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Zusammenfassung 
In dieser Arbeit wurde der „Oxidative Burst“ des angeborenen Immunsystems in der Interaktion mit 

Candida albicans untersucht. Das klinische Spektrum des opportunistischen Pathogens C. albicans 

reicht von mucokutanen Infektionen bis hin zu lebensbedrohlichen, systemischen Krankheiten in 

immunsupprimierten Patienten. Eine der ersten Reaktionen der Zellen des angeborenen 

Immunsystems, sogenannte Phagozyten, ist die Produktion von Reaktiven Oxygen Spezies (ROS) 

wenn sie auf Pathogene stoßen. ROS spielen eine wichtige Rolle bei Entzündungsreaktionen, zum 

Beispiel zerstören sie eindringende Krankheitserreger. Durch eine Überproduktion von ROS kann 

aber auch das Endothel beschädigt werden. Frühere Studien haben gezeigt, dass Zymosan, eine 

Zellwand Aufbereitung von Saccharomyces cerevisiae, und C. albicans die ROS Produktion in 

Makrophagen aktivieren. Das C. albicans Genom codiert sechs Superoxid Dismutasen (SOD1 bis 

SOD6), die an der Zersetzung von ROS beteiligt sind, SOD1 bis SOD3 sind intrazellular und SOD4 bis 

SOD6 sind wahrscheinlich an der Zellwand von C. albicans lokalisiert.  

Diese Arbeit zeigt, dass die Co-Kultur von Makrophagen oder myeloischen dendritischen Zellen 

mit C. albicans denen Sod5 genetisch entfernt wurde zu einer massiven extrazellulären Anhäufung 

von ROS in vitro führt. Diese ROS Akkumulierung ist in der Interaktion mit Makrophagen noch höher 

wenn C. albicans weder Sod4 noch Sod5 haben. Weiteres werden C. albicans Sod5 und Sod4 

Mutanten von Makrophagen in vitro besser getötet als Wildtyp C. albicans. Makrophagen, die einen 

Defekt im Oxidativen Burst haben weil ihnen das gp91Phox Gen fehlt, können diese Mutanten nicht 

mehr töten, dies zeigt eine ROS-abhängige Eliminierung von pathogenen Pilzen durch Makrophagen. 

Diese Daten zeigen die physiologische Rolle der C. albicans Zellwand SODs bei der Entgiftung von ROS 

und weisen auf einen Mechanismus,  mit dem C. albicans das Immunsystems in vivo überlistet, hin.  

Im zweiten Teil dieser Arbeit wurden potentielle Rezeptor(en) untersucht, durch die 

Makrophagen C. albicans erkennen, um den oxidative Burst zu induzieren. Die Toll Like Rezeptor-

Familie und das intrazelluläre MyD88 Adapter-Protein sind nicht an der ROS-Produktion durch 

Zymosan oder C. albicans Stimulation beteiligt. Wenn der C-Typ-Lectin-Rezeptor Dectin-1 mit 

Zymosan oder Hitze-getöteter C. albicans stimuliert wird, induziert Dectin-1 die ROS Antwort indem 

die Src und Syk-Kinase aktiviert wird. Darüber hinaus aktiviert Zymosan auch die ERK1/2 MAP-

Kinasen via Dectin-1. Im Gegensatz dazu ist Dectin-1 nur mäßig an der Aktivierung von ROS und ERK1 

beteiligt wenn die Makrophagen mit lebenden C. albicans stimuliert werden. Interessanterweise ist 

die Aktivierung der Src und Syk-Kinasen auch wichtig für ROS Induktion durch Stimulierung mit 

lebender C. albicans. Dies führt zu dem Schluss, dass ein Rezeptor oder Adapter-Protein mit einem 

ITAM Motif an der Induktion von ROS beteiligt ist. Ein siRNA-basierendes knock-down-Experiment 

zeigt, dass das ITAM Adapter-Protein DAP12 für die ROS Produktion durch C. albicans und Zymosan 

mitverantwortlich ist.  
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Summary 
In this work the oxidative burst of the innate immune system in response to Candida albicans 

infection was investigated. The clinical spectrum of the human opportunistic pathogen C. 

albicans ranges from mucocutaneous infections to systemic life-threatening diseases in 

immunocompromised patients. One of the immediate early responses of cells of the innate 

immune system on encountering microbial pathogens is the production of reactive oxygen 

species (ROS) by phagocytes. ROS play important roles in inflammatory reactions by destroying 

invading pathogens. However, overproduction of ROS may also cause endothelial damage, and 

excessive inflammation. Previous studies have shown that zymosan, a cell wall preparation of 

Saccharomyces cerevisiae, as well as C. albicans in the yeast form, strongly induce ROS in 

macrophages. The C. albicans genome harbours six superoxide dismutases (SOD1-6) involved in 

ROS degradation; SOD1 to SOD3 are intracellular and SOD4 to SOD6 are located in the cell wall.  

This work demonstrates that co-culture of macrophages or myeloid dendritic cells with C. 

albicans cells lacking Sod5 leads to massive extracellular ROS accumulation in vitro. ROS 

accumulation was further increased in co-culture with fungal cells lacking both Sod4 and Sod5. 

Survival experiments show that C. albicans Sod5 and Sod4 double mutants exhibit a severe loss 

of viability in the presence of macrophages in vitro. The reduced viability of the mutants relative 

to wild type is not evident with macrophages from gp91phox-/- mice defective in the oxidative 

burst activity, demonstrating a ROS-dependent killing activity of macrophages targeting fungal 

pathogens. These data show a physiological role for cell surface SODs in detoxifying ROS, and 

suggest a mechanism whereby C. albicans can evade host immune surveillance in vivo.  

The second part of this thesis aims to identify putative receptor(s) by which macrophages 

recognise C. albicans and induce the oxidative burst. The Toll-like receptor family and its MyD88 

adaptor protein are not involved in ROS production due to zymosan or C. albicans stimulation. 

The c-type lectin receptor Dectin-1 can induce the ROS response via activation of Syk kinase with 

its immunoreceptor tyrosine-based activation motif (ITAM)-like domain upon zymosan or heat-

killed C. albicans stimulation. Furthermore, zymosan also activates extracellular signal related 

kinase ERK1/2 MAPK dependent on Dectin-1. In contrast, Dectin-1 is only moderately involved in 

activation of ROS and ERK1/2 when stimulated with live C. albicans. Interestingly, activation of 

Src and Syk kinases is essential to induce the ROS response by live C. albicans. This leads us to 

conclude that an ITAM-containing receptor or adaptor protein is involved in the recognition of 

live C. albicans. Using a siRNA-based knock-down assay, we found that one ITAM-containing 

adaptor protein, DAP12, may contribute to the ROS response upon fungal pathogens such as C. 

albicans. 
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I. Introduction 

I.1 Introduction to fungi 

The kingdom of fungi is made up of diverse eukaryotic species. Fungi are heterotrophic 

organisms composed of rather rigid chitinous cell walls. About 180000 species of fungi have 

been described, although there are about 1,5 million species estimated (Mueller and Schmit, 

2007). Recently, the kingdom of fungi was newly classified, taking molecular phylogenetic 

analyses and input from diverse members of the fungal taxonomic community into account 

(Hibbett et al., 2007). Macroscopic fungi such as morels and mushrooms represent only a small 

fraction of the diversity in the Fungi kingdom. The majority of fungal species, the molds, grow as 

multicellular filaments. The more phylogenetically primitive molds produce coenocytic filaments, 

which are multinucleate cells without septa. The more advanced forms grow hyphae with septa 

that subdivide filaments into uninucleate and multinucleate compartments. Some fungal 

species, the yeasts, also grow as single cells. Although the yeast form occurs less frequently in 

nature, it is found in economically very important and scientifically well explored species such as 

“bakers’ yeast” Saccharomyces cerevisiae (Carlile and Watkinson, 1994).  

I.2 Opportunistic fungal pathogens and Candida species 

About 300 fungal species are known to cause human infections, and some fungi are 

economically important as animal and plant pathogens (Taylor et al., 2001). In humans, fungi can 

cause superficial, cutaneous, subcutaneous, systemic or allergic diseases. In healthy individuals, 

fungal diseases are benign. However, the few existing life-threatening fungal diseases are of 

major clinical relevance, since they pose an increasing problem in humans with altered bacterial 

flora due to antibiotics treatment, as well as in immunocompromised patients. (McGinnis MR., 

1996) 

There are two main types of fungal infections described. First, in true pathogenic fungal 

infections, the fungus is virulent regardless of the constitutional adequacy of the host; they 

include Histoplasma, Coccidioides, Blastomyces and Paracoccidiodies. Second, the opportunistic 

fungal mycoses are caused by organisms which are normally of low virulence. However, disease 

manifestation is dependent on a reduced host resistance to infection. Common fungi involved in 

opportunistic infections are Aspergillus, Cryptococcus and Candida spp. 
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Aspergillus species are ubiquitous saprophytic fungi found all over the world. They thrive 

well in soil and decaying vegetation. Of all fungal diseases aspergillosis has been the subject of 

most intensive studies (Blanco and Garcia, 2008). Cellular characteristics that might cause 

respiratory aspergillosis have been described in many mammalian species and birds (Tell, 2005). 

The incidence of invasive aspergillosis in patients with AIDS, chronic granulomatous disease and 

acute leukaemia are estimated at 0-12%, 25-40% and 5-24 % (Warris and Verweij, 2005). 

Two species can be differentiated in the genus Cryptococcus. C. neoformants infects 

primarily patients with a compromised immune system, while C. gattii infects 

immunocompetent hosts. Cryptococcal meningitis is a common opportunistic infection in late-

stage HIV infections and mortality from HIV-associated cryptococcal meningitis ranges from 10-

30% (Bicanic et al., 2005). 

Candida species are harmless commensal colonisers of the gastrointestinal and 

genitourinary tracts and to a lesser extent on the human skin. Approximately 75% of all women 

experience vaginal infections caused by Candida spp. at least once in their lifetime. Candida 

albicans is the causative agent in 85-95 % of these infections (Fidel, 2007). However, in 

weakened immune systems, for example as a result of cancer chemotherapy, HIV infection or in 

neonates, Candida can colonize, invade and destroy host tissue. In total, there are more than 

200 Candida spp., but only few of them are of medical relevance. Besides C. albicans, C. 

parapsilosis, C. glabrata, C. tropicalis, C. krusei as well as C. dubliniensis can be the cause of 

candidiasis in humans. Candida spp. now rank as the fourth-most common cause of nosocomial 

bloodstream infections in the United States, with mortalities reaching up to 40% (Pfaller and 

Diekema, 2007). Incidences of infection have risen with the increased prevalence of 

immunosuppressive therapies and the use of broad-spectrum antibiotics. Since C. albicans has 

rarely been isolated from the environment, it is considered to be obligatorily associated with 

mammalian hosts. To fully understand its pathogenicity, a major key is to explore and decipher 

the regulatory networks that support the transition from the commensal to pathogenic state 

(Brown et al., 2007; Zakikhany et al., 2008).  

I.2.1 Virulence factors of Candida albicans 

I.2.1.1 Dimorphism – C. albicans a fungus of many faces 

C. albicans displays a remarkable morphogenetic plasticity (Figure 1). The organism can grow in 

yeast or hyphal forms or intermediate morphologies such as pseudohyphae (Whiteway and 

Bachewich, 2007). In the yeast growth form cells are round to ellipsoid single cells, dividing by 
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budding to physically separated cells. In contrast, hyphal growth originates from a germ tube 

that resembles a bud. Upon emergence, it is extended into a long filament where individual cells 

are separated by septae (Berman and Sudbery, 2002). The switch from yeast growth to hyphal 

growth is controlled by the environmental state and numerous stimuli. The standard trigger of 

hyphal growth is nutrient poor media such as Lee’s medium and a rise in temperature together 

with N-acetyl-glucosamine (GlcNAc) or serum (Whiteway and Bachewich, 2007). C. albicans 

switches to the hyphal form in the host to adhere to and penetrate through tissues, therefore 

this switch has been considered important for virulence (Whiteway and Oberholzer, 2004). 

The transcriptional control of the yeast-hyphal transition is well explored. The expression of 

hyphal-specific genes is tightly regulated by a complex network of signal transduction pathways 

(Biswas et al., 2007). Initially, it was observed that the combined loss of the transcription factors 

Efg1 and Cph1 blocked the hyphal transition, and efg1/cph1 mutant showed attenuated 

virulence. This observation suggested importance of the yeast to hyphal transition in 

Figure I.I.1: Distinct morphological forms of C. albicans.  
A In yeast-form a blastospore buds off a new cell, resulting in two discrete cells. B In pseudohyphal the cells themselves 
are more elongated than during yeast growth, and the cells remain attached after cytokinesis. C Hyphal growth is 
defined by a polarisome and a “Spitzenkörper” at the tip of the growing hyphae. D Opaque-form cells are capable of 
responding to mating pheromone by elongating a mating projection or shmoo. E Chlamydospores are formed at the end 
of suspensor cells. They have a thicker cell wall and are larger than blastospores (Whiteway and Bachewich, 2007). 
 

A 

B 

C 

D 

E 
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pathogenicity (Lo et al., 1997). External pH is another signal regulating the transition. Rim101 is 

the main transcription factor involved in the induction of the alkali induced hyphal growth (Davis 

et al., 2000). The TEA/ATTS transcription factor Tec1 is essential for serum-induced filamentation 

(Schweizer et al., 2000). Furthermore, there are a number of other transcription factors (Czf1, 

Flo8, Hap5 Efh1, Ace2 Mcm1, Ash1 and Cph2) involved in filamentation under specific growth 

conditions (Whiteway and Bachewich, 2007). The cAMP-protein kinase A pathway is involved in 

regulating morphogenesis on solid medium and the G Protein-coupled receptors Gpr1 and the 

Gpa2 act through the cAMP pathway to regulate hyphal transition (Maidan et al., 2005; Miwa et 

al., 2004). 

The second-most studied phenotypic switch of C. albicans is the transition from white to 

opaque form. White cells exhibit the classic yeast cell shape and generate dome-shaped colonies 

with a creamy colour. Opaque cells are elongated with a distinctive pimpled surface (Figure I.2) 

forming colonies that are more flattened and gray than those of white cells (Lockhart et al., 

2002; Slutsky et al., 1987; Soll, 2004). The ability to switch to the opaque form depends on 

whether the mating type locus (MTL) is homozygous (Figure I.2, bottom). Most C. albicans cells 

are heterozygous for the MTL (MTLa/MTLα) and express the heterodimeric a1/α2 repressor, and 

therefore are unable to switch (Miller and Johnson, 2002). This repressor controls the expression 

of another transcription factor, the WOR1 (white opaque regulator) gene product (Huang et al., 

2006; Zordan et al., 2006).  

The Wor1 transcription factor is the primary regulator in the white opaque switching. 

Ectopic expression of WOR1 in MTLa/MTLα cells induces a pseudo-opaque state (Zordan et al., 

2006). The existing data suggest that once Wor1 is expressed, it is keeping the cells in the 

opaque state. Nevertheless, once Wor1 levels drop below a critical threshold, cells switch back 

to the white phase (Zordan et al., 2006). Other players involved in switching are Efg1 and Tup1. 

Already described above, Efg1 is a positive regulator of the yeast to hyphal transition, while Tup1 

is a negative regulator of pseudohyphal development. Efg1 is highly expressed in white form 

cells but not in opaque cells, and loss of Efg1 causes white cells to display some characteristics of 

Figure I.2: White-opaque switching in C. albicans adapted from (Bennett and 
Johnson, 2005) 
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opaque cells (Sonneborn et al., 1999b). Loss of Tup1 changes the morphology of the opaque 

cells and deregulates the expression of some phase-specific genes, but permits the mating-

competent cell type (Park and Morschhäuser, 2005). Additional transcriptional regulators of 

white-opaque switching are Czf1 and the white-opaque regulator Wor2 (Zordan et al., 2007). 

Furthermore, chromatin modifiers were identified as modulators of the white-opaque switching, 

since they seem to modulate the activity of transcriptional circuitry (Hnisz et al., 2009; Klar et al., 

2001; Srikantha et al., 2001). 

Like the yeast-hyphae transition, white-opaque phase transition also influences virulence 

properties. The viability of opaque cells is reduced when compared to white cells under many 

growth conditions (Slutsky et al., 1987). Furthermore, macrophages seem to preferentially 

phagocytose white cells (Lohse and Johnson, 2008).  

Pseudohyphae and chlamydospores are additional morphological states of C. albicans (Staib 

and Morschhauser, 2007; Whiteway and Bachewich, 2007). Pseudohyphal growth typically 

shows elongated cells connected in chains, but individual cells are yeast-like (Whiteway and 

Bachewich, 2007). Chlamydospore formation has served for a long time as identification of the 

human fungal pathogen C. albicans, but the biological function of these structures remains 

elusive. They have been proposed to allow survival in harsh environmental conditions, but this 

assumption remains yet to be proven. Chlamydospore formation also requires the 

transcriptional regulator Efg1 (Sonneborn et al., 1999a) and the MAP kinase Hog1 (Alonso-

Monge et al., 2003). 

I.2.1.2 Cell surface  

The fungal cell surface contributes to pathogenesis by mediating interactions with host-cells and 

eliciting host immune responses. Fungal cell walls combine skeletal and matrix components. 

Depending on the method used for analysis of C. albicans wall components, it appears to consist 

of 4 to 8 layers (Poulain et al., 1978). The skeletal component of the cell wall of C. albicans is 

based on a core structure of β-glucans (a network of β-(1,3)-glucan linked with β-(1,6)-glucan) 

and chitin (a β-(1,4)-linked polymer of N‑acetylglucosamine (GlcNAc)) (Figure I.3). Other studies 

suggest that the structure of the β-glucan network is more similar to S. cerevisiae, where lateral 

β-(1,6)-glucan chains are linked with β-(1,3)-glucan (Iorio et al., 2008).  

Most models suggest that the skeletal components of the cell wall are close to the 

membrane forming an inner layer, although chitin and glucan are present throughout the 
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thickness of the wall via bud scars (Gantner et al., 2005). In addition to the skeleton, the cell wall 

matrix mainly consists of glycosylated proteins, representing 30-40% of the cell wall dry weight 

(Klis et al., 2001). Mannoproteins are bound to the β-glucan/chitin inner layer through lateral 

chains of β-(1,6)-glucan or to β-(1,3)-glucan. Very important for the discrimination between 

fungal species and serotypes are β-(1,2)-mannans. They are present in C. albicans but absent in 

S. cerevisiae. Macrophages use this to distinguish these two fungal species via the pattern 

recognition receptor Galectin-3 (see also Chapter I.3.2.1) (Fradin et al., 2000; Jouault et al., 2006; 

Kohatsu et al., 2006). Furthermore, three types of β1,2-mannans have been found in different 

Candida species (Shibata et al., 1996a; Shibata et al., 1996b; Suzuki et al., 1996). Lipids are minor 

components of the cell wall. In C. albicans, phospholipomannan reacts with antibodies specific 

to β-1,2-oligomannosides (Poulain et al., 2002). For phospholipomannan,    it has been suggested 

that it may have relevance in adhesion, protection and signalling (Jouault et al., 2003; Mille et 

al., 2004).  

Chitin 

Synthesis of chitin involves a transglycolysation reaction of GlcNAc residues to the growing 

polysaccharide chain. This reaction is catalysed by chitin synthases (CHS) and requires divalent 

metal ions (Ruiz-Herrera and Martinez-Espinoza, 1999). Three genes encoding chitin synthases 

are described in C. albicans. CHS2 is preferentially expressed in the hyphal state although its lack 

 
Figure I.3: The components of the cell wall and their localisation. 
The main structural components of the cell wall β-(1,3)-glucan and chitin (poly-β-(1,4)-N-acetylglucosamine), are 
located towards the inside. The outer layer is enriched with cell wall proteins (CWP) that are attached to this 
skeleton mainly via glycosylphosphatidylinositol remnants to β-(1,6)-glucan or with internal repeat domains (Pir-
CWP), via alkali-sensitive linkages to β-(1,3)-glucan. The insets show the structure of the glucan and mannan 
components (Netea et al., 2008a).  
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does not have any effect on chitin levels, the yeast to hyphal transition or virulence in a mouse 

model (Gow et al., 1994). Chs1 is involved in septum formation and essential for cell integrity 

and virulence (Mio et al., 1996). Strains defective in Chs3 are less virulent in a mouse model than 

the parental strain. Deletion of the C. albicans homologue of the S. cerevisiae BNI4 gene, which 

is the protein responsible for tethering of Chs3 during budding, leads to reduced chitin levels 

and morphological alterations, but does not affect the chitin ring that separates mother and 

daughter cell (Ruiz-Herrera et al., 2006). Exposure of C. albicans to cell wall stresses such as 

CaCl2 or Cacofluor White (CFW) can increase the chitin synthase activity (Munro et al., 2007). 

Additionally, caspofungin treatment, which targets the β-(1,3)-glucan synthesis increases Chs3 

levels in the cell (Walker et al., 2008). A fourth Chs was identified by in silico analysis: Csh8, 

which is similar to Csh2 and is responsible for 25% of the chitin synthase activity but not 

essential for growth (Munro et al., 2003). The chitin synthase can be used as a target to control 

mycosis because of the importance of chitin in the structure of the cell wall and its absence in 

the host. So far, two important inhibitors of chitin synthase have been described: polyoxins and 

nikkomycins. They are showing high antifungal activity in vitro, however, both do not show 

effective activities in in vivo studies (Ruiz-Herrera et al., 2006). 

Cell wall glucans 

β-Glucans are the most abundant polysaccharides of the fungal cell wall. They occur as β-(1-3)-

linked glucose polymers with β-(1-6)-linked side chains of varying length and distribution. The 

synthesis of β-glucans is a complex reaction, involving several enzymes located at different cell 

compartments. Chain growth of β-(1,3)-glucans involves a transglycolysation reaction of glucosyl 

residues from the universal donor UDP-glucose to growing polysaccharide chains (Ruiz-Herrera 

et al., 2006). Genes encoding the β-(1,3)-glucan synthase are named FKS in S. cerevisiae. The C. 

albicans genome harbours three homologues: GSC1, GSL1 and GSL2 (Mio et al., 1996). 

Glucans and mannans are released by C. albicans in synthetic medium as well as in the blood 

of infected patients. These molecules can induce anaphylactic shocks and coronary arthritis in 

murine models (Nakagawa et al., 2003). On the other hand, anti-glucan antibodies contribute to 

the immune response by recognising pathogenic fungi (Ishibashi et al., 2005). The ability to 

modulate host immunity is influenced by polymer length, tertiary structure and degree of 

branching (Tsoni and Brown, 2008). In general, large particulate β-glucans are able to activate 

leukocytes directly, triggering phagocytosis, the production of cytokines, chemokines and other 

inflammatory mediators (Brown and Gordon, 2005). Intermediate-sized β-glucans (glucan 

phosphate) are active in vivo but do not trigger leukocyte response in vitro. There is evidence 
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that they can activate nuclear factor 'kappa-light-chain-enhancer' of activated B-cells (NF-κB) 

and modulate inflammation via the phosphoinositol-3-kinase (PI3K) pathway (Adams et al., 

1997; Williams et al., 2004). Small and low molecular weight β-glucans, such as laminarin, are 

recognised by glucan receptors but do not activate downstream signals (Brown and Gordon, 

2003). The ability of β-glucans to modulate immune recognition has brought pharmaceutical 

interest in these compounds (Liu et al., 2009a).  

Treatment with β-glucans can reduce microbial burdens and increase survival of infected 

animals. Although it is not known how they mediate the anti-infective activities, β-glucans are 

used as immune boosters, and have been assessed in clinical trials with promising results (Brown 

and Gordon, 2003; Dellinger et al., 1999). The anti-tumour activity is the best-examined property 

of glucans. They have been shown to inhibit tumour growth and increase survival times, but the 

success of this treatment is dependent on a number of factors including the type of tumour (Liu 

et al., 2009b; Ross et al., 1999). In general, β-glucans are considered as safe but they can also 

have some negative side-effects on the treated host. Intravenous injection of particulate β-

glucan causes the formation of granulomas, but this has been overcome by the invention of 

active soluble glucans. Nevertheless, they have also been implicated in triggering autoimmune 

diseases such as arthritis and could be involved in respiratory burst disorders (Yoshitomi et al., 

2005). 

Cell wall proteins 

Cell wall proteins can fall into two classes. Class I proteins are not covalently linked to the cell 

wall and are extractable with detergents or chaotropic agents. They have a signalling domain 

and a Ser/Th-rich functional and structural domain. Class 2 proteins can only be solubilised after 

the destruction of structural polysaccharides or by breaking the specific bonds which link them 

to the polysaccharides (Ruiz-Herrera et al., 2006). These class 2 proteins can again be divided 

into the "true" wall proteins and "atypical" wall proteins. The true wall proteins include 

glycosylphosphatidylinositol (GPI)-anchored cell wall proteins (GPI-CWPs) bound to β-(1,6)-

glucan (De Groot et al., 2005; de Nobel and Lipke, 1994), proteins with internal repeats (Pir), 

proteins attached to the cell wall through alkaline-soluble wall bounds (ASL-CWP) (Castillo et al., 

2003; De Groot et al., 2005) and reducing agents-extractable wall proteins (RAE-CWPs) 

(Moukadiri and Zueco, 2001). Atypical wall proteins are lacking a carbohydrate moiety and the 

mechanism retaining them at the cell wall is not known (Ruiz-Herrera et al., 2006). 
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GPI –anchored proteins 

In C. albicans, the major class of cell wall proteins are GPI-CWPs. All are attached through a GPI 

remnant to β-(1,3)- glucans (90%) or chitin (10%) by a highly branched β-(1,6)-glucan linker. The 

CWPs are normally highly glycosylated with mannose-containing polysaccharides, which can 

account for up to 90% of their molecular mass. The core structure linking the C-terminal end of 

GPI proteins to the lipid moiety (protein-CO-NH-(CH2)- PO4-Man-α-1,2-Man-α-1,6-Man-α-1,4-

GlcN-α-1,6-inositol-PO4-lipid) is identical in all GPIs analysed so far, but the side chains linked to 

this core is differs widley between species (Sipos et al., 1995). The amino acids upstream of the 

site of GPI anchor addition (ω-site) serve as a signal for the attachment of the protein to the 

membrane or the cell wall (Frieman and Cormack, 2003). This signal consists of hydrophobic 

amino acids, followed by a short region of hydrophilic residues and a binding site formed by 

three residues named ω, ω+1 and ω+2. The protein is cleaved between ω and ω+1 and the GPI-

anchor remains bound to the ω amino acid (Nuoffer et al., 1993). The transfer of the GPI moiety 

to the protein takes place in the lumen of the endoplasmic reticulum. After the cleavage of the 

carboxy-terminal hydrophobic sequence, an amid linkage between the ethanolamine phosphate 

of the GPI and the new carboxy-terminal amino acid is formed (Udenfriend and Kodukula, 1995). 

The transfer is catalysed by a GPI-transamidase. In cell wall proteins, the above described anchor 

is trimmed, and only a part is retained at their C-terminus, which participates in binding the 

proteins to β-(1,6)-glucan (Figure I.4) (Lipke and Ovalle, 1998). 

The number of putative GPI proteins identified in C. albicans (115) is almost twice as high as 

of those identified in S. cerevisiae (58). However, both lists stem from insilico predictions and 

may have inaccuracies (Richard and Plaine, 2007). The 115 GPI-proteins identified in C. albicans 

can be divided in four classes (Table I-1). The largest class of genes with unknown functions 

might be relevant for the future discovery of pathogenicity genes. Since GPI proteins are located 

Figure I.4: Postulated transglycosylation reaction in 
which a GPI-cell wall protein becomes cross-linked to 
cell wall β-(1,6)-glucan via its GPI glycan. The GPI is likely 
to be cleaved between Man-1 and glucosamine (GlcN) 
and transferred to a terminal or an internal β-(1,6)-
linked glucan in cell wall. Features of a GPI-glycoprotein 
that correlate with cell wall anchorage include the 
presence of serine and threonine-rich regions in the 
protein and the absence of two basic amino acids from 
the ω minus region. It is not known whether the 
presence of ethanolamine phosphate (EtNP) side 
branches, or of long acyl chains or a ceramide on the 
GPI, is important for transglycosylation to occur or 
whether EtNP side branches are retained after cross-
linking. Adapted from (Orlean and Menon, 2007) 
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at the cell surface they are supposed to interact with the host cells. Further, C. albicans is highly 

adapted to its environment compared to other opportunistic fungi (in terms of pH, oxidation, 

phagosomes, etc.), suggesting that evolutionally, it developed several mechanisms to colonize its 

host. These unique functions might involve surface proteins of unknown functions.  

The agglutinin-like sequence (ALS) gene family encodes eight GPI-anchored proteins which 

are the most intensively studied GPI proteins in C. albicans. They may promote adhesion of C. 

albicans cells to host tissues (Hoyer et al., 2008; Zhao et al., 2005). Immunohistochemical 

approaches demonstrate expression of Als proteins in C. albicans cells infecting the spleen, 

kidneys, liver, heart and lungs of mice (Hoyer, 2001). In addition, the expression of individual ALS 

genes has been detected during oral and vaginal infections by RT-qPCR (Cheng et al., 2005; 

Green et al., 2004; Green et al., 2006). ALS expression patterns in clinical samples were similar to 

those observed in the corresponding animal models of oral, vaginal and systemic candidiasis, 

and in reconstituted human epithelial models (Brown et al., 2007). Als3 was found to bind 

ferritin and allows C. albicans to utilise iron in oral cavities (Almeida et al., 2008)  

Pir proteins do not contain a GPI anchor domain; they are attached to the cell surface via as 

yet unknown alkali labile bonds. At least some of the Pir proteins are retained in the wall by 

disulfide bridges (Castillo et al., 2003). They are highly O-glycosylated and are characterised by 

the presence of internal repeats in variable numbers (Toh-e et al., 1993). The group of atypical 

wall proteins includes proteins predicted to be cytoplasmic, but those have been detected in 

large amounts at the cell wall (Ruiz-Herrera et al., 2006).  

Many surface proteins are essential for C. albicans viability. First, some these proteins have 

enzymatic activity and degrade large impermeable compounds thereby making products 

accessible for cell nutrition. For example, the cell wall-linked acid trehalase ATC1 enables the 

fungus to grow on trehalose by hydrolysing the latter (Chaffin, 2008; Pedreno et al., 2004). 

Second, wall proteins mediate interactions with other cells and surfaces. Attachment or 

adherence is dependent on different recognition systems, the type of host cell, the type of 

Table I-1: Classes of GPI-anchored Genes in C. albicans (Richard and Plaine, 2007) 

Class 
Nr 

genes 
% 

genes 
Function 

1 76 66 Unknown 

2 15 13 Cell wall biogenesis and remodelling 

3 13 11 Cell-cell adhesion and interactions 

4 11 9.5 Enzymatic properties (e.g. superoxide dismutase and aspartyl protease activity 
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adhesin and the type of host cell ligand (Calderone, 1993). An example would be the already 

mentioned ALS family proteins. The third role of wall proteins relates to the pathogenicity of C. 

albicans. Proteins extracted from the cell wall induce arthritis in mice and many C. albicans 

mutants lacking cell wall proteins show reduced virulence (Fradin et al., 2005). Fourth, the 

antigenic property of C. albicans glycoproteins that are differentially present in the yeast or 

mycelia forms (Sundstrom et al., 1988). Last but not least, surface proteins are important for the 

structure and morphogenesis of the fungus. For example, the putative surface glycosidase (Csf4) 

is important for cell wall integrity and maintenance (Alberti-Segui et al., 2004). 

I.2.1.3 Infection-related gene expression in C. albicans 

The adaptation of C. albicans to different host niches is very important for a switch to 

pathogenicity. As a commensal, C. albicans colonises the gastrointestinal tract and oral cavity. As 

a pathogen, it invades vaginal and oral epithelial surfaces, and in immunocompromised patients 

it can be transported via the bloodstream and invade internal organs (Calderone, 2002). In all 

niches, C. albicans encounters different host stress conditions. The pH can change from acidic to 

mildly alkaline, and the accessibility of nutrients varies extensively (Brown et al., 2007). When C. 

albicans colonises a niche, it may very well alter that niche by metabolising nutrients thereby 

changing the ambient pH or damage host tissues (Brown et al., 2007). Numerous proteins 

expressed during dissemination in the host are associated with major changes at the cellular 

level including morphogenesis. Other proteins investigated are predicted virulence factors such 

as secreted aspartyl proteinases (SAPs), phospholipases B (PLBs), secreted lipases (LIPs) and 

adhesins (described in "Cell surface and adhesion") (Brown et al., 2007).  

Proteinase activity of C. albicans is linked to a family of 10 members, the secreted aspartyl 

protease (SAP) family (Monod and Borg-von Zepelin, 2002). While Sap1 - 8 are secreted proteins, 

Sap9 and Sap10 have C-terminal consensus sequences typical for GPI proteins (Monod et al., 

1998; Monod et al., 1994). SAP2 and SAP5 are the most commonly expressed ones, SAP1, SAP3, 

SAP4 and SAP7 are linked to oral disease, while SAP1, SAP3 and SAP6 - 8 expression is associated 

with vaginal infections (Naglik et al., 2003). All members of the SAP family are expressed during 

colonisation and dissemination. Furthermore, certain SAP genes might have more important 

roles specifically during infection and the expression is most likely tightly controlled during the 

progression from colonisation to infection (Naglik et al., 2004). Recently, it was shown that SAP1 

– SAP6 are not required for the invasion of reconstructed human epithelial tissue (Lermann and 

Morschhauser, 2008). C. albicans secretes proteases that interfere with and inactivate host 
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innate immune effector components, such as the complement proteins C3b, C4b and C5 (Gropp 

et al., 2009). 

In addition to SAPs, extracelluar phospholipase (PLs) and secreted lipases (LIPs) are also 

enzymes considered as virulence factors. Two extracellular PLs, PLB1 and PLB2, have been 

studied (Schaller et al., 2005). Expression has been detected in gastrointestinal, mucosal and 

systemic infection models (Schaller et al., 2005), with differences in the expression of PLB1 and 

PLB2 in samples of human oral and vaginal infections (Naglik et al., 2003). The secreted LPs 

consist of at least 10 members (LIP1 – LIP10) (Hube et al., 2000). LIP5, LIP6, LIP8 and LIP9 are 

expressed during intraperitoneal infection in mice (Hube, 2000). LIP1, LIP3 and LIP9 are found in 

infected gastric tissues but undetectable in oral mucosa (Schofield et al., 2005). LIP4 

preferentially plays a role in superficial infections (Stehr et al., 2004).  

I.2.2 Oxidative stress adaptation in C. albicans 

A major mechanism of the host defence system responding to fungal infections is the production 

of reactive oxygen species (ROS) by phagocytes used to kill invading microbes (for details see 

Chapter I.3.3). Understanding how fungal cells deal with ROS can provide critical information 

and be a first step towards designing strategies to enhance host cell- mediated killing of these 

pathogenic organisms. The oxidative stress response in C. albicans involves oxidant sensing and 

response to oxidative damage via two major pathways that appear to act distinctly: the Cap1p 

pathway and the high osmolarity glycerol (HOG) mitogen-activated protein kinase (MAPK) 

pathway (Chauhan et al., 2003; Enjalbert et al., 2006). The regulation of stress adaptation varies 

according to the concentration of peroxide to which cells were exposed. Cap1 mediates 

adaptation to both low and high peroxide concentrations, while Hog1 regulates adaptation to 

high peroxide concentrations (Enjalbert et al., 2006). 

I.2.2.1 Oxidative stress adaptation via Cap1 

In S. cerevisiae, the basic leucine zipper transcription factor Yap1 is required for oxidative-stress 

tolerance and mediates pleiotropic drug and metal resistance (Wendler et al., 1997; Wysocki et 

al., 2004). The genes regulated by Yap1 are for example GPX2 (glutathione peroxidise), TRX2 

(thioredoxin) and GSH (glutathione biosynthesis) (Dormer et al., 2002; Tanaka et al., 2005). Cap1 

is the C. albicans Yap1 homologue, and Cap1-defective cells are hypersensitive to oxidative 

stress induced by diamide or H202 (Alarco and Raymond, 1999). CAP1 transcription increases 

when the fungal cells are phagocytosed by human neutrophils, and deletion of the gene 

attenuates virulence (Bahn and Sundstrom, 2001; Fradin et al., 2005). Cap1-mediated responses 
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involve multiple pathways, including the cellular antioxidant system, carbohydrate metabolism 

and energy metabolism, protein degradation, ATP-dependent RNA helicase, and resistance 

pathways (Wang et al., 2006b). Recently, a Cap1 regulon consisting of 89 target genes was 

described, including genes involved in oxidative stress adaptation, drug response, phospholipid 

transfer and regulation of nitrogen utilisation (Znaidi et al., 2009). 

I.2.2.2 The HOG MAPK pathway 

One of the major signalling pathways in C. albicans, which senses oxidative stress and elicits the 

transcriptional regulation for the adaptation, is the HOG-MAPK pathway, which is otherwise also 

involved in osmotic stress adaptation (Moye-Rowley, 2003).This pathway was first described in 

S. cerevisiae with a function in osmo-adaptation (Hohmann et al., 2007). Upstream of the Hog1 

MAPK are multistep phosphorylated proteins determining pathway activation. In C. albicans, 

several genes of the HOG MAPK signalling pathway play a role in the adaptation to oxidative 

stress. The ssk1 mutant is sensitive to several oxidants, and its survival is reduced in human 

neutrophils. Furthermore, the mutant strain is avirulent in a mouse model (Chauhan et al., 2003; 

Du et al., 2005). A bps2 mutant was sensitive to both osmotic and oxidative stress, as was a hog1 

mutant (Arana et al., 2005). Moreover, the C. albicans Skn7 kinase is required for oxidative stress 

in vitro (Singh et al., 2004).  

I.2.2.3 Antioxidant enzymes 

In addition to specific oxidative stress signalling pathways, fungi have various antioxidant 

enzymes to counteract oxidative damage, including superoxide dismutase (SOD), glutathione 

reductase, thioredoxin, and catalase (Hwang et al., 2003; Hwang et al., 2002; Lamarre et al., 

2001; Martchenko et al., 2004; Nakagawa et al., 2003; Wysong et al., 1998). C. albicans harbours 

six SODs (Figure I.5), the cytoplasmic Sod1 (Cu-Zn SOD) and Sod3 (Mn-SOD), the mitochondrial 

Sod2 (Mn-SOD) and three other potential surface Cu-Zn SODs, Sod4–6, (Hwang et al., 2003; 

Hwang et al., 2002; Lamarre et al., 2001; Martchenko et al., 2004). 

Among the SODs, the best studied ones regarding their role in pathogenesis are Sod1 and 

Sod5. A sod1 mutant of C. albicans is sensitive to menadione but not to H2O2, hyper-sensitive to 

killing by cultured macrophages when compared to wild type cells, and displays reduced 

virulence in an invasive mouse model (Hwang et al., 2002). Upregulation of SOD5 was observed 

during the yeast-to-hyphal transition in the presence of non-fermentable carbon sources, and 

when cells grow under conditions of oxidative, osmotic stress or basic pH. A sod5 deletion 

mutant of C. albicans is sensitive to H2O2 when cells grow under nutrient-limiting conditions. 
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SOD5 is also required for virulence in a mouse model (Martchenko et al., 2004). However, the 

mutant survives in RAW246.7 macrophage cells to the same extent as wild type cells 

(Martchenko et al., 2004). Transcription profiling of C. albicans with neutrophils from whole 

human blood indicated that SOD5 is upregulated following phagocytosis (Fradin et al., 2005). In 

the same study, survival of the sod5 mutant in human neutrophils cells was significantly reduced 

when compared with wild type cells. The Sod3 enzyme utilises manganese as a cofactor. 

However, contrary to other eukaryotic MnSods, it is active in the cytosol and not in the 

mitochondrial matrix. Furthermore, SOD3 is expressed during the stationary growth phase of C. 

albicans (Lamarre et al., 2001). 

In the C. albicans genome, there exist several genes encoding glutaredoxin activity. CaGRX2 

encodes a putative glutathione reductase, and grx2 deletion strain is defective in hyphal 

formation, more susceptible to killing by neutrophils than the wild type strain and sensitive to 

intracellular superoxide stress (Chaves et al., 2007).  

In contrast to S. cerevisiae a single catalase exists in C. albicans (designated CTA1, CCT1 or 

CAT1). Cta1 protects cells from peroxide stress and is required for virulence in a mouse model of 

invasive candidiasis (Nakagawa et al., 2003; Wysong et al., 1998). Furthermore, hyphae of a 

CTA1 mutant are damaged by human neutrophils, indicating a protective effect of this gene 

product against polymorphonuclear cells (PMN) (Wysong et al., 1998).  

I.3 Immunity to Candida infections 

I.3.1 Introduction to the mammalian immune system  

The physiological principles of the immune system comprise the extinction of pathogenic 

microbes, the removal of dead cells or the destruction of cancer cells. The innate immunity, 

which is the phylogenetically oldest mechanism of the defence against pathogens, is operating in 

 

Figure I.5: Localistion of C. albicans SODs 
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all multicellular organisms, including plants and insects. By contrast, the more specialised 

adaptive immunity evolved much later and is present in vertebrates only (Janeway, 2005). 

Innate immunity consists of biochemical and cellular defence mechanisms present even 

before infections and thus can rapidly respond to infections (Table I-2). The innate immune 

apparatus includes epithelia and antimicrobial substances like defensins, leukocytes or 

phagocytic cells (neutrophils, macrophages) and natural killer (NK) cells, blood effector protein 

complexes such as the complement system. Finally, signalling proteins known as cytokines 

coordinate and regulate the actions of immune cells. The mechanism of innate immunity is 

specific for structures typical for microbial pathogens and thus are absent in mammalian cells. 

So-called pathogen-associated molecular patterns (PAMPs) are recognised by the innate 

immune cells via dedicated pattern recognition receptors (PRRs) (Ausubel, 2005). Innate 

immunity is hence the first response to microbes, fighting infections of the host. Furthermore, it 

communicates with the adaptive immune system, and influences the nature of adaptive 

responses to make them efficient against different types of pathogens, and mounts memory 

responses (Janeway, 2005). 

The adaptive immunity develops in response to an infection, leading to the adjustment to 

certain infections. The defining features of adaptive immunity are an exquisite specificity for 

Table I-2: Components of Innate Immunity, adapted from (Abbas et al., 2007) 

Type Components Principal Functions 

Epithelial Barriers 

Epithelial layers Prevent microbial entry 

Defensins/cathelicidin Microbial killing 

Intraepithelial lymphocytes Microbial killing 

Circulating 
effector cells 

Neutrophils Early phagocytosis and killing of microbes 

Macrophages 
Efficient phagocytosis and killing of microbes, 
secretion of cytokines that stimulate 
inflammation 

NK cells Lysis of infected cells, activation of macrophages 

Circulating 
effector proteins 

Complement 
Killing of microbes, opsonisation of microbes, 
activation of leukocytes 

Mannos-binding lectin 
Opsonisation of microbes activation of 
complement 

C-reactive protein (pentraxin) 
Opsonisation of microbes activation of 
complement 

Cytokines 

TNF, IL-1, chemokines Inflammation 

IFN-α, -β Resistance to viral infection 

IFN-γ Macrophage activation 

IL-12 IFN-γ production by NK cells and T cells 

IL-15 Proliferation of NK cells 

IL-10, TGF-β Control of inflammation 
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distinct molecules and the ability to “memorize” and respond more powerfully to repetitive 

encounters with the same pathogen. The cellular components involved are mainly lymphocytes 

and their produced cytokines. Adaptive immune responses comprise two major types, cell-

mediated and humoral immunity. They are mediated by different machineries of the immune 

system and eliminate different types of microbes.  

Humoral immunity is mediated by mucosal secretions and serum antibodies, produced by B 

lymphocytes. It is directed against extracellular microbes and their toxins. Antibodies recognise 

microbial antigens to neutralise the antigenic epitope or target pathogens for elimination by 

phagocytes (Carroll, 2008).  

Cell-mediated immunity is mediated by T lymphocytes, which promote the killing of infected 

cells or the destruction of pathogens residing in phagocytes. The initiation and development of 

adaptive immune responses require antigens to be captured, processed and displayed to naive 

T-cells. This role is served by professional antigen-presenting cells (APCs), of which the most 

specialized ones are dendritic cells (DCs). Different types of microbes elicit distinct and 

protective T-cell responses. Elimination of microbes residing within phagosomes of phagocytes is 

mediated by the subclass of CD4+
 T-helper cells by recognising presented antigens and activating 

phagocytes to kill the ingested microbe. Further, CD4+ T-cells also stimulate growth and 

differentiation of B-cells. They can be separated into two subsets of effector cells, TH1 and TH2, 

which produce different sets of cytokines and perform different effector functions (Abbas et al., 

2007). While the main function of TH1 cells is in phagocyte-mediated defence against infections, 

especially in the case of intracellular pathogens, TH2 cells are responsible for defence against 

helminthic infections, as well as for allergic reactions. The antibodies stimulated by TH2 cytokines 

do not promote phagocytosis and therefore antagonise TH1 responses.  

The adaptive immune responses to pathogens infecting and replicating in the cytoplasm of 

host cells, including non-phagocytic cells, are mediated by CD8+ cytotoxic T-cells (CTLs), which kill 

infected cells presenting antigens (Abbas et al., 2007; Janeway, 2005).  

I.3.2 Recognition of C. albicans by the innate immune system 

The host immune responses to fungal infections are diverse and range from the innate immune 

system to the sophisticated adaptive immune system. The innate immunity effectively 

discriminates between self and non-self, and activates adaptive immunity through specific 

cytokine signals (see also I.3). Mammalian innate antifungal defences are mediated by cells 

(professional phagocytes), cellular receptors and different humoral factors. The innate response 
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to fungi serves two main purposes. First, it shows direct antifungal effector activity by destroying 

fungi via phagocytosis or through the secretion of microbicidal compounds against indigestible 

fungal elements. Second, innate immune cells initiate the adaptive immune system via secretion 

of pro-inflammatory cytokines and chemokines and the presentation of antigens (Romani, 

2004). The balance of pro- and anti-inflammatory cytokines produced by the immune cells is 

important for the outcome of the fungal disease (Figure I.6). For instance, during a C. albicans 

infection the absence of IL-10, an anti-inflammatory cytokine, is beneficial for the host response 

(Del Sero et al., 1999).  

The task of recognising fungal cells and activating the host cell response is initiated by PRRs, 

which mainly recognise the fungal cell wall components (described in Chapter I.2.1.2) (Figure 

I.7). Of course, the localisation of mannans and mannoproteins at the outermost part of the cell 

wall are excellent targets for PRRs, but glucans and perhaps chitin present in bud scars are also 

likely to be recognised by leukocyte PRRs. 

I.3.2.1 Pattern recognition receptors and their targets  

Monocytes, neutrophils and macrophages are the first line of defence against invading 

pathogens. Monocytes express high levels of Toll-like receptors (TLRs) and moderate levels of 

lectin receptors (LRs). When monocytes differentiate into macrophages, they retain their levels 

of TLRs and increase their expression of LRs. Neutrophils strongly express phagocytic receptors 

such as Fc gamma receptors (FcγR) and complement receptor 3 (CR3), but also moderate levels 

of TLRs. Fungal recognition by DCs is crucial for antigen-processing and presentation to T-cells 

(Netea et al., 2008a). DCs also express both TLRs and LRs. In the following section, the PRRs and 

their fungal ligands, as well as the induced signalling cascades and cytokine production are 

described in more detail. 

 
Figure I.6: Initial immune response modulating the protection/invasion towards C.albicans 
The main immune system activities induced by C. albicans leading to either an inflammatory or anti-inflammatory 
response are shown. An amplified anti-inflammatory response results in an unbalanced immune response which 
favours the development of infection. Adapted from (Jouault et al., 2009) 
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Toll-like receptors 

Lemaitre et al. were the first to describe the functional role of Toll-like receptors in antifungal 

host defence. Drosophila flies deficient of toll were rapidly overgrown with Aspergillus fumigatus 

(Lemaitre et al., 1996). In mammalian cells, fungal recognition by TLRs induces the activation of 

kinase cascades such as the MAPK pathways, as well as the nuclear translocation of transcription 

factors, such as NF-κB (Akira et al., 2006). At least four TLRs may be involved in the defence 

against C. albicans including TLR2, TLR4, TLR6 and TLR9. 

TLR2 inhibition or deletion results in decreased production of proinflammatory cytokines 

and neutrophil recruitment after stimulation with C. albicans (Netea, 2002; Villamon, 2004). 

However, TLR2-/- mice show increased resistance to candidiasis and decreased production of 

anti-inflammatory cytokines like IL-10, while increased production of IL-12 and INFγ (Bellocchio 

et al., 2004; Netea, 2004). Furthermore, TLR2-deficient macrophages were able to clear C. 

albicans infections better than wild type controls (Blasi et al., 2005). This evidence for an anti-

inflammatory role for TLR2 in host defence is also supported by a recent study showing that 

zymosan can induce immunological tolerance through a TLR2-mediated pathway involving 

MAPK/ERK (Dillon et al., 2006). The TLR2 ligand from C. albicans remains elusive, although 

phospholipomannan might be recognised by TLR2 and TLR6 (Jouault et al., 2003). 

TLR4 strongly induces proinflammatory cytokines (TNF-α) via two pathways. First, through 

the MyD88-Mal mediated induction of NF-κB and p38-mediated cytokine and chemokin 

production. Second, through TRIF/TRAM-mediated induction of IRF3-dependent release of type I 

interferons (Toshchakov, 2002). TLR4 is important for C. albicans elimination in kidneys, 

chemokine production and neutrophil recruitment, although no change in cytokine production is 

observed during infection (Netea, 2002). However, there are controversial studies stating that 

TLR4 is not relevant for the survival of mice infected with C. albicans (Gil and Gozalbo, 2006; 

Murciano, 2006). TLR4 is also involved in controlling susceptibility to A. fumigatus conidia, 

Pneumocystis pneumonia but not C. neoformans (Bellocchio et al., 2004; Ding et al., 2005; 

Nakamura et al., 2006)  

TLR4 is the receptor for bacterial lipopolysaccharide (LPS) (Poltorak et al., 1998), however, 

there is limited knowledge about the nature of fungal PAMPs recognised by TLR4. Recognition of 

mannan from C. albicans and S. cerevisiae (Tada et al., 2002), especially recognition of shorter O-

bound mannan, is probably performed by TLR4 triggering in cytokine production (Netea et al., 

2006).  
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The role of TLR6 and TLR9 in cytokines induction in response to C. albicans is less well 

explored. TLR2/TLR6 heterodimers are involved in zymosan recognition, but cytokine production 

is only moderately reduced in TLR6-/- macrophages, and TLR6 does not seem to play a role in 

disseminated C. albicans infections (Netea et al., 2008b). The natural ligands for TLR9 are 

unmethylated CpG sequences. Several reports suggest that TLR9 recognises fungal DNA. 

Blocking TLR9 in human monocytes and TLR9-/- mouse macrophages reduces cytokine 

production (IL-10) after stimulation with C. albicans (van de Veerdonk et al., 2008). TLR9 also 

recognises fungal DNA from A. fumigatus and C. neoformans (Nakamura et al., 2008; Ramirez-

Ortiz et al., 2008). A recent study indicates that TLR9 recognises C. albicans DNA, and induces 

MyD88 dependent NF-κB and IL-12 signalling (Miyazato et al., 2009). 

C-type lectin receptors (CLRs) 

The CLRs known to recognise fungal PAMPs are Dectin-1, Dectin-2, macrophage mannose 

receptor (MR), galectin-3, dendritic cell-specific ICAM3-grabbing nonintegrin (DC-SIGN) and 

mincle.  

Dectin-1 is the most extensively studied receptor implicated in fungal recognition. Dectin-1 

recognises β-1,3 glucans via its extra cellular C-type lectin-like domain (CTLD) (Tsoni and Brown, 

2008). Dectin-1 signals via a non-classical immunoreceptor tyrosine-based activation motif 

(ITAM) through the spleen tyrosine kinase (Syk) and the caspase recruitment domain 9 (CARD9), 

linking Syk-coupled receptors to the canonical NF-κB pathway (Gross, 2006; Hara et al., 2007). 

Dectin-1 also activates the non-canonical NF-κB pathway via a Syk-dependent activation of RelB 

(Gringhuis et al., 2009). Dectin-1 stimulation with curdlan, a linear β-(1,3)-glucan, also stimulates 

IL-2 and IL-10 in DCs. Isolated spleenocytes from C. albicans-infected mice produce CARD9 

dependent TH-17 cells (LeibundGut-Landmann et al., 2007). Another study challenges this by 

stating that Syk-dependent but CARD9-independent pathways lead to ERK induction, mediating 

the production of IL-2 and IL-10 (Slack et al., 2007). Syk controls CARD9-independent pro-IL-1β 

synthesis and CARD9-dependent inflammasome activation after stimulation with C. albicans 

(Gross et al., 2009). Interestingly, CARD9 plays a different role in macrophages and dendritic 

cells. While stimulation of bone marrow derived DCs trigger NF-κB activation and TNF-alpha 

production via Dectin-1 and CARD9, CARD9 is recruited to the phagosome in bone marrow 

derived macrophages (BMDMs) and signals to p38 MAPK in a NF-κB independent way 

(Goodridge et al., 2009).  
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ROS production upon zymosan and C. albicans stimulation requires Dectin-1 and Syk 

(Gantner et al., 2003; Gantner et al., 2005; Taylor et al., 2007). However, the role in C. albicans 

ROS signalling is still unclear because macrophages from dectin-1-/- mice fail to show alterations 

in ROS production when challenged with C. albicans (Saijo et al., 2007). Details about ROS 

signalling are discussed in Chapter I.3.3.1: Oxidative burst - the pathogen “destroyer”. In 

addition, Dectin-1 is required for phagocytosis (Gantner et al., 2005; Hernanz-Falcon et al., 2009; 

Herre et al., 2004). Dectin-1-/- mice are more susceptible to infection with C. albicans, resulting in 

increased fungal burden and lower survival (Taylor et al., 2007). However, another study using a 

different mouse strain of dectin-1-/- mice found increased susceptibility to Pneumocystis but not 

to C. albicans (Saijo et al., 2007).  

Dectin-1 can also cooperate with TLRs to induce proinflammatory responses. In 

macrophages, cooperative signalling through Dectin-1 and TLR2 heterodimers is required for the 

induction of TNF-α in response to C. albicans and zymosan (Brown et al., 2003; Gantner et al., 

2003). Notably, Dectin-1 amplifies TLR4-dependent pathways in a Syk-dependent manner 

(Dennehy et al., 2008). Furthermore, Dectin-1 can couple with other MyD88-dependent TLRs, 

resulting in the synergistic induction of TNF-α and IL-10 (Ferwerda et al., 2008). In murine 

macrophages, a collaboration of Dectin-1 and DC-SIGNR1 for fungal binding exists (Taylor et al., 

2004), and in human DCs, a costimulation of DC-SIGN and Dectin-1 induces arachidonic acid 

signalling (Valera et al., 2008).  

Dectin-2 has a specificity for high mannose structures (McGreal et al., 2006). The receptor 

preferentially recognises hyphal forms of fungi such as C. albicans, Trichophyton rubrum and 

Microsporum audouinii. However, the receptor can also weakly recognise yeast or conidial forms 

(McGreal et al., 2006; Sato et al., 2006). The cytoplasmic tail of Dectin-2 appears to associate 

with the FcγR chain, a signalling adaptor associated with several other transmembrane 

receptors. This induces TNF-α and IL-1R in response to hyphal forms of C. albicans (Robinson et 

al., 2009; Sato et al., 2006). In dendritic cells, Dectin-2 contributes to the activation of p38 and 

ERK MAPK and the production of IL-2 and IL-10 in response to live or heat-killed C. albicans, 

respectively. Blocking of Dectin-2 in a C. albicans infection model abrogated TH17 response, and 

in combination with Dectin-1 loss, TH1 response decreased (Robinson et al., 2009).  

Mannose Receptor (MR) has several domains that recognise oligosaccharides, fucose and 

mannose. The role of MR in C. albicans has been investigated using mutant strains of C. albicans 

defective in O-linked and N-linked mannans (Netea et al., 2006). According to this study, the MR 

recognises branched O-linked mannans. A very recent study indicates that IL-17 production is 
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induced by the MR, and that Dectin-1/TLR2 amplify the IL-17 production (van de Veerdonk et al., 

2009).  

Galectin-3 is a receptor mainly expressed by macrophages. It is crucial for the recognition of 

β-1,2 linked mannosides and collaborates with TLR2 (Fradin et al., 2000; Jouault et al., 2006) 

Binding of recombinant Galectin-3 to the specific β-1,2 linked mannosides of C. albicans directly 

induces death to a fraction of C. albicans cells (Kohatsu et al., 2006).  

The human dendritic cell-specific ICAM3-grabbing nonintegrin (DC-SIGN) is primarily 

expressed on immature DCs, but has also been found in macrophage populations (Koppel et al., 

2005; Lai et al., 2006). DC-SIGN recognises high mannose structures in a calcium dependent way 

(Koppel et al., 2005). Similar to Dectin-1, DC-SIGN has a non-classical ITAM, domain but signals 

independently of this motif (Fuller et al., 2007). Eight orthologues of DC-SIGN exist in mice, 

 

Figure I.7: Recognition of C. albicans at the cell membrane is mediated by TLRs and Lectin Receptors. TLR4 induces 
mainly pro-inflammatory signals in monocytic cell types through the MyD88–Mal-mediated NF-κB and MAPK 
pathways, while stimulating TH1 responses through IRF3-dependent mechanisms mainly occurs in plasmacytoid DCs. 
TLR2 stimulates the production of moderate amounts of pro-inflammatory cytokines and strong IL-10 and TGFβ 
responses. On the one hand, this leads to the induction of a tolerant phenotype in DCs, through an ERK/MAPK-
dependent mechanism. Alternatively, in monocytes and macrophages it induces TGFβ and IL-10, and subsequent 
proliferation of TReg cells and immunosuppression. The proinflammatory effects of TLR2 can be amplified by Dectin-1 
and galectin 3 — the latter especially in macrophages. In addition to amplifying the effects of TLR2, the non-classical 
lectin-like receptor Dectin-1 induces IL-2, IL-10 and TH17 responses through a Syk–CARD9 cascade, independently of 
its interaction with TLR2. The classical lectin-like receptor, MR, induces pro-inflammatory effects in monocytes and 
macrophages, whereas chitin-dependent stimulation of these cells induces mainly TH2 responses, although this effect 
has yet to be demonstrated for C. albicans, and the identity of the chitin receptor is unknown. Other less well 
characterised pathways include stimulation of TNF and IL-1Ra by Dectin 2, while engagement of DC-SIGN in DCs 
induces production of the immunosuppressive cytokine IL-10 (Netea et al., 2008a) 
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although these molecules appear to have different expression profiles and several structural 

differences (Powlesland et al., 2006). The role of this receptor in response to fungi has not been 

studied extensively, but DC-SIGN has been proposed to mediate fungal uptake (Cambi et al., 

2003). Among the murine homologues, only SIGNR1 (also termed murine DC-SIGN) and SIGNR3 

recognise fungal PAMPs(Takahara et al., 2004; Taylor et al., 2004). DC-SIGN can induce 

intracellular signalling through the Raf-kinase pathway, modulating TLR-mediated responses 

(Gringhuis et al., 2009). 

Mincle appears to be involved in the recognition of C. albicans by macrophages. It localises 

to the phagocytic cup, although it is not essential for phagocytosis. Mincle-/- mice are susceptible 

to C. albicans, and blocking of Mincle in macrophages leads to reduced TNF (Bugarcic et al., 

2008; Wells et al., 2008). Like other CLRs, Mincle induces inflammatory cytokines and 

chemokines via the association with the Fcγ chain (Yamasaki et al., 2008). 

Complement receptor 3 (CR3) is a heterodimer of the subunits CD11b and CD18. The CR3 

integrin mediates adhesion, chemotaxis and phagocytosis in complement-dependent but also 

complement-independent ways (Le Cabec et al., 2002; Le Cabec et al., 2000; Ross et al., 1985; 

Ross and Vetvicka, 1993; Xia and Ross, 1999). CR3 recognises β-glucans of unopsonised yeast via 

the carbohydrate binding site of the Cd11b subunit (Xia and Ross, 1999). In thioglycollate-elicited 

peritoneal macrophages CR3 is not actively involved in the phagocytosis of C. albicans, but is 

associated with the phagocytic cup (Heinsbroek et al., 2008). A recent study using human 

neutrophils suggests that CR3 but not Dectin-1, is the major receptor for β-glucan bearing 

particles (van Bruggen et al., 2009).  

I.3.3 Reactive oxygen species in phagocytic cells 

I.3.3.1 Oxidative burst – the pathogen “destroyer” 

Phagocytes such as eosinophils, polymorphonuclear neutrophils, monocytes and macrophages 

comprise one of the most powerful weapons of host defence against bacteria and fungi. One 

very potent mechanism exploited by phagocytes to destroy invading pathogens is the oxidative 

burst. Phagocytic cells recognise the pathogen via opsonins, such as the immunoglobulins G and 

activation of complement system, and also via PAMPs recognised by PRRs (see Chapter above). 

Recognition is generally followed by engulfment of the particle or the pathogen, leading to the 

encapsulation of the pathogen by a membrane envelope resulting in a vacuole called the 

phagosome. This process triggers the production of reactive oxygen species (ROS), and in most 

cases leads to the destruction of the invading pathogen (Babior, 2002).  
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The NADPH oxidase 

Phagocytes have a membrane-bound multicomponent enzyme complex, termed the NADPH 

oxidase generating large quantities of ROS (Babior, 2004). Interestingly, a family of NADPH 

oxidases (NOXs) is also expressed in nonphagocytic cells (Lambeth, 2004). NOXs produce ROS in 

a regulated manner and at lower levels than the phagocyte NAPDH oxidase (Lambeth, 2004). 

The NADPH oxidase is dormant in resting cells but be rapidly activated by a variety of soluble 

mediators (e.g., chemoattractant peptides and chemokines) as well as particulate stimuli (e.g., 

bacteria and immune complexes) that interact with cell-surface PRRs (Figure I.8). The phagocyte 

oxidase is an enzyme formed by gp91phox (NOX2), p22phox, p40phox, p47phox, p67phox, and Ras-

related C3 botulinum toxin substrate 2 (rac2) (Lambeth, 2004). In the resting state, the subunits 

of the NADPH oxidase are separated. Upon activation, they assemble to a complex and use 

NADPH as electron donor to convert molecular oxygen into its one-electron reduced product, 

superoxide (O2-.), which is the major end product (Figure I.8). Hydrogen peroxide (H2O2) arises 

from the subsequent dismutation of superoxide by enzymes called superoxide dismutases (SOD). 

The interaction between H2O2 and O2–. can also give rise to the hydroxyl radical (OH°) through 

the Haber-Weiss reaction in the presence of a transition metal or through the Fenton reaction in 

the presence of iron. Hypochlorous acid (HOCl) is formed in the presence of a halide such as Cl- 

in a reaction catalysed by the granular enzyme myeloperoxidase (MPO), an enzyme present in 

neutrophils but not in macrophages (El-Benna et al., 2005) (Figure I.8).  

This system is also called the phagocyte “respiratory burst” (increased respiration of 

phagocytosis), and plays a key role in host defence against microbial agents, as evident from a 

human genetic disorder called chronic granulomatous disease (CGD). A defect in one of the 

subunits of NADPH oxidase leads to a failure in the production of ROS by phagocytes (Hohn and 

Lehrer, 1975), resulting in increased bacterial and fungal infections such as pneumonia, 

abscesses, arthritis and osteomyelitis (Aratani et al., 2002; Dinauer, 1993; Johnston, 2001; 

Warris et al., 2003). The most frequent form of CGD (approximately 70 % of all cases) is the X-

linked gp91phox-deficient form, followed by the autosomal form deficient in p47phox (25%) 

(Kannengiesser et al., 2008; Meischl and Roos, 1998).  

Several receptors, including Fc receptors (FcR) and integrins trigger ROS production in 

response to microbial pathogens (Berton and Lowell, 1999; Ravetch and Bolland, 2001). All of 

these receptors have an immunoreceptor tyrosine-based activation motif (ITAM) in their 

cytoplasmic tail or associate with ITAM containing adaptors such as DAP12 or FcγR (Mocsai et 

al., 2006; Swanson and Hoppe, 2004). Activation of an ITAM-associated receptor leads to 
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phosphorylation by Src family kinases (SFK) of the tyrosine residues within the ITAM consensus 

sequence. Syk family kinases are consequently recruited and activated, inducing signalling 

through multiple downstream pathways, including phosphatidylinositol (PI) 3-kinase and protein 

kinase C (PKC). Dectin-1 recognises β-(1,3) glucans in the cell wall of yeasts (Brown, 2006) and 

regulates ROS production in phagocytes. Dectin-1 contains a noncanonical ITAM motif in its 

cytoplasmic tail, and crosslinking of Dectin-1 leads to Syk phosphorylation independent of DAP12 

and FcγR which results in ROS production (Rogers et al., 2005; Underhill et al., 2005).  

TLRs have also been implicated in the ROS response. The MyD88 adaptor protein is needed 

for the activation of the NADPH oxidase in response to gram-negative bacteria (Laroux et al., 

2005; Ryan et al., 2004). The roles of specific TLRs in NADPH oxidase assembly and ROS 

generation seem to be cell type-dependent. For example, TLR4 is required for NADPH oxidase 

activation in human neutrophils infected with Serovar Typhimurium (van Bruggen et al., 2007), 

but not in mouse peritoneal macrophages (Laroux et al., 2005). Additionally, the TLR4 ligand LPS 

does not induce detectable levels of ROS in murine bone marrow-derived macrophages (Charles 

 

Figure I.8 The NADPH oxidase activation. In resting cells the components of NADPH oxidase are distributed 
between the cytosol and the membranes. Upon cell activation the cytosolic components p47phox, p67phox, and 
p40phox are phosphorylated, and migrate to the membranes where they associate with the membrane-bound 
components gp91phox and p22phox; at the same time, rac 2 exchanges its GDP by GTP, dissociates from its 
inhibitor rho-GDI, and migrates to the membrane; cytochrome b558 (p22 and gp91phox complex) is then 
activated by p67phox via its activation domain and rac2. Activated NADPH oxidase then uses cytosolic NADPH to 
reduce oxygen and to produce superoxide anions adapted from (El-Benna et al., 2005). 
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et al., 2008). ROS production during M. tuberculosis infection is dependent on the interaction of 

TLR2 and gp91phox (Yang et al., 2009).  

The NOX isoenzymes can also be activated by TLR4 (Park et al., 2004; Ryan et al., 2004; 

Zhang et al., 2006). Stimulation of TLR4 with lipopolysaccharide (LPS) induces ROS generation 

and NF-κB activation and this process is mediated by the interaction of TLR4 with Nox4 (Park et 

al., 2004). Furthermore, minimally oxidised LDL (mmLDL) stimulates intracellular reactive oxygen 

species (ROS) generation in macrophages through (gp91phox/Nox2) in a TLR4 and Syk-dependent 

manner (Bae et al., 2009). In neutrophils, ROS are primarily released into phagosomes where 

they interact rapidly with microbial proteins and lipids, resulting in their oxidation. They are also 

released into the cytosol, where they alter the cellular redox state, and oxidise proteins and 

lipids, which changes their function (Fialkow et al., 2007; Liang and Petty, 1992). Besides the 

NADPH oxidase, there are additional enzymes capable of generating ROS as side products of 

electron transfer reactions.  

Mitochondrial electron transport 

ROS, including O2
.- and H2O2 are normally generated as side products of electron transfer 

reactions that occur during the operation of the mitochondrial electron transport chain. The 

mechanism of generation of ROS involves “leakage” of electrons from electron carriers that are 

passed directly to oxygen, reducing it to O2
.-. For rapid elimination of intracellular ROS, 

mitochondria have their own Mn2+ dependent SOD enzyme (Fialkow et al., 2007). 

Nitric oxide synthase and reactive nitrogen species 

Nitric oxide synthase (NOS) catalyses the production of nitric oxide (NO.) from L-arginine, oxygen 

and NADPH (Marletta, 1993). There are two kinds of NOS; the constitutive NO synthases (NOS1 

and NOS3) and the inducible NOS2 or iNOS. iNOS is expressed in leukocytes including 

macrophages and neutrophils, and its activity is Ca2+-dependent. The expression of iNOS is 

increased by cytokines and other inflammatory stimuli (Evans et al., 1996; Razavi et al., 2004; 

Wheeler et al., 1997). NO can influence diverse cellular responses, and can have both pro- and 

anti-inflammatory effects. Similar to ROS, NO participates in diverse cellular processes such as 

receptor regulation, endocytic pathways, GTP-binding proteins, transcription factors, ion 

channels and tyrosine kinases (Quijano et al., 2005; Sun et al., 2003; Wang et al., 2006a). There 

are physiologically important interactions between NO° and ROS such as O2
.-. NO can therefore 

act as an endogenous biologic scavenger or inactivator of ROS (Beckman et al., 1990; McCall et 

al., 1989). In leukocytes, the reaction between NO and superoxides generates reactive nitrogen 
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species like peroxynitrite (ONOO-), a cytotoxic compound that can modify signalling molecules 

by nitrosylation (Beckman et al., 1990). iNOS is not essential for C. albicans infections in oral 

Candidiasis (Farah et al., 2009). Furthermore, C. albicans seems to suppress RNS production by 

IFN-γ (Chinen et al., 1999). 

I.3.3.2 ROS and cell signalling 

Endogenously produced ROS are involved in several signal transduction pathways. The first 

signalling components identified to be redox sensitive were transcription factors. ROS induce 

activation of NF-κB, c-fos and c-jun (Lo and Cruz, 1995; Schreck et al., 1991). NF-κB mediates the 

rapid induction of expression of genes involved in the acute inflammatory responses, including 

cytokines and their receptors, adhesion molecules and MHC antigens (Celec, 2004). In Kupffer 

cells, production of TNF-alpha is regulated by a ROS-activated NF-κB pathway (Rose et al., 2000). 

NF-κB activation in alveolar macrophages was altered in a knock-out mouse model lacking 

p47phox (Koay et al., 2001), indicating the importance of this pathway in lungs. ROS also mediate 

TNF-α induction of c-fos in chondrocytes, which may have important consequences in the 

development of inflammatory diseases such as arthritis (Lo and Cruz, 1995). In addition, ROS is 

also produced by binding of TNF-α with its receptor. This ROS is not produced by NADPH oxidase 

on the cellular membranes but rather in the cytoplasm and in the mitochondria (Forman and 

Torres, 2002). 

MAP kinases are serine-threonine kinases that regulate many key cellular and antimicrobial 

responses. The signalling module of the ERK pathway is composed of ERK1/2, the dual-specificity 

kinases MEK1/2. Isoforms of Raf are principally activated by hormones and growth factors (Qi 

and Elion, 2005). Exogenous H2O2 activates ERK1 and ERK2 in many cell types, although this 

activation appears to be cell type-specific (Abe et al., 1998; Aikawa et al., 1997; Guyton et al., 

1996; Torres and Forman, 2003). Further studies indicate that increased intracellular ROS 

production also activates the ERK pathway (Irani, 2000). Several reports have shown that 

phosphorylation of tyrosine kinases, including Syk, Hck, Lyn, Fgr, Yes and Btk can be either 

directly or indirectly modulated by NADPH and endogenously generated ROS (Berton and Lowell, 

1999; Brumell et al., 1996). 

I.3.3.3 ROS production in response to Candida infection 

ROS production upon zymosan stimulation of BMDMs, thioglycollate-elicited macrophages, and 

mast cells was shown to be Dectin-1 dependent (Gantner et al., 2003; Taylor et al., 2007; Yang 

and Marshall, 2009). Furthermore, ROS production upon zymosan stimulation is Syk-dependent 

- 28 -

Introduction

- 28 -



 

 
 

(Gantner et al., 2003). However, the role of Dectin-1 in C. albicans ROS signalling is still unclear 

because alveolar macrophages from dectin-1-/- mice fail to show alterations in ROS production 

when stimulated with C. albicans (Saijo et al., 2007). Further inhibition of Dectin-1 with laminarin 

or anti-Dectin-1 blocking-antibodies inhibits ROS production upon C. albicans stimulation 

(Gantner et al., 2005). Notably, human DCs stimulated with heat-killed C. albicans produce ROS 

in a Dectin-1 and Syk-dependent manner (Skrzypek et al., 2009). Furthermore, C. albicans 

stimulates BMDCs to produce ROS in a Syk-dependent but Card9-independent manner (Gross et 

al., 2009). 
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II. Aims of this work 

One of the immediate early defence responses of macrophages facing invading fungal cells 

includes the production of reactive oxygen species (ROS), which play important roles in 

inflammatory reactions. ROS destroy invading pathogens, but overproduction of ROS may also 

cause endothelial damage.  

Two strategies were chosen to investigate the immunological importance of the respiratory 

burst, and the upstream factors leading to the production of ROS in innate immune cells when 

challenged with C. albicans. 

Generation and analysis of mutant strains of all C. albicans superoxide dismutases 

On the pathogen side, the aim of this thesis was to generate C. albicans mutant strains lacking 

one or more of the superoxide dismutases (SOD1-6) putatively involved in ROS response. Using 

different stress conditions and a combination of different ROS assays, I addressed the question 

of whether and how the C. albicans SODs are involved in the response to ROS produced by 

innate immune cells such as bone marrow-derived macrophages or myeloid dendritic cells. 

Analysis of putative pattern recognition receptors involved in ROS transduction 

We and others have shown that C. albicans, C. dubliensis (C.d) and C. glabrata (C.g) induce ROS 

in BMDMs and mDCs to different extents following distinct kinetics. The pattern recognition 

receptor Dectin-1 is known to be important for ROS production in response to zymosan. So far, 

Dectin-1 was also implicated to be important for ROS production in response to C. albicans 

although concerning the latter, there are conflicting data in the literature. 

The second aim of this work was therefore to elucidate whether or not Dectin-1 is involved 

in C. albicans-induced ROS production in BMDMs, and if there are other pattern recognition 

receptors engaged in this immune response, which acitvates downstream signalling pathways 

initiating ROS production. To address these questions, I used knock-out mice of different pattern 

recognition receptors and specific blocking agents or antibodies. Additionally, I have set up a 

siRNA knock down assay to reveal new pathways that might be responsible for Candida induced 

ROS in BMDMs. 
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III. Results 

III.1 C. albicans degrades host-derived ROS to escape innate immune 

surveillance 
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Candida albicans cell surface superoxide dismutases
degrade host-derived reactive oxygen species to escape
innate immune surveillance

Ingrid E. Frohner, Christelle Bourgeois,
Kristina Yatsyk, Olivia Majer and Karl Kuchler*
Medical University Vienna, Christian Doppler Laboratory
for Infection Biology, Max F. Perutz Laboratories,
Campus Vienna Biocenter; A-1030 Vienna, Austria.

Summary

Mammalian innate immune cells produce reactive
oxygen species (ROS) in the oxidative burst reaction
to destroy invading microbial pathogens. Using quan-
titative real-time ROS assays, we show here that both
yeast and filamentous forms of the opportunistic
human fungal pathogen Candida albicans trigger
ROS production in primary innate immune cells
such as macrophages and dendritic cells. Through a
reverse genetic approach, we demonstrate that coc-
ulture of macrophages or myeloid dendritic cells with
C. albicans cells lacking the superoxide dismutase
(SOD) Sod5 leads to massive extracellular ROS accu-
mulation in vitro. ROS accumulation was further
increased in coculture with fungal cells devoid of
both Sod4 and Sod5. Survival experiments show that
C. albicans mutants lacking Sod5 and Sod4 exhibit a
severe loss of viability in the presence of macroph-
ages in vitro. The reduced viability of sod5D/D and
sod4D/D sod5D/D mutants relative to wild type is not
evident with macrophages from gp91phox -/- mice
defective in the oxidative burst activity, demonstrat-
ing a ROS-dependent killing activity of macrophages
targeting fungal pathogens. These data show a physi-
ological role for cell surface SODs in detoxifying ROS,
and suggest a mechanism whereby C. albicans, and
perhaps many other microbial pathogens, can evade
host immune surveillance in vivo.

Introduction

Invasive Candida albicans infections are life-threatening
clinical conditions affecting immunosuppressed patients
and those with general defects in the immune system. The
mortalities associated with disseminated candidiasis can
be as high as 30–40%, despite extensive antifungal thera-
pies (Pfaller and Diekema, 2007). Host defences against
fungi range from non-specific proteolytic defences to dedi-
cated adaptive immune responses (Romani, 2004; Netea
et al., 2008). The earliest host response to fungal patho-
gens, including C. albicans, relies on fungal recognition
by innate immune cells such as dendritic cells, macroph-
ages and neutrophils and involves pattern recognition
receptors, followed by the subsequent phagocytosis and
elimination of microbial pathogens (Brown and Gordon,
2005; Akira et al., 2006; Jouault et al., 2006; Taylor, 2007;
Gow et al., 2007).

Upon interaction with pathogens, phagocytes rapidly
produce reactive oxygen species (ROS), which are
thought to aid killing of invading microbes (Dinauer, 1993;
Morgenstern et al., 1997), and further activate defensive
signalling pathways reviewed in Forman and Torres
(2002) and Netea et al. (2008). ROS production is initi-
ated through assembly and activation of nicotinamide
adenine dinucleotide phosphate (NADPH) oxidase in
phagocytes (Babior, 2004). This triggers the respiratory
burst by generating superoxide anions (O2

-) (Schrenzel
et al., 1998), which are subsequently converted to hydro-
gen peroxide (H2O2), hydroxyl radical (OH°) and
hypochlorous acid, the latter conversion only taking place
in neutrophils.

In C. albicans, the Cat1 catalase has been implicated in
counteracting the respiratory burst by protecting cells
from killing by H2O2 stress. Cells lacking Cat1 also display
attenuated virulence in an invasive mouse virulence
model as reviewed in Chauhan et al. (2006). Furthermore,
the C. albicans genome harbours six genes encoding
putative superoxide dismutases (SOD), four of which are
copper-zinc (CuZn)-dependent, namely the cytoplasmic
Sod1 and the cell surface Sod4, Sod5 and Sod6; two
SODs, the mitochondrial Sod2 and cytoplasmic Sod3, are
manganese-dependent (Chauhan et al., 2006). SODs
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convert O2
- into molecular oxygen and hydrogen perox-

ide, thereby scavenging the toxic effects of O2
- and pre-

venting higher H2O2 levels by other downstream reactions
(Teixeira et al., 1998).

The best-studied C. albicans SODs with respect to their
role in pathogenesis are Sod1 and Sod5, the latter being
a GPI-anchored cell surface protein (Fradin et al., 2005).
Both appear required for virulence of C. albicans in inva-
sive mouse models (Hwang et al., 2002). Further, fungal
cells lacking Sod1 are sensitive to menadione and more
sensitive to killing by macrophages than a wild-type strain
(Hwang et al., 2002). SOD5 is upregulated under osmotic
and oxidative stress conditions, as well as during yeast-
to-hyphae transition (Martchenko et al., 2004). Moreover,
transcriptional profiling indicates that SOD5 expression is
also upregulated by neutrophil contact, in presence of
neutrophils and viability of a sod5D/D mutant is reduced
relative to the wild type. Notably, both Sod4 and Sod6 are
predicted GPI-anchored cell wall proteins reviewed in
Richard and Plaine (2007), but their function has not been
analysed. The surface location of Sod4, Sod5 and Sod6
prompted the notion that they may protect C. albicans
against extracellular stress (Fradin et al., 2005; Gantner
et al., 2005).

In this work, we demonstrate a pivotal role for
C. albicans SODs in destroying host-derived ROS. We
show that primary innate immune cells rapidly respond to
fungal pathogens by mounting a protective ROS response
to destroy invading cells. We exploit a reverse genetic
approach to show that certain C. albicans SODs counter-
act the respiratory burst. Strikingly, we demonstrate that
Sod5, and to a lesser extent Sod4, catalyses destruction
of host-derived ROS. Interestingly, sod5D/D and sod4D/D
sod5D/D C. albicans show decreased viability in the pres-
ence of macrophages. Thus, our data identify SOD5 as a
novel C. albicans gene, mediating detoxification of host-
derived ROS. The results suggest a molecular mecha-
nism whereby fungal pathogens can escape the
immediate early immune response, namely the oxidative
burst reaction.

Results

C. albicans yeast and hyphae forms trigger ROS in
macrophages and dendritic cells

The earliest response of innate immune cells facing patho-
gens includes the production of ROS (DeLeo et al., 1999;
Forman and Torres, 2002). Thus, we asked whether C. al-
bicans can induce ROS in mouse bone marrow-derived
macrophages (BMDMs) as well as myeloid dendritic cells
(mDCs). To investigate production of total ROS, we
adapted a luminol-dependent, chemiluminescence assay
in the presence of horseradish peroxidase (HRP). Oxida-

tion of luminol by ROS leads to chemiluminescence and
the luminescence measured is proportional to the ROS
produced in the system (Dahlgren and Karlsson, 1999).

In order to determine the optimal ratio of C. albicans to
host immune cells, we first performed experiments with
different multiplicities of infection (MOI). Yeast forms of
the clinical isolate C. albicans SC5314 induced ROS in
BMDMs and mDCs at an MOI ranging from 2:1 (fungi to
macrophages) up to 10:1 (Fig. 1A a and b). No ROS were
detected with an MOI of 20:1 and higher (data not shown).
The optimal ROS response by BMDMs and mDCs was
observed with a 5:1 MOI (Fig. 1A). Notably, the oxidative
burst of mDCs is more than five times higher than that of
BMDMs (Fig. 1A c). Zymosan, a crude cell wall prepara-
tion from Saccharomyces cerevisiae, served as positive
control in all experiments (Gantner et al., 2003). Mature
hyphal forms of C. albicans (up to 12 mg per well dry
weight equivalent) also induced ROS in BMDMs (Fig. 1B).
To determine whether ROS are produced by immune cells
or fungi, we used BMDMs differentiated from gp91phox -/-

mice lacking an essential NADPH subunit required for
ROS production. As expected, no ROS production was
observed when gp91phox -/- BMDMs were incubated with
zymosan. A substantially blunted signal was detected
when C. albicans interacted with gp91phox -/- BMDMs
(Fig. 1C). Thus, these data demonstrate that both yeast
and hyphal forms of C. albicans can trigger ROS produc-
tion in BMDMs as well as mDCs. Importantly, ROS
detected by the assays is mainly derived from mammalian
immune cells, as gp91phox -/- BMDMs failed to generate
ROS.

ROS accumulate when sod5D/D cells infect BMDMs

Like most organisms, fungi possess various antioxidant
enzymes to counteract oxidative damage, including
thioredoxin, glutathione reductase, catalase, gluthathione
peroxidase as well as SODs. The genome of C. albicans
encodes six putative SODs (SOD1–6, reviewed in
Chauhan et al., 2006).

To clarify which C. albicans SODs are involved in
the response to innate immune cells, we constructed
homozygous deletion strains, each lacking one of the six
C. albicans SOD genes (SOD1–6) in the SN152 genetic
background (Noble and Johnson, 2005). To create a HIS1
LEU2 prototrophic control strain, we integrated the
CdLEU2 and CmHIS1 cassettes at their corresponding
genomic loci in the SN152 strain, yielding the strain
CA-IF100, hereafter referred to as wild type throughout
the text. This wild-type strain induced ROS to levels
similar to the clinical isolate SC5314, suggesting that the
different genetic backgrounds or auxotrophic markers did
not affect ROS release (data not shown). We then tested
the phenotypes of mutants lacking SODs concerning
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intracellular stress such as menadione, which is generat-
ing intracellular superoxide radicals, and diamide, a
thiol-specific oxidant that can readily oxidize reduced
glutathione. We confirmed the previously reported sensi-
tivities of C. albicans strains lacking SOD1 and SOD2 to
menadione, as well as the resistance to diamide, on SD
media (Hwang et al., 2002; 2003) (data not shown).
Importantly, the absence of extracellular SODs failed to
show any sensitivity or resistance to any of the drugs
causing intracellular oxidative stress, implying a putative
function in extracelluar ROS detoxification.

Next, we tested phenotypes of cells lacking various
SODs concerning the activation of ROS production in
macrophages or dendritic cells using the luminol assay.
The interaction of primary BMDMs with C. albicans
sod1D/D or sod4D/D strains did not show any significant
changes in ROS levels over a period of 90 min when
compared with the wild-type strain CA-IF100 (Fig. 2A a).
Similarly, the sod2D/D, sod3D/D and sod6D/D homozygous
deletion strains did not show any different ROS produc-

tion (data not shown). By contrast, ROS accumulated
more than fourfold when BMDMs were infected with the
sod5D/D deletion strain CA-IF019, but not with the sod5D/
SOD5 heterozygous strain (Fig. 2A a–c). As a control, we
also re-integrated a functional SOD5 gene into the corre-
sponding genomic locus, sod5D/D::SOD5 to construct the
revertant strain CA-IF070. As expected, ROS levels
induced by this strain were similar to those elicited by the
wild-type strain. The phorbol ester PMA, a potent ROS
inducer, was used as a positive control (Fig. 2A b). Similar
results were obtained for ROS induction by mutant and
wild-type strain using primary mDCs (Fig. 2B a and b).
Furthermore, no ROS accumulation was observed in
BMDMs derived from gp91phox -/- mice infected with
sod5D/D homozygous deletion strains and the wild-type
strain, unequivocally demonstrating that ROS accumula-
tion in BMDMs and mDCs requires functional gp91phox
and the absence of Sod5 (Fig. 2C), suggesting a role for
Sod5 in counteracting the oxidative burst of innate
immune cells in vitro.

Fig. 1. C. albicans induces ROS production in wild-type BMDMs and mDCs.
A–C. ROS measurement by luminol-dependent chemiluminescence at 37°C in 2.5 min intervals over a 90 min period [relative luciferase units
(RLU) min-1 per 1000 immune cells].
A. Stimulation of BMDMs (a) or mDCs (b) with yeast-form C. albicans (yC.a) at an MOI of 2:1 (equivalent to 2 mg yeast dry weight per well),
5:1 (5 mg/well) or 10:1 (10 mg/well) or with zymosan (20 mg/well). (c) Quantification of the total ROS release between 10 and 50 min
(striped area) by calculating the area under the curve (MOI 5:1). The average of three independent experiments is presented. *mDCs produce
5.5 � 0.35 times more ROS than BMDMs. **P < 0.02.
B. Stimulation of BMDMs with hyphae-form C. albicans (hC.a) at 3 mg dry weight/well, 6 mg/well or 12 mg/well.
C. Stimulation of gp91phox -/- and wt BMDMs with yeast-form C. albicans at an MOI of 5:1 or zymosan (20 mg/well).
A–C. Results of one experiment per condition are shown. Data were reproduced in at least three independent experiments. Statistical
significance was calculated using a two-tailed Student’s t-test.
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ROS accumulation in vitro is due to enhanced
extracellular superoxide levels

The SODs are believed to destroy harmful superoxides
produced by converting them first to H2O2; subsequently
catalase converts H2O2 into harmless H2O and O2. We
therefore hypothesized that deletion of an SOD gene
should increase superoxide levels. Because the main
type of ROS detected by the luminol assay is peroxide but
not superoxide, we measured superoxide levels using
lucigenin as a luminescence probe (Li et al., 1998).
Superoxide accumulation in BMDMs cocultured with
the wild-type strain, as well as the sod4D/D strain, was
similar. By contrast, the sod5D/D mutant showed a more
than threefold superoxide accumulation. As expected,

superoxide accumulation was not observed in BMDMs
cocultured with the functionally restored sod5D/D::SOD5
strain (Fig. 3A).

The NADPH-oxidase is believed to assemble either in
the plasma membrane or in membranes of phagosomes
(Hampton et al., 1998; Kobayashi et al., 1998). Therefore,
ROS will either be released from cells or retained inside
the phagosomes. To discriminate the locations of ROS
accumulation, we measured ROS using isoluminol as a
luminescence probe (Lundqvist and Dahlgren, 1996),
which, in contrast to luminol, is membrane-impermeable.
In BMDMs, ROS accumulated about 10-fold higher in the
presence of sod5D/D cells, when compared with macro-
phages coincubated with sod6D/D cells or the wild-type
strain (Fig. 3B).

Fig. 2. ROS accumulate when BMDMs or mDCs, but not gp91phox -/- BMDMs, are infected with sod5D/D cells.
A–C. ROS measurement by luminol-dependent chemiluminescence at 37°C in 2.5 min intervals over a 90 min period [relative luciferase units
(RLU) min-1 per 1000 immune cells].
A. (a) Stimulation of BMDMs with either the wild type (CA-IF100) strain or the sod1D/D (CA-IF003), sod4D/D (CA-IF015), sod5D/D (CA-IF019)
mutant strains or sod5D/SOD5 heterozygous strain (CA-IF017) (MOI 5:1). (b) Stimulation of BMDMs with the sod5D/D::SOD5 revertant
(CA-IF027) (MOI 5:1) or PMA (10 nM). (c) Quantification of the total ROS release between 10 and 60 min (striped area) by calculating the
area under the curve (MOI 5:1). The average of three independent experiments is presented. *Infection with sod5D/D yields 4.3 � 0.68 times
more ROS than with wild-type C. albicans. **P < 0.02.
B. (a) Stimulation of mDCs with either the wild type (CA-IF100) strain, or the sod1D/D (CA-IF003), sod4D/D (CA-IF015), sod6D/D (CA-IF023) or
sod5D/D mutant strains. (b) Quantification of the total ROS release between 10 and 60 min (striped area) by calculating the area under the
curve. The average of three independent experiments is presented. *Infection with sod5D/D yields 4 � 0.64 times more ROS than with wild
type cells. **P < 0.05.
C. Stimulation of gp91phox -/- or wild-type BMDMs with either the wild-type (CA-IF100) strain, the sod5D/D (CA-IF019) mutant strain or
sod5D/D::SOD5 re-integrant (CA-IF027).
A–C. Results of one experiment per condition are shown. Data were reproduced in at least three independent experiments. Statistical
significances were calculated using a two-tailed Student’s t-test.

C. albicans and oxidative burst of innate immune cells 243

© 2008 The Authors
Journal compilation © 2008 Blackwell Publishing Ltd, Molecular Microbiology, 71, 240–252

Results

- 36 -



Finally, to visualize intracellular ROS production, we
pre-loaded BMDMs with the non-fluorescent dye H2DCF-
DA, which cannot cross cellular compartments after
esterase cleavage. Upon oxidation by ROS, H2DCF-DA
is converted to the fluorescent product 2′-7′-
dichlorofluorescein (DCF). A limited permeability of DCF
retains it preferentially at the site where it was generated
(Yeung et al., 2005). Therefore, ROS produced in the
phagosomes is not detected by H2DCF-DA. We then

measured the generation of ROS after 15 min (Fig. 3C a)
and 45 min (Fig. 3C b) using the standard 5:1 MOI of
fungal cells to BMDMs and the phorbol ester PMA as a
control (Fig. 3C). FACS analysis showed that intracellular
ROS levels were induced at very similar levels by both
sod5D/D and the wild-type strains (Fig. 3C, violet overlay).
We conclude that Sod5 is involved in the detoxification of
extracellular or phagosomal superoxides produced by
BMDMs, but has no effect on the intracellular ROS levels.

Fig. 3. Extracellular ROS accumulate in the presence of sod5D/D cells.
A. Superoxides measurement by lucigenin-dependent chemiluminescence at 37°C over a 90 min period [relative luciferase units (RLU) under
the curve]. Stimulation of BMDMs with either the wild-type (CA-IF100) strain, or the sod4D/D (CA-IF015), sod5D/D (CA-IF019) mutant strain or
the sod5D/D::SOD5 revertant (CA-IF027) (MOI 5:1). *Infection with sod5D/D yields 3.2 � 0.21 times more superoxides than with wild-type
C. albicans **P > 0.005.
B. Extracellular ROS measurement by isoluminol-dependent chemiluminescence at 37°C in 2.5 min intervals over a 90 min period [relative
luciferase units (RLU) min-1 per 1000 cells]. Stimulation of BMDMs with either the wild-type (CA-IF100) strain or the sod5D/D (CA-IF019) or
sod6D/D (CA-IF023) mutant strains (MOI 5:1). Quantification of the total ROS release between 30 and 70 min (striped area) by calculating the
area under the curve. *Infection with sod5D/D yields 10 � 0.5 times more extracellular ROS than with wild-type cells. **P > 0.001.
C. Intracellular ROS production in response to the phorbol ester PMA, wild-type (CA-IF100) strain or sod5D/D (CA-IF019) mutant strain was
measured by FACS analysis using H2DCF-DA staining of BMDMs after 15 min (a) or 40 min (b) of infection.
A–C. Results of one experiment per condition are shown. All data were reproduced in at least three independent experiments. Statistical
significances were calculated using a two-tailed Student’s t-test.
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Sod4 but not Sod6 shares functional overlap with Sod5

A previous report showed that SOD4 is upregulated in a
sod5D/D mutant cocultured with blood cells (Fradin et al.,
2005), suggesting that the lack of the SOD5 gene may
result in compensatory upregulation of other functionally
overlapping SOD genes. Northern analysis demonstrated
that SOD4 mRNA levels in yeast-form C. albicans were

lower than those of SOD5. However, both transcripts were
strongly upregulated under conditions promoting hyphal
transition, including higher temperature at 37°C or 37°C
plus serum (Fig. 4A). While we failed to detect SOD6-
specific expression via Northern analysis, we used qPCR
to detect SOD6 mRNA in the wild type, the single sod5D/D
mutant, as well as in the sod4D/D sod5D/D double deletion
strain, all of which were growing at 30°C and 37°C plus

Fig. 4. A sod4D/D deletion in a sod5D/D background boosts ROS accumulation.
A. Northern analysis of SOD4, SOD5 and ACT1 mRNA. The clinical C. albicans SC5314 strain was grown at 30°C, 37°C and 37°C plus 10%
FCS.
B. ROS measurement by luminol-dependent chemiluminescence at 37°C in 2.5 min intervals over a 90 min period [relative luciferase units
(RLU) min-1 per 1000 BMDMs]. Stimulation of BMDMs with either the wild-type (CA-IF100) strain or sod5D/D (CA-IF019), sod5D/D::SOD5
(CA-IF027), sod4D/D sod5D/D (CA-IF039) and sod4D/D sod5D/D sod6D/D (CA-IF070) mutant strains (MOI 5:1) (a). Quantification of the total
ROS release between 10 and 50 min (striped area) by calculating the area under the curve (MOI 5:1) and calculating the fold differences.
The average of four independent experiments is presented. Infection with sod4D/D sod5D/D yields 1.36 � 0.18 times more ROS than by a
sod5D/D strain. *P < 0.05, sod4D/D sod5D/D sod6D/D triple mutant yields 1.43 � 0.09 times more ROS than by a sod5D/D strain. *P < 0.02; and
the sod4D/D sod5D/D sod6D/D triple mutant yields 1.09 � 0.1 times more ROS than sod4D/D sod5D/D. ***P > 0.09 (b).
C. Superoxides measurement by lucigenin-dependent chemiluminescence at 37°C over a 90 min period [relative luciferase units (RLU) under
the curve]. Stimulation of BMDMs with either zymosan (20 mg/well), the wild-type (CA-IF100) strain, the sod5D/D (CA-IF019), sod4D/D sod5D/D
(CA-IF039) and sod4D/D sod5D/D sod6D/D (CA-IF070) mutant strains (MOI 5:1).
A and B. Results of one experiment per condition are shown. All data were reproduced in two independent experiments.
D. Intracellular ROS production in response to wild-type (CA-IF100) strain or sod4D/D (CA-IF015), sod4D/D sod5D/D (CA-IF039) mutant strains
(MOI 5:1) or zymosan (100 mg ml-1). ROS was measured by FACS analysis using H2DCF-DA-staining of BMDMs after 45 min of infection.
A–C. Results of one experiment per condition are shown. All data were reproduced in at least three independent experiments. Statistical
significances were calculated using a two-tailed Student’s t-test.
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10% FCS. The mRNA levels of SOD6 were the same
under all conditions tested (data not shown), indicating
that SOD6 is not regulated during yeast to hyphae tran-
sition or by temperature. We therefore hypothesized that
SOD4 expression may compensate at least partially for
the lack of SOD5, while SOD6 is unable to do so. To test
this hypothesis, we generated sod4D/D sod5D/D and
sod4D/D sod6D/D double mutants and a sod4D/D sod5D/D
sod6D/D triple mutant (using the SAT1-flipper cassette,
Reuss et al., 2004), and looked at ROS accumulation
after infecting BMDMs. When BMDMs were infected with
the sod4D/D sod5D/D double deletion strain, accumulation
of ROS was slightly (1.36 times), but significantly higher
than in the presence of the respective sod5D/D single
deletion strain (Fig. 4B b). By contrast, a sod4D/D sod6D/D
double mutant strain did not affect the ROS accumulation
relative to single deletions or the wild-type cells (data not
shown). The sod4D/D sod5D/D sod6D/D triple mutant
slightly increased ROS accumulation when compared
with the sod4D/D sod5D/D double mutant, but without a
statistical significance (Fig. 4B a + b). Superoxide accu-
mulation in BMDMs cocultured with the sod5D/D deletion
strain was again about threefold higher than with the
wild-type strain. BMDMs cocultured with the sod4D/D
sod5D/D double deletion accumulated about 1.5 times
more superoxides than the sod5D/D mutant strain. By
contrast, the sod4D/D sod5D/D sod6D/D triple deletion
strain showed no increase in superoxide accumulation
relative to the sod4D/D sod5D/D double mutant (Fig. 4C).

We then measured the generation of intracellular ROS
using the standard 5:1 MOI of fungal cells to BMDMs.
FACS analysis showed that after 30 min intracellular ROS
were induced at very similar levels by the sod4D/D,
sod4D/D sod5D/D mutant and the wild-type strains (data
not shown). Notably, after 45 min, the sod4D/D mutant
strain exhibited less intracellular ROS than the wild-type
control strain, but induced similar ROS levels as
zymosan; the sod4D/D sod5D/D mutant strains induced
levels of intracellular ROS similar to the wild type
(Fig. 4D).

Hence, these data suggest that Sod5 and Sod4 play a
major role in the clearance of ROS produced by innate
immune cells. Notably, Sod4, although present at very low
levels, can at least partially compensate for a loss of
Sod5.

Exogenous SOD rescues defects of cells lacking Sod4
and Sod5

Previous work indicated that a sod5D/D deletion strain
was attenuated in a mouse model for disseminated infec-
tion, and exhibited increased susceptibility to killing by
whole human blood cultures and polymorphonuclear neu-
trophils, but not to human monocytes or the macrophage

cell line RAW264.7 (Martchenko et al., 2004; Fradin et al.,
2005). Our data, as well as published virulence data,
predict that cells lacking SODs should display higher sus-
ceptibilities to killing by immune cells and thus exhibit
reduced viability in the presence of host cells. To examine
the contribution of all CuZn-dependent SOD mutants to
the defence of C. albicans against macrophage-derived
ROS, the wild-type, sod4D/D, sod5D/D in SN152, sod5D/
D::SOD5, sod4D/D sod5D/D, sod4D/D sod6D/D strains, the
clinical isolate SC5314 and a new sod5D/D mutant gen-
erated in the genetic background of the clinical isolate
SC5314 were tested for their viability in coculture with
primary BMDMs using a modified ‘endpoint dilution sur-
vival’ assay as described earlier (Rocha et al., 2001).

As shown in Fig. 5A, the quantification of the survival
data of an interaction with BMDMs at the low MOI 1:1024
showed that 66.4% of the wild-type cells survived in the
presence of BMDMs. Likewise, sod4D/D, sod6D/D and
sod4D/D sod6D/D strains had very similar survival rates as
the wild type at all BMDM dilutions. As predicted, the
sod5D/D strain was hypersensitive to BMDM killing by
almost one order of magnitude, while the sod5D/D::SOD5
revertant displayed the same viability as the wild-type
control (Fig. 5A). When coculturing BMDMs with the
sod4D/D sod5D/D double mutant, viability was even
further reduced. The sod4D/D sod5D/D sod6D/D triple
mutant had a similar survival rate as the sod4D/D sod5D/D
double mutant (Fig. 5A a), demonstrating the functional
redundancy of at least Sod4 and Sod5. The increased
sensitivity of sod5D/D and sod4D/D sod5D/D strains was
observed in coincubations with BMDMs at the higher MOI
of 1:4 for sod5D/D and 1:1 for sod4D/D sod5D/D cells
respectively (data not shown). To reconfirm our findings,
we also tested sod5D/D in the SC5314 background strain.
When infected with BMDMs, sod5D/D SC5314 cells
showed similar survival as the unrelated sod5D/D deletion
strain CA-IF019 (Fig. 5A b).

To unequivocally demonstrate the role of SOD in medi-
ating survival in the presence of BMDMs, we spiked sur-
vival assays with 10 U commercial bovine erythrocyte
SOD enzyme. Strikingly, exogenous SOD fully rescued
the viability defect to both sod5D/D and sod4D/D sod5D/D
double mutants (Fig. 5A, white bars). Furthermore, ROS
accumulation was also suppressed by the exogenous
SOD activity when BMDMs were infected with strains
lacking Sod5 or both Sod5 and Sod4 (data not shown).
Finally, we also used gp91phox -/- BMDMs to test whether
the absence of ROS production can increase the survival
of sod5D/D and sod4D/D sod5D/D strains (Fig. 5B). As
expected, in the presence of gp91phox -/- BMDMs, both
sod5D/D and sod4D/D sod5D/D double mutants showed a
survival comparable to the wild-type control. The same
results were obtained with the independent sod5D/D
mutant and the wild-type SC5314, respectively, in
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gp91phox -/- BMDMs. (Fig. 5B). This proves that
increased killing of the sod5D/D and sod4D/D sod5D/D by
innate immune cells is caused by host-derived ROS.
Taken together, our data demonstrate an essential role
of C. albicans Sod5 in counteracting the host-derived
immune defence as mounted through ROS to evade host
immune response.

Based on our results, we propose that C. albicans can
escape host-generated oxidative burst (Fig. 6). Adhesion,
recognition and phagocytosis of fungal cells by innate
immune cells trigger an immediate and rapid assembly of

the ROS machinery at the cell surface or in the forming
phagosomal membrane, preceding phagocytosis and
persisting throughout phagosomal formation (Nauseef,
2004). Concomitantly, host temperature and adhesion
may enhance SOD4 and SOD5 expression, followed by
the elimination of extracellular and perhaps phagosomal
ROS produced by host cells. In our in vitro assay dur-
ing phagocytosis, substrate and enzyme may become
trapped in the phagosomes. Hence, ROS production may
also continue within the phagosomes. The SOD-mediated
decay of host-derived ROS perhaps facilitates intrapha-
gosomal survival of fungal cells, which would facilitate
killing of the host cells. Taken together, these data reveal
a physiological function of cell surface SODs in evading
immune surveillance, thereby facilitating invasion and ulti-
mately dissemination of fungal pathogens in the mamma-
lian host (Fig. 6).

Discussion

In this report, we show that yeast and hyphal forms of
C. albicans rapidly induce ROS in primary innate immune
cells such as macrophages and dendritic cells. We dem-
onstrate that the GPI-anchored Sod5 and Sod4 enzymes
act to degrade extracellular ROS produced by innate
immune cells. Strikingly, C. albicans strains lacking SODs
Sod4 and Sod5 fail to counteract the host-derived oxida-
tive burst and are thus hyper-susceptible to killing by

Fig. 5. sod5D/D and sod4D/D sod5D/D strains are hypersensitive
to killing by BMDMs.
A and B. Survival of C. albicans and isogenic mutant cells was
determined using the end-point dilution assay. Mean and standard
deviation of three independent experiments are presented.
A. Wild-type BMDMs in medium without (filled bars) or with 10 U
commercial erythrocyte SOD (white bar) were coincubated with
either wild-type (wt) C. albicans strain or strains lacking SOD4
(s4D), SOD5 (s5D blue), the restored SOD5 (s5DS5), SOD6 (s6D)
or strains lacking both SOD4 and SOD6 (s4/6D), SOD4 and SOD5
(s4/5D green) or lacking all three SOD4, SOD5 and SOD6 (s4/5/6
brown) (a), or with the clinical isolate SC5314 and the sod5D/D
mutant in the SC5314 background (SC5314 s5D blue) (b) for 48 h
at 37°C with 5% CO2.
B. gp91phox -/- BMDMs were infected with the wild type (wt) or
strains lacking SOD4 (s4D), SOD5 (s5D blue), the restored SOD5
(s5DS5) or strains lacking both SOD4 and SOD5 (s4/5D green), the
clinical isolate SC5314 or the sod5D/D mutant in the SC5314
background (SC5314 s5D). The percentage of survival for each
strain was determined as follows (colonies in absence of BMDMs
versus colonies in presence of BMDMs ¥ 100).

Fig. 6. Model for Sod4 and Sod5-mediated protection against
respiratory burst. Upon contact with BMDMs and mDCs, Sod4 and
Sod5 anchored at the C. albicans (C.a) surface (left) degrade
superoxide anions (O2

-) to hydrogen peroxide (H2O2). The lack of
the Sod4 and Sod5 (right) causes ROS accumulation in the
medium and perhaps inside the phagosomes (phago), which
results in enhanced killing of C. albicans. Production of
mitochondrial ROS (Mit) is unaffected.
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primary BMDMs, suggesting a physiological role of cell
surface SODs in the evasion of immune surveillance.

Yeast and hyphae forms of C. albicans induce ROS in
BMDMs and mDCs

The ROS induction is independent of morphology as both
yeast and filamentous forms of C. albicans trigger ROS in
BMDMs (Fig. 1A). Our data agree in principle with previ-
ous studies showing ROS production upon fungal recog-
nition (Gantner et al., 2005), but in contrast to this earlier
report, we found that hyphae also have the capacity to
trigger ROS in BMDMs (Fig. 1B a). This discrepancy may
be due to differences in experimental conditions. Notably,
the previous study used higher MOI than our study. In our
hands, increasing MOI to similar high levels failed to
trigger ROS during the interaction of both yeast and
hyphal forms with BMDMs (data not shown), suggesting
that higher amounts of C. albicans may kill or exceed the
macrophage defence capacity.

We observed about 5.5 times more ROS upon interac-
tion of C. albicans with mDCs when compared with
BMDMs, perhaps as a consequence of higher NADPH
oxidase activities in mDCs (Fig. 1A a). Consistent with this
notion, similar observations were made in mDC respond-
ing to the phorbol ester PMA (Savina et al., 2006), one of
the strongest ROS triggers known. We unequivocally
demonstrate that the majority of ROS produced in
response to C. albicans is produced through the NADPH
oxidase present in immune cells, as ROS release is
almost absent in gp91phox -/- cells lacking a functional
oxidase (Fig. 1C).

Host cells produce ROS in response to C. albicans, as
well as fungal surface structures, although the molecular
identities of ligands triggering ROS signalling remain
unknown. Possible candidates include beta1–3 as well as
beta 1–6 glucans (Gantner et al., 2003; Rubin-Bejerano
et al., 2007). However, the use of appropriate knock-out
mice may allow to answer which pattern recognition
receptors contribute to ROS signalling or mediate
C. albicans uptake into host cells (Netea et al., 2008).

C. albicans Sod5 degrades extracellular ROS produced
by immune cells

Experiments using monocyte-derived dendritic cells from
human blood show that C. albicans inhibit PMA-induced
superoxide production. This inhibition increases with
increasing numbers of C. albicans cells, whereas heat-
killed C. albicans fails to do so (Donini et al., 2007). Based
on our work, we propose that C. albicans actively coun-
teracts the oxidative burst of immune cells by expressing
and inducing expression of cell surface SODs, which may
therefore be considered fungal defence genes (Fig. 6).

The GPI-anchored Sod5 and Sod4, as well as Sod6, have
only been described in C. albicans so far. However,
BlastP or tBlastN analysis identified at least one coding
sequence potentially encoding putative GPI-anchored
homologous of SOD4, SOD5 or SOD6 in other fungal
pathogens, including Candida dubliniensis, Candida
tropicalis, Candida parapsilosis, Candida guilliermondi,
Debraryomyces hanseii and Lodderomyces elongisporus
(data not shown). Hence, these pathogens may rely on
similar mechanisms to counteract host-derived oxidative
stress. Infecting BMDMs and mDCs with C. albicans
mutants lacking putative Sod enzymes shows that Sod5
can degrade extracellular and maybe phagosomal super-
oxides, but not intracellular, superoxides produced by
BMDMs and mDCs (Fig. 3 and 4). Thus, to the best of
our knowledge, this is the first report that a fungal cell
surface SOD degrades extracellular ROS released by
host cells.

The ability of C. albicans to destroy ROS in vitro may
explain why despite its cytotoxic potential, macrophages
are poor in killing C. albicans. Notably, even if only a small
fraction of fungal cells survive and escape phagosomal
killing to grow within the host, the subsequent filament
formation will physically destroy the host cell (Mansour
and Levitz, 2002). Furthermore, we and others (Martch-
enko et al., 2004) show that elevated temperature, yeast-
to-hyphae transition (Fig. 4A), as well as conditions
mimicking the phagosome environment, strongly induce
SOD5. Similarly, contact with neutrophils strongly acti-
vates SOD5 transcription (Fradin et al., 2005). Thus,
SOD5 upregulation is perhaps part of the mechanism
whereby the pathogen defence machinery responds to
adverse host conditions.

The upregulation of SOD4 in a sod5D/D deletion strain
(Fradin et al., 2005) partially compensates for the loss of
Sod5, providing redundant function. Indeed, we show that
the putative extracellular Sod4 also contributes to ROS
degradation, although at much lower capacity (Fig. 4B and
C). Interestingly, microarray data and our own preliminary
results (data not shown) suggest that Sod4 is also upregu-
lated upon the transition from the white form to the opaque
form of C. albicans (Lan et al., 2002), implying that Sod4
may also play a prominent role in ROS degradation in
the opaque form. Opaque phase C. albicans cells, for
instance, are better colonizers of the skin and are also
believed to colonize the anaerobic gastrointestinal tract.
Hence, Sod4 could play a more prominent role in the
gastrointestinal tract or in skin infections. By contrast, white
cells are more prevalent in bloodstream infections (Kvaal
et al., 1999; Dumitru et al., 2007; Ramirez-Zavala et al.,
2008), providing selective advantages for the survival of
opaque versus white cells in different host niches.

Notably, we were unable to detect a role in ROS decay
for Sod6, the third C. albicans SOD predicted to reside at
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the cell surface. We detected SOD6 mRNA in the wild
type, the sod5 single as well as the sod4 sod5 double
deletion strains in YPD 30°C or YPD + FCS 37°C (data
not shown). Furthermore, removal of SOD6 in the
sod4D/D or the sod4D/D sod5D/D deletion strains does not
play a role in ROS degradation in vitro, at least in the
interaction with primary BMDMs. In vivo experiments
using animal models might provide more details as to a
possible protective function of SOD6. Moreover, a surface
localization of Sod6 has not been demonstrated or
published. Therefore, the possibility remains that Sod6
may also reside in another cellular compartment, explain-
ing the lack of ROS recognition during host interaction.

Cells lacking Sod4 and Sod5 are hypersensitive to
killing by host ROS

Candida albicans strains lacking the SOD5 gene display
attenuated virulence in mice in vivo (Martchenko et al.,
2004), and contribute to a better survival of C. albicans
in neutrophils (Fradin et al., 2005). This is in agreement
with our in vitro survival experiments, showing that
sod5D/D mutant cells in two independent genetic back-
grounds show strongly reduced survival in BMDMs
when compared with the wild-type control strain, and
the genomically restored SOD5 revertant (Fig. 5A).
However, our results are not in agreement with a previ-
ous study, reporting similar survival degrees of the sod5
mutant when compared with the wild-type strain
(Martchenko et al., 2004). However, the previous study
used the macrophage cell line RAW264.7, whereas we
exploited primary macrophages, which are likely to
display a pathogen response reminiscent of the normal
host situation. Hence, the RAW264.7 tumour cells might
very well display a different signalling response to C. al-
bicans than unstimulated primary BMDMs. Further, the
‘immortalized’ tumour RAW264.7 cells in question stem
from different progenitors than our BMDMs, as they
were isolated from ascites and not from bone marrow.
Interestingly, a recent report indicates that C. albicans is
more susceptible when applying the end-point dilution
survival assays with RAW264.7 cells than with BMDMs
(Marcil et al., 2008).

Cells lacking Sod4 and Sod5 show significantly
decreased survival when compared with the single
sod5D/D mutant, confirming the importance of Sod4 activ-
ity and the functional redundancy with Sod5. Further,
complementing the defect with commercial SOD from
bovine erythrocytes restores the survival of mutant strains
to almost wild-type levels. (Fig. 5A, white bars). Moreover,
wild type, sod5D/D and sod4D/D sod5D/D strains are all
equally sensitive to killing by gp91phox -/- BMDMs defec-
tive in ROS release. The remaining 30–40% killing effi-
ciency of gp91phox -/- macrophages, as well as the

30–40% killing of wild-type C. albicans strains by wild-
type BMDMs, may be independent of the oxidative burst
and stem from other host defence mechanisms such as
acidification of the phagolysosomes (Watanabe et al.,
1991).

Our results recall previous findings showing that extra-
cellular CuZn SODs of bacteria, for example SodC of
Mycobacterium tuberculosis and the periplasmic SodC
of Salmonella typhimurium confer improved survival in
macrophages by degrading extracellular superoxides (De
Groote et al., 1997; Piddington et al., 2001). Our current
working model suggests that C. albicans can eliminate
ROS produced in the extracellular space of the macroph-
ages and dendritic cells, including ROS produced during
phagosome formation within immune cells (Fig. 6).

Taken together, this work suggests that pathogens able
to develop high oxidative stress tolerance are also more
resistant to killing by immune cells. Therefore, scavenging
ROS produced by the NADPH oxidase reaction through
surface SODs may represent a physiological mechanism
driving virulence, invasion and efficient survival in the host.
The work also suggests a general mechanism whereby
C. albicans and other fungal pathogens evade the host
immune response and surveillance. Hence, inhibiting or
blocking the extracellular SOD enzymes of C. albicans
may be a novel therapeutic approach to combat systemic
fungal disease. For instance, specific inhibitors of SODs
may prove useful novel drugs to be used alone or in
combination with existing antifungals to interfere or block
dissemination of fungal pathogens in vivo.

Experimental procedures

Reagents, media and growth conditions

Luminol, Lucigenin, Isoluminol, HRP Type VI, PMA, SOD
from bovine erythrocytes and zymosan were obtained from
Sigma (St Louis, MO). FCS, HBSS, H2DCF-DA were from
Invitrogen Molecular Probes (Oregon). DMEM was pur-
chased from PAA (Vienna, Austria), anti-mouse antibodies
CD16/CD32, CD11b-FITC, CD11c-APC, F4/80-PE-Cy5 were
obtained from BD Bioscience (Mountain View, CA). Rich
medium (YPD) and synthetic complete were prepared essen-
tially as described (Kaiser et al., 1994). BMDM media are
composed of DMEM, 10% heat-inactivated FCS, 20%
L-conditioned medium. mDC media are composed of DMEM,
10% heat-inactivated FCS, 10% X-conditioned medium.
C. albicans strains were grown at 30°C in YPD medium over-
night, diluted to an OD600 = 0.2 the next morning, grown to the
logarithmic growth phase and used for the experiment unless
indicated otherwise. For the preparation of mature filaments,
an overnight culture of C. albicans was diluted 1:10 in
YPD + 10% FCS and grown at 37°C for 3–4 h. For experi-
ments requiring stimulation of macrophages with filaments,
an aliquot of each culture was pelleted and the dry weight
was determined by routine procedures. Aliquots of cultures
equalling the indicated dry weights of yeast or filaments were
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used for experiments. Typically, 4 ¥ 104 yeast cells corre-
spond to 1 mg dry weight.

Fungal strains and construction of C. albicans
deletion mutants

Candida albicans strains, primers and plasmids used in this
study are listed in Tables S1–S3 respectively. The laboratory
strain SN152 served as wild-type parental strain to construct
single deletion strains (SOD1 to SOD6) using the method
described elsewhere (Noble and Johnson, 2005). SN152 is a
leucine, histidine, arginine auxotroph derivative of the clinical
isolate SC5314 (Gillum et al., 1984). The sod5 deletion was
also generated in the SC5314 background. Multiple gene
deletion mutants, as well as the sod5D/D in the SC5314
background, were created using the recyclable ‘SAT1-
flipping’ method (Reuss et al., 2004). Transformation was
achieved by electroporation (Reuss et al., 2004). For all
strains used in this study, correct genomic integration was
verified by PCR and Southern blotting.

Mouse strains and cell culture of innate immune cells

The 7- to 9-week-old C57BL/6 wild-type mice were used for
preparation of BMDMs and mDCs. Frozen bone marrow of 6-
to 8-week-old gp91phox -/- C57BL/6 mice was kindly provided
by Kristina Erikson (George-Chandy et al., 2008). Bone
marrow was collected from mouse femurs, treated with
red blood lysis buffer (8.29 g l-1 NH4CL, 1 g l-1 KHCO3,
0.0372 g l-1 EDTA, pH 7.2–7.4) and re-suspended either in
macrophage media to induce differentiation into BMDMs or
in mDC media to prepare mDC according to previously
described methods (Hume and Gordon, 1983; Inaba et al.,
1992). After 3 days in culture, fresh medium was added.
mDCs were used after 7–8 days in culture. After 7 days,
BMDMs cultures were split 1:3 and further cultured up to day
10. BMDMs were used between day 10 and day 13 of
differentiation. Cell surface markers of the mDCs and
BMDMs cell preparation were assessed by flow cytometry
using a panel of marker antibodies. mDCs preparations were
negative for F4/80, a macrophage marker, positive for
CD11b, and at least 50–60% of the cells were CD11c+. In
BMDMs cultures, 95% of the cells expressed CD11b and
F4/80 markers.

ROS assays

For the detection of total, extracellular and intracellular ROS,
chemiluminescense assays were performed using electron
acceptors with various characteristics; luminol- (reacts
weakly with O2

-, strongly with other ROS like H2O2, HRP-
dependent), isoluminol- (extracellular O2

-, HRP dependent)
and lucigenin- (O2

-) enhanced chemiluminescence assays
were performed as described before (Dahlgren and Karlsson,
1999). Briefly, BMDMs were suspended in culture medium at
a density of 4 ¥ 105 cells ml-1 and kept warm at 37°C in a
water bath for a maximum of 30 min. And 100 ml aliquots of
cell suspension were distributed in a 96-well luminometer
plate (Nunc, Roskilde, Denmark); 50 ml HBSS medium con-

taining PMA (10 nM) or zymosan (100 mg ml-1) as positive
controls and C. albicans mutants at the indicated cell
numbers were added. Immediately after adding stimuli, 50 ml
HBSS containing either 200 mM luminol or 600 mM Isoluminol
and 16 U HRP, or 400 mM lucigenin were distributed into
each well. Chemiluminescence was measured at 2.5 min
intervals at 37°C with a multiplate reader Wallac VictorV3

(PerkinElmer). Data are expressed as relative luciferase units
min-1 per 1000 BMDM cells over time, or as total relative
luciferase units under curve within 90 min. Area under the
curve was calculated using the trapezoidal method. Statisti-
cal significances were calculated using two-tailed Student’s
t-test from three wells per condition or from data of three
independent experiments.

Intracellular ROS was measured using H2DCFA-DA dye to
determine hydrogen peroxide production. BMDMs were sus-
pended in HBSS at 5 ¥ 106 cells ml-1 approximately 30 min
before measurements. Just prior to the experiment, cells
were loaded with 5 mM H2DCF-DA in HBSS for 20 min at
room temperature in the dark, and pelleted at 300 g for 7 min
at room temperature. After washing with PBS, cells were
carefully re-suspended in HBSS at a density of 5 ¥ 106

cells ml-1. Aliquots of 5 ¥ 105 cells were stimulated with dif-
ferent agents in HBSS. C. albicans (MOI 5:1) zymosan
(1 mg ml-1), PMA (200 nM) and incubated for 15–45 min
at 37°C. After an additional washing step, cells were
re-suspended in 400 ml PBS, 0.1% BSA on ice, followed by
FACS analysis with FL1-H.

RNA extraction and Northern analysis

Total yeast RNA was isolated by the hot phenol method and
quantified exactly as described elsewhere (Kren et al.,
2003). About 15 mg of total RNA per sample was separated
in a 1.4% agarose gel and transferred to nylon membranes
(Amersham, Buckinghamshire, UK). Northern blots were
hybridized with PCR-amplified probes, which were 32P-
dCTP-radiolabelled by using a MegaPrime labelling kit
(Amersham) using conditions recommended by the manu-
facturer. Hybridization with purified probes was performed
exactly as previously described (Kren et al., 2003). Mem-
branes were washed three times in 2¥ SSC-1% SDS and
three times in 1¥ SSC-1% SDS at 65°C, and then exposed
to X-ray films at -70°C. DNA probes for Northern blots were
PCR-amplified from genomic DNA using primers listed in
Table S1.

End-point dilution survival assays

End-point dilution survival assays were performed as
described previously (Rocha et al., 2001) with the following
modifications. BMDMs were seeded 1 day before the experi-
ment at 1 ¥ 105 cells per well in every second column of
flat-bottom 96-well plates (Greiner, Longwood, Florida) in
BMDM medium. Next day, cells were washed twice with PBS
and 100 ml DMEM without phenol red containing 10% FCS.
Overnight cultures of C. albicans cells were washed in PBS,
and re-suspended at 2 ¥ 106 cells ml-1 DMEM without phenol
red but with 10% FCS. Aliquots of 50 ml cell suspensions were
added to the first two columns, and serial fourfold dilutions of
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C. albicans suspensions were placed in subsequent columns.
Plates were spun at 500 g for 1 min, followed by incubation at
37°C and 5% CO2 for 48 h. Yeast colonies were stained in the
96-well plate with Cristal violet, using a 0.2% solution in 20%
MeOH exactly as described previously (Stockinger et al.,
2002). Viable colonies were counted and compared with
equivalent dilutions in wells with macrophages. An assay
setup of four to eight plates per day was defined as one
experiment. At least three independent experiments were
performed per condition. Colonies from a total of at least 25
wells per condition were used to quantify viability data.
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Table S1: Oligonucleotide primers used in this study 

Primers to generate deletion cassettes – direction 5’  3’ 
M5 ccgctgctaggcgcgccgtgACCAGTGTGATGGATATCTGC 
M3 gcagggatgcggccgctgacAGCTCGGATCCACTAGTAACG 
55_caSOD1s CAAGTCCATCTAAAATGTGTTTG 
53_caSOD1as cacggcgcgcctagcagcggCATTTTTAATTATATATATGTTGATAATTGAAT 
35_caSOD1s gtcagcggccgcatccctgcTGAATAGATGAGCCAAGATTGC 
33_caSOD1as ATGTGGGCATTATATTTGAACC 
55_caSOD2s gtgtgatttctcacacaccaatc 
53_caSOD2as cacggcgcgcctagcagcggCATTGTTAATTATAGTACAATTGTCTTTAAT 
35_caSOD2s gtcagcggccgcatccctgcTAAGTTACTGGACAAAAGTCAAGTACA 
33_caSOD2as GAGTTCTAAACAATGGTACTTATCCTAC
55_caSOD3s AGGGAAACTTACCATGAATGTG 
53_caSOD3as cacggcgcgcctagcagcggCATGGCGTGGTTGATAAGAG 
35_caSOD3s gtcagcggccgcatccctgcGATACTCTGCGTAACATTGTGTGTA 
33_caSOD3as CCAATTAACCCTTCGGTAGTG 
55_caSOD4s CAGCATAAACCAAATAACATTACTC 
53_caSOD4as cacggcgcgcctagcagcggCATAGTAATAGTGTGTGTGATTAAAAATC 
35_caSOD4s gtcagcggccgcatccctgcTAGATAGAGAATAACTAGAACAATCAAATG
33_caSOD4as CTTGAAAAAATATCATTAAGTGAACG 
55_caSOD5s CACGGCTGAGAGGTCACTAC 
53_caSOD5as cacggcgcgcctagcagcggCATGATGAATGGTAAGTTAGATTG 
35_caSOD5s gtcagcggccgcatccctgcAGATGAGCCATTTTACTTATTGTG 
33_caSOD5as CATGTCTGTATAGGATAATGAAAGTG
55_caSOD6s GCTTGGTAGTGGTGGACTAGAG 
53_caSOD6as cacggcgcgcctagcagcggCATCTTGCTGAGACGTTTAGTG 
35_caSOD6s gtcagcggccgcatccctgcTAGTTGAACATAAATACTCTCACCC
33_caSOD6as CGATTCAGAGCTTGAGATTGAG
Control primers for verifying genomic deletions – direction 5’  3’ 
5_SOD1s CATTCAAAGACAGGTTGAATACAAC
3_SOD1as CAACAAAGTGATATTAATCGAATGAC 
5_SOD2s CCAAATAGACATAAATTTCGGTTC
3_SOD2as TCAATCATAATGTTTATAGGACTGG 
5_SOD3s ATCTACTGGTATGAAGATTTGGTTAG
3_SOD3as CAAAGCTCCAATCAATCCAAG
5_SOD4s AACCTCCTAAACGCAACTGC 
3_SOD4as GAACCAAGGAAGCATTGCC
5_SOD5s CGGCAATTGATTACGACAAG 
3_SOD5as CTCACGTTTGCTTCTCGC 
5_SOD6s GAGGCATCTGTTGCTTCCAC 
3_SOD6as CGGTAGACTATTTGTCATTGGTG 
Leu2as GGAAACATTCACACAACCTGGG 
Leu1s ccggtttacttggatcttcgg
His2as CCCATACTCCTCACACAACAATCC 
His1s gccatgagcaccataaggacg 
Primers to generate deletion cassettes with pSF2a SAT1-FLP – direction 5’  3’ 
55_SacI_SOD4s GAgagctcCAGCATAAACCAAATAACATTACTC 
53_SOD4_NotIas GAgcggccgcCATAGTAATAGTGTGTGTGATTAAAAATC 
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35_ApaI_SOD4s GAgggcccTAGATAGAGAATAACTAGAACAATCAAATG 
33_SOD4_KpnIas GAggtaccCTTGAAAAAATATCATTAAGTGAACG 
55_SacI_SOD5s GAgagctcCACGGCTGAGAGGTCACTAC 
53_SOD5_NotIas GAgcggccgcCATGATGAATGGTAAGTTAGATTG 
35_ApaI_SOD5s GAgggcccAGATGAGCCATTTTACTTATTGTG 
33_SOD5_KpnIas GAggtaccCATGTCTGTATAGGATAATGAAAGTG 
55_SacI_SOD6s GAgagctcGCTTGGTAGTGGTGGACTAGAG 
53_SOD6_NotIas GAgcggccgcCATCTTGCTGAGACGTTTAGTG 
35_ApaI_SOD6s GAgggcccTAGTTGAACATAAATACTCTCACCC 
33_SOD6_KpnIas GAggtaccCGATTCAGAGCTTGAGATTGAG 
SAT108as CTCCATCACCCAGTTTAGTTGTACC 
SAT101s CTCAAGTCTCGAACGAAACAG 
Primers for genomic reintegration cassettes at original loci – direction 5’  3’
33_SOD5_PvuIs GAcgatcgCATGTCTGTATAGGATAATGAAAGTG 
SOD5_ct_Notas GAgcggccgcATTTTATTTTTCTTTTTTAAATCAAGGC
Primers for amplifying probes for Northern analysis – direction 5’  3’ 
Sod5_49s GATGCACCAATCTCAACTG 
Sod5_676as CAGCAATGACACCAACTAC 
Sod4_9s CTTGTCTATTATTTCAATTGTTGC 
Sod4_699as CTAAATTAAAGCAGCAACAACAC
ACT1_s ATGGACGGTGGTATGTTTTAGT 
ACT1_as CAGAAGATTGAGAAGAAGTTTGC 
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Table S2: Plasmids used in this study 

Plasmids Relevant inserts and cloning sites References 
pSFS2a-SAT1-FLP Reuss et al,  2004 
pSN40 Noble & Johnson, 2005 
pSN51 Noble & Johnson, 2005 
pSFS2a-SOD4 SacI5’SOD4NotI-SAT1-FLP-ApaI3’SOD4KpnI This study
pSFS2a-SOD5 SacI5’SOD5NotI-SAT1-FLP-ApaI3’SOD5KpnI This study
pSFS2a-SOD6 SacI5’SOD6ctNotI-SAT1-FLP-ApaI3’SOD6KpnI This study 
pSFS2a-SOD5rev SacI5’SOD5ctNotI-SAT1-FLP-ApaI3’SOD5PvuI This study 
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Table S3: Fungal strains used in this study 

Strains Short Names Genotypes References 
SC5314 Gillum, et al, 1984 
SN152 arg4 /

leu2 /  his1 /
arg4 /arg4 , leu2 /leu2 , his1 /his1 ,
URA3/ura3

Noble & Johnson, 2005 

CA-IF100 arg4 / LEU2
HIS1

arg4 /arg4 , leu2 /leu2 ::cmLEU2, 
his1 /his1 ::cdHIS1, URA3/ura3 ,

This study 

CA-IF001 sod1 SN152, sod1 ::cmLEU2/SOD1 This study
CA-IF003 sod1 / SN152, sod1 ::cmLEU2/sod1 ::CdHIS1 This study 
CA-IF005 sod2 SN152, sod2 ::cmLEU2/SOD1 This study
CA-IF007 sod2 / SN152, sod2 ::cmLEU2/sod2 ::CdHIS1 This study 
CA-IF009 sod3 SN152, sod3 ::cmLEU2/SOD2 This study
CA-IF011 sod3 / SN152, sod3 ::cmLEU2/sod3 ::CdHIS1 This study 
CA-IF013 sod4 SN152, sod4 ::cmLEU2/SOD4 This study
CA-IF015 sod4 / SN152, sod4 ::cmLEU2/sod4 ::CdHIS1 This study 
CA-IF017 sod5 SN152, sod5 ::cmLEU2/SOD5 This study
CA-IF019 sod5 / SN152, sod5 ::cmLEU2/sod5 ::CdHIS1 This study 
CA-IF025 sod5 /SOD5 SN152,

sod5 ::cmLEU1/sod5 ::CdHIS1::SOD5-SAT1-
FLP

This study 

CA-IF027 sod5 /SOD5 SN152,
sod5 ::cmLEU1/sod5 ::CdHIS1::SOD5-FRT

This study 

CA-IF030 sod5 / sod4 SN152, sod5 ::cmLEU1/sod5 ::CdHIS1
sod4 ::SAT1-FLP/SOD4

This study 

CA-IF033 sod5 / sod4 SN152, sod5 ::cmLEU1/sod5 ::CdHIS1
sod4 ::FRT/SOD4

This study 

CA-IF036 sod5 /
sod4 /

SN152, sod5 ::cmLEU1/sod5 ::CdHIS1
sod4 ::FRT/sod4 ::SAT1-FLP

This study 

CA-IF039 sod4/5 / SN152, sod5 ::cmLEU1/sod5 ::Cd HIS1
sod4 ::FRT/sod4 ::FRT

This study 

CA-IF021 sod6 SN152, sod6 ::cmLEU2/SOD6 This study
CA-IF023 sod6 / SN152, sod6 ::cmLEU1/sod6 ::CdHIS1 This study 
CA-IF043 sod6 / sod4 SN152, sod6 ::cmLEU1/sod6 ::CdHIS1

sod4 ::SAT1-FLP/SOD4
This study 

CA-IF046 sod6 / sod4 SN152, sod6 ::cmLEU1/sod6 ::CdHIS1
sod4 ::FRT/SOD4

This study 

CA-IF049 sod6 /
sod4 /

SN152, sod6 ::cmLEU1/sod6 ::CdHIS1
sod4 ::FRT/sod4 ::SAT1-FLP

This study 

CA-IF051 sod4/6 / SN152, sod6 ::cmLEU1/sod6 ::CdHIS1
sod4 ::FRT/sod4 ::FRT

This study 

CA-IF054 sod5 SC5314, sod5 ::SAT1-FLP/SOD5 This study
CA-IF057 sod5 SC5314, sod5 ::FRT/SOD5 This study
CA-IF060 sod5 / SC5314, sod5 ::FRT/ sod5 ::SAT1-FLP This study 
CA-IF063 sod5 / SC5314, sod5 ::FRT/sod5 ::FRT This study 
CA-IF067 sod5 /

sod4 / sod6
SN152, sod5 ::cmLEU1/sod5 ::Cd HIS1
sod4 ::FRT/sod4 ::FRT sod6 ::FRT/SOD6

This study 

CA-IF070 sod5 /
sod4 /
sod6 /

SN152, sod5 ::cmLEU1/sod5 ::Cd HIS1
sod4 ::FRT/sod4 ::FRT
sod6 ::FRT/sod6 ::FRT

This study 
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III.2 PRRs and their adaptor proteins in the activation of the respiratory 

burst. 

When phagocytic cells encounter and phagocytose pathogenic microbes, the so-called “oxidative 

burst” is activated. ROS production is mediated by the recruitment of cytosolic subunits of the 

NADPH oxidase to the phagosomal membrane to generate a functional NADPH oxidase (Babior, 

2004). Fc receptors (FcRs) and integrins can trigger ROS production in response to microbial 

pathogens (Berton and Lowell, 1999; Ravetch and Bolland, 2001). For the initiation of 

downstream events, an immunoreceptor tyrosine-based activation motif (ITAM) is essential. FcRs 

contain an ITAM in their cytoplasmic tail or require the ITAM-bearing adapter Fc-gamma 

receptor (FcγR) for surface expression, phagocytosis, and ROS production (Swanson and Hoppe, 

2004). Integrins trigger Syk phosphorylation and ROS production in neutrophils through the 

ITAM-containing adapters DAP12 and Fcγ (Mocsai et al., 2006). Activation of an ITAM-associated 

receptor leads to phosphorylation of the tyrosine residues within the ITAM motif by Src family 

kinases (SFK). This leads to the recruitment and activation of Syk family kinases and induces 

signalling through multiple downstream pathways, including phosphatidylinositol (PI) 3-kinase 

and protein kinase C (PKC) activation (Swanson and Hoppe, 2004; Underhill and Goodridge, 

2007). 

The pattern recognition receptor Dectin-1 recognises β-(1,3)-glucans in the cell wall of yeasts 

(Brown, 2006). Dectin-1 contains a non-canonical ITAM motif in the cytoplasmic tail, and 

activation of Dectin-1 leads to Syk phosphorylation independently of DAP12 and FcγR, resulting 

in activation of ROS production (Rogers et al., 2005; Underhill et al., 2005). In bone marrow 

derived macrophages (BMDMs) Dectin-1 recognises zymosan and the yeast form of C. albicans, 

thereby inducing ROS production in a TLR2-independent manner (Gantner et al., 2003; Gantner 

et al., 2005). Conflicting data were reported by a later study, demonstrating that Dectin-1-/- 

alveolar macrophages are producing the same amount of ROS as wild type cells when stimulated 

with C. albicans. In contrast, Pneumocystis carni and zymosan-induced ROS production requires 

Dectin-1 (Saijo et al., 2007). In mouse mast cells, Dectin-1 is also involved in zymosan-induced 

intracellular ROS production (Yang and Marshall, 2009). 

Toll-like receptors (TLRs) have been implicated in ROS response and the MyD88 adaptor is 

also needed for the activation of the NADPH oxidase in response to gram-negative bacteria 

(Laroux et al., 2005; Ryan et al., 2004). The roles of specific TLRs in NADPH oxidase assembly and 

ROS generation appear to be cell-specific. For example, TLR4 is required for NADPH oxidase 
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activation in human neutrophils infected with serovar Typhimurium (van Bruggen et al., 2007), 

but not in mouse peritoneal macrophages (Laroux et al., 2005). Additionally, the TLR4 ligand 

lipopolysaccharide (LPS) does not induce detectable levels of ROS in murine BMDMs (Charles et 

al., 2008). ROS production during M. tuberculosis infection was recently shown to be dependent 

on the interaction of TLR2 and gp91phox (Yang et al., 2009).  

The integrin CD11b/CD18 (CR3) mediates ROS production in mouse and human 

macrophages in response to oxidised LDL (Husemann et al., 2001). Superoxide production of 

human neutrophils in response to either zymosan or beta-glucan particles is also CR3-dependent 

(Ross et al., 1987). More specifically, in human neutrophils, Cd11b seems to important for ROS 

production in response to β-1,6-glucans (Rubin-Bejerano et al., 2007). Furthermore, it was 

shown that costimulation of CR3 and the FcRγ with opsonised zymosan and IgG enhances the 

superoxide production in bovine neutrophils (Nagahata et al., 2007).  

In neutrophils, carcinoembryonic antigen-related cellular adhesion molecule 3 (CEACAM3) 

has been identified as an ITAM-containing innate immune receptor for Neisseria gonorrhoeae 

that regulates Neisseria-induced ROS via a Syk-dependent mechanism (Sarantis and Gray-Owen, 

2007). 

To elucidate whether or not Dectin-1 is involved in C. albicans-induced ROS production in 

BMDMs and if other receptors are engaged in this immune response, I used specific inhibitors or 

blocking antibodies and innate immune cells differentiated from the bone marrow of knock-out 

mice lacking different PPRs. To investigate the mechanisms of ROS induction in innate immune 

cells elicited by C. albicans, we used an in vitro cell culture model of primary mouse BMDMs co-

cultured with C. albicans or zymosan, and measured total ROS production using a luminol-

dependent, chemiluminescence assay in the presence of horseradish peroxidase (HRP) (Dahlgren 

and Karlsson, 1999). To visualize intracellular ROS production, we pre-loaded BMDMs with the 

non-fluorescent dye H2DCF-DA, which cannot cross cellular compartments after esterase 

cleavage. Upon oxidation by ROS, H2DCF-DA is converted to the fluorescent product 2′-7′- 

dichlorofluorescein (DCF). A limited permeability of DCF retains it preferentially at the site where 

it was generated (Yeung et al., 2005). Additionally, I have set up siRNA-based knock down assays 

to search for new pathways that might be responsible for Candida-induced ROS in BMDMs. 

III.2.1 TLRs are not involved in C. albicans or zymosan-induced ROS production 

Phagocytes of the innate immune system such as macrophages and neutrophils trigger ROS 

production in response to various microbial pathogens reviewed in (El-Benna et al., 2005).  
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To investigate a possible role of TLRs in C. albicans-induced ROS release, we stimulated 

BMDMs derived from TLR2-/-, TLR4-/- and MyD88-/- mice with zymosan or C. albicans. To 

neutralise the stimulatory effects of potential endotoxin contamination in the zymosan or C. 

albicans preparation, we analysed the response in the presence of polymyxin B, an antibiotic 

which complexes LPS and neutralises its potential biological activity (Cardoso et al., 2007). The 

stimulation of TLR2, TLR4 or MyD88 knock-out BMDMs with C. albicans, or zymosan did not 

 
Figure III.1: TLRs are not involved in zymosan or C. albicans induced ROS signalling. 
A–C. ROS measurement by luminol-dependent chemiluminescence at 37°C in 2.5 min intervals over a 90 min period 
[relative luciferase units (RLU) min-1 per 1000 immune cells], RLU of untreated BMDMs were substracted from 
stimulated BMDMs. A. Stimulation of wild type (C57BL/6) or TLR2-/- BMDMs with either zymosan (100µg/ml) (top) or 
C. albicans (MOI 5:1) (bottom) B. Stimulation of wild type(C57BL/6) or TLR4-/- BMDMs with either zymosan 
(100µg/ml) (top) or C. albicans (MOI 5:1) (bottom) C. Stimulation of wild type(C57BL/6) or MyD88-/- BMDMs with 
either zymosan (100µg/ml) (top) or C. albicans (MOI 5:1) (bottom) D. Intracellular ROS production of wild 
type(C57BL/6) (left), TLR4-/- (middle) and MyD88-/- (right) BMDMs in response to C. albicans after 30 min of infection 
was measured by FACS analysis using H2DCF-DA staining of BMDMs. Numbers above arrows indicate fold increase in 
H2DCF-DA fluorescence after stimulation compared to unstimulated fluorescence. A–C. Results of one experiment 
per condition are shown. All data were reproduced in at least three (A-C) or two (D) independent experiments. 
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show any changes in total ROS levels over a period of 90 min, when compared to wild type 

BMDMs (Figure III.1 A-C). These results are in line with previous studies showing that in mouse 

peritoneal macrophages, zymosan-induced ROS production is both MyD88- and TLR2-

independent (Gantner et al., 2003), also in alveolar macrophages, C. albicans-induced ROS is 

MyD88 independent (Saijo et al., 2007). Similarly, the production of intracellular ROS by BMDMs 

lacking TLR4 or MyD88 was unchanged when compared to wild type BMDMs stimulated with C. 

albicans (Figure III.1 D). These results demonstrate that TLR2 and TLR4 are not involved in ROS 

transduction in BMDMs when stimulated with zymosan or C. albicans. Since MyD88 is the 

adaptor protein of all known TLRs (except TLR3) these results also indicate that other TLR family 

members do not engage in BMDM ROS production when stimulated with zymosan or C. 

albicans. 

III.2.2 C. albicans ROS induction requires Src/Syk kinases activation but not 
Dectin-1 

Macrophages, DCs and mouse mast cells treated with zymosan release ROS via stimulation of 

the beta-glucan receptor Dectin-1 (Saijo et al., 2007; Taylor et al., 2007; Underhill et al., 2005; 

Yang and Marshall, 2009). ROS production is further dependent on downstream signalling events 

through phosphorylation of the ITAM-like domain of the cytoplasmic tail of Dectin-1 by Src 

kinases. This phosphorylation leads to the phosphorylation and activation of the adaptor kinase 

Syk (Underhill and Goodridge, 2007; Underhill et al., 2005). Concerning C. albicans-induced ROS 

production and the involvement of Dectin-1, the existing literature is conflicting. An anti-Dectin-

1 blocking antibody or laminarin - a non signalling agonist of Dectin-1 - showed that the yeast 

form C. albicans induced ROS via the recognition of Dectin-1 in BMDMs (Gantner et al., 2005). In 

contrast, Dectin-1 deficient alveolar macrophages produce the same amount of ROS as wild type 

cells when treated with C. albicans (Saijo et al., 2007). However, ROS is reduced when the knock-

out macrophages are infected with P. carni. These differences might be caused by the different 

types of macrophages, different experimental conditions or C. albicans strains used (Gantner et 

al., 2005; Saijo et al., 2007).  

To clarify the role of Dectin-1 in C. albicans-induced ROS production, we first investigated the 

signalling of Dectin-1 and zymosan in our experimental system. Therefore, we stimulated 

untreated or laminarin-pre-treated BMDMs with zymosan or curdlan, and confirmed that both 

zymosan- and curdlan-induced ROS in BMDMs was inhibited up to 90 % by laminarin (Figure III.2 

A + B). Furthermore, blocking Src and Syk kinases with the inhibitors PP2 and R406 (Braselmann 

et al., 2006), respectively, substantially reduced ROS production. By contrast, PP3, the inactive 
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form of PP2, did not have an effect on ROS response. Thus, we verified that zymosan-induced 

ROS is dependent on Dectin-1 stimulation and proceeds through Src and Syk kinase activation 

(Figure III.2 A + B). Inhibiting Src and Syk also significantly reduced C. albicans-induced ROS 

production. However, blocking Dectin-1 with laminarin failed to reduce ROS (Figure III.2 C). 

To further substantiate our findings that Dectin-1 is not involved in C. albicans-stimulated 

ROS, we generated BMDMs from Dectin-1 deficient bone marrow and the corresponding wild 

type mice (kindly provided by G. Brown) (Taylor et al., 2007). Dectin-1 deficient BMDMs did not 

produce ROS in response to zymosan stimulation. However, in response to C. albicans BMDMs 

still released 80% of the ROS produced by the corresponding wild type control BMDMs (Figure 

III.3 A).  

During the activation of the NADPH oxidase, the cytosolic subunits get phosphorylated and 

migrate to the subunits located at the membrane to assemble the active NAPDH oxidase (El-

Benna et al., 2009). p40phox is weakly phosphorylated during activation (Bouin et al., 1998). The 

role of the phosphorylation is still unclear, since it was reported to play both inhibitory and 

activatory roles during NADPH oxidase assembly (Kuribayashi et al., 2002; Lopes et al., 2004; 

Sathyamoorthy et al., 1997). Upon stimulation of wild type BMDMs with zymosan or C. albicans, 

p40phox was phosphorylated at T154 (Figure III.3 B). By contrast, in zymosan-stimulated dectin-

Figure III.2: C. albicans curdlan and zymosan ROS 
release requires Src and Syk kinase function. 
A-B ROS measurement by luminol-dependent 
chemiluminescence at 37°C in 2.5 min intervals over 
a 90 min period [relative luciferase units (RLU) min-1 
per 1000 immune cells]. Stimulation of wild type 
(C57BL/6) BMDMs treated with vehicle, PP2 (25µM), 
PP3 (25µM), R406 (2,5µM) or laminarin (500µg/ml) 
for 30 min prior to stimulation with either zymosan 
(100µg/ml) (A), curdlan (100µg/ml) (B) or C. albicans 
(MOI 5:1) (C). Results of one experiment per 
condition are shown; all data were reproduced in at  

least three experiments (left). RLUs of untreated BMDMs were substracted from stimulated BMDMs. The 
average of three independent experiments is presented and total ROS production by vehicle treated BMDMs in 
the first 90 min were set to 100%. ** p<0,01 ***p <0,001. 
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1-/- BMDMs, p40phox phosphorylation was undetectable, but was still observed after C. albicans 

stimulation (Figure III.3 B). Similarly, zymosan, but not C. albicans, induced ERK1 and ERK2 

phosphorylation, which was partially Dectin-1 dependent. On the other hand, p38 

phosphorylation was not reduced when Dectin-1 was missing upon zymosan or C. albicans 

stimulation (Figure III.3 B).  

Taken together, our data demonstrate that Dectin-1 plays only a limited role - if any - in C. 

albicans-stimulated ROS production, while being the key receptor for zymosan-induced oxidative 

burst. Furthermore, these results suggest that activation of ERK1/2 and p38 MAPK cascades are 

partly dependent on Dectin-1 in BMDMs stimulated with zymosan, but are activated 

independently of Dectin-1 when BMDMs are stimulated with C. albicans. 

III.2.3 Heat-killed C. albicans induces ROS and MAPK signalling via Dectin-1  

Previous reports have shown that Dectin-1 recognises β-glucans in the yeast form but not the 

hyphal form of C. albicans (Gantner et al., 2005). We thus used an anti-Dectin-1 blocking 

antibody to block the receptor. As in previous experiments, blocking Dectin-1 significantly 

reduced zymosan-induced ROS production by 60% (Figure III.4 A). Likewise, curdlan (β-(1,3)-

glucan chains) induced ROS production is Dectin-1 dependent (Figure III.2 B). However, ROS 

induced by live C. albicans in either yeast or hyphal form was not dependent on Dectin-1 (Figure 

III.4 B+D).  

Figure III.3: Zymosan but not live C. albicans-induced ROS production is dependent on Dectin-1. 
A ROS measurement by luminol-dependent chemiluminescence at 37°C in 2.5 min intervals over a 90 min period 
[relative luciferase units (RLU) min-1 per 1000 immune cells]. The average of two independent experiments is 
presented and total ROS production by wild type BMDMs in the first 90 min was set as 100%. Stimulation of wild 
type (129/Sv) (wt black) or clec7a-/-(Dectin-1-/- red) BMDMs with either zymosan (100µg/ml) or C. albicans MOI 
(5:1), RLUs of untreated BMDMs were substracted from stimulated BMDMs. B. Wild type (129/Sv) (wt) or clec7a-/-

(dectin-1-/-) (Δ) BMDMs were left untreated or treated for 30 min with either zymosan (100µg/ml) or live C. 
albicans (MOI 5:1). Phosphorylated p40phox, ERK and p38, were detected by immunoblotting and the blots were 
re-probed with total ERK and p38 antibodies to assess equal loading between lanes.  
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Figure III.4: Heat-killed C. albicans and zymosan but not live C. albicans signal via Dectin-1. 
A-D. ROS measurement by luminol-dependent chemiluminescence at 37°C in 2.5 min intervals over a 90 min 
period [relative luciferase units (RLU) min-1 per 1000 immune cells] (left) The average of three independent 
experiments is presented and total ROS production in the first 90 min, isotyp control treated BMDMs were set as 
100% (right). Stimulation of wt (C57BL/6) BMDMs untreated or pre-treated with anti-Dectin-1 2A11 or IgG2aκ 
isotype control (10µg/ml) for 30 min prior to stimulation with either zymosan (100µg/ml) (A), live C. albicans in 
yeast form (MOI 5:1) (B), heat-killed C. albicans in yeast form  (MOI 5:1) (C), or live C. albicans in hyphae form (6µg 
dry weight/well) (D). E. Wild type (C57BL/6) BMDMs pretreated with anti-Dectin-1 2A11 or IgG2aκ isotype control 
(10µg/ml) for 30 min were either untreated or treated for 30 min with zymosan (100µg/ml) or HK C. albicans 
(MOI 5:1). Phosphorylated ERK1 and ERK2 and p38 were detected by immunoblotting and the blots were re-
probed with total ERK and p38 antibodies to assess equal loading between lanes. F. Intracellular ROS production 
was measured by FACS analysis using H2DCF-DA staining of BMDMs. BMDMs were either untreated or pre-treated 
with laminarin (500µg/ml) in response to C. albicans live (Ca) or heat-killed (HK) after 45min of infection  
 

Heat-treatment of C. albicans has been shown to increase exposure of β-glucans on the cell 

surface (Wheeler and Fink, 2006). Hence, we used heat-killed C. albicans to check whether an 

unmasked β-glucans would induce ROS via Dectin-1. Indeed, in BMDMs infected with heat-killed 

C. albicans, we observed a 60% reduction of the ROS response when Dectin-1 was blocked with 
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the neutralising antibodies when compared to the isotype control or untreated BMDMs (Figure 

III.4 C). In addition, treatment of Dectin-1 blocked BMDMs with heat-killed C. albicans reduced 

ERK1/ERK2 as well as p38 phosphorylation to the same extent as in zymosan-treated cells 

(Figure III.4 E). Similarly, intracellular ROS staining using H2DCF-DA revealed that Dectin-1 

blocked BMDMs showed a reduced intracellular ROS production when stimulated with heat-

killed C. albicans but not with live C. albicans (Figure III.4 F). 

The latter results confirm that the ROS release as well as intracellular ROS production 

triggered by unmasked β-glucans is Dectin-1-dependent, and demonstrate that neither the 

hyphal nor the yeast forms of live C. albicans induce ROS via Dectin-1.  

III.2.4 Dectin-2 is not involved in C. albicans- or zymosan-induced ROS 
production 

We have unequivocally shown that Dectin-1 is not the major PRR inducing ROS when 

macrophages are stimulated with live C. albicans. However, the ROS response is dependent on 

the activation of intracellular Src and Syk kinases, and therefore, most likely proceeds via the 

activation of an ITAM-signalling motif (Figure III.2). Dectin-2 is a C-type lectin receptor 

recognising high molecular mannose structures (McGreal et al., 2006). Furthermore, Dectin-2 

predominantly recognises the hyphal form of C. albicans. Lacking itself an ITAM domain, Dectin-

2 couples with FcγR to initiate downstream signalling pathways via the FcγR ITAM domain 

thereby activating ERK1, ERK2 and p38 MAPK pathways (Robinson et al., 2009; Sato et al., 2006).  

To investigate whether Dectin-2 could be the receptor inducing the oxidative burst in 

response to C. albicans, we blocked Dectin-2 with a specific neutralising antibody. However, 

blocking Dectin-2 failed to reduce the ROS production induced by either zymosan, live or heat-

killed C. albicans in the yeast form or live C. albicans in hyphal form (Figure III.5 A). Nevertheless, 

after 30 min of infection, there was a high ERK and p38 phosphorylation in BMDMs treated with 

either zymosan, heat-killed or live C. albicans in yeast form. By contrast, C. albicans in hyphal 

form induced only a very weak MAPK response in BMDMs (Figure III.5 B). BMDMs pre-treatment 

with the anti-Dectin-2 neutralising antibody had no effect on p38 phosphorylation. Conversely 

ERK phosphorylation was reduced upon stimulation with heat-killed C. albicans when Dectin-2 

was blocked (Figure III.5.B). 
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These data demonstrate that Dectin-2 is not involved in ROS response to C. albicans or 

zymosan stimulation in all conditions tested. Furthermore, although it was shown in DCs that 

crosslinking Dectin-2 with a Dectin-2 specific antibody induces ERK1/2 and p38 phosphorylation 

(Robinson et al., 2009), blocking Dectin-2 alone is not sufficient to inhibit the MAP kinases 

Figure III.5: Dectin-2 is not required for ROS production. 
A ROS measurement by luminol-dependent chemiluminescence at 37°C in 2.5 min intervals over a 90 min period 
[relative luciferase units (RLU) min-1 per 1000 immune cells]. Stimulation of wild type (C57BL/6) BMDMs left untreated 
or pre-treated with anti-Dectin-2 or IgG2aκ isotype control (10µg/ml) for 30 min prior to stimulation with either 
zymosan (100µg/ml) (top left), live C. albicans in yeast form (MOI 5:1) (top right), heat-killed C. albicans in yeast form 
(MOI 5:1) (bottom left) or live C. albicans in hyphae form (6µg dry weight/well) (bottom right). RLUs of unstimulated 
BMDMs were substracted from stimulated BMDMs. B Wild type (C57BL/6) BMDMs pre-treated with anti-Dectin-2 (+) or 
IgG2aκ isotype control (10µg/ml) (-) were either left untreated or treated for 30 min with either zymosan (100µg/ml) 
or live C. albicans in the yeast (yCa) and hyphae (hCa) form or heat-killed C. albicans (HK). Phosphorylated p40phox, ERK 
and p38, were detected by immunoblotting and the blots were re-probed with total ERK and p38 antibodies to assess 
equal loading between lanes.  
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activation by live C. albicans, although ERK activation is slightly diminished when treated with 

heat-killed C. albicans.  

III.2.5 CD11b has an inhibitory effect on zymosan-induced ROS production. 

The integrin CD11b/CD18, also known as the complement receptor 3 (CR3), induces ROS 

production in mouse and human macrophages in response to oxidised LDL (Husemann et al., 

2001). Also, ROS production by human neutrophils in response to either zymosan or beta-glucan 

particles is CR3-dependent (Ross et al., 1987; Rubin-Bejerano et al., 2007). Furthermore, it was 

shown that co-stimulation of CR3 and FcγR with opsonised zymosan and IgG enhances the 

superoxide production in bovine neutrophils (Nagahata et al., 2007).  

 

Figure III.6: CD11b is repressing zymosan and HK C. 
albicans induced ROS production. 
A Left, ROS measurement by luminol-dependent 
chemiluminescence at 37°C in 2.5 min intervals over a 90 
min period [relative luciferase units (RLU) min-1 per 1000 
immune cells]. Right, the average of three independent 
experiments is presented and total ROS production of wild 
type BMDMs in the first 90 min were set as 100%. 
Stimulation of wild type (C57BL/6) BMDMs or Itgam-/- 
(Cd11b-/-) with either zymosan (100µg/ml), live C. albicans 
in yeast (C. albicans) form (MOI 5:1), heat-killed C. albicans 
in yeast form (HK C. albicans) (MOI 5:1). *<0.05,**<0.01, 
***<0.001 B Wild type (C57BL/6) BMDMs or Itgam-/- (Δ) 
were either left untreated or treated for 30 min with 
either zymosan (100µg/ml), live C. albicans in the yeast 
(yCa) or heat-killed C. albicans (HK). Phosphorylated 
p40phox, ERK1/2 and p38, were detected by 
immunoblotting and the blots were re-probed with total 
ERK and p38 antibodies to assess equal loading between 
lanes.  
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Hence, we investigated whether CR3 is involved in ROS production of BMDMs upon zymosan 

and C. albicans stimulation. Surprisingly, in response to zymosan or heat-killed C. albicans, 

BMDMs lacking Cd11b released about 1.5 times more ROS than wild type BMDMs, whereas ROS 

production in response to live C. albicans was only slightly enhanced (Figure III.6 A). After 30 min 

of stimulation with zymosan and live C. albicans phosphorylation of p40phox, ERK1/2 and p38 

was not changed in BMDMs lacking Cd11b compared to wild type BMDMs (Figure III.6 B). 

These data indicate that Cd11b may transduce a signal which inhibits ROS response upon 

stimulation with zymosan and heat-killed C. albicans, but does not affect activation of the MAP 

kinases ERK1, ERK2 and p38. 
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III.3 Establishing siRNA knock-down assays in BMDMs. 

RNA interference (RNAi) is a highly conserved mechanism of transcriptional and post-

transcriptional gene silencing, requiring double-stranded (ds) RNA (Hannon, 2002; Meister and 

Tuschl, 2004; Novina and Sharp, 2004). A long dsRNA is usually digested by Dicer to yield small 

interfering RNAs (siRNAs) of 21–23 nucleotides (nt) in length (Bernstein et al., 2001; Hammond 

et al., 2000). A protein complex (RNA-Induced Silencing, RISC) unwinds the siRNAs and uses one 

strand to anneal to identical sequences in the target mRNA (Hammond et al., 2001). Silencing of 

mammalian genes by an siRNA-based method is considered more promising than by long dsRNA, 

as introduction of long dsRNA into mammalian cells frequently induces a fatal interferon 

response (Hannon and Rossi, 2004).  

To identify new and unknown receptors or pathways triggered by C. albicans for example 

the receptor responsible for live C. albicans-induced oxidative burst, we decided to establish a 

siRNA based screening assay. 

III.3.1 BMDMs are efficiently transfected by siRNA 

To set up the siRNA assay in our BMDMs, we used the siGenome smart pool siRNAs designed by 

Dharmacon, which consist of 4 different dsRNA sequences per target gene. To find the optimal 

conditions for RNAi transfection in BMDMs, we first tested different transfection reagents. For 

efficiency determination, we used green-fluorescent labelled siRNA (siGlo). We tested two 

different transfection reagents, RNAiMax and Dharmafect4, to determine the transfection 

efficiency. With the Dharmafect4 and different concentrations of siRNA and different cell 

density, we did not get higher transfection rates than 35% using 100nM siRNA (data not shown). 

Using the lipofectamin based RNAiMax, we obtained better transfection rates of about 57% with 

only 10nM siRNA according to FACS analysis (data not shown). The possible decrease in cell 

viability upon transfection is a major concern for transfection. Therefore, we also tested for 

viability using propidium iodine staining after 48 hours of transfection. The transfection with 

siGlo or the transfection reagent alone did not change the viability of the macrophages when 

compared to the untreated BMDMs (data not shown).  

III.3.2 mRNA of the target genes is sufficiently down-regulated 

To check for an efficient down regulation of target genes, quantitative RT PCR was performed on 

transfection with 6 different siRNAs; gp91phox, MyD88, FcγR, Dectin-1, Dectin-2 and Dap12 
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(Figure III.7 A). Except for the FcγR, all siRNAs tested reduced the mRNA of the target genes 

more than 50% when compared to the non-target control (nTG) (Figure III.7 A). Furthermore, 

MyD88 mRNA expression was unchanged in BMDMs treated with gp91phox siRNA, Dap12 mRNA 

was not effected in BMDMs treated with Dectin-2 siRNA and Dectin-1 mRNA amounts were 

unchanged in BMDMs transfected with FcγR siRNA (Figure III.7 A, left column), indicating a 

target-specific down-regulation.  

Since cytotoxic and immunomodulatory activities have been reported for cationic liposome 

and polyethylenimine-based transfection reagents, we also tested cytokine expression after 

transfection. About 48 hours after transfection, the cell culture supernatants were analysed for 

TNFα expression by ELISA. TNFα production was unchanged in BMDMs treated with either the 

transfection reagent alone, the nTG control or the siRNAs (Figure III.7, B). Previously, we 

confirmed that ROS production in response to C. albicans is dependent on the gp91phox subunit 

of the NADPH oxidase (see Chapter III.1). To determine whether siRNA-treated cells can be used 

 

Figure III.7: siRNA knock down is working for BMDMs. 
A+B. Transfection of BMDMs in 24 well plate. BMDMs (2 x 105/well) were forward transfected with 10nM of the 
indicated siRNAs. A. 48 hours after transfection, total RNAs were isolated and expression of the target genes 
(gp91phox, MyD88, FcRγ, Dectin-1, Dectin-2 and Dap12) was quantified by real-time PCR. Average of two independent 
transfections are presented B. TNF-alpha production was measured by ELISA after 48 hours of transfection. C. 
Transfection of BMDMs in a white opaque 96 well plate. BMDMs (5 x 104/well) were forward transfected with 10nM 
of the siRNAs indicated. 72 hours post transfection, ROS was measured by luminol-dependent chemiluminescence at 
37°C in 2.5 min intervals over a 90 min period [relative luciferase units (RLU)/ min per 1000 immune cells]. Untreated 
or transfected BMDMs were incubated with zymosan (100µg/ml). RLU values of non-stimulated BMDMs transfected 
with nTG were subtracted from zymosan stimulated BMDMs. Data are representative of three independent assays. 
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for our luminol ROS assay, BMDMs were transfected in a 96-well format at the same cell to 

siRNA and transfection reagent ratio as in the 24-well plate. We used gp91phox siRNA as positive 

and MyD88 as negative control for the assay. 72 hours after transfection, the ROS assay was 

performed upon zymosan stimulation. BMDMs transfected with the gp91phox siRNA showed a 

reduced ROS production when compared to non-treated BMDMs, nTG and MyD88-transfected 

cells (Figure III.7, C). Similar results were observed with C. albicans-treated BMDMs (data not 

shown). Taken together, these data indicate that siRNA knock down in BMDMs reduces the 

mRNA and corresponding protein amount of target genes to levels where an effect in the 

specific immune response, e.g. ROS response, becomes detectable. 

III.3.3 Transfection in a 96-well format is not sufficiently down-regulating 

To set up a screen in a 96-well format we chose eight additional target genes besides the 

controls MyD88 and gp91phox: the C-type lectins Dectin-1, Dectin-2, Galectin-3 and Mannose 

receptor (MRC1), Syk, Card9 and DAP12. Dectin-1 and its adaptor kinase Syk were serving as 

additional controls. Dectin-2 siRNA was used to reconfirm our previous findings using blocking 

antibodies. Galectin-3 and MRC1 have so far never been associated with ROS response but are 

suggested to recognise C. albicans. The ITAM-containing adaptors FcγR and Dap12 were 

previously shown to be important for ROS production during integrin signalling (Mocsai et al., 

2006), and Dap12 is needed for Salmonella-induced ROS production (Charles et al., 2008). Card9 

was chosen as a target, because it was shown to associate with the GDP-dissociation inhibitor 

LyGDI in phagosomes after bacterial and fungal infections, thereby releasing the Rac1 GTPase 

from its inhibitor and activating ROS response (Wu et al., 2009).  

Untreated and nTG transfected BMDMs produced the same amount of ROS when stimulated 

with zymosan or C. albicans. BMDMs treated with gp91phox siRNA showed a significant 

reduction in ROS response upon stimulation by both zymosan and C. albicans, whereas BMDMs 

treated with Dectin-1 siRNA produced significantly less ROS when stimulated with zymosan but 

not when treated with C. albicans. These data confirm our studies using dectin-1-/- mice and 

Dectin-1 blocking reagents (see Chapter III.2). There was no difference in ROS production when 

cells were transfected with siRNA knocking down Dectin-2, FcRγ, Card9, Syk, Galectin-3 or MRC1 

(Figure III.8 A). By contrast, an increase in ROS production was detected when cells were 

transfected with Dap12 siRNA (Figure III.8 A).  

In previous experiments, we have shown Syk inhibition with R406 is blocking ROS production 

when BMDMs are stimulated with zymosan or C. albicans. Therefore we checked for an efficient 
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down-regulation of gene expression and we determined the protein levels of Syk and gp91phox 

from samples taken after the ROS assay by immunoblotting. Indeed, gp91phox protein levels 

were substantially reduced after transfection (Figure III.8 B, left). In the Syk siRNA-treated cells 

we also observed a decrease in Syk protein. However we still detected the Syk protein with the 

antibodies (Figure III.8 B, right), which might be sufficient to transduce the signal. Next, we 

determined whether the down-regulation of Syk is more efficient in 24-well plates. Indeed, 

transfecting BMDMs in a 24-well plate format reduced the Syk protein to levels which could no 

longer be detected with anti-Syk antibodies (Figure III.8 C). 

 

Figure III.8: Transfection in 96 well format is not efficient enough to reduce expression of some target genes. 
A In a 96-well plate BMDMs (5 x 104/well) were forward transfected with 10nM of either the non targeting control 
(nTG), gp91phox, MyD88, Dectin-1, Dectin-2, FcR gamma, Dap12, Syk, Card9, Galectin-3 and MRC1 (3 wells per 
condition). 72 hours post transfection, ROS was measured by luminol-dependent chemiluminescence at 37°C in 2.5 
min intervals over a 60  min period. The average of three independent experiments is presented and total ROS 
production by nTG transfected BMDMs were set as 100%. * p<0,05 **p <0,01. RLU of unstimulated BMDMs 
transfected with nTG was substracted. Untreated or transfected BMDMs were either incubated with zymosan 
(100µg/ml) or C. albicans (2x105 cells/well). B Immunoblot analysis of transfected BMDMs. Three wells of either 
untransfected cells or cells transfected with gp91phox (left) or syk (right) siRNA were pooled together and protein 
levels were detected via gp91phox (left) or Syk (right) antibodies and the blots were re-probed with p38 and 
gp91phox antibodies as loading controls. C. Immunoblot analysis of BMDMs transfected in 24 well format. Protein 
levels were detected with gp91phox and Syk antibodies, and the blot was re-probed with p38 antibodies for a 
loading control. D In a 96-well plate BMDMs were either untransfected or transfected with 10nM of nTG, gp91phox, 
DAP12 or MyD88 (3 wells per condition). 72 hours post transfection, ROS was measured without stimulation. The 
average of three independent experiments is presented.  
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Taken together, siRNA transfection and down-regulation of genes in a 96-well format is 

working for Dectin-1 and gp91phox, but is not efficient enough for the Syk kinase. Thus, only a 

small fraction of kinase or kinase activity might be needed to transduce the signal. In the 24-well 

format, the down-regulation of Syk is more efficient, and might therefore lead to a reduced ROS 

response.  

Interestingly, down-regulation of Dap12 led to an enhanced ROS response when the cells 

were stimulated with zymosan or C. albicans. However, in the absence of any stimulation, the 

DAP12 siRNA-transfected BMDMs already showed highly elevated ROS levels when compared to 

untranfected, nTG, gp91phox or MyD88 siRNA transfected BMDMs (Figure III.8 D). This suggests 

that the increase in ROS levels is rather a secondary effect of DAP12 down-regulation than a 

result of the stimulation with C. albicans or zymosan. 

III.3.4 Transfection in 3.5 cm dishes diminishes Syk protein levels 

To check whether a more efficient down-regulation of Syk inhibits ROS response, we transfected 

BMDMs with Syk siRNA in 3.5 cm dishes 2 days before performing the ROS assay. 30 min before 

the assay, the cells were scraped off and distributed in a 96-well luminescence plate. After 

stimulation with zymosan, we observed a decrease in ROS release by about 40% with gp91phox, 

70% with Dectin-1 and 50% with Dap12 siRNA treated cells. No change in ROS production in Syk- 

or FcRγ-siRNA treated cells was detectable when compared to the nTG control (Figure III.9 A 

bottom). Protein levels of Syk were reduced although still detectable (Figure III.9 A, top). 

However, after 75 hours of transfection and C. albicans stimulation, Syk siRNA treated BMDMs 

had a reduced ROS response by about 50% when compared to nTG treated cells. Furthermore, 

down-regulation of gp91phox reduced the ROS production by about 70%, and Dectin-1 siRNA-

treated cells inhibited about 20%, which is comparable to the dectin-1-/- BMDMs. Syk protein 

was not detectable by immunobloting in the Syk siRNA-transfected BMDMs (Figure III.9 B, top). 

Finally, to evaluate the stability of the siRNA-based gene silencing, a ROS assay was 

performed 96 hours post transfection. BMDMs were stimulated with zymosan and C. albicans. 

After 96 hours of transfection, zymosan-stimulated ROS release was reduced by about 60-70% 

when BMDMs were transfected with the gp91phox siRNA, by 70% with the Dectin-1 siRNA, 

about by 50% with the Syk and the Dap12 siRNA, but again no change in ROS production was 

seen in FcγR siRNA treated BMDMs (Figure III.9 C, left). For the BMDMs stimulated with C. 

albicans, we observed a slight reduction by about 40% in BMDMs transfected with gp91phox 

siRNA, and a comparable decrease in Syk and Dap12 siRNA-treated cells. As expected Dectin-1 
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down-regulation again reduced ROS response by about 20% (Figure III.9 C, right). After 96 hours 

of transfection, protein levels of Syk were no longer detectable by immunoblot analysis in the 

Syk siRNA transfected BMDMs (Figure III.9 C, top). 

 

Figure III.9: Transfection in 3.5 cm plates is reducing Syk protein levels efficiently. 
A-C BMDMs (1 x 106/3.5 cm plate) were forward transfected with 10nM of either the non-target control (nTG), 
and indicated siRNA. ROS was measured by luminol-dependent chemiluminescence at 37°C in 2.5 min intervals 
over a 90 min period [total RLU over 90 min was measured]. RLU of unstimulated cells for each condition were 
subtracted from stimulated cells. 48 hours (A) 75 hours (B) and 96 hours (C) after transfection BMDMs were 
scraped off, distributed in a 96-well plate and stimulated with either zymosan (A+C) or C. albicans (B+C). Protein 
levels of Syk were detected with anti-Syk antibodies and the blot was re-probed with p38 antibodies for a loading 
control. 
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These results demonstrate that the transfection efficiency and knock-down of our tested 

target genes is more efficient in plates with larger surface area, although the ratio of cell 

amount, transfection reagent and siRNA were not changed. It seems that 75 hours post 

transfection, the expression of target genes is sufficiently down-regulated, to see a reduced 

response in a functional assay. In contrast to the 96-well format, in culture plates with larger 

surfaces the RLU values of untreated BMDMs are only slightly above background in all conditions 

tested indicating that the BMDMs are less stressed under these culture conditions. 
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IV. Conclusions and Discussion 

Candida albicans, an opportunistic human fungal pathogen, is able to colonise many different 

body sites and lives as a commensal. Like many other microbial pathogens, Candida albicans can 

cause life-threatening systemic infections in individuals with weakened immune systems. 

Notably, C. albicans can escape the immune surveillance of the host, exploiting several strategies 

to avoid host clearance (Gropp et al., 2009; Lohse and Johnson, 2008; Lorenz et al., 2004; Marcil 

et al., 2008). Human immune cells specifically recognise microbial attacks and release highly 

toxic radicals to kill invading pathogens. This work focuses on one of the immediate early 

defence mechanism used by macrophages facing fungal challenges, namely the production of 

reactive oxygen species (ROS) through the “respiratory burst” phenomenon (Babior, 2004). 

To investigate the immunological importance of the respiratory burst by innate immune cells 

in the defence against C. albicans, mutant strains of all C. albicans superoxide dismutases were 

generated and analysed in an in vitro interaction model of bone marrow derived macrophages 

(BMDMs) and myeloid dendritic cells (mDCs) co-cultured with C. albicans.  

IV.1 C. albicans degrades host-derived ROS to escape innate immune 

surveillance 

In the first part of this thesis, we show that both yeast and hyphae forms of C. albicans rapidly 

induce ROS release by primary innate immune cells such as macrophages and dendritic cells. 

This ROS production is dependent on an active form of the gp91phox subunit of the NADPH 

oxidase. The GPI-anchored Sod5 and Sod4 enzymes of C. albicans are degrading extracellular 

ROS produced by innate immune cells. Strikingly, C. albicans strains lacking superoxide 

dismutases fail to counteract the host-derived oxidative burst. Furthermore, cells lacking Sod4 

and Sod5 are hyper-susceptible to killing by primary BMDMs, suggesting a physiological role of 

cell surface SODs in the evasion of immune surveillance.  

Based on our results, we propose that C. albicans can escape the oxidative burst, a host-

generated defence mechanism, (Figure IV.1). Adhesion, recognition and phagocytosis of fungi 

cells by innate immune cells trigger an immediate and rapid assembly of the ROS machinery at 

the cell surface or in the phagosomal membrane, preceding phagocytosis and persisting 

throughout phagosomal maturation. Concomitantly, host temperature and adhesion may 
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enhance SOD4 and SOD5 expression, followed by decaying ROS produced by host cells. The SOD-

mediated decomposition of host-derived ROS perhaps facilitates phagosomal survival of fungal 

cells, which would facilitate killing of the host cells. Taken together, these data reveal a 

physiological function of cell surface SODs in evading immune surveillance, thereby facilitating 

invasion and ultimately dissemination of fungal pathogens in the mammalian host. 

IV.2 PRRs and their adaptor proteins in the activation of the respiratory 

burst 

To elucidate the signalling pathways and upstream factors leading to the production of ROS in 

innate immune cells in response to challenge with C. albicans, putative pattern recognition 

receptors (PRRs) and adaptor proteins involved in ROS transduction were investigated. 

Toll-like receptors are essential PRRs of the immune system expressed on a large variety of 

immune cells (Akira, 2006), and involved in the recognition of PAMPs zymosan (Ozinsky et al., 

2000). MyD88, an intracellular adaptor protein which is shared by most TLRs is essential for 

antifungal defence in several in vivo studies (Bellocchio et al., 2004; Biondo et al., 2008; Yauch et 

 
Figure IV.1: Model for Sod4 and Sod5-mediated protection against respiratory burst. 
Upon contact with BMDMs and mDCs, Sod4 and Sod5 anchored at the C. albicans (C.a) surface (left) degrade 
superoxide anions (O2 -) to hydrogen peroxide (H2O2). The lack of the Sod4 and Sod5 (right) causes ROS 
accumulation in the medium and perhaps inside the phagosomes (phago) which results in enhanced killing of C. 
albicans. 
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al., 2004). Our data suggest that the TLR family is not involved in the ROS response to C. albicans 

infections and zymosan treatment in BMDMs (Figure III.1). However, since the TLR4 ligand LPS 

does not induce detectable levels of ROS in murine bone marrow-derived macrophages (Charles 

et al., 2008), the possibility remains that certain TLRs may still be involved in ROS response in 

other types of macrophages or phagocytic cells. 

Dectin-1 is important for eliminating fungal infections in mice (Taylor et al., 2007), and 

needed for recognising and phagocytosing C. albicans in a variety of human and mouse innate 

immune cells, including different types of macrophages, mast cells, neutrophils and dendritic 

cells (Ariizumi et al., 2000; Huysamen and Brown, 2009; Sun and Zhao, 2007; Tsoni and Brown, 

2008). 

This work confirms previous studies (Saijo et al., 2007; Taylor et al., 2007; Underhill et al., 

2005; Yang and Marshall, 2009) showing that efficient zymosan-induced ROS production by 

macrophages requires Dectin-1 (Figure III.2 –III.4). Furthermore, we show that the activity of 

intracellular Src and Syk kinases is required for eliciting ROS response (Figure III.2 A). Src kinases 

are phosphorylating the immunoreceptor tyrosine-based activation motif (ITAM), which in turn 

binds, phosphorylates and activates Syk (Tohyama and Yamamura, 2009), leading to the 

induction of several downstream pathways such as the canonical NFκB via CARD9, and the 

CARD9-independent, non-canonical, NFκB pathway as well as the Nlrp3 inflammasome 

(Gringhuis et al., 2009; Gross et al., 2009; Ruland, 2008). In addition to getting activated through 

ITAM motif binding, Syk can also be activated through an autophosphorylation mechanism 

(Tsang et al., 2008). 

Activation of Src and Syk kinases is also essential for C. albicans-induced ROS production but 

Dectin-1 itself only plays a minor role (Figure III.2 B). When macrophages are stimulated with live 

C. albicans, a slightly reduced ROS response is seen with BMDMs lacking Dectin-1 (Figure III.3 B). 

However, blocking reagents such as laminarin or an anti-Dectin-1 blocking antibodies fail to 

reduce ROS response upon live C. albicans stimulation (Figure III.2 B and Figure III.4 B+D). These 

data are in line with a previous publication using Dectin-1 knock-out macrophages showing that 

Dectin-1 is not involved in C. albicans-stimulated ROS but is needed for zymosan-stimulated ROS 

(Saijo et al., 2007). Our results are contradicting earlier work using Dectin-1 blocking reagents to 

show that Dectin-1 is needed for C. albicans-induced ROS (Gantner et al., 2005). Interestingly, 

ROS production is reduced to the same extent when Dectin-1-blocked macrophages are co-

cultured with heat-killed C. albicans or treated with zymosan (Figure III.3 C). This data are in line 

with a recent publication showing that in human DCs, the Dectin-1-Syk pathway is required for C. 
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albicans-induced ROS response using heat-killed yeasts (Skrzypek et al., 2009). Beside its role as 

intracellular adaptors for immunoreceptors, Syk kinases are also involved in mediating 

phagocytic processes. Whether its importance for ROS induction occurs through its role in 

integrin-mediated signal transduction (Van Ziffle and Lowell, 2009), as signalling adaptor of 

ITAM-bearing receptors or as mediator of phagocytic processes (Tohyama and Yamamura, 2009) 

will have to be investigated further. 

Heat-killing of C. albicans results in increased exposure of cell wall β-(1,3)-glucan, which is 

otherwise only exposed at bud scars in live C. albicans (Fradin et al., 1996; Netea et al., 2008a). 

The β-glucans exposed in the bud scars of live C. albicans seem insufficient to stimulate ROS via 

Dectin-1. Thus C. albicans seems to induce ROS via at least one so far undisclosed receptor.  

Our preliminary results show an increase in ROS production via zymosan stimulation when 

the serine-threonine kinase Raf-1 is inhibited. Recently it has been shown in human DCs that 

Dectin-1 induces Raf-1 in a Syk independent manner, and that an active Raf-1 is needed for the 

Dectin-1 - TLR crosstalk (Gringhuis et al., 2009). Activation of Raf-1 inhibited the non-canonical 

NFκB pathway (RelB), thereby stimulating the canonical NFκB pathway and cytokine expression. 

Interestingly, inhibition of Raf-1 increases IL23p19 transcription (Gringhuis et al., 2009). And 

elevated IL23p19 levels have previously been associated with patients suffering from 

rheumatoid arthritis (Kim et al., 2007a; Kim et al., 2007b). This disease results in elevated levels 

of pro-inflammatory cytokines and increased ROS (Phillips et al., 2009). 

Dectin-2 another c-type lectin receptor recognising C. albicans is signalling via the ITAM 

domain of FcRγ (Robinson et al., 2009; Sato et al., 2006). This work suggests that Dectin-2 alone 

is not involved in ROS response to live and heat-killed C. albicans or zymosan stimulation (Figure 

III.5 A). Furthermore, the MAPK pathways ERK1/2 and p38 are also not induced via Dectin-2 

alone when stimulated with live C. albicans in yeast or hyphal forms or zymosan (Figure III.5 B). 

But ERK1/2 phosphorylation is slightly dependent on Dectin-2 when stimulated with heat-killed 

C. albicans. Notably, simultaneous inhibition of Dectin-1 and Dectin-2 in DCs is inhibiting 

cytokine response more efficiently than inhibiting or deleting one alone (Robinson et al., 2009). 

Concurrently, we cannot exclude the possibility to see an inhibition of the MAPK pathways only 

when both receptors are inhibited at the same time. 

Furthermore, we also addressed the question whether the integrin CD11b, one subunit of 

the CR3, is involved in C. albicans or zymosan-induced ROS response. Interestingly, in BMDMs 

lacking CD11b, we observe an increased ROS response when cells are stimulated with zymosan, 
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or heat-killed C. albicans, but only a slight increase when BMDMs are infected with live C. 

albicans (Figure III.6 A). Since the level of ROS production is comparable to that of the inhibition 

of Raf-1, it might be interesting to investigate whether there is a connection between Cd11b and 

Raf-1 activation. There are reports stating that in neutrophils, Cd11b is crucial for ROS 

production in response to zymosan and β-glucans (Nagahata et al., 2007; Ross et al., 1987; 

Rubin-Bejerano et al., 2007). In human neutrophils, Cd11b seems to be even more important 

than Dectin-1 in the recognition of yeast particles (van Bruggen et al., 2009). This suggests a 

different recognition process of human neutrophils and mouse macrophages.  

Taken together these data show that the TLR family is not involved in ROS production in 

zymosan or C. albicans stimulated BMDMs. Dectin-1 is crucial for zymosan and heat-killed C. 

albicans-induced ROS response and MAPK activation, but is not the primary receptor mediating 

ROS release by live C. albicans in BMDMs. Furthermore, we have confirmed that the activation 

of Src and Syk kinases is needed for ROS production in response to zymosan and C. albicans. In 

the matter of C. albicans-induced ROS response this suggests that there is at least one other 

receptor involved in ROS response due to live C. albicans infection, which is bearing an ITAM or 

ITAM-like signalling domain or signals via an ITAM containing adaptor protein. In this respect, we 

have excluded Dectin-2 and Cd11b (CR3) as potential ROS inducing receptors. Cd11b might 

however be involved in repressing ROS production.  

 

Figure IV.2: Potential receptors involved in ROS production following C. albicans recognition. 
Using BMDM from knock-out mice we can exclude a possible role of the TLR family in ROS response to zymosan or 
C. albicans. Dectin-1 is signalling zymosan induced ROS and ROS induced by heat-killed C. albicans but not by live C. 
albicans in yeast or hyphal form. It also seems unlikely that Dectin-2 is involved in ROS production due to C. albicans 
stimulation. CR3 is also not involved in ROS production but may be involved in down-regulating ROS. Picture 
adapted from (Netea et al., 2008a) 

? 

? 

? 
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However, there are still some putative receptors expressed on the macrophage cell surface 

which recognise parts of the C. albicans cell wall and might induce ROS production (Figure IV.2). 

For example the Mannose Receptor (MR) is known to recognise oligosaccharides, like branched 

O-linked mannans in C. albicans and is involved in IL-17 production (van de Veerdonk et al., 

2009). Galectin-3 is crucial for the recognition of the β-1,2 linked mannosides and collaborates 

with TLR2 (Fradin et al., 2000; Jouault et al., 2006). Furthermore, the highly complex C. albicans 

cell surface and multiple receptors known to recognise parts of the C. albicans surface, make it 

likely that ROS activation may be the consequence of stimulating multiple redundant receptors. 

IV.3 siRNA knock-down in BMDMs 

Inhibition or deletion of receptors or signalling molecules thought to be involved in the 

recognition of pathogens are beneficial strategies to elucidate the mechanisms of immune host 

defence. However, the generation of specific high affinity blocking antibodies is very time-

consuming, and chemical inhibitors are often not specific enough. Therefore, we decided to 

establish a siRNA knock-down assay to investigate additional putative receptors involved in ROS 

transduction. This technique has advantages over other methods such as chemical engineering 

or blocking antibodies. First, since only a few siRNA copies can degrade the target mRNA 

sequence in multiple rounds, the blocking is often efficient (Sioud, 2004). Second, a single 

mismatch between siRNA and mRNA can inhibit cleavage, which makes the siRNA very specific 

(Ding et al., 2003). Third, once established, the technique is simple and fast, and forth, siRNA 

libraries containing thousands of sequences make a high-throughput approach of functional 

screening possible (Gurney and Hunter, 2005).  

Of course there are also disadvantages associated with siRNA approches. Especially primary 

cells are difficult to transfect. It is often necessary to try many different conditions (Gurney and 

Hunter). Irrespective of how a siRNA is introduced into cells, it can have unspecific off-target 

effects as a consequence of one of three mechanisms. Because siRNA contains dsRNA it may also 

trigger nonspecific innate immune responses, as for instance interferon production (Sledz et al., 

2003). Introduced siRNAs could saturate the RNAi machinery of cells, thereby inhibiting the 

function of endogenous miRNAs (Cullen, 2006). Finally, although mature siRNAs are designed to 

be fully complementary to a single mRNA transcript, they sometimes show significant 

complementarities to other unrelated non-target mRNAs (Jackson et al., 2006a; Jackson et al., 

2006b). 
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As demonstrated here, we can efficiently down-regulate several target genes in a 24-well 

plate format (Figure III.7 A) Applying the siRNA assay in 96-well plate and performing a ROS 

assay we can see a reduction in ROS production for the positive control, gp91phox. The negative 

control, MyD88 as well as the non-targeting control show similar amounts of ROS production as 

untreated BMDMs (Figure III.7 C). When we undertook a first small screen using additional 

controls and putative targets, the gp91phox siRNA decreases ROS production in BMDMs treated 

with zymosan or C. albicans. Likewise, Dectin-1 siRNA is reduces zymosan- but not C. albicans- 

induced ROS production. The ITAM-containing adaptor molecule Dap12 induces more ROS when 

down-regulated, and other targets such as MyD88, FcγR, MRC1, Card9 and Galectin-3 do not 

show an effect in ROS production upon down-regulation.  

Disturbingly, down-regulating the Syk kinase and stimulating BMDMs with zymosan or C. 

albicans does not show a decrease in ROS production (Figure III.8 A). Analysis of Syk protein 

levels of the 96-well format transfection however revealed that there is still Syk protein 

detectable by immunoblotting (Figure III.8 B), which might be sufficient to induce signalling 

cascade for ROS production. Performing the transfection in a 24-well plate inhibits Syk protein 

almost completely; this suggests that a 96-well plate is not the ideal choice for transfecting 

BMDMs.  

Transfecting the cells in 3.5 cm plates efficiently reduces Syk protein levels and also reduces 

ROS production in BMDMs treated with C. albicans or zymosan. Surprisingly, in the 3.5 cm plate, 

we also observe reduced ROS production in response to both stimuli when DAP12 siRNA is 

transfected. Dectin-1 and gp91phox siRNA treated cells also show a more efficient drop in ROS 

production in response to C. albicans and zymosan, indicating a better transfection rate and 

higher down-regulation in this format. As in the 96-well plate assay, transfecting FcγR siRNA 

does not alter zymosan or C. albicans-induced ROS levels. TREM2-Dap12 was already shown to 

be important for ROS production in response to Salmonella enteric (Charles et al., 2008) and 

both Dap12 and FcγR are needed for superoxide production upon integrin stimulation (Mocsai et 

al., 2006). To my best knowledge Dap12 was until now not associated with C. albicans infections, 

but screening Dap12-associated receptors such as TREM-2 or Oscar (Lanier, 2009), might give us 

some further information about potential new Candida albicans receptors.  

When we consider the results we obtained with the siRNA experiments in the light of 

previous results, we can also exclude the remaining three receptors, namely Galectin-3, MR1 

and FcRγ, on the macrophage surface (Figure IV.2) as ROS mediators. However, these data have 

to be reconfirmed by assessing the knock-down efficiency at the corresponding protein levels. In 
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conclusion, performing siRNA assays in BMDMs is absolutely feasible in 24-well or 3.5 cm plate, 

while screening in a 96-well format is neither promising nor feasible. By establishing a screen in 

a 24-well format it might be possible to screen a couple of hundred putative targets including 

the Dap12-associated receptors and other receptors, containing ITAM or ITAM like domains. 
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V. Materials and Methods 

This part features methods not described in the following Chapter V.2: In vitro systems for 

studying the interaction of fungal pathogens with primary cells from the mammalian innate 

immune system and procedures not described in the Material and Methods part of Chapter III.1.  

V.1 Genomic DNA isolation 

C. albicans genomic DNA was isolated as described (Sambrook and Russell, 2001) with some 

modifications. Overnight cultures were grown in 5ml YPD; cells were harvested and resuspended 

in DNA extraction buffer (2% Triton X-100, 1% SDS, 100mM NaCl, 10 mM Tris pH 8.0, 1mM 

EDTA). An equal amount of glass beads (250-600μm, Sigma) were added and cells were broken 

by vortex-mixing for 45min at 4°C. DNA was subsequently isolated by several rounds of 

Phenol:Choloroform:Isoamylalcohol (Fluka) extractions. 

V.2 Southern blot analysis 

Southern blotting was performed as previously described (Sambrook and Russell, 2001) with 

modifications. 20μg of genomic DNA was digested overnight and separated on 0.6% (wt/vol.) 

agarose gels. DNA was blotted onto a Hybond N+ nylon membrane (Amersham) overnight and 

cross-linked by UV the following day. Probes were internally labelled with P32-dCTP using the 

Prime It II, Random Primer Labelling Kit (Stratagene) and hybridised overnight at 65°C. 

Autoradiography was performed at -70°C using CL-Exposure films (THP). 

V.3 RNA extraction, reverse transcription and real-time PCR analysis 

Total RNA was isolated from BM-DCs or BMDMs using a centrifugation column-based kit 

(Promega) according to the manufacturer’s instructions. Total RNA samples were eluted in 50µl 

RNase-free sterile water. RNA concentration was measured using a NanoDrop2000 (Thermo 

Scientific) and samples were stored at -80°C until further use. Reverse-transcription was 

performed using a reverse transcription kit (Promega) according to conditions recommended by 

the manufacturer. Typically, reactions were carried on 0.7-1µg total RNA with oligo-dT primers 

in a final volume of 40µl. Reverse transcription products were diluted 1:5 with water and stored 

at –20°C until further use. For the real-time PCR amplification, 5µl of the diluted total cDNAs 
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were added to 20µl of real-time PCR mix (300nM Forward primer, 300nM Reverse primer, 1X 

MESA GREEN qPCR MasterMix Plus for SYBR® Assay (Eurogentec) and were submitted to the 

following cycling conditions: 95°C for 5min, 40 cycles (95°C for 10s, 63°C for 15s, 72°C for 15s) 

followed by a melting curve analysis. Primers used in this study are listed in Table V-1. 

Table V-1: Oligos used for real-time PCR 

Forward Sequence 5’ 3’ Reverse Sequence 5’ 3’ 
RT_91ph_1522s GGATGAATCTCAGGCCAATCAC RT_91ph_1641as ATGGTCTTGAACTCGTTATCCC 
RT_Myd88_808s TGTCTCCAGGTGTCCAACAG RT_Myd88_904as TCGCATATAGTGATGAACCGC 
RT_Dec2_429s CAAGGAGAACTTCTGGAGCAC RT_Dec2_524as GTGATGAAATTCTGCTCCGC 
RT_Dec1_629s CCCAACTCGTTTCAAGTCAG RT_Dec1_789as TTGCAGATTTGGTTGTAGACCT 
RT_DAP12_210s GTGTTGACTCTGCTGATTGC RT_DAP12_339as CCTGAAGCTCCTGATAAGGC 
RT_FcRy_167s CCGCAGCTCTGCTATATCCT RT_FcRy_257as TTCGGACCTGGATCTTGAGTC 

V.4 Protein extracts and western blot analysis 

1 x 106 cells were scrapped on ice in 40µl ice-cold protein lysis buffer (Frackelton buffer) (10mM 

Tris pH7.5, 50mM NaCl, 1% Triton X-100, 1mM PMSF, 0.1mM Na Vanadate, 30mM NaPPi, 50mM 

NaF, 1X “Complete no EDTA” protease inhibitor cocktail (Roche, Basel, Switzerland)), collected 

and centrifuged at 15000xg at 4°C for 10 min. Sample supernatants were transferred to fresh 

tubes containing 15µl of 4X Sample Buffer and heated at 95°C for 5-7min, cooled on ice and 

stored at -20°C until further use. Aliquots of 15µl of proteins samples were fractionated by SDS-

PAGE and transferred onto nitrocellulose membranes. Prior to immunodetection, membranes 

were blocked for 1-2 hours in 1X TBST with 10% non-fat dry milk. Blots were probed with anti-

phospho-ERK antibodies, anti-ERK antibodies, anti-phospho-p38 antibodies, anti phospho-

p40phox antibodies (Cell Signalling) or anti-p38 antibodies, (Santa Cruz). An infrared-labeled 

secondary antibody (LI-Cor,) was used to detect immune complexes and analysis was performed 

using the infrared imaging system Odyssey (LI-Cor). 

V.5 Cytokine measurements by ELISA 

Amounts of TNF-α released in cell culture supernatant were assayed using the TNF-α Elisa Kit 

(BioLegend) according to manufacturer’s instructions.  

V.6 Transfection of siRNAs 

SMARTpool siGENOME siRNAs were obtained from Dharmacon: Dectin-2 (CLECSF10)M-049966-

00, Dectin-1 (CLECSF12) M-058470-01; Card9 (LOC332579) M-045760-01; Dap12 (Tyrobp) M-
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040951-00; Galectin-3 (LGALS3) M-041097-01; MRC1 M-047522-00; Syk M-041084-01; Fc 

Receptor γ (FCER1G) M-040340-01; CyBB (gp91phox) M-040340-01; MyD88. 

Forward transfection with Dharmafect4 (Dharmacon) or Lipofectamin RNAiMax (Invitrogen) 

was carried out exactly as described by manufacturers’ protocol. For lipofectamin RNAiMax 

transfection in a 96-well format, 10µM siRNA (final in 120µl) and 0.2 µl transfection reagent in 

20µl of OptiMEM (Invitrogen) were distributed in each well. After 15 min of incubation at room 

temperature 100µl of 4 x 104 BMDMs were added in BMDM Med (DMEM incl. 10% FCS and 20% 

L-cond Medium) were added to the transfection mix for 48 hours. The transfection medium was 

changed to fresh BMDM-Med and BMDMs were incubated until the experiments were 

performed. In a 24-well plate, 10µM siRNA (final in 600µl) and 1 µl transfection reagent in 100µl 

of OptiMEM, 500µl of 2 x 105 BMDMs were added as well. 

V.7 In vitro systems for studying the interaction of fungal pathogens with 

primary cells from the mammalian innate immune system 
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Chapter 11

In Vitro Systems for Studying the Interaction 
of Fungal Pathogens with Primary Cells from 
the Mammalian Innate Immune System

Christelle Bourgeois, Olivia Majer, Ingrid Frohner, and Karl Kuchler

Abstract

The incidence of invasive fungal diseases has increased over the past decades, particularly in relation with
the increase of immunocompromised patient cohorts (e.g., HIV-infected patients, transplant recipients,
immunosuppressed patients with cancer). Opportunistic fungal pathogens such as Candida spp. are
most often associated with serious systemic infections. Currently available antifungal drugs are rather
unspecific, often with severe side effects. In some cases, their prophylactic use has favored emergence of
resistant fungal strains. Major antifungal drugs target the biosynthesis of lipid components of the fungal
plasma membrane or the assembly of the cell wall. For a more specific and efficient treatment and pre-
vention of fungal infection, new therapeutic strategies are needed, including strengthening or stimula-
tion of the residual host immune response. Achieving such a goal requires a better understanding of
factors important for the defense and the survival of the host combating Candida spp. Where possible,
primary cultures of mammalian immune cells of the innate immune system constitute a better suited
model than transformed cell lines to study host-pathogen response and virulence. Hence, in vitro pri-
mary cell culture systems are a good strategy for a first screening of mutant strains of Candida spp. to
identify virulence traits with regard to host cell response and pathogen invasion.

Key words: primary cell culture, bone marrow–derived macrophages, myeloid dendritic cells,
Candida spp., host-pathogen interaction, cell signaling, MAPK, cytokines.

Candida albicans (C.a) and other Candida spp. are harmless
commensals in most healthy people. However, they cause both
superficial infections and life-threatening systemic candidiasis in
immunocompromised patients. Cells of the innate immune system
such as dendritic cells, macrophages, or neutrophils comprise the
first line of defense against microbial pathogens. Candida and other

1. Introduction
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fungi are detected and recognized by the innate immune system
through pattern recognition receptors (e.g., toll-like receptors,
mannose receptor) and coactivators (dectin1, CD14), which recog-
nize pathogen-associated molecular patterns (PAMPs) found in the
fungal cell wall.

Mouse models lacking the TLR2,4 or dectin-1 genes indicate
a role for these recognition molecules in detecting fungal
pathogens and triggering the adaptive cytokine response, which
in turn leads to an efficient activation of the acquired immune
system. The cytokine response, a consequence of the various com-
binations of signaling pathways activated by these surface receptors
(e.g., mitogen-activated protein kinase [MAPK] pathway, NF-�B
activation) drive the host response and determine the outcome of
infection (for review, see Refs. 1 and 2). In the case of Candida
infections, the balance between the production of inflammatory
cytokines (e.g., TNF-�), which promote activation of the immune
system and destruction of the pathogen, and the release of anti-
inflammatory cytokines (e.g., IL-10), which limits the extent of
tissue damage induced by inflammation and activates the adaptive
immune response (3–6), appears to be particularly important. To
counteract the host response, microbial pathogens have developed
escape strategies. In the case of C.a., modulation of the activation
of the MAPK/extracellular regulatory kinase (ERK) and p38 path-
ways may be one of the mechanism by which fungi modulate the
cytokine response to its advantage (7–9).

In vitro cell culture models are interesting tools to unravel
dynamic changes of signaling activities as they allow for following
the initial host attack, with the further goal of identifying down-
stream factors important for the defense and the survival of the host
innate immune cells facing fungal pathogens in general and in par-
ticular Candida spp. They can be a good compromise for a first
screening of virulence properties of fungal mutant strains lacking
potential pathogenicity genes affecting host response or pathogen
invasiveness even before the use of animal models for in vivo stud-
ies. Here we describe highly standardized primary cell culture mod-
els suitable to study early stages of innate immune cell–Candida
interaction (e.g., pathogen phagocytosis, MAPK activation,
cytokine production) and signaling events driving fungal invasion.
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1. High glucose (4.5 g/L) Dulbecco’s Modified Eagle’s
Medium (DMEM) with L-glutamine, without pyruvate
(PAA, Vienna, Austria).

2. Materials and
Media Components

2.1. Primary Culture 
of Bone Marrow–
Derived Macrophages
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2. Sterile PBS.
3. Colony-stimulating-factor 1 (CSF-1)-producing L929 cell

line (ATCC no. CCL-1).
4. Bone marrow–derived macrophage (mMP) culture medium,

high-glucose DMEM with L-glutamine supplemented
with 10% fetal calf serum (FCS), 100 U/mL penicillin,
100 �g/mL streptomycin (Invitrogen, Carlsbad, CA), and
15% to 20% L-conditioned medium, as source of CSF-1 (for
preparation, see Notes 1 and 2).

5. 10 � 10 cm square sterile Petri dishes (nontreated for cell
culture; Barloworld Scientific, Stone, UK).

6. Soft-rubber spatula (Deutsch & Neumann, Berlin, Germany).
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2.2. Primary Culture
of Myeloid Dendritic
Cells

1. Red blood-cell lysis buffer, 8.29 g/L NH4Cl, 1 g/L KHCO3,
0.0372 g/L EDTA, pH 7.2 to 7.4. Adjust pH if necessary,
sterile filtrate through 0.2-�m membrane filter, store at 4°C.

2. Granulocyte-macrophage colony-stimulating factor (GM-
CSF)-producing X-63 cell line (10).

3. Myeloid DC (mDC) culture medium, high-glucose
DMEM with glutamine supplemented with 10% FCS,
100 U/mL penicillin, 100 �g/mL streptomycin, and
5–10% X-conditioned medium as source of GM-CSF (for
preparation, see Notes 2 and 3).

4. Cell-culture treated 24-well plates (NUNC, Roskilde,
Denmark).

2.3. Cell
Characterization
by FACS Analysis

1. FACS buffer, PBS containing 2 g/L sodium azide and
2 g/L BSA, sterile-filtrated through an 0.2-�m filter and
stored at 4°C.

2. Anti-mouse antibodies CD16/CD32, CD11b-FITC,
CD11c-APC (BD Bioscience, Clontech, Palo Alto, CA).

2.4. Host Cell/Fungi
Interaction

1. Laminar hood and 37°C incubator with 5% CO2, 95%
humidity, used only for infection purposes.

2. High glucose (4.5 g/L) DMEM without phenol red
(Invitrogen), supplemented with 4 mM L-glutamine.

3. SC5314, clinical isolate of Candida albicans (11).
4. UV-treated Candida albicans are prepared by treating an

aliquot of the Candida infection suspension with 999 �J/cm2

in a Stratalinker (Stratagene, La Jolla, CA).
5. YPD agar plates, YPD liquid media for growing and culturing

fungi.
6. 2 �M Cytochalasin D (Sigma, St. Louis, MO).
7. Cell scrappers (Becton Dickinson Labware, Franklin Lakes, NJ).
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2.5. Microscopic
Internalization Assay

1. Autoclaved, 12-mm-diameter glass coverslips, distributed in
a 24-well plate.

2. Candida albicans strain expressing GFP intrinsically (12).
3. 5 mM Calcofluor White M2R solution (Molecular Probes,

Invitrogen, Carlsbad, CA).
4. Nonhardening fluorescence mounting media (Dako,

Glostrup, Denmark).

2.6. Protein Extract
and Immunoblotting

1. Protein lysis buffer (Frackelton buffer) (13), 10 mM Tris pH 7.5,
50 mM NaCl, 1% Triton X-100, 1 mM PMSF, protease inhibitor
cocktail (complete no EDTA; Roche, Basel, Switzerland), phos-
phatase inhibitors (30 mM NaPPi, 50 mM NaF, 0.1 mM sodium
vanadate). Prepare fresh for each experiment and chill on ice.

2. 4x Sample Buffer (SBF), 200 mM Tris pH 6.8, 40%
glycerol, 8% SDS, 0.002% bromophenol blue. Add 4%
(v/v) �-mercaptoethanol just before use.

3. 1x TBST buffer, 3 g/L Tris-HCl, 8 g/L NaCl, 0.2 g/L
KCl, 0.1% (v/v) Tween-20 pH 7.4.

4. Anti-mouse panERK (BD Transduction Laboratories, Palo
Alto, CA), anti-mouse phospho-ERK1/2 and anti-mouse p38
(Santa Cruz Biotech Inc., Santa Cruz, CA), anti-mouse
phospho-p38 (Cell Signaling Technologies Inc., Danvers, MA).

5. Horseradish peroxidase–coupled secondary antibodies
(Merck, Whitehouse Station, NJ).

6. ECL reagents for immunodetection (Pierce, Rockford, IL).

2.7. RNA Extraction
Procedure
and Real-Time PCR

1. Spin column–based RNA extraction kit (BD Bioscience,
Clontech, Palo Alto, CA, or Promega, Madison, WI).

2. First strand cDNA synthesis kit (Fermentas, Hanover, MD).
3. Real-time PCR mix, 75 mM Tris-HCl pH 8.8, 20 mM

(NH4)2SO4, 0.01% (v/v) Tween-20, 2.5 mM MgCl2,
0.2 mM dNTPs, 300 nM Forward primer, 300 nM Reverse
primer, 200 nM SYBR green (Biorad, Hercules, CA), 1 U
recombinant Taq DNA polymerase (5 U/�L; Fermentas).

4. Mouse tumor necrosis factor-� (TNF-�); primers used, for-
ward 5�-CATCTTCTCAAAATTCGAGTGACAA-3�; and
reverse 5�-TGGGAGTAGACAAGGTACAACCC-3� (14).

5. Mouse interleukin 10 (IL-10) primers used: forward 5�-
GGTTGCCAAGCCTTATCGGA-3�; and reverse 5�-ACCT-
GCTCCACTGCCTTGCT-3� (14).

6. Mouse GAPDH primers used: forward 5�-CATGGCCTTC-
CGTGTTCCTA-3�; and reverse 5�-GCGGCACGTCA-
GATCCA-3� (RTPrimerDB, the real-time PCR primer and
probe database http://medgen.ugent.be/rtprimerdb/
index.php) (15, 16).
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This method is adapted from a protocol published earlier (17).
1. On day 1, dissect mouse tibias and femurs from a 6- to 8-week-

old animal in a hood, quickly rinse bones in 70% ethanol, and
place in 15 mL ice-cold sterile PBS. When all the limbs are col-
lected, transfer them in fresh 15 mL ice-cold sterile PBS and
keep on ice (see Note 4).

2. To flush out the bone marrow, separate femur from tibia
at the knee joint. Holding the bone with forceps above
a sterile dish, cut one extremity of the bone and using a
20-mL syringe with a 27GX3/4 needle, flush DMEM
with 10% FCS, 100 U/mL penicillin and 100 �g/mL
streptomycin, into the medullary cavity until no more
cells are coming out.

3. Collect bone marrow suspension and keep it on ice until all
bones have been processed. Bone marrow flushing should
be performed under semisterile conditions as required for
cell culture.

4. To prepare mMPs, centrifuge the collected bone marrow
at 300 � g for 5 min and resuspend the pellet in 44 mL
mMP medium. Distribute the cell suspension equally in four
10 � 10 cm Petri dish (or seven 10-cm-diameter Petri
dishes) and transfer to a 37°C incubator with a 5% CO2,
95% humidity atmosphere (see Notes 5 and 6).

5. On day 2, add 6 to 8 mL of mMP medium; control for cell
density every day.

6. On days 4 to 5, when cells in the plate reach confluency,
aspirate the media containing nonadherent cells, gently col-
lect cells by scrapping the plates with a soft rubber spatula,
and re-plate at a ratio of 1:2 to 1:3 in square 10 � 10 cm
Petri dish (see Note 7).

7. Let the cells grow for another couple of days, change
medium completely every 2 to 3 days.

8. After 9 to 10 days of culture, mMP cell surface markers
should be tested before performing interaction experiments
(see Section 3.3).

3. Methods

3.1. Primary Culture
of Bone Marrow–
Derived Macrophages
(mMPs)

3.2. Primary Culture 
of Myeloid Dendritic
Cells (mDCs)

This method is based on a method described earlier (18) using
X-conditioned media as source of GM-CSF.
1. For mouse bone marrow isolation, proceed as described

above (see Section 3.1, steps 1 to 3).
2. To prepare mDCs, centrifuge bone marrow cell suspension

at 300 � g for 7 min.
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3. Resuspend the pellet in 1 mL of room-temperature red cell
lysis buffer, and immediately stop the lysis with 1 mL of
mDC medium (see Note 5).

4. Centrifuge cell suspension at 300 � g for 7 min. Resuspend
pellet in 5 mL mDC medium.

5. Count cells and distribute in a tissue culture–treated 24-well
plate, to obtain 106 cells/well in 1 mL. Transfer to a 37°C
incubator with a 5% CO2, 95% humidity atmosphere.

6. On day 4, aspirate 0.5 mL of medium from each well with a
Gilson pipette and add 1 mL of fresh mDC medium. Under
the microscope, loosely attached nodules of mDCs will start
appearing as darker mass on the bright layer of adherent cells.

7. On day 7, collect these mDC aggregates by flushing medium
against the well wall with a 1 mL Gilson pipette set at 800 �L,
in order not to lift up too many of the strongly adherent cells.

8. Pool the cells suspension of each well and re-plate cells at the
desired cell density to perform an experiment the next day.
Myeloid mDC cell-surface markers should be checked before
performing interaction experiments (see Section 3.3). Myeloid
mDCs should be used within 8 days of their preparation.

3.3. Characterization
of Cell Markers
by FACS Analysis

1. Prepare a 4 � 107 cells/mL suspension in FACS buffer; dis-
tribute 12.5 �L (0.5 � 106 cells) in 3 microcentrifuge tubes.

2. Block nonspecific Fc-binding sites with 12.5 �L of
CD36/CD32 antibodies diluted 1/25 in FACS buffer.

3. After a 5-min incubation at room temperature, add 25 �L
of anti-mouse CD11b-FITC diluted at 1/25 in FACS
buffer, or 25 �L of anti-mouse CD11c-APC diluted at
1/25 in FACS buffer, or 25 �L FACS buffer alone for the
negative control (see Note 8).

4. After 15 to 20 min on ice, wash with 800 �L FACS buffer
and centrifuge at 300 � g for 10 min at 4°C (low-speed cen-
trifugation is important to prevent cell damage). Repeat
washing step once.

5. After the second wash, resuspend cell pellet in 500 �L
FACS buffer (or less if less cells) and transfer to FACS tube
for analysis (see Note 9).

3.4. Interaction
Experiments In Vitro
with Candida spp.

1. One day prior to the interaction assay, plate mMPs or mDCs
at a density of 1.0 � 105 to 1.25 � 105 cells/cm2 in a vol-
ume of cell culture medium of of 0.2 to 0.4 mL/cm2 and
place them at 37°C in a 5% CO2, 95% humidity atmosphere.

2. Grow C.a. to saturation overnight in 25 mL 1X YPD with
continuous shaking at 30°C. The next morning, dilute to 0.2
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to 0.3 OD600 in 25 mL YPD liquid medium and incubate with
continuous shaking at 30°C until the culture reaches 1 OD600.

3. Collect the fungal cells by centrifugation at 1200 � g for 5
min at room temperature and rinse the pellet in 50 mL ster-
ile, room temperature H2O or PBS.

4. Centrifuge again, resuspend the fungal pellet in 1 mL ster-
ile PBS, and determine the fungus counts/mL.

5. Dilute the fungal cell suspension in prewarmed (37°C)
high-glucose DMEM without phenol red (see Note 10) so
that fungal-mammalian cell coculture is performed at a ratio
of 2 fungal cells per 1 cell mMP or mDC (multiplicity of
infection [MOI] 2:1; see Note 11).

6. Proceed to step 7 for infection of mMPs or to step 8 for
infection of mDCs.

7. Aspirate the media from mMP culture dishes, replace it with
high-glucose DMEM without phenol red with or without
Candida. Typically, interaction C.a.-mMPs are carried out
at a 2:1 MOI, either in a 2-mL volume/6-cm dishes or in a
0.5 mL/well volume in 24-well plates. Dishes are main-
tained at 37°C in a 5% CO2, 95% humidity atmosphere for
a 20 min “infection pulse.” Then, media are discarded and
replaced with fresh high-glucose DMEM without phenol
red and dishes are further incubated at 37°C in a 5% CO2,
95% humidity atmosphere until collection time.

8. Infection of mDCs is performed as described above for mMPs
(step 7), except that, because of the poor adhesion properties
of inactive mDCs, the Candida cell suspension is simply
added to the mDC media in a 200-�L volume for 6-cm
dishes or in 100 �L/well for 24-well plates. After the 20 min
“infection pulse,” media of each plate is not discarded but
collected and centrifuged at 700 � g for 7 min to collect
floating cells. After addition of fresh high-glucose DMEM
without phenol red, infection plates are further incubated at
37°C in a 5% CO2, 95% humidity atmosphere until collection
time. The cell pellets, kept on ice until collection time, are
pooled with the corresponding cell samples.

3.5. Microscopic
Internalization Assay
(see Note 12)

1. The interaction experiment is performed as described in
Section 3.4, except that mDCs or mMPs are plated on 12-mm-
diameter sterile glass coverslips in 24-well plates 1 day prior
to the infection, and a green fluorescent Candida albicans strain
is used.

2. Terminate infection by carefully transferring each glass
coverslip in a new 24-well plate prepared with 0.5 mL ice-
cold PBS/well using clamps and guiding with a syringe

Materials and Methods

- 86 -



132 Bourgeois et al.

needle. Wash gently two more times with 0.5 mL ice-cold
sterile PBS.

3. Fix the cells with 200 �L of 1% buffered paraformaldehyde
for 5 min on ice. Discard paraformaldehyde solution and
wash 3 times with ice-cold sterile PBS.

4. On ice, stain the cell wall of noninternalized fungi with 200
to 300 �L of an ice-cold 15 �M Calcofluor White solution
for 5 min in the dark to stain the cell wall. Wash then 3 times
with ice-cold sterile PBS.

5. Carefully invert the coverslips onto a drop of mounting
medium for fluorescence on a microscopy slide. Observe slides
using contrast phase, fluorescein (excitation 485 nm/emission
535 nm) and DAPI (excitation 355 nm/emission 460 nm)
filters (Fig. 11.1).

Fig. 11.1. In vitro phagocytosis of GFP-labeled Candida albicans by mMPs and mDCs.
(A) mMPs were infected for the indicated time with GFP-C.a. at a MOI of 2:1, with or
without 2 �M cytochalasin D (cytoD), and processed for Calcofluor White staining (see
Section 3.5). Pictures were obtained on a Zeiss Axioplan2 microscope using a 63� oil-
immersion lens, fluorescein and DAPI filters, and a Visitron Imaging System. Phase con-
trast pictures of the same field at the same magnification are also shown. After a
40-min incubation with GFP-C.a., more “green-only” C.a. (internalized) are observed
than after 10 min (see merged pictures). As a control for the uptake assay, pretreatment
with cytochalasin D is performed as this completely blocks phagocytosis; hence, only
double-labeled C.a. (noninternalized) are observed. (B) representative results of phago-
cytosis of GFP-C.a. by mDCs after infecting for 40 min.
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6. For quantification purpose, percentage of internalized
fungi can be expressed as (number of Calcofluor White
stained fungi)/total of fungi observed in fluorescein
channel) � 100.

3.6. Monitoring
Activation of Cellular
Signaling Pathways

1. Terminate the infection by placing the cell culture dishes on
ice and remove media (discard in the case of mMPs, keep
and process as described above in step 8 for mDCs).

2. Scrap the cell layer in 80 �L ice-cold protein lysis buffer, col-
lect in a microcentrifuge tube, and centrifuge at 15,000 � g
at 4°C for 10 min.

3. Transfer supernatants in fresh tubes containing 30 �L of 4X
Sample Buffer.

4. Mix and heat at 95°C for 5 to 7 min, cool on ice, and store
at �20°C until further use.

5. After thawing proteins sample at 37°C for 5 min, analyze by
SDS-PAGE a 15-�L aliquot on a 10% acrylamide mini gel
(0.75 cm) and transfer onto nitrocellulose membrane.

6. Block membranes in 1X TBST containing 10% nonfat dry
milk for 1 to 2 h.

7. After a short wash in 1X TBST, probe blots with the primary
antibody diluted in 1X TBST with 2% BSA under continu-
ous agitation, at 4°C, overnight (see Note 13).

8. The next day, wash blots in 1X TBST, and incubate blots
with the secondary antibody diluted in 1X TBST with 2%
bovine serum albumin (BSA) at room temperature under
continuous agitation for 45 min.

9. After 3 to 4 washings in 1X TBST, detect immune com-
plexes using an ECL substrate according to the manufac-
turer’s instructions (Fig. 11.2).

3.7. Monitoring
Cytokine Gene
Expression

1. For RNA isolation from such small amount of mammalian
cells, centrifugation column-based kits give very good results.
Scraping cells directly in the provided lysis buffer yields a bet-
ter RNA recovery and better RNA quality.

2. Centrifuge samples at 11,000 � g for 8 min and collect
supernatants. If too viscous, samples should be passed 4 to
6 times through a syringe fitted with a 20-gauge needle
before centrifugation.

3. At that stage, samples can then be kept frozen at �80°C or
extraction is pursued according to the manufacturer’s
instructions.

4. Total RNA samples are eluted in 50 �L RNase-free sterile
water.
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Fig. 11.2. Activation of MAPK in mDCs/mMPs infected with Candida albicans in vitro.
Cell extracts of mDCs or mMPs incubated with C.a. strain SC5314 were collected after
20 and 45 min, respectively, and processed as described in Section 3.6. After infect-
ing for 20 min with live SC5314, ERK and p38 activation through phosphorylation was
detected in mDCs using phospho-specific antibodies. A similar pattern of MAPK activa-
tion was triggered by the UV-killed SC5314 cells, suggesting that early stimulation of
these MAPK does not require live fungal cells. ERK phosphorylation is also observed
after infecting mMPs for 45 min.

5. Quality control of the samples should include electrophore-
sis separation of a 5-�L aliquot on a 1% agarose urea-TBE
gel for integrity assessment and OD260/OD280 measure-
ment of RNA concentration on a 1/20 dilution in Tris
10 mM, pH 7.5.

6. Reverse-transcription is performed on 0.5 to 2 �g total
RNA using oligo-dT primers in final volume of 20 �L. The
final reverse transcription products are diluted 1:5 with
water and stored at �20°C until further use.

7. For the real-time PCR amplification, 5 �L of the diluted
cDNAs are added to 20 �L of real-time PCR mix; reactions
are submitted to cycling using the following conditions:
initial denaturation 95°C for 4 min, followed by 40 cycles
(each at 95°C for 10 s, 60°C for 15 s, 72°C for 15 s, and
80°C for 10 s; during these steps, the increase of the fluo-
rescence is recorded); melting curve analysis is done from
60°C to 95°C for 30 min (see Note 14).

8. For relative quantification, data are analyzed according to
the 		Ct method and are expressed as the fold-expression
(R) of the gene of interest (GOI) versus the expression of a
house-keeping gene (GAPDH) in treated (t) versus
untreated (ut) conditions. The equation used is R 
 2		Ct,
where 		Ct 
 (	CtGOIt � 	CtGAPDHt) � (	CtGOIut �
	CtGAPDHut) (Fig. 11.3).
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Fig. 11.3. Candida albicans triggers TNF-� and IL-10 production in mDCs/mMPs in vitro.
Cell extracts of mDCs or mMPs incubated with C.a. strain SC5314 for a 20-min “pulse”
were collected at the indicated times and processed as described in Section 3.7. In
response to infection, TNF-� mRNA transcription was rapidly activated in both mDCs and
mMPs and increased with time. IL-10 mRNA transcription was also induced to a very
high extent in mDCs only but not significantly in mMPs.

1. To produce L-conditioned medium, divide 10 confluent 
10-cm-diameter dishes of L929 cells (ATCC no. CCL-1)
into 20 175-cm2 flasks with 50 mL/flask of high-glucose
DMEM supplemented with 10% FCS without antibiotics.
After 36 to 48 hours, when cells are approximately 70% con-
fluent, aspirate the medium and replace it with 100 mL/flask
of starving medium (high-glucose DMEM without FCS and
antibiotics). After 10 days, collect and filter the conditioned

4. Notes
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media on Steritop 0.22-�m GP express PLUS membrane
(Millipore, Billerica, MA) to prevent membrane clogging;
store 250- to 500-mL aliquots at �20°C. Keep a small
aliquot at 4°C for testing (see Note 2).

2. To test the potency of the L-conditioned media, flush the
bones of one mouse as described in Section 3.1, divide the
cells into five 100 � 100 square Petri dishes. Grow in 11 mL
of mMPs cell medium supplemented with 0 to 20% of the
fresh batch of L-conditioned medium. As a positive control,
also grow two plates in mMPs cell medium supplemented with
the optimal concentration of an old batch of L-conditioned
medium. After 1 day, add 6 mL of medium. Completely renew
the medium every 2 to 3 days. After 5 to 6 days, count the cells
at each concentration, and split cells 1:3. Let them grow until
confluency and count again. Deduce from the cell count the
optimal L-conditioned medium concentration to be used.

3. To produce X-conditioned medium, grow GM-CSF–
producing X-63 cell line (10) (nonadherent cells) in
10 mL high-glucose DMEM supplemented with 10%
FCS, 100 U/mL penicillin, and 100 �g/mL strepto-
mycin in a 75-cm2 flask until the cell suspension is dense.
Dilute the cell suspension at 1:2 with fresh high-glucose
DMEM supplemented with 10% FCS, 100 U/mL peni-
cillin, and 100 �g/mL streptomycin. When cells start to
become dense again, add 30 mL of starvation media
(high-glucose DMEM only) and grow until cells are con-
fluent. Then, transfer into a 250-mL flask and add 50 mL
of fresh starvation media. When cells are dense again, add
100 mL of starvation media. After 8 to 10 days, when a
large amount of cells are dead, collect X-conditioned
medium, centrifuge at 1000 � g for 5 min to remove the
X-cells, and proceed as described above in Notes 1 and 2
for sterile-filtration, storage, and testing.

4. Older mice can be used, but the number of bone marrow
cells recovered will be smaller.

5. All given volumes are for the limbs of one mouse and should
be multiplied according to the number of limbs.

6. Only mMPs will adhere to the non–tissue culture treated
plastic, allowing for their separation from other cell types,
the latter being eliminated when the media is changed.

7. Alternatively, 4-day-old mMPs can be frozen in FCS with
10% DMSO and stored in liquid nitrogen until use. They
should be regrown for about 6 to 7 days in mMPs media
before use.

8. To spare cells, double labeling can be performed. In that
case, prepare 23 �L FACS buffer � 1 �L from each anti-
body, and incubate for 15 to 20 min on ice.
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9. Typically, mMPs are CD11� positive and CD11c� negative.
With the above-described method, one can expect to obtain
at least 95% pure mMPs in 9- to 10-day-old primary cultures.
In our conditions, the expression of mMP cell surface mark-
ers is stable up to 14 days after isolation. Myeloid DCs are
both CD11b� positive and CD11c� positive; this method
yields routinely cell preparations of 50% to 70% pure mDCs.

10. Host-pathogen interaction experiments are carried out in
DMEM without serum and phenol red to slow hyphae for-
mation of dimorphic fungi (i.e., C.a.). For the same reason,
the dilution in DMEM should be performed just prior to
starting the coculture with mammalian cells, as DMEM rap-
idly induces hyphae formation.

11. To check the Candida suspension used for infection, serial
dilutions of the fungal cell suspension are plated on YPD agar
plates on the day of the infection assay and incubated at 30°C.
After 1 to 2 days, colony-forming units (CFU) are counted in
order to control the actual MOI of the in vitro infection assay
and verify the absence of contaminating microbes.

12. This method uses Calcofluor White (CW), a fluorescent dye
(excitation 355 nm/emission 460 nm), which specifically
binds to nascent fibrils of chitin in the fungal cell wall (19).
CW specifically stains fungal cells but fails to penetrate into
mammalian cells. After staining with this dye, cell walls of
noninternalized fungi appear as a bright blue ring when
inspected by microscopy using appropriate filters.

13. Adding 0.05% sodium azide to primary antibody dilutions
and performing incubations at 4°C will allow one to re-use
primary antibody dilutions several time if stored at 4°C.
Sodium azide should not be added to the dilution of horse-
radish peroxidase–coupled secondary antibodies and wash-
ing buffers, as it inhibits the enzyme activity.

14. Better reproducibility is achieved with the real-time PCR analy-
sis when using only 1 to 2 �g of total RNA in the reverse tran-
scription reactions. Each real-time PCR assay data point should
be performed at least in triplicate. Recording of the fluorescence
increase “in real-time” is performed during the “10 s at 80°C”
step to favor the dissociation of possible nonspecific products,
leading to a more accurate measurement of the amplicon.
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VII. Appendix 

Abbreviations 

CARD9 caspase recruitment domain protein 9 
CFW cacofluor white  
CGD chronic granulomatous disease 
CLR c-type lectin receptor 
DC dendritic cell 
DC-SIGN dendritic cell-specific ICAM3-grabbing nonintegrin 
ERK extracellular signal related kinase 
Etn-P ethanolamine phosphate 
FcγR Fcγ receptor 
GlcN glucosamine 
GlcNAc N-acetyl-glucosamine 
IFN interferon 
IL interleukin 
IL-1Ra interleukin-1 receptor antagonist 
IRF3 interferon regulatory factor 3 
ITAM immunoreceptor tyrosine-based activation motif 
JNK Jun N-terminal kinase 
LIP secreted lipases 
LR lectin receptor 
MAPK mitogen-activated protein kinase 
MPO myeloperoxidase 
MR mannose receptor 
MyD88 myeloid differentiation primary response gene 88 
NADPH nicotinamide adenine dinucleotide phosphate 
NF-κB nuclear factor 'kappa-light-chain-enhancer' of activated B-cells 
NOS nitroc oxide synthase 
NOX NADPH Oxidase 
PAMP pathogen associated molecular patterns 
PI3K phosphoinositol-3-kinase 
PL phospholipase 
PLM phospholipomannan 
PMN polymorphonuclear 
PRR pattern recognition receptor 
ROS reactive oxygen species 
SAP secreted aspartyl proteinases 
SOD superoxide dismutase 
Src sarcoma 
Syk spleen tyrosine kinase 
TGFβ transforming growth factor-β 
TH T helper 
TLR toll-like receptor 
TNF tumour necrosis factor 
TReg regulatory T-cell 
WOR white opaque regulator 
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Abstract 

 

Whereas a type-I interferon (IFN-I) response is a hallmark immune response to bacteria and viruses, a 

function in fungal pathogenesis has remained unknown. Here, we demonstrate a strong IFNβ response in 

mouse myeloid dendritic cells (BM-DCs) challenged by Candida spp, subsequently orchestrating an 

IFNAR1-dependent intracellular STAT1 activation and IRF7 expression. Interestingly, the initial IFNβ 

release bypasses the toll-like receptor (TLR) 4 and TLR2, the TLR adaptor TRIF, and the β-

glucan/phagocytic receptors dectin-1 and CD11b. Notably, Candida-induced IFNβ release is strongly 

impaired by Src- and Syk-family kinase inhibitors, but strictly requires dynamin-dependent phagocytosis as 

well as phagosomal acidification. Strikingly, TLR7 and TLR9, as well as MyD88, are essential for IFNβ 

release. Our work uncovers for the first time a pivotal role for endosomal TLR7 signaling in fungal 

pathogen recognition and consequently, draw attention to Candida-derived nucleic acids as pathogen-

associated molecular patterns eliciting the innate host immune response. 

 

Introduction 

 

Invasive Candida infections are life-threatening clinical conditions, primarily affecting immunosuppressed 

patient cohorts, and those with general defects in the immune system .(Pfaller and Diekema, 2007). 

Mortalities associated with disseminated candidemia can exceed 30–40%, despite extensive antifungal 

therapies (Lewis, 2009). The dimorphic Candida albicans (Ca) is most frequent cause of fungal infections. 

Ca can switch between a yeast and a filamentous (hyphae) form upon host or environmental stimuli, 

including temperature, pH, lack of nutrients, interaction with host cells and tissues. The inherently drug-

tolerant yeast-like Candida glabrata (Cg) is the second-most prevalent fungal pathogen humans encounter 

(Lewis, 2009). 

 Initial colonization and subsequent development of disseminated diseases are determined by the 

nature of the interaction of Candida spp with host immune cells and tissues (Gow et al., 2002). The rate of 

clearance by the host immune surveillance versus the fungal fitness and growth in organs and tissues 

determines the outcome such as cure or death. Early recognition of pathogens by immune cells is 

mediated by dedicated pattern recognition receptors (PRRs), including Toll-like receptors (TLRs) and 

lectins expressed at the surface of innate cells, mainly monocytes, macrophages, neutrophils and dendritic 

cells (Netea et al., 2008). PRRs recognize microbe-specific pathogen-associated molecular patterns 

(PAMPs), and trigger a variety of intracellular signaling pathways to orchestrate an efficient and pathogen-

specific host immune response (van de Veerdonk et al., 2008a). 

The sugar polymers (e.g. chitin, β-D-glucans, mannan) and proteins forming the fungal cell surface 

are considered the prime source of fungal PAMPs. Notably, β-D-glucans seem preferential ligands for the 

dectin-1 receptor, which mediates fungal recognition and signaling alone, as well as with the 

phospholipomannan receptor TLR2 as a co-receptor. By contrast, mannose-sensing receptors include the 

mannan R, TLR4, dectin-2, mincle, the SIGNR receptor family, galectin3, while TLR6 may use peptido-
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glycan recognition (reviewed in:(Netea et al., 2008; Willment and Brown, 2008)). Deficiency in certain 

PRRs, including TLR4, TLR2, mincle, dectin-1, (Netea et al., 2002; Taylor et al., 2007; Villamon, 2004; 

Villamon et al., 2004; Wells et al., 2008) or their intracellular signaling adaptors such as MyD88 and CARD9 

(Bellocchio et al., 2004; Gross et al., 2006; Villamon et al., 2004) strongly impairs survival of mice to 

Candida infections, emphasizing the essential role of early pathogen recognition for mounting efficient 

host immune responses. Nevertheless, conflicting reports on individual contributions of certain PRRs 

(Murciano et al., 2006; Netea et al., 2002; Saijo et al., 2007; Taylor et al., 2007) hint the enormous 

underlying complexity, and may stem from strain-dependent genetic factors and most likely complex 

genetic interactions. 

In addition to cell surface PAMPS, nucleic acids from Candida may also stimulate or modulate the 

dynamic host response during infection. Indeed, double-stranded DNA from Candida albicans elicits 

cytokine release in mice (Miyazato et al., 2009; Yordanov et al., 2005) in a TLR9–dependent fashion 

(Miyazato et al., 2009). Single-stranded RNA induces a Th1 response normally associated with protection 

(Bacci et al., 2002), although a lack of TLR9 alone does not impair survival (Bellocchio et al., 2004; 

Miyazato et al., 2009; van de Veerdonk et al., 2008b)  

Binding of fungal PAMPs to PRRs preludes phagocytosis, stimulates the release of reactive oxygen species 

(ROS) (Frohner et al., 2009), and specific cytokines, ultimately triggering the activation of innate effectors 

cells. Among others, dendritic cells (DCs) are instrumental in relaying pathogen information from the 

innate response to the adaptive response through their ability to act as professional antigen-presenting 

cells. PAMP recognition stimulates DCs to produce signal cytokines, including type I-interferons (IFNs-I) 

through the so-called first wave (Stetson and Medzhitov, 2006). Extracellular IFNβ subsequently activates 

its cognate receptor, the IFNα/β receptor (IFNAR) in an autocrine/paracrine fashion, driving the second 

wave, massive release of IFNα/β triggering the subsequent expression of IFN-stimulated genes (reviewed 

in (Stetson and Medzhitov, 2006)) many of which drive maturation of DCs both in vivo and in vitro 

(Fitzgerald-Bocarsly and Feng, 2007).  

Lack of a functional IFNAR receptor increases the susceptibility of mice to a number of viral and 

bacterial pathogens. However, in certain cases, IFNβ can also cause deleterious effects for the host, 

creating a ying-yang situation for the host and the pathogen (Decker et al., 2005). Interestingly, Flt3-

induced DCs release IFNs-I in response to Ca (Bonifazi et al., 2009), and a recent report suggests that IFNs-I 

are implicated in the in vivo response of mice to Cryptococcus neoformans (Biondo et al., 2008). However, 

the molecular mechanisms by which fungal pathogens induce the IFN-I response in DCs has remained ill-

defined. Hence, our work aimed to decipher the molecular basis of the initial IFNβ release by innate 

immune cells.  

Here, we show that bone marrow-derived conventional dendritic cells (BM-DCs) challenged with 

Candida spp release high levels of IFNβ, which subsequently drives a IFNAR1-dependent activation of 

intracellular STAT1 and IRF7 expression. Further, IFNβ release by BM-DCs requires dynamin-dependent 

phagocytosis of fungal cells, the recognition of fungal PAMPs by the endosomal TLR7&9 machinery, 

activation of the TLR-specific MyD88 adaptor, as well as intracellular Src-family/Syk kinase signaling 
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pathways. This is the first demonstration of a role for TLR7 in fungal recognition and cooperation between 

TLR7 &9 in inducing an IFN-I response to Candida spp. Our results also highlight the importance of the 

spatio-temporal order of events in orchestrating the host immune response to Candida spp and show that 

nucleic acids serve as fungal PAMPs at later stages of host invasion. 

 

Results 

 

Candida spp trigger IFNβ release in BM-DCs and induce IFN-type I-specific genes 

Phagocytes of the innate immune system such as macrophages and dendritic cells can release type-I IFNs 

in response to various microbial pathogens (Decker et al., 2005). To investigate the molecular mechanisms 

of IFN-I response elicited by Candida spp, we used an in vitro cell culture model of primary mouse bone 

marrow-derived conventional dendritic cells (BM-DCs) or bone marrow-derived macrophages (BMDMs) 

challenged with Candida spp. Mouse innate immune cells were differentiated from bone-marrow as 

described in the “Material and Methods” section and co-cultured at a multiplicity of infection of one BM-

DC or BMDM per two Candida cells (MOI 1:2). We used either, C. albicans and C. dubliniensis, two 

dimorphic Candida species, or C. glabrata, a species found only in the yeast form. Messenger RNA levels, 

as well as IFNβ protein release, was measured by quantitative real-time PCR or ELISA, respectively. All 

three Candida species strongly stimulated IFNβ mRNA expression in BM-DCs after three hours, whereas 

no induction was observed in unstimulated BM-DCs (Figure 1A). ELISA assays confirmed that the increase 

in IFNβ gene expression correlated with the release of IFNβ by Candida-infected BM-DCs (Figure 1B). 

Notably, both UV-inactivated Ca cells and the yeast, Saccaromyces cerevisiae (Figure S1A), triggered the 

IFNβ release. Interestingly, however, the response was cell-specific and restricted to certain innate 

immune cells, since we failed to detect IFNβ mRNA induction in bone marrow-derived (although they 

responded to LPS) or in peritoneal macrophages, in neutrophils or splenic DCs co-cultured with Cg (Figure 

S1B and C). Remarkably, Cg consistently showed the highest potency in stimulating IFNβ mRNA expression 

and subsequent cytokine release (Figure 1A and B). Hence, we chose Cg cells as the main pathogen 

stimulus in further experiments to investigate the mechanisms of IFN-I response in this study. 

A hallmark of the IFN-I response is its ability to induce the expression of a large number of 

downstream effector genes (i.e. IFN-I stimulated genes). Indeed, IFNβ released during the first wave 

recognizes its own receptor IFNAR (a heterodimer of the IFNAR1 and IFNAR2 subunits), activating the 

intracellular STAT1 and STAT2 transcription factors ultimately triggering expression of typical IFN-I target 

genes such as IRF7.  

Since mouse BM-DCs are known to express the IFNAR receptor, we asked whether the initial IFNβ 

release triggered by Candida spp can induce IFN-I signaling in an autocrine / paracrine fashion by binding 

to, and activation of, the IFNAR receptor. Thus, BM-DCs were differentiated from either wild type (WT) 

bone marrow or from mouse bone marrow lacking the IFNAR1 subunit (IFNAR1-/-). Immune cells were co-

cultured with Candida spp or left unstimulated for 2 hours, after which protein extracts were prepared 

and STAT1 activation was verified by immunodetection using phospho-specific antibodies. In WT BM-DCs 
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co-cultured with Candida, IFNβ release correlated with STAT1 phosphorylation and thus activation (Figure 

1C), as well as activation of IRF7 transcription (Figure 1D). By contrast, when IFNAR1-/- BM-DCs were co-

cultured with Cg, no STAT1 phosphorylation was observed (Figure 1C), and IRF7 transcription was also not 

enhanced (Figure 1D). Notably, STAT1 activation was still detected in BM-DCs lacking the IFNγ receptor 

(IFNγ-/-), which may also trigger STAT1 phosphorylation (Figure S1D). Consistent with the absence of IFNβ 

release in BMDMs co-cultured with Cg, no STAT1 activation was observed under these conditions (Figure 

S1B, right panel). All together, these data demonstrate that the Candida spp trigger a first wave of IFNβ in 

BM-DCs, thereby activating an IFN-I response in an IFNAR1-dependent fashion. 

 

Cg-induced IFNß release is partially dependent on Src/Syk kinase signaling 

The main PRRs involved in Candida recognition belong to the C-type lectin and TLR families (Netea et al., 

2008). C-type lectins, like other ITAM-bearing receptors, signal through intracellular Syk and Src-family 

kinases (Underhill and Goodridge, 2007). We thus reasoned that PP2, an inhibitor of Src-family kinases and 

R406, a highly specific inhibitor of the Syk kinase, may impair the IFNβ response to Candida spp. Indeed, 

pre-treatment of BM-DCs with R406 prior to Cg stimulation, significantly decreased the IFNβ release by 

50% (Figure 2A, left panel). Likewise, PP2 strongly inhibited the Cg-triggered IFNβ release to about 12% of 

the level observed when BM-DCs were pretreated with DMSO vehicle alone; as a control PP3, the inactive 

analog of PP2, had no significant effect (Figure 2A, right panel). Thus, these results unequivocally show 

that both intracellular Src and Syk signaling pathways are required to drive the IFNβ release in response to 

fungal cells. Moreover, the data imply the involvement of ITAM-bearing receptors in this process.  

The C-type lectin dectin-1, a β-1,3 glucan receptor, is known as one of the major receptors for 

Candida spp recognition (Dennehy and Brown, 2007). Surprisingly, however, BM-DCs lacking the dectin-1 

receptor, still released IFNβ upon Cg challenge (Figure 2B left panel). Thus, these results show that dectin-

1 is not involved in mediating the Candida-induced IFNβ release. In addition to dectin-1, CD11b, also 

known as integrin αM, can function as a receptor for β-glucans, since it binds Ca (Forsyth et al., 1998) (van 

Bruggen et al., 2009), is present in the phagosome upon Candida phagocytosis (Heinsbroek et al., 2008), 

and it also activates the Src-family and Syk kinases (Nakayama et al., 2008). Thus, we investigated the 

potential role of CD11b in the IFNβ-response. We challenged CD11b-deficient BM-DCs with Cg but even in 

absence of CD11b, IFNβ-release was observed albeit slightly reduced, suggesting that this β-glucan 

receptor is also not involved in triggering the initial IFNβ-release in BM-DC infected with Cg. Furthermore, 

no significant IFNβ-release was observed when BM-DCs were treated with β-glucan extract from 

Saccaromyces cerevisiae or Curdlan (Figure 2C). However, these cells readily responded to LPS, which was 

used as a positive control for PRR signalling via TLR4. Additional potential PAMPs such as chitin or mannan 

failed to induce detectable IFNβ levels in BM-DCs (data not shown). Thus, our data show that neither 

dectin-1 nor CD11b or other PRRs for known cell wall PAMPs are mediating the initial IFNβ release 

triggered by Candida spp. However, it requires activation of Src-family and Syk kinase signaling pathways.  
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Beside their role as intracellular adaptors for certain PRRs, Src-family and Syk kinases are also 

involved in mediating phagocytic processes. Therefore, we assayed their involvement in phagocytosis 

using a flow-cytometry-based analysis of the percentage of BM-DCs having phagocytosed at least one 

Alexa-480-labelled Cg with or without inhibitor pre-treatment. However, pre-treatment with the Src 

kinase inhibitor PP2 had no significant effect on the phagocytic properties of BM-DCs (data not shown). By 

contrast, only 60% of the BM-DCs pre-treated with the Syk inhibitor R406 contained at least one Cg cell 

when compared to 100% of BM-DCs having engulfed at least one Cg in vehicle (DMSO)-treated BM-DCs 

(Figure 2D). Therefore, these data suggest that Syk kinase activation promotes IFNβ release by 

contributing to the phagocytic process in BM-DCs challenged by fungal pathogens. 

 

The Cg-induced IFNβ release is TLR2 and TLR4-independent 

The second main class of PRRs involved in sensing and recognizing Candida spp is the toll-like receptor 

family. In particular, TLR2 and TLR4 are involved in Candida recognition and reported to be essential for 

survival to Candida infection in mice. Thus, we investigated whether these receptors were involved in the 

IFNβ response to Candida using BM-DCs derived from the bone marrow of wild type (WT) or from mice 

lacking either TLR2 (TLR2-/-) or TLR4 (TLR4-/-) receptors. Surprisingly, when wild type and mutant BM-DCs 

were infected with Cg, the IFNβ release was stimulated to similar or even higher levels (Figure 3A and B 

left panels). Accordingly, a strong STAT1 activation was observed in both wild type and mutant BM-DCs 

(Figure 3B and B right panel), demonstrating that IFN-I response to fungal pathogens must proceed 

independently of the known TLR2 or TLR4 signaling pathways. 

 

The IFNβ release of BM-DCs requires phagocytosis and MyD88 activation 

Toll-like receptors use as signaling adaptors either, MyD88 (e.g. TLR1, 2, 7, 9), or TRIF (in the case of TLR3) 

or both as in the case of TLR4. To further investigate the possible involvement of TLR signaling in the Cg-

induced IFNβ release, we used BM-DCs lacking either one of these signaling adaptors. Markedly, BM-DCs 

lacking MyD88 (MyD88-/-) were completely unable to release IFNβ following Cg challenge (Figure 4A, left 

panel). Accordingly, MyD88-/- BM-DCs co-cultured with Cg also failed to mount the subsequent IFN-I 

response, as evident from a much weaker STAT1 phosphorylation in these cells when compared to wild 

type BM-DCs (Figure 4A right panel). By sharp contrast, a lack of TRIF did not impair the IFNβ release 

following Candida challenge (Figure 4B). These data demonstrate a strict requirement for TLR/MyD88 

signaling in triggering the first wave of IFNβ release in BM-DCs facing fungal invasion hence excluding any 

participation of TLR3. 

In mice, several surface TLRs (TLR1, 2, 4,5, 6) as well as phagosomal TLRs (TLR7, 9) signal through 

the MyD88 adaptor. To further narrow down the list of candidate TLRs recognizing Candida spp to drive 

IFNβ, we used dynasore, a specific small molecule inhibitor of the GTP-binding protein, dynamin. Proper 

constriction of clathrin-coated vesicles during endocytosis and phagocytosis requires dynamin, a process 

which can be efficiently inhibited by dynasore (Macia et al., 2006).Strikingly, dynasore pre-treatment of 

BM-DCs prior to Cg addition completely abolished IFNβ release to the level of unstimulated BM-DCs. No 
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inhibition was observed in BM-DCs pretreated with vehicle (DMSO) only (Figure 4C). The effect of 

dynasore treatment was not caused by loss of cell viability, as verified by life-staining (data not shown), 

and since treated BM-DCs still showed intracellular ERK-phosphorylation upon Cg challenge (Figure S2A). 

Thus, our data demonstrate that IFNβ induction by Cg in BM-DCs requires the completion of dynamin-

dependent phagocytosis, strongly suggesting that the activation of MyD88 demands recognition of PAMPs 

through intracellular TLRs. 

 

The Candida-induced IFNβ release requires phagosome acidification and TLR7 & TLR9 

Endosomal TLRs have to be processed by proteases in the endolysosome to undergo conformational 

changes enabling them to recruit and activate MyD88 upon PAMP recognition inside the endolysosome. 

This proteolytic maturation can be prevented by inhibiting the endosome acidification (Ewald et al., 2008 ; 

Hacker et al., 1998). Thus, we asked whether bafilomycin A1 or the antimalarial drug chloroquine, both 

compounds inhibiting endosome acidification, would also block Candida-induced IFNβ release. Strikingly, 

pre-treatment of BM-DCs with 25μg/ml (50μM) Chloroquine or only 5nM bafilomycin A1 completely 

abrogated the ability of BM-DCs to release IFNβ upon stimulation with Cg (Figure 5A), demonstrating a 

role for endosomal TLRs in mediating the Cg-induced IFNβ release in BM-DCs. The effect of bafilomycin A1 

or chloroquine treatment was not caused by loss of cell viability, as shown by life-staining (data not 

shown). Consistent with this treated BM-DCs still activated intracellular ERK upon Cg challenge (Figure 

S2B).  

In mice, endosomal TLRs signaling through MyD88 requires TLR7, TLR8 and TLR9. To specifically 

block the activation of these receptors, we used the synthetic oligodeoxynucleotides IRS661, an 

antagonists of TLR7, ODN2088, an antagonist of TLR9 or IRS954, which inhibits both TLR7&9. Blocking of 

either TLR7 or TLR9 strongly decreased IFNβ production upon Cg challenge by at least 50% (p≤0.0001), 

and simultaneous blocking of both TLR receptor subtypes completely abolished IFNβ release (p≤0.0001) 

(Figure 5B). The unspecific control oligodeoxynucleotides CTL_IRS and CTL_ODN had no detectable or 

significant effect on IFNβ production (Figure 5B).  

 

Integrated model of type I response triggered by fungal pathogens in conventional BM-DCs 

Based on our collective data presented in this work, we propose the following model for the Candida-

induced IFNβ signaling in conventional BM-DCs (Figure 6). Adhesion and recognition of Candida spp at the 

surface of innate immune cells initiates dynamin-dependent phagocytosis. Maturation and acidification of 

the phagosome enables processing of the TLR7 & TLR9 receptors, which are subsequently activated by 

their PAMP ligands, most likely fungal nucleic acids, to recruit and activate cytoplasmic MyD88, ultimately 

triggering the IFNβ release. Other as yet unknown pathways acting through Syk/Src-family kinase signaling 

may also contribute to the induction of IFN-I response in BM-DCs.. Taken together, the results provide the 

first demonstration of an IFNβ release by conventional BM_DCs in response to phagosomal Candida 

recognition, hence, revealing a thus far unrecognized role for endosomal TLRs in fungal recognition.  
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Discussion 

 

In this report, we show for the first time that Candida species trigger an IFN-I response in mouse 

conventional BM-DCs. We identify TLR7&9 as the essential PRRs activating this response in a MyD88-

dependent fashion from within maturing phagosomes. Because of the phagocytic and microbicidal 

properties, innate immune cells are the first line of defence against many microbial pathogens. In 

addition, they are producers of IFNs-I, a family of cytokines specialised in coordinating the cross-talk 

between the innate and adaptive immune response to microbial or viral infections. Therefore, we studied 

the capabilities of several innate immune cell types, bone marrow-derived neutrophils or macrophages, 

peritoneal macrophages, and splenic or bone marrow-derived conventional dendritic cells (BM-DCs) to 

respond to fungal challenges by producing IFNβ using an in vitro co-culture interaction system. We 

demonstrate that mouse BM-DCs rapidly release IFNβ, while only little IFNα is released in response to 

Candida spp. Notably, others also observed detectable IFNβ induction upon challenge with Ca in flt3-

differentiated DCs and only a weak but significant induction of IFNα gene transcription in BM-DCs 

stimulated with the yeast form of Ca. This discrepancy may be caused by differences in the protocols used 

to prepare the conventional BM-DCs (Bonifazi et al., 2009). Notably, both BMDMs and BM-DCs release 

IFNβ when challenged with another prominent fungal pathogen, Cryptococcus neoformans (Biondo et al., 

2008).  Under our experimental conditions, the IFN-I response to Candida is highly cell-type specific within 

innate immune cells, since peritoneal or bone marrow-derived macrophages (BMDMs) as well as 

neutrophil or splenic DCs challenged by Cg fail to release detectable amounts of IFNβ. Nevertheless, our 

results are consistent with reports about distinct cytokine responses between BMDMs and myeloid 

dendritic cells (Goodridge et al., 2009; Rosas et al., 2008), suggesting that different innate immune cells 

may have distinct repertoires to respond to fungal PAMPs, depending on the differentiation procedure 

used to obtain the cells in vitro, or the host tissue environment in vivo. This may help fine-tuning the anti-

fungal defence and immune surveillance.  

 We show here that IFNβ is also induced by other Candida species such as Cd and Cg. Interestingly, 

Cg, a non-dimorphic yeast-like species, appears as a much better trigger for IFNβ than the pleomorphic 

filamentous species Ca or Cd. Notably, Cg can persist in the host {Jacobsen,  #1754;Roetzer,  #1966}, 

whereas Ca can escape and normally efficiently kills host cells (Fernandez-Arenas et al., 2009; Marcil et al., 

2008). Hence, it is tempting to speculate that the ability of Ca to escape the phagosome and cause host 

cell lysis may explain the weaker induction of IFN-I response versus Cg favoring a strong IFNβ release by its 

persistence in the host. 

 β-glucan preparations stimulate the release by innate immune cells of a number of cytokines 

such as TNFα, IL2 or IL12 (Hernanz-Falcon et al., 2009), and can induce BM-DC maturation in humans 

(Carmona et al., 2006), as well as in mice (Yoshitomi et al., 2005). β-glucan drives BM-DC maturation in 

part through dectin-1, which is considered a major PRR for glucans (Dennehy and Brown, 2007). However, 

we show here that the Cg-induced IFNβ release does not require dectin-1 and CD11b, both acting as β-

glucan receptors accumulating at the site of Candida uptake by macrophage phagocytosis (Heinsbroek et 
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al., 2008). Furthermore, we tend to exclude the involvement of other unknown beta-glucan receptors, 

since none of the β-glucan preparations we used, namely β1-3 and β1-6-glucan extracts obtained from the 

Sc cell wall, and Curdlan, a linear β1-3 glucan polymer, are able to trigger IFNβ release in BM-DCs. 

Likewise, mannan and chitin are also inactive under these conditions. Hence, in contrast to LPS from 

Gram-negative bacterial cell walls, fungal cell wall extracts do not induce IFN release in innate immune 

cells, despite being a rich source of fungal PAMPs for other cytokine responses (Netea et al., 2008). 

However, care has to be taken when performing these experiments, since many commercial and custom-

made cell wall preparations contain minute LPS contaminations, which may lead to conflicting 

interpretations of results. Therefore, all of our cytokine experiments in primary cells were carried out in 

the presence of polymyxin B, which alleviates the LPS contamination problem (Cardoso et al., 2007) 

By specifically inhibiting dynamin, we demonstrate that Cg phagocytosis is a mandatory 

prerequisite for IFNβ release. Similarly, inhibition of Src family kinase also strongly blocks Cg-induced 

IFNβ-release. Notably, phosphorylation of cortactin and dynamin by Src kinase is required for activation of 

endocytosis in epithelial cells (Cao et al., 2010), and both cortactin and dynamin are essential for Ca 

internalisation in epithelial cells (Moreno-Ruiz et al., 2009). Furthermore, Syk kinase activation is at least 

partially necessary for IFNβ production. Although in this context, Syk function on IFNβ release is not 

dectin-1 or CD11b-dependent, it is relevant for mediating Candida phagocytosis. Whether it occurs 

through its role in integrin-mediated signal transduction (Van Ziffle and Lowell, 2009), as signaling adaptor 

of ITAM-bearing receptors or as mediator of phagocytic processes (Tohyama and Yamamura, 2009) will be 

a matter of further experiments. Nonetheless, our data emphasize the pivotal importance of the 

phagocytic process for orchestrating the IFN-I host response to Candida spp. 

 Using BM-DCs lacking the TLR adaptors TRIF or MyD88, we demonstrate that the Cg-induced IFNβ 

release requires MyD88 signaling. Hence, our findings are consistent with the model of a MyD88 pathway 

mediating the cytokine response of inflammatory DCs to yeast (Bonifazi et al., 2009). Our data further 

strengthen the importance of inflammatory DCs in the response against Candida infection as major 

producers of IFNβ. Surprisingly, however, the lack of neither TLR2 nor TLR4 impairs the IFNβ release, 

although these PRRs appear critical for survival to Candida dissemination in mouse models (Netea et al., 

2002; Villamon, 2004; Villamon et al., 2004).  

 Unexpectedly, our results demonstrate that (i) TLR7 or TLR9 alone trigger an initial IFNβ release 

upon Candida recognition by BM-DCs, and (ii) the full IFNβ release is only achieved when stimulating both 

TLR7 and TLR9. Spatial recognition of microbial single-stranded RNA by TLR7 within endosomes was first 

observed for viruses (Fitzgerald-Bocarsly and Feng, 2007; Gilliet et al., 2008). More recently, this 

mechanism was found to apply to bacterial recognition in mice and humans (Eberle et al., 2009; Mancuso 

et al., 2009). However, this is the first report of fungal recognition by TLR7 within the endosomal 

compartments, thus linking spatio-temporal recognition of fungi to stimulation of the host immune 

response. Although a lack of TLR9 decreases survival to Aspergillus fumigatus or Cryptoccocus neoformans 

in mice (Nakamura et al., 2008; Ramirez-Ortiz et al., 2008),   TLR9-/- mice show no significant alterations in 

survival to Ca (Bellocchio et al., 2004; Miyazato et al., 2009; van de Veerdonk et al., 2008b). A potential 
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role of TLR7 in survival to Ca or any fungal microbe has yet to be further explored. Given the redundant 

roles of TLR7 & TLR9 in inducing IFN-type I response in BM-DCs in response to Candida, mice lacking both 

PRRs may be a better suited model to study the role of endosomal TLRs and IFN-I response in the survival 

to Candida infection. Since TLR7 and TLR9 recognise guanosine and uridine–rich single-stranded RNA, and 

unmethylated CpG, respectively, the present report also hints the importance of Candida-derived-nucleic 

acids as potential PAMP sources for host immune cell activation through the IFN-I response. In agreement, 

recognition of Ca DNA by TLR9 triggers release of IL12 in BM-DCs (Miyazato et al., 2009). Interestingly, Ca 

RNA-pulsed BM- and spleen-DCs undergo activation and confer protection against systemic Ca infection in 

mice (Bacci et al., 2002). Whether these properties resulted from activation of an IFN-I response in these 

innate immune cells is unknown. 

 Activation of the IFN-I response is critical for the maturation of DCs into professional antigen-

presenting cells to help shaping magnitude and duration of the adaptive immune response by inducing the 

differentiation of T helper cells (Fitzgerald-Bocarsly and Feng, 2007). Remarkably, IFNs-I can function as 

pro-inflammatory and anti-inflammatory cytokines, but the contribution of each property to the overall 

host response is not well understood (Fitzgerald-Bocarsly and Feng, 2007; Kovarik et al., 2007). In human 

and mice, IFNs-I inhibit the DC-mediated Th17 cell differentiation (Guo et al., 2008; Moschen et al., 2008; 

Shinohara et al., 2008; Zhang et al., 2009). The role of the IL-17 pathway in antifungal defense is rather 

controversial. A lack of Th17 cells results in persistent mucocutaneous candidiasis in humans (Curtis and 

Way, 2009) and impaired survival in mice (Huang et al., 2004; van de Veerdonk et al.). Conversely, other 

studies suggest that IL-17 may contribute to inflammatory pathology and worsening of fungal disease in 

mice (De Luca et al., 2007; Zelante, 2007). Furthermore, by stimulating expression of IL10 and down-

regulation of IL12, IFNs-I appear to also modulate the Th1/Th2 balance toward a reduced inflammation 

and host tissue damage, indicating a protective role (Byrnes et al., 2002; Zhang et al., 2009).  

 In vivo challenges of mice lacking the IFNAR in mouse intraperitoneal inflammation model, suggest 

that IFNs-I can exert a protective role against local, inflammatory Candida infections. Remarkably, IFNs-I 

act as chemoattractants, as they appear to stimulate the recruitment and migration of other immune cells 

to the site of infection (Majer et al., in preparation).. Taken together, our results presented here hint a 

crucial and as yet unrecognized role for endosomal TLRs in fungal recognition and induction of IFN-I 

response in mouse BM-DCs challenged with Candida spp. .Furthermore, our findings stress the importance 

of fungal nucleic acids as a source for microbial PAMPs in BM-DCs dedicated to recognize and respond to 

microbial pathogens. 
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Experimental Procedures 

 

Fungal strains, growth conditions 

Fungal strains used in this study were the Candida albicans clinical isolate SC5314 (Gillum et al., 1984), the 

Candida glabrata clinical isolate ATCC2001 (CBS138) (Espinel-Ingroff et al., 1998) and the Candida 

dubliniensis clinical isolate CD36 (Sullivan et al., 1995). Fungal cells in the logarithmic growth phase were 

collected by centrifugation, washed in sterile PBS and diluted at the required cell number for co-culture 

with innate immune cells. UV-treated Candida suspensions were prepared by treating an aliquot of the 

Candida infection suspension with 999µJ/cm2 in a Stratalinker (Stratagene). 

 

Mouse genetic backgrounds 

All mice were derived from the C57BL/6 background and housed under specific pathogen-free conditions 

according to FELASA guidelines (Nicklas et al., 2002). IFNAR1-/- mice (Muller et al., 1994), TLR2-/- (Takeuchi 

et al., 1999), TLR4-/- (Hoshino et al., 1999), MyD88-/- (Adachi et al., 1998) and TRIF-/- mice (Yamamoto et al., 

2003) were kindly provided by Dr. Shizuo Akira, Osaka University, Japan. Bone marrow from dectin-1-/- 

(Taylor et al., 2007) and corresponding wild type mice were generously supplied by Dr. G. Brown 

University of Aberdeen, UK . CD11b-/- mice were purchased from the Jackson Laboratory. 

 

Cell culture of primary innate immune cells differentiated from bone marrow 

For the preparation of BM-DCs, bone marrow was collected from femurs of 7-9 week old C57BL/6 wild 

type or knock-out mice, and grown in DMEM supplemented with 10% heat-inactivated FCS and15 % GM-

CSF-containing X-conditioned medium (Zal et al., 1994). BM-DCs were used after 7-8 days for co-culture 

with whole Candida or fungal extracts. Cell surface markers of the BM-DCs preparations were assessed by 

flow cytometry using a panel of marker antibodies. BM-DCs were F4/80-, CD11b+, and at least 50–60% of 

the cells were CD11c+.  

 

Co-culture of innate immune cells with fungi or cell wall extracts 

Fungal-mammalian cell co-culture was performed exactly as previously described (Bourgeois et al., 2009). 

Briefly, BM-DCs were plated at a density of 1.0-1.25x105 cells/cm2 and incubated with fungal cells at a 

target to effector ratio of 2:1 at 37°C (5% CO2) for the indicated time periods. Pre-treatment of BM-DCs 

with inhibitor molecules (dynasore, PP2, PP3, R406, bafilomycin A1 or chloroquine) or vehicle, were 

carried out at 37°C (5% CO2) for 30 min prior to stimulation. Inhibitor final concentrations were 80µM for 

dynasore (Sigma), 25µM for PP2 and PP3 (Calbiochem), 4µM for R406 (Rigel Pharmaceuticals Inc.), 5 or 1 

nM for bafilomycin A1 (Sigma), and 50 or 10 µM for chloroquine (Sigma,). Pre-treatment of BM-DCs with 

20µg/ml synthetic oligodeoxynucleotides (IRS661, IRS954, ODN2088) or non-specific oligonucleotide 

controls were carried out at 37°C for 60 min prior to stimulation. ODN2088 and controls were from 

InvivoGen, IRS661, IRS954 and control (CTL_IRS) were synthesized by TIB-Molbiol as previously described 

(Barrat et al., 2005). Stimulation of BM-DCs also used 100µg/ml β-glucans from S. cerevisiae (Calbiochem), 

Appendix

- 123 -



Zymosan from 100µg/ml Curdlan, a high-molecular weight β-1-3 glucan from Alcalagines faecalis (WAKO 

Chemicals) or 0.1µg/ml “TLR-grade” LPS from Salmonella minnesota (Sigma). All treatments with Candida 

or fungal cell wall-derived components were carried out in the presence of 30µg/ml polymyxin B (Sigma) 

to neutralize LPS endotoxin contaminants (Cardoso et al., 2007). 

 

Reverse transcription and real-time PCR analysis 

RNA samples preparation reverse transcription and real-time PCR were performed using the methods 

described in the Supplemental Experimental Procedures using the following primers: Mouse GAPDH: for 

5’-CATGGCCTTCCGTGTTCCTA-3’; and rev 5’-GCGGCACGTCAGATCCA-3’ (RTPrimerDB, 

http://medgen.ugent.be/rtprimerdb 

/index.php); Mouse IFNβ: for 5`TCA GAA TGA GTG GTG GTT GC 3` and rev 5`GAC CTT TCA AAT GCA GTA 

GAT TCA 3` (Stockinger et al., 2004); Mouse IRF7 for 5’-CTG-GAG-CCA-TGG-GTA-TGC-A-3’; and rev 5’-

AAGCACAAGCCGAGACTGCT-3’ as determined using the sequence analysis software Vector NTI 

(Invitrogen).  

For relative quantification purpose, efficiencies of the individual PCR reactions were determined 

by the LinReg method (Ramakers et al., 2003). Results are expressed as the fold-expression (R) of the gene 

of interest (IFNβ) versus the expression of a house-keeping gene (GAPDH) in treated (t) versus untreated 

(ut) conditions. The equation used for normalization was: R= (EIFNβ(ut)
Ct IFNβ(ut) / EGAPDH(ut)

CtGAPDH(ut)) / (EIFNβ(t)
C 

IFNβ(t) / EGAPDH(t)
CtGAPDH(t)), where E is the PCR efficiency and Ct, the number of cycles to the threshold 

fluorescence. 

 

Immunodetection 

Sample preparation and immunoblotting were performed using the methods described in the 

Supplemental Experimental Procedures. Blots were probed with anti-STAT1 antibodies recognizing 

phospho-Tyr201, anti-phospho-ERK antibodies (Cell Signaling), anti-IRF3 and anti-p38 antibodies, (Santa 

Cruz), or anti-C-terminal STAT1 sera (a kind gift from Pavel Kovarik (Kovarik et al., 1998)) An infrared-

labeled secondary antibody (LI-Cor,) was used to detect immune complexes and analysis was performed 

using the infrared imaging system Odyssey (LI-Cor) according to conditions recommend by the 

manufacturer. 

 

Cytokine measurements by ELISA and phagocytosis assays 

The amount of IFNβ released in cell culture supernatants was assayed using the Verikine mouse IFNβ 

ELISA kit (R&D systems) according to manufacturer’s instructions.  

 Phagocytosis assay was performed as previously described (Herre et al., 2004) using the following 

modifications. Briefly, Cg cells prepared as for interactions experiments were labeled with 10mM Alexa488 

C5 maleimide (Invitrogen), in 100mM HEPES buffer, pH 7,5 for 15 min at room temperature in the dark 

under constant shaking. Labeled Cg were washed twice in HEPES buffer and kept at 4°C until use. BM-DCs 

plated at density of 1.0-1.25x105 cells/cm2 one day prior to the assay were treated with inhibitors or 
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vehicle 30 minutes 37°C (5% CO2) prior to the assay and then pre-cooled on ice. After 20 min, Alexa488-

labeled Cg in ice-cold DMEM was added at a target to effector ratio of 2:1, and samples were incubated at 

37°C (5% CO2) for 45 min to allow for phagocytosis to occur.  

Phagocytosis was terminated by chilling plates on ice, where they remained during detaching and 

fixation in 1% formaldehyde. Fluorescence of extracellular Cg was quenched by addition of 0.4% trypan 

blue. Negative controls for phagocytosis were left on ice during the whole process. Duplicate samples 

were subjected to flow cytometry analysis, gating on Alexa488/BM-DCs cell populations with internalized 

Cg. The percentage of phagocytosis was determined as follows: (inhibitor-treated BM-DCs with Cg at 37°C 

minus inhibitor-treated BM-DCs with Cg at 4°C)/(vehicle-treated BM-DCs with Cg at 37°C minus vehicle-

treated BM-DCs with Cg at 4°Cx100. Results are expressed as the mean ± SD of the percentage of ingestion 

(the percentage of BM-DC containing one or more yeast cells). 

 

Statistical analysis - Statistical analysis of data was performed using the Prism graphing and analysis 

software. Comparison of two groups was done with the Student’s t test. P < 0·05 was considered 

significant. 
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Figure Legends 

 

Figure 1. Candida species induce a IFN-I response in mouse conventional BM-DCs 

(A, D) Wild-type BM-DCs or BM-DCs lacking the IFNAR1 subunit of the IFN-I receptor (IFNAR1-/-) were 

infected with the indicated Candida species (Ca, Candida albicans; Cg, Candida glabrata; Cd, Candida 

dublinienesis) or left untreated for the indicated time, after which cell lysates were harvested and RNA or 

protein extracts prepared.  

(A, B) IFNβ expression was measured (A) by real-time PCR after 4h of co-culture or (B) by ELISA after 24h 

of co-culture.  
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(C) Phosphorylated STAT1 was detected by immunoblotting of protein extracts prepared after 2 hours of 

Candida species-BM-DC co-culture (upper panel) and blots were re-probed with polyclonal anti-STAT1 

antibodies to assess equal loading between lanes (lower panel).  

(D) IRF7 gene expression was measured by real-time PCR after 24h of co-culture. Real-time PCR results are 

expressed as fold increase of mRNA expression over untreated BM-DCs. ELISA results are expressed as pg 

IFNβ/ml cell culture supernatant. Data presented are from one experiment representative of at least three 

independent experimental repeats. 

 

Figure 2. Role of Syk/Src kinases and β-glucan receptors  

(A) Wild-type BM-DCs were pre-incubated with either, a Syk kinase inhibitor (R406), an inhibitor of Src-

family kinases (PP2) and an inactive homologue (PP3) or vehicle (DMSO) for 30min at 37°C prior to co-

culture with Cg or media alone for 6 hours. IFNβ release into the cell culture medium was measured by 

ELISA.  

(B) Wild-type BM-DCs (WT) or BM-DCs lacking dectin1 (dectin1-/-) or CD11b (CD11b-/-) were co-cultured for 

6 hours with Cg or left unstimulated, and IFNβ release was measured by ELISA.  

(C) BM-DCs were stimulated with either β-glucan preparations (Sc-β-glucans) or Curdlan in media 

containing polymyxin B (30µg/ml), or with LPS (0.1µg/ml) for 4 hours, or left untreated as control. IFNβ 

release into the cell culture medium was measured by ELISA. ELISA Results are expressed as pg of IFNβ/ml 

supernatant. Data presented are from one experiment representative of three independent experimental 

repeats  

(D) Wild-type BM-DCs were pre-incubated with a Syk kinase inhibitor (R406) or vehicle (DMSO) prior to co-

culture with Alexa480-labelled Cg for 45min at 37°C or 4°C (adherence control). Cells were collected and 

the number of BM-DCs containing at least one Cg was analysed by flow cytometry. Results are expressed 

as percentage of ingestion (the percentage of BM-DC containing one or more yeast cells). Data presented 

are the means ± SD of data from at least two independent experiments (***p ≤ 0,0005 based on unpaired, 

two-tailed t test). 

 

Figure 3. IFNβ release triggered by Cg is TLR2 andTLR4-independent 

(A, B) Wild-type BM-DCs or BM-DCs lacking the TLR2 (TLR2-/-) or TLR4 receptor (TLR4-/-) were co-cultured 

for 4 hours with Cg or left unstimulated, and IFNβ release was measured by ELISA (left panel) or 

phosphorylated STAT1 was detected by immunoblotting of extracts prepared after 2 hours of Cg-BM-DC 

co-culture; blots were re-probed with polyclonal anti-STAT1 antibodies to verify equal loading (right 

panel). ELISA results are expressed as pg of IFNβ/ml cell culture medium. Data presented are from one 

experiment representative of at least two or three independent experimental repeats. 

 

Figure 4. IFNβ release requires phagocytosis and MyD88 activation 

(A) Wild-type BM-DCs or BM-DCs lacking the MyD88 signaling adaptor (MyD88-/-) were co-cultured for 4 

hours with Cg or left unstimulated, and IFNβ release was measured by ELISA (left panel) or 
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phosphorylated STAT1 was detected by immunoblotting of protein extracts prepared after 2 hours of Cg-

BM-DC co-culture and blots were re-probed with polyclonal anti-STAT1 antibodies to assess equal loading 

between lanes (right panel).  

(B) Wild-type BM-DCs or BM-DCs lacking the TRIF signaling adaptor (TRIF-/-) were co-cultured with Cg or 

left unstimulated, and IFNβ release was measured by ELISA after 4 hours.  

(C) Wild-type BM-DCs pre-treated with dynasore or vehicle (DMSO) for 30 min were co-cultured with Cg 

or left untreated; IFNβ production was measured by ELISA after 4 hours. ELISA results are expressed as pg 

of IFNβ/ml cell culture medium. Data presented are from one experiment representative of at least three 

independent experimental repeats. 

 

Figure 5. IFNβ release requires activation of phagosomal TLR7 and TLR9 

(A) BM-DCs pre-treated for 30 min with either bafilomycin A1 (bafiloA1), chloroquine (ChQ) or vehicle 

alone, were co-cultured with Cg for 6 hours or left untreated. IFNβ release was measured by ELISA and 

results expressed as pg of IFNβ/ml cell culture medium. Data presented are from one experiment 

representative of two independent experimental repeats.  

(B) BM-DCs were pre-treated for 60 min with the indicated synthetic inhibitory oligodeoxynucleotides 

(IRS661, ODN2088 or IRS954) or with unspecific oligodeoxynucleotides (CTL_IRS, CTL_ODN) as controls. 

Subsequently, BM-DCs were co-cultured for 6 hours with Cg or left unstimulated; IFNβ release was 

measured by ELISA and results are expressed as pg of IFNβ/ml cell culture medium. Values represent the 

means ± SD of three independent experiments. *** p≤ 0.0001 (unpaired, two-tailed t test). 

 

Figure 6: Model of IFNβ response to Candida spp in mouse conventional BM-DCs 

In BM-DCs, a dynamin-dependent phagocytosis step, a Syk/Src-dependent-signalling, followed by 

endosome acidification, leads to the simultaneous activation of TLR7 and TLR9 by Candida nucleic acids, 

thereby stimulating an MyD88-dependent signaling pathway required for the initial release of IFNβ, and 

the subsequent induction of a IFN-I response to fungal infection. Action of inhibitors (dynasore, R406, PP2, 

bafilomycin A1, chloroquine) used in this study are indicated on their specific targets. 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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SUMMARY 

 

Echinocandin drugs such as caspofungin (CASP), micafungin, and anidulafungin target fungal cell wall 

biogenesis by inhibiting Fks1-mediated β-glucan deposition into the cell wall. In addition to cell wall 

damage, however, CASP triggers several intracellular stress responses. Here, we discover a novel CASP-

induced flocculation phenotype of C. albicans cells. In liquid YPD medium supplemented with CASP, cells 

rapidly flocculate forming large cell aggregates. Interestingly, high concentrations of sugars such as 

mannose or glucose inhibit CASP-induced flocculation and improve survival of C. albicans to CASP killing. 

Hence, increasing external osmolarity stabilizes fungal cells with damaged cell walls, thereby opposing 

CASP-mediated fungicidal activity. Notably, sublethal concentrations of CASP triggered an Efg1-dependent 

expression of the adhesin ALS1, as well as other Efg1-regulated genes. Hence, CASP challenge triggers an 

Efg1-dependent transcriptional response, implying that the multifunctional regulator Efg1, which is 

otherwise involved in filamentation and white – opaque switching, also modulates cell wall homeostasis 

or remodelling upon CASP challenge. Indeed, cells lacking either Efg1 or Als1 show strongly diminished 

CASP-induced flocculation. Furthermore, the lack of Efg1 leads to CASP hypersensitivity. Our data suggest 

that CASP induces parallel activation of the Efg1 and the PKC cell integrity pathway to coordinate cell wall 

remodeling. 

 

INTRODUCTION 

 

Human fungal pathogens have emerged as an important public health problem during the past decades. 

Systemic or disseminated infections in immunocompromised individuals caused by fungi such as Candida, 

Aspergillus, and Cryptococcus spp are often associated with high mortality rates (Pfaller and Diekema, 

2007). The clinical therapy for invasive fungal infections has been using a classical repertoire of antifungal 

drugs, including amphotericin B, fluconazole and itraconazole. However, a number of adverse side effects, 

fungistatic rather than fungicidal activity, and increasing drug resistance led to the development of second 

generation azoles like voriconazole, posaconazole, ravuconazole, but also compounds with a novel action 

mechanism such as the echinocandins (De Pauw, 2000; Denning, 2003). Echinocandins, such as 

caspofungin, micafungin, and anidulafungin are semisynthetic lipopeptides produced via chemical 

modification of fungal secondary metabolites. Caspofungin (CASP), for example, is synthesized from 

pneumocandin B0 from Glarea lozoyensis (Leonard et al., 2007). In contrast to azoles acting on the 

ergosterol biosynthesis pathway, the fungal-specific and fungicidal mode of action of echinocandins is the 

inhibition of the biosynthesis of β-(1,3)-D-glucan, an essential cell wall component unique to all fungi but 

absent in the mammalian host (Douglas et al., 1997; Kurtz and Douglas, 1997).  

Candida spp represent major fungal pathogens affecting humans. In addition to superficial 

mucosal conditions such as thrush and vaginitis, they can cause life-threatening systemic infections 

(Calderone and Fonzi, 2001) with mortality rates exceeding 50% (Pfaller and Diekema, 2007). Thus, 

Candida spp are able to infect a variety of host niches, which in turn impose diverse stresses on fungal 
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cells, including variable pH, temperature changes, oxidative stress or nutrient limitation. Furthermore, C. 

albicans has to cope with the host immune surveillance, as well as antifungal drugs, posing additional 

survival stress. Thus, fungal cells have to adapt constantly to these changing conditions, mainly by 

activating signaling pathways inducing a multitude of adaptive stress responses (Monge et al., 2006). 

The molecular target of echinocandins in C. albicans is the FKS1 subunit of the β-(1,3)-D-glucan 

synthase (Douglas et al., 1997). Resistance to CASP is frequently associated with mutations in the FKS1 

gene (Balashov et al., 2006; Garcia-Effron et al., 2009). Efflux-based mechanism through the Cdr2 ABC 

transporter may also contribute to CASP tolerance, at least in vitro (Schuetzer-Muehlbauer et al., 2003). C. 

albicans cells rapidly respond to CASP treatment, since the cell wall stress triggers signal transduction 

pathways such as the C. albicans cell wall integrity protein kinase C pathway (PKC). Within a few minutes 

following exposure to CASP, phosphorylation of the MAPK Mkc1 occurs (Walker et al., 2008). 

Consequently, homozygous deletion of MKC1 causes CASP-hypersensitivity. Notably, Mkc1, the C. albicans 

orthologue of the S. cerevisiae Slt2 MAPK (Reinoso-Martin et al., 2003), is also phosphorylated in response 

to a variety of other conditions like oxidative stress, osmotic stress, calcium ions and low-temperature 

shocks (Navarro-Garcia et al., 2005). In addition, Mkc1 is activated when cells are grown on a surface. C. 

albicans mkc1∆/mkc1∆ mutants are defective in two contact-dependent responses, invasive hyphal 

growth and biofilm formation, indicating that the PKC signaling plays a role in contact-sensing (Kumamoto, 

2005). Further, CHS gene expression and chitin synthesis is stimulated by CASP. This induction of chitin 

synthesis is regulated by the high osmolarity glycerol (HOG) pathway, as well as the PKC and 

Ca2+/calcineurin signaling pathways. However, the Ca2+ signaling pathway perhaps plays the major role in 

this response. Pretreatment of cells with CaCl2 and calcofluor white elevates chitin levels but reduces 

CASP sensitivity of mkc1∆/mkc1∆ as well as wild type cells (Munro et al., 2007; Walker et al., 2008). 

Notably, calcineurin is a Hsp90 client protein in C. albicans and Hsp90 is mediating echinocandin tolerance 

through calcineurin (Singh et al., 2009). Furthermore, the so-called Psk1-Sko1 pathway may also be 

involved in CASP response (Rauceo et al., 2008). Recently, the zinc finger regulator Cas5, a transcription 

factor involved in the CASP response has been identified, but the upstream regulatory elements remain 

undisclosed (Bruno et al., 2006).  

Here, we investigate a novel flocculation phenotype evoked in CASP-exposed C. albicans cells. 

Interestingly, sugars like mannose or glucose acted as inhibitors of CASP-induced flocculation and high 

concentrations of sugars in the growth medium considerably reduced fungicidal activity of CASP towards 

C. albicans cells. CASP toxicity was also reduced by simultaneous exposure to osmotic stress such as high 

NaCl concentrations. Exposure of C. albicans to sub-inhibitory CASP concentrations resulted in Efg1-

dependent expression of the adhesin gene ALS1, as well as other Efg1 regulated genes. Interestingly, we 

identify Als1 as the major factor required for CASP-induced flocculation. These data show an Efg1-

regulated response to CASP challenge of C. albicans. Our data suggest that CASP-induced cell wall damage 

triggers parallel activation of the Efg1 and Mkc1 signaling pathways to coordinate cell wall remodeling.  
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EXPERIMENTAL PROCEDURES 

 

C. albicans strains, growth conditions & growth inhibition assays 

C. albicans strains used in this study are listed in Table 1. Gene deletions were created by using the 

C.m.LEU2 and C.d.HIS1 marker cassettes as described in (Noble and Johnson, 2005). C-terminal GFP-

tagging of chromosomal RCT1 was performed as described in (Gerami-Nejad et al., 2001) using plasmid 

pGFP-HIS1 as PCR-template. Unless otherwise indicated, strains were grown routinely at 30°C in YPD (1% 

yeast extract, 2% peptone, and 2% glucose) medium. Caspofungin (Merck & Co, Whitehouse Station, NJ, 

USA) and Posaconazole (kindly provided by Dominique Sanglard) were prepared as stock solutions in 

sterile water or DMSO, respectively, and added to the medium at the desired concentrations. Sensitivity 

phenotypes were assayed with cells grown to the exponential growth phase and diluted to an optical 

density at 600nm (OD600nm) of 0.1. Identical volumes of cultures, as well as 1:10, 1:100 and 1:1,000 serial 

dilutions, were spotted onto agar plates containing various drug concentrations. Colony growth was 

inspected and recorded after 48 h incubation at 30°C.  

 

RNA isolation, and Northern analysis 

Total yeast RNA was isolated by the hot phenol method. About 20µg of total RNA were fractionated in a 

1.4 % agarose gel and transferred to nylon membranes (Amersham Biosciences, Little Chalfont, 

Buckinghamshire, England). Northern blots were hybridized with PCR-amplified probes, radiolabeled by 

incorporation of 32P-dCTP and a MegaPrime labeling kit (Amersham). Methylene blue staining was used 

as control for equal RNA loading. The radiolabeled probes were added to the prehybridization solution 

after purification on a NICK column (Amersham). Membranes were washed at 65°C three times in 2x SSC-

1% SDS, and three times in 1x SSC-1% SDS, and then exposed to X-ray films at -70°C for appropriate time 

periods. 

 

DNA microarray experiments 

30 ml cultures of C. albicans strains were grown in YPD to an OD600nm of about 0.5 -1 before treatment 

with 10ng/ml CASP. After a 60min treatment, cells were harvested, washed and immediately shock-

frozen. Total RNA was prepared by hot phenol method followed by LiCl precipitation. RNA concentration 

was measured at 260nm in TE pH 7. Samples of 30µg total RNA were used for cDNA synthesis, using 200U 

of Superscript III reverse transcriptase (Invitrogen, Carlsbad, Calif.) with either Cy3-dCTP or Cy5-dCTP. 

Labeled cDNAs were pooled, and RNA hydrolyzed for 20 minutes in 50 mM NaOH at 65°C. After 

neutralization with acetic acid, cDNAs were purified using the GFX purification Kit (GE Healthcare).  

 Hybridization to whole-genome cDNA microarrays was done after a 45min prehybridisation with 

4x SSC, 0.1 % SDS, 10 mg/ml BSA at 42°C in 40µl 4x SSC, 0.1 % SDS at 65°C overnight.  Microarrays were 

washed 5 min in 2x SSC-0.1% SDS at 42°C, 10 min in 0.1x SSC-0.1% SDS at room temperature, followed by 

a 2-minute wash in 0.1x SSC and 15sec in 0.01xSSC at room temperature. Glass slides were spun dry for 3 

minutes at 500 rpm in a table top centrifuge, scanned on an Axon 4000B scanner (Molecular Devices). 
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Gridding and spot identification were performed using Gene Pix Pro4.1 software (Axon).  The arrays were 

subsequently analysed with the limma Bioconductor/R package (Wettenhall and Smyth, 2004). The 

background was corrected with the norm-exp method and subsequently normalized using the print-tip 

loess and scale methods. To identify differentially expressed genes, a linear model (Smyth, 2004) and 

empirical Bayesian- moderated F-statistics were used with cut-off values of 0.01 for the adjusted p-value 

and either 1,5 or 2-fold expression changes, as well as A-values ≥ 7.  DNA microarrays and protocols were 

obtained from Steffen Rupp, Fraunhofer IGB, Stuttgart. All microarray experiments were carried out with 

three independent RNA preparations. All microarray datasets are fully MIAME-compliant and have been 

submitted to Arrays Express, awaiting accession number. Cluster analysis (Eisen et al., 1998) was 

performed using Cluster3 (http://bonsai.ims.u-tokyo.ac.jp/~mdehoon/software/cluster/software.htm) 

and visualized with TreeView (Saldanha, 2004) (http://jtreeview.sourceforge.net).  

 

Preparation of yeast extracts and immunoblotting 

For immunoblotting cell-free extracts were prepared by the TCA method exactly as previously described 

(Mamnun et al., 2004). Overnight cultures were diluted to OD600nm of 0.2 and grown until an OD600 of 1, 

before CASP addition to the cultures. Aliquots were harvested after the indicated time intervals. Cell 

lysates equivalent to 0.5 OD600nm units were separated in 10% SDS-PAGE gels and transferred to 

nitrocellulose membranes (Protran; Schleicher & Schuell, Dassel, Germany). Phosphorylated Mkc1 was 

detected using an anti-phospho-p44/42 MAPK (Thr202/Tyr204) antibody (Cell Signaling Technologies, 

Beverley, USA) to detect dually phosphorylated, activated Mkc1. To detect Rct1-GFP, we used monoclonal 

anti-GFP antibodies (Roche, Basel Switzerland). Immunoblots were developed with the ECL 

chemiluminescence detection system and conditions recommended by the manufacturer (Amersham). 

 

Microscopy and viability assay 

Fluorescence microscopy was performed using a Zeiss Axioplan 2 fluorescence microscope. Images were 

captured with a Spot Pursuit (Sony) CCD camera using MetaVue (Molecular Devices) and Spotbasic 

software. For viability assays, untreated and CASP-treated cells were stained with FUN1 and Calcofluor 

White using the LIVE/DEAD yeast viability kit (Molecular Probes, Eugene, Oregon, USA) as recommended 

by the manufacturer. Plasma membrane integrity and metabolic function of yeast convert yellow-green–

fluorescent intracellular staining of FUN 1 into red-orange–fluorescent intravacuolar structures; Calcofluor 

White M2R labels cell-wall chitin with blue fluorescence regardless of metabolic state. For quantification 

of live and dead cells, 15 pictures were taken for each condition, and cells were counted according to 

vacuolar (living) or cytoplasmic (dead) staining. To monitor localization of Rct1-GFP, we used an Olympus 

Cell R live imaging station.  

 

 

 

 

Appendix

- 143 -

http://bonsai.ims.u-tokyo.ac.jp/~mdehoon/software/cluster/software.htm
http://jtreeview.sourceforge.net/


 

RESULTS 

 

CASP treatment causes flocculation of C. albicans  

During our experiments with drug-treated cells, we observed a strong flocculation phenotype of C. 

albicans in presence of CASP. Cells grown in liquid YPD or RPMI medium started to flocculate 

approximately 60 min after addition of CASP. In glass tubes, this effect is clearly visible macroscopically 

after 2h treatment with 50ng/ml CASP. Aggregated clumps of cells settled at the bottom of culture tubes 

within a few minutes when shaking was stopped (Figure 1A). This phenotype was evident in commonly 

used C. albicans laboratory strains such as SC5314, CAI4 or SN152, as well as a number of clinical isolates 

(data not shown).  

Cell aggregation might be an active response by C. albicans to cope with cell wall stress or for 

example a consequence of cell death. Induced cell-cell adhesion in fungi usually requires cell-surface 

proteins, so called ‘adhesins’ or ‘flocculins’ that specifically bind amino acid or sugar residues on the 

surface of neighbouring cells. Lectin-like adhesion requires the lectin-like binding of the adhesin to sugar 

residues on the surface of other cells, which can be competitively inhibited by certain sugars (Verstrepen 

and Klis, 2006). To characterize the C. albicans flocculation response to CASP, we increased the sugar 

content of the YPD-medium using different concentrations of mannose, as well as other sugars. After a 3h 

exposure to CASP, we quantified the degree of flocculation by measuring the drop in of the optical density 

within a 15min period. In drug-treated, flocculating cultures, cells rapidly aggregated at the bottom of the 

cuvette with a 40% decrease of the OD600nm. In untreated control cultures, the optical density only 

decreased by about 3% within 15min (Figure 1B). Notably, 2% and 4% mannose only slightly influenced 

flocculation, but cellular aggregation was strongly reduced in cultures supplemented with 8.5% and 17% 

mannose (Figure 1B). A similar effect on flocculation was observed in the presence of high glucose levels 

(data not shown). Hence, high concentrations of sugars significantly inhibited CASP- induced aggregation. 

These data suggest that CASP-induced flocculation is the consequence of increased cell-cell adhesion 

mediated by certain lectin-like adhesins.   

Furthermore, we reasoned that high sugar concentrations may also reduce the antifungal 

potency of CASP. Hence, we investigated cell survival following CASP treatment in the presence and 

absence of high sugar concentrations using FUN1 staining. The metabolic activities of yeast cells convert 

the intracellular yellow-green–fluorescent FUN 1 staining into red-orange–fluorescent, intravacuolar 

signals (Molecular probes Eugene, Oregon, USA). Fluorescence microscopy pictures were taken after a 3h 

drug treatment, and viability was determined according to red vacuolar staining. Dead cells show green to 

yellow cytoplasmatic staining in the overlay microscopy pictures. In normal YPD supplemented with 

100ng/ml CASP, the majority of cells showed yellow-green straining, indicating mainly dead cells. 

However, by contrast, most cells grown in YPD plus 10% mannose retained their metabolic activity at the 

same CASP concentrations indicating a better survival (Figure 1C).  

To quantify survival, we split exponentially growing cultures of wild type C. albicans grown in YPD 

or in YPD supplemented with additional sugar (+10% glucose or mannose) in two halves; one half was 
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treated with CASP for 5h, whereas the second half remained untreated as a control. All cultures were then 

diluted 1:1000 into normal YPD and incubated overnight at 30°C, followed by measuring the optical 

density of overnight cultures. This additional overnight growth step was required because of difficulties to 

obtain reliable cell counts of flocculating cultures. Even though cells cultured in high sugar medium 

reached slightly lower optical densities than the YPD culture in the absence of CASP, they reached a five 

times higher optical density in the presence of CASP (Figure 1D).  

Interestingly, we observed a similar increase in survival to CASP treatment in the presence of high 

salt concentrations. We treated cells with CASP in YPD, YPD +10% glucose as well as YPD+ 0.5 M NaCl for 

16 hours. As shown in Figure 2, a culture simultaneously exposed to osmotic stress and CASP reached a 

similar optical density as a culture exposed to CASP in the presence of high glucose. CASP-treatment in 

YPD alone strongly inhibited growth. To compare the degree of cell aggregation between different 

cultures, we took pictures within a 5 min time-frame without swirling. In the presence of 0.5M NaCl cells 

still aggregated and rapidly settled at the bottom of the culture tube within a few minutes (Figure 2). This 

clearly demonstrates that in contrast to high sugar concentrations, flocculation itself is not inhibited by 

NaCl. Hence, we reason that inhibition of flocculation and increased survival in the presence of glucose 

and CASP are independent events. High external osmolarity stabilizes weakened cell walls, thereby 

increasing survival of C. albicans cells in the presence of CASP. Notably, Hog1 is also involved in the 

response to CASP (Munro et al., 2007; Walker et al., 2008), and we think that osmotic stress induces a 

Hog1-mediated response that might also increase CASP resistance.  

 

Transcriptional response to CASP 

To further investigate the mechanisms underlying CASP-dependent flocculation, we first focused on the C. 

albicans PKC-pathway. From S. cerevisiae, it is known that this pathway is involved in mediating CASP 

tolerance (Reinoso-Martin et al., 2003). Likewise, this pathway is also activated in CASP-treated C. albicans 

cells and its MAPK Mck1 is required for C. albicans CASP tolerance (Walker et al., 2008). Indeed, we 

observed strongly induced Mkc1 activation in the presence of CASP both in normal YPD and in high sugar 

medium (Figure 3A). We then tested the viability and flocculation of the wild type cells compared to a 

homozygous mkc1∆/∆ mutant strain using FUN1 staining. We used CASP at a subinhibitory concentration 

(10ng/ml) and a concentration of 80ng/ml, which strongly impairs growth of the wild type SN152 strain in 

dose-response curves (data not shown). Fluorescence microscopy pictures were taken after a 3h 

treatment (Figure 3B). In wild type cells, as well as in the mkc1∆/∆ mutant, only few small cell aggregates 

were observed at a CASP concentration of 10ng/ml, whereas at concentrations of 80ng/ml large cell 

aggregates consisting of up to several hundred clumped cells were observed. Whereas in the wild type 

situation mainly cells with metabolic activity were detected, a large number of dead cells were found in 

the mkc1∆/∆ cell aggregates. We quantified the live/dead cell ratio in a set of microscopy pictures for 

each condition. In the presence of 10ng/ml, about 90% of mkc1∆/mkc1∆ mutants survived a 3h CASP 

treatment, whereas only about 30% showed metabolic activity at a concentration of 80ng/ml. In contrast, 

still 80% of wild type cells survived CASP treatment with the high drug concentration (Figure 3C). Hence, 
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even though Mkc1 mediates CASP tolerance and is activated in response to the drug, the flocculation 

response appears independent of Mkc1.  

Next, we analyzed the transcriptional response to CASP. While a role for the PKC-pathway in cell-

cell adhesion was not observed, we included the homozygous mkc1 deletion strain (mkc1 ∆/∆) strain in 

our studies to elucidate the impact of the PKC pathway in the general CASP response. Based on 

transcriptional changes upon CASP treatment, we aimed to identify genes involved in drug resistance as 

well as cellular aggregation. We used a concentration of 10ng/ml CASP, which is sufficient to activate the 

PKC pathway, but allows for survival of the majority of cells. Furthermore, at this concentration, we 

observed only a marginal flocculation. Cells trapped in large cell aggregates might show additional stress 

phenotypes that are more related to starvation conditions than to drug treatment itself. Therefore, we 

consider low CASP concentrations at which formation of cell aggregates just starts as suitable for 

microarray experiments to identify genes involved in flocculation and cell wall stress response.  

For microarray experiments, total RNA was isolated from wild type and mkc1∆/∆ mutant cells 

after a 60 min drug treatment. Transcript profiles were determined by hybridization to genome-wide C. 

albicans microarrays. Hybridizations were repeated with dye colour swaps and expression data were 

filtered and averaged. Based upon statistical confidence (p 0.01) and an arbitrary expression change of 

more than 2-fold, we found 246 CASP-responsive genes, out of which 77 were up-regulated and some 169 

down-regulated (Dataset S1). This set partially overlaps with published CASP-responsive genes (Liu et al., 

2005; Bruno et al., 2006). Among CASP-induced genes, we found RTA2, RTA3, ECM331, DDR48, orf19.675 

and orf19.6877 upregulated, while repressed ones included ERG251, ENG1, PGA45, SCW11, CDR4, DAK2 

and OSM1. Among the highest induced genes, we found a number of putative GPI-anchored genes from 

the cell surface (PGA23, PGA31, ECM331, PGA6), as well as putative cell wall genes or genes involved in 

cell wall maintenance (CHS4, PGA6, orf19.765). Another offset of genes is known to be induced during the 

response to azole antifungal drugs (RTA2, orf19.7350, orf19.6877, ENA21, RTA3) (Copping et al., 2005; Liu 

et al., 2005) and other types of stress (RTA2, ENA21).  However, for a large number of CASP-regulated 

genes the function is not known (Table 2).  

The role of Mkc1 in this response was determined by analyzing data sets obtained from wild type 

and the mutant strain for co-regulated genes. A very small set of genes was found differentially regulated 

between wild type and the mutant strain in response to CASP. Selecting for genes more than 1.5-fold 

upregulated upon CASP in wild type but significantly lower expressed in the mutant strain, yielded a list of 

23 genes potentially regulated in a Mkc1-dependent manner (Figure 4A, Table S1). A set of genes was 

found to be exclusively induced in the wild type but not induced or even slightly repressed in the mutant 

strain (e.g. PGA31, orf19.1208, orf19.727, CRH11). Another subset of genes upregulated in the mkc1 

mutant, but to significantly lower levels when compared to the wild type included LEU4, orf19.2125, and 

PGA6. Notably, induction of MKC1 cannot be seen in microarray experiments, since the corresponding 

cDNA was not spotted onto these batch of arrays. However, Northern analysis revealed a significant up-

regulation of MCK1 under conditions used for transcriptional profiling of CASP-responsive genes (Figure 

4B). For instance, CRH11 and PGA31 are two putative GPI-anchored proteins significantly upregulated in 
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wild type cells but not at all in the mkc1 mutant strain. CRH11 encoding a putative transglycosidase 

localizes to the cell wall, and PGA31, which was also classified as cell wall protein (Castillo et al., 2008), is 

strongly upregulated during cell wall regeneration (Castillo et al., 2006). The Mkc1-dependent induction of 

both genes was further confirmed by Northern blotting experiments (Figure 4B). Together with UTR2 and 

CRH12, Crh11 plays a role in cell wall organization and integrity. Indeed, a strain lacking Crh11 shows 

increased susceptibility to Congo Red (Pardini et al., 2006). However, a crh11∆/∆ strain did not show a 

detectable hypersensitivity to CASP when compared to the mutant containing reintroduced CRH11 (data 

not shown). In contrast, pga31∆/∆ cells display CASP-hypersensitivity (Plaine et al., 2008). This sensitivity 

phenotype may relate to a lower chitin content and a thinner cell wall found in this mutant strain, 

indicating an important role for Pga31 in cell wall biosynthesis and cell integrity (Plaine et al., 2008). 

Hence, we propose that increased Pga31 levels are mediating CASP tolerance, while a lack of Pga31 

induction, as obvious in the mkc1 deletion strain, might contribute to the CASP-hypersensitivity due to 

thinner cell wall structures.   

 

Efg1 is required for CASP tolerance and CASP-induced flocculation 

Aggregation of CASP-treated cells suggests overexpression of some adhesin proteins in the cell wall. 

Notably, our gene expression data showed a pronounced induction of ALS1 by CASP (Table 2). Als1 is a cell 

surface protein mediating cell-cell adhesion and was identified as a downstream effector of the EFG1 

regulatory pathway (Fu et al., 2002). These results suggested a role for Als1 in CASP-induced flocculation. 

Indeed, an als1∆/∆ strain showed strongly reduced flocculation in liquid medium (Figure 5A+B), 

confirming that the observed cellular aggregation in the presence of CASP requires ALS1. Northern blot 

experiments confirmed that this induction of ALS1 requires functional Efg1 (Figure 5C), since flocculation 

is almost completely suppressed in cells lacking Efg1 (Figure 5D+E).  

A small set of genes with increased expression in CASP-treated cultures (ALS1, orf19.7350, CZF1, 

PTP3) requires the transcriptional regulator Efg1 (Fu et al., 2002; Harcus et al., 2004; Vinces et al., 2006). 

Notably, Efg1 is a central regulator of many biological processes, including morphogenesis (Stoldt et al., 

1997) or white-opaque switching (Sonneborn et al., 1999; Hnisz et al., 2009). Efg1 also plays a major role 

in the regulation of cell wall genes and in further consequence in cell wall organization of C. albicans (Sohn 

et al., 2003). We therefore tested two independent EFG1 deletion strains in different genetic backgrounds 

for CASP susceptibility, and found that lack of Efg1 leads to pronounced CASP hypersensitivity (Figure 5F). 

Whereas CASP sensitivity can be linked to the function of Efg1 in cell wall gene regulation, and might be 

caused by an altered cell wall composition of the mutant, the lack of flocculation suggests an active role of 

Efg1 in the cellular response to CASP by regulating expression of adhesins.  

 

orf19.7350 is a antifungal drug-induced gene required for CASP tolerance 

Interestingly, we found orf19.7350, an as yet largely uncharacterized ORF, among the highest induced 

genes upon CASP-induced cell wall stress. Indeed, expression of orf19.7350 is reduced in an efg1∆/∆ strain 

(Harcus et al., 2004). We named the protein encoded by orf19.7350 Rct1 for Required for Caspofungin 
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Tolerance (see below). We verified induction of RCT1 in response to CASP by Northern analysis and 

detected reduced upregulation of RCT1 mRNA levels in a CASP-treated efg1∆/∆ strain when compared to 

the wild type (Figure 6A). Furthermore, a Rct1-GFP variant was strongly upregulated by CASP treatment by 

immunoblotting (Figure 6B). Interestingly, the gene is also induced by fluconazole (Copping et al., 2005) 

and we observed a strong upregulation of the RCT1 mRNA upon Posaconazole treatment (Figure 6C).  

To test whether RCT1 is required for drug resistance, we generated a rct1∆/∆ strain and tested 

the growth on CASP to find increased CASP-sensitivity (Figure 6D), which was fully restored to wild type 

susceptibility in the reconstituted rct1∆/∆::RCT1 strain. Thus, RCT1 is induced by CASP treatment and 

necessary for mediating CASP tolerance.  

To investigate the subcellular localization of Rct1, we again used the strain expressing a GFP-

tagged Rct1-GFP variant. For fluorescence experiments, cells were grown in YPD and either treated with 

10ng/ml CASP for 2 h or left untreated. Due to lower expression levels of the GFP-fusion protein in 

unstressed cells, brightness and contrast of the GFP-picture had to be increased when compared to the 

picture of stressed cells. Under both growth conditions, the signal of Rct1-GFP was found mainly 

cytoplasmic. However, staining was also visible in the nucleus in spots that co-localised with nuclear DAPI 

staining (Figure 6E). Since nuclear staining was increased in CASP-treated cells, we reasoned that Rct1 may 

undergo nuclear-cytoplasmic distribution or shuttling upon CASP stress. However, the molecular function 

of the RCT1 gene product has remained unknown, and no significant homologies or conserved domains 

have been identified in the databases.  

Taken together, our data show that Efg1 is a major regulator of cell wall biogenesis following 

CASP-induced cell wall remodeling. Moreover, our data indicate that Efg1 regulates important target 

genes which contribute to the survival of C. albicans cells experiencing cell wall damage and thus have an 

important function for survival of CASP treated cells. 

 

DISCUSSION 

 

CASP treatment affects the fungal cell wall by interfering with cell wall biosynthesis, thereby activating 

several mechanisms of cellular stress responses. This is consistent with the fact that cell wall biogenesis 

and maintenance in C. albicans is regulated by a complex network of signaling cascades and downstream 

effector molecules. Our findings provide novel insights into the mechanisms that contribute to CASP-

induced stress response. Here, we show that (i) Mkc1 is required for the up-regulation of cell-wall genes in 

the presence of CASP, (ii) CASP triggers an Efg1-dependent response mediating increased flocculation and 

cell-cell adhesion, (iii) Efg1 is required for CASP tolerance, and (iv) high osmolarity reduces the antifungal 

potency of CASP. Based on our data, we propose the following model for C. albicans response to cell wall 

damage (Figure 7). CASP induces several parallel signaling pathways such as the HOG-and PKC pathway as 

well as calcineurin-mediated signaling, to ensure proper repair of cell wall damage. The signaling 

mechanisms upstream of Efg1 may be involved in cross-talk but also utilize Efg1 as downstream effector 

of cell wall remodeling.  
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CASP induces the Mkc1-dependent upregulation of cell wall remodelling genes 

In several pilot microarray experiments, we readily observed an immediate response to CASP at the 

transcriptional level. A core set of genes consisting of RTA2, RTA3, ORF19.7350, ORF19.7296 was found 

immediately upregulated 10min after exposure to 10ng/ml CASP (data not shown), indicating very rapid 

sensing and signaling mechanisms activated by CASP exposure. Indeed, the MAPK Mkc1 is rapidly 

phosphorylated in the presence of CASP (Walker et al., 2008). This activation and the requirement for a 

functional PKC-pathway to survive in the presence of CASP indicate a significant contribution of the PKC-

pathway to the CASP stress response. Interestingly, C. albicans rapidly elevates the cell wall chitin content 

upon CASP, which protects cells from extensive surface damage due to persistent inhibition of (1,3)-

glucan synthesis. The PKC-, the HOG- as well as the calcineurin pathways contribute to this adaptive 

response (Walker et al., 2008). Notably, a lack of Mkc1 reduces the cell wall chitin (Munro et al., 2007). 

Likewise, strains lacking the putative GPI-anchored protein Pga31 have lower chitin content and thinner 

cell walls, indicating that the CASP hypersensitivity of this mutant results from altered cell wall 

composition (Plaine et al., 2008).  

Here, we identify PGA31 as a downstream target gene of the PKC pathway, which is strongly 

induced in the presence of CASP. Deletion of MKC1 leads to both reduced basal mRNA levels and lack of 

PGA31 upregulation (Figure 4B). Taken together, this indicates that reduced Pga31 levels in a mkc1∆/∆ 

strain contribute to its CASP hypersensitivity. Furthermore, with CRH11, we identified another Mkc1-

dependent gene involved in cell wall integrity (Figure 4B). Even though deletion of the putative 

transglycosidase gene CRH11 alone has no direct effect on CASP tolerance in growth inhibition tests (data 

not shown), Crh11 might well contribute to CASP tolerance in synergy with other cell wall related factors. 

CRH11 is also a major target of the Sko1 transcription factor in response to CASP (Rauceo et al., 2008). We 

verified Mkc1-dependent upregulation of CRH11 in a second independent mkc1∆/∆ background strain 

(Diez-Orejas et al., 1997) (data not shown). By contrast, we observed only a very moderate induction of 

Sko1 in the presence of subinhibitory concentrations of CASP (1,5-fold) perhaps because we used 

significantly lower, sublethal CASP concentrations. Likewise, Cas5 regulates CRH11 expression in response 

to high CASP concentrations (Bruno et al., 2006). Hence, CRH11 might be co-regulated by several response 

pathways. Alternatively, activation of different regulators follows distinct drug concentrations. Major 

components and molecules of the newly identified Psk1-Sko1 signaling pathway remain unknown and the 

upstream factors regulating Cas5 have not been identified so far. Therefore, it is tempting to speculate 

about an involvement of the PKC pathway in the Sko1 response or Cas5 activation, which will be 

addressed in further studies. 

 

Flocculation is an Efg1-dependent response to cell wall stress in C. albicans 

Treatment of C. albicans with CASP results in rapid cell-clumping. In liquid YPD medium supplemented 

with CASP, cells flocculate and large cell aggregates can be observed under the microscope (Figure 

1A+3B). A similar cell aggregation occurs in the presence of Calcofluor White (data not shown), while 
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others observed clumping of C. albicans cells in the presence of micafungin (Singh et al., 2009). This 

indicates that cell wall stress changes the cell surface hydrophobicity and adhesion properties in a way 

that cell-cell adhesion is strongly favored. Our data demonstrate that clumping occurs already in living 

cells and must therefore be an active response rather than a consequence of cell death.  

Our data show that the major adhesin responsible for CASP-induced flocculation and clumping is 

ALS1, since mRNA levels are strongly upregulated after addition of CASP. As predicted, deletion of Als1 

results in strongly diminished flocculation (Figure 5A, B, C). Furthermore, our studies implicate a novel role 

for Efg1 as downstream regulator of the CASP response, since upregulation of ALS1 requires functional 

Efg1 (Figure 5C). This is consistent with previous data that identified Efg1 as regulator of ALS1 expression 

under filamentation-inducing conditions (Fu et al., 2002), as well as in the presence of rapamycin (Bastidas 

et al., 2009).  

In addition, strains lacking Efg1 exhibit CASP hypersensitivity (Figure 5F). EFG1 is known to play an 

important role in regulating several cell wall genes during morphogenesis. However, already in the C. 

albicans yeast form, lower transcriptional levels of several cell wall genes are observed in an efg1∆/∆ 

strain (Sohn et al., 2003).  Hence, this major role of Efg1 in regulating cell wall genes and the upregulation 

of Efg1-targets in the presence of CASP clearly implicates Efg1 as important regulator of the CASP signaling 

network, involved in CASP resistance and cell-cell adhesion. 

Among Efg1 target genes which are upregulated in response to CASP ORF19.7350/RCT1 

represents the most highly induced gene. This gene has remained largely uncharacterized to date, but 

appears upregulated at the mRNA level and/or protein level (Copping et al., 2005; Kusch et al., 2007; Yin 

et al., 2009) by several stress conditions, implying a general involvement of Rct1 in the environmental 

stress response in a broad sense. However, despite a pronounced CASP sensitivity, cells lacking Rct1 do 

not display any other stress hypersensitivity phenotypes (data not shown). YNL208W, the closest 

homologue of Rct1 in baker’s yeast is upregulated in response to Zymolyase treatment, a drug which also 

introduces severe cell wall damage (Garcia et al., 2009). However, a function for YNL208W has not been 

described. In summary, Candida albicans Rct1 is required for CASP tolerance and its expression is strongly 

upregulated by CASP, implicating a rather specific role for Rct1 in the echinocandin response of C. 

albicans.  A potentially changing subcellular localization from the cytoplasm to the nucleus might imply a 

regulatory function of Rct1, but further studies are on the way to answer this question. 

 

High external osmolarity increases C. albicans survival in the presence of CASP 

Experiments in S. cerevisiae showed that flocculation mediated by the FLO1 adhesin is a major mechanism 

protecting cells from environmental stress conditions (Smukalla et al., 2008).  Whether cell wall stress-

induced flocculation is a protective response in C. albicans is not clear yet and requires further studies to 

obtain an answer. With our experimental set up, we fail to observe a direct link between flocculation and 

increased survival within the first hours of drug treatment. We rather hypothesize that flocculation is a 

consequence of dynamic changes in the cell wall composition to compensate defects in cell wall 
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biosynthesis as caused by echinocandins. However, the effect of long-time CASP exposure on cells within 

cell aggregates has not been investigated so far but will be subject of further studies. 

 Even though C. albicans ALS gene products  were previously considered as sugar-independent 

adhesins (Klotz et al., 2004), we observe that addition of sugars strongly inhibit flocculation (Figures 

1B+2). Initially, we thought if aggregation would protect cells located in the center of large cell aggregates, 

presence of high sugar would reduce survival of CASP-treated cells rather than the opposite. However, we 

observe that high concentrations of sugars such as mannose or glucose greatly improve survival of C. 

albicans cells to CASP killing (Figure 1C+D) and thus reduce CASP potency. Hence, our analysis has 

uncovered a protective function of high sugar concentrations in response to CASP. This is also true for 

cultures supplemented with NaCl, pointing to a role for osmolarity signaling in diminishing CASP killing 

(Figure 2). Furthermore, increased external osmolarity reduces the CASP hypersensitivity of efg1 mutant 

strains (data not shown). Hence, high external osmolarity stabilizes damaged cell walls, thereby opposing 

CASP activity. Furthermore, a Hog1-mediated response, as transiently activated in cells pre-treated with 

high osmolarity, might lead to cross-protection against cell wall stress.   

In summary, our results link Efg1, which is otherwise involved in filamentation, white – opaque 

switching as well as other cellular processes, to several genetic networks responding to CASP treatment 

(Munro et al., 2007; Xu et al., 2007; Rauceo et al., 2008). Furthermore, we identify novel genes activated 

by the PKC pathway in response to CASP stress, thereby further completing the picture of the important 

role of the cell wall integrity pathway in the response to CASP-induced cell wall damage. Therefore, our 

results are consistent with a model that involves activation of parallel signaling pathways to respond to 

CASP-induced cell wall stress (Figure 7). Moreover, it will be very interesting to test to what extent, if at 

all, the cAMP/PKA or TOR signaling pathways contribute to the CASP response, since both signaling 

pathways also use Efg1 as downstream transducer and effector (Bockmuhl and Ernst, 2001; Harcus et al., 

2004; Bastidas et al., 2009) Likewise, the sodium chloride suppression of CASP-activity implies a role for 

the HOG pathway, which is consistent with CASP-mediated HOG activation (Kelly et al., 2009) Such an 

cross-talk of signaling pathways would not come as a surprise, since a tight regulation of cell wall 

homeostasis under normal growth conditions, as well as stress such as surface damage is essential for 

viability and cellular growth control. 
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FIGURE LEGENDS 

Figure 1. C. albicans flocculation in response to CASP 

A. C. albicans wild type strain (SC5314) growing in the exponential growth phase at 30°C in YPD or RPMI 

1640 was treated with 50ng/ml CASP for two hours or left untreated. Cultures were photographed 2 min 

after vortex-mixing of the culture tubes. 

B. High sugar inhibits CASP-induced flocculation. Wild type cells were grown to exponential growth phase 

in YPD or YPD supplemented with indicated concentrations of mannose. CASP was added at a final 

concentration of 100ng/ml. After a 3h CASP treatment the optical density of the cultures was measured 

directly after vortex-mixing. Some 15min later, the same tubes were measured again without mixing. All 

treatments and measurements were done in triplicates and standard deviations are shown as error bars. 

C. High sugar concentrations increase viability in the presence of CASP. Wild type cells were grown to 

exponential growth phase in YPD or YPD+ 10% mannose, respectively before treatment with 100ng/ml 

CASP. After 3h, cells were strained with FUN1 and Calcofluor White (CFW) and microscopy pictures taken.  

D. Cells were grown to an OD600nm of about 1 in YPD, YPD+10% glucose or YPD +10% mannose. The 

cultures were split in two halves and one half was treated with CASP for 5h, whereas the other half 

remained as untreated control. All cultures where then diluted 1:1000 in normal YPD and incubated 

overnight. We determined the optical density of the overnight cultures. The experiment was performed in 

triplicates and the average OD600nm for each condition is given in the graph with standard deviations as 

error bars. 

 

Figure 2.  High salt concentration improves survival  

C. albicans wild type strain was grown to the early exponential growth phase at 30°C in YPD. Cells were 

then diluted to an OD600nm of 0.1 in YPD, YPD+10% glucose or YPD +0.5M NaCl and incubated for 2h at 

30°C.  After adding 100ng/ml CASP, cultures were incubated at 30°C for another 16h with shaking. 

Pictures of each culture were taken over a time period of 5min.  

 

Figure 3. Survival and flocculation of mkc1/ mutant cells  

A. Wild type cells were grown to an OD600nm of about 1 in either YPD, YPD supplemented with additional 

10% glucose or YPD plus 10% mannose before CASP [10ng/ml] was added. Samples were taken at 

indicated time points. Cell extracts were separated in a 10% SDS-PAGE gel. Immunoblotting was carried 

out using phospho-specific p44/42 antibodies to visualize activated Mkc1. Polyclonal antibodies 

recognizing Pgk1 were used to detect the loading control.  

B. Wild type CA-IF100 and the corresponding mkc1∆/∆ strain were grown to an OD600nm of 1, before 

exposing to CASP at concentrations of 10ng/ml and 80ng/ml, respectively. After 3h, cells were strained 

with FUN1 and Calcofluor White (CFW), and inspected by microscopy. 

C. For each condition from Figure 3B, living and dead cells were counted from 15 microscopy pictures. 

Average percentages of living cells versus to total number of cells are given for each condition.  
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Figure 4. Mkc1-dependent response to CASP 

A. Wild type and mkc1∆/∆ cells were grown to the exponential growth phase before treatment with 

10ng/ml CASP for 1h and microarray experiments of treated versus untreated cells were performed. 

Expression data of genes upregulated in wild type but not or less in the mkc1 mutant were clustered.  

B. Northern analysis of Mkc1-dependent genes. Wild type and mkc1∆/∆ cells were grown to the 

exponential growth phase before treatment with 10ng/ml CASP for 1h. Total RNA was isolated and mRNA 

levels of MKC1, CHR11, PGA31 and the control ACT1 were analyzed by Northern blotting. 

 

Figure 5. ALS1 is required for flocculation 

A. The Wild type, als1∆/∆ and the ALS1 re-constituted strains were grown to the exponential growth 

phase at 30°C in glass tubes before 80ng/ml CASP was added for two hours. Cultures were photographed 

2 min after vortex-mixing.  

B. To quantify flocculation, the optical density of the cultures was measured directly after vortex-mixing. 

The same tubes were measured again without prior mixing 5min, 10min, 15min and 20min after the first 

measurement. Treatments and measurements were done in triplicates and standard deviations are 

included as error bars.  

C. Northern analysis of ALS1 expression. Wild type and efg1∆/∆ strains were grown to the exponential 

growth phase followed by treatment with 10ng/ml CASP. Samples were taken at indicated time points. 

Total RNA was isolated and mRNA levels of ALS1 were detected by Northern blotting. CHR11 served as 

control for an Efg1-independent CASP-responsive gene and ACT1 as a loading control.  

D. Efg1 is required for CASP tolerance and flocculation. Wild type and efg1∆/∆ cells growing in the 

exponential growth phase at 30°C in glass tubes were treated with 80ng/ml CASP for two hours. Cultures 

were photographed 2 min after vortex-mixing.  

E. To quantify flocculation, the OD600nm of cultures was measured directly after mixing.  The same tubes 

were measured again without prior mixing 5min, 10min, 15min and 20min after the first measurement. 

Treatments and measurements were done in triplicates and standard deviations are indicated as error 

bars.  

F. Identical volumes of ten-fold serial dilutions of exponentially growing cells of wild type and cells lacking 

Efg1 in two C. albicans background strains (SC5314, SN152) were spotted onto YPD plates containing 

250ng/ml CASP and incubated at 30°C. Colony growth was inspected after 48 h incubation time. 

 

Figure 6. orf19.7350/RCT1 is required for CASP tolerance 

A. Northern analysis of the orf19.7350 / RCT1 transcript in wild type and efg1 mutant strains. 

Exponentially growing wild type cells and cells lacking Efg1 were treated with 10ng/ml CASP. Samples 

were taken at indicated time points. Total RNA was isolated and mRNA levels of RCT1 detected by 

Northern blotting. ACT1 served as loading control.  

B.  Strain CA-CG06 (RCT1-GFP) was grown to an OD600nm of 1 before adding 10ng/ml CASP. Samples were 

taken at indicated time points. Cell extracts equivalent to 0.5 OD600nm per lane were separated through a 
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10% SDS-PAGE gel. Immunoblotting was carried out using monoclonal anti-GFP antibodies and polyclonal 

antibodies detecting Pgk1 as loading control.  

C. Exponentially growing wild type cells were treated with 50µg/ml Posaconazole or left untreated. 

Samples were taken at indicated time points. Total RNA was isolated and mRNA levels of RCT1 and RTA2 

were visualized by Northern blotting. ACT1 served as loading control.  

D. Identical volumes of ten-fold serial dilutions of exponentially growing rct1/ cells were spotted along 

with the corresponding wild type strains and the restored rct1/::RCT1 strain onto YPD plates containing 

the indicated CASP concentrations. Colony growth was inspected after 48h incubation at 30°C.  

E. Strain CA-CG06 (RCT1-GFP) was grown to the exponential growth phase, followed by adding 10ng/ml 

CASP to one half of the culture. The other half remained as untreated control. DAPI was added to both 

cultures to stain DNA. After a 2h treatment, pictures of live cells were taken on an Olympus microscope. 

Since GFP- fusion protein levels are lower in unstressed cells brightness of this GFP picture was enhanced 

when compared to the picture of CASP-treated cells. 

 

Figure 7. Model for a CASP-activated signaling response in C. albicans 

CASP–induced cell wall damage activates Hog1-, calcineurin-, Mkc1-, and Efg1- dependent signaling 

pathways, each driving expression of a distinct subset of genes implicated in cell wall remodelling and 

repair. Cell wall genes are upregulated to compensate for impaired β-glucan deposition into the cell wall 

and cell-cell adhesion is induced. The partial overlap of target genes ensures sustained response under 

many adverse conditions affecting cell wall integrity or function. 
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Table 1: Fungal strains used in this study 

 

Strains Short Names Genotypes Reference 

SC5314   (Gillum et al., 1984) 

SN152  arg4∆/arg4∆, leu2∆/leu2∆, his1∆/his1∆, 

URA3/ura3∆ 

(Noble and Johnson, 

2005) 

CA-IF100  arg4∆/arg4∆, leu2∆/leu2∆::cmLEU2, 

his1∆/his1∆::cdHIS1, URA3/ura3∆, 

(Frohner et al., 2009) 

CAI4  ura3∆::imm434/ura3∆::imm43 (Fonzi and Irwin, 

1993) 

HLC67 efg1∆/∆ CAI4, efg1∆::hisG/efg1∆::hisG (Lo et al., 1997) 

DHCA216 efg1∆/∆ SC5314, efg1∆::FRT/efg1∆::FRT (Hnisz et al., 2009) 

CAYC2 als1∆/∆ CAI4, als1∆::hisG/als1∆::hisG-URA3-hisG (Fu et al., 2002) 

CAYFR3 als1∆/∆::ALS1 CAI4, als1∆::hisG/als1∆::hisG-URA3-hisG(ALS1) (Fu et al., 2002) 

CA-CG02 mkc1∆/∆ SN152, mkc1∆::cmLEU2/mkc1∆::CdHIS1 This study 

CA-CG03 orf19.7350∆/+ SN152, orf19.7350 ::cmLEU2/ORF19.7350 This study 

CA-CG04 orf19.7350∆/∆ SN152, 

orf19.7350∆::cmLEU2/orf19.7350∆::CdHIS1 

This study 

CA-CG05 orf19.7350∆/∆::

ORF19.7350 

SN152, 

orf19.7350∆::cmLEU2/orf19.7350∆::CdHIS1:: 

ORF19.7350-FRT 

This study 

CA-CG06  SN152, ORF19.7350-GFP::CdHIS1 This study 
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ABSTRACT 

 

Candida albicans like other pleiomorphic fungal pathogens is able to undergo a reversible transition 

between single yeast-like cells and multicellular filaments. This morphogenetic process has long been 

considered as a key fungal virulence factor. Here, we identify the evolutionarily conserved Set3/Hos2 

histone deacetylase complex (Set3C) as a crucial repressor of the yeast-to-filament transition. Cells lacking 

core components of the Set3C are able to maintain all developmental phases, but are hypersusceptible to 

filamentation-inducing signals, because of a hyperactive cAMP/Protein Kinase A signaling pathway. 

Strikingly, Set3C-mediated control of filamentation is required for virulence in vivo, since set3Δ/Δ cells 

display strongly attenuated virulence in a mouse model of systemic infection. Importantly, the inhibition 

of histone deacetylase activity by trichostatin A exclusively phenocopies the absence of a functional Set3C, 

but not of any other histone deacetylase gene. Hence, our work supports a paradigm for manipulating 

morphogenesis in C. albicans through alternative antifungal therapeutic strategies. 

 

AUTHOR SUMMARY 

 

Candida albicans is the most prevalent human fungal pathogen causing disease in immunocompromised 

individuals. One key virulence factor, shared by many other microbial pathogens, is its ability to undergo 

morphogenetic transitions between unicellular and filamentous forms, which interact differentially with 

the host immune system.  Morphogenesis in C. albicans is controlled by several signaling pathways, of 

which the Protein Kinase A (PKA) nutrient sensing pathway is of pivotal importance. Here, we identify a 

role for a conserved histone deacetylase complex (Set3C) as a key negative regulator of PKA signaling, 

controlling both morphogenesis and virulence. The genetic removal of the Set3C histone deacetylase 

complex causes cells to hyperfilament both in vitro and in vivo, and triggers the activation of PKA signaling. 

Moreover, cells lacking Set3 show strongly attenuated virulence in a mouse infection model. These results 

provide novel insights about the interplay of chromatin modification and signaling pathways, as 

exemplified by the control of morphogenesis of pleiomorphic fungi. Furthermore, our work establishes 

histone deacetylases as potential novel targets for antifungal drug discovery to improve therapeutic 

approaches combating life-threatening fungal infections. 
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INTRODUCTION 

 

The human fungal pathogen Candida albicans is a harmless commensal of the mucosal surfaces and 

gastrointestinal tract of most healthy individuals. However, it can cause severe superficial and 

disseminated infections, particularly when the immune system of the human host is compromised [1]. A 

major virulence trait of C. albicans is the ability to switch between several distinct morphologies, including 

the unicellular yeast-like and the filamentous pseudohyphal and hyphal forms. Since several other fungal 

pathogens are also dimorphic or even pleiomorphic, including Blastomyces dermatitidis or Coccidioides 

immiti, morphogenesis has been considered a key component of fungal virulence and host invasion [2,3]. 

The switch from the yeast to filamentous forms in C. albicans is triggered by a broad range of 

environmental or host stimuli, including serum, an elevated growth temperature to 37oC in vitro, and 

more specific inducers such as N-acetylglucosamine or estradiol [4,5]. The control of this morphological 

transition involves several signaling pathways and transcription factors [6,7]. The most prominent positive 

regulators are a mitogen-activated protein (MAP) kinase pathway and its downstream transcription factor 

Cph1 [8], as well as the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) pathway and its 

downstream target transcription factor Efg1 [9,10]. In addition, filamentation is also under negative 

control by the transcriptional repressor Tup1 [11]. Tup1-mediated repression requires an interaction 

between Tup1 with sequence-specific DNA-binding factors such as Nrg1 and Rfg1 [12,13,14]. 

In addition to the yeast-filament transition, diploid C. albicans cells homozygous for the Mating Type 

Locus (MTL) can also reversibly switch between two distinct cell types termed white and opaque. White 

cells have a round, yeast-like shape and form dome-shaped colonies on solid agar, while opaque cells 

display an elongated morphology and form flattened colonies [15]. Furthermore, white cells are unable to 

mate, whereas opaque cells are mating-competent [16]. Switching between the two phases is believed to 

enable C. albicans to better adapt to various host niches. For example, white cells are more virulent in a 

murine systemic infection model, whereas opaque cells colonize the skin more efficiently than white cells 

[17,18]. 

White-opaque switching is reversible and regulated by several transcription factors. The C. albicans 

diploid genome harbors the Mating Type Locus (MTL) with two alleles known as a and α [19]. The master 

regulator of switching is WOR1, which in MTL heterozygous cells is stably repressed by a heterodimeric 

a/α repressor [16,20,21]. MTL homozygous white cells are devoid of detectable Wor1 expression. By 

contrast, opaque cells maintain high Wor1 levels for many generations due to multiple positive feed-back 

loops [22]. Interestingly, EFG1 is a key negative regulator of WOR1, since MTL homozygous efg1Δ/Δ cells 

exist predominantly in the opaque phase [23,24]. 

Recently, we have shown that several histone-modifier enzymes, including the evolutionarily 

conserved Set3/Hos2 histone deacetylase complex (SetC) also modulate the white-opaque transition [25]. 

The related Set3 and Hos2 proteins in Saccharomyces cerevisiae are parts of a similar multiprotein 

complex (Set3C) that possesses histone deacetylase activity, with multiple functions, including meiosis-
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specific repression of sporulation [26], promotion of Ty1 retrotransposons integration at tRNA genes [27], 

as well as signaling secretory stress through the PKC cell integrity pathway [28]. 

In this study, we discover a unique and novel composite phenotype caused by the deletions of key 

subunits of the Set3/Hos2 complex in C. albicans. On solid media, set3Δ/Δ and hos2Δ/Δ mutants display a 

hyperfilamenous phenotype at elevated temperatures, and specifically in the opaque phase. Surprisingly, 

in the filamentous forms of set3Δ/Δ and hos2Δ/Δ cells, Efg1-dependent target genes are induced as a 

result of an activated cAMP/PKA pathway. Our results establish the Set3C as a PKA-antagonist that fine-

tunes the threshold of the yeast-filament conversion. We also show that set3Δ/Δ cells display strongly 

attenuated virulence in a murine model of systemic infection, which is associated with hyperfilamentation 

in vivo. Strikingly, we demonstrate that inhibition of histone deacetylation by trichostatin A exclusively 

phenocopies the lack of Set3C but not of any other histone deacetylase in Candida albicans. Hence, these 

data suggest a novel approach for developing antifungal drugs by manipulating the morphogenetic ability 

of Candida albicans through inhibition of chromatin modification. 

 

RESULTS 

 

MTL homozygous set3Δ/Δ mutants filament specifically in the opaque phase 

The Set3 histone deacetylase complex (Set3C) of Saccharomyces cerevisiae comprises of four core (Set3, 

Hos2, Snt1, Sif2) and three peripheral subunits (Hos4, Hst1, Cpr1), of which Hos2 and Hst1 display catalytic 

activities. Disruption of any of the core subunit genes prevents complex assembly, whereas the disruption 

of peripheral subunit genes has no such effect [26]. Reciprocal BLAST searches of the S. cerevisiae and C. 

albicans proteomes revealed a strong conservation of the core proteins and suggested an analogous 

architecture of the putative CaSet3C (Table 1). 

In a previous study, we reported that SET3 and HOS2 are key regulators of white-opaque switching in 

MTL homozygous C. albicans strains [25]. Surprisingly, MTLa/a set3Δ/Δ opaque cells show an additional 

phenotype: they form wrinkled colonies on Lee’s agar plates as opposed to the smooth colonies formed 

by wild type opaque cells and SET3/set3Δ heterozygotes (Figure 1A). Reintegration of one copy of SET3 at 

the RP10 locus rescued the phenotype, whereas the integration of a control vector at the RP10 locus did 

not (Figure 1A). 

Microscopic inspection revealed that wrinkled opaque colonies formed by set3Δ/Δ cells consisted of 

mostly filamentous structures with pseudohyphal characteristics [29]. Namely, the cells were elongated 

and longer than wild type opaque cells, and constrictions were visible at mother-daughter cell junctions 

(Figure 1B and S2B). In addition, set3Δ/Δ opaque cells expressed the filament-specific gene ECE1 [30] at 

high levels, indicating an active filamentation program (Figure 1C). 

Given the strong conservation of the yeast Set3C in C. albicans, we tested whether 

hyperfilamentation occurs upon deletion of other subunit-genes of the putative complex. Opaque cells 

lacking the core subunit Hos2 also gave rise to wrinkled colonies consisting of mostly pseudohyphae 

(Figure 1D). On the other hand, opaque cells lacking the peripheral subunit Hst1 formed smooth colonies, 
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whereas opaque set3Δ/Δ hst1Δ/Δ cells displayed wrinkled colonies, which reverted to smooth ones upon 

complementing the SET3-deletion (Figure 1D). Thus, in C. albicans the Set3C is likely to be of similar 

architecture as in S. cerevisiae. Importantly, the data indicate that loss of a functional Set3C triggers 

hyperfilamentation of opaque phase cells. 

 

Loss of SET3 promotes filamentation at an elevated temperature 

SET3 has been previously identified in a large-scale haploinsufficiency screen as a modulator of 

filamentation in MTL heterozygous C. albicans cells [31]. Thus, we constructed several independent 

hetero- and homozygous SET3 deletion strains in an MTLa/α background, and compared the morphologies 

of wild type and deletion mutants on several standard liquid and solid laboratory media. Most notably, 

the set3Δ/Δ strain displayed hyperfilamentous growth on solid YPD at 37oC (Figure 2A). YPD at 30oC was 

used as standard medium supporting yeast phase growth, whereas YPD supplemented with 10% fetal calf 

serum (FCS) were standard conditions that promote filamentation (Figure 2A). set3Δ/Δ mutants showed a 

mild hyperfilamentation phenotype on filament-inducing Lee and Spider plates at 37oC. However, wild 

type and set3Δ/Δ did not show any apparent differences in liquid cultures of all conditions tested (Figure 

S1). In addition, set3Δ/Δ cells were more invasive on some solid media (Figure S1). Notably, a 

haploinsufficiency phenotype of SET3/set3Δ cells as reported earlier [31] was not observed in our 

experimental settings (Figure 1A and 2A), but we observed a mild haploinsufficiency effect at 

temperatures above 37oC (data not shown). 

Microscopic inspection revealed that wrinkled set3Δ/Δ colonies on YPD plates at 37oC consisted of 

mainly filaments characterized by parallel cell walls and perpendicular septa, the hallmarks of true hyphae 

(Figure 2B and S2A) [29]. Furthermore, under these conditions, filament-specific ECE1 mRNA levels in 

set3Δ/Δ colonies were upregulated, confirming an active filamentation program (Figure 2C). 

Cells lacking the putative core subunits Hos2, Snt1 and Sif2 also gave rise to wrinkled colonies 

consisting of mostly true hyphae on YPD at 37oC (Figure 2D), and hos2Δ/Δ cells expressed ECE1 at 

comparable levels as set3Δ/Δ cells (Figure 2C). By contrast, hst1Δ/Δ cells formed smooth colonies under 

these conditions. Moreover, the set3Δ/Δ hst1Δ/Δ double mutant formed wrinkled colonies, which was 

reverted upon restoring SET3 (Figure 2D), confirming the notion of a conserved Set3C architecture in C. 

albicans. 

As expected, the hyperfilamentation on YPD at 37oC was independent of MTL-zygosity. Indeed, 

MTLa/a wild type and mutant white phase strains showed the same characteristics as the respective 

MTLa/α isolates (Figure S2C), supporting the general view that the same genetic mechanisms regulate 

filamentation in both MTL heterozygous and MTL homozygous white phase cells. 

If loss of Set3C function is the cause of the hyperfilamenting phenotype, biochemical inhibition of the 

catalytic activity should mimic the loss of the catalytic subunit. Therefore, we examined the morphological 

development of wild type C. albicans strains in the presence of the histone deacetylase inhibitor 

Trichostatin A (TSA) [32]. Surprisingly, we found that 10 µg/ml TSA supplementation of solid YPD medium 

strongly induced filamentation at 37oC (Figure 2E). We then examined single deletion C. albicans strains 
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lacking all putative histone deacetylase under identical growth conditions in the absence of TSA. Most 

strikingly, only the loss of the Set3 and Hos2 deacetylase genes induced the yeast-hyphae morphogenetic 

conversion (Figure 2E). These results demonstrate that inhibition of histone deacetylase activity by TSA is 

phenocopied by the loss of the Set3 and Hos2 core subunits of the C. albicans Set3C but not of any other 

histone deacetylase. Taken together, these data strongly suggest that lack of a functional Set3C causes a 

hyperfilamentation phenotype in set3Δ/Δ and hos2Δ/Δ mutants. 

Several transcription factors involved in morphogenesis, including the positive regulator EFG1, as 

well as the negative regulators NRG1 or SSN6, are themselves regulated at the transcriptional level upon 

serum-induced yeast-to-hypha transition [12,33,34]. Therefore, we tested whether repression of SET3 or 

HOS2 is associated with the morphological conversion of wild type cells. However, we found no significant 

differences between SET3 and HOS2 mRNA levels in yeast and hyphal cells (Figure S3). These results 

confirm that a mechanism other than transcriptional inactivation of SET3 or HOS2 must constitute a 

trigger driving yeast-to-hypha conversion. 

 

Deletion of EFG1 suppresses the hyperfilamentation of set3Δ/Δ and hos2Δ/Δ mutants 

Does the Set3C represent an independent pathway regulating morphogenesis or is it a component of a 

previously characterized signaling pathway? To investigate the epistatic relationships between SET3, HOS2 

and the previously characterized positive regulators CPH1 and EFG1 [8,9], we analyzed the phenotypes of 

relevant double deletion mutants. The cph1Δ/Δ set3Δ/Δ and cph1Δ/Δ hos2Δ/Δ double mutants formed 

hyphae on YPD plates at 37oC, as well as in response to serum. Thus, the combined loss of CPH1 and SET3 

or CPH1 and HOS2 resembled the single deletion phenotypes of set3Δ/Δ and hos2Δ/Δ cells (Figure 3A and 

B). On the other hand, the efg1Δ/Δ set3Δ/Δ and efg1Δ/Δ hos2Δ/Δ double mutants failed to filament, even 

upon induction with serum; therefore, loss of EFG1 was epistatic to the deletion of SET3 or HOS2 (Figure 

3A and B).  

In addition, we analyzed the genetic relationship between SET3, HOS2 and SET1. C. albicans SET1 is a 

histone methyltransferase gene [35], acting in the same pathway as SET3 and HOS2 regulating the 

frequency of white opaque switching [25]. Whereas in white-opaque switching regulation, SET1 is 

epistatic to SET3 and HOS2 [25], we noticed a slight enhancement in filament formation in set1Δ/Δ 

set3Δ/Δ and set1Δ/Δ hos2Δ/Δ double mutants (Figure 3A). Furthermore, loss of EFG1 was epistatic to the 

loss of SET3 in opaque phase cells, as well (Figure 3C and 3D). Taken together, these results suggest that 

SET3 and HOS2 are acting in a different pathway than CPH1 or SET1. Nevertheless, Set3C may interfere 

with Efg1-dependent signaling, resulting in hyperfilamentatation phenotypes of set3Δ/Δ and hos2Δ/Δ 

single mutants. 

 

Loss of SET3 or HOS2 enhances the induction of EFG1-dependent target genes 

The epistasis relations excluded the involvement of a Cph1-dependent mechanism contributing to the 

effect of SET3 and HOS2 deletions, but EFG1 remained as a possibility. In addition, we also wanted to 

investigate whether the lack of SET3 or HOS2 interferes with the function of Tup1, a known transcriptional 
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repressor promoting yeast-phase growth in C. albicans [11]. Notably, Tup1 in S. cerevisiae was shown to 

directly interact with Hos2, and loss of Hos2 was shown to compromise Tup1-dependent gene repression 

[36]. 

Therefore, we chose several marker genes whose expression is regulated by Efg1, Tup1 or both of 

them, and analyzed their mRNA levels in set3Δ/Δ and hos2Δ/Δ mutants (Figure 4A) using qRT-PCR. HWP1 

is a filament-specific gene strongly induced by serum [37] or lack of TUP1 [38]. In addition, serum 

induction of HWP1 is strictly EFG1-dependent (Figure 4B) [37]. In the absence of SET3 or HOS2, cells 

express high HWP1 levels even on YPD at 37oC, with about 15-fold differences between wild type and 

set3Δ/Δ or hos2Δ/Δ cells (P<0.01), indicating an active hyphal program. Moreover, elevated HWP1-

expression is completely abolished once EFG1 is also deleted in set3Δ/Δ or hos2Δ/Δ cells (Figure 4B). In 

addition, qualitatively identical results were obtained using additional hyphae-specific markers such as 

ECE1 and FRE2 (Figure S4). 

RBT2 is a gene repressed by Tup1. However, RBT2 expression does not change upon serum induction, 

excluding an Efg1-mediated control of RBT2 (Figure 4C) [39]. In the absence of SET3 or HOS2, cells express 

low levels of RBT2 under all conditions tested, comparable to wild type cells, indicating that their absence 

does not interfere with Tup1-mediated repression of RBT2. Moreover, DDR48 mRNA levels also show a 

qualitatively identical expression pattern in these mutants (Figure S4). 

Finally, SOD5 is expressed at low levels in yeast phase but is induced in an EFG1-dependent manner in 

serum-induced hyphae, and induction is maintained in tup1Δ/Δ cells (Figure 4D) [40]. Interestingly, we 

found that set3Δ/Δ and hos2Δ/Δ cells express SOD5 at levels higher than wild type cells on YPD at 37oC 

(about 3.5-fold relative to wild type, P<0.01) or in the presence of serum at 37oC (about 3.3-fold relative to 

wild type, P<0.01) (Figure 4D). Most importantly, the elevated SOD5 mRNA levels, both in set3Δ/Δ and 

hos2Δ/Δ cells, required EFG1 (Figure 4D). Taken together, these results demonstrate that loss of SET3 or 

HOS2 strongly enhances the expression of EFG1-dependent genes. In other words, genes repressed by 

Efg1 in yeast phase cells are induced upon loss of SET3 or HOS2, with TUP1-dependent targets remaining 

unaffected. 

 

Hyperfilamentation of set3Δ/Δ cells is suppressed by adenine supplementation 

In a previous study, we have shown that adenine is an environmental factor that modulates the frequency 

of the opaque to white transition in vitro requiring SET3 [25]. We also made the striking observation that 

opaque isolates of the MTLa/a set3Δ/Δ cells did not form pseudohyphae on adenine-supplemented Lee’s 

medium at 25oC (Figure 5A and B). The effect of adenine was both dose-dependent and specific; 100µg/ml 

adenine completely reverted cells to yeast phase growth, while the same concentration of uridine failed 

to do so (Figure 5A and B). 

To analyze the effect of adenine supplementation at the gene expression level, we first confirmed the 

induction of the EFG1-dependent targets in opaque MTLa/a set3Δ/Δ mutants. As expected, HWP1 was 

strongly induced in set3Δ/Δ opaque but not in white cells (around 200-fold relative to wild type, P<0.01); 

nevertheless, HWP1 expression was reduced back to wild type levels by deleting EFG1 or upon addition of 
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adenine to the medium (Figure 5C). In addition, ECE1 levels showed a qualitatively similar pattern (Figure 

S4). Furthermore, SOD5 was also induced in set3Δ/Δ opaque cells (around 2.6-fold relative to wild type, 

P<0.01), and its induced expression was also reduced in efg1Δ/Δ set3Δ/Δ cells or set3Δ/Δ cells grown in 

the presence of adenine (Figure 5D). The expression level of the Tup1-target RBT2 was again unaffected 

(Figure 5E). 

Is the hyperfilamentation phenotype of white set3Δ/Δ cells on YPD at 37oC also reverted by adenine 

supplementation? Unfortunately, it is not possible to address this question directly, because the yeast 

extract present in YPD contains adenine [41]. Hence, as expected, additional 100µg/ml adenine 

supplementation on YPD had no effect on the phenotype of set3Δ/Δ cells at 37oC (Figure 5F). However, if 

the strains were cultured on SD medium, which has defined components and is devoid of adenine yet 

supports yeast-phase growth of wild type cells, we observed hyperfilamentation of MTLa/α set3Δ/Δ cells 

at 37oC. This was reverted by adding 100 µg/ml adenine to SD or complementation of one allele of SET3 

(Figure 5G). Taken together, these results demonstrate that both the opaque and white filamentation 

phenotypes of set3Δ/Δ cells can be suppressed by exogenous adenine provided in the growth medium. 

 

The set3Δ/Δ cells have a hyperactive cAMP/PKA pathway 

Why are the Efg1-dependent target genes activated upon disruption of the Set3C? Efg1 receives input 

information from two signaling cascades. First, Efg1 is a downstream target of the cAMP/protein kinase A 

(PKA) signaling pathway. Briefly, this pathway transmits nutritional signals and involves the activation of 

the adenylyl-cyclase Cdc35 initiating cAMP synthesis, thereby activating PKA. C. albicans harbors two 

functional PKA catalytic subunits, Tpk1 and Tpk2 [42]. Second, Mkc1, the central MAP kinase of the 

protein kinase C (PKC) cell integrity pathway sensing cell wall damage, is also proposed to regulate Efg1-

dependent morphogenesis [43]. Consequently, we tested the contribution of PKA and PKC signaling to the 

hyperfilamenting phenotypes of set3Δ/Δ (Figure 6A). 

To assess activation of the PKC pathway, we performed Western blot analysis of the active, 

phosphorylated form of Mkc1. As expected, under filament-inducing conditions, both wild type and 

set3Δ/Δ cells harbored activated and thus phosphorylated Mkc1 (Figure 6B). Surprisingly, a high level of 

phosphorylated Mkc1 was also apparent in the set3Δ/Δ colonies after three days of incubation on YPD at 

37oC, indicating a hyperactive PKC pathway (Figure 6B). However, we subsequently found that a lack of 

SET3 was epistatic to the deletion of MKC1, since the mkc1Δ/Δ set3Δ/Δ double mutant displayed 

filamentous growth on solid YPD at 37oC similar to the set3Δ/Δ mutant (Figure 6C). These data 

demonstrate that although the PKC pathway appears active in set3Δ/Δ cells on YPD at 37oC, it is not the 

cause, but rather a consequence of the active filamentation program. 

To address whether an active cAMP/PKA pathway is required for the hyperfilamenting phenotype of 

set3Δ/Δ cells, we performed epistasis experiments of SET3 with CDC35 encoding the adenylyl-cyclase, as 

well as TPK1 and TPK2 encoding the two PKA catalytic subunits. As shown on Figure 6C, lack of CDC35 

prevented both serum- and temperature-induced filamentation of wild type and set3Δ/Δ cells which was 

reverted upon supplementing the media with 10mM cAMP. These data demonstrates that 
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hyperfilamentation of set3Δ/Δ cells requires a functional cAMP/PKA pathway. On the other hand, deletion 

of SET3 was epistatic to the deletion of either TPK1 or TPK2, yet these results can be explained by the 

functional redundancy of the two PKA genes. 

To link hyperfilamentation in the absence of Set3C with an increased activity of the cAMP/PKA 

pathway, we measured the trehalose content of wild type and mutant cultures. Trehalose is a 

disaccharide present in many yeast species; it is degraded by the neutral trehalase enzyme, which is 

activated by PKA [44,45]. As expected, we did not observe differences in the trehalose contents of wild 

type, set3Δ/Δ, set3Δ/Δ::SET3 and hos2Δ/Δ cells after growth for two and three days on solid YPD at 30oC 

supporting yeast phase growth (Figure S5A). Surprisingly, we failed to detect any differences between the 

four strains on solid YPD at 37oC, where set3Δ/Δ and hos2Δ/Δ cells readily filament (Figure 6D, S5A). 

However, set3Δ/Δ cells contained around 3-fold less (P<0.05) trehalose than wild type or set3Δ/Δ::SET3 

heterozygous colonies when grown for three days on filament-inducing, FCS-supplemented plates (Figure 

6D, S5A). Therefore, we concluded that differences in trehalose levels between yeast cells and 

filamentous forms may not be detectable because the colonies contain a mixture of both (Figure S2A). 

Consequently, we developed a filtration-based method to separate the yeast-phase and filamentous cells 

of colonies, to yeast and hyphal fractions. Strikingly, we found about 4-fold more trehalose in the yeast 

fraction when compared to the hyphae fraction (P<0.05, Figure 6D) derived from the same colonies of 

wild type, set3Δ/Δ and set3Δ/Δ::SET3 cells when grown on filament-inducing FCS medium at 37oC. Hence, 

a decreased trehalose content may reflect a history of PKA-activation, once the yeast-filament conversion 

has been initiated. In good agreement with this suggestion, a similar decrease in trehalose content was 

also detectable between the yeast and hyphal fractions of set3Δ/Δ cells grown on YPD medium at 37oC 

(P<0.05, Figure 6D). 

To directly assess whether at some stage of differentiation an elevated PKA activity can be detected in 

the hyperfilamentous set3Δ/Δ cells, we performed PKA activity assays using total cell extracts derived 

from wild type, set3Δ/Δ and set3Δ/Δ::SET3 cells grown on YPD at 37oC. In these experiments, a 

fluorescently labeled peptide is phosphorylated by PKA, followed by electrophoretic separation of 

phosphorylated and non-phosphorylated peptides and quantification by spectrophotometry (see Figure 

S5B and details in Materials and Methods). Surprisingly, we detected about 2-fold higher PKA activity of 

the yeast fraction of set3Δ/Δ cells when compared to the wild type (P<0.05, Figure 6E), indicating that this 

fraction contains a subset of cells harboring an elevated level of active PKA, although this difference is 

undetectable when comparing whole colonies (Figure 6E). Taken together, these results demonstrate that 

the hyperfilamentous phenotype of set3Δ/Δ cells requires functional cAMP/PKA signaling; differentiated 

hyphae are associated with a decrease in trehalose, while a subset of set3Δ/Δ cells harbor an elevated 

level of active PKA when compared to wild type cells. 

Finally, we tested if suppression of hyperfilamentation in set3Δ/Δ cells by exogenous adenine can be 

rescued by stimulating the cAMP/PKA pathway with exogenous cAMP. Surprisingly, set3Δ/Δ cells indeed 

displayed a hypersensitive morphogenetic potential in the presence of both exogenous adenine and cAMP 
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(Figure 6F), indicating that both adenine and the Set3C can modulate cAMP/PKA signaling, albeit through 

antagonistic mechanisms. 

 

Non-fermentable carbon sources revert hyperfilamentation of set3Δ/Δ cells 

In S. cerevisiae, a known substrate of the cAMP/PKA pathway is glucose. Cells cultured on fermentable 

carbon sources  (that can be degraded through glycolysis) are associated with a higher activity of 

cAMP/PKA signaling, while cells grown on non-fermentable carbon sources are characterized with a lower 

activity of cAMP/PKA signaling and activation of gluconeogenesis [44] (Figure 6A). Consequently, we 

tested if limiting cAMP/PKA signaling by non-fermentable carbon sources reverts the hyperfilamentation 

of set3Δ/Δ cells. Indeed, the hyperfilamentation effect was only observed if cells were grown on 

saccharides whose enzymatic degradation yields glucose. By contrast, set3Δ/Δ cells reverted to wild type 

morphologies in the presence of the non-fermentable carbon sources such as glycerol (Figure 7). A similar 

suppression was observed when the cells were grown on raffinose as a carbon source (Figure 7). Since 

yeasts, including Candida species do not have a β-lactamase enzyme, they fail to degrade raffinose 

(consisting of a glucose, galactose and fructose molecule) to fermentable monosaccharides. These results 

demonstrate that metabolic conditions normally associated with low cAMP/PKA signaling are sufficient to 

revert the hyperfilamentation effect of the SET3-deletion. 

 

set3Δ/Δ cells have a hypersensitive cAMP/PKA signaling pathway 

N-acetylglucosamine (GlcNAc) can activate the cAMP/PKA pathway, and thus is a potent inducer of the 

yeast-filament transition [5,46]. To test whether activation of the cAMP/PKA pathway in the 

hyperfilamentous set3Δ/Δ cells result from a pathway being hypersensitive to filament-inducing stimuli, 

we analyzed the morphological development of wild type and set3Δ/Δ cells on solid media containing a 

gradient of GlcNAc. At 30oC, wild type cells required high amounts (5-10mM) of GlcNAc to trigger 

filamentous growth (Figure 8A). By contrast, set3Δ/Δ cells displayed massive filamentation already at 

much lower (0.5-1mM) concentrations, demonstrating that the cAMP/PKA pathway in this mutant is 

hypersensitive to inducing stimuli when compared to wild type cells (Figure 8A). 

 

The set3Δ/Δ mutant shows attenuated virulence in a murine infection model 

The above results demonstrate that the Set3C moderates cAMP/PKA signaling, thereby promoting yeast 

phase growth. To address whether Set3C-dependent restriction of filamentation is important for virulence 

of C. albicans in vivo, we tested the set3Δ/Δ mutant in a mouse model of systemic infection. 

Consequently, wild type, set3Δ/Δ and complemented set3 strains were injected into the tail vein of 6-8 

week old male BALB/c mice. As shown on Figure 9A,  9 out of 10 mice infected with the wild type strain 

and 10 out of 10 mice infected with the complemented set3 strain died until day seven after injection. By 

contrast, mice injected with the set3Δ/Δ strain started succumbing to the infection only on day 11, and 6 

out of 10 mice were still alive after three weeks (P<0.001, Log rank test). We reproduced the infection 

experiment once more with another group of 10 mice per C. albicans genotype essentially yielding 
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identical results (data not shown). The results unequivocally demonstrate a strongly attenuated virulence 

of set3Δ/Δ cells. To confirm that the virulence defect of set3Δ/Δ cells is not caused by a reduced growth 

rate, we measured the generation times of wild type, heterozygous and homozygous set3 mutants in 

vitro, but found no significant differences between any of the strains (Figure 9B).  

Next, we performed histopathology experiments to address whether the virulence defect of set3Δ/Δ 

mutants is associated with altered morphological development or unusual tissue invasion in vivo. In the 

kidneys of mice infected with wild type C. albicans, fungal cells were present as a mixture of both 

unicellular and filamentous forms on day one after infection. By contrast, set3Δ/Δ cells were displaying 

hyperfilamentous morphologies (Figure 9C). These data demonstrate that set3Δ/Δ mutants, despite 

hyperfilamenting in vivo, display attenuated virulence in a murine infection model. These data suggest 

that the virulence defect is not caused by slower growth but rather by the interference with the 

morphogenetic conversion. 

 

DISCUSSION 

 

The Set3C is a cAMP/PKA-antagonistic repressor of filamentation 

Here, we identify the Set3C, an evolutionary conserved histone deacetylase complex, as a repressor of the 

cAMP/PKA pathway regulating the yeast-to-hypha conversion in Candida albicans. We provide several 

lines of evidence that the hyperfilamentation resulting from removing the Set3C is linked to interference 

with the cAMP/PKA signaling pathway. First, deletion of the pathway genes CDC35 and EFG1 is epistatic to 

the deletion of SET3 or HOS2. Although, SET3 appears epistatic to both PKA genes TPK1 and TPK2, it can 

be explained by the functional redundancy of the Tpk1 and Tpk2 enzymes [47]. Second, we found that 

differentiated hyphae contain around 4-times less trehalose than yeast-phase cells. Thus, trehalose 

content is a possible readout to detect the history of PKA activation during the yeast-to-hypha conversion 

of C. albicans. Seemingly contradicting this suggestion, an elevated PKA activity level was detected in the 

yeast phase fraction of filamentous wrinkled set3Δ/Δ colonies; however, this discrepancy appears logical 

because of the shortcomings of the filtering procedure used for the separation of morphologies. Namely, 

in filamentous colonies the differentiated hyphae stick together, yet short filaments are still passing 

through the filter pores and are found in the yeast fraction (data not shown). We believe that during 

growth on solid surfaces, a subset of cells reaches a yet undefined age or metabolic state, and then 

commit to the yeast-to-hypha conversion through activation of the cAMP/PKA pathway. This subset of 

cells that are “poised” to initiate germ tube formation is enriched in the yeast fraction of the filamentous 

colonies, thus enabling detection of subtle differences in PKA activity. Third, growth on non-fermentable 

carbon sources, which is associated with low cAMP/PKA signaling, is sufficient to revert the 

hyperfilamentation effect of the SET3-deletion. 

In this study, we analyzed two distinct filamentation phenotypes of set3Δ/Δ cells to elucidate the 

mechanism of action of the Set3C, and we propose the following model, which we refer to as the 

“threshold shift model” (Figure 8B). In wild type cells, the cAMP/PKA pathway and its target transcription 
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factor Efg1 regulate morphogenesis in response to several environmental stimuli [9,10]. Naturally, 

molecules triggering morphogenetic conversions do not show a homogenous concentration in vivo; 

therefore, the regulatory pathway must have a certain sensitivity to input signals, which in the case of the 

cAMP/PKA pathway, is determined by (at least) two factors: the concentration of key regulatory 

components inside the cell and a Set3C-dependent attenuation mechanism. For instance, EFG1 is rapidly 

downregulated upon yeast-to-hyphae conversion by serum and elevated temperature [10]. Efg1 binds to 

its own promoter, and in the absence of Efg1, the endogenous EFG1 promoter is activated [34]. This auto-

inhibitory loop appears crucial for a stable commitment to hyphal growth, because ectopic overexpression 

of EFG1 causes hyphal cells to revert to yeast growth by lateral budding [34]. At the same time, the results 

presented in this study suggest that in the absence of a functional Set3C, the cAMP/PKA pathway 

responds to milder stimuli to initiate conversion to the filamentous growth (Figure 8A and B). 

In our belief, this simple “threshold shift” model is coherent with both phenotypes of the set3Δ/Δ 

mutant for the following reasons. First, white phase set3Δ/Δ cells grow predominantly as hyphae on YPD 

at 37oC as opposed to the wild type cells growing as yeasts (Figure 2, S2A). In this system, YPD at 30oC, 

YPD 37oC and YPD+serum at 37oC in this order represent three conditions on the horizontal axis of the 

model analogous to a stimulus-gradient (Figure 8B). Wild type cells, whose cAMP/PKA signaling has wild 

type sensitivity, perceive the YPD at 37oC as being below the threshold required for hyphal conversion. By 

contrast, set3Δ/Δ mutants perceive YPD at 37oC as an environment whose inductive effect is already 

above the threshold required to switch to hyphal growth. Second, opaque phase set3Δ/Δ mutants grow 

predominantly as pseudohyphae on Lee’s medium at 25oC as opposed to set3Δ/Δ white cells as well as 

wild type white or opaque cells (Figure 1). In this system, however, Lee’s medium at 25oC already 

represents an environmental scenario close to the threshold point, which is supported by the fact that 

Lee’s medium at 37oC drives hyphal growth [30,37,48]. Why do set3Δ/Δ cells filament only in the opaque 

but not in the white phase? Opaque cells express EFG1 at lower levels than white cells [23], because in 

opaque cells EFG1 is repressed directly by the master opaque regulator Wor1, and indirectly by the 

transcription factor Czf1 [22]. Therefore, filamentation of opaque set3Δ/Δ cells is most probably resulting 

from the increased cAMP/PKA pathway sensitivity due to the lack of Set3C, and the inhibition of the EFG1 

locus by Wor1 and Czf1 mimicking the effect of the EFG1-autoinhibitory loop (the latter being absent in 

the white phase). Notably, Lee’s medium at 25oC is not a strong enough signal to induce true hyphal 

growth. This is in complete agreement with a recently proposed hypothesis, according to which weak 

filament-inducing signals turn on a set of genes required for pseudohyphal growth, while a stronger signal 

of the same nature turns on a set of additional genes triggering hyphal growth [49]. 

At which level of the pathway does the Set3C act on the molecular level? Recently, it was shown that 

C. albicans Efg1 binds to the promoters of filament-specific genes in both yeast and hyphal cells, and 

recruits the NuA4 histone acetyltransferase complex and the Swi/Snf chromatin remodeling complex upon 

hyphal induction [50]. Given that the S. cerevisiae Set3C possesses histone deacetylase activity [26], and 

that all subunits of the complex show strong evolutionary conservation (Table 1), it seems reasonable to 

propose that Set3C interferes with Efg1-dependent gene expression in C. albicans by effecting the 
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chromatin status at Efg1 target loci. On the other hand, the PKA hyperactivity in set3Δ/Δ cells as judged 

from trehalose quantification and PKA activity assays (Figure 6D and 6E) apparently contradicts this 

notion, and implies that the Set3C acts either at the level or upstream of PKA (see Figure 6A). 

Nevertheless, a chromatin-based regulatory effect at Efg1 target loci would still be possible, if Efg1 

coordinated a feed-back mechanism affecting the activity of PKA. We are developing molecular tools to 

address these possibilities directly. In this context, it is interesting to note that in a previous study, we 

found the histone methyltransferase SET1 to be epistatic to SET3 or HOS2 to regulate white-opaque 

switching in C. albicans [25].  We interpreted these data in a way that the PHD domain of Set3 recognizes 

methylation marks generated by Set1 at its target loci. Indeed, such a recognition was subsequently 

demonstrated in S. cerevisiae, in vivo [51]. Consequently, since deletion of SET1 and SET3 showed a 

synergistic effect in repressing filamentation (Figure 3A), it is reasonable to hypothesize that at genetic 

loci where Set3C antagonizes filamentation, it does not depend on the methylation marks generated by 

Set1. Alternatively, it is also possible that the Set3C targets as yet unknown transcription factor(s), rather 

than histone proteins. This will have to be explored in more detail in future studies. 

 

Adenine as a morphogenetic signal 

Along with serum and nitrogen-limitation, filamentation of C. albicans can be triggered by numerous 

specific stimuli, including human hormones, N-acetylglucosamine and bacterial peptidoglycans [4,52]. We 

identify adenine as a potential signal that also has a modulatory effect on the yeast-filament conversion in 

vitro. Namely, exogenous adenine attenuated the hyperfilamentation phenotypes of set3Δ/Δ cells and 

suppressed the upregulation of filament-specific genes (Figure 5 and S4). Similar to the Set3C, adenine 

may also influence cAMP/PKA dependent signaling events in a negative way, since cAMP supplementation 

in the presence of adenine rescued the phenotype of set3Δ/Δ cells (Figure 6F). Since adenine  in itself did 

not have an influence on the morphogenesis or marker gene expression in wild type cells (Figure 5), it 

appears likely that its importance as a metabolic factor is limited to specific conditions in vivo, which are 

partially mimicked by the disruption of the Set3C. In this context, it is interesting to note that limitation of 

nicotinic acid (like adenine, a NAD precursor) in a urinary tract infection model regulates cell adhesion 

through a chromatin-dependent mechanism in the fungal pathogen Candida glabrata [53]. 

In summary, although the specific nature of the adenine signal will have to be explored in further 

studies, it provides an additional argument that both white and opaque filamentation phenotypes of 

set3Δ/Δ mutants are caused by an interference with the same genetic mechanism. In addition, we have 

shown earlier that exogenous adenine also modulates opaque-to-white transition [25], which, together 

with the results provided here, indicate the need to study the role of purine-metabolism in the regulation 

of C. albicans morphogenesis. 

 

Morphogenesis as a virulence factor 

Most human fungal pathogens including Candida albicans, Cryptococcus neoformans, Blastomyces 

dermatitidis or Histoplasma capsulatum are dimorphic. Therefore, morphogenesis has been extensively 
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studied as a potential virulence trait [2]. For example, locking Candida albicans cells in the yeast form by 

the combined deletion of CPH1 and EFG1 abolishes virulence [9]. Likewise, locking cells in a filamentous 

form by deleting TUP1 had a similar effect [11]. These data led to the general view that virulence is 

determined by the ability to change morphologies rather than the individual growth forms per se. 

Although this view is widely accepted, supporting evidence remains indirect, because the mutants tested 

so far are either locked in a specific growth form or display pleiotropic alterations of other cellular 

functions unrelated to morphogenesis. For instance, deletion of the transcriptional repressor NRG1 locks 

cells in a filamentous state and nrg1Δ/Δ cells are avirulent [14]. Deletion of the hypha-specific cyclin HGC1 

locks cells in the yeast form and the hgc1Δ/Δ mutant is also avirulent [54]. Deletion of the transcriptional 

repressor SSN6 permits yeast and pseudohyphal growth, but not true hyphal growth. Lack of SSN6 affects 

generation time, and ssn6Δ/Δ cells are avirulent [33]. The most direct evidence addressing the 

contribution of a specific growth form to virulence came from two recent studies on the transcription 

factors UME6 and NRG1. The ectopic overexpression of UME6 converted cells to the hyphal growth mode 

in vivo rendering cells hypervirulent [49]. Conversely, ectopic overexpression of NRG1 inhibited hyphal 

growth in vivo causing attenuated virulence [55]. These studies demonstrated the pivotal role of the 

hyphal morphology during infection. 

In this study we describe a novel phenotype caused by the ablation of key components of the Set3C. 

The C. albicans set3Δ/Δ mutant is able to maintain both normal yeast and filamentous growth modes but 

is hyperfilamenting both in vitro and in vivo. Strikingly, the set3Δ/Δ mutant shows attenuated virulence in 

a murine systemic infection model. However, we cannot rule out that loss of SET3 alters expression of 

other yet unknown virulence genes whose functions are unrelated to morphogenesis. We are currently 

performing whole genome microarray analyses to address this possibility. Nevertheless, the virulence 

defect of set3Δ/Δ cells in vivo as yet appears to highlight the importance of maintaining the yeast phase 

growth during certain stages of dissemination in the host. Since mice infected with set3Δ/Δ cells recover 

from the infection more efficiently than mice infected with wild type cells, it appears that the adequate 

timing for filamentation in a given niche is crucial for full virulence. The ability to maintain the unicellular 

yeast morphology in host environments being important for virulence is not surprising, since several 

pleiomorphic pathogens are virulent mainly in the yeast form. For instance, both in the case of 

Histoplasma capsulatum and Cryptococcus neoformans, yeast phase cells are required for human 

infections [2,56]. 

Regardless of other possible defects caused by impaired Set3C function, targeting the complex with 

specific deacetylase inhibitors can have a unique therapeutic potential. In fact, impairing the 

morphogenetic ability has been postulated as a promising area for antifungal drug discovery [55]. 

Trichostatin A (TSA), a known histone deacetylase inhibitor was recently shown to alter drug sensitivity 

and to inhibit serum-induced morphogenesis of some C. albicans strains [57,58].  In addition, a novel 

fungal Hos2-inhibitor has entered clinical trials to prove therapeutic potential used in combination with 

the antifungal fluconazole [59]. Here, we show that TSA is a potent trigger of the yeast-to-hyphae 

conversion of C. albicans. Most importantly, out of all putative histone deacetylase genes, only the 

Appendix

- 184 -



 

deletion of Hos2, the second catalytic subunit of the Set3C can phenocopy TSA treatment, providing 

compelling evidence that inhibition of the Set3C by TSA is causing the morphogenetic defects. Currently, 

we are investigating a possible therapeutic potential of TSA and related compounds to modulate 

morphogenesis and virulence in vivo. 

In conclusion, we establish the Set3C as a novel key regulator of morphogenesis in C. albicans. We 

propose that compromising the complex activity leads to a “threshold shift” in the susceptibility to 

morphogenetic signals, and a consequent virulence defect. Since the complex appears well conserved 

from yeast to mammals [60], it will be fascinating to investigate the roles of the Set3C in the 

morphogenesis and virulence of other fungal pathogens. Indeed, the homologues of SET3 and HOS2 have 

recently been indentified as factors enhancing virulence of the human fungal pathogen Cryptococcus 

neoformans [61]. Taken together, our results emphasize the role of morphogenesis as a virulence factor 

and highlight the role of chromatin in regulating the activity of signaling pathways to orchestrate 

developmental changes in a simple eukaryotic model system. 

 

MATERIALS AND METHODS 

 

Media and growth conditions 

Rich medium (YPD) and complete synthetic medium (SD) was prepared as previously described [41]. 

Modified Lee’s medium was prepared as described [48]. Unless indicated otherwise, MTL heterozygous 

and homozygous strains were routinely grown at 30oC and 25oC, respectively. GlcNAc, adenine and cAMP 

were purchased from Sigma. 

 

Strain construction 

The complete list of C. albicans strains, primers and plasmids used in this study are listed in 

Supplementary Tables 1, 2 and 3, respectively. All strains were derived from SN152 [62], a leucine, 

histidine, arginine auxotrophic derivative of the clinical isolate SC5314 [63]. SET3, HOS2, MKC1, CDC35, 

TPK1, TPK2, SNT1 and SIF2 were deleted in SN152 using the fusion PCR strategy with the C.m.LEU2 and 

C.d.HIS1 markers [62]. The cph1Δ/Δ strain (JKC19) has been previously described [8]. All MTLa/a strains 

were constructed in the DHCA202 background, which is a MTLa/a derivative of SN152 [25]. The deletion 

mutants set3Δ/Δ, hos2Δ/Δ, set1Δ/Δ, hst1Δ/Δ, efg1Δ/Δ set3Δ/Δ, efg1Δ/Δ hos2Δ/Δ, set1Δ/Δ set3Δ/Δ and 

set1Δ/Δ hos2Δ/Δ in the DHCA202 background were described earlier [25]. SET3 was deleted in the JKC19 

and the MTLa/a hst1Δ/Δ strains to create the cph1Δ/Δ set3Δ/Δ and hst1Δ/Δ set3Δ/Δ mutants, 

respectively, using the pDH104 plasmid [25] linearized by PvuI restriction. HOS2 was deleted in the JKC19 

background to create the cph1Δ/Δ hos2Δ/Δ mutant using the pDH102 plasmid [25] linearized by digestion 

with PvuI. SET3 was deleted in the mkc1Δ/Δ background using the fusion PCR strategy with the C.d.ARG4 

marker and the linearized pDH104 plasmid to create the mkc1Δ/Δ set3Δ/Δ strain. CDC35, TPK1 and TPK2 

were deleted in the set3Δ/Δ background using the fusion PCR strategy with the C.d.ARG4 and SAT1 

markers to create the cdc35Δ/Δ set3Δ/Δ, tpk1Δ/Δ set3Δ/Δ and tpk2Δ/Δ set3Δ/Δ strains. Except for the 
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cph1Δ/Δ set3Δ/Δ, cph1Δ/Δ hos2Δ/Δ and hst1Δ/Δ set3Δ/Δ, mkc1Δ/Δ set3Δ/Δ  cdc35Δ/Δ set3Δ/Δ and 

tpk1Δ/Δ set3Δ/Δ double mutants, at least two independent homozygous deletion strains were 

constructed from independent heterozygote isolates. Transformation was performed via electroporation 

as described [64]. Genomic integration events were verified with PCR and Southern blot analyses. 

Gene complementation mutants were constructed using three approaches. In the MTLa/α set3Δ/Δ 

strains and the MTLa/a hst1Δ/Δ mutant, the SET3 ORF was reintegrated into its endogenous locus using 

the pDH112 complementation plasmid [25] linearized by PvuI digestion. In the MTLa/a set3Δ/Δ strains, 

the SET3 ORF was integrated into one allele of the RP10 locus. To target the RP10 locus, 5´ and 3´ 

homology regions corresponding to about +/-1kb up- and downstream of the start and stop codon of the 

RP10 ORF, respectively, were amplified from SC5314 genomic DNA. The upstream fragment was cloned 

using the HindIII and BamHI restriction sites; the downstream fragment was cloned using the SacI and 

SacII sites into the pAG36 [65] plasmid harboring a nourseothricin acetyltransferase (NAT1) resistance 

marker, to yield the plasmid pRP53. The SET3 ORF with its endogenous promoter was cloned into pRP53 

using ApaI and NheI restriction sites introduced into pRP53 on the 3´ primer of the upstream RP10 cloning 

fragment, to create the complementation vector p7221. The pRP53 empty vector and the p7221 

integration constructs were linearized by AgeI-digestion prior to transformation. Gene complementation 

construct for the HOS2 ORF was created using the SAT1 marker cassette of the plasmid pSFS2A and the 

fusion PCR strategy exactly as described [25]. Transformation was performed via electroporation as 

described [64]. Correct genomic integration of the complementation plasmids was verified by PCR 

analysis. 

 

Colony morphology analysis and microscopy 

Colony morphology was analyzed using a Discovery V12 Stereoscope equipped with an Axiocam MR5 

camera (Zeiss) Microscopic analysis was performed using an Olympus IX81 microscope equipped with a 

Hamamatsu Orca ER camera (Olympus). For fluorescence microscopy, cells were fixed in 70% ethanol for 

five minutes, washed three times with distilled water, stained with 10µM Calcofluor White and 1µg/ml 

DAPI (4′,6-Diamidino-2-phenylindole dihydrochloride) for five minutes, washed three times with distilled 

water and deposited onto glass slides. 

 

Generation time analysis 

Strains were streaked from -80oC frozen stocks on YPD agar plates and incubated three days at 30oC. 

Single colonies were inoculated in liquid YPD and grown overnight, diluted to an OD600 of 1-2 and 

incubated three hours at 30oC. Cultures were diluted into fresh YPD to an OD600 of 0.1-0.3; subsequently, 

OD600 values were measured every hour. The generation times were calculated by fitting an exponential 

function on the exponential parts of the growth curves using the Origin 6.1 software (MicroCal). 

 

RNA isolation and quantitative qRT-PCR 
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Strains were streaked from -80oC frozen stocks onto YPD agar plates and incubated three days at 30oC. 

Opaque phase cultures, as well as the white isolates of the corresponding genotypes were streaked from -

80oC frozen stocks on YPD agar plates containing 5µg/ml Phloxin B and incubated three days at 25oC. 

Single colonies were suspended in distilled water and spread at low densities onto media indicated at 

each experiment, and incubated using conditions described for each experiment. Colonies (1-3) were 

scraped off plates and suspended in 500µl TRI Reagent (Molecular Research Center). After addition of 

around 200µl glass beads (425-600µm, Sigma), cells were broken at 5m/s for 45 seconds on a FastPrep 

instrument (MP Biomedicals). Tubes were centrifuged and the supernatant (around 300µl) was 

transferred to a fresh tube, 500µl TRI Reagent and 160µl chloroform was added. After centrifugation at 

14000g for 15 min at 4oC, the aqueous phase was extracted once with phenol:chloroform:isoamylalcohol. 

RNA was precipitated in 70% ethanol at -20oC overnight, washed once with 70% ethanol and dissolved in 

distilled water. About 5-10µg total RNA was treated with DNaseI (Fermentas). Subsequently, about 1-5µg 

of total RNA was reverse-transcribed with the First Strand cDNA synthesis kit (Fermentas). cDNA 

amplification was monitored quantitatively by SYBR Green incorporation in a Realplex Mastercycler 

(Eppendorf) using the MesaGreen Master mix (Eurogentec). Amplification curves were analyzed using the 

Realplex Software (Eppendorf). Statistics analysis (Student’s t-test) was performed in Excel (Microsoft). 

 

Western blot analysis 

Colonies were scraped off plates and cells were washed three times with ice-cold distilled water. About 20 

mg (±0.5 mg) wet weight of cells of each culture were measured and total cell extracts were prepared 

exactly as previously described [25]. For Western blot analysis, extracts from 0.5 mg wet cells were 

separated by SDS-PAGE. The phosphorylated forms of the Mkc1 and Cek1 MAP Kinases were detected 

with a phospho-p44/42 antibody (#9101, Cell Signaling). Loading controls were visualized using a 

monoclonal anti-tubulin antibody (DM1A, Sigma). Western blot experiments were repeated three times. 

 

Trehalose determination 

Colonies were scraped off plates and cells were washed three times with ice-cold distilled water. About 20 

mg (±0.5 mg) wet weight of cells of each culture were frozen in liquid nitrogen. For the separation of yeast 

and hyphal phases, the colonies were filtered through a 70µm cell strainer (BD Falcon) prior to the 

washing steps. The pellets were resuspended in 0.5 ml of 0.25 M Na2CO3 per 20 mg of cells, boiled at 95°C 

for 20 min, and centrifuged at 14.000g for 5 min. A 10µl aliquot of the supernatant was neutralized by the 

addition of 6.5 µl 1M acetic acid. For each reaction, 5 µl of buffer T (300 mM NaAc, 30 mM CaCl2, pH 5.5) 

and 3 µl of porcine kidney trehalase was added (3.7 U/ml, Sigma), and the volume was adjusted to 43 µl 

with distilled water. Reactions were incubated at 37°C for 45 min. The glucose liberated was measured in 

25 µl of each reaction using the glucose assay kit from Sigma according to the manufacturer’s instructions. 
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Protein Kinase A activity assay 

Colonies were scraped off agar plates and about 100 mg (±50 mg) wet weight of cells of each culture was 

washed twice with ice-cold distilled water. For the separation of yeast and hyphal phases, the colonies 

were filtered through a 70µm cell strainer (BD Falcon) prior to the washing steps. Crude cell extracts were 

prepared as previously described [66]. Briefly, cell pellets were resuspended in 250 µl of 10mM sodium 

phosphate buffer (pH 6.8) containing 1mM EGTA, 1mM EDTA, 10 mM β-mercaptoethanol. Protease 

inhibitor tablets (Roche) were added prior to use.  After resuspension, glass beads were added (425-

600µm, Sigma), and cells were broken at 4m/s for 30 seconds on a FastPrep instrument (MP Biomedicals). 

Tubes were centrifuged twice at 14000 rpm at 4oC for 15 minutes and the supernatant was transferred to 

a fresh tube. Total protein concentrations were adjusted with the Bradford method, and extracts 

containing 10µg of total protein were immediately used for the enzymatic assay. Total PKA activity was 

measured following the guidelines of the PepTag cAMP-dependent protein kinase assay kit (Promega) in a 

total volume of 50 µl, containing 20mM Tris-HCl (pH 7.4), 10mM MgCl2, 1mM ATP and 2µg of PepTag A1 

Peptide. 10µM cAMP and 250µM H-89 (LC Laboratories) were added when indicated. Reactions were 

incubated at 30oC for 30 minutes, heat-inactivated at 95oC for 10min and separated on a 0.8% agarose gel 

in 50mM Tris (pH 8.0) buffer (Figure S5B). Quantification of the phosphorylated 

PepTag peptide fractions excised from the gels was performed by spectrophotometry according to the 

manufacturer’s instructions. 

 

Virulence assays 

Strains were streaked from -80oC frozen stocks on YPD agar plates and incubated two-three days at 30oC. 

Single colonies were inoculated in liquid YPD and grown until the mid-exponential growth phase (around 

OD600 1). Cells were washed twice with PBS and the concentrations were adjusted with a hemocytometer. 

About 5*105 cells were injected in 100-110 µl suspensions in PBS through the lateral tail vein into 6-8 

week old male BALB/c mice. The mice all weighed between 17 and 20 grams and 10 mice per C. albicans 

genotype were used, except for the PBS control for which only three mice were injected. Survival was 

monitored over a three week period. Curves were plotted and statistical analysis (Log-rank test) was 

carried out using the Prism software (GraphPad). The virulence assay was repeated twice. 

For histopathology, C. albicans cells were prepared and injected exactly as described for the survival 

experiments. Three 6-8 week old male BALB/c mice were injected per each C. albicans genotype, plus two 

mice were injected with PBS. Animals were sacrificed on Day 1 after the injection. Kidneys were fixed in 

4% paraformaldehyde and embedded in paraffin. Serial sections (2µm) were stained with Grocott staining 

using the Bio-Optica Kit according to the manufacturer’s instructions. All animal experiments were 

performed according to the guidelines of the Austrian Ministry of Science and Research and were 

approved by the animal ethics committee of the Medical University Vienna under the protocol number 

BMWF-68.205/0233-II/10b/2009. 
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FIGURE LEGENDS 

 

Figure 1. MTL homozygous set3Δ/Δ cells filament specifically in the opaque phase 

(A) Colony morphologies. MTLa/a set3Δ/Δ cells grow as wrinkled colonies in the opaque but not in the 

white phase at 25oC on Lee’s agar plates containing 5µg/ml Phloxin B, staining opaque cells pink. Images 

were taken after 5 days of incubation. Scale bar corresponds to 2mm. 

 (B) Opaque phase filaments of MTLa/a set3Δ/Δ cells on Lee’s medium display pseudohyphal 

characteristics. Cells are elongated and constrictions are visible where two daughter cells stay attached 

after cell division. Bold arrowheads indicate nuclei stained with DAPI. Cell wall is stained with Calcofluor 

White. Empty arrowheads indicate cell wall constrictions. Scale bar corresponds to 5µm. 

(C) The MTLa/a set3Δ/Δ mutant expresses the filament-specific ECE1 transcript at high levels in the 

opaque phase. qRT-PCR analysis was performed with cDNA samples derived from colonies shown in Figure 

1A. In addition, ECE1 expression level in white phase MTLa/a wild type cells grown on Lee’s medium at 

37oC for three days is added as a control. Transcript levels were normalized against the expression level of 

RIP1. qRT-PCR reactions were performed in triplicates and RNA isolated from two independent cultures 

were analyzed. Data are shown as mean + SD. 

(D) Colony morphologies of additional mutants of the putative Set3/Hos2 complex. Opaque phase MTLa/a 

cells deleted for the core subunit HOS2 (see text) form wrinkled colonies on Lee’s medium at 25oC, similar 

to set3Δ/Δ cells, whereas mutants lacking the peripheral subunit HST1 form smooth colonies. In addition, 

SET3 is epistatic to HST1. Images were taken after five days of incubation. Scale bar corresponds to 2mm. 

 

Figure 2. Loss of SET3 promotes filamentation in C. albicans 

(A) Colony morphologies. set3Δ/Δ cells form wrinkled colonies on YPD at 37oC. Strains were grown for 

three days. FCS stands for YPD supplemented with 10% fetal calf serum. Scale bar corresponds to 2mm. 

 (B) The filaments of set3Δ/Δ cells on YPD at 37oC display true hyphal characteristics: parallel cell walls 

with perpendicular septa. Bold arrowheads indicate nuclei stained with DAPI. Cell wall is stained with 

Calcofluor White. Empty arrowheads indicate the septa. Scale bar corresponds to 5µm. 

(C) set3Δ/Δ and hos2Δ/Δ mutants express the filament-specific ECE1 transcript at high levels on YPD at 

37oC. qRT-PCR analysis was performed with cDNA samples derived from the colonies shown in Figure 2A. 

Transcript levels were normalized against the expression level of RIP1. qRT-PCR reactions were performed 

in triplicates and RNA isolated from two independent cultures were analyzed. Data are shown as mean + 

SD. 

(D) Colony morphologies of additional mutants of the Set3 Complex. Cells deleted for the core subunits 

HOS2, SNT1 and SIF2 form wrinkled colonies on YPD at 37oC, whereas the deletion cells lacking the 

peripheral subunit HST1 form smooth colonies. In addition, SET3 is epistatic to HST1. Images were taken 

after three days of incubation. Scale bar corresponds to 2mm. 

(E) (left panel) Trichostatin A treatment enhances filamentation. The displayed strain is a MTLa/a strain. 

(right panel) Trichostatin A treatment is phenocopied by genetic disruption of the Set3C, but none of the 
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other putative histone deacetylases. Images were taken after three days of incubation at 37oC. Scale bar 

corresponds to 2mm. 

 

Figure 3. Lack of EFG1 suppresses hyperfilamentation of set3Δ/Δ and hos2Δ/Δ mutants 

(A) Colony morphologies of mutant strains with the indicated genotypes. Loss of CPH1 or EFG1 

compromises the ability of cells to form filaments even under serum induction. EFG1 deletion is epistatic 

to the deletion of SET3 or HOS2, whereas CPH1 deletion is hypostatic. Deletion of SET1 in set3Δ/Δ and 

hos2Δ/Δ mutants has a mild synergistic effect. Strains were grown for three days on the media indicated. 

FCS stands for YPD supplemented with 10% fetal calf serum. Scale bar corresponds to 2mm. 

(B) Microscopic analysis of the colonies shown on Figure 3A. On YPD at 37oC the wrinkled colonies of 

cph1Δ/Δ set3Δ/Δ cells consists of a mixture of yeast cells and hyphae, while efg1Δ/Δ set3Δ/Δ show the 

slightly elongated morphology of efg1Δ/Δ cells irrespective of the presence of serum. Scale bar 

corresponds to 5µm. 

(C) Colony morphologies of mutant strains with the indicated genotypes.  In opaque phase cells, EFG1 

deletion is epistatic to the loss of SET3. Strains were grown at 25oC on Lee’s agar plates containing 5µg/ml 

Phloxin B. Images were taken after 5 days of incubation. Scale bar corresponds to 2mm. 

(D) Microscopic analysis of the colonies shown in Figure 3C. Contrary to opaque set3Δ/Δ cells, no 

filamentous structures are present in the colonies formed by opaque efg1Δ/Δ or efg1Δ/Δ set3Δ/Δ cells. 

Scale bar corresponds to 5µm. 

 

Figure 4. Loss of SET3 or HOS2 enhances induction of EFG1-dependent target genes 

(A) Scheme of the experimental approach. Expression profiles of the genes in parentheses are shown on 

Figure S4. qRT-PCR analysis was performed with cDNA samples derived from the colonies shown in Figure 

2A and 3A. Transcript levels were normalized against the expression level of RIP1. qRT-PCR reactions were 

performed in triplicates and RNA isolated from two independent cultures were analyzed. Data are shown 

as mean + SD. 

(B) The expression of HWP1 is strongly induced in set3Δ/Δ and hos2Δ/Δ cells even on YPD at 37oC. HWP1 

expression is abolished once EFG1 is deleted both in wild type and set3Δ/Δ or hos2Δ/Δ cells. Double 

asterisk indicates statistical significance of P<0.01 relative to wild type cells cultured under identical 

conditions (Student’s t-test). 

(C) RBT2 is repressed by Tup1, but not by Set3 or Hos2 under all conditions tested. 

(D) The expression of SOD5 is strongly induced in set3Δ/Δ and hos2Δ/Δ cells upon a mild (YPD, 37oC) or 

strong (FCS, 37oC) inductive stimulus. Elevated SOD5 expression requires EFG1. Double asterisk indicates 

statistical significance of P<0.01 relative to wild type cells cultured under identical conditions (Student’s t-

test). 
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Figure 5. Adenine supplementation suppresses hyperfilamentation of set3Δ/Δ mutants 

(A) Colony morphologies of opaque phase MTLa/a strains. Opaque set3Δ/Δ cells form  smooth colonies on 

Lee’s medium supplemented with adenine. Images were taken after five days of incubation at 25oC on 

Lee’s agar plates containing 5µg/ml Phloxin B. 

(B) Microscopy of the colonies shown in Figure 5A. The opaque MTLa/a set3Δ/Δ cells do not filament in 

the presence of 100µg/ml adenine. Scale bar corresponds to 5µm. 

In panels (C), (D) and (E), the logic for the expression analysis is described in Figure 4A. qRT-PCR analysis 

was performed with cDNA samples derived from the colonies shown in Figure 3C and Figure 5A. Transcript 

levels were normalized against the expression level of RIP1. qRT-PCR reactions were performed in 

triplicates and RNA isolated from two independent cultures were analyzed. Data are shown as mean + SD. 

(C) HWP1 expression is strongly induced in opaque phase set3Δ/Δ cells, but the induction is suppressed by 

deletion of EFG1 or by supplementing the medium with 100µg/ml adenine. Double asterisk indicates 

statistical significance of P<0.01 relative to wild type cells of the same phase cultured under identical 

conditions (Student’s t-test). 

(D) Expression of SOD5 is induced in set3Δ/Δ opaque cells, but the induction is suppressed by deletion of 

EFG1 or by supplementing the medium with 100µg/ml adenine. Double asterisk indicates statistical 

significance of P<0.01 relative to wild cells of the same phase cultured under identical conditions 

(Student’s t-test). 

(E) RBT2 is repressed by Tup1, but not by Set3 or Hos2. 

(F) Colony morphologies on YPD medium without or with 100µg/ml adenine added. Scale bar corresponds 

to 2mm.  

(G) Colony morphologies on SD medium without or with 100µg/ml adenine added. Scale bar corresponds 

to 2mm. 

 

Figure 6. The set3Δ/Δ and hos2Δ/Δ cells have a hyperactive cAMP/PKA pathway 

(A) Simplified scheme of signaling pathways converging at Efg1. Dashed lines indicate implied or indirect 

connections. 

(B) Western blot analysis of phosphorylated MAP kinases. Deletion of SET3 is associated with increased 

level of phosphorylated Mkc1, indicating active PKC signaling (compare lanes 8 and 11). The antibody also 

recognizes phosphorylated Cek1, the upstream MAP kinase of Cph1 [67]. 

(C) Colony morphologies of mutant strains with the indicated genotypes. SET3 is epistatic to MKC1, TPK1 

and TPK2 but hypostatic to CDC35. Images were taken after three days of incubation except for the 

cdc35Δ/Δ and cdc35Δ/Δ set3Δ/Δ strains, which were incubated for four days. FCS stands for YPD 

supplemented with 10% fetal calf serum. Scale bar corresponds to 2mm. 

(D) Trehalose content of colonies grown on YPD at 37oC (left panel). Although the total colonies have 

similar trehalose levels, the hyphal fraction of the set3Δ/Δ cells contains about 4-times less trehalose as 

the yeast fraction, indicating a history of elevated PKA activity. When grown on plates supplemented with 

FCS at 37oC (right panel), set3Δ/Δ colonies contain about 3-times less trehalose than wild type or 
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set3Δ/Δ::SET3 colonies. Moreover, all filamentous fractions contain about 4-times less trehalose than the 

corresponding yeast fractions, indicating a history of elevated PKA activity. “T”: total, “Y”: yeast, “H”: 

hyphal fraction. Data are displayed as mean + SD of three independent experiments. Asterisk indicates 

statistical significance of P<0.05 (Student’s t-test). 

(E) Protein kinase A activities of cell extracts derived from the indicated colonies. Data are normalized 

against the activity level of wild type extracts, and are displayed as mean + SD of three independent 

experiments. “T”: total, “Y”: yeast, “H”: hyphal fraction. Asterisk indicates statistical significance of P<0.05 

(Student’s t-test). 

(F) Colony morphologies. Exogenous cAMP rescues the sensitized morphogenetic potential of set3Δ/Δ 

cells in the presence of adenine. Cultures were grown for 5 days at 37oC on SD medium. Scale bar 

corresponds to 2mm. 

 

Figure 7. Hyperfilamentation of set3Δ/Δ is reverted by non-fermentable carbon sources 

Colony morphologies on YP medium supplemented with 2% of the indicated carbon sources. set3Δ/Δ 

display wild type morphology on media containing non-fermentable carbon sources. Since Candida spp. 

do not have a β-lactamase, the cells fail to convert raffinose into fermentable monosaccharides. “F:” 

fermentable, “NF”: non-fermentable. Cultures were grown for 3 days at 37oC. Scale bar corresponds to 

2mm. 

 

Figure 8. set3Δ/Δ cells are a hyperreactive to cAMP/PKA induction by GlcNAc 

(A) Colony morphologies of wild type and set3Δ/Δ cells grown on YPD at 30oC for 3 days in the presence of 

the indicated amounts of N-acetylglucosamine (GlcNAc). Scale bar corresponds to 2mm. 

(B) The “threshold shift” model for Set3C function in triggering morphogenesis. The cAMP/PKA signaling 

pathway transmits environmental information, thereby shaping the morphogenetic change. In wild type 

cells (left panel), the sensitivity of the pathway to adequate signals is antagonized by the SetC. If the Set3C 

is disrupted or impaired (right panel), the threshold for morphogenetic conversion is shifted, and the 

pathway responds to milder inducing stimuli by triggering filamentation. In addition, metabolites such as 

adenine also modulates the activity of the pathway through as yet undisclosed mechanisms. 

 

Figure 9. The set3Δ/Δ mutant shows attenuated virulence in a murine infection model 

(A) Kaplan-Meier survival curves of mice receiving tail vein injections of MTLa/α wild type, set3Δ/Δ and 

set3Δ/Δ::SET3 C. albicans strains. Ten mice per C. albicans genotype were injected; survival was monitored 

over three weeks. Statistical significance was determined using the Log-rank test. 

(B) set3Δ/Δ strains do not have a growth defect in vitro. Generation times of wild type and set3Δ/Δ cells 

were measured in YPD medium at 30oC as described in Materials and Methods. 

(C) Histopathology of the cortical part of kidneys of mice infected with wild type or set3Δ/Δ C. albicans 

strains on day one after infection. The set3Δ/Δ displays hyperfilamentous growth. Tissues were stained 

with Grocott staining to visualize fungal cells. Counterstaining was performed with Hematoxilin. 
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