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Abstract

A filtered manifold is a smooth manifoldM , whose tangent bundle TM is
endowed with a filtration by vector subbundles TM = T−kM ⊃ ... ⊃ T−1M ,
which is compatible with the Lie bracket of vector fields. Studying differen-
tial operators on filtered manifolds, it turns out that the notion of order of
differential operators should be changed by adapting it to the filtration of
the tangent bundle. This leads to a concept of weighted jet bundles for sec-
tions of vector bundles over filtered manifolds, which provides a convenient
framework to investigate differential equations on filtered manifolds.
An interesting class of filtered manifolds are regular infinitesimal flag mani-
folds, which occur as underlying structures of parabolic geometries. In this
thesis, we study differential operators on regular infinitesimal flag manifolds
within the framework of weighted jet bundles.
In the first part of this thesis, we will deal with the problem of prolongation
of differential equations on regular infinitesimal flag manifolds. First we will
show that a linear system of differential equations of weighted finite type
on a filtered manifold is always canonically equivalent to a certain linear
system of weighted order one. This will imply that the solution space of
such a system is always finite dimensional. Then we will show how one can
construct for some class of semi-linear systems of differential equations on
certain regular infinitesimal flag manifolds a linear connection ∇ on some
vector bundle V over the regular infinitesimal flag manifold M and a bundle
map C : V → T ∗M ⊗ V such that solutions of the studied system are in
one to one correspondence with solutions of the system ∇Σ + C(Σ) = 0. In
particular, this will lead to sharp bounds for the dimension of the solution
space for a wide class of linear systems of weighted finite type on certain
regular infinitesimal flag manifolds.
In the second part, we will be concerned with the construction of invari-
ant operators for parabolic geometries via curved Casimir operators. We
will construct invariant operators for Lagrangean contact structures using
curved Casimir operators.
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Introduction

A filtered manifold is a smooth manifold M together with a filtration
of the tangent bundle TM = T−kM ⊃ T−k+1M ⊃ ... ⊃ T−1M by vector
subbundles, which is compatible with the Lie bracket of vector fields, mean-
ing that for sections ξ ∈ Γ(T iM) and η ∈ Γ(T jM) the Lie bracket [ξ, η] is a
section of T i+jM . The associated graded vector bundle of a filtered manifold
is given by forming the pairwise quotient of the filtration components of the
tangent bundle gr(TM) =

⊕k
i=1 T

−iM/T−i+1M . The Lie bracket of vector
fields induces a Lie bracket on each fiber gr(TxM) over some point x ∈ M ,
which makes gr(TxM) into a nilpotent graded Lie algebra, called the symbol
algebra of the filtered manifold at the point x ∈ M . The symbol algebra
gr(TxM) should be viewed as the first order approximation to the filtered
manifold at the point x ∈M , playing the same role as the tangent space at
some point for usual manifolds.
Studying differential equations on filtered manifolds it turns out that, in
addition to replacing the usual tangent space at x by the graded nilpotent
Lie algebra gr(TxM), one should also change the notion of order of differen-
tial operators according to the filtration of the tangent bundle. One of the
best studied examples of a filtered manifold structure is a contact structure
TM = T−2M ⊃ T−1M on a manifold M . In this special case, to adjust the
notion of order according to the filtration of the tangent bundle means that
a derivative in direction transversal to the contact subbundle T−1M should
be considered as a differential operator of order two rather than one. Doing
this leads to a notion of symbol for differential operators on M , which fits
naturally together with the contact structure and which can be considered as
the principal part of such operators. In the context of contact geometry the
idea to study differential operators on M by means of their weighted symbol
goes back to the 70’s and 80’s of the last century and is usually referred to
as Heisenberg calculus, see [1] and [41].
Independently of these developments in contact geometry, Morimoto started
in the 90’s to study differential equations on general filtered manifolds and
developed a formal theory, see [30], [31] and [32]. By adjusting the notion of
order of differentiation to the filtration of a filtered manifold, he introduced
a concept of weighted jet bundles, which provides a convenient framework to
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4 INTRODUCTION

study differential operators between sections of vector bundles over a filtered
manifold. In particular, it leads to a notion of symbol, which can be natu-
rally viewed as the principal part of differential operators between sections
of vector bundles over a filtered manifold.
A geometric structure, which always gives rise to a filtered manifold struc-
ture, is a regular parabolic geometry. Parabolic geometries are special types
of Cartan geometries, namely Cartan geometries of type (G,P ), where G is
a semisimple Lie group and P ⊂ G is a parabolic subgroup. So a parabolic
geometry of type (G,P ) consists of a principal P -bundle G →M and a one
form ω on G with values in the Lie algebra of G, which is compatible with
the principal P -action, trivialises the tangent bundle of G and reproduces
fundamental vector fields. If the parabolic geometry is regular, it induces
a regular infinitesimal flag structure on M , which consists of a filtration of
the tangent bundle, making M into a filtered manifold, and a reduction of
the structure group of the frame bundle P(gr(TM)) of the associated graded
bundle gr(TM). With two exceptions, under a certain normalisation con-
dition a regular parabolic geometry is always equivalent to its underlying
regular infinitesimal flag structure. Interpreting these underlying regular
infinitesimal flag structures in more conventional terms, one can see that
parabolic geometries offer a uniform approach to a broad variety of geo-
metric structures. Among these structures we have for instance conformal
structures, partially integrable almost CR-structures, Lagrangean contact
structures, quaternionic contact structures and certain types of generic dis-
tributions. In the last decades parabolic geometries and their underlying
structures were intensively studied and formidable and profound results have
been obtained. For an overview of the development of parabolic geometries
see [15].
In this thesis, we will study differential operators between sections of natural
vector bundles over regular infinitesimal flag manifolds within the framework
of weighted jet bundles. The first part of this thesis is devoted to the problem
of prolongation of differential equations on filtered manifolds and on regular
infinitesimal flag manifolds. In the second part, we will be concerned with
the construction of invariant operators for parabolic geometries via curved
Casimir operators. We will show how to construct invariant operators for
Lagrangean contact structures via curved Casimir operators.

Prolongation of systems of partial differential equations on fil-
tered manifolds. Given some system of linear partial differential equations
on a smooth manifold, one can ask the question whether this system can be
rewritten as a first order system in closed form, meaning that all first order
partial derivatives of the dependent variables are expressed in the dependent
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variables themselves. This actually demands to introduce new variables for
certain unknown higher partial derivatives until all first order partial deriva-
tives of all the variables can be obtained as differential consequences of the
original system of equations. It can be rephrased as the need to construct
a vector bundle and a linear connection such that its parallel sections cor-
respond bijectively to solutions of the original system of equations. Having
rewritten a system of linear differential equations in this way implies that
the dimension of the solution space is bounded by the rank of the vector
bundle and by looking at the curvature of the connection and its covariant
derivatives one may derive obstructions to the existence of solutions. Hence
rewriting a linear system of differential equation as a first order system in
closed form leads to considerable information on this system.
In [38] Spencer studies a class of systems of differential equations, namely
systems of so called finite type. For a system of differential equations of finite
type it can be shown that a solution is already determined by a finite jet in
a single point. Hence this is a class of systems of differential equations, for
which one can expect such a rewriting procedure to exist. The difficulty is
just how to really rewrite such a system. Even for easy equations it can be-
come quite tricky to decide for which higher derivatives one introduces new
variables and which differential consequences of the equation one should fol-
low up, see [4] and [20].
On filtered manifolds, there exists a lot of examples of linear differential
equations, for which a solution is already determined by finitely many par-
tial derivatives in a single point, but which are not of finite type in the
classical sense of Spencer. This indicates that differential equations on fil-
tered manifolds should be better studied within the framework of weighted
jet bundles and the notion of finite type should be adjusted to the weighted
setting.
Using ideas of [23], we will show in chapter 1 that to a linear system of differ-
ential equations of weighted finite type on a filtered manifold one can always
associate canonically a differential operator of weighted order one with in-
jective weighted symbol whose kernel describes the solution of the original
system. Moreover, we will see that rewriting a linear system of weighted
finite type in this form, implies that a solution is already determined by a
finite weighted jet in a single point, hence its solution space is always finite
dimensional. In addition, we will obtain obstructions to the existence of so-
lutions. These results have been already published in [35]. Although from
a theoretical point of view this canonical weighted first order operator is as
good as a linear connection on some vector bundle whose parallel sections
correspond to solutions of the studied linear systems, this approach remains
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in general too abstract to obtain concrete information.
In chapter 3, studying overdetermined systems on regular infinitesimal flag
manifolds, we will therefore take up a different point of view. Suppose that
(G →M,ω) is a regular parabolic geometry of some type (G,P ) and let V be
some irreducible representation of G. It was shown in [13] and the construc-
tion was improved in [6] that to the natural vector bundle V corresponding
to V one can associate a sequence of invariant linear differential operators
for the parabolic geometry (G → M,ω), which is called the BGG-sequence
associated to V . In the case of the homogeneous model of parabolic geome-
tries of type (G,P ) this sequence is a complex and corresponds dually to the
algebraic Bernstein-Gelfand-Gelfand resolution of the representation V. It
turns out that a huge class of invariant differential operators for (G →M,ω)
actually occurs as differential operators in some BGG-sequence and that the
first operator occurring in such a sequence gives always rise to an overdeter-
mined system of partial differential equations. The BGG-operators can be
also naturally viewed as differential operators between natural vector bun-
dles over the underlying regular infinitesimal flag structure on M .
In chapter 3, we will consider semi-linear differential operators between sec-
tions of natural vector bundles over certain regular infinitesimal flag man-
ifolds, which have the same weighted symbol as some first BGG-operator.
Working in the setting of weighted jet bundles, we will show how the system
of partial differential equations associated to such an operator can be rewrit-
ten as a system of partial differential equations of the form ∇Σ +C(Σ) = 0,
where ∇ is a linear connection on some vector bundle V over the regular
infinitesimal flag manifoldM and C : V → T ∗M⊗V is some bundle map. If
the studied system is linear, we will see that it is of weighted finite type and
that the rewriting procedure in this case produces a vector bundle map C.
Hence ∇+C will be a linear connection, whose parallel sections are in bijec-
tion with solutions of the studied linear system. In particular, we will obtain
in this way sharp bounds for a wide class of linear overdetermined systems
on certain regular infinitesimal flag manifolds. This prolongation procedure
will generalise the procedure, which was presented in [4], for overdetermined
systems on regular infinitesimal flag manifolds corresponding to |1|-graded
semisimple Lie algebras to regular infinitesimal flag manifolds corresponding
to |k|-graded semisimple Lie algebras, where the center of its Levi subalgebra
is one dimensional. In particular, it will apply to contact manifolds.
Let us remark that for the case of a first BGG-operator itself associated to
some vector bundle V corresponding to an irreducible G representation it
was recently shown, see [25], how to construct a linear connection on V ,
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whose parallel sections correspond bijectively to solutions of the linear sys-
tem defined by the first BGG-operator. This approach has the feature that
the connection on V is natural with respect to the parabolic geometry re-
spectively to its underlying geometric structure. In contrast our method,
although not natural, works as well for all the first BGG operators on any
regular infinitesimal flag manifold, but also for all semi-linear differential
operators on regular infinitesimal flag manifolds corresponding to |k|-graded
semisimple Lie algebras, where the center of its Levi subalgebra is one di-
mensional, which have exactly the same weighted symbol as some first BGG-
operator. In the latter case, we see that our approach is not only working for
a larger class of differential operators, but also that it is very convenient for
applications, since to apply our rewriting procedure one just has to check, if
the operator one studies has the right weighted symbol, one doesn’t need to
know, if one is dealing with a BGG-operator.

Construction of invariant differential operators for parabolic
geometries via Curved Casimir operators. We already mentioned that
a large class of invariant operators for parabolic geometries occur as dif-
ferential operators in some BGG-sequence. However, the construction of
BGG-operators doesn’t produce all the invariant differential operators. On
the one hand one only obtains differential operators acting between natural
vector bundles corresponding to P representations with regular infinitesimal
character and on the other hand one can’t construct so called non-standard
invariant differential operators, like in the case of conformal geometries con-
formally invariant powers of Laplacians.
Given a parabolic geometry of some type (G,P ) and a finite dimensional
representation W of P , it was shown in [16] that there is always a basic
invariant differential operator acting between sections of the natural vector
bundle W corresponding to W. It is called the curved Casimir operator
on W . In [10] it was demonstrated how curved Casimir operators can be
used to construct in a conceptual way invariant operators for parabolic ge-
ometries acting between sections of natural vector bundles corresponding to
completely reducible representations of P . The only difficulty one has to face
is that it is not apparent from the construction that the obtained operator
is non-zero. In a forthcoming article Čap and Gover therefore developed
in the case of |1|-graded parabolic geometries a method for computing the
principal symbol of the constructed operator. In chapter 4, we will see that
dealing with parabolic geometries corresponding to |k|-graded semisimple
Lie algebras for k > 1, one should investigate the weighted symbol of the
constructed operator rather than the usual principal symbol. Similarly as
in the |1|-graded case one should be able to find a method to conceptually
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compute the weighted symbol of the constructed operator. We will demon-
strate this by constructing via curved Casimir operators invariant operators
for Langrangean contact structures, which are related to the square of a
Sub-Laplacian.

Short summary and structure of the following text. In the first
chapter, we introduce the notion of a filtered manifold and expatiate on the
concept of weighted jet bundles. Moreover, we will see that the solution
space of a regular linear system of differential equations of weighted finite
type on a filtered manifold is always finite dimensional by showing that it can
be canonically rewritten as a certain linear system of weighted first order.
In the second chapter, we give a short introduction to parabolic geometries
and collect some results, which will be crucial in the course of this thesis.
In the third chapter, we will study a large class of geometrically interesting
semi-linear systems of differential equations on certain regular infinitesimal
flag manifolds and present a systematical way to rewrite them as systems of
the form ∇Σ+C(Σ) = 0, where ∇ is a linear connection on some vector bun-
dle V over the regular infinitesimal flag manifold M and C : V → T ∗M ⊗ V
is a bundle map. In particular, this will lead to sharp bounds for the dimen-
sion of the solution space of a huge class of linear overdetermined systems
on certain regular infinitesimal flag manifolds. Moreover, we will show how
this prolongation procedure can be applied to contact manifolds.
In the fourth chapter, we are dealing with the construction of invariant op-
erators for parabolic geometries via curved Casimir operators. We will show
how to construct invariant operators for Lagrangean contact structures via
curved Casimir operators, which are related to the square of a Sub-Laplacian.
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CHAPTER 1

Filtered Manifolds and Weighted Jet Bundles

In the first two sections of this chapter we introduce the notion of a
filtered manifold and discuss the concept of weighted jet bundles of sections
of vector bundles over filtered manifolds as it was introduced by Morimoto
in order to study differential equations on filtered manifolds, see [30], [31]
and [32]. In the last section, we will show that systems of linear partial
differential equations of weighted finite type can be canonically rewritten as
certain systems of weighted order one. This will immediately imply that the
solution space of a system of weighted finite type is always finite dimensional
and it will lead to obstructions to the existence of solutions.

1.1. Filtered manifolds

We start by collecting some basic facts about filtered manifolds and by
considering some particularly interesting examples.

1.1.1. Definitions and notations.

Definition 1.1.

(1) A filtered manifold is a smooth manifoldM together with a filtration
of its tangent bundle TM by vector subbundles {T iM}i∈Z such
that:
• T iM ⊇ T i+1M

• T 0M = 0 and there exists ` ∈ N with T−`M = TM

• for sections ξ ∈ Γ(T iM) and η ∈ Γ(T jM) the Lie bracket [ξ, η]
is a section of T i+jM

(2) By the first two properties, the tangential filtration can be written
as

TM = T−kM ) T−k+1M ) ... ) T−1M

for some k ∈ N with T iM = TM for i ≤ −k and T iM = 0 for i ≥ 0.
The number k ∈ N is called the depth of the filtered manifold.

(3) A (local) isomorphism between two filtered manifoldsM and N is a
(local) diffeomorphism f : M → N , whose tangent map Tf satisfies
Tf(T iM) = T iN .

Let M be a filtered manifold of depth k with tangential filtration TM =
T kM ⊃ ... ⊃ T−1M . Then one can form the associated graded vector bundle

11



12 1. FILTERED MANIFOLDS AND WEIGHTED JET BUNDLES

gr(TM) to the filtered vector bundle TM . It is obtained by taking the
pairwise quotients of the filtration components of the tangent bundle

gr(TM) =
−1⊕
i=−k

gri(TM),

where gri(TM) = T iM/T i+1M . We denote by qi : T iM → gri(TM) the
natural projection.
Now consider the operator Γ(T iM) × Γ(T jM) → Γ(gri+j(TM)) given by
(ξ, η) 7→ qi+j([ξ, η]). Since [fξ, gη] = fg[ξ, η] + f(ξ · g)η − g(η · f)ξ for
smooth functions f, g ∈ C∞(M,R) and since for i, j ≤ −1 the subbundles
T iM and T jM are contained in T i+j+1M , this operator is bilinear over
smooth functions and therefore induced by a bilinear bundle map T iM ×
T jM → gri+j(TM). Moreover, it obviously factorises to a bundle map
gri(TM)×grj(TM)→ gri+j(TM), since for ξ ∈ Γ(T i+1M) or η ∈ Γ(T j+1M)
we have [ξ, η] ∈ Γ(T i+j+1M). Hence we obtain a bilinear bundle map

L : gr(TM)× gr(TM)→ gr(TM)

on the associated graded bundle. Since L is induced from the Lie bracket
of vector fields, Lx makes the fiber gr(TxM) over x ∈M into a Lie algebra.
Viewing gr(TxM) as a graded vector space

gr(TxM) =
⊕
i∈Z

gri(TxM)

where gri(TxM) = 0 for i < −k or i ≥ 0, we see that the Lie bracket Lx by
construction satisfies

Lx(gri(TxM), grj(TxM)) ⊂ gri+j(TxM).

Therefore (gr(TxM),Lx) is actually a graded nilpotent Lie algebra.

Definition 1.2. Let M be a filtered manifold.

(1) The tensorial bracket L : gr(TM) × gr(TM) → gr(TM) induced
from the Lie bracket of vector fields on gr(TM) is called the Levi
bracket.

(2) The nilpotent graded Lie algebra (gr(TxM),Lx) is called the symbol
algebra of the filtered manifold M at the point x ∈M .

Suppose M and N are filtered manifold and let f : M → N be a local
isomorphism of filtered manifolds. Then for each point x ∈ M the tangent
Txf at x is an isomorphism of filtered vector spaces Txf(T ixM) = T ixN and
hence induces an isomorphism of graded vector spaces between gr(TxM) and
gr(Tf(x)N). The compatibility of the pullback of vector fields with the Lie
bracket easily implies that this actually is an isomorphism of graded Lie
algebras. Therefore the symbol algebras are the basic invariants one can
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associate to a filtered manifold. In fact, the symbol algebra at x should be
seen as the first order linear approximation to the filtered manifold at the
point x replacing the role of the tangent space for ordinary manifolds.
In general the symbol algebra of a filtered manifold may change from point
to point. Hence the associated graded vector bundle need not to be locally
trivial as a bundle of Lie algebras. If each fiber gr(TxM) of the associated
graded bundle is isomorphic to some fixed nilpotent graded Lie algebra n =
n−k ⊕ ...⊕ n−1, the filtered manifold is called regular of type n.

Example 1.1. Suppose n = n−k⊕ ...⊕n−1 is a nilpotent graded Lie algebra
and let N be a Lie group with Lie algebra n. Then N naturally admits the
structure of a filtered manifold with symbol algebra in each point isomorphic
to n. In fact, the tangential filtration is given as follows: Setting n` :=⊕

i≥` ni, we obtain a filtration n = n−k ⊃ .... ⊃ n−1 of the vector space n,
which makes n into a filtered Lie algebra, meaning that [ni, nj ] ⊂ ni+j . Via
the left trivialisation of the tangent bundle of a Lie group TN ∼= N×n, we see
thatN×n` defines an left invariant subbundle T `N ⊆ TN . Explicitly, T `N is
spanned by the left invariant vector fields LX generated by elements X ∈ n`.
Hence we obtain a filtration of the tangent bundle by vector subbundles
TN = T−kN ⊃ ... ⊃ T−1N , which makes N into a filtered manifold. Since
[LX , LY ] = L[X,Y ], we conclude that the symbol algebra of N in each point
is isomorphic to n. This provides the standard example of a regular filtered
manifold of type n.

Given some regular filtered manifold of type n one has a natural notion
of a frame bundle P(gr(TM)) of the associated graded gr(TM). Denoting
by Px(gr(TM)) the space of all graded Lie algebra isomorphisms φ : n →
gr(TxM), the frame bundle is defined by the disjoint union

P(gr(TM)) := tx∈MPx(gr(TM)).

The bundle P(gr(TM)) is a principal bundle with structure group Autgr(n),
the group of all Lie algebra automorphisms of n, which in addition preserve
the grading. The right action of Autgr(n) on P(gr(TM)) is given by compo-
sition.

Remark 1.1. Any ordinary smooth manifold can be viewed as a trivial
filtered manifold TM = T−1M . The associated graded bundle is then just
the tangent bundle, where the tangent space at each point is viewed as an
abelian Lie algebra.

1.1.2. Regular Distributions. Let M be a smooth manifold. A dis-
tribution onM is a vector subbundle H ⊂ TM . By the theorem of Frobenius
a distribution H is integrable if and only if it is involutive, i.e. for sections
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ξ, η ∈ Γ(H) also [ξ, η] ∈ Γ(H).
IfH is a non-integrable distribution, then it is expedient to consider the weak
derived flag of subsheaves of the sheave of sections of the tangent bundle

H−1 ⊂ H−2 ⊂ ... ⊂ Γ(TM)

defined inductively by
H−1 = Γ(H)

Hi−1 = Hi + [Hi,H−1].

The distribution H is called regular, if each Hi spans a subbundle H i ⊂ TM
(H−1 = H). A regular distribution H endows M with the structure of a
filtered manifold as follows: Since TM is of finite rank, there must be a
k ∈ N with H i = H−k for all i ≤ −k. Let k be the smallest number with
this property and set

T iM = TM for i ≤ −k − 1

T iM = H i for − k ≤ i ≤ −1.

T iM = 0 for i ≥ 0.

This is a filtration of the tangent bundle by subbundles, which by construc-
tion is compatible with the Lie bracket of vector fields. Hence M together
with this filtration is a filtered manifold.
If H−k = TM , then H is a regular bracket generating distribution. In other
words, this means that H is a regular distribution such that the induced
filtration of the tangent bundle satisfies that gr−1(TxM) generates gr(TxM)
as Lie algebra for all x ∈M .
If not, H−k is involutive and therefore integrable. So M is a manifold foli-
ated by manifolds endowed with bracket generating distributions.
This shows that bracket generating distributions stand at the opposite end
to integrable distributions.
The best studied examples of regular bracket generating distributions are
contact distributions, which we will consider in detail in the next section.
Other well known examples of regular bracket generating distributions are
for instance generic rank 2 distribution on manifolds of dimension 5, studied
by É. Cartan in [17], generic rank 3 distribution on manifolds of dimension
6, considered by R. Bryant in [5] as well as quaternionic contact structures
introduced by O. Biquard in [3].

Remark 1.2. A distribution H can be equivalently viewed as a differential
system by duality. This is the point of view Tanaka has in [40]. His definition
of a regular differential system coincides with the one of a regular distribution
above.
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1.1.3. Contact distributions. One of the best studied examples of
filtered manifolds are contact manifolds.

Definition 1.3. A contact structure on a smooth manifold M of dimension
2n+ 1 is a distribution H ⊂ TM of rank 2n such that in each point x ∈M
the Levi bracket Lx : Hx ×Hx → TxM/Hx is non-degenerate.
A contact manifold is a manifold of dimension 2n+1 endowed with a contact
structure.

By definition a contact manifold is a filtered manifoldM of depth 2 such
that the symbol algebra gr(TxM) = TM/T−1

x M ⊕ T−1
x M in each point is

isomorphic to the nilpotent graded Lie algebra h2n+1 := h−2⊕h−1 := R⊕R2n,
where the Lie bracket [ , ] : R2n×R2n → R is given by the standard symplectic
form on R2n. The graded nilpotent Lie algebra h2n+1 is called the Heisenberg
Lie algebra of dimension 2n+ 1. So contact manifolds are filtered manifold
such that the symbol algebra in each point is isomorphic to a Heisenberg
algebra.
The simply connected Lie group H2n+1 with Lie algebra h2n+1 is called the
Heisenberg group. The Heisenberg group H2n+1 is R2n+1 with the group law
given by

(x, y, z) · (x′, y′, z′) = (x+ x′, y + y′, z + z′ +
1
2

n∑
i=1

xiyi − x′iy′i),

where (x1, .., xn, y1, .., yn, z) are the coordinates of R2n+1. In example 1.1
we saw that H2n+1 is naturally endowed with the structure of a filtered a
manifold such that the symbol algebra in each point is isomorphic to h2n+1,
hence with a canonical contact structure. Explicitly, the canonical contact
structure is given as follows: The left invariant vector fields generated by the
elements of the standard basis of R2n+1 are:

Xi =
∂

∂xi
− 1

2
yi
∂

∂z
for i = 1, ..., n

Yi =
∂

∂yi
+

1
2
xi
∂

∂z
for i = 1, ..., n

Z =
∂

∂z
The contact distribution is then spanned by the vector fields Xi, Yi for
i = 1, ..., n. One of the fundamental results in contact geometry says that
locally any contact structure looks like the contact structure on a Heisenberg
group.

Proposition 1.1. Every contact manifold (M,H) of dimension 2n + 1 is
locally isomorphic to an open subset of the Heisenberg group H2n+1 endowed
with its canonical contact structure.
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1.2. Differential operators on filtered manifolds and weighted jet
bundles

Studying analytic properties of differential operators on some manifold
M , one may first look at the principal symbols of these operators. If M is
a filtered manifold, it turns out that the usual symbol is not the appropri-
ate object to consider and it should be replaced by a notion of symbol that
reflects the geometric structure on M given by the filtration on the tangent
bundle. To illustrate this let us consider an example.
SupposeM is the Heisenberg group H2n+1 = R2n+1 endowed with its canon-
ical contact structure T−1M ⊂ TM as in section 1.1.3. Now consider the
following differential operator acting on smooth functions

D : C∞(M,C)→ C∞(M,C)

D = −
n∑
j=1

(X2
j + Y 2

j ) + iaZ with a ∈ C,

where X1, ..., Xn, Y1, ..., Yn, Z are the left invariant vector fields from section
1.1.3. It can be shown, see [19], that the analytic properties of D, like for
instance hypoellipticity, highly depend on the constant a ∈ C. However, this
can never be read off from the usual principal symbol, since the term iaZ

is not part of it. This suggests that a derivative transversal to the contact
distribution should have order two rather than one to obtain a notion of
symbol that includes the term iaZ.
In the case of a general filtered manifold the situation is similar. Once one
has replaced the role of the usual tangent space at some point x ∈ M by
the symbol algebra at that point, one should also adjust the notion of order
of differentiation according to the filtration of the tangent bundle, in order
to obtain a notion of principal symbol that can be seen as representing the
principal parts of operators on M .

1.2.1. The algebra of differential operators on a filtered mani-
fold. Suppose thatM is a manifold and denote by D(M) the complex vector
space of linear differential operators D : C∞(M,C)→ C∞(M,C) onM with
coefficients in C. The composition of two operators defines a multiplication
on D(M), which makes D(M) into an associative unitial algebra over C and
in particular into a module over C∞(M,C). It is well known that differential
operators are local and in fact the following holds:

Theorem 1.2. Let {X1, ..., Xn} be a local frame of the tangent bundle TM
or of the complexified tangent bundle TCM defined on an open subset U ⊂M .
Then the differential operators given by the monomials

Xα1
1 ...Xαn

n with α ∈ Nn
0
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form a basis of the C∞(U,C)-module D(U).
In particular, if D ∈ D(M) is a linear differential operator, then its restric-
tion to U is given by

D|U =
∑
α∈Nn0

aαX
α1
1 ...Xαn

n ,

for unique smooth functions aα ∈ C∞(U,C), where only finitely many of the
functions aα are non zero.

Proof. See e.g. chapter 1 in [42]. �

Assume now that M is a filtered manifold. Then we adapt the concept
of order for linear differential operators on M according to the filtration of
the tangent bundle as follows:

Definition 1.4. Let M be a filtered manifold with filtration given by

TM = T−kM ⊃ ... ⊃ T−1M ⊃ T 0M = {0}

(1) A local vector field ξ of M is of weighted order ≤ r, if ξ is a local
section of T−rM . The smallest number r ∈ N0 such that this holds
is called the weighted order ord(ξ) of ξ.

(2) A linear differential operator D : C∞(M,C) → C∞(M,C) is of
weighted order≤ r, if for each point x ∈M there exists a local frame
{X1, ..., Xn} of TM defined on an open neighbourhood U ⊂ M of
x such that

D|U =
∑
α∈Nn0

aαX
α1
1 ...Xαn

n ,

where for all non zero terms in this sum
∑n

i=1 αiord(Xi) ≤ r. The
smallest number r ∈ N0 such this holds is called the weighted order
of D.

Remark 1.3. For a trivial filtered manifold TM = T−1M the notion of
weighted order obviously coincides with the ordinary notion of order.

To deduce from a local description of a differential operator on M its
weighted order, one needs to write it in terms of a local frame adapted to
the filtration of TM .

Definition 1.5. Let M be a filtered manifold of depth k. An adapted local
frame for TM (resp. TCM) is a local frame

{X1,1, ..., X1,i(1), ..., Xk,1, ..., Xk,i(k)}

such that {X1,1, ..., X1,i(1), ..., X`,1, ..., X`,i(`)} is a local frame of T−`M (resp.
T−`C M) for all ` ≤ k .
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Such an adapted local frame can always be constructed by choosing an
open subset of M , over which all subbundles T−`M (resp. T−`C M) trivialise.
Note that, given an adapted local frame defined on an open subset U ⊂M ,
for each point x ∈ U the vectors {X`,1(x), ..., X`,i(`)(x)} span a vector space
compliment V −`x of T−`+1

x M in T−`x M. Hence an adapted local frame induces
an isomorphism TxM ∼= gr(TxM) for all x ∈ U , where V −`x is mapped onto
gr−`(TxM).

Remark 1.4. Consider the Heisenberg groupH2n+1 endowed with its canon-
ical contact structure. We have seen that the generators of its contact struc-
ture are given by Xi = ∂

∂xi
− 1

2yi
∂
∂z and Yi = ∂

∂yi
+ 1

2xi
∂
∂z for i = 1, ..., n. The

vector fields Xi and Yi are of weighted order one and hence may be viewed as
differential operators of weighted order one. However, in terms of coordinate
vector fields they are the sum of vector fields of weighted order two. This
shows that, conversely to the usual notion of order, it is not enough to look
at the local description of a differential operator in terms of some local frame
to read off the weighted order of a differential operator. The operator has to
be expressed locally in terms of an adapted frame.

In fact, we obtain:

Proposition 1.3. Let M be a filtered manifold of depth k with filtration
TM = T−kM ⊃ ... ⊃ T−1M . A linear differential operator D is of weighted
order r if and only if the following two conditions hold:

(1) for each point x ∈ M there exists an adapted local frame of TM
defined on some open neighbourhood U of x such that

D|U =
∑
|α|≤r

aαX
α1,1

1,1 ...X
αk,i(k)

k,i(k) (1.1)

where α = (α1,1, ..., αk,i(k)) ∈ Nn
0 is a multi-index with

|α| :=
∑k

j=1

∑i(j)
`=1 jαj,` and aα ∈ C

∞(U,C).
(2) there exists at least one point x0 ∈ M such that in some adapted

local frame defined on an open neighbourhood of x0 the operator D
is of the form (1.1) and aα(x0) 6= 0 for some α with |α| = r.

Moreover, if D is a linear differential operator of weighted order r, then it is
for any choice of local adapted frames of TM (resp. TCM) of this form.

Proof. Let D be a differential operator of weighted order r. Then for
each point x ∈ M there exists a local frame {Y1, ..., Yn} of TM defined on
an open neighbourhood U of x such that

D|U =
∑
β

bβY
β1

1 ...Y βn
n
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for finitely many multi-indices β ∈ Nn
0 satisfying

∑n
j=1 βjord(Yj) ≤ r and

non-zero smooth functions bβ ∈ C∞(U,C). Without loss of generality, we
assume that all filtration components of TM trivialises over U and choose
an adapted local frame {X1,1, ..., X1,i(1), ..., Xk,1, ..., Xk,i(k)} defined on U .
Every vector field Yp can be written as

Yp =
ord(Yp)∑
j=1

i(j)∑
`=1

f
Yp
j,`Xj,` (1.2)

for unique functions fYpj,` ∈ C
∞(U,C).

Recall that a vector field ξ acts as derivation on the vector space of smooth
functions ξ ·(fg) = (ξ ·f)g+f(ξ ·g) and so we have that ξ ·((fη)·g) = (ξ ·f)(η ·
g) + f(ξ · (η · g)) for another vector field η. Therefore inserting for all Yp the
expression (1.2) in the local formula of D, we obtain a description of D|U as
sum of certain operators of the form aαX

α1,1

1,1 ...X
αk,i(k)

k,i(k) with aα ∈ C∞(U,C).
Since all the Xj,` occurring in (1.2) are of weighted order ≤ ord(Yp) and the
filtration of TM is compatible with the Lie bracket of vector fields, we obtain
that D|U =

∑
|α|≤r aαX

α1,1

1,1 ...X
αk,i(k)

k,i(k) for smooth functions aα ∈ C∞(U,C).
For (2) note that the definition of weighted order immediately implies that
there exists a point x0 ∈M and an adapted local frame {Y1, ..., Yn} defined
on an open neighbourhood U of x0 such that

D|U =
∑
β

bβY
β1

1 ...Y βn
n with

n∑
j=1

βjord(Yj) ≤ r for all β

and such that there is at least one term in this sum

bγY
γ1

1 ...Y γn
n with bγ(x0) 6= 0 and

n∑
j=1

γjord(Yj) = r.

The second assertion then follows immediately by inserting (1.2) in the for-
mula for D|U .
Conversely, if D is a differential operator such that (1) and (2) are satisfied,
then the weighted order of D has to be ≤ r. The same argumentation as
above now shows that D cannot have weighted order < r.
The last statement follows in the same way. �

We can define a filtration of the space D(M) of linear differential oper-
ators by subspaces

D(M)0 ⊂ D(M)1 ⊂ ... ⊂ D(M)i ⊂ ....,

where Di(M) ⊂ D(M) is the subspace of differential operators of weighted
order ≤ i. Since the composition of an operator of weighted order r and
an operator of weighted order s, is obviously an operator of weighted order
at most r + s, the filtration by the weighted order of differential operators
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makesD(M) into a filtered associative unitial algebra. The associated graded
algebra to the filtered algebra D(M) is defined by

gr(D(M)) =
∞⊕
i=0

gri(D(M)),

where gri(D(M)) = D(M)i/D(M)i−1. Elements of gri(D(M)) are equiva-
lence classes of differential operators.

Definition 1.6.

(1) For a differential operator D of weighted order r, the image of D
under the projection

σr : D(M)r → grr(D(M))

is called the weighted symbol of D.
(2) The algebra gr(D(M)) with multiplication given by

σr(D)σs(E) = σr+s(DE)

for operators D and E of weighted order r respectively s is called
the algebra of weighted symbols of differential operators on M .

Since a vector field ξ acts as a derivation on the space of smooth functions
ξ ·(fg) = f(ξ ·g)+(ξ ·f)g, it follows from the local description of a differential
operator of weighted order r in terms an adapted local frame [proposition
1.3] that

D(fg) = fD(g) + terms of weighted order ≤ r − 1 in g. (1.3)

Therefore elements in gr(D(M)) may be viewed as sections of a formal infinite
dimensional vector bundle U over M . Explicitly, define U as the disjoint
union U :=

⊔
x∈M U(x) of the infinite dimensional graded vector spaces

U(x) :=
∞⊕
i=0

U−i(x),

where U−r(x) is defined as the space of equivalence classes of differential
operators of weighted order r, where two differential operators D and D̃ of
weighted order r are equivalent ∼x, if

D = D̃ +
∑
i

fiDi + differential operators of weighted order ≤ r − 1,

for differential operators Di of weighted order r and smooth functions fi,
which vanish at x.
An element σr(D) ∈ grr(D(M)) can then be identified with the section of U
given by x 7→ σr(D)(x), where σr(D)(x) ∈ U−r(x) is the equivalence class of
D in U(x). (Note that σr(D) = σr(D̃) if and only if σr(D)(x) = σr(D̃)(x)
for all x ∈M).
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Suppose D ∼x D̃ are equivalent operators of weighted order r and E ∼x Ẽ
are equivalent operators of weighted order s with

E = Ẽ +
∑
j

gjEj + differential operators of weighted order ≤ s− 1

for differential operators Ej of weighted order s and smooth functions gj
vanishing at x, then (1.3) implies

DE = D̃Ẽ+D̃
∑
j

gjEj+
∑
i

fiDiẼ+
∑
i,j

fiDigjEj+terms of lower weighted order

= D̃Ẽ+
∑
j

gjD̃Ej+
∑
i

fiDiẼ+
∑
i,j

figjDiEj+terms of lower weighted order.

Therefore we have a well defined multiplication on U(x) given by

σr(D)(x)σs(E)(x) := σr+s(DE)(x),

which makes U(x) =
⊕∞

i=0 U−i(x) into an associative graded complex alge-
bra.

We will see in section 1.2.5 that U can be in fact viewed as a formal infinite
dimensional vector bundle, where the fiber U(x) can be identified with the
universal enveloping algebra of the complexification of the symbol algebra
gr(TxM) of the filtered manifold.

1.2.2. Universal enveloping algebras. Let us first recall the notion
of the universal enveloping algebra of a Lie algebra and collect some of its
properties, which we will need in the sequel. Suppose g is a finite dimensional
Lie algebra over K = R or C and denote by T (g) the tensor algebra of the
vector space g. Recall that T (g) is the unitial associative graded algebra
given by

T (g) =
∞⊕
i=0

Ti(g) with Ti(g) = ⊗ig and T0(g) = K,

where the multiplication is just the tensor product.
Let I be the two-sided ideal in T (g) generated by elements of the form

X ⊗ Y − Y ⊗X − [X,Y ] for X,Y ∈ g.

The unitial associative algebra U(g) defined as the quotient of the tensor
algebra by this ideal

U(g) = T (g)/I

is called the universal enveloping algebra of g. Note that if g is abelian, its
universal enveloping algebra is just the symmetric algebra S(g).
The canonical inclusion g ↪→ T (g) induces a homomorphism of Lie algebras

i : g→ U(g),
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where the Lie algebra structure on U(g) is given by the commutator [u, v] =
uv− vu for v, u ∈ U(g). Obviously, U(g) is generated by 1 and the elements
in i(g). The pair (U(g), i) can be uniquely characterised by the following
universal property, for a proof see e.g. chapter 2 of [18].

Proposition 1.4. If A is an unitial associative algebra over K and φ : g→ A

a homomorphism of Lie algebras, where A is viewed as Lie algebra with the
commutator as Lie bracket, then there exists a unique homomorphism of
unitial associative algebras φ̃ : U(g)→ A such that φ̃ ◦ i = φ.

If X1, ..., Xn is a linear basis of g, then it is clear that U(g) is generated
by 1 and all monomials i(Xj1)...i(Xjs) with ji ∈ {1, ..., n} and s ≥ 1. From

i(Xj)i(Xk) = i(Xk)i(Xj) + i([Xj , Xk]) (1.4)

it follows that the universal enveloping algebra U(g) is already generated
by 1 and all monomials i(Xj1)...i(Xjs) with j1 ≤ ... ≤ js. The basic structure
theorem of U(g), called the Poincaré-Birkhoff-Witt theorem, says that 1 and
these monomials are a basis of the vector space U(g), see e.g. chapter 2 of
[18]. In particular, this implies that i : g→ U(g) is injective and hence one
can identify elements of g with its image in U(g). Therefore the Poincaré-
Birkhoff-Witt theorem can be formulated as follows:

Theorem 1.5. (Poincaré-Birkhoff-Witt theorem)
If (X1, .., Xn) is a linear basis of g, then the monomials Xα1

1 Xα2
2 ...Xαn

n with
α1, ..., αs ∈ N0 form a linear basis of the vector space U(g).

Suppose h is a subalgebra of g. By proposition 1.4 the composition
h ↪→ g ↪→ U(g) uniquely extends to a homomorphism U(h) → U(g) of
unitial associative algebras. Then theorem 1.5 directly implies that this
homomorphism is injective and hence we have:

Corollary 1.6. Let h be a subalgebra of a Lie algebra g.
Then U(h) can be canonically identified with the subalgebra of U(g) generated
by h and 1.

Another immediate consequence of theorem 1.5 is:

Corollary 1.7. Suppose h1 and h2 are subalgebras of g such that g decom-
poses as vector space as g = h1 ⊕ h2. Then the linear map

U(h1)⊗ U(h2)→ U(g)

u1 ⊗ u2 7→ u1u2

defines an isomorphism of vector spaces.
If, in addition, h1 and h2 commute and hence g equals the Lie algebra direct
sum h1 ⊕ h2, the isomorphism is even an isomorphism of algebras.
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The Poincaré-Birkhoff-Witt theorem shows that there is a linear isomor-
phism from U(g) to the symmetric algebra S(g), defined by mapping a mono-
mial to the same monomial in S(g), but with product now taken in S(g).
However this isomorphism can also be established in a basis independent
way. Let us sketch this. Since the ideal I is generated by non-homogeneous
elements, the grading on the tensor algebra doesn’t factorise to an algebra
grading on the universal enveloping algebra. However one can consider the
filtration associated to the grading on the tensor algebra defined by

T 0(g) ⊂ T 1(g) ⊂ .... ⊂ T i(g) ⊂ ....

where T i(g) =
⊕

j≤i Tj(g), which makes T (g) into a filtered algebra. The
ideal I behaves well with respect to the filtration and so we obtain an algebra
filtration on the universal enveloping algebra

U0(g) ⊂ U1(g) ⊂ .... ⊂ U i(g) ⊂ ....

where U i(g) = T i(g)/(I∩T i(g)). If X1, ..., Xn is a basis of g, then U i(g) is of
course exactly spanned by the monomials Xα1

1 ...Xαn
n with α1 + ...+ αn ≤ i.

Now consider the associated graded algebra of the filtered algebra U(g) de-
fined by

gr(U(g)) =
⊕
i

gri(U(g)),

where gri(U(g)) = U i(g)/U i−1(g). In particular, one has gr0(U(g)) = K and
gr1(U(g)) = g.
The equation (1.4) implies that gr(U(g)) is a commutative and therefore the
canonical inclusion g ↪→ gr(U(g)) extends uniquely to an algebra homomor-
phism

φ : S(g)→ gr(U(g)).

Using the PBW-theorem [theorem 1.5], one deduces that this is in fact an
isomorphism of algebras. Moreover, φ maps the subspace Si(g) ⊂ S(g) of
symmetric tensors of degree i onto gri(U(g)). Hence φ is a isomorphism of
graded algebras.
As vector space U(g) is isomorphic to gr(U(g)). To construct an isomorphism
amounts to choose vector space compliments of U i−1(g) in U i(g) for all i.
There is a very natural choice of such compliments available. In fact, we
have the following commutative diagram

Ti(g)
qi //

pi
��

U i(g)

gri
��

Si(g)
φi // gri(U(g))
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where qi is the restriction to Ti(g) of the quotient map q : T (g) → U(g), pi
is the restriction to Ti(g) of the quotient map p : T (g) → S(g) and gri the
quotient map U i(g) → gri(U(g)) The space Si(g) of symmetric tensors of
degree i can not only viewed as a quotient of Ti(g), but also naturally as a
subspace Ti(g). The restriction of the linear map φi ◦ pi to this subspace is
an isomorphism and therefore, by the commutativity of the diagram above,
also gri ◦ qi restricted to this subspace is an isomorphism. Hence qi has to
map this subspace to a linear compliment of U i−1(g) in U i(g), which we
denote by Wi and we have U i(g) = Wi⊕U i−1(g). In particular, denoting by
Si the group of permutations of i elements, we obtain linear isomorphisms
Φi : Si(g)→Wi defined by

Φi(X1...Xi) =
1
i!

∑
θ∈Si

Xθ(1)...Xθ(i) (1.5)

where the product on the left side is taken in Si(g) and on the right side in
U(g). Since as a vector space U(g) =

⊕∞
i=0Wi, the direct sum of all maps

Φi defines a linear isomorphism

Φ : S(g)→ U(g),

sometimes called the symmetrisation.
Suppose ψ : g → h is a homomorphism between two Lie algebras. By
proposition 1.4 the composition g → h ↪→ U(h), extends uniquely to a ho-
momorphism U(ψ) : U(g)→ U(h) of unitial associative algebras. Explicitly,
it is obtained from the induced map T (g)→ U(h) by passing to the quotient
U(g) = T (g)/I. In fact, it can be directly seen that:

Proposition 1.8. U is a covariant functor from the category of Lie algebras
over K to the category of unitial associative algebras over K.

It is well know that S can be viewed as a covariant functor from the
category of vector spaces to the category of symmetric associative unitial
algebras. For a Lie algebra homomorphism ψ : g→ h, one can deduce easily
from the explicit formula (1.5) of Φ that U(ψ) ◦ Φ = Φ ◦ S(ψ).

Summing up, we have:

Theorem 1.9.

(1) The map Φ : S(g) → U(g) is an isomorphism of filtered vector
spaces, where S(g) is endowed with the filtration associated to its
canonical grading. Moreover, the linear map induced by Φ between
the associated graded spaces S(g) =

⊕
i S

i(g) and gr(U(g)) equals
φ.



1.2. DIFFERENTIAL OPERATORS AND WEIGHTED JET BUNDLES 25

(2) For a Lie algebra homomorphism ψ : g → h between two Lie alge-
bras, we have

U(ψ) ◦ Φ = Φ ◦ S(ψ).

Moreover, from theorem 1.5 and the construction of Φ one deduces im-
mediately the following proposition. For proof see section 2.4. in [18].

Proposition 1.10. Suppose g = g1 ⊕ g2 for vector subspaces g1 and g2 of
g. Denote by Φi the restriction of Φ to S(gi) for i = 1, 2. The map

S(g1)⊗ S(g2)→ U(g)

x1 ⊗ x2 7→ Φ1(x1)Φ2(x2)

defines an isomorphism of vector spaces.

For an algebra A we denote by Ā the opposite algebra, i.e. A with the
multiplication given by (a, b) 7→ −ab, the negative of the multiplication of
A. Note that we obviously have a linear injection τ : g ↪→ U(ḡ). One verifies
directly that τ is a homomorphism of Lie algebras and hence by proposition
1.4 we obtain an algebra homomorphism τ̃ : U(g)→ U(ḡ), which extends the
identity on g. The PBW- theorem [theorem 1.5] implies that τ̃ maps a linear
basis of U(g) to a linear basis of U(ḡ) and therefore τ̃ is a isomorphism of
unitial associative algebras. So we can identify the algebras U(ḡ) and U(g).
By proposition 1.8 the Lie algebra isomorphismX 7→ −X from g to ḡ extends
to an isomorphism of associative algebras U(g) → U(ḡ). Composing this
isomorphism with the anti-isomorphism U(ḡ) → U(ḡ) and identifying U(ḡ)
with U(g), one obtains the following proposition:

Proposition 1.11. There exists a unique anti-automorphism u 7→ u> of
the universal enveloping algebra U(g) such that X> = −X for all X ∈ g.
Moreover, for elements X1, ..., Xn ∈ g we have

(X1X2...Xn)> = (−1)nXnXn−1...X1.

The map u 7→ u> is called the principal anti-automorphism of U(g).

1.2.3. Universal enveloping algebras and their relation to in-
variant differential operators. Suppose G is a real Lie group with Lie
algebra g and denote by gC := g ⊗ C the complexification of g. Then it
is well known that the universal enveloping algebra U(gC) can be identified
with the algebra DG(G) of linear left invariant differential operators on G.

Definition 1.7. A linear differential operator D : C∞(G,C) → C∞(G,C)
is called left invariant, if `gD(f) = D(`gf) for all g ∈ G, where `g is the left
translation by g defined by `g(f)(h) = f(g−1h).



26 1. FILTERED MANIFOLDS AND WEIGHTED JET BUNDLES

The space DG(G) of all linear left invariant differential operators is ob-
viously a subalgebra of the algebra of all linear differential operators D(G).
For X ∈ g we denote by LX the left invariant vector field on G generated
by X and for Y = Y1 + iY2 contained in gC we set LY = LY1 + iLY2 .
Now suppose X1, ..., Xn is a basis of gC, then LX1 , ..., LXn is a global frame
of the complexified tangent bundle TCG of G. Hence by theorem 1.2 the left
invariant operators LαX := Lα1

X1
...LαnXn with α ∈ Nn

0 some multi-index, form a
basis of the C∞(G,C)-module D(G). Therefore any linear differential oper-
ator D ∈ D(G) is of the form

D =
∑
α

aαL
α
X with aα ∈ C∞(G,C).

If D ∈ DG(G), denoting by e ∈ G the neutral element of G, we have

D(f)(g) = D(`g−1f)(e) =
∑

aα(e)(LαX(`g−1f))(e) =
∑

aα(e)(LαXf)(g)

and so the operators LαX form a basis of the complex vector space DG(G).
Moreover, since L[X,Y ] = [LX , LY ], the map

gC → DG(G)

X 7→ LX

is a Lie algebra homomorphism and hence by the universal property of the
universal enveloping algebra [proposition 1.4] lifts to a homomorphisms of
associative algebras

U(gC)→ DG(G).

This homomorphism is an isomorphism, since by the PBW-theorem [theorem
1.5] the monomials Xα = Xα1

1 ...Xαn
n form a basis of U(gC). Therefore we

have:

Theorem 1.12. The Lie algebra homomorphism X 7→ LX from gC to
DG(G) induces an isomorphism of unitial associative algebras U(gC) ∼= DG(G).

Remark 1.5. The map X 7→ LX from g to the algebra DG(G,R) of left
invariant operators with coefficients in R extends to an isomorphism between
the real algebra U(g) and DG(G,R). The algebra DG(G,R) is of course a
real subalgebra of DG(G). In accordance with this, applying proposition 1.4
to the canonical map g→ U(g⊗ C), we obtain an injective homomorphism
of real associative algebras U(g) ↪→ U(g⊗C). In addition, this map induces
an isomorphism of complex algebras U(g)⊗ C ∼= U(g⊗ C).
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1.2.4. Universal enveloping algebras of nilpotent graded Lie al-
gebras. Let n = n−1 ⊕ ... ⊕ n−k be some real nilpotent graded Lie algebra
and put ni = 0 for i < −k or i ≥ 0. Suppose N is a Lie group with Lie
algebra n. In example 1.1 we saw that N is naturally a filtered manifold
with a filtration of the form TN = T−kN ⊃ ... ⊃ T−1N and symbol algebra
in each point isomorphic to n. Consider the algebra of differential operators
D(N) filtered by the weighted order of differential operators. Filtering the
algebra DN (N) of left-invariant operators as well by the weighted order of
differential operators

DN (N)0 ⊂ DN (N)1 ⊂ .... ⊂ DN (N)i ⊂ ...,

the space DN (N) becomes a filtered subalgebra of D(N). In accordance with
this filtration we can introduce a weighted filtration on U(nC) such that the
isomorphism U(nC) ∼= DN (N) is, after flipping signs, filtration preserving for
these filtrations. In fact, we may even define an algebra grading on U(nC)
inducing this filtration.
For this purpose observe that the grading of n induces a weighted algebra
grading on the tensor algebra given by

T (n) =
∞⊕
i=0

T−i(n), (1.6)

where

T−i(n) = {
∑
j

Xj1 ⊗ ...⊗Xjs(j) : Xj` ∈ nj` and
s(j)∑
`=1

j` = −i ∀j}.

Since n is a graded Lie algebra [n`, nm] ⊂ n`+m, the ideal I is homogeneous
for this grading. Therefore the grading passes to an algebra grading on the
universal enveloping algebra

U(n) =
∞⊕
i=0

U−i(n), (1.7)

where

U−i(n) = T−i(n)/I∩T−i(n) = {
∑
j

Xj1 ...Xjs(j) : Xj` ∈ nj` and
s(j)∑
`=1

j` = −i ∀j}.

We will denote by upper indices the associated filtration

U0(n) ⊂ U−1(n) ⊂ ... ⊂ U−i(n) ⊂ ... with U−i(n) =
i⊕

j=0

U−j(n).

The complexification nC is also naturally a graded nilpotent Lie algebra and
therefore we have as well a grading on U(nC). The canonical isomorphism
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U(n)⊗ C ∼= U(nC) thereby restricts to a linear isomorphism

U−i(n)⊗ C ∼= U−i(nC).

Obviously, we obtain:

Proposition 1.13. Let n = n−1⊕ ...⊕ n−k be a nilpotent graded Lie algebra
and N a Lie group with Lie algebra n endowed with its canonical tangential
filtration TN = T−kN ⊃ ... ⊃ T−1N making N into a regular filtered mani-
fold of type n.
Then the algebra isomorphism U(nC) ∼= DN (N) of theorem 1.12 maps U−i(nC)
onto DN (N)i and hence becomes an isomorphism of filtered algebras after
flipping signs. Moreover, the unitial associative algebra DN (N) is naturally
a graded algebra

DN (N) =
∞⊕
i=0

DN (N)i,

where DN (N)i ⊂ DN (N) is the image of U−i(nC) under the isomorphism
U(nC) to DN (N).

Remark 1.6. The reason for using negative indices for the weighted fil-
tration on U(nC) rather than positive, which would make the isomorphism
U(nC) ∼= DN (N) to an isomorphism of filtered algebras, will become com-
prehensible in chapter 3.

1.2.5. The algebra gr(D(M)) of weighted symbols of differential
operators on a filtered manifold. Let M be a filtered manifold of depth
k with filtration given by TM = T−kM ⊃ ... ⊃ T−1M . We know from
section 1.1.1 that the Levi bracket Lx makes

gr(TxM) = gr−1(TxM)⊕ ...⊕ gr−k(TxM)

into a nilpotent graded Lie algebra, called the symbol algebra ofM at x ∈M .
Therefore the universal enveloping algebra of the symbol algebra gr(TxM)
can be endowed with the grading defined in the previous section

U(gr(TxM)) =
∞⊕
i=0

U−i(gr(TxM))

U(gr(TxM)C) =
∞⊕
i=0

U−i(gr(TxM)C) =
∞⊕
i=0

U−i(gr(TxM))⊗C = U(gr(TxM))⊗C.

Proposition 1.14. For r ∈ N0 the disjoint union

U−r(gr(TM)) :=
⊔
x∈M
U−r(gr(TxM))
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is a vector bundle over M . In particular, we can view the direct sum

U(gr(TM)) :=
∞⊕
i=0

U−r(gr(TM))

as a formal infinite dimensional vector bundle over M .

Proof. For a general filtered manifold, the Levi bracket Lx may change
from point to point and hence symbol algebras need not to be isomorphic.
Recall that U−r(gr(TxM)) = T−r(gr(TxM))/(I ∩T−r(gr(TxM))), where I ∈
U(gr(TxM)) is the ideal generated by elements of the form X⊗Y −Y ⊗X−
Lx(X,Y ). So at the first glance this vector space depends on Lx. However,
by proposition 1.10 the space U−r(gr(TxM)) is always isomorphic to

S−r(gr(TxM)) :=
⊕

1i1+...+kik=r

Si1(gr−1(TxM))⊗ ...⊗ Sik(gr−k(TxM))

and hence is actually independent of Lx. Therefore U−r(gr(TM)) can be
given the structure of a vector bundle over M . �

In section 1.2.1 we considered the algebra of weighted symbols of linear
differential operators on M defined as the associated graded algebra

gr(D(M)) =
∞⊕
i=0

gri(D(M))

of the filtered algebra D(M) (filtered by the weighted order of operators).
We observed that an element σr(D) ∈ grr(D(M)) can be considered as a
map x 7→ σr(D)(x) from M to U−r(x), where U−r(x) is the −r-th grading
component of the graded unitial associative algebra U(x) =

⊕∞
i=0 U−i(x)

defined in section 1.2.1.
Recall that U−r(x) consists of equivalence classes of linear differential oper-
ators of weighted order r, where two operators D and D̃ of weighted order
r are equivalent, if

D − D̃ =
∑
i

fiDi + differential operators of weighted order ≤ r − 1,

for differential operators Di of weighted order r and smooth functions fi,
which vanish at x.
We have the following proposition, see also [19] in the case of contact man-
ifolds:

Proposition 1.15. For each x ∈ M the graded unitial associative algebra
U(x) is a isomorphic to the graded unitial associative algebra U(gr(TxM)C).
Moreover, the disjoint union U :=

⊔
x∈M U(x) can be seen as a formal infinite

dimensional vector bundle and sections of U can be identified with elements
of gr(D(M)).
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Proof. Let U ⊂ M be an open subset over which all filtration compo-
nents of the tangent bundle trivialise and choose an adapted local frame of
TCM defined on U given by

{X1,1, ...., X1,i(1), ...., Xk,1, ..., Xk,i(k)}.

Recall that an adapted local frame induces for each point x ∈ U an isomor-
phism TxM

C ∼= gr(TxM)C.
Sending an element Xx ∈ gr−i(TxM)C to σi(ξ)(x), where ξ ∈ Γ(T−iC M) such
that q−i(ξ(x)) = Xx with q−i : T−iC M → gr−i(TCM) the natural projection,
defines a linear map

Ω : gr(TxM)C → U(x).

Since for Xx ∈ gr−i(TxM)C and Yx ∈ gr−j(TxM)C the Levi bracket is given
by

Lx(Xx, Yx) = q−(i+j)([ξ, η](x))

with η ∈ Γ(T−jC M) such that q−j(η(x)) = Yx, we obtain that

Ω(Lx(Xx, Yx)) = σi+j([ξ, η])(x),

which equals
σi(ξ)(x)σj(η)(x)− σj(η)(x)σi(ξ)(x)

by definition of the multiplication in U(x). Hence by the universal property
of the universal enveloping algebra [proposition 1.4] the map Ω extends to a
homomorphism of unitial associative algebras

U(gr(TxM)C)→ U(x).

By the PBW- theorem [theorem 1.5], the monomials Xα1,1

1,1 (x)...X
αk,i(k)

k,i(k) (x)
are a basis of U(gr(TxM)C) and such an element is mapped by Ω to the equiv-
alence class in U−|α|(x) of the differential operator Xα1,1

1,1 ...X
αk,i(k)

k,i(k) , which can
be seen as differential operator defined onM by trivial extension of the local
vector fields X`,j to M . This implies immediately that Ω is injective.
Conversely, assume that D is a differential operator on M , whose restriction
to U is of weighted order r and given by

D|U =
∑
|α|≤r

aαX
α1,1

1,1 ...X
αk,i(k)

k,i(k) ,

for smooth functions aα ∈ C∞(U,C). The element∑
|α|=r

aα(x)Xα1,1

1,1 (x)...X
αk,i(k)

k,i(k) (x) ∈ U−|α|(gr(TxM)C)

is then mapped by Ω to the equivalence class in U−r(x) of the differential
operator

D̃ =
∑
|α|=r

aα(x)Xα1,1

1,1 ...X
αk,i(k)

k,i(k) ,
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where aα(x) is viewed as the constant function y 7→ aα(x) on M . Since

D|U − D̃|U =
∑
|α|=r

(aα − aα(x))Xα1,1

1,1 ...X
αk,i(k)

k,i(k) +,
∑
|α|≤r−1

aαX
α1,1

1,1 ...X
αk,i(k)

k,i(k) ,

the operators D and D̃ define the same equivalence class in U−r(x) and we
conclude that Ω is an isomorphism of algebras. Since Ω obviously respects
the grading, its an isomorphism of graded algebras. The rest now follows
from proposition 1.14. �

Let G(x) be the simply connected Lie group with Lie algebra gr(TxM).
We have seen in theorem 1.12 that elements in U(gr(TxM)C) can be identified
with left-invariant operators on the Lie group Gr(x). SupposeM is a regular
filtered manifold with symbol algebra n. Starting with a linear differential
operator D of weighted order r on M , its weighted symbol σr(D)(x) can be
seen a smooth family of homogeneous left invariant differential operators of
weighted order r on the simply connected Lie group N with Lie algebra n.
Studying analytic properties of a linear differential operator D on M , the
family of left-invariant operators σr(D)(x) on N plays an important role, see
[19].

1.2.6. Weighted jet bundles. Suppose π : E → M is a complex or
real vector bundle over some filtered manifold M . Following [32] we have a
natural notion of weighted jet spaces of sections of E. The notion of weighted
jet spaces presented here coincides with the one in [32] in the case of E being
a trivially filtered vector bundle over M .

Definition 1.8. Let Γx(E) be the space of germs of smooth sections of E
at the point x ∈M .
For r ∈ N0 two sections s, s′ ∈ Γx(E) are r-equivalent ∼r, if

D(〈λ, s− s′〉)(x) = 0

for all linear differential operators D on M of weighted order ≤ r and all
sections λ of the dual bundle E∗, where 〈 , 〉 : Γ(E∗) × Γ(E) → C∞(M,C)
is the evaluation.

The relation ∼r obviously defines an equivalence relation on Γx(E) and
one can consider the quotient Γx(E)/ ∼r.

Definition 1.9. The quotient space of Γx(E) by the relation ∼r

J rx (E) := Γx(E)/ ∼r

is called the space of jets of weighted order r with source x ∈M .
For s ∈ Γx(E) we denote by jrxs the class of s in J rx (E).
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Since for s < r the relation ∼s is coarser as the relation ∼r, we have
linear projections from

πrs : J rx (E)→ J sx (E) for s < r.

Proposition 1.16. For x ∈ M and r ∈ N we have an exact sequence of
vector spaces

0 −−−−→ U−r(gr(TxM))∗ ⊗ Ex
ι−−−−→ J rx (E)

πrr−1−−−−→ J r−1
x (E) −−−−→ 0.

Moreover, for any r ∈ N0 the vector space J rx (E) is finite dimensional and
isomorphic to

⊕r
i=0 U−i(gr(TxM))∗ ⊗ Ex.

Proof. Assume E is a vector bundle with standard fiber Rm and fix a
point x ∈M .
Suppose s is a local section defined around x with jr−1

x s = 0. Choosing some
local trivialisation of E over an open neighbourhood U of x, we can view s

as a smooth function (s1, ..., sm) : U ⊆M → Rm.
For vector fields ξ1, .., ξ` ∈ Γ(TM) with

∑
i ord(ξi) = r the value

(ξ1 · ... · ξ` · s)(x) ∈ Rm

depends only on the values of the vector fields at the point x, since jr−1
x s = 0

(see (1.3) of section 1.2.1). By the same reason, it actually just depends on
the elements q−ord(ξi)(ξi(x)) ∈ gr−ord(ξi)(TxM). Therefore we obtain a well
defined linear map

T−r(gr(TxM))→ Rm.

Additionally we have the symmetries of differentiation, like for example

ξ1 · ξ2 · ... · ξ` · s− ξ2 · ξ1 · ... · ξ` · s = [ξ1, ξ2] · ... · ξ` · s

and since

q−(ord(ξ1)+ord(ξ2))([ξ1, ξ2](x)) = Lx(ξ1(x), ξ2(x)),

the map above factorises to a to a linear map

U−r(gr(TxM))→ Rm.

Hence any element in the kernel of the projection J rx (E) → J r−1
x (E) de-

fines an element in U−r(gr(TxM))∗ ⊗ Ex and so we have a linear map
τ : ker(πrr−1)→ U−r(gr(TxM))∗ ⊗ Ex, which obviously is injective.
To see that it is even surjective we construct an inverse map. Let U be an
open neighbourhood of x over which all filtration components of the tangent
bundle and E trivialise. Choose an adapted local frame

{X1,1, ...., X1,i(1), ...., Xk,1, ..., Xk,i(k)}
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of TM defined on U . Recall that such an adapted local frame defines
an isomorphism TyM ∼= gr(TyM) for all y ∈ U , where the vector space
spanned by {Xj,1(y), ..., Xj,i(j)(y)} is mapped onto gr−j(TyM). Now sup-
pose {f1,1, ..., f1,i(1), ..., fk,1, ..., fk,i(k)} are smooth functions such that

f`,q(x) = 0 for all ` and q (1.8)

(Xj,p · f`,q)(x) = 1 for j = ` and p = q (1.9)

(Xj,p · f`,q)(x) = 0 otherwise. (1.10)

Recall that the monomials Xα1,1

1,1 (x)...X
αk,i(k)

k,i(k) (x) with |α| = r form a ba-
sis of U−r(gr(TxM)). For each multi-index α with |α| = r define φα ∈
U−r(gr(TxM))∗ as the linear functional given by

φα(Xα1,1

1,1 (x)...X
αk,i(k)

k,i(k) (x)) =Xα1,1

1,1 · ... ·X
αk,i(k)

k,i(k) (fα1,1

1,1 ...f
αk,i(k)

k,i(k) )(x)

φα((Xβ1,1

1,1 (x)...X
βk,i(k)

k,i(k) (x))) =0 for β 6= α.

By its construction the functionals {φα : |α| = r} form a basis of U−r(gr(TxM))∗

and we define a linear map

ι : U−r(gr(TxM))∗ ⊗ Ex → J rx (E)

by
φα ⊗ e 7→ jrx(fα1,1

1,1 ...f
αk,i(k)

k,i(k) s),

where s is some section of E with s(x) = e ∈ Ex. This is well defined,
since whenever one of the functions f`,q occurring in f

α1,1

1,1 ...f
αk,i(k)

k,i(k) s is not
differentiated, the resulting expression evaluated at x vanishes by (1.8) and
hence jrx((fα1,1

1,1 ...f
αk,i(k)

k,i(k) s) doesn’t depend on the choice of s.
Moreover, by (1.8) - (1.10) the expression

X
β1,1

1,1 · ... ·X
βk,i(k)

k,i(k) (fα1,1

1,1 ...f
αk,i(k)

k,i(k) s)(x)

is zero for all multi-indices β with |β| ≤ r−1 and so ι has values in ker(πrr−1).
In addition, by (1.8) - (1.10) for any multi-index β with |β| = r we have that
the expression

X
β1,1

1,1 · ... ·X
βk,i(k)

k,i(k) (fα1,1

1,1 ...f
αk,i(k)

k,i(k) s)(x)

is zero for β 6= α and if β = α, then

X
α1,1

1,1 · ... ·X
αk,i(k)

k,i(k) (fα1,1

1,1 ...f
αk,i(k)

k,i(k) s)(x) =

= ((X1,1 · f1,1)(x))α1,1 ...((Xk,i(k) · fk,i(k))(x))αk,i(k)s(x) = s(x) = e.

Therefore ι is injective and induces an isomorphism U−r(gr(TxM))∗ ⊗Ex ∼=
ker(πrr−1), which is inverse to τ . Hence we have an exact sequence of vector
spaces as claimed

0 −−−−→ U−r(gr(TxM))∗ ⊗ Ex
ι−−−−→ J rx (E)

πrr−1−−−−→ J r−1
x (E) −−−−→ 0.
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Observing that J 0
x (E) = Ex, the last statement follows by induction on r

from this exact sequence. �

The space of jets of weighted order r is given as the disjoint union of all
the vector spaces J rx (E).

Definition 1.10. For r ∈ N0 the disjoint union over all x of J rx (E)

J r(E) :=
⊔
x∈M
J rx (E)

is called the space of jets of weighted order r. We denote by πr : J r(E)→M

the natural projection.

The weighted jet space J r(E) can be endowed with the structure of a
smooth manifold such that πr : J r(E)→M is a vector bundle.

Theorem 1.17. Let M be a filtered manifold and π : E → M a vector
bundle over M .

(1) For r ∈ N0 the natural projection πr : J r(E) → M is a vector
bundle with fiber J rx (E) isomorphic to

⊕r
i=0 U−i(gr(TxM))∗ ⊗ Ex.

(2) For r > s the projections

πrs : J r(E)→ J s(E)

are vector bundle homomorphisms and for r ∈ N we have an exact
sequence of vector bundles

0 −−−−→ U−r(gr(TM))∗ ⊗ E ι−−−−→ J r(E)
πrr−1−−−−→ J r−1(E) −−−−→ 0.

Proof.

(1) Suppose E is a vector bundle with standard fiber Rm. The as-
sociated graded bundle gr(TM) can be seen as a vector bundle
modeled on a graded vector space V = V−1 ⊕ ... ⊕ V−k. For a
point x ∈ M choose an open neighbourhood Ux ⊂ M of x, over
which E and all filtration components of TM trivialise. Denote by
φx : π−1(Ux) → Ux × Rm the local trivialisation of E over Ux and
choose an adapted local frame X1,1, ...., Xk,i(k) of TM defined on
Ux. Recall that the choice of an adapted frame induces a linear
isomorphism TxM ∼= gr(TxM) ∼= V for all x ∈ U .
Now consider the map

Φr
x : J r(E|U)→ Ux ×

r⊕
`=0

S−`(V )∗ ⊗ Rm

Φr
x : jrys 7→ (x,

r∑
`=0

φ`,rx (jrys)),
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where S−`(V ) is defined as in the proof of proposition 1.14 and

φ`,rx (jrys) : S−`(V )→ Rm

is defined by mapping a monomial in S−`(V ) of the form

X
α1,1

1,1 (y)...X
α1,i(1)

1,i(1) (y)⊗ ...⊗Xαk,1
k,1 (y)...X

αk,i(k)

k,i(k) (y)

to
(Xα1,1

1,1 · ... ·X
αk,i(k)

k,i(k) · φ(s))(y).

By proposition 1.14 and proposition 1.16 the map Φr
x is a bijection

satisfying that the restriction of Φr
x to J ry (E|U) defines a linear

isomorphism between J ry (E|U) ∼=
⊕r

`=0 S−`(V )∗⊗Rm for all y ∈ U .
Obviously, we also have πr|J r(E|U) = pr1 ◦ Φr

x, where pr1 is the
projection onto Ux.
We can endow J r(E) with the unique manifold structure such that
the maps Φr

x are diffeomorphisms. Then πr : J r(E) → M is a
vector bundle with a vector bundle chart defined around x ∈ M

given by Φr
x.

Finally, note that for Ux and Uy with Ux,y = Ux∩Uy 6= ∅, the chart
change Φr

x ◦ (Φr
y)
−1 is given by

Ux,y ×
r⊕
`=0

S−`(V )∗ ⊗ Rm → Ux,y ×
r⊕
`=0

S−`(V )∗ ⊗ Rm

Φr
x ◦ (Φr

y)
−1 : (z, u) 7→ (z,Φr

x,y(z)(u)),

where the isomorphism

Φr
x,y(z) :

r⊕
`=0

S−`(V )∗ ⊗ Rm ∼=
r⊕
`=0

S−`(V )∗ ⊗ Rm

is induced from the graded vector space isomorphism V ∼= V corre-
sponding to change of local adapted frames and the linear isomor-
phism φx,y(z) : Rm ∼= Rm defined by φx◦φ−1

y (z, u) = (z, φx,y(z)(u)).
(2) In terms of vector bundle charts the projections πrs are given by the

natural projections

Φs
x ◦ πrs ◦ (Φr

x)−1

Ux ×
r⊕
i=0

S−i(V )∗ ⊗ Rm → Ux ×
s⊕
i=0

S−i(V )∗ ⊗ Rm

and therefore they are vector bundle homomorphisms.
The kernel of πrr−1 is the vector bundle U−r(gr(TM))∗ ⊗ E with
standard fiber S−r(V )∗ ⊗ Rm and so we have an injective vector
bundle map ι : U−r(gr(TM))∗ ⊗ E ↪→ J r(E) corresponding to the
inclusion S−r(V )∗⊗Rm ↪→

⊕r
i=0 S−i(V )∗⊗Rm. The map of course

coincides with the one defined in proposition 1.16.
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�

Suppose E and F are vector bundles over M and let φ : E → F be
a vector bundle map. Then we can lift φ to a vector bundle map J r(φ) :
J r(E)→ J r(F ) defined by

J r(φ)(jrxs) = jrx(φ(s)).

This is well defined, since the right-hand side just depends on the r-jet of s
at x ∈M . It is the unique vector bundle map such that the diagram

Γ(J r(E))
J r(φ)

// Γ(J r(F ))

Γ(E)
φ

//

jr

OO

Γ(F )

jr

OO

commutes. We have J r(idE) = idJ r(E) and for vector bundle maps φ : E →
F and ψ : F → G we obtain J r(ψ ◦ φ) = J r(ψ) ◦ J r(φ). Therefore we
obtain:

Theorem 1.18. For any r ≥ 1, J r is a covariant functor acting on the
category of vector bundles.

In particular, this implies:

Corollary 1.19. If E is a vector bundle endowed with a complex structure
I : E → E, then J r(E) admits as well a complex structure given by J r(I) :
J r(E) → J r(E). In addition, the projections πrs : J r(E) → J s(E) are
complex vector bundle homomorphism.

Now we can define the weighted order of a differential operator D :
Γ(E)→ Γ(F ) between sections of vector bundles E and F as follows:

Definition 1.11. Suppose E and F are vector bundles over a filtered man-
ifold M .
A differential operator D : Γ(E)→ Γ(F ) is of weighted order ≤ r, if for any
point x ∈M and any two section s, t ∈ Γ(E) the equation jrxs = jrxt implies
that D(s)(x) = D(t)(x).
The smallest number r ∈ N0 such that this holds, is called the weighted order
of D.

Given a differential operator D : Γ(E) → Γ(F ) of weighted order r, we
obtain a bundle map φ : J r(E)→ F defined by φ(jrxs) = D(s)(x).
Conversely, if φ : J r(E) → F is a bundle map, then D = φ ◦ jr defines a
differential operator of weighted order r, where jr : Γ(E)→ Γ(J r(E)) is the
universal differential operator of weighted order r given by s 7→ (x 7→ jrxs).
Therefore we can equivalently view a differential operator D : Γ(E)→ Γ(F )
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of weighted order r as a bundle map from J r(E)→ F .
Note that a differential operator D : Γ(E) → Γ(F ) of weighted order r is
linear if and only if the associated bundle map φ : J r(E) → F is a vector
bundle map.

Definition 1.12. LetD : Γ(E)→ Γ(F ) be a differential operator of weighted
order r with associated bundle map φ : J r(E)→ F .
The weighted symbol σr(φ) of D is the composition of φ with the canonical
inclusion ι : U−r(gr(TM))∗ ⊗ E ↪→ J r(E) (see theorem 1.17). So we have:

0 // U−r(gr(TM))∗ ⊗ E ι //

σr(φ)

((QQQQQQQQQQQQQQ
J r(E)

πrr−1 //

φ

��

J r−1(E) // 0

F

We sometimes will also just write σ(φ) for the weighted symbol.

Note that by its definition the weighted symbol of a differential operator
D describes exactly the part of highest weighted order of D.

Remark 1.7. Let E = M × C be the trivial complex line bundle over a
filtered manifold M . Suppose φ : J r(E) → E is a vector bundle map and
let D = φ ◦ jr : C∞(M,C) → C∞(M,C) be the corresponding differential
operator of weighted order r. The weighted symbol is a bundle map

σr(φ) : U−r(gr(TM))∗ ⊗ C→ C.

Hence σr(φ) can be viewed as a section of U−r(gr(TM))⊗C. Note that this
coincides with our definition of the weighted symbol σr(D) of D in section
1.2.1.

Remark 1.8.

(1) IfM is a trivial filtered TM = T−1M , then the weighted jet bundle
J r(E) of a vector bundle E coincides with the usual vector bundle
Jr(E) of jets of order r. The symbol algebra ofM at some point x ∈
M is just the tangent space TxM viewed as abelian Lie algebra and
the weighted symbol σr(φ) of a differential operator φ : J r(E)→ F

is the usual principal symbol σr(φ) : Sr(TxM)∗ ⊗ E → F .
(2) Suppose that M is a filtered manifold and let E be a vector bundle

over M . Note that there are always projections Jr(E) → J r(E)
from the usual jet bundle of order r to the jet bundle of weighted
order r, since the equivalence relation defining Jr(E) is finer than
the relation ∼r of definition 1.8.
Conversely, there are projections J `(E)→ Jr(E) for all ` ≥ d ≥ r,
where d is a number depending on the depth of the filtered manifold.
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1.3. Systems of partial differential equation of weighted finite
type

In [38] Spencer investigates an interesting class of linear systems of par-
tial differential equations, which he calls linear systems of finite type. For a
linear system of differential equations of finite type it can be shown that a
solution is already determined by a finite jet in a single point and hence the
dimension of its solution space is always finite dimensional.
On filtered manifolds the phenomenon occurs that there are many examples
of differential equations for which a solution is already determined by finitely
many partial derivatives in a single point, but which are not of finite type
in the classical sense of Spencer. This indicates again that differential equa-
tions on filtered manifold should be better studied within the framework of
weighted jet bundles and the notion of finite type should be adapted to the
weighted setting.
In this section we introduce the notion of a linear system of differential equa-
tions of weighted finite type on a filtered manifold and show, using ideas of
[23], that to such a system one may always associate canonically a differential
operator of weighted order one with injective weighted symbol whose kernel
describes the solution of the original system. We will see that rewriting a
linear system of weighted finite type in this form, implies that a solution is al-
ready determined by a finite weighted jet in a single point, hence its solution
space is always finite dimensional. In addition, we will obtain obstruction to
the existence of solutions.

1.3.1. The formal theory. Throughout this section we will assume
that M is a filtered manifold of depth k such that the symbol algebra
gr(TxM) = gr−k(TxM)⊕ ...⊕ gr−1(TxM) in each point x ∈M is generated
by gr−1(TxM). Comparing with section 1.1.2, this means that T−1M ⊂ TM
is a regular bracket generating distribution. Further let E and F be vector
bundles over M and suppose φ : J r(E)→ F is a vector bundle map.

Definition 1.13. For all ` ≥ 0 the `-th prolongation p`(φ) : J r+`(E) →
J `(F ) of φ is defined by

p`(φ)(jr+`x s) = j`x(φ(jrs)).

This is well defined, since the righthand side just depends on the weighted
r + ` jet of s at the point x.
The `-th prolongation p`(φ) can be characterised as the unique vector bundle
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map such that the diagram

Γ(J r+`(E))
p`(φ)

// Γ(J `(F ))

Γ(E)
φ◦jr

//

jr+`

OO

Γ(F )

j`

OO

commutes.

Remark 1.9. The notion of the `-th prolongation of a linear differential
operator φ : J r(E) → F doesn’t require of course that the filtered base
manifold M satisfies that gr−1(TxM) generates gr(TxM). Moreover, let us
remark that the notion of prolongation here coincides with the one in [32]
in the case, where E and F are trivially filtered vector bundles over M .

In particular, we have the vector bundle map

p`(idr) : J r+`(E)→ J `(J r(E)),

where idr is the identity map on J r(E). Any derivative in direction transver-
sal to T−1M can be expressed by iterated derivatives in direction of the
subbundle T−1M , since we assumed that gr−1(TxM) generates gr(TxM) as
Lie algebra. Therefore p`(idr) is injective.
By definition we have J `(φ) ◦ p`(idr) = p`(φ), where J `(φ) : J `(J r(E))→
J `(F ) is the bundle map induced by φ on the `-jet spaces, see proposition
1.18.

Since we have the inclusion p1(idr) : J r+1(E) ↪→ J 1(J r(E)), we can con-
sider the operator δr of weighted order one defined by the projection

J 1(J r(E))→ J 1(J r(E))/J r+1(E).

This operator can now be characterised, analogously as in [23] for usual jet
bundles:
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We have the following commutative exact diagram

0

��

0

��
0 // U−(r+1)(gr(TM))∗ ⊗ E //

ι

��

gr−1(TM)∗ ⊗ J r(E) //

ι

��

W r // 0

0 // J r+1(E)
p1(idr) //

πr+1
r

��

J 1(J r(E))
δr //

π1
0

��

J 1(J r(E))/J r+1(E) //

��

0

0 // J r(E) //

��

J r(E) //

��

0

0 0

where the inclusion of U−(r+1)(gr(TM))∗ ⊗ E into gr−1(TM)∗ ⊗ J r(E) is
obtained by the commutativity of the next two rows and the space W r is
defined by the diagram. Moreover, this diagram induces an isomorphism
of vector bundles between W r and J 1(J r(E))/J r+1(E). Therefore we can
view δr as an operator from J 1(J r(E)) to W r. Hence we have the following
proposition:

Proposition 1.20. There exists a unique differential operator

δr : J 1(J r(E))→W r

of weighted order one such that
• the kernel of δr is J r+1(E)
• the weighted symbol σ(δr) : gr−1(TM)∗ ⊗ J r(E)→W r is the projection.

Proof. The uniqueness follows from the exactness of the diagram above.
�

By a similar reasoning as in [23] we can now deduce the existence of a
first order operator S : J 1(J r(E)) → gr−1(TM)∗ ⊗ J r−1(E). We will call
S the weighted Spencer operator.

Proposition 1.21. There exists a unique differential operator

S : J 1(J r(E))→ gr−1(TM)∗ ⊗ J r−1(E)

of weighted order one such that
• J r+1(E) ⊆ ker(S)
• the weighted symbol σ(S) : gr−1(TM)∗⊗J r(E)→ gr−1(TM)∗⊗J r−1(E)
is id⊗ πrr−1.
Moreover, we have the following exact sequence of sheaves:

0 −−−−→ Γ(E)
jr−−−−→ Γ(J r(E))

S◦j1−−−−→ Γ(gr−1(TM)∗ ⊗ J r−1(E)) −−−−→ 0
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Proof. If such an operator exists, it must factorise over δr by proposi-
tion 1.20, since J r+1(E) ⊆ ker(S). This means that it has to be of the form
S = ψ ◦ δr for some bundle map ψ : W r → gr−1(TM)∗ ⊗ J r−1(E). By the
second property ψ has to satisfy that σ(S) = ψ ◦σ(δr) equals the projection
id⊗ πrr−1. To see that such a map ψ exists, we have to show that id⊗ πrr−1

factorises over σ(δr).
We already know that ker(σ(δr)) = ker(πr+1

r ), which is mapped under the
inclusion p1(idr) : J r+1(E) ↪→ J 1(J r(E)) to gr−1(TM)∗ ⊗ J r(E). Since
the map J 1(πrr−1) : J 1(J r(E)) → J 1(J r−1(E)) has symbol ι ◦ id ⊗ πrr−1

and we have the following commutative diagram

J r+1(E)
p1(idr)−−−−→ J 1(J r(E))

πr+1
r

y yJ 1(πrr−1)

J r(E)
p1(idr−1)−−−−−−→ J 1(J r−1(E))

we conclude that ker(πr+1
r ) is mapped under the inclusion p1(idr) to the

kernel of id ⊗ πrr−1. Hence id ⊗ πrr−1 factorises over σ(δr). So there exists
a unique bundle map ψ : W r → gr−1(TM)∗ ⊗ J r−1(E) with ψ ◦ σ(δr) =
id⊗ πrr−1 and we can define S = ψ ◦ δr.
To show the exactness of the sequence above let us describe S in another
way. Consider the bundle map

J 1(πrr−1)− p1(idr−1) ◦ π1
0 : J 1(J r(E))→ J 1(J r−1(E)).

Since π1
0 ◦ J 1(πrr−1) = π1

0 ◦ p1(idr−1) ◦ π1
0, this operator actually has values

in gr−1(TM)∗ ⊗J r−1(E). Moreover, J r+1(E) lies in its kernel by the com-
mutative diagram above and the symbol is given by the symbol of J 1(πrr−1)
which equals ι◦(id⊗πrr−1). Hence viewing S as an operator from J 1(J r(E))
to J 1(J r−1(E)) by means of the inclusion ι : gr−1(TM)∗ ⊗ J r−1(E) ↪→
J 1(J r−1(E)), we must have

S = J 1(πrr−1)− p1(idr−1) ◦ π1
0 : J 1(J r(E))→ J 1(J r−1(E)).

Suppose now we have a section of J r(E) which can be written as jrs for
some s ∈ Γ(E). Then it lies in the kernel of S ◦j1, since J 1(πrr−1)◦j1(jrs) =
j1(πrr−1(jrs)) = j1(jr−1s) = p1(idr−1)(jrs).
To show the converse one can proceed by induction on r.
If r = 1, then for s ∈ Γ(J 1(E)) to be in the kernel of S◦j1 means j1(π1

0(s)) =
p1(id0)s = s. Now suppose the assertion holds for r. If s ∈ Γ(J r+1(E))
satisfies j1(πr+1

r (s)) = p1(idr)(s), then

J 1(πrr−1)(j1(πr+1
r (s))) = J 1(πrr−1)(p1(idr)(s)).

From the commutative diagram above we know that the right side coincides
with p1(idr−1)(πr+1

r (s)). By the induction hypothesis πr+1
r (s) = jr(u) for
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some u ∈ Γ(E). Now s must equal jr+1u, since p1(idr)(s) = j1(πr+1
r (s)) =

j1(jru) and p1(idr) is injective. �

1.3.2. Universal prolongation of systems of weighted finite type.
Suppose that E and F are vector bundles over a filtered manifold M and let
φ : J r(E) → F be a vector bundle map of constant rank, then the vector
subbundle of J r(E) defined by its kernel

Qr := ker(φ)

is called the linear system of differential equations associated to the differen-
tial operator φ. A solution of Qr is a section s of E satisfying φ(jrs) = 0.

The symbol of Qr ⊂ J r(E) is the family of vector spaces K = {Kx}x∈M
over M given by the kernel of the projection

πrr−1|Qrx : Qrx → J r−1
x (E).

Note that Kx is exactly the kernel of the weighted symbol

σ(φ) : U−r(gr(TxM))∗ ⊗ Ex → Fx.

Definition 1.14. For ` ≥ 0 the `-th prolongation Qr+` of Qr is the kernel
of the `-th prolongation p`(φ) : J r+`(E)→ J `(F ) of φ.

Since the diagram

0

��

0

��
J r+`(E)

p`(φ)
//

p`(idr)

��

J `(F )

id
��

0 // J `(Qr) // J `(J r(E))
J `(φ)

// J `(F )

commutes, we have
Qr+` = J `(Qr) ∩ J r+`(E).

In general, the vector bundle map p`(φ) is not of constant rank and Qr+`

need not to be a vector bundle.

Definition 1.15. We call a vector bundle map φ : J r(E)→ F respectively
the corresponding linear differential operator regular, if p`(φ) is of constant
rank for all ` ≥ 0.

For ` ≥ 1 the symbol of the prolonged equation Qr+` is the family of
vector spaces gr+` := {gr+`x }x∈M over M , where gr+`x is the kernel of the
linear map Qr+`x → Qr+`−1

x ⊂ J r+`−1
x (E) given by the restriction of the
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projection πr+`r+`−1 to Qr+`x .
For all ` ≥ 1 we have a vector bundle map

σ`(φ) : U−(r+`)(gr(TM))∗ ⊗ E → U−`(gr(TM))∗ ⊗ F,

which we call the `-th symbol mapping. It is defined by the following (fiber-
wise) commutative diagram:

0

��

0

��

0

��
0 // gr+` //

��

U−(r+`)(gr(TM))∗ ⊗ E
σ`(φ)

//

��

U−`(gr(TM))∗ ⊗ F

��

0 // Qr+` //

��

J r+`(E)
p`(φ)

//

��

J `(F )

��

0 // Qr+`−1 // J r+`−1(E)
p`−1(φ)

// J `−1(F )

Remark 1.10. The `-th symbol mapping composed with the inclusion U−`(gr(TM))∗⊗
F ↪→ J `(F ) coincides of course just with the weighted symbol of the `-th
prolongation p`(φ) of φ.

By definition the kernel of the `-th symbol mapping σ`(φ) is gr+` viewed
as a subset of U−(r+`)(gr(TM))∗ ⊗ E.
Since Qr+` = J `(Qr) ∩ J r+`(E) and the diagram

J r+`(E)
p`(idr)−−−−→ J `(J r(E))

πr+`r+`−1

y yπ``−1

J r+`−1(E)
p`−1(idr)−−−−−−→ J `−1(J r(E))

commutes, we conclude that

gr+`x = U−(r+`)(gr(TxM))∗ ⊗ Ex ∩ U−`(gr(TxM))∗ ⊗Kx

where K = {Kx}x∈M is the kernel of the weighted symbol σ(φ) of φ.

Definition 1.16. A system of linear differential equations Qr ⊂ J r(E) is
called of weighted finite type, if there exists m ∈ N such that gr+`x = 0 for all
x ∈M and ` ≥ m.

For equations of weighted finite type we can prove the following theorem:

Theorem 1.22. Suppose M is a filtered manifold such that gr−1(TxM) gen-
erates gr(TxM) for all x ∈M and suppose E and F are vector bundles over
M .
Let D : Γ(E) → Γ(F ) be a regular differential operator of weighted order r
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defining a system of linear differential equations of weighted finite type. Then
for some `0 ∈ N there exists a differential operator

D′ : Γ(Qr+`0)→ Γ(W r+`0) of weighted order one with injective symbol

such that s 7→ jr+`0s induces a bijection:

{s ∈ Γ(E) : D(s) = 0} ↔ {s′ ∈ Γ(Qr+`0) : D′(s′) = 0}.

Proof. Let us denote by φ : J r(E) → F the bundle map associated
to D and by Qr ⊂ J r(E) the differential equation given by the kernel of φ.
For all ` ≥ 0 we can consider the operator Dr+` : Γ(Qr+`) → Γ(W r+`) of
weighted order one given by the restriction of δr+` ◦ j1 to Γ(Qr+`).
If s ∈ Γ(E) is a solution Ds = 0, then jr+`s ∈ Γ(Qr+`) and since j1(jr+`s)
is a section of J r+`+1(E) ⊂ J 1(J r+`(E)) we also have Dr+`(jr+`s) = 0.
And conversely, if s′ is a section of Qr+` such that Dr+`(s′) = 0, then j1s′ is
a section of J r+`+1(E). Since J r+`+1(E) is contained in the kernel of the
weighted Spencer operator J 1(J r+`(E)) → J 1(J r+`−1(E)), the section s′

equals jr+`s for some section s ∈ Γ(E). Obviously πr+`0 (jr+`s) = s then
satisfies Ds = 0.
This shows that for all ` ≥ 0 the map jr+` induces a bijection between
solutions of D and solutions of Dr+`. So it remains to prove that there
exists some `0 such that Dr+`0 has injective symbol.
The symbol of Dr+` is a bundle map U−1(gr(TM))∗ ⊗ Qr+` → W r+`. We
know that the kernel of σ(δ−(r+`)) is Ur+`+1(gr(TM))∗ ⊗ E. Since Dr+` is
just the restriction of δr+` ◦ j1 to Γ(Qr+`), we obtain that

ker(σ(Dr+`))x = U−(r+`+1)(gr(TxM))∗ ⊗ Ex ∩ U−1(gr(TxM))∗ ⊗ gr+`x .

But gr+`x = U−(r+`)(gr(TxM))∗ ⊗Ex ∩ U−`(gr(TxM))∗ ⊗Kx where K is the
kernel of the symbol of D. Therefore we get

ker(σ(Dr+`))x = U−(r+`+1)(gr(TxM))∗ ⊗ Ex ∩ U−(`+1)(gr(TxM))∗ ⊗Kx

which coincides with gr+`+1
x .

Since the equation Qr is of finite type, there exists `0 such that gr+`0+1 =
0 and hence Dr+`0 : Γ(Qr+`0) → Γ(W r+`0) is a differential operator of
weighted order one with injective symbol, whose solutions are in bijective
correspondence with solutions of the original equation Qr. �

As a consequence of this theorem, we obtain:

Corollary 1.23. Let M be a connected filtered manifold such that for all
x ∈ M the symbol algebra gr(TxM) is generated by gr−1(TxM) . Suppose
D : Γ(E) → Γ(F ) is a regular linear differential operator of weighted order
r defining a system of linear differential equations of weighted finite type.
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Then any solution s ∈ Γ(E) is already determined by a finite weighted jet in
a single point. In particular, the solution space is finite dimensional.

Proof. By theorem 1.22, we know that solutions of D(s) = 0 are in
bijective correspondence with solutions of Dr+`0(s′) = 0, where Dr+`0 is the
operator of weighted order one with injective symbol of the theorem. Denote
by φr+`0 the bundle map corresponding to Dr+`0 and consider the following
diagram:

0 // gr−1(TM)∗ ⊗Qr+`0 //

σ(φr+`0 ) ((RRRRRRRRRRRRR
J 1(Qr+`0)

π1
0 //

φr+`0

��

Qr+`0 // 0

W r+`0

Now choose a splitting J 1(Qr+`0)→ gr−1(TM)∗ ⊗Qr+`0 of the short exact
sequence. Viewing this splitting as a partial connection ∇ : Γ(Qr+`0) →
Γ(gr−1(TM)∗ ⊗Qr+`0), we see from the diagram that

Dr+`0 = σ(φr+`0) ◦ ∇+ a, (1.11)

where a : Γ(Qr+`0)→ Γ(W r+`0) is induced by some vector bundle map.
Suppose c : I → M is a smooth curve satisfying c′(t) ∈ T−1

c(t)M for all t ∈ I
and consider the equation for a section µ of the pullback bundle c∗Qr+`0

σ(φr+`0)(∇c′(t)µ(t)) + a(µ(t)) = 0. (1.12)

Since the σ(φr+`0) is injective, this defines an ordinary differential equation
of order one and therefore a solution is determined by its value in one point.
Suppose s′ ∈ Γ(E) is a solution of (1.11), then t 7→ s′(c(t)) must be a
solution of the equation (1.12). Since T−1M is bracket generating and M is
connected, any two points can be connected by curve c with c′(t) ∈ T−1

c(t)M for
all t ∈ I due to the theorem of Chow, see e.g. chapter 2 in [29]. Therefore a
solution s′ is already determined by its value in one point. Hence the original
equation is determined by its weighted r + `0-jet in one point. �

Moreover, since Dr+`0 is of weighted order one with injective symbol, it
induces a vector bundle map ρ : Qr+`0 →W r+`0/(gr−1(TM)∗ ⊗Qr+`0).
Any solution s′ of Dr+`0 must clearly also satisfy ρ(s′) = 0, which leads to
obstructions for the existence of solutions.

Remark 1.11. The fact that a differential equation of weighted finite type
has finite dimensional solution space was (by other means) already observed
earlier by Morimoto, [33].

Summing up, we have seen in theorem 1.22 that there is always a canon-
ical bijection between solutions of a system of linear differential equations of
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weighted finite type and solutions of a certain prolonged system of weighted
order one. Considering this prolonged system leads to bounds for the dimen-
sion of the solution space of the original system and even to obstructions to
the existence of solutions. However, as it stands, this approach is quite ab-
stract. In chapter 3 we will therefore return to this problem and will show
that for a large class of system of weighted finite type on filtered mani-
folds, admitting an additional geometric structure, the bundle Qr+`0 can
be explicitly computed and present a conceptual way to construct a linear
connection on Qr+`0 , whose parallel sections correspond to solutions of the
studied weighted finite type system. Finally, let us remark that Eastwood
and Gover in [21], recently developed a prolongation theory on contact man-
ifolds using higher order connections, which is closely related to the results
of this section.



CHAPTER 2

Parabolic Geometries

A geometric structure on a manifoldM , which always induces a filtration
of the tangent bundle TM , is a parabolic geometry. Parabolic geometries
are special types of Cartan geometries. Under certain conditions a parabolic
geometry on some manifold M is equivalent to some underlying geometric
structure, which consists of a filtration of the tangent bundle TM , making
M into a filtered manifold, and a reduction of the structure group of the
frame bundle P(gr(TM)) of the associated graded bundle gr(TM). In this
chapter we will give a short introduction to parabolic geometries and their
underlying structures. In our presentation we mainly follow [15] and [7].

2.1. Basic definitions and notations

2.1.1. Cartan Geometries. In order to relate geometry in the sense
of Felix Klein’s Erlangen program and differential geometry, Élie Cartan
introduced at the beginning of the last century a common generalisation of
both concepts under the name éspaces généralisés. In the Erlangen program
a geometry is given by a manifold together with a transitive left action of a
Lie group G. Hence up to a base point by a homogeneous space G/H where
G is acting from the left by multiplication. The constitutive idea of Cartan
now was to endow the homogeneous space G/H with a geometric structure
such that the automorphisms of this structure become the left multiplications
by elements of G. The ingredient to recognise left multiplications among all
diffeomorphisms of G/H is provided by the Maurer-Cartan form of G, the
canonical one form on G with values in the Lie algebra of G, which encodes
the left trivialisation of the tangent bundle of G. Let us explain this more
explicitly.
We fix a Lie group G and a closed subgroup H ⊆ G and denote by g the Lie
algebra of G. Then the homogeneous space G/H can be endowed with the
geometric structure consisting of the following data:

(1) the principal H-bundle given by the projection p : G→ G/H

(2) the Maurer-Cartan form ωMC ∈ Ω1(G, g) on G defined by

ωMC(ξg) = Tgλg−1ξg,

where λg−1 : G→ G denotes the left multiplication by g−1.

47
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ConsideringG/H endowed with this geometric structure, the automorphisms
of G/H are defined to be the principal bundle isomorphisms φ : G → G,
which in addition preserve the Maurer-Cartan form φ∗ωMC = ωMC . It is
not hard to see, that if G/H is connected, the automorphisms are exactly
the left multiplications by elements of G.
A Cartan geometry of type (G,H) is a generalisation of the situation above.
It is given by a principal H-bundle over a manifold of the same dimension as
G/H and a g-valued one form on the total space of this bundle, which has
all the basic properties of the Maurer-Cartan form that still make sense.

Definition 2.1. Suppose G is a Lie group and H ⊆ G a closed subgroup
and denote by g and h its Lie algebras.
A Cartan Geometry of type (G,H) on a manifold M is given by

(1) a principal fiber bundle p : G →M with structure group H
(2) a Cartan connection: a one form ω ∈ Ω1(G, g) with values in g such

that:
• ω is H-equivariant : (rh)∗ω = Ad(h−1) ◦ ω for all h ∈ H
• ω reproduces the generators of fundamental vector fields:
ω(ζX(u)) = X for all X ∈ h

• ω trivialises TG: ω(u) : TuG → g is a linear isomorphism for
all u ∈ G

where r : G × H → G denote the principal right action of H on G and
Ad : G→ GL(g) the adjoint representation.

Note that the definition implies that the dimension of M equals the one
of G/H.
Since the Maurer-Cartan form satisfies the defining properties of a Cartan
connection, the canonical bundle p : G → G/H endowed with the Maurer-
Cartan form defines a Cartan geometry on G/H, which is called the homo-
geneous model for Cartan geometries of type (G,H).

Definition 2.2. A morphism between Cartan geometries (G → M,ω) and
(G′ → M ′, ω′) of type (G,H) is a principal bundle morphism φ : G → G′

satisfying φ∗ω′ = ω.

Note that the condition φ∗ω′ = ω implies that the tangent map of φ
in each point is a linear isomorphism. Hence φ and its base map are local
diffeomorphisms.
For a Cartan geometry (G →M,ω) one has the notion of its curvature.

Definition 2.3. The curvature of a Cartan geometry (G → M,ω) of type
(G,H) is the g-valued two from K ∈ Ω2(G, g) defined by

K(ξ, η) = dω(ξ, η) + [ω(ξ), ω(η)].
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The fact that the Cartan connection ω by definition trivialises the tan-
gent bundle TG implies that any differential form on G is already determined
by its values on the constant vector fields ω−1(X) for X ∈ g. Therefore, the
curvature of a Cartan geometry can be equivalently encoded in the curvature
function

κ : G → Λ2g∗ ⊗ g

defined by

κ(u)(X,Y ) = K(ω−1(X)(u), ω−1(X)(u)).

From the first two properties of a Cartan connection follows immediately
that the curvature is horizontal and H-equivariant. Thus, we have:

Lemma 2.1. The curvature K ∈ Ω2(G, g) is horizontal and hence the curva-
ture function can be viewed as a function κ : G → Λ2(g/h)∗⊗ g. In addition,
the equivariancy of the Cartan connection implies

(rh)∗K = Ad(h−1) ◦K

κ ◦ rh = λ(h−1) ◦ κ,

where λ is the representation of H defined as the tensor product of the H-
representations Λ2(g/h)∗ and g, which are induced by the adjoint action Ad :
G→ GL(g).

Note that the Maurer-Cartan form always satisfies

dωMC(ξ, η) + [ωMC(ξ), ωMC(η)] = 0.

Hence the curvature of the homogeneous model vanishes identically. Con-
versely, one can show that vanishing of the curvature is already a full ob-
struction to local flatness of the geometry:

Proposition 2.2. The curvature of a Cartan geometry (G →M,ω) vanishes
identically if and only if (G →M,ω) is locally isomorphic to the homogeneous
model.

This proposition implies that the curvature of a Cartan geometry of type
(G,H) measures to which amount the geometry differs from its homogeneous
model. In that sense a general Cartan geometry of type (G,H) can be viewed
as a curved analog of the homogeneous space G/H. For a proof of the propo-
sition see for instance section 1.5.2. in [15].
Against the background of the intention of Cartan to reconcile different con-
cepts of geometry, one of the most motivating examples of a geometric struc-
ture, which can be also considered as a Cartan geometry, was the one of a
Riemannian structure.
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Example 2.1. Let G be the group of euclidean motion on Rn and H =
O(n) ⊂ G the subgroup of orthogonal transformations. Then G/H is the
euclidean space Rn. Suppose (G → M,ω) is a Cartan geometry of type
(G,H). Since the Lie algebra g of G is isomorphic as H-module to h⊕ Rn,
the Cartan connection decomposes into a h-valued one form γ and a Rn-
valued one form θ. It can be easily seen that θ defines a reduction of the
linear frame bundle of M to H, which is the same as a Riemannian metric
and γ a principal connection on G which is equivalent to a metric connection.
If γ is torsion free, it must be the Levi-Civita connection. Conversely, given a
Riemannian manifold of dimension n, one can construct a torsion free Cartan
geometry by setting G the orthonormal frame bundle and defining ω to be
the sum of the Levi-Civita-connection and the soldering form. In this way,
one gets an equivalence of categories between torsion free Cartan geometries
of type (G,H) and Riemannian manifolds of dimension n.

Knowing that a geometric structure can be equivalently described as a
Cartan geometry has immediately strong consequences. For example, it can
be shown that the automorphism group of a Cartan geometry of type (G,H)
is a finite dimensional Lie group whose dimension is at most the dimension
of G, see section 1.5.11. in [15]. The Lie algebra of the automorphism
group can be completely described in terms of the Lie algebra of G and the
curvature of the geometry. In certain cases the description can be even im-
proved, which leads to interesting results about possible dimensions of such
automorphism groups, see [11]. Also it is not hard to see that every local
automorphism of the homogeneous model extends uniquely to a global one,
see section 1.5.11. in [15] .
In the last decades, a special class of Cartan geometries, namely so called
parabolic geometries, on which will focus in the next section, were studied
intensively and a lot of tools were developed to study these geometries. Un-
der certain conditions, parabolic geometries are always determined by some
underlying geometric structure. These underlying structures cover a large
variety of geometric structures and to consider them as parabolic geometries
leads to powerful results.

2.1.2. Parabolic Geometries. A parabolic geometry is a Cartan ge-
ometry of type (G,P ), where G is a semisimple Lie group and P a parabolic
subgroup. Parabolic subgroups are defined via parabolic subalgebras. There
are several ways to define parabolic subalgebras in semisimple Lie algebras.
The most convenient way for our purposes is to view them as subalgebras
which determine |k|-gradings on semisimple Lie algebras. In particular, this
will enable us to deal with the real and complex case simultaneously.
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Definition 2.4. Let g be a complex or real semisimple Lie algebra and k > 1
an integer. A |k|-grading on g is a vector space decomposition

g = g−k ⊕ ...⊕ g0 ⊕ ...⊕ gk

such that

• [gi, gj ] ⊆ gi+j , where we set gi = {0} for |i| > k

• the subalgebra g− := g−k ⊕ ...⊕ g−1 is generated as Lie algebra by
g−1

• g±k 6= {0}

By the grading property g0 is a subalgebra and each gi is a g0-module.
Given a |k|-graded semisimple Lie algebra g = g−k ⊕ ... ⊕ g0 ⊕ ... ⊕ gk, we
have the associated filtration of the vector space g

g = g−k ⊃ ... ⊃ g0 ⊃ ... ⊃ gk where gi =
k⊕
j=i

gj

which makes g into a filtered Lie algebra. By the grading property, g0 is
subalgebra and each gi is g0-modules.
For later use we fix some notation. We set p := g0 and p+ := g1. Obviously
p+ is a subalgebra of g and a nilpotent ideal in the algebra p.
Now we collect some basic properties about |k|-graded semisimple Lie alge-
bras, for a proof see [43] and section 3.1. of [15]:

Proposition 2.3.

(1) There exists a unique element e ∈ z(g0), called the grading element,
which satisfies [e,X] = jX for X ∈ gj for j = −k, ..., k.

(2) The isomorphism g→ g∗ induced by the Killing form is compatible
with the grading and the filtration. In particular, we have a dual-
ity between the g0-modules gi and g−i and a duality of p-modules
between gi and g/g−i+1. In particular, we have an isomorphism of
g0-modules p+

∼= g∗− and an isomorphism of p-modules p+
∼= (g/p)∗.

(3) the algebras g0 and p can be characterised by

g0 = {X ∈ g : ad(X)(gi) ⊂ gi for i = −k, ..., k}

p = {X ∈ g : ad(X)(gi) ⊂ gi for i = −k, ..., k}

Let g = g−k ⊕ ... ⊕ gk be a graded semisimple Lie algebra and G be a
Lie group with Lie algebra g. Then the subgroup

P := {g ∈ G : Ad(g)(gi) ⊂ gi for i = −k, ..., k}

is closed, since it is the intersection of the normalisers NG(gi) of gi in G, and
has Lie algebra p. Hence any other closed subgroup of G with Lie algebra p

lies between P =
⋂k
i=−kNG(gi) and its connected component of the identity.
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A closed subgroup of G with Lie algebra p is called a parabolic subgroup
(corresponding to the given |k|-grading). We will see in the next section
that this definition of parabolic subgroups coincide with the one used in
representation theory. Having fixed a parabolic subgroup P corresponding
to a given |k|-grading, the closed subgroup

G0 := {g ∈ P : Ad(g)(gi) ⊂ gi for i = −k, ..., k}

is called the Levi subgroup of P . Its Lie algebra is g0.
Moreover, we have the following theorem about the subgroups G0 ⊂ P ⊂ G,
for a proof see the section 3.1.3. in [15]:

Theorem 2.4. The map (g0, Z) 7→ g0exp(Z) defines a diffeomorphism G0×
p+ → P . In particular, P+ := exp(p+) is a closed nilpotent subgroup of G.

Note that, since for g ∈ P and Z ∈ p+ we have Ad(g)(Z) ∈ p+, the
group P+ is a normal subgroup of P and P/P+

∼= G0.

Definition 2.5. A parabolic geometry is a Cartan geometry of type (G,P ),
where G is a semisimple Lie group whose Lie algebra is endowed with a
|k|-grading and P is a closed subgroup with Lie algebra p.

The homogeneous space G/P is a so called generalised flag manifold. If
G is connected, G/P is always compact in the complex case and in the real
case provided that the center of G is finite, see e.g. section 3.2.6. and section
3.2.11. in [15].

2.1.3. |k|-gradings and their relation to parabolic subalgebras.
Let g be a complex semisimple Lie algebra. A Borel subalgebra of g is a
maximal solvable subalgebra of g. A subalgebra p of g is then defined to be
parabolic, if p contains a Borel subalgebra.
Let h be a Cartan subalgebra of g and denote by ∆ the set of roots associated
to h. Then

g = h⊕
⊕
α∈∆

gα

where gα is the root space corresponding to α ∈ ∆. Choosing a simple
subsystem of roots ∆0 ⊂ ∆, any root can be written as a linear combination
of simple roots, where all coefficients are integers either all ≤ 0 or ≥ 0.
Denoting by ∆+ ⊂ ∆ the subset of positive roots, i.e. the subset of those
roots which can be written as a linear combination of simple roots with
positive coefficients, the set of roots ∆ is actually given by the disjoint union
∆ = ∆+ t −∆+, where −∆+ ⊂ ∆ is called the subset of negative roots.
The subalgebra of g defined by

b = h⊕
⊕
α∈∆+

gα
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is a maximal solvable subalgebra of g, called the standard Borel subalgebra
associated to h and ∆0. A standard parabolic subalgebra is a subalgebra
which contains b.
It is well known that standard parabolic subalgebras can be classified by
subsets Σ ⊂ ∆0 of simple roots. In fact, the map

p 7→ Σp = {α ∈ ∆0 : g−α * p}

defines a bijection between standard parabolic subalgebras and subsets of
simple roots, where the inverse is given by assigning to a subset Σ of simple
roots the algebra pΣ, which is the direct sum of b and all root spaces corre-
sponding to negative roots, which can be written as a linear combination of
elements of ∆0 \ Σ.
The fact that Cartan subalgebras and the choice of a simple subsystem of
roots are unique up to conjugation can as well be formulated as the fact
that any two Borel subalgebras are conjugate by an inner automorphism of
g. Therefore, having fixed a Cartan subalgebra and a simple subsystem of
roots, every parabolic subalgebra is conjugate to a standard one. Hence up
to conjugation a parabolic subalgebra can be uniquely described by a subset
Σ of simple roots and we may denote a parabolic subalgebra by replacing in
the Dynkin diagram of g all dots corresponding to roots in Σ by crosses.
Let p be a standard parabolic subalgebra and denote by htΣp(α) the Σp-
height of α, i.e. the sum of all coefficients of elements in Σp in the represen-
tation of α as linear combination of simple roots.
Then p determines a |k|-grading on g as follows

g0 = h⊕
⊕

htΣp (α)=0

gα

gi =
⊕

htΣp (α)=i

gα

with g0 = p.
Conversely, given a |k|-grading g = g−k ⊕ ... ⊕ g0 ⊕ ... ⊕ gk, one can show
that there is a choice of h and ∆0 such that g0 contains the standard Borel
subalgebra. Hence g0 is parabolic. Moreover, one can show that the grading
is given by Σg0-height. Therefore we have:

Proposition 2.5. Let g be a complex semisimple Lie algebra, h a Cartan
subalgebra with corresponding root system ∆ and ∆0 ⊂ ∆ a simple subsys-
tem. Then the map, which maps a standard parabolic subalgebra p to the
|k|-grading of g given by Σp-height , defines a one to one correspondence
between conjugation classes of parabolic subalgebras of g and isomorphism
classes of |k|-gradings of g.
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Moreover, using the description of |k|-gradings in terms of weights, one
can prove:

Proposition 2.6. Suppose g = g−k ⊕ ... ⊕ gk is a complex semisimple |k|-
graded Lie algebra. Then the following holds:

(1) The subalgebra g0 is reductive. It is called the Levi subalgebra of the
parabolic subalgebra p := g0.

(2) If we choose a Cartan subalgebra h of g and a simple subsystem
of roots ∆0 such that p becomes a standard parabolic subalgebra and
denote by {Hα}α∈∆0 the basis of h, where Hα ∈ h corresponds under
the isomorphism h→ h∗ induced by the Killing form to α ∈ ∆0, then

g0 = z(g0)⊕ h0 ⊕
⊕

htΣp (α)=0

gα,

where z(g0) is the center of g0 and h0 is the linear span of all the Hα

with α ∈ ∆0\Σp. Hence the dimension of z(g0) equals the number
of elements in Σp. Moreover, the subalgebra h0 is a Cartan sub-
algebra of the semisimple part gss0 of g0 whose corresponding root
decomposition is exactly

gss0 = h0 ⊕
⊕

htΣp (α)=0

gα.

This proposition implies that the Dynkin diagram of the semisimple part
gss0 of the Levi subalgebra of a parabolic subalgebra p is obtained by removing
all crossed nodes and all edges connecting to them from the crossed Dynkin
diagram of the parabolic subalgebra p.

In the real case one can proceed similar. Suppose g is a real semisimple
Lie algebra. A subalgebra p of g is called parabolic, if its complexification pC

is a parabolic subalgebra of gC.
Choosing a Cartan involution θ : g→ g, we can decompose g into eigenspaces
for θ

g = q⊕ k,

where q is the eigenspace to the eigenvalue −1 and k the one to the eigenvalue
1. Recall that then k is a subalgebra, [k, q] ⊂ q and [q, q] ⊂ k and that
Bθ(X,Y ) := −B(X, θ(Y )) defines a positive definite bilinear form on g,
where B is the Killing form of g.
Let h be a θ-stable Cartan subalgebra of g such that a := h∩ q has maximal
possible dimension under all θ-stable Cartan subalgebras. Such a Cartan
subalgebra can always be constructed by first choosing a maximal abelian
subalgebra a ⊆ q and then choosing a maximal abelian subalgebra t in the
centraliser Zk(a) of a in k and setting h = t⊕ a.
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Having choosen θ and h, we denote by ∆ the root system of gC corresponding
to the Cartan subalgebra hC ⊂ gC. It is easy to see that with respect to Bθ
one always has ad(θ(X))t = −ad(X). This implies that ad(A) for A ∈ a is
a family of commuting symmetric linear maps and therefore simultaneously
diagonalisable, where the eigenvalues are linear functionals λ : a → R. We
denote by ∆r the set of non-zero eigenfunctionals, called the restricted roots
of g (with respect to a). Then g decomposes as

g = Zk(a)⊕ a⊕
⊕
λ∈∆r

gλ.

By construction elements of ∆r are restrictions to a of elements of ∆ and a
restricted root space gλ is just the intersection of g with the direct sum of
those root spaces (gC)α with α|a = λ.
Let ∆+ ⊂ ∆ be an admissible positive subsystem, i.e. for α ∈ ∆+ we
have either σ∗α = −α or σ∗α ∈ ∆+, where σ∗ : ∆ → ∆ is the involutive
automorphism defined by σ∗α(H) := α(σ(H)) with σ the conjugation of gC

with respect to the real form g. Then the image of ∆+ under the restriction
map ∆ → ∆r is a positive subsystem ∆+

r of the root system ∆r and we
denote by ∆0

r the corresponding subset of simple restricted roots.
A subalgebra p of g is then called a standard parabolic subalgebra, if pC is
a standard parabolic subalgebra of gCwith respect to hC and ∆+. It can be
shown that standard parabolic subalgebras are exactly those subalgebras of
g, which contain the subalgebra Zk(a) ⊕ a ⊕

⊕
λ∈∆+

r
gλ. From this one can

deduce that the map

p 7→ Σp = {λ ∈ ∆0
r : g−λ * p}

defines a bijection between standard parabolic subalgebras and subsets of
restricted simple roots.
Lets us briefly recall how the Satake diagram of a real semisimple Lie algebra
g is defined. Choosing θ, h and ∆+ as above, we may consider the subset of
compact roots given by ∆c := {α ∈ ∆ : σ∗(α) = −α} ⊂ ∆. The fact that
ad(θ(X))t = −ad(X) with respect to Bθ implies that all roots are real valued
on a⊕ it. Therefore, restricting a root α to h ⊂ hC, we see that σ∗(α) = −α
if and only if α|a = 0. So we have ∆c = {α ∈ ∆ : α|a = 0}. It can be shown
that ∆0

c := ∆0 ∩ ∆c is a simple subsystem of ∆c and that for any simple
non-compact root α there exists a unique simple non-compact root α′ such
that σ∗(α)−α′ can be written as a linear combination of compact roots. By
mapping α to α′ one obtains an involutive automorphism on ∆0 \∆0

c . The
Satake diagram of g is then defined as the Dynkin diagram of ∆0, where
elements in ∆0

c are denoted by black dots • and all others by white dots ◦
and where for α ∈ ∆0 \∆0

c with α 6= α′ the two roots are connected by an
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arrow.
Since ∆+ is admissible, the image ∆+

r of ∆+ under the surjective restriction
map ∆→ ∆r is a positive subsystem of ∆r and this easily implies that the
corresponding subset of simple restricted roots ∆0

r is the quotient of ∆0 \∆0
c

constructed by identifying α with α′.
This shows that subsets of simple restricted roots can be identified with
subsets of ∆0 \∆0

c satisfying that if α is contained in the subset then α′ is
contained as well. Therefore we may denote a standard parabolic subalgebra
of g by replacing white dots in the Satake diagram of g by crosses, where
two roots connected by an arrow are always either both crossed or both not
crossed.
Analog to the complex case, any standard parabolic subalgebra p defines a
|k|-grading by

g0 = Zk(a)⊕ a⊕
⊕

htΣp (λ)=0

gλ

gi =
⊕

htΣp (λ)=i

gλ

with g0 = p and one can prove that one obtains in this way a correspondence
between conjugation classes of parabolic subalgebras of g and isomorphism
classes of |k|-gradings of g.
Since the complexification of a real semisimple |k|-graded Lie algebra is a
complex semisimple |k|-graded Lie algebra, the subalgebra g0 ⊂ p is as in the
complex case reductive and called the Levi subalgebra of p. The dimension
of the center of g0 thereby exactly equals the number of crosses in the Satake
diagram and the Satake diagram of the semisimple part of g0 is just obtained
by removing all crossed nodes, and all edges and arrow connecting to the
crossed nodes.

2.1.4. Natural vector bundles. Suppose (G → M,ω) is a parabolic
geometry of some type (G,P ) and V is a representation of P . Then we can
form the associated vector bundle V to the principal bundle G with standard
fiber V. Recall that the vector bundle V is defined as

V := G ×P V := G × V/ ∼,

where ∼ denotes the equivalence relation (u, v) ∼ (u ·p, p−1 ·v) for all p ∈ P .
The vector bundles of this form are the natural vector bundles associated to
a parabolic geometry (G →M,ω).
Denoting by

C∞(G,V)P := {f : G → V smooth : f(up) = p−1f(u) for all p ∈ P}
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the space of smooth P -equivariant functions, the map which assign to a P -
equivariant function f the section sf (p(u)) = [u, f(u)] of G ×P V, where
[u, f(u)] denotes the equivalence class of (u, f(u)) ∈ G × V in V , defines an
isomorphism

C∞(G,V)P ∼= Γ(G ×P V).

Let us consider some important examples:
The adjoint representation of G induces a representation of P on g/p. The
tangent bundle TM can be viewed as the vector bundle corresponding to
this representation, since the Cartan connection induces an isomorphism as
follows:

G ×P g/p ∼= TM

[u,X + p] 7→ Tupω
−1(X).

Consequently, for the cotangent bundle we have

G ×P (g/p)∗ ∼= T ∗M.

There is a special class of natural vector bundles, namely those associated
vector bundles which correspond to P -representations that are obtained by
restricting some G-representation to P . The natural vector bundles ob-
tained in that way are called tractor bundles and play an important role
in the theory of parabolic geometries, since the always admit natural linear
connections.
An important example of a tractor bundle is the associated vector bundle
AM := G ×P g corresponding to the P -representation which is obtained
by restricting the adjoint representation of G to P . It is called the ad-
joint tractor bundle. Since the action of P on g preserves the filtration
g = g−k ⊃ g−k+1 ⊃ ... ⊃ gk associated to the grading on g, we obtain
correspondingly a filtration of the adjoint tractor bundle into subbundles

AM = A−kM ⊃ ... ⊃ A0M ⊃ ... ⊃ AkM.

By definition A0M = G ×P p and there for we see that the tangent bundle
TM can be identified with the quotient AM/A0M and we have a projection
AM → TM . By contrast, the cotangent bundle can be identified with
the subbundle A1M = G ×P p+, since p+ and (g/p)∗ are isomorphic as
P -representations, see proposition 2.3.

2.1.5. Representations of P . We have seen that the natural vector
bundles for parabolic geometries correspond to representations of parabolic
subgroups. Therefore let us finish this section by collecting some facts about
representations of parabolic subgroups.
Suppose g = g−k ⊕ ... ⊕ gk is a |k|-graded semisimple Lie algebra. Starting
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with a completely reducible finite dimensional representation of the reductive
Levi subalgebra g0, we may obtain a completely reducible representation of
p = g0 ⊕ p+ by trivially extending the action to p. Let us remark here that
a finite dimensional representation of a reductive Lie algebra is completely
reducible if and only if its center acts diagonalisably.
Conversely, it is not hard to see that any completely reducible representation
of p is of this form:

Proposition 2.7. Let g = g−k⊕...⊕gk is a |k|-graded semisimple Lie algebra
with corresponding parabolic subalgebra p = g0 ⊕ p+. If W is a completely
reducible finite dimensional representation of p, then p+ acts trivially on
W. In particular, irreducible representations of p correspond to irreducible
representations of g0.

This proposition implies that complex irreducible representations of p

may be described in terms of highest weights. To explain this, let us recall
the representation theory of semisimple Lie algebras.
Suppose first g is a complex semisimple Lie algebra and let h ⊂ g a be Cartan
subalgebra and ∆0 = {α1, ..., αn} be a simple subsystem of the root system
∆ corresponding to h. It is well known that complex irreducible represen-
tations of g can be described by their highest weights. If V is a complex
irreducible representation, then its highest weight λ ∈ h∗ is a linear func-
tional on h, which is dominant and algebraically integral. This means that
2<λ,α><α,α> is a non-negative integer for all α ∈ ∆0, where <,> is the inner
product on h∗ induced by the Killing form. In fact, assigning to a complex
irreducible representation of g its highest weight defines a bijection between
isomorphism classes of complex irreducible representations and dominant al-
gebraically integral functionals on h. The condition for an element in h∗ to
be dominant and integral can be nicely rephrased in terms of fundamental
weights. For each simple root αi the dominant algebraically integral func-
tional ωi, which is characterised by 2<ωi,αj><αj ,αj>

= δij , is called the fundamental
weight corresponding to αi. The fundamental weights form a basis of h∗ and
hence any functional λ ∈ h∗ can be uniquely written as linear combination
of the fundamental weights. Thereby the coefficient of ωi equals exactly
2 <λ,αi>
<αi,αi>

. Therefore a functional λ is dominant and algebraically integral if
and only if all the coefficients of λ written as linear combination of the fun-
damental weights are non-negative integers. Hence we can denote a complex
irreducible representation with highest weight λ by the Dynkin diagram of
g, where one writes the non-negative integer 2 <λ,αi>

<αi,αi>
over the node which

corresponds to the simple root αi.
For complex |k|-graded semisimple Lie algebra g with corresponding par-
abolic subalgebra p, the complex irreducible representations of p can be
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described very similarly. By the previous proposition, a complex irreducible
representation of p is the just a complex irreducible representation of the
Levi subalgebra g0 trivially extended to p. Since g0 is reductive, it decom-
poses as a direct sum of its center and a complex semisimple Lie algebra
g0 = z(g0) ⊕ gss0 . Therefore any complex irreducible representation of g0 is
given by a complex irreducible representation of the semisimple part gss0 and
a linear functional on the center z(g0). Now choose the Cartan subalgebra h

of g and a simple subsystem of roots in such way that p is standard parabolic
and the grading is given by Σp-height. In proposition 2.6, we have seen that
the Cartan algebra naturally splits as h = z(g0)⊕h0, where h0 is the span of
allHα with α ∈ ∆0\Σp. The subalgebra h0 is then a Cartan subalgebra of gss0
with corresponding root composition gss0 = h0 ⊕

⊕
htΣp (α)=0 gα. Since com-

plex irreducible representations of gss0 are given by dominant, algebraically in-
tegral weights, this implies that complex irreducible representations of g0 are
in one to one correspondence with linear functionals λ : h = z(g0)⊕ h0 → C
which are p-dominant and p-integral, i.e. 2<λ,α>

<α,α> is a non-negative integer
for all α ∈ ∆0\Σp.

Theorem 2.8. Let g = g−k⊕ ...⊕gk be a complex |k|-graded semisimple Lie
algebra and choose a Cartan subalgebra h and a simple subsystem of roots
such that p is a standard parabolic subalgebra of g.
There is a bijective correspondence between isomorphism classes of complex
irreducible representations of p and linear functionals λ ∈ h∗, which are p-
dominant and p-integral.
We will refer to the p-dominant and p-integral linear functional corresponding
to a complex irreducible representation W of p as the highest weight of W.

Writing a linear functional λ ∈ h∗ as a linear combination of fundamental
weights, λ is p-dominant and p-integral if and only if all the coefficients of
the fundamental weights corresponding to roots in ∆0\Σp are non-negative
integers. In the Dynkin diagram notation, this means that the numbers
over the uncrossed nodes are non-negative integers. The coefficients over
the crossed nodes can be arbitrary, but if one wants the representation to
integrate to a representation of the group P , one has to require that the
coefficients over the crossed nodes are integers.
In the case of a real |k|-graded semisimple Lie algebra g = g−k ⊕ ...⊕ gk, its
complexification gC is a complex |k|-graded semisimple Lie algebra. We may
choose a Cartan subalgebra h of g and an admissible positive subsystem
of the root system corresponding to (gC, hC) such that pC is a standard
parabolic subalgebra in gC. If W is a complex irreducible representation
of g0, then it extends to gC

0 and can be described by a highest weight. If
W is a real representation, having no invariant complex structure, then the
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complexification WC is irreducible. By the highest weight of W we then
mean the highest weight of WC.

2.2. Kostant’s version of the Bott-Borel-Weil theorem

Let g be a complex semisimple Lie algebra, p ⊆ g be a parabolic subal-
gebra and suppose V is a finite dimensional representation of g. Considering
V as a representation of p+ respectively of g0 by restriction, we may study
the Lie algebra cohomology H∗(p+,V) of p+ with values in V. It turns out
that the cohomology spaces Hk(p+,V) have naturally the structure of g0-
modules. In [27] Kostant gave a complete description of the cohomology
spaces Hk(p+,V) as g0 modules in terms of the Hasse diagram of p. The re-
sult allows to compute these cohomology spaces completely algorithmically.
The cohomology spaces Hk(g−,V∗), which are dual to Hk(p+,V), play an
important role in the theory of parabolic geometries, which will become
manifest in the course of this work. Therefore we will collect in the following
section some basic facts about Lie algebra cohomology and will formulate
the result of Kostant.

2.2.1. The Hodge theory. Suppose g = g−k ⊕ ...⊕ gk is a |k|-graded
semisimple Lie algebra, G is a Lie group with Lie algebra g and P a parabolic
subgroup corresponding to the given |k|-grading. Further, let V be a finite
dimensional representation of G.
Now let us consider the complex for computing the cohomology H∗(g−,V)
of g− with values in V. We denote by Cn(g−,V) = Λng∗− ⊗ V the cochain
space of n-linear alternating maps from g− to V. Recall that the usual Lie
algebra differential ∂ : Cn(g−,V)→ Cn+1(g−,V) is given by

∂(φ)(X0, ..., Xn) :=
n∑
i=0

(−1)iXi · φ(X0, ..., X̂i, ..., Xn)

+
∑
i<j

(−1)i+jφ([Xi, Xj ], X0, ..., X̂i, ..., X̂j , ..., Xn)

for X0, ..., Xn ∈ g−, where the point · denotes the infinitesimal action of g

on V and the hat over an argument omission.
Since the Levi subgroup G0, by its definition, acts on g− via the adjoint
action and on V by restriction, we have an induced action of G0 on the
cochain spaces Cn(g−,V). It is easy to verify that the differentials ∂ are
G0-equivariant and therefore the cohomology spaces

Hn(g−,V) = ker(∂)/im(∂) =
ker(∂ : Cn(g−,V)→ Cn+1(g−,V))
im(∂ : Cn−1(g−,V)→ Cn(g−,V))

are naturally G0-modules.
Now consider the Lie algebra differential ∂p+ : Cn(p+,V∗) → Cn+1(p+,V∗)



2.2. KOSTANT’S VERSION OF THE BOTT-BOREL-WEIL THEOREM 61

computing the cohomology H∗(p+,V∗) of p+ with values in the dual repre-
sentation V∗. Since P acts on p+ via the adjoint action and on V by restric-
tion, we obtain induced P -module structures on the spaces Cn(p+,V∗). It is
easy to see that the Lie algebra differential ∂p+ in this case is P -equivariant.
Dualising ∂p+ leads to a P -equivariant map ∂∗ : Λn+1p+ ⊗ V → Λnp+ ⊗ V
which satisfies ∂∗ ◦ ∂∗ = 0. Explicitly, ∂∗ is given by

∂∗(Z0 ∧ ... ∧ Zn ⊗ v) =
n∑
i=0

(−1)i+1Z0 ∧ .... ∧ Ẑi ∧ ... ∧ Zn ⊗ Zn · v

+
∑
i<j

(−1)(i+j)[Zi, Zj ] ∧ Z0 ∧ ... ∧ Ẑi ∧ ... ∧ Ẑj ∧ ... ∧ Zn ⊗ v

and it is called the Kostant codifferential.
Since the Killing form induces an isomorphism g∗−

∼= p+ of G0-modules, we
may identify the G0-modules Cn(g−,V) = Λng∗−⊗V and Λnp+⊗V and view
the codifferential as a map

∂∗ : Cn(g−,V)→ Cn−1(g−,V).

Kostant showed that the operators ∂ and ∂∗ on Cn(g−,V) are adjoint for
some inner product (hermitian in the complex case) on the cochain spaces
Cn(g−,V). This implies then that one has a Hodge decomposition:

Proposition 2.9. Let V be a finite dimensional representation of G and de-
note by � the G0-module homomorphism ∂∂∗+∂∗∂ : Cn(g−,V)→ Cn(g−,V).
Then we have

Cn(g−,V) = im(∂∗)⊕ ker(�)⊕ im(∂).

Moreover, ker(∂∗) = im(∂∗)⊕ ker(�) and ker(∂) = im(∂)⊕ ker(�).

As a consequence, we obtain a G0-module isomorphism

Hn(g−,V) ∼= ker(�)

and hence Hn(g−,V) can be naturally viewed as G0-submodule in Λng∗−⊗V.
Moreover, since obviously ker(�) ∼= ker(∂∗)/im(∂∗), we also have

Hn(g−,V) ∼= ker(∂∗)/im(∂∗),

which endows Hn(g−,V) with the structure of a P -module. Using the ex-
plicit formula of ∂∗, it is not hard to see that P+ maps ker(∂∗) to im(∂∗) and
therefore the action of P on ker(∂∗)/im(∂∗) is given by trivially extending
the action of G0 to P .
Since the codifferental is obtained by dualising the differential for computing
the cohomology H∗(p+,V∗), we see that

Hn(g−,V) ∼= Hn(p+,V∗)∗

as P -modules.
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Remark 2.1. The Killing form induces a G0-module isomorphism g∗−
∼= p+

and a P -module isomorphism (g/p)∗ ∼= p+. Identifying g− with g/p, we may
therefore endow g− with a P -module structure and obtain a duality of the P -
modules Cn(g−,V) and Cn(p+,V∗). However, for the P -module structure
on Cn(g−,V) the Lie algebra differential ∂ is not equivariant. Therefore,
given a parabolic geometry of type (G,P ), in contrast to ∂∗, the differential
∂ doesn’t induce a vector bundle homomorphism between the associated
vector bundles corresponding to Cn(g−,V).

2.2.2. Kostant’s result. Let g = g−k ⊕ ... ⊕ gk be a complex graded
semisimple Lie algebra and choose a Cartan subalgebra h and a simple sub-
system of roots ∆0 ⊂ ∆ such that p is standard parabolic subalgebra and
the grading is given by Σp-height.
By proposition 2.6 we know that the subalgebra g0 is reductive and hence de-
composes as a direct sum of its center and a semisimple part g0 = z(g0)⊕gss0 .
Moreover, we have seen that the Cartan subalgebra h ⊂ g0 decomposes nat-
urally as h = z(g0) ⊕ h0, where h0 is a Cartan subalgebra of gss0 defined as
the span of all Hα with α ∈ ∆0 \ Σp with the notation as in proposition
2.6. The decomposition of the Cartan algebra induces a decomposition of
the real form hR of h, on which all roots are real, which is orthogonal with
respect to the inner product induced by the Killing form. Correspondingly,
we obtain a orthogonal decomposition of the dual space h∗R. This implies
that the Weyl group Wp of the semisimple Lie algebra gss0 can be naturally
viewed as a subgroup of the Weyl group Wg of g. Namely, as the subgroup
of Wg, which is generated by all root reflections sα : h∗R → h∗R corresponding
to roots α ∈ ∆0 \ Σp.
The Hasse diagram of p is a distinguished set of representatives of the right
coset space Wp\Wg. To construct these representatives we have to describe
the subgroup Wp more explicitly. Therefore we decompose the space of pos-
itive roots ∆+ = ∆+(g0) t∆+(p+) according to the subalgebra containing
the corresponding root space and set φw := {α ∈ ∆+ : w−1(α) ∈ −∆+}
for w ∈ Wg. Then it turns out that the subgroup Wp consists exactly of
those elements w ∈Wg for which φw ⊂ ∆+(g0). This suggests the following
definition for the Hasse diagram of p:

Definition 2.6. The Hasse diagram W p of the standard parabolic subalge-
bra p is defined by

W p := {w ∈W g : φw ⊂ ∆+(p+)}.

It can be shown that W p is the unique set of representatives of minimal
length of the right coset space Wp\W g, see e.g. section 3.2.15 in [15].
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Remark 2.2. It is well known that the Weyl group W g acts simply tran-
sitive on the set of Weyl chambers. Therefore, choosing a weight λ lying
in the interior of the dominant Weyl chamber, the orbit of λ is in bijective
correspondence with W g. For example one can choose λ to be the lowest
form ρ, which is the sum of all fundamental weights. Similarly, one can de-
termine the elements of W p. Denote by ρp the sum of fundamental weights
corresponding to Σp. Then the map w 7→ w−1(ρp) defines a bijection from
W p to the orbit of ρp under W g. For details see e.g. section 3.2.16. [15].

Let V be a complex irreducible representation of g and let us consider
the cochain space C∗(p+,V) of the cohomology H∗(p+,V). Since the center
z(g0) ⊂ h acts diagonazible on p+ and on V, it does the same on C∗(p+,V).
Hence C∗(p+,V) is completely reducible as g0-module and we can decompose
it into irreducible representations. Since the center z(g0) acts by a character
on each irreducible component, the decomposition is found by decomposing
the representation into irreducible gss0 -modules and determining the action
of the center on each of these components.
Suppose W is a completely reducible representation of g0, then we can de-
compose W also in a coarser way into isotypical components. Recall that a
highest weight vector of W is a weight vector which is killed by all positive
root spaces of g0. For a wight ν ∈ h∗ = z(g0)∗ ⊕ h∗0 of W, the isotypical
component Wν ⊂ W of weight ν is the g0-submodule generated by highest
weight vectors of weight ν. Choosing a basis, one obtains an isomorphism
between the subrepresentation Wν and a direct sum of copies of the irre-
ducible representation with highest weight ν. The number of these copies is
called the multiplicity of ν in W.
Now we are able to state the theorem of Kostant:

Theorem 2.10. (Kostant’s version of the Bott-Borel-Weil theorem) Let
g = g−k ⊕ ...⊕ gk be a complex |k|-graded semisimple Lie algebra and choose
a Cartan subalgebra h of g such that p = g0⊕p+ is a standard parabolic sub-
algebra. Suppose V is a complex irreducible representation of g with highest
weight λ and consider the g0-module H∗(p+,V), which is isomorphic to the
submodule ker(�) ⊂ C∗(p+,V). Then we have:

(1) For a functional ν ∈ h∗ we have H∗(p+,V)ν 6= {0} if and on if there
exists w ∈ W p such that ν = νw := w(λ + ρ) − ρ, where ρ is the
sum of all fundamental weights of g.

(2) For w ∈ W p the isotypical component H∗(p+,V)νw is irreducible
and we have a bijection between irreducible components of H∗(p+,V)
and elements ofW p. In addition, even the multiplicity of H∗(p+,V)νw

as a submodule of C∗(p+,V) is one.
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(3) For w ∈ W p the isotypical component H∗(p+,V)νw is contained in
H`(w)(p+,V), where `(w) is the length of the Weyl group element w.
A highest weight vector of H∗(p+,V)νw is given by the cohomology
class of FΦw⊗v, where FΦw is the wedge product of nonzero elements
of each of the root spaces g−α with α ∈ Φw and v is a nonzero weight
vector of weight w(λ).

The theorem is formulated for complex semisimple Lie algebras only, but
one can deduce immediately information about the real case as well. For a
proof see e.g. section 3.3.6. in [15].

Corollary 2.11. Let g = g−k ⊕ ...⊕ gk be a real |k|-graded Lie algebra.

(1) If V is a complex irreducible representation of g, then the real co-
homology spaces H∗R(p+,V) are naturally complex vector spaces and
one has an isomorphism

H∗R(p+,V) ∼= H∗C(pC
+,V).

(2) If V is a real irreducible representation, then it is easily seen that

H∗C(pC
+,V⊗ C) ∼= H∗R(p+,V)⊗ C.

2.3. Parabolic geometries and their underlying structures

Let g = g−k ⊕ ... ⊕ gk be a |k|-graded semisimple Lie algebra, G a Lie
group with Lie algebra g and P ⊂ G a parabolic subgroup corresponding
to the |k|-grading. Suppose (p : G → M,ω) is a parabolic geometry of type
(G,P ).
We have seen that the Cartan connection induces an isomorphism of vector
bundles

G ×P g/p ∼= TM.

The filtration g = g−k ⊃ ... ⊃ gk associated to the grading of g induces a
filtration of the vector space g/p given by

g/p = g−k/p ⊃ ... ⊃ g−1/p.

Since the filtration of g/p is P -invariant, we obtain a filtration of the tangent
bundle

TM = T−kM ⊃ ... ⊃ T−1M

by vector subbundles.
Since P acts freely on G, the same holds for the normal subgroup P+ of
P , which we defined in theorem 2.4. Hence the orbit space G0 := G/P+ is
a smooth manifold and the projection p factorises to a smooth projection
p0 : G0 → M . It is easy to see that G0 is a principal bundle with structure
group P/P+

∼= G0.
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Now consider the associated graded vector bundle gr(TM) =
⊕−1

i=−k gri(TM)
of the tangent bundle TM . The subbundle gri(TM) = T iM/T i+1M is iso-
morphic to G ×P gi/gi+1. By definition of the normal subgroup P+ ⊂ P ,
this subgroup acts trivially on gi/gi+1 and hence the P action factorises to
an action of G0

∼= P/P+. Since as G0-modules we have gi/gi+1 ∼= gi and
P+ ⊂ P is a normal subgroup, we obtain gri(TM) ∼= G0 ×G0 gi. Therefore
we have

gr(TM) ∼= G0 ×G0 g−.

The Lie bracket on g− is G0-equivariant and hence defines an algebraic
bracket on G0 ×G0 g−, which gives an algebraic bracket

{ , } : gr(TM)× gr(TM)→ gr(TM),

which makes each fiber gr(TxM) into a nilpotent graded Lie algebra.

Definition 2.7. A parabolic geometry is called regular, ifM with its canon-
ical filtration of the tangent bundle TM from above is a filtered manifold
and the Levi bracket L of this filtered manifold coincides with { , }. Oth-
erwise put, this is exactly says, that M with its canonical filtration has to
be a regular filtered manifold of type g−.

For a parabolic geometry to be regular can be equivalently described in
terms of the curvature, see section 3.1.8 in [15]:

Proposition 2.12. A parabolic geometry is regular if and only if the curva-
ture function κ : G → Λ2g⊗ g satisfies κ(gi, gj) ⊂ gi+j+1 for all i, j < 0.

For a regular parabolic geometry the manifold M is a regular filtered
manifold of type g−. In section 1.1.1 we have seen that in this case we
have a natural notion of the frame bundle P(gr(TM)) of gr(TM). Recall
that the fibers Px(gr(TM)) are given by all grading preserving Lie algebra
isomorphisms from g− to the symbol algebra gr(TxM) and that the structure
group of P(gr(TM)) is Autgr(g−) acting from the right by composition.
The adjoint action of G induces a homomorphism G0 → Autgr(g−) and we
have a reduction G0 → P(gr(TM)) of the structure group of P(gr(TM))
to G0 corresponding to this homomorphism given by u0 7→ (X 7→ [u0, X]),
where [u0, X] is the equivalence class of (u0, X) in G0 ×G0 g− ∼= gr(TM).
Summerising, we have seen that a regular parabolic geometry induces the
following geometric structure on M :

• A filtration of the tangent bundle, which makes M into a regular
filtered manifold of type g−.
• A reduction of the structure group of P(gr(TM)) to the structure
group G0 with respect to Ad : G0 → Autgr(g−).
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Such a geometric structure is called a regular infinitesimal flag structure of
type (G,P ).
Moreover, for a morphism between parabolic geometries (G → M,ω) and
(G̃ → M̃, ω̃) of type (G,P ) it is easy to see that the base map is a local
isomorphism f : M → M̃ of filtered manifolds, which is compatible with the
G0-structures on the associated graded bundles gr(TM) and gr(TM̃).
So we see that we have a functor from the category of regular parabolic
geometries to the category of regular infinitesimal flag structures. There are
many parabolic geometries inducing the same infinitesimal flag structure. So
to obtain an equivalence of categories one needs a normalisation condition
leading to a unique parabolic geometry with a fixed underlying structure.
For n ≥ 0 consider the vector bundles

ΛnT ∗M ⊗AM ∼= G ×P Λn(g/p)∗ ⊗ g ∼= G ×P Λnp+ ⊗ g.

The natural filtrations of TM and of the adjoint tractor bundle AM induce
a filtration of ΛnT ∗M ⊗ AM . The filtration is given by the homogeneous
degree of multilinear mappings:

φ ∈ (ΛnT ∗M ⊗AM)`

if and only if

φ(T i1M, ..., T inM) ⊂ Ai1+....+in+`M for all i1, ..., in < 0.

For the associated graded vector bundle we have an isomorphism

gr(ΛnT ∗M ⊗AM) ∼= Λngr(TM)∗ ⊗ gr(AM)

with

gr`(Λ
nT ∗M⊗AM) ∼=

⊕
−(i1+...+in)+j=`

gri1(TM)∗∧....∧gri1(TM)∗⊗grj(AM).

Since the normal subgroup P+ acts trivially on gr`(ΛnT ∗M ⊗ AM) and
Λn(g/p)∗⊗g is a G0-module isomorphic to Λng∗−⊗g we have an isomorphism

gr(ΛnT ∗M ⊗AM) ∼= G0 ×G0 Λng∗− ⊗ g.

Since the differential ∂ : Λng∗− ⊗ g → Λn+1g∗− ⊗ g for the Lie algebra coho-
mology of g− with values in g is G0-equivariant, it induces a bundle map

∂ : gr(ΛnT ∗M ⊗AM)→ gr(Λn+1T ∗M ⊗AM).

Note that the definition of ∂ immediately implies that it is compatible with
the gradings.
Now suppose ω and ω′ are two Cartan connection on G. Since a Cartan
connection is P -equivariant and reproduces the generators of fundamental
vector fields, their difference ω − ω′ ∈ Ω1(G, g) has to be P -equivariant and
horizontal. Therefore it can be viewed as an element of Ω1(M,AM). It
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turns out that ω and ω′ induce the same regular infinitesimal flag structure
if and only if ω − ω′ ∈ Ω1(M,AM)1, see section 3.1.10. of [15]. The curva-
ture of a Cartan connection is P -equivariant and horizontal, hence it can be
interpreted as an element of Ω2(M,AM). For the difference of the curva-
tures of two Cartan connections inducing the same regular infinitesimal flag
structure the following holds, for a proof see section 3.1.10. of [15] :

Proposition 2.13. Suppose ω and ω′ are Cartan connections satisfying ω−
ω′ ∈ Ω1(M,AM)` for some ` ≥ 1.
Then the difference of its curvatures κ−κ′ is an element of Ω2(M,AM)` and
the induced section gr`(κ− κ′) of gr`(Λ2T ∗M ⊗AM) equals ∂(gr`(ω − ω′)),
where gr`(ω − ω′) ∈ Γ(gr`(T ∗M ⊗AM)) is the section induced by ω − ω′.

The proposition indicates that a appropriate normalisation condition for
a Cartan connection may be found by demanding the curvature to have
values in a subbundle of Λ2T ∗M⊗AM , which after passing to the associated
graded is complementary to im(∂) ⊂ gr(Λ2T ∗M ⊗AM).
Recall that the Kostant codifferential ∂∗ : Λn+1p+ ⊗ g → Λnp+ ⊗ g is P -
equivariant and therefore induces a bundle map

∂∗ : Λn+1T ∗M ⊗AM → ΛnT ∗M ⊗AM.

The codifferential ∂∗ is easily seen to be filtration preserving. Hence it
induces as well a bundle map between the associated graded bundles

gr(∂∗) : gr(Λn+1T ∗M ⊗AM)→ gr(ΛnT ∗M ⊗AM),

which is compatible with the gradings.
By proposition 2.9, we have

gr(ΛnT ∗M ⊗AM) = im(gr(∂∗))⊕ ker(�)⊕ im(∂) = ker(gr(∂∗))⊕ im(∂),

where ker(�) ∼= G0 ×G0 H
n(g−, g). This motivates the following definition:

Definition 2.8. A parabolic geometry is called normal if its curvature κ ∈
Ω2(M,AM) satisfies ∂∗(κ) = 0.

It can be shown that, given regular infinitesimal flag structure of type
(G,P ), there always exists a normal regular parabolic geometry of type
(G,P ) inducing the given infinitesimal flag structure, see section 3.1.14. of
[15]. To formulate now the equivalence result for normal regular parabolic
geometries and regular infinitesimal flag structures, we still have to fix some
notation.
Since the differential ∂ is compatible the gradings on the spaces Λng∗−⊗g, the
cohomology spaces are naturally graded as well Hn(g−, g) =

⊕
`H

n(g−, g)`.
We denote the associated filtration by Hn(g−, g)` =

⊕
m≥`H(g−, g)m. If

H1(g−, g)1 = 0, it turns out that there is up to isomorphism exactly one



68 2. PARABOLIC GEOMETRIES

normal regular parabolic geometry of type (G,P ) inducing some fixed infin-
itesimal flag structure. Even more one obtains an equivalence of categories,
for a proof see section 3.1.14. of [15]:

Theorem 2.14. Let g=g−k ⊕ ... ⊕ gk be a |k|-graded semisimple Lie al-
gebra such that none of the simple ideals is contained in g0 and such that
H1(g−, g)1 = 0. Suppose G is a Lie group with Lie algebra g and P ⊂ G a
parabolic subgroup. Then the functor, which assigns to a normal regular par-
abolic geometry its underlying regular infinitesimal flag structures establishes
an equivalence of categories between regular normal parabolic geometries of
type (G,P ) and regular infinitesimal flag structures of the type (G,P ).

Remark 2.3. The cohomological condition H1(g−, g) = 0 can be analysed
using Kostant version of the Bott-Borel-Weil theorem [Theorem 2.10]. If g

is a simple |k|-graded Lie algebra, it turns out that the condition is always
satisfied except for g or gC corresponding to the crossed Dynkin diagrams

× b p p p b b or × b p p p b b<
It turns out that in these cases the corresponding regular normal parabolic
geometries are still determined by some finer underlying structures except for
the degenerate case corresponding to the crossed Dynkin diagram ×. The
underlying structures in these cases are equivalent to classical projective
structures and to so called contact projective structures.

Let us finish this chapter by giving an overview of the geometric struc-
tures admitting an equivalent description as some parabolic geometries, for
more details see [15].

Example 2.2. (Geometries corresponding to |1|-graded semisimple Lie al-
gebras) Suppose g = g−1 ⊕ g0 ⊕ g1 is a |1|-graded semisimple Lie algebra, G
a Lie group with Lie algebra g and P a parabolic subgroup corresponding
to the given grading. For a parabolic geometry (G → M,ω) of type (G,P ),
the induced filtration of TM is trivial TM = T−1M . Since M is a trivially
filtered manifold, the parabolic geometry is automatically regular. Therefore
the underlying regular infinitesimal flag structure induced by (G → M,ω)
is just a reduction of the structure group of the frame bundle of M to the
Levi subgroup G0 via Ad : G0 → GL(g−1). Under the conditions of theorem
2.14, one obtains an equivalence of regular normal parabolic geometries of
type (G,P ) and first order G0-structures.
Some important examples of such geometric structures are conformal struc-
tures, almost quaternionic structures and almost Grassmannian structures.
A regular normal parabolic geometry of the exceptional type× b p p p b b
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also corresponds to a |1|-grading. As mentioned in remark 2.3 such a geom-
etry is equivalent to a finer underlying structure than a infinitesimal flag
structure, which can be interpreted as a projective structure.

Example 2.3. (Parabolic geometries determined by its tangential filtra-
tions) A regular infinitesimal flag structure consists of a filtration of the
tangent bundle and a reduction of the structure group corresponding to the
homomorphism Ad : G0 → Autgr(g−). If this homomorphism is an iso-
morphism, the reduction of the structure group is an isomorphism between
G0 and the frame bundle of gr(TM). Therefore theorem 2.14 implies that
provided that H1(g−, g)1 = 0 and G0

∼= Autgr(g−) for some parabolic pair
(G,P ), we have an equivalence of categories between regular normal para-
bolic geometries of (G,P ) and regular filtered manifolds of type g−. Since
g−1 generates g−, a regular filtered manifolds of type g− can be as well
viewed as a regular bracket generating, whose derived flag of sheaves deter-
mines a regular filtered manifold of type g−, cf. section 1.1.2.
There is an easy way to construct such structures: It turns out, see [36],
that if g is a |k|-graded semisimple Lie algebra with H1(g−, g)0 = 0, then
setting G := Aut(g) and P =

⋂k
i=−kNG(gi) one obtains an isomorphism

G0
∼= Autgr(g). A complete list of |k|-graded semisimple Lie algebras satis-

fying the cohomological condition can be found in [43].
The most prominent examples are generic rank 2 distributions on five dimen-
sional manifolds, generic rank 3 distributions on six dimensional manifold as
well as quaternionic contact structures, see also section 1.1.2.

Example 2.4. (Parabolic contact structures) A contact grading on g is a
|2|-grading g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2 such that g− is a Heisenberg Lie
algebra. It turns out that such gradings exists only on simple Lie algebras g

and are unique up to isomorphism. A complete classification in the complex
as well as in the real case is known.
Given a real contact grading on a simple Lie algebra g and corresponding
groups P ⊂ G, then a regular infinitesimal flag structure of type (G,P ) is
a filtered manifold TM = T−2M ⊃ T−1M such that the symbol algebra in
each point is isomorphic to a Heisenberg Lie algebra together with a reduc-
tion of the structure group of the frame bundle P(gr(TM)) of gr(TM). The
structure group Autgr(g−) of P(gr(TM)) can be viewed as a subgroup of
GL(g−1), since any grading preserving automorphism of g− is easily seen to
be uniquely determined by its restriction to g−1. Hence such a regular infin-
itesimal flag structure is nothing else than a contact manifold T−1M ⊂ TM
together with a reduction of the frame bundle P(T−1M) of the contact dis-
tribution T−1M to G0 via Ad : G0 → GL(g−1). This reduction can be
expressed as an additional structure on the contact subbundle T−1M .
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Geometric structures of this from are for example partially integrable almost
CR-structures, where the additional structure on the contact subbundle is
a complex structure, Lagrangean contact structures, where the additional
structure is a decomposition of T−1M into isotropic subbundles, and Lie
contact structures, where the additional structures is given by two subbun-
dles whose tensor product equals T−1M .
A regular normal parabolic geometry of the exceptional type× b p p p b b<
corresponds as well to a contact grading. Its equivalent underlying structure
can be viewed as contact projective structure.



CHAPTER 3

Prolongation of Overdetermined Systems on
Regular Infinitesimal Flag Manifolds

Given a regular parabolic geometry (G → M,ω) of type (G,P ) and an
irreducible representation V of G, one can associate to the tractor bundle
V corresponding to V a sequence of invariant linear differential operators,
the so called BGG-sequence associated to V , see [13] and [6]. The name of
this sequence refers to the fact that in the case of the homogeneous model
for parabolic geometries of type (G,P ) the BGG-sequence associated to V
is a complex of invariant differential operators, which corresponds dually
to the algebraic Bernstein-Gelfand-Gelfand resolution of the representation
V. The first operator occurring in such a sequence gives always rise to an
overdetermined system of partial differential equations. Using Weyl struc-
tures, the BGG-operators can be naturally viewed as differential operators
between natural vector bundles over the underlying regular infinitesimal flag
structure on M .
In this chapter we shall study semi-linear differential operators between nat-
ural vector bundles over certain regular infinitesimal flag manifolds, which
have the same weighted symbol as some first BGG-operator. Given such
a semi-linear differential operator D, we will present a conceptual method,
using ideas from the construction of BGG-operators, to rewrite the semi-
linear system Ds = 0 as a system of partial differential equations of the form
∇Σ + C(Σ) = 0, where ∇ is a linear connection on some vector bundle V
over the regular infinitesimal flag manifold M and C : V → T ∗M ⊗ V is a
bundle map.
If D is linear, then we will see that the associated system Ds = 0 is of
weighted finite type and the rewriting procedure leads to a system of the
form ∇Σ + C(Σ) = 0, where C is a vector bundle map. Hence ∇̄ := ∇+ C

is again a linear connection and we obtain a bijection between solutions of
Ds = 0 and parallel sections of ∇̄. This implies that the dimension of the
solution space is bounded by the rank of V and we will see that the rank of
this bundle can be easily computed.
The prolongation procedure, we establish here, will generalise the procedure
introduced in [4] for overdetermined systems on regular infinitesimal flag
manifolds corresponding to |1|-graded semisimple Lie algebras to a broader

71
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class of regular infinitesimal flag structures by working within the framework
of weight jet bundles.

3.1. Regular infinitesimal flag structures

Let g = g−k ⊕ ... ⊕ g0 ⊕ ... ⊕ gk be a |k|-graded semisimple Lie algebra
and set as in section 2.1.2

g− := g−k ⊕ ...⊕ g−1

and
p+ := g1 ⊕ ...⊕ gk.

Suppose G is a Lie group with Lie algebra g and P ⊆ G a parabolic subgroup
with Lie algebra p = g0 ⊕ p+. Recall that the Levi subgroup G0 of P is the
subgroup consisting of those elements in P , whose adjoint action preserves
the grading on g:

G0 := {g ∈ P : Ad(g)(gi) ⊂ gi for i = −k, ..., k}.

It is a reductive Lie group with Lie algebra g0. Moreover, the definition of
G0 shows that the adjoint action induces a homomorphism

Ad : G0 → Autgr(g−),

where Autgr(g−) is the group of Lie algebra automorphisms of g−, which in
addition preserve the grading on g−.
Recall from section 2.3. that a regular infinitesimal flag structures of type
(G,P ) on a manifold M consists of the following data:

• a filtration of the tangent bundle TM = T−kM ⊃ ... ⊃ T−1M,

which makes M into a filtered manifold such that the symbol alge-
bra in each point gr(TxM) is isomorphic to the Lie algebra g−.
• a reduction G0 → M of the structure group of the frame bundle
P(gr(TM)) of gr(TM) to the subgroup G0 with respect to the ho-
momorphism Ad : G0 → Autgr(g−)

Definition 3.1. A smooth manifoldM endowed with a regular infinitesimal
flag structure of type (G,P ) is called a regular infinitesimal flag manifold of
type (G,P ).

In the last chapter, we have seen a variety of examples of geometric struc-
tures, which can be viewed as regular infinitesimal flag structures. Moreover,
we have noted that for nearly all choices G and P , a regular infinitesimal flag
structure of type (G,P ) determines a normal regular parabolic geometry of
type (G,P ), see remark 2.3.
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3.1.1. G0 representations and natural vector bundles for regular
infinitesimal flag manifolds. Suppose that M is a regular infinitesimal
flag manifold of some type (G,P ) and let E be a representation of G0. Then
we denote by

E := G0 ×G0 E

the vector bundle associated to the principal bundle G0 with standard fiber
E, see also section 2.1.4. The vector bundles of this form are the natural
vector bundles for regular infinitesimal flag structures.
Note that any G0-equivariant linear map between two G0-representations E
and F gives naturally rise to a vector bundle homomorphism between the
corresponding associated bundles E and F .
Consider the frame bundle P(gr(TM)) of the associated graded bundle

gr(TM) = gr−k(TM)⊕ ...⊕ gr−1(TM).

Recall that the fiber Px(gr(TM)) over a point x ∈M consists of all graded
Lie algebra isomorphisms g− → gr(TxM). The reduction of the structure
group of P(gr(TM)) to G0 obviously induces an isomorphism of vector bun-
dles

G0 ×G0 g− ∼= gr(TM)

[u0, X] 7→ φu0(X),

where u0 7→ φu0 denotes the reduction G0 → P(gr(TM)). Restricting this
isomorphism to some fiber clearly defines a graded Lie algebra isomorphism.
By proposition 2.3 the Killing form induces a duality of G0-modules between
gi and g−i and hence we have isomorphisms of vector bundles

G0 ×G0 gi ∼= gr−i(TM)∗

G0 ×G0 p+
∼= gr(TM)∗.

Remark 3.1. The filtration of the tangent bundle TM induces a filtration
of the cotangent bundle T ∗M into vector subbundles (T ∗M)i, where (T ∗M)i

is the defined as the annihilator of T−i+1M . In particular, one obtains an
isomorphism of vector bundles gr(T ∗M) ∼= gr(TM)∗ mapping gri(T ∗M) onto
gr−i(TM)∗.

Let us review some basic facts about irreducible representations of the
reductive Lie group G0, as already mentioned in section 2.1.5:
Assume for a moment that g is a complex |k|-graded semisimple Lie algebra
and choose a Cartan subalgebra h and a subsystem of simple roots ∆0 =
{α1, ..., αn} such that p is a standard parabolic subalgebra and the grading
is therefore given by Σp-height, see section 2.1.3.
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By proposition 2.7 and theorem 2.8 we know that by assigning to a complex
irreducible representations of the reductive Levi subalgebra

g0 = z(g0)⊕ gss0

its highest weight, we obtain a bijection between irreducible complex repre-
sentation of g0 and p-dominant and p-integral linear functionals on h. We
denote the index set of the simple roots by I := {1, ...., n} and define J ⊂ I
as the subset consisting of those elements i ∈ I with αi ∈ Σp. Recall from
section 2.1.5 that writing a linear functional λ on h as a sum of fundamental
weights the condition to be p-integral and p-dominant exactly means that λ
is of the following form

λ =
∑
i∈J

aiωi +
∑
i∈I\J

aiωi (3.1)

where ai ∈ N0 for i ∈ I \ J and ai ∈ R for i ∈ J .
By proposition 2.6 the Cartan subalgebra h naturally splits into a direct sum

h = z(g0)⊕ h0,

where h0 is a Cartan subalgebra for the semisimple part of g0

gss0 = h0 ⊕
⊕

htΣp (α)=0

gα.

By definition of h0 the first sum of (3.1) vanishes on h0 and hence the irre-
ducible representation of g0 with highest weight λ is given by the irreducible
representation E of gss0 with highest weight λ|h0 , where the center z(g0) acts
on E by λ|z(g0).
If g is a real |k|-graded semisimple Lie algebra, irreducible representations
of g0 can be as well described by highest weights:
If E is a complex irreducible representation of the Levi subalgebra g0, then
it extends uniquely to a complex irreducible representation of the Levi sub-
algebra gC

0 of gC and we may describe E by a highest weight.
If E is a real irreducible representation of g0, having no invariant complex
structure, then its complexification EC is as well irreducible. By the highest
weight of E we then mean the highest weight of its complexification EC.

In the sequel we will need the decomposition of the G0-modules g1 and
g−1 into irreducible components:

Lemma 3.1. Suppose g = g−k⊕ ...⊕gk is complex semisimple |k|-graded Lie
algebra. Let h ⊂ g be a Cartan subalgebra and choose a simple subsystem of
roots ∆0 = {α1, ...αn} such that the parabolic subalgebra p is standard. We
define J as the subset of I := {1, ..., n} consisting of those elements i ∈ I
with αi ∈ Σp. Then we have:
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(1) The g0-module g−1 is completely reducible with decomposition into
irreducibles

g−1 =
⊕
j∈J

g−1,j ,

where g−1,j is the unique irreducible representation with highest
weight −αj.

(2) Correspondingly, the dual g0-module g1 decomposes into irreducible
components

g1 =
⊕
j∈J

g1,j ,

where g1,j is the unique irreducible representation of lowest weight
αj.

Proof. By proposition 2.6 the Cartan subalgebra h decomposes as h =
z(g0)⊕ h0, where h0 is a Cartan subalgebra of the semisimple part gss0 such
that

gss0 = h0 ⊕
⊕

htΣp (α)=0

gα

is the corresponding decomposition into root spaces. Since z(g0) ⊂ h, the
center acts diagonalisably on g−1 and so g−1 is a completely reducible rep-
resentation of g0. The space g−1 consists of all root spaces corresponding to
roots with Σp-height −1. Denoting for j ∈ J by g−1,j the direct sum of all
root spaces corresponding to roots of the form

−αj −
∑
i∈I\J

aiαi,

where ai ∈ N0, we therefore have

g−1 =
⊕
j∈J

g−1,j .

Since for α, β ∈ ∆ with α+ β ∈ ∆ one clearly has htΣp(α+ β) = htΣp(α) +
htΣp(β), the subspaces g−1,j are g0-invariant. Moreover, any root space gλ

lying in g−1,j generates g−1,j as g0-module and hence g−1,j is irreducible for
all j ∈ J . Obviously, g−1,j is the irreducible representation with highest
weight −αj .
The assertion for g1 follows from the well known fact that an irreducible
representation has highest weight λ if and only if the dual representation
has lowest weight −λ. �

We finish this section by introducing the notion of the Cartan product
of two irreducible representations of G0.
Recall that a finite dimensional representation of a reductive Lie algebra is
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completely reducible if and only if the center acts diagonalisably. In partic-
ular, the tensor product of two completely reducible representations is again
completely reducible.
Suppose E and F are two complex irreducible representations of g0 with
highest weight λ respectively µ and consider the completely reducible repre-
sentation E⊗F. It is well known that there exists an irreducible component
E}F of multiplicity one in E⊗F, which has highest weight λ+µ. In fact, the
irreducible component E } F is generated by the tensor product of highest
weight vectors of weight λ respectively µ in E⊗ F. Up to multiplication by
a scalar we also have a unique projection E⊗ F→ E} F. For the notion of
a highest weight vector and multiplicity see the explanation before theorem
2.10.
We will call

E} F

respectively the projection

E⊗ F→ E} F

the Cartan product of E and F.
Suppose now that E is a real irreducible representation of g0, having no-
invariant complex structure, and F is a complex irreducible representation
of g0. Then EC is irreducible. Moreover, E⊗R F is a complex representation
isomorphic to EC⊗C F. In this case the Cartan product is defined as E}F :=
EC } F.
If E and F are two real irreducible representation of g0, having no complex
invariant structure, then their complexifications EC and FC are irreducible.
The invariant real structures of EC and FC obviously induce an invariant real
structure on EC⊗C FC ∼= (E⊗R F)⊗R C. Since EC}FC is of multiplicity one,
this invariant real structure has to map the Cartan product EC}FC to itself
and we have an invariant real structure on EC } FC. Therefore there exists
a unique irreducible component E} F in E⊗R F, whose complexification is
EC } FC. We call E} F the Cartan product of E and F.

3.1.2. Semi-linear differential operators. Suppose thatM is a man-
ifold endowed with a regular infinitesimal structure of some type (G,P ). We
will study in the sequel semi-linear differential operators between sections of
natural vector bundles over M .

Definition 3.2. Suppose E and F are G0-representations and write E and
F for the corresponding natural vector bundles.

(1) A semi-linear differential operator of weighted order r between the
vector bundles E and F is a differential operator D : Γ(E)→ Γ(F ),
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which can be written as D = D1 +D2, where D1 is a linear differ-
ential operator of weighted order r and D2 a differential operator
of weighted order r − 1.

(2) The weighted symbol of D is the weighed symbol of D1

σ(D1) : U−r(gr(TM))∗ ⊗ E → F.

The weighted symbols of semi-linear differential operators between nat-
ural vector bundles can be viewed as vector bundle maps between natural
vector bundles, since we have:

Proposition 3.2. Let U(g−) =
⊕∞

i=0 U−i(g−) be the universal enveloping
algebra of g− endowed with the weighted grading as in section 1.2.4.

(1) For all r ≥ 0 the space U−r(g−) admits the structure of a G0-module
and we have an isomorphism of G0-modules

S−r(g−) :=
⊕

1i1+...+kik=r

Si1(g−1)⊗ ...⊗ Sik(g−k) ∼= U−r(g−).

In particular, we have G0-equivariant inclusions

Si1(g−1)⊗ ...⊗ Sik(g−k) ↪→ U−r(g−)

for ij ∈ N0 and 1i1 + ...+ kik = r.
(2) We have an isomorphism of vector bundles

U−r(gr(TM)) ∼= G0 ×G0 U−r(g−).

and injective vector bundle maps

Si1(gr−1(TM))⊗ ...⊗ Sik(gr−k(TM)) ↪→ U−r(gr(TM))

for ij ∈ N0 and 1i1 + ...+ kik = r.

Proof. (1) For g ∈ G0 the linear map Ad(g) : g− → g− is a Lie algebra
isomorphism. By proposition 1.8 the isomorphism Ad(g) therefore uniquely
extends to an isomorphism of unitial associative algebras

U(Ad(g)) : U(g−)→ U(g−).

Recall, that U(Ad(g)) is explicitly given by

U(Ad(g))(X1...X`) = Ad(g)(X1)...Ad(g)(X`) for Xi ∈ g−.

This shows that, since the isomorphism Ad(g) : g− → g− preserves the
grading, the isomorphism U(Ad(g−)) restricts to an isomorphism

U(Ad(g)) : U−r(g−)→ U−r(g−) for all r ≥ 0.

By proposition 1.8 U is a covariant functor and so we have

U(Ad(gg′)) = U(Ad(g)Ad(g′)) = U(Ad(g))U(Ad(g′)).
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Hence U(Ad(−)) : G0 → GL(U−r(g−)) is a finite dimensionalG0-representation.
The linear isomorphism of proposition 1.10

S(g−1)⊗ ...⊗ S(g−k) ∼= U(g−)

defined by
x1 ⊗ ...⊗ xk 7→ Φ1(x1)...Φk(xk)

restricts to a linear isomorphism S−r(g−) ∼= U−r(g−). By the second part of
theorem 1.9, this is even an isomorphism of G0-modules for the usual G0-
module structure on S−r(g−).
(2) The isomorphism gr(TM) ∼= G0×G0 g− obviously induces an isomorphism
U−r(gr(TM)) ∼= G0×G0 U−r(g−), see also proposition 1.14. The inclusions of
part (1) are G0-equivariant and hence induce injective vector bundle maps
between the corresponding associated bundles. �

Now let us consider the universal enveloping algebra of the nilpotent
graded Lie algebra p+ = g1 ⊕ ...⊕ gk endowed with its weighted grading

U(p+) =
∞⊕
i=0

Ui(p+).

Since, by definition of G0, for each g ∈ G0 the map Ad(g) : p+ → p+ is a an
isomorphism of graded Lie algebras, we obtain as in the proof of proposition
3.2 that Ur(p+) is a G0-module for all r ≥ 0 and that we have an isomorphism
of G0-modules

Sr(p+) :=
⊕

1i1+...+kik=r

Si1(g1)⊗ ...⊗ Sik(gk) ∼= Ur(p+).

Since the Killing form induces a duality between the G0-modules g−i and gi,
this implies:

Corollary 3.3. For all r ≥ 0 the Killing form induces an isomorphism of
G0-modules U−r(g−)∗ ∼= Ur(p+).

3.2. Prolongation of semi-linear systems of partial differential
equations

Let M be a manifold endowed with a regular infinitesimal flag structure
corresponding to a |k|-graded semisimple Lie algebra g, where the center
z(g0) of the Levi subalgebra is one dimensional. We shall study in this
section semi-linear differential operators between sections of natural vector
bundles over M

D : Γ(E)→ Γ(F ),

whose associated system of partial differential equations Ds = 0 is overdeter-
mined. We will show for a broad class of such differential operators D how
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to construct a vector bundle V , a linear connection ∇ on V and a bundle
map C : V → T ∗M ⊗ V such that one has a bijection between the following
solution spaces:

{s ∈ Γ(E) : D(s) = 0} ↔ {Σ ∈ Γ(V ) : ∇Σ + C(Σ) = 0}.

If D is a linear differential operator, then C will be a vector bundle map and
∇+C is therefore as well a linear connection. Hence we obtain in this case a
bijection between solutions of the studied linear system and parallel sections
of the connection ∇+ C.
In the last part of this section, we will outline what happens in the case of
regular infinitesimal flag manifolds corresponding to |k|-graded semisimple
Lie algebras g, where the dimension of z(g0) is larger than one.

3.2.1. Semi-linear systems on regular infinitesimal flag struc-
tures corresponding to |k|-gradings such that z(g0) is one dimen-
sional. If not otherwise stated we suppose throughout this section that

g = g−k ⊕ ...⊕ g0 ⊕ ...⊕ gk

is a real or complex |k|-graded semisimple Lie algebra, where the center z(g0)
of its Levi subalgebra

g0 = z(g0)⊕ gss0

is of dimension one.
Recall from the description of |k|-gradings in terms of roots in section 2.1.3
that this is exactly satisfied, if the |k|-grading corresponds in the real case
to a crossed Satake diagram respectively in the complex case to a crossed
Dynkin diagram where only one root αj is crossed. We set α := αj .
Regular infinitesimal flag structures corresponding to |k|-graded semisim-
ple Lie algebras of this type are for instance all structures corresponding to
|1|-graded Lie algebras, like conformal and almost quaternionic structures
(see also example 2.2), as well as certain types of generic distributions, like
generic rank 2 distributions on five dimensional manifolds or generic rank
n distributions on manifolds of dimension n(n+1)

2 , some types of parabolic
contact structures, like Lie contact structures and the contact structures as-
sociated to the exceptional simple Lie groups (see also example 2.4), and also
(split) quaternionic contact structures. For more details on these geometric
structures see [15].
Given a |k|-graded semisimple Lie algebra g, whose Levi subalgebra has one
dimensional center, suppose that G is a simply connected Lie group with
Lie algebra g and P ⊂ G the connected parabolic subgroup corresponding
to the |k|-grading on g. Note that by theorem 2.4 the connectedness of P
implies that the corresponding Levi subgroup G0 ⊂ P is as well connected.
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Moreover, let M be a manifold endowed with a regular infinitesimal flag
structure of type (G,P ).

Remark 3.2. We assume G to be simply connected and P to be connected,
just to ensure that on one hand representations of the Lie algebra g integrate
to representations of G and that on the other hand the representation theory
of G0 and g0 coincides. This will allow us to formulate the results of this
chapter in an uniform way. The conditions can be dropped, whenever one is
dealing with some particular representations.

Now suppose that E is the complex irreducible representation of G0,
whose dual representation E∗ has highest weight

λ = (r − 1)ωj +
∑

i∈I\{j}

aiωi

where r ∈ N and ai ∈ N0 with the notation as in section 3.1.1.

Remark 3.3. This means that we only consider irreducible representa-
tions, whose dual representation corresponds to a g-dominant and g-integral
weight. As detailed in section 3.1.1 this restriction just concerns the action
of the center z(g0) of the Levi subalgebra g0.

By lemma 3.1 and the assumption on the grading, we obtain that g−1

is an irreducible representation of g0 with highest weight −αj . Having fixed
E, we consider the G0-representation F := }rg∗−1 } E.
By proposition 3.2 we have a G0-equivariant linear projection

U−r(g−)∗ ⊗ E→ Srg∗−1 ⊗ E.

Composing this projection with the projection Srg∗−1 ⊗ E→ }rg∗−1 } E, we
obtain a G0-equivariant linear projection

U−r(g−)∗ ⊗ E→ }rg∗−1 } E.

Since this map is G0-equivariant, it induces a surjective vector bundle map
between the corresponding associated vector bundles

U−r(gr(TM))∗ ⊗ E → F = }rgr−1(TM)∗ } E. (3.2)

For semi-linear differential operators D : Γ(E) → Γ(F ) of weighted order r
with weighted symbol given by the natural projection (3.2) we will prove the
following theorem:
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Theorem 3.4. Suppose that E is the complex irreducible representation of
G0, which is dual to the irreducible G0 representation with highest weight

λ = (r − 1)ωj +
∑

i∈I\{j}

aiωi with r ∈ N and ai ∈ N0

and set F = }rg∗−1 } E.
Then we obtain:
(1) a natural graded vector bundle

V = V0 ⊕ ...⊕ VN

over M with V0 = E

(2) for any choice of a principal G0-connection ∇ on G0 → M and for
any choice of a splitting of the filtration of the tangent bundle, i.e. an iso-
morphism TM ∼= gr(TM) that restricts to a map T iM →

⊕
j≥i grj(TM)

and the component in gri(TM) equals the image of the projection T iM →
T iM/T i+1M ,:

• a linear connection ∇̃ on V
• a linear differential operator L : V0 → V of weighted order N satis-
fying L(s)0 = s

with the following property:
For every semi-linear differential operator D : Γ(E) → Γ(F ) of weighted
order r with symbol given by the natural projection (3.2)

σ(D) : U−r(gr(TM))∗ ⊗ E → F = }rgr−1(TM)∗ } E.

the linear differential operator L mapping s ∈ Γ(E) to L(s) = Σ induces a
bijection between

{s ∈ Γ(E) : D(s) = 0} ↔ {Σ ∈ Γ(V ) : (∇̃+ C)(Σ) = 0}

for some bundle map C : V → T ∗M ⊗ V . The inverse is induced by the
projection V → V0 = E.

To prove this theorem we proceed in three steps.

1. Step - The construction of V . Since we will later consider also
the case of overdetermined systems on arbitrary regular infinitesimal flag
structures, we drop for a moment the condition that the center of the Levi
subalgebra z(g0) is one dimensional and consider general |k|-graded semisim-
ple Lie algebras.

Proposition 3.5. Suppose that g = g−k ⊕ ... ⊕ gk is complex semisimple
|k|-graded Lie algebra. Let h ⊂ g be a Cartan subalgebra and choose a simple
subsystem of roots ∆0 = {α1, ...αn} such that the parabolic subalgebra p is
standard. We define J as the subset of I := {1, ..., n} consisting of those
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elements i ∈ I with αi ∈ Σp.
If E is the complex irreducible representation of g0 whose dual representation
has highest weight

λ =
∑
j∈J

(rj − 1)ωj +
∑
i∈I\J

aiωi rj ∈ N and ai ∈ N0,

then there exists a unique irreducible complex representation V of g such that

H0(g−,V) = E and H1(g−,V) =
⊕
j∈J
}rjg∗−1,j } E (3.3)

where g−1,j is the irreducible representation of g0 with highest weight −αj,
see also lemma 3.1.

Proof. The functional λ is g-dominant and g-integral, hence it corre-
sponds as well to a unique irreducible representation of g. Let V be the
representation of g, which is dual to the irreducible representation of g with
highest weight λ.
By Kostant’s version of the Bott-Borel-Weil theorem [theorem 2.10], we ob-
tain that H0(p+,V∗) equals the irreducible representation of g0 with highest
weight λ, which is E∗, and that

H1(p+,V∗) =
⊕

w∈Wp:`(w)=1

Ww·λ,

where Ww·λ is the irreducible representation of g0 with highest weight
w · λ := w(λ+ ρ)− ρ.
The definition 2.6 of the Hasse diagram W p immediately implies that the
elements of W p of length one are exactly the root reflections sαj for j ∈ J .
Since

sαj (λ+ ρ)− ρ = λ− 2
< αj , λ >

< αj , αj >
αj − 2

< αj , ρ >

< αj , αj >
αj = λ− rjαj ,

we have
H1(p+,V∗) =

⊕
j∈J
}rjg−1,j } E∗,

where g−1,j is the irreducible representation of g0 with highest weight −αj .
The result know follows from the fact that H∗(p+,V∗) is dual to H∗(g−,V)
as g0-module, see section 2.2.1. �

For the real case we deduce from proposition 3.5 and corollary 2.11:

Proposition 3.6. Let g = g−k ⊕ ... ⊕ gk be a real semisimple Lie algebra.
Choose a Cartan involution θ, a θ-stable maximally non-compact Cartan
subalgebra h = t⊕ a and a positive subsystem ∆+ of the rootsystem ∆ corre-
sponding to gC and hC such that pC is a standard parabolic in gC (see section
2.1.3). Define the set J as in proposition 3.5 with respect to ΣpC.
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If E is the complex irreducible representation dual to the complex irreducible
representation with highest weight

λ =
∑
j∈J

(rj − 1)ωj +
∑
i∈I\J

aiωi rj ∈ N and ai ∈ N0,

then there exists a unique complex irreducible representation V of g such that

H0
R(g−,V) = E and H1

R(g−,V) =
⊕
j∈J
}rj (gC)∗−1,j } E.

Proof. For a complex representation V of g the real cohomologyH∗R(g−,V)
is naturally a complex vector space and H∗R(g−,V) ∼= H∗C(gC

−,V) as complex
g0 modules by corollary 2.11. Hence the result follows from proposition
3.5. �

Given some |k|-graded semisimple Lie algebra g, let G be a simply con-
nected Lie group with Lie algebra g and let P ⊂ G be the connected parabolic
subgroup corresponding to the grading on g. Further, suppose that E is the
complex irreducible representation of the Levi subgroup G0, which is dual
to the irreducible representation with highest weight

λ =
∑
j∈J

(rj − 1)ωj +
∑
i∈I\J

aiωi rj ∈ N and ai ∈ N0

and let V be the irreducible representation of g defined in the proposition
3.5 respectively proposition 3.6. Since G is simply connected, V integrates
to a representation of G, which may be viewed as a representation of G0 by
restriction.
Recall that by proposition 2.3 there always exists a unique element e ∈ g,
whose adjoint action represents the grading on g:

[e,X] = jX for X ∈ gj .

In particular, it acts diagonalisably on g and therefore on any finite dimen-
sional representation of g. Now we can decompose V into eigenspaces for
the action of the grading element e on V. Observe that for an eigenvector v
with eigenvalue c and X ∈ gj the vector X · v is eigenvector with eigenvalue
c + j, since e · X · v = X · e · v + [e,X] · v. Therefore, denoting by c the
eigenvalue with smallest real part, it follows from the irreducibility of V that
the set of eigenvalues is given by {c, c+1, ..., c+N −1} for some N ≥ 1. For
0 ≤ i ≤ N let Vi be the eigenspace to the eigenvalue c+ i and set Vi = 0 for
i < 0 or i > N . Then we obtain a decomposition of V

V = V0 ⊕ ...⊕ VN (3.4)

such that
gi · Vj ⊆ Vi+j for all i and j (3.5)
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In particular, each subspace Vi is invariant under the action of g0 respectively
under the action of G0.
We denote by upper indices the associated filtration

V = V0 ⊃ V1 ⊃ ... ⊃ VN with Vi = Vi ⊕ ...⊕ VN . (3.6)

Let us describe the components Vi also in another way:

Lemma 3.7. Let V = V0 ⊕ ... ⊕ VN be the irreducible representation of g

whose dual representation has highest weight λ. The grading on V induces a
grading on the dual representation

V∗ = V∗−N ⊕ ...⊕ V∗0 with V∗−i ∼= (Vi)∗.

The component V∗` consists of all weight spaces of V∗ corresponding to weights
of the form

λ−
∑
i∈I\J

niαi −
∑
j∈J

njαj ,

where ni ∈ N0 for all i ∈ I and
∑

j∈J nj = `.

Proof. The result follows immediately from the well known fact that
for an irreducible representation V∗ with highest weight λ the weight spaces
correspond to weights of the form λ −

∑
i∈I niαi for ni ∈ N and that gi

consists of all roots spaces of Σp-height i. (Note that if v is a weight vector
of weight µ and X ∈ gα, then Xv is a weight vector of weight µ+ α.) �

Let us look more closely at the G0-equivariant Lie algebra differential ∂
computing the cohomolgy H∗(g−,V):

0→ V ∂→ g∗− ⊗ V ∂→ Λ2g∗− ⊗ V→ ...→ Λng∗− ⊗ V→ ...

The gradings on g− and V induce a grading on the cochain spaces Λng∗−⊗V,
where i-th grading component is given by

(Λng∗− ⊗ V)i =
nk⊕
t=n

(Λn−tg−)∗ ⊗ Vi−t, (3.7)

with
Λn−tg− =

⊕
i1+...+in=−t

gi1 ∧ ... ∧ gin .

It follows immediately from (3.5) that ∂ is grading preserving, cf. also sec-
tion 2.3. We will sometimes denote the restriction of ∂ to the i-th grading
component by ∂i : (Λng∗− ⊗ V)i → (Λn+1g∗− ⊗ V)i.
Consider the first differential in the complex corresponding to H∗(g−,V):

∂ : V→ g∗− ⊗ V

∂(v) = (X 7→ Xv).
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By (3.5) the G0-invariant subspace V0 ⊂ V is contained in ker(∂). Since
ker(∂) = H0(g−,V) is an irreducible representation of G0 we conclude that

V0 = ker(∂) = H0(g−,V) ∼= E (3.8)

In particular, we see that

∂i : Vi →
k⊕
t=1

g∗−t ⊗ Vi−t

is injective for i > 0.
By proposition 2.9 we have a decomposition

g∗− ⊗ V = im(∂)⊕ ker(�)⊕ im(∂∗) = ker(∂)⊕ im(∂∗),

where ∂∗ is the Kostant codifferential and � the Kostant Laplacian. From
the definition ∂∗ it follows immediately that ∂∗ is as well as ∂ compatible
with the gradings on the cochain spaces and hence so is �. Therefore we
obtain

(g∗− ⊗ V)i = im(∂i)⊕ ker(�i)⊕ im(∂∗i ) = ker(∂i)⊕ im(∂∗i ).

Since H1(g−,V) ∼= ker(�), the first cohomolgy H1(g−,V) may be viewed
as a G0-submodule of g∗− ⊗ V. We know from theorem 2.10 that each irre-
ducible component }rjg∗−1,j}E of H1(g−,V) has multiplicity one in g∗−⊗V.
Using theorem 2.10 we can even determine the grading component, in which
}rjg∗−1,j } E is lying.
In fact, by part (3) of theorem 2.10 a highest weight vector of the irreducible
component }rjg−1,j } E∗ of H1(p+,V∗) viewed as a submodule in p∗+ ⊗ V∗

is of the form X ⊗ v, where X ∈ g−αj and v ∈ V∗ is a weight vector of
weight sαj (λ) = λ − (rj − 1)αj . Therefore lemma 3.7 implies that the irre-
ducible component }rjg−1,j }E∗ lies in g−1,j ⊗ (V(rj−1))∗. Since we have an
isomorphism H1(p+,V∗)∗ ∼= H1(g−,V), we obtain that

}rjg∗−1,j } E ⊂ g∗−1,j ⊗ V(rj−1).

In particular, for 0 < i < minj∈J{rj} we therefore have an exact sequence

0 // Vi
∂i // ⊕k

s=1 g∗−s ⊗ Vi−s
∂i // ⊕2k

t=2(Λ2
−tg−)∗ ⊗ Vi−t. (3.9)

These observations lead to the following proposition:

Proposition 3.8. For 0 ≤ i ≤ N there exists G0-equivariant inclusions

φi : Vi ↪→ U−i(g−)∗ ⊗ V0.

For all i < q := minj∈J{rj} these inclusions are even isomorphisms

φi : Vi
∼= U−i(g−)∗ ⊗ V0.
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Proof. By means of restriction we can view V as a representation of
g− and hence by the universal property of the universal enveloping algebra
[proposition 1.4] also as a U(g−)-module. From (3.5) we conclude that

U−i(g−)Vi ⊆ V0 for all 0 ≤ i ≤ N.

Now we define φi by

φi : Vi → Hom(U−i(g−),V0)

v 7→ (u 7→ −u>v),

where u 7→ u> denotes the principal anti-automorphism of U(g−), see propo-
sition 1.11.
Observing that

U−i(g−) =
k⊕
j=1

g−j ⊗ U−(i−j)(g−)/Ji (3.10)

Ji =< X⊗Y u−Y ⊗Xu−[X,Y ]⊗u : X ∈ g−p, Y ∈ g−q, u ∈ U−(i−p−q)(g−) >

we can prove by induction on i that all φi are injective.
For i = 0 the result holds, since φ0 = −id.
The map φ1 : V1 → Hom(g−1,V0) equals ∂1 : V1 → Hom(g−1,V0), which is
injective by (3.8) and so the result holds also for i = 1 .
Now suppose that φj is injective for all j < i and consider the following
commutative diagram:

Vi
∂i //

id

��

⊕k
s=1 Hom(g−s,Vi−s)

∂i //

ı

��

⊕2k
t=2 Hom(Λ2

−tg−,Vi−t)



��

Vi
∂̃i // ⊕k

s=1 Hom(g−s ⊗ U−(i−s)(g−),V0)
∂̃i // ⊕2k

t=2 Hom(Λ2
−tg− ⊗ U−(i−t)(g−),V0)

where

ı(f)(X ⊗ u) = u>f(X) = −φi−s(f(X))(u)

for X ⊗ u ∈ g−s ⊗ U−(i−s)(g−)

(g)(X ∧ Y ⊗ u) = u>g(X ∧ Y ) = −φi−t(g(X ∧ Y ))(u)

for X ∧ Y ⊗ u ∈ Λ2
−tg− ⊗ U−(i−t)(g−)

∂i(f)(X ∧ Y ) = Xf(Y )− Y f(X)− f([X,Y ])

for X ∧ Y ∈ Λ2
−tg−

∂̃i(h)(X ∧ Y ⊗ u) = h(X ⊗ Y u)− h(Y ⊗Xu)− h([X,Y ]⊗ u)

for X ∧ Y ⊗ u ∈ Λ2
−tg− ⊗ U−(i−t)(g−).
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Since ∂ ◦∂ = 0, the commutativity of the diagram implies that the composi-
tion ı◦∂i has values in the kernel of ∂̃i. By (3.10) the kernel ker(∂̃i) coincides
with Hom(U−i(g−),V0) ⊂

⊕k
s=1 Hom(g−s⊗U−(i−s)(g−),V0) and so we have

ı ◦ ∂i : Vi → Hom(U−i(g−),V0).

Moreover, since (i ◦ ∂i)(v)(X ⊗ u) = u>(Xv) = −(Xu)>v, wee see that

ı ◦ ∂i = φi.

We know by (3.8) that ∂i : Vi →
⊕k

s=1 Hom(g−s,Vi−s) is injective and by
induction hypothesis also ı is injective. Therefore we have that

φi : Vi

∂i∼= im(∂i)
ı
↪→ Hom(U−i(g−),V0)

is injective and so the first assertion follows.
Since for 0 < i < q we have by (3.9) an exact sequence

0 // Vi
∂i // ⊕k

s=1 Hom(g−s,Vi−s)
∂i // ⊕2k

t=2 Hom(Λ2
−tg−,Vi−t),

it follows by induction from the commutative diagram above that

φi : Vi

∂i∼= ker(∂i)
ı∼= Hom(U−i(g−),V0)

is an isomorphism for 0 < i < q. �

Let us come back to the geometric setting of theorem 3.4. Suppose that
g = g−k⊕ ...⊕gk is a |k|-graded semisimple such that the center z(g0) of the
Levi subalgebra is one dimensional. Let G be a simply connected Lie group
with Lie algebra g and P be the connected parabolic subgroup corresponding
to the grading on g. Further, assume that M is a manifold endowed with a
regular infinitesimal flag structure of type (G,P ).
Now let E be the complex irreducible representation of G0, whose dual rep-
resentation has highest weight

λ = (r − 1)ωj +
∑

i∈I\{j}

aiωi with r ∈ N and ai ∈ N0.

Then we know by proposition 3.5 respectively 3.6 that there exists an irre-
ducible G-representation

V = V0 ⊕ ...⊕ VN

such that

H0(g−,V) = E and H1(g−,V) = }rg∗−1 } E = F.

For i ≥ 0 we have by proposition 3.8 a G0-equivariant inclusion

φi : Vi → U−i(g−)∗ ⊗ E,
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which is even an isomorphism

φi : Vi
∼= U−i(g−)∗ ⊗ E if i < r.

Since φi is an isomorphism for i < r, the commutative diagram from the
proof of proposition 3.8 for i = r looks as follows:

0

��

0

��

0

��

Vr
∂r //

id

��

⊕k
s=1 Hom(g−s,Vr−s)

∂r //

ı

��

⊕2k
t=2 Hom(Λ2

−tg−,Vr−t)



��

Vr
∂̃r //

��

⊕k
s=1 Hom(g−s ⊗ U−(r−s)(g−),V0)

∂̃r //

��

⊕2k
t=2 Hom(Λ2

−tg− ⊗ U−(r−t)(g−),V0)

��
0 0 0

This implies that we have

Vr

∂r∼= im(∂r) ⊂ ker(∂r) = im(∂r)⊕ ker(�r)
ı∼= ker(∂̃r) = U−r(g−)∗ ⊗ E.

Note that the map ı viewed as a map

ı :
k⊕
s=1

g∗−s ⊗ Vr−s →
k⊕
s=1

g∗−s ⊗ U−(r−s)(g−)∗ ⊗ V0

equals

ı =
k∑
s=1

−id⊗ φr−s

and therefore the isomorphism induced by ı between ker(�r) = ker(�) and
}rg∗−1 } E is given by

ker(�) ↪→ g∗−1⊗Vr−1

−id⊗φr−1∼= g∗−1⊗Ur−1(g−)∗⊗E→ g∗−1⊗Sr−1g∗−1⊗E→ }rg∗−1}E.
(3.11)

We conclude that we obtain a G0-equivariant isomorphism

φr : Vr
∼= (U−r(g−)∗ ⊗ E) ∩K,

where K ⊂ U−r(g−)∗⊗E denotes the kernel of the G0-equivariant projection
U−r(g−)∗⊗E→ }rg∗−1}E. Since ker(�) = ker(�r), it follows by induction
as in the proof of the proposition 3.8 that we have isomorphisms

φi : Vi
∼= (U−i(g−)∗ ⊗ E) ∩ (U−(i−r)(g−)∗ ⊗K) for i ≥ r.
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Now we define V as the graded vector bundle associated to V:

V = V0 ⊕ ...⊕ VN = G0 ×G0 V0 ⊕ ...⊕ VN ,

where V0 = E. Moreover, we define K := G0 ×G0 K as the natural vector
bundle corresponding to K.
Since the isomorphisms φi are G0-equivariant, they induce vector bundle
isomorphisms between the corresponding vector bundles

φi : Vi ∼= U−i(gr(TM))∗ ⊗ E for all i < r

φi : Vi ∼= U−i(gr(TM))∗ ⊗ E ∩ U−(i−r)(gr(TM))∗ ⊗K for all i ≥ r.

Comparing this with section 1.3. we therefore have:

Corollary 3.9. A linear differential operator of weighted r

D : Γ(E)→ Γ(}rgr−1(TM)∗ } E)

with weighted symbol given by the projection 3.2

σ(D) : U−r(gr(TM))∗ ⊗ E → }rgr−1(TM)∗ } E

is of weighted finite type with

gi = U−i(gr(TM))∗ ⊗ E ∩ U−(i−r)(gr(TM))∗ ⊗K ∼= Vi for all i ≥ r,

where K is the kernel of the symbol.

Remark 3.4. Let us remark that proposition 3.8 and corollary 3.9 should
also be compared with the considerations in [34].

2. Step - The construction of the connection ∇̃ and the differ-
ential operator L. Once again consider the Lie algebra differential ∂ and
the codifferential ∂∗ corresponding to the cohomology H∗(g−,V):

∂ : Λng∗− ⊗ V→ Λn+1g∗− ⊗ V

∂∗ : Λng∗− ⊗ V→ Λn−1g∗− ⊗ V.

Both are G0-equivariant and compatible with the gradings on the cochain
spaces Λng∗− ⊗ V.
Moreover, we have an algebraic Hodge decomposition of Λng∗− ⊗V given by

Λng∗− ⊗ V = im(∂)⊕ ker(�)⊕ im(∂∗)

with ker(�) ∼= Hn(g−,V).
In particular, restricting ∂ to im(∂∗) respectively ∂∗ to im(∂), we obtain
isomorphisms

∂ : im(∂∗) ∼= im(∂) and ∂∗ : im(∂) ∼= im(∂∗).
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In general, these two maps are not inverse to each other. However, we may
define

δ∗ : Λng∗− ⊗ V→ Λn−1g∗− ⊗ V

as the inverse of ∂ on im(∂) and zero on ker(∂∗). Obviously, we have again
δ∗ ◦ δ∗ = 0 and so δ∗ is a differential. Since, by construction, δ∗ differs
from ∂∗ on im(∂) just by a G0-equivariant grading preserving isomorphism
of im(∂), we conclude that δ∗ is as well G0-equivariant and compatible with
the gradings on the cochain spaces. Moreover, it defines the same Hodge
decomposition on Λng∗− ⊗V. In the sequel, we will use δ∗ rather than ∂∗ to
make certain computations easier.
We will denote the corresponding grading preserving vector bundle maps by
the same letters:

∂ : Λngr(TM)∗ ⊗ V → Λn+1gr(TM)∗ ⊗ V

δ∗ : Λngr(TM)∗ ⊗ V → Λn−1gr(TM)∗ ⊗ V,

where the grading on the vector bundle Λngr(TM)∗ ⊗ V is induced by the
grading on Λng∗− ⊗ V.
Let us now choose a principal connection on G0 → M , then we get induced
linear connection on all associated vector bundles and we will denote all of
them by ∇.
In particular, we obtain a linear connection ∇ : Γ(V )→ Γ(T ∗M ⊗ V ) on V .
The filtrations on V and TM induces a filtration of T ∗M ⊗ V , where the
`-th filtration component (T ∗M ⊗ V )` consists of all elements in T ∗M ⊗ V
of homogeneity ≥ `, i.e.

φ ∈ (T ∗M ⊗ V )` if and only if φ(T iM) ⊂ V i+` for i < 0.

Since ∇ is induced from a principal G0-connection, it has to preserve the
grading on V . Hence it raises homogeneity by one:

∇ : Γ(V i)→ Γ((T ∗M ⊗ V )i+1).

Remark 3.5. Given two filtered vector bundles (V, {V i}) and (W, {W j}),
we always have a natural filtration on V ∗⊗W , where (V ∗⊗W )` consists of all
elements of homogeneity ≥ `, i.e. φ ∈ (V ∗⊗W )` if and only if φ(V i) ⊂W i+`

for all i. In particular, we see that φ : V → W is of homogeneity ≥ 0 if
and only if it is filtration preserving. Note that an element φ ∈ (V ∗ ⊗W )`

induces a bundle map gr`(φ) : gr(V )→ gr(W ) between the associated graded
vector bundles gr(V ) → gr(W ), which is of homogeneity `, meaning that
gr`(φ)(gri(V )) ⊂ gri+`(W ) for all i. Mapping an element φ ∈ (V ∗ ⊗W )`

to gr`(φ) induces an isomorphism of graded vector bundles gr(V ∗ ⊗W ) ∼=
gr(V )∗⊗ gr(W ), with the grading on the latter space given by homogeneous
degree.
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Choosing a splitting of the filtration of the tangent bundle TM ∼= gr(TM),
we can view ∂ and δ∗ as grading respectively filtration preserving vector bun-
dle maps on ΛkT ∗M⊗V . In particular, the following definition makes sense:

∇̃ := ∇+ ∂ : Γ(V )→ Γ(T ∗M ⊗ V ),

It is a linear connection on V = ker(∂) ⊕ im(δ∗) = V0 ⊕ im(δ∗), which is of
homogeneity ≥ 0 and whose lowest homogeneous component is given by the
algebraic operator ∂. Now we can construct an operator L : V0 → V , which
splits the projection π : V → V0 and is characterised by having values in the
kernel of δ∗ ◦ ∇̃.
In fact, consider the following linear differential operator

δ∗ ◦ ∇̃ : Γ(V )→ Γ(im(δ∗)) ⊆ Γ(V ).

It is of homogeneity ≥ 0 with lowest homogeneous component given by δ∗◦∂.
If we restrict this operator to im(δ∗), the lowest component δ∗ ◦ ∂ is the
identity on im(δ∗) and −(δ∗∇̃− id) is (at most) N -step nilpotent. Therefore
δ∗∇̃ is invertible on Γ(im(δ∗)) with inverse given by the von Neumann serie

(δ∗∇̃)−1 = (id− (−(δ∗∇̃ − id)))−1 =
N∑
i=0

(−1)i(δ∗∇̃ − id)i.

Now we define the splitting operator L by

L(s) = Σ− (δ∗∇̃)−1δ∗∇̃Σ,

where Σ is a section of V with π(Σ) = s. This is well defined, since Σ
is determined up to adding sections of im(δ∗) and L is zero on im(δ∗).
The operator L obviously splits the projection π : V → V0 = ker(∂), i.e.
π(L(s)) = s. In addition, since δ∗∇̃(δ∗∇̃)−1 is the identity on Γ(im(δ∗)), we
see that δ∗∇̃L = 0. The splitting operator is uniquely characterised by these
two properties, since for a section Σ ∈ Γ(V ) with π(Σ) = s and δ∗∇̃Σ = 0,
we obtain L(s) = Σ − (δ∗∇̃)−1δ∗∇̃Σ = Σ. In particular, this shows that a
section Σ of V lies in the image of L if and only if δ∗∇̃Σ = 0.
Inserting the formula for δ∗∇̃ and using that δ∗∂ is the identity on im(δ∗),
we obtain

L(s) =
N∑
i=0

(−1)i(δ∗∇)i(Σ)−
N∑
i=0

(−1)i(δ∗∇)iδ∗∂(Σ).

Since the formula of L is independent of the choice of Σ, this implies that

L(s) = ΣN
i=0(−1)i(δ∗∇)i(s),

where s is viewed as a section of V by trivial extension.
Denoting by Lj the component in V0 ⊕ ...⊕ Vj of Lj , we have:
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Proposition 3.10. There exists a unique linear differential operator L :
Γ(V0)→ Γ(V ) such that

• π(L(s)) = s, where π : V → V0 is the projection
• L has values in the kernel of δ∗∇̃

In particular, a section Σ ∈ Γ(V ) is in im(L) if and only if δ∗∇̃(Σ) = 0.
Moreover, each operator Lj : Γ(V0)→ Γ(V0⊕ ...⊕Vj) induces a vector bundle
map

J j(V0)→ V0 ⊕ ...⊕ Vj
which is an isomorphism for j < r.

Proof. It only remains to show the last assertion. Note that the prin-
cipal connection on G0 induces not only a linear connection ∇ on V , but
also a linear connection ∇ on gr(TM) ∼= TM , which is compatible with the
grading ∇ : Γ(gri(TM)) → Γ(gr(TM)⊗ gri(TM)). The G0-equivariance of
δ∗ : g∗−⊗V→ V implies that the corresponding vector bundle map is parallel
for the induced linear connection on gr(TM)∗ ⊗ V ∗ ⊗ V .
Therefore we conclude that L(s) = ΣN

i=0(−1)i(δ∗∇)is can be written as

L(s) =
N∑
i=0

(−1)i(δ∗ ◦ (id⊗ δ∗) ◦ ... ◦ (id⊗ ...⊗ id︸ ︷︷ ︸
i−1

⊗δ∗)) ◦ ∇is

with the convention that the 0-th term is the identity.
Denote by T−i(gr(TM)) = G0 ×G0 T−i(g−) the associated vector bundle
corresponding to the −i-th grading component of the tensor algebra T (g−)
(see (1.6)) and consider the following differential operator

Dj : Γ(V0)→ Γ(
j⊕
i=0

T−i(gr(TM))∗ ⊗ V0)

s 7→ (
j∑
i=0

∇is)≤j

where ( )≤j means that we restrict
∑j

i=0∇is to all grading components of
degree ≤ j in

⊕j
i=0(gr(TM)i)∗ ⊗ V0. This operator is obviously of weighted

order j. Note that we have

∇∇s(ξ, η)−∇∇s(η, ξ) = R(ξ, η)(s) +∇∇ηξs−∇∇ξηs−∇[η,ξ]s =

and so

∇∇s(ξ, η)−∇∇s(η, ξ)−∇L(ξ,η)s ≡ 0 mod( terms of lower weighted order in s).

Therefore we conclude that the weighted symbol of Dj is given by the canon-
ical inclusion

σ(Dj) : U−j(gr(TM))∗⊗V0 ↪→ T−j(gr(TM))∗⊗V0 ⊂
j⊕
i=0

T−i(gr(TM))∗⊗V0,
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which is obtained by dualising the projection T−j(gr(TM))→ U−j(gr(TM)).
Since δ∗ is grading preserving, we deduce that

Lj(s) =
j∑
i=0

(−1)i((δ∗ ◦ (id⊗ δ∗) ◦ ... ◦ (id⊗ ...⊗ id⊗ δ∗)) ◦ ∇is)≤j =

= (
j∑
i=0

(−1)iδ∗ ◦ (id⊗ δ∗) ◦ ... ◦ (id⊗ ...⊗ id⊗ δ∗)) ◦Dj(s)

is of weighted order j and hence induces a vector bundle map

Lj : J j(V0)→ V0 ⊕ ...⊕ Vj .

Suppose now that j > 1 and let us compute the weighted symbol σ(Lj)
of Lj . It is given by the composition of the weighted symbol of Dj with
ψj :=

∑j
i=1(−1)i((δ∗ ◦ (id⊗ δ∗) ◦ ... ◦ (id⊗ ...⊗ id︸ ︷︷ ︸

i−1

⊗δ∗))

U−j(gr(TM))∗ ⊗ V0
� � σ(Dj)

//

σ(Lj)
**TTTTTTTTTTTTTTTTTTT

T−j(gr(TM))∗ ⊗ V0

ψj
��
Vj

Now consider the injective vector bundle map

φj : Vj → U−j(gr(TM))∗ ⊗ V0 ⊂ T−j(gr(TM))∗ ⊗ V0

corresponding to the G0-equivariant inclusion of proposition 3.8. This vector
bundle map can also be written as

φj =
j∑
i=1

(−1)i−1pj0 ◦ (id⊗ ...⊗ id︸ ︷︷ ︸
i−1

⊗∂) ◦ ... ◦ (id⊗ ∂) ◦ ∂,

where pj0 :
⊕j

i=1 T−i(gr(TM))∗⊗Vj−i → T−j(gr(TM))∗⊗V0 is the projection
given by restriction.
Setting ∂(i) := id⊗ ...⊗ id︸ ︷︷ ︸

i−1

⊗∂◦...◦(id⊗∂)◦∂|Vj and δ∗(i) := id⊗ ...⊗ id︸ ︷︷ ︸
i−1

⊗δ∗.

we obtain that that

(
j∑
i=1

(−1)i(δ∗ ◦ ... ◦ (id⊗ ...⊗ id︸ ︷︷ ︸
i−1

⊗δ∗)) ◦ (
j∑
i=1

(−1)i−1p0
j ◦ (id⊗ ...⊗ id︸ ︷︷ ︸

i−1

⊗∂) ◦ ... ◦ ∂)

= −[...δ∗(j−2)(p
j
0 ◦ ∂

(j−2) + δ∗(j−1)(p
j
0 ◦ ∂

(j−1) + δ∗(j) ◦ p
j
0 ◦ ∂

(j)))]. (3.12)

Recall that δ∗ : gr(TM)∗ ⊗ V → V is defined as the inverse of ∂ on im(∂) ⊂
gr(TM)∗ ⊗ V and zero on the rest. Since pj0 ◦ ∂(j) = ∂(j), we therefore get
that

δ∗(j) ◦ p
j
0 ◦ ∂

(j) = δ∗(j) ◦ ∂
(j) = (id− pj0) ◦ ∂(j−1).
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Hence pj0 ◦ ∂(j−1) + δ∗(j) ◦ p
j
0 ◦ ∂(j) = ∂(j−1). Since δ∗(j−1) ◦ ∂

(j−1) equals again

(id−pj0)◦∂(j−2), we conclude inductively that the composition (3.12) equals
−id on Vj .
Since we know by proposition 3.8 that φj : Vj → U−j(gr(TM))∗ ⊗ V0 is an
isomorphism for j < r, we therefore conclude that for j < r the weighted
symbol of Lj is given by

σ(Lj) = −φ−1
j : U−j(gr(TM))∗ ⊗ V0 → Vj .

Now we can prove the last assertion of the propositon by induction.
The operator L0 is just the identity on Γ(V0) and identifying J 0(V0) = V0 it
induces the identity on V0. Hence we see that the assertion holds for i = 0.
Now assume that Li induces an isomorphism J i(V0) → V0 ⊕ ... ⊕ Vi for all
i < j < r. Since σ(Lj) : U−j(gr(TM))∗ ⊗ V0 → Vj is an isomorphism for
j < r, it follows from the commutative diagram

0

��

0

��
U−j(gr(TM))∗ ⊗ V0

��

σ(Lj)=−φ−1
j // Vj

��
J j(V0)

Lj //

��

V0 ⊕ ...⊕ Vj

��
J j−1(V0)

Lj−1
//

��

V0 ⊕ ...⊕ Vj−1

��
0 0

that Lj induces also an isomorphism J j(V0)→ V0 ⊕ ...⊕ Vj . �

3. Step - The construction of the bundle map C. Now we define
the following linear differential operator

D∇ := −(id⊗ φr−1) ◦ π ◦ ∇̃ ◦ L : Γ(E)→ Γ(}rgr−1(TM)∗ } E),

where π denotes the projection

π : gr(TM)∗ ⊗ V → gr−1(TM)∗ ⊗ Vr−1 → ker(�).

Since the projection π annihilates im(∂), we obtain that

D∇(s) = −(id⊗ φr−1)π∇(Ls)r−1,

where (Ls)r−1 denotes the component in Vr−1 of L(s). From proposition
3.10 we know that s 7→ L(s)r−1 is a differential operator of weighted order



3.2. SEMI-LINEAR SYSTEMS OF PARTIAL DIFFERENTIAL EQUATIONS 95

r − 1 with weighted symbol given by −φ−1
r−1 and so we see that D∇ is of

weighted order r with weighted symbol given by

σ(D∇) = −id⊗ φr−1 ◦ π ◦ (−id⊗ φ−1
r−1)

gr−1(TM)∗⊗Ur−1(gr(TM))∗⊗E∩U−r(gr(TM))∗⊗E → }rgr−1(TM)∗}E.

Using (3.11) we conclude that it equals the projection (3.2)

σ(D∇) : U−r(gr(T ∗M))⊗ E → }rgr−1(TM)∗ } E.

Similarly as it was done for overdetermined systems on regular flag structures
corresponding to |1|-graded semisimple Lie algebras in [4], we can now start
to rewrite the equation D(s) = 0.

Proposition 3.11. Suppose that D is a semi-linear differential operator

D : Γ(E)→ Γ(}rgr−1(TM)∗ } E) = Γ(F )

of weighted order r with weighted symbol given by the projection (3.2)

σ(D) : U−r(gr(TM))∗ ⊗ E → }rgr−1(TM)∗ } E = F.

Then there exists a bundle map A : V0⊕ ...⊕ VN → F such that s 7→ Ls and
the projection V → V0 = E induce inverse bijections between the following
spaces

{s ∈ Γ(E) : Dσ = 0} ↔ {Σ ∈ Γ(V ) : ∇̃(Σ) +A(Σ) ∈ Γ(im(δ∗))}.

Proof. The operators D and D∇ have the same weighted symbol and
therefore there exists a bundle map ψ : J r−1(E)→ F such that

D(s) = D∇(s) + ψ(jr−1s).

By proposition 3.10 the splitting operator L induces an isomorphism

Lr−1 : J r−1(E) ∼= V0 ⊕ ...⊕ Vr−1

and so there is a unique bundle map

A : V0 ⊕ ...⊕ Vr−1 → F such that ψ(jr−1s) = A(Ls),

where we view A as map on the whole bundle V by trivial extension.
Since ∇̃Ls has values in ker(δ∗) by proposition 3.10 and A(Ls) even in
ker(�) ⊆ ker(δ∗), we obtain that

0 = D(s) = π(∇̃Ls+A(Ls))

if and only if
∇̃Ls+A(Ls) ∈ Γ(im(δ∗)),
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where π : T ∗M ⊗ V → ker(�) is the projection.
Conversely, suppose Σ is a section of V such that ∇̃Σ + A(Σ) ∈ Γ(im(δ∗)).
Then δ∗(∇̃Σ + A(Σ)) = 0 and since the map A has values in ker(δ∗), we
get δ∗(∇̃Σ) = 0. By proposition 3.10 the equality δ∗(∇̃Σ) = 0 implies that
Σ = L(Σ0) and hence D(Σ0) = 0. �

The fact that A : V → ker(�) ⊂ T ∗M ⊗V is of homogeneity ≥ 1, allows
us to compute the section ∇̃Σ +A(Σ) ∈ Γ(im(δ∗)).

Proposition 3.12. Let A : V → T ∗M ⊗V be a bundle map of homogeneity
≥ 1. Then there exists a differential operator B : Γ(V )→ Γ(T ∗M ⊗V ) such
that

∇̃Σ +A(Σ) ∈ Γ(im(δ∗))

if and only if
∇̃Σ +B(Σ) = 0.

If A is a vector bundle map, then B is a linear differential operator.

Proof. Since we have chosen a splitting of the tangent bundle, we can
identify TM with gr(TM). Therefore we have a grading on differential forms
with values in V corresponding to the grading (3.7) on Λng∗− ⊗ V, which is
given by homogeneous degree. As usual we denote by lower indices the
grading components

(ΛnT ∗M ⊗ V )` = (Λngr(TM)∗ ⊗ V )` :=
nk⊕
j=n

(Λn−jgr(TM))∗ ⊗ V`−j

and by upper indices the filtration components (ΛnT ∗M ⊗ V )` of the as-
sociated filtration. The associated filtration is of course exactly the one by
homogeneity:

φ ∈ (ΛnT ∗M ⊗ V )` if and only if φ(T i1M, ..., T inM) ⊂ V i1+....+in+`.

A linear connection on a vector bundle V always extends to a differential
operator ΛkT ∗M ⊗ V → Λk+1T ∗M ⊗ V on differential forms with values in
V , called the covariant exterior derivative. We denote by d∇̃ the covariant
exterior derivative corresponding to the linear connection ∇̃. Recall that for
a one form φ ∈ Γ(T ∗M ⊗ V ) the covariant exterior derivative is given by

d∇̃φ(ξ, η) = ∇̃ξ(φ(η))− ∇̃η(φ(ξ))− φ([ξ, η]). (3.13)

Inserting φ = ∇̃Σ into (3.13) we see that d∇̃∇̃Σ(ξ, η) equals the curvature
R̃(ξ, η)(Σ) of ∇̃. We will denote by R̃(Σ) the two form, which is given by
(ξ, η) 7→ R̃(ξ, η)(Σ).
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Now let us consider our equation ∇̃Σ +A(Σ) = δ∗ψ and show how it can be
rewritten. Concerning the bundle map A, we will write Ai(Σ) for the i-th
grading component and Ai(Σ) for the i-th filtration component of A(Σ) in
T ∗M ⊗ V .
Since δ∗ is filtration preserving, we have δ∗ψ ∈ (T ∗M⊗V )2 ⊂ (T ∗M⊗V )1 =
T ∗M ⊗ V and we set B1(Σ) := A1(Σ). Then the equation reads as

∇̃Σ +B1(Σ) +A2(Σ) = δ∗ψ. (3.14)

Since ∇̃ is of homogeneity ≥ 0 and its lowest homogeneous component is
given by ∂, the same is true for d∇̃ : T ∗M ⊗ V → Λ2T ∗M ⊗ V . Hence
the operator δ∗d∇̃ : T ∗M ⊗ V → T ∗M ⊗ V is also of homogeneity ≥ 0
with lowest homogeneous component δ∗∂, which by definition of δ∗ is the
identity on im(δ∗) ⊂ T ∗M ⊗ V . Applying δ∗d∇̃ to the equation (3.14),
we can therefore compute the lowest grading component (δ∗ψ)2. Moving the
resulting expression for (δ∗ψ)2 to the other side of the equation and applying
δ∗d∇̃ to the new equation, we can compute (δ∗ψ)3 and so on until we have
computed the whole one form δ∗ψ. More explicitly, if we apply first d∇̃ to
the equation (3.14), we obtain that

R̃(Σ) + d∇̃B1(Σ) + d∇̃A2(Σ) = d∇̃δ∗ψ.

This implies the following equation for the second grading component ∂((δ∗ψ)2)
of (d∇̃δ∗ψ)

(R̃(Σ) + d∇̃B1(Σ))2 + ∂(A2(Σ)) = ∂((δ∗ψ)2).

Applying now δ∗ we see that

δ∗((R̃(Σ) + d∇̃B1(Σ))2 + ∂A2(Σ)) = δ∗∂((δ∗ψ)2) = (δ∗ψ)2,

since δ∗∂ is the identity on im(δ∗).
If we set B2(Σ) := A2(Σ)− δ∗((R̃(Σ) + d∇̃B1(Σ))2 + ∂A2(Σ)), the equation
(3.14) can be now written as

∇̃(Σ) +B1(Σ) +B2(Σ) +A3(Σ) = (δ∗ψ)3.

Applying again δ∗d∇̃, we can compute (δ∗ψ)3 and define B3 by substract-
ing the resulting expression for (δ∗ψ)3 from A3(Σ). In this way, we can
inductively define

Bi(Σ) := Ai(Σ)− δ∗([R̃(Σ) + d∇̃(B1(Σ) + ...+Bi−1(Σ))]i + ∂(Ai(Σ)).

Defining the differential operator B as B(Σ) :=
∑N+k

i=1 Bi(Σ), it has by
construction the property required in the proposition and we are done. �

To compute the weighted order of the differential operator B, we need a
bit of information about the curvature R̃ of ∇̃.
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Lemma 3.13. Let R ∈ Λ2T ∗M ⊗ V be the curvature of the connection ∇
on V and T the torsion of the connection ∇ on TM ∼= gr(TM). Then the
curvature of ∇̃ is given by

R̃(ξ, η)(Σ) = R(ξ, η)(Σ) + ∂(Σ)(T (ξ, η) + {ξ, η}).

Moreover, the map Σ 7→ R̃(Σ) is of homogeneity ≥ 1.

Proof. The curvature of ∇̃ = ∇+ ∂ is given by

R̃(ξ, η)(Σ) = ∇̃ξ∇̃ηΣ− ∇̃η∇̃ξΣ− ∇̃[ξ,η]Σ.

For the first term we have

∇̃ξ∇̃ηΣ = ∇ξ∇ηΣ +∇ξ(∂(Σ)(η)) + ∂(∇ηΣ)(ξ) + ∂(∂Σ(η))(ξ). (3.15)

The second summand of (3.15) can be written as

∇ξ(∂(Σ)(η)) = (∇ξ(∂Σ))(η) + ∂Σ(∇ξη).

Since ∂ : V → g∗− ⊗ V is G0-equivariant, the induced vector bundle map is
parallel and so we have (∇ξ(∂Σ))(η) = ∂(∇ξΣ)(η). Putting this together,
we obtain that

∇̃ξ∇̃ηΣ = ∇ξ∇ηΣ + ∂(∇ξΣ)(η) + ∂Σ(∇ξη) + ∂(∇ηΣ)(ξ) + ∂(∂Σ(η))(ξ).

Therefore we have

R̃(ξ, η)(Σ) = R(ξ, η)(Σ) + ∂Σ(T (ξ, η)) + ∂(∂Σ(η))(ξ)− ∂(∂Σ(ξ))(η)

= R(ξ, η)(Σ) + ∂(Σ)(T (ξ, η) + {ξ, η}), (3.16)

since

0 = ∂(∂Σ)(ξ, η) = ∂(∂Σ(η))(ξ)− ∂(∂Σ(ξ))(η)− ∂Σ({ξ, η}).

Since R̃(Σ) equals d∇̃∇̃(Σ), the map Σ 7→ R̃(Σ) is at least of homogeneity
≥ 0. To see that is actually of homogeneity ≥ 1 we consider the formula
(3.16).
The curvature Σ 7→ R(Σ) = d∇∇(Σ) of ∇ is of homogeneity ≥ 2, since ∇
and d∇ both are of homogeneity ≥ 1. Now consider the second term of (3.16)
given by ∂(Σ)(T (ξ, η) + {ξ, η}). We have

T (ξ, η) + {ξ, η} = ∇ξη −∇ηξ − [ξ, η] + {ξ, η}

and under the identification of gr(TM) with TM we can view {ξ, η} as the
grading component of lowest degree −(ord(ξ) + ord(η)) of [ξ, η]. Therefore
the two form T + { , } is of homogeneity ≥ 1. This implies that

Σ 7→ ∂(Σ)(T + { , })

is of homogeneity ≥ 1, since ∂ is filtration preserving. �
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Using lemma 3.13 we can determine the weighted order of B:

Proposition 3.14. The differential operator B is of weighted order N+k−1,
where k is the depth of the filtration of TM . Therefore it defines a bundle
map

B : JN+k−1(V )→ T ∗M ⊗ V.

Moreover, the component Bi factors through

J i−1(V0)⊕ J i−2(V1)⊕ ...⊕ J 1(Vi−2)⊕ Vi−1.

Proof. Let us write a section Σ ∈ Γ(V ) as Σ = (Σ0, ...,ΣN ). We shall
prove the proposition by induction on i.
Since A : V → T ∗M⊗V is of homogeneity ≥ 1, B1(Σ) = A1(Σ) just depends
on Σ0 and so the assertion holds for i = 1.
Now consider B2(Σ) = A2(Σ)− δ∗((R̃(Σ) + d∇̃B1(Σ))2 + ∂A2(Σ)).
The component A2(Σ) depends on Σ0 and Σ1, since A is of homogeneity
≥ 1. By the lemma 3.13 we know that Σ 7→ R̃(Σ) is also of homogeneity ≥ 1
and therefore R̃(Σ)2 only depends on Σ0 and Σ1. So it remains to look at
the term

(d∇̃B1(Σ))2 ∈ Γ(gr−1(TM)∗ ∧ gr−1(TM)∗ ⊗ V0).

For ξ, η ∈ Γ(T−1M) we have

d∇̃B1(Σ)(ξ, η) = ∇̃ξ(B1(Σ)(η))− ∇̃η(B1(Σ)(ξ))−B1(Σ)([ξ, η])

= ∇ξ(B1(Σ)(η))−∇η(B1(Σ)(ξ)) + ∂(B1(Σ)(η))(ξ)− ∂(B1(Σ)(ξ))(η)−B1(Σ)([ξ, η])

= ∇ξ(B1(Σ)(η))−∇η(B1(Σ)(ξ)) + ∂(B1(Σ))(ξ, η)−B1(Σ)([ξ, η]− {ξ, η}).

Since ∂ is grading preserving, ∂ has to annihilate B1(Σ) and we obtain that

d∇̃B1(Σ)(ξ, η) = ∇ξ(B1(Σ)(η))−∇η(B1(Σ)(ξ))−B1(Σ)([ξ, η]− {ξ, η}).

Since the component B1(Σ) ∈ gr−1(TM)∗ ⊗ V0 just depends on Σ0, we
therefore conclude that (d∇̃B1(Σ))2 depends on the weighted one jet of Σ0.
In total, we see that B2 induces a bundle map J 1(V0)⊕ V1 → (T ∗M ⊗ V )2.
Now assume the statement is true for Bi with i < N + k. The i + 1-th
component is given by

Bi+1(Σ) := Ai+1(Σ)− δ∗([R̃(Σ) +d∇̃(B1(Σ) + ...+Bi(Σ))]i+1 +∂(Ai+1(Σ)).

Again, since A and R̃ are of homogeneity ≥ 1, Ai+1(Σ) and (R̃(Σ))i+1,
depends only on Σ0, ....,Σi. So it remains to study the term

(d∇̃(B1(Σ) + ...+Bi(Σ)))i+1.
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For j < i+ 1 consider

Bj(Σ) ∈ Γ(
j⊕
`=1

gr−`(TM)∗ ⊗ Vj−`).

We know that the operator d∇̃ is of homgeneity ≥ 0 and hence we have
d∇̃(Bj(Σ)) ∈ Γ((Λ2gr(TM)∗⊗V )j). Since ∂ is grading preserving, we obtain
for vector fields ξ, η ∈ Γ(TM) with ord(ξ) + ord(η) = i+ 1 that

(d∇̃Bj(Σ))i+1(ξ, η) =

= ∇ξ(Bj(Σ)(η))−∇η(Bj(Σ)(ξ)) + ∂(Bj(Σ))(ξ, η)−Bj(Σ)([ξ, η]− {ξ, η})

= ∇ξ(Bj(Σ)(η))−∇η(Bj(Σ)(ξ))−Bj(Σ)([ξ, η]− {ξ, η}).

This implies that d∇̃(Bj(Σ))i+1 depends on Bj(Σ) and derivatives of Bj(Σ)
in direction of vector fields of order i + 1 − j. The claim now follows from
the assumption that Bj(Σ) factors through J j−1(V0) ⊕ ... ⊕ Vj−1 for all
j < i+ 1. �

Now one can do the last step in rewriting the equation D(s) = 0 by
solving ∇̃Σ +B(Σ) = 0 component by component.

Proposition 3.15. Suppose that B : JN+k−1(V ) → T ∗M ⊗ V is a bundle
map such that its i-th component

Bi : JN+k−1(V )→ (T ∗M ⊗ V )i

factors through

J i−1(V0)⊕ J i−2(V1)⊕ ...⊕ J 1(Vi−2)⊕ Vi−1.

Then there exists a bundle map C : V → T ∗M ⊗ V such that

∇̃Σ +B(Σ) = 0

is equivalent to
∇̃Σ + C(Σ) = 0.

If B is a vector bundle homomorphism, then also C can be chosen to be a
vector bundle homomorphism.

Proof. The linear connection ∇̃ = ∇ + ∂ is of homogeneity ≥ 0 with
lowest homogeneous component given by the vector bundle map ∂. Since
we have a linear connection ∇ on TM ∼= gr(TM), we can from iterated
covariant derivatives ∇̃i. We know that the linear connection on TM is
of homogeneity ≥ 1, since ∇ : Γ(gri(TM)) → Γ(gr(TM)∗ ⊗ gri(TM)), and
hence, since ∇̃ is of homogeneity ≥ 0 with lowest homogeneous component ∂,
we conclude that the iterated covariant derivative ∇̃i is also of homogeneity
≥ 0 and that its lowest homogeneous component is algebraic. By assumption
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on B we therefore deduce that the component Bi just depends on Σ≤i−1,
(∇̃Σ)≤i−1,...,(∇̃i−1Σ)≤i−1 and we may write

Bi(Σ) = Bi(Σ≤i−1, (∇̃Σ)≤i−1, ..., (∇̃i−1Σ)≤i−1),

where (−)≤i−1 means that we restrict to grading components of degree ≤
i−1. Let us now consider the equation ∇̃(Σ)+B(Σ) = 0 grading component
by grading component.
For the first component we get

(∇̃Σ)1 +B1(Σ) = 0

and we set C1(Σ) := B1(Σ0).
For the second component we have

(∇̃Σ)2 +B2(Σ0,Σ1, (∇̃Σ)1) = 0

and we define C2(Σ0,Σ1) := B2(Σ0,Σ1,−C1(Σ0)).
By construction we have

((∇̃Σ) +B(Σ))≤2 = 0 if and only if ((∇̃Σ) + C(Σ))≤2 = 0, (3.17)

where C = C1 + C2.
Since ∇̃ is of homogeneity ≥ 0, we obtain for a section Σ satisfying (3.17)
that also (∇̃(∇̃Σ + C(Σ)))≤2 = 0. In addition, we have

(∇̃C(Σ))≤2 = (∇̃C(Σ))2 = [∇C1(Σ) + id⊗ ∂(C2(Σ))]2

and so we see that (∇̃C(Σ))2 depends on the weighted one jet of C1(Σ)
and algebraic on C2(Σ) and therefore it just depends on Σ≤1 and (∇̃Σ)1.
By (3.17) this implies that we obtain an algebraic expression for (∇̃2Σ)2 =
−(∇̃C(Σ))2 in terms of Σ0 and Σ1. So we can express all terms occurring in
B3(Σ≤2, (∇̃Σ)≤2, ..., (∇̃2Σ)≤2) in terms of Σ0, Σ1 and Σ2 and inserting the
resulting expressions into B3 we obtain a bundle map C3(Σ0,Σ1,Σ2) that
satisfies

(∇̃Σ +B(Σ))≤3 = 0 if and only if (∇̃Σ + C(Σ))≤3 = 0,

where C = C1 + C2 + C3.
Suppose now inductively that we have found bundle maps C1, ..., Ci for i <
N + k such that

(∇̃Σ +B(Σ))≤i = 0 if and only if (∇̃Σ + C(Σ))≤i = 0, (3.18)

where C = C1 + ...+Ci and Cj depends only on Σ≤j−1. Assume further that
for any section Σ satisfying (3.18) we have derived algebraic expressions in
terms of Σ0, ...,Σ≤i−1 for all (∇̃`Σ)≤i with ` = 1, ..., i.
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Inserting these expressions intoBi+1(Σ), we obtain a bundle map Ci+1(Σ0, ...,Σi)
such that

(∇̃Σ +B(Σ))≤i+1 = 0 if and only if (∇̃Σ + C(Σ))≤i+1 = 0, (3.19)

C = C1 + ...+ Ci+1.
It remains to show that for any section Σ satisfying (3.19) we can deduce al-
gebraic expressions in terms of Σ0, ...,Σi for all (∇̃`Σ)≤i+1 occurring in Bi+2,
where ` = 1, ..., i+ 1. Since ∇̃j is of homogeneity ≥ 0, (∇̃Σ +C(Σ))≤i+1 = 0
implies that (∇̃j(∇̃Σ + C(Σ)))≤i+1 = 0. The differential operator

((∇̃1C(Σ))i+1, ..., (∇̃iC(Σ))i+1)

depends on the weighted i-jet of C1(Σ), on the weighted i−1-jet of C2(Σ),...,on
the weighted one jet of Ci(Σ) and algebraic on Ci+1(Σ). Therefore it just
depends on Σ≤i, (∇̃Σ)≤i..., (∇̃iΣ)≤i, for which we have by induction hy-
pothesis algebraic formulae in terms of Σ0, ...,Σi. Hence we get formulae in
terms of Σ0, ..,Σi for (∇̃j+1Σ)≤i+1 with j = 0, ..., i and we are done.
If B is a linear differential operator, C will be a vector bundle map by con-
struction. �

Summing up, we have seen by propositions 3.11, 3.12, 3.14 and 3.15 that
given a semi-linear differential operator D : Γ(E) → Γ(}rgr−1(TM)∗ } E)
of weighted order r with weighted symbol given by the projection σ(D) :
U−r(gr(TM))∗⊗E → }rgr−1(TM)∗}E, we can construct a linear connec-
tion ∇̃ on some vector bundle V , a linear differential operator L : Γ(E) →
Γ(V ) and a bundle map C : V → T ∗M⊗V such that the operator L induces
a bijection

{s ∈ Γ(E) : Ds = 0} L↔ {Σ ∈ Γ(V ) : ∇̃(Σ) + C(Σ) = 0}.

Therefore we have proved theorem 3.4. As an immediate consequence of
theorem 3.4 we obtain:

Corollary 3.16. Let E be the complex irreducible representation of G0,
whose dual representation E∗ has highest weight

λ = (r − 1)ωj +
∑

i∈I\{j}

aiωi with r ∈ N and ai ∈ N0.

For a linear differential operator D : Γ(E) → Γ(}rgr−1(TM)∗ } E) of
weighted order r with weighted symbol given by the projection

σ(D) : U−r(gr(TM))∗ ⊗ E → }rgr−1(TM)∗ } E

the solution space of the linear system Ds = 0 is finite dimensional and
bounded by the dimension of the irreducible G representation of highest weight
λ.
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Proof. Let V be the natural vector bundle corresponding to the irre-
ducible G representation V, whose dual representation has highest weight λ.
By the proof of theorem 3.4 there is a linear connection ∇̃ on V and a vector
bundle map C : V → T ∗M ⊗ V such that solutions of Ds = 0 are in bijec-
tive correspondence with solutions of ∇̃Σ + C(Σ) = 0. Since C is a vector
bundle map, ∇̄ := ∇̃ + C is linear connection on V and hence solutions of
Ds = 0 correspond to parallel sections of ∇̄. Since a parallel section of a
linear connection is already determined by its value in a single point, we see
that the dimension of the solution space is bounded by the rank of V . The
result now follows from the fact that the standard fiber of the vector bundle
V is given by the G representation V. �

Using standard tools from the representation theory of semisimple Lie
groups the dimension of the representation V can always be easily computed
from its highest weight. Hence we see that for a linear differential operator D
as in the corollary, we can read off directly from λ a bound for the dimension
of the solution space of the system Ds = 0.

Remark 3.6. (Sharpness of the bounds)
By remark 2.3 we know that in nearly all cases a regular infinitesimal flag
structure on a manifold M corresponding to |k|-graded semisimple Lie al-
gebra g, where the center of g0 is one dimensional, determines a regular
normal parabolic geometry (G → M,ω) of the same type. As already men-
tioned in the introduction a large class of invariant differential operators
for (G → M,ω) occur as differential operators in some BGG-sequence, see
[13] and [6]. Choosing a Weyl structure, see section 4.1.4, these operators
can be interpreted as differential operators between natural vector bundles
associated to the underlying infinitesimal flag structure on M . The first
operator in a BGG-sequence is always a linear differential operator of the
form described in theorem 3.4 and hence the prolongation procedure pre-
sented here applies to them. On the one hand this shows that theorem 3.4
covers a lot of geometrically interesting equations, like the equation for the
infinitesimal automorphism of (G → M,ω) or in the case of conformal ge-
ometries the equations for conformal Killing tensors, the equation for twistor
spinors and the equation for Einstein scales. On the other hand it shows that
the bound in corollary 3.16 is sharp. In fact, considering the homogenous
model of the parabolic geometry in question (G→ G/P, ωMC) and the first
BGG-operator DV associated to some G representation V. It turns out that
in the case of the homogeneous model DV equals D∇. Recall from section
2.1.4 that a Cartan connection induces a linear connection, called tractor
connection, on any natural vector bundle associated to a G representation.
The prolongation procedure described in this section identifies solution of
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the overdetermined system DV (s) = 0 on G/P with parallel section of the
tractor connection on V . Since in the case of the homogeneous model, the
tractor connection on the associated vector bundle V has vanishing curva-
ture, the dimension of the solution space equals the rank of V and so we see
that the bound in corollary 3.16 is sharp . For more information on tractor
connections see [9].

3.2.2. Semi-linear systems on regular infinitesimal flag struc-
tures - the general case. Suppose that

g = g−k ⊕ ...⊕ g0 ⊕ ...⊕ gk

is a complex |k|-graded semisimple such that the center z(g0) of the Levi sub-
algebra has dimension d > 1. Let G be a simply connected Lie group with
Lie algebra g and P ⊂ G be the connected parabolic subgroup corresponding
to the grading on g. As usual we denote by G0 ⊂ P the corresponding Levi
subgroup. Further, assume that M is a manifold endowed with a regular
infinitesimal flag structure of type (G,P ).
Now let E be the complex irreducible representation of G0 whose dual rep-
resentation has highest weight

λ =
∑
j∈J

(rj − 1)ωi +
∑
i∈I\J

aiωi rj ∈ N and ai ∈ N0 (3.20)

Recall that the number of elements in J exactly equals d.
From lemma 3.1 we know that g−1 is a completely reducible G0-module
whose decomposition into irreducible submodules is given by

g−1 =
⊕
j∈J

g−1,j

where g−1,j is the irreducible representation with highest weight −αj . By
proposition 3.5 there exists a unique irreducible representation V of G satis-
fying that

H0(g−,V) = E and H1(g−,V) =
⊕
j∈J
}rjg∗−1,j } E. (3.21)

Moreover, we observed that V admits a decomposition

V = V0 ⊕ ...⊕ VN with V0 = E

such that

giVj ⊂ Vi+j .

In particular, each Vi is invariant under the action of G0. As usual we denote
the corresponding natural vector bundle by V = V0 ⊕ ... ⊕ VN = G0 ×G0 V,
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where V0 = E.
We have seen in proposition 3.8 that there are G0-equivariant inclusions

φi : Vi → U−i(g−)∗ ⊗ E,

which are isomorphism for i < min{rj : j ∈ J}.
Now let us relabel the d elements in {rj : j ∈ J} and denote them by
r1 ≤ ... ≤ rd. Correspondingly, we write the decomposition of g−1 into
irreducible components as

g−1 = g−1,1 ⊕ ...⊕ g−1,d,

where g−1,i is the irreducible G0-module with highest weight minus the sim-
ple root, where the corresponding fundamental weight has coefficient ri − 1
in the decomposition (3.20) of λ.
Using proposition 3.2 we conclude that we have G0-equivariant projection

U−ri(g−)∗ ⊗ E→ Sri(g−)∗ ⊗ E→ Sri(g−1,i)∗ ⊗ E→ }rig∗−1,i } E. (3.22)

Remark 3.7. Denoting by Kri the kernel of the projection (3.22) one can
prove similarly as in the previous section that

φi : Vi
∼= U−i(g−)∗ ⊗ E for 0 ≤ i < r1

φi : Vi
∼= U−i(g−)∗ ⊗ E ∩ (U−(i−r1)(g−)∗ ⊗Kr1) for r1 ≤ i < r2

:

:

φi : Vi
∼= U−i(g−)∗⊗E∩(U−(i−r1)(g−)∗⊗Kr1)∩...∩(U−(i−rd)(g−)∗⊗Krd) for rd ≤ i ≤ N.

Choosing a principal G0-connection on G0 → M , we obtain linear con-
nections on all natural vector bundles associated to G0. In particular, we
obtain a linear connection ∇ : Γ(V ) → Γ(T ∗M ⊗ V ) on V , which is of ho-
mogeneity ≥ 1, cf. the first step of the proof of theorem 3.4.
If we choose a splitting of the filtration of the tangent bundle TM ∼= gr(TM),
we can interpret ∂ and δ∗ as grading preserving bundle maps on differential
forms with values in V and in particular we can define another linear con-
nection on V by setting ∇̃ := ∇ + ∂. By construction ∇̃ is of homogeneity
≥ 0 with lowest homgeneous component given by ∂.
As in the proof of theorem 3.4 one then obtains the following proposition:

Proposition 3.17. The differential operator

L(s) =
N∑
i=0

(−1)i(δ∗∇)i(s)

is the unique linear differential operator L : Γ(V0)→ Γ(V ) such that

• π(L(s)) = s, where π : V → V0 is the projection
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• L has values in the kernel of δ∗∇̃

In particular, a section Σ ∈ Γ(V ) is in im(L) if and only if δ∗∇̃(Σ) = 0.
Moreover, each operator Lj : Γ(V0)→ Γ(V0⊕ ...⊕Vj) induces a vector bundle
map

J j(V0)→ V0 ⊕ ...⊕ Vj ,

which is an isomorphism for j < r1.

Denote by gr−1,i(TM) the natural vector bundle corresponding to g−1,i

and consider the linear differential operator given by

D∇ = (D∇1 , ..., D
∇
d ) : Γ(E)→ Γ(}r1gr−1,1(TM)∗}E⊕...⊕}rdgr−1,d(TM)∗}E),

where

D∇i := −id⊗ φi ◦ πi ◦ ∇̃ ◦ L : Γ(E)→ Γ(}rigr−1,i(TM)∗ } E)

and πi : gr(TM)∗ ⊗ V → gr−1,i(TM)∗ ⊗ Vri−1 → ker(�i) is the projection
with the notation of the previous section. It is not hard to see that D∇i is of
weigted order ri and its weighted symbol is induced by the G0-equivariant
projection (3.22)

σ(D∇i ) : U−ri(gr(TM))∗ ⊗ E → }rigr−1,i(TM)∗ } E.

Since, by proposition 3.17, the splitting operator L induces a vector bun-
dle isomorphism J r1−1(E) → V0 ⊕ ... ⊕ Vr1−1 we can prove analogously to
proposition 3.11 the following:

Proposition 3.18. Suppose that

D = (D1, ..., Dd) : Γ(E)→ Γ(}r1gr−1,1(TM)∗}E⊕...⊕}rdgr−1,d(TM)∗}E)

is a differential operator, which differs from D∇ by a bundle map

ψ : J r1−1(E)→ }r1gr−1,1(TM)∗ } E ⊕ ...⊕}rdgr−1,d(TM)∗ } E,

then there exists a bundle map

A : V0 ⊕ ...⊕ VN → }r1gr−1,1(TM)∗ } E ⊕ ...⊕}rdgr−1,d(TM)∗ } E

such that s 7→ Ls induces a bijection

{s ∈ Γ(E) : Dσ = 0} ↔ {Σ ∈ Γ(V ) : ∇̃(Σ) +A(Σ) ∈ im(δ∗)}.

Since A is of homogeneity ≥ 1, we can proceed as in the previous section
and construct a bundle map C : V → T ∗M ⊗ V such that the splitting
operator s 7→ Ls induces a bijection

{s ∈ Γ(E) : D(s) = 0} ↔ {Σ ∈ Γ(V ) : (∇̃+ C)(Σ) = 0}.
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Remark 3.8. From the observations of this section we see that a result
analogously to theorem 3.4 for overdetermined systems on general regular
infinitesimal flag manifolds, like a prolongation procedure for all differential
operators of the form

D = (D1, ..., Dd) : Γ(E)→ Γ(}r1gr−1,1(TM)∗}E⊕...⊕}rdgr−1,d(TM)∗}E),

where Di is a semi-linear differential operator of weighted order ri whose
weighted symbol is induced by the G0-equivariant projection (3.22), can not
be obtained in the same way as for semi-linear system on regular infinitesimal
flag manifolds corresponding to |k|-graded semisimple Lie algebra g, where
z(g0) is one dimensional. The problem is that Lj just induces an isomorphism
J j(V0)→ V0 ⊕ ...⊕ Vj , if j < r1.

Remark 3.9. Let us mentioned that the approach of this section can be
adapted to prolong the first operator DV occurring in the BGG-sequence
associated to some G representation V, which in the case of the homogeneous
model coincide with the differential operator D∇. By definition of DV , see
[13] and [6], there is a differential operator L : Γ(V0)→ Γ(V ), which induces
a bijection

{s ∈ Γ(E) : DV σ = 0} ↔ {Σ ∈ Γ(V ) : ∇V (Σ) ∈ im(∂∗)},

where ∇V is the tractor connection on V and then one can proceed as in the
previous section to construct a linear connection on V such that its parallel
sections correspond bijectively to solutions of DV s = 0. Hence one can deal
in this way with a broad class of interesting geometric equations on regular
infinitesimal flag structures.

3.3. Prolongation on contact manifolds

In this section we want to show how theorem 3.4 can be applied to contact
manifolds.

3.3.1. Contact structures. Suppose that M is a smooth manifold of
dimension 2n + 1. By section 1.1.3 a contact structure on M is a vector
subbundle H ⊂ TM of rank 2n such that in each point x ∈ M the Levi
bracket Lx : Hx ×Hx → TxM/Hx is non-degenerate.

Definition 3.3. A (local) contact form for a contact manifold (M,H) is a
(local) section α of T ∗M such that ker(αx) = Hx for all x ∈M lying in the
domain of α.

The line bundle Q = TM/H is a locally trivial. Any local trivialisation
of Q can of course be viewed as a local contact form and conversely any local
contact form factorises to a local trivialisation of Q.This shows that local



108 3. PROLONGATION OF OVERDETERMINED SYSTEMS

contact forms always exist and are in bijective correspondence to local triv-
iallisation of Q. In particular, a local contact form α is uniquely determined
up to multiplication by a nowhere vanishing smooth function on the domain
of α and all contact manifolds of the same dimension are locally isomorphic,
cf. proposition 1.1. Note that for a (local) contact form we always have
dα|Λ2H = −α ◦ L.
Since a line bundle is trivial if and only if it is orientable, we see that there
exists a global contact for a contact manifold (M,H) if and only if the line
bundle Q is orientable. Given a global contact form α, the differential form
α ∧ (dα)n is a volume form on M . Therefore a contact manifold (M,H) is
orientable if and only if the quotient bundle Q = TM/H is orientable. As
usual, we call a orientable contact manifold (M,H) together with the choice
of an orientation on gr(TM) = H⊕Q = H⊕R an oriented contact manifold.
Note that for a orientable contact manifold one may choose as an orienta-
tion on gr(TM) the orientation induced by a global contact form. For an
orientable contact manifold the following proposition is well known:

Proposition 3.19. Let (M,H) be a orientable contact manifold and suppose
that α ∈ Γ(T ∗M) is a contact form for H ⊂ TM .
Then there exists a unique vector field r on M such that α(r) = 1 and
irdα = dα(r,− ) = 0. It is called the Reeb vector field associated to α.
In particular, α induces a splitting of the filtration of the tangent bundle
given by

TM ∼= gr(TM) = H ⊕ R

ξ 7→ (ξ − α(ξ)r, α(ξ)).

Proof. The contact form α is a nowhere vanishing section of T ∗M and
hence we can locally find a vector field ξ such that α(ξ) is nowhere vanishing.
By multiplying ξ with an appropriate smooth function, we can assume that
α(ξ) = 1. Now consider the restriction of the one form iξdα to H. Since
dα|Λ2H is non-degenerate, there is a section η ∈ Γ(H) such that iξdα = iηdα.
Putting r := ξ−η, we see that r is a vector field with the required properties.
If r′ is a vector field with the same properties, then α(r− r′) = 0 and hence
r − r′ ∈ Γ(H). Since ir−r′dα = 0, the non-degeneracy of dα|Λ2H therefore
implies that r′ = r. �

For n ≥ 1 consider now R2n+2 endowed with the skew-symmetric non-
degenerate bilinear form

< (x0, ..., x2n+1), (y0, ..., y2n+1) >= x0y2n+1−y0x2n+1+
n∑
i=1

(xiyn+i−xn+iyi).
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Moreover, let

g = sp(2n+2,R) = {A ∈ End(R2n+2) :< Ax, y >= − < x,Ay > for allx, y ∈ R2n+2}

be the symplectic Lie algebra with respect to <,>.
It turns out that g is given by block matrices of block sizes 1, n, n and 1 of
the following form:

g =



a Z W z

X A B W t

Y C −At −Zt

x Y t −Xt −a

 : Bt = B,Ct = C

 .

This realisation of g defines a |2|-grading on g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2

given by 
g0 g1 g1 g2

g−1 g0 g0 g1

g−1 g0 g0 g1

g−2 g−1 g−1 g0

 .

The Lie bracket restricted to g−1 × g−1 → g−2 is given by

[(X1, Y1), (X2, Y2)] = −2(Xt
1Y2 − Y t

1X2).

Hence it is just −2 two times the standard symplectic from on R2n and so
we see that g− = g−2⊕ g−1 is a Heisenberg algebra and the |2|-grading on g

is a contact grading.
Let us choose as Cartan subalgebra h ⊂ g the diagonal matrices in g. De-
noting by εi the linear functional on h, which extracts the i-th entry of a
diagonal matrix, then the roots corresponding to the Cartan subalgebra h

are given by ∆ = {±εi± εj : 1 ≤ i < j ≤ n+ 1}∪ {±2εi : 1 ≤ i ≤ n+ 1}. As
simple subsystem of ∆ we choose ∆0 = {α1, ..., αn+1}, where αi = εi − εi+1

for 1 ≤ i ≤ n and αn+1 = 2εn+1. The |2|-grading on g is then given by
Σ-height, where Σ = {α1} and we may refer to this grading by the crossed
Satake diagram

× b pp p b < b
α1 α2 αn αn+1

.

Note that g0
∼= R⊕ sp(2n,R), where sp(2n,R) is the symplectic Lie algebra

with respect of the standard symplectic form on R2n. By proposition 2.3 the
Killing form on g induces g0-module isomorphisms g−1

∼= g∗1 and g−2
∼= g∗2.

From lemma 3.1 follows that g−1 is an irreducible representation of g0 with
highest weight −α1 and correspondingly g1 is irreducible with lowest weight
α1.
Let G = Sp(2n + 2,R) be the symplectic Lie group consisting of linear
symplectic automorphisms of (R2n+2, <,>) and let P ⊂ G be the parabolic
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subgroup with Lie algebra p = g0⊕g1⊕g2 given by the connected component
of the identity of all block upper triangular matrices in G with block sizes
1, n, n and 1. The corresponding Levi subgroup G0 ⊂ P is the given by all
the block diagonal matrices in P

G0 =


e D

e−1

 : D ∈ Sp(2n,R), e ∈ R>0

 ,

where Sp(2n,R) is the symplectic Lie group wit respect to the standard
symplectic form on R2n.
A regular infinitesimal flag structure of type (G,P ) on a manifold M con-
sists on one hand of a filtration of the tangent bundle, which makes M into
a filtered manifold whose symbol algebra in each point is isomorphic to the
Heisenberg algebra g−. So it consists of a filtration TM = T−2M ⊃ T−1M

such that the Levi bracket L : T−1M × T−1M → TM/T−1M is non-
degenerate in each point, meaning that H := T−1M is a contact distribu-
tion on M . On the other hand, we have a reduction of the structure group
G0 → P(gr(TM)) of the frame bundle P(gr(TM)) of gr(TM) with respect to
the homomorphism Ad : G0 ↪→ Autgr(g−). As already mentioned in example
2.4, any element in Autgr(g−) is determined by its restriction to g−1, since
[g−1, g−1] = g−2. Therefore we have an inclusion Autgr(g−) ↪→ GL(g−1) and
P(gr(TM)) can be viewed as a subbundle of the frame bundle P(H) of H.
Hence the reduction of the structure group can be seen as a reduction of
the structure group G0 → P(gr(TM)) ⊂ P(H) of the frame bundle P(H)
with respect to the homomorphism G0

Ad→ Autgr(g−) ⊂ GL(g−1) and hence
the reduction can be interpreted as an additional structure on the distribu-
tion H. To interpret the reduction we just need to analyse the inclusion
Ad : G0 ↪→ Autgr(g−) ⊂ GL(g−1).
Writing an element of G0 as (D, e) and an element in g− as (x, Z = X + Y )
the action of G0 on g− is given by

(e−2x, e−1DZ).

This immediately implies that the adjoint action of G0 on g− identifies G0

with group of grading preserving Lie algebra automorphisms of g−, which
in addition preserve an orientation on g−. Note that G0 can identified with
the conformal symplectic group CSp(2n,R). Therefore we obtain:

Proposition 3.20. Suppose that M is a manifold of dimension 2n+ 1.
A regular inifinitesimal flag structure on M of type (Sp(2n+ 2,R), P ) is an
oriented contact manifold (M,H).
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Remark 3.10. By proposition 3.20 we see that a regular infinitesimal flag
structure of type (G,P ) doesn’t determine a regular normal parabolic ge-
ometry of type (G,P ). Regular normal parabolic geometries of type (G,P )
provide exactly one of the two exceptional classes of parabolic geometries,
which are not determined by their underlying flag structures, but by finer
underlying structures, which in this case can be interpreted as contact pro-
jective structures, see also remark 2.3.

To formulate theorem 3.4 for oriented contact structures let us fix some
notation. It is well known that the fundamental weight ωi : h → R corre-
sponding to the simple root αi is given by

ωi = ε1 + ...+ εi.

The highest weight λ of an irreducible representation W of g0 = R⊕sp(2n,R)
is a p-dominant and p-integral linear functional on h. Hence λ is of the form

λ = a1ω1 +
n+1∑
i=2

aiωi,

where ai ∈ N0 for 2 ≤ i ≤ n+ 1 and a1 ∈ R arbitrary, see also section 3.1.1.
We refer to the irreducible representation W of g0 with highest weight λ by
the diagram:

× b pp p b < ba1 a2 an an+1
.

The completely reducible natural vector bundles for oriented contact struc-
tures are the vector bundles associated to G0, which correspond to completely
reducible representations of G0 = CSp(2n,R). Since G0 has a one dimen-
sional center, there is a one parameter family of one dimensional represen-
tations and therefore a one parameter family of natural line bundles. For
w ∈ R we denote by R[w] the one dimensional representation

R[w] × b pp p b < b−w
.

Of course we have R[w]∗ ∼= R[−w].
The grading component g−2 consists of the root space corresponding to the
root −2ε1 = −2(α1 + ...+ αn+1) and hence we obtain

g−2 = R[2] × b pp p b < b−2
.

The corresponding vector bundle is gr−2(TM) = Q ∼= G0 ×CSp(2n,R) g−2,
which is trivial, since (M,H) is oriented.
The irreducible CSp(2n,R) representation g−1 has highest weight −α1 =
−2ω1 + ω2 and so we get

g−1 × b pp p b < b−2 1
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and since g∗−1
∼= g1 as CSp(2n,R)-modules we have

g1 × b pp p b < b2 1
.

The corresponding natural vector bundles are

gr−1(TM) = H ∼= G0 ×CSp(2n,R) g−1

gr−1(TM)∗ = H∗ ∼= G0 ×CSp(2n,R) g1.

The semisimple part of G0 is given by Sp(2n,R). Viewing g−1 as represen-
tation of Sp(2n,R) we see from its highest weight that it equals the stan-
dard representation R2n. Hence all completely reducible vector bundles for
oriented contact structures can be obtained from tensor bundles of H and
natural line bundles.
Applying theorem 3.4 to the case of regular infinitesimal flag structures of
type (Sp(2n+ 2), P ) we obtain:

Theorem 3.21. Let (M,H) be an oriented contact manifold. Suppose that
E is the irreducible representation of CSp(2n,R) which is dual to the repre-
sentation

× b pp p b < br − 1 a2 an an+1
.

For any choice of a contact form α and for any choice of a principal CSp(2n,R)-
connection ∇ on G0 → M , there exists a linear connection ∇̃ on V , where
V is the natural vector bundle associated to the irreducible representation of
Sp(2n+ 2,R), which is dual to the representation

b b pp p b < br − 1 a2 an an+1
,

with the following property:
For every semi-linear differential operator D : Γ(E) → Γ(SrH∗ } E) of
weighted order r with symbol given by the natural projection (3.2)

σ(D) : U−r(gr(TM))∗ ⊗ E → SrH∗ } E

there is a bijection between

{s ∈ Γ(E) : D(s) = 0} ↔ {Σ ∈ Γ(V ) : (∇̃+ C)(Σ) = 0}

for some bundle map C : V → T ∗M ⊗ V .

Remark 3.11. The choice of a contact form for an oriented contact manifold
(M,H) reduces the structure group of P(H) further to Sp(2n,R). Denoting
the corresponding principal Sp(2n,R) bundle by G′0, the reduction G′0 → G0

induces an isomorphism G′0 ×Sp(2n,R) E ∼= G0 ×CSp(2n,R) E for all represen-
tations E of CSp(2n,R). Hence, having choose a contact form, it would be
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more natural in theorem 3.21 to work with a principal Sp(2n,R)-connection
on G′0. Note that the proof of the theorem remains valid in this case.

As a corollary we have:

Corollary 3.22. Let (M,H) be a oriented contact manifold. Suppose that
E is the irreducible representation of CSp(2n,R) which is dual to the repre-
sentation

× b pp p b < br − 1 a2 an an+1
.

Then for every linear differential operator D : Γ(E) → Γ(SrH∗ } E) of
weighted order r with symbol given by the natural projection (3.2)

σ(D) : U−r(gr(TM))∗ ⊗ E → SrH∗ } E.

the associated linear system Ds = 0 is of weighted finite type and the dimen-
sion of the solution space is bounded by the dimension of the Sp(2n + 2,R)
representation b b pp p b < br − 1 a2 an an+1

.

Let us consider one basic example of such a system.

Example 3.1. Suppose that (M,H) is a oriented contact manifold of di-
mension 2n+ 1 and let ∇ be a principal CSp(2n,R)-connection on G0. De-
note by SrH∗[−2r] the natural vector bundle associated to the irreducible
CSp(2n,R) representation

Srg1 ⊗ R[−2r] × b pp p b < b0 r
.

The principal connection ∇ induces a partial connection on SrH∗[−2r]

∇ : Γ(SrH∗[−2r])→ Γ(H∗ ⊗ SrH∗[−2r])

and so we can consider the linear differential operator D : Γ(SrH∗[−2r])→
Γ(Sr+1H∗[−2r]) of weighted order one given by the composition

D : Γ(SrH∗[−2r]) ∇→ Γ(H∗ ⊗ SrH∗[−2r])
sym→ Sr+1H∗[−2r],

where sym : H∗ ⊗ SrH∗ → Sr+1H∗ denotes the symmetrisation. Obviously
the weighted symbol of D is given by the symmetrisation

σ(D) : H∗ ⊗ SrH∗[−2r]
sym→ Sr+1H∗[−2r]

and hence we can apply corollary 3.22:

dim({s ∈ Γ(SrH∗[−2r]) : Ds = 0}) ≤ dim( a a pp p a < a0 r
) =

=
(2n+ 2r + 1)(2n+ r − 1)!(2n+ r)!

(2n− 1)!(2n+ 1)!r!(r + 1)!
.
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Remark 3.12. The results of this section fit together with the results ob-
tained by Eastwood and Gover in [21]. There also some other examples
of differential operators can be found to which theorem 3.21 respectively
corollary 3.22 applies.



CHAPTER 4

Construction of invariant operators for Lagrangean
contact structures via curved Casimir operators

Suppose that (G → M,ω) is a parabolic geometry of type (G,P ) and
let V be a finite dimensional representation of P . On the natural vector
bundle V corresponding to V there exists a basic invariant differential op-
erator, called the curved Casimir operator on V . In [10] it was shown how
curved Casimir operators can be used to conceptually construct invariant op-
erators acting between sections of natural vector bundles corresponding to
completely reducible representations of P . The only problem one has to deal
with is that it is not apparent from the construction that the obtained oper-
ator is non-zero. In a forthcoming article Čap and Gover therefore developed
in the case of parabolic geometries corresponding to |1|-graded semisimple
Lie algebras a method for computing the principal symbol of an operator
constructed in this way. By constructing invariant operators for Lagrangean
contact structures, which are related to the square of a Sub-Laplacian, we
will demonstrate that in the case of parabolic geometries correponding to |k|-
graded semisimple Lie algebras for k > 1 one should compute the weighted
symbol of the operators, constructed by means of curved Casimir operators,
rather than the usual principal symbol.

4.1. Curved Casimir operators for parabolic geometries

Curved Casimir operators for parabolic geometries have been first intro-
duced in [16]. We collect in this section their basic properties.

4.1.1. The adjoint tractor bundle. Suppose (G →M,ω) is a regular
parabolic geometry of type (G,P ) and consider the adjoint tractor bundle
AM = G ×P g. We observed in section 2.1.4 that the P -invariant filtration
g = g−k ⊃ ... ⊃ gk induces a filtration by subbundles of the adjoint tractor
bundle:

AM = A−kM ⊃ ... ⊃ A0M ⊃ ... ⊃ AkM

with AiM = G ×P gi. In particular, A0M = G ×P p and hence AM/A0M ∼=
TM . So we have a natural projection from the adjoint tractor bundle to the
tangent bundle

Π : AM → TM.

115
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The Lie bracket [ , ] : g× g→ g is P -equivariant and therefore induces a
vector bundle map

{ , } : AM ×AM → AM,

which makes each fiber AxM into a filtered Lie algebra isomorphic to g.
The Killing form is a non-degenerate G-invariant bilinear form on g and
therefore it induces a non-degnerate vector bundle map

B : AM ×AM → K.

By the second part of proposition 2.3, the isomorphism AM ∼= A∗M defined
by B induces a duality between the vector bundles AM/A−i+1M and AiM .
In particular, we have an isomorphism between (AM/A0M)∗ ∼= T ∗M and
A1M = G ×P p+.

Remark 4.1. Consider the associated graded bundle of the adjoint tractor
bundle gr(AM) = gr−k(AM) ⊕ ... ⊕ gr0(AM) ⊕ ... ⊕ grk(AM). Since P+

acts trivially on gi/gi+1, we obtain gri(AM) = G0 ×G0 gi. Therefore we can
decompose gr(AM) as follows:

gr(AM) = gr(TM)⊕ gr0(AM)⊕ gr(T ∗M).

The algebraic bracket from above induces a bracket on gr(AM), which ex-
tends the algebraic bracket { , } on gr(TM) defined in section 2.3.

Suppose V is a representation of P and denote as usual by V = G×PV the
corresponding natural vector bundle. Then the infinitesimal representation
p× V→ V induces a bundle map

• : A0M × V → V,

which makes each fiber Vx into a module over the Lie algebra A0
xM .

If V is a representation of G, then the infinitesimal action g ⊗ V → V even
induces a bundle map

• : AM × V → V,

which makes each fiber Vx into a module over the Lie algebra AxM .

4.1.2. The fundamental derivative. Let V be representation of P
with corresponding natural vector bundle V = G ×P V. We have seen in
section 2.1.4 that its space of sections Γ(V ) can be identified with the space
C∞(G,V)P of P -equivariant smooth functions.
The Cartan connection ω induces a linear isomorphism ω : TuG ∼= g and
therefore the space of sections of the adjoint tractor bundle Γ(AM) ∼=
C∞(G, g)P may be identified with the space of P -invariant vector fields
X(G)P on G. Differentiating a P -equivariant function f : G → V with respect
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to a P -invariant vector field ξ ∈ X(G)P , the resulting function ξ · f : G → V
is again P -equivariant:

(ξ · f)(up) = Tu(f ◦ rp)(Turp)−1ξ(up) = Tu(p−1f(u))ξ(u) = p−1(ξ · f(u)).

So we obtain a well defined bilinear differential operator

D = DV : Γ(AM)× Γ(V )→ Γ(V )

(s, v) 7→ Ds(v),

where Ds(v) ∈ Γ(V ) is the section corresponding to the P -equivariant func-
tion ξs · fv : G → V. The operator D is called the fundamental derivative or
the fundamental D-operator.
We collect the basic properties of the fundamental derivative in the following
proposition, for a proof see [9]:

Proposition 4.1. Suppose V is a representation of P and denote by V =
G ×P V the corresponding natural vector bundle. Then we have:

(1) The fundamental derivative D : Γ(AM) × Γ(V ) → Γ(V ) is linear
over smooth functions C∞(M,K) in the AM -entry and satisfies a
Leibniz rule in the W -entry:

Ds(fv) = fDs(v) + (Π(s) · f)v,

where f ∈ C∞(M,K) and Π : AM → TM is the natural projection.
(2) Suppose V′ is another representations of P and V → V′ is a P -

equivariant map. Denoting by Φ : V → V ′ the corresponding bundle
map, we have:

DV ′
s (Φ(v)) = Φ(DV

s (v)).

Remark 4.2. The naturality of the fundamental derivative, stated in part
(2) of the proposition, justifies to denote the fundamental derivative for any
bundle just by D.

4.1.3. Curved Casimir operators. By part (1) of the proposition the
fundamental derivative can be viewed as a differential operator

D : Γ(V )→ Γ(A∗M ⊗ V ).

Since A∗M ⊗V is as well a natural vector bundle, we can iterate the funda-
mental derivative. In particular, we have the differential operator

D2 : Γ(V )→ Γ(⊗2A∗M ⊗ V ).

The bundle map B induced by the Killing form can be used to identify AM
and A∗M . In particular, we may view B as bundle map ⊗2A∗M → K.
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Definition 4.1. Let V be a representation of P and set V = G ×P V. The
linear differential operator CV : Γ(V )→ Γ(V ) defined by

CV = B ⊗ id ◦D2

is called the curved Casimir operator on V .

Remark 4.3. The name curved Casimir operator for C is due to the fact
that on natural vector bundles associated to the homogeneous model (G→
G/P, ωMC) the differential operator C is given by the action of the Casimir
element. Choose a basis {Xi} of g and denote by {Xi} the dual basis with
respect to the Killing form, then this means that C(f) =

∑
RXiRXif , where

RX ∈ X(G)P is the right invariant vector field generated by X ∈ g and f is
a section of V = G×P V.

The naturality of the fundamental derivative immediately implies the
naturality of the Casimir operator:

Proposition 4.2. Suppose V and V′ are two P representations and let Φ :
V → V ′ be a vector bundle map induced by some P -equivariant linear map
V→ V′. Then we have:

CV ′(Φ(v)) = Φ(CV (v)).

In particular, the Casimir operator preserves sections of natural subbundles
of V and the restriction of the Casimir operator to sections of a natural sub-
bundle coincides with the Casimir of that subbundle. Similarly, the induced
operator acting on sections of a natural quotient bundle coincides with the
Casimir operator of that quotient bundle.

For the adjoint tractor bundle AM one can always find special local
frames, see [16]:

Definition 4.2. An adapted local frame for AM is a local frame

{Xi, Ar, Z
i : i = 1, ..., dim(p+), r = 1, ..., dim(g0)}

such that:

• Zi ∈ Γ(A1M) for all i and Ar ∈ Γ(A0M) for all r
• B(Xi, Xj) = 0, B(Xi, Ar) = 0 and B(Xi, Z

j) = δji for all j, i and r

where B : AM ×AM → K is the bundle map induced by the Killing form.

The second part of proposition 2.3 implies that B satisfies B(Zi, Zj) = 0
and B(Zi, Ar) = 0 for all i, j and r. Using this one can show, see [16]:

Corollary 4.3. If {Xi, Ar, Z
i} is an adapted local frame for AM , then the

dual frame with respect to B is given by {Zi, Ar, Xi} for certain sections Ar ∈
Γ(A0M). In addition, Ar and Ar project to dual local frames of A0M/A1M .
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In terms of an adapted local frame the curved Casimir operator looks as
follows, for a proof see [16]:

Proposition 4.4. Suppose V = G ×P V is a natural vector bundle and
C : Γ(V ) → Γ(V ) the curved Casimir operator on V . Choose an adapted
local frame {Xi, Ar, Z

i} over some open subset U ⊂ M with dual frame
{Zi, Ar, Xi}. Then the curved Casimir operator is given by

C(v)|U = −2
∑
i

Zi •DXiv −
∑
i

{Zi, Xi} • v +
∑
r

Ar •Ar • v (4.1)

where v is a section of V .

We have seen in section 2.1.5 that P+ ⊂ P acts trivially on an irreducible
representation of P and so an irreducible representation actually comes from
an irreducible representation of G0 trivially extended to P . Therefore the
first sum of (4.1) vanishes, which shows that the curved Casimir operator on
a vector bundle corresponding to an irreducible representation is algebraic.
Recall from section 2.1.5 that irreducible representation representations of P
can be described by their highest respectively by their lowest weight. It was
proved in [16] that the curved Casimir operator on an irreducible natural
vector bundle acts as follows:

Proposition 4.5. Let V be an irreducible representation of P with lowest
weight −λ. Then the Casimir operator C : Γ(V )→ Γ(V ) acts by multiplica-
tion with the scalar

βV :=< λ, λ+ 2ρ >,

where <,> is the inner product induced by the Killing form and ρ the sum
of the fundamental weights. The number βV is called the Casimir eigenvalue
of V.

By proposition 4.4 we see that, if the Casimir operator is not algebraic,
it is differential operator of weighted order at most k. By corollary 3.3 the
G0-modules U−k(g−)∗ and Uk(p+) can be identified via the Killing form. The
spaces U−k(g−)∗ and Uk(p+) can be also seen as isomorphic P -module by
trivially extending the action of G0 to P and we have

U−k(gr(TM))∗ = G ×P U−k(g−)∗ ∼= G ×P Uk(p+) = Uk(gr(T ∗M)).

The projection Uk(p+)→ gk, see section 3.1.2, is then P -equivariant and we
obtain a vector bundle map between the corresponding vector bundles.
Suppose C is not algebraic, then it follows from proposition 4.4 that its
weighted symbol of order k

σk(C) : Uk(gr(T ∗M))⊗ V → V
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is induced by the P -equivariant map by −2Ω, where Ω is the composition of
the projection Uk(p+)⊗V→ gk⊗V with the action of gk on the representation

Ω : Uk(p+)⊗ V→ gk ⊗ V→ V.

If the action of gk on V is trivial, the weighted symbol of order k vanishes
and the Casimir operator is of weighted order at least k−1. Inductively one
can see that the weighted order of C is the largest i such that the action of
gi on V is non-trivial and that its weighted symbol comes from the action of
gi on V.

4.1.4. Weyl structures for parabolic geometries. A regular para-
bolic geometry (p : G → M,ω) induces a regular infinitesimal flag structure
on M of the same type, consisting of a filtration of the tangent bundle of M
and the G0-principal bundle p0 : G0 →M . Assuming that the regular para-
bolic geometry is normal and H1(g−, g) = 0, we know by theorem 2.14 that
the underlying regular infinitesimal flag structure already determines the
regular normal parabolic geometry. Weyl structures for parabolic geome-
tries provide a tool to describe the Cartan connection of a regular normal
parabolic geometry in terms of objects defined on G0 and lead to preferred
principal connections on G0.
For a parabolic geometry (p : G → M,ω) of type (G,P ), consider the G0-
principal bundle p0 : G0 → M , where G0 was defined as the quotient G/P+.
Hence we also have a natural projection π : G → G0, which is easily seen to
be a trivial principal bundle with structure group P+.

Definition 4.3. A (local) Weyl structure for a parabolic geometry (p : G →
M,ω) is a (local) smooth G0-equivariant section σ : G0 → G of the projection
π : G → G0.

In [14] it was shown that global Weyl always exists and form an affine
space modeled on Γ(gr(T ∗M)). Note that gr(T ∗M) = G0 ×G0 g1 ⊕ ... ⊕ gk

and hence sections of gr(T ∗M) may be viewed as smooth G0-equivariant
functions Υ = (Υ1, ...,Υk) : G0 → g1 ⊕ ...⊕ gk.

Theorem 4.6. Suppose (p : G → M,ω) is a parabolic geometry. Then
there exists a global Weyl structure and the space of Weyl structures is a
affine space modeled on Γ(gr(T ∗M)). Explicitly, if σ and σ̂ are two Weyl
structures, then there exists a section Υ ∈ Γ(gr(T ∗M)) such that

σ̂(u) = σ(u)exp(Υ1(u))...exp(Υk(u)) for all u ∈ G0.

Suppose σ : G0 → G is a Weyl structure for a parabolic geometry (p : G →
M,ω). Then one can consider the pullback σ∗ω ∈ Ω1(G0, g) of the Cartan
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connection ω with respect to the Weyl structure σ. The equivariancy of σ
immediately implies the equivariancy of σ∗ω:

(rg)∗(σ∗ω) = Ad(g−1)σ∗ω for all g ∈ G0.

Hence we may decompose σ∗ω with respect to the G0-invariant decomposi-
tion g = g−k ⊕ ...⊕ g0 ⊕ ...⊕ gk and write this decomposition as

σ∗ω = σ∗ω−k + ...+ σ∗ω0 + ...+ σ∗ωk.

For X ∈ g0 consider the corresponding fundamental vector field ζG0
X (u) =

d
dt |t=0uexp(tX) on G0. Since σ is G0-equivariant, we have σ(uexp(tX)) =
σ(u)exp(tX) and hence σ∗ω(ζG0

X (u)) = ω(ζX(σ(u))) = X.
Therefore σ∗ω0 ∈ Ω1(G0, g0) is a principal connection on G0 → M . It is
called the Weyl connection associated to the Weyl structure σ. The principal
connection σ∗ω0 induces linear connections on all natural vector bundles
associated to G0. These are also called Weyl connections.
The fact that σ∗ω reproduces the generators of fundamental vector fields
also shows that for i 6= 0 the G0-equivariant one form σ∗ωi is horizontal. So
it can be interpreted as an element in Ω1(M,G0 ×G0 gi).
The positive components of σ∗ω define a one form with values in gr(T ∗M)

σ∗ω+ := σ∗ω1 + ...+ σ∗ωk ∈ Ω1(M, gr(T ∗M)),

which is called the Rho tensor associated to the Weyl structure σ.
The negative components of σ∗ω define a one form with values in gr(TM)

σ∗ω− := σ∗ω−1 + ...+ σ∗ω−k ∈ Ω1(M, gr(TM)),

which is called the soldering form associated to the Weyl structure σ.
It is not hard to see that the soldering form is an isomorphism TM →
gr(TM), which defines a splitting of the filtration of TM , meaning that
for all i < 0 the isomorphism restricts to a map T iM →

⊕
j≥i grj(TM)

and the component in gri(TM) equals the image of the projection T iM →
T iM/T i+1M .
Observe that a Weyl structure σ : G0 → G may be viewed as a reduction of
the structure group from P to G0 and we have:

Proposition 4.7. Let (p : G → M,ω) be a parabolic geometry and suppose
V is a representation of P . The choice of a Weyl structure σ induces an
isomorphism

G ×P V ∼= G0 ×G0 V.

Moreover, the Weyl connection induces a linear connection on V = G ×P V.

Proof. Consider the map G0×V→ G×P V given by (u, v) 7→ [σ(u), v].
The equivariancy of σ implies that it induces a well defined smooth map
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G0 ×G0 V → G ×P V, which is a fiber bundle map over the identity on M

and restricts to a linear isomorphism between the fibers. �

Suppose V is a representation of P . Then V admits a P -invariant filtra-
tion

V = V0 ⊃ V1 ⊃ ... ⊃ VN ,

which is inductively defined by

VN = {v ∈ V : Zv = 0 for all Z ∈ p+}

Vi = {v ∈ V : Zv ∈ Vi+1 for all Z ∈ p+}.

By construction of the filtration we have P+Vi ⊂ Vi+1 and hence P+ acts
trivially on the quotients Vi/Vi+1. Therefore Vi/Vi+1 is a representation of
G0 trivially extended to P . Accordingly, we have a filtration of the corre-
sponding vector bundle V = G ×P V into subbundles

V = V 0 ⊃ ... ⊃ V N

and we can consider the associated graded vector bundle

gr(V ) = gr0(V )⊕ ...⊕ grN (V )

with gri(V ) = V i/V i+1.
Since P+ ⊂ P is a normal subgroup and P+ acts trivially on Vi/Vi+1, we
obtain an isomorphism gr(V ) ∼= G0 ×G0 gr(V) = G0 ×G0 V. The proposition
4.7 therefore implies:

Corollary 4.8. A Weyl structure σ : G0 → G induces an isomorphism of
vector bundles V ∼= gr(V ), which defines a splitting of the filtration.

In [14] one can find the transformation rules for the Weyl connection,
the Rho tensor and the soldering form respectively the splittings of filtered
vector bundles under the change of a Weyl structure.

Remark 4.4. Suppose D : Γ(V ) → Γ(W ) is a differential operator be-
tween sections of natural vector bundles associated to G. Choosing a Weyl
structure, one can interpret D as a differential operator between sections of
natural vector bundles associated to G0 and write down an expression for D
in terms of the data associated with the choosen Weyl structure. Invariance
of D can then be phrased as the fact that this expression doesn’t change, if
one changes the Weyl structure.
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4.1.5. A formula for the curved Casimir operator. Suppose (p :
G →M,ω) is a parabolic geometry corresponding to a |k|-graded semisimple
Lie algebra and choose a Weyl structure σ : G0 → G. Let V be a represen-
tation of P endowed with its P -invariant filtration V = V0 ⊃ ... ⊃ VN as
defined in section 4.1.4. By corollary 4.8, the Weyl structure induces an
isomorphism V ∼= gr(V ) = gr0(V ) ⊕ ... ⊕ grN (V ). We identify a section
v ∈ Γ(V ) with the corresponding section (v)σ = (v0, ..., vN ) of gr(V ). The
Weyl connection on G0 → M induces a linear connection on V ∼= gr(V ),
which we denote by ∇ = ∇σ. Moreover, we write P ∈ Ω1(M, gr(T ∗M)) for
the Rho-tensor associated to the Weyl structure. Then we have the following
formula for the fundamental derivative, for a proof see section 5.1. in [15].

Proposition 4.9. Let σ : G0 → G be a Weyl structure for a parabolic geom-
etry (p : G → M,ω). Then the fundamental derivative on V = G ×P V is
given by

Ds(v)i = ∇Π(s)vi − s0 • vi +
k∑
j=1

(Pj(Π(s))− sj) • vi−j ,

where s ∈ Γ(AM) with (s)σ = (s−k, ..., sk), v ∈ Γ(V ) with (v)σ = (v0, .., vN )
and Pj(Π(s)) denotes the component in grj(T ∗M) of P(Π(s)).

By proposition 2.7 we know that a representation of P is completely re-
ducible if and only if it comes from a completely reducible representation of
G0 via the quotient map P → P/P+ = G0. Recall that a representation of
G0 is completely reducible if and only if the center of G0 acts diagonalisably.
Assuming that we are dealing with a representation V of P such that the
center of G0 acts diagonalisably, the center of G0 also acts diagonalisably
on the quotients Vi/Vi+1 and so the quotients Vi/Vi+1 are completely re-
ducible G0-representations. We obtain the following formula for the Casimir
operator on natural vector bundles associated to such representations, see
also [10]:

Proposition 4.10. Suppose (p : G → M,ω) is a parabolic geometry and
choose a Weyl structure σ : G0 → G. Let V be a representation of P such
that center of G0 acts diagonalisably and set V = G ×P V. Choosing an
adapted local frame {Zi, Ar, Xi} for the adjoint tractor bundle, which is com-
patible with the splitting of the adjoint tractor bundle induced by σ, the curved
Casimir operator is locally given by:

C(v) = β(v)− 2
dim(p+)∑
i=1

Zi • (∇Xiv + P(Xi) • v),

where β : V → V is the bundle map defined by βW id on each irreducible
component W ⊂ V ∼= gr(V ).
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Proof. Via the Weyl structure σ, we have an isomorphism AM ∼=
G0×G0 g−⊕ g0⊕ p+. Hence we have AM ∼= gr(TM)⊕ gr0(AM)⊕ gr(T ∗M)
and by assumption {Zi} is a local frame of gr(T ∗M), {Ar} a local frame of
gr0(AM) and {Xi} a local frame of gr(TM). Since the center of G0 acts
diagonalisably on V, the vector bundle V ∼= gr(V ) splits into a direct sum of
irreducible bundles.
Considering the formula for the Casimir operator in proposition 4.1, we see
that C is the sum of −2

∑
i Z

i •DXiv and a tensorial term depending just on
the action of gr0(AM) = G0 ×G0 g0 on V . Hence the tensorial term has to
preserve each irreducible component W ⊂ V . The naturality of the Casimir
operator (proposition 4.2) and proposition 4.5 imply that the Casimir oper-
ator C acts on Γ(W ) by multiplication with βW and so the tensorial term
has to coincide with β. The result follows now directly from proposition
4.10. �

4.1.6. Construction of invariant operators for parabolic geome-
tries via curved Casimir operators. We have seen that on any natural
vector bundle V we have a basic invariant differential operator given by the
curved Casimir operator C = CV : Γ(V )→ Γ(V ). Curved Casimir operators
can be used to construct other invariant operators for parabolic geometries.
In [16] it was shown how to construct splitting operators via curved Casimir
operators and in [10] it was demonstrated how to construct invariant differ-
ential operator between irreducible natural vector bundles. Let us explain
this:
Suppose V is a representation of P such that the center of the Levi subgroup
G0 acts diagonalisably and denote by V = V0 ⊃ V1 ⊃ ... ⊃ VN its natural
P -invariant filtration.
Accordingly, we write the filtration by vector subbundles of the correspond-
ing natural vector bundle as

V = V 0 ⊃ V 1 ⊃ ... ⊃ V N ,

where by assumption on V the quotient bundles V i/V i+1 correspond to
completely reducible representations. From the naturality of the Casimir
operator C (proposition 4.2) and from proposition 4.5 it follows that the
Casimir operator acts by a scalar on section of each irreducible component
of V i/V i+1. We denote the different scalars occurring in this manner by
β1
i , ..., β

ni
i .

Now consider the following differential operator acting on sections of V

Li =
ni∏
`=1

(C − β`i ).
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Observe that all factors in this product obviously commute.
The crucial observation for constructing natural differential operators by
means of Casimir operators is the following:

Lemma 4.11. The differential operator Li : Γ(V )→ Γ(V ) satisfies that:

• Li(Γ(V j)) ⊂ Γ(V j) for all j = 0, ..., N
• Li(Γ(V i)) ⊂ Γ(V i+1)

Proof. The naturality of the Casimir operator, formulated in proposi-
tion 4.2, implies that C preserves sections of V j and hence so does Li. More-
over, this shows that Li induces a differential operator on sections of V j/V j+1

and the naturality of C implies that it is given by
∏ni
`=1(CV j/V j+1 − β`i ). In

particular, Li induces the zero operator on Γ(V i/V i+1) and so we must have
that Li(Γ(V i)) ⊂ Γ(V i+1). �

Fix now two indices i < j and let W be an irreducible subbundle of
V i/V i+1. Denoting by π : V i → V i/V i+1 the natural projection, the preim-
age π−1(W ) ⊂ V i ⊂ V is a natural subbundle.
We write πj : V i → V i/V j+1 for the natural projection. By lemma 4.11 the
composition

πj ◦ Lj ◦ ... ◦ Li+1 : Γ(V i)→ Γ(V i/V j+1)

is a well defined invariant differential operator.
Again using lemma 4.11, we conclude that the operator Lj ◦ ... ◦ Li+1 maps
section of V i+1 to section of V j+1 and therefore the above composition in-
duces a differential operator Γ(V i/V i+1) → Γ(V i/V j+1). The naturality of
the Casimir operator implies that Lj ◦ ... ◦Li+1 preserves sections of natural
subbundles of V i. In particular, it preserves the space Γ(π−1(W )). Since
W ∼= π−1(W )/(V i+1 ∩ π−1(W )), the composition πj ◦ Lj ◦ ... ◦ Li+1 induces
an invariant differential operator

L : Γ(W )→ Γ(π−1(W )/(V j+1 ∩ π−1(W )).

Assume that β is the Casimir eigenvalue corresponding to the irreducible
bundle W .
In [16] it was shown that if β 6= β`m for i < m ≤ j and all `, then L composed
with the projection

π−1(W )/(V j+1 ∩ π−1(W ))→ π−1(W )/(V i+1 ∩ π−1(W )) ∼= W

is a non-zero multiple of the identity and so L defines a splitting operator
for the projection π−1(W )/(V j+1 ∩ π−1(W ))→W .
Conversely, suppose now that β coincides with one of the Casimir eigenvalues
β`j . Without loss of generality we assume that β = β1

j and let W̃ be the direct
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sum of all irreducible subbundles of V j/V j+1 corresponding to β1
j . Consider

Lj = (C − β)L̃j , where L̃j =
∏ni
`=2(C − β`i ). Since all the factors commute,

we have

Lj ◦ .. ◦ Li+1 = L̃j ◦ .. ◦ Li+1 ◦ (C − β).

Since (C−β) maps sections of π−1(W ) to sections of V i+1, we conclude using
lemma 4.11 that Lj−1 ◦ .. ◦ Li+1 maps sections of π−1(W ) to sections of V j

and L̃j preserves Γ(V j) by naturality. Therefore the differential operator L
has values in Γ(V j/V j+1). Again, by naturality we have

(C − β)πj ◦ Lj ◦ ... ◦ Li+1 = πj ◦ Lj ◦ ... ◦ Li+1 ◦ (C − β)

and since this composition induces the zero operator on W , we obtain that
L has values in Γ(W̃ ). Hence we have constructed an invariant differential
operator L : Γ(W )→ Γ(W̃ ), cf. section 2.3. of [10].
This argumentation shows that curved Casimir operators provide an efficient
tool to conceptually construct invariant differential operators for parabolic
geometries between natural completely reducible vector bundles. However,
it is not visible from this construction, if the obtained operator L is zero or
not. In a forthcoming article Čap and Gover therefore established in the case
of parabolic geometries corresponding to |1|-gradings a systematical method
for computing the principal symbol of L.
Dealing with parabolic geometries corresponding to |k|-gradings for k > 1,
it turns out that one should study the weighted symbol rather than the
usual one. Similarly as in the |1|-graded case it should be possible to find a
systematical way to compute the weighted symbol of L. We will demonstrate
this in the next sections by constructing examples of invariant differential
operators for Langrangean contact structures.

4.2. Construction of invariant operators for Lagrangean contact
structures

In this section we will show how curved Casimir operators can be used to
construct invariant differential operators for Langrangean contact structures
related to the square of a Sub-Laplacian.

4.2.1. Lagrangean contact structures. For n ≥ 1 consider the sim-
ple Lie algebra g = sl(n + 2,R) of trace free endomorphisms of Rn+2. We
can decompose g into blocks of size 1, n and 1 as follows:

g =


 a Z γ

X A W

β Y b

 : a, b, β, γ ∈ R;X,W ∈ Rn;Z, Y ∈ Rn∗; a+ b+ tr(A) = 0

 .
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This decomposition defines a |2|-grading on g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2

given by  g0 gE1 g2

gE−1 g0 gF1
g−2 gF−1 g0

 ,

with g±1 = gE±1 ⊕ gF±1.
Since the restriction of the Lie bracket to g−1×g−1 → g−2 is just the negative
of the standard symplectic form on R2n, the grading is a contact grading,
meaning that g− = g−2 ⊕ g−1 is a Heisenberg algebra. In this picture, the
decomposition g−1 = gE−1 ⊕ gF−1 corresponds to the decomposition of the
symplectic vector space R2n = Rn ⊕ Rn∗ into a direct sum of Lagrangean
subspaces. Moreover, the restriction of the Lie bracket to gE−1 × gF−1 is non-
degenerate and hence defines an isomorphism gF−1

∼= L(gE−1, g−2).
Choose as Cartan subalgebra h ⊂ g the diagonal matrices and denote by
εi : h → R the linear functional, which extracts the i-th entry of a matrix
in h. It is well known that the root system corresponding to h is given by
∆ = {εi − εj : i 6= j}. Let ∆0 = {α1, ..., αn+1} be the simple subsystem
of roots, where αi = εi − εi+1. Then the |2|-grading is given by Σ-height
with Σ = {α1, αn+1} and we may refer to this grading by the crossed Satake
diagram

× b pp p b ×
α1 α2 αn αn+1

.

Note that g0
∼= R2⊕sl(n,R). We know from proposition 2.3 that the Killing

form induces isomorphisms of g0-modules g1
∼= g∗−1 and g2

∼= g∗−2. The
decomposition g−1 = gE−1 ⊕ gF−1 coincides with decomposition of the g0-
module g−1 into irreducible components, where gE−1 has highest weight −α1

and gF−1 has highest weight −αn+1, see also lemma 3.1. Correspondingly,
g1 = gE1 ⊕ gF1 is the decomposition into irreducible components of the dual
module g1, where gE1

∼= (gE−1)∗ has lowest weight α1 and gF1
∼= (gF−1)∗ has

lowest weight αn+1.
LetG be the special linear group SL(n+2,R) consisting of volume preserving
automorphisms of Rn+2. As a parabolic subgroup P ⊂ G with Lie algebra
p = g0 ⊕ g1 ⊕ g2 we choose the connected component of the identity of
the subgroup of block upper triangular matrices with block size 1, n and 1.
The corresponding Levi subgroup G0 is then the subgroup of block diagonal
matrices of P

G0 =


c C

e

 : C ∈ GL+(n,R), c, e ∈ R>0 with cdet(C)e = 1

 ,
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where GL+(n,R) := {A ∈ GL(n,R) : det(A) > 0} is the group of orientation
preserving automorphisms of Rn.
By remark 2.3, we know that H1(g−, g)1 = 0 and so we deduce from theorem
2.14 that regular normal parabolic geometries of type (G,P ) are determined
by their underlying regular infinitesimal flag structure of type (G,P ).
A regular infinitesimal flag structure of type (G,P ) on a manifoldM consists
on one hand of a filtration of the tangent bundle, which makes M into
a filtered manifold with symbol algebra in each point isomorphic to the
Heisenberg Lie algebra g−. Hence it consists of a filtration of the tangent
bundle of M

TM = T−2M ⊃ T−1M

such that the Levi bracket L : T−1M × T−1M → TM/T−1M is non-
degenerate in each point, which means that H := T−1M is a contact distri-
bution.
On the other hand, one has a reduction G0 → P(gr(TM)) of the structure
group of the frame bundle P(gr(TM)) of the associated graded gr(TM) =
gr−2(TM) ⊕ gr−1(TM) corresponding to the homomorphism Ad : G0 ↪→
Autgr(g−). To interpret this reduction as an additional structure on the
contact manifold M , one has to analyse the inclusion G0 ↪→ Autgr(g−).
Denoting elements of G0 by (c, C, e), the action of (c, C, e) on (β,X, Y ) ∈
g−2 ⊕ gE−1 ⊕ gF−1 is given by

(c, C, e) · (β,X, Y ) = (ec−1β, c−1CX, eY C−1) =

= (c−2det(C)−1β, c−1CX, c−1det(C)−1Y C−1).

Hence the Levi subgroup G0 acts on g− by grading preserving Lie algebra au-
tomorphisms, which in addition preserve the decomposition g−1 = gE−1⊕gF−1

and preserve an orientation on g−.
Conversely, assume that Φ ∈ Autgr(g−) preserves the decomposition of g−1

and preserves an orientation on g− and denote by C ∈ GL+(gE−1) the restric-
tion of Φ to gE−1. The compatibility of Φ with the Lie bracket immediately
implies that Φ equals (β,X, Y ) 7→ (eβ, CX, eY C−1) for some positive num-
ber e ∈ R>0. The element (eβ,CX, eY C−1) equals

( n+2
√

det(C)−1e−1, n+2
√

det(C)−1e−1C, n+2
√

det(C)−1e−1e) · (X,Y, β).

Therefore the Levi subgroup G0 can be identified via the adjoint action
with the subgroup of those automorphisms in Autgr(g−), which preserve the
decomposition g−1 = gE−1 ⊕ gF−1 and preserve an orientation on g−. So the
reduction G0 → P(gr(TM)) can be interpreted as the decomposition of the
contact distribution H into the direct sum

H = E ⊕ F,



4.2. CONSTRUCTION OF INVARIANT OPERATORS 129

where E = G0×G0 gE−1 and F = G0×G0 gF−1 and the choice of an orientation
on gr(TM) = TM/H ⊕H.
The line bundle Q := TM/H is orientable if and only if it is trivial. Recall
from section 3.3 that the line bundle Q associated to a contact structure is
trivial if and only if there exists a global contact form. This implies that a
manifold endowed with a contact distribution is orientable if and only if Q
is orientable. Given an orientable contact manifold one can always choose as
an orientation on gr(TM) the orientation induced by the choice of a global
contact form.

Definition 4.4. Suppose M is manifold of dimension 2n+ 1.

(1) A Lagrangean contact structure on M is a contact structure H ⊂
TM together with a decomposition into a direct of sum H = E⊕F ,
where E and F are subbundles of rank n and where the Levi bracket
restricted to E × E as well as to F × F vanishes.

(2) An orientable Lagrangean contact manifold together with the choice
of an orientation on the bundle gr(TM) = TM/H ⊕H is called an
oriented Lagrangean contact manifold.

By the description of regular infinitesimal flag structures of type (G,P )
and theorem 2.14 we therefore have:

Theorem 4.12. There is an equivalence of categories between regular normal
parabolic geometries of type (G,P ) and oriented Lagrangean contact mani-
folds (M,H = E ⊕ F ).

Remark 4.5. The name Lagrangean contact structures for these geometric
structures goes back to the article [39] by Takeuchi. In this article the author
shows that there is a correspondence between a certain class of parabolic
geometries and Lagrangean contact structures.

A Lagrangean contact structure naturally occurs on the projectivised
cotangent bundle P(T ∗RPn+1) of the projective space of dimension RPn+1.
Let us shortly explain this, for details see [39].

Example 4.1. Let us denote by

F1,n+1(Rn+2) = {V0 ⊂ V1 ⊂ Rn+2 : V0, V1 ⊂ Rn+2; dim(V0) = 1, dim(V1) = n+1}

the flag manifold of lines in hyperplanes in Rn+2. Moreover, let G̃ =
PGL(n + 2,R) be the Lie group with Lie algebra g, which is defined as
the quotient of GL(n + 2,R) by its center and let P̃ ⊂ G be the parabolic
subgroup with Lie algebra p given by the equivalence classes of block up-
per triangular matrices in G̃ with block sizes 1, n and 1. The Lie group G̃
obviously acts transitively on F1,n+1(Rn+2) and P̃ is the stabiliser in G̃ of
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the standard flag R1 ⊂ Rn+1 ⊂ Rn+2. Therefore G̃/P̃ is diffeomorphic to
F1,n+1(Rn+2).
There are two natural smooth projections

π0 : F1,n+1(Rn+2)→ RPn+1

π1 : F1,n+1(Rn+2)→ RP (n+1)∗,

where π0 is given by mapping a flag to its line and π1 is given by mapping a
flag to its hyperplane and identifying the hyperplane with a line in (Rn+2)∗.
The projection π0 is a fiber bundle, where the fiber over some fixed line [x] is
the space of all hyperplanes in Rn+2 containing [x], which can be identified
with the space of all hyperplanes in Rn+2/[x]. Identifying a hyperplane with
a line in the dual space, we obtain that the fiber is isomorphic to RPn. It is
not hard to see that the vertical bundle ker(Tπ0) of π0 exactly corresponds
to the G̃0 representation gF−1.
The projection π1 is a fiber bundle, where the fiber over a line [λ] is the space
of all hyperplanes in (Rn+2)∗ containing [λ], which is therefore isomorphic
to RPn. The vertical subbundle ker(Tπ1) of π1 corresponds to G̃0 represen-
tation gE−1.
The subbundle ker(Tπ1)⊕ ker(Tπ0) ⊂ TF1,n+1(Rn+2) defines a Lagrangean
contact structure on F1,n+1(Rn+2). Note that the projection π0 identi-
fies the flag manifold F1,n+1(Rn+2) with the projectivised cotangent bundle
P(T ∗RPn+1) and under this identification the Lagrangean contact structure
is just the canonical contact structure on P(T ∗RPn+1).

Remark 4.6. The inclusion Ad : G̃0 ↪→ Autgr(g−) maps the Levi subgroup
to the subgroup of Autgr(g−), consisting of all grading preserving Lie algebra
automorphisms, which in addition preserve the decomposition g−1 = gE−1 ⊕
gF−1. Hence by theorem 2.14 one obtains an equivalence of categories between
regular normal parabolic geometries of type (G̃, P̃ ) and Lagrangean contact
structures (M,H = E ⊕ F ). The flag manifold F1,n+1(Rn+2) ∼= G̃/P̃ is
the homogeneous model for these geometries. Moreover, let us remark that
the projectivised cotangent bundle of any manifold, which has a projective
structure, admits canonically a Lagrangean contact stuctures, see section
4.4.2 in [15].

4.2.2. Completely reducible natural vector bundles for oriented
Lagrangean contact structures. Suppose g is the Lie algebra sl(n+2,R)
endowed with the contact grading g = g−2⊕g−1⊕g0⊕g1⊕g2 corresponding
to Lagrangean contact structures. Choose as Cartan subalgebra h ⊂ g the
diagonal matrices and let ∆0 = {α1, ..., αn+1} be the subset of simple roots
with αi = εi − εi+1 as in section 4.2.1. Then it is well known that the
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fundamental weight ωi : h→ R corresponding to simple root αi is given by

ωi = ε1 + ...+ εi −
i

n+ 2
(ε1 + ...+ εn+2).

The highest weight of an irreducible representation W of the Levi subalgebra
g0 = R2 ⊕ sl(n,R) is a p-dominant and p-integral functional λ : h → R.
Written as a linear combination of fundamental weights λ is of the form
λ = a1ω1 + an+1ωn+1 +

∑n
i=2 aiωi, where ai ∈ N0 for i = 2, ..., n, cf. also

section 3.1.1. We refer to the irreducible representation W of g0 with highest
weight λ by the diagram

× b pp p b ×
a1 a2 an an+1

.

The natural completely reducible vector bundles for oriented Lagrangean
contact structures are the associated vector bundles corresponding to com-
pletely reducible representations of the Levi subgroup

G0 =


c C

e

 : C ∈ GL+(n,R), c, e ∈ R>0 with cdet(C)e = 1

 .

SinceG0 has a two dimensional center, we have a two parameter family of one
dimensional representations and therefore a two parameter family of natural
line bundles. For w,w′ ∈ Z we denote by R[w,w′] the one dimensional
representation corresponding to the highest weight

R[w,w′] × b pp p b ×
−w −w′

.

Obviously, we have R[w,w′]∗ ∼= R[−w,−w′].
We denote the natural line bundle corresponding to R[w,w′] by

E [w,w′] := G0 ×G0 R[w,w′].

In particular, we deduce from the description of the grading in terms of roots
that g−2 coincides with the root space corresponding to the root −(α1 + ...+
αn+1) = −ω1 − ωn+1 and so we have:

g−2 = R[1, 1] × b pp p b ×
−1 −1

.

Therefore we have gr−2(TM) = Q = E [1, 1] and Q∗ = E [−1,−1]. Since we
are dealing with oriented Lagrangean contact structures, these bundles are
trivial.
We already know that the G0-representation g−1 splits into irreducible com-
ponents g−1 = gE−1 ⊕ gF−1, where gE−1 has highest weight −α1 and gF−1 has
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highest weight −αn+1. Written as a sum of fundamental weights we have
−α1 = −2ω1 + ω2 and −αn+1 = ωn − 2ωn+1 and so we obtain:

E := gE−1 × b pp p b ×
-2 1

.

and
F := gF−1 × b pp p b ×

1 -2
.

These representations give rise to the natural vector bundles E and F . Recall
that the Levi bracket L : E × F → Q induces an isomorphism E ∼= F ∗ ⊗Q.
We denote the tensor product of E or F with the one dimensional represen-
tation R[w,w′] by

E[w,w′] := E⊗ R[w,w′] F[w,w′] := F⊗ R[w,w′].

Remark 4.7. The semisimple part of G0 is SL(n,R) and gE−1 viewed as
a representation of SL(n,R) is the standard representation Rn. Therefore
all completely reducible natural bundles for oriented Lagrangean contact
structures can in fact be constructed from tensor bundles of E and natural
line bundles.

In the sequel we will use the following abstract index notation:
We set

Eα := E = G0 ×G0 gE−1 Eα := E∗ = G0 ×G0 gE1

and
Eα := F = G0 ×G0 gF−1 Eα := F = G0 ×G0 gF1 .

Correspondingly, sections of these vector bundles will be written by attaching
the suitable index: we write φα for a section of Eα and φα for a section of
Eα and so on.
Tensor products of the above vector bundles will abbreviated by attaching
for each factor occurring in the tensor product to E a suitable index: For
instance

Eαβ := E ⊗ E

Eαβ := E ⊗ F ∗.
Moreover, enclosing to indices by round brackets means symmetrisation

E(αβ) := S2E E(αβ) := S2F.

Further, we abbreviate the tensor product of a tensor product above with a
line bundle E [w,w′] by omitting the tensor product sign and E :
For instance we write

Eα[w,w′] := Eα ⊗ E [w,w′] Eα[w,w′] := Eα ⊗ E [w,w′].

and
Eαβ[w,w′] := Eαβ ⊗ E [w,w′].
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Taking traces is indicated by using the same symbol for two indices, meaning
that for a section φαβ ∈ Γ(Eαβ) we will write φαα ∈ C∞(M) for its trace.
Observe that the Levi bracket can be seen as an invertible section Lαβ ∈
Γ(Eαβ[1, 1]) and we denote its inverse by Lαβ ∈ Γ(Eαβ[−1,−1]). The Levi

bracket Lαβ induces an isomorphism Eα ∼= Eα[1, 1] and likewise Lαβ induces
an isomorphism Eα ∼= Eα[−1,−1]. Hence we can lower and raise indices at
the expense of a weight.

4.2.3. An invariant operator for oriented Lagrangean contact
structures. Suppose that we have given some parabolic geometry (G →
M,ω) of type (G,P ) with G = SL(n + 2,R) and P ⊂ G as in the previous
sections.
Let T := Rn+2 be the standard representation of G and denote by T =
G ×P Rn+2 the corresponding associated vector bundle, which is called the
standard tractor bundle.
From the matrix description of g = g−2 ⊕ ... ⊕ g2 in section 4.2.1 it follows
immediately that the natural P -invariant filtration of T (see section 4.1.4)
is of the form

T = T0 ⊃ T1 ⊃ T2,

where the iterated quotients are the irreducible G0-representations

T/T0 = R[0, 1] T1/T2 = E[−1, 0] and T2 = R[−1, 0].

Therefore the standard tractor bundle admits a filtration

T = T 0 ⊃ T 1 ⊃ T 2

with associated graded vector bundle gr(T ) = G0 ×G0 Rn+2 given by

gr(T ) = gr0(T )⊕ gr1(T )⊕ gr2(T ) = E [0, 1]⊕ Eα[−1, 0]⊕ E [−1, 0].

We deduce from the P -invariant filtration of Rn+2 that the G-representation
Ṽ := S2Rn+2 admits a P -invariant filtration of the form

Ṽ = Ṽ0 ⊃ Ṽ1 ⊃ Ṽ2 ⊃ Ṽ3 ⊃ Ṽ4,

where

Ṽ/Ṽ1 = R[0, 2] Ṽ1/Ṽ2 = E[−1, 1] Ṽ2/Ṽ3 = S2E[−2, 0]⊕ R[−1, 1]

Ṽ3/Ṽ4 = E[−2, 0] Ṽ4 = R[−2, 0].

Hence we have a filtration of the corresponding vector bundle Ṽ = G ×P W
given by

Ṽ = Ṽ 0 ⊃ Ṽ 1 ⊃ Ṽ 2 ⊃ Ṽ 3 ⊃ Ṽ 4

with associated graded bundle

gr(Ṽ ) = gr0(Ṽ )⊕ gr1(Ṽ )⊕ gr2(Ṽ )⊕ gr3(Ṽ )⊕ gr4(Ṽ ) =
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= E [0, 2]⊕ Eα[−1, 1]⊕ (E(αβ)[−2, 0]⊕ E [−1, 1])⊕ Eα[−2, 0]⊕ E [−2, 0].

Now consider the representation V = S2Rn+2[w,w′ − 2] of G given by the
tensor product of Ṽ with the one dimensional representation R[w,w′ − 2].
By the considerations above the corresponding vector bundle V admits a
filtration

V = V 0 ⊃ V 1 ⊃ V 2 ⊃ V 3 ⊃ V 4

with associated graded vector bundle given by

gr(V ) = gr0(V )⊕ gr1(V )⊕ gr2(V )⊕ gr3(V )⊕ gr4(V ) =

E [w,w′]⊕Eα[w−1, w′−1]⊕(E(αβ)[w−2, w′−2]⊕E [w−1, w′−1])⊕Eα[w−2, w′−2]⊕E [w−2, w′−2].

We want now to construct an invariant operator for Lagrangean contact
structures

L : Γ(E [w,w′])→ Γ(E [w − 2, w′ − 2])

using the curved Casimir operator C : Γ(V )→ Γ(V ) as explained in section
4.1.6. Therefore we compute the Casimir operator in terms of data associated
to a Weyl structure, see proposition 4.10.
Choose a Weyl structure σ : G0 → G. By corollary 4.8 the Weyl structure
σ induces isomorphism between a natural vector bundle and its associated
graded, hence in particular we have an isomorphism gr(V ) ∼= V and we will
write sections of V as 

σ

µα

Rαβ | ρ

να

θ

 ,

with the convention that σ is a section of E [w,w′] and so on. The Weyl
connection σ∗ω0 induces a linear connection on V , which we denote by ∇.
Moreover, we decompose the Rho-tensor P ∈ Γ(gr(T ∗M) ⊗ gr(T ∗M)) asso-
ciated to σ with respect to decomposition

gr(T ∗M) = gr1(T ∗M)⊕ gr2(T ∗M) = (Eα ⊕ Eα)⊕ E [−1,−1] :

the four components of homogeneity two are denoted by

Aαβ ∈ Γ(Eαβ) Aαβ ∈ Γ(Eαβ) Pαβ ∈ Γ(Eαβ) and Pαβ ∈ Γ(Eαβ)

the four components of homogeneity three are denoted by

Tα ∈ Γ(Eα[−1,−1]) Tα ∈ Γ(Eα[−1,−1])

Sα ∈ Γ(E [−1,−1]⊗ Eα) Sα ∈ Γ(E [−1,−1]⊗ Eα)
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and the single component of homogeneity four is denote by

S ∈ Γ(E [−2,−2]).

With regard to proposition 4.10 we have to determine the vector bundle map
• : gr(T ∗M)× V → V induced from the action of p+ on S2Rn+2[w,w′ − 2].
Observe that the action of p+ on the standard representation T = Rn+2 is
given by 0 Z γ

0 0 W

0 0 0


t2t1
t0

 =

Zt1 + γt0

Wt0

0

 .

From this one deduces easily that

φα •


σ

µβ

Rβγ | ρ

νβ

θ

 =


0
0

0 | φαµ
α

2φαRαβ

φαν
α



φᾱ •


σ

µβ

Rβγ | ρ

νβ

θ

 =


0

2φβσ
φ(βµγ) | 0

φβρ

0



s •


σ

µβ

Rβγ | ρ

νβ

θ

 =


0
0

0 | 2sσ
µβs

ρs


for sections φα ∈ Γ(Eα), φα ∈ Γ(Eα) and s ∈ Γ(E [−1,−1]).
The chosen Weyl structure σ induces isomorphisms TM ∼= gr(TM) and
AM ∼= gr(AM) = gr(TM) ⊕ gr0(AM) ⊕ gr(T ∗M). Via σ we can therefore
view TM ∼= gr(TM) as a subbundle of the adjoint tractor bundle AM .
Hence we can consider the restriction of the fundamental derivative D to
TM ∼= gr(TM) = (Eα ⊕ Eα)⊕ E [1, 1] and using proposition 4.9 we obtain :

Dα


σ

µβ

Rβγ | ρ

νβ

θ

 =


∇ασ

∇αµβ + 2Pαβσ
∇αRβγ + Pα(βµγ) | ∇αρ+Aαβµ

β + 2Tασ
∇ανβ + 2AαγRγβ + Pαβρ+ Tαµ

β

∇αθ +Aαβν
β + Tαρ


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Dα


σ

µβ

Rβγ | ρ

νβ

θ

 =


∇ασ

∇αµβ + 2Aαβσ
∇αRβγ +Aα

(βµγ) | ∇αρ+ Pαβµβ + 2Tασ
∇ανβ + 2PαγRγβ +Aα

βρ+ Tαµ
β

∇αθ + Pαβνβ + Tαρ



Ds


σ

µβ

Rβγ | ρ

νβ

θ

 =


∇sσ

∇sµβ + 2Sβσ
∇sRβγ + S(βµγ) | ∇sρ+ Sβµ

β + 2Sσ
∇sνβ + 2SγRγβ + Sβρ+ Sµβ

∇sθ + Sβν
β + Sρ


where Dα(−) (resp. Dᾱ(−)) denotes the fundamental derivative in direction
of sections of Eα (resp. E ᾱ) and Ds(−) denotes the fundamental derivative
in direction of sections s of E [1, 1].
According to the formula for the curved Casimir operator in proposition 4.10,
the curved Casimir operator C : Γ(V ) → Γ(V ) is given by the sum of the
bundle map β : V → V with −2 times the action of the index α (resp. α,
resp. s) on Dα(v) (resp. Dα(v), resp. Ds(v)).

Proposition 4.13. Let (G →M,ω) be a regular normal parabolic geometry
of type (G,P ) and suppose that V is the natural vector bundle associated
to the G representation S2(Rn+2)[w,w′ − 2]. Choosing some Weyl structure
G0 → G the curved Casimir operator C : Γ(V )→ Γ(V ) is given by

C


σ

µα

Rαβ | ρ

να

θ

 =

=


β0σ

β1µ
α − 4∇ασ

β1
2R

αβ − 2∇(αµβ) − 4A(αβ)σ | β2
2ρ− 2∇αµα − 4(Pαασ +∇sσ)

β3ν
α − 4∇βRβα − 2∇αρ− 4Pβ(βµα) − 2Pαβµβ − 2∇sµα − 4(Tασ + Sασ)

β4θ − 2∇ανα − 4AαβRαβ − 2(∇sρ+ Pααρ)− 2(Tαµα + Sαµ
α)− 4Sσ

 ,

where β0, β1, β
1
2 , β

2
2 , β3, β4 are the Casimir eigenvalues of the irreducible bun-

dles occurring in gr(V ).

It remains to determine the Casimir eigenvalues β0, β1, β
1
2 , β

2
2 , β3, β4 of

the irreducible bundles occurring in gr(V ). By proposition 4.5 the Casimir
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eigenvalue βW of an irreducible representation W of G0 is given by

< λ, λ+ 2ρ >,

where λ is the highest weight of the dual representation W∗ and ρ = ω1 +
... + ωn+1 =

∑n+2
i=1

1
2(n + 1 − 2(i − 1))εi is the lowest form. The easiest

way to compute the Casimir eigenvalues is to express all weights in terms
of the functionals εi, which are orthogonal with respect to the trace form of
sl(n+ 2,R), then to calculate the inner product of λ and λ+ 2ρ with respect
to the trace form and to use the well known fact that the Killing form <,>

is just 2(n+ 2) times the trace form. Doing so, one directly calculates:

Proposition 4.14. The Casimir eigenvalues corresponding to the irreducible
components of gr(V ) are given by

β0 = 2((n+ 1)w′2 + w′(2w + (n+ 1)(n+ 2)) + (n+ 1)w(w + n+ 2))

β1 = 2((n+ 1)w′2 + w′(2w + (n− 1)(n+ 2)) + (n+ 1)w(w + n+ 2))

β1
2 = 2((n+1)w′2+w′(2w+(n−3)(n+2))+(n+1)w2+(n+1)(n+2)w+4(n+2))

β2
2 = 2((n+1)w′2+w′(2w+(n−1)(n+1))+(n+1)w2+(n−1)(n−2)w−2n(n+2))

β3 = 2((n+1)w′2+w′(2w+(n−3)(n+2))+(n+1)w2+(n−1)(n+2)w−2(n−1)(n+2))

β4 = 2((n+1)w′2+w′(2w+(n−3)(n+2))+(n+1)w2+(n−3)(n+2)w−4(n−1)(n+2)).

For the differences cji := β0 − βji one has

c1 = 4(n+ 2)w′

c1
2 = 8(n+ 2)(w′ − 1)

c2
2 = 4(n+ 2)(w + w′ + n)

c3 = 4(n+ 2)(2w′ + w + n− 1)

c4 = 8(n+ 2)(w′ + w + n− 1).

Now consider the differential operator

(C − β4)(C − β3)(C − β1
2)(C − β2

2)(C − β1) : Γ(V )→ Γ(V ). (4.2)

As explained in section 4.1.6 the operator (4.2) induces an invariant differ-
ential operator from the top slot E [w,w′] to the bottom slot E [w− 2, w′− 2],
if c4 = 0. For w′ +w + n− 1 = 0 we therefore obtain a differential operator

L : Γ(E [w,w′])→ Γ(E [w − 2, w′ − 2]).

Since the filtration of V is of the form V ⊃ V 1 ⊃ ... ⊃ V 4, the differential
operator L is of weighted order at most 4. However, it is not apparent from
the construction, if it is zero or not. Therefore we will in the sequel compute
its weighted symbol.
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The Weyl connection induces linear connections on all natural vector bun-
dles, in particular also on T ∗M ∼= gr(T ∗M), therefore we can from iterated
covariant derivatives.

Lemma 4.15. For a section σ ∈ E [w,w′] we have

∇α∇βσ −∇β∇ασ ≡ 0 mod(terms of weighted order ≤ 1)

∇α∇sσ −∇s∇ασ ≡ 0 mod(terms of weighted order ≤ 2)

∇α∇βσ −∇β∇ασ ≡ Lαβ∇sσ mod(terms of weighted order ≤ 1).

Moreover, we have L(φα, φβ) = −φαφαs and so Lαβ = −δαβs respectively
Lαβ = δαβs.

Proof. One always has ∇2σ(ξ, η) = ∇ξ∇ησ −∇∇ξησ and therefore we
obtain

∇2σ(ξ, η)−∇2σ(η, ξ) = ∇ξ∇ησ −∇∇ξησ −∇η∇ξσ +∇∇ηξσ =

= R(ξ, η)σ +∇[ξ,η]σ +∇∇ηξσ −∇∇ξησ.
This equation immediately implies the commutator relations above.
The last statement follows directly from the fact that the restriction of the
Lie bracket to gE−1 × gF−1 → g−2 is given by the negative of the standard
symplectic form on R2n = Rn ⊕ Rn∗, see section 4.2.1. �

We now compute the weighted symbol of the differential operator L.
Note that for w′ + w + n− 1 = 0 we obtain

c0

c1

c1
2 | c2

2

c3

c4

 =


0

4(n+ 2)w′

8(n+ 2)(w′ − 1) | 4(n+ 2)
4(n+ 2)w′

0

 .

In particular, we have that β0 = β4 and β1 = β3. We know that all factors in
(4.2) commute. To compute the weighted symbol of L the most convenient
way is to apply the factors in (4.2) in the opposite order. Since we are just
interested in the highest order part of L, we will freely rearrange terms in
accordance with lemma 4.15.
Since β0 = β4, applying (C − β4) to a section σ ∈ Γ(E [w,w′]) we obtain:

(C−β4)


σ

0
0 | 0

0
0

 =


0

−4∇ασ
0 | − 4∇sσ

0
0

+
terms of lower weighted order

in each component.
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Since β1 = β3, applying (C − β3) to the result leads to
0
0

8∇(α∇β)σ | − 4(β2
2 − β3)∇sσ + 8∇α∇ασ

16∇α∇sσ
8∇s∇sσ

+
terms of lower weighted order

in each component.

Applying (C − β2
2) we obtain

0
0

8(β1
2 − β2

2)∇(α∇β)σ | 0
8(β3 − β2

2)∇α∇sσ − 32∇β∇(β∇α)σ − 16∇α∇β∇βσ
8(β4 − β3)∇s∇sσ − 48∇α∇α∇sσ

+
terms of lower weighted order

in each component.

Applying (C − β1
2) leads to

0
0

0 | 0
8(β3 − β1

2)(β3 − β2
2)∇α∇sσ − 32(β3 − β2

2)∇β∇(β∇α)σ − 16(β3 − β1
2)∇α∇β∇βσ

8(β4 − β1
2)(β4 − β3)∇s∇sσ − 16(3β4 − 3β1

2 + β3 − β2
2)∇α∇α∇sσ + 64∇α∇β∇(β∇α)σ+

+32∇α∇α∇β∇βσ


+terms of lower weighted order in each component.

Applying (C − β3), we obtain in the bottom slot

64c2
2∇α∇β∇(β∇α)σ+32c1

2∇α∇α∇β∇βσ−16[(c1
2−c3)(c2

2−c3)+c3(3c1
2+c2

2−c3)]∇α∇α∇sσ+

+8c3c3c
1
2∇s∇sσ + terms of weighted lower order =

= 64c2
2∇α∇β∇(β∇α)σ + 32c1

2∇α∇α∇β∇βσ − 16c1
2(c2

2 + 2c3)∇α∇α∇sσ+

+8c3c3c
1
2∇s∇sσ + terms of weighted lower order.

By lemma 4.15 we have

32c1
2∇α∇α∇β∇βσ =

= 32c1
2∇α∇β∇(α∇β)σ+32c1

2∇αLαβ∇s∇βσ+ terms of lower weighted order

= 32c1
2∇α∇β∇(α∇β)σ + 32c1

2∇α∇s∇ασ + terms of lower weighted order

= 32c1
2∇α∇β∇(α∇β)σ + 32c1

2∇α∇α∇sσ + terms of lower weighted order.
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and therefore the term of highest weighted order of L is given by

32(2c2
2+c1

2)∇α∇α∇β∇βσ−16(c1
2c

2
2+2c1

2c3−2c1
2)∇α∇α∇sσ+8c3c3c

1
2∇s∇sσ =

= 128(n+ 2)w′∇α∇β∇(β∇α)σ

− 512(n+ 2)2(2w′2 − w′ + 2(n+ 2)w′

2(n+ 2)
+

1− 2(n+ 2)
2(n+ 2)

)∇α∇α∇sσ

+ 1024(n+ 2)3w′2(w′ − 1)∇s∇sσ (4.3)

We conclude that L is always non-zero, since the highest order term never
vanishes completely. Note that the usual principal symbol vanishes for w′ = 0
and so it was in fact crucial to compute the weighted symbol of L. Summing
up, we have the following theorem:

Theorem 4.16. For w + w′ + n − 1 = 0 there is an invariant differential
operator of weighted order four

L : E [w,w′]→ E [w − 2, w′ − 2]

whose weighted symbol U−4(gr(TM))∗⊗E [w,w′]→ E [w−2, w′−2] is induced
by the appropriate multiples (see (4.3)) of the contractions

S2gE1 ⊗ S2gF1 ⊗ R[w,w′]→ R[w − 2, w′ − 2]

gE1 ⊗ gF1 ⊗ g2 ⊗ R[w,w′]→ R[w − 2, w′ − 2]

and the appropriate multiple (see (4.3)) of the identity

g2 ⊗ g2 ⊗ R[w,w′] = R[w − 2, w′ − 2]→ R[w − 2, w′ − 2].

Now we may also consider the dual representation T∗ = (Rn+2)∗ of the
standard representation of SL(n+ 2,R). From the filtration of the standard
representation we deduce that the dual representation admits filtration of
the form

T∗ = (T∗)0 ⊃ (T∗)1 ⊃ (T∗)2

where

(T∗)0/(T∗)1 = R[1, 0] (T∗)1/(T∗)2 = F[0,−1] (T∗)2 = R[0,−1].

Therefore the corresponding vector bundle T ∗ has a filtration of the form

T ∗ = T ∗0 ⊃ T ∗1 ⊃ T ∗2

with associated graded vector bundle gr(T ) = G0 ×G0 T∗ given by

gr(T ∗) = gr0(T ∗)⊕ gr1(T ∗)⊕ gr2(T ∗) = E [1, 0]⊕ Eα[0,−1]⊕ E [0,−1].

We conclude that the natural vector bundle V corresponding to the repre-
sentation W = S2Rn+2∗[w − 2, w′] admits a filtration

W = W 0 ⊃W 1 ⊃W 2 ⊃W 3 ⊃W 4
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with associated graded vector bundle given by

gr(W ) = gr0(W )⊕ gr1(W )⊕ gr2(W )⊕ gr3(W )⊕ gr4(W ) =

E [w,w′]⊕Eα[w−1, w′−1]⊕(E(αβ)[w−2, w′−2]⊕E [w−1, w′−1])⊕Eα[w−2, w′−2]⊕E [w−2, w′−2].

Since E [w,w′] and E [w−2, w′−2] occur as well as irreducible components of
gr(W ), we can use also the Casimir operator on W to construct an invariant
operator

L : E [w,w′]→ E [w − 2, w′ − 2].

Choosing a Weyl structure σ : G0 → G, we identify W and gr(W ) and write
sections of gr(W ) as 

σ

µα

Rαβ | ρ

να

θ

 ,

with the convention that σ is a section of E [w,w′].
From the action of p+ on Rn+2∗ one easily deduces that the bundle map
• : gr(T ∗M)×W →W is given by:

φα •


σ

µβ

Rβγ | ρ

νβ

θ

 =


0

−2φβσ
−φ(βµγ) | 0
−2φβ̄ρ

0



φᾱ •


σ

µβ̄

Rβ̄γ̄ | ρ

νβ̄

θ

 =


0
0

0 | − φᾱµᾱ

−2φᾱRᾱβ̄

−φᾱνᾱ



s •


σ

µβ̄

Rβ̄γ̄ | ρ

νβ̄

θ

 =


0
0

0 | − 2sσ
−sµβ̄

−sρ


for sections φα ∈ Γ(Eα), φα ∈ Γ(Eα) and s ∈ Γ(E [−1,−1]).
The Casimir operator C : Γ(W ) → Γ(W ) on W is now computed as before
and we obtain:
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Proposition 4.17. Let (G →M,ω) be a regular normal parabolic geometry
of type (G,P ) and suppose that W is the natural vector bundle associated to
the G representation S2(Rn+2)∗[w − 2, w′]. Choosing some Weyl structure
G0 → G the curved Casimir operator C : Γ(W )→ Γ(W ) is given by

C


σ

µᾱ

Rᾱβ̄ | ρ

νᾱ

θ

 =

=


β0σ

β1µ
ᾱ + 4∇ᾱσ

β1
2R

ᾱβ̄ + 2∇(ᾱµβ̄) − 4A(ᾱβ̄)σ | β2
2ρ+ 2∇ᾱµᾱ − 4(Pᾱᾱσ −∇sσ)

β3ν
ᾱ + 4∇β̄Rβ̄ᾱ + 2∇ᾱρ− 4Pβ̄

(β̄µᾱ) − 2Pᾱβ̄µ
β̄ + 2∇sµᾱ − 4(T ᾱσ + Sᾱσ)

β4θ + 2∇ᾱνᾱ − 4Aᾱβ̄R
ᾱβ̄ + 2(∇sρ− Pᾱᾱρ)− 2(Tᾱµᾱ + Sᾱµ

ᾱ)− 4Sσ

 ,

where γ0, γ1, γ
1
2 , γ

2
2 , γ3, γ4 are the Casimir eigenvalues of the irreducible bun-

dles occurring in gr(W ).

The Casimir eigenvalues of the irreducible bundles occurring in gr(W )
are computed straightforward.

Proposition 4.18. The Casimir eigenvalues corresponding to the irreducible
components of gr(W ) are given by

γ0 = 2((n+ 1)w′2 + w′(2w + (n+ 1)(n+ 2)) + (n+ 1)w(w + n+ 2))

γ1 = 2((n+ 1)w′2 +w′(2w+ (n+ 1)(n+ 2)) +w((n+ 1)w+ (n− 1)(n+ 2))

γ1
2 = 2((n+1)w′2+w′(2w+(n+1)(n+2))+(n+1)w2+(n−3)(n+2)w+4(n+2))

γ2
2 = 2((n+1)w′2+w′(2w+(n−1)(n+1))+(n+1)w2+(n−1)(n−2)w−2n(n+2))

γ3 = 2((n+1)w′2+w′(2w+n2+n−2)+(n+1)w2+(n2−n−6)w−2(n−1)(n+2))

γ4 = 2((n+1)w′2+w′(2w+(n−3)(n+2))+(n+1)w2+(n−3)(n+2)w−4(n−1)(n+2)).

For the differences cji := γ0 − γji one has

c1 = 4(n+ 2)w

c1
2 = 8(n+ 2)(w − 1)

c2
2 = 4(n+ 2)(w + w′ + n)

c3 = 4(n+ 2)(w′ + 2w + n− 1)

c4 = 8(n+ 2)(w′ + w + n− 1).
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Again, for w + w′ + n− 1 = 0 the invariant differential operator

(C − γ4)(C − γ3)(C − γ1
2)(C − γ2

2)(C − γ1) : Γ(W )→ Γ(W )

may induces an invariant differential operator of weighted order four

L̄ : E [w,w′]→ E [w − 2, w′ − 2].

To see that it is in fact nonzero we compute in the same way as before its
weighted symbol. The highest order term of L̄ turns out to be given by

64c2
2∇ᾱ∇β̄∇(β̄∇ᾱ)σ + 32c1

2∇ᾱ∇ᾱ∇β̄∇β̄σ + 16c1
2(c2

2 + 2c3)∇ᾱ∇ᾱ∇sσ+

+8c3c3c
1
2∇s∇sσ.

Using lemma 4.15, this equals

32(2c2
2+c1

2)∇ᾱ∇β̄∇(β̄∇ᾱ)σ+16(c1
2c

2
2+2c1

2c3−2c1
2)∇ᾱ∇ᾱ∇sσ+8c3c3c

1
2∇s∇sσ.

(4.4)
For w + w′ + n− 1 = 0 the differences of the Casimir eigenvalues are

c0

c1

c1
2 | c2

2

c3

c4

 =


0

4(n+ 2)w
8(n+ 2)(w − 1) | 4(n+ 2)

4(n+ 2)w
0

 .

and inserting them into (4.4) we obtain that the highest order term of L̄ in
the weighted sense is given by

128(n+ 2)w∇ᾱ∇β̄∇(β̄∇ᾱ)σ

+ 512(n+ 2)2(2w2 − w + 2(n+ 2)w
2(n+ 2)

+
1− 2(n+ 2)

2(n+ 2)
)∇ᾱ∇ᾱ∇sσ

+ 1024(n+ 2)3w2(w − 1)∇s∇sσ. (4.5)

Therefore we have the following theorem:

Theorem 4.19. For w + w′ + n − 1 = 0 there is an invariant differential
operator of weighted order four

L̄ : E [w,w′]→ E [w − 2, w′ − 2]

whose weighted symbol U−4(gr(TM))∗⊗E [w,w′]→ E [w−2, w′−2] is induced
by the appropriate multiples (see (4.5)) of the contractions

S2gF1 ⊗ S2gE1 ⊗ R[w,w′]→ R[w − 2, w′ − 2]

gF1 ⊗ gE1 ⊗ g2 ⊗ R[w,w′]→ R[w − 2, w′ − 2]

and the appropriate multiple (see (4.5)) of the identity

g2 ⊗ g2 ⊗ R[w,w′] = R[w − 2, w′ − 2]→ R[w − 2, w′ − 2].
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Using lemma 4.15 we can write the highest order term of L (4.3) respec-
tively of L̄ (4.5) also as

= 128(n+ 2)w′∇α∇α∇β∇βσ

− 512(n+ 2)2(2w′2 − w′ + 1− 2(n+ 2)
2(n+ 2)

)∇α∇α∇sσ

+ 1024(n+ 2)3w′2(w′ − 1)∇s′∇sσ (4.6)

respectively as

= 128(n+ 2)w∇ᾱ∇ᾱ∇β̄∇β̄σ

+ 512(n+ 2)2(2w2 − w +
1− 2(n+ 2)

2(n+ 2)
)∇ᾱ∇ᾱ∇sσ

+ 1024(n+ 2)3w2(w − 1)∇s′∇sσ. (4.7)

From (4.6) and (4.7) we see that at least for certain weights w resp. w′

the invariant operators L and L̄ give rise to invariant differential operators,
whose usual principal symbol coincides with the usual principal symbol of
the Sub-Laplacian ∆ = −(∇α∇α +∇ᾱ∇ᾱ).
The results of this chapter are closely related to the article [24] of Gover and
Graham, where the authors construct CR-invariant powers of Sub-Laplacians
on manifolds endowed with partially integrable almost CR-manifolds. Fur-
ther studies will be needed to understand the precise relation of the results
of this chapter to the ones in [24].

In summary, we have seen in this chapter that curved Casimir operators
provide an efficient tool to construct invariant operators for parabolic geome-
tries. The only problem is that it is not apparent from the construction that
the obtained operator is nonzero. The examples above show that to prove
that a constructed differential operator is in fact nonzero, one has to compute
the weighted symbol rather than the usual principal symbol of the operator.
In the case of |1|-graded parabolic geometries Čap and Gover worked out in
a forthcoming article a uniform method to compute the principal symbol of
an invariant operator constructed via curved Casimir operators. It should
be possible to adapt this method to compute the weighted symbol of an
invariant operator constructed via Casimir operators in the case of general
|k|-graded parabolic geometries.
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Abstract (deutsch)

Eine filtrierte Mannigfaltigkeit ist eine glatte Mannigfaltigkeit M , deren
Tangentialbündel TM eine Filtrierung in Teilvektorbündel TM = T−kM ⊃
... ⊃ T−1M besitzt, die mit der Lie Klammer von Vektorfeldern verträglich
ist. Wenn man Differentialoperatoren auf filtrierten Mannigfaltigkeiten studiert,
stellt sich heraus, dass man den Begriff der Ordnung eines Differentialoper-
ators an die Filtrierung des Tangentialbündels anpassen sollte. Die Verän-
derung des Ordnungsbegriffs führt zu einem Konzept von gewichteten Jet-
bündeln von Schnitten von Vektorbündeln über filtrierten Mannigfaltigkeiten,
das einen geeigneten Rahmen bildet um Differentialgleichungen auf filtrierten
Mannigfaltigkeiten zu untersuchen.
Eine interessante Klasse von filtrierten Mannigfaltigkeiten sind reguläre in-
fintesimale Flaggenstrukturen, die als Parabolischen Geometrien zugrunde
liegende geometrische Strukturen auftreten. In der vorliegenden Arbeit wer-
den wir Differentialoperatoren auf regulären infinitesimalen Flaggenmannig-
faltigkeiten im Rahmen von gewichteten Jetbündeln studieren. Im ersten
Teil der Arbeit werden wir uns mit dem Problem der Prolongation von
Differentialgleichungen auf filtrierten Mannigfaltigkeiten beschäftigen. Hi-
erbei werden wir zunächst zeigen, dass ein lineares System von Differen-
tialgleichungen von endlichem gewichtetem Typ auf einer filtrierten Mannig-
faltigkeit immer kanonisch äquivalent zu einem bestimmten linearem System
von gewichteter Ordnung eins ist. Das impliziert, dass der Lösungsraum
eines solchen Systems immer von endlicher Dimension ist. Dann werden wir
zeigen, wie man für eine gewisse Klasse von semi-linearen Systemen von Dif-
ferentialgleichungen auf bestimmten regulären infinitesimalen Flaggenman-
nigfaltigkeiten eine lineare Konnexion ∇ auf einem Vektorbündel V über der
regulären infinitesimalen Flaggenmannigfaltigkeit M sowie eine Bündelab-
bildung C : V → T ∗M ⊗ V konstruieren kann, so dass Lösungen des unter-
suchten semi-linearem Systems in Bijektion zu Lösungen des Systems ∇Σ +
C(Σ) = 0 stehen. Insbesondere werden wir dadurch scharfe Schranken für die
Dimension des Lösungsraums für eine große Klasse von linearen Systemen
von gewichtetem endlichem Typ auf bestimmten regulären infinitesimalen
Flaggenmannigfaltigkeiten erhalten. Im zweiten Teil der Arbeit, werden wir
uns mit der Konstruktion invarianter Differentialoperatoren für parabolische
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150 ABSTRACT (DEUTSCH)

Geometrien mit Hilfe von gekrümmten Casimir-Operatoren auseinanderset-
zen. Wir werden in diesem Zusammenhang Casimir-Operatoren verwen-
den um invariante Differentialoperatoren für Lagrange-Kontakt-Strukturen
zu konstruieren.
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