. (4.24)

In order to be able to pin down δ(t) to a speci�c functional we introduce this
(stronger) assumption about how stationarity is violated: The positive coe�cent, α,
of the interaction term, st, determines the departure from stationarity. Therefore we
could nest the two special cases where (Loewenstein and Prelec, 1992, p.580):

1. α↘ 0 which brings us back to stationarity and therefore exponential discounting.

2. α → ∞: This means that whenever an outcome is delayed (t > 0) the decision
maker is insensitive to further delays. It may be important to stress that this
does in general not imply that the decision maker is myopic, i.e. only appreci-
ates current satisfaction - it merely says that she exhibits "dichotomous" time
preferences where all future satisfactions are discounted the same. Therefore the
decision maker is in�nitely impatient when t > 0. Note that this is of course
ruled out by assumption RD1 (time sensitivity).

The following Theorem now states, that the hyperbolic discount function is to
second-order stationarity what the exponential discount function is to "ordinary" sta-
tionarity:

Theorem 7 [Hyperbolic Discounting](al Nowaihi and Dhami, 2005) (�,X ) is a
time preference that satis�es axioms RD1-RD6 as well as axiom HD1 if, and only
if, there exists an increasing homeomorphism u : X → R++ and a decreasing and
continuous map δH : R→ R++ s.t.

(x, t) � (y, s)⇔ δH(t)u(x) ≥ δH(s)u(y) ∀(x, t), (y, s) ∈ X (4.25)

where δH(t) ≡ (1 + αt)−
γ
α α, γ > 0

Summing up, the parameter α determines the departure from stationarity. A value
close to one yields exponential discounting. Positive values result in a discount function
that is more "bowed" than the exponential function. In the limit, as α approaches
in�nity, the discount function resembles a step function, where only delay per se and
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not further delay is perceived as harmful. For �nite values of α, the other parameter,
γ is closely related to the parameter ρ of the exponential discount function: Lower
values result in higher rate of impatience and vice versa.

4.3.5. The Loewenstein and Prelec Model

Loewenstein and Prelec (1992) developed a model of intertemporal choice that is tailor-
made for explaining the four "anomalies" of the EDU model (see section 4.2.3). In
constrast to others, the authors acknowledge that a model of intertemporal choice
consists of both a discount function and an outcome function. In a nutshell, their
model weds a hyperbolic discount function with Kahneman and Tversky's Prospect
Theory :

Assumptions

In Prospect Theory decision makers do not evaluate monetary outcomes according to
their size - what is important is their di�erence to the reference point or a status
quo: This can be thought of as a shift of the coordinate system, so that the reference
point lies in the origin. Therefore, the utility function is not de�ned over monetary
outcomes but rather over "relative changes to the reference point", which can either
be perceived as gains or as losses. In order to emphasize the di�erence to a utility
function, Kahneman and Tversky use the expression value function instead. Loewen-
stein and Prelec (1992, p.595) conjecture that individuals may "conserve on cognitive
e�ort". This means that a decision maker is explicitly assumed not to incorporate
preexisting plans into her evaluation of outcome-date pairs. The ranking of "new"
outcome-date pairs is independent of, say, a baseline consumption c, which makes the
model particularly suitable for analysis of decisions observed in lab experiments, where
the baseline-consumption pro�le is seldomly known to the experimenter.
The key feature is that this value function is pieced together by two separate func-

tions (connected at the reference point): one function for gains and one for losses. In
the spirit of Kahneman and Tversky the authors impose some assumptions on the value
function, v:

LP1 (Loss aversion): v(x) < −v(−x) ∀x > 0. Moreover: for 0 < y < x and t > 0
it holds that (y, 0) ∼ (x, t)⇒ (−y, 0) � (−x, t).

This assumption states that the decision maker attaches more weight to losses than
to gains. This asymmetric treatment of gains and losses gives rise to the following
situation: although the decision maker is indi�erent between receiving x now and
receiving y > x in period s she is unwilling to pay x now in order to receive y in period
s.
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It is also useful to see that this assumption can be stated in terms of the elasticity
of the value function or the relationship between the elasticities of the part for gains
and the part for losses, respectively:

εv(x) < εv(−x) ∀x > 0 (4.26)

Proof To see this, let (y, 0) ∼ (x, t) ⇔ v(y) = δH(t)v(x), i.e. the decision maker
is indi�erent between receiving y now and receiving x > y later in time. Following
the example above, assumption LP1 then predicts that in the case of losses (−y, 0) >
(−x, t)⇔ v(−y) > δH(t)v(−x), so the decision maker prefers to incur a small loss now
to a larger, but discounted loss later.
Substituting for δH(t) and rearranging gives us (Loewenstein and Prelec, 1992,

p.583):

v(y)

v(x)
>
v(−y)
v(−x)

∀0 < y < x (4.27)

Taking logs on both sides and de�ning vg(x) ≡ − log(v(x)) and vl(x)≡− log(−v(−x))
gives

vG(x)− vG(y) > vL(x)− vL(y) ∀0 < y < x (4.28)

Since x > y we can divide both sides of the inequality by x− y in order to obtain:

vG(x)− vG(y)
x− y

>
vL(x)− vL(y)

x− y
(4.29)

This inquality has to hold for arbitrarily small di�erences between x and y, so it
also has to hold for x− y ↘ 0. We assume that the limits exists for both sides of the
inequality and that they coincide with the limits as x − y ↗ 0. In other words, we
assume di�erentiability of vG and vL at x.

v′G(x) < v′L(x)⇔
−d log(v(x))

dx
>
−d(log(−v(−x))

dx

⇔ −v
′(x)

v(x)
>
v′(−x)
v(−x)

⇔ xv′(x)

v(x)
<
−xv′(−x)
v(−x)

⇔ εv(x) < εv(−x) ∀x > 0 (4.30)

Assumption LP2 (Subproportionality and the magnitude e�ect): For positive
outcomes such that 0 < y < x, t > 0 it holds that (y, 0) ∼ (x, t) ⇒ (λy, 0) ≺ (λx, t)
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where λ > 1. Similarly, for negative outcomes such that −x < −y < 0. t > 0 it holds
that (−y, 0) ∼ (−x, t)⇒ (−λy, 0) ≺ (−λx, t).

The magnitude e�ect ensures that money discounting is lower when stakes are in-
creased (see above): When the absolute size of the outcome is increased by a factor
λ > 1, less perceived discounting takes place. This assumption too, can be expressed
in terms of elasticities:

εv(y) < εv(x) for 0 < x < y or y < x < 0 (4.31)

In words, the elasticity of the value function is higher for outcomes that are larger in
absolute terms.

Proof We will show the case of positive outcomes here, the proof for negative outcomes
is analogous.

(y, 0) ∼ (x, t)⇒ (λy, 0) ≺ (λx, t) ∀λ > 1

⇔ v(y) = δH(t)v(x)⇒ v(λy) < δH(t)v(λx) (4.32)

Combining these two equations and substituting for δH(t) yields

v(y)

v(x)
>
v(λy)

v(λx)
∀0 < y < x, λ > 1 (4.33)

Functions that exhibit this characteristic are called subproportional. Taking logs on
both sides and di�erentiating with respect to λ gives us:

yv′(λy)

v(λy)
<
xv′(λx)

v(λx)
(4.34)

Taking the limit of both sides as λ↘ 1 establishes the desired result.

In a recent paper al Nowaihi and Dhami (2009) provide us with a class of continuous
value functions that satisfy assumptions LP1 and LP2, dubbed simple increasing elas-
ticity (SIE) value functions. Figure 4.3 plots this function for three di�erent parameter
con�gurations.

From the perspective of a �xed reference point, the preferences of the decision maker
can then be represented in the following way:

(x, t) � (y, s)⇔ δH(t)v(x) ≥ δH(s)v(y) (4.35)

It is important to stress, however, that these are not preferences over outcome-date
pairs, let alone transitive time preferences: The model merely captures preferences over
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Figure 4.3.: Value functions for three di�erent parameter con�gurations. The value function
is steepest around the reference point and greater (in absolute terms) in the area
of losses than in the area of gains. Source: al Nowaihi and Dhami (2009, p.227)

"change to the reference point-date" pairs. As the reference point itself is changing,
also the valuations of outcomes do. This of course gives rise to preference cylces as the
example above showed. In addition, it may be important to note that the intransitivity
does not stem from the decision maker's attitude towards timing, but her attitude
towards outcomes.

Implications and Predictions of the model

As indicated above, the Loewenstein and Prelec model can explain all four EDU anoma-
lies: decreasing impatience, the magnitude e�ect, the delay-speedup asymmetry and
the sign e�ect. While the line of argumentation in explaining the �rst three is rather
straightforward (in a sense, the authors simply assumed that these anomalies hold),
the last one may need some elaboration (Loewenstein and Prelec, 1992, pp.585):

The Sign E�ect and the Aversion to Intertemporal Tradeo�s

Since only relative changes (to the reference point) matter, the money-discount function
for equivalent present values is given by (in a way, we "set" c = 0):

Di =
ψ(x, t)

x
=
v−1[δH(t)v(x)]

x
i = G for x > 0; i = L for x < 0 (4.36)

Since by assumption LP1 and LP2 gains and losses are "valued" asymmetrically,
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these calculations also lead to di�erent money-discount factors for gains (x > 0) and
losses (x < 0), which we may denote by DG and DL, respectively.
In a similar manner we can compute money-discount rates for borrowing (B) and

saving (S). In this case we have to employ the compensating present value, i.e. we look
for a κ such that: v(−κ) + δH(t)v(x) = 0 (again, the reference point idea is taken into
account by "setting" c = 0). The corresponding money-discount functions are given
by

Di =
κ(x, t)

x
=
−v−1[−δH(t)v(x)]

x
i = S for x > 0; i = B for x < 0 (4.37)

We can show, that the four money-discount rates are ordered in the following way:
0 < DS < DG < DL < DB.

Proof We �x any x > 0, t > 0 and save on notation by de�ning δ ≡ δ(t). In addition,
recall that by continuity of v(·) we can apply the intermediate value theorem to ensure
that there exists a y with 0 ≤ y ≤ x such that v(y) = δv(x). We are now to show that
-given assumptions LP1 and LP2 - the four inequalities hold:

• 0 < DS : immediate

• DS < DG:

−v−1[−δv(x)]
x

<
v−1[δv(x)]

x
−v−1[−δv(x)] < y

−δv(x) > v(−y)
δv(x) < −v(−y)
δv(x) = v(y) < −v(−y)

where the last inequality follows from assumption LP1.

• DG < DL:

v−1[δv(x)]

x
<
v−1[δv(−x)]
−x

v−1[v(y)] < −v−1[δv(−x)]
−y > v−1[δv(−x)]

v(−y) > δv(−x)]

Since we de�ned y such that v(y) = δv(x) it follos from assumption LP1 that
v(−y) > δv(−x).
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• DL < DB:

v−1[δv(−x)]
−x

<
−v−1[−δv(−x)]

−x
v−1[δv(−x)] > −v−1[−δv(−x)]

De�ning z implicitly by v(−z) = δv(−x) yields

v(−z) < −δv(−x)
δv(x) < −δv(−x)
v(x) < −v(−x)

by assumption LP1.

If we furthermore assume that the value function is convex for negative changes and
concave for positive changes, as Kahneman and Tversky (1979) and also Loewenstein
and Prelec (1992) do, we even get the stronger result that DL < δ

• DL < δ

v−1[δv(−x)]
−x

< δ

δv(−x) > v(−δx)
δv(−x) + (1− δ)v(0) > v(−δx+ (1− δ)0) = v(−δ0)

The last line followed from the convexity of v for x < 0.

Since the choice of both, x and δ was arbitrary, the proof is complete.

Figure 4.4 illustrates the results in the case of δH(t) = .8 and x = ±1.

If we strengthen assumption LP1 so that v(x) < −δH(t)v(−x) then the money
discount rate for borrowing is even larger than one. In other words, the model predicts
that the decision maker will not borrow at interest rates that are larger than a negative
threshold. This assumption is of course most easily justi�ed when δH(t) is close to one.
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Figure 4.4.: Money-Discount Rates for Gains/Losses (equivalent present values) and Bor-
rowing/Saving (compensating present values). The negative part of the value
function was projected into the �rst quadrant. Source: Loewenstein and Prelec
(1992, p.585)
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4.4. Quasi-Hyperbolic Discounting

4.4.1. De�nition

The quasi-hyperbolic discount function was introduced by Phelps and Pollak (1968).
It is de�ned in discrete time, depicted in �gure 4.6 and is given by:

δQ(t) ≡

{
1 for t = 0

βδt for t = 1, 2, . . . β ∈ (0, 1], δ ∈ (0, 1)
(4.38)

The parameter β can be interpreted as a measure of the variable cost associated with
delaying outcomes into the future. This cost is constant with respect to time, i.e. it
does not matter how far the outcome is delayed, future utility is lowered by a factor of
1−β. Clearly, extreme values of β give us either exponential discounting (β = 1, i.e. no
variable costs) or a myopic decision maker who cares only about immediate satisfaction
and discounts the future at an in�nitely high rate (β ↘ 0; β = 0 is of course ruled out by
assumption RD1, time sensitivity). Quasi-hyperbolic time preferences are sometimes
also refered to as "quasi-geometric" (invoking the connection to geometric=exponential
discounting) or (β, δ)-time preferences.
If we again de�ne δ ≡ 1/(1 + ρ), the discount rate of a quasi-hyperbolic function

is given by

ρQ(t) ≡ −
δQ(t)− δQ(t− 1)

δQ(t)
=

{
1
βδ − 1 for t = 1
1
δ − 1 ≡ ρ for t = 2, 3, . . .

(4.39)

In the same manner we can calculate the discount factor:

fQ(t) ≡
δQ(t)

δQ(t− 1)
=

{
βδ for t = 1

δ for t = 2, 3, . . .
(4.40)

4.4.2. Quasi-stationarity and a Generalization

We see that for β < 1 the quasi-hyerbolic discount function mimicks the qualitative
properties of the hyperbolic discount function in a special sense: It exhibits present
bias, which can be easily con�rmed by plugging the discount function into equation
2.23 of section 2.4.4, but it does not exhibit decreasing impatience elsewhere: The
discount rate from period 0 to period 1 is higher than from period 1 to period 2 and so
on. In other words, it "behaves" like an exponential discount function with respect to
all delays that are greater than one unit of time. Hayashi (2003) dubbed this property
quasi-stationarity:
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De�nition A time preference as said to be quasi-stationary if:

(x, t) � (y, s)⇔ (x, t+ τ) � (y, s+ τ)

∀(x, t), (y, s) ∈ X with s, t ≥ 1, τ ∈ Z s.t s+ τ, t+ τ ≥ 1
(4.41)

Quasi-stationarity is weaker than stationarity, because it only requires the ranking
to be preserved when future outcomes (i.e. t ≥ 1) are shifted by a common number of
time periods.
Following the work of Koopmans (1960) in the case of the exponential discount

function (see section 3.3), Hayashi (2003) gives an axiomatic derivation of the additive
utility model with quasi-hyperbolic discounting, which is given by

U(0a) = u(a0) +
∞∑
t=1

βδtu(at) (4.42)

The key assumptions seem to be that the time preferences over streams exhibit
present bias and are quasi-stationary, but stationary in the case of constant streams.
Furthermore, Hayashi (2003) demonstrates that is it is also feasible to weaken quasi-

stationarity further in order to derive a more general form of quasi-hyperbolic discount
functions: he partitions time into three sections: present, near future and farther future
and only assumes stationarity "within" farther future. The resulting discount function
is then best written in the form of discount rates (see equation 2.12 in section 2.4.2)).

δQn(t) ≡


1 for t = 0 (present)
t∏
i=1

βi for 1 ≤ t ≤ n− 1 (near future)

δt−n+1
n∏
i=1

βi for t ≥ n (farther future)

(4.43)

In the case of n = 1, there is no near future, and the generalized hyperbolic discount
function coincides with the de�nition in equation 4.38.

4.4.3. Motivation and Empirical Evidence

Argueably, quasi-stationarity is one of the simplest deviations from stationarity, that
also permits "preference reversals". Moreover, the functional form is relatively simple
compared to the hyperbolic discount function, facilitating the tractability of more
complex models. Therefore, the quasi-hyperbolic discount function is frequently used
in applications, that analyze the dynamic behavior of decision makers (see part II).
With regard to empirical evidence, a number of studies posit that most, if not all, of

the discounting of decision makers occurs from period 0 to period 1, and that hardly
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Figure 4.5.: E�ect of omitting "short-run" discount factors on the LS estimation. Source
Frederick, Loewenstein and O'Donoghue (2002, p.362)

any discounting takes place afterwards. In terms of discount factors, this means that
φ(1) is signi�cantly di�erent from zero, whereas the consecutive discount factors may
be not. Frederick, Loewenstein and O'Donoghue (2002) present evidence in support
of this hypothesis: In section 4.2.1 we presented the results of their meta-analysis and
saw that the imputed average discount factors increase with time, i.e. impatience is
decreasing. As Frederick, Loewenstein and O'Donoghue (2002) argue, after excluding
all observations (i.e. studies) with a time horizon of less than a year, the imputed
discount factors are constant with respect to time. If we assume for a second that
this really is the case, then the increase of the discount factors is merely due to an
omitted variable bias (the omitted variable being a "one-year dummy") in�ating the
time-coe�cient. Figure 4.5 depicts the change of the least-squares estimation.

The estimates of Frederick, Loewenstein and O'Donoghue (2002) suggest to calibrate
the parameters as β ∼= .8 and δ ∼= 1. In a more elaborate study, Angeletos, Laibson,
Repetto et al. (2001) present similar, albeit somewhat lower estimates of β ∼= .7 and
δ ∼= .957

Up to now we presented three examples of transitive time preferences that can be
incorported into the framework of Relative Discounting. Due to their transitivity they
even have the nice property of an absolute discount representation, i.e. their ranking
can be represented by present values, depicted in 4.6. The remainder of this chapter is
devoted to time preferences that are not transitive; the last two of them do not even
have a Relative Discount representation.
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4. Types of Time Preferences and their Empirical Evidence

Figure 4.6.: Plot of three absolute discount functions. Source: Angeletos, Laibson, Repetto
et al. (2001, p.51)
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4.5. Subadditive Discounting

4.5.1. De�nition and Relation to Relative Discounting

In his critique of the hyperbolic discount model, (Read, 2001) proposed a di�erent
model in order to explain anomalies such as decreasing impatience (see above). He
comes up with the interesting idea that the (average) discount rate in a given time
interval increases with the number of subintervals in which the interval is partioned.
Within the framework of relative discounting this reads as:

η(t, r) > η(t, s)η(s, r) ∀ r, s, t s.t. 0 < r < s < t (4.44)

which implies intransitivity of the generated time preferences. Applying Theorem
2.4, this prohibits a present value representation of the time preferences, which means
strictly speaking one cannot speak of "discounting" as de�ned above.
Note that the time preferences discussed so far, all took additive discounting as

given: Regardless of how many parts we divide an interval in, the "time e�ect" of the
valuation of an outcome-date pair is the same. The intransitive subadditive discounting
on the other hand allows for the following cycles

(x, t0) ∼ (y, t1) ∼ (z, t2) � (x, t0)

Ok and Masatlioglu argue that this type of time preferences satis�es axioms RD1-
RD6 and therefore has a relative discounting representation. Moreover, they provide
us with an example of an relative discounting term, that generates subadditive time
preferences:

η(s, t) ≡

{
ef(|s−t|) whenever s ≤ t
e−f(|s−t|) otherwise

where f : R→ R+ is strictly convex with f(0) = 0 and lim
t→∞

f(t) =∞

4.5.2. Explanations for Subadditive Time Preferences

Read (2001, pp.9) names two reasons why time preferences could be subadditive:
Drawing on results from Tversky and Koehler (1994) on decision under risk, Subad-

ditive "discounting" might be an example of the salience e�ect in support theory: when
an object or event is partitioned into parts, each of these parts gets more attention or
appreciation then before. Frederick, Loewenstein and O'Donoghue (2002, p.361) pro-
vide us with the following illustrative example: People judge the probability of death
by accident lower than the cumulative probability of death by �re, death by drowning
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4. Types of Time Preferences and their Empirical Evidence

and so on. In the case of intertemporal choice this means, that delay is emphasized
in the eyes of decision makers when a long delay is divided into two or more shorter
delays.
Another explanation is the presence of the so called regression-to-the-mean e�ect,

that has been observed in experiments about decision under risk: Estimates are often
biased towards the midpoint of the support of the probability distribution. So, in the
case of a discrete random variable with values 0 and 1, the subjective estimates for
the expected value will typically be biased towards .5. Read argues that a similar bias
could be present in intertemporal choice: Suppose a decision maker is being asked
the typical question of what amount y at time s > t will make him indi�erent to
(x, t). If the length of the delay, s − t is "small", then so will be the premium y − x.
However, if we add some kind of risk in the judgment of how big the premium should
be, then applying the "regression-to-the-mean" e�ect tells us that the decision makers
estimate of the premium will be biased upwards, since the premium is left truncated
(the decision maker would not put up with a negative premium). One could then argue
that this e�ect becomes more pronounced as the number of subintervals increase.

4.5.3. Subadditivity and Decreasing Impatience

Subadditivity also gives rise to a di�erent interpretation of the results of the exper-
iments discussed in 4.3: When the realization of outcomes (in the form of real or
imagined monetary prizes) is expedited, there are two kinds of e�ects: a decrease in
delay and a decrease in the length of the interval. Previous studies omitted the second
e�ect and their estimates could therefore exhibit some kind of "omitted variable bias"
in the sense, that they attributed the observed decrease in impatience to the decrease
in delay only.

4.5.4. Empirical Evidence

Read (2001) conducted a series of experiments that elicited discount rates for a two-
year interval. Moreover he partitioned the interval into three equal sub-intervals, each
8 months long and elicited discount rates for these intervals as well. He found that the
compounded discounting of the three sub-intervals was signi�cantly higher than the
(average) discount rate of the whole two-year interval, providing evidence for the case
of subadditive discounting.
With respect to hyperbolic discounting he found no signi�cant di�erence between the

discount rates between the �rst, the second and the third eight-month periods, which
essentially rejected the prediction of the hyperbolic discounting model. Therefore it
is essential to stress, that the model of subadditive discounting should not be seen as
a mere extension of hyperbolic discounting, but a challenge to it, providing us with a
di�erent psychological explanation for both, discounting and decreasing impatience.
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4.6. Rubinstein's Procedural Approach

In his "'Economics and Psychology'? The Case of Hyperbolic Discounting" Rubinstein
(2003) claims that while there is indeed a large body of evidence against exponential
discounting, the widespread endorsement of hyperbolic discounting may be all too pre-
mature, because, he adds, "an in�nite number of functional forms [are] consistent with
the psychological �ndings that support hyperbolic discounting" (p. 1209). In other
words, although critique of the exponential discounted utility model was long overdue,
one should subject hyperbolic discounting to thorough analysis and not establish it as
the "natural" successor of the EDU model.
Furthermore, it is worthwile not only to look for alternative functional forms, that

give a better �t with the data collected in experiments, but to turn to introspection in
order to open "the black box of decision making" (p. 1215). In this spirit Rubinstein
proposes an alternative model of time preferences and intertemporal decision:
As Read in his explanation of "subadditive discounting" (see section 4.5) Rubinstein

(2003) also tries to incorporate well-known psychological phenomena that provided
"anomalies" to the normative theory of decision under risk. Building largely on his
own work of decision theory he proposes a procedural approach, that incorporates - in
a stylized way - the plausible point that a decision maker preprocesses her "problems":
She uses a heuristic procedure that makes use of so called similiarity relations, which
allow her to "simpli�y" the information underlying the intertemporal decision prob-
lems. Formally, similarity relations can be modeled as re�exive and symmetric binary
relations, and we denote them by ≈.
According to Rubinstein's procedural approach, the choice for either (x, t) or (y, s)

is made according to the following three-step procedure:

1. The decision maker looks for dominance: If x �0 y and t < s the decision maker
readily chooses the former pair. So, in the case of positive time preferences, there
is no tradeo� to consider when one pair is dominated by another.

2. If there was no dominance, the decision maker looks for similiarities: If there is
similiarity in one dimension (i.e. either x ≈ y or t ≈ s) then the decision maker
can focus on the other dimension and choose accordingly.

3. If these stages were inconclusive, the decision maker turns to a di�erent criterion,
that remains unspeci�ed by Rubinstein.

4.6.1. Experimental Evidence

Rubinstein provides us with evidence from a number of lab experiments where hyper-
bolic discounting could not explain the choice pattern of a signi�cant proportion of the
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Question 1: You can receive the amounts of money indicated according
to one of the two following schedules:

A April 1st July 1st October 1st December 1st
$1000 $1000 $1000 $1000

�
B March 1st June 1st September 1st November 1st

$997 $997 $997 $997

Question 2: You have to choose between

A Receiving $1000 on December 1st

B Receiving $997 on November 1st

Table 4.2.: Questions I and II in Rubinstein (2003)

test takers. In one of these experiments, undergraduate students were asked to answer
the following questions (original phrasing given in table 4.2):

According to hyperbolic discounting the individuals preferences over streams can be
represented by:

U(0x) = u(x0) +
∑
t=1

t∏
s=1

φsu(xt)

where φs is an increasing sequence of discount factors (see section 4.3.3). Therefore,
if a decision maker is willing to "pay" $3 in order to speed up the receipt of a prize by
one month from December to November, the nature of the decreasing impatience of
the preferences implies that she is also willing to speed up consumption from October
to September for the same or even smaller amount. Therefore no one ought to choose
A in Q4 and B in Q3. However, in the experiment a signi�cant share of the students
did just that - contradicting the predicition of hyperbolic discounting.

From the vantage point of Rubinstein's procedural approach on the other hand, the
behavior of the students who chose B in Q3 and A in Q4 can be explained in the
following way: In the eyes of some students the stream ($1000, $1000, $1000, $1000)
was less similiar to ($977, $977, $977, $977) than the single outcome $1000 was to $977.
So, whereas the choice between $100 and $977 could be made according to step two of
the procedural approach, the comparison of the streams was not, implying that another
criterion was applied.
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4.6. Rubinstein's Procedural Approach

4.6.2. The Relation to Relative Discounting

Although it is not entirily in the spirit of Rubinstein, a somewhat "streamlined" variety
of his procedural approach can in fact be incorporated into the framework of Relative
Discounting, as Ok and Masatlioglu showed:
Clearly, the �rst step of Rubinstein's procedure is not an issue � we would consider

unrealistic any model of time preferences that prescribes to choose a dominated alterna-
tive. With respect to similiarity, Relative Discounting of course requires to "quantify"
similiarity in a certain sense: Ok and Masatlioglu (2007, p.228) distinguish between
similiarity relations over outcomes and dates and de�ne them analogously:

x ≈X y ⇔ 1

ε
≤ u(x)

u(y)
≤ ε

s ≈T t⇔
1

ε
≤ f(s)

f(t)
≤ ε for some ε > 1

where f : R+ → R++, decreasing and lim
t→∞

f(t) = 0.

What is left to specify is step three, i.e. the evaluation when the �rst two steps re-
mained inconclusive. In this particular case we make the (arbitrary) prediction that the
decision maker evualuates an outcome-date pair (x, t) according to w(x, t) ≡ f(t)u(x).
As all cases have been covered, we are able to conclude that the time preferences gener-
ated by Rubinstein's procedural approach can be seen as a form of Relative discounting,
where the relative discount function is given by9:

η(s, t) ≡

{
1 whenever s ≈T t
f(s)
f(t) otherwise

With respect to the classi�cation of time preferences given in 2.4, we can say that
these time preferences belong to the class of intransitive time preferences, since in
general it does not hold that η(t, r) = η(t, s)η(s, r) for all r, s, t ≥ 0 - at least not for
every f(·) de�ned above. Depending on the exact speci�cation of the f(·) function, the
time preferences may or may not exhibit (strong) present bias. However, Rubinstein
itself may have endorsed a speci�cation that allows for present bias. If we again employ
the classic example of Thaler (see above), the decision maker might perceive the dates
100 days from now and 101 days from now as very similar, which activiated step two
of the procedure and led her to choose two apples in 101 days over one apple in 100
days. When both outcomes are expedited by 100 days on the other hand, the decision
maker may perceive the two dates as very di�erent as well, which leads her to resort

9a plot of such a Relative Discount function can be found on page 59
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to stage three of the procedure.

4.6.3. Discussion and Critique

Although Rubinstein comes forward with a novel approach that certainly helps to un-
derstand the choice pattern of decision maker in certain situations, there are some
caveats and limitations: Rubinstein itself remains rather vague about what "similiar-
ity" means, therefore virtually any "anomaly" can be explained by perceived similiari-
ties. This ipso facto renders the model incontestable, therefore unscienti�c. Moreover,
when one tries to "quantify" similiarity, i.e. to give a speci�c relation between objective
"similiarity" in the outcome or date space and the similiarties as binary relations, as
Ok and Masatlioglu did, one strips the model of a central feature: that similiarities
are only perceived similiarities. With respect to the experiment discussed above, this
means that this precludes perceiving $1000 similar to $1003 but not to $997. Certainly,
it would be possible to de�ne similarities with more complex step-functions, but this
would make the model overly complicated. Furthermore, one had to de�ne similiarity
relations over streams and not only outcome-date pairs, otherwise there would be no
reason why ($1000, $1000, $1000, $1000) is less similiar to ($977, $977, $977, $977) than
$1000 is to $997.

Up to now we only considered time preferences that could be incorporated into Ok
and Masatlioglu's framework of Relative Discounting. The next two sections will be
devoted to time preferences that do not satisfy axioms RD1-RD6 and hence cannot be
represented by a Relative Discounting function.

4.7. Vague Time Preferences

4.7.1. Motivation and Representation

Bearing some resemblence to the approach of Rubinstein mentioned above, Manzini and
Mariotti (2006) study time preferences that are generated by a particular procedural
approach.
Their starting point is the (slightly overused) quote by Arthur Pigou who famously

declared with respect to people's attitude towards the future, that "our telescopic
faculty is defective, and we, therefore, see future pleasures, as it were, on a diminished
scale." (Pigou, 1920, ch.2,$3). Unlike other authors, Manzini and Mariotti take the
telescope metaphor literally and come forward with the idea that decision makers
perveive distant outcomes as blurred and are therefore only able to make a ranking if
they di�er "su�ciently" enough.
Formally, the decision problem of choosing one out of two outcome-date pairs (de-

noted by (x, t) and (y, s)) can be resolved right away, i.e. in the �rst step, whenever it
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4.7. Vague Time Preferences

Figure 4.7.: Plots of the Relative Discouting Function η(s, t): Subplots 1�3 represent the
three transitive time preferences introduced above. The remainder depict in-
transitive time preferences, two of which are discussed in this thesis. Source Ok
and Masatlioglu (2007, p.227)
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holds that

w(x, t) > w(y, s) + σ(y, s) (4.45)

where w is a "reasonable" utility function over the outcome-date space, e.g. one of
the absolute discount representations of sections 4.1 � 4.4. σ(·) > 0 is a "vagueness"
factor that precludes the ranking of outcome-date pairs that are not di�erent "enough"
in terms of utils. This of course means that the ranking of alternatives is not complete
in the �rst step.
Therefore, when the �rst step is not conclusive, the decision maker applies a dif-

ferent criterion: She will then compare the outcomes of the two pairs and only if she
�nds herself indi�erent between them have a look at their respective receival times.
This is what Manzini and Mariotti refer to as the "outcome prominence" version of
their model. In the natural counterpart, the "time prominence" version, the orders are
reversed: �rst the decision maker will look for a di�erence between the receival times
and only when there is none, compare the outcomes. Therefore for all alternatives that
are mutually "similar" (in terms of utility), the decision maker is said to have lexico-
graphic preferences: In the outcome prominence version the outcome is the dominant
dimension, in the time time prominence version it is the time dimension.
More formally, this heuristic procedure generates a two tier preference relation: The

�rst tier of preferences are incomplete binary relations, �, that are de�ned as:

(x, t) � (y, s)⇔ w(x, t) > w(y, s) + σ(y, s) (4.46)

If neither (x, t) � (y, s) nor (y, s) � (x, t) holds we write (x, t) ≈ (y, s), i.e. the �rst
step was not decisive.
In order to specify the second step, we suppose that the decision maker has complete

and transitive preferences over the outcome space, which we denote by �O. Moreover,
we assume that the lexicographic preferences are such that she prefers sooner to later
outcomes. Therefore the preferences generated from the "outcome prominence" version
of the model, (�∗,∼∗) are de�ned in the following way (Manzini and Mariotti, 2006,
p.5):

• (x, t) �∗ (y, s) ⇔

1. either (x, t) � (y, s)

2. or

a) [(x, t) ≈ (y, s), x �O y] (Primary Criterion = Outcome)

b) or [(x, t) ≈ (y, s), x ∼O y, t < s] (Secondary Criterion = Timing)

• (x, t) ∼∗ (y, s) ⇔ [(x, t) ≈ (y, s), x ∼O y, t = s]
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4.7. Vague Time Preferences

The "time prominence" version of the model is de�ned analogously. In both cases the
binary relations are complete. As we already saw in the Rubinstein model, heuristic
procedures are prone to intransitivity and therefore also the "vague" time preferences
will not be transitive in general.

4.7.2. The sigma-delta-Model

In the most parsimonious version of the model, there are only two parameters, σ > 0
and δ ∈ (0, 1): The vagueness factor σ(x, t) is assumed to be constant with respect
to both, outcome and time. Moreover w, the utility function over the outcome-date
space, is given by the exponentially discounted utility model, δtu(x). Furthermore,
u(x) is speci�ed to be linear in outcome and without an intercept term � therefore
the utility function can be also written as u(x) = x without loss of generality. Taken
together, the �rst step of the decision process is conclusive if, and only if:

(x, t) � (y, s)⇔ δtx > δsy + σ (4.47)

Even in this simple speci�cation the model is able to generate "preference reversals".
The intuition behind the result is that a constant vagueness term, σ, relatively gains
in size as the alternatives are shifted backwards in time and therefore "lose in utility".
So, if the alternatives are delayed beyond a critical point in time, the decision maker
will not be able to distinguish the two alternatives and therefore activate step two of
her decision procedure. Since the ranking of the two alternatives in the second step
need not be the same as their ranking in the �rst step (up to the critical point) there is
room for preference reversals, so the "vague" time preferences are also not stationary.
In addition, the (σ, δ)-model allows for preference cycles. The authors also provide

us with su�cient conditions (in the form of parameter con�gurations) that ensure that
such cycles occur.

4.7.3. Discussion

Manzini and Mariotti come forward with a novel approach that demonstrates how
"anamolies" in intertemporal choice can be accounted for without adopting discount
functions that di�er from exponential discouting: qualitatively, even the parsimo-
nious (σ, δ)-model is able to induce the same "preference reversals" and cycles as
(quasi-)hyperbolic models.
Although the model also consists of a heuristic procedure, it di�ers from Rubinstein's

procedural approach in a number of aspects: "similiarity" can only occur in the �rst
step and in contrary to the Rubinstein model it can arise if two alternative di�er in
both dimensions. Furthermore, depending on the speci�cation of the function σ(·)many
decision problems can be resolved in the �rst nonheuristic step, whereas in Rubinstein's
procedure, the ranking of alternatives might be unspeci�ed.
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Due to the two-tier preference structure of the model, in cannot be incorporated into
Ok and Masatlioglu's framework of Relative Discounting. Moreover the lexicographic
preferences in the second step of the decision procedure are a straightforward violation
of axiom RD1 (time sensitivity) and RD2 (outcome sensitivity).

4.8. Time Preferences with Fixed Costs

4.8.1. Motivation for introducing �xed costs

In the discussion of quasi-hyperbolic time preferences (see section 4.4) one interpreta-
tion of the parameter β was a variable cost: The "cost" of deferring grati�cation to
the future (regardless of the size of the parameter δ) is given by (1− β)u. In a recent
paper Beinhabib, Bisin and Schotter take this interpretation as a starting point and
introduce "mental" �xed costs10 that decision makers occur for rewards that are to
be obtained in the future �in addition to the "variable costs" and/or other forms of
discounting: as we discussed in section 4.2.4 possible sources of �xed costs are that it
might take subjects e�ort and time to obtain the deferred grati�cation, because they
have to pick it up from the test center or that they simply have to think about having
to pick up the reward later in time.

Let us assume that the decision maker is risk neutral and that the outcomes are pos-
itive monetary rewards, i.e. X ≡ [0,∞). Then, without loss of generality, the decision
makers preferences over the elements of the outcome-date space can be represented in
the following way:11

(x, t) � (y, s)⇔ δ∗(x, t)x ≥ δ∗(y, t)y (4.48)

where δ∗(x, t) =

{
1 for t = 0,

βδ(t)− b
x for t = 1, 2, . . .

(4.49)

The �xed costs term b may able to explain why in many studies the magnitude e�ect
(declining discount rates as rewards increase) is observed: Higher prizes decrease the
importance of the �xed costs and lead ipso facto to lower discounting. Note that in this
speci�cation the size of the monetary reward enters the discounting term. However, it
is not to be confused with the money-discount function � here the discount function is
money-dependent even under the assumption of risk neutrality.

10In a previous version of the paper the authors refered to it as a "contemplation cost".
11Equivalently, this representation could be written as (x, t) � (y, s) ⇔ δ(t)x − c(t) ≥ δ(t)y − c(s)

with c(0) = 0 and c(t) > 0.
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4.8.2. Empirical Evidence

The authors restrict themselves to the cases where δ(t) is either the exponential dis-
count function or the (generalized) hyperbolic discount function. As we saw in section
4.3 the generalized hyperbolic discount function is characterized by two parameters, α
and γ and is able to nest the exponential function (α→ 0). In order to eschew techni-
cal problems when conducting statistical tests, they used a di�erent parametrization
of the generalized hyperbola.12 Therefore, Beinhabib, Bisin and Schotter obtained the
following alternative parametrization of the discount term δ∗(x, t):

δ∗(β, π, θ, b, x, t) =


1 for t = 0,

β︸︷︷︸
V C

(1− (1− θ)πt)
1

(1−θ)︸ ︷︷ ︸
δH

− b

x︸︷︷︸
FC

for t = 1, 2, . . . (4.50)

The authors elicited discount rates of 27 respondents using the Becker-DeGroot-
Marschak procedure (see section 4.2). Using the collected data they estimated the
parameters using non-linear least-squares estimation. They report a signi�cant �xed
cost (b) of about $4 on average across respondents. The variable cost factor (β) is
insigni�cant, suggesting that prior studies merely found the statistical artefact in the
form of an omitted variable bias. Moreover, the authors performed robustness checks
for either a possible framing e�ect or risk aversion (in the sense of a concave utility
function) and found no signi�cant di�erence between to the obtained estimates.

4.8.3. Discussion

The introduction of a �xed cost parameter is indeed able to explain the magnitude
e�ect that had been documented in many studies before. Moreover, the �ndings of
Beinhabib, Bisin and Schotter suggest that the present bias of decision makers stems
from a di�erent source: "mental" �xed costs. Although both, the experimental design
of the study as well as the econometric speci�cation seem sound, the low number
of observations and a possible selection bias (all respondents were NYU students13)
somehow call for further examination of their �ndings.
Note that this model cannot be incorporated into the framework of relative discount-

ing: The presence of a �xed cost precludes the separation of the time and the outcome
e�ects and are therefore a violation of the separability axioms RD4 and RD5 (see 2.2).

12Clearly, e.g. no future discountingH0 : α =∞ in itself is hard to test. In their speci�cation θ = α
β

+1
and π = γ

13Although the authors do not explicitly say so, one can infer that from the fact that the respondent's
rewards were sent to their campus mailboxes (p.7)
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5. Summary of Part I

In the last three chapters, we saw that theories of intertemporal choice borrow heavily
from results from theory of decision under risk and indeed some authors invoke the
similarities between the discounted utility model on the hand and the expected utility
model on the other hand. But it is important to stress that while the expected utility
theory rests on a normatively solid foundation, the discounted utility theory does
not: Clearly, independence between mutually exclusive events as in decision theory
is something entirely di�erent than intertemporal noncomplementarity. As Frederick,
Loewenstein and O'Donoghue (2002) point out, people who do not decide according
to the discounted utility model do not necessarily make a "mistake" from a normative
point of view, this is of course di�erent in the realm of decision under risk.
If there is one thing the studies cited above showed, then it is that we simply don't

know how people make economic decisions that involve intertemporal trade o�s. From
a theoretical perspective, the problem is that even if we endorsed the discounted utility
model, there are always two unknown functions that cannot be elicited separatly.
One thing, however, seems safe to say: the exponential discounted utility model

is overly simplistic and condenses all the various dimensions of intertemporal choice
into a single parameter. It can, therefore, serve as a benchmark model � at best. As
mentioned before, the bulk of intertemporal economic models employed an exponential
discount function. In part II of this thesis we will see how the predictions of these
models change (provided that these models retain some degree of tractability) when we
make the slightest possible modi�cation: exchange the exponential discount function
with a quasi-hyperbolic one.
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Part II.

Applications of Hyperbolic

Discounting

The future ain't what it used to

be.

(Yogi Berra)

If you wake up at a di�erent

time, in a di�erent place, could

you wake up as a di�erent

person?

(Tyler Durden)
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5. Summary of Part I

Througout part I of this thesis we analyzed the decision maker's preferences from
the perspective of the present. So, in a way, we did not allow for time to pass. We are
now going to jettison this assumption and examine the implications. Intuitively, this
should make a huge di�erence, since plans that seem like a good idea today, might not
be as enticing to follow tomorrow. Clearly, these considerations can be ruled out if we
assume that the decision maker can commit to her actions - an assumption that we
maintained througout part I of this thesis.
In chapter 6 we will de�ne and illustrate the important concept of dynamic consis-

tency and discuss the issue of self-control: the decision maker will incorporate into her
considerations that she herself will not follow some plans.
Part II is organized as follows. In chapters 7 and 8 we will put our decision maker

in ever more complex (economic) situations and compare the results of the situations
under commitment with the results without commitment. We will do so by restricting
ourselves to quasi-hyperbolic time preferences. In section 8.3 we also analyze the
decision process of consumption/saving decisions under partial commitment and brie�y
elaborate on the rami�cations of economic policy.
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6. Dynamic Inconsistency and the
Multiple Self

6.1. De�nition of Dynamic Consistency

The starting point of our discussion of dynamic consistency is the classic example due
to Richard Thaler, which we already encountered above twice. This time however, we
modify the thought experiment in the following way:

A decision maker prefers one apple today over two apples tomorrow. By
the same token, she prefers two apples in 101 days over one apple in 100
days.

We will now argue that these preferences are prone to what we will call dynamically
inconsistent planning: Suppose that the above cited decision maker now faces the
option of either taking one apple in 100 days or taking two apples in 101 days. Clearly,
she will plan to take the second option. However, we also know that after 100 days
have passed she will want to reconsider her choice since she prefers one apple right
now over two apples one day later. Therefore, her plan of opting for 2 apples that are
to be obtained in 101 days will not be what we call dynamically consistent :

De�nition A plan (x∗0, x
∗
1, . . . , x

∗
T ) is dynamically consistent if it holds that the

path of choices it induces is also preferred over all feasible alternatives as time passes
by. Formally:

(x∗0, x
∗
1, . . . , x

∗
T ) � (x0, x1, . . . , xT )⇒ (x∗τ , x

∗
τ+1, . . . , x

∗
T ) � (xτ , xτ+1, . . . , xT ) (6.1)

∀0 ≤ τ < T − 1, (6.2)

∀(x0, x1, . . . , xT ) ∈ A, (6.3)

∀(xτ , xτ+1, . . . , xT ) ∈
T∏
τ

At(x
∗
0, x
∗
1, . . . , x

∗
τ−1) (6.4)

In order to make sense of this de�nition, �x τ = 1: Then dynamic consistency
requires for a plan also to be a good idea to follow if one period passes by. In period
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6. Dynamic Inconsistency and the Multiple Self

1, the decision maker will rethink her plan and only then follow it if there is no better
(feasible) alternative.

Note that the set of feasible future alternatives may depend on the choices that
have been made up to this point in time (i.e. the choice set is history dependent). On
the extreme, this means that the choice set is a singleton at all time points in the
future and the decision maker has therefore perfect self-control. This is the case if
the decision maker has commitment power. Alternatively, there might be other (albeit
less economically interesting situations) when we encounter this extreme case: Think
of a decision maker who has to ration food for the next week. If she consumes her
entire stock of food on the very �rst day, the set of alternatives tomorrow is e�ectively
reduced to "starving".

In general, it will not be the case that plans that seem optimal from the perspective of
the present are also dynamically consistent. There is, however, one notable exception:
Inspection of this de�nition of dynamic consistency reveals a close relationship with
our de�nition of stationarity. Apart from the notation, the �rst line in the de�nition
of dynamic consistency coincides perfectly with the de�nition of stationarity (equation
3.5 in chapter 3.3): but whereas then we interpreted the variable τ as the number of
periods that an outcome was speeded up or delayed, the interpretation here is that
time itself passes by. Therefore, if the decison maker has stationary time preferences,
then all plans that are optimal from the perspective of the present are also optimal in
the future. In other words, stationary time preferences imply dynamically consistent
plans. In the literature, this case is sometimes refered to as the "harmony" case. Recall
that we showed in section 2.4.3 that among the class of transitive time preferences,
stationarity brings us to exponential discounting.

Since at least Strotz (1955) it is well known among economists that therefore, mod-
elling "exponential" and "non-exponential" decision makers is qualitatively di�erent,
which is also what we will see in the next chapters.

However, we will restrict ourselves on the case of quasi-hyperbolic time preferences,
introduced in section 4.4. The main motivation why most, if not all of economic
analysis of these kind is restricted to quasi-hyperbolic discounting is mostly that it
allows for a certain (albeit limited) degree of tractability and that we can nest the
behaviour of exponential discounting (by setting β = 1).

6.2. The Multiple Self

The considerations laid out in the preceeding section motivated economists and psy-
chologists (Phelps and Pollak, 1968; Pollak, 1968; Goldman, 1980, just to name a few of
them) to model intertemporal decisions of decision makers that have quasi-hyperbolic
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6.2. The Multiple Self

time preferences1 as intrapersonal dynamic games. In this somewhat schizophrenic
approach, every period in time, t, is populated by a decision maker, which is usu-
ally refered to as "self t". The di�erent "selves" are usually thought of having both,
identical material preferences and an identical attitude towards timing. However, they
"evaluate" the discount function at di�erent points in time: from the perspective of self
0, the present value of (x, t), (t > 0) is βδtu(x); from the perspective of self 0 ≤ τ < t
it is βδt−τu(x).
Splitting a decision maker into several multiple selves can also reconcile our thought

experiment of choosing apples with the Weak Axiom of Revealed Preference: The
preferences that were revealed are those of self 100 and not those of self 0 � therefore,
it can very well be the case that self 0 prefers one apple in 100 days over two apples in
101 days.

1See Thaler and Shefrin (1981) for a di�erent approach that bears much resemblence to the Freudian
id/super-ego dichotomy: In their model the players are a far-sighted "planner" and T myopic
"doers". The planner's utility is simply given by the sum of the utils of the doers.
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7.1. The Student's Curse

In order to illustrate the idea of a "mulitple self" further, let us consider the following
thought experiment (Du�y, 2007):

Imagine a decison maker who has to hand in a term paper two weeks from now.
She has the options of writing the paper either this week, next week or in two weeks.
Suppose writing a term paper incures mental "costs" that are higher the later she
writes her paper (because, say, she has one exam next week and a further two exams
in two weeks). Let us �x these mental costs numerically as 1, 32 ,

5
2 for writing the

paper this week/one week from now/two weeks from now. Let us assume further that
she discounts time quasi-hyperbolically with β = 1

2 and δ = 1: That is, there is no
additional discounting from week one to week two.1

As a benchmark solution, let us as �rst assume that the decision maker has com-
mitment power: She writes the paper with a friend who she has to schedule a time
with. Since she does not want to stand her friend up, her friend e�ectively acts as
a commitment device. Since she cannot reconsider her choices, all plans are dynami-
cally consistent by default and she simply plans to write the paper on the time when
the discounted costs are lowest, which is next week. Her costs under commitment are
therefore given by 3

4 .
Let us now jettison this assumption of commitment power. Following O'Donoghue

and Rabin (1999) there are now at least two ways of analyzing this situation. First,
assume that the decision maker is "naive": She thinks that she has commitment power
although she has not. Therefore, she will plan on writing the thesis next week. How-
ever, next week she (i.e. self 1) will want to procrastinate since the costs of writing
the paper now

(
3
2

)
exceed the (discounted) costs of writing the paper one week later(

1
2 ×

5
2 = 5

4

)
. Therefore, self 0 ends up writing the thesis in week two - when (dis-

counted) costs are highest 5
4 > 1 > 3

4 . Her ex-ante costs di�er from her ex-post costs
markedly.2

1Yes, this does violate axiom RD1, but go ahead anyway.
2Clearly it is somewhat strange to talk about ex-post costs of self 0, since she is not aware of that in
period 0. To make this point more crisply, this notion of ex-post payo� would mean that self t− 1
gains utility when self t experiences a windfall gain - e.g. a lottery win.
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7.2. Costs of Self-Control

This Week One week from now Two weeks from now

Costs for self 0 1 3
4

5
4

Costs for self 1 - 3
2

5
4

Table 7.1.: Writing a term paper: (Discounted) Costs for self 0 and self 1

The second way of analyzing this choice problem is to endow the decision maker
with perfect rationality, which � in O'Donoghue and Rabin's terminology � makes her
a "sophisticate": If this is the case, self 0 anticipates that writing the thesis is not a
consistent plan and therefore not feasible. E�ectively, she has the choice of writing the
term paper either now or two weeks from now. Since writing it now is associated with
smaller costs 1 < 5

4 , she writes it right away. She realizes that she can only choose
among the set of consistent plans and therefore she can only achive the "second best".

Since theoretical economists are usually not particularly interested in the behavior of
irrational and "naive" decision makers, most of the literature deals with sophisticated
agents.3

7.2. Costs of Self-Control

Recall that in the example discussed in the last section, self 0's costs under commitment
was 3

4 while without commitment, sophisticates had to incure (higher) costs of 1.
Therefore, one could argue that the decision maker would sacri�ce up to 1

4 utils in
order to get access to a commitment device. In other words, she is willing to pay for
self-control.

This issue of self-control rationalizes certain real-world phenomena, economists could
not make much sense of otherwise: Thaler and Shefrin (1981) interpret fat-farms (spas
or resorts that specialize in weight loss) and smoker's clinics as examples for consistent
planning. Moreover, christmas savings clubs seem to make a case for the need of
commitment devices: In these savings clubs people deposit a pre-agreed amount every
month but are allowed to withdraw their money only in the beginning of December.
Since they usually pay less interest than normal checking accounts, their popularity
can only be explained by some value-added, which some economists (e.g. Strotz, 1955)
believe to be the possibility of self-control.

3A few notable exceptions include Akerlof (1991) and Tyson (2007).
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7. Models of Procrastination

This Weekend Weekend One Weekend Two Weekend Three

Self 0 3 5
2 = 2.5 8

2 = 4 13
2 = 6.5

Self 1 - 5 8
2 = 4 13

2 = 6.5

Self 2 - - 8 13
2 = 6.5

Self 3 - - - 13

Table 7.2.: Payo�s of the multiple selves in the Fibonacci Cinema

7.3. Blessed are the Ignorant?

Can we conclude from the example in section 7.1 that sophisticates are always better
o� than naifs? As the title of this section suggest, the answer is "no". To see why, con-
sider the following thought experiment (O'Donoghue and Rabin, 1999), Xavier Gabaix
dubbed "The Fibonacci Cinema":
Suppose a cineastic decision maker faces the choice of watching a movie on one of

the next four weekends. On every weekend the local cinema plays a di�erent movie,
granting the decision maker a di�erent level of utility: On the �rst (this) weekend,
the cinema shows an absolutely horrible movie, say, "Up in the Air", which gives the
decision maker 3 utils. On weekend one there is a "mediocre" movie granting the
decision maker 5 utils. One week later, on weekend two, the local cinema even shows
a good movie (8 utils). The best movie, say, "Night on Earth" (13 utils) is being
shown on the last weekend (weekend three). Furthermore, let us again assume that
the decision maker discounts time quasi-hyperbolically with parameters β = 1

2 and
δ = 1.
So when will the decision maker watch the movie?
Under Commitment the decision can simply choose the movie with the highest

discounted utility, which is "Night on Earth" with 6.5 utils.
A naive decision maker falsely believes that she has commitment power and

chooses not to watch the movie on the �rst weekend but on the last weekend. On
weekend one, self 1 will also not watch the movie, since agrees with self 0 that watching
the last movie is more enticing (5 < 6.5). Unfortunately, both, the plan of self 0 and
and the plan of self 1 to watch the last movie, are not dynamically consistent because
on weekend two, self 2 prefers not to wait one week (8 > 6.5) and watch the "good"
movie, granting self 0 an ex-post payo� of 8

2 = 4 < 6.5.
A sophisticated cineastic self 1 will anticipate that self 2 will watch the movie

anyway and therefore choose to watch it on "her" weekend (5 > 4). By the same
token, self 0 will realize that she can either watch the movie now or next week -
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7.3. Blessed are the Ignorant?

since the former gives more utility (3 > 2.5) the sophisticated decision maker ends up
watching the horrible "Up in the Air". In a sense, she successively "outsmarts" herself
since she faces a series of Prisoner's Dilemmas (O'Donoghue and Rabin, 1999).

We stress that while Sophistication depends on the level of rationality, we endow the
decision maker with, non-exponential (but transitive) discounting itself has nothing
to do with rationality. However, non-exponential discount functions lead to argueably
more di�cult decision processes.
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8. Consumption/Saving-Decisions with
Quasi-Hyperbolic Discounting

In this chapter we will discuss how the presence of quasi-hyperbolic discounting alters
consumption/saving-decisions of economic agents. In section 8.1 we provide some in-
tuition with a three period model. We contrast the results in the case of commitment,
which generalize to any T-period model, with the case where commitment is not an
option.
In section 8.2 we de�ne in closer detail the decision problem of the quasi-hyperbolic

agent and derive a (quasi-) hyperbolic Euler equation.
In the last section we then discuss the issue of partial commitment and augment the

model from the previous section with labor income and illiquid wealth.

8.1. An Introductory Example

In this section we motivate the isssue of dynamic consistency with a relatively sim-
ple three-period consumption-savings model. First, we will derive the solution under
commitment and discuss its most important features. Then we drop the commitment
assumption, which requires us to change our solution concept and contrast the results
with the commitment case.

8.1.1. The Commitment Solution

Imagine that a decision maker is endowed with initial wealth W0 > 0 which she can
use for consumption in three periods t = 0, 1, 2. We denote the levels of consumption
with ct. Furthermore, assume that she can commit to the consumption plan in period
0. She also has access to a deposit account that pays a risk free interest rate of
0 < r < ∞. In every period, she rationally only withdraws as much money as she
needs for consumption in that very period. De�ning the gross interest rate

R ≡ 1 + r (8.1)

the (intertemporal) budget constraint is therefore given by

W0 ≥ c0 +
c1
R

+
c2
R2

(8.2)
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8.1. An Introductory Example

if we assume that the interest rate is constant. In words, the present value of the
(�nite) consumption stream (RHS) must not exceed the initial wealth (LHS).
The decision maker has quasi-hyperbolic time preferences and we assume that con-

sumption in one period does not have any (direct) e�ects on the utility derived from
consumption in another period. In other words, we assume that the decision maker
evaluates the (�nite) stream of outcomes (c0, c1, c2) according to the additive dis-
counted utility model (see section 3.1). That given, the preferences of self 0 can be
represented by the following utility function:

U(c0, c1, c2) = u(c0) + βδu(c1) + βδ2u(c2) (8.3)

where 0 < β ≤ 1 (Note that a value of β = 1 gives exponential discounting).
Moreover, we assume the static utility function over outcomes to be of the Constant
Relative Risk Aversion (CRRA)-family:

u(ct) =

{
c1−σt
1−σ for σ > 0 but σ 6= 1

ln(ct) for σ = 1
(8.4)

Moreover, note that the CRRA utility function satis�es the following (Inada) con-
ditions:

• u′(c) is strictly positive but decreasing

• u(0) = 0 for σ ∈ (0, 1)

• the utility function is C2 on R3
++

• lim
c↘0

u′(c) =∞

• lim
c→∞

u′(c) = 0

The reason why we restrict our analysis to the case of CRRA utility functions is the
following: If the utility function over the consumption of a single point in time (i.e.
u(ct)) is CRRA, the utility function over the entire consumption plan (U(c0, c1, c2)) is
of the constant elasticity of substitution (CES) familiy:

U(c0, c1, c2) ≡

{
A (w0c

q
0 + w1c

q
1 + wq2)

1/q for q ∈ (∞, 1] but q 6= 0

Acw0
0 cw1

1 cw2
2 for q = 1

(8.5)

where w0 + w1 + w2 = 1 and w0, w1, w2 ≥ 0

Proof In order to show this, we have to convert 8.3 into 8.5 by a series of order-
preserving transformations.
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8. Consumption/Saving-Decisions with Quasi-Hyperbolic Discounting

First we divide by (1+ δQ(1)+ δQ(2)).This gives us the weights: wt ≡
δQ(t)

1+δQ(1)+δQ(2) .

Note that the weights satisfy the conditions wt ≥ 0 and
∑
wt = 1.

σ 6= 1: Multiplying by (1 − σ) and taking the result to the power of 1/(1 − σ)
establishes the desired result1 if we de�ne q ≡ 1− σ.
σ = 1: In the logarithmic case we apply the operation exp(·) which gives us a

Cobb-Douglas utility function with constant returns to scale.

Since the CES function exhibits homogeneity of degree one, the represented prefer-
ences are homothetic. That is, x ∼ y ⇔ αx ∼ αy, for α ≥ 0 (Mas-Colell, Whinston
and Green, 1995, p.45). It is well known that in the case of homothetic preferences,
the fraction of income that is devoted for a good is constant with respect to income.
In the case of intertemporal choice this reads as: the fraction of the initial wealth that
is to be consumed in a period is constant with respect to the level of the initial wealth.
This fact greatly simpli�es our analysis, since we are able to write the consumption in
a given period as γtWt, where γt is the fraction of income that is spent in this period.
Before we tackle the issue of �nding the optimal consumption path, we have the

following two observations concerning the set of feasible choices for (c0, c1, c2):
Since the decision maker only cares for the present and the two periods to follow

(because, say, the world will come to an end in period t=3), it is clear that in the opti-
mum the consumption plan will be ressource exhausting, so the intertemporal budget
constraint will bind in the optimum. That in mind, we can exchange the inequality
sign with an equality sign in equation 8.2.
Moreover, note that u(0) is not de�ned for σ ∈ [1,+∞). Therefore, we have to make

the (technical) assumption that ct > 0 for t = 0, 1, 2. This assumption, however, turns
out not to be restrictive - not even for the case σ ∈ (0, 1).
Taken together these imply that the intertemporal budget set of the decision maker

is given by

B∗(R,W0) ≡ R3
++ ∩

{
(c0, c1, c2)|c0 −

c1
R
− c2
R2

= 0
}

(8.6)

We assume that the decision maker solves the (constrained) maximization problem:

max
(c0,c1,c2)∈B∗

U(c0, c1, c2) (8.7)

The presence of commitment power clearly strips the decision problem from its
intertemporal aspect: From a technical point of view, problem 8.7 is a generic static
utility maximization problem. We could simply think of the consumption plan as a
vector of goods. Their (relative) prices are then given by the inverse of the gross
interest rate, 1/R and 1/R2, respectively.

1for σ > 1 each of these two transformations is strictly order-reversing, but if we take these two
together, the resulting single transformation is order-preserving
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Furthermore, the problem is of a particular nice structure, because we have a concave
utility function and a single linear equality constraint - tailor-made for solving by the
Langrangian method.
The �rst order conditions of the Lagrangian,

u′(c0)

βδu′(c1)
= R (8.8)

u′(c0)

βδ2u′(c2)
= R2 (8.9)

βδu′(c1)

βδ2u′(c2)
= R (8.10)

W0 = c0 +
c1
R

+
c2
R2

(8.11)

can be interpreted in the standard way: the LHS is simply the marginal rate of sub-
stitution, while the RHS is the price ratio. In intertemporal decision analysis however,
these conditions are called Euler-equations. Rearranging gives us the typical Euler
equation:

u′(ct−1) = u′(ct)Rφt (8.12)

where φt is the discount factor at period t, which we de�ned as the additional
disconting that takes on between period t− 1 to period t. We already saw in chapter
4.4 that for quasi-hyperbolic discount functions, this discount factor takes the value
βδ for t = 1 and δ at all other time periods.
In the case of CRRA-utility functions, these equations are linear in the consumption

levels and can be written as

c1
c0

= (Rβδ)1/σ (8.13)

c2
c0

=
(
R2βδ2

)1/σ
(8.14)

c2
c1

= (Rδ)1/σ (8.15)

W0 = c0 +
c1
R

+
c2
R2

(8.16)

For a general class of transitive time preferences and under commitment (abstracting
from the special case of quasi-hyperbolic discounting) the Euler-equations become

ct
ct−1

= (Rφt)
1/σ (8.17)
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We see that consumption will increase from period t−1 to period t when it holds that
Rφt > 1. If we plug in the de�nitions of R and φ (equations 8.1 and 2.8 respectively)
this is the case if

1 + r

1 + ρt
> 1 (8.18)

r > ρt (8.19)

If we interpret the interest rate as a measure of the collective or market rate of
impatience, then we obtain the intuitive result, that the decision maker will have an
increasing (decreasing) consumption pro�le if she is more (less) impatient than the
market.
The exponent, 1/σ, has an amplifying e�ect if σ < 1 and a dampening one if σ > 1.

Moreover, if the decision maker has commitment power and CRRA-preferences, the
exponent coincides with the elasticity of (intertemporal) substitution (EIS):

EIS(t) ≡
∂ log

(
ct
ct−1

)
∂ log(R)

=
∂ 1
σ (log(R) + log(φt))

∂ log(R)
=

1

σ
(8.20)

As usual the elasticity of substitution can be interpreted as the percentage change
in relative demand of one good over the other (numerator) when the relative prices
(denominator) are changed by 1%.2 Constant relative risk aversion reads as a constant
elasticity of substitution in the case of intertemporal choice. It is constant in both,
the level of initial wealth, W0 and time, t. This is what we expected, since we showed
above that U(c0, c1, c2) is a CES function.
From another, perhaps more intuitive perspective there are two opposing forces at

work in the considerations of how to allocate consumption over time. For the sake of
illustration let us assume that the interest rate equals zero (so R = 1): On the one hand
the decision maker will try to concentrate consumption on the very �rst period since
every util derived from later consumption is diminished by discounting. On the other
hand, the concavity of the static utility function suggests to equalize consumption over
all periods.
More precisely, the degree of concavity of the utility function, determined by the

parameter σ, then regulates how smooth the consumption path is. A parameter value
for σ that is close to 0 results in an almost linear utility function u, which means
a more or less one-to-one relationship between consumption and utility (without loss
of generality). Therefore the utility gained from one additional unit of consumption
does not depend on the level of consumption at that period of time. So, the decision

2Note that log(R) ≡ log(1 + r) ≈ r for small r. This allows us to interpret the EIS as the change
that is induced from raising the interest rate by 1 percentage point.
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maker will react relatively much to small changes in the interest rate and adjust her
consumption decisions accordingly. Conversely, a "large" value of σ causes much di�er-
ence between the additional utility derived from, say, the tenth or the one hundredth
unit of consumption. Therefore, the decision maker will smooth the consumption path.

But back to the case of quasi-hyperbolic discounting: If we solve the system of
linear equations given in 8.13�8.16 we obtain the following solution in the commitment
scenario, denoted by cc

∗ ≡ (cc
∗
0, cc

∗
1, cc

∗
2):

cc
∗
0 = γ0W0 (8.21)

cc
∗
1 = (Rβδ)1/σcc

∗
0 (8.22)

cc
∗
2 = (R2βδ2)1/σcc

∗
0 (8.23)

where γ0(·) is the (marginal) propensity to consume in period zero, which is given
by:

γ0 =
[
1 + (R1−σβδ)1/σ + (R2(1−σ)βδ2)1/σ

]−1
(8.24)

As expected, the solutions are linear functions of the inital wealth.
Can we be sure that the consumption path given in 8.23 is really a solution to

optimization problem 8.7? And if so, is it unique? The usual way to prove this is
the following: First we check wether the critical point we found is a local maximum
(i.e. we do so by veryfying that the bordered Hessian is negative de�nite at the critical
point, which is the case here). Second, we check that the constraint quali�cation is
met at all points that lie in the budget set (in our problem, there is only a single linear
constraint, so this is trivially satis�ed). In particular, the constraint quali�cation is
met at the global maximum. Unfortunately, we cannot use the Weierstrass Theorem
to prove the existence of this maximum since the budget set is not closed and therefore
not compact. However, we may use the following Theorem to verify the existence of a
maximum:

Theorem 8 (Sundaram, 1996, p.213) Suppose f : D → R is strictly quasi-concave
where D ⊂ Rn is convex. Then, any local maximum of f on D is also a global maximum
of f on D. Moreover, the set argmax{f(x)|x ∈ D} of maximizers of f on D is either
empty or a singleton.

Our maximization problem satis�es the assumptions of Theorem 8: U(·) is clearly
strictly concave, therefore it is also strictly quasi-conave - in particular on the budget
set. The budget set is convex (a skewed simplex) and a subset of R3. Therefore, since
our candidate consumption path is a local maximizer, we can conclude that it is also
the unique global maximizer.
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8.1.2. The Solution without Commitment

In this subsection we drop the assumption that the decision maker can commit to her
actions and analyze the consequences. We assume that the decision maker rationally
foresees that she might reconsider her choices later on. With respect to the classi�cation
discussed in section 7.1 this means that we focus on "sophisticate" decision makers.
We already argued above, that one way to analyze the decision problem when com-

mitment is not possible, is via a dynamic intrapersonal game:3 The players are the
successive selves of the decision maker. In the case of our 3-period model, this means
that there are three "players": self 0, self 1 and self 2. The players' actions are simply
the levels of consumption they choose in "their" period. Their payo�s are determined
by the consumption levels of the "their" present and future. Therefore, the payo� of
player 0 is given by:

U0(c0, c1, c2) ≡ u(c0) + βδu(c1) + βδ2u(c2) (8.25)

Analogously, the payo�s of players 1 and 2 are de�ned as

U1(c1, c2) ≡ u(c1) + βδu(c2) (8.26)

and

U2(c2) ≡ u(c2) (8.27)

It seems only natural to employ the solution concept of a subgame perfect Nash equi-
librium (SPE): The reason why we use the re�nement concept of subgame perfection
is that we want to rule out equilibria of the following kind: Suppose self 2 threatens
the preceeding selves by playing a "blackmailing" strategy: If she does not get exactly,
say, 80% of the initial wealth, she will not consume anything and let her W2 units of
money go to waste. For an appropriate parameter con�guration, it would then pay o�
for self 0 and self 1 to "give in". Therefore, we look for a nash equilibrium in every
subgame of the game to rule out these uncredible threats: Clearly self 2 will simply
consume what is left.
The subgames are the following: "After" every level of consumption, self 0 may

choose, a new subgame opens up. Similiarly, after every feasible level of consumption,
self 1 can choose, another subgame opens up. All in all, we therefore have a continuum
of subgames, starting after every consumption decision.
The straightforward technique to solve a dynamic game like this is by backward

induction - as we did implicitly in the case of the Fibonacci cinema example.
So, let us start by analyzing the behaviour of self 2:

3A proper de�nition of the game will follow in the next section
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W0

W1 = R(W0 − c0)

Wmax
1 = RW0

Wmin
1 = 0 Wmin

2 = 0

W2 = R(W1 − c1)

W2 = RW1
c0

c 0
=
0

c
0
=
W

0

c1(W1)

U0(c0, c1, c2)
U1(c1, c2)
U2(c2)

c2(W2)

t=0 t=1 t=2

Figure 8.1.: Illustration of the Three-Period-Consumption/Saving game

Self 2 "inherits" wealth from self 1, which we denote by W2. So in every subgame
(i.e. for every level of wealth, W2) her best response is given by:

ncc
∗
2 = arg max

0<c≤W2

u(c) (8.28)

Since we assumed u′ > 0 and since there are no future periods to distribute wealth
over, her best response is simply given by ncc

∗
2 =W2.

Self 1 "inherits" wealthW1 from self 0. She has rational expectations and anticipates
self 2's choice. Therefore, her best response is given by:

ncc
∗
1 ∈ arg max

0<c≤W1

u(c) + βδu(R(W1 − c)︸ ︷︷ ︸
c∗2(c)

) (8.29)

since the best response function of self 2 is linear in the choice of consumption of
self 1, we can conclude that the objective function given 8.29 is concave. Moreover,
the "budget" set 0 < c ≤W1 is clearly convex and we might therefore apply Theorem
8 in order to show that the set of best responses is either empty or a singleton. The
Inada conditions of u then ensure that the latter holds. Therefore, we know that in
every subgame (for every value of W1), there is a unique Nash Equilibrium. Moreover,
the utility function of self 1 is also of the CES familiy and therefore homothetic. As
mentioned above, this means that we can write her choice of consumption as γ1W1.
That is, her strategy can be interpreted as choosing a consumption rate. The level of
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consumption is then determined by W1.
Since we know that the maximizer lies in the interior of her budget set, the unique

maximizer is characterized by the �rst order condition

u′(c∗1) = βδRu′(c∗2) (8.30)

which is again an Euler equation. If we compare equation 8.30 with the corresponding
Euler equation in the commitment case (equation 8.11) it is clear that these two are
equal only if β = 1, that is exponential discounting. Therefore, a value of β that is
strictly smaller than 1 results in overconsumption of self 1 from the perspective of self
0: the additional discounting that takes place between period 1 and 2 (that is the
discount factor) di�ers between the two "players": the discount factor of self 0 is given

by φ2 ≡ βδ2

βδ = δ while the discount factor of self 1 is given by φ1 ≡ βδ
1 = βδ which is

strictly smaller if β < 1.
Plugging in the speci�c functional form of the CRRA utility function, the response

function of self 1 can then be written as a function of her initial wealth, W1 (which is
a linear function of the consumption decision of self 0: W1 = R(W0 − c0)):

ncc
∗
1(W1) = γ1W1 (8.31)

where

γ1 =
(
1 +

(
βδR1−σ)1/σ)−1 (8.32)

Clearly, it holds that 0 < γ1 < 1. Therefore, we can say that the strategic behaviour
of self 1 can be summarized by the consumption function given in equation 8.31.
Self 0: Anticipating all this, self 0 chooses a level of consumption c0 that maximizes

her payo�, given in equation 8.25. Therefore her choice is given by

ncc
∗
0 ∈ arg max

0<c≤W0

{u(c) + βδu(γ1R(W0 − c)︸ ︷︷ ︸
c∗1(c)

) + βδ2u(R2(w − c)(1− γ1)︸ ︷︷ ︸
c∗2(c

∗
1(c))

)} (8.33)

In other words, she chooses a subgame. Again, we observe that this is a strictly
concave problem (a sum of concave functions that in turn are linear transformations
of c) with a convex budget set, which ensures uniqueness of the solution by Theorem
8. The Inada conditions ensure the existence. Therefore the well-de�ned consumption
level is given by

ncc
∗
0 = γ0W0 (8.34)

where
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γ0 =
[
1 +

(
βδR1−σ (γ1−σ1 + δR1−σ(1− γ1)1−σ

))1/σ]−1
(8.35)

Again, it holds that 0 < γ0 < 1, which is why we can say that the strategy of self 0
amounts to choosing an appropriate consumption rate. The consumption level is then
determined by W0, which is exogenously given.
From another perspective, the decision problem without commitment is similiar to

the problem with commitment. However, we have to add the following "incentive
compatibility contraint":

c2 = γ1(R(W0 − c1)) (8.36)

Taken together with the other constraints self 0's problem is then the following:

max
(c0,c1,c2)∈B∗∗

U0(c0, c1, c2) (8.37)

where

B∗∗(R,W0) ≡ B∗ ∩ {(c0, c1, c2) | c2 = γ1(R(W0 − c1))} (8.38)

Since this constraint e�ectively restricts the choice set, it is clear that self 0 cannot
be better o� than before. Moreover, we saw that in general the unique optimum of the
("unconstraint") problem with commitment will not satisfy the additional constraint,
she will even be worse o�. Note that β = 1 brings us back to the "harmony" case where
the preferences of self 1 and self 0 are compatible with each other. In other words,
this is the case when the optimum of the commitment-problem satis�es the additional
constraint.

8.2. Consumption Decisions without Commitment

In this section we will generalize the insights we gained from the previous example for
T+1 periods. We will do so along the lines of Laibson (1996). We start with a proper
de�ninition of the dynamic game:
The "players" are clearly the temporal selves of the decision maker. We conveniently

index them by their decision period: t = 0, 1, 2, . . . , T .
Let ht ∈ Ht be the set of feasible histories at time t. Note that ht is a t + 1

period vector containing information about the initial wealth W0 and the "moves",
i.e. the consumption decisions, that took place up to (but excluding) period t: ht ≡(
W0, c0, c1, · · · , ct−1 ∈ Rt+1

++

)
. We already saw in the last section, that the way how

the moves of previous selves a�ect the decisions of successive selves is a very particular
one: what matters is only the wealth at the beginning of the decision period t, which
is given by the following function:
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Wt(ht) = RtW0 −
t−1∑
i=0

Rt−ici (8.39)

A player's strategy space is the set of feasible consumption decisions: Formally, that
is:

St ≡ {st | st : Ht → R++ and 0 < s(ht) ≤W (ht) ∀ht ∈ Ht} (8.40)

The joint strategy space, S, is then given by the cartesian product over all player's
strategy spaces: S ≡ S0 × S1 × . . .× ST .
Finally, self t's payo� is given by the function

Ut(ct, ct+11, . . . , cT ) ≡ u(ct) + β
T−t∑
i=1

δiu(ct+i) (8.41)

where u(·) is of the CRRA family.
For this dynamic intrapersonal game, we have the following result:

Theorem 9 (Laibson, 1996) For this �nite-horizon game, there exists a unique sub-
game perfect equilibrium. This equilibrium is markov perfect and is characterized by
time-dependent consumption rules which are linear in wealth.

Proof We are �rst to show that the set of subgame perfect strategy-pro�les, SP ⊂ S,
is a singleton. We will prove this result by induction. First, suppose that the T-period
horizon game (i.e. T+1 period game) has a unique subgame perfect equilibrium. Now,
we have to show, that that this implies that also the T+1 period horizon game has a
unique subgame perfect equilibrium: Imagine that we already showed that the three-
period example above has a unique subgame perfect equilibrium. Now we add another
period before period 0.
As in the introductory example above, we suppose further that the equilibrium

strategies of the T-period horizon game, which we denote by sTt are of the form sTt (ht) =
γT−tWt for t = 0, 1, . . . , T .4 Of course, it has to hold that 0 < γT−t < 1.
The important point in this proof is the next one: We introduce a recursive element

into the line of argumentation: the (continuation-) value function, which we de�ne by

V (A, T + 1) ≡ βδ
T∑
t=0

δtu(γT−tWt) (8.42)

where A ≡W0 and Wt+1 = R(1− γT−t)Wt, which is simple bookkeeping.
Given the assumptions we made so far, it holds for all A ∈ R++ that

4For notational convenience the indizes of wealth and marginal consumption are running in opposite
directions: Therefore, self T's strategy is for instance given by γ0WT .
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• VA(A, T + 1) ≡ ∂V (A,T+1)
∂A > 0

• VAA(A, T + 1) ≡ ∂2V (A,T+1)
∂A2 < 0

• lim
A→0

∂V (A,T+1)
∂A =∞

So the continuation payo� is concave in the wealth of the �rst continuation period.
In other words, V "inherits" some properties of u.5

We are now ready to analyze the behaviour of self 0 in the T+1 period horizon game
(i.e. T+2 periods). By choosing her level of consumption she directly determines the
level of wealth in the next period, W1 = R(W0− c0). By assumption, there is a unique
subgame perfect equilibrium for every level of W1. In the eyes of self 0, these subgame
perfect equilibria have a (continuation) value of V (R(W0 − c), T + 1). Therefore, her
level of consumption has to satisfy:

c0 ∈ arg max
0<c≤W0

u(c) + V (R(W0 − c), T + 1) (8.43)

By the properties of V stated above, the solution to this problem is well-de�ned.
Moreover, as argued above, the induced homotheticity of the CRRA utility function
results in a solution that can be written as: γ∗W0. De�ne γT+1 ≡ γ∗.
E�ectively, we have shown so far, if there exists a subgame perfect equilibrium in the

T-period horizon game, there also exists one in the T+1-horizon game. In addition we
showed, that if the strategies in the T-period horizon game are of the form ct = γT−tWt,
then also the strategy of self 0 in a T+1-horizon game depends in this simple linear way
on the initial wealth. In order to start the induction, consider a 0-period horizon game.
Since there is only a single period, the decision maker will set γ0 = 1, i.e. consume all
the wealth.
Markov perfect equilibria are a subclass of subgame perfect equilibria, where the

strategies have the following Markov property (Fudenberg and Tirole, 1991, p.501):
The past in�uences the current play only through a state variable that summarizes
the e�ect of all past actions. In our case this state variable is the level of wealth,
Wt. Furthermore, we showed above that the strategies of the successive selves only
depend on past level of consumptions, insofar as they in�uence the current level of
wealth. Therefore, they have this desired Markov property. This completes the proof
of Theorem 9.

5To see this, note that the stock of wealth at period t can be written explicitly as Wt =
W0

∏t−1
i=0 R(1− γT−i). Therefore, the argument of u(·) is a positive linear transformation of

A ≡ W0, which means that u(·) is concave in W0 since u(·) itself is a concave function. V (·)
in turn, is just a linear combination of the function u evaluated at di�erent points and therefore
also concave in W0.

85



8. Consumption/Saving-Decisions with Quasi-Hyperbolic Discounting

We are now going to give a closer characterization of the unique equilibrium con-
sumption path of a �nite consumption game: We take self 0's maximization problem
stated in equation 8.43 as a starting point. The properties of V (·) ensure an inner
solution, which is why the following �rst order condition has to hold with equality:

u′(c0) = RVA(W1, T + 1) (8.44)

Since every period t-self faces the same kind of maximization problem, this relation-
ship has to hold for all t = 0, 1, . . . , T :

u′(ct) = RVA(Wt+1, T − t+ 1) (8.45)

Using the de�nition of V (·) we can rewrite V (Wt+1, T − t+ 1), as

βδu(ct+1(Wt+1, T + 1)) + δV (R(Wt+1 − ct+1(Wt+1, T + 1)), T − t) (8.46)

Therefore, the partial derivative, VA(Wt+1, T − t+ 1) can be written as

βδu′(ct+1)
∂ct+1

∂Wt+1
+ δRVA(R(Wt+1 − ct+1), T − t)

(
1− ∂ct+1

∂Wt+1

)
(8.47)

Substituting u′(ct+1) for VA(R(Wt+1− ct+1), T − t) brings us to the following hyper-
bolic Euler equation:

u′(ct) = Ru′(ct+1)

[
βδ

∂ct+1

∂Wt+1
+ δ

(
1− ∂ct+1

∂Wt+1

)]
︸ ︷︷ ︸

φ̂t+1

(8.48)

Harris and Laibson (2001) dubbed the bracketed term, wich we denote henceforth
by φ̂t+1, the "e�ective discount factor".
In a sense it plays the same role as the (normal) discount factor in the case of

commitment power (see equation 8.17 above), but whereas it is exogenous in the model
with commitment, it is endogenous in the model without commitment.
The e�ective discount factor is a weighted sum of the short run discount rate, βδ and

the long run discount rate, δ. The weights are composed of the marginal propensity
to consume in period t + 1. As we saw above, the CRRA utility function, result in
consumption functions that are linear in wealth � therefore the marginal propensity
to consume coincides with the consumption rate, which we denoted by γt+1. Put dif-
ferently, in the case of CRRA utility, the weights are constant with respect to future
wealth and are given by the consumption rate, γ, and the savings rate, (1−γ), respec-
tively. Since we know that 0 < γt+1 < 1, we can be sure that the e�ective discount
factor is a convex combination of βδ and β.
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The intuition behind the result is the following: First, note that for β = 1, we
obtain the usual exponential Euler equation. For β < 1 however, we already saw in
the introductory example that plans of self t and self t+1 are not aligned. That is,
they will allocate a marginal euro di�erently between period t+1 (self t's tomorrow
and self t+1's present) and period t+2 (self t's day after tomorrow and self (t+1)'s
tomorrow). Moreover, the di�erence is such that self t would save more in period t+1
then self t+1 would. Figuring out how much more might not be that simple. However,
we can be sure that if self t wants to reallocate a marginal euro from today to a point
in the future, this point in the future would not be period t+1, but a later one. How
much of this marginal euro "trickles down" to period t+2 or later is determined by
the marginal propensity to consume of self t+1. If self t expects her tomorrow's self to
consume relatively much (i.e. γt+1 close to 1), most of self t's utility will derive from
her self t+1's consumption and therefore the implied discount factor will be close to
βδ. If on the other hand self t+1's marginal consumption is close to zero, most of the
marginal euro will be "passed on" to period t+2, which e�ectively increases the worth
of a future marginal dollar to a value of close to Ru′(ct+1)δ.
This intuition also holds when a variable labor income is introduced into the model.

More precisely, if we assume that there is no asset market for labor income. Harris
and Laibson (2001) showed that the hyperbolic Euler relation given in equation 8.48
also holds in a more general framework, when we allow for an in�nite time horizon,
stochastic income (in which case, we have to add the conditional expectations operator)
and a much more general class of static utility functions.
However, the authors show that after introducing labor income, the hyperbolic Euler

equation only holds when the consumption function is Lipschitz-continuous, which they
prove is the case when β is in the neighborhood of 1. Therefore, Harris and Laibson
(2001) derive a generalization of equation 8.48 which they dubb "Weak Hyperbolic
Euler Relation". Unfortunately, given its cumbersome structure, it seems safe to say
that we will not see this generalization in applications.

8.3. Consumption/Saving-Decisions with Partial
Commitment

Laibson (1997) supplements the model discussed in the previous section with a partial
commitment technology in the form of illiquid wealth: The decision maker can either
invest in liquid assets, x, or in illiquid assets, z. Liquidizing assets takes one period,
which is why the decision maker at time t e�ectively only commands over the liquid
portion of the asset stock and her income in that very period. Recall from section 8.2
that self t and self t+1 only disagree about the relative weights attached to periods
t+1 and t+2 but are "in harmony" with respect to relative weights attached to periods
that are farther in the future. Therefore, this commitment device is tailor-made for
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quasi-hyperbolic time preferences and if it was not for the labor income of self t+1
(that self t cannot control) even perfect commitment would be possible.
So let us consider in closer detail the decision process of the hyperbolic consumer

endowed with perfect rationality in Laibson's "Golden Eggs and Hyperbolic Discount-
ing":

8.3.1. Model Setup

In every period t = 1, 2, . . . , T the decison maker supplies one unit of labor that earns
her an income of yt (Note that income may vary in a deterministic way with time).
Furthermore, she gets access to the liquid portion of her savings (chosen in t−1) which
is given by Rxt−1 and she can choose a level of consumption

ct ∈ (0, yt +Rxt−1) (8.49)

Finally, she can decide upon the allocation of the remaining stock of wealth that
e�ects her decision in the next period (we assume that it takes one period to liquidize
wealth):

yt +R(zt−1 + xt−1)− ct = zt + xt (8.50)

xt, zt ≥ 0 (8.51)

(Laibson, 1997, p.448) justi�es the nonnegativity constraint imposed on both asset
stocks with the claim that U.S. courts would not enforce contracts that include forced
saving. Moreover, if forced saving was possible, then self t could restrict self t+1's
budget in any desirable way, which would strip the model of many interesting features.
However, since this is not possible when we rule out forced saving, self t can only control
the part t+1's budget that depends on her capital income - so self t+1's budget cannot
be smaller than her labor income.
As in the previous sections we are now going to characterize the set of subgame

perfect equilibria of this consumption/saving-game. In addition to her consumption
decision, self t also has to choose her asset allocation, which is why the equilibrium
path is now a sequence of triples:{

x0, z0, (ct, xt, zt)
T
t=1

}
(8.52)

We are now going to characterize this equilibrium path by four marginal conditions.
As indicated in the previous section, unfortuantely it is not guaranteed that the equilib-
rium consumption strategy is di�erentiable at every point. Therefore, it is a priori not
clear wether we really can hope to use marginal conditions. In order to ensure smooth-
ness of the consumption function Laibson (1997) imposes the following restriction on
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the labor income sequence:

Assumption L1:
u′(yt) ≥ β (δR)τ u′(yt+τ ) ∀t, τ ≥ 1 (8.53)

In the case of CRRA utility, this means that labor income has to increase with time
and moreover, it has to increase "su�ciently" fast:

yt+τ
yt
≥ β1/σ(δR)τ/σ ∀t, τ ≥ 1 (8.54)

Clearly, the closer β is to 0, the less growth is required in order for this assumption
to be met.

8.3.2. Equilibrium Characterization

The following Theorem now ensures the existence and uniqueness of a subgame perfect
equilibrium and gives four necessary conditions the equilibrium path has to ful�ll:

Theorem 10 (Laibson, 1997, p.453) In the T-period consumption/savings-game de-
�ned above that satis�es assumption L1, there exists a unique subgame perfect Nash
equilibrium. The equilibrium path is resource exhausting and satis�es the following
four conditions:

u′(ct) ≥ max
τ∈{1,...,T−t}

β(δR)τu′(ct+τ ) (8.55a)

u′(ct) > max
τ∈{1,...,T−t}

β(δR)τu′(ct+τ ) ⇒ ct = yt +Rxt−1 (8.55b)

u′(ct+1) < max
τ∈{1,...,T−t−1}

(δR)τu′(ct+1+τ ) ⇒ xt = 0 (8.55c)

u′(ct+1) > max
τ∈{1,...,T−t−1}

(δR)τu′(ct+1+τ ) ⇒ zt = 0 (8.55d)

each of which has to hold for all t = 1, 2, . . . , T − 2.

The requirement of resource exhaustion has already been discussed in section 8.2:
We saw that self T will simply consume the remaining wealth.
In order to guarentee that self T is able to do so in the game with partial commitment,

self T-1 only passes on liquid assets, i.e. she sets zT−1 = 0.
The four marginal conditions are closely related to the Euler equations in the previous

sections, we consider them in turn:
Condition 8.55a is a generalization of the Euler equation under liquidity constraints:

Here the marginal utility of self t derived from the equilibrium consumption ct can
exceed to discounted marginal utility of self t+1.
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If this is the case (8.55b), self t �nds herself unable to reallocate more resources from
self t+1 to t since she is liquidity constraint by her previous selves, i.e. ct = yt+Rxt−1.
Note that the reverse inequality cannot hold since she could simply choose to give up
consumption in favour of one of her future selves.
The next two conditions relate to the decision maker's choice of x and z: Both of

them concern tradeo�s of self t between periods t+1 and t+τ . The respective discount
factor is given by δτ , which is why β does not appear in the last two conditions. 8.55c
now suggests that self t will try to implement the lowest possible consumption of self
t+1 when she �nds that self t+1 will overconsume (that is, from perspective of self t).
Conversely, 8.55d ensures that she will not restrict the consumption of self t+1 when

she wants self t+1 to consume more.

8.3.3. Implications

Laibson (1997) conducts several calibration exercises and discusses the following im-
plications of his model:

Consumption-Income Comovement

It seems to be a robust �nding of many studies (for an overview see Thaler, 1990)
that houshold consumption tracks income "too" closely: The standard (exponential)
Permanent Income hypothesis states that (unexpected) changes6 in current income will
alter the consumption path of the (perfectly rational) decision maker only insofar, as
they change the net present value of the decision maker's stock of wealth.
This e�ect will be most pronounced when the decision maker holds only a relatively

small stock of wealth, since then she can only "absorb" shocks in a limited way.
However, this is not what empirical studies (see for example Bernheim, Skinner and

Weinberg, 2001) usually �nd: Even though households hold a large enough level of
wealth, their consumtion is highly correlated with their current income.
All in all, the strong empirical correlation between current income and consumption

can not be rationalized within a exponential discounting consumption/saving setup.
In Laibson (1997) model, this empirical relationship is made sense of in the following

way: It can be shown that on the equilibrium path, the decision maker will �nd
herself cash-constrained (by her previous selves) at any point in time and she therefore
consumes all the liquid assets available at time t, i.e. ct = yt + Rxt−1. However, if
β is su�ciently small7 (so that the con�ict of interest between self t − 1 and self t is
su�ciently high), self t − 1 might not always be able to fully prevent her future self
from "going on a consumption binge".

6As mentioned before, Laibson (1997) models the income stream to be deterministic. But even then,
the decision maker �nds herself unable to "smooth" consumption (relative to the exponential case).

7Given that the other model parameters are calibrated in a "reasonable" range.
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Ricardian Equivalence

Closely related to the issue just discussed, is the question of wether Ricardian Equiv-
alence still holds when decision makers discount time quasi-hyperbolically. Ricardian
equivalence consitituted a major attack on the Keynsian school of thought since it
states that rationality renders �scal policy essentially ine�ective under a wide range
of economic situations. The line of arguments is as follows: Fiscal policy is seen as a
simple reallocation of resources of one period in time to another. Given perfect capital
markets this reallocation is always possible at an opportunity cost that equals the pre-
vailing interest rate. Let us assume that the government wants to increase spending in
period t1 and therefore borrows money from the capital market. When the government
pursues a long-term balanced budget policy, it is clear that it has to raise taxes at a
point later in time in order to pay back it's creditors (say, in period t2). The crucical
point is that households are assumed to foresee that the government will do so (by
e.g. raising taxes later on). If households face the same market interest rate as the
governments, they will therefore simply o�set the e�ect of the �scal policy by reducing
spending in period t1 and increasing spending in t2.
While a large body of critique concentrated around the assumption of perfect fore-

sight of the households (see e.g. Akerlof, 2007), Laibson suggests that Ricardian Equiv-
alence will also be violated when households are indeed perfectly rational.
To see why this is the case here, recall that at the equilibrium path, it holds that

ct = yt +Rxt−1. Therefore, �scal policy that changes the income path,8 will also have
a similar e�ect on the (equilibrium) consumption path.

Mental Accounting

In his famous paper "Saving, Fungibility, and Mental Accounts" Thaler (1990) dis-
cussed the idea that decision makers use "rules of thumb" in their consumption/saving
decision process (e.g. "save" 10% of their income). Thaler hypothesizes that decision
makers will treat the various sources income (labor income, capital income, windfall
gains) di�erently and will therefore exhibit di�erent marginal propensities to consume
across their "mental accounts". But while Thaler only endows the decision makers
with bounded rationality9 Laibson (1997) models them as perfectly rational.

8Without violating assumption L1
9"The modern theories of saving have made the representative consumer increasingly sophisticated.
Expectations are taken to be the same as those which would be held by a sophisticated econo-
metrician. The problem seems to be that while economists have gotten increasingly sophisticated
and clever, consumers have remained decidedly human. This leaves open the question of whose
behavior we are trying to model. Along these lines, at an NBER conference a couple years ago
I explained the di�erence between my models and Robert Barro's by saying that he assumes the
agents in his model are as smart as he is, while I portray people as being as dumb as I am. Barro
agreed with this assessment." (Thaler, 1990, p.203)
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In his model, the marginal propensities to consume (MPCs) out of the two types of
assets too, di�er markedly: While the MPC for the liquid asset equals 1, the MPC for
the illiquid asset is 0.

The Costs of Financial Innovation

Laibson argues that the increase in available instantaneous credit has negative reper-
cussions on consumer welfare. While standard (exponential) reasoning assumes that
an increase of the options available cannot result in less welfare, the issue of self-control
suggests otherwise.
Access to instanenous credit can be modelled by dropping our assumption that it

takes the decision maker one period to liquidize her assets. E�ectively, this brings
us back to square one and section 8.2 where commitment was not possible. Laibson
contrasts the case of partial commitment with the case of no commitment and �nds
that moving from the former to the latter (in a comparative static way) increases
interest rates and decreases the capital/output ratio. These e�ects are of course more
pronounced, when β is close to 0.
Laibson suggests that therefore, his model may help to explain the drop in the

U.S. savings rate in the late 1980's/early 1990's: This drop was accompanied with an
increase of instantaneous credit in the form of credit cards and ATMs.
Clearly, it is not straightforward to measure the welfare implications, since we are to

analyze the e�ects of multiple selves. Although not undisputed (see e.g. Rubinstein,
2003, p.1208), economists seem to have converged in that they measure the change in
welfare of self 0 (the planner).
Laibson does so in a way similar to section 7.2: He calculates the minumum (one-

time) payment we had to pay self 0 to give up her access to a partial commitment
device. He �nds that for the empirically relevant values of β (somewhere between .6
and .8), this payment would amount to between 1.6% and 9% of the total output.

Implications Beyond the Golden Eggs Economy

In recent years a plethora of papers sought to adopt quasi-hyperbolic discount functions
in order to explain economic phenomena, two of which we are discussing brie�y:
In a sense, Du�o, Kremer and Robinson (2009) built on the work of none other than

John Rae (1834) by trying to explain economic development with peoples' attitude
towards time: The authors studied the demand for fertilizers of Kenyan farmers. Al-
though only a small minority in their sample declared that they did not believe that
using fertilizers would pay o�, only 29% actually used them. Since almost all farmers
planned to use fertilizers, the authors argued that the farmer's failure to buy fertilizer
might stem from a lack of self control.
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8.3. Consumption/Saving-Decisions with Partial Commitment

As a novel approach, Du�o, Kremer and Robinson (2009) conducted a randomized
controlled trial:10 The sample was partitioned in three subsets: The �rst subset re-
ceived the following "treatment": They were granted free delivery of the fertilizers.
The second subset was also granted free delivery but only if they had the fertilizers
delivered early in the year (shortly before planting time). A third (control) group was
given a 50% subsidy on the market prize of fertilizers.
The authors found that while the treatments for groups one and three did not raise

the usage of fertilizer in a statistically signi�cant way, the second one did. Most
interestingly, subsidizing fertilizers, which is a lot more expensive than treatments one
and two, respectively, seemed to have no e�ect.

Environmental Economists argue that dynamically inconsistent time preferences
might be able to explain the inertia when it comes to tackling to issue of global warm-
ing: The problem is not so much that politicians do not care about the greenhouse e�ect
and pollution, but that they naively expect them to make the right steps next time
(when cheaper and more e�cient technology is available, when there is no economic
crises to get over with, when there are no elections in sight,. . . ).

10Which would win Esther Du�o the John Bates Clark Medal in 2010.
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9. Conclusion

In the second part of the present thesis we saw that even if we retain the basic struc-
ture of the discounted utility model and simply substitute the exponential discount
function for a quasi-hyperbolic one, the predictions of most models are very likely to
change fundamentally. The interrelated issue of dynamic consistency makes room for
a benevolent social planner even in models without externalities or spillovers.
Therefore, a large number of results derived from "exponential" models is not robust

with respect to the discount function used. Given the unsatisfactory empirical support
for exponential discounting (see chapter 4) one should therefore be very careful about
these results, especially when they serve as a basis for policy recommandations: Notable
examples include Ricardian Equivalence and the e�ects of �nancial "innovation" (see
chapter 8.3).
(Quasi-)Hyperbolic Discounting probably lends much of its popularity to the fact

that it may rationalize observed economic behavior that could not be made much
sense of otherwise: That is, establish it as an equilibrium outcome of the maximizing
behavior of decision makers � ipso facto serving as an excuse to ignore the elephant
called "irrationality" in the room called "economic analysis".
We stress that the quasi-hyperbolic discount function is probably the single least

drastic deviation from exponential discounting and as we saw in chapter 4 there are
plenty of other time preferences, some of which may even rest on a more solid empirical
basis. However, as shown in chapter 8 already this small perturbation leads to an
increase in complexity and makes the models prone to indeterminacy. Therefore, we
can expect not to encounter one of the other �ve types of time preferences discussed
in economic models any time soon. In particular, it is not even clear how one could
extend non-transitive time preferences over outcome-date pairs (see chapters 4.5 � 4.8)
in order to be able to represent preferences over streams of outcomes.
These points of critique nonwithstanding, the research on quasi-hyperbolic decision

making not only helped to understand in a more comprehensive way the limitations
of Samuelson's exponential discounted utility model, but also brought back into the
discussion to mainstream economics the issue of self-control.
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A. Appendix

A.1. Abstract

Time preferences are at the very core of every intertemporal decision models. How-
ever, most economic models equate time preferences with exponential discounting. The
�rst part of the present thesis gives an axiomatic derivation of time preferences in
general, reviews selected types of alternatives to exponential discounting and assesses
their empirical support. Of these alternatives, quasi-hyperbolic discounting constitutes
the single least departure from exponential discounting. The second part of the thesis
demonstrates that replacing exponential discounting with quasi-hyperbolic discounting
even in relatively simple intertemporal decision models, not only yields numerically
di�erent results, but also changes the models qualitatively: Any deviation from ex-
ponential discounting raises the issues of dynamic consistency and self-control and
therefore suggests to change the solution concept from a static game "against" nature
to a dynamic game "against" temporal selves. Following Laibson (QJE, vol.112, p.443�
477) potentially adverse e�ects of �nancial innovation and implications on Ricardian
Equivalence as well as on economic policy are discussed.

A.2. Abstract in German

Zeitpräferenzen sind von zentraler Bedeutung für intertemporale Entscheidungsmod-
elle. In den meisten ökonomischen Modellen werden Zeitpräferenzen jedoch mit ex-
ponential discounting gleichgesetzt. Der erste Teil der vorliegenden Arbeit bespricht
eine axiomatische Herleitung von Zeitpräferenzen im Allgemeinen, führt einige Alter-
nativen zu exponential discounting an und diskutiert deren empirische Belege. Von
diesen Alternativen stellt quasi-hyperbolic discounting wohl die geringste Abweichung
von exponential discounting dar. Der zweite Teil demonstriert, dass sich beim Übergang
von exponential discounting zu quasi-hyperbolic discounting schon bei vergleichsweise
einfachen intertemporalen Modellen die Resultate nicht nur numerisch sondern auch
qualitativ unterscheiden: Bei Abweichungen von "exponential discounting" müssen
verschiedene Gesichtspunkte wie "dynamic consistency" und Selbstkontrolle berück-
sichtigt werden, weshalb auch das Lösungskonzept von einem statischen Spiel "gegen"
die Natur zugunsten eines dynamischen Spiels "gegen" temporal selves aufgegeben
werden sollte. Angelehnt an Laibson (QJE, vol.112, p.443�477) werden dann adverse
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