
Diplomarbeit

Titel der Diplomarbeit:

Musical Algorithms and Data Structures in
Programming Instruction

Verfasser:

Rainer Dangl

angestrebter akademischer Titel:

Magister der Naturwissenschaften (Mag. rer. nat.)

Wien, im April 2010

Studienkennzahl lt. Studienblatt: A 190 344 884
Studienrichtung lt. Studienblatt: Lehramtsstudium UF English, UF Informatik

und Informatikmanagement
Betreuer: Univ.-Prof. Dr. Erich Neuwirth

2

Acknowledgements

First and foremost I want to thank my family for their great support throughout

my studies. I am truly grateful that they always believed in my skills end expertise

- without them I would have never made it that far. Thank you very much!

I also want to thank two of my colleagues, Christoph Jarosch and Christoph Grapa.

We worked together for almost the entire course of our studies, and we share many

ups and downs and humorous experiences. Through our cooperation and help, our

sometimes very busy schedules became manageable and we benefitted greatly from

each other. Thank you!

Over the course of writing this thesis, after investigating the principles and ideas

for this project more and more, I was quite surprised and fascinated in which way

two seemingly unrelated fields like music and programming can be linked in order

to achieve a learning outcome. I am greatly thankful to Univ.-Prof. Dr. Erich

Neuwirth for offering such a highly interesting topic and for his great support

throughout the process of writing this thesis.

3

4

Contents

1 Introduction 11

2 Learning theories 13

2.1 Behaviorism . 13

2.2 Cognitivism . 16

2.3 Piaget’s Theory of Cognitive Development 22

2.4 Constructivism/Constructionism . 24

2.5 Summary . 27

3 Theoretical foundations for CS teaching 29

3.1 A definition of didactics for computer science 29

3.2 Principles of teaching methodology 31

3.2.1 Forms of teaching . 31

3.2.2 Problem based learning . 33

3.2.3 Active learning . 35

3.2.4 Project based learning . 36

3.3 Summary . 39

4 Teaching programming 41

4.1 General ideas . 41

4.2 General approaches to teaching programming 42

4.2.1 Semiotic ladder . 42

4.2.2 Cognitive objectives taxonomy 43

4.3 Music and programming - a contradiction? 44

4.3.1 An argument in favor of music 45

4.3.2 Data structures in music . 46

5

Contents

4.3.3 Further possibilities of music in CS teaching 54

4.4 Summary . 62

5 Teaching project 64

5.1 Prerequisites . 64

5.2 Target group . 64

5.3 Learning targets . 65

5.4 Timeline . 66

5.4.1 At school . 66

5.4.2 At university . 66

5.5 General expectations . 66

5.6 Course structure . 67

5.7 Lesson plans (for school) . 67

5.7.1 First week . 67

5.7.2 Second week . 68

5.7.3 Third week . 69

5.7.4 Fourth week . 70

5.7.5 Fifth and final week . 71

6 Project evaluation 72

6.1 Sample group . 72

6.2 Teaching sequence . 73

6.3 Selected tasks . 74

6.4 Significant results . 75

6.4.1 Naming conventions . 75

6.4.2 Task 1 and 2 . 75

6.4.3 Tasks 3 and 4 . 78

6.4.4 Task 5 . 78

6.4.5 Task 6 . 80

6.4.6 Tasks 7 and 8 . 81

6.4.7 Task 9 . 86

6.4.8 Task 10 . 86

6.4.9 Further macro codes (task 11 on the diagram) 86

6

Contents

6.5 Reflection and Summary . 88

7 Conclusion 90

8 Bibliography 94

9 Appendix 98

9.1 Abstract - English . 98

9.2 Abstract - German . 99

9.3 Workbook . 100

9.4 Presentation for the evaluation . 122

9.5 Task sheet for the evaluation . 131

9.6 Curriculum Vitae of Rainer Dangl 134

7

List of Figures

2.1 A finite relational graph . 18

2.2 A propositional network . 18

2.3 Example network for animals . 20

2.4 Example network for software . 21

3.1 Embedding of didactics of computer science 30

3.2 Problem solving process . 33

3.3 Explorative learning . 35

3.4 Categorization of project based teaching 37

4.1 Semiotic ladder . 42

4.2 Cognitive objectives taxonomy . 44

4.3 A simple tune . 47

4.4 Objects in music . 47

4.5 Phrase 1, tune #1 . 48

4.6 Phrase 2, tune #1 . 49

4.7 Scale in MidiCSD . 54

4.8 UML diagram for music . 59

4.9 A context-free grammar for music 60

6.1 Gender ratio . 72

6.2 Study areas of sample group members 73

6.3 Choice of tasks . 74

6.4 Distribution of tasks . 88

8

List of Tables

2.1 Amplification of Pavlovian reactions 14

5.1 Lesson plan week 1 . 68

5.2 Lesson plan week 2 . 69

5.3 Lesson plan week 3 . 69

5.4 Lesson plan week 4 . 70

5.5 Lesson plan week 5 . 71

6.1 MIDI table of ’Oh when the saints’ (I-M) 76

6.2 MIDI table including chords (A-F 2) 77

6.3 Bass line for the original phrase (I-F) 82

6.4 Bass line for saints1 (A-M) . 83

6.5 Additional chords (A-M) . 84

6.6 Additional clarinet voice (A-M) . 85

6.7 init phrase containing instrument assignments (A-M) 85

6.8 init phrase containing sound effects (Mixed 2) 88

9

10

1 Introduction

This diploma thesis explores the application of music in a relatively unusual envi-

ronment - the teaching of computer science, specifically in programming instruc-

tion. This may seem to be an unconventional approach, but this thesis intends to

prove that music can significantly facilitate learning and increase student motiva-

tion and interest in the subject.

It can be said that computer science is in many ways a very special subject

at school or university in terms of setting and didactical requirements. As the

first chapters of the thesis show, learning theories and methodological approaches

apply in a unique way - for instance, few other subjects require a similar amount of

active learning by students and emphasize the constructionist approach similarly,

because learners should not only learn about computers, but also how to work with

computers. For many students, this might be difficult to grasp, especially when it

comes to more advanced topics of computer science, in the case of this thesis it is

programming.

It seems justified to assume that the usage (i. e. the syntax) of a particular

programming language does not so much pose a significant difficulty for learners.

Languages like Logo are syntactically easy compared to languages like C/C++ or

Java in order to be easily accessible to beginners or programming. Yet in order

to develop well coded programs and to understand the fundamental concepts of

programming, a certain way of algorithmic thinking needs to be developed and

11

1 Introduction

abstract concepts such as data structures, especially object-oriented structures

are essential. A knowledge of these concepts is vital and functions as the basis

on top of which one can use a programming language to develop well designed

applications. The question now arises how to teach these fundamentals, which

brings up the hypothesis of this thesis: the teaching of abstract concepts needed for

introductory programming can be significantly improved when familiar concepts

are utilized. For the purpose of the argument in this thesis, music shall serve

as such familiar concept. It is assumed that the development of algorithms and

data structures can be derived from arranging music and working with musical

structures. Chapters 4 and 5 focus on this discussion and how to implement it

in a teaching environment. The validity of the hypothesis is tested in chapter 6,

where in a teaching sequence some aspects of the discussion are put into practice.

For teaching purposes a workbook is created that shall serve as an aid in teaching

musical programming with MidiCSD and explains in a learner-friendly way features

and possibilities of the development environment and can either be used in teaching

but also for self-study.

12

2 Learning theories

Every theory of didactics and pedagogy obviously has its roots in the major learn-

ing theories. Thus, this chapter focuses on the three main concepts that are

relevant for the development of the hypothesis later on. These concepts are be-

haviorism, cognitivism and constructivism (or constructionism). Each theory shall

be analyzed with regard to how it could contribute to a didactical framework in

the CS classroom.

2.1 Behaviorism

Behaviorism is a theory that essentially says that all psychological findings have to

be verifiable by experiments.1 Furthermore, the human mind is regarded as a black

box, only observable behavior is regarded being important. Therefore, behaviorism

does not attempt to look at how learning actually takes place, it rather tries to

predict a certain outcome, behavior or reaction to external stimuli.1 Clearly, one

may say that behaviorism is an outdated theory, as a crucial part of the learning

process - the brain - is completely ignored. Yet still, behaviorism yields a few

interesting aspects for the discussion here, therefore it shall be explored briefly in

more detail.

Behaviorism was first explored intensively by Ivan Pavlov.1 He conducted exper-

iments in order to investigate the connection between neutral stimuli and uncon-

13

2 Learning theories

ditional stimuli which, when applied simultaneously, create a certain conditional

reaction.1 Some of his experiments became very well known, for example the

famous dog experiment. Pavlov discovered that the ring of a bell (a neutral stimu-

lus) can trigger increased production of a dog’s saliva (conditional reaction) when

combined with a second (unconditional) stimulus, meat. After some time, the dog

reacts solely when hearing the bell.2 This form of experiment and the field of

research in which Pavlov was working in is called classical conditioning.1

How are Pavlov’s experiments, which were initially aimed at predicting animal

behavior, relevant for didactical concepts? John Watson was the scientist who

first thought that Pavlov’s findings could be applied in learning psychology.1 He

tried to define human behavior in Pavlov’s terminology and claimed that research

into learning psychology should limit itself to observable output. He classified

emotional behavior as a subcategory of classical conditioning.1 Watson therefore

laid the foundations for Thorndike and Skinner, who developed Watson’s theories

further.

Edward Thorndike introduced the concept of Amplification of Pavlovian Cou-

plings that was developed further by Burrhus F. Skinner to his Theory of Operant

Conditioning.3 Thorndike and Skinner noted that Pavlovian reactions can be am-

plified as shown in table 2.1.3

comfortable stimulus uncomfortable stimulus

applied positive amplification punishment
removed punishment negative amplification

Table 2.1: Amplification of Pavlovian reactions

Empirical findings show that punishment is much less effective than amplification

- it usually leads to suppression of behavior when the punisher is present.3 Obvi-

ously, behaviorism is only to a small extent relevant in modern didactical concepts,

yet as Hubwieser points out, one certainly can extract useful suggestions in order

14

2.1 Behaviorism

to improve learning:3

• create a comfortable learning environment with a relaxed, attention-enhancing

atmosphere

• utilize continuous, but differentiated positive amplification (praise)

• avoid punishments

• avoid defense reactions and generation of fear

Although one might claim that behaviorism is an outdated theory, there are a few

points that still are quite relevant even in modern didactics. While it is generally

agreed that punishment is not a part of pedagogic work today, one clearly can

see that positive reinforcement leads to positive achievements in terms of learning

outcome. As Hubwieser stresses in the points mentioned above, a positive learning

environment and praise can be significantly more effective than punishment. It

is thus noted that a comfortable learning environment benefits motivation and

learning outcome and shall clearly be preferred over an intimidating and overly

strict teaching style.

Furthermore, it should be noted that behaviorism is closely connected to another

major problem in teaching - assessment. It is a great challenge for a teacher to

objectively and uniformly assess students. As the teacher can only put marks on

observable output, a behaviorist concept is at work here as well. Yet still, the

challenge for teachers is to find out whether students learn by heart of if they

actually understand the topics discussed in class. This differentiation cannot be

made on a behaviorist basis. It is therefore necessary to expand the definition of

learning beyond behaviorism. It is obviously not enough to just look at the output

as such; in order to really understand learning, one needs to include the brain and

how it processes information. This helps to understand how learning takes place

and whether the output is the result of an actual learning process. Hence the next

section focuses on cognitivism.

15

2 Learning theories

2.2 Cognitivism

Cognitivism is the result of a counter-movement to behaviorism that started simul-

taneously in the USA and Europe.4 It basically claims that learning, a complex

process, cannot be sufficiently described by behaviorist theories and that the (in-

ner) changes of brain networks and structures (caused by learning) are significantly

more important when one tries to explain how learning actually takes place.4 Cog-

nitivism particularly focuses on the description and modeling of so called higher

mental processes - it does not try to predict a certain outcome, as behaviorism

does, it rather tries to explain the outcome by modeling the mental processes at

work in the brain, which in turn gives scientists clues on how to present the in-

put.4 It is therefore crucial to understand how information is stored, processed

and, which is particularly important, how pieces of information are connected.

Donald Hebb was one of the most important psychologists in the field of cogni-

tivism.5 He tried to explain learning by a model of the electro-chemical processes

in the brain.6 The most important elements of his model are neurons (approx.

1.5 billion nerve cells in the brain and spine) which connect receptors (sensory

organs) and effectors (e. g. muscle cells).6 The neurons transmit electro-chemical

impulses that need a certain recovery time between two impulses. Therefore, in

order to store impulses, circuits are necessary. These are defined as neural circuits

and represent basic results of learning in the brain.6 An example of this principle

can be learning of how to write. The information stored in the brain is transmit-

ted by neurons which deliver the information from the sensory organs (in this case

the eyes) and cause the brain to process the next letter and send the information

to the effectors (here the muscles of the arms and hands). The activation of the

neurons is triggered by an electro-chemical process and can be altered by certain

diseases (e. g. Parkinson’s disease).7

As it has been clarified how information is stored and transmitted in the brain,

16

2.2 Cognitivism

the much more interesting and relevant question in terms of didactics is how infor-

mation is connected. In order to explain target-based behavior in animals, psychol-

ogists introduced the cognitive inter-processes of anticipation and understanding,

a concept they called cognitive map.8 Jerome Bruner included these concepts and

expanded them to create his theory of acquisition of concepts.9 Possibly the best

way to describe how information is linked in the brain was introduced by John

Anderson, who developed the idea of propositional networks.3 Propositional net-

works are a part of Anderson’s theory of ACT - adaptive control of thought, a

theory where Anderson attempts to simulate and understand human cognition.10

Anderson defines a propositional network as a special case of a finite labeled graph,

which is defined as:11

G = 〈R, N, A〉

R is a finite set of relations, N is a finite set of nodes and A is a finite set of links

in the graph.11 The members of A are represented by triples of elements denoted

〈a X b〉. Thus, in the graph the the relation X connects nodes a and b.11 A good

example of a finite relational graph is given in figure 2.1.12

17

2 Learning theories

Figure 2.1: A finite relational graph

This model nicely shows that information can be presented precisely and without

excess meaning.12 The direction of the arrows is important as arrows in opposite

directions do not necessarily have the same labels. Anderson considers this graph

to represent ideas which are linked to each other.12 This should, when starting

out at one node elicit the next idea (node) via a link (arrow). Anderson developed

this idea further and created propositional networks as a special form of the finite

labeled graph. Anderson gives the following simple example in figure 2.2.13

Figure 2.2: A propositional network

18

2.2 Cognitivism

Obviously, one can observe a quite important difference from the finite labeled

graph: there is a hierarchical structure. In a propositional network, each of the

nodes denotes a proposition.14 In this case there is a set of nodes {u, v, x, y,

z}. These nodes have truth values, i. e. propositions are the smallest unit of

knowledge that can be determined to be either true or false.15 Furthermore, there

is a set of functional variables {S, P, R, A, W }. They are defined as S = subject,

P = object, R = relation, A = agent and the lowest level of syntactic function W

= item. When looking at the network, it is now possible to identify the word John

as the subject of a certain action. The subject node x containing John is then tied

via the root node u to a certain object node v. The object of John’s action is a an

agent, in this case Mary, which is represented by the node z. The relation between

the subject John and the object agent Mary is the given by node y, which contains

the item hit. It therefore becomes clear that apparently John hit Mary. Anderson

claims that propositional networks attempt to ”set forth a a language of the mind,

a ’mentalese’ in which all knowledge is to be represented.”16 A useful didactic

context for propositional networks is illustrated by Friedenberg and Silverman,

who define propositional networks as representations of simple factual properties

of certain objects in the world (as illustrated in image 2).14 Yet Furthermore, they

can also represent a category relationship, resulting in so called ’is-a’ link or a

property type relationship with a ’has-a’ link.14 Hence, in a very simple network

with the two nodes (car, jeep), one can express the relationship between the two

nodes by saying ”a jeep is a car”. Hubwieser gives the following example in figure

2.3.17

19

2 Learning theories

Figure 2.3: Example network for animals

This propositional network shows several points that are relevant for didactics and

that are crucial in order to understand how to present input in class. Hubwieser

claims that the following statements are important from a cognitivist point of

view:17

• before starting the teaching sequence, learners should be aware of the target

and the significance of the learning process

• the subject matter should be embedded in superior relationships

• the subject matter should be presented and structured in a way that facili-

tates the creation and acquisition of categories

• there should be as much links to already existing knowledge as possible

Finally, to give an example from computer science, figure 2.4 shows a propositional

network about software that nicely illustrates how teaching sequences should be

20

2.2 Cognitivism

structured and presented to allow a fast connection of knowledge and efficient

learning.

Figure 2.4: Example network for software

As can be seen in the graph above, learning content can be deconstructed into a

propositional network and the subtopics can be put in a relationship to each other.

This is a particularly important principle of didactics, which has its application

in everyday teaching practice. Students are by far more comfortable when they

are able to put new subject matter in context and relate it to already existing

knowledge. It is therefore crucial to understand how the mind maps the informa-

tion stored in the brain in order to be able to present new subject matter best to

students. Furthermore, it is certainly significant which stage of cognitive develop-

ment one can expect and to what extent the mind has developed in learners. This

leads to Jean Piaget’s Theory of Cognitive Development which not only includes

aspects from cognitivism, but also relates to the third major theory discussed in

21

2 Learning theories

this thesis, constructivism.

2.3 Piaget’s Theory of Cognitive Development

Jean Piaget introduced several highly significant terms to cognitivism that greatly

influence the way one can describe information mapping in the mind. First, Piaget

defines the term schema and its plural schemata.18 As Piaget used to work as

a biologist in his early years, he believed that the structure of mind is similar

to the structure of the body.18 Wadsworth claims schemata to be ”cognitive or

mental structures by which individuals intellectually adapt to and organize the

environment.”19 One can describe schemata as concepts or categories that exist in

the mind and which are used to identify and process incoming stimuli. Wadsworth

also describes schemata like an index file in which every index card represents a

schema. Therefore, adults have many schemata simply based on their experience,

whereas children, especially infants, have very few schemata.19

As an example, it is assumed that a child knows what a dog is, i. e there is a

schema in the mind that describes the typical features of a dog. When this child

sees an animal which it has never seen before, for example a wolf, it might mis-

take the wolf for a dog, as quite many characteristics of the two animals overlap

(similar stature, fur, howling, ...). It is only when somebody explains the differ-

ence, the child creates a new schema for the wolf with the unique features that

characterize it. This example illustrates another important term closely connected

with schema: assimilation.20 The dog-wolf example explains what happens when

due to a missing schema a new object is assimilated to another category. The

child does not recognize the wolf and simply classifies it as a dog. Yet another

process that could happen is accommodation - not the object is classified in the

wrong category, but the category (or schema) itself becomes modified.20 In this

22

2.3 Piaget’s Theory of Cognitive Development

case this would mean that the child alters the dog-schema to fit the characteris-

tics of the wolf. Accommodation and assimilation are processes that correct each

other and maintain a certain balance, which Piaget defines as equilibrium.20 For

example, it would be undesirable when a person always assimilates new stimuli.

This person would over time generate very large schemata and would not be able

to differentiate.20

It is now established how Piaget describes the structure of information in the

mind. He classified the ways information can be handled by the stages of cognitive

development:21

1. The stage of sensorimotor intelligence (0-2 years): during this stage,

behavior is primary sensory and motor. Very few schemata exist and the

child cannot represent objects and events conceptually.

2. The stage of pre-operational thought (2-7 years): in this stage lan-

guage is developed and concepts develop rapidly. Reasoning during this stage

is pre-logical (semi-logical), as it is dominated by perception.

3. The stage of concrete operations (7-11 years): the child develops the

ability to apply logical thought to concrete problems.

4. The stage of formal operations (11-15 years and older): the cognitive

structures reach their greatest level of development and therefore the child

is able to apply logical reasoning to all classes of problems.

Cognitive development always follows the order of the stage above, yet it is possible

that some children enter certain stages sooner or later as the age limits given here

are based on the average development of a child. Moreover, it might be possible

that some children do not enter the stage of concrete of formal operations at all.22

Summing up the conclusions that arise with regard to teaching, Hubwieser states

the following:23

23

2 Learning theories

• in primary school, teaching should always utilize concrete objects, which

should as far as possible be actually presented in class

• in secondary school, abstract theoretical concepts are not helpful

• 7th grade is the earliest possibility to teach formal operations

• it is questionable to divide children into several school types before they

reach the last stage as later development can not take form at all or may be

amplified reversely

This has some consequences for teaching computer science: some issues might be

too complex for learners to understand. It is then the responsibility of the teacher

to try presenting topics that require formal operations in another form that might

be better suited to the learners’ capabilities.

2.4 Constructivism/Constructionism

The behaviorist and cognitivist concepts that are relevant for teaching have been

established. The third major learning theory is constructivism (or construction-

ism), which seems to dominate the view of learning in current educational re-

search.24 According to Matthews, constructivism consists of two core proposi-

tions:25

• knowledge is constructed actively by the cognising subject - it can therefore

not be passively acquired from the environment

• the process of acquiring knowledge is an adaptive process that organizes the

learner’s experiential world - it does not discover an independent pre-existing

world which is outside the mind of the knower

Olssen mentions a number of propositions that are to a certain extent contained

within the core definitions above: Miller and Driver claim that ”knowledge is

24

2.4 Constructivism/Constructionism

personally and socially constructed”;26 ”knowledge is rather ’made’ than ’discov-

ered’ and that interpretative categories are prior to facts”,27 ”truth is ’provisional’

rather than ’certain’, and ’limited’ rather than ’foolproof’”,28 and that ”rather

than revealing an objective, independent world, knowledge gives us ’constructs’

or ’frameworks’ by which we make sense of experience”.29 Similarly, Fox defines

constructionist claims as follows:30

• learning is an active process

• knowledge is constructed, rather than innate, or passively absorbed

• knowledge is invented not discovered

• all knowledge is personal and idiosyncratic

• all knowledge is socially constructed

• learning is essentially a process of making sense of the world

• effective learning requires meaningful, open-ended, challenging problems for

the learner to solve

One might think that these propositions result in a unified definiton of construc-

tivism. This is not the case, as Fox notes the following sub-categories: Piagetian

constructivism,31 Neo-Vygotskian constructivism,32 Feuerstein’s mediated learn-

ing,33 radical constructivism34 and social constructivism of various forms.35

All these constructionist movements may have their application in a certain

field, yet Hubwieser notes that recently a more moderate constructivist approach

is being used in contrast to radical constructivism.36 Radical constructivism claims

that everything one perceives and knows is a creation of the observer.37 The reality

as such cannot be accessed, which is not to say that it does not exist. Radical

constructivism merely says that it is impossible for the individual to see reality,

because everybody creates his individual interpretation of reality which might not

be the same as someone else’s interpretation.38 Hubwieser mentions the following

25

2 Learning theories

constructivist movements that are particularly relevant in CS didactics:39

Situated Cognition: In this branch of constructivism, in order to construct

knowledge, the social setting and the topical context are particularly important.

Anchored Instruction: The learning content is tied to a so called narrative

anchor in this approach, which means that one uses stories in which authentic

and interesting problems are embedded.

Cognitive Flexibility: When discussing rather complex and relatively unstruc-

tured learning content, one should avoid inappropriate simplifications. Instead, it

is better to show learners the actual complexity of the problem by offering different

approaches at different times in changing contexts with different targets in various

perspectives. This creates several independent approaches to the topic which in

turn facilitates memorization and application.

Cognitive Apprenticeship: Along the lines of traditional apprenticeship, one

can present the approaches and problem-solving methods of authentic examples

to illustrate the work of experts to learners. The setting in which the learning

process takes place should be as close to a real working environment as possible.

It is certainly clear that for some topics and subjects, some of these approaches may

be not as good as others, yet when thinking of computer science and particularly

programming, one immediately can say that cognitive apprenticeship is a highly

useful method - for example, a certain job experience is a teaching requirement in

technical schools in Austria.40 That of course is an attempt to transfer as much

knowledge from the experience of professionals to the school.

Finally, Hubwieser notes several points that can be derived from constructivism

and applied in didactics:41

26

2.5 Summary

• active involvement with the learning content is absolutely necessary (as far

as this is possible)

• learners should explore problem-solving methods independently

• the teacher should act as tutor and not as presenter

• during instruction, the teacher should give the learners enough time to prop-

erly go through the knowledge construction processes

• learning settings should be as close to reality as possible

• the same learning content should be explored from different angles

All these points illustrate the exceptionally good suitability of constructivism for

a didactical framework for computer science. Constructivist approaches are also

strongly reflected in concepts discussed in chapter 3 (especially active learning).

2.5 Summary

In order to briefly summarize this chapter, one can conclude that the three most

important learning theories contribute certain important features to didactics of

computer science. Hubwieser claims that the following points should be a basis

for the teaching methodology discussed in the next chapter:42

• a comfortable learning environment is necessary, in which the learners have

time to satisfy special interests and needs without pressure, thus ensuring

that motivation and attention are encouraged and maintained.

• classification of learning content in larger contexts and clear structuring of

the topics allows learners to develop propositional networks.

• an active examination with the topics is desirable, where the teacher should

create sufficient problem awareness before the presentation of solutions. These

claims stem from the common notion of all constructivist approaches, which

say that knowledge is actively constructed by the learner.

27

2 Learning theories

• various approaches and perspectives to the same topic should be offered, as

stated in Cognitive Flexibility.

• one should aim at creating problem situations that are as authentic as possi-

ble, as this enables learners to solve problems in a setting where these skills

are actually needed.

• learning content should be age-appropriate, as certain problem-solving skills

develop at a specific age.

It is now established that no learning theory can stand on its own. Quite contrary,

only by applying parts of all theories one can arrive at a set of rules that facilitate

teaching and benefit the learning of computer science. These rules are the basis

for the approaches to teaching CS in the next chapters.

28

3 Theoretical foundations for CS

teaching

This chapter focuses on the theoretical basis for the interdisciplinary teaching

project discussed later on. For a thorough understanding of how teaching should

take place, a few concepts and didactical tools shall be illustrated. Firstly, a clear

definition of what the term didactics in computer science encompasses is given.

Secondly, a few approaches to teaching computer science are presented which are

utilized in the teaching project.

3.1 A definition of didactics for computer science

At the beginning, a definition of the term didactics is necessary. Therefore the

question poses itself: What is a didactic model or concept? The following quote

illustrates these terms nicely:43

A didactic model is a theoretical construct that is as complete and
universally valid as possible and that is used for planning and analyzing
instructional action for teaching and learning situations.

If the strict conditions with regard to completeness and universal va-
lidity are not fulfilled, one defines this as a didactic concept.

This definition sufficiently encompasses the requirements for the teaching project

that is the presented in this thesis. The model must be complete and universally

29

3 Theoretical foundations for CS teaching

valid to the highest possible extent. This is certainly a major problem, as teaching

is a highly complex process and subjects differ greatly in terms of methods used in

class and requirements of the curriculum.44 This is what brings the discussion to

subject didactics, or more accurately teaching methodology of a particular subject.

One can certainly formulate principles of general didactics, but a broad discussion

of this matter would go beyond the scope of this thesis. Yet a discussion of

didactics of computer science, or teaching methodology of computer science, is a

crucial point for a thorough understanding of the narrower field of CS didactics of

programming.

The first important question is how all the interrelated fields that influence di-

dactics in general (pedagogy and psychology) create the special field of CS didac-

tics that enables the teaching of computer science in school. Schubert and Schwill

propose an embedding of didactics in various fields as shown in figure 3.1.45

Figure 3.1: Embedding of didactics of computer science

It is quite clear from the figure that didactics of computer science is in principle

a special discipline of computer science. Moreover, it is an interdisciplinary field

30

3.2 Principles of teaching methodology

that has to take into account various considerations in order to work: certainly

there is a strong influence of pedagogy. It is of course fundamental for an accurate

model of didactics that the teacher or instructor knows how to structure a lesson,

but it is furthermore highly significant how to deliver the content to the learners.

This is the field of psychology where the learning theories discussed in the previous

chapter play an important role. Finally, also the school as an institution influences

the teaching methodology.45

3.2 Principles of teaching methodology

As it has been clarified which areas influence didactics, the focus shall now be on

didactics as such. When thinking about an approach to teaching computer science

one has several options. As noted above, constructivism is the most powerful

approach to use. Yet it still remains unclear which teaching concepts to use.

Humbert notes that teaching methodology does not claim to be valid for every

subject, it has to be applied and modified in order to satisfy the needs of the

subject’s didactic model (i. e. for a particular subject it is then universally valid

and complete, as claimed above).46 In the following sections, several definitions

shall lay the basis for the construction of didactically ideal teaching.

3.2.1 Forms of teaching

Teaching obviously requires a certain form of interaction between teachers and

students. Commonly, this interaction can be said to consist of two components: a

social form and activities - social forms are classified as follows:47

S1: teaching in front of the class: here, all learners in class can participate

equally, and can freely communicate with each other.

31

3 Theoretical foundations for CS teaching

S2: group teaching: learners are divided into groups, communication only takes

place within the group.

S3: private teaching: learners are isolated from each other. Therefore, commu-

nication is not possible or allowed. This form of teaching is commonly used

in music teaching in specialized music schools (not high schools).

The second component, the activities, can also be divided into three groups:48

A1: communicative form: the learners concentrate on taking in the topics pre-

sented by the teacher. There is little or no room for the pupils to actively

determine the course of instruction

A2: guided exploration: the learners actively co-determine the course of the teach-

ing by their actions. The teacher encourages this form of participation ex-

plicitly.

A3: free research: the teacher merely gives incentives, the actions of the learners

determine the course of the teaching.

These activities and social forms can be combined into nine forms of teaching.

Several of these forms have explicit names. For example, S1 and A1 combined

results in the teacher-centered form of teaching, which simply means that the

teacher speaks and the learners listen and try to understand (i. e. a lecture).48

This does not seem to be the best approach. Thus one can construct other forms

that fit especially the didactic requirements of computer science: social forms S1

and S2 are to be favored, in particular group work is highly effective and widely

used in teaching practice. From the activities, all three forms are acceptable - it

strongly depends on the topics which of them is best.

32

3.2 Principles of teaching methodology

3.2.2 Problem based learning

Humbert defines a problem as ”a not routinely solvable task.”49 Hubwieser quotes

Edelmann, who presents a slightly different description:50

A problem is therefore identified by three characteristics:

- undesired original state,

- desired target state,

- a barrier that obstructs the transition from the original to the
target state at the moment.

Edelmann also gives a definition of the term task, which is that with a task ”there

are rules (knowledge, know-how) that help finding a solution.”51 Hubwieser claims

that problem based teaching is one of the commonly acknowledged principles of

computer literacy,52 a term that refers to the use and understanding of computers

as a basic skill like reading or writing.53 Thus the process of problem solving seems

to be a well suited means of teaching computer science.54 A schematic diagram of

said process can be described as shown in figure 3.2.55

Figure 3.2: Problem solving process

33

3 Theoretical foundations for CS teaching

It becomes clear why this method is a highly recommendable way for CS teaching:

it allows a trial and error approach. Learners can at all times go back in the process

and review the steps and, when necessary, modify their plan. Additionally, learners

might understand the problem afterwards, when taking a look back, others might

not need to do that. It is also clear that this method can handle different learning

speeds as well. Furthermore, if a problem is solved, it can lead to a new problem

that starts the whole process again which encourages self-responsible learning.

Humbert mentions three classes of problems. Firstly, problems that learners

are confronted with in actual problem situations. The learner solves the prob-

lem without noticing that he has learned something at the same time. Secondly,

problems that the learner tries to solve automatically and independently but with

a deliberate learning intention. Thirdly, problems that the teacher poses to the

learners for instructional purposes.56 Problem classes 1 and 2 are a good entry

point for teaching and due to the nature of problems - one can debate problems

constructively - are a way of implementing the constructivist learning theory.56

The topic of problem classes and their application in teaching raises an important

issue: the teacher is responsible for selecting suitable problems. This is a point

where Hubwieser claims that the didactical abilities of the teacher are tested. The

level of complexity should on the one hand be high enough that the learners cannot

solve the problem without the concepts learned before (or if they can, only by

putting in considerably more effort), on the other hand it should not be to hard

either.54 Problem based teaching avoids another undesired effect, which is the

simple training of applications. A typical example is the teaching of programming

in school, where learners are often unsatisfied with the outcome because they do

not see the practical use of the concepts learned.54

34

3.2 Principles of teaching methodology

3.2.3 Active learning

If one tries to define the term active learning, a simple interpretation seems obvious:

learners should not be passive recipients of knowledge, but active constructionists

(which draws a connection to the learning theory illustrated above). Humbert

mentions that active learning is based upon Bruner’s theory of explorative learn-

ing,57 a process which is illustrated in figure 3.3.58

Figure 3.3: Explorative learning

It is quite clear that active learning is closely connected to problem based learning.

The difference when applying active learning is that learners actively work on

creating information and knowledge, there is less input necessary from the teacher.

As can be seen from the graph, the teacher merely presents a problem and provides

a certain amount of help during the process. The steps of creating and validating

a hypothesis are also carried out by the learner, not only the part where the task

is to find solutions and evaluating them. Particularly in computer science the

implementation of active learning is a quite suitable possibility to give learners the

35

3 Theoretical foundations for CS teaching

chance of discovering concepts on their own. This point is very much reflected in

the teaching project of this thesis; learners are supposed to do as much as possible

on their own. Still, especially with beginners in CS is it obviously necessary to

give a certain amount of assistance, but that can be reduced the more advanced

the learners are.

What is the point in giving the learners the opportunity to actively do some-

thing instead of just lecturing them (which sometimes undoubtedly also has its

justification)? For once, the most obvious reason (apart from avoiding boredom)

is the significantly increased learning effect. It is commonly known that a very

good way to learn something is by explaining it to somebody else, which means

that an active involvement with the subject matter greatly helps to understand

and actually learn it.

3.2.4 Project based learning

Project based learning can be seen an extension of problem based learning and

active learning. It is of course possible to discuss and work on problems in class as

illustrated in the previous section, yet it is preferable to put these problems into

context. Such a context can be a project, taken from ’real life’, which nicely points

out the practical relevance of the subject matter to the learners. A project can

be started for a wide range of problems: websites, programming applications, an

art project, a music project and many more. Project based teaching is a quite im-

portant method in teaching programming, therefore the concept shall be discussed

in some depth. When thinking about the placement of project based learning

(or project based teaching, the terms are used synonymously here), Schubert and

Schwill propose the schematic shown in figure 3.4 in accordance with the forms of

teaching discussed above.59

36

3.2 Principles of teaching methodology

Figure 3.4: Categorization of project based teaching

Thus it becomes clear that a project allows a relative freedom of activity, i. e.

the learners can (within the boundaries of a specified topic) freely decide which

aspects of the project they should pursue first and how to do it. With regard to the

social form it is obvious that a project cannot be an S3 form (private instruction).

A project especially in computer science stresses cooperative learning and helps

learners in developing an analytical approach to a problem.60 When thinking about

the pedagogical implications of projects, several points are highly significant.

Firstly, the project should be taken from the daily context with which learners

are familiar. The project should also not be bound to a single scientific subject

and thus not to a particular school subject on its own. This enables learners to

think globally and outside the box of subject boundaries.61

Secondly, the project should be adjusted to fit the interests and wishes of all

people involved (teachers and learners). It is particularly the teacher’s responsi-

bility to elicit the learner’s interest in the topic in order to create a successful and

motivated project team.61

37

3 Theoretical foundations for CS teaching

Thirdly, one of the most important points that distinguishes project based teach-

ing from regular teaching is the possibility for a certain amount of self-organized

and self-responsible work.61 At the beginning of each project teachers and learn-

ers should negotiate a way of how the work will be carried out. There have to

be clear definitions as to how the project will be evaluated, what the target is, a

timeline needs to be set (with strategies on how to manage delays) and so called

milestones denote a stage the project should be in at a specific point in time.61

Having clarified all these conditions, the project members can organize themselves

and work independently to reach the project target (which should always exist -

the planning of the project always should aim at a target that can be evaluated).

Fourthly, as already noted above, it is crucial for the project to have a certain

amount of practical relevance.61 Learners might find it interesting to work on

a project, yet a purely artificial scenario is undesirable. Learners might be de-

motivated when they do not see which practical application the project actually

has.

Fifthly, a project preferably should not only have an outcome in terms of learn-

ing but also some sort of final product (e. g. a film or a website) with proper

documentation that can be presented to the public and subjected to criticism.62

This also reinforces the previous argument, as learners finally see that their work

resulted in an actual product.

Sixthly, it is recommendable to incorporate as many senses as possible in the

process, which means that physical and technical abilities should be incorporated

as well, as traditional instruction is largely focused on intellectual skills.63

Seventhly, a major aspect of project based learning is social learning.63 Com-

munication within the group of learners and also communication between learners

and teachers on a peer level is quite important, as the learners have the feeling that

the teacher does not necessarily know everything and that a transfer of knowledge

38

3.3 Summary

can take place in both directions.64

Finally, interdisciplinary projects go beyond the scope of a subject and bring

together several disciplines.63 It is almost impossible to start a project in school

without thinking about other subjects to collaborate with. This again shows the

practical relevance to the learners and avoids that the project is carried out just for

the sake of exercise. Bringing in other subjects very often also helps to understand

certain applications of principles discussed in class. The teaching project of this

thesis strongly reflects many of these principles, a discussion of which follows in

chapter 5.

3.3 Summary

To summarize the approaches to teaching computer science, it can be said that

clearly CS is a subject that obviously seems to fit perfectly in the concept of project

based learning. In computer science, one always works on some kind of project, be

it designing a website or programming an application. Moreover, very seldom does

one work alone on a project, therefore the collaborative character of the subject is

particularly important. When it comes to the problem of how the subject matter is

to be delivered in class, the solution seems fairly straightforward; having clarified

the forms of teaching and the activities with which they can be combined, the

result shows that a simple teacher-led lecture or strongly teacher-guided lesson is

not the best way to teach, especially when working with the computer. Problem

based learning and in connection with it also active learning promise significantly

better results, as learners are not only forced to actually do something, they need

to develop the knowledge themselves and extract the important information out of

hypotheses and theories they create when solving problems. This greatly reinforces

the argument in favor of the constructionist approach in computer science, yet still

39

3 Theoretical foundations for CS teaching

the cognitivist aspects are implemented as well; teachers need to be aware of the

learning curves, have to plan the lessons and the help they give to the learners

accordingly. Furthermore, as pointed out above, the selection of problems and

project topics is a major responsibility of the teacher and is a decisive factor

whether the whole teaching concept succeeds (a paradigm where Piaget’s theory

needs to be kept in mind). On the whole, combining all the theories and approaches

illustrated up until now it becomes clear what ideal teaching in computer science

should look like. As a next step, this knowledge is applied to programming.

40

4 Teaching programming

4.1 General ideas

The topics discussed are now brought together in an attempt to create a teaching

methodology for programming. The question at hand is: why does programming

need a special didactical approach and what could this approach look like? Gener-

ally, programming is a discipline that requires a certain way of analytical thinking.

Developing algorithms and a knowledge of data structures are preconditions in or-

der to be able to program efficiently. Also, programming requires an extensive

amount of exercise - it is impossible to learn programming by reading a book, it

is necessary to actually program applications in order to acquire the knowledge.

In school or at university, the teacher has to solve several problems when de-

signing his approach to teaching programming. First and foremost, a crucial point

is to be able to to think algorithmically.65 This might be the first barrier for many

learners. The syntax of a particular programming language is not so much a prob-

lem, as there are many languages that are very learner-friendly (e. g. Logo or

Scheme). The problematic aspect of teaching programming is how to teach learn-

ers to develop a solution for a given problem and then developing an algorithm that

fits best in order to implement the solution in a specific programming language.

Therefore one can say that the instruction should not so much (at least at first)

focus on how the programming language works. New languages are constantly

41

4 Teaching programming

developed and existing languages keep changing or become outdated. Thus, an

abstract knowledge of how to develop an efficient algorithm and how data is struc-

tured is far more useful, because if these concepts are clear it is by far easier to

apply them in a programming language. The actual syntactical implementation

is then not that much of a problem, as the rules of how to program in a particu-

lar language become quite clear if the fundamental knowledge that applies to all

languages is solid.

4.2 General approaches to teaching programming

4.2.1 Semiotic ladder

A number of thoughts on the difficulties of teaching programming have been pre-

sented. As a next step, one may think about didactical approaches to teaching

programming. Kaasbøll presents two important theories that are highly relevant

for the teaching project in chapter 5. Firstly, Kaasbøll mentions the semiotic

ladder, illustrated in figure 4.1.66

Figure 4.1: Semiotic ladder

This approach is characterized by the syntax of a programming language as the

basis for teaching programming. If the learners know how the language works they

can make their way to the semantics stage and learn language constructs. If the

42

4.2 General approaches to teaching programming

first two steps are fulfilled the learners can move on the use of the programming

language for specific purposes, i. e. pragmatics.66

In principle, this approach seems perfectly fine, and indeed one can argue that

for an independent use the semantics and at the very beginning the syntax of a

programming language has to be learned. Still, this approach focuses solely on the

learning process of a particular programming language and does not include the

issues some learners of programming have when they first attempt to program -

algorithms and data structures. A working knowledge of these concepts is assumed

in this approach. Therefore can this approach be considered inappropriate for

absolute beginners of programming. Still, this approach finds its application in the

teaching project in chapter 5, yet only at a later point in time, around the third

week of the project. At this point the instruction shifts from presenting abstract

concepts (like data structures by means of music) to concrete implementations and

syntactical rules of the MidiCSD language.

4.2.2 Cognitive objectives taxonomy

A second approach presented by Kaasbøll is the cognitive objectives taxonomy as

illustrated in figure 4.2.66

Here, the approach is much more intuitive: learners first of all run the program.

They see the output and get curious - furthermore, this is an ideal starting point for

introducing a propositional network as defined in chapter 2.2. The learners then

start reading the code. Certainly, this step needs some preparation that enables

the learners to understand the syntax, but with syntactically simple languages like

Logo, also this step is very intuitive and easily accessible to learners. Moreover, it

also touches upon a point discussed in section 2.4 - reading the code is an active

way of learning and constructing knowledge. The third step then involves changing

the code and observing the results. Finally the learners should have gained enough

43

4 Teaching programming

Figure 4.2: Cognitive objectives taxonomy

experience to create a program by themselves. These exact steps are followed in

the teaching project. The advantage of this method is that all learning theories are

perfectly incorporated. From behaviorism, the the ’drill’-aspect is included when it

comes to reading programs - learners do it until they understand it. In connection,

the constructionist part is the strong self-reliance and active involvement in the

deconstruction of programs and this approach provides a more natural way to

get in touch with programming. The learners slowly ’grow’ into the world of

programming and can easily construct a propositional network. Even more, this

method can present complex and abstract topics in a simple and straightforward

manner, which allows, according to Piaget’s theory, the application of the method

also in a younger learner group.

4.3 Music and programming - a contradiction?

The question now arises, as it has been clarified how to proceed in teaching pro-

gramming, how to deliver the concepts and topics related to programming. Obvi-

ously, this is a very complex topic and requires a well prepared approach to avoid

44

4.3 Music and programming - a contradiction?

demotivation already at the beginning. Traditional programming courses usually

focus on teaching the basic syntactical rules of a language and then some exercises,

the meaningfulness of which can be argued about. Very often then, learners com-

plain that they do not see the practical use of the exercises they do and lose interest

(a fact that the author of this paper has also experienced in his teaching). Once

a start is made, interest builds up automatically, and a feeling of accomplishment

arises (this again relates to behaviorist theories, cf. chapter 2.1).

The hypothesis of this thesis is that music can serve as a means to teach ab-

stract programming principles to learners who have no programming background

whatsoever. As already mentioned, a teaching project is discussed in chapters

5 and 6 and the workbook along with supplementary material for the teacher is

to be found in the appendix. This chapter focuses on the theoretical didactical

implications.

4.3.1 An argument in favor of music

It can now be argued why music is a suitable means to teaching programming.

Guzdial and Soloway make a very good case for music: it appeals much more

to learners than traditional text based exercises. For an age group they label

”Nintendo generation”,67 simple text based introductory examples like the famous

’Hello World!’ are not suitable for eliciting interest. In fact Guzdial and Soloway

claim:68

Let’s consider a popular textbook for CS1 today, Deitel and Deitel’s
Java: How to Program [. . .] The first program discussed in Deitel and
Deitel is producing a line of text, akin to ”Hello World.” The second
places the text in a window. The next few produce numeric outputs
in windows and then input numbers and generate calculator types of
responses. Would one expect these kinds of exercises to be the ones
to engage the MTV generation? Such exercises are exactly what the
AAUW report describes as ”tedious and dull.”

45

4 Teaching programming

This certainly poses a significant problem for a didactical design of programming

instruction. Yet Guzdial and Soloway also have an answer for this problem. Years

ago, when computers could not offer today’s extent of multimedia capabilities, a

textual approach seemed enough to learn about programming and data structures.

However, the current generation of learners is used to the computer as a multimedia

machine that can easily process music, video and graphics at a very high level.

Therefore programming, even introductory programming has to live up to this

standard to a certain extent.68

An example from teaching practice: a student of a colleague was quite excited

about learning how to program when he found out that the computer game World

of Warcraft is written in C++. He strongly asked to be instructed in this pro-

gramming language so that he could also program a similar game. Of course,

one cannot start teaching programming with C++, an extraordinary complex lan-

guage, and even then game programming is far out of reach for beginners. Yet

still, it nicely shows the incentives that are relevant for learners today. Computer

science teaching should take notice of that.

4.3.2 Data structures in music

The previous argument has shown that music can indeed serve as a viable means to

teaching programming in terms of interest and student motivation. Now one can

show that music can not only elicit interest but also convey significant principles

of programming. Data structures are a very good example as sheet music basically

is a way to organize data - musical data, i. e. tones. Of course, the notation is

quite different to programming notation, but it can be shown that one can easily

switch between the two models. A look at the following simple tune in figure 4.3

already shows several things one can notice form a computer scientist’s point of

view.

46

4.3 Music and programming - a contradiction?

Figure 4.3: A simple tune

This song features a series of notes with different pitches and durations. Sheet

music notation can be quite complex, yet here one can easily observe that the

sequence of notes is managed in measures. Furthermore, it seems that this tune is

in c-major and has a 4/4 time signature. Finally, one part of the song is repeated.

In terms of data structures, this song does not seem to be overly complex. Still,

one can extract structural information shown in figure 4.4 from the piece.

Figure 4.4: Objects in music

This image shows the formal structure of the tune, as one would define it from a

programming perspective: first, there is a musical phrase that has certain proper-

47

4 Teaching programming

ties. The time signature, key signature or the instrument that is used to perform

is can be such properties. A phrase can be a whole piece, but not necessarily.

Considering that for example the key signature can change in a song, two phrases

would be necessary then. A phrase can therefore also be just one measure. The

phrases contain notes (at least one note) which in turn have properties again, pitch

and duration being the two properties that exactly define a note. Hence, the tune

above can be described using two phrases (figure 4.5).

Figure 4.5: Phrase 1, tune #1

This phrase illustrates the first part of the tune, up to the bar indicating the

repetition. This phrase, or object, is then used a second time, in programming

48

4.3 Music and programming - a contradiction?

one could classify this as a loop. After the the repetition the song continues with

the second phrase (figure 4.6).

Figure 4.6: Phrase 2, tune #1

The song then continues until the end. The important point to notice here is

that music can essentially be seen as an object-oriented data structure that can

be used flexibly to create and describe pieces of music. The constructors for the

objects/phrases (implementing an example method) above can be described in the

following pseudo-code.

49

4 Teaching programming

define: phrase(key, time, tempo, instrument){

key = cmajor

time = 4/4

tempo = 90 bpm

instrument = piano

notes = []

function addnote(pitch, duration){

notes += new note(pitch, duration)

}

play{

transfertomidioutput

}

function transpose_song(offset){

if offset > 0

key_signature += offset;

else if offset < 0

key_signature -= offset;

}

}

A similar pseudo-code defines a note:

define: note(pitch, duration){

pitch = c

duration = 1/4

function transpose(offset){

if offset > 0

pitch += offset

else if offset < 0

pitch -= offset

}

}

Finally, the following simple code shows the creation of the computational repre-

sentation of the example song.

50

4.3 Music and programming - a contradiction?

class tune#1{

main(){

phrase1 = new phrase(c-major, 4/4, 90, piano)

phrase2 = new phrase(c-major, 4/4, 90, piano)

phrase1.addnote(c4, quarter)

phrase1.addnote(e4, quarter)

phrase1.addnote(g4, quarter)

phrase1.addnote(a4, quarter)

phrase1.addnote(g4, quarter)

phrase1.addnote(e4, quarter)

phrase1.addnote(c4, quarter)

phrase1.addnote(b4, quarter)

phrase1.addnote(e4, quarter)

phrase1.addnote(d4, half)

phrase1.addnote(g4, quarter)

phrase1.addnote(g4, quarter)

phrase1.addnote(b4, quarter)

phrase1.addnote(a4, quarter)

phrase1.addnote(g4, quarter)

phrase1.addnote(f4, quarter)

phrase1.addnote(dis4, quarter)

phrase1.addnote(e4, half)

phrase1.addnote(g4, eighth)

phrase1.addnote(a4, quarter)

phrase1.addnote(c4, half)

phrase1.addnote(p, eighth)

phrase2.addnote(d4, quarter)

phrase2.addnote(d4, quarter)

phrase2.addnote(e4, quarter)

phrase2.addnote(f4, quarter)

phrase2.addnote(f4, quarter)

phrase2.addnote(e4, eighth)

phrase2.addnote(d4, quarter)

phrase2.addnote(e4, quarterextended)

phrase2.addnote(e4, eighth)

phrase2.addnote(a4, eighth)

phrase2.addnote(g4, quarter)

51

4 Teaching programming

phrase2.addnote(c4, half)

repeat(phrase1.play)

phrase2.play

}

}

Of course, this is only non-working pseudo-code, far away from an actual im-

plementation, therefore no particular programming language is represented here.

Still, it shows how musical structures translate into objects, on which operations

can be performed (like the repeat - command). Hence one can say that the data

structure of music can indeed represent data structures needed for programming

and can constitute a promising teaching approach.

MidiCSD

The question now arises how to implement musical operations on the computer.

Clearly, beginners cannot directly program in languages like Logo, Java or Scheme.

A simple note in the impromptu environment for Scheme looks like this:69

(au:clear-graph)

(define piano (au:make-node "aumu" "dls " "appl"))

(au:connect-node piano 0 *au:output-node* 0)

(au:update-graph)

(play-note (now) piano 60 80 (* 1.0 *second*))

Whereas this might still be a construct that may be possible to teach, a simple

extension of the code to play a full scale already renders the code very complex:69

(au:clear-graph)

52

4.3 Music and programming - a contradiction?

(define piano (au:make-node "aumu" "dls " "appl"))

(au:connect-node piano 0 *au:output-node* 0)

(au:update-graph)

(au:print-graph)

(define pitches ’(60 62 64 65 67 69 71 72))

(define dynamics ’(80 80 80 80 80 80 80 80))

(define rhythms ’(0.5 0.25 0.25 0.25 0.25 0.25 0.25 0.5))

(print pitches)

(define play-sequence

(lambda (time inst plst dlst rlst)

(map (lambda (p d r)

(play-note time inst p d (* r *au:samplerate*))

(set! time (+ time (* r *au:samplerate*))))

plst

dlst

rlst)))

(play-sequence (now) piano pitches dynamics rhythms)

This obviously is not code that one can expect beginners to understand. There-

fore, for simplicity reasons and to provide an easy introduction to programming

operations, the actual complex source code implementing the musical structures

and operations has to be presented in an easily accessible way. This is where

MidiCSD comes in.70

Firstly, it provides a familiar working IDE for most learners, MS Excel is an

application that is quite common and most learners are familiar with it (to the

extent that is necessary for using MidiCSD).

Secondly, its graphical user interface is relatively easy to use. As the name

says, MIDI phrases are defined in tables, which are constructed using the phrase

language, and operations on phrases can be taken from a set of commands called

macro language. These constructs are fairly easy to learn but still provide the

53

4 Teaching programming

learner with a powerful tool to create and modify MIDI sound files. The above

defined scale in Scheme then would look as follows in MidiCSD:

Figure 4.7: Scale in MidiCSD

The didactical approach to this is illustrated in the workbook (cf. appendix), as the

table at first sight might look somewhat confusing to learners who are unfamiliar

with the MIDI format (e. g. the purpose of the channel). Thus the teacher has to

do some preliminary work; illustrating the musical structures and drawing parallels

to MIDI (in terms of pitch numbering and duration). Still, MidiCSD promises a

careful introduction to musical programming and programming as a whole.

4.3.3 Further possibilities of music in CS teaching

If foundations for algorithms and data structures are laid, one can continue learn-

ing a particular programming language. For this purpose, several approaches are

possible in various programming environments.

Programming in Squeak

Guzdial and Soloway propose a interesting approach to teaching computing: mul-

timedia programming in Squeak.71 Squeak is a programming language and en-

vironment based on Smalltalk that has special features to work with multimedia

content.72 Guzdial and Soloway use Squeak to replace the ’Hello World!’ exercise

54

4.3 Music and programming - a contradiction?

with a voice recording of the learner himself, as Squeak offers sound recording.71

The equivalent to the ’Hello World!’ procedure would then be the learners at-

tempting to play their recorded message. This is, thanks to the rather simple

syntax of Smalltalk rather easy:71

(SampledSound soundNamed: mySound) play

Here, the the object-orientation is far less a problem than with Java or C++, as

the syntax is simple enough to allow a good understanding of the concept (with the

foundation with MidiCSD). A highly convenient feature is the ability of Squeak to

convert the recorded sound into an instrument:71

((SampledSound soundNamed: mySound) pitch: c) play

This merely requires a simple extension of the code and it is still fairly intuitive and

logical with regard to is structure. Consequently, when the basics of the language

are learned, the users can create more complex programs that still do not require

a lot of code (which is one of the major advantages of Smalltalk/Squeak over

C++):71

forfreq: freq amplitude: amp duration: seconds

| sr anArray pi interval samplesPerCycle maxCycle rawSample |

sr := SoundPlayer samplingRate.

anArray:= SoundBuffer newMonoSampleCount: (sr * seconds).

pi := Float pi.

interval := 1 / freq.

samplesPerCycle := interval * sr.

maxCycle := 2 * pi.

1 to: (sr * seconds) do: [:sampleIndex |

rawSample := ((sampleIndex/samplesPerCycle) * maxCycle) sin.

55

4 Teaching programming

anArray at: sampleIndex put: (rawSample * amp) rounded.

].

^ anArray

This method describes the generation of a monophonic sound buffer array which is

filled with a sine wave of a given frequency, maximum amplitude and its duration

in seconds.71 Due to the pure object-orientation, the variables can be defined

easily (this again continues the object-oriented path that starts in MidiCSD) and

a for-loop completes the array containing the sound. Another method enables the

combination of two sound buffer (arrays) with the same index values:73

combine: soundbuffer1 and: soundbuffer2

| newsound |

(soundbuffer1 size) = (soundbuffer2 size)

ifFalse: [^ self error: Sound buffers must be of the same length].

newsound := SoundBuffer newMonoSampleCount: (soundbuffer1 size).

1 to: (soundbuffer1 size) do:

[:index | newsound at: index put:

(soundbuffer1 at: index) + (soundbuffer2 at: index)].

^ newsound.

The former example corresponds to the definition of a musical phrase (as in

MidiCSD’s phrase language) and the latter illustrates an operation on phrases

that corresponds to the macro language. Thus one can see programming in

Squeak/Smalltalk as the next step to bring learners carefully from an simplified

special-purpose language like MidiCSD to a universally useable fully featured pro-

gramming language that incorporates many tools and concepts necessary for other

mainstream languages (C++, Java, C#, Objective-C, Scheme, Lisp). Guzdial and

Soloway believe that this approach to elementary concepts of programming like

56

4.3 Music and programming - a contradiction?

array manipulation is strongly preferred by students.73 Furthermore, Squeak of-

fers much more features with regard to multimedia - one can not only look at the

waveforms and play the sounds, even Fourier analyses are possible.73 Clearly, this

it not introductory programming anymore, but it shows the enormous potential

the language offers in teaching.

Design patterns

It has been shown that basic functionalities can also be taught by using music

and multimedia. One might now argue that music can also serve as a means to

teaching advanced topics in programming, i. e. design patterns. Hamer is in favor

of this approach as he claims:74

Attempts at teaching design patterns in the same style as data struc-
tures and algorithms are doomed to failure. For teaching data struc-
tures, it works well to present a sample of the major forms (e.g., array-
based lists, linked lists, hashing, and binary search trees). Data struc-
tures are ”solutions in search of a problem.” Design patterns, on the
other hand, are tools for doing design (i.e., generating solutions). To
learn a design pattern, students must experience the use of the pattern
in practice and relate the pattern to other techniques.

It is therefore worth considering to approach such a teaching situation with music.

Hamer proposes a teaching project that requires learners to write the complete

code by themselves (in Java, although implementations in C++ or C# are of

course also possible).74 It is therefore necessary that the learners already have

a certain level of proficiency in not only basic programming concepts, but also

object-oriented programming languages. Java is a complex language that imposes

a strict set of syntactic rules upon the programmer, thus at least some experience in

programming in Java is absolutely necessary in order to be able to fully understand

and benefit from the teaching of such advanced topics like design patterns.

57

4 Teaching programming

Hamer notes that the project focuses on musical composition and enables learn-

ers to express their musical talent and nicely shows the connection between pro-

gramming and art.74 The project shall address the following issues:74

• exploration of the design patterns Composite, Decorator, Factory and Visitor

• further deepen the understanding by emphasizing the analogy between pro-

gram structure and musical structure, which includes:

- sequential composition (cf. statement sequencing)

- parallel composition (cf. threaded code)

- musical repeats (cf. loops)

- variant endings (cf. conditional statements)

• develop learners’ skills of abstracting patterns and identifying underlying

structures

• present a connection between structural design patterns and context-free

grammars

• the application of formal methods (e. g. giving proofs of equivalence of

various musical forms)

Points two and three are to a certain extent already touched upon in MidiCSD, as it

too illustrates loops, sequential and treaded code, but the other points are new and

quite demanding to learn when studied solely on a theoretical level. Especially the

proofs of equivalence are a completely new topic that is an interesting new concept,

yet in as this would expand the argument of this thesis to logic and theoretical

computer science this section concentrates solely on the musical interpretations of

the design patterns.

Hamer begins by outlining a musical structure. It is similar to the structure

illustrated in section 4.3.2, extending the music model slightly (figure 4.8).75 The

structure defined here is described using the design patterns Composite and Dec-

orator and consists of Notes (again with the parameters pitch and duration) and

58

4.3 Music and programming - a contradiction?

Figure 4.8: UML diagram for music

Rests (which only have a duration).75 Notes and rests can be assembled to larger

units using either the Seq (for a sequence of notes) or the Par (for a parallel

arrangement of notes, i. e. a chord) constructor.75 The abstract class Music then

allows the arbitrary nesting of musical constructs.75

The musical term can then be modified by four Decorator -classes (Tempo,

Transpose, Instrument and Phrase). The purpose of the first three classes

is fairly obvious. The Phrase-class is an attempt to describe musical phrasing

algorithmically.75

The Factory design pattern is then used for constructing notes and rests. The

middle C could be constructed like this:75

Note middle_C_quaver = new Note(32, 0.25);

To facilitate writing notes, a number of auxiliary functions can be constructed:75

Note c(int octave, double duration) {

return new Note(octave 12, duration);

}

Note d(int octave, double duration) {

return new Note(octave 12 + 2, duration);

}

//- etc.

59

4 Teaching programming

Note sharp(Note orig) {

return new Note(orig.pitch() + 1, orig.duration());

}

Note flat(Note orig) {

return new Note(orig.pitch() - 1, orig.duration());

}

Which then allows the middle C (quarter note) to be constructed like this:75

Note middle_C_quaver = c(4, 0.25);

It is clear that these operations and functions demand a certain level of program-

ming skill, yet it nicely illustrates the use of design patterns. Hamer also briefly

addresses the use of a context free grammar, as he claims that it offers a more

concise description of the musical structure than the UML diagram.75 In addition,

Hamer notes that it deepens the understanding of students when they are exposed

to alternative forms of notation.75 According to Hamer, an abstract grammar for

music therefore would look as illustrated in figure 4.9.76

Music ::= Note Pitch Duration
| Rest Duration
| Seq Music Music ...
| Par Music Music ...
| Tempo Ratio Music
| Transpose Offset Music
| Instrument Name Music
| Phrase Attribute Music

Figure 4.9: A context-free grammar for music

Finally the piece, which is described and its objects implemented, has to be per-

formed. As with MidiCSD, Hamer suggests the MIDI standard as music output.76

In order to convert a Music term (a tree) into MIDI (a linear sequence), Hamer

60

4.3 Music and programming - a contradiction?

notes that the structure needs to be flattened by a certain operation, which can

be written with a recursive traversal (although various complications arise when

the required MIDI headers and event formats are generated).76 To avoid these

complexities, a (simpler) intermediate form is generated first, which results in two

translations, but the second (encoding the details in MIDI) can usually be provided

to the students as a callable library.76

The students then have to write a function that generates a list of musical

’events’ for each Note, which calculates the absolute time, instrument, pitch and

duration.76 A ’performance context’ maintaining the current time, instrument,

pitch, offset and tempo factor is required for an efficient solution.76 While the

Decorator objects can modify and restore the relevant part of the context, Seq

and Par update the current time.76 An outline of the code looks like this:76

class Context {

double time;

int volume;

String instrument;

double dt;

int dp;

SortedSet events;

}

...

class Tempo {

Music part;

double tempo;

void perform(Context ctx) {

ctx.dt /= tempo;

part.perform(ctx);

ctx.dt *= tempo;

}

...

}

61

4 Teaching programming

Hamer notes that at this stage, the Visitor pattern can be introduced, which

can be presented as an example of a failed pattern, as the assumed advantages

of adopting the pattern do not arise.76 Hamer claims that exposing students

to situations where patterns do not fit is quite important - Visitor involves the

collection of all virtual perform functions inside the Context class.76 A generic

visit method is left in place of the virtual functions.76 This method selects the

appropriate (overloaded) perform method from the Context class.76 The full

pattern then requires that the new perform methods have to be placed in an

interface (with a generic name such as accept).76 At the end, the code does the

same but becomes more difficult do understand.76

To complete the discussion of the elements given in the grammar above, Hamer

notes that a Phrase modifies the Events that are generated from the enclosing

Music object.76 He gives the example of the attribute ’MF’ (denoting mezzo-

forte, medium loudness), which could set the volume of each event to 110% of

normal.76 Analogously one can implement other musical performance elements

like a crescendo or diminuendo.76

4.4 Summary

In this chapter a theoretical concept for teaching programming has been created.

In order to have a general background it is argued that of the two approaches to

teaching programming, the semiotic ladder and cognitive objectives taxonomy, the

latter is preferable as it provides a more natural access point not only for teaching

a particular programming language but also general concepts like algorithms and

data structures. For this purpose one can choose music as a means to present the

said concepts, as it can be shown that musical structures directly reflect back on

data structures, particularly for object-oriented programming. A concrete imple-

62

4.4 Summary

mentation of the cognitive objectives taxonomy and music is found in MidiCSD,

a user-friendly simplified programming environment that provides a good starting

point for basic programming concepts, but also abstract constructs like nested

objects. Using MidiCSD as a starting point, one then can use music in further

projects to teach fully featured languages like Smalltalk. It is even possible to

teach advanced topics of programming such as design patterns.

63

5 Teaching project

The aim of this chapter is to put the theories and hypotheses developed into

practice. Given the discussion about teaching programming (cf. chapter 4) and

learning theories, especially constructivism and the theory of cognitive develop-

ment (cf. chapter 2.3 and 2.4), the next step is to test the developed hypothesis

in practice. MidiCSD serves as a means to do this and the following description

of the teaching project investigates whether MidiCSD is a viable example in CS

teaching.

5.1 Prerequisites

The project intends to introduce learners to elementary concepts of algorithms,

data structures and programming. Therefore, no knowledge of programming and

its related fields is assumed. However, a certain level of knowledge of music theory

is necessary, i. e. the learner needs to be able to read music. Moreover, a certain

extent of ability to use the computer is needed. MidiCSD is an MS Excel add-on,

but it is not necessary to be familiar with spreadsheets to use MidiCSD.

5.2 Target group

The project is suitable for learners above the 5th form (in the Austrian high school

system). Learners at this age (15+) already have some knowledge of how to work

64

5.3 Learning targets

productively with the computer and its applications. Still, it might be possible

to carry out the project with younger learners. This cannot be defined generally

and depends on the learning progress of the individual class. It can therefore be

perfectly suitable to use the project with 10 to 14 year olds (some simplification of

the project paper might be necessary) if the school has a strong focus on computer

science.

Additionally, the project can also be implemented at university, which requires

a few changes. The timeline is different for students and the final project is a bit

different - it is not a composition competition, but rather a group project that is

assessed.

5.3 Learning targets

The learners should

• understand the concept of data structures by means of the structure of music

• understand the connections between sheet music and music in the MIDI file

format

• understand the basics of object-oriented data structures

• understand how interpreter based programming languages work

• understand how a compiler works

• understand how the macro language of MidiCSD operates on phrases/objects

and how this is related to assembler-based programming

• be able to compose and implement a piece of music in MidiCSD and compile

it

65

5 Teaching project

5.4 Timeline

5.4.1 At school

The timeline depends strongly on the amount of computer science lessons the

learners have per week. If instruction takes place only once a week, the duration

of the project can be estimated to be about five weeks. Especially toward the end of

the project, where actual development of songs takes place, the time consumption

can vary strongly, depending on how fast the learners work and make progress.

If instruction takes place several times a week the duration can be shorter (e. g.

CS classes at university). Still, three weeks can be considered to be the absolute

minimum timeline for this project.

5.4.2 At university

University students can be expected to work and understand the concept much

faster than school students. Therefore the duration of the required presentation by

the teacher is significantly reduced to a mere introduction to the musical structures

and MidiCSD. A fixed timeline can therefore not be given, it depends on how much

time the teacher allows the students to explore the possibilities of MidiCSD and

to create their individual songs.

5.5 General expectations

The project attempts to illustrate the concepts mentioned in the learning targets

above in an indirect way. Instead of directly telling and lecturing learners how a

compiler or interpreter works, the objective is to let the learners experience the

effects of interpretation and compilation and afterwards give an explanation that

is then completely clear to everybody. The method to teaching data structures

66

5.6 Course structure

is similar. By analyzing and working with musical pieces the concept becomes

innate in a way that no explicit explanation is necessary. Therefore the project

promises to be quite successful in outlining the key concepts of programming to

the learners.

5.6 Course structure

The teaching project is a mix of teaching form S1/A2 and S2/A2 as defined in

section 3.2.1. Learners basically work in groups most of the time, but occasional

lectures of the teacher are necessary, especially for introductory concepts and rep-

etitions.

5.7 Lesson plans (for school)

The lesson plan is a rather flexible suggestion. The accompanying workbook is

deliberately written in a school-book style, which allows lessons to be constructed

freely around it. An example lesson plan for a duration of five weeks (two double-

lessons per week) could look as follows.

5.7.1 First week

In the first week, the existing knowledge of music is put into the context of com-

puter science (table 5.1). The teacher points out how a piece of music is constructed

and how this is relates to the concept of data structures. As this is the entry point

for the whole project, it is particularly important that all learners understand the

issue at hand. If needed, additional time should be spent in order to ensure that

all students can analyze a piece of music in terms of its musical structure.

The next step is to introduce students to the MIDI file format and how to

67

5 Teaching project

’translate’ simple songs from sheet music format to the MIDI format. This should

be shown with the help of MidiCSD. A solid understanding of the connections

between the two formats is crucial, as the rest of the project is constructed on the

assumption that this concept is clear to everyone.

Time Activity Interaction Media

20 description of music structure lecture
10 analysis of an example song group work workbook
10 comparison of results open class
20 introduction to the GUI of MidiCSD lecture
10 analysis of example song in MidiCSD group work
20 discussion of the MIDI file format group work workbook
10 revision lecture

Table 5.1: Lesson plan week 1

5.7.2 Second week

The second week of the project deepens the knowledge of MIDI operations (table

5.2). Significant importance is to be attributed to the topic of the use of relative

time. This might not be easily accessible for all learners, therefore a thorough

explanation, visualization and exercise is necessary. This may take up more time,

yet this time is well spent as learners can then create complex polyphonic songs,

which widens the possibilities in the final project activity greatly. For this purpose

it may be quite helpful to distribute handouts with exercises on this matter and

refer to the workbook.

The focus then shifts to the musical phrases and the operations that can be

performed with them. Particularly the illustration of phrases as objects that have

certain properties is important, as it introduces learners without too many abstract

explanations to object-orientation, an important concept of programming.

68

5.7 Lesson plans (for school)

MidiCSD is then used to demonstrate the principle of assembler-programming.

The macro language of MidiCSD is used to perform operations on musical phrases.

An emphasis on the thorough explanation of how the macro language works is

strongly recommended, as it represents the first contact of learners with actual

commands of a programming language and its results. The learners therefore first

try to figure out which effects the macro language might have on the phrase (as

described in the workbook) and then the concept is discussed in an open class.

Time Activity Interaction Media

25 discussion on relative time
in MidiCSD lecture and group work workbook

20 phrase operations group work workbook
15 macro language of MidiCSD group work workbook
15 discussion of macro language open class
15 activity on compiling

and interpreting code group work workbook
10 revision and Q & A lecture

Table 5.2: Lesson plan week 2

5.7.3 Third week

Time Activity Interaction Media

10 the song-development process lecture
30 activity: song creation group work
10 implementation in MidiCSD group work workbook
25 canon-exercise group work workbook
15 discussion and presentation of songs group work
10 revision lecture

Table 5.3: Lesson plan week 3

69

5 Teaching project

The third week turns to more and more group work (table 5.3). The teacher

introduces and summarizes the lesson, but the main work is done in groups. The

learners already have the necessary skills to develop a MIDI song by themselves

and in the spirit of constructionist learning the process should be as independent

from the teacher as possible. The learners should bring a simple piece of music

with them to work on and the process from song translation to MIDI and its

implementation as a simple phrase in MidiCSD should be no problem. When first

attempting to create the canon with help of the macro language, several problems

can appear that require the assistance of the teacher. Still, due to its similarity to

an example in MidiCSD, the problem should be solvable for all learners. Finally,

the songs of the project groups should be presented in class. This serves as a test

run for the compositions the learners will create in the project later on.

5.7.4 Fourth week

The fourth week (table 5.4) introduces the last feature the learners can use in

the project: polyphonic songs with help of relative time. The concept is briefly

revised and then applied in the example songs of the previous lecture. As all

relevant concepts have been presented and worked through, the project work in

the groups can start. The rest of the week’s lesson is dedicated to finding or

composing a song and completing the first steps of the development process.

Time Activity Interaction Media

10 revision lecture
30 applying polyphony with relative time group work
10 discussion of results open class
50 project work in the groups group work

Table 5.4: Lesson plan week 4

70

5.7 Lesson plans (for school)

5.7.5 Fifth and final week

The final week of the project is entirely focused on the project work in the groups

(table 5.5). The learners are advised to continue working on the song between the

fourth and fifth week at home and the final project work is done in class. The last

part of the lesson is used for presenting the results of the project work.

Time Activity Interaction Media

80 project work in the groups groups work
20 presentation of the results open class

Table 5.5: Lesson plan week 5

71

6 Project evaluation

6.1 Sample group

The teaching project was evaluated with a group of 12 university students, all of

which have a musical background. As can be seen in figure 6.1, female students

were in the majority (7 females to 5 males).

Figure 6.1: Gender ratio

The workbook was not used for the evaluation, as it is principally aimed at high

school students. Instead, an introductory presentation and a handout with tasks

(ranging from quite simple to more complex implementations) were used. These

materials are to be found in the appendix. The students worked together in groups

72

6.2 Teaching sequence

of two (one all-male, two all-female and two mixed groups) and, in order to contrast

group results to individual results, one female and one male individual working on

their own. This resulted in 7 MIDI spreadsheets that were handed in for evaluation.

The students’ academic background is almost in all cases not tied to music - only

two of the students study musicology. The areas of study are divided as illustrated

in figure 6.2.

Figure 6.2: Study areas of sample group members

Still, it needs to be mentioned that almost all of the students have strong ties to

music in their spare time, half of them are choir singers and the others also play

an instrument or have musical talent or knowledge of music theory to some extent.

6.2 Teaching sequence

Due to time constraints, not the entire possibilities that MidiCSD offers have been

tested. The teaching sequence focused on an understanding of musical pieces and

73

6 Project evaluation

the notes they contain as objects and the actions that can be performed on them

using the macro language. Therefore an introductory presentation was given to

illustrate the key concepts mentioned as well as the syntax of the macro language.

With regard to active learning, concepts like the relative time and macro language

syntax were discovered by giving students time to explore the examples in MidiCSD

themselves.

After the presentation, the students divided into groups and worked on the

handout to solve the exercises. Finally the results in form of Excel spreadsheets

were handed in for evaluation along with some statistical data.

6.3 Selected tasks

The outcome can generally be interpreted as being very successful. Very few

problems occurred during the evaluation and the outcome presents very interesting

findings. On figure 6.3 the solved exercises are shown, with no. 11 being macro

codes not requested on the task sheet.

Figure 6.3: Choice of tasks

Obviously in all 7 instances, the groups/individuals managed to translate the sheet

74

6.4 Significant results

music to its MIDI representation in task 1. Most groups solved the more easy tasks

2-5, yet a few groups tried and succeeded in solving the more advanced tasks 6,

7 or 8. Task 10, the creation of the MIDI file was accomplished once with the

teacher’s help. Sound effects summarized under no. 11 are for example speed

changes and time shifts.

6.4 Significant results

6.4.1 Naming conventions

In order to distinguish between the groups the following convention shall be uti-

lized: I-M (individual, male), I-F (individual, female), A-F 1/2 (all-female groups),

A-M (all-male group) and Mixed 1/2 (mixed groups).

6.4.2 Task 1 and 2

Every group managed to produce a solution for the midi table of the song, which

is shown in table 6.1. The table is taken from the spreadsheet that was handed

in by I-M. No group found it difficult to assign the correct pitch numbers and

duration values to the table. Because of the simple syntax of the MIDI phrase,

task 1 was solved very quickly. Several groups included chords in the phrase, as

requested in task 2. An example is shown in table 6.2 (taken from A-F 2), which

already required a deeper knowledge of music theory, especially when constructing

subdominants and dominants. Still, also this task posed no great problem to the

groups who chose to work on it.

75

6 Project evaluation

reltime saints
0 note 1 60 1 250

250 note 1 64 1 250
250 note 1 65 1 250
250 note 1 67 1 1250

1250 note 1 60 1 250
250 note 1 64 1 250
250 note 1 65 1 250
250 note 1 67 1 1250

1250 note 1 60 1 250
250 note 1 64 1 250
250 note 1 65 1 250
250 note 1 67 1 500
500 note 1 64 1 500
500 note 1 60 1 500
500 note 1 64 1 500
500 note 1 62 1 1250

1250 note 1 64 1 500
500 note 1 62 1 250
250 note 1 60 1 750
750 note 1 60 1 250
250 note 1 64 1 500
500 note 1 67 1 500
500 note 1 67 1 250
250 note 1 65 1 1000

1000 note 1 65 1 250
250 note 1 64 1 250
250 note 1 65 1 250
250 note 1 67 1 500
500 note 1 64 1 500
500 note 1 60 1 500
500 note 1 62 1 500
500 note 1 60 1 1250

Table 6.1: MIDI table of ’Oh when the saints’ (I-M)

76

6.4 Significant results

reltime saints
0 note 1 60 1 250

250 note 1 64 1 250
250 note 1 65 1 250
250 note 1 67 1 1250

0 note 1 60 1 1250
0 note 1 64 1 1250

1250 note 1 60 1 250
250 note 1 64 1 250
250 note 1 65 1 250
250 note 1 67 1 1250

0 note 1 72 1 1250
0 note 1 64 1 1250

1250 note 1 60 1 250
250 note 1 64 1 250
250 note 1 65 1 250
250 note 1 67 1 500
500 note 1 64 1 500
500 note 1 60 1 500
500 note 1 64 1 500
500 note 1 62 1 1250

0 note 1 59 1 1250
0 note 1 55 1 1250

1250 note 1 64 1 500
500 note 1 62 1 250
250 note 1 60 1 750
750 note 1 60 1 250
250 note 1 64 1 500
500 note 1 67 1 500
500 note 1 67 1 250
250 note 1 65 1 1000

1000 note 1 65 1 250
250 note 1 64 1 250
250 note 1 65 1 250
250 note 1 67 1 500
500 note 1 64 1 500
500 note 1 60 1 500
500 note 1 62 1 500
500 note 1 60 1 1250

0 note 1 64 1 1250
0 note 1 67 1 1250
0 note 1 72 1 1250

Table 6.2: MIDI table including chords (A-F 2) 77

6 Project evaluation

6.4.3 Tasks 3 and 4

These tasks required the use of macro language for the first time. Interestingly,

the first impulse of many of the groups working on any macro language exercise

was to copy and paste the example code already given in MidiCSDDemo and to

go on from there. Certainly, as at the beginning everybody was still somewhat

insecure about the syntax, most groups decided to work their way from an already

known code. Group Mixed 1 presents the following solution for task 3:

clearall

Saints define B3:G35

init define B37:E38

saints transpose 4

saints play

It is interesting that although the students copied the init phrase from the example

songs, as this would not have been necessary, they did not change the instrument.

Task 4 is similarly simple and was solved by I-F perfectly:

clearall

saints define B2:G34

saints reverse

saints play

These quite easy tasks were meant as an introduction to the syntax of the macro

language and posed no significant problem to any group that worked on this task.

6.4.4 Task 5

Task 5 already required a more complex code, as multiple phrases and instruments

were necessary. Although the exercise shows strong similarities to the canon in

78

6.4 Significant results

the example song, it produced several interesting results. Group A-F 1 presents

the following solution:

clearall

saints define C5:H47

init define C50:F53

saints1 copy saints

saints2 copy saints

saints3 copy saints

saints2 rechannel 1 2

saints3 rechannel 1 3

saints2 timeshift 16000

saints3 timeshift 32000

all copy init

all merge saints1

all merge saints2

all merge saints3

all changespeed 2

all play

There are some interesting observations one can make here. The changespeed com-

mand was used to shorten playback time in order to save time overall. Switching

the channel of phrases 2 and 3 is of course necessary in order to match the in-

struments provided in init. The use of the time shift to accomplish the sequential

playback of the phrases seems to stem from the example song provided in MidiCSD.

Otherwise it would also be possible to write the following code:

clearall

saints define C5:H47

init define C50:F53

saints1 copy saints

saints2 copy saints

saints3 copy saints

saints2 rechannel 1 2

saints3 rechannel 1 3

79

6 Project evaluation

saints1a copy init

saints1a merge saints1

saints2a copy init

saints2a merge saints2

saints3a copy init

saints3a merge saints3

saints1a play

saints2a play

saints3a play

This avoids the need to sum up the overall duration of the MIDI phrase, which can

get quite complicated when there are several chords involved, as there are some

notes which must not be counted.

6.4.5 Task 6

The task was only partly completed by group Mixed 2. The code they provided

was:

clearall

when define B3:G36

when invert 60

when play

This is only a part of the actual solution. Firstly, the inverted phrase should start

at the same note as the correct phrase, therefore the argument for the function

invert should be 67. Moreover, it should be played together with the real phrase,

which would have resulted in the following code:

clearall

when define B3:G36

when1 copy when

when2 copy when

80

6.4 Significant results

when1 invert 67

all copy when1

all merge when2

all play

Group A-M claimed that they had also solved this task, yet unfortunately there

is no evidence of this in their spreadsheet.

6.4.6 Tasks 7 and 8

These tasks require a little more work. Task 7 was solved by I-F through addition

of another phrase to the original phrase illustrated in table 6.1. The bass line added

is shown in table 6.3. The final macro code she developed takes the following form:

clearall

MyLittleSong define B2:B34

saintsu define I2:N30

all merge saints

all merge saintsu

all play

There are two errors in this code - first, the defined area of the phrase saints con-

tains a typing error. The defined area cannot possibly be B2:B34, rather B2:G34.

This is why the phrase name changes to MyLittleSong. Second, there is a syn-

tax error in line 4: merge needs to be replaced with copy. This was one of the

most frequent mistakes during the evaluation. The students found it difficult to

understand why for the purpose of merging two phrases the first command needs

to contain the keyword copy, the second merge. Thus the correct code would have

been:

clearall

81

6 Project evaluation

saints define B2:G34

saintsu define I2:N30

all copy saints

all merge saintsu

all play

reltime saintsu
850 note 2 55 1 500
500 note 2 60 1 500
500 note 2 55 1 500
500 note 2 60 1 500
500 note 2 55 1 500
500 note 2 60 1 500
500 note 2 55 1 500
500 note 2 60 1 500
500 note 2 55 1 500
500 note 2 60 1 500
500 note 2 55 1 500
500 note 2 59 1 500
500 note 2 55 1 500
500 note 2 59 1 500
500 note 2 55 1 500
500 note 2 60 1 500
500 note 2 55 1 500
500 note 2 60 1 500
500 note 2 55 1 500
500 note 2 60 1 500
500 note 2 55 1 500
500 note 2 60 1 500
500 note 2 55 1 500
500 note 2 60 1 500
500 note 2 55 1 500
500 note 2 60 1 500
500 note 2 55 1 500
500 note 2 60 1 1000

Table 6.3: Bass line for the original phrase (I-F)

Tasks 2, 7 and 8 at the same time were solved by A-M. They created a very

82

6.4 Significant results

impressive piece of music. The macro code for their MIDI file is quite simple, it

only puts four phrases together, but from a musical point of view, the four phrases

that create an orchestra version of the song are very well composed. The original

song is basically the same as in table 6.1, the only difference is that it is here named

saints1. The other three phrases are shown in tables 6.4, 6.5, and 6.6 (the last

phrase was unfortunately not finished in time). The instruments used are shown

in table 6.7.

reltime saints2
750 note 2 48 1 500
500 note 2 43 1 500
500 note 2 48 1 500
500 note 2 43 1 500
500 note 2 48 1 500
500 note 2 43 1 500
500 note 2 48 1 500
500 note 2 43 1 500
500 note 2 48 1 500
500 note 2 43 1 500
500 note 2 48 1 500
500 note 2 43 1 500
500 note 2 50 1 500
500 note 2 43 1 500
500 note 2 50 1 500
500 note 2 43 1 500
500 note 2 48 1 1000

1000 note 2 46 1 1000
1000 note 2 45 1 1000
1000 note 2 44 1 1000
1000 note 2 48 1 500
500 note 2 43 1 500
500 note 2 50 1 500
500 note 2 43 1 500
500 note 2 48 1 1250

Table 6.4: Bass line for saints1 (A-M)

83

6 Project evaluation

reltime saints3
750 note 3 60 1 1000

0 note 3 64 1 1000
0 note 3 67 1 1000

2000 note 3 60 1 1000
0 note 3 64 1 1000
0 note 3 67 1 1000

2000 note 3 60 1 1000
0 note 3 64 1 1000
0 note 3 67 1 1000

1000 note 3 60 1 1000
0 note 3 64 1 1000
0 note 3 67 1 1000

1000 note 3 59 1 1000
0 note 3 62 1 1000
0 note 3 65 1 1000
0 note 3 67 1 1000

2000 note 3 60 1 1000
0 note 3 64 1 1000
0 note 3 67 1 1000

1000 note 3 60 1 1000
0 note 3 64 1 1000
0 note 3 67 1 1000

1000 note 3 60 1 1000
0 note 3 65 1 1000
0 note 3 69 1 1000

1000 note 3 60 1 1000
0 note 3 65 1 1000
0 note 3 68 1 1000

1000 note 3 60 1 1000
0 note 3 64 1 1000
0 note 3 67 1 1000

1000 note 3 59 1 1000
0 note 3 62 1 1000
0 note 3 65 1 1000

1000 note 3 60 1 1000
0 note 3 64 1 1000
0 note 3 67 1 1000

Table 6.5: Additional chords (A-M)

84

6.4 Significant results

reltime saints4
1000 note 4 72 1 500
500 note 4 69 1 250
250 note 4 72 1 250

1250 note 4 72 1 500
500 note 4 69 1 250
250 note 4 72 1 250

1000 note 4 72 1 1000
1000 note 4 72 1 1000
1000 note 4 71 1 1000

Table 6.6: Additional clarinet voice (A-M)

abstime init
0 instrument 1 57
0 instrument 2 59
0 instrument 3 4
0 instrument 4 72

Table 6.7: init phrase containing instrument assignments (A-M)

The following simple macro code was used to assemble the phrases:

clearall

saints1 define A1:F33

saints2 define H1:M26

saints3 define A35:F72

saints4 define H35:M44

init define O30:R34

all copy init

all merge saints1

all merge saints2

all merge saints3

all merge saints4

all play

This resulted in a quite impressive MIDI file. This group also compiled a MIDI

file (with the teacher’s help), as they requested it.

85

6 Project evaluation

6.4.7 Task 9

Unfortunately, no group chose to work on task 9, which one can attribute to the

limited time available. Moreover, the composition of a song is something that is

not too easy if one is not an expert in music theory. Therefore it is understandable

that nobody chose task 9 in the 90 minutes that were available at the evaluation

after the initial presentation.

6.4.8 Task 10

Task 10 was only completed once and only with the help of the teacher. This

exercise was not so much meant as a task to solve (as it requires no macro code,

just the pressing of a button), but rather was there to elicit interest among the

students. One group did express interest (A-M), therefore the task completed with

the teacher’s help.

6.4.9 Further macro codes (task 11 on the diagram)

Some other macro codes were created that either included commands not requested

on the task sheet or a mixture of several tasks. For example, I-M produced the

following code:

clearall

saints define B3:G36

init define B38:E41

saints1 copy saints

saints2 copy saints

saints2 reverse

saints3 copy saints

saints2 rechannel 1 2

saints3 rechannel 1 3

saints2 timeshift 16000

86

6.4 Significant results

saints3 timeshift 32000

all copy init

all merge saints1

all merge saints2

all merge saints3

all transpose 2

all play

This not only plays the song three times with alternating instruments, it also

reverses one phrase and transposes all three songs up by one tone. A similar

implementation is found with Mixed 2, who created a canon with helicopter sound

effects (instruments in table 6.8):

clearall

when define B3:G36

init define B38:E41

when1 copy when

when2 copy when

when3 copy when

when2 rechannel 1 2

when3 rechannel 1 3

when2 timeshift 2000

when3 timeshift 4000

all copy init

all merge when1

all merge when2

all merge when3

all midifile myfile

playfile myfile

One may note that there is a slight error in this code: the last two lines should

be replaced by all play in order to work out. This particular syntax error is

interesting as to how Mixed 2 arrived at this syntax, a similar structure is nowhere

to be found in the examples or the documentation.

87

6 Project evaluation

abstime init
0 instrument 1 33
0 instrument 2 116
0 instrument 3 126

Table 6.8: init phrase containing sound effects (Mixed 2)

6.5 Reflection and Summary

It has been shown that a wide variety of solutions were presented at the evaluation

of the project. In order to summarize the assignments handed in, it is illustrated

in figure 6.4 which group chose which tasks.

Figure 6.4: Distribution of tasks

It is interesting to note that there is no significant gender gap when looking at the

completed exercises. Apart from group A-M, who performed very well with the

more complex tasks, more or less all the groups managed to solve similar exercises.

It is also interesting to note that working together not necessarily increases the

productivity; I-M completed more exercises than A-F 2 or Mixed 1. Still, it was

observable that students were more comfortable working in a group.

After the evaluation, several students pointed out that they found this way of

88

6.5 Reflection and Summary

doing some preliminary programming quite intuitive. Indeed, most macro code

programs were syntactically correct and with regard to the relatively short time

available quite well done. It is certainly not possible to go into the depths of macro

language use (as already noted, phrase language was not touched upon due to time

constraints), therefore many options are available to deepen music programming

in MIDI. Still, this evaluation strongly indicates that the approach of using music

in introductory programming promises good results. Moreover, as some students

afterwards noted, it was also interesting and fun to program music, a fact that

complies with Guzdial and Soloway’s claims in 4.3.1.

On the whole, one can say that the hypothesis has been confirmed in the evalu-

ation to a certain extent. Not all features have been tested, but it still seems clear

that music indeed helped students very much to write simple programs. It can be

expected that after a certain time working on this program, switching to a fully

featured programming language can be anticipated to be a lot easier for beginners

of programming.

89

7 Conclusion

This thesis has proposed the hypothesis that music and particularly musical struc-

tures may serve as a means to teaching programming, especially object-oriented

programming. Several learning theories have been discussed and evaluated in terms

of their possible contribution to teaching computer science. It has been clarified

that computer science is a subject that requires a lot of active work from the

students, thus reinforcing the strong constructionist aspect of a possible didactic

model. Further is has been argued that in order to construct a viable and lasting

propositional network that enables students to retain and independently increase

knowledge, cognitivism offers several important contributions. Furthermore also

age appropriateness plays a role, as defined in Piaget’s theory. Behaviorism only

contributes minor points to the model, still it has been noted that especially a com-

fortable learning atmosphere and positive reinforcement can significantly increase

learning output.

Afterwards a few points have been made in order to clarify the term didactics of

computer science, thus establishing a framework that allows to construct lessons

and teaching sequences using problem based, project based or active learning,

each of which incorporate to a significant amount many points mentioned in the

discussion on learning theories.

Then it has been noted that teaching programming is a particularly difficult

field of computer science to teach; algorithmic thinking and knowledge of data

90

structures are a prerequisite in order to develop applications in any programming

language. Therefore, it has been argued that there is a strong need to visualize

data structures and the development of problem-solving algorithms to students in

an easily accessible way, in the case of this thesis this is music. Several points

have been made that musical structures in fact can serve as a model for abstract

data structures and that MidiCSD, which significantly facilitates writing simple

MIDI songs in MS Excel, can be used to teach these structures. For this purpose

a workbook has been created that shall serve as a teaching aid to high school

students or university students.

The assumptions developed in this thesis have been tested and confirmed in

practice. Not the full extent of the possibilities available could be investigated,

but the main argument of this thesis has been confirmed by a teaching sequence

involving university students. The outcome showed that indeed virtually every-

body had no problems constructing simple programs with MidiCSD and that the

students were quite aware that they had managed to program a series of com-

mands, much like in a common introductory programming class, except that here

music was used instead of textual outputs in simple command line applications.

Moreover, students were well aware of the object-oriented component that music

features, an intuitive advantage that certainly has no counterpart in traditional

programming classes.

Finally, one can say that music as a structure representing (musical) data is quite

well suitable for teaching programming and all the neighboring fields it implies.

91

NOTES

Notes
1See Hubwieser 2007: 3
2See http://paedpsych.jk.uni-linz.ac.at:4711/LEHRTEXTE/LERNEN/klassi.htm, accessed

11th Jan. 2010
3See Hubwieser 2007: 4
4See Hubwieser 2007: 5
5See Hubwieser 2007: 5
6See Hebb 1949 quoted in Hubwieser 2007: 5
7See http://www.nlm.nih.gov/medlineplus/parkinsonsdisease.html, accessed 11th Jan.

2009
8See Tolman and Honzik 1930, Köhler 1921, Koffka 1922, Wertheimer 1945, quoted in Hub-

wieser 2007: 5
9See Bruner 1957, quoted in Hubwieser 2007: 5

10See http://act-r.psy.cmu.edu/, accessed 11th Jan 2010
11See Anderson 1976: 146
12See Anderson 1976: 147
13See Anderson 1976: 148
14See Friedenberg and Silverman 2006: 230
15See Anderson 1976: 148, Friedenberg and Silverman 2006: 230
16See Anderson 1976: 149
17See Hubwieser 2007: 6
18See Wadsworth 1996: 13-14
19See Wadsworth 1996: 14
20See Wadsworth 1996: 17-19
21See Wadsworth 1996: 26
22See Wadsworth 1996: 27
23See Hubwieser 2007: 9
24See Fox 2001: 23
25See Matthews 1992, quoted in Olssen 1996: 276
26See Miller and Driver 1987, quoted in Olssen 1996: 276
27See Hacking 1990, quoted in Olssen 1996: 276
28See Confrey 1990, quoted in Olssen 1996: 276
29See von Glasersfeld 1984, Kelly 1955, quoted in Olsson 1996: 276
30See Fox 2001: 24
31See Piaget 1969, Lieben 1987, Adey and Shayer 1994, quoted in Fox 2001: 24
32See Wertsch 1985, Brown and Reeve 1987, Tharp and Gallimore 1988, quoted in Fox 2001:

24
33See Sharon 1994, quoted in Fox 2001: 24
34See von Glasersfeld 1996, quoted in Fox 2001: 24
35See Rogoff 1990, Mercer 1995, Fosnot 1996, quoted in Fox 2001: 24
36See Hubwieser 2007: 10
37See Terhart 1999: 631
38See Terhart 1999: 631-632
39See Hubwieser 2007: 10-11
40See http://www.bildungsberater-stmk.at/website/matura/lehrer.html, accessed 13th

Feb 2010
41See Hubwieser 2007: 11
42See Hubwieser 2007: 67

92

http://paedpsych.jk.uni-linz.ac.at:4711/LEHRTEXTE/LERNEN/klassi.htm
http://www.nlm.nih.gov/medlineplus/parkinsonsdisease.html
http://act-r.psy.cmu.edu/
http://www.bildungsberater-stmk.at/website/matura/lehrer.html

NOTES

43See Jank and Meyer 2007: 12 quoted in Humbert 2006: 32, [my translation]
44See Humbert 2006: 33
45See Schubert and Schwill 2004: 18
46See Humbert 2006: 39
47See Schubert and Schwill 2004: 293-294
48See Schubert and Schwill 2004: 294
49See Humbert 2006: 40, [my translation]
50See Edelmann 1986 quoted in Hubwieser 2007: 68, [my translation]
51See Edelmann 1986 quoted in Hubwieser 2007: 68, [my translation]
52See Friedrich 1995 quoted in Hubwieser 2007: 69
53See Schubert and Schwill 2004: 15
54See Hubwieser 2007: 69
55See Pólya 1967 quoted in Humbert 2006: 40
56See Roth quoted in Humbert 2006: 40
57See Bruner quoted in Humbert 2006: 43
58See Bruner quoted in Humbert 2006: 44
59See Schubert and Schwill 2004: 297
60See Xue and Zhu 2009: 654
61See Gudjons 1986 quoted in Schubert and Schwill 2004: 298
62See Gudjons 1986 quoted in Schubert and Schwill 2004: 298-299
63See Gudjons 1986 quoted in Schubert and Schwill 2004: 299
64See Baumann 1990: 221
65See Beza-Yates 1995: 1
66See Kaasbøll 1998: 196
67See Guzdial and Soloway 2002: 17
68See Guzdial and Soloway 2002: 18
69See http://impromptu.moso.com.au/examples_2.0/01_bing.html, accessed on 11th Jan.

2010
70For the MidiCSD package go to http://www.sunsite.univie.ac.at/musicfun/midicsd
71See Guzdial and Soloway 2002: 19
72See http://www.squeak.org, accessed 11th Jan. 2010
73See Guzdial and Soloway 2002: 20
74See Hamer 2004: 156
75See Hamer 2004: 157
76See Hamer 2004: 158

93

http://impromptu.moso.com.au/examples_2.0/01_bing.html
http://www.sunsite.univie.ac.at/musicfun/midicsd
http://www.squeak.org

8 Bibliography

[1] ACT-R: Theory and Architecture of Cognition. http://act-r.psy.cmu.

edu/, accessed 11th Jan 2010.

[2] Adey, P.; Shayer, M. Really Raising Standards. London 1994: Routledge.

[3] Anderson, John R. Language, Memory and Thought. Hillsdale NJ 1976: L.
Erlbaum Associates.

[4] Baeza-Yates, Ricardo. Teaching Algorithms. In: ACM SIGACT News, (1995:
26/4), pp. 51-59.

[5] Baumann, Rüdeger. Didaktik der Informatik. Stuttgart 1990: Klett-
Schulbuchverlag.

[6] Brown, A. L.; Reeve, R. A. Bandwidths of competence. In: Liben, L. Devel-
opment and Learning. Hillsdale 1987: L. Erlbaum Associates.

[7] Bruner, Jerome S. Contemporary Approaches to Cognition. Cambridge MA
1957: Harvard University Press.

[8] Bruner, Jerome S. Entwurf einer Unterrichtstheorie. Düsseldorf 1974:
Pädagogischer Verlag Schwann.

[9] Confrey, J. What constructivism implies for teaching. In: Davis, R. B.; Maher,
C. A.; Noddings, N. (eds.). Constructivist Views on the Teaching and Learning
of Mathematics. Reston 1990: National Council of Teachers of Mathematics.

[10] Edelmann, W. Lernpsychologie - Eine Einführung (2nd ed.).
München/Weinheim 1986: Urban & Schwarzenberg.

[11] Fosnot, C. T. Constructivism: theory, perspectives and practice. New York
1996: Teachers College Press.

94

http://act-r.psy.cmu.edu/
http://act-r.psy.cmu.edu/

8 Bibliography

[12] Fox, Richard. Constructivism Examined. In: Oxford Review of Education,
(2001: 21/1), pp. 23-35.

[13] Friedenberg, Jay; Silverman, Gordon. Cognitive Science: an introduction to
the study of mind. Thousand Oaks 2006: Sage Publications.

[14] Friedrich S; Grundpositionen eines Schulfaches. In: LOG IN, (1995. 15/5, 6),
pp. 30-34.

[15] Gudjons, Herbert. ”Was ist Projektunterricht?” In: Bastian J.; Gudjons H.
(eds.): Das Projektbuch. Berlin 1986: Bermann Helbig Verlag, pp. 14-27.

[16] Glasersfeld, Ernst von. The Invented Reality. New York 1984: Morton.

[17] Glasersfeld, Ernst von. Introduction: aspects of constructivism, chapter 1. In:
Fosnot, C. T. Constructivism: theory, perspectives and practice. New York
1996: Teachers College Press.

[18] Guzdial, Mark; Soloway, Elliot. Teaching the Nintendo Generation to Pro-
gram. In: Communications of the ACM, (2002: 45/4), pp. 17-21.

[19] Hacking, I. Natural kinds. In: Barret, R. B.; Gibson, R. F. (eds.). Perspectives
on Quine. Cambridge 1990: Basil Blackwell.

[20] Hamer, John. An approach to teaching design patterns using musical com-
position. In: Annual Joint Conference Integrating Technology into Computer
Science Education: Proceedings of the 9th annual SIGCSE conference on In-
novation and technology in computer science education, (2004), pp. 156-160.

[21] Hebb, D. O. The Organization of Behaviour. New York 1949: Wiley.

[22] Hubwieser, Peter. Didaktik der Informatik. Heidelberg 2007: Springer Verlag.

[23] Humbert, Ludger. Didaktik der Informatik. Wiesbaden 2006: Teubner Verlag.

[24] Impromptu. http://impromptu.moso.com.au/, accessed 11th Jan 2010.

[25] Jank, Werner; Meyer, Hilbert. Didaktische Modelle (5th ed.). Berlin 2002:
Cornelsen Scriptor.

[26] Kaasbøll, Jens J. Exploring didactic models for programming. In: Norwegian
Informatics Conference. Trondheim 1998: Tapir, pp. 195-203.

[27] Kelly, G. A. The Psychology of Personal Constructs. New York 1955: Norton.

95

http://impromptu.moso.com.au/

8 Bibliography

[28] Klassische Konditionierung nach Pawlow. http://paedpsych.jk.uni-linz.
ac.at:4711/LEHRTEXTE/LERNEN/klassi.htm, accessed 11th Jan 2010.

[29] Köhler, W. Intelligenzprüfungen an Menschenaffen. Berlin 1921: Springer.

[30] Koffka, K. ”An Introduction to Gestalt Theory.” In: Psychological Bulletin,
(1922: 19), pp. 531-585.

[31] Lehrerausbildung. http://www.bildungsberater-stmk.at/website/

matura/lehrer.html, accessed 14th Feb 2010.

[32] Liben, L. Development and Learning: conflict of congruence?. Hillsdale NJ
1987: L. Erlbaum Associates.

[33] Matthews, M. R. Constructivism and empiricism: an incomplete divorce. In:
Research in Science Education, (1992: 22), pp. 299-307.

[34] Mercer, N. The Guided Instruction of Knowledge. Clevedon 1995: Multilin-
gual Matters.

[35] MidiCSD, support for Midi sound and Music from within Excel, http://

sunsite.univie.ac.at/musicfun/MidiCSD/, accessed 11th Jan 2010.

[36] Miller, R.; Driver, R. Beyond processes. In: Studies in Science Education,
(1987: 14), pp. 33-62.

[37] Ming Xue, Changjun Zhu, The Application of ’Project-oriented’ Teaching
Mode in Computer Course of Advanced Vocational Education, Computer-
Aided Software Engineering, International Workshop on, pp. 652-654, 2009
IITA International Conference on Control, Automation and Systems Engi-
neering (case 2009), 2009.

[38] Olssen, Mark. Constructivism and Its Failings: Anti-Realism and Individual-
ism. In: British Journal of Educational Studies, (1996: 44/3), pp. 275-295.

[39] Parkinson’s disease: Medline Plus. http://www.nlm.nih.gov/medlineplus/
parkinsonsdisease.html, accessed 11th Jan 2010.

[40] Piaget, Jean. Science of Education and the Psychology of the Child. Harlow
1969: Longman.

[41] Pólya, George. Vom Lösen mathematischer Aufgaben (Vol. 1 & 2). Basel
1966/1967: Birkhäuser

[42] Rogoff, B. Apprenticeship in Thinking: cognitive development in a social con-
text. New York 1990: Oxford University Press.

96

http://paedpsych.jk.uni-linz.ac.at:4711/LEHRTEXTE/LERNEN/klassi.htm
http://paedpsych.jk.uni-linz.ac.at:4711/LEHRTEXTE/LERNEN/klassi.htm
http://www.bildungsberater-stmk.at/website/matura/lehrer.html
http://www.bildungsberater-stmk.at/website/matura/lehrer.html
http://sunsite.univie.ac.at/musicfun/MidiCSD/
http://sunsite.univie.ac.at/musicfun/MidiCSD/
http://www.nlm.nih.gov/medlineplus/parkinsonsdisease.html
http://www.nlm.nih.gov/medlineplus/parkinsonsdisease.html

8 Bibliography

[43] Schubert, Sigrid; Schwill, Andreas. Didaktik der Informatik. München 2004:
Spektrum Akademischer Verlag

[44] Sharron, H. Changing Children’s Minds. Birmingham 1994: The Sharron
Press.

[45] Squeak Smalltalk. http://www.squeak.org/, accessed 11th Jan 2010.

[46] Terhart, Ewald. Konstruktivismus und Unterricht. In: Zeitschrift für
Pädagogik, (1999: 45/5), pp. 629-647.

[47] Tharp, R.; Gallimore, R. Rousing Minds to Life: teaching, learning and
schooling in social context. New York: Cambridge University Press.

[48] Tolman E. C.; Honzik C. H. Insight in Rats. In: University of California
Publications in Psychology, (1930: 4), pp. 215-232.

[49] Watson, John B. Behaviorismus. Eschborn bei Frankfurt am Main 1997:
Klotz.

[50] Wertheimer, M. Productive Thinking. New York 1945: Harper & Row.

[51] Wertsch, J. V. Vygotsky and the Social Formation of Mind. Cambridge MA
1985: Harvard University Press.

[52] Wadsworth, Barry J. Piaget’s Theory of Cognitive and Affective Development:
Foundations of Constructivism. New York 1996: Longman.

97

http://www.squeak.org/

9 Appendix

9.1 Abstract - English

This thesis presents an unconventional approach to didactics of computer science

- music and musical structures applied in programming instruction. After looking

at several learning theories with regard to their relevance for teaching computer

science, a few methods vital for good CS teaching are presented. The thesis’ central

hypothesis is that essential concepts for programming such as algorithms and data

structures can be taught by using music as a starting point and musical structures

as models for abstract data structures. For this purpose a workbook for students

is created and a teaching sequence is proposed that implements the hypothesis for

high school or university teaching courses. Finally an evaluation carried out with

a sample group of university students tests the hypothesis in practice.

98

9.2 Abstract - German

9.2 Abstract - German

Diese Diplomarbeit präsentiert einen unkonventionellen Zugang zur Didaktik der

Informatik - Musik und musikalische Strukturen und deren Anwendung im Pro-

grammierunterricht. Nach der kritischen Betrachtung einiger Lerntheorien und

deren Relevanz im Informatikunterricht werden diverse Methoden präsentiert, die

für den Informatikunterricht von besonderer Bedeutung sind. Die Diplomarbeit

beruht auf der Hypothese, dass sich Datenstrukturen und Algorithmen, essen-

tielle Konzepte der Programmierung, durch Musik bzw. musikalische Strukturen

darstellen lassen. Zu diesem Zweck wird auch ein Unterrichtskurs sowie ein be-

gleitendes Arbeitsheft erstellt, sowohl für höhere Schulen als auch für Univer-

sitätskurse. Weiters wird die Hypothese in einem praktischen Unterrichtsprojekt

mit Studenten auf die Probe gestellt. Hierbei stellt sich heraus, dass tatsächlich

musikalische Strukturen hervorragend geeignet sind, fundamentale Konzepte des

Programmierens zu erklären.

99

9 Appendix

9.3 Workbook

An Introduction to Programming
with Music and MidiCSD

by Rainer Dangl

100

9.3 Workbook

Introduction

This workbook shall offer an introduction to the world of programming. The

approach used here is quite a bit different from other commonly used methods:

before we actually program something in a particular programming language, we

will look at the theoretical concepts behind programming first: algorithms and

data structures, which are absolutely necessary to be familiar with before starting

to program. Algorithms and data structure may be terms that you might not know

at all, but this is going to change soon! This workbook is most efficient when you

work in groups, as the final project you will be working on is also a group project.

Still, it is also possible to work through the exercises on your own. Your teacher

will exactly tell you how to proceed. As already noted, at the end of this workbook

stands a project in the course of which you will compose a song ... but we will

come to this point later on. First of all we need to make sure that you have all

the programs installed that are necessary for this course.

Maybe the program is already installed on the computer at school or at home.

If not you find MidiCSD, an Add-on for MS Excel here: http://www.sunsite.

univie.ac.at/musicfun/MidiCSD/. Please note that you will have to have MS

Excel installed. Furthermore, the Add-on only works on Windows-PCs, not on

Mac OS versions of MS Office.

While working through this workbook, please keep the following points in mind:

• It is very important that you work through this book in the intended order.

Your teacher will give you some guidance anyway, but when you work on

your own, please do not skip over some exercises. Of course you can revise

former chapter is you feel the need to.

• This project is neither a test nor a revision. Therefore, you have enough

101

http://www.sunsite.univie.ac.at/musicfun/MidiCSD/
http://www.sunsite.univie.ac.at/musicfun/MidiCSD/

9 Appendix

time! There is absolutely no need to rush through the exercises. It is very

important to understand all the sections of this workbook, so take your time.

As this is a project, there is of course a certain timeline, but there will be

plenty for a successful completion.

• This workbook is intended as a group project. You will see that working in

a group especially in computer science is a good way to work and learn very

quickly. Therefore please work concentratedly and try to solve as much as

you can without the help of the teacher. Of course you can, if you are really

stuck with a problem and you cannot figure it out, ask the teacher for help.

• Please do not use the internet while you work through this book. At the

end, when you need to compose songs and you need to find scores, you

can of course use the internet to find songs. But especially during the first

chapters avoid looking for answers on the internet. As this is not a test, you

do not get points deducted if you give an incorrect answer. The aim is that if

you don’t know the answer, you should keep looking for the solution until it

is clear to you. As you work in a group, this really should not be a problem.

If you are clear about these points we can start!

102

9.3 Workbook

What does music consist of?

This is the first question we may ask ourselves. You will see that there are many

connections between the way a piece of music is structured and a data structure

on the computer! After all, sheet music is also only a way to structure musical

data. Let us look at the following piece:

This is a very simple yet famous song. Surely you already know several terms

from music theory, therefore let us analyze this song. We can firstly say that every

songs consists of notes. Notes have certain properties, for example length and

pitch. Once these two properties are given, we can identify a tone without doubt.

We can now ask ourselves what other structures we can identify when thinking

about a song, apart from notes. Discuss within your group, find suggestions and

write them down, you will find the solution on the next page.

103

9 Appendix

Which solutions did you find? For once, we can assume notes to be the smallest

unit of a musical structure. Accordingly, the next bigger entity would be the

measure, which consists of several notes, depending on the time signature and the

note length. In this case we have a 4/4 measure, which means that one measure

contains four quarter note or eight eighth notes. Several measures then constitute

a musical phrase. This phrase might be identical to the piece of music as such

(as in our example case), but it might also be that a piece of music contains

several phrases (a symphony for example usually contains 4 movements, so we

could classify a movement as a phrase).

Summing up, we can say that notes are the smallest units of a piece of music

which can be summarized in measures which in turn constitute a phrase of the

whole piece.

With notes and phrases one can of course do several things. You might be familiar

with the process of transposing music, which changes the key signature of the

piece. For example, if we would want our example song to be a tone higher we

need to transpose it from c-major to d-major. This looks like this:

We could modify the piece further; we could insert a repetition bar at the end,

which would mean that the piece will be played twice before it is finished. These

are only two examples of operations that can be performed on musical phrases.

104

9.3 Workbook

Data structure in MidiCSD

We have now clarified that there are a number of possibilities of how to change

the structure of a piece of music. We also know how to describe the structure of

a piece of music. We shall now look at the implementation of this structure on

the computer. Please open Excel and add the MidiCSD Add-on, if necessary. You

then should see a new toolbar:

This is how the toolbar looks in Excel 2007. If you still have Excel 2003 installed

you might see a different picture, but you should in any case see the buttons Add

Phrase, ResetTime, and so forth. Additionally, you will see the following table on

the first sheet:

The question now of course arises what this table should represent. Right next to

the table you find a few instructions. Carry them out and observe what happens!

105

9 Appendix

You will hear a song, which we already know in its sheet music form. It seems

that here we have the song in described by means of a table. Have a close look at

the columns. Admittedly, the columns containing only the number 1 are not really

exciting. But that does not mean that they are not important! We will come back

to them in a moment. First try to find out which information is encoded in the

third and fifth column. Only read on when you have found out!

Surely you have recognized what information is to be found in the two columns:

pitch and duration. What else did you note? For example, you may have observed

that each line describes a note (which is not all that hard to guess, the word note

stands at the beginning of each line). To complete the picture: the other two

columns that contain the number 1 are the channel and the volume. This piece of

music uses only one channel (there is only one voice). Of course it would be possible

to use several channels to play several voices at once. The volume is always the

same, the standard volume 1 is therefore used. Try to change some of the values

and see what happens! What can you conclude from the pitch numbering? Try to

assign the correct numbers to the scale below:

106

9.3 Workbook

The MIDI Format

The correct solution to the scale on the previous page is: 60, 62, 64, 65, 67, 69,

71 and 72. Why? You may have found out yourself: of course the semitones

also need to have a number, therefore in the scale above the numbering skips

a number several times. The semitones in-between therefore have the following

numbers: 61, 63, 66, 68 and 70. The lowest possible note has the value 0 and

the highest possible note has the value 127. When looking at a piano keyboard,

you will see that it usually has 88 keys. Therefore we here have an even greater

range available! The duration on the other hand is given in milliseconds. Together

with the channel and the volume, these four parameters represent a tone that the

computer can process. This format is called MIDI (=musical instrument digital

interface). What is particularly special with this format? Usually music is recorded

and transmitted in waves. The term sound wave might ring a bell. In MIDI it

is entirely different: the tone is defined by integers, exactly as in the table above.

This results in the fact that the computer does not store the actual tone, it stores

a description of the tone. The interpretation of this tone then can be arranged

on the computer (which instrument to use, which reverb or other sound effects to

apply).

We therefore keep in mind: the MIDI format needs 4 parameters in order to

produce a tone: channel, pitch, volume and duration.

Now have a look at the next spreadsheet. At the beginning of the table you see

that a new column has appeared - reltime (relative time). Yet when playing the

song there is no difference. Which purpose could reltime then have? Try to change

values and see what happens. Discuss in your group.

107

9 Appendix

Relative Time

By means of relative time a note refers to its predecessor. Have a look at the

following code excerpt:

The first note (the c) is 250 ms long. The the d follows with exactly the same

duration. Without the relative time, the d would always start after the c ends.

With reltime however, you can specify, when the d should start with regard to its

predecessor, the c. Now, the d starts 250 ms after the c starts, which allows the c

to finish in this exact time. If you would set the reltime value of d to 0, the c and

the d are played simultaneously! Therefore the following code

will result in a triad (c, e and g, the pitches also have been modified). The second

and the third note now do not wait for the first note before to finish, they start at

the same time.

Now you might argue that previously we stated that channels can be used to play

several voices at the same time. This is correct, but note that a chord is not the

same as voices. A voice is an entire phrase of its own, while a chord is within a

phrase. We will work with phrases in a moment, for now we keep in mind that

the relative time is a convenient means to play several notes at once.

108

9.3 Workbook

Phrases and Objects

The table we have worked with so far is, according to the above definition, a phrase.

When we have such a phrase, a number of things can be done with it. You might

remember, we discussed this during the first pages, transposing, copying and so

on. Look at the third spreadsheet (FrereStampedParam). There you see, next to

our song, a new box:

Again, look at the instructions on the sheet and execute them! Now you see that

there is a canon. What happened? First of all, we copied the phrase four times

and assigned each copy a new channel. Therefore the four phrases end up in

channels 1, 2, 3 and 4. Furthermore, you may have noticed that for the channels

2, 3 and 4, the first note starts with an increasing delay. When all phrases are

then added to the memory and played at the same time, the timeshift results in a

canon. The new box pictured above finally assigns an instrument to each channel.

The numbers in the last column indicate which instrument to choose. This whole

process results in a canon with different instruments.

Let us repeat this: a musical phrase can be treated as an object. As such it has

certain properties, like for example the instrument that is assigned to it. It is

then possible to do various things with this object. As we have just seen, we can

copy such an object, or modify it (by implementing the timeshift) or transpose it.

Therefore we see that an object is a very flexible unit.

109

9 Appendix

Assembler - the Codeworkshop

We have now come already quite far in terms of understanding a data structure.

If you think back about objects, phrases, notes and how to describe them, the

properties they have and how notes are organized in a musical structure, you

already know quite much about data structures on the computer. Now is also the

time to introduce a new term, the algorithm. This sounds more complex than it is.

Essentially, an algorithm describes the way from a given problem to a particular

solution. The first half of the way is already behind us - we wanted to play music

on the computer. We made up our mind on how to structure the data. The other

half is the implementation on the computer. One could also say that an algorithm

is as set of rules that leads from the problem to a solution. That is where we

finally arrive at programming. Have a look at the fourth sheet (FrereFullAssem).

Again, you will find the song, but now, right next to it, there is this box:

If you execute the instructions, you again will hear the canon. This box represents

an algorithm (i. e. a program) to make a canon out of the musical phrase. Discuss

in the group what happens to the phrase when these commands are executed.

110

9.3 Workbook

Assembler - the Codeworkshop, Part 2

This is not an easy exercise, let us go through the program step by step.

• the first and the second line define the phrases and give them names. It

seems that there is one phrase named frere and another one named init. Init

obviously has the same purpose like in the example from two pages ago - it

assigns instruments to channels. Frere is of course the song.

• the phrase frere is then copied four times. The new phrases receive the names

frere1, frere2, frere3 and frere4.

• all of these four copied phrases are still in channel 1. We need to change

this for a canon. Therefore the latter three are moved to other channels -

channel 2, 3, and 4.

• the latter three phrases also need to begin later, otherwise we do not get a

canon. Therefore a timeshift of 2000, 4000 and 6000 ms is performed.

• at the end, also the phrase init is copied and named all. To this phrase we

add the four frere-phrases and the final product is played.

You might have noticed the structure of the commands: on the left there is always

the name of the phrase, then comes the command and thirdly comes an input, if

the command requires it to work. For example:

frere2 - rechannel - 1 - 2

puts frere2 into a new channel, and in order for the command rechannel to work

it needs to know in which channel to find the phrase frere2 and in which channel

it should put it.

This way, we have rendered a piece of music, using a data structure!

111

9 Appendix

Have a look at the other spreadsheets. Here you can see other interesting sound

effects implemented in the same way as the previous examples.

Compiling and Interpreting Code

There are two big families of programming languages: compiler-based languages

and interpreter-based languages. You already know one of them: the program you

just ran is was an interpreter program. What does this mean?

Interpreter languages read the source code (i. e. the commands that you see in

the box) while executing the program and translate it into machine code that the

computer can understand. You can compare this approach to a musician who can

sight-read. While playing on the piano, he reads the score and turns it into music

on the piano. The computer does the exact same thing: it starts the program

without knowing what commands if will have to execute. It reads them, translates

it to machine code and executes them instantly.

The second major family of programming languages are compiler languages. They

have another approach. You can see what they are doing different by going back

to the first sheet. Place the cursor in the phrase as usual and then press Clear

All, Add Phrase and then WriteFile. Have a look in the MidiCSDxls folder. What

happened? Discuss in your group what the different approach of compiler based

languages could be. If you have some theories, read on on the next page.

112

9.3 Workbook

Compiling and Interpreting Code, Part 2

You may have discovered that in the MidiCSD folder you find an audio file. This

file was generated and can be opened with any media player.

Compiler based languages therefore operate as follows: before you can start the

program, the code has again to be brought into machine-readable form, i. e.

translated into machine code. The compiler of a programming language (this is a

special program) therefore reads the code and converts it into a file that you can

then execute. If we again draw a parallel to the musician on the piano, he would

now first study the song until he knows it by heart. Then he goes to the piano

and plays it.

The following image shows the difference between the two approaches:

Discuss advantages and disadvantages the two approaches could have. Which is

the ”better” one?

113

9 Appendix

Programming in MidiCSD

Now we want to program something ourselves. For this purpose you need a song.

You can either compose one, or choose an existing song, but be aware that it

should be a very simple tune, like the song Frere Jacques, as an implementation

of a more complex song might be a bit too difficult for the beginning. You will

get the chance to compose more complex songs soon, so for now we rather choose

a simple song. The process of how you arrive at a MIDI file looks like this:

This means that you take your composed song (or existing song) and translate it

into the MIDI format. Thus you first find the pitch values for the notes and write

them down. Keep in mind, the middle-c has the value 60. This is your starting

point. After that, you need to choose the duration. This means that you need to

define how long a quarter note shall be in your piece. If it is 250 ms, it is fairly

fast. Consequently the half note the is 500 ms long and the eighth note is 125 ms.

If you double all those values, you get a song twice as slow. This depends on the

song.

Next you need to define the channel and the volume. If it is a simple song with just

one voice you can set these two columns to 1, as in the example in MidiCSD. This is

114

9.3 Workbook

all the information you need! With it you can create the table and enter in in Excel.

If you then, as usual, press Clear All, Add Phrase and Play (while positioning the

cursor somewhere in the table) you can listen to your song! Furthermore, with

WriteFile you can also compile your song and get a file that you for example can

upload to your cellphone as a ringtone!

Try this process with a song in your group! Does it work? If not check the following

pages, we shall go through the whole process with an example song. This is the

score we start out with:

The first step is to translate the note values into MIDI values. It is quite simple,

the first two measure translate as follows:

Note Pitch (MIDI) Duration (MIDI)

c (quarter) 60 250
e (quarter) 64 250
f (quarter) 65 250

g (quarter + whole note) 67 1250

All the other pitches and durations should not be a problem. For this example,

the final MIDI table looks like you see it on the next page.

That was not too difficult, was it? Now comes the hard part: you now have

a simple tune implemented in MidiCSD. What if you want to turn this into a

115

9 Appendix

canon? Take a look at the sheet FrereFullAssem again, this should help you. The

only problem of which you should be aware from the beginning is that, like in the

image above, the title of the phrase has to be at the top. Otherwise you will get

an error message.

As you might have guessed, you need the box with the commands that operate

on the phrase (i. e. the assembler, as the name already says). Try to solve this

problem in your group. You can then check on the next page how the assembler

has to look like for this example here.

Generally, this assembler is almost the same as with FrereFullAssem. This is

not much of a surprise, as the songs are structurally quite similar and the same

solution was desired for both examples. You might have noticed that the init table

116

9.3 Workbook

is necessary which, as we know, assigns an instrument to a channel. What has

changed are of course the phrase names and the ranges. The timeshifts need to be

adjusted to fit the song - it depends where the canon fits best. In this example, 1,

2 and 3 seconds are a good choice.

You might recall that we tried to produce a canon with another method as well: we

did all the commands we just performed automatically in the assembler ourselves

(FrereStampedParam). Try this as well in your group!

117

9 Appendix

Special options in MidiCSD

It is, as already noted above, possible to put chords into the piece. Try if you can

do that! For this purpose you need to remember what we discussed regarding the

relative time - we used it to determine when a tone starts. You might want to look

at the section about reltime again before trying to modify your phrase.

One possible way to do this for our example here would look as follows:

With this, you can write very impressive MIDI music pieces! If you then add

the phrase with Clear All and Add Phrase to the memory and compile it with

WriteFile, you have your self-made MIDI file!

118

9.3 Workbook

Project: Composition Contest (school)

You now know enough about MidiCSD to start a project on your own. In your

group try to create a particularly impressive song. You can first write it down on

sheet music, if you feel that you can do it directly in MidiCSD, go for it!

The target of this contest is to produce a song on the computer, as complex and

creative as possible. Complexity can for example be measured by the number

of voices used, by the number of instruments or the polyphony. In theory it is

possible to implement a small orchestral piece in MidiCSD. Open the file MidiCS-

DDocs for reference. You find all the commands you can use in the Assembler (on

the sheet Macro Language), or the phrase language syntax (we used only chan-

nel/pitch/volume/duration), but there is even more! You will also find the list of

all instruments available, along with the numbers assigned to them.

The best compositions might (if they are well made) make it onto the school

website as background music. Therefore have fun programming your contribution!

119

9 Appendix

Assessment: Composition of a song (university)

The final project for this course is the implementation of a song in MidiCSD.

For this purpose you need to compose a song of your own. This means that no

implementation of an existing song is allowed - it needs to be solely your creation.

This allows you to freely construct a song you like, yet a certain level of complexity

has to be maintained. Consider the following points:

• the song should at least have a two voices (i. e. a piano piece). Of course

you can implement as many voices as you like (e. g. four for a choir, or even

more for an orchestra), but there need to be at least two.

• make use of the possibilities reltime offers and use polyphony. That means

you should incorporate chords. It cannot be exactly defined how many, as

this depends on your piece, but a few instances should be there.

• use the macro language to automatically assemble your piece.

• compile your song, so you have an audio file.

When you are finished, hand in a print version of the phrases and the macro

language code you created. Also hand in the audio file.

120

9.3 Workbook

121

9 Appendix

9.4 Presentation for the evaluation

122

9.4 Presentation for the evaluation

123

9 Appendix

124

9.4 Presentation for the evaluation

125

9 Appendix

126

9.4 Presentation for the evaluation

127

9 Appendix

128

9.4 Presentation for the evaluation

129

9 Appendix

130

9.5 Task sheet for the evaluation

9.5 Task sheet for the evaluation

Diploma Thesis Project: Composition with MidiCSD

Data for statistical purposes:

Age:

Degree:

Gender:

Tasks

It is absolutely necessary to complete task 1 in order to be able to fulfill the rest

of the exercises. After completion of task one please select at least 2 other tasks

to solve. For exercises 1 and 2 no macro language is necessary, but for all other

tasks it is required.

Task 1: Song translation

In Excel, create the MIDI table that corresponds to this song. Find out, how the

pith numbering has to look like and how the note values shall be represented in

terms of their duration in milliseconds. Include the relative time in the table as

well.

131

9 Appendix

Task 2: Constructing chords

Ornament the song by adding chords! Note, chords do not necessitate the devel-

opment of an additional voice, they merely add notes to the same voice.

Task 3: Going backwards

Which macro code plays the song backwards?

Task 4: Going up

Transpose the song upwards by 2 tones.

Task 5: Instrument parade

Create the macro code which plays the song three times in a row, but with different

instruments.

Task 6: Strange sounds

Invert the song (i. e. the exact opposite of the pitch structure - if the note in

the piece is one tone higher as the last one it should be lowered in the inverted

version). Play it simultaneously with the ’correct’ song.

Task 7: Polyphony

Add a second voice to the song (it does not necessarily need to contain chords -

one tone is fine). How do you realize this and how does the macro code look like?

Task 8: Orchestra composition

132

9.5 Task sheet for the evaluation

Combine tasks 2 and 7. Assign different instruments to the voices and you will

receive an orchestra version of the song!

Task 9: Free composition

Either use the example song or a composition of you own to create a free version

of the song. You can freely choose which effects to use in the process.

Task 10: Create MIDI file

Use the button ’WriteFile’ to create a MIDI file of your composition.

133

9 Appendix

9.6 Curriculum Vitae of Rainer Dangl

Personal Data

Birth date and venue: 26th July 1984, Krems an der Donau

Marital status: unmarried

Citizenship: Austria

Education

2004-2010: Studies of Computer Science and English at the University of Vienna

and the University of Technology of Vienna (Special degree for

teachers).

Joint Study Exchange in 2008 at Macquarie University in

Sydney, Australia

1998-2003: Business school in Waidhofen/Thaya,

Focus information management and multimedia

1990-2008: Primary and secondary school in Waidhofen/Thaya

Military service from September 2003 to April 2004

Job Experience

Since 2008: Computer Science Teacher at GRG Zirkusgasse in Vienna

134

	Introduction
	Learning theories
	Behaviorism
	Cognitivism
	Piaget's Theory of Cognitive Development
	Constructivism/Constructionism
	Summary

	Theoretical foundations for CS teaching
	A definition of didactics for computer science
	Principles of teaching methodology
	Forms of teaching
	Problem based learning
	Active learning
	Project based learning

	Summary

	Teaching programming
	General ideas
	General approaches to teaching programming
	Semiotic ladder
	Cognitive objectives taxonomy

	Music and programming - a contradiction?
	An argument in favor of music
	Data structures in music
	Further possibilities of music in CS teaching

	Summary

	Teaching project
	Prerequisites
	Target group
	Learning targets
	Timeline
	At school
	At university

	General expectations
	Course structure
	Lesson plans (for school)
	First week
	Second week
	Third week
	Fourth week
	Fifth and final week

	Project evaluation
	Sample group
	Teaching sequence
	Selected tasks
	Significant results
	Naming conventions
	Task 1 and 2
	Tasks 3 and 4
	Task 5
	Task 6
	Tasks 7 and 8
	Task 9
	Task 10
	Further macro codes (task 11 on the diagram)

	Reflection and Summary

	Conclusion
	Bibliography
	Appendix
	Abstract - English
	Abstract - German
	Workbook
	Presentation for the evaluation
	Task sheet for the evaluation
	Curriculum Vitae of Rainer Dangl

