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Abstract

More and more phylogenetic trees are generated, and it frequently occurs that the

inferred relationships contradict each other. In this case, tools are necessary which

evaluate the amount of difference between two trees, extract the congruencies of two

trees, and combine multiple trees by minimizing the incongruencies. These tools are

summarized by the term “phylogenetic postprocessing”. In this thesis, two aspects of

phylogenetic postprocessing are investigated in detail.

First, tree distance computations evaluate the amount of difference between two

trees. Most measures only take the topological information into account. There are

a few measures that additionally focus on the branch lengths of the trees. One of

these is the length of the shortest path in the space of weighted trees, also known as

the geodesic distance. Here, an exact, but exponential-time, algorithm to compute

the geodesic distance is presented. Comparisons with its approximations show that

there is a particular path that approximates the geodesic distance well and that can

be computed in linear time.

Phylogenetic trees can also be tested for being statistically similar or different. Then

a topological distance measure can be used as a test statistic where the associated p-

value is computed under a null distribution of trees. Discrete tests must ensure that

the size of the test is conservative, i. e. the size must not exceed the significance level.

We present one example where a test has to be modified to ensure this property.

Second, gene trees on overlapping taxon sets can be combined into a so-called su-

pertree. Another possibility is to combine the gene alignments directly, namely, to

concatenate the gene alignments into a superalignment and to reconstruct a phy-

logeny from this long alignment. There is also the possibility to combine the data

at a level between superalignment and supertree methods. Simulations of gene align-

ments along model gene trees allow for the comparison of methods from all three

levels. We investigate different settings, e. g. complete or overlapping taxon sets,

equal or different substitution parameters or different gene topologies. The results

show a good performance of matrix representation methods compared to other su-
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pertree and medium-level methods. Furthermore, superalignment is well applicable in

the case of differing parameters between genes but is problematic when a high level of

incongruence is present among the true gene trees.

Additionally to the practical evaluation of supertree methods, theoretical and algo-

rithmic aspects are of interest. Therefore we study different null models underlying

supertree reconstruction. We find only the distribution of equally likely splits to be-

have in an appropriate way if little information is present. In contrast, the distribution

of equally likely trees inserts a tree shape bias in split-based supertree methods. This

bias can be traced back to the unequal split distribution in the null model.

Finally, a supertree can also be defined by minimizing the total distance to the

trees in the set, i. e. as a median tree. The majority-rule consensus is described as

a median tree method for trees on the same taxon set. For trees on overlapping

taxon sets, however, different specifications can be used, namely MR(-)supertrees

and MR(+)supertrees. We present algorithms to compute the respective distances

in the matrix representation framework. Applying their implementation to simulated

data sets shows a clearly better performance of MR(-) compared to MR(+). This

discrepancy is likely to trace back to a tree shape bias in MR(+).

To conclude, we see that the two aspect of phylogenetic postprocessing, tree dis-

tances and tree combination methods, are not independent. Instead, they are linked by

the definition of the median tree. Thus our understanding of tree distances influences

data combination methods and vice versa.

In summary, the space of trees, weighted or unweighted, plays an important role in

the different tasks. Postprocessing phylogenies must also consider the complex space

of trees to get unbiased results. We show that from six taxa on, tree topologies follow a

complex structure: They possess different kinds of splits and different kinds of shapes.

To highlight this, the topologies for six taxa will be presented on one page each.



Zusammenfassung

Es werden immer mehr phylogenetische Bäume berechnet. Die berechneten Verwandt-

schaften zwischen den Arten können sich allerdings widersprechen. In diesem Fall sind

Werkzeuge notwendig, welche die Höhe des Unterschiedes berechnen, die Gemein-

samkeiten zweier Bäume extrahieren und mehrere Bäume zusammenfassen indem sie

die Unterschiede minimieren. Diese Werkzeuge werden unter dem Begriff “Phyloge-

netic Postprocessing” zusammengefasst. In dieser Arbeit werden zwei Aspekte des

Phylogenetischen Postprocessings im Detail untersucht.

Zuerst werden Baumdistanzen untersucht. Diese evaluieren den Unterschied zweier

Bäume. Die meisten Maße berücksichtigen dabei nur die topologische Information.

Allerdings tragen auch die Kantenlängen der Bäume Informationen, da sie z. B.

eine Schätzung der Menge an Unterschied zwischen zwei Sequenzen sind. Ein Maß,

welches sowohl die Topologie als auch die Kantenlängen berücksichtigt, ist die Länge

des kürzesten Weges durch den Raum aller Bäume mit Kantenlängen. Dies ist die

geodätische Distanz. Hier präsentieren wir einen exakten Algorithmus um die geo-

dätische Distanz zu berechnen, der in exponentieller Zeit läuft. Vergleiche mit ihren

Approximationen zeigen, dass es einen bestimmten Weg gibt, der die geodätische Dis-

tanz gut annähert und in linearer Zeit berechnet werden kann.

Phylogenetische Bäume können auch daraufhin untersucht werden, ob sie statistisch

ähnlich oder unterschiedlich sind. Dabei kann ein topologisches Distanzmaß als Test-

statistik verwendet und die assoziierten p-Werte werden unter einer Nullverteilung der

Bäume berechnet werden. Bei diskreten Testverfahren, muss allerdings die Testgröße

konservativ gewählt werden, d. h. sie darf das Signifikanzniveau nicht überschreiten.

Wir zeigen ein Beispiel auf, bei dem ein Test abgeändert werden muss um dies zu

gewährleisten.

Der zweite Aspekt ist die Kombination von Bäumen oder allgemein phylogene-

tischen Datensätzen. Genbäume mit sich überschneidenden Artenmengen können zu

einem sogenannten Supertree zusammengefügt werden. Eine andere Möglichkeit ist

bereits die Genalignments zu kombinieren. Dabei werden die Genalignments aneinan-
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dergehangen, d.h. zu einem sogenannten Superalignment kombiniert. Anschließend

wird eine Phylogenie aus diesem langen Alignment berechnet. Es gibt auch die dritte

Möglichkeit, die Daten auf einer Stufe zwischen Superalignment und Supertree zu

kombinieren. Mit Hilfe von Simulationen von Genalignments entlang Modellbäumen

können Methoden von diesen drei Stufen verglichen werden. Wir untersuchen ver-

schiedene Parameter, z.B. vollständige oder sich überschneidende Artenmengen, glei-

che oder unterschiedliche Substitutionsparameter oder unterschiedliche Gentopologien.

Die Simulationen zeigen gute Ergebnisse der Matrix-Representation-Methoden im Ver-

gleich zu anderen Supertreemethoden. Weiterhin ist Superalignment gut geeignet bei

unterschiedlichen Parametern zwischen den Genen, aber problematisch wenn es viele

Unterschiede zwischen den wahren Genbäumen gibt.

Zusätzlich zu diesem praktischen Vergleich von Supertreemethoden sind auch the-

oretische und praktische Aspekte von Interesse. Daher untersuchen wir die Nullmo-

delle, die der Supertreerekonstruktion zugrunde liegen. Ein solches Nullmodell ist die

Gleichverteilung der Splits, also jeder möglichen Unterteilung der Arten in zwei Meng-

en. Es stellt sich heraus, dass nur diese Verteilung angemessene Eigenschaften hat,

wenn wenig Information vorhanden ist. Ein zweites Nullmodell ist die Gleichverteilung

der Bäume. Diese fügt allerdings eine Verzerrung zugunsten bestimmter Baumstruk-

turen in splitbasierte Supertreemethoden ein. Diese Verzerrung kann auf die ungleiche

Verteilung der Splits in diesem Nullmodell zurückgeführt werden.

Schließlich kann ein Supertree auch als Median-Tree definiert werden, also als Baum,

der die totale Distanz zu allen Bäumen in der Menge minimiert. Der Majority-Rule

Consensus wurde als Median-Tree-Methode für Bäume mit gleichen Artenmengen

beschrieben. Für Bäume mit sich überschneidenden Artenmengen gibt als allerdings

unterschiedliche Ausprägungen, und zwar MR(-)supertrees und MR(+)supertrees.

Wir präsentieren Algorithmen um die entsprechenden Distanzen im Matrix-Repre-

sentation-Framework zu berechnen. Durch die Anwendung ihrer Implementierungen

auf simulierte Datensätze sehen wir deutlich bessere Ergebnisse für MR(-) im Vergleich

zu MR(+). Es ist naheliegend diesen Unterschied auf eine Verzerrung zugunsten bes-

timmter Baumstrukturen in MR(+) zurückzuführen.

Zusammenfassend sehen wir, dass die zwei Aspekte des Phylogenetischen Post-

processings, also Baumdistanzen und Baumkombinationsmethoden, nicht unabhängig

sind, sondern durch die Definition des Median-Trees verbunden. Daher wird unser

Verständnis von Baumdistanzen auch die Kombination von Bäumen beeinflussen und

umgekehrt.
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Chapter 1

Introduction into Phylogenies

1.1 Introduction

A phylogenetic tree or phylogeny is a graphical representation of putative gene or

species relationships. More and more phylogenetic trees are generated (about 15 pub-

lished per day; Rokas, 2006), and it frequently occurs that the represented relation-

ships contradict each other. In this case, tools for phylogenetic postprocessing are

of particular importance. Phylogenetic postprocessing mainly comprises two different

tasks: (1) Computing the distance between two (or more) phylogenies and (2) com-

bining multiple phylogenies in an appropriate way into a new phylogeny that best

uses the information present and resolves conflicting information. The latter task

also comprises the combination of trees on different, but overlapping, sets of species

into a larger phylogeny displaying relationships between all the species studied. Be-

fore these topics are investigated in detail in Chapters 2 and 3, respectively, we will

broadly introduce the phylogeny problem (Section 1.2). For a detailed introduction

into phylogenetic trees, see Section 1.3.

1.2 Reconstructing Trees from Sequences

1.2.1 Gene Trees and Species Trees

Phylogenies are usually computed from aligned gene sequences (Section 1.2.2). The

assumption, that the gene phylogeny equals the species tree, may be invalid due to

the following problems:
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2 Chapter 1 Introduction into Phylogenies

Biological processes The gene phylogeny is correctly reconstructed, but may not be

equal to the species phylogeny for one of many different reasons, e. g. gene

duplication and loss, deep coalescence, or horizontal gene transfer (see e. g.

Maddison, 1997, for an overview). In this case, there may not even exist a tree

to display the true species relationships, but a phylogenetic network would be

the correct model.

Model misspecification and bias Estimating phylogenies necessarily involves the

specification of an explicit or implicit model which never fits the true biological

process completely. These processes may bias the phylogeny estimation (e. g.

Ho and Jermiin, 2004).

Stochastic processes Even if the true gene history equals the species history, a differ-

ent phylogeny is inferred from the limited amount of data. This may be caused

by randomly occuring mutations which better fit another tree.

Some of the problems can be reduced by sampling data from multiple genes and

concatenating their alignments. First, by looking at various gene histories, the analysis

is less biased by particular gene histories, and second, using more information also

improves parameter estimation and reduces stochastic noise (e. g. Rokas et al., 2003).

However, using a large data set can also intensify the bias in the data (e. g. Phillips

et al., 2004; Rodŕıguez-Ezpeleta et al., 2007). This could be averted by computing

each gene phylogeny independently and using a consensus or supertree approach to

combine the trees. These data combination methods will be discussed in Chapter 3.

1.2.2 Methods for Phylogeny Reconstruction

The trees for postprocessing must have been inferred from data at some point in time.

The classical phylogeny reconstruction problem is the reconstruction from a biologi-

cal data set, namely morphological or molecular information. We will concentrate on

molecular sequences although including morphological sequences may improve resolu-

tion and support of a phylogeny (Wortley and Scotland, 2006).

The collection of data sets from multiple genes follows two general strategies: (1) us-

ing only genes that provide full information, i. e. cover all taxa of interest (e. g. Cic-

carelli et al., 2006) or (2) using all available genes that are present in some taxa and

fulfill special overlap conditions (e. g. Driskell et al., 2004; McMahon and Sanderson,

2006; Schmidt, 2003). The latter approach is able to use many more genes and taxa,
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1.2 Reconstructing Trees from Sequences 3

since it allows for missing data. It can also be applied for phylogeny reconstruction

from expressed sequence tags (ESTs, e. g. Philippe and Telford, 2006).

Before the gene alignments are obtained, two important steps can influence the

phylogeny result: First, orthologs must be assigned correctly (see e. g. Chen et al.,

2007; Dutilh et al., 2007, for method comparisons). Second, these orthologs need to

be aligned with sufficient accuracy (see e. g. Edgar and Batzoglou (2006) for a review,

and Landan and Graur (2007) for an example of the impact of alignment accuracy on

phylogeny reconstruction).

Then the phylogeny reconstruction problem can be formulated as follows: Given a

set of aligned orthologous sequences, reconstruct a weighted tree which best describes

the observed sequence data. This simple description has two implications: First, the

phylogeny reconstruction problem is usually independent from the alignment problem,

i. e. it takes the orthology relationships and the alignment as given. Second, we need

a formal way to evaluate which tree is better than an other. Only then, we can find a

best tree. There are different objective functions for this problem:

Maximum Parsimony (MP) Minimize the number of substitutions the sequences

need to evolve along a tree (Camin and Sokal, 1965). Thereby, each alignment

column is considered independently, and its number of substitutions needed along

a particular tree is called parsimony length. The total parsimony length (PL)

is the sum of parsimony lengths over every alignment column, i. e. the total

number of substitutions the sequences need to evolve along a particular tree.

Maximum Likelihood (ML) Maximize the conditional probability of the sequence

data given a tree and an evolutionary model (Felsenstein, 1981). For nucleotide

data, not only the phylogeny, but also the parameters of the evolutionary model

are estimated. Thereby, the type of evolutionary model must be given, e. g.

Jukes-Cantor model (JC, Jukes and Cantor, 1969) where each substitution is

equally likely, HKY model (Hasegawa et al., 1985) where transitions and transver-

sions have different probabilities, or general time-reversible model (GTR, Lanave

et al., 1984) where each type of substitution has a different probability. In con-

trast, the substitution model for protein sequences is usually given by an empir-

ical model, e. g. JTT (Jones et al., 1992).

Distance-based methods Compute a distance matrix from the alignment by estimat-

ing the pairwise distances for each pair of taxa. Subsequently, fit the distance

matrix to a tree. Thereby, the branch lengths connecting any two taxa should

A
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4 Chapter 1 Introduction into Phylogenies

get close to the pairwise distances (the least squares method, Fitch and Margo-

liash, 1967). Neighbor joining (Saitou and Nei, 1987) is another algorithm to

compute trees from pairwise distances.

This is an incomplete list of phylogeny algorithms, for which an even larger number

of programs is available (some of which are listed at http://evolution.genetics.

washington.edu/phylip/software.html). That means, already at the tree recon-

struction step, a decision is necessary how the tree shall be computed. The different

reconstruction algorithms and programs are described in detail elsewhere (e. g. Lemey

et al., 2009).

In principle, the origin of the trees is not important for the subsequent postpro-

cessing. Only in the case where branch lengths are considered, e. g. for distance

computations, the scales of the trees should be comparable.

1.3 Mathematical Description of Phylogenetic Trees

and Tree Spaces

1.3.1 Introduction into Trees

Here we will give a detailed description about the mathematical structure of trees and

tree spaces which is needed in the following chapters. The terminology will follow

Kupczok et al. (2008).

Phylogenetic trees are leaf-labeled trees, where the leaves are called taxa. One

distinguishes between rooted or unrooted phylogenetic trees. In case of rooted trees,

we treat the root as an additional taxon of an unrooted tree. The usual phylogenetic

inference methods (Section 1.2.2) can only reconstruct unrooted trees, thus we will

concentrate on unrooted trees. The term phylogenetic tree can stand for a topology

only, or a weighted tree. A topology is the branching pattern of the taxa, whereas a

weighted tree adds branch lengths to such a topology. Topologies and weighted trees

are introduced in detail in Sections 1.3.2 and 1.3.3, respectively. We will use the two

terms if the discrimination is important or the term (phylogenetic) tree if the meaning

is unambiguous in the context.
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1.3 Mathematical Description of Phylogenetic Trees and Tree Spaces 5
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Figure 1.1: Examples for phylogenetic trees on taxon set
X = {A,B,C,D,E, F}:
T 1 = {{A}, {B}, {C}, {D}, {E}, {F}, {A,B}, {C,D}, {E,F}} and
T 2 = {{A}, {B}, {C}, {D}, {E}, {F}, {A,C}, {B,E}, {D,F}}. We will use
the following notation: T 1 = {A,B,C,D,E, F,AB,CD,EF} and
T 2 = {A,B,C,D,E, F,AC,BE,DF}.

1.3.2 The Discrete Topology Space

Topologies

A topology T is identified by its taxon set X and its edge set, where terminal edges

connect a leaf with an inner node and interior edges connect two inner nodes. In

unrooted trees, there is no node of degree two. If an edge of a phylogenetic tree is

deleted, the tree decomposes into two connected components. Thus, the taxon set is

then partitioned into two sets (X1 and X2), one for each component. Such a bipartition

is called a split, and is identified by X1|X2. If the underlying taxon set X = X1 ∪X2

is clearly stated, we also identify a split with one set, X1 or X2, which does not have

more elements than the other. A k-split refers to a partition into k and n − k taxa,

i. e. k = min(|X1|, |X2|). Since each edge in a topology corresponds to a split, we

will identify a topology on taxon set X by the corresponding split set (see example in

Figure 1.1). In this thesis, the example taxon set will usually contain only one-letter

taxa. Then the taxon sets in a split can be shortly written as a string of concatenated

taxa (Figure 1.1).
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6 Chapter 1 Introduction into Phylogenies
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(a) 5 taxa
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(b) 6 taxa, subgraph
induced by split AB

DF

EF

AC

ABC

AB
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DE

(c) 6 taxa, subgraph
induced by split ABC

Figure 1.2: Compatibility graphs for five and six taxa. Nodes denote inte-
rior splits and edges indicate compatibility between the connected splits. (a)
Interior splits of five taxa (X = {A,B,C,D,E}). Here, an edge also depicts a
bifurcating topology identified by two compatible interior splits. There are 15
edges and 15 topologies. The graph is the well-known Petersen graph. (b) and
(c) Compatibility subgraphs for six taxa (X = {A,B,C,D,E, F}) induced
by the splits AB resp. ABC. The splits AB and ABC are representatives for
all 2-splits resp. 3-splits, since compatibility graphs induced by other splits are
isomorphic to one of the graphs. The full graph for six taxa would consist of
25 nodes and 105 edges forming 105 3-cliques. Thus, there are 105 different
bifurcating topologies for six taxa.

Compatibility Relationships

For n = |X| taxa, there are m = 2n−1 − 1 possible splits. We will denote the set of

all splits for n taxa by Sn. Analogously to the edges, we will distinguish between the

n terminal splits (trivial splits) and the m − n interior splits. Two splits are called

compatible if there is a phylogenetic tree containing both splits. This holds for two

splits X1|X2 and Y1|Y2 if at least one of the following taxon sets is empty: X1 ∩ Y1,

X1∩Y2, X2∩Y1 or X2∩Y2. Note that terminal splits are compatible to any other split.

The compatibility graph for a set of splits is a graph whose nodes represent the splits,

and edges in the graph indicate compatibility between two splits. Figure 1.2 shows

the compatibility graph for the interior splits for five and six taxa. For six taxa, only

the subgraphs induced by AB|CDEF (Figure 1.2b) and by ABC|DEF (Figure 1.2c)

are shown. The subgraph of the compatibility graph induced by a split S consists of

all splits compatible with S. The observations for compatibility relationships on six

taxa can be extended to compatibility graphs for an arbitrary number of taxa:

1. The compatibility graph induced by a 2-split is isomorphic to a complete com-
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patibility graph for splits of n−1 taxa. E. g. the compatibility graph of all splits

compatible to the 2-split AB|CDEF (Figure 1.2b) is isomorphic to a compati-

bility graph for five taxa (Figure 1.2a).

2. The compatibility graph induced by a k-split (k > 2) consists of two types

of nodes: Type-1-nodes correspond to splits for k + 1 taxa and are connected

according to the complete compatibility graph for k + 1 taxa, and type-2-nodes

correspond to n − k + 1 taxa and are connected accordingly. Furthermore,

all edges between the nodes of the two types exist, since all the splits in the

independent subtrees are compatible. In Figure 1.2c, there are two subgraphs

isomorphic to two compatibility graphs for four taxa. These are simply three

disconnected nodes. Both classes of nodes are completely connected with one

another.

An unrooted phylogenetic tree of n taxa contains at most n− 3 interior splits. If it

contains exactly n− 3 interior splits, all inner nodes have degree three, and the tree is

called bifurcating, and multifurcating or unresolved otherwise. It is well-known, that

Tn = (2n− 5)!! = 1× 3× · · · × (2n− 5) distinct bifurcating topologies exist for n ≥ 3

taxa (Felsenstein, 2004, Chapter 3). In the compatibility graphs, the bifurcating trees

are given as cliques of n − 3 nodes, i. e. 2-cliques for five taxa and 3-cliques for six

taxa (Figure 1.2). Thus, the discrete topology space is enumerated by the maximal

cliques in the compatibility graphs. Due to the compatibility restriction, the number

of possible bifurcating trees in which a k-split can occur depends on k (Table 1.1).

Null Models

Different distributions can be defined on the discrete topology space. We are partic-

ularly interested in a null model containing no phylogenetic information. This is the

well known distribution that each bifurcating tree for a particular number of taxa is

equally likely (Proportional to Distinguishable Arrangements, PDA, e. g. Semple and

Steel, 2003), i. e. each tree has a probability of 1/Tn. With perfect PDA we denote

the data set which contains each tree exactly once.

Second, we introduce the model that each split is equally likely (Proportional to

Distinguishable Splits, PDS). Analogously, we denote the data set which contains each

possible split exactly once as perfect PDS. The PDS model does not directly correspond

to a tree distribution. But it is possible to relate each split with a multifurcating

tree with only one inner branch. The PDS corresponds to an equal distribution of
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8 Chapter 1 Introduction into Phylogenies

n k Number of splits Number of trees per split
5 2 10 3
6 2 15 15

3 10 9
total 25

7 2 21 105
3 35 45

total 56
8 2 28 945

3 56 315
4 35 225

total 119
9 2 36 10395

3 84 2835
4 126 1575

total 246

Table 1.1: Number of different splits for each k and the number of different
trees containing a particular k-split.

those multifurcating trees. Note that there is no distribution of bifurcating trees that

corresponds to the PDS model (Steel and Pickett, 2006). The PDS and PDA models

are distinct since some splits occur in more trees than others (Table 1.1). For a k-split,

the number of trees containing this splits is Tk+1 × Tn−k+1. E. g. for n = 6, there are

15 different 2-splits and one particular 2-split is present in 15 different bifurcating

trees. But there are 10 different 3-splits, and each is present in only 9 trees. This gap

increases for larger n. E. g. for n = 9, the number of trees containing a particular

2-split is more than six times higher than the number of trees containing a particular

4-split.

Tree shapes

A (tree) shape can be obtained from a bifurcating topology by ignoring the labels.

Thus a shape is an unlabeled bifurcating tree. From six taxa on, there is more than

one tree shape. Note that the probabilities of shapes are different under the PDA

model (Table 1.2). There are unbalanced and balanced tree shapes. We define shapes

with exactly two 2-splits as unbalanced. (shapes S6,1, S7,1, S8,1 and S9,1). Balanced

shapes are not clearly defined for all n but always maximize the number of 2-splits.
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n Shape Number of trees Probability

5 S5 15 1

6 S6,1 90 0.857

S6,2 15 0.143
total 105

7 S7,1 630 0.667

S7,2 315 0.333
total 945

8 S8,1 5040 0.485

S8,2 2520 0.242

S8,3 315 0.030

S8,4 2520 0.242
total 10395

9 S9,1 45360 0.336

S9,2 22680 0.168

S9,3 45360 0.336

S9,4 7560 0.056

S9,5 11340 0.084

S9,6 2835 0.021
total 135135

Table 1.2: Shape probabilities under the uniform tree model (PDA).

1.3.3 The Continuous Tree Space

The space is more complex when not only topologies but weighted trees, i. e. trees with

branch lengths, are considered. The tree space Tn is the space of all weighted trees on

n taxa. Tn is defined as follows (Billera et al., 2001). Each split is identified with a

different orthogonal unit vector eS (S ∈ Sn) in the m-dimensional space. Recall, that

m = 2n−1 − 1 is the number of possible splits for n taxa. These unit vectors are the

axes of Tn. Thus, Tn is a subspace of Rm.

For each topology T , the unit vectors associated with its splits span a |T |-dimensional

subspace. Recall, that |T | is the number of splits in T and that n ≤ |T | ≤ 2n − 3

because each topology consists at least of n terminal splits and at most n− 3 pairwise

compatible interior splits.
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10 Chapter 1 Introduction into Phylogenies

A weighted tree p with topology T is a point in Tn given by

p =
∑
S∈T

pS eS ,

where pS denotes the split weight of split S from topology T . With this, every weighted

tree p defines a split weight function λp : Sn → R with λp(S) = pS if S ∈ T and

0 otherwise. In other words, λp assigns to each split S ∈ T its weight for tree p.

Therefore, the weight function also identifies the tree (and implicitly also its topology),

and we use the convention λp(T ) = p. We can apply λp to any collection of splits A
and get a point in Tn with

λp(A) =
∑
S∈A

λp(S) eS .

In particular, λp assigns 0 to each split not in T , thus the point λp(A) lies on the

subspace spanned by the splits in T ∩A. We are mainly concerned with either one or

two trees and thus will use λ resp. λi, i = 1, 2 to identify the trees.

The union of weighted trees (analogously, topologies and weight functions) forms Tn.

Unresolved topologies are also included in this space. More precisely, an unresolved

topology lies on the boundary of more resolved topologies. Thus, unresolved topologies

connect the bifurcating topologies. An example is shown in Figure 1.3a, where the

unresolved topology corresponds to the single axis CD|ABE and connects the two

bifurcating topologies.

Figure 1.4 shows a visualization of T4 and T5, where only the interior splits are illus-

trated. The previous considerations about compatibilities of splits help to understand

how to extend these figures for higher dimensions:

1. By deleting all splits incompatible with a 2-split, one reduces the dimension of

Tn. In particular, one projects Tn on the subspace spanned by the compatible

splits. This results in a space isomorphic to Tn−1 with two extra dimensions,

one for the 2-split and one for the additional terminal split.

2. When projecting Tn onto the vector space spanned by the splits compatible to a

k-split (k > 2), the resulting space has the following structure: Tk+1 × T′n−k+1,

where T′n−k+1 is Tn−k+1 with one terminal split missing. An example is shown

in Figure 1.5.

Furthermore, Tn is a true subspace of Rm. Already in T4 we see that the tree
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CD|ABE

AE|BCD

AB|CDE
(a) Example of an unresolved topol-
ogy (green) connecting two resolved
topologies

CD|ABE

AE|BCD

AB|CDE

(b) Example of paths in the tree
space connecting two weighted trees
(points): Manhattan path (line), Eu-
clidean path (dotted) and geodesic
path (dashed).

Figure 1.3: Subspace of the tree space for five taxa.

space is sparse. Although the dimension of the space is m = 3, each tree has only

one internal split. For T5, the dimension is m = 15 but each tree lies on a 2D-plane.

This disparity increases for higher dimensions, since the number of splits for one tree

increases linearly with n, but the number of possible splits, m, increases exponentially

with n.
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12 Chapter 1 Introduction into Phylogenies

AD|BD

AB|CD

AC|BD

(a) T4

y

x

z

x

y

z

(b) T5

Figure 1.4: Tree space for four and five taxa, where only the interior splits
are shown. (a) T4: the split corresponding to each axis is given. Only points on
the axes lie in T4. (b) T5: Billera et al. (2001) introduced this two-dimensional
description of the space spanned by the ten nontrivial splits for five taxa. Here,
each topology is a 2D-plane. Note that the figure is entangled as some splits
(x, y, z) are shown twice at the boundary of the figure.

ACBC

DF

EF

DE

AB

Figure 1.5: Subspace of T6 showing only the interior splits compatible to
the split ABC. This corresponds to a cross-product of the two T4-spaces with
axes {AB,AC,BC} and {DE,DF,EF}, respectively. See Figure 1.2c for the
compatibility relationships.
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Chapter 2

Distances between Phylogenetic Trees

2.1 Overview of Distance Measures

2.1.1 Introduction

Comparing phylogenetic trees is a major task in phylogenetic research. Comparisons

are necessary when trees derived from different genes are incongruent (e. g. Rokas and

Carroll, 2005), when the outcomes of different reconstruction methods disagree (e. g.

Dutilh et al., 2007), or when one compares the outcome of different tree reconstruction

methods by simulation (e. g. Gadagkar et al., 2005).

A natural way to compare pairs of trees is to apply a distance measure. Most mea-

sures only take the topological information into account, e. g. the Robinson-Foulds

distance (Section 2.1.3; Robinson and Foulds, 1981), the nearest neighbor interchange

distance (Waterman and Smith, 1978), the subtree prune and regraft distance (Hein,

1990), or the quartet distance (Estabrook et al., 1985). On the other hand, there are a

few measures that focus on the branch lengths of the trees, e. g. the weighted Robinson-

Foulds distance (Section 2.1.4; Robinson and Foulds, 1978), the branch score distance

(Section 2.1.5; Kuhner and Felsenstein, 1994) or the geodesic distance (Section 2.2;

Billera et al., 2001). An advantage of distance measures that consider branch lengths

information is that they yield continuous values. This increases the distinguishabil-

ity between different comparisons and allows for applications in the clustering and

visualization of trees (Stockham et al., 2002; Hillis et al., 2005; Smythe et al., 2006).

Phylogenetic trees can also be tested for being statistically similar or different.

Then two basic settings are distinguished: (1) The trees are tested with respect to
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14 Chapter 2 Distances between Phylogenetic Trees

an underlying data set or (2) the trees are tested solely based on their topology and

eventually branch lengths. The first setting is extensively used in combination with

Maximum Likelihood to test for the difference in likelihood of two topologies (for

reviews see Goldman et al., 2000; Schmidt, 2009). Here we will concentrate on the

second setting (Section 2.3).

In the following, we present some existing distance measures. All compare trees on

the same taxon set of size n.

2.1.2 Size of the Maximum Agreement Subtree

The maximum agreement subtree of two trees is the largest possible subtree identical

in both input phylogenies (Finden and Gordon, 1985). Thereby the size is measured

by the number of taxa. This can be transformed into the MAST-based distance MD:

MD(T 1, T 2) = n−MAST size(T 1, T 2)

2.1.3 Robinson-Foulds Distance

The most common distance measure for the topological difference between two trees is

the Robinson-Foulds distance (RF, Robinson and Foulds, 1981). It corresponds to the

number of splits in each one but not in both topologies. In the set-theoretical sense,

the Robinson-Foulds distance between two topologies T 1 and T 2 is given by the size

of the symmetric difference:

RF(T 1, T 2) = |T 1∆T 2| = |(T 1 ∪ T 2) \ (T 1 ∩ T 2)|.

The example topologies in Figure 1.1 (page 5) have RF(T 1, T 2) = 6 because each

topology has three interior splits and the two trees have no interior split in common.

2.1.4 Weighted Robinson-Foulds Distance

One measure to compare two trees with respect to both topology and branch lengths

is the weighted Robinson-Foulds distance (RFw, Robinson and Foulds, 1978). It is the

sum of the absolute branch lengths differences for all splits in the trees. Thus, for
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2.1 Overview of Distance Measures 15

two weighted trees λ1 and λ2 with topology T 1 and T 2, respectively, the weighted

Robinson-Foulds distance is given as:

RFw(λ1, λ2) =
∑
S∈Sn

|λ1(S)− λ2(S)|.

This measure corresponds to the L1 norm or the length of the Manhattan path in Tn.

An example of the Manhattan path in T5 is shown in Figure 1.3b (page 11). For the

weighted trees in Figure 1.1, the weighted Robinson-Foulds distance is equal to 2.6.

2.1.5 Branch-score Distance

Another measure that respects branch lengths is the branch-score distance (BS, Kuh-

ner and Felsenstein, 1994; Felsenstein, 2005). It corresponds to the Euclidean distance

between the branch lengths of all splits in Rm:

BS(λ1, λ2) = ‖λ1(T 1)− λ2(T 2)‖ =

√∑
S∈Sn

(λ1(S)− λ2(S))2.

Topological information is not incorporated explicitly in this measure, but it is con-

sidered implicitly since branch lengths of non-existing splits are zero.

For two different topologies, the corresponding path in Rm (the Euclidean path) is

not a path in Tn (see example in Figure 1.3b). This implies that the Euclidean distance

does not correspond to the L2-norm on tree space. But Billera et al. (2001) have

shown that an L2-norm in Tn exists by proving that Tn is a CAT(0)-space (Bridson

and Haefliger, 1999). In CAT(0)-spaces, a unique shortest path exists between any

two points. These paths are called geodesics and their length, the geodesic distance,

is a metric on Tn which corresponds to the L2-norm (see also Section 2.2).
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16 Chapter 2 Distances between Phylogenetic Trees

AB DF

EF AC

BECD

(a) Compatibility graph (b) Adjacency matrix

BE

DF

AB

EF

CD

AC
(c) Space visualization

Figure 2.1: Three visualizations for the example topologies T 1 and T 2 from
Figure 1.1. (a) Compatibility map of the six interior splits from the two topolo-
gies. Compatibilities between splits of the two topologies are highlighted in gray.
We see that no bifurcating topology other than T 1 and T 2 can be formed from
these splits. (b) Associated adjacency matrix with the same color code, where
white entries denote incompatibility. (c) Part of tree space T6 spanned by the
interior splits in T 1 and T 2 with the same color code. The three gray planes
correspond to unresolved topologies spanned by splits from both trees.

2.2 Geodesic Distance

2.2.1 Algorithm to Compute the Geodesic Distance

Preliminary Considerations

In the following, we will provide an algorithm to determine the geodesic path between

two trees with the same n taxa. The length of the geodesic path is the L2-norm in

Tn (Section 2.1.5, Billera et al., 2001). The algorithm was first presented in Kupczok

et al. (2008).

The dimension of the tree space, m, increases exponentially with n (Section 1.3.2).

But given two topologies T 1 and T 2, we only need to consider the splits in these

two topologies since the geodesic path will never pass other splits (Vogtmann, 2003).

Figure 2.1 depicts the implications of this statement for the trees in Figure 1.1 (page 5).

For trees containing common internal splits, the problem of finding the geodesic

path can be simplified further: for Sc ∈ T 1 ∩T 2 with Sc = XA|XB, each internal split

in T 1 further resolves either taxon set XA or XB. We then call the corresponding split

sets T 1
A and T 1

B , respectively. These two split sets are subtopologies on the taxon sets
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2.2 Geodesic Distance 17

XA resp. XB (analogous for T 2). Since all splits from subtopology T iA are compatible

with all splits from subtopology T jB , i, j = 1, 2, paths through these subtopologies are

independent. Therefore, the geodesic for all splits can be found by looking separately

at taxon set XA (using the subtopologies T 1
A and T 2

A ) and taxon set XB (using T 1
B

and T 2
B ) and assembling the paths afterwards (Vogtmann, 2003). As a consequence,

we will assume in the following that the topologies are fully decomposed and contain

no common splits. This involves both reducing the topologies and setting the other

split weights (including the terminal splits) to zero.

Another useful property of geodesic paths is that they are piecewise linear. In

Figure 1.3b (page 11) the geodesic path between two trees with only one different

split is shown. This path is linear between one tree and the intersection point with the

axis. Therefore, the idea of the algorithm presented here is to enumerate all possible

intersections efficiently, to compute the length of a path given special intersections

and to find the shortest among these paths.

The Split Set

We present how to compute the geodesic path between two weighted trees λ1 and λ2

with topologies T 1 and T 2, respectively. As explained, we already decomposed the

topologies such that T 1 and T 2 contain no common splits. We first assume that the

respective topologies are bifurcating and discuss multifurcating trees at the end of this

section. In the bifurcating case both topologies contain the same number of splits,

i. e. d = |T 1| = |T 2|. Thus, we reduced Tn to a 2d-dimensional subspace by deleting

all splits not in T 1 ∪ T 2. The remaining split set is S′ with |S′| = 2d. Note that the

splits in S′ are exactly the splits contributing to the Robinson-Foulds distance, and

that 2d corresponds to the RF distance for the reduced topologies.

Example: The trees in Figure 1.1 on taxon set X = {A,B,C,D,E, F} are each

composed of three interior splits. They do not have interior splits in common, and

therefore d = 3, S′ = {AB,CD,EF,AC,BE,DF} and

T 1 = {AB,CD,EF}, T 2 = {AC,BE,DF}
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18 Chapter 2 Distances between Phylogenetic Trees

with the following weights for the topologies:

λ1(T 1) = (0.1, 0.2, 0.3, 0, 0, 0), λ1(T 2) = (0, 0, 0, 0, 0, 0),

λ2(T 1) = (0, 0, 0, 0, 0, 0), λ2(T 2) = (0, 0, 0, 0.9, 0.6, 0.5).

Legal Topologies

We construct legal topologies A that are formed by the splits in S′ and fulfill the com-

patibility condition. A legal topology A is required to be maximal, i. e. adding splits

S ∈ S′ to A will violate the compatibility within A. This corresponds to extracting

the maximal cliques from the compatibility graph with node set S′. Non-maximal

topologies are by definition composed of fewer splits and are therefore subtopologies

of a maximal topology. This implies that any path through legal subtopologies runs

along the boundary of a legal topology. Thus, paths through subtopologies are al-

ready contained in the possible paths through other legal topologies by setting the

corresponding split weights to 0.

Let A be the set of all legal topologies. By this definition, T 1 ∈ A and T 2 ∈ A.

Example: For the trees in Figure 1.1, the compatibility graph is shown in Figure 2.1a.

The set A of legal topologies comprises the maximal cliques of the graph, thus

A = {T 1, T 2, {AB,DF}, {CD,BE}, {EF,AC}}

Sequences of Legal Topologies

A sequence of legal topologies connects T 1 with T 2 by passing through legal topologies

from A in such a manner that in each step at least one split from T 1 is replaced by

at least one split from T 2.

Accordingly, a sequence of legal topologies (Aj)kj=0 with k ≤ d and A0 = T 1, Ak =

T 2 must fulfill the following two conditions for all j = 0, . . . , k − 1:

Aj+1 ∩ T 1 ⊂ Aj ∩ T 1 and Aj ∩ T 2 ⊂ Aj+1 ∩ T 2 (2.1)
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2.2 Geodesic Distance 19

i. e. no split from T 1 can re-emerge in the sequence and no split from T 2 can be lost.

From the adjacent topologies Aj and Aj+1 we are interested in the splits that change

their membership between these sets. These transitions Ij (j = 0, . . . , k− 1) are given

as the symmetric difference between these two sets, i. e. Ij = Aj∆Aj+1. Note that

the series of transitions (Ij)k−1
j=0 form a partition of the split set S′.

From this sequence of topologies, we generate a piecewise linear path. The path is

linear while passing through a topology A. Two adjacent topologies are connected by

a transition point where all splits in Ij have weight 0.

Legal Paths

A path is parameterized with constant speed by a piecewise linear function

g : [0, 1]→ R2d with g(0) = λ1(T 1) and g(1) = λ2(T 2) (Vogtmann, 2003; Bridson and

Haefliger, 1999). For each transition from topology Aj to Aj+1, there exists a time tj

at which g(tj)i is zero for the splits i ∈ Ij. In other words, tj is the transition time

in which the splits i ∈ T 1 ∩ Ij are reduced to length zero and 1− tj is the transition

time in which the splits i ∈ T 2∩ Ij are expanded from zero to their weight in λ2. Due

to the constant speed condition of the path (Vogtmann, 2003), the transition times tj

are calculated from the transitions by

tj =
‖λ1(I

j)‖
‖λ1(Ij)‖+ ‖λ2(Ij)‖

.

For a sequence of topologies to contain a legal path, the transition times (tj)
k−1
j=0 must

be increasing with k. This condition ensures that the sequence of topologies is visited

in the proposed order, and thus, only legal topologies are traversed. For a legal path

g, the entries of g for an arbitrary time t ∈ [0, 1] are given by

gi(t) =


−λ1(i)

tj
(t− tj), i ∈ T 1 ∩ Ij and t < tj,

λ2(i)
1−tj (t− tj), i ∈ T 2 ∩ Ij and t > tj,

0, otherwise

 .

Herewith, the function g describes the path between the two weighted trees, which
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20 Chapter 2 Distances between Phylogenetic Trees

changes direction at (tj)
k−1
j=0 . Its length is computed by:

‖g‖ =
k∑
j=1

‖g(tj)− g(tj−1)‖, with t0 = 0 and tk = 1.

There is always a legal path defined by a single transition at time t∗ with I∗ =

S′. This path simultaneously replaces all splits in T 1 by all splits in T 2 at time

t∗ and is called cone path, because it passes through the origin of the 2d-dimensional

subspace of Tn. If decompostion can be applied there is always another legal path, the

decomposed cone path. It passes independently through the origins of each subspace

originating from the independent decompositions. The cone path always has only

one transition point, whereas the decomposed cone path has one transition point for

each decomposition. Therefore, its length lies between the cone path length and the

geodesic path length.

Example: The example set A from Figure 1.1 suggests four sequences of legal

topologies with the following transitions and transition times:

Path 1: T 1
{CD,EF,AC}−−−→

t1=0.42 {AB,DF}
{AB,AC,BE}−−−→

t2=0.09 T 2

Path 2: T 1
{AB,EF,BE}−−−→

t1=0.35 {CD,BE}
{CD,AC,DF}−−−→

t2=0.16 T 2

Path 3: T 1
{AB,CD,AC}−−→

t1=0.2 {EF,AC}
{EF,BE,DF}−−−→

t2=0.28 T 2

Path 4: T 1
{AB,CD,EF,AC,BE,DF}−−−→

t∗=0.24 T 2

Because t1 > t2 for the first sequence, it does not yield a legal path. This is visualized

in Figure 2.2a: The topologies suggested by the transition times are T 1
{AB,AC,BE}−−−→

t2=0.09

{CD,EF,AC,BE}
{CD,EF,AC}−−−→

t1=0.42 T 2. So four splits coexist between time 0.09 and 0.42,

where the splits from the first tree are incompatible with the splits from the second

tree. Thus, the condition of a legal path can be checked by testing whether the times

in a sequence of topologies are increasing.

Since t1 ≤ t2 does also not hold for the second sequence (Figure 2.2b), only path 3

(Figure 2.2c, length 1.5592) and path 4 (Figure 2.2d, the cone path, length 1.5658)

correspond to legal paths. In this example, there is no decomposed cone path since

decomposition is not applicable. Path 3 is the geodesic path between the two trees.
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Figure 2.2: Parameterizations for the four possible paths of the example trees
in Figure 1.1.

Multifurcating Trees

Only one extension of our findings is necessary to include trees with less than n − 3

interior splits, i. e. multifurcating trees. If T 1 is multifurcating, there may be splits

in T 2 that are compatible to each split in T 1 and vice versa. The length of a split

in T 2 with this property will be extended immediately from the beginning, while the

length of a split in T 1 with this property will be reduced until the end. Thus, only the

remaining topologies T̂ 1 and T̂ 2 without these splits are relevant for the calculation

of the transition times and contribute to the topologies in A. Note that T̂ 1 and T̂ 2

do not necessarily contain the same number of splits.

Implementation Details

The presented algorithm for the geodesic path comprises several steps:

1. Decomposing the topologies into the sets T 1 and T 2,
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2. building the legal topologies A,

3. arranging the legal topologies in legal sequences with transitions,

4. extracting the legal paths from the legal sequences (these are the sequences where

the transition times are in the correct order) and

5. finding the shortest among these legal paths, this is the geodesic path.

Our implementation does not follow these steps, but computes the legal topologies

together with the transitions and their respective times. The computation starts with

T 1 and generates all possible transitions I, which lead to a maximal legal topology. A

directed acyclic graph (DAG) is thereby generated whose node set is A and an edge

is inserted for each generated transition and labeled with its time. A legal sequence

is a directed path in the DAG which connects T 1 and T 2, and a legal path is a

legal sequence with increasing edge weights on the path through the DAG. Not all

sequences have to be enumerated until the end. The transition times are computed

co-instantaneously and tested for an ascending sequence. Illegal paths are identified

and terminated before reaching T 2.

The time-limiting step is the generation of all transitions I, which is done for each

topology in A. First, for topology T 1 all possible I leading to a maximal legal topology

are generated. There are not more than 2d of these transitions. Then the complete set

A is already known, and for each element all possible transitions are generated again.

This yields

2d︸︷︷︸
Generation of A from T 1

+ 2d × 2d︸ ︷︷ ︸
Generation of all I for the other topologies

= O(22d)

for building the graph. But note that because of incompatibilities there are much

less then 2d legal topologies and the size of A is much smaller than 2d. Furthermore,

the algorithm is exponential in d, which is small for topologically similar trees and

which can be decreased by decomposing the trees.

The algorithm is implemented in a python program called GeoMeTree (Geodesic

Metric on Trees) available from www.cibiv.at/software/geometree. The program

has been used for the calculations in the next section.

A

B

C

E

DF

www.cibiv.at/software/geometree


2.2 Geodesic Distance 23

2.2.2 Simulation Study

The Data Set

A data set was generated from 216 alignments of 20 metazoa species and yeast as an

outgroup (Ewing et al., 2008; Ebersberger, 2007). The orthologs were extracted from

the Inparanoid database (O’Brien et al., 2005), where pairwise orthologs of eukaryotes

are stored. Orthology is expanded to cover all 21 species by taking an arbitrary

order of the 21 species and determining the orthologous pairs between neighboring

species. If a chain occurs where the protein in the first and last species are also

orthologs this protein is added to the data set. This resulted in 216 alignments for

21 species, where each alignment consists of putative orthologs. For these, alignments

were produced with T-coffee (Notredame et al., 2000). Maximum likelihood gene

trees were reconstructed for each of the gene alignments with phyML (Guindon and

Gascuel, 2003). A widely accepted species tree had been found for these gene trees

with different methods (Ewing et al., 2008).

From the resulting set of 216 trees, we used the 118 strictly bifurcating trees (6903

pairs) for the distance computations. The resulting weights for each tree are normal-

ized (i. e. each has a Euclidean norm of 1). Otherwise the branch lengths are expected

to dominate the distance between two trees, while differences between their topologies

have less influence on the measure.

Dimension and Number of Paths

The computations were first done without decomposition. As stated earlier, the di-

mension d is the number of splits in one topology but not in the other. For pairs of

bifurcating trees, d corresponds to half of the Robinson-Foulds distance (Section 2.1.3).

For 21 taxa, the maximal possible value of d is 18, but the observed dimension d in

the data ranged from 0 to 12 (Figure 2.3a). The few pairs with high dimension d are

mainly caused by a few gene trees with many incongruencies to the species tree.

Without decomposition, the mean number of legal paths in tree space increases

exponentially with the dimension (Figure 2.3b). This is due to the fact that the

number of legal topologies increases exponentially with d and more legal paths are

expected for a larger set of legal topologies. A substantially smaller number of paths

is explored when the topologies are decomposed: The numbers with decomposition
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Figure 2.3: Frequence of observed dimensions and mean number of paths

in Figure 2.3b refer to the product of the number of paths through the independent

decompositions, which is smaller than the complete number of paths.

Computing Time

Although the algorithm is exponential in d, the program is reasonably fast. The

mean runtime without decomposition was 0.4 s. However, the time to compute the

distance for one pair of trees strongly depends on the number of paths evaluated.

This is reflected by the longer runtime for high dimensions and without decomposition

(Table 2.1, left part). The runtime is highly improved when decomposition of the trees

is applied (Table 2.1, right part). For the two runs which then show a runtime of > 30

s, the trees could not be decomposed.

Approximations of the Geodesic Distance

A lower and an upper bound is known for the geodesic distance (Amenta et al., 2007):

The lower bound is the branch score distance (Section 2.1.5) and the upper bound is
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Without With
Decomposition Decomposition

Time Dec.
d mean max mean max mean max
0 0 s 0 s 0 s 0 s 1 1
1 0 s 0 s 0 s 0 s 1 1
2 0 s 0 s 0 s 0 s 1.6 2
3 0 s 0 s 0 s 0 s 2.2 3
4 0 s 0.1 s 0 s 0.1 s 2.6 4
5 0.2 s 1 s 0 s 0.2 s 2.9 5
6 0.9 s 9.9 s 0 s 0.7 s 3 5
7 3.7 s 102 s 0 s 0.8 s 2.7 6
8 15.8 s 11.4 m 0.1 s 7.7 s 2.7 6
9 56.1 s 33.7 m 0.2 s 22.6 s 2.4 5

10 8.6 m 9.9 h 2.1 s 46 s 2.1 4
11 43.7 m 17.9 h 2.7 s 44.3 s 2 4
12 2.3 m 5.4 m 3.9 s 13.9 s 1.5 2

Table 2.1: Time: Mean and maximal time consumption for the different di-
mensions d without and with decomposition. Dec.: Mean and maximal number
of decompositions for a dimension d.

the length of the cone path. Amenta et al. (2007) showed that these two lengths differ

at most by a factor of
√

2.

We observed that the mean ratio of the cone path to the branch score distance is

close to 1.4, when the distance is computed only from the differing splits (Figure 2.4b).

In contrast, the ratio is smaller than 1.1 when all splits are considered (Figure 2.4a).

Thus, both distances give a tight interval for the geodesic distance. Figure 2.4 also

shows, that the geodesic distance is better approximated by the cone path than by the

branch score distance. This is expected, since the cone path is already a path in tree

space. In contrast, the branch score distance measures the length of the Euclidean

path between two trees, which is not a path in tree space for trees with at least one

different split.

The approximation with the cone path can be further improved by applying the

decomposed cone path (Figure 2.5). Both for different and for all splits the approxi-

mation is on average improved by about a factor of two.
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Figure 2.4: Means of the ratios of the distance measures. “Cone”: cone path
length; “BS”: branch score distance; “Geod”: geodesic distance.
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Figure 2.5: Means of the ratios of the distance measures. “Cone”: cone path
length; “DeC”: decomposed cone path length; “Geod”: geodesic distance. Note
the different scaling of the y-axes.
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Relationship to the Robinson-Foulds distance

The Robinson-Foulds distance (Section 2.1.3) is a pure topological and discrete dis-

tance measure, which counts the number of different splits between two trees and thus

corresponds to 2d in our notation. Since it is the prevalent distance measure for phy-

logenetic trees, it would be preferable if continuous distance measures also displayed

this topological information and extended it with the branch lengths information.

As Figure 2.6a indicates, comparing pairs of trees over all their splits results in a

distance range which appears to be hardly related to the Robinson-Foulds distance

especially for small values of d. The notches of the boxplots of different dimensions are

overlapping for the geodesic distance (and also for its approximations). This indicates

that the medians do not differ significantly. Under these circumstances the lengths of

the branches have a much higher influence on the distance than the topological fea-

tures. If one intends to make the comparison more sensitive to topological differences,

we suggest reducing the study to the 2d different splits (see Figure 2.6b). Here, the

notches for each distance method do not overlap up to a dimension of nine, indicating

that the median geodesic distance is increasing with increasing dimension. However,

the broad distributions show that the branch lengths do still have a substantial impact.

2.2.3 Conclusions

We presented an exact algorithm for computing the geodesic distance and showed its

applicability for phylogenetic trees. For a pair of trees, the algorithm constructs legal

topologies formed from splits of the input trees. From these topologies it enumerates

the legal paths leading from one tree through a sequence of legal topologies to the

other tree. We employed computational techniques to reduce the number of paths

enumerated. This facilitated the calculation of the geodesic path between two trees in

reasonable time, although the algorithm is still exponential in the number of different

splits.

Megan Owen developed another algorithm for that problem independently (Owen,

2008). Furthermore, a polynomial time algorithm appeared recently (Owen and

Provan, 2010). Our algorithm, however, constitutes the first available implementa-

tion. Furthermore, we used this implementation to emprically compare the geodesic

distance with its approximations.
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tinuous distances: The Robinson-Foulds distance is two times the dimension d
of the pair. For each category of d, a boxplot of the distribution of each of the
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We showed the applicability of the presented algorithm on a metazoa dataset which

was generated from 118 alignments of 21 species (Ewing et al., 2008; Ebersberger,

2007). In this example, the contribution of the branch lengths outweights the influence

of the topologies (Figure 2.6a) on the distance. To incorporate the topological signals,

we suggest as an appropriate distance measure the length of the geodesic path through

the splits exclusive to one of the trees considered (Figure 2.6b).

Another notable observation is the small factor by which the cone path and the

geodesic distance differ (Figure 2.4). Thus, the length of the cone path is a useful

approximation of the geodesic distance, especially since it incorporates topological

differences in a similar way. The previous finding of only using splits exclusive to one

of the trees as a distance can also be applied to the cone distance (Figure 2.6b). The

approximation is further improved by using the length of the decomposed cone path

(Figure 2.5).

The availability of a distance metric in tree space allows us to address further issues.

These include clustering or visualizing trees (e. g. Hillis et al., 2005), or finding the

center of a set of trees (Billera et al., 2001), which can be interpreted as a consensus

method. One possibility to define a consensus method for a given distance metric

are median trees. For the Robinson-Foulds distance, the median tree corresponds to

the majority-rule consensus tree (Barthélemy and McMorris, 1986), which is one of

the prevalent consensus methods (Bryant, 2003). For the weighted Robinson-Foulds

distance, the median tree is given by the majority-rule consensus tree in which each

branch length is the minimum of the lengths of the respective split in the different

trees (Pattengale, 2005). The median tree for a given set of trees under the geodesic

distance corresponds to the tree with the smallest total geodesic distance to all trees

in the regarded set. A closed formula to determine the median tree under the geodesic

distance is unknown to date, thus searching over the whole tree space would be neces-

sary. For simplification, one could assume that the median tree is among the observed

trees and thus determine the tree with the smallest total distance from all pairwise

distances.
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2.3 Testing Phylogenetic Trees based on Distances

2.3.1 Introduction

Testing trees only based on their topology is closely related to tree distances: Ev-

ery distance measure can be used as a test statistic where the associated p-value is

computed under a null distribution of trees. de Vienne et al. (2007) suggest the cor-

responding test using the MAST-based distance (Section 2.1.2) and the null model

of equally likely topologies (see also Section 1.3.2). Since computing the associated

p-values involves intensive resampling from the topology space, they also introduce

approximative formulas. Kupczok and von Haeseler (2009) criticize this approxima-

tion for not being statistically sound for some numbers of taxa. However, de Vienne

et al. (2009) argue that the method is fast and provides approximate p-values close to

the correct ones.

Here, we will reproduce the arguments of Kupczok and von Haeseler (2009) in detail.

We will refer to the test in de Vienne et al. (2007) as the MAST test and outline it

first.

2.3.2 The MAST Test

Remember that the size of the maximum agreement subtree (the MAST size) is the

number of taxa in the largest possible subtree identical in both input phylogenies

(Section 2.1.2). Its null distribution can be obtained by generating pairs of trees,

where trees are assumed to be equally likely, and evaluating their MAST size. From

this null distribution, de Vienne et al. (2007) estimated functions for the mean and

standard deviation of the MAST size depending on the number of taxa n. Thereby,

they confirmed the results of Bryant et al. (2003) that the mean MAST size grows

proportionally to the square root of n (Figure 2.7). E. g. for n = 50, the mean MAST

size is 10, thus on average 40 taxa (4/5 of all taxa) are pruned from random trees.

The test statistic of the MAST test for two trees of n taxa is the MAST size

centered by the mean for n and rescaled by the standard deviation for n. The resulting

standardized distribution for 7 ≤ n ≤ 50 is then used to fit an analytical curve to the

left tail of the distribution. With this curve, p-values up to 0.05 can be estimated.

Using the centered and rescaled MAST size as a test statistic causes several prob-

lems. First, only the taxa in the MAST contribute to the significance while the topo-
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Figure 2.7: Mean MAST size and critical value of the MAST size for α = 0.05:
The mean is given by equation (1) in de Vienne et al. (2007) and the critical
value is computed with equation (6) in de Vienne et al. (2007). The vertical
lines indicate the steps in the critical value.

logical information of the others is ignored. In a biological framework, however, this

may not use all the information present in the topologies. Second, the mean MAST

size increases only with the square root of the number of taxa n. Hence the mean

relative MAST size (the MAST size divided by n) approximates zero with increasing

n. That means, for two large trees on average a high proportion of taxa is pruned to

obtain the MAST. Our main concern when appplying the MAST test is, however, a

statistical one. Therefore we first introduce the terminology for discrete testing.

2.3.3 Discrete Testing

When applying a statistical test, a significance level α has to be chosen in advance

(usually 5 %). This implies that not more than 5 % of the tests are rejected under

the null hypothesis. The actual fraction of significant results for a predefined α is

known as the size of a test. In the ideal case, the significance level equals the test

size. For discrete tests, however, the size will rarely match α exactly since the sum of

probabilites for the extreme cases grows in discrete steps. The critical value c is the

cutoff value for a predefined significance level which marks the border of the rejected

hypotheses. For the critical value and all more extreme values, the null hypothesis

A

E

C

F

B D



32 Chapter 2 Distances between Phylogenetic Trees

is rejected. If it corresponds to the last value where the cumulative density function

is ≤ α, the test statistic is said to be conservative. On the other hand, if there

are more significant results than the predefined significance level, the test statistic

is liberal. Only if the test statistic is conservative, we can be sure that a significant

result or a more extreme case occurs under the null hypothesis not more often than

the significance level.

We will demonstrate these terms using the well-known binomial distribution. This

distribution describes the number of successes in a sequence of n independent Bernoulli

experiments, each of which yields success with probability p and failure with proba-

bility 1 − p. E. g. for n = 7 and p = 0.5, 7 successes occur with a probability of

0.78 %, whereas at least 6 successes occur with a probability of 6.25 % (Figure 2.8a).

Thus, for a cutoff value of 6, the cumulative density function already exceeds 5 %. For

α = 5 %, the conservative critical value is 7, and thus the size is only 0.78 %.

The significance could also be computed in analogy to the MAST test. Then, mean

and standard deviation are computed for 7 ≤ n ≤ 50 using the common formulas. For

each n, 1000 random values are generated and significance is assigned to the values in

the 5 %-quantile of the distribution of the centered and rescaled values combined for

all n (Figure 2.8b). Then, the cutoff value is -1.67 (red line in Figure 2.8b). For n = 7

this results in a critical value of 6, thus the resulting test size of 6.25 % is liberal.

2.3.4 Investigating the MAST Test

Random Trees

As described in Section 2.3.3, the size of a conservative test must not exceed the

significance level α. To determine the size of the MAST test, we first compute the

critical value of the MAST size for α = 0.05 (Figure 2.7). E. g. for n = 50, the critical

value is 13, thus when pruning 37 (≈ 3/4) or less of the taxa, the trees are considered

to be congruent. This high proportion is counterintuitive, but results from the vast

number of trees for large n and the fact already shown that the mean MAST size

grows slower than n (Section 2.3.2).

The size of the MAST test cannot be computed analytically as for the binomial

distribution. We approximate it by simulating 10,000 pairs of random trees, where

all trees are equally likely (the PDA model, Section 1.3.2). For the resulting pairs of
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Figure 2.8: Binomial distribution for p = 0.5.

trees, the MAST size is constructed with the algorithm of Goddard et al. (1994) as

implemented in PAUP* (Swofford, 2002).

The average size of the MAST test for all n and for 7 ≤ n ≤ 50 is 0.043 and 0.048,

respectively, and thus below the significance level of 0.05. However, in Figure 2.9 we

see that the size exceeds the significance level for some n. In these cases, the estimate

of the conservative size is much smaller but the corresponding critical value is only

one taxon less than the critical value obtained from the MAST test (Figure 2.7). E. g.

for n = 7, the critical value of the MAST test is 5, but the corresponding size is

12.7 %, whereas 6 or 7 has only been observed in 0.8 % of the cases. Thus 0.8 % is the

correct size of the conservative test with a critical value of 6. We suggest to modify the

MAST test for the cases where the conservative size is smaller than the original size

in Figure 2.9. In these cases the critical value has to be incremented by one to result

in the conservative critical value. We will refer to this test as the modified MAST test.

For the random trees, the modified MAST test results in an average size of 0.024 and

0.021 for all n and for 7 ≤ n ≤ 50, respectively.

We observe that the original size exceeds the significance level when the number of

taxa approaches the right boundary of an area delimited by vertical lines (Figure 2.9).
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Figure 2.9: Size of the test: Evaluation of the test statistic for 10,000 random
pairs of trees for each number of taxa. “Original size” is obtained by using the
critical values of the MAST test (Figure 2.7). “Conservative size” is obtained by
using the largest critical value which yields a size of 5 % or smaller. The vertical
lines are the same as in Figure 2.7. The horizontal line displays the significance
level 0.05.

Within these areas, all n have the same critical value (cf. Figure 2.7). For instance

with 40 ≤ n ≤ 47, the critical value is 12, thus a maximum of 28 (n = 40) to 35

(n = 47) taxa can be pruned while the pairs of trees are still significant. While the

critical value remains constant between two lines, the number of taxa allowed to be

pruned increases, thus more pairs show significance.

TreeBASE Data Set

To evaluate the behavior of the MAST test in a more realistic setting, we used real trees

but random taxon mappings. To this end, we downloaded all 5023 trees from Tree-

BASE (http://www.treebase.org/treebase/data/Tree.txt, April 2008). Thereof,

we investigated the 4610 trees comprising between 7 and 100 taxa. Unfortunately, the

number of available trees varies strongly for the numbers of taxa. Especially for each

n ≥ 94 there are less than 10 trees available, but for each n ≤ 50 there are more

than 30 trees present. Two different trees with the same number of taxa are drawn

randomly. If a tree contains multifurcations, these are randomly resolved each time
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the tree is drawn, where each resolution is equally likely. The resulting bifurcating

trees are relabeled randomly with the same taxon set.

In Figure 2.10a, the fraction of significant results for the MAST test is shown for

each number of taxa. Thereby results are considered significant if p < 0.05. On

average, the MAST test is slightly too liberal with an average fraction of significant

results of 0.064 and 0.058 for all n and for 7 ≤ n ≤ 50, respectively.

The modified MAST test uses the conservative critical value as explained in the

previous section. Applying this test to the TreeBASE data set results in an average

fraction of significant results of and 0.038 and 0.027 for all n and for 7 ≤ n ≤ 50,

respectively. The modified test is still liberal for some large values of n on this data

set (Figure 2.10b).

The higher fraction of significant results in Figure 2.10 compared to Figure 2.9 may

be due to the fact that the assumption of the null hypothesis of equally likely trees is

not true (see e. g. Blum and François, 2006, for a study about tree shape distributions

on a similar data set). Note that we weakened this fact by randomly resolving the

multifurcations in the trees. We observe that the fraction of significant results depends

strongly on the number of taxa, as already observed for random trees.

2.3.5 Conclusions

We have shown that a number of pitfalls exist when using the MAST test introduced by

de Vienne et al. (2007) to test whether two phylogenetic trees are congruent. First, by

using the MAST size as the basis of the test statistic, the positions of the taxa pruned

from the trees are completely ignored and any positional information e. g. whether

they were in the same subtrees is discarded. When applying the test in a biological

framework, the taxa in the maximum agreement subtree should be regarded, not only

their number. Second, a high number of taxa can be pruned from the phylogenies

while the pair remains significant. Our third and major concern is that tree topologies

are discrete as is the MAST size of two trees. One pitfall of the discreteness of the

MAST size is the strongly varying size of the test for different numbers of taxa. The

MAST test is too liberal for quite some values of n. Therefore, we recommend to

adjust the critical value such that the test is conservative for all n. Finally, the test

is more liberal using random phylogenies from TreeBASE which indicates that the

assumption of equally likely trees may not be an appropriate null model.
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(a) MAST test
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(b) modified MAST test

Figure 2.10: Results with trees from TreeBASE (1000 repetitions for each
number of taxa). The vertical lines are the same as in Figure 2.7. The horizontal
line displays the significance level 0.05.
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Chapter 3

Combining Phylogenetic Trees

3.1 Introduction into the Combination of Overlapping

Gene Data Sets

Combination at Different Levels

This chapter deals with combining trees, or more generally, combining phylogenetic

data sets. A phylogenetic data set can be, for example, a gene alignment or morpho-

logical characters. As stated in Section 1.2.2, we focus on gene alignment data.

Different methods are available to combine the original data at different points along

the way from the underlying sequences to the final tree (Schmidt, 2003; Ebersberger

et al., 2006): First, superalignment methods combine the data at an early level by

directly concatenating the gene alignments without any intermediate computations

(early-level combination; also called “supermatrix”, “concatenation” or “total evi-

dence”, Kluge, 1989; de Queiroz and Gatesy, 2007). Superalignment methods have

been used to infer phylogenies for eukaryotes (Philippe et al., 2004), Metazoa and

green plants (Driskell et al., 2004), legumes (McMahon and Sanderson, 2006) or species

from all three domains of life (Ciccarelli et al., 2006). Second, medium level combi-

nation methods first compute intermediate results from the gene alignments, e. g.

pairwise distances (Lapointe and Cucumel, 1997; Criscuolo et al., 2006) or quartets

(Schmidt, 2003), and subsequently reconstruct a phylogeny by combining this infor-

mation. Third, consensus and supertree methods combine the data at the late level

of gene trees (late-level combination; e. g. Bininda-Emonds, 2004). Supertree meth-

ods are used especially if only published trees but not the original data are available,
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38 Chapter 3 Combining Phylogenetic Trees

or if data of different kinds are combined. The prevalent method for reconstruct-

ing supertrees is matrix representation with parsimony (MRP, Baum, 1992; Ragan,

1992), MRP has been applied to many different kinds of species data, for instance to

mammals (Bininda-Emonds et al., 2007) or bacteria (Daubin et al., 2002).

Each of these approaches has general advantages and disadvantages. Superalign-

ment methods use all character information but assume the same underlying topology

and often the same parameters for all genes. These model violations may lead to biased

phylogeny estimates (Section 1.2.1). Consensus and supertree approaches account for

differing topologies and parameters between genes. On the other hand, they are more

susceptible to stochastic errors since estimating substitution parameters and a topol-

ogy for each gene independently may lead to overfitting. Furthermore, they try to

minimize the amount of missing data when constructing the gene trees. Medium-level

approaches also allow for gene-specific parameters, but they use quartet likelihoods or

distances, not gene trees, when building the final tree.

Combination in the Consensus Setting

The differences between concatenated alignments and tree combination have been ex-

tensively discussed in the consensus setting, i. e. where all data sets contain the same

taxa (e. g. Barrett et al., 1991; Bull et al., 1993; de Queiroz et al., 1995; Page, 1996;

Gadagkar et al., 2005). Consensus methods have the following advantages: They can

be easily applied when data of different kinds are combined since the trees are recon-

structed individually. Furthermore, it is possible to test these reconstructed trees for

incongruencies before their combination, thereby the combination of heterogeneous

data is prevented (Bull et al., 1993). It has been observed that the certainty for a par-

ticular phylogeny increases with the data size and therefore, concatenation approaches

may be misleading (Bull et al., 1993). On the other hand, also the support for the

true phylogeny may increase with more data and trees suboptimal for single data sets

may emerge when the data is combined into one superalignment (Barrett et al., 1991).

In addition, consensus trees are usually less resolved. Therefore they are more con-

servative, but superalignment trees may have greater explanatory power (de Queiroz

et al., 1995).
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3.1 Introduction into the Combination of Overlapping Gene Data Sets 39

Properties of Supertree Methods

Supertree methods can be viewed as an extension of consensus methods as suggested

by their first reference as “consensus supertrees” (Gordon, 1986). The so-called source

trees can have overlapping taxon sets, but need not have identical ones. They are first

computed for each gene, or are obtained from the literature, and are subsequently

combined into a supertree. Supertree methods can be broadly characterized by the

way they handle conflicting data. Supertrees generated by a veto method do not

contain clades that any source tree would vote against (e. g. Goloboff and Pol, 2002;

Ranwez et al., 2007). Most supertree methods, including the ones we consider here,

fall in the category of liberal methods. These methods resolve conflict by a voting

procedure. This feature is intended since some amount of conflict is expected to

be present among the gene trees (see also Section 1.2.1). For these liberal supertree

methods, there are several desirable properties (Wilkinson et al., 2004). E. g. to acquire

accurate and unbiased results, the methods should not be biased by the number of taxa

in the input trees, should be independent of the order of input trees, and should not

prefer particular tree shapes. Some desirable properties, however, cannot be satisfied

in conjunction (Steel et al., 2000). Investigating different supertree methods in the

consensus setting also helps to understand the properties of the respective methods

since a property that does not hold in the consensus setting does not hold in general

(Wilkinson et al., 2007).

Furthermore, there is an inherent difference between supertree construction in the

rooted and unrooted setting. For rooted trees, there is a polynomial-time algorithm to

find a parent tree if it exists, i. e. a tree that contains all the relationships also present

in the input trees (Aho et al., 1981). On the other hand, to determine whether a parent

tree for a set of unrooted trees with only overlapping taxon sets exists, is NP-complete

(Steel, 1992). As mentioned in our definition of phylogenetic trees (Section 1.3.1), we

are mainly interested in unrooted trees. However, in the simulation study (Section 3.3),

we will also consider methods for rooted trees.

Practical Investigations of Supertree Methods

In addition to theoretical properties, practical investigations using real data sets or

simulated data are of interest to compare different methods. Various authors used

real data sets to compare superalignment and supertree approaches (Salamin et al.,
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40 Chapter 3 Combining Phylogenetic Trees

2002; Gatesy et al., 2004; Fitzpatrick et al., 2006; Dutilh et al., 2007; Baker et al.,

2009). These real data sets have the advantage of a realistic setting, however, the

true tree is usually unknown. Then only well-established clades can be used for as-

sessing the performance (e. g. Dutilh et al., 2007) or methods can be compared with

one another (e. g. Baker et al., 2009). In contrast, with simulations the results are

compared to a model tree, and thus their performance can be measured at an absolute

scale. Several studies investigating supertree methods using simulations were carried

out (Bininda-Emonds and Sanderson, 2001; Bininda-Emonds, 2003; Eulenstein et al.,

2004; Levasseur and Lapointe, 2006). They employed the following general scheme:

(1) Generation of a model tree assuming a Yule process, (2) generation of alignments

along that tree, (3) random deletion of a proportion of taxa, (4) reconstruction of

gene trees by MP, (5) construction of the supertree from the inferred gene trees, and

(6) compare the supertree to the model tree. Bininda-Emonds and Sanderson (2001)

compared superalignment and MRP for different degrees of divergence and observed

that, with increasing divergence, the distance of the MRP trees to the superalignment

tree increased. Levasseur and Lapointe (2006) compared average consensus, super-

alignment with distances and MRP for gene trees with complete taxon sets. They

found average consensus to perform nearly as well as superalignment, whereas MRP

was substantially worse since it ignores gene tree branch lengths.

Simulations can also be used to evaluate the impact of undesired properties for

a particular supertree method. For instance, one of these properties is the emer-

gence of “novel clades”, i. e. clades contradicted by all gene trees. Bininda-Emonds

(2003) found such clades to be very rare. However, note that due to missing taxa

and multifurcating trees, it is not straightforward to measure supporting and conflict-

ing relationships between a supertree and the gene trees (an alternative definition is

presented by Wilkinson et al., 2005b).

Each of the above simulation studies focused on a special subset of methods for

supertree construction. A general performance assessment, however, has not yet been

carried out, and the strengths and weaknesses of the different methods are unknown.

After presenting data combination methods in detail (Section 3.2), we present an ex-

tensive simulation study about combining gene alignments (Section 3.3). There, we

compare different data combination methods, including common supertree, superalign-

ment and medium-level methods, to assess their accuracy in biologically reasonable

situations.
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3.2 Methods for Combining Overlapping Gene Data Sets 41

After this practical evaluation, we investigate theoretical properties of existent and

suggested supertree methods. Thereby we focus on majority-rule supertrees (Sec-

tion 3.4) and the null models underlying supertree reconstruction (Section 3.5).

3.2 Methods for Combining Overlapping Gene Data

Sets

First, we present some early-, medium-, and late-level methods together with the

implementation used for the simulation study (Section 3.3). All methods investigated

here, together with the abbreviations used, are listed in Table 3.1.

3.2.1 Early-level Combination

A superalignment is generated from single gene alignments by concatenating the dif-

ferent alignments and adding gaps where no sequence information is present for a

specific taxon. The superalignment method (SA) refers to reconstructing the super-

alignment tree. Here, we use maximum likelihood (ML) or maximum parsimony (MP),

depending on the size of the data set. ML phylogenies are computed with IQPNNI

version 3.1 (Vinh and von Haeseler, 2004), assuming the substitution model HKY for

DNA sequences (Hasegawa et al., 1985) and JTT for protein sequences (Jones et al.,

1992). In both cases, site heterogeneity is modeled with four Γ-distributed rate cat-

egories. MP phylogenies are computed with PAUP* 4.0b10 (Swofford, 2002) and the

following parameters: heuristic search with TBR branch swapping, random addition

of sequences, and a maximum of 10,000 trees in memory.

3.2.2 Late-level Combination

Phylogenetic Reconstruction of Gene Trees

The first step of any late-level combination method is the reconstruction of the gene

phylogenies (see also Figure 3.1, page 47), which serve as source trees for the su-

pertree reconstruction. We compute ML gene trees with IQPNNI using the same

reconstruction parameters as for the early-level combination. In some simulations,
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42 Chapter 3 Combining Phylogenetic Trees

Abbreviation Description Reference
Late-level combination:

Consensus Majority-rule consensus
Margush and McMorris
(1981)

MRP BR
Matrix representation with parsimony
and Baum/Ragan coding

Baum (1992); Ragan
(1992)

MRP PU
Matrix representation with parsimony
and Purvis coding

Purvis (1995)

MRP I
Matrix representation with
irreversible parsimony and
Baum/Ragan coding

Camin and Sokal (1965)

MRF BR
Matrix representation with flipping
and Baum/Ragan coding

Chen et al. (2003);
Burleigh et al. (2004)

MRF PU
Matrix representation with flipping
and Purvis coding

-

MRC
Matrix representation with
compatibility and Baum/Ragan
coding

Rodrigo (1996); Ross and
Rodrigo (2004)

MinCut Minimal cut Semple and Steel (2000)
ModMinCut Modified minimal cut Page (2002)
MaxCut Maximal cut Snir and Rao (2006)

QILI
Quartet inference and local
inconsistency

Piaggio-Talice et al.
(2004)

Medium-level combination:
SuperQP Super quartet puzzling Schmidt (2003)

AvCon Average consensus
Lapointe and Cucumel
(1997); Lapointe and
Levasseur (2004)

SDM Super distance matrix Criscuolo et al. (2006)
Early-level combination:
SA Superalignment e. g. Kluge (1989)

Table 3.1: Overview of reconstruction methods compared in the simulation
study (Section 3.3) and corresponding abbreviations.
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3.2 Methods for Combining Overlapping Gene Data Sets 43

the gene trees are obtained via bootstrapping. In this case, we generate 100 boot-

strap replicates of each gene alignment with seqboot, i. e. we build alignments of the

same length from the original alignment, where columns are drawn with replacement.

From these alignments, phylogenies are computed with IQPNNI and subsequently a

majority-rule consensus tree (see also next section) is built from the bootstrapped

trees with consense. Both seqboot and consense are part of PHYLIP version 3.6

(Felsenstein, 2005).

Consensus

Consensus methods combine trees on complete data, i.e. trees on the same taxon

set (for a review see Bryant, 2003). For complete data, we compute the majority-

rule consensus of the gene trees. The majority-rule consensus tree contains all splits

present in more than half of the input trees. We use the implementation in consense.

Methods using Matrix Representation

Three methods based on matrix representation (MRep) coding schemes are available:

MRep with parsimony (MRP), MRep with flipping (MRF), and MRep with compati-

bility (MRC). All three aim to optimize an objective function as explained later. If

more than one optimal tree is found, we take the strict consensus tree of the optimal

trees as the reconstructed tree.

Different coding schemes have been suggested to decompose the gene trees into an

MRep: In the Baum-Ragan (BR) coding scheme, every gene tree topology is coded as

follows (Baum, 1992; Ragan, 1992; Baum and Ragan, 2004): A split in a tree divides

the taxa into two disjoint sets (see also Section 1.3.2). For each split, a column is

added to the MRep, where ‘0’ and ‘1’ indicate the taxa on either side of the split and

missing taxa are coded as ‘?’. For rooted trees, the root-side is always coded as ‘0’.

The Purvis (PU) coding scheme can only be applied to rooted trees. Then, sister

groups are coded binarily, and the remaining taxa are coded as ‘?’ (see Table 3.2 for

an example). This aims at removing some redundant information (Purvis, 1995). We

generate both matrix representations from the list of gene trees using r8s version 1.71

(Sanderson, 2003). We see that MRep-Methods are split-based methods since they

first extract the split information of the input trees, code them in the MRep, and

subsequently compute a supertree out of this split information.
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44 Chapter 3 Combining Phylogenetic Trees

Tree Baum/Ragan coding Purvis coding

R

B C D A

R 00

A 11 A 11

B 00 B 0?

C 10 C 10

D 11 D 11

Table 3.2: Example of coding a gene tree as a matrix representation. The
Baum/Ragan coding codes every split independently. We use the unrooted
version of the BR coding, i. e. without coding the root explicitly. The Purvis
coding codes only sister groups of rooted trees.

MRP trees are reconstructed by searching the most parsimonious tree for the ma-

trix representation (Baum, 1992; Ragan, 1992; Baum and Ragan, 2004). We apply

two kinds of parsimony: (1) reversible Fitch parsimony (Fitch, 1971), which assumes

the character changes to be undirected, and (2) irreversible Camin-Sokal parsimony,

which only allows changes from 0 to 1 and thus uses the root information in the trees

(Camin and Sokal, 1965). The most parsimonious tree with the respective criterion

is determined by PAUP* 4.0b10 (heuristic search with TBR branch swapping and

random addition of sequences, and a maximum of 10,000 trees in memory). Overall,

we consider three MRP variants in the simulation setting: MRP BR (reversible parsi-

mony and BR coding), MRP I (irreversible parsimony and BR coding) and MRP PU

(reversible parsimony and PU coding).

The objective function of MRF is to minimize the number of binary flips (changes

from ’0’ to ’1’ and vice versa) necessary to convert the original MRep into an MRep

compatible with a tree (Chen et al., 2003; Burleigh et al., 2004). Here, we apply MRF

to both coding schemes, BR and PU. To date, MRF has only been applied to matrices

with Baum/Ragan-coding. Since MRF, like MRP, is an NP-complete problem, we use

the heuristic implemented in HeuristicMRF2 (http://genome.cs.iastate.edu/CBL/;

Chen et al., 2006).

With MRC the optimizing function is maximizing the number of compatible col-

umns, i. e. the number of splits that can be arranged in a tree without conflict (Rodrigo,

1996; Ross and Rodrigo, 2004). As a heuristic, we use Clann version 3.0.2 to find the

MRC tree for a BR coded matrix representation (the sfit criterion with default

parameters; Creevey and McInerney, 2005).
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3.2 Methods for Combining Overlapping Gene Data Sets 45

Variants of the “Build” Algorithm

The “Build” algorithm (Aho et al., 1981) is only able to construct a supertree for a

set of compatible and rooted gene trees. In case of compatible gene trees, each gene

tree is a subtree of the supertree. “Build” and its variants are graph-based rooted

triplet methods, thus, rooted trees are required. To combine incompatible gene trees,

different cut methods have been developed.

MinCut (minimal cut) is an extension of the “Build” algorithm (Semple and Steel,

2000). In case of a conflict, MinCut introduces an edge in the supertree that conflicts

with the fewest possible number of triplets.

ModMinCut (modified MinCut) improves MinCut by not only considering the

contradicting triplets for an edge but, additionally, by trying to keep subtrees that are

uncontradicted by the gene trees (Page, 2002).

Both MinCut and the ModMinCut are polynomial-time algorithms implemented in

supertree by Rod Page. We use a precompiled version of this program taken from

Rainbow 1.2 beta (Chen et al., 2004).

MaxCut (Snir and Rao, 2006) considers two types of triplet topologies: bad ones

which occur in a gene tree, and good ones for which another possible topology occurs

in a gene tree. In case of a conflict, the ratio of these counts is maximized, which is

an NP-hard problem. Snir and Rao (2006) suggested a heuristic based on semidefinite

programming. We compute the MaxCut tree from a set of triplets with a program

provided by Sagi Snir (personal communication). To apply it, we first extract triples

from the gene trees using a program provided by Gregory Ewing.

Quartet-based Methods

QILI (Quartet Inference and Local Inconsistency; Piaggio-Talice et al., 2004) is based

on quartet topologies extracted from unrooted gene trees. First, a set of weighted

quartets is computed, where the weights for each quartet are smaller if they occur

in more trees. Missing quartets are inferred by a rectifying process using quintet

information. From this collection of quartets, a tree is estimated by minimizing the

weighted sum of the quartets represented in a tree using Willson’s local inconsistency

method (Willson, 1999). QILI is available in the QuartetSuite 1.0 package.
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46 Chapter 3 Combining Phylogenetic Trees

3.2.3 Medium-level Combination

Quartet-based Methods

SuperQP combines the sequence data based on the quartet likelihoods (Schmidt,

2003). For each gene, TREE-PUZZLE (Schmidt et al., 2002) computes all quartet

tree likelihoods. These likelihoods are combined for every possible quartet topology

across all genes containing the respective quartet. The likelihoods are used to combine

the data into so-called superquartets, the building blocks for SuperQuartetPuzzling

(SuperQP). SuperQP is related to the QP algorithm (Strimmer and von Haeseler,

1996), but it takes also missing data into account, using an overlap-graph guided

insertion scheme and a voting procedure that is aware of missing quartets. We compute

the SuperQP tree with an upcoming version of the TREE-PUZZLE package.

Distance-based Methods

The medium-level information for distance-based methods are pairwise distance ma-

trices computed separately for each gene. Here, we estimate pairwise ML distances

with IQPNNI and the same models as for the early-level combination. The distances

are combined into one distance matrix for all taxa, which is subsequently fitted to a

tree with the least-squares method of Fitch-Margoliash (Fitch and Margoliash, 1967).

We use the fitch implementation in the PHYLIP package with the Subreplicates

option, thus allowing for missing data by considering only available entries. Two

distance-based medium-level methods, differing only in the combination of the matri-

ces, have been devised so far:

With average consensus (AvCon) each entry of the combined distance matrix is

computed by averaging over all distances available for the corresponding pair of taxa

(Lapointe and Cucumel, 1997; Lapointe and Levasseur, 2004).

Super Distance Matrix (SDM; Criscuolo et al., 2006) inserts two types of param-

eters: (1) weighting factors for each distance matrix, which correspond to a branch

lengths scaling for each gene tree, and (2) additive constants for each taxon in each

matrix, which correspond to an elongation of terminal branches. Utilizing several con-

traints, the variance of the scaled and shifted gene distance matrices to the combined

distance matrix is minimized.

Both methods are implemented in the SDM program (Criscuolo et al., 2006).
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(true)
species tree

(inferred)
gene trees species tree

(simulated)
alignmentsgene trees

(true) (inferred)

Figure 3.1: Diagram of the simulation setting with supertree reconstruction.
The simulation proceeds in several steps: First, gene trees are generated from
the given species tree. Alignments are simulated along these gene trees. From
these alignments gene trees are inferred. The inferred gene trees are the source
trees for supertree reconstruction. With the supertree methods species trees are
inferred.

3.3 Simulation Study

The results in this section were first presented in Kupczok et al. (2009).

3.3.1 Simulation Setting

Parameters

Figure 3.1 gives an overview of the simulation setting and notations. We study different

parameters involving the underlying data set, the coverage of the sequence data, the

topology and parameters of the true gene trees and the sequence lengths (Table 3.3,

page 51). The last three parameters will be described in detail along with the results.

Like e. g. Salamin et al. (2005) and Gadagkar et al. (2005), we simulate according to

biologically reasonable assumptions by taking simulation parameters from real data.

We use two data sets:

The small data set is given by the parameters of the crocodile data of Gatesy et al.

(2004). This data consists of 10 DNA alignments, morphological traits, two RFLP

matrices, two allozyme data sets, chromosomal morphology and nest type information

for a total of 86 recent and extinct crocodile taxa. Here, we only use the DNA data,

which reduces the taxon set to 25 recent taxa and a superalignment of 6,681 sites
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(a) Distribution of taxa and gene
lengths in the 10 data sets

(b) Superalignment ML tree, numbers
in brackets refer to taxa numbers in (a)

Figure 3.2: Small data set (Crocodile data). On average, 65.2 % of the genes
are present in a taxon.

(Figure 3.2a). Our reconstruction of two superalignment ML trees, one with HKY+Γ

and one with GTR+Γ, results in the same tree topology but different branch lengths

(HKY tree in Figure 3.2b). This topology is more resolved than the one by Gatesy et al.

(2004), and in addition, there is one resolution conflicting with the superalignment

tree computed by Gatesy et al. (2004): in our analysis, C. palustris and C. siamensis

form a clade instead of C. porosus and C. palustris. Note, that there are two main

differences between our superalignment analysis and the one of Gatesy et al. (2004).

First we only use the subset of the data that consists of DNA data, and second we use

maximum likelihood, not maximum parsimony, as the tree reconstruction method.

We use the maximum likelihood HKY tree (Figure 3.2b) as the species tree for

subsequent simulations. For methods requiring rooted gene trees, we root each tree

artificially with a taxon in which all genes are present (O. tetraspis, taxon 23). Such

a procedure was suggested by Baum (1992). Thus the small data set contains of 25
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Figure 3.3: Large data set (green plant data): Distribution of taxa and gene
length in the 254 data sets. On average, 15.8 % of the genes are present in a
taxon.

taxa and 10 genes having different sequence lengths and taxa occurences (Figure 3.2a).

Furthermore, the species tree shows a highly non-uniform branch length distribution

(Figure 3.2b). These features are typical for real data sets.

The large data set is composed of 254 proteins from 69 green plants with an overall

length of 96,698 amino acids (Driskell et al., 2004). Driskell et al. (2004) describe this

data set as problematic, since their reconstructed tree shows relations not supported by

any gene tree and the numbers of supporting genes seem to be barely correlated with

the bootstrap support for clades. The data contain a higher fraction of missing data

compared to the small data set (Figure 3.3). As species tree we use the superalignment

ML tree of the original data, reconstructed with the JTT substitution matrix. Since

the data contain no taxon for which all genes are available, every reconstructed gene

tree is rooted at the split that best matches the rooting of the model tree. Thereby

the model tree is rooted with the taxon suggested by Driskell et al. (2004).
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Sequence Simulation

Sequences can be simulated along a given tree with branch lengths by Monte-Carlo

simulations (Rambaut and Grassly, 1997). Thereby, random sequences are generated

that evolved under the tree and given model parameters. For most simulations, we

take the superalignment ML tree for the real data to be the true species tree. Es-

timated nucleotide and amino acid frequencies, as well as the α-parameter of the

Γ-distribution, are used as parameters for the sequence simulations with seq-gen

(Rambaut and Grassly, 1997). Unless stated otherwise, protein data are generated

with JTT and nucleotide data with an HKY model with the transition/transversion

ratio taken from the original ML estimation. Sequences are simulated with the same

lengths distribution as in the original data.

There is also the possibility to use the gene trees from the original data as the true

gene trees (true gene trees gene-specific, G in Table 3.3). In this case there is no true

species tree known.

For each simulated data set, at most fifteen different methods are applied to re-

construct a tree (Table 3.1, page 42). Note that not all methods are applicable for

all settings. Consensus is only applicable for complete data and the medium- and

low-level methods are only applicable if sequence information is present.

Tree Distance Computation

If applicable, we measured the accuracy of the methods by the normalized Robinson-

Foulds distance (RF, Section 2.1.3) of the inferred species tree to the true species tree.

As explained before, the Robinson-Foulds distance is the number of splits that are

present in one tree but not in the other one, and vice versa. Since unrooted n-taxa

trees have a maximum of n−3 inner branches, the maximal Robinson-Foulds distance

is 2(n − 3). In this section, RF denotes the normalized Robinson-Foulds distance,

where the distances are divided by 2(n − 3). This yields a value between 0 % and

100 %, which can be interpreted as the percentage of true or missing splits in the

inferred tree compared to the true tree.

A

D

B

E

FC



3.3 Simulation Study 51

Parameter Options

Data set
S: small
L: large

Taxa coverage
c: complete
m: missing

True gene trees

E: sub-trees of species tree

Rα:
rate of evolution assigned randomly from a Γ-distribution
with parameter α (i. e. mean 1 and variance 1/α)

P: substitution parameters and branch lengths gene-specific
G: trees gene-specific
Tθ: trees random by coalescent process with parameter θ

Reconstructed
gene trees

e: equal to true gene trees
n: normal sequence length and ML estimation
l: long sequence length (ten times longer) and ML estimation

Table 3.3: Parameters varied in the simulations. The setting in each simulation
is abbreviated by one of the bold letters given in each of the four categories. Note
that not all combinations were tested.

3.3.2 Simulation Results

Each simulation setting is abbreviated by four letters corresponding to values for each

of the four categories of simulation parameters (Table 3.3).

Complete Data (S,c,E,n)

The first and simplest simulation is that the topology and parameters of the species

tree equal those of the true gene trees and the length of each gene alignment is taken

from the original data set. In 500 replications, SA nearly always reconstructs the true

tree, i. e. RF = 0 (Figure 3.4a). The MRep-methods and the intermediate methods

show mean RF distances of less than 2 %. In contrast, the mean distance of an inferred

single gene tree to the true species tree is 16.5 %. This value can be viewed as the

mean distance when reconstruction is based on the sequence information of one gene

only. Therefore we will call it the baseline distance. Surprisingly, QILI shows a mean

RF distance of 35 %, which is much larger than 16.5 %. Thus, accuracy is lost by

combining gene trees with this method.
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SA

SDM

AvCon

SuperQP

QILI

MaxCut

ModMinCut

MinCut

MRC

MRF_PU

MRF_BR

MRP_I

MRP_PU

MRP_BR

Consensus

Gene trees

(b) S,m,E,n

Figure 3.4: Distribution of normalized RF distances (500 simulations) for the
simulation settings S,c,E,n and S,m,E,n. The reconstructed trees were compared
with the model tree via the RF distance. The distributions resulting from
500 repetitions are shown. The boxes mark the 1/4- and 3/4-quantiles, the
vertical line with the notches is the median with the 95 % confidence interval
for comparing two medians. The vertical line without the notches is the mean
of the data. The vertical black line drawn throughout the diagrams is the mean
RF distance of all complete gene trees, which serves as the baseline distance.
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Missing Data (S,m,E,n)

Next, we use the same 500 simulated alignments as before, but delete sequences from

the gene alignments according to Figure 3.2a. The resulting distributions of the RF

distances show that all methods are strongly affected by missing data (Figure 3.4b).

With a mean RF distance of about 6.2 %, SA is again the most accurate method.

Among the remaining methods, MRP BR (10.8 %) and SuperQP (11 %) show the

smallest mean RF distances. The cut methods, QILI, and average consensus show

mean RF distances larger than the baseline distance of 16.5 %. Thus, these methods

perform on average worse on incomplete data sets than the ML reconstruction using

only one gene present in all taxa. These methods seem to be unable to efficiently

utilize the additional information provided by extra, but incomplete, gene data.

Large Data Set (L,m,E,n)

This simulation uses the data set of 254 genes from 69 green plant species. Compared

to the small data set, the alignment of the large data set contains more taxa, more

genes, but a smaller fraction of genes present per taxon (Figure 3.3). Here, we study

the simplest simulation setting with missing data. Although SA trees are reconstructed

with parsimony to keep computing time reasonable, they still show the highest accu-

racy with a mean RF distance of 4.8 % (Figure 3.5). Among the MRep-methods,

MRP I (12 %) is no longer as accurate as the other MRep-methods. MRF BR (5.7 %)

and MRF PU (5.8 %) are the supertree methods with the highest accuracy. MinCut

(93.9 %) reconstructs trees that are very distant to the true species tree. A possible

reason is the high proportion of missing data. The accuracy of MinCut is improved by

ModMinCut (54 %) and MaxCut (31.5 %), but all cut methods show larger distances

than the average complete gene tree (the baseline distance, 18.5 %). QILI shows a

much better performance compared to the small data set, its mean accuracy (20.4 %)

is now comparable to SuperQP (16.1 %) and SDM (20.2 %). These methods show

average distance values very close to the baseline distance. But QILI still has a high

variance, whereas SuperQP shows good results in most cases and produces unresolved

trees in a few cases.

In general, the results of the large data set are similar to those for the small data

set: In both settings, the methods that improve the baseline distance are the same,

superalignment outperforms the other methods, the MRep-methods are the best su-

pertree methods, and SuperQP is the best medium-level method. Thus, we expect
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Figure 3.5: Distribution of normalized RF distances (200 simulations) for
the simulation setting L,m,E,n (large data set with missing data according to
Figure 3.3). “Gene Trees” shows the distances of the trees from the complete
alignments, not from the pruned alignments, although the latter are used for the
data combination methods.

the results also to be similar when introducing deviating settings. In the following, we

only present the results for the small data set.

Long Sequences (S,m,E,l)

We also test whether the methods are able to combine highly informative, but incom-

plete, data sets. Thus, we minimize the effect of erroneous gene tree reconstruction

by generating gene sequences ten times longer than the original gene sequences while

taxa occurrences are the same as in Figure 3.2a. The accuracy of inferred species trees

and gene trees is substantially improved compared to setting S,m,E,n for all methods

(Figure A.1 in the appendix). High mean RF distances for QILI (30.3 %) and AvCon

(8.1 %), however, show that these methods fail to reconstruct reasonable trees from

highly informative data sets with missing data. The mean RF distances for MinCut,

SuperQP and SDM are between 1 % and 2 % and all remaining methods show an
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average RF distance of ≤1 %.

Bootstrapped Phylogenetic Trees

We extended the simulation with missing data (S,m,E,n) by bootstrapping the su-

peralignment and the gene trees. In this case, reconstructed gene trees were the

majority-rule consensus of trees reconstructed from bootstrapped alignments. Since

branches with low support are discarded from each gene tree, the accuracy of supertree

methods is expected to improve. Note that this bootstrap procedure does not affect

the medium-level methods. Here, we measured the accuracy of reconstruction for 200

of the alignments that were the basis of the simulations summarized in Figure 3.4b

(S,m,E,n). The bootstrapped gene trees lead to an improvement of the accuracy of all

supertree methods (Figure A.2) when compared to the results without bootstrapping.

The mean RF distance is now 5.6 % for superalignment, between 9 and 10.3 % for all

MRep-methods, and between 12 and 22 % for the cut methods.

Gene-specific Evolutionary Rates (S,m,Rα,n)

Now we introduce a more complicated setting where the evolutionary rates vary be-

tween genes. The true gene trees were generated from the species tree by stretching or

shrinking all branch lengths with a Γ-distributed random factor drawn independently

for each gene in each simulation. In two different settings, the shape parameter for the

Γ-distribution was α = 3 and α = 1.67, respectively. As in the previous simulations,

the substitution parameters for the sequence simulation were equal for each gene. The

gene trees and the SA tree were also obtained by bootstrapping. For each choice of

α, we computed 100 simulated alignments. For neither setting do the results differ

substantially from the previous simulation with bootstrapping (Figures A.3 and A.4).

Gene-specific Substitution Parameters (S,m,P,n)

Here, as in the previous setting, the true gene trees differ from the species tree by their

branch lengths. However, this time the branch lengths were fitted from the original

data to obtain the true gene trees. For each alignment, the species tree was pruned

to the respective taxon set. Afterwards, GTR parameters and branch lengths were

fitted to the pruned tree using the original alignment. If a branch length got down to

10−6, the lower bound in IQPNNI, the respective branch length was set to 1/l, where
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Figure 3.6: Distribution of normalized RF distances (500 simulations) for
the simulation setting with gene-specific GTR parameters and missing data
(S,m,P,n). The baseline distance is not applicable here (see text for details).

l is the length of the corresponding alignment. The trees constructed this way were

used as the true gene trees for the simulations. The sequence simulations used the

estimated GTR parameters for each gene.

This simulation setting only allows for simulation of pruned data sets. Thus, the

baseline distance is not applicable. The results cannot be compared directly to the

previous simulations, since the average tree length is now larger, but the ranking of

the methods can be compared. Figure 3.6 shows that the superalignment trees remain

best (mean RF distance of 2.4 %), even if simulation parameters differ between genes.

SA, the MRep-methods, MaxCut and SuperQP are clearly better than the distance

based methods, MinCut and ModMinCut.
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Gene-specific Topologies (S,m,G,n)

Here, the previous setting is extended as follows: Not only branch lengths and substi-

tution parameters are gene-specific but also the topologies. Therefore, the gene trees

reconstructed from the original data were used as true gene trees for this simulation.

As before, only the setting with missing data can be studied, since the true gene trees

already contain missing data. As we do not know the underlying species topology, a

more complicated evaluation method is used: the inferred tree from each method is

compared to the tree reconstructed from the true gene trees with the same method.

E. g. an MRP BR tree was reconstructed from the true gene trees and was used as a

model tree when the distances to MRP BR are evaluated in Figure 3.7. Also the early-

and medium-level trees are reconstructed from the original sequence data and used for

the distance computations. With this procedure, we estimate how consistently each

method finds its own reconstructed species tree when sequence data is simulated along

the gene trees. This is similar to a parametric bootstrap approach. Here, we face the

problem that some trees reconstructed from the original data are not fully resolved.

Also in these cases, we compute the Robinson-Foulds distances to these trees and

normalize it with the same factor of 2(n − 3), where n is the number of taxa. Thus,

the polytomies in these trees are treated as true and the distance increases if a tree

reconstructed in the simulation is more resolved. To highlight this problem, we list

the number of branches missing in the trees reconstructed from the original data on

the right margin of Figure 3.7.

The resulting distances clearly show that SA is the most consistent method, since

it has the smallest average distance to the SA tree from the original data (7.8 %). It

is followed by MRP BR with a mean RF distance of 13.2 %.

Incomplete Lineage Sorting (S,c,Tθ,e and S,m,Tθ,e)

In this setting, the true gene trees were generated from the true model tree by a

coalescent process (for details of the coalescent model used here, see Ewing et al.,

2008). This can result in different branch lengths, but also different topologies. The

species tree was rooted according to Figure 3.2b. From this rooted species tree, we

simulated gene trees with different coalescent parameters. The coalescent parameter

θ was used to generate incongruent gene trees with different amounts of incorrect

branches. The larger θ, the more incongruence is caused by incomplete lineage sorting.
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Figure 3.7: Distribution of normalized RF distances (200 simulations) for
the simulation setting with gene-specific topologies and missing data (S,m,G,n).
Note that the baseline distance is defined differently here: the gene tree dis-
tances are computed by comparing each reconstructed gene tree to the corre-
sponding true gene tree and normalized with the appropriate number of taxa.
The numbers on the right are the numbers of unresolved branches in the tree
reconstructed from the original data with the corresponding method.

E. g. θ = 0.005 results in a considerable incongruence among the gene trees: the mean

normalized RF distance between the true species tree and the true gene trees is 22 %

(Figure 3.8a).

First, we investigate the performance of the supertree methods in the presence of

incongruent gene trees without any reconstruction error. In Figure 3.8a, we see that

the matrix representation methods can estimate the species tree quite accurately in

the presence of complete data; MRP PU and MRF PU give the best results with a

mean reconstruction error of 4.6 % and 4.7 %, respectively. The matrix representation

methods, headed by MRF PU (12.5 %), are also the best methods when data is missing

(Figure 3.8b).
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●

0 20 40 60 80
normalized RF distance in %

● ●

● ●●● ●

●●● ●●●

●●●

●● ●● ●

● ●

● ●

●●

●

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

SA

SDM

AvCon

SuperQP

QILI

MaxCut

ModMinCut

MinCut

MRC

MRF_PU

MRF_BR

MRP_I

MRP_PU

MRP_BR

Consensus

Gene trees

(b) S,m,T0.005,e

Figure 3.8: Distribution of normalized RF distances (500 simulations) for
the simulation setting with gene-specific trees generated by a coalescent process
(θ = 0.005) without reconstruction error. Early- and medium-level methods
cannot be applied since no simulated sequences are available.
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Figure 3.9: Distribution of normalized RF distances (500 simulations) for
the simulation setting with gene-specific trees generated by a coalescent process
(θ = 0.005). The true gene trees are equal to the trees used in Figure 3.8. Now,
simulated alignments are obtained by simulating sequences along these true gene
trees.

Incomplete Lineage Sorting and Gene Tree Reconstruction (S,c,Tθ,n and

S,m,Tθ,n)

The gene trees from the previous section are taken as true gene trees. Along these,

sequences are simulated and phylogenies are inferred as before. Thus, reconstruction

error is added to the error present due to incomplete lineage sorting. The mean dis-

tance of the inferred gene trees to the species tree is 32 % (Figure 3.9a). In the case

of complete data, this distance is decreased by all methods except QILI. The distri-

butions and mean distances of MRP BR (8.7 %), MRP PU (9.1 %), MRP I (10.5 %),

MRF BR (8.9 %), MRF PU (8.6 %), MRC (8.2 %), MaxCut (11.7 %), SuperQP

(10 %), AvCon (8.5 %), SDM (8.5 %) and SA (11.1 %) are very similar. Thus, the

differences between the methods are less distinct. However, the mean superalignment
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Figure 3.10: Distribution of normalized RF distances (500 simulations) of the
source trees to the respective supertrees for the simulation setting S,c,T0.005,n.

distance is now larger than the average distances of most methods. This might be due

to the small number of genes (10) and the different sequence lengths (Figure 3.2a).

Therefore, we show the distances of the reconstructed gene trees to the supertrees of

the respective simulations for genes 1 and 2 (Figure 3.10). Data set 1 has the longest

alignment and we observe its gene tree to be more similar to the superalignment tree

compared to the other trees (Figure 3.10a). This behaviour is not present for the

shorter data set 2 (Figure 3.10b). Thus, long genes mainly drive the superalignment

reconstruction. If their gene trees are distant from the true species tree, the super-

alignment result will also deviate.

We also tested the methods on incongruent gene trees together with missing data

(Figure 3.9b). That is, the same alignments were used but the information was pruned

according to Figure 3.2a. Several methods show a lower mean accuracy than the

phylogeny of a full gene, namely MinCut, ModMinCut, QILI and AvCon. MRP BR

(20.4 %), MRP PU (21.6 %), MRP I (21.1 %), MRF BR (21.7 %) and MRF PU
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Figure 3.11: Mean and standard deviation of the RF distances with different
levels of incongruence. The results of the true and reconstructed gene trees are
computed from the distribution of mean distances of all simulations. Note that
the last step of θ is a doubling. The detailed results for θ = 0 and θ = 0.005 are
shown in Figures 3.4 and 3.9, respectively. The remaining detailed results can
be found in Appendix A. Different numbers of simulation replicates were used:
500 for θ = 0 and θ = 0.005 and 200 for the remaining settings.

(22.2 %) still outperform superalignment (22.3 %) on average, but the difference is

marginal.

However, the above behavior is not representative for all degrees of incomplete

lineage sorting. In Figure 3.11a, we see how the mean normalized RF distance of

the true gene trees to the true species tree increases with θ. As a consequence, the

distances of the reconstructed gene trees increase, too. At low θ (0.001-0.002), the

reconstruction error exceeds the error introduced by incomplete lineage sorting. In

this parameter area we observe figures similar to Figure 3.4 with SA performing better

on average (Figures A.5 and A.6). With very high θ, however, the error introduced

by incomplete lineage sorting is larger than the reconstruction error added to the true

gene trees (Figure 3.11a). In this parameter area, we observe that MRP BR slightly

outperforms SA (Figure 3.11b). MRP BR is used here as a representative supertree

method, which usually performs well compared to other methods.

Note that in each case, the standard deviations are overlapping with the mean of the

competing method (Figure 3.11b). However, we must keep in mind that the data are

paired, i. e. for each of the 500 simulations with θ = 0, we get one distance value for SA

and one for MRP BR. Thus, we tested the null hypothesis that the median difference
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in these paired distances is 0 using the Wilcoxon signed-rank test (Table 3.4). The

results shown in Table 3.4 support the conclusion that SA is significantly better in re-

gions where the error introduced by phylogenetic reconstruction is prevalent, whereas

MRP BR is significantly better in regions where true gene trees differ a lot. Thus,

if the reconstruction error dominates the error caused by incomplete lineage sorting,

SA is the most accurate method by minimizing stochastic error. On the other hand,

if incomplete lineage sorting is the prevalent source of gene tree incongruency, recon-

structing the trees first and then applying a supertree method is favorable. However,

in the case of high incomplete lineage sorting effects, the accuracies of all reconstruc-

tion methods are quite low. Figure 3.9 shows that about 8 % of the branches are

reconstructed incorrectly with complete data and about 20 % with missing data for

the best reconstruction methods.

3.3.3 Conclusions

We presented a detailed simulation study to assess the accuracy of superalignment,

supertree and medium-level methods for reconstructing phylogenetic trees from mul-

tiple data sets. Although supertrees are often used to combine data of different kinds,

our simulations only refer to sequence-based approaches. Morphological characters

are not included due to the lack of reasonable probabilistic models to simulate their

evolution. This study is first in comparing a broad range of methods for combining

incomplete data sets. All conclusions are based on the specific implementation used

for these methods as described in Section 3.2.

Gene features like sequence lengths and taxon overlap influence the accuracy of

the presented methods. Instead of covering many different parameter combinations,

we used the parameters of two very different natural data sets for the simulations.

Furthermore, the true gene trees were generated from the true species tree in different

ways (see also Table 3.3): (a) all gene trees were identical to the species tree, (b) the

branch lengths but not the topology were gene-specific, (c) the gene trees from the

original data were used as true gene trees and (d) the gene trees showed different

topologies modeled by incomplete lineage sorting.

The first main result is that one of the matrix representation methods, which are

the most abundant supertree reconstruction methods used in the literature, usually

shows the second-best result after superalignment. Especially the MRP and MRF

methods with Baum/Ragan-coding result in very accurate trees. Since these methods
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3.3 Simulation Study 65

are based on splits, bootstrap-based weighting can be easily incorporated, which is

expected to further increase the accuracy of the reconstructed trees (Bininda-Emonds

and Sanderson, 2001; Salamin et al., 2002). Among the medium-level methods, Su-

perQP yields better results than the distance-based approaches, especially when data

are missing. The accuracy of SuperQP is often consecutive to or among the accuracies

of the matrix representation methods.

Second, in the case of complete gene trees, the majority-rule consensus method is

also applicable. In all simulation settings with complete gene trees, some supertree

methods perform better on average than the consensus method. In these cases, su-

pertree branches that are supported by less than half of the gene trees are correctly

resolved. This shows that, although supertree methods have been criticized for not

being majority-rule methods (Goloboff, 2005), the resolution of additional branches

can be favorable. Majority-rule supertree methods have also been suggested (Cotton

and Wilkinson, 2007; Dong and Fernández-Baca, 2009). Some of these will be studied

in detail in Section 3.4.

Third, we introduced the baseline distance as a measure to judge the benefit of the

combination methods. The baseline distance for one setting is defined as the mean RF

distance between the true species tree and the reconstructed gene trees using complete

alignments. We observe that, for most of the simulation parameters studied here, QILI,

average consensus, MinCut and modified MinCut show larger mean RF distances than

the single gene trees. QILI has already been observed to be slightly worse than MRP

(Piaggio-Talice et al., 2004). Average consensus is clearly outperformed by SDM when

data is missing. We applied both methods as medium-level methods by taking pairwise

distances directly from the alignment distances, not from the reconstructed gene trees.

While average consensus was suggested as a late-level method (Lapointe and Cucumel,

1997), SDM has been explicitly designed as a medium level method (Criscuolo et al.,

2006). Thus, average consensus may not be able to resolve the conflicts in the non-

treelike distances. The behavior of MinCut can be partly explained by the fact that it

resembles Adams consensus (Semple and Steel, 2000). This means that uncertain taxa

will be placed at the root of subtrees, which can disturb quite a few splits, leading

to high RF distances. The cut methods presented here implement a heuristic based

on the rooted triplets in the gene trees. Recently, Lin et al. (2009) suggested another

approach which maximizes the common rooted triplets in the supertree and the gene

trees. They show that their method outperforms modified MinCut and MaxCut on

example data sets.

C

D

B

E

FA



66 Chapter 3 Combining Phylogenetic Trees

By comparing the accuracies of the reconstructed supertrees with the accuracies of

the ML gene trees, we showed the baseline distance to be a reasonable criterion for

excluding unsuitable methods. If the baseline distance cannot be improved by a data

combination method, it is preferable to use only genes for ML reconstruction that are

present in all taxa and to possibly sequence the missing genes in some taxa.

Finally, we observe that superalignment methods usually show the highest accuracy

on average. This applies to incomplete data as well as gene-specific substitution pa-

rameters. Superalignment also results in the most consistent phylogenetic estimation

when each method is not compared to a model tree but to the original result obtained

with that very method (Figure 3.7). However, in the presence of high incongruency

among true gene trees, if reconstruction error is not the main cause that gene trees

differ from the species tree, the implicit weighting by sequence length can have a neg-

ative effect on the performance of superalignment leading to outperformance by the

supertree method MRP BR. This bias might be avoided by introducing a normal-

ization, but then, the opposite and still unwanted bias could emerge. Furthermore,

it has been discussed (e. g. Gatesy and Springer, 2004) that SA should be preferred

over supertree methods since the former does not imply character weighting. On the

other hand, Edwards (2009) argued recently that in the presence of gene tree conflict

caused by coalescence effects as many genes as possible should be used and they should

be weighted equally. This is consistent with our observation that supertree methods

outperform superalignment in the presence of strong coalescence effects.

There are also some species tree reconstruction methods that use a coalescent model

to account for the differences between true gene trees (e. g. Liu et al., 2009). Kubatko

and Degnan (2007) have shown that concatenation of gene alignments may be in-

appropriate when the gene tree histories differ considerably. The coalescent model

can be applied for closely related species (e. g. grasshoppers; Carstens and Knowles,

2007), but severe problems caused by incomplete lineage sorting seem to not play a

role among taxa of deep phylogenetic trees (e. g. for Metazoa, see Ewing et al., 2008).

Since these methods typically require complete data, we did not include them in our

comparison. We rather concentrated on methods that were explicitly designed for

missing data and that resolve conflicts of unknown source.

Our results are in general concordance with previously published comparisons. Eu-

lenstein et al. (2004) used simulated data and find MRP and MRF to perform similar

and better than MinCut and ModMinCut. Dutilh et al. (2007) used real data sets and
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3.3 Simulation Study 67

also find superalignment to perform best. Swenson et al. (2010) compare superalign-

ment and weighted and unweighted MRP using biologically motivated simulations and

find the highest accuracy for superalignment. We apply, however, a broader range of

methods than previous studies.

All conclusions presented here are based on the accuracy measured by the mean

RF distance. This does not imply that the methods presented as better on average

always show superior results and could, thus, be used as a gold standard. Rather,

we highly recommend to use several of the superior methods (considering also various

levels of data combination) and to compare their results. The source of variation, i. e.

why the reconstructed gene trees differ from the species tree, should also be taken

into account, since it has an influence on the relative performance of the methods. If

a treelike evolutionary history is assumed and true gene tree incongruence is unlikely

or rare, superalignment results in the most accurate trees. This also holds in the

presence of gene-specific substitution parameters and branch lengths, as has been

observed before (Gadagkar et al., 2005). But if the difference of the true gene trees

to the species trees is the main source of variation, supertree methods are favorable.

Applying a superalignment method to data with different underlying topologies or

highly varying parameters has also been shown to be problematic (e. g. Mossel and

Vigoda, 2005; Kolaczkowski and Thornton, 2004).

In the case of known gene tree variation, methods that model the assumed causes

can also be applied. For incomplete lineage sorting, approaches like BEST (Liu, 2008)

or TCM (Ewing et al., 2008) are available. Note that these programs work with

complete data, while we are interested in reconstructing species phylogenies from in-

complete data. When exploring gene tree effects, like horizontal gene transfer or

incomplete lineage sorting, gene trees have to be reconstructed and compared to a

species tree. If the intention of an analysis is species tree reconstruction, however,

external information may be considered: External information, like the rates of hor-

izontal gene transfer, gene duplication or incomplete lineage sorting helps to judge

whether complex evolutionary models are necessary to reconstruct the species tree. If

these complex scenarios are not assumed to play a major role, application of super-

alignment minimizes the stochastic error. On the other hand, if gene-tree conflict is

present but the underlying biological model is not known, supertree or medium-level

methods can be applied. They account for gene tree variation but make no assump-

tions on the underlying evolutionary model causing the variation.
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68 Chapter 3 Combining Phylogenetic Trees

3.4 Majority-rule Supertrees

3.4.1 Definitions of Majority-rule Supertrees

In the previous section, we studied the practical performance of several supertree

methods. Now, we present and analyze algorithms for two supertree methods, which

were only described theoretically before.

Several of the supertree methods presented in the previous section have been crit-

icized for not always displaying the majority of the gene tree splits (Goloboff, 2005).

This problem is addressed by Cotton and Wilkinson (2007). They searched for a

definition of majority-rule (MR) supertrees, which is applicable to gene trees on over-

lapping taxon sets. Barthélemy and McMorris (1986) showed that in the consensus

setting, the majority-rule tree (Section 3.2.2) is a median tree under the Robinson-

Foulds distance (RF, Section 2.1.3). However, the RF distance is only applicable to

trees on the same taxon set. Thus, Cotton and Wilkinson (2007) gave two supertree

definitions for the gene trees T 1, ..., T k on taxon sets X1, ..., Xk and X =
⋃
i

X i:

MR(-)supertrees: The objective function is minimizing
k∑
i=1

RF(P|X i, T i) for a su-

pertree P on taxon set X. Thereby, P|X i is the tree obtained by pruning all

taxa not in X i and collapsing nodes of degree 2.

MR(+)supertrees: For each gene tree T , the span < T > is generated. < T > is the

set of all bifurcating trees on taxon set X, where missing taxa are grafted onto

T and all multifurcations are resolved. The objective function is minimizing
k∑
i=1

RF(P ,Ri) for a supertree P and each Ri ∈< T i >.

Dong and Fernández-Baca (2009) define two subvariants for MR(+)supertrees where

the spans are defined differently: The graft-only supertree span does not resolve any

multifurcations in the gene trees, and the graft/refine supertree span does resolve some

but not necessarily all multifurcations. Here we only considere bifurcating trees, then

the subvariants are equivalent. Thereby, we use the following abbreviations for the

distance functions:

d−(P , T i) = RF(P|X i, T i) and d+(P , T i) = min
Ri∈<T i>

RF(P ,Ri)

Thus the objective function for MR(-) is
∑
i

d−(P , T i) and the objective function for
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3.4 Majority-rule Supertrees 69

d+ is
∑
i

d+(P , T i). Minimizing these two different objective functions can result in

different supertrees for MR(-) and MR(+) (Figure 3.12).

We first present the distance computations between one gene tree and one supertree

for d− and d+, respectively (Section 3.4.3). The final supertree has to be found by

summing up the distances over all gene trees and searching the tree space for the

supertree with the minimal distance (Section 3.4.4). Finally, the two methods are also

compared in simulations (Section 3.4.5).

3.4.2 Notation for Trees with Overlapping Taxon Sets

In this section, we extend the notations of topologies and splits (Section 1.3) for trees

with overlapping taxon sets.

A supertree P is a tree on taxon set X and a gene tree T is a tree on taxon set

XT ⊆ X. Both, P and T , can be represented as sets of splits. The splits in T are

called partial if XT ⊂ X. In contrast, the splits in P are called plenary. A plenary

split p ∈ P (p = Z1|Z2) extends a partial split t ∈ T (t = Y1|Y2) if one of the following

conditions holds:

1. Y1 ⊆ Z1 and Y2 ⊆ Z2

2. Y1 ⊆ Z2 and Y2 ⊆ Z1

For example, the split {A,B,C}|{D,E, F} extends the split {A,B,C}|{F}. The

extension Et is the set of all plenary splits extending a split t.

For comparing a supertree P and a gene tree T , we need the following abbreviations:

T ∗ = {t ∈ T : Et ∩ P 6= ∅}, T ∗ = T \T ∗,
P∗ = P ∩

⋃
t∈T

Et, P∗ = P\P∗.

P∗ are the splits in P which extend one of the splits in T . T ∗ are the splits in T
whose extension contains one of the splits in P∗.

A

D

B

F

EC



70 Chapter 3 Combining Phylogenetic Trees

E

F

A

B

A

F E

B A

F E

B A

B

C

E

A

B

C

E

A

D

E

F

A

D

E

F

C

D

E

F

C

D

E

F

G
1

G
2

G
3

G
4

G
5

G
9

G
8

G
7

G
6

DC

(a) Gene Trees

E

F

A

B

C D

(b) Supertree S1

E

F

A

B

C D

(c) Supertree S2

A

F

B

E

C D

(d) H1 ∈< G2 >

A

F

B

E

C D

(e) H2 ∈< G2 >

Figure 3.12: Example showing different results for MR(-) and MR(+). The
gene tree set consists of the nine trees shown in (a). Note that G4, . . . , G9,
are compatible with both S1 (b) and S2 (c), they are included to enforce a
unique tree as the result. MR(-) results in a distance of 4 for S1 [d−(S1, G1) +
d−(S1, G2) + d−(S1, G3) = 0 + 2 + 2] and of 6 for S2 [d−(S2, G1) + d−(S2, G2) +
d−(S2, G3) = 2 + 2 + 2]. On the other hand, MR(+) results in a distance of
12 for S1 [d+(S1, G1) + d+(S1, G2) + d+(S1, G3) = 0 + 6 + 6] and of 10 for S2

[d+(S2, G1) + d+(S2, G2) + d+(S2, G3) = 2 + 4 + 4]. S1 is the unique supertree
with MR(-), whereas S2 is the unique supertree with MR(+). This discrepancy
is caused by the “wrong” trees G2 and G3. For the supertree S2, the 2-split
{C,D}|{A,B,E, F} can be placed anywhere causing a d+ of 4, e. g. as in H2

(e). But for the supertree S1, none of the three supertree splits can be found in
G2 and each tree in the span causes a distance of 6, e. g. as in H1 (d).
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Figure 3.13: Example adapted from figure 3(c) in Cotton and Wilkinson
(2007).

3.4.3 Distance Computations in the Matrix Representation

Framework

The most popular supertree methods are split-based and code the gene tree splits in

a matrix representation (MRep, Section 3.2.2). The MR-supertrees are defined via

the split-based RF-distance. Thus, we define the MR-supertree methods as MRep-

methods as well. Therefore, the first step is to code all splits of the gene tree and

the supertree in the matrix representation. We explain the algorithms for d− and d+

along with the example in Figure 3.13.

Example: Matrix representations of the trees in Figure 3.13:

Supertree S (Figure 3.13a):

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

A 1 0 1 1 0 0 0 0 1 0
B 1 0 1 0 1 0 0 0 1 0
C 1 0 0 0 0 1 0 0 1 0
D 0 1 0 0 0 0 1 0 1 0
E 0 1 0 0 0 0 0 1 1 0
R 0 0 0 0 0 0 0 0 0 0

Gene tree G (Figure 3.13b):

g1 g2 g3 g4 g5 g6

A − − − − − −
B − − − − − −
C 1 1 0 0 1 0
D 1 0 1 0 1 0
E 0 0 0 1 1 0
R 0 0 0 0 0 0

When comparing both trees, we see the following extension relationships: s1 extends

g2, s3 extends g6, s4 extends g6, s5 extends g6, s6 extends g2, s7 extends g3, s8 extends

g4, s9 extends g5, and s10 extends g6. Thus, S∗ = {s1, s3, s4, s5, s6, s7, s8, s9, s10},
S∗ = {s2}, G∗ = {g2, g3, g4, g5, g6}, and G∗ = {g1}.
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72 Chapter 3 Combining Phylogenetic Trees

MR(-)supertrees

To compute d− between a supertree P and a gene tree T , the MReps are used the

following way. First, in the MRep of P , the lines corresponding to the taxa in X \XT
are discarded. Thereby, identical columns emerge which then are merged, thus each

column in the resulting MRep is unique. This results in the MRep of P|XT . The

MReps of P|XT and of T are compared, and the number of columns occurring in one

but not the other is RF(P|XT , T ) = d−(P , T ).

If all trees are fully resolved, we do not need to discard the lines for the missing taxa

and merge equal splits explicitly. Instead, for each gene tree split ti, all supertree splits

can be compared, to determine whether they extend ti. In the matrix representation

framework, this is done by comparing each column from P to ti. Thereby, an extension

of ti is found if there is one column from P that equals ti in all or in none of the

positions; in doing so, gaps are ignored. If no extension is found in the supertree

splits, ti adds 2 to d−. Thus, d−(P , T ) = 2× |T ∗|.

Example: Deleting the taxa A and B from the supertree S results in the tree Spr

(Figure 3.13c). RF(Spr, G) = 2, thus d−(S,G) = 2. We also see this by comparing

the splits in the corresponding MReps. Therefore, the lines for A and B are discarded

and identical columns are merged, which results in the MRep of Spr:

s′1 s′2 s′3 s′4 s′5 s′6
C 1 0 0 0 0 0
D 0 1 1 0 0 0
E 0 1 0 1 0 0
R 0 0 0 0 1 0

Thus, s′2 is not contained in the gene tree, g1 is not contained in the supertree and

d− is 2. As described, we can also compute this by comparing the original MReps.

Only g1 is not extended, thus d− = 2.

The objective function of MR(-)supertrees is equivalent to the one of matrix rep-

resentation with compatibility (MRC, Section 3.2.2). MRC maximizes the number

of columns in the MRep which are contained in the supertree. On the other hand,

MR(-)supertrees minimize the number of columns not in the supertree. Thus, the two

objective functions are the same if the gene trees are fully resolved and if only fully

resolved supertrees are considered.
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3.4 Majority-rule Supertrees 73

MR(+)supertrees

Defining d+ in the matrix representation framework is less straightforward. We first

define the split extension score and subsequently show that it is equivalent to d+. The

split extension score (SES) between P and T is the number of splits in P which occur

in no extension of any of the splits in T , thus SES=|P∗|.

It is easy to compute whether a supertree split occurs in an extension of a gene tree

split (see previous section). Thus, the SES between a supertree and a gene tree can

be easily computed in time O(|P| × |T |). Since the number of splits in a tree grows

linear with the number of taxa, the SES can be computed in time O(n2).

Example: S∗ = {s2}, SES=|S∗| = 1. The optimal tree from < G > is Gsp (Fig-

ure 3.13d), thus d+ is 2.

One can easily show that for fully resolved gene trees, SES is equivalent to d+, in par-

ticular d+(P , T ) = 2×SES(P , T ). Therefore, we define d+(P , T ) = min
R∈<T >

RF(P ,R)

where RF(P ,R) is the number of splits in P but not in R. For bifurcating trees,

RF(P ,R) = RF(P ,R)/2. We thus show d+(P , T ) = SES(P , T ). We show the

inequalities in both directions:

SES(P , T ) ≤ d+(P , T ) : SES counts the splits in P which occur in no extension of

a split in T . Therefore, the splits in P∗ cannot be in any R ∈< T >, and

RF(P ,R) ≥ |P∗| = SES(P , T ) for every R ∈< T >.

d+(P , T ) ≤ SES(P , T ) : We show that there is an R ∈< T > whose RF(P ,R) is not

larger than SES(P , T ).

First, we show that P∗ and T are compatible: By construction, P∗∪T is pairwise

compatible. The pairwise compatibility theorem states that pairwise compati-

ble splits on the same taxon set are compatible (McMorris, 1977; Estabrook and

McMorris, 1980). A set of partial splits is compatible if the partition intersection

graph is chordal or can be chordalized (Semple and Steel, 2002, see example in

Figure 3.14). Chordal denotes the property that every cycle with at least four

nodes has an edge connecting two non-consecutive nodes. If the graph is chordal-

ized, then these edges connecting the non-consecutive nodes are introduced. For

partition intersection graphs, the additional property must hold that no nodes

of the same split are connected. Here, we have the special case that the set is

built from full splits and partial splits which are all pairwise compatible. Then,
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AB ABC DERCDER

CD ER

ABCRDE

Figure 3.14: Partition intersection graph of the example in Figure 3.13. The
node set of the graph corresponds to the taxon sets of each partition. Taxon
sets are color-coded as follows: black - S∗, green - G, red - S∗. Two nodes are
connected if their taxon sets overlap. Here, the overlap between S∗ and S∗ is not
shown. We see that no cycles of length ≥ 4 are introduced when only nodes in
S∗ and G are considered. However, the graph of S∗ and G forms a cycle of length
four. This cycle cannot be chordalized since CD|ER ∈ G and ABCR|DE ∈ S∗.

the edges between nodes originating from full and partial splits cannot introduce

cycles of lengths greater than 3. Thus, the partition intersection graph is chordal

and P∗ ∪ T is compatible.

Second, if P∗ ∪ T is compatible, there is an R ∈< T > with R ⊇ P∗. Thus,

RF(P ,R) ≤ |P∗| = SES(P , T ).

As for MR(-)supertrees, we only consider fully resolved MR(+)supertrees. Multi-

furcating supertrees can result, if multiple bifurcating trees have the same distance,

then the supertree is the strict consensus of these best trees (see also next section).

3.4.4 Implementation

The two distance functions were implemented in python based on the matrix repre-

sentation algorithms presented in Section 3.4.3. These implementations are combined

with an heuristic tree search. The resulting program is called PluMiST (Plus- and

Minus Supertrees) and is available upon request. An option of PluMiST is the type

of algorithm (minus or plus). According to this option, the corresponding objective

function is used. In the following we outline the principle of the approach.

1. Starting tree The starting tree is either a given tree, a random tree, or an iterative

minus tree. The latter builds a starting tree based on minimizing d− in each step.

Therefore, a random order of taxa is generated. The quartet topology for the
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first four taxa is computed by choosing the topology most frequent among the

gene trees. Then, taxa are added iteratively. In each step, the informative gene

trees are determined. A gene tree is informative, if it contains the taxon added

in this step and at least three of the taxa already inserted. For each possible

insertion point, d− between the proposed tree and the informative gene trees

is evaluated. The insertion point with the minimal sum of d− is chosen as the

final insertion point. If no informative gene trees are found, a different taxon is

chosen for insertion. Ties are always resolved randomly.

Note that an iterative plus tree cannot be computed that easily. While the

starting tree is growing iteratively, computing d+ would mean to find the optimal

positions of taxa both in the starting tree and in the gene tree. The taxon sets

of the two trees are overlapping and there may be taxa in one tree but not in

the other and vice versa. In this case, the SES is not applicable.

2. Heuristic search The starting tree is optimized by nearest neighbor interchange

(NNI). In each step, all possible interchanges are evaluated, whether they im-

prove the sum of d− or d+, respectively, and the best tree is kept for continuing

the search. If multiple trees are found, one is chosen randomly for continuing

the search but all optimal trees are kept. The search stops if no NNI yields an

improvement.

3. Consensus The tree with the best score found is returned. If there are multiple

best trees, the strict consensus of these is returned as the supertree.

A larger proportion of the tree space can be explored by computing multiple starting

trees, each followed by a heuristic search. Thus, steps 1 and 2 can be run multiple

times and in step 3, the best trees of all runs are considered for the strict consensus.

3.4.5 Simulation Results

To assess the performance of majority-rule supertrees in simulations, PluMiST is used

to compute MR(-)- and MR(+)supertrees the following way: Ten replications of start-

ing tree computation and subsequent heuristic search with the respective objective

function are performed. Afterwards, the results of these ten replications are merged

and the strict consensus of the trees with the smallest distance is computed.

We compare the MR-supertree implementations with two published MRep-methods.

First, we use MRC as implemented in Clann. And second, we use MRP BR as im-
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Figure 3.15: Simulation results for MR(-) and MR(+). MRP refers to
MRP BR. For an explanation of the boxes, see Figure 3.4 (page 52).

plemented in PAUP*, which is named MRP from now on. In Section 3.2.2, these

methods and implementations are described in detail. The simulated alignments from

the simulations with missing data and equal simulation parameters of the genes are

used (S,m,E,n and L,m,E,n; Section 3.3.2).

For the small data set (Figure 3.15a), we see differences in the performance of the

MRep-methods. MR(-) and MRP perform about equally well (mean values of 10.7 %

and 10.8 %, respectively). Both are better than MR(+) and MRC (mean values of

11.7 % and 13.6 %, respectively). These differences get more pronounced with the large

data set, which also shows a larger amount of missing data (Figure 3.15b). Here, MRP

(6.5 %) is best, followed by MR(-) (7.3 %). MR(+) and MRC are clearly outperformed

by these methods (mean values of 14.9 % and 12.7 %, respectively).

3.4.6 Summary

We formulated the objective functions for majority-rule supertrees (Cotton and Wilkin-

son, 2007) in the matrix representation framework. With this tool, we could show

that for bifurcating trees the objective function of MR(-) is equivalent to the objec-

tive function of MRC. Furthermore, it allows us to formulate a computation of d+ for

fully resolved trees. The complexity of d+ is unknown (Cotton and Wilkinson, 2007;

Dong and Fernández-Baca, 2009) but our computation for bifurcating trees runs in

polynomial time.

This allowed us to implement both objective functions in combination with an easy

tree-search algorithm (NNI) in the program PluMiST. We are aware that other search

algorithms can explore the tree space more efficiently, but we only wanted to get a first
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3.5 Effects of Null Models on the Tree Shape Bias of Supertree Methods 77

insight into the performance of majority-rule supertree methods. The performance of

our MR(-)implementation is comparable to MRP for the small data set and slightly

worse for the larger data set. Furthermore, MR(-) clearly improves the current MRC

implementation.

Finally, the simulation results clearly show a better performance of MR(-) compared

to MR(+). This discrepancy traces back to the objective functions, since the same

search heuristic was used for the comparison. MR(+) can put missing taxa at the

best fitting positions in the gene trees. However, if taxa are missing in many trees, the

information for these taxa may be outvoted by the “information” in the extensions.

This is consistent with our observation that MR(+) is largely affected by missing

data (Figure 3.15b compared to Figure 3.15a). Therefore, we need to be aware of the

assumptions underlying the null models of these methods, which are discussed in the

next section.

Appendix While writing up this section, a related paper by Dong et al. (2010) ap-

peared. The authors show, that the problem of finding a supertree minimizing the

sum of d+ is NP-complete and they provide an exact solution using integer linear

programming.

3.5 Effects of Null Models on the Tree Shape Bias of

Supertree Methods

3.5.1 Introduction

Although several desiderata for supertree methods exist (Wilkinson et al., 2004, see

also Section 3.1), only few of them have been studied in greater detail, examples include

shape bias (Wilkinson et al., 2005a) or pareto properties (Wilkinson et al., 2007). Here,

we investigate supertree methods in the presence of no or little information. This is

modeled by null distributions on the space of topologies (Section 1.3.2). The results

in this section were first presented in Kupczok (2009).

Since we use these theoretical distributions, we use the term input tree instead of

gene tree for the input of supertree methods. The analyses in this section refer only
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78 Chapter 3 Combining Phylogenetic Trees

to trees with the same taxon set, also known as the consensus setting (e. g. Wilkinson

et al., 2007). Furthermore, we will only consider bifurcating topologies. Thus, we

restrict the definition of topologies from Section 1.3.2 as follows: Now, a (tree) topology

for n taxa is an unrooted, leaf-labeled, bifurcating tree with n leaves. Since branch

lengths are not relevant in this section, we use the term tree simply for topologies. We

are only interested in the interior splits, thus we call them splits ignoring the trivial

splits.

We consider two matrix representation methods, matrix representation with com-

patibility (MRC) and matrix representation with parsimony (MRP) with Baum-Ragan

coding (Section 3.2.2). As in Section 3.4.5 we name them simply MRC and MRP since

only one coding is investigated. Several details of the computation of MRC and MRP

differ from the previous description in Section 3.2.2. First, the MRep is generated by

a python script. The number of columns in an MRep is denoted as length l. This

is the total number of splits in the input trees. Furthermore, MRC maximizes the

number of compatible columns. Equivalently, the method can also be defined as min-

imizing the number of columns not present in the supertree (as in the definition of

MR(-)supertrees, Section 3.4.3). We use this notation from now on and denote the

number of columns not present in the supertree as compatibility length (CL). The

compatibility length is analoguous to the parsimony length (PL) minimized by MRP.

The PL is the sum of the parsimony lengths over all the columns in the MRep (see also

Section 1.2.2). Note that for n = 5, MRC and MRP are equivalent since only 2-splits

are present. A 2-split has a PL of 1 if it occurs in a tree and a PL of 2 otherwise.

Thus, for each five-taxa-tree, the PL is l+CL.

In contrast to the simulations described before, we found all optimal trees in this

section by exhaustive search. Note that there can be multiple supertrees with the same

minimal CL and PL, respectively. Thus we talk about the “supertree set” and we do

not apply a consensus. Optimal MRC trees were found with a python script which

evaluates all possible topologies for a particular number of taxa and optimal MRP

trees are computed with the branch-and-bound option in PAUP* (Swofford, 2002).
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3.5 Effects of Null Models on the Tree Shape Bias of Supertree Methods 79

3.5.2 Results

Perfect Distributions

First, we perfectly model the null distributions. Under the perfect PDS model, the

MRep contains exactly one split of each kind (e. g. 25 columns for n = 6, Table 1.1,

page 8). Then the compatibility lengths are equal for all trees. Since each tree contains

n− 3 inner splits, the CL of each tree is l− n+ 3. The parsimony lengths of all trees

are also equal if each possible split is given as input (Steel, 1993). Thus, for MRC and

MRP, the supertree set contains every tree if the perfect PDS model is used as input.

Under the perfect PDA model, the MRep is built by coding each tree once. Then

the set of supertrees for MRC contains only trees of the same shape. This shape is

called the optimal shape for MRC. The analogue holds for MRP. For six to nine taxa,

the optimal shape is the same for MRC and MRP (shapes S6,2, S7,2, S8,3 and S9,5;

shapes marked gray in Table 3.5, page 81). E. g. for n = 6, the supertree set contains

15 trees, all being of shape S6,2. In the following, we call these four optimal shapes

balanced shapes. Note that MRC and MRP do not always result in the same optimal

shapes. E. g. for n = 11, the optimal shape with MRC is whereas the

optimal shape with MRP is .

Resampling Randomly from the Distributions

Having exactly one split or one tree of each kind as input is a very strong assumption.

Thus, we resampled a particular number of trees t from the distribution. For the PDS

model, a sample of t trees corresponds to t·(n−3) randomly drawn splits. We evaluate

the fraction of balanced shapes among the resulting supertrees. If the supertree set for

one data set contains p trees and thereof q exhibit the balanced shape, this data set

shows a fraction of q/p of the balanced shape. The results in Figure 3.16 are obtained

by averaging this fraction over 100 randomly generated data sets.

Under the PDA model, we would expect a certain fraction of the balanced shape

(Table 1.2, page 9). These fractions are marked dashed in Figure 3.16. With the

PDS model, the balanced shape occurs a bit less frequently in the supertree sets than

expected. In contrast, if the input trees are generated under the PDA model, the

supertrees show the balanced shapes more often than expected. The observed fraction
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Figure 3.16: Resulting supertree shapes if random input trees are given (100
repetitions for each number of trees). The dashed line is the expected fraction of
the balanced shape under the PDA model (Table 1.2). Labels: × MRC - PDA,
◦ MRP - PDA, + MRC - PDS, • MRP - PDS

of balanced shapes is growing with the number of input trees. Furthermore, the bias

is less strong for MRP, in particular for uneven numbers of taxa.

Perfect Distributions with Phylogenetic Information

Next, we ask how the methods behave in the presence of “little” phylogenetic infor-

mation disturbed by noise. First, noise is modeled by the perfect PDA model. Note

that the supertree methods show a bias towards balanced shapes if the perfect PDA

model is used as input (shapes marked gray in Table 3.5). The little phylogenetic

information is modeled by adding the “true” tree i times to the perfect PDA model.

The critical number ic is the smallest i such that the true tree is in the supertree
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Shape MRC MRP

S5 1 (6.7 %) 1 (6.7 %)

S6,1 6 (5.7 %) 6 (5.7 %)

S6,2 1 (0.95 %) 1 (0.95 %)

S7,1 60 (6.3 %) 60 (6.3 %)

S7,2 1 (0.11 %) 1 (0.11 %)

S8,1 720 (6.9 %) 900 (8.7 %)

S8,2 630 (6.1 %) 990 (9.5 %)

S8,3 1 (0.01 %) 1 (0.01 %)

S8,4 270 (2.6 %) 540 (5.2 %)

S9,1 8820 (6.5 %) 12600 (9.3 %)

S9,2 8820 (6.5 %) 13860 (10.3 %)

S9,3 7560 (5.6 %) 13860 (10.3 %)

S9,4 3150 (2.3 %) 7560 (5.6 %)

S9,5 1 (0.0007 %) 1 (0.0007 %)

S9,6 1260 (0.93 %) 1260 (0.93 %)

Table 3.5: Critical numbers (ic): Numbers of trees necessary to be added to
the perfect PDA model until the true tree is in the supertree set. The fraction
in parentheses is the number of trees added divided by the number of trees in
the perfect PDA model. Shapes marked gray are the optimal shapes with MRC
and MRP under the perfect PDA model (the “balanced” shapes).

set. We observe that ic depends strongly on the shape of the true tree (Table 3.5). It

ranges from 1 tree for the balanced shape up to 10 % of the total number of trees. In

general, the critical numbers are lower for MRC than for MRP.

If the number of true trees is below ic, then one or few incorrect supertrees are found.

E. g. for n = 6 and S6,1, the true tree is T 1 ((A,B,(C,(D,(E,F))))). If this tree is

added once to the supertree set, the supertree for MRC and MRP, respectively, is T 2

(((A,B),(E,F),(C,D))). We see that the supertree is balanced and includes the two

2-splits of the true tree (AB|CDEF and EF|ABCD). For MRC, this result can be explained

by the compatibility lengths: The balanced tree T 2 has a length of 315−3×15+1 = 269

(315 splits from the PDA model, thereof 3×15 are the 2-splits and one 3-split from the

true tree). Analogously, the unbalanced tree T 2 has a length of 315−2×15−9 = 276.

For this example, ic is computed by 315− 3× 15 + ic = 315− 2× 15− 9, thus ic = 6

and from i = 7 on the true tree is the only supertree. We see that below the critical
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82 Chapter 3 Combining Phylogenetic Trees

number the uneven split distribution, which prefers 2-splits, outvotes the 3-split.

If one “true” tree is added to the perfect PDS model, then the supertree equals the

true tree for MRC and MRP and all shapes presented in Table 3.5.

Resampling Randomly from the Distributions and adding Phylogenetic

Information

We see that 10 % of phylogenetic information is sufficient such that the supertree

equals the true tree in a perfect setting. However, this behavior is disturbed by noise.

To show this, we add the “true” tree with a fraction of 10 % to the random trees used

for the analysis displayed in Figure 3.16a-c. Therefore, we only take the data sets with

10, 20, ..., 100 trees and add the true tree 1, 2, ..., 10 times. The true tree is either one

topology showing the balanced shape or one topology showing the unbalanced shape.

The accuracy for one data set is 1/p, if p supertrees are found and the true tree is

among them and 0 otherwise. The accuracies are averaged over 100 data sets.

Under the PDS model (Figure 3.17, left column), there is no observable difference

in accuracy between the true trees showing different shapes. For the PDA model (Fig-

ure 3.17, right column), however, the tree with the balanced shape is reconstructed

correctly with higher probability than the tree with the unbalanced shape. Further-

more, the accuracies are increasing with the number of true trees. Apparently, 10

true trees out of 110 trees provide more information compared to 1 true tree out of 11

trees. The accuracies are higher for MRC than for MRP. This is consistent with the

results for the perfect setting that MRP needs more trees until the true tree is in the

supertree set (Table 3.5).

3.5.3 Null Models of Majority-rule Supertrees

In Section 3.4.5, we found a clearly better performance of MR(-)supertrees compared

to MR(+)supertrees. Now, we can explain this with the different implicit null models

underlying both specifications of majority-rule supertrees. First, MR(-)supertrees

extend the splits independently as is modeled by the PDS model. On the other hand,

MR(+)supertrees extend the trees and thus have to keep the constraints introduced

by compatible splits. In this section, we showed that these constraints can lead to a

shape bias towards more balanced trees. Thus, we expect an unbalanced supertree to

be harder to reconstruct by the MR(+)supertree method. Then the conflicting trees
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(c) n = 7, PDS
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(e) n = 8, PDS
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(f) n = 8, PDA

Figure 3.17: Adding information to random trees. The random trees are taken
from Figure 3.16a-c and a fraction of 10 % of the true tree is added. Accuracy
is the fraction the true tree was found by the supertree methods (average over
100 repetitions). Labels: −×− Balanced - MRC, −+− Unbalanced - MRC,
R◦RBalanced - MRP, R•RUnbalanced - MRP. Balanced shapes are S6,2, S7,2

and S8,3. Unbalances shapes are S6,1, S7,1 and S8,1 (see Table 3.5).
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MR(-) MR(+)

k false missing false missing
2 324 233 725 282
3 55 423 350 234

24 0 0 0 190
25 0 0 0 184
26 0 0 0 118
32 0 0 0 51
33 0 0 0 147

Table 3.6: Distribution of false and missing k-splits with MR(-) and MR(+)
among 200 replications with L,m,E,n (Section 3.4.5). Overall, 725 and 350
wrong 2-splits resp. 3-splits are found with MR(+)supertrees and considerably
fewer with MR(-)supertrees. This discrepancy is not seen when comparing the
absolute numbers of 2- and 3-splits that were missed in the reconstructions. The
excess of wrongly reconstructed 2-splits and 3-splits with MR(+) has a negative
influence of the accuracy of splits with high k. The model tree contains five
splits with k ≥ 24. All of these are correctly recovered in each MR(-)supertree.
However, the respective splits are missing in many MR(+)supertrees.

can cause a very high distance on an unbalanced supertree compared to a balanced

supertree (see also example in Figure 3.12). With this relationship we would predict

that more splits with smaller k are reconstructed in our simulations compared to splits

with higher k. Table 3.6 shows this relationship for the simulation L,m,E,n which has

a large amount of missing data.

This data was created with the heuristic method implemented in PluMiST (Sec-

tion 3.4.4). To assess the shape bias of MR(+) in detail, an exact method would be

advantageous. Therefore, e. g. the exact solution of Dong et al. (2010) could be used.

3.5.4 Conclusions

Wilkinson et al. (2005a) report a shape bias towards an unbalanced tree for MRP

which at first view contradicts our result that both MRP and MRC prefer balanced

shapes. However, their setting is different from ours. They investigate two arbitrarily

chosen input trees of different shapes and observe an asymmetry in the parsimony

lengths: the PL of a balanced input tree on an unbalanced supertree is shorter than

vice versa. This can be explained by an inherent feature of the parsimony score: The

PL of a coded k-split does not exceed k on any tree. More balanced trees contain

more splits with small k, i. e. where the numbers of taxa are unevenly distributed.
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They necessarily have lower maximal parsimony lengths. Splits with higher k do not

only have higher maximal PLs, but in addition, the PL distribution on random trees is

shifted towards higher values (Maddison and Slatkin, 1991). This explains that coding

the balanced tree in the MRep is favorable compared to coding the unbalanced tree.

For more than two random input trees, however, not unbalanced but balanced

supertrees are preferred (Figure 3.16). This holds for MRC as well as MRP although

compatibility lengths are not asymmetric. Furthermore, it even holds if unbalanced

and balanced shapes are not uniformly distributed among the input shapes, but when

unbalanced input tree shapes are favored (e. g. for n = 6, the input trees are drawn

from a distribution which contains the unbalanced shape in 86 %, see also Table 1.2).

This shape bias is positively misleading, i. e. it is growing with the number of input

trees. However, it grows slower for MRP. An explanation may be that the bias towards

unbalanced shapes due to the asymmetric parsimony lengths (Wilkinson et al., 2005a)

acts as counterbalance.

This shape bias is only observed for the PDA model (all trees are equally likely),

not for the PDS model (all splits are equally likely). The two null models do also

behave differently if little phylogenetic information is added. Thereby, one or more

“true” trees are added to the perfect distributions. Only under the PDA model, the

supertree set may not contain the true tree for some tree shapes. Instead, up to 10 %

of the true tree are needed such that it is contained in the supertree set (Table 3.5).

When adding one true tree with an unbalanced tree shape, the supertree is not this

tree but a balanced tree. This balanced supertree preserves only some splits present in

the true tree. The shape bias is also present if not the complete list of trees but random

trees are given, and the true tree is added with a fraction of 10 % (Figure 3.17). In this

case, a tree with a balanced shape is reconstructed correctly with higher probability

than a tree with an unbalanced shape.

We note that the shape bias presented here is not caused by an unwanted feature of

the supertree methods, but is a consequence of the complex space of trees. Under the

PDA model, 2-splits are more likely than other splits (Table 1.1) and no distribution on

bifurcating trees ensures that all splits are equally likely (Steel and Pickett, 2006). This

results in a bias towards balanced trees with any split-based supertree reconstruction

method. The same relation causes the problem that uniform priors on tree topologies

do imply non-uniform priors on splits in Bayesian analysis, thus posterior probabilities

may be biased (Pickett and Randle, 2005).
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86 Chapter 3 Combining Phylogenetic Trees

In general, we do not assume that the shape bias has an impact on usual supertree

reconstruction. Here, problems occur if 90 % to 100 % are random data or for small

numbers of trees. We do not expect this to be the case in any analysis. However, in

sparse data sets, only few input trees may carry the information for some splits. If

they are highly conflicting, the shape bias may play a role at least locally.

Furthermore, we cannot draw any conclusions about whether MRC or MRP should

be preferred since they show the bias to a different extent depending on the model.

If only random trees are given as input, the bias is less strong in MRP (Figure 3.16).

On the other hand, if little information is added, MRC can find the true tree better

(Figure 3.17).

Our findings allow implications about the design of supertree methods which explic-

itly model missing data. We conclude that modeling missing data by generating all

possible trees may introduce a bias towards more balanced tree shapes when apply-

ing split-based supertree methods. To date, supertree methods usually do not model

missing data explicitly. However, MR(+)supertrees are an example where tree-shape

effects play a role, if an inappropriate null model is chosen. We can now explain the

results for MR(+) from Section 3.4.5 with a bias towards balanced shapes. MR(-) resp.

MRC treat missing taxa as gaps, which is equivalent to generating all possible binary

characters by replacing the gaps with 0s and 1s (Rodrigo, 1996). This corresponds to

our PDS model which is not affected by the positively misleading tree shape bias.
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Chapter 4

Conclusions and Outlook

This thesis presents the two aspects of phylogenetic postprocessing. First, distance

computations aid in understanding the amount of difference between two phylogenetic

trees. In most applications, only topological information is used for the distance. To

overcome this, we presented an algorithm to compute a distance measure incorporating

the tree topologies and branch lengths, which is motivated by a mathematical repre-

sentation of the tree space (see Section 1.3 for the tree space and Section 2.2 for the

geodesic distance). Furthermore, tree distances can be used to quantify the amount

of difference between two trees in statistical terms. Caution is necessary, however, to

account for the discrete topology space correctly (Section 2.3).

Distances between trees can also be used to compute the median tree for a set of

trees. This definition gave rise to the prevalent majority-rule (MR) consensus method.

For trees with overlapping taxon sets, different specifications can be used, namely

MR(-)supertrees and MR(+)supertrees. We presented algorithms to compute the

respective distances in the matrix representation framework often used for supertree

methods (Section 3.4). This allowed for the implementations of these algorithms

together with a heuristic tree search strategy. When comparing the two specifications

in simulations, we observed a clearly better performance of MR(-) compared to MR(+).

This discrepancy is likely to trace back to a tree shape bias in MR(+)supertrees. The

null model of tree topologies can insert a tree shape bias in split-based supertree

methods (Section 3.5). Only the distribution of equally likely splits behaves in an

appropriate way if little information is present. In contrast, the distribution of equally

likely trees implies shape-specific effects due to the unequal split distribution.

Additionally to studying those theoretical aspects of supertree methods, we also

compared data combination methods using simulations (Section 3.3). There, we in-
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88 Chapter 4 Conclusions and Outlook

vestigated the performance of these methods in different settings, e. g. with complete

or overlapping taxon sets, with equal or different substitution parameters or even with

different gene topologies. The results show a good performance of matrix representa-

tion methods compared to other supertree and medium-level methods. Furthermore,

superalignment is well applicable in the case of differing parameters between genes.

We see a negative influence of alignment length on the performance of superalignment

if the gene topologies differ considerably.

This thesis provides detailed investigations of methods and programs related to

phylogenetic postprocessing. These investigations encompass algorithmic and theo-

retical work as well as practical considerations. The algorithmic work covers mainly

the geodesic distance and MR(+)supertrees. Both were only defined mathematically

before, and are now available for computations. Furthermore, we did theoretical work

concerning tree distributions. The discreteness of the space of topologies must be

considered adequately when trees are tested statistically. Another aspect are the con-

sequences of the non-uniform split distributions on the tree shape bias of split-based

supertree methods. Finally, the practical considerations cover a simulation study for

data combination methods on different levels. The practical aspect is always taken

into account throughout this thesis. The implementation of the geodesic distance is

compared to its approximations and the new majority-rule supertree implementations

are incorporated into the simulation study.

As every scientific work, this thesis does not only contribute answers to the scien-

tific community, but also points out open questions. The first question is about the

elementary information in a tree. Comparing two trees necessarily involves breaking

up those trees. Here, mostly splits were considered as the elementary information.

However, we see that splits come in different kinds and thus do not provide unbiased

information. It is to date unknown whether these biases also exist when using other

types of elementary information, for example quartets or rooted triplets. Furthermore,

it is not clear whether branch lengths should be considered as informative in tree dis-

tance computations. Our simulation study raises a related question, namely, what

is the elementary evolutionary information. Superalignment weights each alignment

character equally and thus considers the base as an element. Supertrees, however,

weight each gene equally. The latter approach is more reasonable in the presence of

gene-specific evolution.

The second important question is how to distinguish between the variation in the
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true gene trees and the variation due to model misspecification and stochastic pro-

cesses. Supertrees only resolve the conflict in the gene trees without considering that

distinction. Since “wrong” gene trees can bias the result, the filtering of these gene

trees is desirable. However, the determination of a “wrong” gene tree without knowing

the species tree is another complex, and yet largely uncharted, task.

Finally, the chapter on tree distances only considers trees on the same taxon set,

whereas supertrees are designed for trees on overlapping taxon sets. The case of the

majority-rule supertrees highlights that distances between a supertree and a gene tree

can be defined in various ways. Our results show that the most intuitive way, namely

completing the gene trees, can be misleading. So far, pruning the supertree to the

taxa in the gene tree is the only solution for a distance computation between two trees

of different sizes. However, the scales of most distances depend on the sizes of the

taxon sets. An interesting topic is to design reasonable distances applicable to trees

on overlapping taxon sets. Such a distance would help to evaluate the performance

of a supertree method, that is, which genes are most similar to the final supertree.

Supertree methods could be compared based on this evaluation. In simulations, we

applied the baseline distance as an indicator for method performances, that is the

average distance of a gene tree to the model tree. In real analyses, however, the model

tree is unknown. Then only distances among gene trees or between a gene tree and

a computed supertree are applicable. Furthermore, reconstructing the median tree

based on this distance could serve as a supertree method.

To conclude, the presented algorithms and results contribute to our understanding of

phylogenetic trees, how to extract information from trees, compute distances between

trees and combine trees.
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Appendix A

Simulation Results
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Figure A.1: Distribution of normalized RF distances (200 simulations) for the
simulation setting with long sequences (S,m,E,l). Only missing data is studied,
thus the baseline distance is not applicable.
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Figure A.2: Distribution of normalized RF distances for the simulation with
bootstrapping (200 simulations). Alignments were taken from the data sets that
were the basis of the results shown in Figure 3.4b (S,m,E,n). Only missing data
is studied, thus the baseline distance is not applicable.
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Figure A.3: Distribution of normalized RF distances (100 simulations) for the
simulation setting S,m,R3,n.
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Figure A.4: Distribution of normalized RF distances (100 simulations) for the
simulation setting S,m,R1.67,n.
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(a) S,c,T0.001,n
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(b) S,m,T0.001,n

Figure A.5: Distribution of normalized RF distances (200 simulations).
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(a) S,c,T0.002,n
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Figure A.6: Distribution of normalized RF distances (200 simulations).
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(a) S,c,T0.003,n
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Figure A.7: Distribution of normalized RF distances (200 simulations).
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(a) S,c,T0.004,n
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Figure A.8: Distribution of normalized RF distances (200 simulations).
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●

0 20 40 60 80
normalized RF distance in %

●

●

●●

● ●●● ●

● ●

●● ●● ● ●

●●●● ●

● ● ●● ●

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

SA

SDM

AvCon

SuperQP

QILI

MaxCut

ModMinCut

MinCut

MRC

MRF_PU

MRF_BR

MRP_I

MRP_PU

MRP_BR

Consensus

Gene trees

(b) S,m,T0.01,n

Figure A.9: Distribution of normalized RF distances (200 simulations).



Appendix B

List of Abbreviations and Symbols

A A legal topology

A A set of legal topologies

α Size of a statistical test

AvCon Average Consensus

BR Baum-Ragan (coding)

BS Branch-score distance

CL Compatibility length

d Dimension: number of splits unique to one topology compared to another

d+ Objective function for MR(+)supertrees

d− Objective function for MR(-)supertrees

DAG Directed acyclic graph

eS Orthogonal unit vector corresponding to split S
Et The extension of a partial split t

g A piecewise linear function

GeoMeTree Geodesic Metric on Trees

GTR General time-reversible

HKY Hasegawa, Kishino and Yano

I A transition

JC Jukes-Cantor

JTT Jones, Taylor and Thornton

k-split A split into k and n− k taxa

l Number of columns in an MRep

λp Weight function of tree p

m Number of possible splits for n taxa
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112 Appendix B List of Abbreviations and Symbols

MAST Maximum agreement subtree

MD MAST-based distance

MinCut Minimal cut

ML Maximum likelihood

ModMinCut Modified minimal cut

MP Maximum parsimony

MR Majority-rule

MRC Matrix representation with compatibility

MRep Matrix representation

MRF Matrix representation with flipping

MRP Matrix representation with parsimony

n Number of taxa

NNI Nearest-neighbor interchange

p A weighted tree

P A supertree toplogy

PL Parsimony length

PluMiST Plus- and Minus Supertrees

PDA Proportional to distinguishable arrangements

PDS Proportional to distinguishable splits

PU Purvis (coding)

QILI Quartet inference and local inconsistency

QP Quartet puzzling

RF Robinson-Foulds distance

RFw Weighted Robinson-Foulds distance

S A split

S′ Splits in the symmetric difference of two trees

SA Superalignment

SDM Super distance matrix

SES Split extension score

Sn Set of splits for n taxa

SuperQP SuperQuartetPuzzling

T A topology

< T > The span of a topology

θ Coalescent parameter

TBR Tree-bisection-reconnection
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Tn Number of topologies for n taxa

Tn Space of weighted trees for n taxa

X A taxon set

X1|X2 A split
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