
DIPLOMARBEIT

Titel der Diplomarbeit

Numerical Methods For

Parabolic Equations

Angestrebter akademischer Grad

Magister der Naturwissenschaften (Mag. rer. nat.)

Verfasser: Arno Mayrhofer

Matrikel-Nummer: 0504812

Studienrichtung: A 405 Mathematik

Betreuer: Univ.-Prof. Dr. Herbert Muthsam

Wien, im Juli 2010

Abstract

The diffusion equation

∂u

∂t
+∇ · (κ∇u) = f

shows up in the description of a multitude of physical systems. Due to their complexity

most of them cannot be solved analytically and thus numerical methods have to be em-

ployed. Depending on the problem the computation time can be several weeks resulting

in the need for efficient algorithms.

The traditional methods, e.g. the Forward Time Central Space algorithm, for solving the

diffusion equation are well known for their strict time-stepping restrictions. In this thesis

a new class of methods, named Smoothed Essentially Non-Oscillatory (SENO) schemes,

will be implemented. By means of numerical simulations it will be shown that these re-

strictions are surpassed considerably.

Before giving specific information about the SENO algorithm and the numerical methods

involved the diffusion equation is examined in detail. For this several analytical properties

of the equation and its solutions are discussed and illustrative proofs are given for the

special case of the one dimensional heat equation.

The main idea of the SENO methods is to treat the diffusion equation as a conservation

law. This leads to the possibility of using Weighted Essentially Non-Oscillatory (WENO)

methods to calculate the spatial discretization. Further enhancements are obtained by a

least squares spline approximation which provides a smoothing effect. The most signif-

icant feature is that the smoothing only takes place inside the truncation error interval

which can be calculated analytically. An additional preconditioning step that consists of

a weighted average, similar to the one used for the exact solution, provides even more im-

provements. Furthermore it is advantageous to incorporate certain analytical properties

of the solution into the numerical method. The time integration will be performed by a

second order Runge–Kutta algorithm commonly known as Heun’s method.

III

To demonstrate the effectiveness of the algorithm several simulations in one and two di-

mensions will be shown and analyzed. Included is a complete series of simulations that

illustrate the evolution of the algorithm. Two representative initial conditions in 2D are

utilized for this series. They are also used for showing the optimality of certain param-

eters of the SENO method. Additional simulations are conducted to point out possible

directions of future research.

IV

Zusammenfassung

Bei der Beschreibung physikalischer Systeme tritt die Diffusionslgeichung

∂u

∂t
+∇ · (κ∇u) = f

häufig auf. Aufgrund der Komplexität dieser Systeme ist es meistens nicht möglich sie

analytisch zu lösen, weshalb numerische Verfahren angewendet werden müssen. Abhängig

von dem Problem ist es wichtig, effiziente Algorithmen zu entwickeln, um die Rechenzeit

in einem vertretbaren Rahmen zu halten.

Traditionelle Methoden, wie etwa der Vorwärts Euler Algorithmus, die üblicherweise für

das Lösen der Diffusionsgleichung verwendet werden, schränken bekanntlich die Zeitschrit-

tweite sehr stark ein, so dass sie in diesem Sinn als unbrauchbar gelten müssen. In dieser

Diplomarbeit wird eine neue Klasse von Methoden, genannt Smoothed Essentially Non-

Oscillatory (SENO), konstruiert, welche diese Grenzen signifikant erweitern.

Bevor dieser Algorithmus zusammen mit den dazu notwendigen numerischen Methoden

eingeführt wird, wird die Diffusionsgleichung eingehend untersucht. Dazu werden mehrere

analytische Eigenschaften der Gleichung und ihrer Lösungen aufgeführt. Mehrere Beweise

für den Spezialfall der eindimensionalen Wärmeleitungsgleichung illustrieren diese charak-

teristischen Eigenschaften.

Die Grundidee für die SENO Methoden ist die Diffusionsgleichung als Erhaltungssatz

zu sehen um darauf Weighted Essentially Non-Oscillatory (WENO) Methoden anzuwen-

den, die die örtliche Diskretisierung berechnen. Zusätzliche Verbesserungen werden durch

das Lösen eines Spline Approximations Problems auf Basis der Methode der kleinsten

Quadrate erzielt, was ein Glätten der Lösung bewirkt. Ein zusätzlicher konditionierungs

Schritt, bestehend aus einer gewichteten Mittelung ähnlich der der exakten Lösung, ver-

schafft eine zusätzliche Verbesserung. Außerdem ist es vorteilhaft gewisse analytische

Eigenschaften der Lösung miteinzubeziehen. Für die Zeitintegration wird ein Runge–

Kutta Verfahren zweiter Ordnung verwendet, welches unter dem Namen Heun’s Methode

bekannt ist.

V

Um die Effizienz des neuen Algorithmus zu demonstrieren werden mehrere Simulationen in

einer und zwei Raumdimensionen gezeigt und analysiert. Ein Teil der Simulationen zeigt

die komplette Evolution des Algorithmus anhand zweier speziell ausgewählter Anfangs-

bedingungen in 2D. Diese werden außerdem herangezogen um die Optimalität gewisser

Parameter zu zeigen, welche für die SENO Methoden verwendet werden. Zusätzliche Sim-

ulationen werden abschließend benutzt um mögliche Richtungen zukünftiger Forschung

aufzuzeigen.

VI

Danksagung

Bevor der wissenschaftliche Teil dieser Diplomarbeit beginnt, möchte ich die Gelegenheit

nutzen mich bei mehreren Personen zu bedanken. Ein besonderer Dank gilt Herrn Profes-

sor Herbert J. Muthsam, der das Thema vorgeschlagen hat und diese Arbeit aktiv betreut

hat. Insbesondere möchte ich mich für die vielen Ratschläge und die hilfreiche Anleitung

bedanken, ebenso wie für die Eingliederung in die Forschungsgruppe ACORE.

Aus dieser Gruppe ist besonders Herr Privatdozent Friedrich Kupka hervorzuheben, der

mich ebenfalls von wissenschaftlicher Seite tatkräftig unterstützt hat. Auch dem Rest

der Gruppe möchte ich für die freundliche Aufnahme und Zusammenarbeit danken. Das

betrifft insbesondere Herrn Priv.-Doz. Othmar Koch und Herrn Mag. Hannes Grimm-

Strele welche mir zusätzlich noch mit dem Korrekturlesen geholfen haben. Weitere Un-

terstützung in Form von Verbesserungsvorschlägen bekam ich von Herrn Andrew P. Rogers

wofür ich mich ebenfalls herzlich bedanken möchte.

Der größte Dank soll meinen Eltern zuteil werden, denen ich auch diese Arbeit widmen

möchte. Ohne ihre vielfältige Unterstützung während meiner Studienjahre wäre nicht

nur dieses Werk nicht entstanden, sondern mir wären auch unzählige andere Wege ver-

schlossen geblieben.

VII

VIII

Contents

1 Introduction 1

2 Parabolic Partial Differential Equations 3

2.1 Basic Definitions . 3

2.2 The Diffusion Equation . 5

2.2.1 Physical Derivation of the Heat Equation 5

2.3 Important Analytical Results . 6

2.3.1 Exact Solution in 1D . 7

2.3.2 Smoothness of Solutions . 8

2.3.3 Maximum Principle . 9

2.3.4 Uniqueness . 10

2.3.5 Periodicity . 10

3 Numerical Methods 13

3.1 Forward Time Central Space . 13

3.1.1 The Courant Number . 14

3.2 Heun’s Method . 15

3.3 Weighted Essentially Non-Oscillatory Schemes 17

3.4 Truncation Error of WENO coupled with Heun’s method 20

3.5 Cholesky Decomposition . 23

3.6 Spline Approximation . 23

3.7 Smoothed Essentially Non-Oscillatory Schemes 26

3.7.1 In One Dimension . 26

3.7.2 In n Dimensions . 30

4 Simulations 33

4.1 Simulations in 2D . 33

4.2 Simulations in 1D . 44

5 Conclusion and Outlook 49

IX

CONTENTS

Curriculum Vitae 53

X

Chapter 1

Introduction

The differential equations of the propagation of heat express the most general

conditions, and reduce the physical questions to problems of pure analysis,

and this is the proper object of theory.

Joseph Fourier (1768 - 1830), [1]

Although Fourier was certainly right in his time it would nowadays be necessary to add

“and applied” after the word “pure”. It will be this mixture of pure and applied mathe-

matics which will be the object of this thesis.

The main focus will not lie on the heat equation itself but rather on its generalization,

the diffusion equation
∂u

∂t
+∇ · (κ∇u) = f.

This equation shows up in a large number of physical systems, e.g. in the description

of the interior dynamics of a star. These systems usually consist of multiple coupled

partial differential equations which makes most of them unsolvable analytically. However

using today’s high performance computers it is possible to obtain approximate solutions.

Nevertheless computations still take considerable time and thus efficient algorithms are

of importance.

In this work a new class of methods for solving the diffusion equation will be implemented

and discussed in detail. According to their origin they will be called Smoothed Essentially

Non-Oscillatory (SENO) schemes. Their main goal is to overcome the strict time-stepping

restrictions usually present for traditional explicit solvers as for example the forward time

central space algorithm. Nevertheless the new schemes should maintain a local and explicit

character.

The work is divided into the following chapters.

• After this introduction, Chapter 2 will give an overview of parabolic partial differ-

1

1. INTRODUCTION

ential equations with special emphasis on the diffusion equation. This theoretical

chapter will also discuss several analytical properties of the equation and its solu-

tions.

• Chapter 3 will then introduce the numerical methods which are necessary for imple-

menting the SENO schemes. Amongst them are Runge–Kutta methods, Weighted

Essentially Non-Oscillatory schemes and spline approximation techniques. The

chapter will finish with an in-depth description of the SENO methods in one and

higher dimensions.

• In the following Chapter 4 several simulations will be shown, illustrating the evolu-

tion and capabilities of the SENO algorithm. For this purpose multiple simulations

were conducted in one and two dimensions.

• Finally the thesis will be concluded in Chapter 5, where the obtained results are

summarized and possible directions of future research are pointed out.

2

Chapter 2

Parabolic Partial Differential

Equations

Partial differential equations (PDEs) are of huge importance when describing problems

arising in physics. What is more, their complexity makes them interesting for a wide range

of mathematical research. Since usually PDEs cannot be solved analytically, numerical

methods have to be employed to approximate solutions. However, it is possible to derive

analytical properties of solutions without actually knowing them. As will be shown later

on this can be of help when designing numerical methods.

In the following a short introduction to PDEs will be given with special emphasis on the

diffusion equation. After deriving the equation from physical principles, certain analytical

properties of the solutions shall be studied that will be important for the later numerical

treatment.

2.1 Basic Definitions

A PDE is an equation

F (x, u(x), Du(x), . . . , Dku(x)) = 0 ∀ x ∈ Ω, (2.1.1)

where

u : Ω→ Rn, (2.1.2)

is the unknown and Ω an open subset of Rn.

Let α be a multi-index then Dα := ∂α1
x1
· · · ∂αnxn and if k is a non-negative integer then

Dk := {Dαu(x)||α| = k}.
If F depends linearly on u and its derivatives the PDE is called linear. The order of a

PDE is given by the order of the highest derivative occurring in F .

3

2. PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS

In the following we will only consider linear PDEs of second order. Their general form is

n∑
i=1

n∑
j=1

∂

∂xi

(
ai,j

∂u

∂xj

)
+

n∑
i=1

bi
∂u

∂xi
+ cu+ f = 0, (2.1.3)

where the coefficients ai,j, bi, c and f all depend on the independent variables x1, . . . , xn.

The most important PDEs of the above form can be further classified into the following

three types:

• Elliptic: All eigenvalues of the coefficient matrix ai,j are either positive or negative.

• Hyperbolic: Either one eigenvalue of the coefficient matrix is positive and the rest

are negative or alternatively one is negative and the others are positive.

• Parabolic: One eigenvalue is zero and the rest are either all positive or negative.

Solutions u of the PDEs which we will consider lie in so-called Sobolev spaces. To define

these spaces we need the formulation of weak derivatives. Let α be a multi-index and u

an integrable (L1) function. Then v (=: Dαu) is called the α-th weak derivative of u if it

is contained in L1 and ∫
Ω

uDαφ = (−1)|α|
∫

Ω

vφ ∀φ ∈ C∞c (2.1.4)

holds. The space C∞c is the space of all infinitely differentiable functions with compact

support contained in Ω, commonly known as test functions. A Sobolev space Hm is

defined as a subset of all square integrable functions (L2) for which all weak derivatives

up to order m are again contained in L2. The order of a weak derivative Dα is equivalent

to the absolute value of the multi-index α. Every Sobolev space Hm has a corresponding

norm which is defined by

‖u‖ =

∑
|α|≤m

∫
|Dαu(x)|2dx

1/2

. (2.1.5)

Hm
0 is the closure of C∞c in Hm with respect to the above norm.

In the rest of this work we will restrict ourselves to parabolic PDEs, or more specifically

to the diffusion equation that will be defined in the next section.

4

2.2. THE DIFFUSION EQUATION

2.2 The Diffusion Equation

The inhomogeneous diffusion equation is defined as

∂u

∂t
+∇ · (κ∇u) = f ∀(t, x1, . . . , xn) ∈ [0, T]× Ω, (2.2.1)

where

(∇)i = ∂
∂xi

i = 1, . . . , n, (2.2.2)

u, κ, f : [0, T]× Ω→ R, (2.2.3)

T > 0 and Ω ⊆ Rn.

The function u represents the density of a diffusing material (e.g. temperature), κ is the

diffusion coefficient and f describes any external influence on the system. In the follow-

ing we will limit ourselves to the homogeneous equation, i.e. f ≡ 0. Note that it will be

necessary to impose certain restrictions upon the diffusion coefficient κ when it comes to

proving specific results. In case where κ is a constant greater than zero this equation is

commonly known as the heat equation [2]

∂u

∂t
− κ∆u = 0. (2.2.4)

Comparing (2.1.3) with (2.2.1) it can easily be seen that the coefficient matrix ai,j is equal

to the Identity matrix In+1 but with a1,1 = 0. Thus one eigenvalue of this matrix is zero

whereas the rest is one which shows that this equation clearly is an example of a parabolic

PDE.

However this equation has infinitely many solutions. To get a unique solution it is nec-

essary to introduce additional conditions. We define an initial condition for the problem

by setting

u(0, x) = u0(x) ∀x ∈ Ω. (2.2.5)

Again restrictions on u0 will be required. In addition, the analytical results will require

the boundary conditions

u(t, x) = 0 ∀(t, x) ∈ [0, T]× ∂Ω. (2.2.6)

2.2.1 Physical Derivation of the Heat Equation

In this section a short derivation of the heat equation will be given, based on mathematical

[2] and physical [3] principles.

As a consequence to the first law of thermodynamics the internal energy Q contained

5

2. PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS

inside a volume Ω is proportional to the temperature u. In mathematical terms this reads

Q(t) =

∫
Ω

κ1u(x, t)dV, (2.2.7)

with some material dependent constant κ1. Subsequently the change of internal energy is

given by
dQ

dt
(t) =

d

dt

∫
Ω

κ1u(x, t)dV. (2.2.8)

On the other hand the rate of change of any quantity enclosed inside a volume Ω is equal

to the flux F of this quantity through the boundary ∂Ω. Thus we additionally have

dQ

dt
(t) = −

∫
∂Ω

F (x, t)νdS, (2.2.9)

where ν is the outward normal of ∂Ω.

The flux F in a thermodynamical system is described by Fourier’s law which states that

F (x, t) = −κ2∇u(x, t), (2.2.10)

where κ2 is another material dependent constant (possibly dependent on x).

Combining the above equations yields∫
Ω

κ1
∂u

∂t
(x, t)dV =

dQ

dt
(t) = −

∫
∂Ω

F (x, t)νdS =

∫
∂Ω

κ2∇u(x, t)νdS. (2.2.11)

Applying the divergence theorem to the surface integral gives∫
Ω

κ1
∂u

∂t
(x, t)dV =

∫
Ω

∇(κ2∇u(x, t))dV. (2.2.12)

Due to Ω being arbitrary we conclude that

∂u

∂t
= ∇(κ∇u), (2.2.13)

with an appropriate constant κ.

2.3 Important Analytical Results

In this section we will review the most important results for solutions of the diffusion

equation. To illustrate the properties we will prove them for the one dimensional case

assuming constant κ. The higher dimensional case will only be stated and for the proofs

the reader is referred to [2]. As a general guide the ideas presented in [4] will be used.

6

2.3. IMPORTANT ANALYTICAL RESULTS

2.3.1 Exact Solution in 1D

Consider the heat equation (2.2.4) in one dimension. Applying the Fourier transformation

with respect to the spatial variable x to this equation we get

∂û

∂t
= −κω2û. (2.3.1)

If the initial condition at time t = 0 is u0(x) we get the solution

û(t, ω) = e−κω
2tû0(ω) (2.3.2)

by solving the ordinary differential equation (2.3.1).

To obtain the solution in the original space we use the Fourier inversion formula which

yields

u(t, x) =
1√
2π

∫ ∞
−∞

eiωxe−κω
2tû0(ω)dω. (2.3.3)

At this point we can already see a distinct property of the solution. Since ω represents

the frequency, the e−κω
2t term obviously damps high frequencies of the initial condition.

Thus the parabolic operator is called dissipative.

To derive further representations of the exact solution we will need the result below.

Lemma 2.3.1. For all t > 0 the following equation holds:

1√
π

∫ ∞
−∞

eiω(x−y)e−κω
2tdω =

1√
κt

e−(x−y)2/4κt. (2.3.4)

Proof. Starting out with the left hand side of equation (2.3.4) and letting a := iω(x −
y)− κω2t we then have

1√
π

∫ ∞
−∞

eiω(x−y)e−κω
2tdω =

1√
π

∫ ∞
−∞

eadω. (2.3.5)

Substituting ω by ξ+ i(x−y)
2κt

the integrand in the equation above does not change with the

exception of a. We have

a = i(x− y)

(
ξ +

i(x− y)

2κt

)
− κtξ2 − ξi(x− y) +

(x− y)2

4κt
(2.3.6)

= −(x− y)2

2κt
+

(x− y)2

4κt
− κtξ2 (2.3.7)

= −(x− y)2

4κt
− κtξ2, (2.3.8)

7

2. PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS

which inserted into (2.3.5) yields

(2.3.5) =
1√
π

e−
(x−y)2

4κt

∫ ∞
−∞

e−κtξ
2

dξ (2.3.9)

=
1√
π

e−
(x−y)2

4κt

√
π

κt
(2.3.10)

=
1√
κt

e−
(x−y)2

4κt , (2.3.11)

concluding the proof.

To get an even better view on the solution let us apply the Fourier inversion again, this

time on û0. This gives

u(t, x) =
1√
2π

∫ ∞
−∞

eiωxe−κω
2t

(
1√
2π

∫ ∞
−∞

eiωyu0(y)dy

)
dω (2.3.12)

=
1√
4π

∫ ∞
−∞

(
1√
π

∫ ∞
−∞

eiω(x−y)e−κω
2tdω

)
u0(y)dy. (2.3.13)

Applying Lemma 2.3.1 finally provides us with the exact solution of the 1D heat equation

u(t, x) =
1√

4πκt

∫ ∞
−∞

e−
(x−y)2

4κt u0(y)dy. (2.3.14)

2.3.2 Smoothness of Solutions

If we consider equation (2.3.14) we can see that the solution at time t is given as a weighted

average of u0. The weighting function e−
(x−y)2

4κt gets wider as t grows larger and thus we

expect that the initial function gets smoothed out. In fact if we differentiate (2.3.3) with

respect to t l times and with respect to x m times we obtain

∂l+mu(t, x)

∂tl∂xm
=

1√
2π

∫ ∞
−∞

eiωx(iω)m(−κω2)le−κω
2tû0(ω)dω. (2.3.15)

Clearly the derivative is continuous for all l,m if t > 0. Furthermore it is possible to use

this representation to derive an upper bound on the derivatives.

The following theorem gives a statement about the smoothness of solutions for the homo-

geneous diffusion equation in case that κ > 0.

Theorem 2.3.2. Assume

u0 ∈ H2m+1(Ω) and ∇(κ∇uk−1) =: uk ∈ H1
0 (Ω). (2.3.16)

8

2.3. IMPORTANT ANALYTICAL RESULTS

Then
dku

dtk
∈ L2((0, T];H2m+2−2k)(Ω) ∀k = 0, . . . ,m+ 1, (2.3.17)

with the estimate

m+1∑
k=0

∥∥∥∥dkudtk
∥∥∥∥
L2((0,T];H2m+2−2k)(Ω)

≤ C‖u0‖H2m+1(Ω), (2.3.18)

where C only depends on m,Ω, T and κ.

2.3.3 Maximum Principle

Consider again equation (2.3.14). Let us look at the supremum of the function u. We get

sup
(t,x)∈[0,T]×Ω

u(t, x) = sup
(t,x)∈[0,T]×Ω

1√
4πκt

∫ ∞
−∞

e−
(x−y)2

4κt u0(y)dy (2.3.19)

≤ sup
(t,x)∈[0,T]×Ω

1√
4πκt

∫ ∞
−∞

e−
(x−y)2

4κt sup
z∈Ω

(u0(z))dy (2.3.20)

= sup
z∈Ω

(u0(z)) sup
(t,x)∈[0,T]×Ω

1√
4πκt

∫ ∞
−∞

e−
(x−y)2

4κt dy︸ ︷︷ ︸
1

(2.3.21)

= sup
z∈Ω

(u0(z)). (2.3.22)

Trivially the same is true for the infimum. Thus the supremum / infimum of u(t, x) is

attained at t = 0. This again seems natural if we consider u(t, x) as weighted average of

u0(x).

To extend this property to higher dimensions we have to assume that κ ∈ C1([0, T]×Ω).

In the following let ΩT =]0, T]× Ω and ΓT = ∂ΩT .

Theorem 2.3.3. Let u ∈ C2
1(ΩT) ∩ C(ΩT) then the weak maximum principle holds, i.e.

max
ΩT

u = max
ΓT

u (2.3.23)

and

min
ΩT

u = min
ΓT

u. (2.3.24)

However, there is an even more powerful result.

Theorem 2.3.4. Under the assumptions of the previous theorem and assuming that Ω is

connected the strong maximum principle holds. It states that u is constant on {0} ×Ω if

it attains its minimum or maximum over ΩT somewhere in ΩT .

9

2. PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS

2.3.4 Uniqueness

As a direct result from the maximum principle we get the uniqueness of the solution.

Consider two different solutions u1, u2 of the diffusion equation with identical initial and

boundary conditions. Let u = u1 − u2. This is again a solution of the diffusion equation

since it is linear. Moreover the initial condition and the boundary conditions are identi-

cally zero. This means that the minimum and maximum of the set ΓT is zero as well. Due

to Theorem 2.3.23 we thus have that the maximum and minimum of u is zero everywhere

and thus it is constant zero, yielding u1 = u2.

2.3.5 Periodicity

Let the domain Ω = R and u0 be a periodic function with period ξ. Starting out with

equation (2.3.14) we have

u(t, x+ ξ) =
1√

4πκt

∫ ∞
−∞

e−
(x+ξ−y)2

4κt u0(y)dy. (2.3.25)

Substituting y with z + ξ yields

u(t, x+ ξ) =
1√

4πκt

∫ ∞
−∞

e−
(x+z)2

4κt u0(z + ξ)dz (2.3.26)

=
1√

4πκt

∫ ∞
−∞

e−
(x+z)2

4κt u0(z)dz (2.3.27)

= u(t, x). (2.3.28)

This shows that the solution u is again periodic.

The same holds true in higher dimensions as u(x + ξ) (x, ξ ∈ Rn) is again a solution of

the diffusion equation if u(x) is a solution and κ is also ξ-periodic. Due to the uniqueness

of the solution they have to be identical and thus u is periodic.

A consequence of this result is that∫ x+ξ

x

u(y, t)dy = const ∀x ∈ R, t > 0. (2.3.29)

10

2.3. IMPORTANT ANALYTICAL RESULTS

This is shown by considering the time derivative of the above equation and applying the

divergence theorem.

∂

∂t

∫ x+ξ

x

u(y, t)dy =

∫ x+ξ

x

∂

∂t
u(y, t) dy (2.3.30)

=

∫ x+ξ

x

∂

∂y
· (κ ∂

∂y
u(y, t)) dy (2.3.31)

= κ
∂

∂y
u(y, t)

∣∣∣x+ξ

x
(2.3.32)

= 0, (2.3.33)

where the last step follows from the periodicity of u(y, t). Note that the constant in

equation (2.3.29) only depends on the initial condition u0.

Using the same calculation it can be shown that the result also holds true in arbitrary

dimensions. If κ is not constant it is necessary to assume the same periodicity as for u0.

11

2. PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS

12

Chapter 3

Numerical Methods

In this section we review several numerical methods that can be used to solve the diffusion

equation. In Section 3.1 the very basic Forward Time Central Space method will be

introduced. This is followed by describing Heun’s method (3.2), a second order Runge–

Kutta algorithm. Weighted Essential Non-Oscillatory Schemes (3.3) are another popular

choice for solving PDEs numerically. They will, combined with Spline Approximation

(3.6), build the basis for the new Smoothed Essentially Non-Oscillatory Schemes (SENO).

They will be introduced in Section 3.7.

3.1 Forward Time Central Space

The derivative of a real-valued function f is defined as

df

dx
(x) = lim

h→0

f(x+ h)− f(x)

h
. (3.1.1)

In a numerical setting we have our domain divided into a strictly monotonic increasing

sequence of nodes xi with constant spacing. Thus we usually only have the values of the

function f available at these nodes. The simplest way of approximating the derivative is

consequently
df

dx
(xi) ≈

f(xi+1)− f(xi)

xi+1 − xi
. (3.1.2)

Subsequently the second derivative is

d2f

dx2
(xi) ≈

f(xi+1)− 2 f(xi) + f(xi−1)

(xi+1 − xi)2
. (3.1.3)

13

3. NUMERICAL METHODS

If we now insert this ansatz into the heat equation we get

u(ti+1, xi)− u(ti, xi)

∆t
= κ

u(ti, xi+1)− 2 u(ti, xi) + u(ti, xi−1)

∆x2
, (3.1.4)

where ∆t = ti+1 − ti and ∆x = xi+1 − xi for all i.

A simple calculation then shows that

u(ti+1, xi) = u(ti, xi) +
κ ∆t

∆x2
(u(ti, xi+1)− 2 u(ti, xi) + u(ti, xi−1)) . (3.1.5)

This enables the calculation of the solution at time ti+1 by using only function values at

time ti. Thus starting with an initial condition u(0, xi) = u0(xi) it is possible to subse-

quently calculate the solution u(ti, xi) ∀ti > 0. The truncation error of this method is of

the order O(∆t) +O(∆x2).

The biggest drawback of this method is that it only provides useful solutions, i.e. is stable

and convergent, if the coefficient κ ∆t
∆x2 is smaller than 1

2
.

It is straightforward to introduce non-constant coefficients (i.e. solve the diffusion equa-

tion) and expand this method to multiple dimensions. Thus we will use this method

to calculate reference solutions to test the more complicated methods described in the

following sections. For this we will usually set the coefficient κ ∆t
∆x2 to be 0.01/κ.

3.1.1 The Courant Number

It turns out that the ratio between ∆t and ∆x2 is of importance no matter which method

we consider and this ratio is commonly known as the Courant number C. It usually gives

an upper bound on the maximum time-step ∆t since the method will become unstable

otherwise.

As stated above the Courant number of the FTCS method has to be smaller than 1
2

which can be proven analytically. However, for more complicated methods (e.g. non-

linear schemes) it often is not possible to obtain analytic bounds. Generally it can be said

that higher order methods usually tend to allow lower Courant numbers since they are

more prone towards oscillations. Secondly the Courant number is normally influenced by

the coefficient κ. For constant κ we have

C =
κ∆t

∆x2
(3.1.6)

which in two dimensions becomes

C =
κ∆t

∆x2
+
κ∆t

∆y2
. (3.1.7)

14

3.2. HEUN’S METHOD

The goal of this thesis is to establish a new method for solving the diffusion equation

that can achieve time-steps as large as possible. Although more complicated methods

usually demand more computation time this might not seem to be that interesting on a

first glance. But physical systems usually consist of systems of PDEs and only one PDE

can lower the time-stepping restriction of the whole system. Thus an additional overhead

can be justified under certain circumstances.

3.2 Heun’s Method

Assuming that we have a method that provides us with suitable derivatives in spatial

direction, time discretization is the last step to a full discretization. For this we will use

a Runge–Kutta scheme with certain optimal features. A general explicit Runge–Kutta

method for the PDE ut = L(u) can be written as

u(i) =
i−1∑
j=0

(
αiju

(j) + ∆tβijL(u(j))
)
∀i = 1, . . . ,m, with (3.2.1)

u(0) = un(x) and

un+1(x) = u(m). (3.2.2)

The total variation of the numerical solution is defined as

TV (ui) =
∑
j

|ui,j+1 − ui,j| . (3.2.3)

Since we already know that our solution will be smooth we want that the variation de-

creases with time. Thus we want to have a method that is total variation diminishing

(TVD), i.e.

TV (un+1) ≤ TV (un). (3.2.4)

If we restrict ourselves further to second order Runge–Kutta schemes and demand that

we can choose the largest possible time-step and still get the TVD property, then there

is only one choice of coefficients αij ≥ 0 and βij ≥ 0 that satisfies these constraints [5].

This is the so called Heun’s method which can be written using the form (3.2.1) as

u(1) = un + ∆t L(un) (3.2.5)

un+1 =
1

2
un +

1

2
u(1) +

1

2
∆t L(u(1)).

15

3. NUMERICAL METHODS

This can be rewritten to a form more often encountered in literature

u(1) = un + ∆t L(un) (3.2.6)

un+1 = un +
1

2
∆t
(
L(un) + L(u(1))

)
.

This schemes is often used in combination with TVD as well as TVB (total variation

bounded) or (W)ENO ((Weighted) Essentially Non-Oscillatory) spatial discretization

methods. In the next section we will present the WENO method and since it will form

the basis for the final method this time-stepping algorithm is highly suitable.

Moreover it can be shown that Heun’s method is also strong-stability preserving [6]. A

method is called strong-stability preserving (SSP) in a given norm ‖.‖ if

‖un+1‖ ≤ ‖un‖ , (3.2.7)

assuming an appropriate time-step restriction.

If we define ‖u‖TV = TV (u) this is actually a norm, so TVD means nothing else than

SSP in the TVD norm.

The reason why we assumed the coefficients αij and βij to be non-negative is that Heun’s

method can then be written as convex combination of forward Euler steps. This ensures

that the method is SSP in every norm in which the forward Euler method is SSP.

Although the method does not provide a minimum truncation error the SSP-optimality

is of much higher value. The truncation error ε can be estimated as [6]

|ε| ≤ h3

3
C1C2 (3.2.8)

where

C2 = 2

∣∣∣∣ 3

4β2,1

− 1

∣∣∣∣+ 1 (3.2.9)

and C1 depends only on the differential operator L. Obviously the minimum truncation

error is achieved when β2,1 = 3
4
. Since the coefficient β2,1 in Heun’s method is 1

2
the

truncation is two times larger than the smallest possible truncation error. We will discuss

the truncation error in greater detail later on.

16

3.3. WEIGHTED ESSENTIALLY NON-OSCILLATORY SCHEMES

3.3 Weighted Essentially Non-Oscillatory Schemes

Weighted Essentially Non-Oscillatory Schemes (WENO) were first introduced by Liu,

Osher and Chan [7] to solve hyperbolic conservation laws of the form

∂u

∂t
+∇F (u) = 0, (3.3.1)

where F is the so called flux. They are based on ENO (essentially non-oscillatory) schemes

by Harten et al. [8] and were refined by Jiang and Shu in [9]. The latter paper will serve

as a basis for the implementation of WENO schemes for spatial discretization. In the

following we will limit the discussion to the fifth order accurate scheme.

Let us consider an unknown function u(x) for which we would like to approximate ∇F (u).

When dealing with WENO schemes in higher dimensions it will be shown that it is

sufficient to use it in each spatial direction separately. Thus we will restrict this chapter

to the case x ∈ R.

To calculate the derivative we will use the second order central difference scheme

dF (u)

dx
=
F (ûi+1/2)− F (ûi−1/2)

∆x
, (3.3.2)

where ûi±1/2 is the result of an interpolation process. Furthermore ûi+1/2 is a linear

combination of an approximation from the left (ûl) and one from the right (ûr). Since

both approximations are exactly the same up to reflection at the point xi+1/2 we will only

describe the calculation of ûl.

Let r = 3 and a candidate stencil Sk be defined as

Sk = (xi+k−r+1, xi+k−r+2, . . . , xi+k) ∀k = 0, . . . , r − 1. (3.3.3)

We can use each stencil Sk to get an approximate value for ûl which we denote as ûlk.

The idea of the ENO schemes is to choose the stencil Sk that has the smoothest function

values of the initial function u. This stencil will then solely contribute to the approxima-

tion ûl. It turns out that this provides a method that is r-th order accurate.

On the other hand if we choose

ûl =
r−1∑
k=0

ωkû
l
k, (3.3.4)

with
r−1∑
k=0

ωk = 1, (3.3.5)

17

3. NUMERICAL METHODS

the resulting method has an order of 2r-1 under certain choices of ûlk and ωk.

To calculate ûlk we use interpolating polynomials and it can be shown that they are

uniquely determined by the formula

ûlk =
r−1∑
l=0

ark,lui+k−r+l+1, (3.3.6)

where the coefficients ark,l are defined in Table 3.1.

The second set of variables that we have to define are the so called weights ωk. We want

Table 3.1 Coefficients ark,l

k l=0 l=1 l=2
0 1/3 -7/6 11/6
1 -1/6 5/6 1/3
2 1/3 5/6 -1/6

to stick close to the ENO idea of choosing the smoothest stencil. So we would like to have

that the weights are some sort of smoothness measure for u and they should sum up to

one.

If we look at the problem again from an interpolation point of view there would be so

called optimal weights ωk = Cr
k (cf. Table 3.2) to achieve the best interpolation. This

yields

ûl =
r−1∑
k=0

Cr
kui+k−r+l+1 +

r−1∑
k=0

(ωk − Cr
k)ui+k−r+l+1. (3.3.7)

Now the last term is very small under the assumption that ωk = Cr
k + O(hr−1). As we

Table 3.2 Coefficients Cr
k (r = 3)

k 0 1 2
1/10 6/10 3/10

additionally require the ωk to sum up to unity we define ωk by

ωk =
αk

α0 + . . .+ αr−1

, (3.3.8)

where

αk =
Cr
k

(ε+ ISk)p
. (3.3.9)

Here ε is a small non-negative regularization parameter which prevents the denominator

from becoming zero. In all simulations we will use ε = 10−20 as suggested in [10]. The

18

3.3. WEIGHTED ESSENTIALLY NON-OSCILLATORY SCHEMES

value of p is nowhere strictly defined, based on numerical experience we conclude that

p = 2 provides the best performance (see also [9]).

The values of ISk indicate how smooth a certain stencil is and they are defined by

IS0 =
13

12
(ui−2 − 2ui−1 + ui)

2 +
1

4
(ui−2 − 4ui−1 + 3ui)

, (3.3.10)

IS1 =
13

12
(ui−1 − 2ui + ui+1)2 +

1

4
(ui−1 − ui+1)2, (3.3.11)

IS2 =
13

12
(ui − 2ui+1 + ui+2)2 +

1

4
(ui − 4ui+1 + 3ui+2)2. (3.3.12)

Taylor expansion of the equations above yields

IS0 =
13

12
(u′′h2)2 +

1

4
(2u′h− 2

3
u′′′h3)2 +O(h6), (3.3.13)

IS1 =
13

12
(u′′h2)2 +

1

4
(2u′h+

2

3
u′′′h3)2 +O(h6), (3.3.14)

IS2 =
13

12
(u′′h2)2 +

1

4
(2u′h− 2

3
u′′′h3)2 +O(h6). (3.3.15)

By analyzing these expansions it can be seen that the method is fifth-order accurate.

This concludes the calculation of ûl and ûr. All that is left is the linear combination of the

two to obtain an approximation for F (u). This is usually known as flux splitting and there

are various methods that describe how to do it. During the course of the investigations a

new way of combining the two turned out to provide superior results to the others usually

used. We set

F (ui+1/2) = ωl F (ûli+1/2) + ωr F (ûri+1/2), (3.3.16)

where

ωl =
ω̂l

ω̂l + ω̂r
(3.3.17)

and

ω̂l =
1

0.01 + |F (ûli+1/2)|
. (3.3.18)

As can be seen this is direclty motivated from the WENO interpolation weights since it

ensures that the smaller fluxes are prefered. When considering a disconitinuity in the

initial condition it can be seen that only the lower flux should contribute to the solution

which is why this weighting was chosen. The divergence of the flux is then finally obtained

by using equation (3.3.2).

In general there are two different ways of approximating a scalar conservation law using

WENO. The method described above is a finite volume scheme. It uses u at the integer

grid to get an approximation of u at the half-integer grid via the WENO scheme. This is

then used to calculate the flux F in equation (3.3.1).

19

3. NUMERICAL METHODS

Alternatively it would be possible to calculate the flux F at the integer grid via a finite

difference scheme. A WENO scheme is then applied to F to obtain the flux at the half-

integer grid. This is commonly referred to as the finite difference scheme for WENO

methods [11].

In higher dimensions finite volume schemes are usually not the best choice since they

induce higher computational cost. However this is not true in the case of the diffusion

equation. Since we need to approximate ∆u we can split the calculation into an uncoupled

system of n one dimensional equations and recombine them via the tensor product. This

also implies that the cost grows only linearly with the dimension and not exponentially.

Finally I want to point the interested reader to the above mentioned paper by Shu [11]

which gives an excellent overview over state of the art WENO schemes.

3.4 Truncation Error of WENO coupled with Heun’s

method

Since the calculation of the truncation error is quite cumbersome the process shall be

divided into two steps. First of all a demonstration of the detailed calculation of the

truncation error for Heun’s method will be presented. This established principle is then

used to calculate the complete truncation error for WENO schemes coupled with Heun’s

method. However, only the results of the latter will be presented.

We start with calculating the truncation error for Heun’s method [12]. To do this consider

the ordinary differential equation (ODE)

du

dt
(t) = f(t, u(t)), (3.4.1)

with initial condition u(t0) = y0.

The Taylor series gives us an expression for u(t0 + ∆t), namely

u(t0 + ∆t) = u(t0) + u(1)(t0)∆t+
1

2
u(2)(t0)∆t2 +

1

6
u(3)(τ)∆t3, (3.4.2)

for τ ∈ [t0, t0 + ∆t]. Heun’s method is also used for approximating u(t0 + ∆t) and written

in one formula (see eq. (3.2.6)) it reads

u(t0 + ∆t) = u(t0) +
1

2
[f(t0, u(t0)) + f(t0 + ∆t, u(t0) + ∆t f(t0, u(t0)))] ∆t+ εrk, (3.4.3)

20

3.4. TRUNCATION ERROR OF WENO COUPLED WITH HEUN’S METHOD

where εrk is the truncation error.

Subtracting the two equations above yields

εrk = u(1)(t0)∆t+
1

2
u(2)(t0)∆t2 +

1

6
u(3)(τ)∆t3 (3.4.4)

−1

2
[f(t0, u(t0)) + f(t0 + ∆t, u(t0) + ∆t f(t0, u(t0)))] ∆t

= u(1)(t0)∆t+
1

2
u(2)(t0)∆t2 +

1

6
u(3)(τ)∆t3 (3.4.5)

−f(t0, u(t0))∆t− 1

2
[−f(t0, u(t0)) + f(t0 + ∆t, u(t0) + ∆t f(t0, u(t0)))] ∆t.

The initial ODE gives us that u(1)(t0) = f(t0, u(t0)) and thus

εrk =
1

2
u(2)(t0)∆t2 +

1

6
u(3)(τ)∆t3 (3.4.6)

−1

2

[
f(t0 + ∆t, u(t0) + ∆t f(t0, u(t0)))− u(1)(t0)

]
∆t.

Let us now consider the second argument in the remaining f term. Again due to the

initial ODE it can easily be seen that it is a first order approximation to u(t0 + ∆t), i.e.

u(t0 + ∆t) ≈ u(t0) + ∆t f(t0, u(t0)). (3.4.7)

It would be possible to give a more precise formula containing the second derivative of u

but since it is an argument inside the non-linear function f this will not help us at all.

Thus the truncation error now becomes

εrk ≈ 1

2
u(2)(t0)∆t2 − 1

2

[
f(t0 + ∆t, u(t0 + ∆t))− u(1)(t0)

]
∆t+

1

6
u(3)(τ)∆t3 (3.4.8)

(3.4.1)
=

1

2
u(2)(t0)∆t2 − 1

2

[
u(1)(t0 + ∆t)− u(1)(t0)

]
∆t+

1

6
u(3)(τ)∆t3 (3.4.9)

=
1

2
u(2)(t0)∆t2 − 1

2

u(1)(t0 + ∆t)− u(1)(t0)

∆t
∆t2 +

1

6
u(3)(τ)∆t3. (3.4.10)

Again using Taylor expansion we have

u(1)(t0 + ∆t) = u(1)(t0) + u(2)(t0)∆t+
1

2
u(3)(τ)∆t2 (3.4.11)

⇔ u(1)(t0 + ∆t)− u(1)(t0)

∆t
= u(2)(t0) +

1

2
u(3)(τ)∆t. (3.4.12)

21

3. NUMERICAL METHODS

Note that the τ in equations (3.4.2) and (3.4.11) are identical. Thus inserting equation

(3.4.11) into (3.4.10) gives

εrk =
1

2
u(2)(t0)∆t2 − 1

2

[
u(2)(t0) +

1

2
u(3)(τ)∆t

]
∆t2 +

1

6
u(3)(τ)∆t3 (3.4.13)

= − 1

12
u(3)(τ)∆t3. (3.4.14)

If we let ‖u(3)‖∞ = sup
t∈[t0,t0+∆t]

|u(3)(t)| we can estimate the absolute value of the truncation

error as

|εrk| ≤
1

12
‖u(3)‖∞∆t3. (3.4.15)

This completes the first step and we can now move on to describing how this can be

combined with the truncation error of WENO schemes. Since we will not give a detailed

derivation of the truncation error the reader is referred to [13] for details. Note however

that due to the different flux splitting approach the results do not match.

To include the truncation error of the WENO schemes denoted by εw we replace f by

∇(κ∇u) + εw. Let L = ∇(κ∇u) and Ln+1 = L(Ln). The truncation error after the first

Runge–Kutta step is then given by

εrk,1 = εw,1 −
∆t

2
L2(u). (3.4.16)

The truncation error after the second step is

εrk,2 = ∆t

(
εw,1 +

εw,1 + εw,2
2

)
+ ∆t3

1

12
L3(u), (3.4.17)

where εw,1 (resp. εw,2) is the truncation error of the WENO scheme in the first (resp.

second) Runge–Kutta step. Put into formula we have

εw(i) =
1

12
∆x

∂3u

∂x3
[ωl(ωl,1,i−3/2 − ωl,1,i−1/2 − ωl,1,i+1/2 + ωl,1,i+3/2 (3.4.18)

− ωl,0,i−3/2 + ωl,0,i−1/2 + ωl,0,i+1/2 − ωl,0,i+3/2)

− ωr(ωr,1,i−3/2 − ωr,1,i−1/2 − ωr,1,i+1/2 + ωr,1,i+3/2

− ωr,2,i−3/2 + ωr,2,i−1/2 + ωr,2,i+1/2 − ωr,2,i+3/2)],

where ωl/r,k,j is the weight ωk in the WENO approximation of a point xj from the left/right

side.

22

3.5. CHOLESKY DECOMPOSITION

3.5 Cholesky Decomposition

To solve the spline approximation problem in Section 3.6 we will have to be able to

solve a linear system of equations Ax = b. Since the Cholesky decomposition will be the

appropriate tool to do so, we will give a short overview here.

Let A be a real, symmetric and positive definite matrix, i.e.

A = AT and xTAx > 0 ∀x 6= 0. (3.5.1)

The easiest method to solve Ax = b is the LR decomposition coupled with a forward and

a backward substitution. Due to the specific structure of A a much faster algorithm can

be derived based on the LR decomposition [14]. The main results shall be stated briefly,

for proofs and in-depth discussion cf. [14, 15].

Theorem 3.5.1. For every symmetric and positive definite matrix A there exists a unique

decomposition such that

A = LDLT , (3.5.2)

where L is a lower triangular matrix and D is a positive diagonal matrix.

Corollary 3.5.2. Due to D being positive there exists D
1
2 =

(√
di,j
)
i,j

such that A can

be written as

A = LD
1
2D

1
2LT = LD

1
2

(
LD

1
2

)T
= L̃L̃T , (3.5.3)

which is the so called Cholesky decomposition.

The entries of the matrix L̃ = (li,j)i,j can be calculated explicitly by the formula below:

li,i =

√√√√ai,i −
i−1∑
j=1

l2i,j, (3.5.4)

lj,i =
1

li,i

(
aj,i −

i−1∑
k=1

lj,kli,k

)
∀j = i+ 1, . . . , n. (3.5.5)

The system Ax = b can thus be rewritten as L̃L̃Tx = b. Since L̃ is a lower triangular

matrix, the solution can be calculated by first solving L̃z = b and then L̃Tx = z by simple

back-substitution.

3.6 Spline Approximation

When faced with the task of approximating or interpolating a smooth function, splines will

most certainly be an option to consider. Splines have certain properties that make them

23

3. NUMERICAL METHODS

ideal for the task. Amongst others they consist of piecewise polynomials with specific

global smoothness conditions.

Let n and d be integers and t = {t1, . . . , tn+d+1} a set of real values called knots that

satisfy ti+d+1 > ti for i = 1, . . . , n. A basis B-spline Bi,d (1 ≤ i ≤ n) of degree d is then

defined recursively by the Cox-de Boor formula

Bi,1(t) :=

{
1 if ti ≤ t < ti+1,

0 otherwise,
(3.6.1)

Bi,d(t) :=
t− ti
ti+d − ti

Bi,d−1(t) +
ti+d+1 − t
ti+d+1 − ti+1

Bi+1,d−1(t). (3.6.2)

An n dimensional spline space Sd,t of degree d and with knots t is defined as

Sd,t = {g : R→ R | g(x) =
n∑
i=1

ciBi,d(x), c ∈ Rn}. (3.6.3)

To approximate a given set of data a method of measuring the error is needed. To keep

things simple and efficient we will use a weighted least squares norm. That means that

the approximation problem can be stated as follows.

Let (xi, yi)
m
i=1 (with x1 < . . . < xm) be a given set of data, (ωi)

m
i=1 a set of real numbers

and Sd,t an n dimensional spline space. Then the best approximation g ∈ Sd,t in the

weighted least squares sense is defined via the argmin1 as

g = argmin
h∈ Sd,t

m∑
i=1

ωi(yi − h(xi))
2. (3.6.4)

At this point we should make an important observation that will be exploited later on.

If we knew that the value yi for some i is exact we would not want to approximate the

function at this point but rather interpolate it. This can be achieved by letting ωi be large

compared to the other weights. Thus if we have higher confidence for certain data points

we will assign larger weights to them. Furthermore it is necessary to assume m > n to

avoid interpolation.

The proofs of the following statements can be found in [16].

Lemma 3.6.1. Let A = (a)i,j ∈ Rm,n and b ∈ Rm with components

ai,j =
√
ωiBj,d(xi) and bi =

√
ωi yi. (3.6.5)

1Stands for argument of the minimum, i.e. argmin
x∈S

f(x) := {x|∀y ∈ S : f(y) ≥ f(x)}

24

3.6. SPLINE APPROXIMATION

Then the approximation problem (3.6.4) is equivalent to the linear least squares problem

c = argmin
d∈Rn

‖Ad− b‖2. (3.6.6)

The next Lemma will show why the least squares approach is so efficient.

Lemma 3.6.2. Let A, b and c be given as in Lemma 3.6.1. Then c is equal to the solution

c∗ of the linear equation

ATAc∗ = AT b. (3.6.7)

Furthermore N = ATA is symmetric and positive semi-definite. N is positive definite and

thus non-singular and invertible if and only if dim(ker(A)) = 0. Note that in this case

the solution is unique.

Thus if it is possible to fulfil the last requirement in the Lemma we could easily solve the

problem. Indeed the following Theorem holds true.

Theorem 3.6.3. There is a unique spline g ∈ Sd,t if and only if there is a sub-sequence

(xil)
n
l=1 such that Bl,d(xil) 6= 0 for l = 1, . . . , n.

Going back to the last section we see that it is possible to use the Cholesky decomposition

to solve the problem if we only choose the knots t appropriately. There is no strict rule on

how to define them but the quality of the approximation depends critically upon the knot

sequence as shown in [17]. The paper also shows a way of obtaining the best possible knot

distribution, however with considerable computational cost. Since we will apply the spline

approximation n · N times per time-step this method cannot be justified. Furthermore

the paper deals with a large number of function values which is something we need to

avoid in our case since that would mean using a broad stencil. Thus a fixed knot vector

has to be used.

The choice presented in the following is in no way optimal but has proven to give decent

results as will be shown in Chapter 3. First of all we fix the size of the stencil around a

point xi by defining m = 9, i.e. x = (xj)
i+4
j=i−4. The easiest way to secure the assumption

of Theorem 3.6.3 is that the Bj,d form a partition of unity. If we also limit our knots to

the interior of the data points we thus need knots of multiplicity 4 at xi−4 and at xi+4.

This already requires at least 8 knots. Finally we add a knot at the mid-point of the

domain, i.e. x0. We thus end up with 9 knots, i.e.

t = (xi−4, xi−4, xi−4, xi−4, xi, xi+4, xi+4, xi+4, xi+4), (3.6.8)

25

3. NUMERICAL METHODS

which results in a 5 dimensional spline space S3,t. The resulting basis splines can be seen

in Fig. 3.1.

 0

 0.2

 0.4

 0.6

 0.8

 1

xi-4 xi-3 xi-2 xi-1 xi+0 xi+1 xi+2 xi+3 xi+4

Data Points

B1,3
B2,3
B3,3
B4,3
B5,3
Sum

Figure 3.1: Basis B-Splines of third order

3.7 Smoothed Essentially Non-Oscillatory Schemes

Now we have gathered all the prerequisites necessary to implement a new explicit scheme

for solving the diffusion equation. The three main ingredients are Heun’s method, WENO

schemes and spline approximation. In the following we will first describe the method

for the one dimensional case (Section 3.7.1). This will then be extended to arbitrary

dimensions in Section 3.7.2.

3.7.1 In One Dimension

The main idea of the Smoothed Essentially Non-Oscillatory (SENO) method is to look

at the diffusion equation not as a parabolic problem but rather akin to a hyperbolic

conservation law. This means that we think of the diffusion equation (2.2.1) as

∂u

∂t
+∇F (u) = 0 (3.7.1)

with

F (u) = κ(∇u). (3.7.2)

26

3.7. SMOOTHED ESSENTIALLY NON-OSCILLATORY SCHEMES

As discussed in Section 3.3 we can use traditional WENO methods to approximate the

divergence of the flux. However as can be seen above the flux F depends on u in a

non-linear fashion. In fact we need to replace equation (3.7.2) by

F (u(xi+1/2)) = κ(xi)
u(xi+3/2)− u(xi−1/2)

2 ∆x
. (3.7.3)

Remember that the WENO scheme gives us the values of u at the half integer grid and

that we also want to calculate the flux at the half integer grid (cf. equation (3.3.16)).

Furthermore we need a suitable time integration method. Due to the advantageous prop-

erties of Heun’s method we will employ this RK scheme.

An approach similar to this one was already pursued by Obertscheider in [18]. However

he used a different WENO scheme and the results showed that he could only use Courant

numbers up to 0.5. Moreover there are certain difficulties arising in higher dimensions and

it will be shown that WENO schemes alone are completely unstable in two dimensions.

We will now describe what type of calculation will be done in each RK step.

The WENO scheme mentioned above will be utilized with another small change in the

form of a preconditioning step. The idea came from the representation of the solution as

weighted average of the initial condition as discussed in Section 2.3.1. We use a stencil

of length 2r + 1 and consider the solution at time n to be the initial condition. Then we

obtain a predicted solution as

u∗n+1,i =
r∑

j=−r

1

ê
e−

(j∆x)2

∆t un,i+j, (3.7.4)

where

ê =
r∑

k=−r

e−
(k∆x)2

∆t (3.7.5)

Obviously equation (3.7.4) is the discrete analogy to the exact solution described in equa-

tion (2.3.14). Note however that the coefficient κ is not included. The predicted solution

is then used as input for the WENO scheme mentioned above. In the algorithm we use

r = 2 since it proves to be the best compromise between stencil width and gain in time-

step.

Of course also with the adapted WENO approach described above, oscillations will show

up. Since we know that the solution has to be smooth (cf. Section 2.3.2) the idea is to

apply some sort of smoothing technique. Moreover we already know the truncation error

εrk of the WENO & RK combination (cf. Section 3.4). Thus we require that the smoothed

curve lies within the interval [uw(x)− εrk(x), uw(x) + εrk(x)], where uw is the temporary

solution. But this also means that we have a confidence measure for the solution. This

27

3. NUMERICAL METHODS

leads us to the assumption that using the spline approximation technique described in

Section 3.6 would be appropriate. Indeed it turns out that applying a specific spline

smoothing algorithm is giving us exactly what we need.

Before this algorithm is described in detail another feature of the SENO algorithm will

be described. After obtaining the flux from the WENO method we calculate a temporary

solution by applying the appropriate RK step. Now we use the maximum principle that

was shown in Section 2.3.3. We modify it slightly so that it states that the temporary

solution may not exceed the maximum and minimum of the solution of the previous step.

Additionally this also has to hold true for the interval describing the truncation error.

Although this does not improve the maximum Courant number it provides an important

speed-up.

Now we want to consider the spline approximation in greater detail. Let us consider

the algorithm at a point xi assuming a large enough truncation error. We initialize the

weights of the weighted least squares approximation to one. We then solve the spline

approximation problem and determine whether the smoothed curve is completely inside

the truncation error interval. If this holds, the algorithm moves on to the next node xi+1,

otherwise the weights are adapted according to the following rules. Let m− = i−(m−1)/2

and m+ = i + (m − 1)/2. Note that m is an odd integer since we require a symmetric

stencil.

• If all weights (ω)m
+

m− are smaller than δ1 then the new weights are calculated according

to the formula

ωj = ωj

(
1 +
|u∗j − un,j|

ε

)
∀j = m−, . . . ,m+, (3.7.6)

where u∗j is the solution of the spline approximation problem and

ε =
m+∑

k=m−

|u∗k − un,k|. (3.7.7)

• If all weights are smaller than δ2, only the weight ωi is changed by multiplication

with 4.

• Otherwise the algorithm forces the value u∗i to be on the boundary of the trun-

cation error interval depending on which boundary value is closer to the original

approximation.

28

3.7. SMOOTHED ESSENTIALLY NON-OSCILLATORY SCHEMES

The values for δ1 and δ2 can be chosen freely. However one should try to balance the

values with respect to accuracy and computational cost. In the experiments we will use

δ1 = 107 and δ2 = 1010. (3.7.8)

One slight drawback of this method is that the function decays slightly faster when spline

smoothing is applied. To compensate this effect the maximum and minimum of u before

smoothing is saved (u+
o , u

−
o). After the smoothing is applied maximum and minimum of

u are determined again (u+
n , u

−
n) and the function u is changed according to

u = (u− u−n)
|u+
o − u−o |
|u+
n − u−n |

+ u−o . (3.7.9)

To compensate further numerical errors we enforce that the integral over u is constant.

To achieve this the value of the integral at the beginning is saved (U0) and the current

integral Un is calculated. The function u is then multiplied by the ratio U0/Un. This

method does have an important drawback that needs to be mentioned here. We only

showed that the property of constant integral holds for periodic initial conditions. How-

ever if we assume a problem with non-periodic boundary conditions, things get a bit more

complicated. In case of Neumann boundary conditions, i.e. ∂u
∂n

= 0, equation (2.3.29) still

holds true due to the divergence theorem. However, care must be exercised when using

Dirichlet boundary conditions. In theory it should still be possible to adapt the condition

by considering the flux at the Dirichlet boundary.

These are all methods employed in the SENO scheme for high Courant numbers.

As it turns out there is a possibility of small oscillations when using low Courant num-

bers and discontinuous initial conditions. To avoid this the spline smoothing algorithm is

slightly modified. Instead of only using the data values provided by the WENO and RK

combination (ũ) the smoothed values immediately replace the old ones. This means that

after calculating ui from the values ũ, ũi is substituted by ui. Of course there is now a

necessity for choosing a starting point. Obviously it would be best if the starting point

does not require any smoothing, i.e. the truncation error is minimal. The direction of

smoothing is then determined by the value of the truncation error of the points neigh-

bouring the initial starting point. Additionally we assume that the smoothing gives us

more accurate function values and thus we resize the truncation error by dividing it by

10.

It is important to note that this feature, which shall be called dependent spline smoothing,

somewhat destroys the local character of the SENO scheme presented above. In case that

the code would be rewritten for parallel computing one needs to take this into account.

This concludes the description of the SENO method in one dimension.

29

3. NUMERICAL METHODS

Table 3.3 Stencil widths

Method Stencil width s r
(
= s−1

2

)
Preconditioning 5 2

WENO 9 4

Spline Smoothing 9 4

1 RK step 21 10

SENO 41 20

As mentioned above some properties depend on the Courant number. In the following

paragraph we will show the Courant numbers C which are important for the adaptive

algorithm. The values for these bounds will be justified in Chapter 4.

• C ≤ 0.3: RK time integration with sixth order central difference formula to calculate

the second derivative, i.e.

∂u

∂x
(xi) =

1

360 ∆x2
(2ui−3 − 27ui−2 + 270ui−1 − 490ui (3.7.10)

+ 270ui+1 − 27ui+2 + 2ui+3) +O(∆x6)

• C ≤ 1.1: SENO scheme with dependent spline smoothing

• C > 1.1: SENO scheme without dependent spline smoothing

Before we move on to higher dimensions we want to analyze the width of the stencil that

results from the above method for C > 0.3.

In Table 3.3 the different methods employed for the SENO scheme are listed together

with their respective stencil width. Furthermore in the third column the value r is shown

which describes how many points on one specific side influence a node. Adding up the

stencils we see that the stencil for one RK step in the SENO method is 21 points wide.

This is a considerable disadvantage of the method. Note that the full method has a stencil

that contains 41 points.

The latter would actually render the method unusable for parallel programming. However

it is common to have communication after each RK step and thus the result is not so bad

after all.

3.7.2 In n Dimensions

Before moving on to the results of the new method we want to consider an extension to

higher dimensions. Since most interesting problems are posed in three dimensions and

30

3.7. SMOOTHED ESSENTIALLY NON-OSCILLATORY SCHEMES

today’s computational power is sufficient for such simulations this is an important step.

However it would be devastating if the algorithm needed to consider all directions at once.

This would mean that the calculation time depends exponentially upon the dimension of

the problem, i.e. the time is O(Nd), where N is the number of spatial discretization

points and d the dimension.

Firstly note that the diffusion equation does not have any mixed derivatives. This implies

subsequently that we can use the WENO scheme described previously in each direction

separately. This already gives us a hint that we can really use the 1D algorithm and apply

it for each dimension, resulting in a calculation time of the order O(dN).

Indeed the preconditioning step can also be employed in this fashion. The only thing

remaining is the spline smoothing algorithm. Although it might be advisable to use

higher dimensional splines to get an even stronger and more continuous effect, they were

not really considered. First of all splines in dimensions larger than two are rarely used

as they are quite complicated and enlarge the system of linear equations significantly.

Secondly due to the weight adapting algorithm that is used in the SENO method the

number of weights would increase greatly, thus introducing even more unknowns.

Summarising the above it can be said that the algorithm can simplify the problem into

an array of one dimensional problems that can be solved consecutively by the algorithm

described in the previous section. The solution is then obtained by applying the tensor

product to the solutions. This allows an easy and efficient generalization of the problem

to higher dimensions.

31

3. NUMERICAL METHODS

32

Chapter 4

Simulations

In this chapter we will demonstrate the capability of the SENO method. Due to the fact

that there are additional difficulties when considering 2D problems, the main focus of

this chapter will lie on these. We start by explaining the different aspects of the SENO

schemes by simulating two model problems. The simulations will evolve step by step

from the WENO method to address the advantages of each part of the SENO scheme.

The first section will be concluded by a few more examples in 2D showing also a distinct

disadvantage of the approach.

In the last section a few simulations in one dimension will be presented.

The SENO algorithm was implemented in Fortran 90 and the code will be released under

the GNU general public license in summer 2011 on www.amconception.de.

4.1 Simulations in 2D

Before starting with the program outlined above a short presentation of the two model

equations shall be given. They are characterized by the respective initial condition u0

and the domain of computation. All simulations have been carried out assuming periodic

boundaries as well as the time t ranging from 0 to 10. For now all simulations use 128

nodes in each direction.

The first equation is given by the initial condition

u0(x, y) = cos(x) · cos(y) ∀ (x, y) ∈ [−π, π]2. (4.1.1)

Since the initial value is already smooth this is an important reference when it comes to

the accuracy of the method. We expect that this model will behave much more nicely

than the second one when it comes to oscillations.

33

www.amconception.de

4. SIMULATIONS

The second model is defined by

u0(x, y) :=

{
1 if x2 + y2 ≤ 1,

0 otherwise,
(4.1.2)

where (x, y) ∈ [−2, 2]2. This model will be called cylinder in the following. It features a

discontinuous initial condition and will thus be more prone towards oscillations. However

it is much more realistic when it comes to real-world applications.

The initial conditions of the two model equations can be seen in Fig. 4.1.

Figure 4.1: Initial conditions of the 2D models

Now the way is paved for the first set of simulations which are presented in Fig. 4.2.

Before we analyze the figures the general structure of them shall be explained. Each

figure contains four panels in two rows and two columns. The top column corresponds to

the cosine model whereas the lower one shows the results from the cylinder. The left row

describes the error in L2 norm and the right row displays the computation time needed

for the whole simulation. The upper right panel also contains the legend which applies

for all panels.

All computations were run on two identical Mac Pro with 8 processors each. Each pro-

cessor consists of an Intel Xeon CPU with 2.8 GHz and each machine has 2 GB of RAM.

They are dedicated to high performance computing and use Gentoo as operating system

with kernel 2.6.31. The code was compiled with the Intel Fortran Compiler version 10.0

using several parameters for optimization. Every processor ran its own simulation, usually

one method with varying Courant numbers (Courant step size was strictly smaller than

0.1).

Consider now Fig. 4.2 with the first simulations. The following three methods are com-

pared in this figure

34

4.1. SIMULATIONS IN 2D

 0.0001

 0.001

 0.01

 0.1

 1

 0.2 0.4 0.6 0.8 1 1.2 1.4

E
rr

o
r

[L
2
]

Courant Number

2D Error Analysis for cos(x)*cos(y)

 0

 500

 1000

 1500

 2000

 0.2 0.4 0.6 0.8 1 1.2 1.4

C
a

lc
u

la
ti
o

n
 T

im
e

 [
s
]

Courant Number

2D Time Analysis for cos(x)*cos(y)

Finite Difference
WENO

WENO with old flux splitting

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0.2 0.4 0.6 0.8 1 1.2 1.4

E
rr

o
r

[L
2
]

Courant Number

2D Error Analysis for the Cylinder

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0.2 0.4 0.6 0.8 1 1.2 1.4

C
a

lc
u

la
ti
o

n
 T

im
e

 [
s
]

Courant Number

2D Time Analysis for the Cylinder

Figure 4.2: Weighted Essentially Non-Oscillatory Schemes

• Finite Difference: The 6th order central difference stencil described in equation

(3.7.11) is used in combination with Heun’s method.

• WENO: The WENO scheme as presented in Section 3.3 with the new flux splitting

method.

• WENO with old flux splitting: As above but this time using the following flux

splitting method:

F (ûi+1/2) :=

{
F (ûli+1/2) if ∂u

∂x
(xi+1/2) ≥ 0,

F (ûri+1/2) otherwise.
(4.1.3)

Looking at the Finite Difference simulation it can be seen that it is only stable up to

C = 0.3. The only advantage being the considerably faster computation. Thus we will

use this method in the low Courant region in the adaptive SENO scheme. It is also clear

that the flux splitting presented in (3.3) is superior to the one mentioned above. Note

that the traditional flux splitting methods like Godunov, Lax-Friedrichs, Engquist-Osher

[11] cannot be used in this case. This is due to the fact that F is not only a function of

u at one node but at two different nodes. In the 1D case the two different flux splitting

35

4. SIMULATIONS

methods are more similar, but still the new flux splitting is approximately one order bet-

ter, yet slightly slower.

One more feature can be seen in the lower left panel, namely the comparably high error

for the WENO scheme in low Courant number regions. This is the aforementioned sta-

bility issue (cf. 3.7.1) that only arises in two dimensions. The comparable square wave

simulation in 1D did not display this problem.

In Fig. 4.3 three different states of the simulation can be seen. The function values are

Figure 4.3: WENO stability issues.

the simulated values minus those of the exact solution. The left panel is the evolution

after 0.1 s followed by the simulation at 1.6 s and the final state after 10 s. It can be seen

that there is a considerable error immediately after the first output step.

The problem can be identified when considering Fig. 4.4. The plot on the top panel

Figure 4.4: Cross section of the cylinder.

shows the cross section of the cylinder at the gray line. It resembles very much a delta

spike, which as we will discuss at the end of this section is the source of the difficulties.

This is mainly due to the fact that WENO is not able to resolve these structures.

Due to that the cross visible in Fig. 4.3 on the left panel can be explained. Although

36

4.1. SIMULATIONS IN 2D

this error does actually disappear it still is saved in the simulation. As can be seen in the

middle panel this manifests itself after about 1.6 s and eventually grows until it reaches

a stable solution displayed in the right panel.

If one additionally requires that u0(x, y) = 1 if |y| ≤ 1 then obviously the two dimensional

structure is destroyed and problems should only occur parallel to the y axis. Indeed this

holds true which proves that these one dimensional delta spikes are the source of the

problem.

Note that even due to the fact that it is possible to get rid of the oscillations the method

still provides a fairly bad error when it comes to low Courant numbers. This point will

be discussed further later in this chapter.

The first step towards the new SENO method was to apply some sort of smoothing to

 0.0001

 0.001

 0.01

 0.1

 1

 0.5 1 1.5 2 2.5

E
rr

o
r

[L
2
]

Courant Number

2D Error Analysis for cos(x)*cos(y)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0.5 1 1.5 2 2.5

C
a

lc
u

la
ti
o

n
 T

im
e

 [
s
]

Courant Number

2D Time Analysis for cos(x)*cos(y)

WENO
SENO1

WENO + Spline Smoothing 7 point stencil

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0.5 1 1.5 2 2.5

E
rr

o
r

[L
2
]

Courant Number

2D Error Analysis for the Cylinder

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0.5 1 1.5 2 2.5

C
a

lc
u

la
ti
o

n
 T

im
e

 [
s
]

Courant Number

2D Time Analysis for the Cylinder

Figure 4.5: WENO with Spline Smoothing

the resulting function after every RK step. In Section 3.6 it was already elaborated why

using splines with a weighted least squares approximation is optimal for the task. In Fig.

4.5 the result of applying spline smoothing can be seen. The three graphs correspond to

the following methods.

• WENO: as above.

37

4. SIMULATIONS

• SENO1: WENO including the spline smoothing using 9 function values for the

approximation.

• WENO + 7 point: WENO with spline smoothing, however using only 7 function

values for the approximation.

Although using fewer function values for the spline approximation would result in a smaller

stencil, the results clearly show that it is necessary to use a stencil at least 9 points wide.

The smaller stencil would be of advantage when it comes to parallel programming. Even

though we will not pursue this here it is very important in applications.

As it can be seen in Fig. 4.5 there is no 7 point stencil simulation for the cylinder model.

The reason for this is that the results were actually unreliable and the computation times

too high. Additionally it is clear that the 9 point stencil provides a much larger gain in

Courant numbers, the maximum now being around 2.2.

Despite that, the cosine model shows that the error increases by up to two orders of

magnitude. The reason for this has already been mentioned, namely the faster decay of

the smoothed function. Before moving on to compensate for this error a closer look at

the spline smoothing shall be taken.

The simulations in Fig. 4.6 show slightly altered spline smoothing methods. They differ

in the boundaries set for the following three features:

(i) Bl : If the truncation error at a point xi is lower than Bl no spline smoothing is

applied to save time. Instead the value ui is redefined as a weighted average of itself

and its neighbours by

ui =
ui−1 + 100 ui + ui+1

102
(4.1.4)

which takes care of very small oscillations that could cause instabilities.

(ii) δ1 : The first boundary for the weights (cf. equation (3.7.8)).

(iii) δ2 : The second boundary for the weights.

The values used for the simulations in Fig. 4.6 are shown in Table 4.1.

The results indicate that the choice of weights for the SENO1 method is optimal in two

ways. Compared to the weak boundaries the courant number is slightly larger with only

minor additional effort. Secondly when weighting it against the strong boundaries, large

spikes in computation time do not show up and for the discontinuous model the error is

approximately the same as the maximum Courant number for both models.

It was already discussed that the error increases significantly as soon as spline smoothing

is introduced. In Fig. 4.7 two strategies on lowering these errors are presented. The first

38

4.1. SIMULATIONS IN 2D

 0.0001

 0.001

 0.01

 0.1

 1

 0.5 1 1.5 2 2.5

E
rr

o
r

[L
2
]

Courant Number

2D Error Analysis for cos(x)*cos(y)

 0

 500

 1000

 1500

 2000

 0.5 1 1.5 2 2.5

C
a

lc
u

la
ti
o

n
 T

im
e

 [
s
]

Courant Number

2D Time Analysis for cos(x)*cos(y)

SENO1
SENO1 with weak bounds

SENO1 with strong bounds

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0.5 1 1.5 2 2.5

E
rr

o
r

[L
2
]

Courant Number

2D Error Analysis for the Cylinder

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0.5 1 1.5 2 2.5

C
a

lc
u

la
ti
o

n
 T

im
e

 [
s
]

Courant Number

2D Time Analysis for the Cylinder

Figure 4.6: SENO1 with different bounds

Table 4.1 Values for the specific Boundaries

Method logBl log δ1 log δ2

SENO1 -4 7 10

Weak Bounds -3 3 5

Strong Bounds -5 10 15

one is based on the assumption that the minimum and maximum are calculated correctly

by the WENO + RK scheme. The exact formula can be seen in equation (3.7.9) and the

corresponding graph is labeled SENO1 + Smoothing Compensation. The second refine-

ment corresponds to an analytical property of the solution, namely the constant integral

as proven in Section 2.3.5. The SENO2 method combines both the smoothing and inte-

gral compensations.

In case of the cosine model the additional compensations lower the error to the level of

the WENO method while still maintaining the high Courant numbers. Furthermore both

models show that the computation time is not significantly larger due to the extra burden.

However the situation is not so good in the case of the second model. There is nearly no

error reduction in the low Courant number regions. But still the error is about five times

39

4. SIMULATIONS

 0.0001

 0.001

 0.01

 0.1

 1

 0.5 1 1.5 2 2.5

E
rr

o
r

[L
2
]

Courant Number

2D Error Analysis for cos(x)*cos(y)

 0

 500

 1000

 1500

 2000

 0.5 1 1.5 2 2.5

C
a

lc
u

la
ti
o

n
 T

im
e

 [
s
]

Courant Number

2D Time Analysis for cos(x)*cos(y)

SENO1
SENO1 + Smoothing Compensation

SENO2

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0.5 1 1.5 2 2.5

E
rr

o
r

[L
2
]

Courant Number

2D Error Analysis for the Cylinder

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0.5 1 1.5 2 2.5

C
a

lc
u

la
ti
o

n
 T

im
e

 [
s
]

Courant Number

2D Time Analysis for the Cylinder

Figure 4.7: SENO1 with compensations

smaller if the Courant number is between 0.5 and 1.75. We also see that the assumption

that the WENO method provides the correct extrema is wrong here. This is mostly due

to the errors associated with the pure WENO scheme as shown in Fig. 4.3.

The next step in the evolution of the SENO algorithm was to implement some sort of

preconditioning. The idea was to use the exact representation of the solution as weighted

average of the previous step. The corresponding formula is described in equation (3.7.4).

In Fig. 4.8 two different stencils are compared with the previous SENO2 method. The

graph corresponding to SENO3 represents the preconditioning with the 5 point stencil

(i.e. r = 2), whereas the third graph displays the 3 point stencil with r = 1.

The effect of this preconditioning is indeed profound. Courant numbers up to three times

as high as before can now be used while still maintaining a decent level of accuracy. The

relative error at the highest Courant numbers (∼6.5) is at about 1% for both models. The

additional computational effort is again quite low for the smooth cosine model. However

this is not true for the low Courant number region in case of the cylinder model. The

largest drawback is the error increase for 0.5 ≤ C ≤ 1.2. Note also the two spikes that

occur in the computation time. During earlier stages of the development they were some-

40

4.1. SIMULATIONS IN 2D

 0.0001

 0.001

 0.01

 0.1

 1

 1 2 3 4 5 6 7

E
rr

o
r

[L
2
]

Courant Number

2D Error Analysis for cos(x)*cos(y)

 0

 500

 1000

 1500

 2000

 2500

 3000

 1 2 3 4 5 6 7

C
a

lc
u

la
ti
o

n
 T

im
e

 [
s
]

Courant Number

2D Time Analysis for cos(x)*cos(y)

SENO2
SENO3

SENO2 + exp. pre-conditioning (r=1)

 0.0001

 0.001

 0.01

 0.1

 1

 10

 1 2 3 4 5 6 7

E
rr

o
r

[L
2
]

Courant Number

2D Error Analysis for the Cylinder

 0

 1000

 2000

 3000

 4000

 5000

 6000

 1 2 3 4 5 6 7

C
a

lc
u

la
ti
o

n
 T

im
e

 [
s
]

Courant Number

2D Time Analysis for the Cylinder

Figure 4.8: SENO2 with preconditioning

times even higher, in the worst case up to ten times more than expected.

The 3 point stencil method shows even more problems for Courant numbers at approxi-

mately 1. The source of this issue are small oscillations that spread continuously across

the whole domain and which are not reduced by the spline smoothing algorithm. The

best way of tackling these is to add dependent spline smoothing to the method as will be

shown below.

The 3 point stencil provides a 1.5 times larger maximum Courant number whereas the 5

point stencil gives us a gain by a factor 3. Larger stencils have not been tested due to the

already considerably large total stencil.

The final modification to the algorithm is the so-called dependent smoothing. The addi-

tional algorithm was described in Section 3.7.1. The following three graphs are presented

in Fig. 4.9.

• SENO3: The SENO algorithm as above including preconditioning and compensa-

tions.

• SENO4: SENO3 plus dependent spline smoothing without modification of the trun-

cation error.

41

4. SIMULATIONS

 0.0001

 0.001

 0.01

 0.1

 1

 1 2 3 4 5 6 7

E
rr

o
r

[L
2
]

Courant Number

2D Error Analysis for cos(x)*cos(y)

 0

 500

 1000

 1500

 2000

 1 2 3 4 5 6 7

C
a

lc
u

la
ti
o

n
 T

im
e

 [
s
]

Courant Number

2D Time Analysis for cos(x)*cos(y)

SENO3
SENO4
SENO5

 0.0001

 0.001

 0.01

 0.1

 1

 1 2 3 4 5 6 7

E
rr

o
r

[L
2
]

Courant Number

2D Error Analysis for the Cylinder

 0

 1000

 2000

 3000

 4000

 5000

 6000

 1 2 3 4 5 6 7

C
a

lc
u

la
ti
o

n
 T

im
e

 [
s
]

Courant Number

2D Time Analysis for the Cylinder

Figure 4.9: SENO3 with dependent smoothing

• SENO5: SENO4 including the truncation error reduced by a factor of ten.

As seen in Fig. 4.9 the only advantage of this method is that the computation time is

slightly lower. Note specifically that the spikes in the lower right panel at about C = 0.6

and C = 1.1 completely vanish. However if the Courant number is larger than 3 this

additional modification is no longer valuable since the error increases drastically in the

discontinuous model. Thus the adaptive SENO method as presented in Section 3.7.1 will

be the final step in the development.

Fig. 4.10 is important insofar as it shows how good the convergence of the method is. In

this figure several simulations with various resolutions can be seen. Up to now the number

of nodes in each direction (nx) was 128. This time graphs with nx = 64 and nx = 256

were added. Note that this time the computation time is on a logarithmic scale as well.

For the analysis let’s start with the upper column where the cosine model is used. The

errors and times scale nicely across the whole domain of Courant numbers. This means

that the distance between the errors is approximately the same which shows that the

method appears to be converging. Of course more simulations would be necessary to

get an estimate for the convergence speed. But due to the large computation times

42

4.1. SIMULATIONS IN 2D

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1 2 3 4 5 6 7

E
rr

o
r

[L
2
]

Courant Number

2D Error Analysis for cos(x)*cos(y)

 1

 10

 100

 1000

 10000

 100000

 1 2 3 4 5 6 7

C
a

lc
u

la
ti
o

n
 T

im
e

 [
s
]

Courant Number

2D Time Analysis for cos(x)*cos(y)

SENO, nx = 64
SENO, nx = 128
SENO, nx = 256

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1 2 3 4 5 6 7

E
rr

o
r

[L
2
]

Courant Number

2D Error Analysis for the Cylinder

 1

 10

 100

 1000

 10000

 100000

 1 2 3 4 5 6 7

C
a

lc
u

la
ti
o

n
 T

im
e

 [
s
]

Courant Number

2D Time Analysis for the Cylinder

Figure 4.10: SENO with multiple resolutions

this is not possible without parallelizing the code. The only deviation can be seen at

C ≈ 2.1 where the error for the nx = 256 model is higher than expected. Note that the

maximum Courant numbers are nearly identical, only a slight increase can be seen for

lower resolutions.

Also in the cylinder simulations we see a deviation from the expected computation time

for the high resolution simulation. Interestingly the errors are considerably larger than

expected and there is again a peak at C ≈ 2.1. It would be interesting to have a simulation

with an even higher resolution (nx = 512), but due to the large computation time this

could not be realized. Since the scaling behaviour is nicer when moving to higher Courant

numbers the previous issues can be held accountable for this effect. To support this theory

the last simulations in this section should be considered.

The first simulation shown in Fig. 4.11 has a delta spike as initial condition, i.e.

u0(x, y) =

{
1 if (x, y) = (0, 0),

0 otherwise,
(4.1.5)

43

4. SIMULATIONS

 0.0001

 0.001

 0.01

 0.1

 1

 1 2 3 4 5 6 7

E
rr

o
r

[L
2
]

Courant Number

2D Error Analysis

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 1 2 3 4 5 6 7

C
a

lc
u

la
ti
o

n
 T

im
e

 [
s
]

Courant Number

2D Time Analysis

Delta Spike
Small Cylinder

Figure 4.11: Delta spike and small cylinder simulated with SENO

for (x, y) ∈ [−2, 2]2.

The second simulation features a cylinder with a radius of five nodes.

As mentioned in the previous section it is expected that there are difficulties for the SENO

method in the low Courant regions. For the small cylinder it can indeed be seen in Fig.

4.11 that the error is very large for C < 1.1. What is true moreover is that the error only

becomes uniform as soon as C > 2, which coincides with the spike in computation time.

Compared to that the delta spike behaves much nicer although it features a considerably

larger overall error. It is thus possible to conclude that the delta spike does not cool with

the correct speed since WENO methods are not able to resolve such structures correctly.

On the other hand WENO schemes are designed for maintaining discontinuities and due

to the weaker preconditioning for low Courant numbers this results in a larger error for

the small cylinder in this regime.

If further work is done on the SENO methods then this would be an important model to

consider. Especially in the low Courant number regime (C < 2) further investigations have

to be undertaken in order to optimize the performance of the newly presented schemes.

4.2 Simulations in 1D

In this section a few simulations in 1D shall be analyzed. Note that the simulations are

actually conducted with the 2D code but with u0(x, ·) = const. The number of subdivisions

in y direction were fixed as 60. As a result the errors presented below are actually larger

than for a real one dimensional simulation (by a factor of 60).

The first objective of this section is to show the relation of the maximum Courant number

to the value κ.

44

4.2. SIMULATIONS IN 1D

 0.0001

 0.001

 0.01

 0.1

 1

 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

E
rr

o
r

[L
2
]

Courant Number

2D Error Analysis for cos(x)

 0

 200

 400

 600

 800

 1000

 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

C
a

lc
u

la
ti
o

n
 T

im
e

 [
s
]

Courant Number

2D Time Analysis for cos(x)

κ = 1
κ = 2
κ = 3
κ = 4
κ = 5
κ = 7

κ = 10

Figure 4.12: Relation between κ and C

The stability criterion for the FTCS scheme is

κ∆t

∆x2
≤ a (4.2.1)

for constant κ and a = 1/2. The question now is whether the same holds true for the

SENO scheme if only the constant a is modified. To analyze this we present several

simulations in Fig. 4.12 varying κ and using

u0(x, y) = cos(x) (4.2.2)

as initial condition. Note that we do not apply the adaptive algorithm here since it would

distort the results. Thus we use the SENO3 algorithm presented in the previous section

which allowed the largest Courant numbers. For the rest of this section the Courant

number will only represent the ratio ∆t/∆x2.

The first notable difference is that the maximum Courant number is lower than the one

for the 2 D simulations. This is a result of the different definitions of the Courant number

in different dimensions. For κ = 1 we now have C∞ (i.e. the maximum Courant number)

equal to 4.7.

Referring to Table 4.2 we can see that the predicted Courant numbers (= 4.7/κ) are

actually lower than the ones calculated (with accuracy of 0.035) for κ smaller than 5.

However it is clear that the calculated C∞ do not decrease linearly. However for larger κ

the maximum possible Courant number no longer reaches the expected values. This is an

issue which will require further attention.

To conclude this section we will show two more simulations. The first one will be the 1D

analogy to the cylinder model presented in Section 4.1, namely a square wave. The initial

45

4. SIMULATIONS

Table 4.2 Predicted and actual values for C∞
κ Predicted C∞ Calculated C∞
1 4.7
2 2.35 3.17
3 1.57 2.05
4 1.18 1.42
5 0.94 0.94
7 0.67 0.52
10 0.47 0.24

condition is defined as

u0 = sign(cos(x)) x ∈ [−π, π] (4.2.3)

again using 128 points in x and 60 in y direction.

Again the most outstanding feature of the plots in Fig. 4.13 is the large error and

computation time for low Courant numbers. This corresponds to the issue that was

already discussed in Section 4.1. Note that here the maximum Courant number C∞ is

somewhat smaller than for the smooth cosine model.

The last simulation uses a sawtooth function, i.e.

u0 = x− floor(x) x ∈ [0, 1] (4.2.4)

as initial condition. To get data which is more comparable to the rest of this work, we

extended the domain to [−2, 2] and stretched the initial condition such as to get only one

period inside the domain.

Again as we have seen for all the other discontinuous models there is a significant spike

in the low Courant regions with considerable deviations in the L2 error. Compared to the

 0.0001

 0.001

 0.01

 0.1

 1

 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

E
rr

o
r

[L
2
]

Courant Number

2D Error Analysis for a Square Wave

 0

 500

 1000

 1500

 2000

 2500

 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

C
a

lc
u

la
ti
o

n
 T

im
e

 [
s
]

Courant Number

2D Time Analysis for a Square Wave

SENO

Figure 4.13: Simulation of a square wave

46

4.2. SIMULATIONS IN 1D

 0.0001

 0.001

 0.01

 0.1

 1

 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

E
rr

o
r

[L
2
]

Courant Number

2D Error Analysis for a Sawtooth Wave

 0

 500

 1000

 1500

 2000

 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

C
a

lc
u

la
ti
o

n
 T

im
e

 [
s
]

Courant Number

2D Time Analysis for a Sawtooth Wave

SENO

Figure 4.14: Simulation of a sawtooth wave

square wave model the error grows faster and more evenly which can be expected due to

different type of discontinuity, i.e. du0

dx
= 1/4 > 0 on either side.

47

4. SIMULATIONS

48

Chapter 5

Conclusion and Outlook

The main goal of this thesis was to increase the maximum possible time-step for a high

order, local and explicit solver for the diffusion equation. After examining multiple prop-

erties of the equation and its solutions by means of theoretical analysis several numer-

ical methods were presented in Chapter 3, eventually leading to the description of the

Smoothed Essentially Non-Oscillatory schemes. The main idea was to treat the diffusion

equation as conservation law and use a combination of WENO methods and Runge–

Kutta algorithms for approximating the solution. In the chapter where the simulations

were presented the effect of adding a preconditioning and a spline smoothing algorithm

was discussed in detail. Furthermore it was shown that the maximum Courant number

could be increased by a factor of approximately 20 when compared to the sixth order

central difference stencil with Heun’s method as time integrator.

Although so far the results are highly promising there are a few issues which will need to

be addressed as part of future research. First of all there is the issue that discontinuities

are prone to induce large errors in the low Courant number region. Additional focus

is also required on the relation between κ and C∞. It should be possible to obtain an

analytical lower bound for the maximum Courant number depending upon κ.

Besides these more major issues a few optimizations should be investigated. First of all

the 41 point stencil of the SENO method is quite large. Maybe it is possible to reduce it

by adapting the preconditioning so that it only affects the points contained in the WENO

stencil. Secondly these weights would need some further attention to analyze whether

they really offer the best possible values. It might be possible to minimize the problems

showing up for discontinuous initial conditions when using different weights.

The most time consuming algorithm is by far the spline smoothing. This is due to the fact

that it needs several iterations until the weights converge. If it were possible to obtain

an approximate relationship between the weights and the truncation error, some sort of

preconditioning could be implemented resulting in fewer iterations.

49

5. CONCLUSION AND OUTLOOK

Furthermore it has been noted that introducing Dirichlet boundary conditions will alter

the integral compensation algorithm. The possibility of modifying this algorithm for ar-

bitrary boundary conditions should be explored in future work.

However, compared to the initial time-stepping restrictions these remaining issues are only

minor. Thus it is safe to say that the SENO methods provide a powerful and efficient

algorithm for solving the diffusion equation.

50

Bibliography

[1] Fourier, J. The Analytical Theory of Heat (Cambridge University Press, Cambridge,

1878).

[2] Evans, L. C. Partial Differential Equations (American Mathematical Society, Prov-

idence, 2002).

[3] Demtroeder, W. Experimentalphysik 1 (Springer, Berlin, 2006).

[4] Strikwerda, J. C. Finite Difference Schemes and Partial Differential Equations

(Wadsworth & Brooks/Cole, Pacific Grove, 1989).

[5] Gottlieb, S. & Shu, C.-W. Total variation diminishing Runge–Kutta schemes. Math.

Comput. 67, 73–85 (1998).

[6] Ketcheson, D. I. & Robinson, A. C. On the practical importance of the SSP property

for Runge–Kutta time integrators for some common Godunov-type schemes. Int. J.

Numer. Methods Fluids 48, 271–303 (2005).

[7] Liu, X.-D., Osher, S. & Chan, T. Weighted essentially non-oscillatory schemes. J.

Comput. Phys. 115, 200 (1994).

[8] Harten, A., Engquist, B., Osher, S. & Chakravarthy, S. R. Uniformly high order

accurate essentially non-oscillatory schemes, III. J. Comput. Phys. 131, 3–47 (1987).

[9] Jiang, G.-S. & Shu, C.-W. Efficient implementation of weighted ENO schemes. J.

Comput. Phys. 126, 202–228 (1996).

[10] Titarev, V. & Toro, E. WENO schemes based on upwind and centred TVD fluxes.

Comput. Fluids 34, 705–720 (2005).

[11] Shu, C.-W. High order weighted non-oscillatory schemes for convection dominated

problems. SIAM Rev. 51, 82–126 (2009).

[12] Harder, D. W. Numerical analysis for engineering (2010). URL http://www.ece.

uwaterloo.ca/~dwharder/NumericalAnalysis/.

51

http://www.ece.uwaterloo.ca/~dwharder/NumericalAnalysis/
http://www.ece.uwaterloo.ca/~dwharder/NumericalAnalysis/

BIBLIOGRAPHY

[13] Oliveira, M., Su, J., Xie, P. & Liu, C. Truncation error, dissipation and dispersion

terms of fifth order WENO and of WCS for 1d conservation law. Int. J. Comput.

Math. 1–14 (2008).

[14] Deuflhard, P. & Hohmann, A. Numerische Mathematik 1 (Walter de Gruyter & Co.,

Berlin, 1993).

[15] Hanke-Bourgeois, M. Grundlagen der Numerischen Mathematik und des Wis-

senschaftlichen Rechnens, vol. 2 (Teubner, Wiesbaden, 2006).

[16] Lyche, T. & Morken, K. Spline methods. Lecture Notes (2005). URL http://folk.

uio.no/in329/komp.html.

[17] Beliakov, G. Least squares splines with free knots: global optimization approach.

Appl. Math. Comput. 149, 783–798 (2004).

[18] Obertscheider, C. Essentially Non-Oscillatory Verfahren zur numerischen Lösung

der Diffusionsgleichung. Master’s thesis, University of Vienna (2002).

52

http://folk.uio.no/in329/komp.html
http://folk.uio.no/in329/komp.html

Curriculum Vitae

Name: Arno Mayrhofer

Birth: 13th of August, 1986, in Bregenz, Austria

Citizenship: Austria

High school diploma: Bundesoberstufenrealgymnasium Lauterach,

6923 Lauterach, Montfortplatz 16A, Austria

21st of June, 2004

Studies: University of Vienna:

Mathematics: 10.2005 - 10.2010

Physics: 10.2005 - 02.2007

University College Cork:

Mathematics: 09.2008 - 05.2009 (Erasmus)

Academic Positions: 04.2010 - 08.2010: Research Assistant, University of Vienna,

Austria

11.2009: Visiting Researcher, University of Manchester, United

Kingdom

09.2009: Visiting Researcher, University of Vigo, Spain

06.2009 - 08.2009: Research Assistant, University of Limerick,

Ireland

53

	Introduction
	Parabolic Partial Differential Equations
	Basic Definitions
	The Diffusion Equation
	Physical Derivation of the Heat Equation

	Important Analytical Results
	Exact Solution in 1D
	Smoothness of Solutions
	Maximum Principle
	Uniqueness
	Periodicity

	Numerical Methods
	Forward Time Central Space
	The Courant Number

	Heun's Method
	Weighted Essentially Non-Oscillatory Schemes
	Truncation Error of WENO coupled with Heun's method
	Cholesky Decomposition
	Spline Approximation
	Smoothed Essentially Non-Oscillatory Schemes
	In One Dimension
	In n Dimensions

	Simulations
	Simulations in 2D
	Simulations in 1D

	Conclusion and Outlook
	Curriculum Vitae

