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Summary

Keywords: high performance programming, parallel and distributed comput-
ing, high throughput computing, generalized complex symmetric eigenvalue
problems (EVPs), phylogenetics, optoelectronics.

Introduction

Computational kernels are the crucial part of computationally intensive soft-
ware, where most of the computing time is spent; hence, their design and
implementation have to be accomplished carefully. Two scientific applica-
tion problems from optoelectronics and from phylogenetics and correspond-
ing computational kernels are motivating this thesis. In the first application
problem, components for the computational solution of complex symmetric
EVPs are discussed, arising in the simulation of waveguides in optoelectron-
ics. LAPACK and ScaLAPACK contain highly effective reference implementa-
tions for certain numerical problems in linear algebra. With respect to EVPs,
only real symmetric and complex Hermitian codes are available, therefore
efficient codes for complex symmetric (non-Hermitian) EVPs are highly de-
sirable. In the second application problem, a parallel scientific workflow for
computing phylogenies is designed, implemented, and evaluated. The recon-
struction of phylogenetic trees is an NP-hard problem that demands huge
scale computing capabilities, and therefore a parallel approach is necessary.

One idea underlying this thesis is to investigate the interaction between
the context of the kernels considered and their efficiency. The context of a
computational kernel comprises model aspects (for instance, structure of in-
put data), software aspects (for instance, computational libraries), hardware
aspects (for instance, available RAM and supported precision), and certain
requirements or constraints. Constraints may exist with respect to runtime,
memory usage, accuracy required, etc..
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Methodology
The concept of context adaptivity is demonstrated to selected computational
problems in computational science. The method proposed here is a meta-
algorithm that utilizes aspects of the context to result in an optimal per-
formance concerning the applied metric. It is important to consider the
context, because requirements may be traded for each other, resulting in a
higher performance. For instance, in case of a low required accuracy, a faster
algorithmic approach may be favored over an established but slower method.
With respect to EVPs, prototypical codes that are especially targeted at
complex symmetric EVPs aim at trading accuracy for speed. The inno-
vation is evidenced by the implementation of new algorithmic approaches
exploiting structure. Concerning the computation of phylogenetic trees, the
mapping of a scientific workflow onto a campus grid system is demonstrated.
The adaptive implementation of the workflow features concurrent instances
of a computational kernel on a distributed system. Here, adaptivity refers to
the ability of the workflow to vary computational load in terms of available
computing resources, available time, and quality of reconstructed phyloge-
netic trees.

Contributions
Context adaptivity is discussed by means of computational problems from
optoelectronics and from phylogenetics.

For the field of optoelectronics, a family of implemented algorithms aim
at solving generalized complex symmetric EVPs. Our alternative approach
exploiting structural symmetry trades runtime for accuracy, hence, it is faster
but (usually) features a lower accuracy than the conventional approach. In
addition to a complete sequential solver, a parallel variant is discussed and
partly evaluated on a cluster utilizing up to 1024 CPU cores. Achieved
runtimes evidence the superiority of our approach, however, further investi-
gations on improving accuracy are suggested.

For the field of phylogenetics, we show that phylogenetic tree reconstruc-
tion can efficiently be parallelized on a campus grid infrastructure. The
parallel scientific workflow features a moderate parallel overhead, resulting
in an excellent efficiency.
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Chapter 1

Introduction

The presented dissertation discusses context adaptivity for selected compu-
tational kernels with applications in optoelectronics and in phylogenetics on
state-of-the-art hard- and software infrastructures. This chapter gives an
introduction consisting of the disambiguation, motivation, problem setting,
and goals.

Motto

The 9th International Conference on Computational Science (ICCS) took
place in Baton Rouge (USA), in 2009. The annually changing head note for
2009 was “Compute. Discover. Innovate”. This statement emphasizes the
important role of computational science for all sciences now, thus it shall
serve as motto of this work.

1.1 Disambiguation
In the following, we discuss some basic terms that are most relevant for this
work.

Computational science

The general field of this work is “computational science”, which we are go-
ing to sketch. Computational science is often credited as the third pillar in
research, besides theory and experiment [PV05, Loa96, Lev89, Wil89]. In
Figure 1.1, we observe science as a triangle, with theory, experiment, and
computation at its vertices. Each vertex represents a style of research and
provides a window through which we can look [Loa96, p.xviii]. For compu-
tational science, the concerted actions of scientists, engineers, mathemati-

11
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Computational

Theoretical

Science

Science

Science
Experimental

Figure 1.1: Science can be seen as a triangle, with theory, experiment, and
computation at its vertices [Loa96].

cal scientists, and computer scientists are required [Ste94]. The processed
problems are complex and their solutions are desirable. Scientists have to
collaborate, no single discipline has the solution [Ste94].

The President’s Information Technology Advisory Committee (PITAC)
was an advisory committee publishing advanced technology reports in the
area of high performance computing, large-scale networking, cyber security,
and high assurance software and systems design1. The PITAC define com-
putational science in a 2005 report:

“Computational science is a rapidly growing multidisciplinary field
that uses advanced computing capabilities to understand and solve
complex problems.” [BLB+05]

See Figure 1.2 for a visualization of their view on computational science,
where computational science is based on (∗) computer and information sci-
ence, (∗) algorithms and modeling and simulation software, and (∗) comput-
ing infrastructure. Computers are to be seen as complete scientific instru-
ments, rather than as servants to experimental science [Wil88].

Context and adaptivity

“Context adaptivity” is one important topic of this work, therefore we dis-
cuss basic meanings of these two terms. The Oxford encyclopedic English
dictionary [HA91] gives general meanings of “context” and “adaptivity”.
Underlined parts are most relevant for this work.

1see PITAC webpage, http://www.nitrd.gov/Pitac/index.html

http://www.nitrd.gov/Pitac/index.html
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Figure 1.2: PITAC’s view of computational science [BLB+05] fusing three
distinct elements: (∗) algorithms and modeling and simulation software de-
veloped to solve science, engineering, and humanities problems, (∗) computer
and information science that develops and optimizes the advanced system
hardware, software, networking, and data management components needed
to solve computationally demanding problems, (∗) and the computing infras-
tructure that supports both the science and engineering problem solving and
the developmental computer and information science.
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context 1 the parts of something written or spoken that immediately pre-
cede and follow a word or passage and clarify its meaning. 2 the
circumstances relevant to something under consideration.

to adapt 1 a fit, adjust (one thing to another) b make suitable for a pur-
pose. c alter or modify (esp. a text). d arrange for broadcasting etc. 2
intr. & refl. become adjusted to new conditions. adaptive adjective.

A more detailed discussion of context adaptivity for numerical software can
be found in Chapter 3.

Computational kernel

“Computational kernel”, “numerical kernel”, or similar technical terms can
be found in papers dealing with computational science, although a general
definition of it is hard to find.

In [VD00], R. Vuduc and J. Demmel define a numerical kernel as “perfor-
mance-critical library subroutines”. The authors enumerate some examples of
kernels and their applications, including sparse matrix-vector multiply in the
solution of linear systems, Fourier transforms in signal processing, discrete
cosine transforms in JPEG image compression, and sorting in database ap-
plications. Furthermore, they denominate the BLAS as a “practical example
of a widely-used kernel standard”.

R. Whaley argues in his dissertation [Wha04, p.2] that “it is important
that each generation of increasingly powerful computers have well optimized
computational kernels, which in turn allow for efficient execution of the
higher-level applications that use them.”. In a later section, he classifies
the BLAS routine _gemm as a “level 3 BLAS computational kernel”. In a
bioinformatics paper about classification problems in genome and proteome
analysis, V. Atalay and R. Cetin-Atalay design a computational kernel for
classification problems that require specific motif extraction and search from
sequences.

On the basis of these publications, we define a computational kernel for
numerical software as follows.

Definition 1.1.1 (Computational kernel). Computational kernels in numer-
ical software are performance-critical parts, where most of the runtime, mem-
ory consumption, or further performance critical computer resources are con-
sumed.

In comparison with above citations, we observe computational kernels
in a broader sense; for the discussed below generalized complex symmetric
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eigensolver, we denominate each essential part as a computational kernel,
including (∗) factorization, (∗) transformation from generalized to standard
EVP, (∗) tridiagonalization, etc.; for the phylogenetics application, we de-
nominate dominating tree reconstruction methods inside the tree phase as
separate instances of a single computational kernel.

1.2 Motivation
We see the motivation for this dissertation threefold. (a) Computer simula-
tions of computationally expensive processes, here we discuss computational
kernels arising in two applications from optoelectronics and phylogenetics,
should always be faster and faster. However, it should be emphasized that
the highest possible accuracy is not always required. In some cases, for exam-
ple, where accuracy requirements are well known, it may be possible to trade
reduced accuracy requirements for a higher speed. This work contributes
to this central idea. (b) Distributed computing on state-of-the-art hardware
offers a huge peak performance, but the sustained performance is often low.
The inherent complexity of cluster computers and grid systems hampers the
development of efficient algorithms and their implementations. Resulting
from the complexity in hardware, the design of numerical algorithms and
their efficient implementation have to be done carefully. (c) Reusability and
portability are important aspects of modern software. In many cases, it
may be possible to build new algorithms on top of existing library routines
– for the domain of numerical linear algebra, in particular BLAS, LAPACK,
and ScaLAPACK. The linear algebra codes developed for this thesis are done
on top of these building blocks in order to inherit most of their excellent
properties.

Grand challenges

When discussing computational kernels, we should not only keep in mind
what can be computed, but also why we compute something; that is, ap-
plications are motivating the development of better computational kernels.
The underlying classes of scientific applications are commonly referred to as
grand challenges. Pursuant to Hoare and Milner, grand challenges have to
fulfill the following criteria [HM05]: a grand challenge can be a major scien-
tific and engineering project that is undertaken by large international efforts
spread over 10 or 15 years; a grand challenge project requires the support
of the general scientific community as well as dedicated commitment from
those who engage in it; a grand challenge project requires understanding from
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the national funding agencies whose participation enhances the international
reputation of those who engage in it.

For example, in CFD, the need for the computational power of an Ex-
aflop/s has already been reported in 1989 [Lev89]. In this article, the grand
challenges include (∗) quantum chemistry, statistical mechanics, and rela-
tivistic physics, (∗) cosmology and astrophysics, (∗) CFD, (∗) materials de-
sign and superconductivity, (∗) biology, pharmacology, genome sequencing,
genetic engineering, protein folding, enzyme activity, and cell modeling, (∗)
medicine and modeling of human organs and bones, and (∗) global weather
and environmental modeling; see also [Ste94] for a complementary list. See
[Gus97, Ric95] for concrete examples of grand challenges, for instance, pro-
tein folding and climate modeling. As a lot of computing resources is needed,
precise goals and a way of measuring progress toward those goals is essen-
tial [Gus97].

Grand challenges, as well as other scientific software, demand efficient im-
plementations of core algorithms. In [DS00], J. Dongarra and F. Sullivan list
a top 10 of algorithms “with the greatest influence on the development and
practice of science and engineering in the 20th century”. Included algorithms
(chronological order of development) are (∗) Metropolis algorithms for Monte
Carlo, (∗) simplex method for linear programming, (∗) Krylov subspace it-
eration methods, (∗) the decompositional approach to matrix computations,
(∗) the Fortran optimizing compiler, (∗) QR algorithm for computing eigen-
values, (∗) quicksort algorithm for sorting, (∗) fast Fourier transform (FFT),
(∗) integer relation detection, and (∗) the fast multipole method. The nu-
merical solution of EVPs frequently uses the QR algorithm and sometimes
the Krylov subspace methods. In a referring article in SIAM News, B. Cipra
states that “Eigenvalues are arguably the most important numbers associated
with matrices – and they can be the trickiest to compute.” [Cip00]. Therefore,
the importance of EVPs for computational science can be indicated.

Applications in computational science

The primary driver for scientific computing are the applications that demand
huge computational power. Simulations of natural phenomena can never
have enough computational power, sometimes they cannot be observed, due
to very long (or short) durations or phenomena that lie in the past. By way
of example, the past natural phenomenon of an asteroid impact was simu-
lated using the SAGE code [GWMG04], see Figure 1.3 for a visualization of
this impact. Simulation refers to the application of computational models
to the study and prediction of physical events or the behavior of engineered
systems [OBF+06]. As an example demanding a computationally very ex-
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pensive computer simulation, a statement of the aircraft manufacturer Airbus
is quoted. In the 2007 February/March edition of the Airbus letter one can
read as follows2.

“For example, by 2012, elements of the commercial aircraft aero-
dynamic design process, such as defining data for use in the loads
analysis process, that currently takes up to 350 days could be re-
duced to just 36 days by replacing existing physical wind tunnel
testing-based methods with high fidelity, computer-based simula-
tion. In cases such as this, the time consuming process of model
manufacture and testing will be replaced by enhanced, sophisti-
cated numerical simulation methods that are able to generate and
manipulate data significantly faster than any of the computational
fluid dynamics (CFD) methods available today.” [Air07]

Applications in computational science are typically very resource-demanding
and diverse. Domains of computational science range from scientific investi-
gations of the biochemical processes of the human brain and the fundamental
forces of physics shaping the universe, to analysis of the spread of infectious
disease of airborne toxic agents in a terrorist attack, to supporting advanced
industrial methods with significant economic benefits, such as rapidly de-
signing more efficient airplane wings computationally rather than through
expensive and time-consuming wind tunnel experiments [BLB+05]. This
2005 PITAC report about computational science recommends to (∗) create a
new generation of well-engineered, scalable, easy-to-use software suitable for
computational science that can reduce the complexity and time to solution
for today’s challenging scientific applications and can create accurate simu-
lations that answer new questions; (∗) design, prototype, and evaluate new
hardware architectures that can deliver larger fractions of peak hardware
performance on scientific applications; and (∗) focus on sensor- and data-
intensive computational science applications in light of the explosive growth
of data [BLB+05].

More power

The theoretical peak performance of computer systems is often very hard
to reach, in other words, the sustained performance is usually much smaller
than the theoretical peak performance [CFP08]. Moreover, it is very hard
to write software which efficiently utilizes the latest generation of computer
systems.

2The Airbus letter is not a scientific journal, but nevertheless the article evidences the
huge demand for computational power from a concrete big company.
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Figure 1.3: Simulated impact of the 10-km-diameter asteroid that struck
the Yucatan peninsula 65 million years ago and presumably triggered the
worldwide extinction of the dinosaurs and many other taxa. Shown here 42
seconds after impact, the expanding column of debris from the asteroid and
crater is about 100 km high. Colors indicate temperature: the hottest mate-
rial (red) is at about 6000 K, and the coolest (blue) has returned to ambient
temperature; source: [PV05], see also [GWMG04] for details about this sim-
ulation. The simulation was performed using the SAGE code, implementing
continuous adaptive mesh refinement.
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“It is not uncommon for applications that involve a large amount
of communication or a large number of irregular memory accesses
to run at 10% of peak performance or less. Were this gap to
remain fixed, we could simply wait for Moore’s law to solve our
problems; however, it is growing.” [DBC+06]

The authors of the above quote argue that “it is getting more difficult to
achieve the necessary high performance from platforms because of the spe-
cialized knowledge in numerical analysis, mathematical software, compilers,
and computer architecture that is required, and because rapid innovation in
hardware and systems software quickly makes performance-tuning efforts ob-
solete”. See Section 2.3.4 for performance definitions covering numerical
aspects (accuracy) and temporal aspects (runtimes).

The typical configuration of computers for scientific computing has un-
dergone repeated changes in recent decades. Parallel and distributed en-
vironments have become very important, constituting the most important
systems of today. As computers are changing, algorithms and software need
to be capable of optimally adapting to these heterogeneous, potentially dis-
tributed computer systems [Las06]. Computational science can never have
enough computing power. Today’s fastest computers are already capable of
achieving Petaflop/s, Exaflop/s systems are already being planned [Thi08].

The multilayer process beginning with a research topic in an application
discipline, leading to a solution involving large scale computational efforts,
can be observed in terms of a model outlined by W. Gansterer [Gan06]. It
consists of the following parts: (a) Underlying real world phenomenon, (b)
analytical models, (c) computational models and algorithms, (d) software
and middleware, and (e) hardware. The focus of this work is on the efficient
implementation of core parts of numerical software, that is, on computational
kernels.

1.3 Problem Setting
In this thesis, context adaptivity is discussed for two application problems
from optoelectronics and from phylogenetics. The first application problem
requires the solution of generalized complex symmetric EVPs. The most
widely used method to solve such EVPs is to treat them as general complex
EVPs, as done in the routine zggev (LAPACK) that abstains from utiliz-
ing its special algebraic properties. The new methods investigated in this
thesis aim at utilizing aspects of the context and requirements of the appli-
cation problem in order to maximize performance. Both serial and parallel
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approaches are discussed. Parallel codes for the first application problem fea-
ture relatively high levels of communication and can therefore be regarded
as fine-grained parallelization.

The second application problem is the reconstruction of phylogenetic
trees. The corresponding computational kernel is constituted by the max-
imum likelihood method to compute phylogenetic trees. In this case, the
challenge arises in the dynamic mapping of the workflow featuring multiple
instances of the same computational kernel to available computers. We iden-
tify an embarrassingly parallel computational problem in the core part com-
puting phylogenies, hence the second application problem features a coarse-
grained parallel approach.

Concerning generalized complex symmetric EVPs, new computational
methods are investigated. Serial and parallel solver components based on
BLAS, LAPACK, and ScaLAPACK (MPI-based) codes are discussed. The
principal research question is here: how and to what extent can general-
ized complex symmetric EVPs be solved more efficiently than with existing
approaches? Moreover, how can accuracy be traded for computational effi-
ciency? Applied methods exploit structure and include complex symmetric
indefinite factorization for the reduction of generalized to standard EVPs,
tridiagonalization for the reduction to tridiagonal form, and the solution
of the resulting tridiagonal EVP (including backtransformation of eigenvec-
tors). Concerning phylogenetics, we discuss a parallel approach implemented
on a campus grid infrastructure. The research question is here: how can
phylogenetic tree reconstruction efficiently be parallelized utilizing a coarse
grained approach? All individual methods are discussed separately in detail.

1.4 Goals
The primary goal of computational kernels (which are solving computational
problems) is to achieve optimal performance in terms of certain performance
metrics. Performance can be measured, for example, in one of the follow-
ing metrics: achieved accuracy, runtime, memory consumption, or electrical
power consumption. One goal is a discussion of context adaptivity in general
and its application to optoelectronics and phylogenetics. The main goal for
the developed computational kernels of the generalized complex symmetric
eigensolver is a faster runtime (serial and parallel) than existing approaches
for general EVPs, while still satisfying given accuracy requirements. The
goal of the parallel scientific workflow for phylogenetic tree reconstruction is
a proof-of-concept implementation and evaluation on a campus grid infras-
tructure.



1.4. GOALS 21

Synopsis. The remainder of this dissertation is organized as follows. Chap-
ter 2 comprises fundamentals which are relevant for the following chapters.
In Chapter 3, the concept of context adaptivity is introduced. Chapter 4
describes two applications which comprise computational kernels discussed
later. Chapters 5 and 6 discuss implemented computational kernels for solv-
ing generalized complex symmetric EVPs and for computing phylogenetics.
We conclude with results and perspectives in Chapter 7.
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Chapter 2

Background

This chapter covers background information being relevant for Chapters 5
and 6. It presents the knowledge base for understanding these chapters. See
[SIU08] for a reference to the international system of units (SI).

2.1 Notation

Matrices, vectors, and scalars

Capital letters A, B, etc. denominate matrices. In is a unit matrix (also
called identity matrix) of order n, Λ is a diagonal matrix having all its eigen-
values along the diagonal. R denotes the set of real numbers, and C denotes
the set of complex numbers. Minuscules x, y, etc. denote column vectors
(for instance, eigenvectors), except k and l which are used as indices or loop
variables; xk is the kth entry of x. i denotes the imaginary unit throughout
this work, λ is an eigenvalue. e1, e2, etc. are corresponding column vectors
of the unit matrix I.

Further symbols

A modulo function is denoted as “ mod ”, ceiling and floor function are
denoted as “d e” and “b c”, respectively. The transpose of a matrix is signified
by a superscript “>”, the conjugate transpose by an elevated “∗”. The end of
a proof is marked by a “�”, an approximate value is indicated by “≈”. The
mapping from one matrix to another is given as “7→”.

23
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Submatrices

Lower and upper bounds of dimensions in matrices and vectors are specified
as lo:hi. The same syntax is used in Fortran [ABH+09, Fre07] and GNU
Octave [EBH08]. For example, x(1:n) denotes an array consisting of ele-
ments 1 to n. The first dimension of an n ×m matrix varies over the rows,
the second dimension over the columns. For example, A(2:3,4:6) defines a
submatrix of matrix A, which spans over rows 2 and 3, columns 4, 5, and 6.

Function names

Function names in programming languages are typesetted in teletyper font,
for instance “zsytr1”. LAPACK has a comprehensive naming scheme, indi-
cating the data type, matrix type, and operation of the corresponding func-
tion [ABB+99, p.12]. For example, zgeev identifies the eigensolver (ev) for
general (ge) matrices of data type double complex (z). ScaLAPACK features a
similar naming scheme, where the letter p heads the function name [BCC+97,
p.30]. For example, pzheev (ScaLAPACK) corresponds to the eigensolver for
Hermitian standard EVPs of data type double complex. Original routines
from BLAS, LAPACK, or ScaLAPACKmentioned in this thesis are, unless clear
from the context, followed by “(BLAS)”, “(LAPACK)”, or “(ScaLAPACK)”, re-
spectively. Our new routines are named according to the LAPACK / ScaLA-
PACK naming scheme.

2.2 Numerical Linear Algebra
Numerical linear algebra commonly deals with its standard problems linear
systems of equations, least squares problems, eigenvalue problems, and sin-
gular value problems [Dem97, p.2]. Chapters 5 and 6 comprehend numerical
linear algebra codes, more precisely, eigenvalue problems (EVPs).

2.2.1 Matrix Fundamentals
Below definitions, involving some abbreviations and rephrasings, are taken
from the textbooks “Linear Algebra – An Introduction” by R. Bronson and G.
Costa [BC07], “Applied Numerical Linear Algebra” by J. Demmel [Dem97],
“Numerical Linear Algebra” by L. Trefethen and D. Bau [TB97], “Accu-
racy and Stability of Numerical Algorithms” by N. Higham [Hig96], “Matrix
Analysis” by R. Horn and C. Johnson [HJ85], and from “CRC Concise En-
cyclopedia of Mathematics” by E. Weisstein [Wei03].
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Definition 2.2.1 (Symmetric matrix). A matrix A is symmetric if it equals
its own transpose: A = A>.

Definition 2.2.2 (Conjugate transpose matrix). The conjugate transpose
matrix or adjoint matrix of A, written A∗, is obtained by taking the transpose
of A and conjugating each entry.

Definition 2.2.3 (Hermitian matrix). A Hermitian matrix or self-adjoint
matrix of A equals its conjugate transpose matrix: A = A∗.

Definition 2.2.4 (Tridiagonal matrix). A tridiagonal matrix is a square
matrix having nonzero entries only on its diagonal, subdiagonal, and super-
diagonal.

Definition 2.2.5 (Hessenberg matrix). A lower Hessenberg matrix is a
square matrix with only zero entries above the first superdiagonal; an upper
Hessenberg matrix is a square matrix with only zero entries below the first
subdiagonal.

Definition 2.2.6 (Diagonal matrix). A diagonal matrix is a square matrix
having only zeros as non-diagonal elements.

Definition 2.2.7 (Triangular matrix). A lower triangular matrix is a square
matrix with all its nonzero entries on the diagonal and below; an upper tri-
angular matrix is a square matrix with all its nonzero entries on the diagonal
and above.

Definition 2.2.8 (Unit triangular matrix). A unit triangular matrix is a
triangular matrix with solely ones on the diagonal.

Definition 2.2.9 (Unitary matrix). A unitary matrix A satisfies the condi-
tion A∗A = AA∗ = In. A unitary matrix with only real entries is called an
orthogonal matrix.

Definition 2.2.10 (Normal matrix). Let A be a square matrix. If A∗A =
AA∗, A is a normal matrix. All unitary and Hermitian matrices are normal.

Definition 2.2.11 (Norm). A vector norm is a function ‖ · ‖ : Cn 7→ R that
assigns a real-valued length to each vector. The vector norm has to satisfy
the following three conditions: (∗) ‖x‖ ≥ 0 with equality if and only if x = 0,
(∗) ‖αx‖ = |α|‖x‖ for all α ∈ C, x ∈ Cn, and (∗) ‖x + y‖ ≤ ‖x‖ + ‖y‖ for
all x,y ∈ Cn (the triangle inequality). The norm concept can be generalized
to matrices; in this work we focus on two norms specified below.

Let x be a vector of size n. The 2-norm of a vector is defined as ‖x‖2 =√
(|x1|2 + · · ·+ |xn|2) =

√
(x∗x). The spectral norm of a matrix A is defined

as ‖A‖2 = max {
√
λ}, where λ is an eigenvalue of A∗A.
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Definition 2.2.12 (Positive definite matrix). A matrix A ∈ Rn×n is positive
definite if x>Ax > 0 for all nonzero x ∈ Rn.

Definition 2.2.13 (Indefinite matrix). A matrix A ∈ Rn×n is indefinite if
x>Ax < 0 for some x ∈ Rn .

Definition 2.2.14 (Matrix factorization). A factorization of the matrix A is
a representation of A as a product of several “simpler” matrices, which make
the problem at hand easier to solve.

Definition 2.2.15 (Cholesky factorization). If A ∈ Rn×n is real symmetric
positive definite, then there exists a unique lower triangular L ∈ Rn×n with
positive diagonal entries such that A = LL>; alternatively, there exists a
unique upper triangular U ∈ Rn×n with positive diagonal entries such that
A = U>U . If A ∈ Cn×n is complex Hermitian positive definite, then there
exists a unique lower triangular L ∈ Cn×n with positive diagonal entries such
that A = LL∗; alternatively, there exists a unique upper triangular U ∈ Cn×n

with positive diagonal entries such that A = U∗U .

2.2.2 Similarity Transformations
The following definitions are taken from [Dem97, TB97], the Householder
transformation was introduced in a paper by A. Householder [Hou58].

Definition 2.2.16 (Similarity transformation). If a square matrix Q is non-
singular, then the map A 7→ Q−1AQ is called a similarity transformation of
A. Two matrices A and B are similar if there is a similarity transformation
relating one to the other, that is, if there exists a nonsingular Q such that
B = Q−1AQ. If Q is nonsingular, then A and Q−1AQ have the same char-
acteristic polynomial, eigenvalues, and algebraic and geometric multiplicity.
The eigenvectors are transformed by Q−1.

Definition 2.2.17 (Unitary similarity transformation). Unitary transforma-
tions are transformations by unitary matrices. Such transformations do not
alter eigenvalues of the applied matrix.

Definition 2.2.18 (Householder transformation). A Householder transfor-
mation (or reflection) is a matrix of the form H = I − 2vv> where ‖v‖2 = 1.
H = H> and HH> = (I − 2vv>)(I − 2vv>) = I − 4vv> + 4vv>vv> = I, so
H is a symmetric, orthogonal matrix.

The subsequent definition follow [GSPF08]. Basics of complex orthogonal
similarity can be found, for example, in [HJ91, p.477].
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Definition 2.2.19 (Complex orthogonal transformation). Here, a complex
orthogonal transformation (COT) is of the shape

G = 1
t2 + s2

(
t s
−s t

)
,

where t, s ∈ C. G>G = I, therefore G> = G−1 and GAG> is a similarity
transformation of A.

2.2.3 Eigenvalue Problems (EVPs)
Section 2.2.3 is dedicated to basics of EVPs and follow [BDD+00], [TB97,
Lecture 24], [Hig96].

Definition 2.2.20 (Diagonalizability). A matrix A ∈ Cn×n is diagonalizable
(non-defective) if it can be written as A = V ΛV −1.

Definition 2.2.21 (Generalized complex symmetric EVP). Let A and B be
square n by n matrices, A, B ∈ Cn×n are symmetric (non-Hermitian), x a
nonzero n by 1 vector (a column vector), and λ a scalar, such that Ax = λBx.
Then λ is called an eigenvalue, and x is called a (right) eigenvector; (λ, x) is
an eigenpair.

The definition of the standard EVP is identical to the generalized EVP
where B = In.

Definition 2.2.22 (Standard complex symmetric EVP). Let A be a square
n by n matrix, A ∈ Cn×n is symmetric (non-Hermitian), x a nonzero n by 1
vector (a column vector), and λ a scalar, such that Ax = λx. Then λ is called
an eigenvalue, and x is called a (right) eigenvector; (λ, x) is an eigenpair.

Every matrixM ∈ Cn×n is similar to a complex symmetric matrix [HJ85].
In contrast to a real symmetric matrix, a complex symmetric matrix A is not
necessarily diagonalizable. Nevertheless, structural symmetry is of great in-
terest for the development of space- and time-efficient algorithms. Obviously,
nearly half of the information in a complex symmetric matrix is redundant,
and efficient algorithms should be able to take advantage of this fact in
terms of memory requirements as well as in terms of computational effort.
The utilization of this purely structural property in the absence of impor-
tant mathematical properties of Hermitian matrices requires a trade-off in
numerical stability. In order to perform a symmetry preserving similarity
transformation, the transformation matrix Q ∈ Cn×n needs to be complex
orthogonal (but not unitary), that is, it has to satisfy Q>Q = In.
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2.3 Scientific Computing
Scientific computing is part of what has become known as computational
science, it is primarily concerned with the development, implementation,
and use of numerical algorithms and software [Hea97, p.xv].

2.3.1 High Performance Computer Systems
An overview of current high performance computer systems can be found
in [DSSS05, p.53], including (but not limited to) multicomputers or multi-
processors, SMPs, distributed shared memory (DSM), distributed memory,
tightly integrated MPP, commodity clusters including Beowulf-class systems,
and constellations. In the following, we define some relevant terms.

Definition 2.3.1 (Distributed system). A distributed system is a collection
of individual computing devices that can communicate with each other [AW04].

In terms of communication, distributed systems vary from loosely coupled
(coarse-grained, slow communication) to tightly coupled (fine-grained, fast
communication) systems [Kle85]. The term parallelization refers to the task
of designing and implementing algorithms and a piece of software capable of
running on a parallel architecture, in the existence of a serial solution.

Definition 2.3.2 (Cluster). A cluster is a parallel computer system compris-
ing an integrated collection of independent nodes, each of which is a system
in its own right capable of independent operation and derived from products
developed and marketed for other stand-alone purposes [DSSS05].

One commonly mentioned type of a cluster is a “Beowulf”, however the
frequently cited paper by T. Sterling et al. [SSB+95] does not mention the
term “cluster” but calls the discussed architecture a “network of workstations
(NOW)”; it contains no custom components and is a full commodity off the
shelf configuration. The authors of this article implemented a “single user
multiple computer” featuring 16 Intel DX4 CPUs, 256 Mbyte RAM, 8 Gbyte
hard disk storage, connected by two Ethernet networks each running at 10
Mbit capacity. They conclude by stating that interprocessor communication
proved to be the most interesting aspect, but the attached network was
inadequate under certain loads.

Definition 2.3.3 (Supercomputer). Supercomputers are technologically the
most powerful computers available for scientific and engineering calculations
at any given time [Wil88].
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Figure 2.1: Cluster Jaguar, a supercomputer ranked as #1 in the 2009/11
TOP500 list, clocked 1.759 Petaflop/s achieved sustained performance,
housed at ORNL (USA).
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Computational grids

Definition 2.3.4 (Computational grid). A computational grid is a hardware
and software infrastructure that provides dependable, consistent, pervasive,
and inexpensive access to high-end computational capabilities [FK01].

Grid computing infrastructure can be categorized ranging from local fa-
cilities (cluster grids), to campus-wide (campus grids) and global (global
grid) facilities [Gen02]. Computational grids are designed to support high-
end computing, see Definition 2.3.4. Due to additional complexity and costs,
local and campus-wide facilities should be utilized before trying to access
global grids.

Middleware constitutes a key enabling technology for distributed sys-
tems [HRGB07]. According to RFC 2768 [ASC+00], the question “What is
middleware?” cannot easily be answered, since the middleware of yesterday
may become the fundamental network infrastructure of tomorrow; however,
it is defined as “the services needed to support a common set of applications
based on a distributed network environment.”[ASC+00].

Leading grid software projects include Condor1 [TTL05, LLM88] (aiming
at High Throughput Computing (HTC)), Globus Toolkit2 [Fos06, FK97] (a
software toolkit used for building grids), and gLite3 [LFF+06, LHA+04] (pro-
vides a framework for building grid applications) [RSW+08]. In Section 6.6,
we discuss the utilization of Condor to implement a parallel scientific work-
flow in the field of phylogenetics.

It is very important to point out that, mainly due to communication costs,
not all computations can be performed efficiently on all types of grids. In the
worst case, the response time may even increase with an increasing number of
utilized nodes or CPU cores. Therefore, the choice of the best computational
infrastructure depends on each individual problem type or algorithm and the
decision has to be taken carefully. I. Foster and C. Kesselman, who partici-
pated in the development of the Globus Toolkit, distinguish in [FK01] between
five major classes of grid applications, including distributed supercomputing,
high throughput computing, on demand computing, data intensive comput-
ing, and collaborative computing (see Table 2.1). The main (parallel) contri-
butions of the presented work correspond mainly to the classes distributed
supercomputing and high throughput computing (see Chapter 6).

1see the Condor project webpage, http://www.cs.wisc.edu/condor/
2see the Globus Toolkit webpage, http://www.globus.org/toolkit/
3see the gLite webpage, http://glite.web.cern.ch/glite/

http://www.cs.wisc.edu/condor/
http://www.globus.org/toolkit/
http://glite.web.cern.ch/glite/
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Class Description
Distributed supercomputing Very large problems needing lots of CPU,

memory, etc.
High throughput Harness many otherwise idle resources to

increase aggregate throughput
On demand Remote resources integrated with local

computation, often for bounded amount
of time

Data intensive Synthesis of new information from many
or large data sources

Collaborative Support communication or collaborative
work between multiple participants

Table 2.1: Five major classes of grid applications [FK01].

The TOP500 project

The TOP500 project4 was launched in 1993 to provide a reliable basis for
tracking and detecting trends in high performance computing. Twice a year,
a list of the sites operating the world’s 500 most powerful computer systems is
compiled and released by its authors H. Meuer, E. Strohmeier, J. Dongarra,
and H. Simon [Meu08]; this list is called “the TOP500 list”. Along with
names and sites, one can look up characteristics of present and past comput-
ers, hence these lists are an excellent source for the inspection of development
of high performance computer systems. Table 2.2 lists the currently fastest
supercomputers at the time of November 2009; accordingly, Jaguar5 (see Fig-
ure 2.1 for a photo) is the fastest system, followed by Roadrunner and Kraken
XT5. In this report, maximum performance is the measured performance
achieved on running the Highly Parallel LINPACK (HPL) benchmark [DLP03].
HPL is a portable C code which generates, solves, checks and times the so-
lution process of a random dense linear system of equations on distributed-
memory computers. Theoretical peak performance and power consumption
are additionally taken into the TOP500 list.

In addition to the individual lists of the fastest supercomputers, the
TOP500 webpage allows the user to generate figures to depict the devel-
opment under certain aspects, including vendors, countries, geographical
regions, continents, architecture, and others. Hence, trends of these char-
acteristics can be analyzed over time. Regarding the architecture of super-
computers, one can easily identify the tremendous development of parallel

4see the webpage of the TOP500 project, http://top500.org/
5see the webpage of Jaguar, http://www.nccs.gov/jaguar/

http://top500.org/
http://www.nccs.gov/jaguar/


32 CHAPTER 2. BACKGROUND

# Computer Country Vendor Cores Rmax Rpeak Power
1 Jaguar USA Cray 224162 1759.00 2331.00 6950.60
2 Roadrunner USA IBM 122400 1042.00 1375.78 2345.50
3 Kraken XT5 USA Cray 98928 831.70 1028.85 n.s.
4 JUGENE Germany IBM 294912 825.50 1002.70 2268.00
5 Tianhe-1 China NUDT 71680 563.10 1206.19 n.s.
6 Pleiades USA SGI 56320 544.30 673.26 2348.00
7 BlueGene/L USA IBM 212992 478.20 596.38 2329.60
8 BlueGene/P USA IBM 163840 458.61 557.06 1260.00
9 Ranger USA Sun 62976 433.20 579.38 2000.00
10 Red Sky USA Sun 41616 423.90 487.74 n.s.
...

...
...

...
...

...
...

...
100 BlueGene/P USA IBM 16384 47.73 55.71 126.00

...
...

...
...

...
...

...
...

124 Cluster Platform 3000 Austria HP 4144 39.26 49.73 n.s.
...

...
...

...
...

...
...

...
500 BladeCenter JS21 UK IBM 2800 20.05 28.00 n. s.

Table 2.2: TOP500 supercomputer sites at the time of November 2009.
Cores corresponds to the total number of CPU cores in the system; Rmax
(see also Definition 2.3.16) is the maximum sustained performance of a com-
puter (measured in Gigaflop/s) achieved in the HPL benchmark; Rpeak (see
also Definition 2.3.15) is the theoretical peak performance, determined by
counting the number of floating-point additions and multiplications (in full
precision) that can be completed during a period of time; Power is the
electrical power consumption of the computer system, measured in kilowatt.

systems. Figure 2.2 evidences the massive dominance of different kinds of
parallel systems for the last decade. Furthermore, we identify cluster ar-
chitectures as presently most common systems. All current supercomputers
feature a parallel architecture, hence an ample number of CPU cores is avail-
able for computation. There is a strong demand for numerical software that
can optimally utilize parallel architectures.

2.3.2 Scientific Applications
Computationally expensive scientific applications are the driver for scientific
computing (see also Section 1.2).

“While hardware performance has been growing exponentially –
with gate density doubling every 18 months, storage capacity every
12 months, and network capability every 9 months – it has become
clear that increasingly capable hardware is not the only require-
ment for computation-enabled discovery. Sophisticated software,
visualization tools, middleware and scientific applications created
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and used by interdisciplinary teams are critical to turning flops,
bytes and bits into scientific breakthroughs.” [Cou07]

Advances in the computational capabilities of high-performance architectures
make it possible to address increasingly challenging computational problems.
At the same time, it is becoming considerably more difficult to build software
that achieves high performance on these systems [SSG+98].

2.3.3 Software for Numerical Linear Algebra
The software we need for solving computational problems in linear algebra
consists of software that is ready to run (numerical software environments),
and numerical software packages which can be used as building blocks of
self-made software.

Linear algebra software environments

Numerical software environments are ready to run right after installation.
Matlab is a popular commercial environment for numerical computations,
confer a textbook written by C. Moler, one of the founders of Matlab [Mol04].
It provides an advanced high-level programming language and a rich choice
of functions for algorithm development, data analysis and visualization, and
numeric computation. GNU Octave is a high-level language, primarily in-
tended for numerical computations. It provides a command line interface
for solving linear and nonlinear computational problems numerically, and
for performing other numerical experiments using a language being mostly
compatible with Matlab [EBH08]. We have been using GNU Octave for rapid
prototyping of our Fortran codes.

Linear algebra software packages

Numerical software packages constitute the toolkit for a programmer of nu-
merical software, many numerical software environments were developed us-
ing such packages.

[DW95] gives an overview of popular scientific linear algebra software.
Accordingly, a list of dense linear algebra libraries includes EISPACK [DM84],
LINPACK [DS84], LAPACK [ABB+99, Dem91, ABD+90], and BLAS [BDD+02,
BLA01, DCHD90, DCHH88, DCHH85, LHKK79]. Additionally, at the time
this article was written, ScaLAPACK [BCC+97, BCC+96] was in the works.
EISPACK was released in the 1970’s and is a collection of Fortran subroutines
solving EVPs. LINPACK is a collection of Fortran subroutines to analyze and
solve linear equations and linear least squares problems. Both EISPACK and
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LINPACK have been largely superseded by LAPACK. BLAS and LAPACK are
still protagonists in dense linear algebra and are therefore discussed later in
more detail.

The Netlib6 software repository was created in 1984 to facilitate quick
distribution of public domain software routines for use in scientific compu-
tation [DGG+07]. On browsing a descriptive version of the software list,
we search for codes aiming at dense EVPs. We identify ARPACK [LSY98],
EISPACK, and LAPACK. Taking a closer look, we observe that none of these
packages include complex symmetric eigensolvers. Out of these three pack-
ages, LAPACK contains the latest codes with regular updates; furthermore,
requests to the Netlib repository reveal that LAPACK is the most popular
package in the list with about 70 million accesses, ScaLAPACK comes next
with about 23 million accesses (February 2010).

The BLAS is a set of kernel routines for linear algebra that has been de-
fined in the BLAS Technical Forum standard [BDD+02, BLA01]. The BLAS
serves as a foundation for major linear algebra packages that are built on
top of it. Due to the crucial importance of the BLAS for numerical linear
algebra, versions especially tuned for certain architectures have been devel-
oped by the individual hardware manufacturers – for example the AMD Core
Math Library (ACML), Intel Math Kernel Library (MK), Engineering Scientific
Subroutine Library (ESSL) by IBM, the Sun Performance Library, HP Mathemat-
ical Software Library (HP MLIB), and CUDA SDK by Nvidia. Furthermore, the
Goto BLAS [GG08] is very well tuned to a couple of architectures, currently in-
cluding x86, x86_64, IA64, Power, SPARC, and Alpha families of CPUs7. The
purpose of the Automatically Tuned Linear Algebra Software (ATLAS) project
is to provide portably optimal linear algebra software8 [WPD01]. It cur-
rently provides a complete BLAS and a small subset of LAPACK. Some of
the mentioned packages include additional numerical routines beyond BLAS;
for example, Sun Studio 12 additionally includes the functionality of LA-
PACK 3.1.1, Sparse BLAS, NIST Fortran Sparse BLAS 0.5, SuperLU 3.0, and
ScaLAPACK 1.8; furthermore, Fast Fourier transform (FFT) routines, di-
rect sparse solver routines, and Interval BLAS routines are included9. Pack-
ages built on top of BLAS include, inter alia, LAPACK, Scalable LAPACK
(ScaLAPACK), and the Scalable Library for Eigenvalue Problem Computations
(SLEPc) [HRTV07, HRV05].

The Linear Algebra Package (LAPACK) is a library of Fortran subrou-
tines for solving the most commonly occurring problems in numerical linear

6see the Netlib webpage, http://www.netlib.org/
7see the Goto BLAS FAQ, http://www.tacc.utexas.edu/?id=368
8see the ATLAS FAQ, http://math-atlas.sourceforge.net/faq.html
9see the webpage of Sun Studio, http://developers.sun.com/sunstudio/

http://www.netlib.org/
http://www.tacc.utexas.edu/?id=368
http://math-atlas.sourceforge.net/faq.html
http://developers.sun.com/sunstudio/
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algebra. It has been designed to be efficient on a wide range of modern high-
performance computers [ABB+99, p.3]. It contains routines to solve systems
of linear equations, linear least square problems, eigenvalue problems, and
singular value problems. LAPACK routines are written so that as much as
possible of the computation is performed by calls to the BLAS [ABB+99, p.4].
The codes are organized hierarchically, where routines that solve complete
problems are called “driver” routines; for example, zgeev (LAPACK) solves a
general standard EVP. “Computational” routines perform individual com-
putational tasks, for example, zgehrd (LAPACK) reduces a complex general
matrix to upper Hessenberg form. “Auxiliary” routines perform either sub-
tasks of block algorithms, some commonly required low-level computations,
or a few extensions to the BLAS. Most routines are available for the data
types real, double precision, complex, and double complex (sometimes called
complex∗16).

2.3.4 Performance Evaluation

In general, implementations of numerical algorithms should be as fast (the
less consumed time, the better) as possible10 and as accurate as possible.
The faster and the more accurate a piece of code performs, the better.

Numerical aspects

While integer numbers 1, 2, 3, etc. can always be represented exactly (apply-
ing the adequate data type), this is not the case with real numbers. Digital
representations of real numbers are always reduced to a finite subset of digits
(mostly in the binary system), periods are usually not used in the computer
system. As a consequence of using the binary system to represent numbers,
some numbers representable without a period in the decimal system, can-
not be exactly stored in the computer system11. The following definitions
covering accurateness are cited from [Hig96].

Definition 2.3.5 (Absolute error). Eabs(x̂) = |x− x̂|, where x̂ is an approx-
imation to a real number x.

Definition 2.3.6 (Relative error). Erel(x̂) = |x−x̂|
|x| , where x̂ is an approxi-

mation to a real number x.

10In [Dem97, p.5], speed is even attributed to algorithms.
11for instance 0.1 (decimal system) ≈ 0.00011001100110011 . . . (binary system)
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Definition 2.3.7 (Componentwise relative error). A relative error that puts
the individual relative errors on an equal footing is the componentwise rela-
tive error

max
k

|xk − x̂k|
|xk|

.

Definition 2.3.8 (Accuracy). Accuracy refers to the absolute or relative
error of an approximate quantity.

Definition 2.3.9 (Precision). Precision is the accuracy with which the basic
arithmetic operations +,−,∗,/ are performed, and for floating point arith-
metic is measured by the unit roundoff (or machine precision).

Two difficulties are connected with limited precision floating point num-
bers: digital numbers cannot be arbitrary large or small, and the gap between
two numbers cannot be arbitrary small. The latter property is very impor-
tant for all kind of computations, where it is desired to compute as accurately
as possible.

Definition 2.3.10 (Cancellation). Cancellation is what happens when two
nearly equal numbers are subtracted. It is often, but not always, a bad thing.
On the other hand, it is not unusual for rounding errors to cancel in stable
algorithms, with the result that the final computed answer is much more
accurate than the intermediate quantities.

Definition 2.3.11 (Machine precision). In a computer system, machine ep-
silon ε is the distance from 1.0 to the next larger floating point number.

Definitions of the machine precision (also called machine epsilon, machine
precision, and unit roundoff) that can be found in literature, differ slightly
(see, for instance, “Numerical computation 1 – Methods, Software, and Anal-
ysis” by C. Überhuber [Ü97a, p.140], “Matrix Computations” by G. Golub
and C. Van Loan [GL96, p.61], [Dem97, p.12], and “LAPACK Users’ Guide”
by E. Anderson et al. [ABB+99, p.78]).

We intentionally chose the definition of N. Higham, because it is very
concise. After each computation performed by a computer, the accuracy
of a result potentially decreases. Therefore, it is important to measure the
performance of an algorithm in terms of the accuracy of its result. Accuracy
is not limited by precision, because arithmetic of a given precision can be
used to simulate arithmetic of arbitrarily high precision. In other words, it
is possible to handle any desired accuracy with the limited precision of the
underlying hardware and software platform.
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Parameter Single Single Ext. Double Double Ext.
p 24 ≥ 32 53 ≥ 64

Emax +127 ≥ +1023 +1023 ≥ +16383
Emin −126 ≤ −1022 −1022 ≤ −16382
bias +127 unspecified +1023 unspecified

E width (bits) 8 ≥ 11 11 ≥ 15
Format width (bits) 32 ≥ 43 64 ≥ 79

Table 2.3: Parameters for the representation of numbers following the
IEEE/ANSI 754-1985 standard. Single, single extended, double, and dou-
ble extended are selectable formats; p is the number of significant bits, E is
an exponent, a biased exponent e = E + bias.

The ANSI / IEEE standard 754-1985 [IEE85] defines a family of commer-
cially feasible ways for new systems to perform binary floating-point arith-
metic. The definitions incorporate floating-point formats, rounding, oper-
ations, the handling of special numbers including infinity, exceptions and
traps. Already ahead of its official publication in 1985, it was a de facto
standard in the field of floating-point numbers and arithmetic [Ü97a, p.133].
Fortran meets this standard to the extent a processor’s arithmetic supports
it [For03]. As computing is mainly done with floating-point numbers, this
is the foundation for estimating the numerical accuracy of algorithms on a
computer system. The following definitions are taken from [IEE85].

Definition 2.3.12 (Binary floating-point number). A bit-string character-
ized by three components: a sign, a signed exponent, and a significand. Its
numerical value, if any, is the signed product of its significand and two raised
to the power of its exponent.

A number is represented as ±2E(b0.b1b2 . . . bp−1), where the exponent E is
any integer ranging from Emin to Emax and a binary digit bk = 0 or 1. p equals
the number of significant bits (precision). A biased exponent e = E + bias
is used to make the exponent’s range nonnegative. Furthermore, ±∞ and
NaN (“Not a Number”) are representable. A summary of format parameters
of the ANSI / IEEE 754-1985 standard for binary floating-point arithmetic is
given in Table 2.3. Please notice that at this point we mention only a small
fraction of the definitions and specifications described in the standard.

LAPACK determines the machine precision at runtime, by calling the aux-
iliary routine slamch for single precision or dlamch for double precision. A
special version for complex numbers, which might be called clamch or zlamch
is unavailable, as complex numbers are commonly represented as a pair of real
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Machine and arithmetic Machine precision
Cray-1 single 4× 10−15

Cray-1 double 1× 10−29

DEC VAX G format, double 1× 10−16

DEC VAX D format, double 1× 10−17

HP 28 and 48G calculators 5× 10−12

IBM 3090 single 5× 10−7

IBM 3090 double 1× 10−16

IBM 3090 extended 2× 10−33

IEEE single 6× 10−8

IEEE double 1× 10−16

IEEE extended (typical) 5× 10−20

Table 2.4: Machine precisions of various computer systems, taken from
[Hig96, p.41].

numbers. Table 2.4 lists exemplary assignments of machine precisions on dif-
ferent machines. ”Low level“ numerical algorithms should incorporate these
system-dependent numbers, in order to maximize the accuracy of the imple-
mented algorithm. For instance, the LAPACK routine zlarfg (generates a
complex elementary reflector H) calls dlamch to optimize the computation
of its returned elimination vector x.

Temporal aspects

Time measurement is an important aspect for evaluating the performance of
computational software. cpu_time is the Fortran intrinsic function to mea-
sure elapsed time. It is defined in the Fortran 95 standard, and may therefore
be unavailable in older compilers. A high-resolution solution capable of time
measuring in serial and parallel systems is the MPI subroutine MPI_Wtime,
which can be used both in new and even old Fortran 77 compilers.

In parallel systems, one has to take care what to measure. One could
be interested in the fastest of all started processes, in the slowest, or in
an average of all of them. On timing parallel systems, it is often desirable
to synchronize the individual processes right before the time measurement
starts, and before it ends. Thus, termination of the code segment on all
processes can be guaranteed. In MPI, MPI_Barrier fulfills this task. See
[LKJ03] for a timing template explaining issues about timing in detail.

Subsequent definitions for basic performance quantification are taken
from [Ü97a].
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Definition 2.3.13 (Response time). The time referred to as response time,
elapsed time, or sometimes wall-clock time, passes between the launching of
the command which starts a particular computational task and its comple-
tion, the response of the computer.

Definition 2.3.14 (Execution time). In order to compare different algo-
rithms for solving a given problem on a single computer, an execution time
is defined as T := tend − tstart.

Definition 2.3.15 (Peak performance). An important hardware characteris-
tic, the peak performance Pmax of a computer, specifies the maximum number
of floating-point (or other) operations which can theoretically be performed
per time unit (usually per second).

Definition 2.3.16 (Empirical floating-point performance). The floating-
point performance characterizes the workload completed over the time span
T as the number of floating-point operations executed in T:
PF = number of executed floating-point operations

time in seconds .

Definition 2.3.17 (Relative speedup). Relative speedup Sr(n) can be de-
fined as Tp1

Tn
, where Tp1 is the execution time of a parallel code on a single

processor or processor core, and Tn is the execution time of the same code
on n processors (or processor cores).

Definition 2.3.18 (Absolute speedup). Absolute speedup Sa(n) can be de-
fined as Ts1

Tn
, where Ts1 is the execution time of the fastest serial code for a

fixed problem on a single processor or processor core, and Tn is the execution
time of the parallel code for solving the same problem on n processors (or
processor cores).

Definition 2.3.19 (Parallel efficiency). The efficiency E(n) = S(n)
n

, where
Sn is the speedup on n processors or processor cores.

The absolute speedup is usually smaller than the relative speedup, as the
parallel program may contain unnecessary overhead if executed on a single
processor.

2.3.5 Parallelization Toolkit
All modern supercomputers feature some kind of parallel architecture, see
Figure 2.2 for a visualization depicting current supercomputer architectures.
We find that clusters are clearly dominating the share of parallel architectures
in the TOP500 with a share of currently about 83% of all supercomputer
architectures.
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Figure 2.2: Architectures of the top 500 supercomputers from June 2005 to
November 2009, including massive parallel processing (MPPs), clusters, and
constellations; data taken from TOP500 webpage.
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Communication libraries

Message passing is the form of communication of computing elements consid-
ered here: a combination of architecture, programming systems, and program
formulation are required. Details of this paradigm can be found in [AS88].
Such low-level communication libraries enable the programming of codes
for parallel architectures. MPI (Message Passing Interface) [SOHL+98] is
the protagonist in message passing, and one of its most popular implemen-
tations is MPICH212. BLACS (Basic Linear Algebra Communication Subpro-
grams)13 [Don91, DW93] needs a low-level communication library and at-
tempts to provide ease of use and portability for distributed environments.
BLACS is based on some message primitives, as available, for example, in
MPI and PVM. It is mainly used as communication library for ScaLAPACK.

Task parallelism and data parallelism

Parallel applications require the exploitation of task or data parallelism. The
following two definitions are taken from [CFK+94].

Definition 2.3.20 (Task parallelism). In a task-parallel (also known as con-
trol or process parallel) programming paradigm the program consists of a
set of (potentially dissimilar) parallel tasks that interact through explicit
communication and synchronization.

Definition 2.3.21 (Data parallelism). In a data-parallel programming para-
digm the program consists of a series of operations that are applied identically
to all or most elements of a large distributed data structure.

Both styles of parallelism may coexist. For example, in [SSHG93], a
mixed compilation approach is discussed, where the compiler makes trade-offs
between task and data parallelism. Most parallel-programming systems are
based on either task parallelism or data parallelism, but integrating both in
one model is attractive because task and data parallelism each has strengths
and weaknesses [BH98].

Parallel programming languages

As Fortran was the first widely used high-level programming language on su-
percomputers [PZA86], early parallel languages or language extensions were
also mostly based on Fortran. In [MRZ98, Lov93], the authors enumerate

12see the MPICH2 webpage, http://www.mcs.anl.gov/research/projects/mpich2/
13see the BLACS webpage, http://www.netlib.org/blacs/; source and binaries for

MPI, PVM, IBM SP, and Intel (on top of NX) are available from the webpage.

http://www.mcs.anl.gov/research/projects/mpich2/
http://www.netlib.org/blacs/
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IVTRAN, Kali, CM-Fortran, Vienna Fortran, and a few other languages as pre-
decessors of the High Performance Fortran (HPF) parallel programming lan-
guage [For97, KLS+94]. OpenMP is a shared memory application program-
ming interface (API) whose features are based on prior efforts to facilitate
shared memory parallel programming. OpenMP is not a programming lan-
guage, it is notation that can be added to a sequential program in Fortran,
C, or C++ to describe how the work is to be shared among threads that will
execute on different processors or cores and to order accesses to shared data
as needed [CJvdP08, p.8].

The DARPA14 High Productivity Computing Systems (HPCS) program
is focused on providing a new generation of economically viable high pro-
ductivity computing systems for national security and for the industrial user
community15. Their report [DGH+08] extensively discusses history, tools,
models, and languages of HPCS. Partitioned Global Address Space (PGAS)
languages provide each process direct access to a single globally addressable
space. PGAS languages include the parallel programming languages Unified
Parallel C (UPC) [CCB99], Co-Array Fortran [NR98], and Titanium [YSP+98].
The HPCS language project aims at inventing new languages that facilitate
the creation of parallel, scalable software. These languages are Chapel [CCZ07]
by Cray, X10 [CGS+05] by IBM, and Fortress [ACF+07] by Sun. Furthermore,
the report tells that an HPCS system must also support C, C++, and For-
tran with MPI. While latter languages, together with the PGAS languages,
can be regarded as state-of-the-art approaches for parallel programming, the
PGAS languages constitute trends for future languages.

2.3.6 High Performance Programming
The programming of scientific applications is a complex task, not only be-
cause of the computational problem to be solved, but also because of crude
software tools and low-level programming [DSSS05]. There is no framework
that can be used to write general portable-performance programs [Gat00,
p.16]. The development of new codes in scientific computing should con-
sider the following aspects. This list is just a collection of ideas compiled by
ourselves and is by no means complete.

Code reuse Only well-established and stable code should be used as foun-
dation of new codes. LAPACK and ScaLAPACK codes shall be used for
linear algebra codes whenever possible, while codes from many other
packages should be treated with caution.

14Defense Advanced Research Projects Agency (USA), see http://www.darpa.mil/
15see the HPCS webpage, http://www.highproductivity.org/

http://www.darpa.mil/
http://www.highproductivity.org/
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Source code portability If needed, carefully programmed sources can eas-
ily be ported to other programming languages. Pointers should be
avoided if possible, as they usually complicate debugging and porting.

Compiler switches Two setups of compiler switches are essential. (∗) A
setup for code testing is needed during the code development phase.
It includes switches to include at least debugging symbols and array
boundary checks. Optimization should be turned off. (∗) Another
setup to achieve maximum performance is needed for the finished code.
This setup embraces settings to achieve the maximum performance of
the code on the target system, for example, the utilization of a 64-bit
architecture and optimization switches.

Debugging A debugger like valgrind16 [NS07, NS03] should be used to ac-
celerate debugging. Especially the inspection of assignment of non-
initialized variables is crucial.

16see the webpage of valgrind, http://valgrind.org/

http://valgrind.org/
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Chapter 3

Context Adaptivity

As already sketched in Chapter 1, parallel architectures of various kinds have
appeared, especially during the last few years1. These architectures offer a
huge peak performance, but the achieved sustained performance frequently
remains behind. Especially for numerical software that involves a lot of
communication or a large number of irregular memory accesses, it is not
uncommon to run at 10% efficiency or less [DBC+06]. The challenge of
maximizing achieved performance is aggravated by current trends to very
heterogeneous but promising platforms including multi-core CPUs [DGFK07]
like the CELL processor [KBD08, BLK+07] and hardware accelerators like
GPUs [Man08].

Context adaptivity aims at being a concept for addressing the issue of
achieving the optimal performance of numerical software in different contexts,
for instance, in terms of hardware.

3.1 Disambiguation
The linguistic meaning of the term “context adaptivity” has been outlined
in Chapter 1, referring to [HA91]. Accordingly, a context is observed as “the
circumstances relevant to something under consideration”, while adaptive
means “become adjusted to new conditions”. Consequently, context adap-
tivity may be observed as the ability to become adjusted to new conditions
relevant to something under consideration. G. Coulouris et al. define context
for the domain of mobile and ubiquitous computing [CDK05, p.683] in the
following way: “The context of an entity (person, place or thing, whether
electronic or otherwise) is an aspect of its physical circumstances of rele-

1Confer the TOP500 webpage, http://top500.org/ (statistics, charts, and develop-
ment)

45

http://top500.org/
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vance to system behaviour. That includes relatively simple values such as the
location; the time; the temperature; the identity of an associated user, e.g.
one operating a device, or of users nearby; the presence and state of an object
such as another device, e.g. a display.”. An analysis of definitions of the term
context, arising in various other domains, is given in [BB05]. Similar terms
context awareness [CDK05, p.683], [CDM03] and context sensitivity [McE97]
are not discussed here.

For the domain of services computing, context adaptivity is defined as
“the ability of knowing and modifying the user context to ensure the best pro-
visioning of e-service” [MMMP04]. Obviously, it is not possible to adhere
to this definition, concerning the domain of numerical software. Further-
more, context adaptivity (as a term) has been used in other domains, such
as web information systems engineering [CDM03] and the video coding stan-
dard H.264 [WSBL03]. For the domain of scientific computing, W. Gansterer
defines an algorithm context adaptive “if it features some form of ’intelli-
gence‘ to automatically adapt itself to performance critical properties of its
context” [Gan06]. As this definition is focussing on algorithms, a new defini-
tion covering mainly numerical software is necessary. We define context and
context adaptivity of numerical software as follows.

Definition 3.1.1 (Context). The context of numerical software includes the
motivating application problem, the underlying mathematical models, poten-
tially other software components (such as libraries, middleware, etc.), and the
available hardware. This context may impose requirements or restrictions on
the numerical software, for example, in terms of runtime, accuracy, or mem-
ory consumption.

Definition 3.1.2 (Context adaptivity of numerical software). Context adap-
tivity of numerical software is a comprehensive concept to utilize and adapt
to aspects of the context in order to optimize its performance. Here, perfor-
mance may be measured in various different metrics, for example, in terms of
execution time, achieved accuracy, or electrical power consumption. Context
adaptivity can be achieved through meta-algorithms which automatically se-
lect optimal concrete algorithms, algorithmic variants and optimal settings
for a given computational problem in a given context.

Context adaptivity is applied by describing a meta-algorithm (confer, for
example, [Bä94]) for choosing appropriate concrete algorithms for a given
context and desired properties. For example, in the case that a generalized
complex symmetric EVP should be solved (∗) as fast as possible (∗) on
a single CPU core (∗) with relatively low accuracy requirements, the meta-
algorithm may choose our routine zsygvn (see Chapter 5) to solve this EVP.
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The “intelligence” of such a meta-algorithm may be designed by declaring an
optimization problem featuring an optimal performance as target function,
subject to given constraints. The paper [DBC+06] refers to which algorithm
or library code to apply to the problem as an “intelligent switch”. The
implementation of this meta-algorithm is beyond the scope of this thesis and
therefore not discussed at this point.

3.2 Related Work
In the following, we distinguish between papers that discuss context adap-
tivity (or related topics) as an abstract concept, and exemplars for context
adaptivity.

3.2.1 Abstract Concept
We mainly see two papers important for the construction of this work that
we summarize as follows.

(∗) W. Gansterer discusses context adaptive algorithms in scientific com-
puting in his habilitation thesis [Gan06] and establishes a 5-layer model for
computational science. These layers are constituted by (1) underlying “real
world” phenomenon, (2) analytical models, (3) computational models and
algorithms, (4) software and middleware, and (5) hardware. Whereas the
focus of the work of W. Gansterer is on algorithms, the presented work fo-
cuses on aspects of implementations of numerical algorithms. Hence, this
work focuses on the layers 3, 4, and 5.

(∗) The self-adapting numerical software effort (SANS) [DBC+06] is a col-
laborative effort between different projects that deal with the optimization of
software at different levels in relation to the execution environment2. In this
paper, the following approaches are introduced: generic code optimization,
LAPACK for clusters, SALSA, fault-tolerance linear algebra, and an optimized
communication library. All of these approaches are also relevant for the con-
siderations done in this presented work. These approaches are covered by the
proclaimed SANS featuring the components application, analysis models, in-
telligent switch, numerical components, database, and modeler. Analogies
between context adaptivity, as discussed in this thesis, and the latter paper,
exist mainly as follows. The intelligent switch can be observed as a task
of the meta-algorithm, and numerical components relate to computational
kernels.

2see SANS webpage, http://icl.cs.utk.edu/iclprojects/pages/sans.html

http://icl.cs.utk.edu/iclprojects/pages/sans.html
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Both papers emphasize the challenges of new concepts for the develop-
ment of numerical application software in the light of different contexts.

3.2.2 Related Projects
The ATLAS (Automatically Tuned Linear Algebra Software) project3 is an on-
going research effort focussing on applying empirical techniques in order to
provide portable performance [WPD01]. It generates an optimized BLAS,
automatically tuned to the target platform. Automatical Empirical Optimiza-
tion of Software (AEOS) is a technique that was proposed by R. Clint Whaley
to optimize floating point kernels [Wha04, WPD01]. An adaptive approach
for computing fast Fourier transforms (FFTs) is denominated as FFTW4. In
[FJ98], an adaptive FFT program that tunes the computation automatically
for any particular hardware is proposed; see [VD00] for a paper about expe-
riences with FFTW. SPIRAL is a code generator for linear digital signal pro-
cessing (DSP) transforms5. For a specified transform, SPIRAL automatically
generates code which is tuned to the given platform [PMJ+05]. Achieving
this goal is reached by solving an optimization problem, applying different
algorithmic and implementation choices.

ATLAS, Spiral, and FFTW are code generators that aim at maximizing the
performance on different hardware architectures. They are mostly focused on
the hardware context, but other aspects of context could also be integrated.

3.3 Goals
The goals of context adaptivity are the maximal performance of numerical
software in terms of speed and accuracy, and the minimal resource allocation
subject to given constraints; see Section 2.3.4 on how to measure perfor-
mance, at which both numerical and temporal aspects are relevant. In most
cases, the primary goal is the fastest solution of a specified job definition at
an acceptable (or higher) accuracy.

Main goals

Consequently, main goals are (∗) optimal runtime performance, (∗) optimal
or acceptable accuracy of results, and (∗) further performance aspects of
resource allocations including RAM, network bandwidth, hard disk storage,

3see ATLAS webpage, http://math-atlas.sourceforge.net/
4see FFTW webpage, http://www.fftw.org/
5see SPIRAL webpage, http://www.spiral.net/

http://math-atlas.sourceforge.net/
http://www.fftw.org/
http://www.spiral.net/
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Main goals
Runtime performance

Accuracy
Further performance aspects (RAM, network, . . . )

Table 3.1: Main goals of numerical software.

etc.. In the course of these goals, properties of the context (for instance,
accuracy and speed) may sometimes be traded for each other. Main goals
are to be found in Table 3.1, trading is covered in Section 3.5.

Accompanying goals

Numerical software is usually difficult to develop, due to its complex math-
ematical background (see for instance [RB96]). Therefore, common aspects
of software engineering like portability, usability, robustness, and reusabil-
ity (see for example [dAAL+04, Pre01, CNYM00]) are even more crucial for
numerical software than for “ordinary” software.

Achieving stable performance on all architectures is an accompanying goal
for numerical software. We denominate this goal architecture adaptivity, in
accordance with [KU93] that discusses algorithms capable of adapting to
different hardware platforms; see also [Gat00] for a thesis on portable high
performance programming. This thesis presents a framework that aims at
bridging the gap between performance and portability, by a mechanism that
selects from a set of semantically equivalent variants to create a variant policy.
One approach to attain serial architecture adaptivity in numerical software
incorporates the utilization of the portable numerical libraries BLAS and
LAPACK, respectively an implementation especially dedicated to the target
platform, for example, Intel MKL, AMD ACML, IBM ESSL, . . . . In the parallel
case, ScaLAPACK is one of the protagonists in achieving parallel architecture
adaptivity. In addition to architecture adaptivity, the parallel scalability of
the algorithm and its parallel implementation should be considered. Table 3.2
summarizes accompanying goals that are desirable for both serial and parallel
software being favorable for numerical software. Architecture adaptivity and
parallel scalability are aspects related to runtime performance.

3.4 Fabric of Context
This section discusses aspects of the context. The following items can be
regarded as key aspects of the context, so they are non-tradeable constraints.
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Accompanying goals
Portability
Reusability
Robustness
Usability

Architecture adaptivity
Parallel scalability

Table 3.2: Accompanying goals of numerical software.

Structure of input data

Exploiting structure of matrices for algorithms is relevant to the choice of
applicable methods, see [GL96, p.16]. For example, the matrix-matrix mul-
tiplication in the BLAS features subroutines for the following types of matri-
ces: general (_gemm), symmetric (_symm), Hermitian (_hemm), and triangular
(_trmm). Each of these matrix types supports the data types single preci-
sion, double precision, complex, and double complex. Corresponding to the
matrix type and precision, individual implementations are used, resulting in
potentially different performance results.

One important class of matrices are sparse matrices. A matrix is sparse
if many of its entries are zero. The interest in sparsity arises because its
exploitation can lead to enormous computational savings and because many
large matrix problems that occur in practice are sparse [DER86, p.1]; con-
fer also [Vö03]. The Portable, Extensible Toolkit for Scientific Computation
(PETSc) [BBE+08, BGMS97] is a suite of data structures and routines for
the scalable (parallel) solution of scientific applications6. It supports about
30 different types of sparse matrices (confer online manual pages, “Mat-
Type”7). A further aspect for regarding the structure of input data is the
handling of values that are smaller than a specified threshold. For example,
the Cholesky decomposition of a sparse matrix is reported to apply a thresh-
old in the range of 10−6 . . . 10−8 in order to treat smaller entries as zero and
therefore decrease computational costs [SKDO07]; in another paper, a block
tridiagonalization approach utilizing sparse symmetric matrices is discussed,
where effectively-sparse entries are treated as zeros such that the eigenvalue
error remains bounded [BGW04].

6see the PETSc webpage, http://www.mcs.anl.gov/petsc/petsc-as/
7see the PETSc online documentation, http://www.mcs.anl.gov/petsc/petsc-2/

documentation/index.html

http://www.mcs.anl.gov/petsc/petsc-as/
http://www.mcs.anl.gov/petsc/petsc-2/documentation/index.html
http://www.mcs.anl.gov/petsc/petsc-2/documentation/index.html
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Computing platform

Numerical application software executes on platforms consisting of perfor-
mance-critical hard- and software, both of them constitute a key aspect
for the context of the system. Platforms may be very heterogeneous, ag-
gravating the efficient mapping of algorithms to the computational plat-
form [DL06, Las06]. Performance-critical hardware components include,
but are not limited to, CPU, RAM, and caches. Detailed fundamentals of
computer-design and performance quantification can be found in the text-
book “Computer Architecture – A Quantitative Approach” by Hennessy and
Patterson [HP07]. Most critical parts of the software platform comprise uti-
lized computational libraries. For the field of numerical linear algebra, this
concerns especially the implementation of the BLAS, as further libraries, for
example LAPACK, heavily rely on its performance.

Temporal requirements

This constraint is the maximum time consumed by the implementation needed
to complete a desired task, for example, the solution of an EVP. This time
can be specified in terms of CPU time, elapsed time, or any other way of ex-
pressing a temporal restriction. For each computational problem, potentially
more than one applicable algorithm exists, and for each algorithm multiple
possible implementations can be realized. Each implementation may have a
different performance in terms of temporal requirements.

Precision and accuracy

Provided precisions of representable numbers are defined in the IEEE stan-
dard 754-1985 [IEE85] (confer Section 2.3.4). Depending on the computa-
tional problem and its order, a different accuracy may be required. Common
precision types on programming language level are single precision and dou-
ble precision, arbitrary precisions are supported utilizing additional software
like ARPREC8. ARPREC includes routines to perform arithmetics with an ar-
bitrarily high level of precision, including many algebraic and transcendental
functions [Bai05].

Required accuracy constitutes the constraint in terms of exactness of
results on the application level. For instance, in [SO96, p.149], the authors
argue that a reduced accuracy in the Hartree-Fock method is still adequate
for most purposes. In [GSPF08], reduced accuracy in the computation of
eigenpairs is discussed. Table 3.3 lists covered aspects of the context.

8see the High-Precision Software Directory, http://crd.lbl.gov/~dhbailey/mpdist/

http://crd.lbl.gov/~dhbailey/mpdist/
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Context
Structure of input data
Computing platform

Temporal requirements
Precision and accuracy requirements

Table 3.3: Elements comprising the context of numerical software.

3.5 Methodology
Methodology denominates all proposed techniques available to achieve con-
text adaptivity. The subsequent methods are a framework of contingent
possibilities, their realization may be very complex. In the following, these
approaches are suggested, see Table 3.4 for the list of discussed methods.

Algorithmic variants

For each specific job definition, more than one algorithmic solution with
distinct performance characteristics may exist. See [PTVF07, Knu98] for
taxonomies and prototypical implementations of job definitions, including
some algorithmic variants. Context adaptivity is achieved by selecting the
algorithmic variant that fits best to the given context.

Implementation variants

One algorithm may be realized by multiple implementations featuring poten-
tially different performance characteristics. One such variant is called blocked
code. In case of reflectors for the annihilation of entries in matrices, block
reflectors can be applied instead of elementary reflectors. A major advantage
of block reflectors is that they can be computed using matrix multiplication
for most of the work, and that they can be applied using matrix multiplica-
tion for all of the work [SP88]. It is often preferable to partition a matrix into
blocks and to perform the computation by matrix-matrix operations on the
blocks [DCHD90]. See [Ü97a, p.267] for a comparison of performance for dif-
ferent blocked matrix-matrix multiplications, evidencing the attractiveness
of blocked codes. As a further example, a blocked Bunch-Kaufman (BK)
factorization was proven to outperform its unblocked counterpart.

The utilization of block algorithm variants has been discussed for the
case of LAPACK in [AD89]. Massively parallel environments that cannot
guarantee error-free execution may demand an approach based on an imple-
mentation variant. For instance, fault tolerance in matrix multiplication has
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Methodology
Algorithmic variants

Implementation variants
Parallelization of serial codes

Trading

Table 3.4: Methodology in context adaptivity for numerical software.

been covered in [GvdGKQO01, PKD97]. As different implementations of the
same algorithm may perform in different ways in different contexts, the best
one may be chosen.

Parallelization of serial codes

Serial codes may be parallelized: a variant executable on a parallel archi-
tecture that utilizes aspects of the parallel platform (mainly multi-core or
multi-processor execution) may be identified and implemented. For some
codes, efficient parallel variants are known, but some codes may not be feasi-
bly parallelizable at all. Due to the huge importance of parallel architectures,
ongoing efforts aiming at parallelization of serial codes have been undertaken;
see, for example, [Bis04, DFF+03, GGK03, dV94] for textbooks on parallel
computing. Parallel codes are a combination of algorithmic and implemen-
tation variants.

Trading

For some implementations, multiple properties of the context may be traded
for each other. Let a job definition require a relatively low accuracy; in
case of the existence of multiple algorithmic variants and implementations
with different performance characteristics, accuracy may be traded for speed.
In other words, a faster algorithm could be less accurate, but still fulfill
the required accuracy. Flexible properties of the context can be traded for
each other in order to optimize the performance of the numerical software.
Table 3.5 lists examples of tradeable properties.
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Tradeable properties
Consumed time

Achieved accuracy
RAM occupation

Hard disk occupation
Network load

. . . further types of resource allocation

Table 3.5: Examples of tradeable properties in context adaptivity for numer-
ical software.



Chapter 4

Application Problems

Application problems from science and engineering are drivers for the de-
velopment of improved algorithms and numerical software. This chapter
includes applications of the topics discussed in subsequent chapters. Sec-
tion 4.1 describes guided-wave multisection devices that initially motivated
our investigations of generalized complex symmetric EVPs, see Chapters
5 and 6; Section 4.2 describes basics of phylogenetics that motivated our
investigations elaborated in Chapter 6.

4.1 Guided-Wave Multisection Devices
This section is partly based on our paper “Tridiagonalizing Complex Sym-
metric Matrices in Waveguide Simulations” [GSPF08].

Guided-wave multisection devices are optoelectronic devices, for exam-
ple lasers, simulated by a guided-wave approach with multiple sections. For
basics in waveguide analysis, see for instance, [KK01]. Classical electrody-
namics can be found in [Jac99], the finite element method and related topics
are described in [VKC98].

We discuss waveguides (WGs) featuring a high index of refraction (also
known as refractive index). The use of such high-index contrast WGs in
novel guided-wave devices for telecom- and sensing applications allows for a
very versatile tailoring of the flow of light, see Figure 4.1 for a visualization.
An efficient design requires the direct numerical solution of Maxwell’s equa-
tions [Cro10, p.649] in inhomogeneous media. In many important cases such
devices can be successfully modeled as follows: (a) in the x-direction (direc-
tion of wave propagation), the material parameters are piecewise constant,
(b) the material parameters and the optical fields do not depend on the y-
coordinate, and (c) in the z-direction the material parameters are allowed to
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Figure 4.1: Design of a surface emitting quantum cascade laser (top), see also
[FCS+94]; simulation of waveguides and their reflectivity (bottom) [FPB07].

vary arbitrarily. Usually, the z-dimension is of the order of up to several tens
of wavelengths whereas the device extension into the x-direction is several
hundreds of wavelengths.

A powerful numerical method for the solution of Maxwell’s equations in
such WG-based devices is the eigenmode expansion technique, which is often
referred to as mode-matching (MM) technique [BB01, FC96, Sud93]. The
electromagnetic field components in each section being homogeneous in the
x-direction are represented here in terms of a set of local eigenmodes. MM
requires a small computational effort compared to other numerical techniques
like two-dimensional finite elements or finite difference time domain (FDTD),
see for example [ZAB+99]) which can be regarded as “brute-force” methods
from the viewpoint of device physics. However, MM can only be as stable
and efficient as the algorithms used to determine the required set of local
WG modes. Due to the open boundary conditions and materials with com-
plex dielectric permittivities, these local eigenmodes typically have complex
eigenvalues which makes their correct classification very difficult: numerical
instabilities can arise from an improper truncation of the mode spectrum. In
a recently developed variant of the MM technique – the variational mode-
matching (VMM) [FPB07] – this stability problem is avoided by applying a
Galerkin approach to the local wave equations and taking into account the
whole spectrum of the discretized operators.
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The VMM-approach

Within the 2D-assumption ∂y(·) = 0, Maxwell’s equations for dielectric ma-
terials characterized by the dielectric permittivity ε(x, z) take the form

∂xa∂xφ+ ∂za∂zφ+ k2
0bφ = 0 , (4.1)

where φ = Ey, a = 1, b = ε for TE- and φ = Hy, a = 1
ε
, b = 1 for

TM-polarization, respectively; k0 = 2π
λ0

(vacuum wavelength λ0).
In the z-direction, the simulation domain is 0 ≤ z ≤ L. To permit an

accurate description of radiation fields, an artificial absorber (that mimics
an open domain) has to be installed near z = 0 and z = L. For this purpose,
perfectly-matched layers (PMLs) are used by employing the complex variable
stretching approach [TC98], that is, in the vicinity of the domain boundaries
the coordinate z is extended into the complex plane: z 7→ z̃ = z+ı

∫ z
0 dτ σ(τ),

where σ is the PML parameter determining the absorption strength. At z =
0 and z = L Dirichlet- or Neumann boundary conditions are set. However,
they should not have a significant influence on the overall optical field since
the physical boundary conditions must be given by the PMLs. In the x-
direction, the structure is divided into nl local WGs, which expand over
xl−1 ≤ x ≤ xl = xl−1 + dl with 1 ≤ l ≤ nl.

Under the necessary condition that ε does not depend on x, Equation (4.1)
can be solved inside each local WG l with the separation ansatz

φ(l)(x, z̃) =
nϕ∑
j=1

ϕj(z̃)
nϕ∑
ρ=1

c
(l)
jρ

[
α

(l)
ρ,+eık0ν

(l)
ρ (x−xl−1) + α

(l)
ρ,−e−ık0ν

(l)
ρ (x−xl)

]
, (4.2)

where ρ labels the local waveguide modes. The transverse shape functions
ϕj(z̃) (the same set is used for all local WGs) must satisfy the outer bound-
ary conditions. Apart from this constraint, ϕj may be chosen rather freely
allowing for adaptive refinement in z-regions where rapid variations of the
field are expected. This ansatz reduces the 2D problem to a set of nl 1D
problems.

After inserting Equation (4.2) into Equation (4.1), Galerkin’s method is
applied to obtain a discretized version of Equation (4.1) for each local WG l.
Finally, the coefficients α(l)

ρ,± are “mode-matched” by imposing the physical
boundary conditions at all the xl-interfaces [FPB07].

The generalized complex symmetric EVP

For each local WG, the discretized version of Equation (4.1) is a generalized
complex symmetric EVP of the form

Acρ = (νρ)2Bcρ , (4.3)
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where we have suppressed the index l for simplicity. Here, the νρ are the
modal refractive indices and the cjρ are the corresponding modal expansion
coefficients occurring in Equation (4.2). A is a sum of a mass- and a stiffness-
matrix, Amj =

∫
dz̃ ϕm(z̃)b(z̃)ϕj(z̃)− 1

k2
0

∫
dz̃ (∂z̃ϕm(z̃))a(z̃)(∂z̃ϕj(z̃)), whereas

B is a pure mass-matrix: Bmj =
∫
dz̃ ϕm(z̃)a(z̃)ϕj(z̃).

The generalized EVP in Equation (4.3) has the following properties: (a)
A and B are complex symmetric: the complex coordinate z̃ originating from
the PMLs (and the possibly complex material constants a and b) are re-
sponsible for the complex-valuedness; (b) B is indefinite (due to the open
boundary conditions represented by the PMLs and a possibly negative ma-
terial constant a); (c) the typical order of the matrices for 2D problems is
100 . . . 1000 (depending on the geometry and the required truncation order
of the modal expansion – in 3D models the order can be much higher); (d)
the full spectrum of eigenpairs is required; (e) the required accuracy is of the
order 10−8 for the eigenpairs corresponding to the lowest order WG modes
(approximately 10% of the mode spectrum); a somewhat lower accuracy
(approximately 10−6) is acceptable for the remainder of the spectrum; (f )
depending on the WG geometry, some of the eigenvalues (especially those
corresponding to the lowest order WG modes) may almost degenerate.

It is evident that an efficient eigenvalue solver which utilizes the symmetry
of the EVP in Equation (4.3), as well as its special properties, is a very
important building block for efficient 2D and 3D optical mode solvers.

In order to demonstrate a real testcase, a 1D waveguide problem structure
was chosen, which is a Si/SiOx twin waveguide operated in transversal mag-
netic (TM)-polarization at a wavelength λ0 = 1.55µm. The dielectric con-
stants are εSi = 12.96 and εSiOx = 2.25. The core thickness and -separation
are 0.5µm and 0.25µm, respectively. The z-extension of the model domain,
terminated by electrically perfectly conducting walls, is 10µm. The PML-
layer thickness is 1µm with the PML-parameter σ = 1. As shape functions,
localized linear hat functions and polynomial bubble functions with a degree
up to 24 were used. The eigenpairs (λk, xk) of the corresponding EVP of
order n = 1105 lead to a weighted residual error 3.8·10−14 which is a very sat-
isfactory accuracy (for this test case, ‖A‖2 = 928, ‖B‖2 = 2), see [GSPF08]
for more details, and Section 5.2 for the computational approach.

4.2 Phylogenetic Quality Assessment
This section is partly based on our paper “Phylogenetic Quality Assessment
for Campus Grids” [SZvH+08].

From the time of Charles Darwin, biologists have had the dream to re-



4.2. PHYLOGENETIC QUALITY ASSESSMENT 59

construct the evolutionary history of organisms and express it in the form of
a phylogenetic tree [NK00, p.3]. The knowledge of the evolutionary history
of genes, proteins, genomes, and whole organisms, reflected by evolutionary
or phylogenetic trees, has become an important factor in medical, biologi-
cal, and bioinformatics research. The basic structure of a phylogenetic tree
classifies organisms, with respect to their types of ribosomes, into the three
domains Archaea, Bacteria, and Eucarya [CD04, p.77],[WKW90]. The fol-
lowing definition of the term “phylogenetic tree” was found in [MNW+04],
an introduction to basic phylogenetic terms and concepts can be found in
[Pag03].
Definition 4.2.1 (Phylogenetic tree). “A phylogenetic tree is a leaf-labeled
tree that models the evolution of a set of a taxa (species, genes, languages,
placed at the leaves) from their most recent common ancestor (placed at the
root).” [MNW+04]

See Figure 4.2 for an artwork taken from the Tree of Life web project
site1, where a schematic view of a phylogenetic tree is presented. Phyloge-
netic trees are hypotheses, not facts [WSCBF91, p.6]; hence, phylogenetic
reconstruction is an essential task in current day research. Despite the speed
of contemporary computers, many phylogenetic approaches are hampered
by their runtime complexities and the exponential increase of possible trees.
Unfortunately, more reliable statistical methods applying the maximum like-
lihood (ML) or Bayesian framework are also the computationally most de-
manding. Moreover, almost all phylogenetic methods have been shown to be
NP-complete (see [GJ79] for a textbook about NP-completeness), including
the Steiner tree problem [FG82], maximum parsimony [DJS86], compatibil-
ity trees [DS86], dissimilarity matrices [Day87], perfect trees [BFW92], and
ancestral ML reconstruction [ABCH+04]; the computation of ML trees is
even NP-hard [CT05].

After the reconstruction of a phylogenetic tree, a researcher usually has
to test whether the obtained tree is well supported or whether suboptimal
trees are significantly worse. Such quality assessments are usually based
on simulations or resampling techniques like parametric or non-parametric
bootstrapping [Efr79]. This statistical method is commonly used to place
confidence intervals on subtrees of phylogenies. In the course of this method,
resampling with replacement yields a series of bootstrap samples of the same
size as the original data. These approaches require the evaluation of many
simulated or resampled pseudo-samples to obtain support values. Unfor-
tunately, this multiplies the computational needs of the above mentioned
reconstruction methods.

1see the webpage of the Tree of Life web project, http://tolweb.org/

http://tolweb.org/
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Figure 4.2: Artwork “Tree of Life”, taken from the Tree of Life web project
site, whose goal is to contain a page with pictures, text, and other information
for every species and for each group of organisms, living or extinct; confer
[MSM07] for an article describing this web project. The original diagram is
supplemented by the classifications to the three domains Archaea, Bacteria,
and Eucarya.
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Figure 4.3: Parallel phylogenetic workflow, consisting of the steps sampling
phase (yellow), tree phase (red) and (cyan), and consensus phase (green).
This workflow will be implemented and evaluated applying a Condor-based
campus grid.

Nonparametric bootstrap analysis [EHH96, Fel85] is one of the most pop-
ular quality assessment approaches, here it constitutes an easy scientific work-
flow consisting of three phases. We start from an initial sequence alignment,
and in a first step (sampling phase), a large number of pseudo-samples is
created by re-sampling with replacement from the original alignment. Then,
for each pseudo-sample a tree is reconstructed (reconstruction phase). Af-
ter all trees have been reconstructed from the pseudo-samples, this large set
of trees is summarized in a consensus tree (consensus phase). The support
values gained by bootstrap analyses are then usually transferred to the tree
reconstructed from the whole data, in order to reflect the (un)certainty con-
tained in the reconstructed branches. See Figure 4.3 for a visualization of
this process.
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Chapter 5

Sequential Case Studies

In this chapter, we discuss sequential (serial) numerical computations; such
computations reside in a single process on a single CPU core. Although al-
most all modern computers feature a parallel hardware architecture, sequen-
tial computations remain very important. The following aspects play a ma-
jor role. (∗) Parallel and distributed numerical programs always entail some
overhead for communication between computing processes [Dem97, p.75].
Consequently, in situations where this overhead is relatively big, parallel im-
plementations of algorithms may sometimes be unfeasible. In the extreme
case, a parallel implementation on a parallel system may even perform worse
than a sequential one. (∗) As a consequence of the communication overhead,
the development of parallel algorithms and their implementation is usually
significantly more complex than the development of their sequential counter-
parts. Due to parallel codes being more complex to develop than serial ones,
a serial implementation of an algorithm may still precede its parallel version,
in order to obtain a rapid prototype. (∗) As sequential systems usually con-
sist of less complex hardware components, sequential computations fail less
frequently than computations residing on parallel systems – this aspect is of
capital importance on huge systems like clusters featuring thousands of CPU
cores. In the worst case, one may have to restart the complete computation,
even if just one CPU core fails. (∗) The performance of a serial implementa-
tion of an algorithm is easier to predict than the performance of its parallel
version. Especially the performance of an implementation on different par-
allel hardware architectures is difficult to predict [ZKK04, CKPN00].
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Programming language

OctaveFortran

Computational library
LAPACK

BLAS

Figure 5.1: Our sequential codes have been mainly written in Fortran, some
prototypical parts were first written in GNU Octave which internally uses
BLAS and LAPACK. Subroutines from BLAS and LAPACK have been utilized
as much as possible in Fortran programs, arrows indicate that routines from
external libraries are called.

5.1 Sequential High Performance Program-
ming

The three main issues in designing a piece of numerical software are ease
of use, reliability, and speed [Dem97, p.6]. The choice of the programming
language should be done carefully. Traditionally, Fortran is the dominating
language for the sequential programming of numerical software on supercom-
puters [Wil88, PZA86]. In comparison with other general-purpose program-
ming languages, Fortran has the most advanced mathematical operators and
functions and is therefore optimal for numerical programming. One of the
most important language features of Fortran is the support for vector- and
matrix-operations out of the box [For03]. For example, C and C++ do a
priori not support the handling of such structures.

One has to be careful in order to write a fast serial Fortran program,
that is, to develop a good implementation of an appropriate algorithm. Due
to the complexity of modern computing platforms, writing numerical code
that achieves the best possible performance is extremely difficult [CFP08].
Software that especially aims at one specific computational platform, may
perform worse on another. In order to encapsulate routines that may perform
very differently on diverse platforms, existing packages for picking applicable
subroutines and functions should be considered. For the field of numeri-
cal linear algebra, the BLAS is a very effective package to build numerical
software. For example, the intrinsic Fortran matmul operation for the multi-
plication of two matrices is usually slower than calling the applicable routine
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from the BLAS; see for instance [EGKU99]1. We see the following reasons
for this observation. (∗) The BLAS has been developed by experts in the
area of numerical computation in order to make a set of basic mathematical
operations as fast as possible. (∗) There is not only one routine for matrix
multiplication in the BLAS, but different variants including dense, Hermitian,
symmetric, and triangular matrices are available. By calling the particularly
suitable routine, the user delivers the additional information, what type of
multiplication should be performed. (∗) Optimized BLAS versions tailored
for individual architectures are available and should be applied. However, for
trying codes a first time, the built-in matmul is sufficient. As a general rule of
thumb, considering structural properties of involved matrices (for example,
symmetric, Hermitian, triangular, tridiagonal, . . . ) and picking correspond-
ing subroutines is an important principle for fast codes.

5.2 Generalized Complex Symmetric EVP
This section is partly based on our paper “Tridiagonalizing Complex Sym-
metric Matrices in Waveguide Simulations” [GSPF08].

Generalized complex symmetric EVPs are a special variant of generalized
complex non-Hermitian EVPs. In the following, we discuss methods for
efficiently solving generalized complex symmetric (non-Hermitian) EVPs.
Given matrices A, B ∈ Cn×n with A = A> (but A 6= A∗) and B = B>

(but B 6= B∗), the objective is to efficiently compute eigenvalues λk and
eigenvectors xk of the generalized complex symmetric EVP, such that Ax =
λBx; see Section 2.2 for basics in numerical linear algebra that are relevant
for this thesis.

5.2.1 Relevant Literature
A general introduction to numerical methods for large EVPs can be found,
for instance, in the textbook “Numerical Methods for Large Eigenvalue Prob-
lems” by Y. Saad [Saa92]. B. Parlett describes the symmetric EVP in
his classic book “The Symmetric Eigenvalue Problem” [Par98, Par80]. An
overview of the different types of EVPs, as well as templates for their solu-
tions, is given in the book “Templates for the Solution of Algebraic Eigenvalue

1The GNU Compiler Collection (GCC) v4.3 supports the command line parameter
-fexternal-blas generating calls to BLAS routines for intrinsic matrix operations such
as matmul rather than using the built-in algorithms; see list of changes, new features, and
fixes for version 4.3, http://gcc.gnu.org/gcc-4.3/changes.html.

http://gcc.gnu.org/gcc-4.3/changes.html
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Problems: A Practical Guide” edited by Bai et al. [BDD+00]. Various fur-
ther textbooks cover the topic, for example [Dem97, TB97, GL96, Hig96]. An
early paper “Ax = λBx and the Generalized Eigenproblem”, published by G.
Peters and J. Wilkinson, discusses basic ideas for generalized EVPs [PW70].

5.2.2 Related Work
Papers especially aiming at solving dense generalized complex symmetric
EVPs are very rare, but sub- or related problems are discussed in the fol-
lowing papers. Some work has been done for solving standard EVPs us-
ing COTs, including [BOP98, BOR97, LQ97], or using a modified Jacobi
method [Sea69]. Some papers discuss methods for generalized sparse com-
plex symmetric EVPs, including the Jacobi method [LL92], subspace itera-
tion [Leu95], or variants of the Jacobi-Davidson method [AC08, AH04]. In
[LL92], a generalized complex symmetric eigensolver is discussed, based on
the generalized Jacobi method. In this paper, two very small examples are
given, but neither accuracy nor runtimes are evaluated. To the best of our
knowledge, there are no further codes focussing on dense generalized complex
symmetric EVPs.

The most common strategy so far is to ignore the algebraic properties
and to apply the technology available for general non-Hermitian EVPs, as
demonstrated in zggev (LAPACK). In the latter case, this means that firstly
B is reduced to triangular form by applying a QR decomposition, then the
problem is reduced to generalized Hessenberg form using unitary transforma-
tions. From the generalized Hessenberg form, eigenvalues and eigenvectors
are computed with the QZ algorithm [MS73].

Concluding existing related work, we observe that methods and both
serial and parallel codes especially tailored for generalized complex symmetric
EVPs are very rare, as are evaluations of such codes. Consequently, we
investigate solver approaches for generalized complex symmetric EVPs on
state-of-the-art computer infrastructures in serial (this chapter) and parallel
(Chapter 6).

5.2.3 Motivation
Although generalized complex symmetric EVPs do not occur as frequently
in practice as real symmetric or complex Hermitian EVPs, there are some
important applications where they arise [HJ85, p.201]. Concrete examples
are the numerical solution of Maxwell’s equations with complex material co-
efficients (accounting for losses) or certain absorbing boundary conditions
used in the simulation of optoelectronic devices [AC08, GSPF08, FPB07,
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AH04], the complex scaling method (also called complex-coordinate method,
complex rotational method, or dilatation analyticity) in quantum mechan-
ics [Moi98, BOR97, OM92, Rei82], and the application of the complex abso-
rbing potential method [RM93].

The conventional approach for solving such EVPs serially, as imple-
mented, for instance, in zggev (LAPACK), is to treat complex symmetric
EVPs as general complex and therefore does not exploit the structural prop-
erties.

Our efforts are particularly motivated by the simulation of guided-wave
multisection devices in optoelectronics, see Chapter 4. Techniques for numer-
ically solving Maxwell’s equations in this context lead to dense generalized
complex symmetric EVPs, where reduced accuracy requirements provide an
opportunity for trading accuracy for performance.

5.2.4 Methodology
The main challenge is to find ways for utilizing the structural symmetry in
the absence of the mathematical properties of Hermitian matrices. Anal-
ogously to Hermitian EVPs, one possible approach for solving generalized
complex symmetric EVPs Ax = λBx starts with reducing it to standard
form My = λy. Complex symmetry allows for special techniques in this
reduction step, confer a Cholesky-based factorization B 7→ LL> (see Sec-
tion 5.3.1). Subsequently, a tridiagonalization process is performed on the
standard EVP which results in a similar complex symmetric tridiagonal
EVP Tz = λz. After this tridiagonalization step, eigenvalues and eigen-
vectors of T are computed and the eigenvectors z are backtransformed to
those of the original problem x.

Principal steps of our approach are visualized in Figure 5.2, the corre-
sponding high-level methodology can be found in Algorithm 1. The proce-
dure is divided into subproblems of computing a symmetric factorization of
B, transforming from a generalized to a standard EVP, solving the standard
EVP, and backtransforming eigenvectors in case they are desired. This pro-
cedure follows the structure of dsygv (LAPACK) for solving real symmetric
EVPs.

5.2.5 Aspects of Context Adaptivity
The concept of context adaptivity has been introduced in Chapter 3, here
we discuss it with respect to the serial generalized complex symmetric eigen-
solver. We discuss main goals, accompanying goals, context, methodology,
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Figure 5.2: Steps to solve a generalized complex symmetric EVP. The gener-
alized EVP (A,B) is transformed to a standard EVP M (top); M is reduced
to tridiagonal form (middle); eigenpairs of the tridiagonal EVP are computed
(bottom), eigenvectors are backtransformed. Individual boxes � indicate nec-
essary entries: for A, B, and M only lower (or upper) triangle is needed; for
T only diagonal and subdiagonal (= superdiagonal) are necessary.
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Algorithm 1 Solve generalized complex symmetric EVP
Require: A, B ∈ Cn×n;A = A>, B = B>

1: Transform to standard EVP
2: Compute tridiagonal matrix T
3: Compute eigenvalues and eigenvectors of T
Ensure: Tz = λz
4: return eigenvalues λk
5: Compute eigenvectors of standard EVP
Ensure: My = λy
6: Compute eigenvectors of generalized EVP
Ensure: Ax = λBx
7: return eigenvectors xk

and sketch the implemented computational kernels. In this section, empha-
sized words correspond to discussed terms in Chapter 3.

Main goals

The main goal motivating our two driver routines zsygvn (featuring a non-
splitting tridiagonalization) and zsygvs (featuring a splitting tridiagonal-
ization) are lower runtimes in comparison with the general solver zggev
(LAPACK). Detailed evaluations of the complete solvers as well as of cor-
responding computational kernels will be done. A further goal is less mem-
ory consumption, as obviously only about half of the storage is required for
symmetric matrices.

Accompanying goals

Accompanying goals portability, reusability, robustness, usability, and archi-
tecture adaptivity are partly followed by building our approach on top of
existing BLAS and LAPACK routines.

Context

The two developed eigensolver variants respect context particularly by tak-
ing the structure of input data, namely symmetry, into account. The com-
puting platform is any sequential computer system, there are no temporal
requirements for our computations. Applied precision is double precision for
real computations and double complex for complex computations. Accuracy
requirements primarily depend on the application, a discussion according
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reduced accuracy requirements of eigenpairs for an application in optoelec-
tronics can be found in Section 4.1.

The new methods are adaptive to the context in the sense that they
present a complementary approach with different potential runtime- and ac-
curacy behavior to solve generalized complex symmetric EVPs. The tridiag-
onal solver implemented in zstev is adaptive in a sense that the maximum
number of iterations has to be specified.

Methodology

Two new approaches consisting of algorithmic variants in individual compu-
tational kernels are presented to solve generalized complex symmetric EVPs.
Different implementation variants are transparently realized through the uti-
lization of the BLAS, which guarantees excellent runtime behavior of core
routines on many platforms. Trading is demonstrated in a sense that poten-
tially inaccurate methods are applied for the benefits of lower runtimes and
less memory consumption.

Computational kernels

The investigated computational kernels are represented by the steps of solv-
ing the EVP, see Algorithm 1. Involved computational kernels are (∗) the
indefinite factorization in zpotrfi, (∗) transformation to standard EVP in
zsygst, (∗) splitting tridiagonalization in zsytr1 and non-splitting tridiag-
onalization in zsytr2, (∗) compev to compute eigenvalues and inverm to
compute eigenvectors, and (∗) existing approaches for backtransformation
as parts of the standard solvers in zsyevn and zsyevs and as parts of the
generalized solvers in zsygvn and zsygvs.

5.2.6 Hard- and Software Infrastructure
We apply the following hard- and software for evaluating our serial codes.

Hardware and computational libraries

The serial codes of this chapter were run on an SMP machine Sun Fire v40z
with 4 dual-core Opteron 875 CPUs (2.2 GHz) and 24 Gbyte main memory.
Only a single core was used and remaining cores were, to the extent possible,
idle. See Figure 5.3 for an image depicting an identical machine, found on
the webpage of the manufacturer Sun. Suse Linux Enterprise Server 10, the
GNU Fortran (GCC) 4.1.2 compiler, LAPACK 3.1.1, Goto BLAS 1.20, and the
AMD Core Math Library (ACML 4.0.1) were used. The choice for these two
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Figure 5.3: An SMP machine Sun Fire v40z was used for all sequential com-
putations in this chapter. It features 4 dual-core Opteron 875 CPUs (2.2
GHz) and 24 Gbyte main memory, running Suse Linux Enterprise Server 10.
Image taken from the homepage of the manufacturer.

BLAS implementations was based on the following arguments: ACML has
been developed by the manufacturer of the used Opteron CPU (AMD). Goto
BLAS contains hand-tuned optimizations for various architectures, including
Opteron. Our serial codes are mainly built on BLAS and LAPACK codes, GNU
Octave has been used for rapid prototyping; see Figure 5.1 for the software
building blocks of this chapter.

Optimized BLAS

An optimized BLAS is crucial for fast solver components implementing linear
algebra functions. In order to demonstrate different runtime characteristics
of linear algebra subroutines, we experimented with AMD Core Math Library
(ACML) 4.0.1 and Goto BLAS 1.20. Experiments calling the general dense
standard solver routine zgeev (LAPACK) illustrate very different runtimes
for these two BLAS implementations. On our testsystem, we observe that
computing eigenpairs with zgeev (LAPACK) linked against Goto BLAS is
considerably faster than linked against ACML. For instance, for an EVP of
order n = 4000, zgeev (LAPACK) linked against ACML needs about 8526
seconds, while zgeev (LAPACK) linked against Goto BLAS needs only about
1044 seconds. This is surprising, as the codes were running on an Opteron
CPU which is manufactured by AMD. More details about these findings can
be found in [GSPF08].
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Self developed codes

Our codes are mainly written in Fortran 90 with a few parts following For-
tran 77 standard. All evaluated parts have been implemented utilizing as
much functionality of BLAS and LAPACK as possible. To the extent pos-
sible, sources of existing routines have been adopted and modified where
necessary. Except for the splitting tridiagonalization (see Section 5.4) and
tridiagonal solvers (see Section 5.5), both blocked and unblocked codes have
been implemented. In general, determining the optimal blocking factor is
not a trivial task, confer [Wha08] how to empirically tune it for increased
performance. The used optimal blocking factor of LAPACK on the Sun was
experimentally determined and set to 32.

The functionality of our routines corresponds to the functionality of com-
parable LAPACK routines. We implemented the following new sequential
routines: zsygvn and zsygvs solve a generalized complex symmetric EVP
featuring a non-splitting or splitting tridiagonalization, respectively. zsyevn
and zsyevs are corresponding solvers for standard complex symmetric EVPs.
A complex symmetric factorization based on a real symmetric Cholesky rou-
tine is called zpotrfi, the actual reduction of a generalized to a standard
EVP is performed in zsygst. zsytr1 is the name of the splitting tridiago-
nalization routine, and zsytr2 is its non-splitting counterpart. zgeevp is a
patched version of zgeev (LAPACK) to solve complex symmetric tridiagonal
EVPs, skipping the reduction to Hessenberg form. zstev solves complex
symmetric tridiagonal EVPs by calling appropriate routines compev and
inverm2.

The compiler switches for testing include -g -Wall -march=opteron -O0
-fbounds-check -g -m64, for evaluating we apply -Wall -march=opteron
-O3 -m643.

5.2.7 Evaluation Strategy
All major routines are evaluated separately for problem sizes of order 100
to 1000 in steps of 100, and from 1500 to 4000 in steps of 500. Time mea-
surement is done by calling MPI_Wtime, where pauses between evaluated
operations aim at abolishing all possible cache effects of previous operations.
MPI_Wtime was also used for serial timings to have a unique routine for both
the serial and the parallel case. Pauses were done by calling Fortran intrinsic
function sleep. Accuracy is measured in different ways, for example, by
computing an eigenvalue error and a residual error.

2confer the codes by Cullum and Willoughby, http://netlib.org/lanczos/
3see GCC manual, http://gcc.gnu.org/onlinedocs/

http://netlib.org/lanczos/
http://gcc.gnu.org/onlinedocs/
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We compare our serial routines with corresponding LAPACK routines.
With respect to accuracies, we compare with routines that process compu-
tational problems of the same type; for example, we test complex symmetric
factorization with a BK factorization routine, but we do not compare it with
the accuracy of the Hermitian variant. With respect to runtimes, we compare
with routines that operate on the same type (Hermitian, but not real sym-
metric) and that perform a similar operation; for example, we test complex
symmetric factorization with a Hermitian factorization.

Test matrices

Here we describe the generation of test matrices, as they are important
for accuracy. For dense complex symmetric EVPs, input matrices A are
constructed by calling Fortran function random_number to generate pseudo-
random numbers in the interval [0 . . . 1], for the real and imaginary part
separately. Subsequently, a complex symmetric matrix is achieved by com-
puting A+ A>. The 2-norm of such problems of the order n = 100 is about
142 and 5657 for n = 4000. Our matrices for complex symmetric tridiagonal
EVPs feature considerably smaller norms in the range of about 2 . . . 3. Only
for the full solver (generalized EVP), do we generate pairs of matrices that
we denominate as “SP” being discussed in Section 5.7.3.

Normalized runtimes

Most of the discussed algorithms feature O(n3) runtime behavior, where
n is the order of the problem. Therefore, to make the differences in the
figures between the individual implementations clearly visible, the runtimes
are uniformly normalized as T (n)1010

n3 .

5.3 Transformation to Standard EVP
The transformation from generalized EVP Ax = λBx to standard EVP
My = λy includes the two steps (a) symmetric factorization of B and (b)
actual reduction. In the following, we describe these two principal steps
separately.

5.3.1 Symmetric Indefinite Factorization
In the course of generalized EVPs, we refer to the term factorization as the
computation of a matrix product featuring simpler matrices to substitute B.
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The applied factorization is based on the Cholesky factorization B 7→ LL>

and implemented in zpotrfi.

Relevant literature

Basics about the Cholesky factorization can be found, for example, in [Bre06]
and in various textbooks, including [Dem97, p.78], [TB97, Lecture 23], [Ü97b,
p.235], [GL96, p.143], and [Hig96, p.204]. An error analysis of Cholesky
factorizations for n × n symmetric positive definite matrices was done in
[BDM89]. An efficient implementation in LAPACK was described in [CDO+96].
Different variants have been proposed, see [GL96, p.143–146].

Related work

The performance of dpotrf (LAPACK), performing a Cholesky factorization
of a real symmetric positive definite matrix, was discussed in [EGKU99].
In [Ber05, Ber03], a complex symmetric factorization is investigated in the
course of solving linear systems of equations AX = B. Unfortunately, evalu-
ations only cover the full solver and do not tell details about the performance
of the factorization. The paper is interesting, because it argues that a com-
plex symmetric factorization does not necessarily rely on pivoting (which is
commonly applied for such problems). The method for complex symmetric
factorization is similar to the one we implemented.

J. Bunch and L. Kaufman discussed the Bunch-Kaufman (BK) factor-
ization featuring a pivoting strategy in a paper aiming at solving symmetric
indefinite linear systems [BK77]. A serial implementation of this algorithm
applicable to complex symmetric matrices is available in zsytrf (LAPACK).
The BK factorization is usually the method of choice for factorizing sym-
metric indefinite matrices [JP94].

Methodology

The usual way of factorizing indefinite B is done by a symmetry-preserving
BK factorization. Although the Cholesky method is usually restricted to
positive definite Hermitian matrices, it can also be applied to some com-
plex symmetric matrices [Ber05, Ser80]. One such class consists of matrices
A = B+ iC, where B and C are both real, symmetric, and positive definite.
In general, applying a Cholesky factorization to a non-positive definite matrix
may impose ill-conditioned factors L. Nevertheless we investigate a Cholesky
based factorization, as due to avoiding a pivoting strategy, a higher paral-
lel performance than for BK factorization is assumed; confer, for instance,
[Bis88] for a paper about performance problems with parallel pivoting.
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A Cholesky factorization is applied to factorize a given symmetric positive
definite matrix B 7→ LL> such that L is lower triangular (sometimes called
Cholesky triangle), confer Definition 2.2.15; an analogous definition can be
given to factorize B 7→ U>U such that U is upper triangular. In the complex
Hermitian case (B 7→ LL∗ or B 7→ U∗U), the matrix B has to be positive
definite in order to guarantee numerical stability.

Implementation

Our factorization is based on the real symmetric factorization in LAPACK
routine dpotrf. In contrast to dpotrf, our matrices are complex symmetric
indefinite, therefore the test for positive definiteness is skipped and some
small modifications are necessary to handle complex matrices instead of real
ones. The new routine is called zpotrfi, where the name indicates that it
is based on the Cholesky factorization, but aiming at indefinite matrices.

dpotrf (LAPACK) includes blocked and unblocked codes, whereof we are
going to describe the unblocked version. Algorithm 2 describes the basic
Cholesky factorization, as it can be found, for example, in [HHL07, Luc04].
Apart from the skipped check for positive definiteness in Lines 4–6, the same
algorithm is implemented in zpotrfi.

Algorithm 2 Cholesky factorization B 7→ LL>

Require: B ∈ Cn×n, B = B>

1: L← lower triangle of B {Initialize}
2: for k ← 1 to n do
3: L(k, k)← L(k, k)− L(k, 1: k − 1)L(k, 1 : k − 1)>
4: if (L(k, k) ≤ 0) then
5: stop {Not positive definite}
6: end if
7: L(k, k)←

√
L(k, k)

8: if (1 < k < n) then
9: L(k+1 : n, k)← L(k+1 : n, k)−L(k+1 : n, 1 : k−1)L(k, 1 : k−1)>
10: end if
11: if (k < n) then
12: L(k + 1 : n, k)← 1

L(k,k)L(k + 1 : n, k)
13: end if
14: end for
15: return factor L
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Accuracy

A factorization error of our routine zpotrfi is computed according to EF =
‖B−LL>‖2
‖B‖2

. It is compared with the performance of the competitor routine for
BK factorization zsytrf (LAPACK), whose accuracy is evaluated in terms of
EBK = ‖X−I‖2

‖B‖2
; here, X is the solution of the equation LDL>X = B, where

X is computed by calling the linear equations solver zsytrs (LAPACK). The
analogous evaluation of the BK routine calculating B−LDL> has not been
realized, as zsytrf does not explicitly return L and D.

Figure 5.4 demonstrates that measured accuracy of both routines is very
similar for the applied random matrices. However, it has to be stated that
slightly different metrics to evaluate accuracy have been applied, out of these
two, a clearly more accurate routine cannot be given. Due to its pivoting
strategy, LAPACK routine zsytrf may be preferred for ill-conditioned prob-
lems.

Runtimes

Figure 5.5 depicts evaluated routines according to their runtime behavior.
We observe that zpotrfi is always faster than zsytrf (LAPACK), yet the
difference is small. As expected, zpotrf (LAPACK) features practically the
same runtime behavior as zpotrfi.

5.3.2 Reduction Operation
Subsequently to the symmetric factorization, the actual transformation from
the generalized to standard EVP is performed.

Related work

The procedure of reducing a generalized EVP to a standard EVP is mostly
covered in textbooks and papers dealing with the solution of generalized prob-
lems, see Section 5.2.1. An early paper especially aiming at this reduction
process was published by R. Martin and J. Wilkinson [MW68].

Methodology

In the presence of efficient solvers for standard EVPs, it appears obvious
to start by reducing from the generalized and solving the corresponding
standard EVP. The first step is achieved by performing a symmetry pre-
serving factorization of B (see Section 5.3.1). Subsequently, we compute
M = L−1AL−>, where M is the input matrix for the standard EVP, and
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EF zpotrfi
EBK zsytrf (LAPACK)

Accuracy of symmetric factorization
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Figure 5.4: Accuracy of routine zpotrfi factorizing B 7→ LL>, evaluated
according to EF := ‖B−LL>‖2

‖B‖2
; competitor BK routine zsytrf (LAPACK) is

factorizing B 7→ LDL> and evaluated according to EBK := ‖X−I‖2
‖B‖2

, where
X has been computed as the solution of the equation LL>X = B calling
ztrtrs (LAPACK).
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zpotrf (LAPACK)
zpotrfi

zsytrf (LAPACK)
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Figure 5.5: Normalized (log scale) runtimes T (n)1010

n3 of factorization routine
zpotrfi compared to zsytrf (LAPACK) and zpotrf (LAPACK).

Reduction of EVP(A,B) to EVP(M).

Ax = λ B︸︷︷︸
LL>

x

L−1· ‖ Ax = λLL>x

L−1 A︸︷︷︸
AL−>L>

x = λL−1L︸ ︷︷ ︸
I

L>x

L−1AL−>︸ ︷︷ ︸
M

L>x︸ ︷︷ ︸
y

= λL>x︸ ︷︷ ︸
y

My = λy

Figure 5.6: Transformation from generalized EVP (A,B) to standard EVP
(M).
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Computation of M .

L· ‖M = L−1AL−>

LM = LL−1︸ ︷︷ ︸
I

AL−>︸ ︷︷ ︸
H

LM = H

Figure 5.7: Computation of M ; the resulting problem LM = H, where L is
triangular, can be solved once H has been computed.

Computation of H.

H = AL−> ‖ ·L>, transpose both sides
LH> = A> ‖ Compute H by calling ztrtrs (LAPACK)

Figure 5.8: Computation of H; the resulting equation LH> = A> can be
solved by calling ztrtrs (LAPACK), where A> = A; finally, H is computed
by transposing H>
.
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y = L>x. See Figure 5.6 for the full reduction to a standard EVP and back-
transformation of eigenvectors, Figure 5.7 for the computation of M , and
Figure 5.8 for its intermediate matrix H.

Implementation

The implementation of the reduction routine zsygst is a series of calls to
LAPACK routines. Our implementation is algorithmically slightly different
from the one in the LAPACK routine dsygst, which applies a transforma-
tion to the input matrix from both sides at the same time: our solution
implemented in zsygst is a simplified preliminary implementation of this
operation for the purpose of rapid prototyping. zsygst consecutively solves
two linear systems of the type LX = B with L from the factorization step in
order to construct M = L−1AL−>. In more detail, first ztrtrs (LAPACK)
is used for solving LX = A for X, yielding X = L−1A. Then, X is trans-
posed, and ztrtrs (LAPACK) is used again for solving LM = X for M , so
M = L−1X = L−1AL−>.

Accuracy

The transformation of a generalized complex symmetric EVP to standard
form is evaluated in terms of runtimes only, as accuracy can hardly be sepa-
rated from the factorization process. The accuracy of the full transformation
process, comprehending factorization and actual reduction, is evaluated in
Section 5.7.1.

Runtimes

The runtimes of the routine zsygst are depicted in Figure 5.9 and com-
pared to its LAPACK counterpart zhegst for Hermitian problems. zhegst
(LAPACK) is unsurprisingly faster, a behavior that we attribute to the more
efficient reduction procedure.

Upon measuring runtimes of individual parts of zsygst, we observe a
domination of the computational solution of AX = B being called twice in
the routine and implemented in ztrtrs (LAPACK). A transposition oper-
ation consumes comparatively little time, so it can be ignored in terms of
computational effort.
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Figure 5.9: Normalized (log scale) runtimes T (n)1010

n3 of complex symmetric
reduction routine zsygst and Hermitian pendant zhegst (LAPACK).
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5.4 Tridiagonalization
Starting from a standard EVP My = λy, we iteratively eliminate entries
of M , resulting in a tridiagonal matrix T . T is similar to M , hence it has
the same eigenvalues. In case that eigenvectors are desired, they have to be
backtransformed to the original problem.

5.4.1 Related Work
A modified conventional Householder-based reduction method has been de-
scribed in [OM92], but the paper does not report about achieved accuracies
or measured runtimes. The tridiagonalization of a dense complex symmet-
ric matrix by means of COTs has been investigated in [BOR97]. The lat-
ter paper lists measured runtimes and accuracy for computing eigenvalues
and eigenvectors for relatively small complex symmetric EVPs of the order
n = 500, 1000, and 2000. In terms of accuracy, comparison is difficult as
different metrics were used. The authors compare runtimes of their tridi-
agonalization process to a Hermitian pendant htridi (EISPACK), observing
speedups from 2.1 to 2.6. However, comparison with our routines is difficult
as a meanwhile retired DEC AXP 3000-500 was utilized.

Splitting and non-splitting approaches

For tridiagonalizing a complex symmetric matrix M , two basic approaches
can be distinguished: the splitting and the non-splitting method [GGP09].
The former approach, which has been discussed in [GSPF08, BOR97], is
based on separating the tridiagonalization of the real part of M from the
tridiagonalization of the imaginary part of M (which are both real symmet-
ric matrices) as much as possible. The latter approach is an alternative which
operates on the complex symmetric matrix as a whole, based on generaliza-
tions of complex Householder reflectors. The codes for the real symmetric
(dsytrd (LAPACK)) and for the complex Hermitian (zhetrd (LAPACK)) case
use orthogonal and unitary transformation matrices, respectively. In our
method for the complex symmetric case, we need to use complex orthogonal
transformation matrices with norms potentially larger than one. This leads
one to expect a loss of numerical accuracy.

5.4.2 Splitting Tridiagonalization
Splitting tridiagonalization is one out of two discussed approaches to tridiag-
onalize a given input matrixM . Algorithm 3 depicts the high-level approach
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of this procedure.

Methodology

The real part R and the imaginary part S of a complex symmetric matrix
M = R + iS are real symmetric matrices. In each iteration, the following
steps are accomplished. Firstly, a column of R can be eliminated using a real
orthogonal Householder transformation QR. After that, a smaller part of the
corresponding column of S can be eliminated without causing any fill-in in
R using another real orthogonal Householder transformation QI . Both of
these operations are performed in real arithmetic, and both transformation
matrices have unit norm. Eventually, a single nonzero element below the
subdiagonal in S remains to be eliminated. This operation has to be per-
formed in complex arithmetic, using a 2 × 2 COT, whose norm cannot be
bounded a priori. In order to preserve symmetry, complex orthogonal sim-
ilarity transformations (COTs) Q are needed which satisfy Q>Q = In. In
general, ‖Q‖2 ≥ 1 and thus the application of complex orthogonal matrices
can increase numerical errors. When the column elimination is first per-
formed in R and then in S, we call the procedure RI variant. Analogously,
it is possible to eliminate first in S and then in R. We call this procedure
IR variant.

Complex orthogonal transformations

The transformation matrix

G := 1√
t2 + s2

(
t s
−s t

)
, t = t1 + it2 ∈ C, t1, t2, s ∈ R , (5.1)

defines a COT since G>G = I2. Consequently, GAG> is a similarity trans-
formation of A. In the RI variant, a COT GRI has to be determined such
that

GRI

(
a+ ib

ic

)
=
(
d+ ie

0

)
,

where a, b, c, d, e ∈ R and c 6= 0. Choosing the parameters t = s
(
b
c
− ia

c

)
,

s 6= 0 arbitrary, the COT is given as

GRI = 1√
b2 − a2 + c2 − i(2ab)

(
b− ia c
−c b− ia

)
. (5.2)

In the IR variant, a COT GIR has to be determined such that

GIR

(
a+ ib
c

)
=
(
d+ ie

0

)
.
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Tridiagonalization of M .

Q· ‖My = λy (5.4)
QM y︸︷︷︸

Q>Qy

= λQy (5.5)

QMQ>︸ ︷︷ ︸
T

Qy︸︷︷︸
z

= λ Qy︸︷︷︸
z

(5.6)

Tz = λz (5.7)

Figure 5.10: Proof: transform complex symmetric M to receive complex
symmetric tridiagonal T .

With t = s
(
a
c

+ i b
c

)
, s 6= 0 arbitrary, the COT is given as

GIR = 1√
a2 − b2 + c2 + i(2ab)

(
a+ ib c
−c a+ ib

)
. (5.3)

Numerical aspects

In a splitting method, the complex orthogonal transformations (see Equa-
tion (5.1)) are the only non-unitary transformations, all other transforma-
tions used have unit norm. If ‖G‖2 � 1 the accuracy of the tridiagonalization
process could be influenced negatively. During the tridiagonalization process,
monitoring the norms of the COTs makes it possible to detect potentially
large errors. Basic concepts have been suggested to avoid large norms, such
as the recovery transformations proposed in [BOR97]. The underlying idea is
to increase numerical stability by permuting columns via a Jacobi rotation.

Elimination process

Out of the two variants RI and IR splitting tridiagonalization, we focus on
the RI variant. An advanced approach dynamically applying either of the
two methods is discussed later in this section.

Given a complex symmetric input matrixM , a sequence of k = 1 . . . n−2
symmetry preserving similarity transformations Q(k) are applied to M . The
result is a complex symmetric tridiagonal matrix T , see Figure 5.10 for proof
of this basic approach. In the following we illustrate the calculation of Q.
Q is the matrix of all similarity transformations applied on M in order to
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H
(1)
R H

(1)
R H

(1)
R

H
(2)
R H

(2)
R

H
(1)
R H

(3)
R

H
(1)
R H

(2)
R

H
(1)
R H

(2)
R H

(3)
R

G(1) H
(1)
S H

(1)
S

G(2) H
(2)
S

G(1) G(3)

H
(1)
S G(2)

H
(1)
S H

(2)
S G(3)

Table 5.1: Annihilation process for a matrix of order n = 5. Each entry in
the matrix corresponds to the similarity transformation and the iteration, in
which the according element is annihilated; real part (left), imaginary part
(right). G denotes a COT, H denotes a Householder reflection.

calculate the tridiagonal matrix T . HR and HI are real Householder reflec-
tors, applied for annihilating real and imaginary fractions ofM , respectively.
G is a complex orthogonal transformation (COT). Since HR = (HR)> and
HI = (HI)>, this yields Term (5.8), where M is tridiagonalized to T .

G(n−2)H
(n−2)
R︸ ︷︷ ︸

Q(n−2)

· · ·G(1)H
(1)
I H

(1)
R︸ ︷︷ ︸

Q(1)︸ ︷︷ ︸
Q

M H
(1)
R H

(1)
I (G(1))>︸ ︷︷ ︸

(Q(1))>

· · ·H(n−2)
R (G(n−2))>︸ ︷︷ ︸

(Q(n−2))>︸ ︷︷ ︸
Q>︸ ︷︷ ︸

T

, (5.8)

Please notice that in the last step of the tridiagonalization process, there is no
Householder reflection needed on the imaginary part of S. In Table 5.1, we
show this tridiagonalization process for an example of order n = 5; each entry
contains the similarity transformation and the step, in which this annihilation
is accomplished.

In the case that eigenvectors of M are desired, a backtransformation
step follows tridiagonalization. In order to facilitate backtransformation, the
tridiagonalization phase has to support it, for example, by explicitly building
a transformation matrix Q. Currently, tridiagonalization routine zsytr1 is
capable of building Q, but this is not done in the most efficient way. A more
efficient way is implemented in the corresponding routine for real matrices,
called dsytrd (LAPACK). It iteratively computes and stores scalar factors τk
and elementary reflectors vk in order to be utilized for backtransformation
afterwards. Currently zsytr2 does not support building Q, neither does it
support any other way of backtransforming eigenvectors.
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Algorithm 3 Splitting tridiagonalization (RI variant)
Require: M ∈ Cn×n,M = M>

1: T ←M {Initialize}
2: for k ← 1 to n− 2 do
3: TR ← real(T ), TI ← imag(T ) {Split}
4: TR ← Q

(k)
R · TR ·Q

(k)
R {Annihilate TR(k + 2 : n, k), QR = (QR)>}

5: TI ← Q
(k)
R · TI ·Q

(k)
R {Corresponding update}

6: if k < n− 2 then
7: TI ← Q

(k)
I · TI ·Q

(k)
I {Annihilate TI(k + 3 : n, k), QI = (QI)>}

8: TR ← Q
(k)
I · TR ·Q

(k)
I {Corresponding update}

9: end if
10: T ← TR + iTI {Merge}
11: T ← Q

(k)
G · T · (Q

(k)
G )T {Annihilate TI(k + 2, k), QG 6= (QG)>}

12: end for
13: return tridiagonal matrix T

RI / IR variants

The order of processing R and S can be determined independently in each
iteration of the tridiagonalization process. For both variants, the norm of
each COT can be precomputed. Based on this information, the COT with
the smaller norm can be selected and the corresponding variant carried out.
Obviously, this heuristic choice is only a local minimization and there is
no guarantee that it minimizes the accumulated norm of all COTs in the
tridiagonalization process.

In order to quantify the potential benefit of dynamically choosing RI
or IR variant in each iteration, a prototypical code in GNU Octave has been
evaluated, see Algorithm 4. This code features maturity in terms of accuracy,
but it is not optimized for speed. Therefore, only accuracy is discussed here.

A complex symmetric matrix M of order n = 1500 is constructed by
calling GNU Octave function rand to generate pseudo-random numbers in the
interval [0 . . . 1], for the real and imaginary part separately. Subsequently, a
complex symmetric matrix is achieved by computing M +M>. Afterwards,
the matrix is tridiagonalized to T by (a) solely RI transformations, (b) solely
IR transformations, and (c) an adaptive RI / IR algorithm. The latter
variant precomputes the 2-norm of transformations performed in each step
and chooses accordingly. The maximum relative eigenvalue error is computed
according to ERIIR := maxk |λ̃k−λk||λk|

, where λk is an eigenvalue ofM computed
by GNU Octave eigensolver eig, and λ̃k is an eigenvalue of the resulting
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tridiagonal matrix T computed by eig.
In a concrete experiment, method (a) exhibits ERIIR of about 1.78 ·10−11,

an average COT 2-norm of about 4, and all individual COT 2-norms sum-
ming up to about 5984; method (b) results in ERIIR of about 1.91 · 10−11,
and method (c) gives ERIIR about 2.46 · 10−11, while the sum of norms is
again 5894. The product of corresponding individual norms is � 10308 and
therefore not representable in GNU Octave. Further tests with different ran-
dom matrices reveal that none of these three methods is best. Moreover, we
observe that computing the 2-norm of each transformation is not a reliable
method to find the best sequence of transformations.

Algorithm 4 Splitting RI / IR variants
Require: M ∈ Cn×n,M = M>

1: T ←M {Initialize}
2: for k ← 1 to n− 2 do
3: if ‖COTRI‖2 ≤ ‖COTIR‖2 then
4: Apply RI
5: else
6: Apply IR
7: end if
8: end for
9: return tridiagonal matrix T

Implementation

The splitting tridiagonalization in zsytr1 has been done from scratch, as
no single LAPACK routine is similar. RI and IR variants are very similar,
therefore we describe only the RI variant. Householder transformations are
done by calling corresponding LAPACK routines dlarfg to compute a real
elementary reflector, and dlarfx to apply it. In the course of computing the
COT, we cannot employ a corresponding LAPACK routine, hence we have
to call BLAS routines directly. s can be chosen arbitrarily, the dependent
parameter t is computed according to s( b

c
− ia

c
). There is no known effect in

terms of numerical stability for choosing s, here, s is set to 1. Finally, the
COT is applied by means of BLAS column- and row operations.

5.4.3 Non-Splitting Tridiagonalization
The second approach discussed is the non-splitting tridiagonalization imple-
mented in our routine zsytr2.
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Methodology

In [Par64, Bud63], tridiagonalization of real unsymmetric matrices was pro-
posed. The basic building block for the non-splitting complex symmetric
tridiagonalization method is a generalization of Householder reflectors (see
for example [GL96]). As illustrated in [GGP09, OM92], a complex symmetric
reflector V for complex symmetric matrices can be defined formally analo-
gously to the Householder reflectors for real symmetric matrices, yielding

V = In −
2
xTx

xx> ,

where the vector x ∈ Cn eliminates all but the first entry of a given vector
z ∈ Cn (V z = ẑe1, ẑ = ±

√
(z>z) ∈ C) and is given as

x1 = z1 − ẑ ,
xk = zk, k = 2, . . . , n .

In numerical routines x is often rescaled so that x1 = 1. Then

xk = zk
z1 − ẑ

, k ∈ {2, . . . , n} ,

2
x>x

= ẑ − z1

ẑ
= 1− z1

ẑ
.

To avoid numerical errors due to cancellation and to keep x1 and the x2...n
of the same order of magnitude, the sign for ẑ is chosen such that |z1 − ẑ| is
maximized. Note that

√
x>x for x ∈ Cn is not a norm (consider, for example,

(1 i)(1 i)> = 0). Thus, symmetry-preserving complex symmetric reflectors
are not unitary. This causes numerical instabilities.

A sequential tridiagonalization is realized in the LAPACK routines dsytrd
for real symmetric EVPs and in zhetrd for Hermitian EVPs. A special vari-
ant for complex symmetric matrices is missing in LAPACK. We give a brief
methodological description of the real symmetric variant dsytrd (LAPACK).
The principal goal is the reduction of a real dense matrix M to symmetric
tridiagonal form T . Either upper or lower type can be chosen and strictly
the according part is referenced only. One important feature of the imple-
mentation is the realization as blocked code operating on blocks of k rows
or columns. In each step, a unitary similarity transformation Q>MQ is per-
formed. For that purpose, an elementary reflector H = I − τvv> has to be
computed. The individual updates are given by rank 2k operations of the
form M − VW> −WV >, operating on k rows or columns. For reductions
smaller than the specified blocksize, the last or only block is reduced by an
unblocked code.
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Implementation

The non-splitting tridiagonalization is implemented in routine zsytr2, which
is based on the real symmetric tridiagonalization routine dsytrd (LAPACK).
As described earlier, a fundamental difference between the real symmetric
and the complex symmetric tridiagonalization is the generation of the reflec-
tor. In the real symmetric case, the Householder reflector is generated in
zlarfg (LAPACK), while in our complex symmetric case it is realized in our
newly developed routine zlarfgn.

Evaluation

We are evaluating the splitting tridiagonalization routine zsytr1 and the
non-splitting tridiagonalization routine zsytr2 in terms of accuracy and run-
times.

Accuracy

Both routines are evaluated in terms of the maximum relative eigenvalue error
computed as ET1 := maxk |λ̃k−λk||λk|

, where λk is an eigenvalue of M computed
by zgeev (LAPACK), and λ̃k is an eigenvalue of T computed by zgeevp.
Furthermore, the quality of the tridiagonalization process is evaluated by
computing ET2 := ‖T−Q>MQ‖2

‖M‖2
. This evaluation is only done for zsytr1, as

computing Q is currently not supported in zsytr2.
The maximum relative eigenvalue error depicted in Figure 5.11 reveals

that splitting tridiagonalization routine zsytr1 is more accurate than its
splitting counterpart zsytr2. This observation is significant and holds for
all tested orders. The accuracy of the tridiagonalization process in zsytr1 is
relatively stable for all evaluated orders and in the range of 10−13 to 10−12.

Runtimes

Figure 5.12 depicts runtimes of zsytr1 (RI variant) and zsytr2. The higher
accuracy of zsytr1 comes for the price of lower runtimes, zsytr2 is clearly
faster. For example, for order n = 2000, zsytr1 (time for constructing Q not
included) takes about 212 seconds, while zsytr2 takes only about 22 seconds,
leading to a speedup of 9.7. zhetrd (LAPACK) has a similar runtime behavior
as zsytr2, but is somewhat faster.



90 CHAPTER 5. SEQUENTIAL CASE STUDIES

ET2 zsytr1
ET1 zsytr1
ET1 zsytr2

Accuracy of tridiagonalization

Order n

E
rr

or

4000350030002500200015001000500100

10−4

10−6

10−8

10−10

10−12

10−14

10−16

Figure 5.11: Accuracy of the complex symmetric tridiagonalization; ET1 :=
maxk |λ̃k−λk||λk|

denotes the maximum relative eigenvalue error and ET2 :=
‖T−Q>MQ‖2
‖M‖2

denominates the involved tridiagonalization error.
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Figure 5.12: Normalized (log scale) runtimes T (n)1010

n3 of the complex sym-
metric tridiagonalization, where +Q denotes the computation of a transfor-
mation matrix, and −Q denotes that a transformation matrix is not con-
structed.
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5.5 Solution of the Tridiagonal EVP
After tridiagonalizing, we solve the complex symmetric tridiagonal EVP
Tz = λz. If only eigenvalues are required, this step constitutes the final
computational step. In the case that eigenvectors are additionally desired,
see Section 5.6 for the backtransformation step.

5.5.1 Related Work
In analogy with dense symmetric EVPs, most tridiagonal solvers are not
tailored for complex symmetric EVPs. See, for instance, the dissertation
by I. Dhillon [Dhi97] aiming at real symmetric and Hermitian tridiagonal
EVPs. In [OM92], the resulting complex symmetric tridiagonal EVP is
solved using a modified QR algorithm [Wat08]. In a book by J. Cullum and
R. Willoughby [CW02], eigenvalues of complex symmetric matrices are com-
puted by applying aQL procedure [CW96, GD89], eigenvectors are computed
utilizing inverse iteration [Ips97, PW79].

5.5.2 Methodology
Algorithm 5 depicts a high-level view of the computation of eigenvalues and
eigenvectors to solve the tridiagonal EVP. In principle, dense solvers can
also be used for tridiagonal EVPs, however, their runtimes may obviously be
unnecessarily large. Here, the spectrum of the complex symmetric tridiagonal
EVP is computed by applying a QL procedure, eigenvectors are computed
utilizing inverse iteration.

Algorithm 5 Computing eigenpairs of the tridiagonal EVP
Require: Tridiagonal matrix T , T ∈ Cn×n;T = T>

1: Compute eigenvalues of T by applying a QL procedure
2: for k ← 1 to n do
3: Compute eigenvector k of T by applying inverse iteration
4: end for
Ensure: Tz = λz
5: return eigenpairs of T

Implementation

Fortran routines compev and inverm were taken from the book [CW02] for
implementing a QL procedure and inverse iteration, respectively; the same
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approach was chosen in [BOR97]. These codes necessitated changes to allow
proper compilation on modern compilers, removals of unused code lines (for
example, print-statements), and the substitution of the hardcoded machine
precision by a call to the corresponding LAPACK routine dlamch. On calling
inverm, one has to specify the maximum number of iterations. Experiments
revealed that the quality of the computed eigenvectors is not very sensitive
to the specified value, 3 should mostly be a good choice.

A tridiagonal solver based on EPSSolve (SLEPc), actually designed for
sparse EVPs, may be another option, but we have not evaluated it yet.

Accuracy

The quality of the tridiagonal solver is evaluated by computing the maxi-
mum relative eigenvalue error, based on a tridiagonal input matrix. ETS :=
maxk |λ̃k−λk||λk|

, where λk is an eigenvalue computed by zgeevp, and λ̃k is an
eigenvalue computed by the evaluated routine compev or zgeev (LAPACK).
compev and zgeev (LAPACK) do not necessarily return computed eigenvalues
in the same order. In order to compare the matching pair of eigenvalues of
the two sets of eigenvalues, the following algorithm is applied. In a loop over
all eigenvalues, for each eigenvalue in set one, we assign the nearest unas-
signed eigenvalue of set two. This simple approach may not always deliver
the optimal results, but proved satisfactory in practice.

A maximum residual error to evaluate eigenpairs is computed accord-
ing to RTS := maxk ‖(T−λ̃kIn)x̃k‖2

‖T‖2
. Here, (λ̃k, x̃k) denominates an eigenpair

computed by the evaluated routine zstev or zgeev (LAPACK). Figure 5.13
illustrates accuracies associated with the solution of complex symmetric tridi-
agonal EVPs.

The accuracy of the general solver zgeev (LAPACK) is very high and
stable for different orders, both in terms of its residual error and its eigenvalue
error. Our routine zstev is clearly less accurate, in terms of both applied
metrics. Accuracy decreases with higher order.

Runtimes

The runtimes of our tridiagonal solver routine zstev is compared with the
general dense solver routine zgeev (LAPACK), see Figure 5.14 for the results.

For all orders, zstev is clearly faster than zgeev (LAPACK).
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Figure 5.13: Accuracy of the complex symmetric tridiagonal solver zstev
compared to the general dense standard solver zgeev (LAPACK); ETS :=
maxk |λ̃k−λk||λk|

denotes the maximum relative eigenvalue error, RTS :=
maxk ‖(T−λ̃kIn)z̃k‖2

‖T‖2
denotes the maximum residual error.
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Figure 5.14: Normalized (log scale) runtimes T (n)1010

n3 of the complex sym-
metric tridiagonal solver zstev compared to the dense general solver zgeev
(LAPACK).
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5.6 Backtransformation
Backtransformation incorporates the “transforming back” (a) of eigenvectors
from the tridiagonal to the standard EVP and (b) of eigenvectors from the
standard to the generalized EVP.

5.6.1 Related Work
We have not found any papers especially dedicated to the backtransforma-
tion process for computing eigenvectors. Backtransformation is thematically
very closely connected to the computation of eigenvectors, and it is also de-
termined by it.

5.6.2 Methodology
The backtransformation of eigenvectors from tridiagonal to standard EVP is
realized by the general matrix-matrix multiplication Y = Q>Z, where Y con-
tains the eigenvectors of the standard EVP, Q is the transformation matrix,
and Z contains the eigenvectors of the tridiagonal EVP. This is one possible
method, see Section 5.4.2 for a further discussion of this backtransformation
process.

The backtransformation of eigenvectors from standard to generalized EVP
corresponds to the solution of the equation L>X = Y , where L was com-
puted when factorizing B 7→ LL>; X corresponds to the eigenvectors of
the generalized EVP and Y corresponds to the eigenvectors of the standard
EVP. L is triangular and Y does not feature any special structure.

Implementation

As no special structure ofQ> or Z can be observed, the general matrix-matrix
multiplication for complex matrices zgemm (BLAS) is used to backtransform
eigenvectors from tridiagonal to standard EVP.

The backtransformation of eigenvectors from standard to generalized EVP
is implemented by a call to the solver routine ztrtrs (LAPACK) solving
equations of the type A>X = B; A is triangular, X constitutes the solution
matrix.

Accuracy

There is no expedient way to evaluate the accuracy of backtransformation,
therefore we can not give any results here.
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Figure 5.15: Normalized (log scale) runtimes T (n)1010

n3 of the backtransforma-
tion in the standard solver zsyevs (calling zgemm (BLAS)) and the generalized
solver zsygvs (calling ztrtrs (LAPACK)).

Runtimes

Runtimes of backtransformation have been evaluated, see Figure 5.15 for the
results.

Backtransformation in zsyevs consumes considerably more time than
the backtransformation in zsygvs. We note that the backtransformation in
zsyevs has some potential for improvements. The observed differences are
unsurprising, as different computational methods were applied.

5.7 Combined Evaluations

This section combines some of the analyzed components of previous sec-
tions to evaluate more practical aspects of implemented codes. Combined
evaluations include the transformation from generalized to standard EVP,
standard EVP solvers, and generalized EVP solvers.
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5.7.1 Transformation to Standard EVP
This section discusses the transformation from the generalized to the stan-
dard EVP. It combines the symmetric indefinite factorization in zpotrfi
and the actual reduction in zsygst.

Accuracy

A maximum relative eigenvalue error is computed according to EFR :=
maxk |λ̃k−λk||λk|

, where eigenvalues of the computed standard EVP are compared
to the eigenvalues of the generalized EVP computed by zggev (LAPACK).
Figure 5.16 depicts this accuracy. The measured maximum relative eigen-
value error is substantial for small orders n and growing fast with higher n,
therefore we identify this step as one of two major sources (the other one
being tridiagonalization) of error for the full generalized solver. The mag-
nitude of this error is higher than expected, one reason for this observation
may be determined by high condition numbers in the factorization step. See
the generalized solver in Section 5.7.3 for a further discussion.

Runtimes

Normalized runtimes are compared with the Hermitian pendant and depicted
in Figure 5.17. We observe that due to the slower reduction, the whole
process is slower than for Hermitian EVPs. Once the reduction operation has
been optimized, similar runtimes as in the LAPACK procedure for Hermitian
problems are expected.

5.7.2 Standard EVP
We evaluate our two standard EVP solvers zsyevn (featuring a non-splitting
tridiagonalization) and zsyevs (featuring a splitting tridiagonalization). This
process comprises the steps complex symmetric tridiagonalization in zsytr1
or zsytr2 and the solution of the tridiagonal EVP in zstev.

Accuracy

A maximum relative eigenvalue error is determined according to ES :=
maxk |λ̃k−λk||λk|

, where the eigenvalue of the evaluated standard solver is com-
pared with zgeev (LAPACK). A maximum residual error is computed ac-
cording to RS := maxk ‖(M−λ̃kIn)ỹk‖2

‖A‖2
and compared with the residuals of the

eigenpairs of zgeev (LAPACK). See Figure 5.18 for measured accuracies. We
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Figure 5.16: Accuracy of full reduction; a maximum relative eigenvalue er-
ror is computed as EFR := maxk |λ̃k−λk||λk|

, where eigenvalues of the reduced
problem (corresponding to the sequence of calls to zpotrfi and zsygst)
are compared to the eigenvalues of the original problem computed by zggev
(LAPACK); λ̃k and λk are the eigenvalues of the computed standard EVP
and of the generalized EVP, respectively.
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Figure 5.17: Normalized (log scale) runtimes T (n)1010

n3 of the transformation
from generalized to standard EVP calling zpotrfi followed by a call to
zsygst, in comparison with the procedure for Hermitian problems.
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Figure 5.18: Accuracy of standard solvers, evaluated by a maximum relative
eigenvalue error ES := maxk |λ̃k−λk||λk|

and a maximum residual error RS :=
maxk ‖(M−λ̃kIn)ỹk‖2

‖M‖2
; λk denotes an eigenvalue of zgeev (LAPACK), λ̃k and ỹk

denote eigenvalue and eigenvector of the evaluated routine, respectively.
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Figure 5.19: Normalized (log scale) runtimes T (n)1010

n3 of different variants of
standard solvers for computing eigenvalues.

observe accuracies of zsyevs starting about three orders of magnitude lower
than zgeev (LAPACK). While accuracy of the LAPACK routine remains con-
stant with higher orders n, we observe decreasing accuracies for zsyevn and
zsyevs. zsyevn features an eigenvalue error about one order of magnitude
higher than zsyevs. The two curves representing eigenvalue errors of zsyevn
and zsyevs feature similar characteristics as those for tridiagonalization in
Figure 5.11. Consequently, the tridiagonalization process can be identified as
a major source for the standard solvers. These results are similar to earlier
evaluations in [GGP09], where partly different metrics were applied.

Runtimes

Runtimes of zsyevn and zsyevs are depicted in Figure 5.19 (eigenvalues) and
Figure 5.20 (eigenpairs). Accordingly, zsyevs is slower than its competitor
routine zgeev (LAPACK). This observation affects both the computation of
eigenvalues and the computation of eigenvectors. Furthermore, the compu-
tation of eigenpairs in zgeev (LAPACK) is faster then the computation of
eigenvalues only in zsyevs. This behavior can most probably be attributed
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Figure 5.20: Normalized (log scale) runtimes T (n)1010

n3 of different variants of
standard solvers for computing eigenpairs.
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to the access patterns of the approaches. While zgeev (LAPACK) operates
mostly on blocks of matrices and therefore takes advantage of level-3 BLAS
operations, zsyevs operates on single rows and single columns and therefore
abstains from calling the fast level-3 BLAS operations. “Upgrading” from
level-2 to level-3 operations is not trivial and incorporates major redesign of
the whole tridiagonalization process.

zsyevn computes eigenvalues considerably faster than zsyevs and zgeev
(LAPACK), but slower than its Hermitian pendant zheev (LAPACK). It can
be anticipated that a blocked version of the splitting tridiagonalization pro-
cess would considerably increase the runtime performance of zsyevs. Once
backtransformation is implemented in zsyevn, similar runtimes as for zheev
(LAPACK) are expected.

5.7.3 Generalized EVP
We evaluate our generalized complex symmetric EVP solvers zsygvn (fea-
turing a non-splitting tridiagonalization) and zsygvs (featuring a splitting
tridiagonalization).

In previous accuracy evaluations of this work, we have been applying
purely randomly generated matrices (here called RND, see Section 5.2.7).
For reasons explained later, we additionally evaluate generalized solvers with
pairs of “special” matrices called SP.

Special matrices

Accuracy tests with large random pairs of matrices cause the following dif-
ficulty: while accuracy of the solver decreases, it becomes more difficult to
assign the right pairs of eigenvalues of the tested routine and the testing rou-
tine to each other. For huge problems, it sometimes happens that “wrong”
eigenvalues are compared. This is the reason, why two lines in Figure 5.21
are incomplete. In order to avoid this pitfall, we constructed pairs of matri-
ces SP, where the eigenvalues are known in advance, thus it is not needed to
compare the desired eigenvalues with those computed by a reference routine.

For the testmatrices of type SP, matrix B is created randomly as for type
RND, but matrix A is constructed such that the generalized EVP (A,B) has
a given spectrum: we start with two random complex symmetric matrices, B
and Z. Using zgeev (LAPACK) we compute the matrix X = (x1, x2, . . . , xn)
of right eigenvectors of Z. After scaling each eigenvector, xk 7→ xk(x>k xk)−0.5,
X is a complex orthogonal matrix, hence XX> = X>X = I. Then we con-
struct a diagonal matrix Λ with prescribed eigenvalues λ̂k = k + k(−1)k+1i.
We deliberately choose the eigenvalues with a big distance between two neigh-



5.7. COMBINED EVALUATIONS 105

bors. Then, B is factorized B 7→ LL>. Condition numbers of randomly gen-
erated triangular matrices tend to exponentially grow, while those of random
dense matrices just grow linearly [VT98]. This is not the case for randomly
generated full complex symmetric matrices. Therefore, we start with gen-
erating a full random complex symmetric matrix B. Finally, the complex
symmetric matrix A := LXΛX>L> is constructed. The generalized EVP
(A,B) then has the prescribed λ̂k as eigenvalues.

Accuracy

Denoting the eigenvalues computed by zggev (LAPACK) with λk and the
eigenvalues computed by zsygvn or zsygvs with λ̃k, the maximum relative
eigenvalue error has been computed according to E := maxk |λ̃k−λk||λk|

, respec-
tively. Figure 5.21 depicts the results. Accordingly, computed eigenvalues for
matrix type RND feature a lower accuracy than eigenvalues for matrix type
SP. zsygvs achieves a better accuracy in eigenvalues than zsygvn. For orders
n larger than a few hundreds, accuracy of zsygvn and of zsygvs for problems
of type RND is insufficient: it happens that for increasing eigenvalue errors,
it becomes harder to find pairs of matching eigenvalues for comparison, there-
fore the corresponding two lines for zsygvn (type RND) and for zsygvs (type
RND) are incomplete. Problems of type SP appear better conditioned than
problems of type RND (which was the initial intention of generating matrices
of type SP for the previously “best” routine zggev (LAPACK) and “worst”
routine zsygvn), and the evaluation for n = 100 to 4000 is unproblematic.

A residual error to evaluate eigenpairs is computed according to RG :=
maxk ‖(A−λ̃kB)x̃k‖2

‖A‖2‖B‖2
. Corresponding evaluations show a different picture. In

Figure 5.22, we can see that zggev (LAPACK) features very high accuracy re-
maining roughly stable over all evaluated orders. For small problems, zsygvs
starts with a reduced accuracy of about three orders of magnitude. The gap
in accuracy between the two routines increases to about 5 orders of magni-
tude, becoming roughly stable on huge orders. With a maximum residual
error of below 10−10 for order n = 4000, this residual error is at an ac-
ceptable level. zsygvn is currently unable to backtransform eigenvectors,
therefore residuals can not be evaluated.

Runtimes

Runtimes of zsygvn and zsygvs are depicted along with their competitor
routine zggev (LAPACK) in Figure 5.23. The performances of zsygvn and
zsygvs are very encouraging. The fastest variant for computing eigenvalues
is zsygvn, then comes zsygvs, followed by zggev (LAPACK); the fastest vari-
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Figure 5.21: Eigenvalue error of the generalized solver zsygvs (perform-
ing a splitting tridiagonalization) and zsygvn (performing a non-splitting
tridiagonalization) evaluated by a maximum relative eigenvalue error EG :=
maxk |λ̃k−λk||λk|

, compared with zggev (LAPACK). RND denominates a pair of
randomly generated matrices, SP denominates a pair of special matrices.
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Figure 5.22: Residual error of the generalized solver zsygvs (performing a
splitting tridiagonalization) evaluated by a maximum residual error RG :=
maxk ‖(A−λ̃kB)x̃k‖2

‖A‖2‖B‖2
in comparison with zggev (LAPACK). RND denominates

a pair of randomly generated matrices.
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Figure 5.23: Normalized (log scale) runtimes T (n)1010

n3 of new generalized
solvers zsygvs (performing a splitting tridiagonalization) and zsygvn (per-
forming a non-splitting tridiagonalization) compared to the dense general
solver zggev (LAPACK).

ant for computing eigenpairs is zsygvs, zggev (LAPACK) is slower; zsygvs
computes eigenpairs faster than zggev (LAPACK) computes eigenvalues only.

Moreover, we evaluate speedups of zsyevn and zsyevs versus zggev
(LAPACK). A speedup S is hereby computed as S = T1

T2
, where T1 denotes

the time consumed for the solution of the problem applying routine zggev
(LAPACK), and T2 denotes the time consumed for the solution of the same
problem applying the evaluated routine zsygvn or zsygvs. Figure 5.24 shows
this speedup curve. For computing eigenvalues with zsygvn, we observe an
increasing speedup with increasing problem sizes, reaching a value of 43 for
larger problem sizes. This increase of the speedup S with the matrix or-
der is due to the fact that zsygvn has a lower asymptotic complexity than
zggev (LAPACK), operating with a tridiagonal matrix in the final phase in-
stead of a Hessenberg matrix since symmetry is preserved. zsygvn is cur-
rently restricted to computing eigenvalues, therefore we can not evaluate
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Figure 5.24: Speedups of zsygvn and zsygvs over zggev (LAPACK); speedup
S = T1

T2
, where T1 denotes the time consumed for the solution of the problem

applying routine zggev (LAPACK), and T2 denotes the time consumed for
the solution of the same problem applying the evaluated routine zsygvn or
zsygvs.

speedups computing eigenpairs. For computing eigenvalues and eigenpairs
with zsygvs, we observe speedups from about 2 to about 6, respectively,
where speedups for eigenpairs are slightly better than for eigenvalues only.

Shares of runtimes

Figure 5.25 depicts shares of runtimes of zsygvn, computing eigenvalues only.
For order n = 1000, we observe that factorization consumes the least time,
followed by the tridiagonal solver, reduction, and tridiagonalization being
the slowest part. For higher orders, tridiagonalization remains the domi-
nant part, but factorization increases its fraction on overall-runtime. The
corresponding percentages for parts factorization / reduction / tridiagonal-
ization / tridiagonal solver are as follows; for order n = 1000, we observe
rounded percentages of 5/29/40/26, for n = 2000 6/34/45/15, for n = 3000
7/35/48/10, and for n = 4000 7/36/50/8.
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Figure 5.25: Shares (log scale) of runtimes for cardinal steps of routine
zsygvn, computing eigenvalues of a generalized complex symmetric EVP.
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Figure 5.26: Shares (log scale) of runtimes for cardinal steps of routine
zsygvs, computing eigenpairs of a generalized complex symmetric EVP.

Figure 5.26 depicts shares of runtimes of zsygvs, computing eigenpairs.
For n = 1000, we observe that factorization consumes the smallest part of
overall runtime, followed by backtransformation, tridiagonal solver, reduc-
tion, and factorization consuming the biggest share. For higher orders, the
factorization consumes a considerably bigger share, while tridiagonalization
remains the dominating part for all tested orders. The corresponding per-
centages for parts factorization / reduction / tridiagonalization / tridiagonal
solver / backtransformation are as follows; for order n = 1000, we observe
rounded percentages of 1/4/89/4/2, for n = 2000 1/5/90/2/2, for n = 3000
1/4/93/1/2, and for n = 4000 1/4/93/1/2.

A comparison between the shares of zsygvn and zsygvs reveals that for
all evaluated orders tridiagonalization consumes a notably larger fraction in
zsygvs. This evidences that an optimization of the tridiagonalization process
would substantially increase the overall performance of zsygvs.
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Chapter 6

Parallel Case Studies

Due to the advent of various parallel architectures in scientific computing
(confer Chapter 2), implementations utilizing parallel infrastructures have
become very important. As a consequence of the involvement of multiple
computing elements in order to reach a common goal, parallel computations
are always more complex than serial ones. In scientific applications, parallel
computing usually involves the cardinal steps (a) computation, (b) commu-
nication, and (c) synchronization [Bis04]. (b) incorporates the sending and
receiving of data items to processes, which use the data for subsequent com-
putations (confer Definitions 6.1.1 and 6.1.2).

A superstep contains either a number of computation steps or a number
of communication steps, followed by a global barrier synchronization [Bis04,
p.3]. See Figure 6.1 for an illustration of the schedule model of an abstract
algorithm featuring five supersteps. The current chapter features fine-grained
solver components aiming at solving complex symmetric generalized EVPs
and a coarse-grained case study realized by a grid workflow in phylogenetics.

6.1 Parallel High Performance Programming
As sequential high performance programming is a difficult task, the more
complex parallel high performance programming is even harder. In the case
of parallel environments, narrowing the gap between the theoretical peak
performance and the practical sustained performance is a highly complex
task, see for example [SSB+08, GDS+06].

ScaLAPACK is a collection of high-performance linear algebra routines
for distributed-memory message-passing MIMD computers and networks of
workstations supporting PVM or MPI [BCC+97, p.3]. It is a very effective

113
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P(0) P(1) P(2) P(3) P(4)

Synchronisation

Synchronisation

Synchronisation

Synchronisation

Synchronisation

Computation

Communication

Communication

Computation

Communication

Figure 6.1: Schedule model of an abstract algorithm involving five processes
P(0) . . . P(4), featuring computation, communication, and synchronization
in a sequence of five supersteps; a vertical line denotes local computation, an
arrow denotes communication between processes. Each superstep is termi-
nated by a global synchronization; taken from [Bis04, p.4].
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Global
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BLAS

Local
LAPACK

MPI

Figure 6.2: Scalable LAPACK (ScaLAPACK) is based on Basic Linear Alge-
bra Subprograms (BLAS), Linear Algebra Package (LAPACK), Message Passing
Interface (MPI), Basic Linear Algebra Communication Subprograms (BLACS),
and Parallel BLAS (PBLAS); illustration taken from [BCC+97, p.5].

and successful linear algebra package for parallel systems. The usual way of
deploying ScaLAPACK is by compiling from freely available source files; more-
over, precompiled binaries are available for a selection of computer systems,
including Cray T3E, Intel Paragon, IBM SP-2, SGI Power Challenge Array, SGI
Origin 2000, AIX46K, DEC Alpha, HP 9000, Intel/Linux, SGI64, SUN4, and
SUN4SOL21. Figure 6.2 lists ScaLAPACK’s basic building blocks.

As communication on parallel systems is usually an expensive operation,
the key aspects for efficient data-intensive parallelization of software are data
locality (see, for example, [WL91]) and the data distribution among comput-
ing processes. The following definitions are crucial in parallel high perfor-
mance programming, they follow the ScaLAPACK Users’ Guide [BCC+97,
p.213-216].

Definition 6.1.1 (Process). Basic unit or thread of execution that minimally
includes a stack, registers, and memory. Multiple processes may share a
physical processor. The term processor refers to the actual hardware.

1This list of supported computer systems is taken from http://netlib.org/
scalapack/archives/, names of individual systems of vendors may slightly vary.

http://netlib.org/scalapack/archives/
http://netlib.org/scalapack/archives/
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Definition 6.1.2 (Data distribution). Method by which the entries of a
global matrix are allocated among the processes, also commonly referred to
as decomposition or data layout.

Definition 6.1.3 (Process grid). The way we logically view a parallel ma-
chine as a one- or two-dimensional rectangular grid of processes. For two-
dimensional process grids, the variable Pr is used to indicate the number of
rows in the process grid (first dimension of the two-dimensional process grid).
The variable Pc is used to indicate the number of columns in the process grid
(the second dimension of the two-dimensional process grid). The collection
of processes need not physically be connected in the two-dimensional process
grid.

Definition 6.1.4 (Block size of the distribution). The number of contiguous
rows or columns of a global matrix to be distributed consecutively to each of
the processes in the process grid. The block size is quantified by the notation
MB × NB, where MB is the row block size and NB is the column block
size. The distribution block size can be square, MB = NB, or rectangular,
MB 6= NB. Block size is also referred to as the partitioning unit or blocking
factor.

Array Distributions
We are dealing with two-dimensional arrays, their different ways of mapping
pieces of data to processes are described here. Data distribution schemes
of section 6.1 are taken from the ScaLAPACK Users’ Guide. Since numeri-
cally intensive algorithms in numerical linear algebra usually operate on big
amounts of distributed data, efficient algorithms depend on particularly suit-
able data distributions. In the following, processes are enumerated from 0 to
P − 1, while the columns k of the matrix are enumerated from 1 to N .

One-dimensional block column distribution

This distribution (see Figure 6.3, (left)) assigns a block of contiguous columns
to successive processes, each process receives precisely one block of columns
of the original matrix. tc represents the maximum number of columns stored
per process, it is calculated according to tc = dN

P
e. Column k is owned by

process b k
tc
c. For example, let a matrix consist of 25 columns, and let there

be four processes. tc = d25
4 e = 7. The matrix will be distributed as seven

columns on process 0, seven columns on process 1, seven columns on process
2, and finally four columns on process 3.



6.1. PARALLEL HIGH PERFORMANCE PROGRAMMING 117
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Figure 6.3: The one-dimensional block (left) and cyclic (right) column data
distributions operating in four processes, corresponding to [BCC+97, p.59].
Levels of gray represent processes 0 to 3.

One-dimensional cyclic column distribution

The one-dimensional cyclic column distribution assigns single columns to the
available processes, see Figure 6.3. Column k is assigned to process (k − 1)
mod P .

One-dimensional block-cyclic column distribution

Here, the distribution of columns is done in two steps. First, the columns are
divided into groups of block size NB. Afterwards, the groups are distributed
in a cyclic manner to the processes. Hence, column k is owned by process
bk−1
NB
c mod P . See Figure 6.4 for an illustration of the one-dimensional block

data distribution.

Two-dimensional block-cyclic distribution

This layout involves the arrangement of processes in rectangular arrays. P
processes are arranged in a Pr×Pc array, indexed (pr, pc), where 0 ≤ pr < Pr
and 0 ≤ pc < Pc. Columns and rows are divided in individual sizes, therefore
two types of blocking factors can be defined, called MB (row block size)
and NB (column block size). An example of a two-dimensional block-cyclic
distribution is depicted in Figure 6.4 (right), where N = 16, P = 4, Pr = 2,
Pc = 2, MB = 2, and NB = 2. This distribution is usually used for parallel
dense linear algebra, including ScaLAPACK [LJ93, DvdGW92].
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Figure 6.4: The one-dimensional block-cyclic column (left)- and the two-
dimensional block-cyclic (right) distributions operating in four processes,
corresponding to [BCC+97, p.60]. Levels of gray represent processes 0 to
3.

6.2 Toward a Parallel Complex Symm. Eigen-
solver

This section is partly based on our paper “Toward a Parallel Solver for Gen-
eralized Complex Symmetric Eigenvalue Problems” [SPSG10].

For the sequential case, we discussed two solver variants to solve general-
ized complex symmetric EVPs: the splitting and the non-splitting approach
(see Section 5.2). Due to the better sequential runtimes, we focus now on
the non-splitting solver.

Parallelization of cardinal steps of the non-splitting solver for complex
symmetric generalized EVPs is investigated. While for the serial case, all
steps have been discussed, we confine here to the first three steps parallel
factorization, parallel reduction, and parallel tridiagonalization. For math-
ematical methodology and accuracy of sequential evaluations, we refer to
Section 5.2.

6.2.1 Related Work
We note that high quality parallel eigensolver software is very rare. For
real symmetric and for complex Hermitian (but not for complex symmetric)
generalized EVPs, parallel implementations are available in ScaLAPACK,
there seem to be no plans especially for complex symmetric EVPs [DDP+07].
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SLEPc [HRV05] features EPSSolve to solve generalized EVPs, but it focuses
on sparse problems and projection methods. The challenge addressed here
is to develop and analyze computational kernels that are building blocks for
a complete parallel complex symmetric generalized eigensolver capable of
exploiting the special algebraic properties.

6.2.2 Motivation

In addition to the motivations specified for the serial solver, a parallel solver
is highly motivating in order to utilize parallel computer architectures for
solving EVPs that are too big for serial systems. The parallel eigensolver
is especially encouraging, as most of the current computer architectures are
parallel.

6.2.3 Parallel Approach

Our parallel solver for generalized complex symmetric EVPs is a ScaLA-
PACK-based MPI-style parallelization of the sequential codes summarized
in Section 5.2 for both shared and distributed memory architectures. Our
starting point is based on the parallel real symmetric solver variant pdsygvx
(ScaLAPACK). pdsygvx firstly calls pdpotrf to factorize B, then applies
pdsyngst to transform the generalized to a standard EVP, followed by
pdsyevx to solve it.

In common with other ScaLAPACK driver routines, the method is paral-
lelized by a data parallel approach utilizing a block-cyclic distribution. The
hierarchy of calling subroutines, distribution- and communication schemes of
our implementations are the same as in pdsygvx (ScaLAPACK).

The developed parallel driver routine for solving a generalized complex
symmetric EVP is called pzsygvn. Besides auxiliary routines, it firstly calls
(a) pzpotrfi for a parallel complex symmetric indefinite factorization, fol-
lowed by (b) pzsygst for a parallel transformation from generalized to stan-
dard EVP, and (c) pzsyevn for solving the corresponding standard EVP.
pzsyevn first applies a parallel non-splitting tridiagonalization and reduces
the matrix of the standard EVP to tridiagonal form. The rest of this rou-
tine is work in progress: we do not yet have a parallel solver for computing
eigenpairs of the resulting complex symmetric tridiagonal EVP. Our imple-
mentations of Steps (a)-(c) are new developments.
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6.2.4 Aspects of Context Adaptivity
The concept of context adaptivity has been introduced in Chapter 3, here
we discuss it with respect to the parallel generalized complex symmetric
eigensolver.

Main goals

The main goal motivating our driver routine pzsygvn is that there is no rou-
tine to solve generalized complex symmetric EVPs in ScaLAPACK; conse-
quently, the main goals are reduced runtimes running in parallel. Runtimes
cannot be compared to direct competitor routines, as there is no parallel
solver for general generalized EVPs; however, we can compare runtimes with
parts of the Hermitian solver routine pzheev (ScaLAPACK), as partly similar
methodology is applied.

Accompanying goals

Accompanying goals portability, reusability, robustness, usability, and archi-
tecture adaptivity are partly followed by building our approach on top of
existing PBLAS and ScaLAPACK routines. In the following, parallel scalabil-
ity is evaluated in detail.

Context

In analogy with the sequential approach, the parallel counterpart takes struc-
ture of input data, namely symmetry, into account. The computing plat-
form is any parallel system capable of running the applied software (see
Section 6.2.5), we do not have any temporal requirements. Applied preci-
sion is double complex. Accuracy requirements are mainly determined by
the application, therefore we have no further requirements to the sequential
case.

The new methods are adaptive to the context in the sense that they
present a complementary approach for parallel architectures.

Methodology

A new approach to solve generalized complex symmetric EVPs in parallel
is discussed. Different implementation variants are transparently realized
through the utilization of the PBLAS, which guarantees excellent runtime
behavior of core routines on many platforms. For the parallel case, there is
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no trading in terms of a faster but less accurate approach, because we have
no solver for such EVPs in ScaLAPACK.

Computational kernels

The investigated computational kernels are represented by parts of the steps
of solving the EVP (see Figure 5.2). Therefore, involved computational ker-
nels are the newly developed computational routines (∗) pzpotrfi (parallel
symmetric indefinite factorization), (∗) pzsygst (parallel reduction opera-
tion), and (∗) pzsytr2 (parallel complex symmetric tridiagonalization).

6.2.5 Hard- and Software Infrastructure
Parallel codes of this section were run on the supercomputer HPCx, which
is now in its final stage an IBM eServer 575 cluster offering a total of 2560
CPU cores (16 on each node) on 1280 IBM Power5 processors (1.5 GHz)2, see
Figure 6.5 for a photo. HPCx started in 2002 as a six-year project provided in
three phases, the cluster is now in its final phase (it received prolongation for
further 14 months) [ABG+05]. The highest ranking in the TOP500 list was
#9 in 20023. From November 2002 to November 2008, it has constantly been
listed in the TOP500. It now has a theoretical peak performance of 15.36
Teraflop/s and a sustained performance of 12.94 Teraflop/s (see TOP500 list
November 2008).

Codes are written in Fortran, only the routine pzsymv (parallel com-
plex symmetric matrix-vector multiplication, used here in complex symmet-
ric tridiagonalization) is written in C, as it is based on the PBLAS which is
written in C. Evaluations have been carried out on the cluster HPCx with
compiler IBM xlf 10.1.0.10 and IBM ESSL 4.3.0.0 as BLAS, LAPACK 3.0,
and ScaLAPACK 1.7. ScaLAPACK’s communication is done with BLACS 1.1,
utilizing IBM POE 4.3.2.5. The used optimal blocking factor for ScaLA-
PACK was experimentally determined and set to MB = NB = 96. Jobs
are submitted as LoadLeveler scripts, with the following essential settings:
job_type=parallel, node_useage=not_shared, stack_limit=200MB; poe
was used to actually execute the executable.

Accuracies of parallel routines are not evaluated, but tests have been
undertaken to prove correctness of the results; all matrices are dynamically
generated. All major routines are subsequently evaluated according runtime
behavior.

2An overview of its architecture can be found on the HPCx User’s Guide, http://www.
hpcx.ac.uk/support/documentation/UserGuide/HPCxuser/.

3see corresponding list in the TOP500, http://www.top500.org/site/history/2217

http://www.hpcx.ac.uk/support/documentation/UserGuide/HPCxuser/.
http://www.hpcx.ac.uk/support/documentation/UserGuide/HPCxuser/.
http://www.top500.org/site/history/2217
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Figure 6.5: Cluster HPCx, housed at Daresbury Laboratory (England) and
offering 2560 CPU cores, was used for all parallel scalability studies.
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6.2.6 Evaluation Strategy
All major routines are evaluated separately for problem sizes 4096, 6144, and
8192. Time measurement is done by calling MPI_Wtime, where MPI_Barrier
guarantees that time is measured until the last process has finished. Run-
ning nodes are not shared with other users to avoid potentially inaccurate
runtimes. Scalability is discussed in terms of the relative speedup, where the
baseline is the execution of the parallel program on a single CPU core.

Sometimes, evaluations reveal a superlinear speedup, that is, the observed
speedup is better than linear (occasionally called ideal) speedup. See, for
example, [MFS94] for a discussion about superlinear speedups.

6.3 Shares of Runtimes
Here we discuss the runtimes on a single CPU core of HPCx of routines
for symmetric factorization (pzpotrfi), reduction operation (pzsygst), and
tridiagonalization (pzsytr2). These routines are discussed regarding their
parallel scalability in the following sections.

Before evaluating parallel scalability, it is important to measure the shares
of runtimes of individual routines, in order to determine dominating parts.
We observe that the factorization of B (pzpotrfi) consumes relatively little
time, transformation from generalized to standard EVP (pzsygst) consumes
a considerably bigger share, and tridiagonalization (pzsytr2) consumes most
of the time. The shares are as follows. For order n = 4096, factorization
consumes 5%, reduction 40%, and tridiagonalization 55% of the time. For
n = 6144, these percentages are 5/36/59; and for n = 8192 we measure 5%
for factorization, 35% for reduction, and 60% for tridiagonalization. Fig-
ure 6.6 depicts absolute runtimes of the implemented routines of pzsygvn.
Accordingly, the tridiagonalization step is the dominating part for all ana-
lyzed orders on a single CPU core of HPCx.

6.4 Parallel Transformation to Standard EVP
The transformation from the generalized to standard EVP involves (a) the
symmetric factorization of B and (b) the actual reduction to standard EVP.

6.4.1 Parallel Symmetric Factorization
A parallel symmetric factorization routine pzpotrfi has been developed that
aims especially at complex symmetric indefinite matrices. Analogously to its
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Figure 6.6: Absolute runtimes in seconds for factorization in pzpotrfi, re-
duction in pzsygst, and tridiagonalization in pzsytr2 for orders n = 4196,
6144, and 8192 on a single CPU core on HPCx.
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sequential counterpart zpotrfi, it factorizes B 7→ LL>.

Related work

ScaLAPACK features parallel Cholesky factorizations for real symmetric pos-
itive definite problems in routine pdpotrf and Hermitian positive definite
problems in pzpotrf, respectively. A parallel factorization of indefinite prob-
lems is currently not available in ScaLAPACK. However, a parallel BK factor-
ization variant was developed and evaluated on a Fujitsu AP3000 distributed
memory machine on 16 nodes [SL01, Str00]. Unfortunately, these papers
do not discuss parallel speedups on a variable number of cores. In [JP94],
reasonable speedups are observed on a parallel implementation of a BK fac-
torization running one to four processors on a four-processor CRAY Y-MP.

Implementation

pzpotrfi is based on the real symmetric Cholesky factorization routine
pdpotrf (ScaLAPACK) factorizing positive-definite real matrices. Its struc-
ture is the same as in our implementation, but some modifications, including
data types and different subroutine calls, were necessary. Furthermore, the
check for positive-definiteness is removed, as it is obviously conflicting with
indefinite matrices.

Scalability study

Parallel symmetric factorization on HPCx has been evaluated on 2 to 1024
nodes, see Figure 6.7 for relative speedups on orders n = 4096, 6144, and
8192. Considering the linear speedup as ideal scalability, we observe an
excellent speedup for up to 16 nodes. The reason for this behavior is the
number of cores on one node, as CPU 16 cores on the same node do not
need to communicate over the network. Speedups on higher number of cores
involve communication and thus scalability decreases; for order n = 8192,
we observe a speedup of about 128. Generally, bigger orders result in bigger
matrices and better scalability. pzpotrfi scales well until about 512 cores,
for 1024 cores the consumed overall runtime remains roughly stable.

6.4.2 Parallel Reduction Operation
Given the symmetric factorization of B 7→ LL>, the second step for trans-
forming the generalized to the standard EVP is the actual reduction.
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Figure 6.7: Relative (log scale) speedups of parallel complex symmetric in-
definite factorization routine pzpotrfi factorizing B 7→ LL> on HPCx.
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Related work

Papers focussing on the parallel reduction from generalized to standard EVPs
are rare, because this subproblem is usually discussed in the course of a com-
plete generalized eigensolver.

Implementation

The implementation of pzsygst is a series of calls to ScaLAPACK routines.
Our implementation is algorithmically slightly different from the one in the
ScaLAPACK routine pdsygst, which applies a transformation to the input
matrix from both sides at the same time: our solution implemented in
pzsygst is a simplified preliminary implementation of this operation for
the purpose of rapid prototyping (confer the serial case in Section 5.3.2).
pzsygst consecutively solves two linear systems of the type LX = B with
L from the factorization step in order to construct M = L−1AL−>. In more
detail, first pztrtrs (LAPACK) is used for solving LX = A for X, yielding
X = L−1A. Then, X is transposed, and pztrtrs (ScaLAPACK) is used again
for solving LM = X for M , so M = L−1X = L−1AL−>.

Scalability study

Figure 6.8 depicts parallel runtimes for problem sizes n = 4096, 6144, and
8192 on the cluster HPCx running on 2 to 1024 cores. The vast majority of the
runtime is spent in pztrtrs (ScaLAPACK), calls to pztranu (ScaLAPACK)
and pzlacpy (ScaLAPACK) consume comparatively very little time. Hence,
scalability study of the reduction process is very similar to the scalability of
calling the solver of the triangular system pztrtrs (ScaLAPACK) twice in a
row. We observe excellent scaling behavior for all tested matrix sizes, 2 to
1024 cores. A parallel reduction operation from both sides, as implemented
in pdsygst (ScaLAPACK) might improve runtimes, however, the parallel scal-
ability of our approach is already satisfying.

6.5 Parallel Tridiagonalization

The approach discussed here is based on the non-splitting tridiagonalization
and on adapting the tridiagonalization process for real symmetric matrices
implemented in the ScaLAPACK routine pdsytrd.
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Figure 6.8: Relative (log scale) speedups of pzsygst transforming the gen-
eralized EVP Ax = λBx to a standard EVP My = λy on HPCx.
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6.5.1 Related Work

We do not know of any papers dealing with dense parallel tridiagonalization
of complex symmetric matrices. Papers dealing with the parallel tridiago-
nalization process usually only discuss real symmetric or complex Hermitian
cases (see, for example, [BLS94, CUSD88]), while papers dealing with com-
plex symmetric tridiagonalization usually only deal with the serial problem
(see Chapter 5).

6.5.2 Implementation

The implementation of pzsytr2 (non-splitting tridiagonalization) is based
on the ScaLAPACK codes for real symmetric matrices with driver routine
pdsytrd. Besides modifications in various auxiliary routines, most signifi-
cant changes were undertaken for the computation of the complex symmetric
reflector in pzlarfgn, confer Section 5.4.3 for the serial case implemented in
zlarfgn.

6.5.3 Scalability Study

Figure 6.9 depicts relative speedup values for scaling experiments. As the par-
allel tridiagonalization is the dominating step, we evaluate not only pzsytr2,
but also its Hermitian pendant pzhetrd (ScaLAPACK). Scaling on 2 cores re-
sults in a very good performance for both routines. We observe a somewhat
surprising superlinear speedup on 4 and 8 cores within a single node that
we believe is caused by cache effects. Superlinear speedups on HPCx have
also been reported, for example, in a thesis by E. Davidson on studying the
performance of a lattice Boltzmann code [Dav08, p.33]. Experiments on 16,
32, and 64 CPU cores show satisfactory speedups; on 128, 256 and 512 CPU
cores, the speedup curve degrades. For 512 CPU cores, parallelization is not
feasible for matrix size 4096; there are somewhat better runtimes for matrix
sizes 6144 and 8192, compared to 256 cores. 1024 CPU cores can not be uti-
lized efficiently anymore. Furthermore, our experiments illustrate that our
driver routine pzsytr2 has a similar scaling behavior as the corresponding
routine pzhetrd (ScaLAPACK), as can be expected from the parallelization
strategy used (confer Section 6.5.2). For 1024 CPU cores and matrix sizes
4096 and 6144, pzhetrd (ScaLAPACK) is unexpectedly slower than for corre-
sponding problems computed by pzsytr2. This deviation is hard to explain,
as elapsed runtimes are very short (about 1

100 second for each CPU core) and
hence potentially more inaccurate than for less CPU cores.
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Figure 6.9: Relative (log scale) speedups of parallel complex symmetric tridi-
agonalization routine pzsytr2 tridiagonalizing a standard EVP My = λy
to a tridiagonal EVP Tz = λz, in comparison with Hermitian tridiagonal-
ization in pzhetrd (ScaLAPACK) on HPCx.
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6.6 Phylogenetic Quality Assessment
This section is partly based on our paper “Phylogenetic Quality Assessment
for Campus Grids” [SZvH+08].

Bootstrap analysis is a common but very time-consuming task to assess
the quality of reconstructed phylogenetic trees, see Section 4.2 for basics
about phylogenetic quality assessment. Here we suggest, implement, and
apply a workflow based approach to distribute the bootstrap analysis on
computational grid infrastructures. We use the Condor [TTL05, LLM88]
grid middleware, known to be capable of controlling computational grids
of various sizes. On March 30th 2010, 2266 pools comprising 308832 hosts
were reported to run Condor worldwide4; see [TTL06] for details on how the
popularity of Condor is measured. The performance of the Condor-based
distributed workflow is benchmarked in comparison to the sequential analy-
sis. We present the proof-of-concept that scientific workflow approaches on
a Condor-based campus grid environment are a promising way to reduce the
waiting time of embarrassingly parallel tasks in phylogenetic and bioinfor-
matics research.

6.6.1 Related Work
Computational phylogenetics, as well as various other areas of bioinfor-
matics, aim at achieving new biological insights by supplementary utiliz-
ing grid technology and grid resources. Bioinformatics uses databases, data
processing methods, and software to get results through mass computa-
tion [Jin05]. Due to the computational demand of applications in bioin-
formatics, many grid-based initiatives have been launched, for instance, the
OpenMolGRID [SMR+05], GLAD [TWN04], and Squid [CGdMD05]. [SMLK06]
describes the concept of grid computing, [JCC+04] discusses grid as a bioin-
formatic tool.

Covering phylogenetics, a few past grid efforts can be observed including
Grid AxML [SLMW02] (based on Cactus Tools [ABD+01]), Phylojava [SNP+03]
(as part of the European DataGrid project [GJRB02]), and a Biodiversity
GRID [JWG+04]. A. Stamatakis discusses some additional grid efforts in
his dissertation in 2004, entitled “Distributed and Parallel Algorithms and
Systems for Inference of Huge Phylogenetic Trees based on the Maximum
Likelihood Method”.

Our approach can be classified as HTC (see Section 2.3.1), and Condor
is its main exponent. The main benefit of the presented approach based on

4see the Condor world map, http://www.cs.wisc.edu/condor/map/ for current statis-
tics

http://www.cs.wisc.edu/condor/map/
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Condor is the easiness of utilization of nodes featuring arbitrary computa-
tional power, that is, it eases the integration of individual computers into a
powerful and mature grid (see, for example, [FMM00]). To the best of our
knowledge, Condor has not yet been utilized to distribute parallel workflows
for computing phylogenies.

6.6.2 Aspects of Context Adaptivity
The concept of context adaptivity has been introduced in Chapter 3, here
we discuss it with respect to phylogenetic quality assessment.

Main goals

The major goal attained is to reduce the elapsed time of a workflow utilizing
a sequential computer system to conduct phylogenetic analyses by utilizing
a parallel system. This goal is achieved by a parallel approach utilizing a
campus grid infrastructure. Accuracy of computation is not influenced by
the parallel approach.

Accompanying goals

Our implementation uses the application software seqboot from the PHYLIP
package, IQPNNI, and TREE-PUZZLE5; all of them are available as C source
codes and can be easily compiled on modern computer systems. The mid-
dleware Condor is available as source code as well as precompiled binaries
for many popular platforms. Our script is written in Perl, which is installed
on many systems. Consequently, accompanying goals portability, reusability,
robustness, usability, and architecture adaptivity are fulfilled to a high degree.
Parallel scalability is considered by measuring efficiency of parallel testruns.

Context

The approach discussed adapts to different contexts by dynamically adapt-
ing to any parallel configuration of host computers – assuming that Condor
is installed on the individual machines. Typically adequate parallel configu-
rations are idle PCs in student labs or desktop computers during the night,
including older machines featuring single- or multi-core CPUs. The utilized
computing platform is a collection of such resources in a pool. We do not
have temporal- or accuracy requirements.

5Details about applied software can be found in Section 6.6.5.
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Methodology

Applied methodology is a parallelization realized by the middleware Condor
that implements high throughput computing for most of the “standard” PCs
used on the desktop or as servers. The demands on individual computers is
mainly determined by the requirements of the core part of the application
software which is IQPNNI in our case. Memory requirements are typically
very low, depending on the chosen model options6

Computational kernels

The computational kernels under consideration are represented by individual
instances of the “tree phase” (see Figure 4.3), implemented by the program
IQPNNI. The computational core routine in IQPNNI is the ML evaluation
of trees, more precisely, Brent’s method to determine the optimal branch
lengths consumes the largest share [MVHS05, Section 2.2]. The investigation
is therefore focused on concurrent instances of this kernel on a distributed
system, the computational kernel itself is not modified.

6.6.3 Introduction

This section gives an overview of the problem setting and the applied mid-
dleware Condor.

Problem setting

Since the evaluations of different pseudo-samples are highly independent,
phylogenetic quality assessment is a promising target for grid applications
to reduce the running time for analysis based on its embarrassingly parallel
nature. Here we will exemplify the use of computational grid technologies
for a straight-forward bootstrap analysis of ML-based phylogenies. The aim
is to provide an easy setup to run such an analysis on campus grids using
Condor (and possibly other systems) as middleware. The scientific challenge
arises in the exploitation of a large number of computational resources at the
same time to compute phylogenies in parallel.

6see IQPNNI manual, http://www.cibiv.at/software/iqpnni/iqpnni-manual.html

http://www.cibiv.at/software/iqpnni/iqpnni-manual.html
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Condor

Condor is a specialized workload management system for compute-intensive
jobs7. The goal of the Condor project is to develop, implement, deploy,
and evaluate mechanisms and policies that support HTC on large collections
of distributively owned computing resources8. One basic idea of Condor is
to ease the exploitation of idle CPU cycles of computers and to concentrate
these resources in a pool. In such a pool, every machine can serve a variety of
roles, machines can serve more than one role simultaneously. One important
role is the “central manager”, which is a unique machine in a pool acting as
negotiator between resources and resource requests. A “submit machine” is
any machine in the pool configured to allow Condor jobs to be submitted. An
“execute machine” is any machine in the pool being configured to allow the
execution of jobs. For each execute machine, the central manager collects
information including, for example, the type and current utilization of the
CPU, available RAM, and operating system. On each job submission, Condor
performs matchmaking between the requirements of a submitted job and the
specifications of a potential execute machine.

Condor can find machines to execute programs, but it does not schedule
programs based on dependencies, like it is necessary for workflows. DAGMan
(Directed Acyclic Graph Manager) is a meta-scheduler for Condor that can
be used to model the dependencies of input, output, and execution of one
or more programs. When modeling a workflow, nodes represent programs,
and edges represent dependencies. Upon execution of the workflow in the
Condor environment, DAGMan submits jobs to Condor and takes care that
all dependencies are fulfilled. As DAGMan submits jobs to Condor, ordering
required for the directed acyclic graph is enforced. Hereby, DAGMan is in
charge of scheduling, recovering, and reporting.

6.6.4 Parallel Approach
The parallel approach is a parallel scientific workflow based on the Condor
middleware utilizing DAGMan to control the workflow. Most time of the
whole phylogenetic process is spent in the reconstruction phase, therefore we
focus on this part regarding an efficient parallelization strategy. In principle,
we can choose to deploy the sequential IQPNNI or its parallelMPI-based coun-
terpart pIQPNNI. As we want to harness idle resources of all available hosts
in the Condor pool, serial instances of IQPNNI are automatically launched on

7see “What is Condor?” on the Condor webpage, http://www.cs.wisc.edu/condor/
description.html

8see the webpage of the Condor project, http://www.cs.wisc.edu/condor/

http://www.cs.wisc.edu/condor/description.html
http://www.cs.wisc.edu/condor/description.html
http://www.cs.wisc.edu/condor/
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available cores.
The parallel counterpart pIQPNNI was not applied within our campus

grid, as a parallel program within a parallel environment produces unneeded
overhead. However, pIQPNNI should be deployed whenever a local paral-
lel system, especially a multi-core system which is not running Condor, is
available (confer [SO08] for a paper about efficient computation of the phy-
logenetic likelihood function on multi-core architectures). In the latter case,
the imposed overhead of Condor is expected to be larger then the overhead
imposed by the utilization of an MPI environment.

6.6.5 Implementation
In a first step, a campus grid infrastructure based on the Condor middleware
has been implemented at the Faculty of Computer Science of the University of
Vienna. It is planned to expand it by host computers of the Faculty of Life
Sciences, see Figure 6.10. To setup non-local grid infrastructures can be a
highly non-trivial task, see for example [SG09, CBK+04].

The parallel scientific workflow consists of the three steps sampling phase,
reconstruction phase, and consensus phase (confer Section 4.2). In the sam-
pling phase, many pseudo-samples are generated with seqboot (from PHYLIP
3.679 [Fel89]. In the construction phase, these ML tress are reconstructed us-
ing IQPNNI 3.210 [MVSvH06, MVHS05, VvH04]. IQPNNI is a program to in-
fer maximum-likelihood phylogenetic trees from DNA or protein data with a
large number of sequences. Finally, they are assembled into a relative major-
ity consensus tree, as implemented in TREE-PUZZLE 5.211 [Sch03, SSVvH02].
This bootstrap analysis workflow with ML-based phylogeny reconstruction
has been ported to a grid infrastructure, that is, it has been gridified. For fur-
ther examples of gridifications in bioinformatics, see for example [SMLK06].

seqboot, IQPNNI, and TREE-PUZZLE are executed with standard param-
eters, except for TREE-PUZZLE the tree search procedure is set to “quar-
tett puzzling” and the applied parameter estimation is set to “neighbor-
joining tree”. See the respective manuals for further possible options.

The workflow is implemented as a single DAGMan description file, con-
taining the following information: (∗) the list of our three individual jobs and
(∗) dependencies constituting a directed acyclic graph applied by declaring a
static parent / child structure (see Figure 6.11 (left)). The sampling phase
and the consensus phase are implemented as single jobs in separate Condor

9see the webpage of PHYLIP, http://evolution.genetics.washington.edu/
phylip.html

10see the webpage of IQPNNI, http://www.cibiv.at/software/iqpnni/
11see the webpage of TREE-PUZZLE, http://www.tree-puzzle.de/

http://evolution.genetics.washington.edu/phylip.html
http://evolution.genetics.washington.edu/phylip.html
http://www.cibiv.at/software/iqpnni/
http://www.tree-puzzle.de/
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Figure 6.10: Experimental setup of the Condor-based campus grid at the
University of Vienna, where a Sun v40z is used to administer jobs, while
execute machines constitute a pool of available computers.
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Consensus + Mapping
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Figure 6.11: Parallelization strategies for the phylogenetic workflow. The
(left) workflow represents a serial approach, where parallelization may be
accomplished by parallel execution of individual tree instances; the (right)
workflow represents a parallel approach within the tree phase, where paral-
lelization is applied during the construction of single trees.

description files. In the reconstruction phase, a configurable number of par-
allel jobs are implemented with a single Condor description file created by our
Perl script. Once the description file has been created, the workflow can be
executed by submitting the corresponding DAGMan file. Subsequently, DAG-
Man takes control over the workflow and enforces all needed dependencies of
individual steps; there is no user interaction necessary during the execution
of the whole workflow.

Testbed

The experimental setup comprises machines in two different locations. Lo-
cation (a) features the Condor central manager, which is a Sun v40z, running
Suse Enterprise Server 10, see Section 5.2.6 for more details. This machine
exhibits 4 dual core Opteron CPUs, whose eight cores are treated by Condor
as eight separate execute machines. In location (b), four desktop PCs con-
nected by a 100 Mbit link have been added to the Condor pool. They contain
Intel Core 2 Duo CPUs resulting in eight additional cores for our Condor pool.
In total, this experimental campus grid offers 16 CPU cores. Each core can
be accessed by Condor to execute one program instance at a time.
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Evaluation strategy

We assess the computing node performance [Dik07] which is the performance
of a single node, by comparing the sequential runtime of the bootstrap work-
flow with the Condor-distributed workflow. To measure the runtime overhead
of the distributed workflow, the following setup has been performed on the
eight cores of the Condor central manager machine. We executed eight se-
quential workflows simultaneously to reduce possible biases like cache effects
or shared memory effects in favor of the sequential version running on an
idle eight-core computer. In the parallel case, we just submit our workflow
to Condor. As runtimes for the distributed (Tparallel) and the average sequen-
tial case (Tsequential) we used the mean wall clock time of all respective runs.
Then we computed the parallel Speedup S = T sequential

Tparallel
and the efficiency

E[%] = 100 · S
p
, where p is the number of cores available, here eight.

6.6.6 Results
We applied the implemented distributed workflow using the grid above to
two different datasets. We used a small dataset of Elongation factor (EF)
sequences from the TREE-PUZZLE software which allowed for running exten-
sive sequential and distributed benchmarks in reasonable time. Furthermore
we used a real-world dataset of ribosomal RNA (rRNA) sequences spanning
all domains of life. We executed the analyses with 1000 bootstrap samples
assuming rate heterogeneity with four Γ-rate categories.

The benchmark tests with the small set showed a promising efficiency E
of 94% (that is, speedup S = 7.52) compared to the sequential run. Note
that the runtime of the different pseudo-samples varies due to the stochastic
nature of the resampling procedure. Thus, at the end of the workflow the
number of cores actually computing decreases until the last reconstruction
has finished leaving more and more cores idle. Most of the 6% overhead
missing in the efficiency can be attributed to the idle cores at the end of the
ML tree computation.

The reconstructed rRNA phylogeny with bootstrap support values is de-
picted in Figure 6.12. The sequences range over all domains of life, the
Archean sequences serve as outgroup to root the tree, the Bacterial sequences
are depicted in black, and the three different types of eucaryotic sequences are
colored. It is nicely shown where the three different genome sequences found
in eucaryotes have originated. The nuclear sequences (blue) can be found at
the root of the Bacterial tree. The position and bootstrap values support
that the origin of the chloroplasts (green) and the mitochondria (red) was
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indeed an endosymbiosis event, namely of a cyanobacterium-like ancestor for
the chloroplasts and an α-bacterium-like ancestor.

The tree also shows that with the current dataset we cannot resolve all
bacterial relationships with confidence. The bootstrap analysis of the rRNA
dataset took less than 8.5 hours compared to an estimated running time of
more than 5.5 days on a normal single-core PC. This gives clear evidence that
Condor-based workflows can easily and substantially reduce the running time
of large scale phylogenetic bootstrap analysis without introducing a large
overhead for the user.
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Figure 6.12: Phylogenetic rRNA tree, as computed by our parallel grid
workflow implementation utilizing Condor and DAGMan; the numbers at the
branches denote bootstrap support values, the sequences range over all do-
mains of life, the Archean sequences serve as root, the three different types
of eucaryotic sequences are well presenting the two endosymbiosis events of
Bacteria as mitochondria and plastids into eucaryotic cells.



Chapter 7

Conclusions

This chapter comprises conclusions and future work of this dissertation for
the respective computational problems.

7.1 Sequential Generalized Complex Symmet-
ric EVP

Motivated by application problems arising in optoelectronics, serial compo-
nents aiming at solving generalized complex symmetric EVPs have been
developed and evaluated in terms of accuracy and runtimes. The state-
of-the-art approach for solving such EVPs is to call a general solver (for
example, zggev (LAPACK)) and abstain from utilizing the special properties
of complex symmetric matrices.

7.1.1 Achievements

Driver routine zsygvs provides a complete generalized complex symmetric
solver, consisting of the parts factorization, reduction, tridiagonalization,
and computation of eigenpairs (including backtransformation). Driver rou-
tine zsygvn provides a generalized complex symmetric solver for computing
eigenvalues (eigenvectors not supported yet) featuring a similar approach,
but with a different tridiagonalization step. All codes are implemented in
Fortran and (with the exception of the tridiagonal solver) based on BLAS
and LAPACK function calls.

141
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7.1.2 Results
zsygvs is faster than its competitor zggev (LAPACK), however, this comes
for the price of potentially lower accuracy. zsygvn computes eigenvalues even
faster than zsygvs, and therefore also faster than zggev (LAPACK), but less
accurate than zsygvs and zggev (LAPACK). Consequently, our approaches
trade potentially smaller accuracy by exploiting structure for better runtimes.

7.1.3 Future Work
The following ideas may further improve runtime performance of zsygvs.
Current splitting tridiagonalization routine zsytr1 is operating on single
rows and columns. A blocked variant could dramatically increase runtime
performance. Backtransformation of eigenvectors from tridiagonal problem
to standard problem and from standard problem to the generalized problem
are currently done in an inefficient way. Faster solutions are demonstrated
in dsyev (LAPACK) for the standard EVP and dsygv (LAPACK) for the
generalized EVP).

In zsygvs, the complex orthogonal transformation (COT) contributes
greatly to the error of the tridiagonalization process. An improved COT
could dramatically increase overall accuracy.

Backtransformation of eigenvectors in zsygvn from the tridiagonal to
the standard EVP is currently unsupported, precluding the computation of
eigenvectors of the generalized problem; see dsygv (LAPACK) for a starting
point how to realize this.

The following approach may improve accuracy achieved with zsygvn.
Computation of the complex elementary reflector in zlarfgn may be im-
proved by a rescaling method, as in the LAPACK routine for real symmetric
problems dlarfg.

7.2 Parallel Generalized Complex Symmetric
EVP

Motivated by the huge runtime costs of solving big EVPs, a parallel ap-
proach especially aimed at generalized complex symmetric EVPs has been
discussed. The obvious approach to treat complex symmetric EVPs as gen-
eral ones is currently unavailable in ScaLAPACK. A parallel approach tailored
for complex symmetric EVPs has been developed, where so far the cardi-
nal steps factorization, transformation to standard EVP, and non-splitting
tridiagonalization have been implemented and evaluated.
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7.2.1 Achievements
Driver routine pzsygvn provides the framework of a generalized complex
symmetric eigensolver, where the parts factorization in pzpotrfi, transfor-
mation to standard EVP in pzsygst, and non-splitting tridiagonalization in
pzsytr2 have already been implemented.

7.2.2 Results
As pzsygvn currently lacks some parts, only its computational routines can
be evaluated separately. In terms of runtimes, we observe encouraging scal-
ability for parallel executions on HPCx for evaluations on up to 1024 cores.
However, these results heavily depend on the properties of the system (espe-
cially network performance) and the order of the problem.

7.2.3 Future Work
The ultimate goal is the implementation of a complete parallel generalized
complex symmetric eigensolver. In the course of this ambition, the cardi-
nal steps tridiagonal solver, and backtransformation have to be undertaken.
While for backtransformation, a similar parallel code to the serial case should
be implemented, the situation for the tridiagonal solver is more difficult. As
the current serial tridiagonal solver is not based on LAPACK codes, there is
no corresponding variant in ScaLAPACK.

7.3 Phylogenetic Quality Assessm. f. Cam-
pus Grids

Due to vast computational demands of computing large phylogenies, the
bootstrap analysis workflow of ML-based phylogenies has been ported to a
Condor campus grid. Condor was chosen, as it is a very major grid middle-
ware easening the dynamic integration of both dedicated and otherwise idle
workstations.

7.3.1 Achievements
The parallel computation of phylogenies (here featuring IQPNNI as a central
component) on a Condor campus grid is a novelty. Furthermore, we proto-
typically assess the performance overhead in order to justify the approach.
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7.3.2 Results
Due to very limited communication during the processing of the workflow
and a potentially big number of available CPU cycles, this approach is very
encouraging. Our evaluations reveal an efficiency of 94% on the used Condor
campus grid infrastructure.

7.3.3 Future Work
In our testbed, Condor jobs were running on each individual core of a multi-
core system. A complemental variant is to use the parallel version of IQPNNI
to run once on each multi-core machine, and to use the serial version only on
single-core machines. This might lead to a reduced parallel communication
overhead.
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Zusammenfassung

Einführung

Computational Kernels sind der kritische Teil rechenintensiver Software, wo-
für der größte Rechenaufwand anfällt; daher müssen deren Design und Imple-
mentierung sorgfältig vorgenommen werden. Zwei wissenschaftliche Anwen-
dungsprobleme aus der Optoelektronik und aus der Phylogenetik, sowie dazu-
gehörige Computational Kernels motivieren diese Arbeit. Im ersten Anwen-
dungsproblem werden Komponenten zur Berechnung komplex-symmetrischer
Eigenwertprobleme diskutiert, welche in der Simulation von Wellenleitern
in der Optoelektronik auftreten. LAPACK und ScaLAPACK beinhalten sehr
leistungsfähige Referenzimplementierungen für bestimmte Problemstellun-
gen der linearen Algebra. In Bezug auf Eigenwertprobleme werden ausschließ-
lich reell-symmetrische und komplex-hermitesche Varianten angeboten, daher
sind effiziente Codes für komplex-symmetrische (nicht-hermitesche) Eigen-
wertprobleme sehr wünschenswert. Das zweite Anwendungsproblem behan-
delt einen parallelen, wissenschaftlichen Workflow zur Rekonstruktion von
Phylogenien, welcher entworfen, umgesetzt und evaluiert wird. Die Rekon-
struktion von phylogenetischen Bäumen ist ein NP-hartes Problem, welches
äußerst viel Rechenkapazität benötigt, wodurch ein paralleler Ansatz erfor-
derlich ist.

Die grundlegende Idee dieser Arbeit ist die Untersuchung der Wechselbe-
ziehung zwischen dem Kontext der behandelten Kernels und deren Effizienz.
Ein Kontext eines Computational Kernels beinhaltet Modellaspekte (z.B.
Struktur der Eingabedaten), Softwareaspekte (z.B. rechenintensive Biblio-
theken), Hardwareaspekte (z.B. verfügbarer Hauptspeicher und unterstützte
darstellbare Genauigkeit), sowie weitere Anforderungen bzw. Einschränkun-
gen. Einschränkungen sind hinsichtlich Laufzeit, Speicherverbrauch, geliefer-
te Genauigkeit usw., möglich.
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Methodik
Das Konzept der Kontextadaptivität wird für ausgewählte Anwendungs-
probleme in Computational Science gezeigt. Die vorgestellte Methode ist
ein Meta-Algorithmus, der Aspekte des Kontexts verwendet, um optimale
Leistung hinsichtlich der angewandten Metrik zu erzielen. Es ist wichtig,
den Kontext einzubeziehen, weil Anforderungen gegeneinander ausgetauscht
werden könnten, resultierend in einer höheren Leistung. Zum Beispiel kann
im Falle einer niedrigen benötigten Genauigkeit ein schnellerer Algorithmus
einer bewährten, aber langsameren, Methode vorgezogen werden. Speziell
für komplex-symmetrische Eigenwertprobleme zugeschnittene Codes zielen
darauf ab, Genauigkeit gegen Geschwindigkeit einzutauschen. Die Innovati-
on wird durch neue algorithmische Ansätze belegt, welche die algebraische
Struktur ausnutzen. Bezüglich der Berechnung von phylogenetischen Bäu-
men wird die Abbildung eines Workflows auf ein Campusgrid-System ge-
zeigt. Die Innovation besteht in der anpassungsfähigen Implementierung des
Workflows, der nebenläufige Instanzen von Computational Kernels in einem
verteilten System darstellt. Die Adaptivität bezeichnet hier die Fähigkeit des
Workflows, die Rechenlast hinsichtlich verfügbarer Rechner, Zeit und Quali-
tät der phylogenetischen Bäume anzupassen.

Beiträge
Kontextadaptivität wird durch die Implementierung und Evaluierung von
wissenschaftlichen Problemstellungen aus der Optoelektronik und aus der
Phylogenetik gezeigt.

Für das Fachgebiet der Optoelektronik zielt eine Familie von Algorithmen
auf die Lösung von verallgemeinerten komplex-symmetrischen Eigenwertpro-
blemen ab. Unser alternativer Ansatz nutzt die symmetrische Struktur aus
und spielt günstigere Laufzeit gegen eine geringere Genauigkeit aus. Dieser
Ansatz ist somit schneller, jedoch (meist) ungenauer als der konventionelle
Lösungsweg. Zusätzlich zum sequentiellen Löser wird eine parallele Variante
diskutiert und teilweise auf einem Cluster mit bis zu 1024 CPU-Cores evalu-
iert. Die erzielten Laufzeiten beweisen die Überlegenheit unseres Ansatzes –
allerdings sind weitere Untersuchungen zur Erhöhung der Genauigkeit not-
wendig.

Für das Fachgebiet der Phylogenetik zeigen wir, dass die phylogenetische
Baum-Rekonstruktion mittels eines Condor-basierten Campusgrids effizient
parallelisiert werden kann. Dieser parallele wissenschaftliche Workflow weist
einen geringen parallelen Overhead auf, resultierend in exzellenter Effizienz.
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