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0 Introduction

This work is concerned with the foundations of Semi-Riemannian geometry in case of

low regularity. More precisely, using distributional connections and distributional Semi-

Riemannian metrics respectively as a starting point, we will study to what extent classical

results can be generalized to the distributional setting. As the limitations of such a general

distributional approach are reached fairly quickly, we will subsequently narrow down the

class of metrics and connections considered to those which belong to some appropriate

local Sobolev spaces.

The motivation to look at a distributional formulation of Semi-Riemannian geometry

comes from the theory of general relativity. More specifically, one is interested in gravi-

tational sources concentrated in a region of space which can be ’approximated’ by a line,

a two- or a three-dimensional surface. Such sources model point particles, strings or

shells of matter or radiation, with the idealization being physically admissible provided

the appropriate internal structure of the source can be neglected. As it is natural to use

delta distributions to describe such objects, a rigorous mathematical description has to

incorporate the theory of distributions on manifolds. Moreover, distributional geometries

are also useful in describing other physical scenarios in general relativity such as shock

waves and junction conditions between matter and vacuum regions. This has led sev-

eral authors to apply distributional geometry ([dR84, YCB78]) to general relativity, e.g.

[GT87, Par79, Tau80, Lic79, CB93]. For a pedagogical account of distributional geometry

see [GKOS01, Sec.3].

In linear field theories such as electrodynamics, the theory of distributions actually fur-

nishes a consistent framework. More precisely, since Maxwell equations are linear in both

sources and fields they can be formulated within the framework of distributions and thus

allow for distributional as well as classical smooth solutions. Moreover, it is guaranteed

that smooth sources sufficiently near to a distributional source in the sense of conver-

gence of distributions produce fields which are close to the corresponding distributional

fields. While the former is necessary for e.g. point charges to make sense mathematically,

it is the latter property which renders them physically meaningful.

However, Einstein equations, which govern the behaviour of sources and fields in gen-

eral relativity link the curvature of the space-time metric to the energy contents of the

space-time in a non-linear way. Due to the impossibility to define a general product of dis-

tributions, distributional metrics have only limited use, since we cannot simply compute

their curvature. However, imposing additional regularity on the metric, it is nevertheless

possible to avoid ill-defined distributional products. The first work in this direction was

conducted by Geroch and Traschen in [GT87], where they explored the lowest regularity

requirements on a metric still allowing for Einstein equations to be formulated within the
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0 Introduction

context of distributional geometry. More precisely, they introduced a class of ’regular’

metrics, from now on referred to as gt-regular metrics, which apart from enabling the

curvature to be computed also possessed certain stability properties. That is, the notion

of convergence adopted for these metrics implies distributional convergence of the corre-

sponding curvature tensors. As noted previously, it is precisely this latter property that

makes it reasonable to use gt-regular metrics to model singular matter configurations in

general relativity. However, Geroch and Traschen also showed that curvature tensor of a

gt-regular metric can only be supported on a manifold of codimension at most one, which,

while including thin-shells of matter and radiation, explicitly excludes other interesting

physical scenarios such as point particles and cosmic strings.

The desire to model a wider class of non-smooth spacetimes has led several authors to

introduce algebras of generalized functions, in the sense of J. F.Colombeau [Col84], into

general relativity. These algebras are essentially based on regularization by convolution

and the use of asymptotic estimates with respect to an appropriate regularization parame-

ter. They contain both the space of smooth functions as a subalgebra as well as the space

of distributions as a linear subspace and allow a product to be assigned to every pair of

distributions. Moreover, via a procedure called association the result of calculations in

the algebra of generalized functions can be compared to that obtained within the frame-

work of classical distributions. This is important as it allows for these calculations to be

interpreted physically. Algebras of generalized functions have been successfully applied

to various problems in general relativity such as cosmic strings, Kerr-Schild geometries

and impulsive pp-waves, see [SV06] and references therein.

Recently, there has been renewed interest in Semi-Riemannian metrics of low regularity.

On the one hand, in [LM07] the formalism of [GT87] has been rederived in a coordinate-

free manner and significantly extended. These results have been subsequently applied in

[LR10] to the initial value problem for Einstein-Euler equations in Gowdy models. On the

other hand there has also been interest in the question of compatibility of the classical

distributional approach to calculating curvature due to [GT87] with the approach based

on algebras of generalized functions. Both methods have been shown to be equivalent in

[SV09]. For an extensive review of the use of generalized function and distributions in

general relativity, again see [SV06].

In the following we describe the contents of this thesis in some detail. In order to make

this work self-contained, we start by collecting all the necessary prerequisites. Essentially,

these include distributional geometry, Sobolev spaces on manifolds and, in particular, the

corresponding trace theorems. To this end we also recall some basic notions from smooth

differential geometry, the theory of distributions and Sobolev spaces on open subsets of

Rn. A brief account of all these issues is given in section 1. The heart of this work is

comprised of sections 2 and 3. In section 2 we review distributional Semi-Riemannian

geometry. In particular, we deal with the limitations and the extent to which it is possible

to incorporate the genuinely linear theory of distributions into the nonlinear theory of gen-

eral relativity. We end section 2 by examining properties of gt-regular metrics introduced

in [GT87] by Geroch and Traschen. In section 3, the results of section 2 are specialized
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in a coordinate free manner, to the situation, where a metric or a connection is ’smooth’

off some hypersurface and suffers ’discontinuity’ across the hypersurface in question. In

particular, we discuss several ’jump formulas’ for the respective curvature quantities.

While we have used standard references like [Ada75, O’N83, CP82] in the preparatory

section 1, our main references for sections 2 and 3 have been the research articles [LM07,

Ste08, GT87].
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1 Preliminaries

1.1 Some function spaces

To begin with we recall some facts about function spaces on subsets of Rn. For this

purpose Ω will denote an open subset of Rn, Ω its closure and ∂Ω its boundary. In par-

ticular, Rn+ := {x ∈ Rn | xn > 0} with closure Rn+ := {x ∈ Rn | xn ≥ 0} and boundary

∂Rn+ = {x ∈ Rn | xn = 0}. Here we have used (x1, ..., xn) = x ∈ Rn. For a given x ∈ Rn

we will write x = (x′, xn) where x′ denotes the first n-1 coordinates. For a multi-index

α = (α1, ..., αn) ∈ Nn we set

|α| = α1 + ...+ αn,

α! = α1!...αn!

xα = xα1
1 ...xαnn and ∂α = ∂α1

1 ...∂αnn

where x ∈ Rn and ∂i = ∂/∂xi . Moreover, we write α ≤ β if αi ≤ βi for i = 1, ..., n.

1.1.1. By C∞(Ω) we will denote the space of smooth complex-valued functions on Ω.

Equipped with the topology induced by the family of semi-norms

φ 7−→ pm,K(φ) := supx∈K,1≤|α|≤m|∂
αφ(x)|

where K is a compact subset of Ω and m is an integer, C∞(Ω) is a Fréchet space. For a

given compact subset K of Ω, DK(Ω) will denote the closed subspace of C∞(Ω) containing

all φ ∈ C∞(Ω) that vanish on Ω\K. Finally, by

D(Ω) =
⋃
K

DK(Ω)

we will denote the subspace of C∞(Ω) formed by all compactly supported functions on Ω.

D(Ω) will be equipped with the strict inductive limit topology with respect to all DK(Ω),

that is the finest locally convex topology on D(Ω) such that all injections DK(Ω) → D(Ω)

are continuous, see for instance [Jar81, Ch.4]. In particular, a linear mapping from D(Ω)

into some topological vector space is continuous if and only if its composition with the

injection DK(Ω) → D(Ω) is continuous for every K. Consequently the inclusion of D(Ω) in

C∞(Ω) is continuous.

1.1.2. The space C∞(Ω) is defined to be the set of all functions φ ∈ C∞(Ω) for which ∂αφ is

bounded and uniformly continuous on Ω for all multiindices α. Every φ ∈ C∞(Ω) admits a

unique, bounded and continuous extension of all ∂αφ to the whole of Ω. We equip C∞(Ω)
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with the family of seminorms

φ 7−→ pm,K(φ) := supx∈K,1≤|α|≤m|∂
αφ(x)|,

where K now runs over all compact subsets of Ω and m is an integer. This turns C∞(Ω)

into a Fréchet space. The inclusion of C∞(Ω) in C∞(Ω) is obviously continuous.

Similarly to 1.1.1, DK(Ω) denotes the closed subspace of C∞(Ω) formed by φ ∈ C∞(Ω)

which vanish outside some compact subset K of Ω, whereas D(Ω) =
⋃
K DK(Ω) denotes the

set of compactly supported elements of C∞(Ω). As before, D(Ω) will be equipped with the

strict inductive limit topology with respect to all DK(Ω), which as in 1.1.1, implies that the

inclusion of D(Ω) in C∞(Ω) is continuous.

We now introduce the notion of regular open subsets of Rn which are a special case of

manifolds with boundary as we shall see further below. Although we will only be interested

in the special case Rn+, we include, for the sake of completness, some results for general

regular open sets as well.

1.1.3. Definition. An open set Ω is called regular open subset of Rn if for every x ∈ ∂Ω

there exists an open neighbourhood U in Rn and a diffeomorphism ψ : U → ψ(U) ⊆ Rn such
that

ψ(U ∩ Ω) = {y ∈ ψ(U) | yn > 0}

ψ(U ∩ ∂Ω) = {y ∈ ψ(U) | yn = 0}.

If Ω is assumed to be a regular open subset of Rn, the space C∞(Ω) is the set of restric-

tions of C∞(Rn)-functions to Ω. More precisely we have:

1.1.4. Proposition. Let Ω be a regular open subset of Rn. Every φ ∈ C∞(Ω) can be extended
to C∞(Rn), the extension operator ρ being linear and continuous. The restriction of ρ to D(Ω)

is a continuous, linear operator from D(Ω) to D(Rn).

Sketch of proof. First, the case Ω = Rn+ is proven using the Seeley extension. To be more

precise, the extension of φ ∈ C∞(Rn+) to C∞(Rn) is defined to be

ρ(φ) =

φ(x) xn ≥ 0∑∞
k=1 λkχ(−2kxn)φ(x′,−2kxn) xn < 0

where χ ∈ D(R) is a bump function which is equal to 1 in a neighbourhood of zero and

(λk)k∈N is a sequence in R for which
∑∞
k=1 λk2kj converges absolutely to (−1)j.

Using partitions of unity and the fact that Ω is locally diffeomorphic to Rn+, one subse-

quently proves the assertion for arbitrary regular open subsets Ω of Rn.

For a complete proof see [CP82, Prop.9.2, p.64]

All manifolds considered in this work will be assumed to be oriented, connected, para-

compact, Hausdorff and smooth. They will generally be denoted by M or N. Observe that

these assumptions on the manifold M imply the existence of C∞-partitions of unity and of
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exhaustive sequences of compact sets i.e. the existence of sequences Kn ⊆ M of compact

sets such that Kn ⊆ ˚Kn+1 and
⋃
Kn = M . The notation (U,ψ) will be used to denote a chart

ψ of M with domain U .

1.1.5. Definition. A C∞-manifold with boundary is a set X together with an atlas of charts
ψU : U → ψU (U) where U ⊆ X and ψU (U) is open in Rn+.

Note that the compatibility of charts of a manifold with boundary means that the map-

pings ψV ◦ψ−1
U : ψ−1

U (V ∩U)→ ψV (V ∩U) are diffeomorphisms of open subsets of Rn+. Recall

that a mapping between open subsets of Rn+ is considered to be smooth if it possesses a

smooth extension to open sets in Rn.

In addition, both the boundary ∂X = {p ∈ X | ∃ψU such that ψU (p) ∈ ∂Rn+} and the interior

X := {p ∈ X | ∃ψU such that ψU (p) ∈ Rn+} of X are manifolds without boundary embedded in

X in the sense defined below. An atlas for ∂X is given by the restrictions ψU |∂X and that

for X by the restrictions ψU |X of the charts ψU of an X-atlas.

Given two smooth manifolds M and N without boundary, a function f : N →M is called

smooth if ψ ◦ f ◦ φ−1 is smooth for every chart ψ of M and φ of N. The space of smooth

functions between N and M will be denoted by C∞(N,M).

1.1.6. Definition. Let N and M be smooth manifolds. f ∈ C∞(N,M) is called an embedding
if it is an injective immersion and f : N → f(N) is a homeomorphism with respect to the trace
topology of f(N) in M .

Recall that f ∈ C∞(N,M) is called an immersion if Txf : TxN → Tf(x)M is injectiv for

every x ∈ N , where TxN and Tf(x)M denote the respective tangent spaces.

1.1.7. f ∈ C∞(N,M) is an embedding if and only if for every x ∈ N there exists a chart ψ

of M centered at f(x) for which

ψ ◦ f : f−1(domψ)→ imψ ∩ Rm (1.1)

is a well-defined diffeomorphism, hence a chart of N at x, see [Kri, 21.11]. Here, m denotes

the dimension of N . In particular, if N ⊆ M and inclusion ι : N ↪→ M is an embedding, N

is called a (regular) submanifold of M . If, in addition, dimN = dimM − 1 then N is called

a hypersurface of M .

On the other hand any subset N of the manifold M , such that for every x ∈ N there

exists a chart ψ of M centered at x for which

N ∩ domψ = ψ−1(imψ ∩ Rm), (1.2)

is itself an m-dimensional manifold with charts given by the restrictions of the ψ’s. More-

over, according to (1.1), the inclusion ι : N ↪→M is an embedding.

Observe that in definition 1.1.6, M and/or N can be assumed to be manifolds with bound-

ary. In particular, if N is a manifold with boundary both (1.1) and (1.2) hold provided Rm

is replaced by Rm+ .
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1 Preliminaries

1.1.8. For a given smooth manifold M without boundary, C∞(M) will denote the space of

smooth functions on M , that is functions f : M → C such that ψ∗f ∈ C∞(ψ(U)) for every

chart (U,ψ) of M . Here we use the notation ψ∗f = f ◦ ψ−1. C∞(M) will be equipped with

the topology defined by the family of seminorms

qm,K,ψ(f) := pm,K(ψ∗f),

where (U,ψ) are charts of M and pm,K are the seminorms of 1.1.1. Using partitions of

unity, one can show that seminorms associated with the charts of some atlas suffice to

define the topology and that C∞(M) is a Fréchet space.

For a fixed compact subset K of M , DK(M) denotes the closed subspace of C∞(M)

consisting of all f ∈ C∞(M) which vanish outside K, whereas D(M) denotes the inductive

limit over all DK(M).

If X is a manifold with boundary, C∞(X) denotes the space of all f ∈ C∞(X) such that

ψ∗f belong to C∞(ψ(U)) for all charts (U,ψ) of X. The spaces DK(X) and D(X) are defined

as in 1.1.2. The corresponding topological statements generalize without difficulty.

1.1.9. Proposition. Let X ⊆ M , where X and M are manifolds of the same dimension
with, respectively without boundary. Moreover, assume the inclusion ι : X → M is an
embedding. Then there exists a linear, continuous extension operator ρ : C∞(X) → C∞(M)

whose restriction to D(X) has values in D(M) and is linear and continuous.

Sketch of proof. Use partitions of unity and proposition 1.1.4 for Ω = Rn+ (which is a regular

open subset of Rn).

1.1.10. Remark. Using yet another characterisation of embeddings, it can be shown that

provided f ∈ C∞(N,M) is an embedding and f(N) is closed in M, for every ϕ0 ∈ C∞(N)

there exists a ϕ ∈ C∞(M) such that ϕ ◦ f = ϕ0.

In fact, f ∈ C∞(N,M) is an embedding if and only if f has a local left inverse i.e. for every

x ∈ N there exists an open neighbourhood Vf(x) of f(x) in M and a function h : Vf(x) → N

such that h ◦ f = id on f−1(Vf(x)), see [Kri, 21.11]. This implies that ϕ exists locally (set

ϕ = ϕ0 ◦ h on Vf(x) and ϕ ≡ 0 on M\f(N)). Gluing these local ϕ’s by a partition of unity

subordinated to the open covering of M consisting of (Vf(x))x∈N and M\f(N), we obtain

ϕ ∈ C∞(M) with the desired properties.

Note that under the same conditions on f and N an analogous statement holds for D(N)

as well, i.e. for every ϕ0 ∈ D(N) there exists a ϕ ∈ D(M) such that ϕ ◦ f = ϕ0. In fact, as

shown above there exists a φ ∈ C∞(M) such that φ ◦ f = ϕ0. Setting ϕ := χφ, where χ is a

bump function equal to 1 on f(supp(ϕ0)), the claim follows.

1.2 Sobolev spaces on Rn

We first recall some basic facts from distribution theory, for details see for instance

[FJ82, ch.1,2].

1.2.1. Definition. The space of distributions D′(Ω) is the topological dual of the space D(Ω),
i.e. the space of continuous linear forms on D(Ω).
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The action of u ∈ D′(Ω) on φ ∈ D(Ω) will be denoted 〈u, φ〉. Note that a linear functional u

on Ω belongs to D′(Ω) if and only if for every compact subset K of Ω there exists a constant

C ≥ 0 and an integer m such that

|〈u, φ〉| ≤ Cpm,K(φ)

for every φ ∈ DK(Ω).

D′(Ω) will be equipped with the weak-*-convergence topology, i.e. a sequence un con-

verges to u in D′(Ω) if 〈un, φ〉 converges to 〈u, φ〉 in C for every φ ∈ D(Ω).

The space of locally integrable functions on Ω is embedded in D′(Ω) via

j : L1
loc(Ω)→ D′(Ω)

〈j(f), φ〉 =

∫
Ω

fφdx , φ ∈ D(Ω).

The image of D(Ω) under j is dense in D′(Ω).

For an open subset Ω′ of Ω, the restriction u|Ω′ of u ∈ D′(Ω) to D′(Ω′) is defined to be the

distribution 〈u|Ω′ , φ〉 = 〈u, φ〉 for all φ in D(Ω′).

If u ∈ D′(Ω), the distributional derivative ∂αu is defined by 〈∂αu, φ〉 = (−1)|α|〈u, ∂αφ〉 for

all φ ∈ D(Ω) and multiindices α.

Next we collect some facts on Sobolev spaces. For details see [Ada75].

1.2.2. Definition. For m ∈ N and 1 ≤ p ≤ ∞ Sobolev spaces Wm,p(Ω) are defined to be the
sets

Wm,p(Ω) = {u ∈ D′(Ω) | ∂αu ∈ Lp(Ω) ∀α : 0 ≤ |α| ≤ m}.

Equipped with the norm

‖u‖m,p =

(
∑

0≤|α|≤m ‖∂αu‖p)1/p p <∞

max0≤|α|≤m ‖∂αu‖∞ p =∞

they are Banach spaces. Here ‖ ‖p denotes the norm in Lp(Ω). If p = 2, then Wm,2(Ω) is

even a Hilbert space. In this case we write Hm instead of Wm,2. Note that W 0,p(Ω) are just

the usual Lebesque spaces Lp(Ω).

1.2.3. Definition. Let Ω be Rn+, Rn or a bounded regular open subset of Rn. For s ∈ R+ \ N
and 1 ≤ p ≤ ∞, the space W s,p(Ω) is defined as the set of all u ∈ W bsc,p(Ω) for which the
norm:

‖u‖s,p =


‖u‖bsc,p +

∑
|α|=bsc

(

∫
Ω

∫
Ω

|∂αf(x)− ∂αf(y)|p

|x− y|n+(s−bsc)p dxdy)1/p p <∞

‖u‖s,∞ = max(‖u‖bsc,∞, max
|α|=bsc

esssup
x,y∈Ω
x6=y

|∂αf(x)− ∂αf(y)|
|x− y|s−bsc

) p =∞

is finite, where bsc is the largest integer smaller than s.

With this norm topology, the spaces W s,p(Ω) are Banach spaces. For the definition
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1 Preliminaries

of W s,p(Ω) for more general Ω see [Ada75, 7.35] (compare this also with [Ada75, 7.48]),

however we will not need these spaces in the following.

1.2.4. Definition. For s ∈ R+ and 1 ≤ p ≤ ∞ the Sobolev spaces W s,p
loc (Ω) are defined to be

the sets
W s,p

loc (Ω) = {u ∈ D′(Ω) | ϕu ∈W s,p(Rn) ∀ϕ ∈ D(Ω)}.

The spaces W s,p
loc (Ω) are Fréchet spaces, their topology being defined by the family of

seminorms

ps,p,ϕ(u) := ‖ϕu‖s,p

for ϕ ∈ D(Ω).

If m is a non-negative integer, u belongs to Wm,p
loc (Ω) if and only if u belongs to Wm,p(Ω′)

for all open and relatively compact Ω′ ⊆ Ω.

1.2.5. Remark. D(Rn) is dense in W s,p(Rn) for any s ≥ 0 and 1 ≤ p < ∞, see [Ada75,

7.38]. For arbitrary Ω the situation is more subtle, the above statement being false in

general. For our purposes it suffices to know that for s ≥ 0 and p < ∞ the restrictions of

D(Rn) to Rn+ are dense in W s,p(Rn+). This implies that D(Rn+) is dense in W s,p(Rn+), since

D(Rn)|Rn+ = D(Rn+) as we already know from proposition 1.1.4. Density also holds if Ω is a

bounded regular open set i.e. in this case D(Ω) is dense in W s,p(Ω), see [Tri83, 3.2.4].

Luckily the situation is far more simple for W s,p
loc (Ω), since D(Ω) is indeed dense in W s,p

loc (Ω)

for every open Ω and p < ∞. To see this just note that after choosing an exhaustive

sequence for Ω and corresponding plateau functions ϕn we clearly have ϕnu→ u in W s,p
loc (Ω)

for every u ∈ W s,p
loc (Ω). Since every ϕnu can be approximated in the respective W s,p(Ω)-

norm through mollification by compactly supported smooth functions the claim follows,

see [Ada75, 3.15].

The Sobolev Imbedding Theorem

Imbedding properties of Sobolev spaces, known as Sobolev imbedding theorem, assert

the existence of imbeddings of Wm,p(Ω) into various Banach spaces. Here, we will restrict

ourselves to two cases, namely the imbedding of Wm,p(Ω) into Lq(Ω) and CjB(Ω). For a

more complete account on the subject we refer to [AF03, Ch.4].

1.2.6. Theorem. Let Ω be Rn+, Rn or a bounded regular open subset of Rn. Furthermore let
1 ≤ p <∞, and let m ≥ 1 and j ≥ 0 be integers. If either mp > n or m = n and p = 1, then

W j+m,p(Ω) ⊆ CjB(Ω)

continuously. Here CjB(Ω) denotes the space of functions on Ω whose derivatives are bounded
and continuous up to order j. Moreover

Wm,p(Ω) ⊆ Lq(Ω)

continuously, if
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1.2 Sobolev spaces on Rn

(1.) mp > n for p ≤ q ≤ ∞,

(2.) mp = n for p ≤ q <∞,

(3.) mp < n for p ≤ q ≤ np/(n−mp).

Proof. [AF03, 4.12]

Note that the assumptions on Ω can be considerably relaxed; for a discussion of the

geometric conditions needed for Ω see [AF03, Ch.4].

Trace Theorems

The next topic we are going to disscus are trace theorems. Heuristically they give condi-

tions under which a function from some Wm,p(Ω) can be ’restricted’ to the boundary of Ω.

Technically, the trace of a function will be realized as a value of the continuous extension

of the restriction operator:

γ : D(Ω)→ D(∂Ω)

γU := U |∂Ω

(1.3)

to

γ : Wm,p(Ω)→W k(m,p),p(∂Ω)

where k(m, p) ∈ R+. The corresponding theorems state that for certain Ω such an extension

exists and is onto. The proofs for such theorems are usually based on the case Ω = Rn,

where in (1.3) the boundary ∂Ω is replaced by the hyperplane {x ∈ Rn | xn = 0}. In what

follows, the hyperplane {x ∈ Rn | xn = 0} will be identified with Rn−1 via Rn−1 3 x′ = (x′, 0) ∈
Rn.

1.2.7. Theorem. Let 1 ≤ p <∞ and m > r + 1/p for some r ∈ N then the mapping

γ : D(Rn)→
r∏
j=0

D(Rn−1)

γU(x′) := (U(x′, 0), ∂nU(x′, 0), ..., ∂rnU(x′, 0))

(1.4)

admits a unique, linear and continuous extension to a mapping (again denoted γ)

γ : Wm,p(Rn)→
r∏
j=0

Wm−j−1/p,p(Rn−1).

This extension is onto.

Proof. [Tri83, 3.3.3], for the case r = 0 see also [AF03, 7.39].

To generalize this theorem to more general open subsets of Rn we will make use of

extension theorems. In fact, if Ω denotes an open subset of Rn, we call a continuous linear

11
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mapping

E : Wm,p(Ω)→Wm,p(Rn)

an extension operator if

Eu|Ω = u.

We will say that U ∈ W s,p(Rn) is an extension of u ∈ W s,p(Ω) if there exists a continuous

linear extension operator E such that Eu = U .

1.2.8. Proposition. Let Ω be Rn+ or a bounded regular open subset of Rn. For every non-
negative integer m and every 1 ≤ p <∞ there exists a continuous, linear operator extending
u ∈Wm,p(Ω) to U ∈Wm,p(Rn). In particular,

‖U‖m,p ≤ C‖u‖m,p (1.5)

for some constant C depending only on m and p.

Sketch of proof. First, as in proposition 1.1.4, the Seeley extension is used to construct the

extension of u ∈ W s,p(Rn+) to W s,p(Rn). Partitions of unity and the special case Ω = Rn+ are

subsequently used to prove the assertion for bounded regular open subsets. For proofs

see [Tri83] and [Ada75, 4.26].

1.2.9. Corollary. Let Ω be a bounded, regular open subset of Rn or the halfspace Rn+. For
1 ≤ p <∞ and r,m ∈ N with m > r + 1/p the mapping

γ : D(Ω)→
r∏
j=0

D(∂Ω)

γU : = (U |∂Ω, ∂νU |∂Ω, ..., ∂
r
νU |∂Ω)

(1.6)

where ν is the outward normal to the boundary ∂Ω, can be uniquely, continuously extended
to a mapping (again denoted γ)

γ : Wm,p(Ω)→
r∏
j=0

Wm−j−1/p,p(∂Ω)

This extension is onto.

Proof. We only prove the case Ω = Rn+; the proof of the general case is reduced to the

halfspace case by using partitions of unity. The complete proof can be found in [Tri83,

3.3.3].

Throughout this proof, to avoid confusion, γ in the statement of the corollary will be

denoted γ, whereas γ will be used to denote the trace operator of theorem 1.2.7. For

arbitrary U ∈Wm,p(Rn+) define

γU := γŨ (1.7)

where Ũ is any extension of U to Wm,p(Rn) according to proposition 1.2.8. Since γ is

12
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continuous and the inequality (1.5) holds, one concludes that

r∑
j=0

‖∂jxnŨ(x′, 0)‖m−j−1/p,p ≤ K‖U‖m,p

for some constant K not depending on U or its particular extension Ũ . This implies that γ

is well defined since taking U = 0 implies γŨ = 0. Moreover it also implies continuity of γ.

If U ∈ D(Rn+) then definition (1.7) of γ coincides with the one given in the statement of

the corollary i.e.

γU(x) = (U(x, 0), ..., ∂rnU(x, 0))

since such U possess smooth extension to the boundary. The density of D(Rn+) in W s,p(Rn+)

implies the uniqueness of γ.

To prove that γ is onto, consult theorem 1.2.7 and the definition of γ given at the begin-

ning of this proof.

1.2.10. Remark. If Ω = Rn or Rn+ and u ∈Wm,p(Ω), then for m large enough

∂xi(γu) = γ(∂xiu) for i = 1, ..., n− 1

by an easy convergence argument. Indeed u may be approximated by a sequence un ∈ D(Ω)

for which γ(∂iun) = ∂i(γun) obviously holds. The claim now follows from convergence in

Wm−1−1/p,p(∂Ω).

The following remark is actually not relevant for the understanding of the rest of the text

and it is rather technical, nevertheless of independent interest.

1.2.11. Remark. In [Tri83], the spaces W s,p(Rn) as defined above, are called Slobodeckij

spaces. Since their exact form will not actually be needed in the rest of the text, one could

ask why not using the much more natural generalization of Sobolev spaces, the Bessel

potential spaces, defined by means of Fourier transform: u ∈ Hs,p(Rn) iff (1 + |x|2)s/2û(x) ∈
Lp(Rn) (û denoting the Fourier transform of u). Both families of spaces agree with Wm,p(Rn)

when m is an integer and 1 < p <∞ up to the equivalence of norms. The reason for taking

the less intuitive Slobodeckij spaces lies in the fact that Hs,p do not allow for a trace

theorem as formulated above, except in the case p=2! In fact, it is shown in [Tri83, p.132]

that the restriction operator γ : D(Rn) → D(Rn−1) extends to a surjective, continuous,

linear operator

F sp,q(Rn) � Bs−1/p
p,p (Rn−1) (1.8)

for certain families of spaces Bsp,q(Rn) and F sp,q(Rn), where s, p and q are some non-negative

real parameters. These spaces obey the following relations (which can be found in [Tri83,

p.47]):

Bsp,min(p,q)(R
n) ⊆ F sp,q(Rn) ⊆ Bsp,max(p,q)(R

n)

F s1p1,q1(Rn) = Bs2p2,q2(Rn)⇔ s1 = s2, p1 = p2 = q1 = q2 <∞.

13



1 Preliminaries

Since F sp,2(Rn) = Hs,p(Rn) for every s ∈ R and 1 < p <∞, see [Tri83, p.88], for p > 2 equation

(1.8) implies that

Hs,p(Rn) = F sp,2(Rn) � Bs−1/p
p,p (Rn−1) % F

s−1/p
p,2 (Rn−1) = Hs−1/p,p(Rn−1)

which in turn implies that there are some elements from Hs,p(Rn) whose image does not

lie in Hs−1/p,p(Rn−1). On the other hand, for p < 2

Hs,p(Rn) = F sp,2(Rn) � Bs−1/p
p,p (Rn−1) $ F

s−1/p
p,2 (Rn−1) = Hs−1/p,p(Rn−1)

implying that the restriction, again, fails to be onto.

1.3 Distributions on manifolds

We start by introducing some more notation from differential geometry. We will denote

the tangent bundle of M by TM and the cotangent bundle by T ∗M , the respective fibers

over x ∈ M being denoted TxM and T ∗xM . Both TM and T ∗M will be endowed with the

usual canonical C∞-manifold structure.

T rs (M) will denote the space of smooth (r,s)-tensorfields, that is the space of smooth

sections of the (r,s)-tensor bundle T rs (M). The tensorbundle chart (Ψ, U) over the chart

(ψ,U) in M is a mapping

Ψ : π−1(U)→ ψ(U)× Rn
r+s

z 7→ (ψ(p), ψ̃(z)),

where π denotes the base mapping of the tensor bundle T rs (M) and π(z) = p. Recall that

T rs (M) is a C∞(M)-module and as such isomorphic to the space of C∞(M)-multilinear

maps from T 0
1 (M)r × T 1

0 (M)s to C∞(M), i.e. to the C∞(M)-module

LC∞(T 0
1 (M)r, T 1

0 (M)s;C∞(M)).

Locally, in a chart (ψ,U) of M, the components t(dxi1 , ..., dxir , ∂j1 , ..., ∂js) of t ∈ T rs (M) will

be denoted ti1,...,irj1,...,js
. For a given compact subset K of M , DKT rs (M) will denote the subspace

of T rs (M) formed by all t ∈ T rs (M) which vanish outside K whereas DT rs (M) will denote the

space of all compactly supported (r,s)-tensorfields. Note that all of the previous assertions

can be adapted to fit manifolds with boundary in much the same way it was done for

manifold charts and smooth functions in section 1.1.

We will denote the space of k-forms on M by Ωk(M) and the corresponding subspace of

compactly supported k-forms by Ωkc (M). Furthermore we will use E ⊗C∞(M) F to denote

the C∞(M)-balanced tensor product of the C∞(M)-modules E and F.

1.3.1. In what follows we will define the space of distributional tensorfields as the topo-

logical dual of some appropriate space of compactly supported testfields, consequently we

first need to construct a topology for DT rs (M). There are several equivalent approaches

yielding the same topology on DT rs (M), for a detailed discussion we refer to [GKOS01,

Sec.3.1] and we choose to follow [YCB78, Sec.VII.8] where the topology is constructed in
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1.3 Distributions on manifolds

an explicitely covariant way. Observe that this construction is only possible for tensor-

fields and not in the more general case of sections in vector bundles.

To begin with we choose a smooth Riemannian metric h on M and denote by ∇ its

Levi-Civita connection as well as its extension to all tensor-bundles; in particular for t ∈
T rs (M) we will denote by ∇t its covariant derivative. For basic facts on (Semi-)Riemannian

geometry we refer to [O’N83] and section 2.1. We define the pointwise norm |t(x)| of the

tensorfield t by

|t(x)| = |ti1,...,i
′
n(x)ti1,...,i′n(x)|1/2

where we have used the abstract index notation, see [PR84], and indices were lowered and

raised by the metric, see section 2.1. Equipped with the family of seminorms

pm,K(t) :=
∑
k≤m

sup
x∈K
|(∇kt)(x)|

where m is a non-negative integer and K is a compact subset, the space T rs (M) becomes

a Fréchet space. Note that this topology does not depend on the particular choice of the

Riemannian metric h. Finally we endow DT rs(M) with the strict inductive limit topology

with respect to closed subspaces DKT rs (M) of DT rs(M).

Before actually stating our formal approach to introducing D′(M), i.e. the space of scalar

distributions on M we comment on the issue of distributions versus distributional den-

sities; for a detailed discussion see [GKOS01, Sec.3.1]. We will define D′(M) as the dual

space of Ωnc (M), hence put the burden of integration onto the test object side. As a con-

sequence one obtains a natural embedding of smooth or more generally locally integrable

functions into D′(M) via the assignment

τ →
∫
M

fτ

where τ ∈ Ωnc (M). The alternative would be to consider distributional densities as mem-

bers of the dual space of D(M). In this case one could naturally embedd smooth resp.

locally integrable n-forms. However since we assume the manifold M to be oriented,

both approaches lead to isomorphic spaces - an isomorphism being induced by each non-

vanishing n-form. More precisely, D(M) is isomorphic to Ωnc (M) via the mapping f → fθ

where θ is an arbitrary orientation inducing n-form. We henceforth identify both of these

spaces to obtain a topology on Ωnc (M). Moreover, the notation D′(M) ∼= (D(M))′ is justified.

The space of scalar distributions D′(M)

1.3.2. Definition. The space of distributions D′(M) on a manifold M is the space of contin-
uous linear functionals on the space of compactly supported smooth n-forms Ωnc (M), i.e.

D′(M) ∼= (Ωnc (M))′.

Analogous to the Rn-case, the action of u ∈ D′(M) on some τ ∈ Ωnc (M) will be denoted by
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〈u, τ〉. D′(M) will be equipped with the weak-*-topology, that is

um → u in D′(M) :⇔ 〈um, τ〉 → 〈um, τ〉 in C, ∀τ ∈ Ωnc (M).

If U is an open subset of M , the restriction u|U of a distribution u to U is defined to be the

element of D′(U) given by 〈u|U , τ〉 = 〈u, τ〉 for all τ ∈ Ωnc (U), where on the right hand side

we have trivially extended τ to all of M .

1.3.3. D′(M) is a fine sheaf of C∞(M)-modules, that is, given an open covering (Uα)α∈A of

M the following holds:

(i) For every u ∈ D′(M) local vanishing i.e. u|Uα = 0 for all α ∈ A implies global vanishing

i.e. u = 0.

(ii) For any family of distributions uα ∈ D′(Uα) such that uα|Uα∩Uβ = uβ |Uα∩Uβ for every

α, β ∈ A with Uα ∩ Uβ 6= ∅ there exists a unique distribution u ∈ D′(M) such that

u|Uα = uα.

1.3.4. Remark. The sheaf property of D′(M) implies that, given an atlas (Uα, ψα) of M,

every distribution u ∈ D′(M) can be identified with the family of distributions

uα := ψα∗(u|Uα) ∈ D′(ψα(Uα))

that satisfy the transformation law uα = (ψα ◦ψ−1
β )∗uβ on ψα(Uα∩Uβ). Here, we presuppose

the definition of the distributional pushforward ψα∗ by the chart ψα given in 1.3.6 below.

This local description is sometimes taken to be the definition of D′(M), for example in

[Hör90, 6.3.3].

1.3.5. A function f : M → C is called locally integrable if ψ∗f is locally integrable for every

chart (U,ψ) of M . For later use we note that if f is locally integrable, then∫
fτ = 0 ∀τ ∈ Ωnc (M) (1.9)

implies f = 0. The space of locally integrable functions L1
loc(M) is injectively embedded in

D′(M) via

j : L1
loc(M)→ D′(M)

〈j(f), τ〉 =

∫
M

fτ,

where τ ∈ Ωnc (M). The image of C∞(M) under j is dense in D′(M), i.e. j(C∞(M)) = D′(M).

1.3.6. Let f : M → N be a smooth mapping. The pullback f∗ : Ωk(N) → Ωk(M) by f is

defined by

(f∗τ)(ξ1, .., ξk) = τ(Tfξ1, ..., T fξk),

where ξi belong to T 1
0 (M) and Tf is the tangential mapping of f .
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Recall that the pushforward f∗ : Ωk(M) → Ωk(N) is not defined for general smooth

f : M → N . However, it is certainly defined if f is assumed to be a diffeomorphism. In this

case f∗ = (f−1)∗ i.e.,

(f∗ω)(η1, .., ηk) = ω(Tf−1η1, ..., T f
−1ηk)

where ηi belong to T 1
0 (N).

To extend the notion of pullback respectively pushforward to scalar distributions we

use transposition. For that purpose let f : M → N now denote an orientation preserving

diffeomorphism. We then define the distributional pullback by f as the mapping f∗ :

D′(N)→ D′(M) given by

〈f∗u, τ〉 = 〈u, f∗τ〉

where τ ∈ Ωnc (M). It is the unique continuous extension of the classical pullback f∗ :

C∞(N) → C∞(M). Note that locally, for charts ψ of M and φ of N, f∗ is given by the

formula

〈f∗u, τ〉 = 〈u,det
∂(yj ◦ f−1)

∂xi
(θ ◦ f−1)dnx〉

where τ = θdnx ∈ Ωnc (Uα), xi = pri ◦ φ−1 and yj = prj ◦ ψ−1. The distributional pushforward
f∗ : D′(M)→ D′(N) is defined analogously.

1.3.7. The product of a smooth function f ∈ C∞(M) with a distribution u ∈ D′(M) is

defined by transposition, i.e.

〈fu, τ〉 := 〈u, fτ〉

for all τ ∈ Ωnc (M).

1.3.8. The distributional Lie derivative is constructed as the unique continuous extension

of Lξ : C∞(M) → C∞(M) to distributions. Before proceeding with the actual definition of

the distributional Lie derivative we briefly recall the classical Lie derivative. Indeed, for a

smooth vectorfield ξ on M , Lξ : Ωk(M)→ Ωk(M) is given by

Lξω(ξ1, ..., ξk) = ξ(ω(ξ1, ..., ξk))−
k∑
i=1

ω(ξ1, ..., [ξ, ξi], ..., ξk)

where ξi ∈ T 1
0 (M) and by brackets we denote the Lie bracket of vectorfields. In particular,

Lξ(f) = ξ(f) for f ∈ C∞(M). We are now ready to define the distributional Lie derivative

Lξ : D′(M)→ D′(M) by transposition, i.e. by

〈Lξu, τ〉 := −〈u,Lξτ〉

for τ ∈ Ωnc (M). As in case of D′(Ω) the minus sign ensures compatibility with the classical

Lie derivative Lξ : C∞(M)→ C∞(M) via integration by parts. In this way, the distributional

Lie derivative inherits many properties of the classical Lie derivative, see e.g.[GKOS01,

3.1.24]. Here we just note the Leibnitz rule, i.e. if f ∈ C∞(M) and u ∈ D′(M), then

Lξ(fu) = (Lξf)u+ fLξu,
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and that as a derivative on the space of distributions, Lξ is localizes appropriately, i.e. for

any open set V ⊆M , ξ ∈ T 1
0 (M) and u ∈ D′(M):

(Lξu)|V = Lξ|V u|V

We will often abbreviate the action of the distributional Lie derivative along ξ ∈ T 1
0 (M) on

u ∈ D′(M) by ξ(u).

The space of distributional tensorfields D′T rs(M)

1.3.9. Definition. The space D′T rs(M) of distributional tensorfields is the topological dual
of the space DT sr (M) ⊗ Ωnc (M) where r and s are two non-negative integers which do not
vanish at the same time.

For different representation of the space of test objects used above and on extensive

discussion of the various approaches to tensor distributions, see [Gro08].

As in the scalar case we will denote the action of T ∈ D′T rs(M) on some µ ∈ DT sr (M) ⊗
Ωnc (M) by 〈T, µ〉. Furthermore if U is an open subset of M , the restriction T |U ∈ D′T rs(U)

is defined by 〈T |U , µ〉 = 〈T, µ〉 for all µ ∈ DT sr(U) ⊗ Ωnc (U) where on the right hand side we

have trivially extended µ to all of M .

D′T rs(M) can be characterised in two very useful ways. First the following local isomor-

phism of C∞-modules holds

D′T rs(Uα) ∼= D′(Uα)⊗C∞(Uα) T rs (Uα), (1.10)

where Uα are the domains of the respective tensor bundle charts; for a proof see [GKOS01,

3.1.11]. This implies that T |Uα can be written as:

T |Uα = (Tα)i1,...,irj1,...,js
∂xi1 ⊗ ...⊗ ∂xir ⊗ dxj1 ⊗ ...⊗ dxjs

with (Tα)i1,...,irj1,...,js
∈ D′(Uα). This will henceforth be the preferred, local description for ele-

ments of D′T rs(M). The local isomorphism (1.10) also holds globally, since both D′(M)⊗C∞(M)

T rs (M) and D′T rs(M) are sheaves of C∞(M)-modules, see [GKOS01, 3.1.7].

Finally by a purely algebraic argument, see for instance [Bou74, ChII, 4.2], one can

show that

D′(M)⊗C∞(M) T rs (M) ∼= LC∞(M)(T 0
1 (M)r, T 1

0 (M)s;D′(M))

holds. To summarize:

1.3.10. Theorem. The following isomorphisms of C∞(M)-modules hold

D′T rs(M) ∼= D′(M)⊗C∞(M) T rs (M) ∼= LC∞(M)(T 0
1 (M)r, T 1

0 (M)s;D′(M))

Distributional tensorfields can therefore be viewed either as tensorfields with distribu-

tional coefficients or C∞-multilinear maps with values in D′(M). We will prefer the latter

when describing distributional tensorfields globally.
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1.3.11. When we consider the topology of D′T rs(M) we will always identify D′T rs(M) with

LC∞(M)(T 0
1 (M)r, T 1

0 (M)s;D′(M)) equipped with the topology of pointwise convergence, that

is

Tm → T :⇔ Tm(ω1, ..., ωr, ξ1, ..., ξs)→ T (ω1, ..., ωr, ξ1, ..., ξs) in D′(M),

∀ωi ∈ T 0
1 (M), ∀ξj ∈ T 1

0 (M).

Analogous to the scalar case, locally integrable tensorfields L1
locT rs (M) which we here

identify with LC∞(M)(T 0
1 (M)r, T 1

0 (M)s;L1
loc(M)), can be injectively embedded in D′T rs(M)

via

Grs : L1
locT rs (M)→ LC∞(M)(T 0

1 (M)r, T 1
0 (M)s;D′(M))

Grs(t)(ω1, ...ωr, ξ1, .., ξs) := j(t(ω1, ...ωr, ξ1, .., ξs)),

where j was defined in paragraph 1.3.5. Moreover Grs(T rs (M)) = D′T rs(M).

1.3.12. The product of f ∈ C∞(M) with a tensor distribution T ∈ D′T rs(M) or of a distribu-

tion f ∈ D′(M) with a smooth tensorfield T ∈ T rs (M) is defined as an element of D′T rs(M)

given by

(fT )(ξ1, ..., ξr, ω1, ..., ωs) := fT (ξ1, ..., ξr, ω1, ..., ωs).

Here the product on the right hand side being the product of a scalar distribution with a

smooth function, see 1.3.7. Any given t ∈ T rs (M) can be extended to a C∞(M)-multilinear

mapping

T : D′T 1
0 (M)× T 1

0 (M)s−1 × T 0
1 (M)r → D′(M)

via

T (τ, ξ1, ..., ξs−1, ω1, ..., ωr) := τ((ξ 7−→ t(ξ, ξ1, ..., ξs−1, ω1, ..., ωr)))

for ξ, ξi ∈ T 1
0 (M), ωj ∈ T 0

1 (M) and τ ∈ D′T 1
0 (M). Likewise we may extend t ∈ T rs (M) to a

C∞(M)-multilinear mapping

T : T 1
0 (M)s ×D′T 0

1 (M)× T 0
1 (M)r−1 → D′(M)

and likewise for any other slot.

1.3.13. To end this section we extend the contraction to act on distributional tensorfields.

The definition is completely analogous to the case of smooth tensorfields, see [O’N83,

p.40]. The (1,1)- distributional contraction is the C∞(M)-linear mapping

C : D′T 1
1 (M)→ D′(M)

locally defined via

C(T ) :=
∑
i

T (dxi, ∂i) =
∑
i

(Tα)ii

For general tensorfields we obtain a family of mappings contracting the i-th contravariant
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slot with the j-th covariant slot:

Cij : D′T rs (M)→ D′T r−1
s−1 (M)

defined via

Cij(T )(ω1, ..., ωr−1, ξ1, ..., ξs−1) :=

C((ω, ξ)→ T (ω1, ..., ωi−1, ω, ωi, ..., ξj−1, ξ, ξj , ..., ξs−1)).

1.4 Local Sobolev spaces on manifolds

In this section we generalize the local Sobolev spaces introduced in section 1.2 to mani-

folds and prove the corresponding trace theorems. Throughout this chapter, M will denote

an n-dimensional manifold without boundary whereas X will denote an n-dimensional

manifold with boundary unless explicitely stated otherwise.

1.4.1. Definition. Let s ∈ R+ and 1 ≤ p ≤ ∞. The local Sobolev spaces on a manifold M are
defined to be the sets

W s,p
loc (M) = {u ∈ D′(M) | ψ∗(u|U ) ∈W s,p

loc (ψ(U)) for all charts (U,ψ) of M}.

W s,p
loc (M) will be equipped with the topology defined by the family of seminorms

u→ pϕ,ψ(u) := ‖ϕψ∗u‖s,p

for charts (U,ψ) of M and ϕ ∈ D(ψ(U)). Using partitions of unity one can show that the

seminorms associated with the charts of some atlas suffice to define the topology and that

W s,p
loc (M) is a Fréchet space. The injection of W s,p

loc (M) in D′(M) is continuous.

Observe that W s,p
loc (M) is a subspace of L1

loc(M) for all s ∈ R+ and p ≥ 1. More precisely,

for every u ∈ W s,p
loc (M) there exists a locally integrable function f such that j(f) = u. Here,

j denotes the mapping from 1.3.5.

1.4.2. Remark. For s ≥ 1, the distributional Lie derivative defined in 1.3.8 has values

in W s−1,p
loc (M) when restricted to W s,p

loc (M). Furthermore it is continuous in the respective

topologies on local Sobolev spaces.

1.4.3. Lemma. D(M) is dense in W s,p
loc (M) with continuous injection for s ∈ R+ and 1 ≤ p <

∞.

Proof. Let u be in W s,p
loc (M). Furthermore let (Uj , ψj)j∈J be an atlas of M and (fj)j∈J a

partition of unity subordinate to Uj. By virtue of 1.2.5, for every j ∈ J there exists a

sequence ϕjn ∈ D(ψj(Uj)) such that ϕjn → ψj∗u in W s,p
loc (ψj(Uj)). Then ϕn :=

∑
j fjψ

∗
jϕ

j
n ∈

C∞(M) since the ϕn’s are locally finite sums of smooth functions and ϕn → u in W s,p
loc (M).

Now choose an exhaustive sequence of compact sets Kn of M and corresponding plateau

functions φn. Then φnϕn ∈ D(M) and (φnϕn)n converges to u in W s,p
loc (M).
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1.4 Local Sobolev spaces on manifolds

1.4.4. Theorem. Let N be a hypersurface in M, and let m and r be non-negative integers
such that m > r + 1/p and 1 ≤ p < ∞. Moreover let ξi, ..., ξr be vectorfields on M such that
ξi(x) ∈ TxN⊥ for i = 1, .., r and all x ∈ N . Here, TxN⊥ denotes the orthogonal complement of
TxN in TxM with respect to any Riemannian metric on M . Then the restriction operator

γ : D(M)→
r∏
j=0

D(N)

γu := (u|N , (Lξ1u)|N , ..., (Lξr ...Lξ1u)|N ) (1.11)

uniquely extends to a continuous linear operator (again denoted γ)

γ : Wm,p
loc (M)→

r∏
j=0

W
m−j−1/p,p
loc (N).

Moreover, γ is onto.

Sketch of proof. Throughout this proof, γ defined in equation (1.11) will be denoted by γ,

whereas γ will be used to denote the trace operator from theorem 1.2.7.

If fact, to prove the assertion of the theorem, we only need to show continuity of the

restriction operator

γ : D(M)→
r∏
j=0

D(N),

when considered with the topology inherited from the respective Sobolev spaces. Indeed,

since D(M) is dense in Wm,p
loc (M), the continuity of γ implies that there exists a continuous

linear extension of γ to arbitrary u in Wm,p
loc (M). In fact, the extension is given by

γu := lim
n→∞

γun,

where (un)n∈N is an arbitrary sequence in D(M) converging to u in Wm,p
loc (M).

To show continuity of γ, it suffices to show continuity of the components

u→ (γu)j ,

D(M) ⊆Wm,p
loc (M)→ D(N) ⊆Wm−j−1/p,p

loc (N),

which we will prove using induction on r, the number of vectorfields. The subscript j will

be used to denote the j-th component of γ as well.

Since N is assumed to be embedded in M, for every y ∈ N we can choose a chart (U◦, ψ◦)

of y in N such that a chart (U,ψ) of y in M exists for which U◦ = U ∩ N , ψ◦ = ψ|U◦
and ψ(U◦) = {x ∈ ψ(U)|xn = 0}, see 1.1.7. Furthermore, by remark 1.1.10 for a given

ϕ◦ ∈ D(ψ(U◦)) we can choose a ϕ ∈ D(ψ(U)) such that ϕ|ψ(U◦)= ϕ◦.

If r = 0, then clearly ϕ◦ψ◦∗(γu) = γ(ϕψ∗u) for every u ∈ D(M). From the trace theorem

1.2.7 one obtains

‖ϕ◦ψ◦∗(γu)‖m−1/p,p ≤ C‖ϕψ∗u‖m,p
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where C > 0 depends only on m, p.

Now assume r− 1 vectorfields as in the statement of the theorem are given and for every

j ≤ r − 1 there exists some constant C > 0 independent of u such that

‖ϕ◦ψ◦∗(γu)j‖m−j−1/p,p ≤ C‖ϕψ∗u‖m,p.

Now, let r vectorfields (ξi)i=1,...,r as in the statement of the theorem be given. We have to

estimate Lξr ...Lξ1u for u ∈ D(M). To this end, using Leibniz rule, we obtain

γ(Lψ∗ξr ...Lψ∗ξ1(ϕψ∗u)) = F (ϕ◦, ψ◦, u) + ϕ◦ψ◦∗(Lξr ...Lξ1u|N︸ ︷︷ ︸
=(γu)r

) (1.12)

where F includes all the terms which include at least one derivative of ϕ◦. By induction

hypothesis and Leibnitz rule there exists a constant K > 0 independent of u such that

‖F‖m−r−1/p,p ≤ K‖ϕψ∗u‖m,p. (1.13)

On the other hand, from theorem 1.2.7 one can conclude that there exists a positive

constant D independant on u such that

‖ϕ◦ψ◦∗(γu)r‖m−r−1/p,p ≤ D‖ϕψ∗u‖m,p (1.14)

Putting (1.12), (1.13) and (1.14) together, the claim follows.

Local Sobolev spaces on manifolds with boundary

1.4.5. Definition. Let s ∈ R+ and 1 ≤ p ≤ ∞. The local Sobolev spaces W s,p
loc (X) consist of

all u belonging to W s,p
loc (X) for which ϕ(ψ∗u) belongs to W s,p

loc (Rn+) for all charts (U,ψ) at the
boundary of X and every ϕ ∈ D(ψ(U)).

As in the in case of Sobolev spaces for manifolds without boundary one can conclude

that W s,p
loc (X) is a Fréchet space, equipped with the topology induced by the family of

seminorms

pϕ,ψ(u) := ‖ϕ(ψ∗u)‖s,p

for charts (U,ψ) and ϕ ∈ D(ψ(U)). As before one can show that charts of some atlas suffice

to define the topology.

1.4.6. Proposition. Every manifold with boundary X can be ”extended” to a manifold
M without boundary of the same dimension, i.e. so that the inclusion ι : X → M is an
embedding.

Sketch of proof. X can be embedded in M := X\∂X via the flow of an ’inner’ vectorfield.

For a sketch of the proof see [Kri, 47.10].

Our next goal is to generalize theorem 1.4.4 to manifolds with boundary. In analogy to

the Ω ⊆ Rn-case we will make use of an extension theorem. We call a continuous linear
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mapping

E : W s,p
loc (X)→W s,p

loc (M)

an extension operator if

Eu|X = u,

where we assume that X is embedded in M . As before, U ∈ W s,p
loc (M) is considered to be

an extension of u ∈W s,p
loc (X) if there exists an extension operator E such that Eu = U .

1.4.7. Proposition. Let X and M be manifolds of dimension n with resp. without boundary
such that X ⊆ M . Moreover, let the inclusion ι : X → M be an embedding. Then, for every
non-negative integer m and 1 ≤ p <∞, there exists an extension operator

E : Wm,p
loc (X)→Wm,p

loc (M).

Sketch of proof. Use partitions of unity and proposition 1.2.8.

1.4.8. Lemma. D(X) is dense in Wm,p
loc (X) with continuous injection for every m ∈ N and

1 ≤ p <∞.

Proof. Following proposition 1.4.7 every u ∈Wm,p
loc (X) can be extended to some ũ ∈Wm,p

loc (M)

where M is chosen as in proposition 1.4.6. According to lemma 1.4.3, ũ can be approxi-

mated in Wm,p
loc (M) by a sequence ϕn ∈ D(M). Since the restriction r : Wm,p

loc (M)→Wm,p
loc (X)

is continuous and r(D(M)) ⊆ D(X) the claim follows.

1.4.9. Theorem. Let m > r + 1/p for m, r ∈ N and 1 ≤ p <∞. Moreover let ξi ∈ TX be such
that ξi(x) ∈ Tx∂X⊥ for i = 0, ..., r and x ∈ ∂X. Then the restriction operator

γ : D(X)→
r∏
j=0

D(∂X)

γu := (u|∂X , (Lξ1u)|∂X , ..., (Lξr ...Lξ1u)|∂X)

can be uniquely extended to a continuos linear operator

γ : Wm,p
loc (X)→

r∏
j=0

W
m−j−1/p,p
loc (∂X).

Moreover, γ is onto.

Proof. The proof is analogous to the proof of the corollary 1.2.9, using 1.4.7, 1.4.6 and

1.4.8 as well as the trace theorem 1.4.4.

1.4.10. Remark. (i) Assume N is a hypersurface of M. If we take r = 0 or equivalently

consider only the first component of γ in the above trace theorems, one can conclude,

applying an easy convergence argument, that γ is C∞(M)-linear, i.e.

γ(fu) = f |Nγ(u)
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for f ∈ C∞(M) and u ∈ Wm,p
loc (M). Moreover, as in the Rn-case, cf. remark 1.2.10, γ

commutes with certain derivatives. More precisely if u ∈Wm,p
loc (M) then:

Lξ|N (γu) = γ(Lξu)

for all ξ ∈ T 1
0 (M) such that ξ(x) ∈ TxN for all x ∈ N . For r > 0 more care is needed since

Lie derivatives do not commute in general.

(ii) If u ∈ Wm,p
loc (M) ∩ C(M) then u|N = γ(u). This is a local question, but locally there

exists a sequence of smooth functions converging simultaneously uniformly on compact

sets and in the respective Sobolev topology to u, see [Ada75, 2.18, 3.15], therefore the

claim follows since γ is continuous.

(iii) The statements (i) and (ii) still hold if M is replaced by a manifold with boundary X

and N is replaced by the boundary ∂X of X.

Tensorfields with coefficients in W s,p
loc

1.4.11. Definition. Let s ∈ R+ and 1 ≤ p ≤ ∞. We define the space of W s,p
loc (M)-tensorfields

by
W s,p

loc T
k
l (M) := {t ∈ D′T kl (M) |Ψ∗t ∈W s,p

loc (ψ(U))n
k+l

∀(U,Ψ)}.

Here Ψ∗ denotes the pushforward by the tensor bundle chart (Ψ, U).

W s,p
loc T kl (M) is a Fréchet space equipped with the family of seminorms t → p(Ψ∗t), where

p runs through all the seminorms in the product topology of W s,p
loc (ψ(U))n

k+l

.

Furthermore, the isomorphisms of theorem 1.3.10 clearly restrict to W s,p
loc (M)-spaces,

more precisely, the following C∞-module isomorphisms hold

W s,p
loc T

k
l (M) ∼= W s,p

loc (M)⊗C∞(M) T kl (M) (1.15)

∼= LC∞(M)(T 1
0 (M)k, T 0

1 (M)l;W s,p
loc (M)),

where the last space denotes the space of all C∞(M)-multilinear maps with values in

W s,p
loc (M).

1.4.12. Definition. LetX be a manifold with boundary, s ∈ R+ and 1 ≤ p ≤ ∞. The space of
W s,p

loc (X)-tensorfields is defined as the set of all t in W s,p
loc T kl (X) for which Ψ∗t ∈W s,p

loc (Rn+)n
k+l

for all tensor bundle charts (U,Ψ) at the boundary of X.

For manifolds with boundary, the isomorphisms (1.15) hold as well, in other words

W s,p
loc T

k
l (X) ∼= W s,p

loc (X)⊗C∞(X) T
k
l (X)

∼= LC∞(X)(T
1

0 (X)k, T 0
1 (X)l;W s,p

loc (X))

where the spaces T kl (X) are defined analogous to C∞(X) in 1.1.8 with tensor bundle charts

replacing the corresponding manifold charts.

We end this section by stating, without proof, a trace theorem for tensorfields which

have Sobolev space regularity, in analogy with scalar trace theorems 1.4.4 and 1.4.9.
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More precisely, since it can be shown, in analogy to lemma 1.4.8, that DT kl (M) is dense in

Wm,p
loc T kl (M), a generalization of theorem 1.4.4 to Wm,p

loc (M)-tensorfields is straightforward,

i.e.

1.4.13. Theorem. Let N be a hypersurface in M and let m > 1/p be a non-negative integer
and 1 ≤ p <∞. The restriction operator

γ : DT kl (M)→ DT kl (N)|N

can be uniquely, continuously extended to an operator (again denoted γ)

γ : Wm,p
loc T

k
l (M)→W

m−1/p,p
loc T kl (M)|N .

Moreover, γ is onto. Here T kl (M)|N denotes the space of smooth sections of the bundle
T rs (M)|N .

1.4.14. Remark. (i) A restriction of t ∈ T kl (M) to N does not necessarily yield an element

of T kl (N). Therefore T kl (M)|N has to be used in the statement of theorem 1.4.13 and not

T kl (N).

(ii) Concerning traces in Wm,p
loc T kl (X), the assertions of 1.4.7 and 1.4.8 can easily be

generalized to Wm,p
loc (X)-tensorfields. Hence, theorem 1.4.13 still holds when M is replaced

by X and N is replaced by the boundary ∂X of X.

(iii) Theorem 1.4.13 can also be formulated including (Lie) derivatives in analogy to 1.4.4

and 1.4.9, however we will not need it here.
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2 Distributional Semi-Riemannian geometry

In this chapter we review some basic notions in distributional Semi-Riemannian geometry.

The history of distributional geometry and global analysis using distributions goes back to

L. Schwartz [Sch66] and G. De Rham [dR84]. The topic was later on pursued by A. Lich-

nerowicz [] and J. Marsden. Prominent papers using distributional geometry in relativity

are [Par79], [Tau80] and the classical paper by R. Geroch and J. Trachen [GT87] in which

they investigate the limits of the use of the (genuine linear) theory of distributions in the

(nonlinear) theory of relativity. Recently the topic has been taken up by [LM07]; for an

overview see [SV06].

More specifically, we concentrate on the following issues: first we discuss the notions of

metrics and connections in the distributional setting and explore the possibilities for asso-

ciating a Levi-Civita connection to metrics of low regularity, i.e. metrics with coefficients in

some appropriate Sobolev space. We then pass on to discuss, within the framework of dis-

tributional tensorfields, the definition of the curvature arising from either the connection

or the metric.

For the convenience of the reader we start by recalling, some notions in (smooth) Semi-

Riamannian geometry and then proceed to discuss the corresponding generalizations in

distributional geometry. For the classical results we generally use [O’N83, Ch. 2-4] as our

main reference. To begin with we fix our baisc notation: We denote the action of the metric

g on vectorfields ξ and η by g(ξ, η). The distributiona action will be denoted using angular

brackets, e.g. 〈u, τ〉 stands for the action of a scalar distribution u on some compactly

supported n-form τ . Furthermore we will use the summation convention.

2.1 Metrics and connections in smooth Semi-Riemannian
geometry

2.1.1. Definition. A (smooth) Semi-Riemannian metric g on M is a symmetric, non-
degenerate element of T 0

2 (M) whoose index is constant.

In other words to each point p of M , g ∈ T 0
2 (M) smoothly assigns a symmetric, non-

degenerate bilinear form gp on the tangent space TpM , i.e.

gp(v, w) = gp(w, v) ∀v, w ∈ TpM,

and

gp(v, w) = 0 ∀w ∈ TpM ⇒ v = 0 inTpM (2.1)
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Moreover, recall that the index of a symmetric bilinear form b on a vector space V is

defined to be the largest integer which equals the dimension of a subspace W ⊆ V such

that b|W is negative definite, i.e.

b(v, v) < 0 ∀v ∈W, v 6= 0.

If the index is equal to 0 we call g a Riemannian metric, however we will be mostly con-

cerned with the Lorentzian case, i.e. the index being 1.

2.1.2. At every point p ∈ M the metric g induces an isomorphism [ : TpM → T ∗pM . Indeed

fixing v ∈ TpM , the map TpM 3 w 7→ gp(v, w) is a linear form on TpM and we may define

[ : TpM → T ∗pM

v 7→ v[ : v[(w) := gp(v, w) ∀w ∈ TpM.

By non-degeneracy of g the map [ is injective (v[ = 0 ⇒ v[(w) = 0 ∀w ∈ TpM ⇒ v = 0),

hence surjective since dimTpM = dimT ∗pM .

The map [ extends to a C∞-linear isomorphism of the respective section spaces which

we again denote [. More precisely we have

[ : T 1
0 (M)→ T 0

1 (M)

ξ → ξ[ : ξ[(η) = g(ξ, η)

for all η ∈ TM . In local coordinates, [ corresponds to the classical operation of lowering

an index. Indeed, choose a chart (U,ψ) of M and denote by gij the components of g with

respect to this chart, i.e. gij = g(∂i, ∂j) on U . Obviously gij(p) determine the components

of a non-singular matrix for all p ∈ U . If the components of the vectorfield ξ are denoted

by ξi, i.e. ξ = ξi∂i, we obtain

(ξ[)i = gijξ
j

for the components of the one-form ξ[. We will use the notation ξi instead of (ξ[)i; in other

words we have ξ[ = ξidx
i.

The inverse of [ is the mapping

] : T 0
1 (M)→ T 1

0 (M)

defined via

ω → ω] : ω](ν) = g−1(ω, ν), ∀ν ∈ T 0
1 (M),

where g−1 is the inverse metric of g. For every one-form ω, we therefore locally have

(ω])i ≡ ωi = gijωj
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where gij are the components of g−1. This, of course, corresponds to the classical opera-

tion of raising an index.

Both [ and ] can be extended to C∞-linear mappings acting on general tensorfields.

More precisely for fix 1 ≤ k ≤ r and 1 ≤ l ≤ s we have

↓lk: T rs (M)→ T r−1
s+1 (M)

(↓lk T )(ξ1, ...ξs+1, ω1, ..., ωr−1) = T (ξ1, ...ξk−1, ξk+1, ...ω1, ...ωl−1, ξ
[
k, ωl...ωr−1)

for vectorfields ξi and one-forms ωj. Locally, in a coordinate chart, we have

(↓lk T )
i1...ir−1

j1...js+1
≡ T i1...ir−1

j1...js+1
= gjkmT

i1...il−1m...ir−1

j1...jk−1jk+1...js+1
.

thus ↓lk is actually a composition of a suitable contraction C and the tensor product of T

with g, i.e. ↓lk T = C(g⊗ T ). ↓lk is an isomorphism, its inverse given by the mapping

↑lk: T r−1
s+1 (M)→ T rs (M)

which extracts the l-th one-form ωl and inserts ω]l into the k-th vectorfield slot. As before,

from the local formula for ↑lk T one can conclude that ↑lk is a composition of the tensor

product of T with g−1 and a contraction.

A family of R-linear mappings D ≡ Dr
s : T rs (M) → T rs (M) is called a tensor derivation on

M if

D(T1 ⊗ T2) = DT1 ⊗ T2 + T1 ⊗DT2

D(CT1) = C(DT1)

for any two tensorfields T1 and T2 and any contraction C. In particular for f ∈ C∞(M),

we have D(fT ) = fDT + D(f)T for all T ∈ T rs (M). A tensor derivation is consequently not

C∞-linear in general, hence the value of DT at a point p ∈ M depends only on the values

of T on some arbitrarily small neighbourhood of p. Tensor derivations can therefore be

restricted to act on open subsets of M or more precisely, if U is open in M there exists a

unique tensor derivation DU on U , called the restriction of D to U , such that

DU (T |U ) = D(T )|U

for every T ∈ T rs (M). In fact for p ∈ U , now omiting the subscript U , D is defined as

(DT )p := D(fT )p where T ∈ T rs (U) and f is some bump function around p.

A tensor derivation can be reconstructed from its values on smooth functions and vec-

torfields:

2.1.3. Theorem. Given η ∈ T 1
0 (M) and δ : T 1

0 (M)→ T 1
0 (M), an R-linear mapping such that

for all smooth functions f and vectorfields η

δ(fξ) = η(f)ξ + fδ(ξ), (2.2)
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then there exists a unique tensor derivation D on M such that D0
0 = Lη and D1

0 = δ.

Sketch of proof. Two tensor derivations coincide if they agree on C∞(M) and T 1
0 (M), which

proves the uniqueness assertion of the theorem. As for the existence assertion, define

D : T 0
1 (M)→ T 0

1 (M) as

(Dω)(ξ) := η
(
ω(ξ)

)
− ω(δ(ξ)) (2.3)

where η, ξ ∈ T 1
0 (M), whereas for general (r,s)- tensorfields with r + s ≥ 2, take D : T rs (M)→

T rs (M) to be

(DT )(ξ1, ...ξs, ω1, ..., ωr) : = η(T (ξ1, ...ξs, ω1, ..., ωr))

−
s∑
i=1

T (ξ1, ..., ξi−1, δ(ξi), .., ξs, ω1, ..., ωr) (2.4)

−
r∑
j=1

T (ξ1, ..., ξs, ω1, ..., ωj−1, Dωj , ..., ωr)

for all ξi ∈ T 1
0 (M), ωj ∈ T 0

1 (M). Observe that analogs of equations (2.3)-(2.4) actually

hold for all tensor derivations, which can be seen by applying the tensor product and

contraction rules.

2.1.4. Definition. A (smooth) connection ∇ on M is a mapping

∇ : T 1
0 (M)× T 1

0 (M)→ T 1
0 (M)

satisfying

(∇1) ∇fη+η′ξ = f∇ηξ +∇η′ξ

(∇2) ∇η(ξ + αξ′) = ∇ηξ + α∇ηξ′

(∇3) ∇η(fξ) = f∇ηξ + η(f)ξ

for all η, η′, ξ, ξ′ ∈ T 1
0 (M), f ∈ C∞(M) and α ∈ R. ∇ηξ is called covariant derivative of ξ w.r.t.

η.

2.1.5. By condition (∇1), ∇ηξ is a tensor in η, hence for any v ∈ TpM there exists a well

defined tangent vector ∇vξ ∈ TpM , namely (∇ηξ)p where η is any vectorfield satisfying

ηp = v. On the other hand ∇ηξ is not a tensor in ξ by (∇3), however by (∇2) − (∇3) the

mapping

ξ → ∇ηξ

satisifes the requirements of the map δ in theorem 2.1.3 for every fixed vectorfield η.

Consequently there exists a unique tensor derivation Dη : T rs (M) → T rs (M) such that

Dη(f) = η(f) and Dη(ξ) = ∇ηξ for all vectorfields ξ and smooth functions f . Clearly the

Dη ’s induce a mapping

∇ : T 1
0 (M)× T rs (M)→ T rs (M)

such that

∇ηf := η(f) (2.5)
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for all f ∈ C∞(M) and η ∈ T 1
0 (M). Next we want to obtain explicit formulae for ∇: using

equations (2.3)-(2.4) we have

(∇ηω)(ξ) := η
(
ω(ξ)

)
− ω(∇ηξ) (2.6)

for ω ∈ T 1
0 (M) where η, ξ ∈ T 1

0 (M), whereas for T ∈ T rs (M) with r + s ≥ 2 we have

(∇ηT )(ξ1, ...ξs, ω1, ..., ωr) : = η(T (ξ1, ...ξs, ω1, ..., ωr))

−
s∑
i=1

T (ξ1, ..., ξi−1,∇ηξi, .., ξs, ω1, ..., ωr) (2.7)

−
r∑
j=1

T (ξ1, ..., ξs, ω1, ..., ωj−1,∇ηωj , ..., ωr)

for all ξi ∈ T 1
0 (M), ωj ∈ T 0

1 (M) .

The mapping ∇ : T 1
0 (M)×T rs (M)→ T rs (M) is C∞-linear in the first variable and therefore

induces a mapping, again denoted ∇,

∇ : T rs (M)→ T rs+1(M)

(∇T )(ξ1, ...., ξs+1, ω1, ..., ωr) = (∇ξs+1
T )(ξ1, ...., ξs, ω1, ..., ωr)

for all ξi ∈ T 1
0 (M) and ωj ∈ T 0

1 (M). ∇T is called the covariant differential of T .

As a tensor derivation in the second variable and a C∞-linear mapping in the first, ∇ is

local and therefore can be restricted to act on open subsets of M . In particular, in some

coordinate chart it is given by

∇∂i(
∑
k

ξk∂k) =
∑
k

(∂ξk
∂xi

+
∑
j

Γkijξ
j
)
∂k (2.8)

where Γkij are the Christoffel symbol, defined as ∇∂i∂j =
∑
k Γkij∂k.

We end this section with one of fundamental results of (Semi-)Riemmanian geometry

which states that a unique metric and torsion-free connection can be assigned to every

smooth metric. More precisely:

2.1.6. Proposition. To any metric g one can associate a unique smooth connection ∇which
satisfies

(∇4) ∇g = 0 (⇔ η(g(ξ, ζ)) = g(∇ηξ, ζ) + g(ξ,∇ηζ) )

(∇5) T (η, ξ) := ∇ηξ −∇ξη − [η, ξ] = 0
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for all ξ, η, ζ ∈ T 1
0 (M). We call ∇ Levi-Civita connection of g and say ∇ is metric and torsion-

free. The Levi-Civita connection of g is implicitely given by the Koszul formula

2(∇ηξ)[(ζ) = 2g(∇ηξ, ζ) =η(g(ξ, ζ)) + ξ(g(ζ, η))− ζ(g(η, ξ))

− g(η, [ξ, ζ]) + g(ξ, [ζ, η]) + g(ζ, [η, ξ]).
(2.9)

Sketch of proof. For later use, we first abbreviate the right hand side of the Koszul formula

by

F (ξ, η, ζ) :=
1

2

(
η(g(ξ, ζ)) + ξ(g(ζ, η))− ζ(g(η, ξ))

− g(η, [ξ, ζ]) + g(ξ, [ζ, η]) + g(ζ, [η, ξ])
) (2.10)

for ξ, η, ζ ∈ T 1
0 (M).

To show uniqueness note that any connection satisfying (∇4) − (∇5) for the metric g,

also satsifies equation (2.9). Since [ is an isomorphism and the right hand side of (2.9)

depends only on the metric the claim follows.

As for the existence, observe that for fixed ξ and η the mapping ζ → F (ξ, η, ζ) is C∞(M)-

linear, hence a one-form. Consequently, there exists a unique vectorfield denoted ∇ηξ
such that ∇ηξ = (ζ → F (ξ, η, ζ))]. By inserting the appropriate combinations of vectorfields

in F (ξ, η, ζ) it follows that ∇ is a smooth connection satisfying required properties (∇1) −
(∇5).

For the complete proof see for instance [O’N83, p.61].

Finally we recall that Christoffel symbols of the Levi-Civita connection are given by

Γkij =
1

2

∑
m

gkm{∂igjm + ∂jgim − ∂mgij}.

2.2 Distributional metrics and connections

This section is devoted to the study of distributional metrics and connections. Dis-

tributional metrics and connections have first been defined in [Mar67] and later on in

[Par79]. The notion of non-degeneracy used for the metrics in these two papers differs

significantly, so we start by discussing appropriate non-degeneracy conditions, see also

[SV09]. We then turn to defining distributional connections and discuss extensions of

their action on distributional vectorfields. We end this section by discussing the difficul-

ties which arise when attempting to associate a distributional Levi-Civita connection to a

distributional metric, mainly following the presentation in [LM07].

Distributional metrics

2.2.1. Definition. A distributional metric g is a nondegenerate, symmetric element of
T 0

2 (M)′.
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2.2 Distributional metrics and connections

Obviously g ∈ D′T 0
2 (M) is called symmetric if

g(ξ, η) = g(η, ξ)

for all η, ξ ∈ T 1
0 (M). It is called nondegenerate if it satisfies

g(ξ, η) = 0 ∀η ∈ T 1
0 (M)⇒ ξ = 0 in T 1

0 (M) (2.11)

and it is in addition pointwise non-degenerate in the usual sense (see equation (2.1)) away

from its singular support. Recall that the singular support of g ∈ D′T 0
2 (M) is defined to be

the set

singsupp(g) = {x ∈M | ∃U ngbh. of x : g|U smooth}c.

2.2.2. Remark. The notion of non-degeneracy in the definition of the distributional met-

rics is not consistent throughout the literature. According to [Mar67] non-degeneracy is

defined solely via equation (2.11), whereas [Par79] demandes only pointwise non-degeneracy

away from the singular support in his definition of the distributional metric. Both of these

conditions suffer some serious drawbacks when considered on their own: the former

classifies some classically singular line elements such as ds2 = x2dx2 as non-degenerate,

whereas the latter imposes no control whatsoever on the behavior of the metric on its

singular support. Therefore following [Ste08], we have decided to combine both of them,

thereby preserving the usual notion of non-degeneracy for smooth metrics.

A distributional metric g does not induce an isomorphism from D′T 1
0(M) to D′T 0

1(M)

analogous to the mapping [ in the smooth case. Actually, the mere definition of [ as

a mapping from D′T 1
0(M) into D′T 0

1(M) is already problematic, since for a distributional

vectorfield ξ and metric g, the definition of g(ξ, . ) requires multiplication of distributions.

However, restricting the domain of [ to T 1
0 (M) avoids this problem and we can therefore

define

[ : T 1
0 (M)→ D′T 0

1(M)

ξ → ξ[ : ξ[(η) = g(ξ, η)

for all η ∈ T 1
0 (M). The non-degeneracy condition given in equation (2.11) renders [ injec-

tive. Surjectivity is obviously not to be expected in general.

Observe however that there are metrics with distributional coefficients which are invert-

ible: consider for instance the line element

ds2 = δ(u)du2 + 2dudv

on R2 which is a two-dimensional model of an impulsive pp-wave in Brinkmann form, see

[Pen68]. Here δ is a one-dimensional Dirac measure. That is we have the metric

gij(u, v) =

(
δ(u) 1

1 0

)
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2 Distributional Semi-Riemannian geometry

whose inverse metric is obviously given by

gij(u, v) =

(
−δ(u) 1

1 0

)
.

Distributional connections

2.2.3. Definition. A distributional connection ∇ on M is a mapping

∇ : T 1
0 (M)× T 1

0 (M)→ D′T 1
0 (M)

satisfying properties (∇1)− (∇3) of definition 2.1.4, i.e.

(∇1) ∇fη+η′ξ = f∇ηξ +∇η′ξ

(∇2) ∇η(ξ + ξ′) = ∇ηξ +∇ηξ′

(∇3) ∇ηfξ = f∇ηξ + (η(f))ξ

for all η, η′, ξ, ξ′ ∈ T 1
0 (M) and f ∈ C∞(M).

As in the smooth case a distributional connection ∇ is local, i.e. if ξ|U ≡ 0 on some

open subset U of M then (∇ηξ)|U ≡ 0 for all η ∈ T 1
0 (M). This can be seen by applying (∇3)

to fξ where f is some compactly supported smooth function whose support is contained

in U . Since ∇ is C∞-linear in the first variable the analogous statement is also true

for η. This implies ∇ can be restricted to a unique distributional connection on U such

that ∇η|U (ξ|U ) = (∇ηξ)|U . In particular, the usual coordinate formula (2.8) employing

Christoffel symbols holds, where clearly the Christoffel symbols are now distributions. A

distributional connection can be extended to act on the full smooth tensor algebra in the

usual way, i.e. it can be extended to a mapping

∇ : T 1
0 (M)× T rs (M)→ D′T rs (M) (2.12)

via equations (2.5)-(2.7). ∇ will always be considered with its extension to the full tensor

algebra.

2.2.4. Remark. The definition of a distributional connection as given here first appeared

in [Mar67]. However, the very definition contains a typo and literally defines ∇ to be a

mapping

∇ : T 1
0 (M)×D′T 1

0(M)→ D′T 1
0 (M) (2.13)

(in the notation used here) which satisfies (∇1) − (∇3) as defined in 2.2.3. Let us assume

for a moment that we do have such a mapping. Then strictly speaking condition (∇3)

reads

(∇′3) ∇ηfξ = f∇ηξ + (η(f))ξ , ∀f ∈ D′(M),∀η, ξ ∈ T 1
0 (M).

Using this equation to derive the usual local expressions (2.8) for the Christoffel symbols

gives

∇∂i(
∑
j

ξj∂j) =
∑
j

(∂ξj
∂xi

+
∑
k

Γjikξ
k
)
∂j
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2.2 Distributional metrics and connections

where both ξi and Γkij are distributions. This leads to multiplication of distributions and

therefore (2.13) does not let us pass to usual coordinate formulas.

There is another argument which casts doubt on defining the connection according to

(2.13). Interpreting the product ξΓkij in the sense of a suitable irregular intrinsic product

of distributions [Obe92, Chap. II] we would have

∀v ∈ D′(M), ∃ u · v ⇒ u ∈ C∞(M),

which leads us to conjecture that (2.13) forces Γkij to be smooth, hence ∇ to be classical!

The dual Levi-Civita connection

Having fixed the notions of a distributional metric and connection we examine if, in

analogy to the smooth case, it is possible to associate a distributional connection to a

distributional metric g, i.e. we discuss possible analogs to proposition 2.1.6. We follow

the discussion of [LM07] respectively [Ste08].

The first obstacle we meet is the impossibility to formulate condition (∇4) i.e. ∇g = 0 or

for that matter g(∇ξη, ζ) if both ∇ and g are distributional.

An attempt to, nevertheless, define a distributional connection via the Koszul formula

(2.9) fails, since [ is only injective and not surjectve for a general distributional metric g,

as already discussed. More precisely, for fixed ξ, η ∈ T 1
0 (M), the mapping

T 1
0 (M) 3 ζ 7−→ F (ξ, η, ζ) ∈ D′(M),

where F is the right hand side of the Koszul formula (cf.(2.10)), is C∞(M)-linear, which

can be seen on inspection of (2.10). Hence it defines an element in D′T 1
0(M). However

lacking an isomorphism D′T 1
0(M) → D′T 0

1(M) induced by g, we cannot mimic the final

step in the proof of 2.1.6, i.e. the definition ∇ηξ := (ζ 7−→ F (ξ, η, ζ))].

The above discussion implies that even though it is in general not possible to associate

a distributional connection in the sense of definition 2.2.3 to some general distributional

metric g, we can obtain “dual“ Levi-Civita connection as described in [LM07]:

2.2.5. Definition. The dual Levi-Civita connection associated with the distributional metric
g is a mapping ∇[ : T 1

0 (M)× T 1
0 (M)→ D′T 0

1(M) defined via:

∇[ηξ(ζ) := F (ξ, η, ζ) (2.14)

for η, ξ, ζ ∈ T 1
0 (M).

This connection is obviously not a distributional connection in the sense of the definition

2.2.3 . However ∇[ does satisfy dual versions of (∇4)− (∇5), i.e.
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2 Distributional Semi-Riemannian geometry

2.2.6. Proposition. The dual Levi-Civita connection ∇[ of the metric g satisfies:

(∇′4) η(g(ξ, ζ)) = ∇[ηξ(ζ) +∇[ηζ(ξ)

(∇′5) ∇[ηξ −∇[ξη − [η, ξ][ = 0.
(2.15)

Sketch of proof. Indeed, using (2.14) equations (2.15) are obviously, for all ζ ∈ T 1
0 (M),

equivalent to

η(g(ξ, ζ)) = F (ξ, η, ζ) + F (ζ, ξ, η)

g([η, ξ], ζ) = F (ξ, η, ζ)− F (η, ξ, ζ).

By writing F out according to (2.10) and using the symmetry of g most of the terms cancel

in pairs and the claim follows.

2.3 Curvature in smooth Semi-Riemannian geometry

In the following we recall some basic facts on the notion of curvature on Semi-Riemannian

manifolds, for details see eg. [O’N83, p.74].

2.3.1. For a smooth connection ∇ on M (cf. definition 2.1.4) the Riemann curvature

tensor Riem is the (1,3)-tensorfield

Riem : T 1
0 (M)× T 1

0 (M)× T 1
0 (M)→ T 1

0 (M)

defined by the formula

Riem(η, ξ)ζ = ∇η∇ξζ −∇ξ∇ηζ −∇[η,ξ]ζ (2.16)

for all ξ, η, ζ ∈ T 1
0 (M). Locally we have Riem(∂k, ∂l)∂j = Riemi

jkl∂i where classical indexing

has been used. In terms of Christoffel symbols, the components Riemi
jkl of the Riemann

tensor are given by

Riemi
jkl = ∂kΓilj − ∂lΓikj + ΓikmΓmlj − ΓilmΓmkj . (2.17)

Recall that a (semi-)Riemannian manifold is called flat if its Riemann tensor vanishes.

2.3.2. The Ricci curvature tensor is a symmetric (0,2)-tensorfield obtained by contracting

the Riemann tensor i.e.

Ric(η, ξ) := (C1
3Riem)(η, ξ) (2.18)

For the notation regarding the contraction operator see paragraph 1.3.13. In particular,

the components of the Ricci tensor relativ to some coordinate system are given by Ricij :=∑
mRiemm

ijm.

Another local description of the Ricci tensor can be obtained in a given local frame

(E(α))α=1,...,n, i.e. in a system of n(= dim(M)) linearly independent smooth vectorfields,

namely

Ric(η, ξ) := E(α)
(
Riem(η,E(α))ξ

)
(2.19)

36



2.4 Distributional Curvature

where (E(α))α=1,...,n is the dual frame of E(α) defined via

E(α)(E(β)) := δαβ =

1 α = β

0 α 6= β.

In case of a Semi-Riemannian manifold we always use the Riemann and Ricci tensors in-

duced by the Levi-Civita connection of the corresponding SR-metric g. Observe that in this

case, symmetries of the Riemann tensor imply that ±Ric are the only non-vanishing ten-

sorfields which can be obtained by contracting Riem. In addition, if the frame (E(α))α=1,...,n

is chosen to be orthonormal with respect to g, i.e.

g(E(α), E(β)) = εαδ
α
β

where εα = ±1, we also have the following description of the Ricci tensor:

Ric(η, ξ) := εαE
(α)
(
Riem(η,E(α))ξ

)
(2.20)

where the dual frame is obtained by raising the indices of E(α) by the metric, that is

E(α) := E[(α) or E(α)(E(β)) = εαδ
α
β . Even though this definition of the frame is common, it

involves the metric and hence cannot be generalized to the level of distributional geometry,

i.e. when g is a distributional metric. We will therefore always, unless specifically stated

otherwise, use the former definition of the frame.

A semi-Riemannian manifold M is called Ricci flat, if its Ricci tensor vanishes. Obviously

any flat manifold is Ricci flat, whereas the converse does not hold in general.

2.3.3. The scalar curvature R is defined as the contraction of the Ricci curvature associ-

ated with the Levi-Civita connection of the metric g, that is

R = C(↑11 Ric)

or locally

R = gmkRicmk (2.21)

where gαβ denote the components of the inverse metric g−1.

2.4 Distributional Curvature

In this section we will discuss the perspective of defining curvature for a distributional

connection. As already clearly stated by Marsden, [Mar67] (cf. 2.2.4) for a general dis-

tributional connection it is not possible to define the curvature due to the impossibility

of a general product for distributions. This can be seen most explicitely from formula

(2.16) which may be used to define Riem in the smooth setting. Indeed the terms involv-

ing second covariant derivatives, e.g. ∇η∇ξζ, are not defined since ∇ξ maps ζ ∈ T 1
0 (M)

into D′T 1
0(M) and therefore ∇η cannot be applied to ∇ξζ. Another aspect of the same ob-

struction can be seen from the coordinate formula (2.17) which involves products of the
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2 Distributional Semi-Riemannian geometry

Christoffel symbols. Since in our case these are distributional (cf. discussion following

definition 2.2.3) we directly see that Riem cannot be defined in this way.

Following an idea developed in [LM07] we try to define the curvature for distributional

connections ∇ that have additional regularity. In other words we look for a class of connec-

tions with range in some appropriate subspace A ⊆ D′(M) such that ∇ can be extended to

a map acting on A-objects in its second slot. More precisely we assume that ∇ has values

in A, i.e.

∇ : T 1
0 (M)× T 1

0 (M)→ AT 1
0 (M)

where the choice of A has to permit an extension of ∇ to a mapping

∇ : T 1
0 (M)×AT 1

0(M)→ D′T 1
0(M).

In fact, if we take

(∇ηξ)
(
ω
)

:= η
(
ξ(ω)

)
− ξ(∇ηω), (2.22)

we obtain such an extension of ∇, provided the right hand side of (2.22) is defined for all ξ

in AT 1
0(M). Note that the problem lies in the term ξ(∇ηω). For it to be defined, it suffices

to require that multiplication of two function in A results in a well defined distribution

and that the extension of ∇ to smooth one-forms has values in A.

As noted by [LM07], one possible choice for A is L2
loc(M), since it satisfies all the require-

ments outlined above. Indeed multiplication of two L2
loc(M)-functions yields a function in

L1
loc(M) ⊆ D′(M). Moreover, the usual extension of an L2

loc-connection ∇ to the smooth

tensor algebra, defined via equations (2.5)-(2.7), has values in L2
locT rs (M). This enables us

to define:

2.4.1. Definition. A distributional connection ∇ is called an L2
loc-connection if ∇ηξ belongs

to L2
locT 1

0 (M) for all η, ξ ∈ T 1
0 (M). With other words ∇ is a mapping

∇ : T 1
0 (M)× T 1

0 (M)→ L2
locT 1

0 (M)

which satisfies (∇1)− (∇3).

We now state and prove that an L2
loc(M)-connection indeed allows an extension to

L2
locT 1

0 (M) in the second slot.

2.4.2. Proposition. Every L2
loc-connection extends to an operator ∇ : T 1

0 (M)×L2
locT 1

0 (M)→
D′T 1

0(M) defined via
(∇ηξ

)
(ω
)

= η
(
ξ(ω)

)
− ξ(∇ηω) (2.23)

for η ∈ T 1
0 (M), ω ∈ T 0

1 (M) and ξ ∈ L2
locT 1

0 (M).

Proof. We have to show that both terms on the r.h.s of equation (2.23) make sense distri-

butionally. As to the first one, ξ(ω) belongs to L2
loc(M) if ξ ∈ L2

locT 1
0 (M), cf. equation (1.15).

Interpreting it as a distribution we may apply Lie derivatives along smooth vectorfield to it.

As for the second term, both ∇ηω (defined by equation (2.6)) and ξ have L2
loc-coefficients,

which implies that this term belongs to L1
loc(M). Consequently, the right hand side of
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(2.23) is a well defined distribution. Furthermore it is C∞(M)-linear in ω, implying ∇ηξ
belongs to D′T 1

0(M). In fact from (2.6) it follows

(∇ηξ
)
(fω

)
= η(f)ξ(ω) + fη(ξ(ω))− η(f)ξ(ω)− fξ(∇ηω)

= f(η(ξ(ω))− ξ(∇ηω)).

for all f ∈ C∞(M).

Proposition 2.4.2 allows us to define second order covariant derivatives for L2
loc-connections.

Indeed for η, ζ, ξ ∈ T 1
0 (M) we have ∇ηζ ∈ L2

locT 1
0 (M) hence ∇ξ∇ηζ ∈ D′T 1

0(M). We therefore

may define distributional Riemann and Ricci curvature of an L2
loc-connection as usual.

Note, however that in this case third order covariant derivatives are not defined as follows

from an iteration of the discussion preceding the definition of L2
loc-connection.

2.4.3. Definition. The distributional Riemann curvature of an L2
loc-connection ∇ is an

element of D′T 1
3(M) defined via

Riem(η, ξ)ζ = ∇ξ∇ηζ −∇η∇ξζ −∇[ξ,η]ζ (2.24)

for all η, ξ, ζ ∈ T 1
0 (M).

Inserting (2.23) in (2.24), one obtains an alternative description of the distributional

Riemann curvature which has been used as definition of distributional Riemann tensor in

[LM07]:

(Riem(η, ξ)ζ)
(
ω
)

=ξ
(
∇ηζ(ω)

)
−∇ηζ

(
∇ξω

)
− η
(
∇ξζ(ω)

)
+∇ξζ

(
∇ηω

)
+∇[η,ξ]ζ(ω)

(2.25)

where ω ∈ T 0
1 (M) and ξ, η, ζ ∈ T 1

0 (M). Moreover since Christoffel symbols of an L2
loc-

connection obviously belong to L2
loc(M), we obtain the usual coordinate formula employing

Christoffel symbols as well:

Riemi
jkl = ∂kΓilj − ∂lΓikj + ΓikmΓmlj − ΓilmΓmkj . (2.26)

Having successfully defined Riemannian curvature, the definition of the Ricci curvature

is straghtforward:

2.4.4. Definition. The distributional Ricci curvature Ric of an L2
loc-connection ∇ is an

element of D′T 0
2(M) defined via

Ric(η, ξ) := (C1
3Riem)(η, ξ)

for every η, ξ ∈ T 1
0 (M).

Since we may use the local formulas we obtain exactly as in the smooth case:
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2 Distributional Semi-Riemannian geometry

2.4.5. Lemma. In a local frame (E(α))α=1,...,n, the distributional Ricci tensor is given by

Ric(η, ξ) = E(α)
(
Riem(η,E(α))ξ

)
(2.27)

for all η, ξ ∈ T 1
0 (M), where E(α) denotes the dual frame of E(α) defined via E(α)(E(β)) = δαβ .

Remark In order to define distributional scalar curvature more care is needed, since it

involves the Levi-Civita connection which is, in the present case, the Levi-Civita connection

of a distributional metric g - a concept not entirely without problem as we have seen in

discussion preceding definition 2.2.5. Moreover the inverse of the metric is involved as

well. Observe that the mere existence of the inverse metric or for that matter the associated

Levi-Civita connection is not sufficient to guarantee the existence of the scalar curvature

since “multiplication“ of possibly only distributional Ricci tensor and g−1 must be defined

as well. The class of metrics introduced in the next section is regular enough to overcome

these difficulties.

2.5 Geroch-Traschen class of metrics

In this section a special class of metrics, called gt-regular metrics, is defined. First

introduced in [GT87], their purpose lies in the fact that all of the results of the classi-

cal geometry discussed so far hold for this metrics, i.e. it is possible to associate an

L2
loc-connection to such metrics which satisfies requirements (∇4) − (∇5) (as opposed to

(∇′4) − (∇′5)) and allows Riemann and Ricci curvature tensors to be defined. Moreover

such metrics are invertible and their product with the Ricci tensor is defined, hence the

distributional scalar curvature can be defined as well.

The regularity of gt-regular metrics will be H1
loc(M) ∩ L∞loc(M), so we start by examining

this space.

2.5.1. Lemma. H1
loc(M) ∩ L∞loc(M) is an algebra.

Proof. We have to show that H1
loc(M) ∩ L∞loc(M) is closed with respect to the (pointwise)

product. Since this is a local issue, it suffices to consider f, g ∈ H1
loc(Ω) ∩ L∞loc(Ω), where Ω

is an open subset of Rn.

Now clearly, fg ∈ L∞loc(Ω) ⊆ L2
loc(Ω) and we only have to deal with the derivative, i.e.

we have to show that ∂i(fg) ∈ L2
loc(Ω). By the lemma below, the product rule applies

and we have ∂i(fg) = ∂ifg + f∂ig. The right hand side is a sum of products of the form

L2
loc(Ω) · L∞loc(Ω) and therefore belongs to L2

loc(Ω).

2.5.2. Lemma. The Leibnitz rule holds in H1
loc(Ω). More precisely for fg ∈ H1

loc(Ω) we have

∂i(fg) = ∂ifg + f∂ig 1 ≤ i ≤ n

in L1
loc(Ω).
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Proof. Let f and g be elements of H1
loc(Ω) and fε respectively gε nets obtained by convoluting

f resp. g with a mollifier. By standard results on smoothing (cf. e.g. [AF03]), fε and gε are

smooth and converge to f resp. g. We then clearly have

∂i(fεgε) = (∂ifε)gε + (∂igε)fε.

By continuity of the product L2
loc(Ω) × L2

loc(Ω) → L1
loc(Ω) the terms on the right hand side

converge to (∂if)g+ (∂ig)f in L1
loc(Ω) and the term on the right hand side to ∂i(fg) in D′(Ω),

where ∂i(fg) initially exists only in D′(Ω). Putting both limits together, we obtain that

∂i(fg) also belongs to L1
loc(Ω).

Finally we discuss invertibility of functions in L∞loc(M)∩H1
loc(M) with respect to multipli-

cation:

2.5.3. Lemma. f ∈ H1
loc(M) ∩ L∞loc(M) is invertible with respect to multiplication if and only

if it is locally uniformly bounded from below, i.e. for every compact subset K of M there
exists a constant C > 0 such that

|f(x)| ≥ C a.e on K. (2.28)

Proof. As above it is sufficient to consider open subsets of Rn.

(⇒) If f is invertible in L∞loc(Ω), its inverse 1/f belongs to L∞loc(Ω) by definition. Conse-

quently, for every compact subset K of Ω there exists a constant C > 0 such that

|1/f(x)| ≤ C almost everywhere on K.

(⇐) Conversely let f be uniformly bounded from below. Then f(x) 6= 0 for almost every

x ∈ Ω, which implies that 1/f is defined a.e. on Ω. Moreover, 1/f belongs to L∞loc(Ω) ⊆
L2

loc(Ω) by (2.28). It remains to show ∂i(1/f) ∈ L2
loc(Ω) for 1 ≤ i ≤ n. In fact, since

Leibnitz rule holds we also have

∂i(1/f) = −∂if/f2 ∈ L2
loc(Ω) · L∞loc(Ω) ⊆ L2

loc(Ω)

by lemma 2.5.2, hence the claim holds.

We are now ready to give the main definition of this section:

2.5.4. Definition. A distributional metric g is said to be gt-regular if g ∈ (H1
loc ∩L∞loc)T 0

2 (M).
A gt-regular metric is called non-degenerate if its determinant is locally uniformly bounded

from below i.e.
∀K compact ∃C : |det(g(x))| ≥ C > 0 for a.e. x ∈ K (2.29)

By the non-degeneracy condition (2.29) and lemma 2.5.3, gt-regular metrics are invert-

ible, with the inverse metric being gt-regular as well. More precisely:

2.5.5. Lemma. A non-degenerate gt-regular metric g is invertible. Furthermore its inverse
g−1 is an element of (H1

loc∩L∞loc)T 2
0 (M) whose determinant is locally uniformly bounded from

below.
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2 Distributional Semi-Riemannian geometry

Proof. Since (H1
loc ∩ L∞loc)(M) is an algebra, the determinant det(g) of a gt-regular metric g

belongs to (H1
loc ∩ L∞loc)(M). By lemma 2.5.3, the non-degeneracy condition (2.29) imposed

on the determinant of g is equivalent to the assertion that 1/det(g) ∈ (H1
loc ∩ L∞loc)(M) a.e.

on M. Employing the cofactor formula, this implies that g is invertible a.e. with an inverse

in (H1
loc ∩ L∞loc)T 2

0 (M), whose determinant is locally uniformly bounded from below.

The existence of the inverse metric enables us to invert the dual Levi-Civita connection

(cf. definition 2.2.5) as in the smooth case, thereby obtaining the fundamental lemma of

Semi-Riemannian geometry for gt-regular metrics.

2.5.6. Theorem. Let g is be a non-degenerate gt-regular metric on M . The dual Levi-Civita
connection of g has values in L2

locT 0
1 (M). Consequently there exists a unique L2

loc-connection
on M that is torsion free and metric in the usual sense, i.e. this connection satisfies:

(∇4) ∇g = 0

(∇5) T = 0.

As usual it is called the Levi-Civita connection associated with the metric g.

Proof. The dual Levi-Civita connection ∇[ defined in 2.2.5 by the Koszul formula has val-

ues in L2
loc since

2(∇[ηξ)
(
ζ
)

= η(g(ξ, ζ)) + ξ(g(ζ, η))− ζ(g(η, ξ))︸ ︷︷ ︸
L2

loc

− g(η, [ξ, ζ]) + g(ξ, [ζ, η]) + g(ζ, [η, ξ])︸ ︷︷ ︸
H1

loc
∩L∞

loc

.

This and g−1 ∈ (H1
loc ∩ L∞loc)T 2

0 (M) imply that ∇ηξ := g−1(∇[ηξ, . ) belongs to L2
locT 1

0 (M). To

show that ∇ is the unique connection satisfying (∇1)− (∇5) one proceeds exactly as in the

smooth case, by plugging appropriate combinations of vectorfields in the Koszul formula,

cf. propositions 2.1.6 and 2.2.6.

By 2.4.3 and 2.4.4, the existence of the Levi-Civita L2
loc-connection implies the existence

of the corresponding Riemann and Ricci curvature tensors, but as already mentioned

at the beginning of this section the scalar curvature is defined as well. In order to define

scalar curvature we will generalize equation (2.21) to distributional setting, which requires

some care since it is not a priori clear what the product of g−1 with distribution Ric should

mean. In what follows we first discuss the definition of multiplication of g−1 with Ric in

remark 2.5.7 and then collect all the results concerning curvature of gt-regular metrics in

theorem 2.5.8.
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2.5 Geroch-Traschen class of metrics

2.5.7. Remark. To define the product of g−1 with Ricci tensor Ric observe that in the

smooth case

Ric(E(α), E(β))

= E(σ)
(
Riem(E(α), E(σ))E(β)

)
= E(α)

(
E(σ)(∇E(σ)

E(α))
)
− E(σ)

(
E(σ)(∇E(α)

E(β))
)

−∇E(α)
E(σ)(∇E(σ)

E(β)) +∇E(σ)
E(σ)(∇E(α)

E(β))− E(σ)(∇[E(α),E(σ)]E(β))

Now in our case the product of gαβ with the last three terms is well defined since all of

these terms belong to L1
loc and gαβ ∈ H1

loc ∩ L∞loc according to lemma 2.5.5. However, the

first two terms are in general only distributions so the product has to be defined by the

following trick: we mimic the Leibnitz rule to define

gαβE(α)

(
E(σ)(∇E(σ)

E(β))
)

:=

= E(α)

(
gαβE(σ)(∇E(σ)

E(β))
)
− (E(α)(g

αβ))E(σ)(∇E(σ)
E(β))

and analogously for the second term. Observe that gαβE(σ)(∇E(σ)
E(β)) is in H1

loc∩L∞loc hence

its derivative is a distribution, while E(α)(g
αβ) is an L2

loc-function which is multiplied with

another L2
loc-function. The above expression is thus well-defined as a distribution. If the

terms of the form E(σ)(∇E(σ)
E(α)) and the components of g−1 are sufficiently regular, this

definition coincides with the usual pointwise product of measurable functions.

2.5.8. Theorem. Let g be a non-degenerate gt-regular metric on M . Then:

1. The Riemann and Ricci curvature associated with the Levi-Civita connection of the met-
ric g are well defined as distributions on M.

2. The scalar curvature is a well-defined distribution on M given locally by

R := gαβRic(E(α), E(β)) (2.30)

where (E(α))α=1,...,n is a local frame on M.

Proof. 1. Having shown that ∇ is an L2
loc-connection, proposition 2.4.2 implies that the

distributional Riemman and Ricci curvature can be defined as in 2.4.3 and 2.4.4.

2. It follows from remark 2.5.7, that scalar curvature defined in (2.30) really is a distri-

bution.

Even tough the class of non-degenerate gt-regular metrics enables a formulation of

curvature tensors as distributional tensorfields, it is too limited to describe arbitrary con-

centration of gravitating sources on M.

More precisely, a gt-regular metric g can only be assigned a stress-energy tensor sup-

ported on a submanifold of codimension at most 1, as was first shown in [GT87]. In

particular gt-regular metrics cannot be used to describe point particles or strings (which

are supported on 1- respectively 2-dimensional submanifolds of M). As we shall see in a
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2 Distributional Semi-Riemannian geometry

moment, this is a consequence of the form of the Riemannian curvature tensor associated

with the metric g, which is a sum of a locally integrable tensorfield and a derivation of the

locally square-integrable tensorfield, cf. 2.5.6 resp. equation (2.25).

2.5.9. Theorem. Let X be a submanifold of the n-dimensional manifold M with dim(X) =

d ≤ n . Let 0 6= t ∈ D′T rs(M) be supported in X and of the form

t = t1 + Lξt2

where t1 ∈ L1
locT rs (M), t2 ∈ L2

locT rs (M) and ξ ∈ T 1
0 (M). Then d = n− 1.

Proof. We assume w.l.o.g that t is a scalar distribution. Moreover, since we have to eval-

uate 〈t, τ〉 for some τ ∈ Ωnc (M), we assume w.l.o.g. that the supp(τ ) is contained in the

domain of some chart. We therefore may work entirely in some open subset U ⊆ Rn

centered around the origin.

So let u = u1 + ∂(u2), where u1 ∈ L1
loc(U), u2 ∈ L2

loc(U) and ∂ denoting some partial

derivative. Let V be the intersection of U with some subspace of Rn of dimension d.

Denote by Vε an ε-neighbourhood of V in U , i.e. Vε = {p ∈ U | infx∈V ‖p − x‖ < ε}. Now

choose a smooth function fε that is identically equal to 1 on U\Vε but vanishes on a

smaller neighborhood of V . Moreover we demand |grad(fε) ≤ c/ε| for some constant c > 0.

Observe that by integration by parts, we have

〈u, ϕ〉 =

∫
U

u1ϕ+ u2∂ϕ.

for all ϕ ∈ Ωnc (U), so by the properties of fε it follows

|
∫
U

(u1ϕ− u2∂(ϕ))fε| = |〈u, fεϕ〉+

∫
U

f∂(fε)ϕ|= |
∫
Vε

f∂(fε)ϕ|

≤
(∫

Vε

|ϕ| |u2|2
)1/2(∫

Vε

|ϕ|‖gradfε‖2
)1/2

≤ C
(∫

Vε

|ϕ| |u2|2
)1/2( 1

ε2

∫
Vε∩K

dx
)1/2

≤ C ′ε(n−d−1)/2
(∫

Vε

|ϕ| |u2|2
)1/2

(*)

where in the first step 〈u, fεϕ〉 vanishes since u is supported on V . The first inequality is a

consequence of the Cauchy-Schwarz inequality, whereas the last one follows from the fact

that the integral over Vε ∩K can easily be seen to amount to a multiple of εn−d.

Now the left hand side of (*) converges to 〈u, ϕ〉 while the integral on the right hand side

approaches zero as ε→ 0. Therefore ε(n−d−1)/2 has to be unbounded which is only the case

if d = n− 1.
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3 Jump formulas for distributional curvature

As we have seen in the previous section the curvature tensor arising from a gt-regular

metric or more generally from an L2
loc-connection can have its support concentrated only

on hypersurfaces. Of course the support of a general curvature tensor does not have to

be concentrated on any submanifold at all, however in this section we will show, following

[LM07], that under certain additional assumptions on the metric resp. on the connection

the curvature tensor can be written as a sum of a ’regular’ part belonging to some Lebesgue

space and a ’singular’ part supported on a hypersurface.

Space-times containing such singularities in the curvature have been used to model

impulsive gravitational waves. For instance, in an empty space-time a curvature discon-

tinuity can be interpreted as a gravitational schock wave, whereas a delta function in the

curvature may be interpreted as the impulsive gravitational wave front, cf. [Pen72].

We remark that jump formulas along hypersurfaces have already been discussed among

others by Lichnerovicz, see e.g. [Lic79], Choquet-Bruhat [CB93] and Mars and Senovilla

[MS93].

3.1 Preliminaries

First we fix some notation and assumptions on the manifold M and the connection ∇
which will hold throughout chapter 3. Unless explicitely stated otherwise, we will always

assume these conditions whenever referring to either the manifold or the connection.

3.1.1. Assumptions on M. Henceforth we assume that we are given an n-dimensional

manifold M which is a union of two manifolds with boundary M+ and M−. Both M+

and M− are of the same dimension as M and are assumed to be embedded in M in the

sense of 1.1.7. In addition, the boundaries of M+ and M− are pointwise identified with

the resulting hypersurface denoted by X. The orientation on X is taken with respect to

M−. In other words:

M = M+ ∪M−

M+ ∩M− = X

∂M+ = ∂M− = X.

For a given distributional tensorfield A on M , we will denote by A± restrictions of A to

the interiors int(M±) of M±. Note that int(M±) are open in M . If A is sufficiently regular

for traces to be defined, we will denote the difference of traces of A from M+ and M− to X
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3 Jump formulas for distributional curvature

by [A]X . In other words

[A]X := γ(A+)− γ(A−),

where γ is the trace operator defined in 1.4.9 resp. 1.4.13 (cf. remark 1.4.14(ii)). [A]X will

be called the jump of A across X. On the other hand, we will call

Areg :=

A+ in int(M+)

A− in int(M−)

the ’regular’ part of A. If [A]X does not vanish, A is said to suffer a jump discontinuity

across X.

We will be mainly interested in fields A ∈ L1
locT rs (M), with the additional regularity re-

quirement A± ∈ W 1,p
loc T rs (M±) for some p ≥ 1. By virtue of the trace theorem 1.4.13, the

latter implies that both γ(A+) and γ(A−) belong to W 1,1−1/p
loc T rs (X). We therefore have

[A]X ∈W 1,1−1/p
loc T rs (X)

Areg ∈ L1
locT rs (M)

where values of Areg on X do not need to be specified. In order to simplify notation we will

be, most of the time, omitting both the superscripts ± and γ when denoting restrictions to

M± and X respectively.

3.1.2. Assumptions on ∇. We will consider distributional connections on M that are more

regular (”smooth”) when restricted to M± but “discontinuous” across X. More precisely,

we will assume that M is endowed with an L2
loc-connection ∇ for which

(∇ηξ)± ∈W 1,p
loc T

1
0 (M±) ∀ξ, η ∈ T 1

0 (M)

for some p ≥ 1 holds. In particular,

γ((∇ηξ)±) ∈W 1,1−1/p
loc T 1

0 (X)

and so we may define [∇ηξ]X which we will assume not to be identically vanishing. In

other words, ∇ will be assumed to possess a jump discontinuity across X.

In what follows we will abbreviate these regularity condition on ∇ by saying that ∇ is

an L2
loc(M)∩W 1,p

loc (M±)-connection. Note that these assumptions on ∇ imply that both M+

and M− are endowed with a well-defined, unique L2
loc∩W

1,p
loc -connection ∇± which satisfies

∇±η±ξ
± = (∇ηξ)± ∀ξ±, η± ∈ T 1

0 (M±) (3.1)

for arbitrary extensions ξ and η of ξ± resp. η± to M.

Having fixed the assumptions on the connection we now address the question of cur-

vature. Applying the results of section 2.4 to the connections ∇ and ∇± we obtain the

distributional Riemann and Ricci curvature Riem and Ric on M, as well as Riem± and
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3.1 Preliminaries

Ric± on M± for which obviously

Riem±(ξ±, η±)ζ± = (Riem(ξ, η)ζ)±

Ric±(ξ±, η±) = (Ric(ξ, η))±.

holds, if ξ, η and ζ denote respective arbitrary extensions of ξ±, η± and ζ± to M (cf. equa-

tion (3.1)). Comparing the assumptions on ∇± with the assumptions needed to obtain

distributional curvature tensors of a given distributional connection (cf. section 2.4), it is

immediately clear that ∇±, as L2
loc ∩W

1,p
loc -connections, possess some additional regularity.

This additional regularity can be expected to imply some additional regularity of Riem±

and Ric± as well. Indeed:

3.1.3. Lemma. Let p ≥ n/2. Then the product of two functions in W 1,p
loc (M) belongs to

Lploc(M), i.e.
(W 1,p

loc (M))2 ⊆ Lploc(M).

Proof. Since this is a local question, it suffices to prove the statement for open subsets of

Rn. To simplify the arguments we will notationally supress the subsets altogether. In fact,

by the Sobolev embedding theorem 1.2.6 we have

W 1,p
loc ⊆ L

q
loc for p ≤ q <∞

for p ≥ n, while for p < n we have

W 1,p
loc ⊆ L

q
loc for p ≤ q ≤ np/(n− p) =: q∗.

Moreover, by Hölder’s inequality we have (Lqloc)2 ⊆ Lq/2loc , which for p < n implies

(Lq
∗

loc)2 ⊆ Lq
∗/2

loc = L
np/2(n−p)
loc ⊆ Lploc,

if

np/2(n− p) ≥ p⇔ n ≥ 2(n− p)⇔ p ≥ n/2.

For p ≥ n just take q = 2p and use Hölder inequality. Summing up we obtain (W 1,p
loc )2 ⊆ Lploc

provided p ≥ n/2.

3.1.4. Lemma. Let ∇± be L2
loc ∩W

1,p
loc -connections on M± for some p ≥ 1. Then the Riemann

and Ricci curvature tensors Riem± and Ric± belong to L1
loc(M±). If, in addition, p ≥ n/2,

Riemann and Ricci curvature tensors even belong to Lploc(M±).

Proof. Let η, ζ, ξ ∈ T 1
0 (M±). The Riemann curvature on M± is given by

(Riem±(η, ξ)ζ)
(
ω
)

= ξ
(
∇±η ζ(ω)

)
− η
(
∇±ξ ζ(ω)

)︸ ︷︷ ︸
∈Lp

loc
⊆L1

loc

−∇±η ζ
(
∇±ξ ω

)
+∇±ξ ζ

(
∇±η ω

)︸ ︷︷ ︸
∈L2

loc
×L2

loc
⊆L1

loc

+∇±[η,ξ]ζ(ω),
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3 Jump formulas for distributional curvature

see equation (2.25). The last term in the above expression has the same regularity as ∇±,

so obviously Riem± belongs to L1
locT 1

3 (M±). The same holds for Ric± since it is just a

contraction of the Riemann tensor Riem±, cf. 2.4.4.

To show the second claim, it is sufficient to show that the product of two functions in

L2
loc(M±) ∩ W 1,p

loc (M±) actually belongs to Lploc(M±) provided p ≥ n/2, however by lemma

3.1.3 we even have (W 1,p
loc (M±))2 ⊆ Lploc(M±).

3.2 Jump formulas: the case of a singular connection

In the situation where the connection ∇ suffers a jump discontinuity across X, it can

be expected that the curvature tensors, which involve an additional derivative, will be

singular on X, i.e. will contain a delta distribution. To describe this behaviour and to make

the notion of delta distribution more precise we introduce the following 1-form distribution

δ which has its support concentrated on the hypersurface X:

3.2.1. Definition. The delta distribution δX supported on the hypersurface X of M is the
distributional 1-form on M defined as

δX(ξ)(ω) :=

∫
X

iξω|X

for ξ ∈ T 1
0 (M) and ω ∈ Ωnc (M).

Since iξω|X = iξ|Xω|X , δ depends only on the values of ξ on X. Furthermore if ξ|X ∈ TX
then δX(ξ) vanishes, since iξω|X vanishes as an (n-1)-form on X.

To derive the expression for the curvature adapted to the form of the connection we need

to study terms of the form ∇ξ∇ηζ, which in turn implies we need to study the behaviour

of the connection on L2
loc ∩W

1,p
loc -vectorfields suffering a jump discontinuity on X itself. To

do this we prove the following preparatory lemma:

3.2.2. Lemma. Let M ′ be an open subset of M with smooth boundary ∂M ′ and let p < ∞.
Then for all u ∈Wm,p

loc (M), θ ∈ Ωnc (M) and ξ ∈ T 1
0 (M) we have∫

M ′
ξ(u)θ =

∫
∂M ′

γ(u)iξθ −
∫
M ′

uξ(θ). (3.2)

Proof. To begin with observe that by the Stoke’s formula equation (3.2) holds if u ∈ C∞(M).

Indeed, for u ∈ C∞(M) and θ, ξ as above, we have

ξ(u)θ = ξ(uθ)− uξ(θ) = d(iξ(uθ))− uξ(θ),

where we have used ξ = diξ + iξd and dθ = 0. We thus obtain∫
∂M ′

uiξθ =

∫
M ′

d(iξ(uθ)) =

∫
M ′

uξ(θ) +

∫
M ′

ξ(u)θ. (∗)
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To deal with the case u ∈ Wm,p
loc (M) recall that by lemma 1.4.3, u can be approximated by

some sequence fn ∈ D(M) in Wm,p
loc (M). By continuity, (∗) then holds for u as well, where,

according to theorem 1.4.4, we have replaced u by γ(u) in the first integral.

In what follows we will use the following shorthand notation for the restrictions of the

connection and the curvature to M±:

∇±η ξ := ∇±η±ξ
±

Riem±(ξ, η)ζ := Riem±(ξ±, η±)ζ±

Ric±(ξ, η) := Ric±(ξ±, η±)

where ξ, η and ζ belong to T 1
0 (M) and ξ±, η±, ζ± denote respective restrictions to M±. A

similar notation will be used for all tensorfields on M.

3.2.3. Proposition. Let ∇ be an L2
loc(M) ∩ W 1,p

loc (M±)-connection with p ≥ 1. Then the
extension of ∇ to

∇ : T 1
0 (M)× L2

locT 1
0 (M)→ D′(M),

defined via (2.23), has the form

∇ξV := (∇ξV )reg + [V ]XδX(ξ) ∀ξ ∈ T 1
0 (M) (3.3)

for V ∈ L2
locT 1

0 (M) whose restrictions V ± to M± belong to Wm,p
loc T 1

0 (M±).

3.2.4. Remark. The action of the distributional vectorfield [V ]XδX(ξ) on ω ∈ T 0
1 (M) is

defined as

([V ]XδX(ξ))
(
ω
)

:= (θ 7−→
∫
X

[V ]X
(
ω|X

)
iξθ). (3.4)

To simplify notation we will sometimes write ω instead of ω|X in the above integral. Recall

that under the current assumptions [V ]X belongs to W
1−1/p,p
loc T 1

0 (X), see theorem 1.4.13.

Note that for any ξ, the distributional one-form [V ]XδX(ξ) vanishes iff [V ]X vanishes.

Observe that for every fixed ω this vectorfield distribution induces a scalar distribution

[V (ω)]XδX(ξ) which is given by

〈[V (ω)]XδX(ξ), θ〉 =

∫
X

[V ]X(ω)iξθ =

∫
X

[V (ω)]X iξθ.

Clearly, [V (ω)]X belongs to W 1−1/p,p
loc (X).

Proof of the proposition. By prop. 2.4.2, the extension of ∇ to V ∈ L2
locT 1

0 (M) is given by

(2.23) i.e.

(∇ξV )
(
ω
)

= ξ(V
(
ω
)
)− V (∇ξω) (3.5)

where ω is any smooth one-form. The first term is the distributional Lie derivative along ξ
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3 Jump formulas for distributional curvature

which applied to θ ∈ Ωnc (M) reads:

〈ξ(V
(
ω
)
), θ〉 =

= −〈V (ω), ξ(θ)〉 = −
∫
M

V (ω)ξ(θ)

= −
∫
M+

V +(ω)︸ ︷︷ ︸
W 1,p

loc (M+)

ξ(θ)−
∫
M−

V −(ω)︸ ︷︷ ︸
W 1,p

loc (M−)

ξ(θ)

=

∫
M+

ξ(V +
(
ω
)
)θ +

∫
X

V +(ω)iXθ +

∫
M−

ξ(V −
(
ω
)
)θ −

∫
X

V −(ω)iXθ

where in the last step lemma 3.2.2 was used. Inserting the above expression for ξ(V
(
ω
)
)

in (3.5) and observing

V (∇ξω) = V +(∇+
ξ ω) + V −(∇−ξ ω)

implies

〈∇ξV (ω), θ〉 =

=

∫
M+

( ξ(V +(ω))− V +(∇+
ξ ω) )︸ ︷︷ ︸

=(∇ξV )+(ω)

θ

+

∫
M−

( ξ(V −
(
ω
)
)− V +(∇−ξ ω) )︸ ︷︷ ︸

=(∇ξV )−(ω)

θ +

∫
X

[V ]X(ω)iXθ

=

∫
M+

(∇ξV )+(ω)θ +

∫
M−

(∇ξV )−(ω)θ +

∫
X

〈[V ]X(ω)iXθ

= 〈(∇ξV )reg(ω), θ〉+ 〈([V ]XδX(ξ))(ω), θ〉,

hence the claim holds.

We call a frame (E(α))α=1,...,n of M adapted to the hypersurface X if, for every point x in

X, (E(α)(x))α=1,...,n−1 is a base of TxX. We employ the following notation: A sum involving

only the first n − 1 frame fields will be indicated by a latin index e.g. ∇E(i)
E(i) means

summation over i = 1, ..., n− 1.

Inserting the expression for ∇ derived in proposition 3.2.3 into equations (2.24) and

(2.27) we obtain a decomposition of the curvature tensors in a regular part and a singular

part involving delta distributions. More precisely:

3.2.5. Theorem. Let ∇ be an L2
loc(M) ∩W 1,p

loc (M±)-connection with p ≥ 1.

(i) The distributional Riemann curvature defined in 2.4.3 takes the form

Riem(ξ, η)ζ = (Riem(ξ, η)ζ)reg + [∇ηζ]XδX(ξ)− [∇ξζ]XδX(η)

for every η, ξ, ζ ∈ T 1
0 (M).
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3.2 Jump formulas: the case of a singular connection

(ii) The distributional Ricci curvature defined in 2.4.4 takes the form

Ric(ξ, η) =(Ric(ξ, η))reg+

+ [E(α)(∇E(α)
η)]XδX(ξ)− [E(n)(∇ξη)]XδX(E(n))

for every ξ, η ∈ T 1
0 (M) and every frame (E(α))α=1,...,n of M adapted to the hypersurface

X.

Here the regular parts (Riem(ξ, η)ζ)reg and (Ric(ξ, η))reg of the Riemann resp. Ricci curvature
tensor belong to L1

loc(M), while the coefficients of the singular parts, e.g. the jumps [∇ηζ]X ,
[∇ξζ]X of the Riemann tensor, belong to W 1−1/p,p

loc (X). Provided p ≥ n/2, the regular parts of
the curvature tensors belong to Lploc(M) .

Proof. (i) According to definition 2.4.3, the distributional Riemann curvature is given by

the formula

Riem(ξ, η)ζ = ∇ξ∇ηζ −∇η∇ξζ −∇[ξ,η]ζ.

By the assumptions on ∇, the first order covariant derivatives ∇ηζ and ∇ξζ belong to

L2
locT 1

0 (M) hence we may apply proposition 3.2.3 (note that at this point [LM07] is impre-

cise) to obtain the respective expressions of the second order covariant derivatives. Hence

we obtain

Riem(ξ, η)ζ =

= (∇ξ∇ηζ)reg + [∇ηζ]XδX(ξ)− (∇η∇ξζ)reg − [∇ξζ]XδX(η)−∇[ξ,η]ζ

= (Riem(ξ, η)ζ)reg + [∇ηζ]XδX(ξ)− [∇ξζ]XδX(η)

for all η, ξ ∈ T 1
0 (M). This proves (i).

(ii) By lemma 2.4.5 we may insert the above form of the Riemann curvature into

Ric(ξ, η) := E(α)(Riem(ξ, E(α))η),

to obtain

Ric(ξ, η) =

= E(α)((Riem(ξ, E(α))η)reg) + E(α)([∇E(α)
η]XδX(ξ))− E(α)([∇ξη]XδX(E(α)))

= (Ric(ξ, η))reg + [(∇E(α)
η)
(
E(α)

)
]XδX(ξ)− [(∇ξη)

(
E(α)

)
]XδX(E(α)).

However, δX(E(α)) = 0 for α = 1, .., n − 1 since (E(α))α=1,..,n−1 are all tangent to the hyper-

surface X, which gives the result.

The assertion regarding the regularity of the regular parts follow from lemma 3.1.4, the

one of the jumps from remark 3.2.4.
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3 Jump formulas for distributional curvature

3.2.6. Remark. Note that by the properties of the delta distribution and the trace itself,

the singular part of the Riemann curvature actually takes the form

(Riem(ξ, η)ζ)sing = [∇η1ζ]XδX(ξ2)− [∇ξ1ζ]XδX(η2) (3.6)

where we have locally decomposed ξ and η as sums of two vectorfields; one tangential and

one normal to the hypersurface X. More precisely, ξ = ξ1 + ξ2 and η = η1 + η2 where ξ1 and

η1 are tangential, whereas ξ2 and η2 are normal to X. This is locally always possible by the

existence of local frames adapted to the hypersurface X. In fact, we have

[∇ξζ]XδX(η) = [∇ξζ]XδX(η1)︸ ︷︷ ︸
=0

+[∇ξζ]XδX(η2)

= [∇ξ1ζ]XδX(η2) + [∇ξ2ζ]XδX(η2).

In some local frame adapted to the hypersurface, ξ2 and η2 can be written as ξ2 = fE(n)

resp. η2 = gE(n) for some smooth functions f and g and therefore by remark 1.4.10(i) the

second term on the right hand side can be written as

[∇ξ2ζ]XδX(η2) = fg[∇E(n)
ζ]XδX(E(n)),

which is obviously symmetric in η and ξ. Hence

[∇ηζ]XδX(ξ)− [∇ξζ]XδX(η) = [∇η1ζ]XδX(ξ2)− [∇ξ1ζ]XδX(η2)

which proves (3.6).

We end this section by studying the conditions which make the singular part of the

curvature tensors vanish, thereby setting straight a lapse in [LM07].

3.2.7. Corollary.

(i) The singular part of the Riemann curvature vanishes if and only if [∇ξζ]X = 0 for all
ξ, ζ ∈ T 1

0 (M) such that ξ|X ∈ TX.

(ii) The singular part of the Ricci curvature vanishes if and only if [(∇E(i)
η)(E(i))]X = 0 and

[(∇ξη)(E(n))]X = 0 for all ξ, η ∈ T 1
0 (M) such that ξ|X ∈ TX.

Proof. (i) Since the space of distributional vectorfields forms a sheaf, cf. paragraph 1.3.3, it

suffices to show that the singular part of the Riemann tensor vanishes locally. By remark

3.2.6, this is equivalent to showing

[∇η1ζ]XδX(ξ2)− [∇ξ1ζ]XδX(η2) = 0 (3.7)

for all ξ, η, ζ ∈ T 1
0 (M), where we locally have ξ = ξ1 + ξ2 and η = η1 + η2. Here ξ1 and η1

denote the tangential part of ξ resp. η, whereas ξ2 and η2 denote the respective normal

parts.
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3.3 Jump formulas: the case of a singular metric

Now let us first assume (3.7) holds. Then for every ξ ∈ T 1
0 (M) tangential to the hyper-

surface, i.e. ξ|X ∈ TX, the first term in (3.7) vanishes. Hence we obtain

[∇ξζ]X = 0

for all ζ ∈ T 1
0 (M) as desired.

Conversely, assume [∇ξζ]X = 0 for all ξ, ζ ∈ T 1
0 (M) such that ξ|X ∈ TX. Then the second

term in equation (3.7) vanishes, whereas the first one vanishes since ξ is tangential to X

i.e. ξ2 = 0.

(ii) First assume that for every ξ, η ∈ T 1
0 (M) the singular part of the Ricci curvature

vanishes i.e.

[(∇E(i)
η)
(
E(i)

)
]XδX(ξ)︸ ︷︷ ︸

(∗)

+ [(∇E(n)
η)
(
E(n)

)
]XδX(ξ)− [(∇ξη)

(
E(n)

)
]XδX(E(n))︸ ︷︷ ︸

(∗∗)

= 0 (3.8)

For ξ ∈ T 1
0 (M) such that ξ|X ∈ TX the first two terms in (3.8) vanish, implying

[(∇ξη)(E(n))]X = 0

for all η ∈ T 1
0 (M). On the other hand, setting ξ = E(n) implies (∗∗) = 0, which in turn

implies

[(∇E(i)
η)(E(i))]X = 0 ∀η ∈ T 1

0 (M).

Assume conversely [E(i)(∇E(i)
η)]X = 0 and [E(n)(∇ξη)]X = 0 for every η, ξ ∈ T 1

0 (M) such

that ξ|X ∈ TX. The first assumption implies the vanishing of (*), whereas the second one

implies vanishing of (**) by an argument similar to the one in the proof of (i).

3.3 Jump formulas: the case of a singular metric

In this section, we start with a metric, that is ’smooth’ on M± but behaves badly across

X. We define the corresponding Levi-Civita connection and curvature tensor, and discuss

jump formulas in terms of the derivatives of the metric.

3.3.1. Assumptions on g. Throughout this section we assume g is a continuous pointwise

non-degenerate metric on M , which is of class W 2,p
loc (M±) when restricted to M± for some

p ≥ n/2. Moreover, we assume that the derivatives of g suffer a jump discontinuity across

X.

We will abbreviate these assumptions on g, by saying that g is a C(M)∩W 2,p
loc (M±)-metric.

3.3.2. Lemma. Let p ≥ n/2. If g is a C(M) ∩W 2,p
loc (M±)-metric, then g−1 belongs to C(M) ∩

W 2,p
loc (M±) as well.

Proof. By pointwise non-degeneracy we have g−1 ∈ CT 2
0(M) and also in L∞locT 2

0 (M). Hence

we only need to show that g−1 ∈W 2,p
loc T 2

0 (M±).
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3 Jump formulas for distributional curvature

As usual we work locally. Again by pointwise non-degeneracy (since for continuous

metrics, pointwise non-degeneracy implies local uniform boundedness from below) and

lemma below we have 1/det(g), cof(g)ij ∈W 2,p
loc ∩ L∞loc(M±) and hence we have

gij =
cof(g)ji
det(g)

∈W 2,p
loc ∩ L

∞
loc(M±)

as well.

3.3.3. Lemma. Let p ≥ n/2. W 2,p
loc (M) ∩ L∞loc(M) is an algebra and f ∈ W 2,p

loc (M) ∩ L∞loc(M) is
invertible iff f is locally uniformly bounded from below.

Proof. As usual we may argue locally. So let f, g ∈ W 2,p
loc (Ω) ∩ L∞loc(Ω). Then clearly f, g ∈

L∞loc(Ω) and since the Leibnitz rule applies (by the same reasoning as in lemma 2.5.2) we

have

∂i(fg) = ∂ifg + f∂ig ∈W 1,p
loc · L

∞
loc ⊆ L

p
loc

and

∂ij(fg) = ∂ij(f)g + ∂i(f)∂j(g) + ∂j(f)∂i(g) + f∂ij(g) ∈ Lploc · L
∞
loc +W 1,p

loc ·W
1,p
loc ⊆ L

p
loc

by lemma 3.1.3.

If f is invertible in W 2,p
loc ∩L∞loc then we see as in the proof of lemma 2.5.3 that f is locally

uniformly bounded from below.

Conversely if f us locally uniformly bounded from below then 1/f ∈ L∞loc ⊆ Lploc and by

the Leibnitz rule

∂i(1/f) = −∂if/f2 ∈ L∞loc ·W
1,p
loc ⊆ L

p
loc.

Finally we have

∂ij(1/f) =
2f∂if∂jf − f2∂ijf

f4
∈ L∞loc ·W

1,p
loc ·W

1,p
loc + Lploc · L

∞
loc ⊆ L

p
loc,

again by lemma 3.1.3.

As a first step towards the definition of the Levi-Civita connection associated with g, we

check that a C(M) ∩ W 2,p
loc (M±)-metric indeed satisfies the assumptions made in section

2.5, i.e. it is a non-degenerate gt-regular metric.

3.3.4. Lemma. If g is a C(M) ∩W 2,p
loc (M±)-metric and p ≥ n/2, then g also belongs to

H1
loc(M) ∩ L∞loc(M).

Proof. The L∞loc(M)-property is clear. To obtain g ∈ H1
loc(M), observe that we actually need

to show g ∈ H1(K) for any compact K ⊆ M . Since each K can be written as a union of a

compact set in M+ and a compact set in M−, i.e. as K = (K ∩M+) ∪ (K ∩M−), we may

take full advantage of the hypothesis g ∈ W 2,p
loc (M±). Hence, the result follows if we can
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3.3 Jump formulas: the case of a singular metric

show that

W 2,p
loc (Ω) ⊆ H1

loc(Ω)

for p ≥ n/2 and all open Ω ⊆ Rn.

In case p ≥ 2 everything is clear, so we only need to consider the cases 2 > p ≥ n/2, i.e.

n = 1, 2, 3.

In case n = 1, we have 1 ≤ p < 2 and we may use the Sobolev imbedding theorem 1.2.6

(1),(2) for m = 1 to obtain W 1,p
loc (Ω) ⊆ L2

loc(Ω).

In case n = 2, we have to consider 1 ≤ p < 2 again, but now we use 1.2.6(3) since

mp = p < 2 = n. Indeed, W 1,p
loc (Ω) ⊆ L2

loc(Ω) since

np

n−mp
=

2p

2− p
≥ 2.

Finally, in case n = 3 we have to consider 3/2 ≤ p < 2 and we again may use 1.2.6(3) since

mp = p < 2 < n = 3. From there we again obtain W 1,p
loc (Ω) ⊆ L2

loc(Ω) since

np

n−mp
=

3p

3− p
≥ 2.

for p ≥ 6/5 and therefore, in particular for p ≥ 3/2.

Since for continuous metrics, the notions of pointwise non-degeneracy and uniform

non-degeneracy on compact subsets of M are equivalent, the metric g is, by the previous

lemma, a non-degenerate gt-regular metric and hence the results of section 2.5 apply,

i.e. by theorem 2.5.6, g induces an L2
loc-Levi-Civita connection, which in turn enables the

definition of the distributional Riemann, Ricci and scalar curvature. However, the Levi-

Civita connection of a C(M)∩W 2,p
loc (M±)-metric actually satisifies the assumptions of 3.1.2.

More precisely:

3.3.5. Theorem. Let g be a C(M) ∩W 2,p
loc (M±)-metric with p ≥ n/2. Then, the Levi-Civita

connection ∇ of g is an L2
loc-connection on M , whose restrictions to M± belong to W 1,p

loc (M±).

Proof. By lemma 3.3.4, g is gt-regular, hence by theorem 2.5.6 its Levi-Civita connection

∇ is defined and of class L2
loc(M).

To show ∇± ∈ W 1,p
loc (M±) we consider the right hand side of the Koszul formula (2.9).

Indeed, since the restrictions of g to M± belong to W 2,p
loc (M±), we have

(∇[ξη)± ∈W 1,p
loc T

0
1 (M±) ∀ξ, η ∈ T 1

0 (M).

Since ∇ is obtained by inverting ∇[ via the inverse metric, i.e.

∇ξη = g−1(∇[ξη, . )

the claim follows from the lemma below. Indeed, by lemma 3.3.2, the inverse metric g−1

belongs to W 2,p
loc ∩L∞locT 2

0 (M) hence its ’product’ with ∇[ ∈W 1,p
loc T 0

1 (M±) yields an element of

W 1,p
loc T 1

0 (M±).
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3 Jump formulas for distributional curvature

3.3.6. Lemma. Let p ≥ n/2 and Ω ⊆ Rn open. Then f ∈ W 2,p
loc (Ω) ∩ L∞loc(Ω) and g ∈ W 1,p

loc (Ω)

imply fg ∈W 1,p
loc (Ω).

Proof. First observe that fg ∈ L∞loc(Ω) · W 1,p
loc (Ω) ⊆ Lploc(Ω). By the same reasoning as in

lemma 2.5.2 one can show that the Leibnitz rule applies and therefore we may write

∂j(fg) = ∂j(f)g + f∂j(g) ∈W 1,p
loc (Ω) ·W 1,p

loc (Ω) + L∞loc(Ω) · Lploc(Ω).

which is, by lemma 3.1.3, in Lploc(Ω).

3.3.7. Theorem. Let g be a C(M) ∩W 2,p
loc (M±)-metric with p ≥ n/2.

(i) The Riemann and Ricci curvature associated with ∇ take the form derived in theorem
3.2.5(i)-(ii).

(ii) The scalar curvature associated with ∇, as defined in theorem 2.5.6, takes the form

R = Rreg + [(gnβE(j) − gjβEm)
(
∇E(j)

E(β)

)
]XδX(E(n))

Moreover, the regular parts of the Riemann, Ricci and scalar curvature belong to Lploc(M)

whereas the jumps belong to W 1−1/p,p
loc (X).

Proof. (i) By theorem 3.3.5, the Levi-Civita connection of g satisfies the assumptions of

paragraph 3.1.2, hence theorem 3.2.5 applies.

(ii) The existence of the scalar curvature follows from theorem 2.5.6, while its form

is obtained by inserting the expression for the Ricci tensor derived in theorem 3.2.5 in

equation (2.30).

The regularity assertions for the regular resp. singular parts of the Riemann and Ricci

curvature follow from theorem 3.2.5. As for the scalar curvature, its regular part be-

longs to Lploc(M), by remark 2.5.7 and lemma 3.1.4, whereas the jump of R belongs to

W
1−1/p,p
loc (X) by the trace theorem 1.4.13 (cf.remark 1.4.14(ii)).

Based on corollary 3.2.7, we now determine the conditions for the singular part of the

Riemann curvature to vanish, in terms of the metric and its derivatives. In doing so we

will make use of the following remark:

3.3.8. Remark. Observe that for any η, ζ, ξ ∈ T 1
0 (M) such that ξ|X ∈ TX

[ξ(g(η, ζ))]X = 0 (3.9)

In fact [ξ(g(η, ζ))]X = ξ([g(η, ζ)]X) according to remark 1.4.10(i). Since g is continuous,

[g(η, ζ)]X vanishes (cf. remark 1.4.10(ii)), hence the claim holds.

3.3.9. Corollary. The singular part of the Riemman curvature vanishes if and only if

[ζ(g(ξ, η))]X = 0 (3.10)

for all η, ζ, ξ ∈ T 1
0 (M) such that ξ|X and η|X belong to T 1

0 (X).
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3.3 Jump formulas: the case of a singular metric

Proof. According to corollary 3.2.7, the singular part of the Riemann tensor vanishes if

and only if [∇ξη]X vanishes for all smooth vectorfields ξ and η such that ξ|X ∈ T 1
0 (M).

Since

∇ξη = g−1(∇[ξη, . )

and both g and g−1 are continuous, by remark 1.4.10(ii) we have from the Koszul formula

[∇ξη]X = 0 ⇔ [∇[ξη]X = 0

⇔ [ξ(g(η, ζ))]X + [η(g(ξ, ζ))]X − [ζ(g(ξ, η))]X = 0, ∀ζ ∈ T 1
0 (M).

Assuming first [∇ξη]X = 0 for all smooth vectorfields ξ and η such that ξ|X ∈ T 1
0 (X),

equation (3.10) follows from the second equivalence above and applying equation (3.9).

Conversely, let (3.10) hold and choose η, ζ, ξ ∈ T 1
0 (M) such that ξ|X , η|X ∈ T 1

0 (X). By

remark (3.3.8), the claim follows, again using the equivalence above.

3.3.10. Remark. Note that in general it is not possible to formulate vanishing of the

singular part of Ricci curvature in terms of the ’continuity’ of metric derivatives. However,

assuming that the hypersurface is nowhere null we can locally choose an orthonormal

frame (E(α))α=1,...,n adapted to X which has the same regularity as g. Recall that its dual

frame E(α), obtained by raising the indices by the metric, satisfies E(α)(E(β)) := εαδ
α
β where

εα = g(E(α), E(α)).

It is easy to see that formula (2.27) for the Ricci tensor can be extended to such a frame.

By the same reasoning as in corollary 3.3.9, the singular part of the Ricci tensor vanishes

iff

[E(n)(g(ξ, η))]X = 0

for all η and ξ tangential to X. By remark 3.3.8, this implies that the singular part of the

Ricci tensor vanishes if and only if the singular part of the Riemann tensor vanishes. For

null hypersurface this is not the case.
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Abstract

This thesis is concerned with a low-regularity formulation of Semi-Riemannian geometry.

More precisely, we deal with connections and Semi-Riemannian metrics which belong to

some appropriate local Sobolev space.

The interest in geometries of low-regularity is motivated by applications in general rel-

ativity, where they are used to describe space-times with energy-matter concentration on

some lower dimensional region. Such space-times are frequently used to model thin shells

of matter and radiation, cosmic strings and impulsive gravitational waves.

After collecting all the necessary prerequisites (distributions and Sobolev spaces on

manifolds), we discuss the basic notions of Semi-Riemannian geometry within the frame-

work of distributional geometry. In particular, we study what regularity assumptions have

to be imposed on a distributional metric, for its Levi-Civita connection resp. curvature to

be defined. Finally, we specialize to the case of connections resp. metrics which are

’smooth’ everywhere except on some hypersurface, across which, they suffer a ’jump dis-

continuity’. In this context we discuss several ’jump formulas’ for the respective curvature

quantities.
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Zusammenfassung

Die vorliegende Magisterarbeit befasst sich mit den Grundlagen der Semi-Riemannschen

Geometrie im Fall niedriger Regularität. Genauer gesagt behandeln wir Zusammenhänge

bzw. Semi-Riemannsche Metriken die in einem geeigneten lokalen Sobolev Raum liegen.

Das Interesse an solchen Geometrien niedrieger Regularität wird durch Anwedungen

in der Allgemeinen Relativität motiviert, wo sie zur Beschreibung von Raumzeiten, deren

Energie-Materie Inhalt auf einem niedrieger-dimensionalen Bereich konzentriert ist, einge-

setzt werden. Solche Raumzeiten werden ihrerseits zur Modellierung dünner Schalen von

Materie oder Strahlung, kosmischer Strings und impulsiver Gravitationswellen verwendet.

Nachdem wir die nötigen Grundkenntnise (i.e. Distributionen und Sobolev Räume

auf Mannigfaltigkeiten) wiederholt haben, diskutieren wir die grundlegenden Begriffe der

Semi-Riemannschen Geometrie im Rahmen der distributionellen Geometrie. Wir befassen

uns insbesondere mit der Frage nach der minimalen Regularität distributioneller Metriken,

welche es erlaubt, den Levi-Civita Zusammenhang bzw. die Krümmung zu definieren.

Zum Abschluss, betrachten wir den Spezialfall von Metriken die außerhalb einer Hy-

perfläche ’glatt’ sind, aber ’Sprünge’ längs dieser Hyperfläche aufweisen. In diesem Kon-

text prsentieren wir einige ’Sprungformeln’ für die entsprechenden Krümmungsgrößen.

61





Bibliography

[Ada75] R. A. Adams. Sobolev Spaces. Academic Press, 1975.

[AF03] R.A. Adams and J.J.F. Fournier. Sobolev Spaces. Academic Press, second

edition, 2003.

[Bou74] N. Bourbaki. Algebra 1, Chapters 1-3. Hermann Addison-Wesley, 1974.

[CB93] Y. Choquet-Bruhat. Applications of generalized functions to shocks and dis-

crete models. Generalized Functions and Their Applications, pages 37–49,

1993.

[Col84] J. F. Colombeau. New generalized functions and multiplication of distributions.

North Holland, 1984.

[CP82] J. Chazarain and A. Piriou. Introduction to the theory of linear partial

differential equations. North-Holland Publishing Company, 1982.

[dR84] G. de Rahm. Differentiable Manifolds. Grundlehren Math. Wiss, 1984.

[FJ82] G. Friedlander and M. Joshi. Introduction to the theory of distributions. Cam-

bridge University Press, 1982.

[GKOS01] M. Grosser, M. Kunzinger, M. Oberguggenberger, and R. Steinbauer. Geometric

theory of generalized functions with applications to general relativity. Kluwer

Academic Publishers, 2001.

[Gro08] M. Grosser. A note on distribution spaces on manifolds. Novi Sad J.Mat, 38(3),

2008.

[GT87] R. Geroch and J. Traschen. Strings and other distributional sources in general

relativity. Physical Review D, 36(4), 1987.
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Place of birth: Šibenik, Croatia

Nationality: Croatian

Education

1992-2000 Elementary school in Split, Croatia

2000-2004 3.Gymnasium Split,Croatia with focus on mathematics and natural

sciences

24.06.2004 School leaving examination with distinction

2004-present Diploma Studies in Mathematics and Physics at the University of Vi-

enna, Austria


