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Abstract

In this work, a method is presented to numerically solve the Generalised Poisson Equation

−∇ · (κ(x)∇u(x)) + c(x)u(x) = f(x)

on parallel computers. This type of partial differential equation arises in many different

(astro-)physical contexts, two of which will be discussed shortly.

In scientific computing, parallel programming plays a decisive role since most problems

are too complex to be solved on one single processing entity (PE). Therefore, algorithms

must be developed which are suitable for parallel execution.

The Generalised Poisson Equation imposes particular challenges to the parallel program

because its solution is non-local, i.e. the solution in one point is influenced by the whole

computational domain. With the Schur Complement Method, the global solution within

the framework of Domain Decomposition can be obtained by first solving a problem for

the interface nodes and then independent problems for the inner domain of each PE.

This work is organised as follows:

• In Chapter 2, the analytical and physical background of this work is presented.

• The numerical methods which were used are described in Chapter 3. First, the

equation is discretised by the Finite Element Method. The resulting linear system

is then inverted using the Schur Complement Method. The interface problem is

solved iteratively in parallel, whereas the local problem on every PE is solved by a

(preconditioned) CG algorithm.

• Numerical results concerning the scaling and the implementation, espacially the

choice of the parameters, are given in Chapter 4.

• In Chapter 5, possible extensions of this work and how the method could be further

improved, are discussed.

In Appendix A, an implementation of the Finite Element Method in one, two and three

dimensions over a rectangular, equidistant grid is presented.
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Zusammenfassung

In dieser Diplomarbeit wird eine Methode zur numerischen Lösung der Verallgemeinerten

Poissongleichung

−∇ · (κ(x)∇u(x)) + c(x)u(x) = f(x)

auf Parallelrechnern vorgestellt. Diese Form einer partiellen Differentialgleichung tritt in

vielen verschiedenen (astro-)physikalischen Zusammenhängen auf. Zwei Beispiele werden

in aller Kürze dargestellt werden.

Die meisten Aufgabenstellungen des wissenschaftlichen Rechnens sind zu komplex und

ressourcenaufwendig, um auf einem einzelnen Rechner ausgeführt werden zu können. Da-

her ist es von enormer Bedeutung, Algorithmen zu entwickeln, die zum Parallelrechnen

geeignet sind.

Da die Lösung der Verallgemeinerten Poissongleichung nicht-lokal ist – das bedeutet, dass

die Lösung in einem Punkt vom gesamten Gebiet beeinflusst wird –, steht die Entwicklung

einer Lösungsmethodik vor besonderen Schwierigkeiten, wenn man die globale Kommunia-

tion möglichst gering halten will. Im Zusammenhang mit Parallelisierung durch Gebietsz-

erlegung bietet die Schur-Komplement-Methode eine Möglichkeit zur Bewältigung dieses

Problems. Dabei wird zuerst die Lösung der Gleichung auf den Randknoten berechnet

und schließlich mit den zuvor bestimmten Werten als Randbedingung voneinander un-

abhängige Probleme auf den lokalen Gebieten gelöst.

Diese Arbeit ist wie folgt aufgebaut:

• In Kapitel 2 wird die analytische und physikalische Grundlage vorgestellt.

• Die verwendeten Methoden zur numerischen Lösung der Verallgemeinerten Pois-

songleichung werden in Kapitel 3 beschrieben. Zuerst wird die Gleichung mit der

Finiten Elemente-Methode diskretisiert. Anschließend wird das resultierende lin-

eare System mit der Schur-Komplement-Methode invertiert. Dabei wird zunächst

die Lösung auf den Randknoten mittels eines iterativen Algorithmus bestimmt. Die

lokale Lösung wird mit Hilfe eines präkonditionierten CG Algorithmus bestimmt.
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• Numerische Daten zur Skalierung und zur Implementierung der Methode, insbeson-

dere zur geeigneten Wahl der Parameter, sind in Kapitel 4 zusammen gestellt.

• Schließlich wird in Kapitel 5 ein Ausblick gegeben, wie diese Arbeit erweitert und

die Methode verbessert werden könnte.

Im Appendix A wird eine Implementierung der Finiten Elemente-Methode in einer, zwei

und drei Dimensionen über einem rechteckigen, äquidistanten Gitter vorgestellt.
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Chapter 1

Introduction

Subject of this diploma thesis is the numerical treatment of the Generalised Poisson

Equation

−∇ · (κ(x)∇u(x)) + c(x)u(x) = f(x)

on a bounded domain Ω and the implementation of an algorithm to solve the equation

on parallel computers. The most commonly known differential equation of this kind is

Poisson’s Equation −∆u = f . The Generalised Poisson Equation arises in many forms in

the (astro)physical context.

There are already well-known and well-proven methods to solve these types of partial

differential equations numerically. Due to the ongoing progress in computing technol-

ogy, which leads to an enormous amount of available computation kernels, algorithms are

needed which allow the full usage of the new computation resources. The Schur Comple-

ment Method, which is the main subject of this work, is one of these. Thereby, the global

problem is split into several local problems of smaller dimension and one problem for the

interface nodes which must be solved first. Finally, the global solution is assembled from

the interface and the local problems.

In this diploma thesis, I present all methods and algorithms I used to write a solver

for the Generalised Poisson Equation in Fortran90 which will be integrated in the code

ANTARES. ANTARES is an hydrodynamic code developed at the University of Vienna

which is described in [14]. With it simulations of the solar granulation, A stars, cepheids

and the stellar interior can be performed. Furthermore, a solver for the magnetohydro-

dynamic equations is under development. The program is fully parallelised with MPI

and partially with OpenMP. In this context, a fast and efficient parallel solver for the

Generalised Poisson Equation is needed. The integration of the solver into ANTARES

imposes certain requirements concerning e.g. the numerical grid.
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Chapter 2

The Generalised Poisson Equation

2.1 Analysis

In this section I will investigate some properties of the Generalised Poisson Equation.

First of all, some basic definitions are formulated and results from the general theory of

partial differential equations are recapitulated. Then, the Generalised Poisson Equation

is introduced and some main properties are deduced. In the end, I collect some exam-

ples from (astro-)physics where these types of partial differential equations arise. In the

following, Ω ⊂ Rn is always open and bounded and Γ is the boundary of the closure of Ω.

2.1.1 Preliminaries

The description is restricted to the main points. Please see [4, p. 239 – 266] for more

details and proofs of the cited theorems.

Definition 2.1.1. Let u ∈ L1
loc(Ω). If there exist functions vi ∈ L2(Ω), i = 1, . . . , n, such

that ∫
Ω

u
∂φ

∂xi
dx = −

∫
Ω

viφ dx ∀φ ∈ C∞c (Ω), (2.1.1)

we call ∇u = [v1, . . . , vn]T the weak gradient of u.

For differentiable u, the weak gradient is identical to the classical gradient.

Definition 2.1.2. The standard inner product of the space H1(Ω) ⊂ L2(Ω) is defined by

〈u, v〉H1(Ω) :=

∫
Ω

uvdx+

∫
Ω

∇u · ∇vdx, (2.1.2)

3



2. THE GENERALISED POISSON EQUATION

where ∇ must be understood in the weak sense. A function u ∈ L2(Ω) belongs to H1(Ω),

if

‖u‖H1(Ω) :=
√
〈u, u〉H1(Ω) <∞. (2.1.3)

The space H1(Ω) is called the Sobolev space of order 1.

Remark 2.1.3. • H1(Ω) contains all real-valued functions which are square inte-

grable and whose weak derivatives are square integrable.

• One can analogously define the spaces Hk(Ω) for k ∈ N. A function is in Hk(Ω) if

all weak derivatives of order at most k are in L2(Ω).

• The spaces Hk(Ω) are Hilbert spaces.

The following definition is taken from [4, p. 626].

Definition 2.1.4. Assume k ∈ N. We say Γ is Ck if for each point ~x0 ∈ Γ there exist

r > 0 and a Ck function γ : Rn−1 → R such that — upon relabeling and reorienting the

coordinate axes if necessary — we have

Ω ∩B( ~x0, r) = {~x ∈ B( ~x0, r)|xn > γ(x1, . . . , xn−1)} . (2.1.4)

Theorem 2.1.5. Assume Γ is C1. Then there exists a bounded linear operator

T : H1(Ω)→ L2(Γ),

such that

Tu = u|Γ if u ∈ H1(Ω) ∪ C(Ω̄). (2.1.5)

We call Tu the trace of u on Γ.

Definition 2.1.6. The space H1
0 (Ω) is a subspace of H1(Ω) with

u ∈ H1
0 (Ω)⇔ u ∈ H1(Ω) and u|Γ = 0. (2.1.6)

Theorem 2.1.7 (Poincaré). If u ∈ H1
0 (Ω), there exists a constant C such that

‖u‖L2(Ω) ≤ C ‖∇u‖L2(Ω) . (2.1.7)

Finally, we need the Riesz Representation Theorem which can be found in [4, p. 639].
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2.1. ANALYSIS

Theorem 2.1.8 (Riesz). Let H be a Hilbert space with inner product 〈·, ·〉H . For every

bounded linear functional l on H, there exists a unique element u ∈ H, such that

l(v) = 〈u, v〉H ∀v ∈ H. (2.1.8)

2.1.2 Existence and Uniqueness of the Solution

Now, the Generalised Poisson Equation is presented and existence and uniqueness of

solutions (in the weak sense) are proven. Please look at [4] and [7] for a more general and

rigorous treatment.

Let the differential operator L be given by

L[u] := −∇ · (κ∇u) + cu, (2.1.9)

where κ and c are real-valued bounded functions in Ω̄ and c(x) ≥ 0.

We consider the differential equation with the homogeneous Dirchlet boundary condition

L[u] = f on Ω (2.1.10)

u = 0 on Γ, (2.1.11)

where f ∈ L2(Ω). For κ(x) = 1, c(x) = 0 this is Poisson’s Equation −∆u = f . In the

general case, it is called the Generalised Poisson Equation. See 2.2 for some examples

where these equations arise in an astrophysical context.

L is called elliptic, if

∃κ0 ∈ R such that κ(x) ≥ κ0 > 0 ∀x ∈ Ω̄. (2.1.12)

In the following, L is always assumed elliptic. Furthermore, since κ, c ∈ L∞(Ω), there

exist κ∞, c∞ > 0 such that κ(x) ≤ κ∞ and c(x) ≤ c∞ for all x ∈ Ω̄.

u is called a classical solution of (2.1.10) and (2.1.11), if

u ∈ C2(Ω̄), L[u] = f and u|Γ = 0. (2.1.13)

If u is a classical solution and v is in C1(Ω̄), we get by multiplying with v and integrating

over Ω

5



2. THE GENERALISED POISSON EQUATION

∫
Ω

fv dx = −
∫

Ω

v∇ · (κ∇u) dx+

∫
Ω

cuv dx

=

∫
Ω

κ∇u · ∇v dx+

∫
Ω

cuv dx−
∫

Γ

κv
∂u

∂ν
ds,

where ν is the unit outward normal. If v|Γ = 0, this simplifies to∫
Ω

fv dx =

∫
Ω

κ∇u · ∇v dx+

∫
Ω

cuv dx. (2.1.14)

(2.1.14) is called the weak formulation of the boundary problem (2.1.10). But (2.1.14)

is also valid if u and v are not in C2(Ω), but in H1
0 (Ω). This leads directly to the following

Definition 2.1.9. u ∈ H1
0 (Ω) is called a weak solution of (2.1.10) and (2.1.11) if (2.1.14)

is true for every v ∈ H1
0 (Ω).

Definition 2.1.10. The bilinear mapping a(·, ·) associated with the differential operator

L is defined by

a : H1
0 (Ω)×H1

0 (Ω)→ R, a(u, v) =

∫
Ω

κ∇u · ∇v dx+

∫
Ω

cuv dx. (2.1.15)

Furthermore, we define for given f ∈ L2(Ω)

l(v) := 〈f, v〉L2(Ω) =

∫
Ω

fv dx, v ∈ H1
0 (Ω). (2.1.16)

l is bounded since ‖l‖ = sup
{
|l(v)| : ‖v‖H1

0 (Ω) ≤ 1
}
≤ ‖f‖L2(Ω) <∞.

Lemma 2.1.11. Let u, v ∈ H1
0 (Ω). There exist constants α, β > 0 such that

|a(u, v)| ≤ α ‖u‖H1(Ω) ‖v‖H1(Ω) and (2.1.17)

β ‖u‖2
H1(Ω) ≤ a(u, u). (2.1.18)

Proof.

|a(u, v)| ≤
∫

Ω

κ |∇u| |∇v| dx+

∫
Ω

c |uv| dx

≤ max {κ∞, c∞} ‖u‖H1(Ω) ‖v‖H1(Ω)

= α ‖u‖H1(Ω) ‖v‖H1(Ω) ,

where α := max {κ∞, c∞}. This means that a is continuous on H1
0 (Ω).

6



2.1. ANALYSIS

Furthermore,

a(u, u) =

∫
Ω

κ |∇u|2 dx+

∫
Ω

c |u|2 dx

≥ κ0

∫
Ω

|∇u|2 dx = κ0 ‖∇u‖2
L2(Ω)

(2.1.7)

≥ κ0
1

C
‖u‖2

L2(Ω) ,

since c(x) ≥ 0. By defining β := κ0

C
we get β ‖u‖2

L2(Ω) ≤ a(u, u).

Theorem 2.1.12. Let κ, c ∈ L∞(Ω), 0 ≤ c(x) ≤ c∞ and 0 < κ0 ≤ κ(x) ≤ κ∞. Then

(2.1.10) together with (2.1.11) has for every f ∈ L2(Ω) a unique weak solution u ∈ H1
0 (Ω).

This theorem is a special case of the Lax-Milgram Theorem described in [4].

Proof. We can define a new inner product on H1
0 (Ω) by

〈u, v〉a := a(u, v), u, v ∈ H1
0 (Ω), (2.1.19)

to which we can apply the Riesz Representation Theorem. This is a inner product because

of the previous lemma. Therefore, u from (2.1.8) is the desired unique solution.

2.1.3 Regularity of the Solution

The theorem which was proven above garantuees only existence and uniqueness of an

element of H1
0 (Ω) which fulfils (2.1.14), under the assumption that κ and c are in L∞(Ω).

But this solution does not automatically solve the original problem (2.1.10), since there

are second derivatives involved which do not exist in general for functions in H1
0 (Ω).

Given below are two theorems from [4, p. 317] where it is shown how the solution gets

”smoother” the smoother the coefficient functions κ, c and the right hand side of (2.1.10)

become.

Theorem 2.1.13. Assume κ ∈ C1(Ω̄), c ∈ L∞(Ω) and f ∈ L2(Ω). Additionally, Γ ∈ C2.

Let u be the unique weak solution of

L[u] = f in Ω

u = 0 on Γ,

then u ∈ H2(Ω).

7



2. THE GENERALISED POISSON EQUATION

If κ is at least differentiable, u fulfils (2.1.10) in the weak sense. Furthermore one can

prove

Theorem 2.1.14. Let m be a nonnegative integer. Assume κ, c ∈ Cm+1(Ω̄) and f ∈
Hm(Ω). Additionally, Γ ∈ Cm+2. Let u be the unique weak solution of

L[u] = f in Ω

u = 0 on Γ,

then u ∈ Hm+2(Ω).

In the case of Poisson’s Equation, one can informally say that u ”has two more derivatives

than f has” if the boundary of Ω is smooth enough.

2.1.4 Boundary Conditions

Until now, we only considered homogeneous Dirichlet boundary conditions, i.e. we were

looking for solutions u with u|Γ = 0. Hereafter, the changes are shown that occur when

moving to inhomogeneous Dirichlet, Neumann and periodic boundary conditions. These

conditions can be mixed. Further details can be found in [7, p. 676].

Inhomogeneous Dirichlet boundary

Consider (2.1.10) with the inhomogeneous Dirichlet boundary condition

u|Γ = g with g ∈ L2(Γ). (2.1.20)

As before, we call u ∈ H1(Ω) a weak solution of (2.1.14) with (2.1.20), if u|Γ = g and

(2.1.14) is true for all v ∈ H1
0 (Ω).

Suppose we can find a function u0 with u0|Γ = g, then w = u−u0 solves the homogeneous

problem

L[w] = L[u]− L[u0] = f − L[u0] in Ω

w = 0 on Γ,

due to the linearity of L. Now we can reconstruct the solution u ∈ H1(Ω) of the inhomo-

geneous problem from w and u0.

The inhomogeneous problem does not have a solution for every given boundary g ∈ L2(Γ).

8



2.1. ANALYSIS

Neumann boundary

Consider (2.1.10) with the Neumann boundary condition

∂u

∂ν
|Γ = g with g ∈ L2(Γ). (2.1.21)

Multiplying (2.1.10) with v ∈ H1(Ω) and integration by parts yields

∫
Ω

fv dx = −
∫

Ω

v∇ · (κ∇u) dx+

∫
Ω

cuv dx

=

∫
Ω

κ∇u · ∇v dx+

∫
Ω

cuv dx−
∫

Γ

vκ
∂u

∂ν
ds

=

∫
Ω

κ∇u · ∇v dx+

∫
Ω

cuv dx−
∫

Γ

vκg ds.

The last term does not disappear any more, since we chose v ∈ H1(Ω). Therefore, the

weak formulation of (2.1.10) with Neumann boundary conditions is∫
Ω

κ∇u · ∇v dx+

∫
Ω

cuv dx =

∫
Ω

fv dx+

∫
Γ

vκg ds, (2.1.22)

where u and v are in H1(Ω). u is the weak solution of (2.1.10) with (2.1.21). Existence

and uniqueness of this problem depend on c. Let κ ∈ L∞(Ω), 0 < κ0 ≤ κ(x), c ∈ L∞(Ω),

f ∈ L2(Ω), g ∈ L2(Γ).

Lemma 2.1.15. Assume c(x) ≥ c0 > 0. Then (2.1.22) has a unique solution u ∈ H1(Ω).

Lemma 2.1.16. Assume c = 0. If∫
Ω

f(x) dx = −
∫

Γ

κ(s)g(s) ds, (2.1.23)

there exist solutions of (2.1.10) with (2.1.21) which differ by an additive constant. By

postulating
∫

Ω
u(x) dx = 0, the solution becomes unique.

The solvability condition in the second case can be derived easily by setting v = 1 and

c = 0 in (2.1.22).

Periodic boundary

If periodic boundary conditions in a certain direction are used, the upper boundary of

the computational domain in this direction is neighbouring the lower boundary. In many

applications, it is quite common to use this type of boundary at least in some directions.

Therewith one avoids the necessity to set values for the Dirichlet or Neumann boundary

9



2. THE GENERALISED POISSON EQUATION

conditions — which sometimes cannot easily be done — since the boundaries of the

computational domain are now connected to each other. Then, the region Ω is not a subset

of Rn any more. E.g. in two spatial dimensions, Ω with periodic boundary conditions

in the second direction can be thought of as a cylinder, a two-dimensional manifold, as

depicted in Figure 2.1. Periodic boundaries can easily be mixed with other types of

boundary conditions. From the mathematical point of view, there are only few changes

which affect more the numerical implementation than the analytical part.

Figure 2.1: A two-dimensional rectangular domain with periodic boundary conditions can
be thought of as the shell of a cylinder.

2.2 Applications in Astrophysics

The Generalised Poisson Equation (2.1.10) arises in many (astro)physical problems. In

ANTARES, these are mainly the simulation of magnetohydrodynamics and conservative

versions of the Euler equations. The derivation of (2.1.10) in these contexts is presented

here in a nutshell.

2.2.1 Magnetohydrodynamics

If a fluid is (electrically) conductive, the Navier-Stokes equations do not sufficiently model

the dynamics of the fluid, since it interacts with the electromagnetic field B. On the

surface of the sun, all fluids are conductive, and therefore the magnetohydrodynamic

(MHD) equations should be used to model the dynamics. The following description of

the modelling procedure is mainly based on [11] and [9].

The MHD equations in three dimensions determine the time evolution of the fluid. Fur-

thermore,

∇ ·B = 0,

the electromagnetic field is divergence-free, since there are nor magnetic monopols nor

electrical charges. From the analytic point of view, if the intial condition B|t=0 is
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divergence-free, the time evolution does not violate this condition. But in the numer-

ical simulation, this is not true any more. Instead, after some time steps,

∇ ·B = err,

where err is an error function. One assumes that

err = ∆φ for some real-valued function φ,

which is of the form (2.1.10) with κ(x) = 1, c(x) = 0 and f(x) = −err(x). By solving

the above equation, we get a correction term φ for B such that

Bnew := B −∇φ

is divergence-free.

2.2.2 Pressure Update for the Euler Equations

The Euler equations govern the dynamics of a fluid without friction. Therein, the

momentum equation in two dimensions is given by(
ρu

ρv

)
t

+

(
ρu2

ρuv

)
x

+

(
ρuv

ρuv2

)
y︸ ︷︷ ︸

advection part

+

(
px

py

)
︸ ︷︷ ︸

non-advection part

= 0

with ρ being the density, ~u = (u, v)T the velocity field and p the pressure. ρ~u is called

the momentum of the fluid. Using the advection part, an intermediate value

(ρ~u)? = (ρ~u)n −∆t

( ρu2

ρuv

)
x

+

(
ρuv

ρuv2

)
y


of the updated momentum can be calculated. The momentum at time tn+1 = tn + ∆t can

now be determined with an Euler forward step by

(ρ~u)n+1 − (ρ~u)?

∆t
= −∇p. (2.2.1)

Since ρt = −∇ · (ρ~u), we can calculate ρn+1 = ρ?. Dividing by ρn+1 and taking the

divergence yields

∇ · ~un+1 = ∇ · ~u? −∆t∇ ·
(
∇p
ρn+1

)
.

If the flow is incompressible, ∇ · ~un+1 = 0, then

11



2. THE GENERALISED POISSON EQUATION

−∇ ·
(
∇p
ρn+1

)
= −∇ · ~u

?

∆t

is of the form (2.1.10) with κ = 1
ρn+1 and f = −∇·~u?

∆t
. Once pn+1 is determined in this

way, (ρ~u)n+1 can be calculated by (2.2.1).

If the flow is compressible, more complicated calculations must be performed which can

be found in [10], but again lead to an equation of the form (2.1.10).
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Chapter 3

Numerical Methods

There are a lot of different methods to solve the Generalised Poisson Equation numerically

but only few of them are suitable for the purpose of this work. The latter will be presented

in this chapter.

To solve the Generalised Poisson Equation with given boundary conditions, (2.1.10) must

be transformed into a linear system. Therefore, the equation must be discretised over

a numerical grid. The most intuitive approach is to replace the first and second spatial

derivative by the corresponding (central) difference quotient, i.e. in one spatial dimension

with given grid {xi : i = 1, . . . , n}

∂u

∂x
→ u(xi+1)− u(xi−1)

xi+1 − xi−1

,

∂2u

∂x2
→ u(xi+1)− 2u(xi) + u(xi−1)

(xi+1 − xi)(xi − xi−1)

and analogously for higher dimensions.

But for (2.1.10), the Finite Difference Method as it is described above leads to a nonsym-

metric linear system since the first difference quotient is not symmetric. This has the big

disadvantage that one cannot use the Conjugate Gradient algorithm to solve it. There-

fore, I decided to use the Finite Element Method for the discretisation of the differential

equation as described in 3.2 and Appendix A.

After the discretisation of the differential equation, the resulting sparse linear system must

be solved. To solve sparse linear systems on a single processing entity (PE), there are a

lot of algorithms. A description of the CG algorithm, which is one of the most common

and effective methods, can be found in 3.3.

Matrices arising from the discretisation of elliptic operators usually have a high condition

number and due to that, the CG algorithm converges slowly. Therefore, the idea of

13



3. NUMERICAL METHODS

preconditioning was introduced to lower the condition number of the linear problem.

This method will be presented in 3.4.

The dimension of the linear system equals the number of grid points in the simulation.

In most applications, it is necessary to choose such a huge number of grid points that a

single PE cannot handle the amount of data. Therefore the need of parallel computing

arises, but this imposes special requirements on the numerical methods. Work must be

split in several equal sized parts and transferred to each PE. From the local solutions, the

global solution must be assembled. In section 3.1, the general design and idea of parallel

computing will be introduced briefly.

The Schur Complement Method is a way to solve the linear system corresponding to

(2.1.10) in parallel. It will be described in 3.5.

3.1 Parallel Computing

Moore’s Law, according to which the number of transistors on a chip doubles every 18

months, probably will not be valid any more in some years. Instead, the number of cores

on a chip will grow which enforces the need of parallel programming.

The practical relevance of (three-dimensional) hydrodynamic simulations depend on the

resolution of the numerical grid and therefore on the number of grid points. E.g. for the

investigation of turbulent flows on the solar surface, a resolution of 2 to 3 km is needed

for a box of 6 Mm horizontal latitude. But increasing the number of grid points means

simultaneously increasing the need of computation time and memory of the program.

This leads to the necessity of parallel programming, since a single PE cannot execute the

simulation in an acceptable amount of time nor can it provide enough memory for the

simulation.

Parallel programming implies that the computational work is divided into several equal

sized parts each of which are executed on separate PE’s. From the resulting local solutions

the global solution must be assembled. Therefore, parallelisation means distribution of

work and data. The distributed work must be synchronised and communicated.

When designing a parallel program, there are two criteria which indicate a ”good” paral-

lelisation. The first one is load balancing, which means that the work is distributed such

that the idle times of the PE’s are minimised. The second one is optimal speedup, i.e. the

program should run twice as fast if twice as many PE’s are employed. Therefore, there

should be as little effort for synchronisation and communication as possible. Good load

balancing is a pre-requisite for optimal speedup.

Within the Fortran programming language, there are mainly two programming models

to do this. In the OpenMP model, several PE’s do work on data stored in a common
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memory. Therefore, no data decomposition is needed and no communication between the

PE’s takes place. Only the work is decomposed to the PE’s.

In the Message Passing Interface (MPI) model, each PE has its own memory and

therefore, work and data must be decomposed. MPI is much more powerful than OpenMP,

but at the same time imposes much more work to the programmer, since the user must

specify work and data distribution as well as the communication between the PE’s. In

3.1.1, more information about the advantages and difficulties of MPI can be found.

Typically, to define the decomposition of data and work, domain decomposition is em-

ployed. According to this parallelisation technique, the computational domain is divided

into as many subdomains as PE’s are used. This will be described in 3.1.2.

Most of the information from this chapter is taken from [16].

3.1.1 The Message Passing Interface

Introduced in 1994, the Message Passing Interface (MPI) is a standard developed

by the MPI Forum which provides a library of parallel routines for Fortran and C/C++

programs. In this library, operations for communication and message passing between

the PE’s are defined which can be used in the parallel program by subroutine calls (in

Fortran90).

MPI is a distributed memory parallel programming model, i.e. each PE has its own

memory and therefore its own data. For the designer of the parallel application, this

means that he must not only specify the decomposition of computational work, but also

the decomposition of data.

Therefore, MPI provides two modes of communication.

(i) Point-to-Point Communication. Only two PE’s are involved, the first one as

sender and the second one as receiver. The user must define the sending PE, the

receiving PE, the message as well as the datatype and the length of the message.

(ii) Global Communication. In global operations, all PE’s in the parallel simulation

are involved. There are many types of global operations, e.g. one process sends a

message to all others or one process collects information from all processes.

All MPI routines are completely described in the MPI Standard [5].

Since MPI is an open standard, there are a lot of implementations of MPI available. The

most common ones are MPICH and OpenMPI. For the parallel program to be portable

to different platforms, this must be considered in the design of the application.

The main advantage of MPI compared to other parallel architectures is that with MPI,

the best speedup can be achieved, and hundreds or thousands of PE’s can be used. On
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the other hand, the user must invest a considerable amount of work in the design of the

parallel program.

3.1.2 Domain Decomposition

The Domain Decomposition Method is a way to define how work and data is decomposed

for a MPI parallelisation. The latter can be most easily done by decomposing the global

computational domain such that every PE has its own equal sized local domain.

On a rectangular or cuboidal domain, the number of PE’s in the simulation is determined

by the number of subdivisions in x, y and z direction. In most cases, the local domain

of each PE is again a rectangle or a cuboid. For the solution of the Generalised Poisson

Equation, all local solutions on the subdomains must interchange information. This can

be done with the Schur Complement Method as described in 3.5.

Please see [15] for further information on this subject and for the implementation of this

technique in ANTARES.

3.2 The Finite Element Method

With the Finite Element Method (FEM), differential operators can be discretised

and transformed to linear systems. Starting with the weak formulation of the problem,

the key idea thereby is to choose a finite-dimensional ansatz space in which we look for

an approximate solution.

The Finite Element Method has three main advantages compared to Finite Differences.

First, more general geometries can be considered without much additional work. Second,

the resulting linear system is always symmetric and positive definite. Third, there are

only few restrictions concerning the smoothness of the functions involved. The resulting

approximate solution will in general only fulfil the weak formulation of the problem.

Please see [1] and [7] for details which will not be elaborated on the next pages.

An implementation of the Finite Element Method in one, two and three spatial dimensions

is described in Appendix A.

3.2.1 Methodology

Consider (2.1.10) with homogeneous Dirichlet boundary conditions. Let Ω be a bounde-

dregion, κ, c ∈ L∞(Ω) such that 0 < κ0 ≤ κ(x) ≤ κ∞ and 0 ≤ c(x) ≤ c∞. Furthermore,

f ∈ L2(Ω). As already shown in 2.1.2, (2.1.10) can be reformulated to∫
Ω

κ∇u · ∇v dx+

∫
Ω

cuv dx =

∫
Ω

fv dx,
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where u ∈ H1
0 (Ω) is the weak solution of (2.1.10) if this holds true for all v ∈ H1

0 (Ω). As

in the proof of 2.1.12, we define the bilinear form a by

a : H1
0 (Ω)×H1

0 (Ω)→ R, a(u, v) =

∫
Ω

κ∇u · ∇v dx+

∫
Ω

cuv dx, (3.2.1)

which is symmetric, continuous on H1(Ω) and there exists β ∈ R, such that β ‖u‖2
H1(Ω) ≤

a(u, u). Furthermore, l defined by

l : H1
0 (Ω)→ R, l(v) =

∫
Ω

fv dx, (3.2.2)

is a bounded linear functional on H1
0 (Ω). The weak solution of (2.1.10) can therefore be

characterised as solution of

a(u, v) = l(v) for all v ∈ H1
0 (Ω). (3.2.3)

Next, a finite-dimensional ansatz space Vh ⊂ H1
0 (Ω) is selected in which we look for an

approximate solution. The most common example – and the space considered in this

work – is the space of linear splines. Let n ∈ N be the dimension of Vh. The approximate

solution uh ∈ Vh must fulfil

a(uh, vh) = l(vh) for all vh ∈ Vh. (3.2.4)

If {φ1, . . . , φn} is a basis of Vh, then by setting uh =
∑

i uiφi and vh = φj one gets directly

the j-th line of the linear system Auh = b, where

A = [a(φi, φj)]ij ∈ Rn×n, b = [l(φj)]j ∈ Rn (3.2.5)

and uh = [u1, . . . , un]T is the vector of the unknown coefficients of uh in Vh. The matrix

A is called stiffness matrix.

Lemma 3.2.1. The matrix A defined by (3.2.5) is symmetric and positive definite.

Proof. The symmetry of A = [aij] is obvious:

aij = a(φi, φj) = a(φj, φi) = aji, i, j = 1, . . . , n.

For v = [v1, . . . , vn]T ∈ Rn and the associated function v =
∑

i viφi ∈ Vh it follows that

〈v, Av〉Rn =
n∑

i,j=1

vivja(φi, φj) = a(
n∑
i=1

viφi,

n∑
j=1

vjφj) = a(v, v).

Since 0 ≤ β ‖v‖2
H1(Ω) ≤ a(v, v), A is positive definite.

17



3. NUMERICAL METHODS

Therefore Auh = b has a unique solution uh ∈ Rn, from which we get directly the

approximate solution uh ∈ Vh.
The approximation error ‖u− uh‖H1(Ω) can be controlled by an appropriate choice of the

ansatz space, which is shown in the following lemma.

Lemma 3.2.2 (Céa). Let u denote the weak solution of (2.1.10) with homogeneous Dirich-

let boundary conditions and uh its approximate solution in Vh ⊂ H1
0 (Ω). Then

‖u− uh‖H1(Ω) ≤
α

β
inf
vh∈Vh

‖u− vh‖H1(Ω) , (3.2.6)

with α, β from Lemma 2.1.11.

Proof. First we calculate:

a(u− uh, u− uh) = a(u− uh, u− vh) + a(u, vh − uh)− a(uh, vh − uh)

= a(u− uh, u− vh) + l(vh − uh)− l(vh − uh) = a(u− uh, u− vh).

Then

β ‖u− uh‖2
H1(Ω) ≤ a(u− uh, u− uh) = a(u− uh, u− vh)

≤ α ‖u− uh‖H1(Ω) ‖u− vh‖H1(Ω) ,

using the two estimates from lemma 2.1.11. After dividing by β ‖u− uh‖H1(Ω), the propo-

sition is proven.

3.2.2 Boundary Conditions

Until now, we only considered homogeneous Dirichlet boundary conditions. Now, we want

to incorporate the considerations from 2.1.4 into the framework of the Finite Element

Method.

Inhomogeneous Dirichlet boundary

As before, we choose a function u0 ∈ H1(Ω) such that u0|Γ = g. By setting w = u− u0 ∈
H1

0 (Ω), we get an approximate solution wh ∈ Vh for the problem

a(w, v) = l(v)− a(u0, v) for all v ∈ H1
0 (Ω). (3.2.7)
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From Lemma 3.2.2, for the approximation error it follows that

‖u− uh‖H1(Ω) = ‖w − wh‖H1(Ω) ≤
α

β
inf
v∈Vh

‖w − v‖H1(Ω) . (3.2.8)

Neumann boundary

If a Neumann boundary (2.1.21) is given, the right-hand side of (3.2.3) changes to

l(v) =

∫
Ω

fv dx+

∫
Γ

gκv ds. (3.2.9)

Furthermore, the ansatz space Vh is now a subspace of H1(Ω) and no longer of H1
0 (Ω).

Again, one must distinguish between the cases c(x) = 0 and c(x) ≥ c0 > 0. In the first

case the solution is not unique as described above.

Periodic boundary

If periodic boundary conditions are used, the ansatz space must be chosen accordingly.

Let Ω be a two-dimensional rectangular manifold with homogeneous Dirichlet boundary

conditions in the first and periodic boundary conditions in the second direction. Then Ω

can be thought of as a cylinder, and

v ∈ H1
0 (Ω)⇔v ∈ L2(Ω),∇v ∈ L2(Ω),

v(·, y1) = v(·, y2),∇v(·, y1) = ∇v(·, y2), v(x1, ·) = 0, v(x2, ·) = 0,

where x1, x2, y1, y2 ∈ R are the bounds of the domain in x respective y direction. For all

basis functions in the ansatz space, it is now required that φi(·, y1) = φi(·, y2).

3.3 The Conjugate-Gradient Algorithm

The Conjugate-Gradient (CG) algorithm is an iterative method to solve linear sys-

tems Au = b, where A ∈ Rn×n is symmetric and positive definite and u, b ∈ Rn. For

sparse systems of large dimension, it is more suited than direct methods such as the LU

or the Cholesky decomposition since it requires less memory and is in most cases much

faster.

Instead of inverting the system directly, the quadratic functional

Φ(u) =
1

2
〈Au, u〉 − 〈u, b〉, (3.3.1)
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which has an unique minimum since A is positive definite, is minimised. Given an ini-

tial guess u(0), a better approximation to the solution is found iteratively by the ansatz

u(k+1) = u(k) + αkd
(k), where the vectors d(k) are orthogonal with respect to the A inner

product, i.e.

〈d(k), d(l)〉A := 〈Ad(k), d(l)〉 = 0 for k 6= l, (3.3.2)

and the step width αk is given by αk =
‖r(k)‖2
〈d(k),d(k)〉A

, where r(k) := b−Au(k) is the residual.

The algorithm 1 arrives at the unique exact solution u after at most n iterations. More

information can be found in [17] or [7].

Algorithm 1 The CG algorithm.

1: Let Au(0) = b be given.
2: r(0) = b− Au(0), d(0) = r(0), k = 0
3: while

∥∥r(k)
∥∥ > tol do

4: k = k + 1
5: αk =

∥∥r(k)
∥∥2
/〈Ad(k), d(k)〉

6: u(k+1) = u(k) + αkd
(k)

7: r(k+1) = r(k) − αkAd(k)

8: βk =
∥∥r(k+1)

∥∥2
/
∥∥r(k)

∥∥2

9: d(k+1) = r(k+1) + βkd
(k)

10: end while

The norm of the residual
∥∥r(k)

∥∥ is not an adequate way to measure the approximation

error, since it can be changed arbitrarily by rescaling the equation as described in [3, p. 57].

Numerical experiments by the author indicate that a good choice for tol is 1.0·10−16·
∥∥r(0)

∥∥
such that the relative error is reduced significantly, which is a quite common way to define

the stop criterion. E.g. in [13], it is proposed to set tol to 1.0 · 10−16 ·
∥∥r(0)

∥∥.

The convergence speed of algorithm 1 corresponds directly to the condition number of

A as stated in [7, p. 309]. The runtime costs of the algorithm depend mainly on the

computation time of the matrix-vector product Ad(k) and the inner product.

3.4 The Preconditioned CG Algorithm

Since the convergence speed of algorithm 1 depends on the condition number of A, one

can try to accelerate the convergence by solving the system

M−1Au = M−1b, (3.4.1)

if A and M are symmetric and positive definite. This system has the same solution as
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the original one, but, if M is chosen wisely,

cond(M−1A) < cond(A). (3.4.2)

M−1A is symmetric and positive definite with respect to the M inner product

〈u, v〉M := 〈Mu, v〉 = 〈u,Mv〉. (3.4.3)

If one replaces the usual Euclidean inner product in algorithm 1 by the M inner product,

the algorithm 2 is obtained. In there, 〈·, ·〉 still denotes the Euclidean inner product.

Algorithm 2 The preconditioned CG (PCG) algorithm.

1: Let Au(0) = b be given.
2: r(0) = b− Au(0)

3: Solve Ms(0) = r(0)

4: d(0) = s(0), k = 0
5: while 〈r(k), s(k)〉 > tol do
6: k = k + 1
7: αk = 〈r(k), s(k)〉/〈d(k), Ad(k)〉
8: u(k+1) = u(k) + αkd

(k)

9: r(k+1) = r(k) − αkAd(k)

10: Solve Ms(k+1) = r(k+1)

11: βk = 〈r(k+1), s(k+1)〉/〈r(k), s(k)〉
12: d(k+1) = s(k+1) + βkd

(k)

13: end while

In the preconditioned algorithm, the approximation error can be estimated by 〈r(k), s(k)〉,
as proposed in [3, p. 281].

Compared to algorithm 1, it is now additionally necessary to solve the system Ms(k+1) =

r(k+1) in every iteration. Therefore, it is essential that M is easily invertible. The gain in

convergence speed by preconditioning, which results in less iterations needed to reach the

stop criterion, must more than compensate the additional work in algorithm 2, i.e. the

determination of M and its repeated inversion.

Therefore, the main problem of preconditioning is to find a matrix M which is symmetric,

positive definite, easily invertible and in some sense similar to A. The best preconditioner

would be A−1 because then we had convergence in one step, but in most cases we cannot

calculate the inverse of A with reasonable effort. Setting M = I, where I ∈ Rn×n is the

identity matrix, we arrive at the CG algorithm.

In the following, two possible and well-tested choices for M are presented.
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3.4.1 The Symmetric Gauss-Seidel Preconditioning

Let A ∈ Rn×n be symmetric and positive definite. Then A can be written as

A = D − LT − L, (3.4.4)

where D is the diagonal matrix with the same diagonal entries as A and L is a lower

triangle matrix with zeroes on the main diagonal and the negative entries of A elsewhere.

For the Symmetric Gauss-Seidel (SGS) Preconditioning, one sets

M = (D − L)D−1(D − LT ). (3.4.5)

M can be inverted directly since it has Cholesky factor1 (D − L)D−
1
2 .

By

M = DD−1D − LDD−1 −D−1DLT + LD−1LT = A+ LD−1LT ,

it is obvious that M is in a non-formal way similar to A and therefore also its inverse to

A−1.

The above M is a good preconditioner for A since no additional effort is imposed in

determining M and it can be inverted easily because we know its Cholesky factor. Fur-

thermore, imposing periodic boundary conditions is straightforward. It is not required

that A is sparse or has a small bandwidth.

3.4.2 The Incomplete Cholesky Decomposition

We begin with a definition of the Cholesky decomposition of matrix A.

Definition 3.4.1. Let A ∈ Rn×n be given. A factorisation A = LLT , where L is an lower

triangular matrix, is called Cholesky decomposition of A.

Lemma 3.4.2. If A ∈ Rn×n is symmetric and positive definite, there exists a Cholesky

decomposition of A.

See [7, p. 61] for a proof of this lemma.

The Cholesky decomposition of a symmetric and positive definite matrix A has the same

bandwidth as A, but all entries within the bandwidth are non-zero in general. The matrix

A determined according to 3.2 is sparse, but has a huge bandwidth. Thus it is not advisible

to use the Cholesky decomposition to solve the linear system Au = b.

1L ∈ Rn×n is called the Cholesky factor of A ∈ Rn×n if L is a lower triangle matrix and A = LLT .
Since a triangle matrix can be inverted by one matrix-vector multiplication, once the Cholesky factor of
A is known, A can be inverted directly in two steps.
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Definition 3.4.3. Let A ∈ Rn×n be given. The sparsity pattern PA of A is defined by

PA := {(i, j) : aij 6= 0} , i, j ∈ {1, . . . , n} . (3.4.6)

Alternatively, the entry at position (i, j) of the Cholesky decomposition is calculated only

if (i, j) ∈ PA. This leads to the Incomplete Cholesky Decomposition (ICD) which

has the same amount of non-zero entries and the same sparsity pattern as A and can

be used as a preconditioner in algorithm 2. Its determination is described in algorithm

3. In fact, the (complete) Cholesky decomposition is in some sense a limit case of the

incomplete decomposition, since by replacing PA in algorithm 3 by {(i, j) : 1 ≤ i, j ≤ n}
we arrive at the complete decomposition. This observation motivates the following idea

first proposed by [12].

Algorithm 3 Determination of the Incomplete Cholesky Decomposition (see [13, p. 212]).

1: Let A = [aij]ij be given and L = [lij]ij be a lower triangle matrix.
2: for k = 1 to n do

3: lkk =

akk − k−1∑
j=1

(k,j)∈PA

l2kj


1
2

4: for i = k + 1 to n do
5: if (k, i) ∈ PA then

6: lik = 1
lkk

aik − k−1∑
j=1

(i,j)∈PA,(k,j)∈PA

lijlkj


7: end if
8: end for
9: end for

In the two-dimensional case with Dirichlet boundary conditions on all sides, the matrix

A from the discretisation of the differential operator L over a rectangular grid is of a

very regular structure, as shown in Figure 3.1. PA only consists of five diagonals, so that

there are only three diagonals where L from ICD has non-zero entries. Calculating the

product LLT we get a matrix K1 which has non-zero entries on seven diagonals. Using

its sparsity pattern PK1 instead of PA in algorithm 3, we get a matrix L1 which has

five diagonals with non-zero entries. We suppose that the product (L1L
T
1 )−1 is a better

approximation to A−1 then (LLT )−1 because it is a better approximation to the complete

Cholesky decomposition. This which will be verified by numerical experiments in REF!!!!.

This procedure can be repeated, and thereby better preconditioners for A can be ob-

tained. The main drawback is the need for additional memory and the time spent in the

determination of the preconditioner. The number of additional diagonals in the sparsity
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pattern of the preconditioner L is usually referred to as number of fill-in η. Once η is

fixed,
⌊
η+1

2

⌋
diagonals are filled above the outer diagonal of A, whereas the remaining

ones are filled below the inner diagonal. If the maximal number of fill-in is reached, the

(complete) Cholesky decomposition is calculated, which is not effective except for very

small systems.

Therefore, it is up to the user to decide how many additional diagonals should be included

in the calculation of the preconditioner. Numerical experiments suggest for matrices with

regular pattern as shown in Figure 3.1, that the bigger the distance to the outer and

the inner diagonal of A gets, the smaller is the magnitude of the entries of the Cholesky

decomposition.

This does not work in general if periodic boundary conditions are used because then A

has entries away from the five diagonals depicted in Figure 3.1. Additional effort has to

be made to cover this case, which is described in [12, p. 142 – 145]. There the three-

dimensional case is discussed as well.

The effect of preconditioning as well as other relevant numerical data is depicted in chapter

4.

Figure 3.1: Sparsity pattern of A in two
dimensions (from [12, p. 136]).

Figure 3.2: The magnitude of the en-
tries of the Cholesky decomposition gets
smaller along the arrows (from [12, p.
141]).

For matrices with a less regular sparsity pattern, this procedure will not generally lead

to good preconditioners. Other criteria than ”the position (i, j) is in PA” may be more

suitable to decide whether a distinct position should be included in the incomplete de-

composition. For more details see [17, p. 296 – 320], [8] or [2]. Fortunately, the method
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3.5. THE SCHUR COMPLEMENT METHOD

described in [12] is well suited for the matrices occurring in this work, as it is stated e.g.

in [8, p. 7].

To illustrate the above considerations, in Figure 3.3 the condition numbers of the matrix

A corresponding to the discretisation of L = −∆ over a rectangular equidistant grid and

of two preconditioned systems are plotted with MATLAB. The first preconditioner is the

Incomplete Cholesky Decomposition as described in algorithm 3 and the second one ICD

with some additional fill-in. Two main observations can be made:

• The condition number increases rapidly when the number of grid points is increased.

• The preconditioners lower the condition number essentially.

Figure 3.3: Condition number of the matrix corresponding to the discretisation of L = −∆
on an equidistant grid and of the preconditioned matrices with ICD(0) and drop tolerance
0.05 (see MATLAB help for details).

3.5 The Schur Complement Method

Using the Finite Element Method described in 3.2, the equation (2.1.10) is transformed

into a linear system Au = b the dimension of which is the number of grid points used in the

numerical simulation. When this number gets large such that a single processing entity

cannot provide enough memory or cannot solve the problem e.g. by the CG algorithm

25



3. NUMERICAL METHODS

described in 3.3 in an adequate amount of time, the work must be split on several PE’s.

Thereby, the main goals are to minimise the parallelisation overhead and to obtain a good

scalability.

The Schur Complement Method is one way to achieve this. The procedure will be

described in the next paragraphs. Further details can be obtained from [6, p. 200–228]

and [17, p. 451–465].

3.5.1 Methodology

The main goal of this section is to develop a method to transform the linear problem

Au = b with A ∈ Rn×n, u, b ∈ Rn, n ∈ N, (3.5.1)

which should be solved for given A and right-hand side b, into (several) systems of smaller

dimension.

We begin with a definition of the Schur Complement Matrix.

Definition 3.5.1. Let A ∈ Rn×n be given, n = n1 + n2. If A is of the form

A =

(
A1,1 A1,2

A2,1 A2,2

)
(3.5.2)

with certain submatrices A1,1 ∈ Rn1×n1 , A1,2 ∈ Rn1×n2 , A2,1 ∈ Rn2×n1 and A2,2 ∈ Rn2×n2

such that A1,1 is invertible, one can define the Schur Complement Matrix SA∈ Rn2×n2

by

SA = A2,2 − A2,1A
−1
1,1A1,2. (3.5.3)

The system Au = b from above is equivalent to(
I 0

A2,1A
−1
1,1 I

)(
A1,1 A1,2

0 SA

)(
u1

u2

)
=

(
b1

b2

)
, (3.5.4)

where we set u = (u1, u2)T , b = (b1, b2)T with u1, b1 ∈ Rn1 , u2, b2 ∈ Rn2 and I is the

identity matrix of suitable dimension.

Introducing the temporary variable v = (v1, v2)T , we can reformulate Au = b to

v1 = b1, v2 = b2 − A2,1A
−1
1,1v1,

u2 = S−1
A v2 (Schur Complement Equation), u1 = A−1

1,1(v1 − A1,2u2).
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3.5. THE SCHUR COMPLEMENT METHOD

If SA is invertible, these systems can be solved successively. The dimension of the systems

is n1 or n2, whereby we succeeded in reducing the dimension of the linear systems to be

solved.

We already remarked that the stiffness matrix A from 3.2 defined by (3.2.5) is always

symmetric and positive definite. We state that if a matrix is symmetric and positive

definite, it is invertible. Furthermore, A−1 as well as A1,1 are symmetric and positive

definite under this assumption.

Lemma 3.5.2. Suppose A is symmetric and positive definite and define SA by (3.5.3).

Then the following is true:

(i) SA is also symmetric and positive definite.

(ii) If w ∈ Rn2, then S−1
A w = R2A

−1(0, w)T , where R2(w1, w2)T = w2.

Proof. From

det(A) = det

(
I 0

A2,1A
−1
1,1 I

)
· det

(
A1,1 A1,2

0 SA

)
= 1 · det(A1,1) · det(SA)

it follows directly that SA is invertible since A and A1,1 are. Furthermore,

A−1 =

(
A−1

1,1 −A−1
1,1A1,2S

−1
A

0 S−1
A

)(
I 0

−A2,1A
−1
1,1 I

)

=

(
A−1

1,1 + A−1
1,1A1,2S

−1
A A2,1A

−1
1,1 −A−1

1,1A1,2S
−1
A

−S−1
A A2,1A

−1
1,1 S−1

A

)
.

Now we can proof the two claims separately.

(i) Since A−1 is symmetric and positive definite, from the above calculation it follows

that SA is so again.

(ii) We calculate

R2A
−1

(
0

w

)
= R2

(
−A−1

1,1A1,2S
−1
A w

S−1
A w

)
= S−1

A w.

Therefore, one can use the CG algorithm described in 3.3 to solve the systems mentioned

above. We summarise these considerations in algorithm 4.
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Algorithm 4 The serial Schur Complement Method.

1: Let A =

(
A1,1 A1,2

A2,1 A2,2

)
be symmetric and positive definite.

2: u = (u1, u2)T , b = (b1, b2)T

3: v1 = b1

4: v2 = b2 − A2,1A
−1
1,1v1

5: u2 = S−1
A v2

6: u1 = A−1
1,1(v1 − A1,2u2)

Since we explicitly know the matrix A1,1 or can at least determine it without much effort,

there is no problem in solving it. This can be achieved either by the CG algorithm

or by calculating its Cholesky decomposition, if the system is small enough such that

this can done with reasonable computation costs. In contrast, we initially do not have

any information about SA. There are two possibilities to solve the Schur Complement

Equation:

(i) SA can be determined explicitly by (3.5.3). This is quite expensive since the linear

system A1,1u1 = b1 most be solved n2 times. SA is not sparse in general. After the

initialisation of SA, the CG algorithm or a Cholesky decomposition could be used

to solve the system.

(ii) If the CG algorithm is employed to solve SAu2 = v2, every step is a matrix-vector

multiplication with SA. Therefore, only the result of the application of SA to a

vector is needed.

In the following, we will mainly consider the second possibility since the explicit determi-

nation of SA is too cumbersome in most cases. Especially in the context of parallelisation

it will be obvious that the (preconditioned) CG algorithm is the best way to solve the

Schur Complement Equation.

3.5.2 Parallelisation

In the previous paragraph, we split the original problem into two systems with smaller

dimensions which must be solved subsequently. The next target is to make algorithm 4

suitable for parallel computing.

As already stated, in algorithm 4 linear systems with A1,1 and SA must be solved. This
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3.5. THE SCHUR COMPLEMENT METHOD

can be done in parallel, if A1,1 ∈ Rn1 has block structure, i.e.

A1,1 =


D1 0

D2

. . .

0 Dp

 , (3.5.5)

where p ∈ N, D1 ∈ Rn11×n11 , . . . , Dp ∈ Rn1p×n1p and n11 + · · ·+ n1p = n1. Analogously we

write

A1,2 = (B1, B2, . . . , Bp)
T and

A2,1 = (C1, C2, . . . , Cp) ,

where B1 ∈ Rn11×n2 , . . . , Bp ∈ Rn1p×n2 and C1 ∈ Rn2×n11 , . . . , Cp ∈ Rn2×n1p . Consequently,

SA = A2,2 −
p∑
j=1

CjD
−1
j Bj, (3.5.6)

and for w = (w1, . . . , wp)
T ∈ Rn1 it follows that

A1,1w =


D1 0

D2

. . .

0 Dp




w1

w2

...

wp

 =


D1w1

D2w2

...

Dpwp

 . (3.5.7)

If the CG or the PCG algorithm is employed to solve the linear systems, most time is spent

in the matrix-vector multiplication with A1,1 and SA. With the above considerations, both

operations can be done in parallel employing p PE’s. Furthermore, the multiplication with

A1,2 and A2,1 can be executed independently by each PE. This is summarised in algorithm

5 where the FOR loops can be executed independently.

Algorithm 5 The parallel Schur Complement Method.

1: for j = 1 to p do
2: Solve Djz1j = b1j

3: Determine Cjz1j

4: end for
5: v2 = b2 −

∑p
j=1Cjz1j

6: Solve the Schur Complement Equation SAu2 = v2 in parallel
7: for j = 1 to p do
8: Solve Dju1j = b1j −Bju2

9: end for
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Obviously, the global summation
∑p

j=1Cjz1j and the sending of the values of u on the

interface nodes are the only communication operations in this algorithm, except for the

(yet undescribed) part where the Schur Complement Equation is solved.

It now remains to transform A from Section 3.2 into the desired structure. The parallel

algorithm to solve the Schur Complement Equation will be a consequence of the following

considerations.

When the Domain Decomposition Method from paragraph 3.1.2 is employed, we have to

transform A in the form depicted above. The key idea thereby is a suitable renumbering

of the nodes. The procedure in two spatial dimensions can be outlined by the following

steps:

(i) Identification of the physical boundaries. If Dirichlet boundary conditions are given,

the corresponding nodes may not be considered in the following.

(ii) Identification of the domain boundaries. The nodes on one side of the boundary are

selected as interface nodes, e.g. the last nodes of the lower domain.

(iii) Renumbering of all nodes starting with the inner nodes (i.e. all nodes except of

the interface nodes) of one domain, then switching to the next domain and so on.

In the end, all interface nodes are numbered subsequently.

This numbering applied to a grid with 10× 8 nodes and four PE’s is illustrated in Figure

3.4. The resulting matrix A is depicted in Figure 3.5. Using the notation from above, n2

is the overall number of interface nodes, whereas n1 contains all inner nodes. n1j is the

number of nodes belonging to the domain j. In the context of Domain Decomposition,

Dj contains the coupling from the inner nodes of one domain to each other, Bj represents

the interface-to-subdomain coupling, Cj the subdomain-to-interface coupling and finally

SA the coupling of all interface nodes to each other.

Furthermore, A2,2 is the sum of contributions from every domain, i.e. A2,2 =
∑

iEi. The

parallel application of SA to a vector w ∈ Rn2 , as it occurs in the (P)CG algorithm, is

depicted in algorithm 6.

Algorithm 6 Application of SA to a vector in parallel.

1: Apply SA to w ∈ Rn2 .
2: for j = 1 to p do
3: Solve Djr1j = Bjw
4: Determine Ejw − Cjr1j

5: end for
6: SAw =

∑p
j=1Ejw − Cjr1j
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3.5. THE SCHUR COMPLEMENT METHOD

PE 1

1 2 3 43

4 5 6 44

7 8 9 45

59 60 61 46

PE 3

22 23 24 51

25 26 27 52

28 29 30 53

62 63 64 54

PE 2

10 11 12 47

13 14 15 48

16 17 18 49

19 20 21 50

PE 4

31 32 33 55

34 35 36 56

37 38 39 57

40 41 42 58

Figure 3.4: Numbering of a two-dimensional domain with Dirichlet boundary conditions
in the first and periodic boundary conditions in the second direction. 4 PE’s are employed.
For the nodes coloured in light grey a Dirichlet condition is given. The nodes in dark grey
are interface nodes.

We remark that the number of interface nodes adjacent to one domain is much smaller

than n2. In Bj and Cj, there are only entries contained corresponding to nodes on the

boundary of domain j. Therefore, only information for these nodes must be transferred

to PE j, which reduces the communication between the nodes significantly. In fact, in

two dimensions every interface node is adjacent to only two inner domains such that the

send and receive operations for this interface node in algorithm 6 must only be performed

between two PE’s. No global reduction operation is necessary, except for calculating the

global residual.

Of course, that the boundary may be broader than one node. But in the context of 3.2,

one node is sufficient since every node is only connected to its nearest neighbour. If e.g.

another ansatz space for the Finite Element Method is chosen or difference stencils of

higher order in a Finite Difference Method are chosen, more nodes must be contained in

the boundary. Furthermore, if a Finite Difference Method is employed, A and therefore

SA is in general not symmetric and positive definite. Neither the CG algorithm nor the

Cholesky decomposition can be employed.

In one or three spatial dimensions, a similar procedure leads to analogous results. In one

dimension using a one-node boundary, Dirichlet boundary conditions and p PE’s, there

are only p−1 boundary nodes, which means that SA is a (p−1)×(p−1) matrix. Thereby

the effort is justifiable to determine SA explicitly. Every PE must solve at most two linear
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Figure 3.5: Matrix associated with the numbering of the grid in Figure 3.4.
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systems, one for the upper and one for the lower boundary. The entries are gathered

at one PE where the Schur Complement Equation is solved in serial mode. In fact, this

might even be advisable since the system is so small that it can be solved directly.

When the CG algorithm is employed to solve the Schur Complement Equation, in every

application of SA as described in algorithm 6, the local block Dj must be inverted on

every PE. Therefore, the runtime costs of algorithm 5 mainly depend on how fast the

local problem can be solved repeatedly. If the Cholesky decomposition of Dj is known,

this can be done very effectively, but in most cases the dimension of Dj will be too large

such that the Cholesky decomposition cannot be calculated with reasonable effort. On

the other hand, once a preconditioner M is determined, it can be used in every step

without changes. In this case, it is justifiable to spend more time in the determination of

M as required e.g. in the context of an Incomplete Cholesky Decomposition with fill-in

described in 3.4.

The parallel performance as well as other interesting numerical data concerning the im-

plementation of the methods presented in this chapter are depicted in chapter 4.
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Chapter 4

Numerical Results

In this chapter, four two-dimensional test cases are presented with which the Schur Com-

plement Method is checked. Special attention was paid to the parallel performance of the

algorithm. Furthermore, some data is shown to illustrate certain issues of the numeri-

cal implementation. To solve the Schur Complement Equation, the (preconditioned) CG

algorithm is used as described in section 3.5.

4.1 Test Case 1

In the first test case, Poisson’s Equation −∆u = f is solved on a rectangular and equidis-

tant grid, with 400 nodes in each direction. In the x direction, homogeneous Dirichlet

boundary conditions are set, whereas the boundary in y direction is periodic. The latitude

of the computational domain is 1.5Mm× 2.25Mm. In all of the following pictures, the x

direction is horizontal and the y direction vertical.

The equation is solved twice with right-hand sides f1 and f2 as in figure 4.1 resp. 4.2.

In the following, these two cases are referred to by test case 1a resp. test case 1b. The

corresponding solutions u1 and u2 are shown in figure 4.3 resp. 4.4. f1 is constant in

y direction and has a discontinuity at the lower boundary in x direction. f2 is highly

oscillating in both directions.

In table 4.1, the effect of preconditioning the CG algorithm is described. The runtimes

t1 and t2 which are relative to the runtime without preconditioning indicate that the per-

formance of the Schur Complement Method can be improved significantly by improving

the performance of the local solver as it is done here by preconditioning. With an In-

complete Cholesky Decomposition with fill-in 8 or 10, the number of iterations in the CG

algorithm can be reduced by a factor 10, similar to the results in [12]. Thereby, niterations,1

and niterations,2 refer to the number of iterations in the CG algorithm to calculate the

right-hand side of the Schur Complement Equation. This results in a reduction of the
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Figure 4.1: Right-hand side f1 in test
case 1a.

Figure 4.2: Right-hand side f2 in test
case 1b.

Figure 4.3: Solution u1 in test case 1a. Figure 4.4: Solution u2 in test case 1b.
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Table 4.1 Influence of the choice of η for the Schur Complement Method.

η niterations,1 niterations,2 t1 t2
0 1164 1555 1.000 1.000
2 358 507 0.497 0.418
4 241 344 0.356 0.287
6 148 213 0.285 0.215
8 121 171 0.278 0.200
10 109 141 0.279 0.193

overall runtime by a factor 4.

As stop criterion of the CG algorithm, the median of 1.0 ·10−10, 1.0 ·10−16 · 〈s(0), r(0)〉 and

1.0 · 10−20 was chosen, whereas the iteration for the Schur Complement Equation stops, if

the residual is smaller than the median of 1.0 · 10−6, 1.0 · 10−16 · 〈r(0), r(0)〉 and 1.0 · 10−16,

which both are quite restrictive choices.

Figure 4.5: Logarithmic plot of the
residual for test case 1a.

Figure 4.6: Logarithmic plot of the
residual for test case 1b.

With the tool gprofiler, execution profiles of Fortran programs can be produced where the

number of calls and the amount of time spent in each subroutine can be calculated. The

result of profiling the Schur Complement Method with different values of η is presented in

table 4.2. The profiled run was executed on one PE. Since the boundary in y direction is

periodic, there is a ”inner” boundary and the Schur Complement Method can be applied.

Surely, it is generally not advisible to use this method with only one PE because this case

could be covered much faster by simply using the CG algorithm.

Increasing η, the number fo fill-in of the preconditioner L, results in much less iterations

of the CG algorithm, but also in more time spent in its inversion. Therefore, it is not

advisible to set η larger than 8 or 10, as the data in table 4.1 indicate.

For the values of η considered, the time spent in calculating the preconditioner L is always
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Table 4.2 Profiling the Schur Complement Method: breakdown by subroutines (without
sub-calls).

η overall runtime Apply (LLT )−1 Apply A 〈·, ·〉 CG algorithm
in s calls in % calls in % calls in % calls in %

2 585.34 12329 50.53 12329 16.41 24802 16.27 144 14.47
4 404.31 8467 50.09 8467 16.26 17081 16.08 147 14.22
6 304.40 5398 56.42 5398 13.46 10947 13.66 151 11.92
8 284.94 4408 61.41 4408 11.75 8969 11.47 153 10.28
10 275.04 3723 65.09 3723 10.22 7601 10.29 155 8.81
4 807.20 14401 43.01 14401 28.18 28943 14.69 141 12.43

Table 4.3 Illustration of the decrease in magnitude of the entries of the Incomplete
Cholesky Decomposition.

row (i, j − 1) (i+ 1, j − 1) (i+ 2, j − 1) (i+ 3, j − 1) (i+ 4, j − 1)
10−6· −0.7854 −0.3720 −0.1892 −0.1024 −0.0575
row (i+ 5, j − 1) (i− 4, j) (i− 3, j) (i− 2, j) (i− 1, j)

10−6· −0.0318 −0.0143 −0.0337 −0.0664 −1.8966

negligible. Therefore, it is not considered in table 4.2. This is not the case if η gets larger.

Employing algorithm 9 instead of 8 in the CG algorithm results in longer runtimes and

slower convergence due to rounding errors. The last line on table 4.2 is data from a run

where algorithm 8 was employed.

In the line corresponding to the node (i, j), the lower part of the matrix A has non-zero

entries in the rows corresponding to the nodes (i, j−1), (i−1, j) and (i, j). The additional

non-zero entries in the preconditioner L with fill-in η are therefore to the right from row

(i, j − 1) and to the left from (i − 1, j). They get smaller in magnitude the bigger the

distance to the these rows becomes, as shown in table 4.3 where η = 10.

4.2 Test Case 2

In the second test case, κ, c and f in (2.1.10) are given by

κ(x, y) =
√
x+ 1,

c(x, y) =
x+ y

10
,

f(x, y) =− 1

2
√
x+ 1

+ 0.4 ·
√
x+ 1 · cos(0.2 · y) +

x+ y

10
· (x+ 10 · cos(0.2 · y)).

The grid has 240 nodes in the x and 200 nodes in the y direction. In each direction, the
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(constant) spacing is set to 1 and inhomogeneous Dirichlet boundary conditions are used.

Figure 4.7: κ in test case 2. Figure 4.8: c in test case 2. Figure 4.9: f in test case 2.

Since we know the analytical solution of this problem,

uexact(x, y) = x+ 10 · cos(0.2 · y),

we can immediately check the correctness of the numerical results. The absolute error

shown in figure 4.12 is calculated by

abserr(x, y) = uexact(x, y)− unum(x, y),

where unum is the numerical solution given by the Schur Complement Method. The values

of unum considered in figure 4.12 are calculated with 4 PE’s, using two subdivisions in x

and two subdivisions in y direction. Compared to the magnitude of unum and uexact, the

error is insignificant. The stop criteria in the algorithms are the same as in test case 1.

The parallel performance of the Schur Complement Method is depicted in table 4.4. When

one PE is employed, n2 = 0 since there is no inner boundary. Therefore the algorithm is

much faster since the Schur Complement Equation must not be solved. It takes four PE’s

to get the same performance as in the non-parallel case. Furthermore, the data indicate

that the scaling is quite well, even though the domain is small. The more PE’s are used

the better the performance might get. In all tests in this section, the Incomplete Cholesky

Decomposition with fill-in 10 is used as a preconditioner.
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Figure 4.10: Exact solution
uexact in test case 2.

Figure 4.11: Numerical solu-
tion unum in test case 2.

Figure 4.12: Distribution of
the absolute error in test
case 2.

Table 4.4 Overall runtime in dependence of the number of PE’s in test case 2.

PE’s subdivisions in x dir. subdivisions in y dir. time spent in ms
1 1 1 867.0
2 1 2 1465.0
2 2 1 1304.0
4 1 4 880.0
4 2 2 845.0
4 4 1 851.0
8 2 4 503.0
8 4 2 442.0
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4.3 Test Case 3

In the third test case, discontinuous data is considered. The domain is equidistant with

constant spacing 1 and 600 nodes in x and 800 nodes in y direction. The boundary in y

direction is periodic, whereas the boundary values in x direction are set to

u(x1, ·) = 5, u(x2, ·) = 30,

where x1 and x2 are the domain bounds in x direction. Furthermore,

κ(x, y) =

x+ 1, x < x1+x2

2
,

1, else,

f(x, y) =

10, x < x1+x2

2
,

x, else,

c(x, y) =0.

As figure 4.14 demonstrates, the solution is not differentiable where the coefficient func-

tions are discontinuous.

Figure 4.13: Cut along the x axis
through κ (dashed) and f (solid line).

Figure 4.14: Cut along the x axis
through u.

Figure 4.5 demonstrates that the scaling of the algorithm is quite good, but the method

is not efficient with only few processors. When 1 PE is employed, the runtime is much

shorter with the CG algorithm instead of the Schur Complement Method. In the last

column, the amount of overall CPU time relative to the 1 PE case is given.
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Table 4.5 Overall runtime in dependence of the number of PE’s in test case 3.

PE’s subdivisions in x dir. subdivisions in y dir. time spent in ms ratio
1 1 1 1510768 1.00
2 1 2 558858 0.74
2 2 1 1044287 1.38
4 2 2 336422 0.89
8 2 4 87801 0.46
8 4 2 92756 0.49
16 4 4 29538 0.31
36 6 6 11956 0.28
49 7 7 11182 0.36
64 8 8 7592 0.32

4.4 Test Case 4

In the fourth test case, to the right-hand side of

−∆u = 0,

with u(x1, ·) = 8, u(x2, ·) = 0.3, where x1 and x2 are the domain bounds in x direction, is

disturbed with random numbers of dimension 10−4 to get a new right-hand side f̃ . In y

direction, periodic boundary conditions are used. Then, the equation −∆u = f̃ is solved.

The numerical solution should not noticeably differ from the analytical solution of the

undisturbed equation,

uundisturbed(x, y) =
7.7

x1 − x2

· x+
0.3x1 − 8x2

x1 − x2

.

In figure 4.15, the numerical solution of the disturbed problem is depicted together with

the perturbation f̃ . The perturbation has no noticeable influence on the solution, as

desired.
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Figure 4.15: f̃ and cut along the x axis through u.
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Chapter 5

Outlook

If the Schur Complement Equation is solved iteratively, in every iteration a local problem

must be solved. Therefore, the parallel performance of the Schur Complement Equation

strongly depends on the performance of the local solver. The deployment of the Incomplete

Cholesky Decomposition with fill-in exploited the fact, that the time spent calculating a

preconditioner is insignificant if the preconditioner can be used repeatedly.

Instead of the (preconditioned) CG algorithm, any other method to solve the local prob-

lem may be employed. For the Schur Complement Method, this does not change anything.

E.g. multigrid methods or the concept of hierarchical matrices, especially in three dimen-

sions, could be used to further improve the method.

Another possibility for future work is to find a preconditioner for the Schur matrix SA and

thereby precondition the Schur Complement Equation. Lowering the number of iterations

for the iterative solution of this equation would diminish the importance of the local solver.

The tests done so far indicate that the method needs about four PE’s to solve the problem

as fast as it can be done by the preconditioned CG algorithm in serial mode. If the good

scaling ratio is conserved even for more PE’s than considered here, the method is well

suited at least for systems large enough to keep many PE’s busy.

Concerning the numerical grid, three assumptions were made:

(i) The spacing between two nodes is constant in every direction.

(ii) The grid is rectangular.

(iii) The grid is regular, i.e. in two dimensions, every node is connected only to its left,

right, upper and lower neighbour.

These had the consequences, that the calculation of the stiffness matrix A was especially

simple because every triangle (in two dimensions) of the Finite Element Method had the

same shape and surface area. Furthermore, we used the regular structure of the grid
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which resulted in the five-diagonal form of A to develop a good preconditioner which can

be easily calculated.

Omitting the first two assumptions only results in a slightly more complicated assembly of

the stiffness matrix A. Therefore, polar or spherical coordinates can be included without

any problems. Considering a non-regular grid results in more effort to calculate a good

preconditioner, as described e.g. in [17]. In every case, due to the characteristics of the

Finite Element Method, the stiffness matrix remains symmetric and positive definite and

all of the numerical methods described in chapter 3 except for the preconditioning part

can be employed without any changes.
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Appendix A

An Implementation of the Finite

Element Method

On the next pages, an implementation of the Finite Element Method applied to (2.1.10)

with various boundary conditions is presented. The domain Ω is a straight line, a rectangle

or a cuboid, depending on the dimension of space. Ω is subdivided by an equidistant grid

in each direction. As ansatz space, I choose the space of linear splines and its analogues in

higher dimensions. As already mentioned, more complicated geometries are possible, but

will not be considered in the following. Again, κ, c ∈ L∞(Ω) such that 0 < κ0 ≤ κ(x) ≤ κ∞

and 0 ≤ c(x) ≤ c∞. Furthermore, f ∈ L2(Ω).

A.1 On a Straight line

If Ω = [x1, xn], where x1, xn ∈ R, then (2.1.10) with homogeneous Dirichlet boundary

conditions becomes

− d

dx

(
κ(x)

d

dx
u(x)

)
+ c(x)u(x) = f(x), x ∈ [x1, xn] , u(x1) = u(xn) = 0, (A.1.1)

which is a Sturm-Liouville operator. Let the grid be given by

{xi : i = 1, . . . , n} with xi+1 = xi + hx, (A.1.2)

where hx ∈ R is the constant spacing between two grid points. We write ′ = d
dx

. The

functions Λi given by
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A. AN IMPLEMENTATION OF THE FINITE ELEMENT METHOD

Λi(x) =


x−xi−1

hx
, xi−1 ≤ x ≤ xi,

xi−x
hx

, xi ≤ x ≤ xi+1,

0, else,

, i = 1, . . . , n, (A.1.3)

Λ′i(x) =


1
hx
, xi−1 < x < xi,

− 1
hx
, xi < x < xi+1,

0, else,

, i = 1, . . . , n, (A.1.4)

form a basis of the space of linear splines on Ω. The functions Λi are often called ”hat

functions”. These functions are such that Λi(xj) = δij, where δij is the Kronecker symbol,

and they are affine on each subinterval (xi, xi+1) of Ω.

Figure A.1: The hat functions Λi,j.

Now we can determine the entries of A and b defined by (3.2.5):

ai,i = a(Λi,Λi) =

∫ xi+1

xi−1

κ(x)(Λ′i(x))2dx+

∫ xi+1

xi−1

c(x)Λi(x)2dx

=
1

h2
x

∫ xi+1

xi−1

κ(x)dx+

∫ xi+1

xi−1

c(x)Λi(x)2dx,

ai,i+1 = a(Λi,Λi+1) =

∫ xi+1

xi

κ(x)Λ′i(x)Λ′i+1(x)dx+

∫ xi+1

xi

c(x)Λi(x)Λi+1(x)dx

= − 1

h2
x

∫ xi+1

xi

κ(x)dx+

∫ xi+1

xi

c(x)Λi(x)Λi+1(x)dx,

bi = l(Λi) =

∫ xi+1

xi−1

f(x)Λi(x)dx.

All other entries of A are 0 since the support of the associated hat functions does not

overlap. To evaluate the integrals, one can use the trapezoidal rule∫ xi+1

xi

f(x) dx ≈ hx
2

(f(xi) + f(xi+1)). (A.1.5)

48



A.1. ON A STRAIGHT LINE

Applying this to the integrals from above gives

∫ xi+1

xi−1

κ(x)dx =

∫ xi

xi−1

κ(x)dx+

∫ xi+1

xi

κ(x)dx

≈ hx
2

(κi−1 + κi) +
hx
2

(κi + κi+1),∫ xi+1

xi−1

c(x)Λi(x)2dx =

∫ xi

xi−1

c(x)Λi(x)2dx+

∫ xi+1

xi

c(x)Λi(x)2dx

≈ hx
2

(ci−1 · 0 + ci · 1) +
hx
2

(ci · 1 + ci+1 · 0) = hx · ci,∫ xi+1

xi

κ(x)dx ≈ hx
2

(κi + κi+1),∫ xi+1

xi

c(x)Λi(x)Λi+1dx ≈
hx
2

(ci · 1 · 0 + ci+1 · 0 · 1) = 0,∫ xi+1

xi−1

f(x)Λi(x)dx =

∫ xi

xi−1

f(x)Λi(x)dx+

∫ xi+1

xi

f(x)Λi(x)dx

≈ hx
2

(fi−1 · 0 + fi · 1) +
hx
2

(fi · 1 + fi+1 · 0) = hx · fi,

where κi = κ(xi) and so on. Therefore, the system Auh = b with homogeneous Dirichlet

boundary conditions in x1 and xn, i.e. u1 = un = 0, has the form

a2,2 a2,3 0 · · ·
a2,3 a3,3 a3,4 · · ·
0 a3,4 a4,4 · · ·
...

. . .

· · · 0 an−2,n−1 an−1,n−1





u2

u3

u4

...

un−1


=



b2

b3

b4

...

bn−1


, (A.1.6)

where

ai,i =
1

2hx
(κi−1 + 2 · κi + κi+1) + hx · ci,

ai,i+1 = − 1

2hx
(κi + κi+1),

bi = hx · fi.

This implies that κ as well as all other variables are given on the nodes xi. Usually in the

context of hydrodynamic codes, some variables are given on the cell boundaries, which in

the 1D case correspond to the points xi+ 1
2
. Then, the integration presented above must

be changed. E.g., one could first linearly interpolate the values on the cell center from

49
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the boundary values and then apply the trapezoidal rule on the central grid, or one could

instead use the midpoint rule∫ xi+1

xi

f(x) dx ≈ hx · f(xi+ 1
2
).

Algorithm 7 Calculation of the entries of A = [ai,j].

1: for i = 1 to n do
2: if κ is given on the central grid then
3: ai,i−1 = − 1

2hx
(κi + κi−1)

4: ai,i = 1
2hx

(κi−1 + 2 · κi + κi+1) + hx · ci
5: ai,i+1 = − 1

2hx
(κi + κi+1)

6: else if κ is given on the boundary grid and the midpoint rule is applied then
7: ai,i−1 = − 1

hx
κi− 1

2

8: ai,i = 1
hx

(κi− 1
2

+ κi+ 1
2
) + hx · ci

9: ai,i+1 = − 1
hx
κi+ 1

2

10: end if
11: end for

Considering inhomogeneous Dirichlet boundary conditions u1 = g1 and un = gn for given

g1, gn ∈ R, we see that

u0 : Ω→ R, u0(x) =


g1 · x2−x

hx
, x ≤ x2,

gn · x−xn−1

hx
, x ≥ xn−1,

0, else,

, (A.1.7)

fulfils the requirements described in Section 3.2. Now by

a(u0,Λi) =

∫ xi+1

xi−1

κ(x)u′0(x)Λ′i(x)dx+

∫ xi+1

xi−1

c(x)u0(x)Λi(x)dx

≈


− 1

2hx
(κi−1 + κi), i = 2,

− 1
2hx

(κi + κi+1), i = n− 1,

0, else,

it follows that if b2 and bn−1 are changed accordingly and u1 and un are set to the desired

boundary values, uh ∈ H1(Ω) solves the inhomogeneous problem.

If Neumann boundary conditions u′(x1) = g1 and u′(xn) = gn are given, the equations

for u1 and un must be added to the matrix since these values are now unknown. The

right-hand side is changed accordingly.
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(
1

2hx
(κ1 + κ2) +

hx
2
ci

)
· u1 −

1

2hx
(κ1 + κ2) · u2 =

hx
2
f1 − κ1g1(

1

2hx
(κn−1 + κn) +

hx
2
cn

)
· un −

1

2hx
(κn−1 + κn) · un−1 =

hx
2
fn − κngn.

If c = 0, the condition (2.1.23) tranforms to∫
Ω

f(x)dx = κ1g1 − κngn.

Therefore, given a Neumann boundary condition on one side, the other side is also fixed,

but still there are many solutions which differ by a constant.

Solving the linear system (A.1.6) can be done directly using its Cholesky decomposition.

Since the bandwidth of A from (A.1.6) is only 3, the lower triangle matrix L = [li,j] from

the Cholesky decomposition of A has only two diagonals with non-zero entries. They can

be determined by

l1,1 =
√
a1,1,

li+1,i =
ai+1,i

li,i
, i = 1, . . . , n− 1,

li,i =
√
ai,i − l2i,i−1, i = 2, . . . , n.

A.2 On a Rectangle

Let Ω be a rectangle, i.e. ∃x1, x2, y1, y2 ∈ R such that Ω = [x1, x2] × [y1, y2] ⊂ R2, with

homogeneous Dirichlet boundary conditions in both directions.

Let the grid be given by

{(xi, yj) : i = 1, . . . , n, j = 1, . . . ,m} with xi+1 = xi + hx, yj+1 = yj + hy, (A.2.1)

where hx, hy ∈ R are the constant spacings between two grid points in x respective y

direction. For each point (xi, yj) ∈ Ω, we want to define Λi,j such that

Λi,j(xk, yl) = δ(i,j),(k,l) :=

1, i = k and j = l,

0, else,
(A.2.2)

and Λi,j decays linearly in between. For this, the grid must be divided into triangles,
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which can easily be done by splitting every rectangle [xi, xi+1] × [yj, yj+1] along the first

diagonal.

Equivalently, the rectangles could be split along the second diagonal, which can result

in quite different results. To remedy this drawback, one could execute the following

procedure for both possibilities and in the end, average the results. This is not necessary,

if the value of the variables do not change significantly between two cells.

Figure A.2: Triangulation of a rectangular
grid.

Figure A.3: Hat function Λi,j (from [1]).

Therefore, the functions Λi,j are of the form

Λi,j(x, y) = β + α1x+ α2y, (A.2.3)

where β, α1, α2 are different on every triangle Tk and ∇Λi,j|Tk
= (α1, α2)T . The support

of Λi,j consists of the six triangles adjacent to (xi, yj).

Now we can determine the entries of A = [a(i,j),(k,l)] and b = [bi,j]:

a(i,j),(i,j) = a(Λi,j,Λi,j) =

∫
Ω

κ(x, y) |∇Λi,j(x, y)|2 d(x, y) +

∫
Ω

c(x, y) |Λi,j(x, y)|2 d(x, y)

=
6∑

k=1

∫
Tk

κ(x, y) |∇Λi,j(x, y)|2 + c(x, y) |Λi,j(x, y)|2 d(x, y)

b(i,j) = l(Λi,j) =

∫
Ω

f(x, y)Λi,j(x, y)d(x, y) =
6∑

k=1

∫
Tk

f(x, y)Λi,j(x, y)d(x, y).

There are six cases where the intersection of the support of two different nodes is non-

empty.

(i) Nodes (xi, yj) and (xi+1, yj),

(ii) nodes (xi, yj) and (xi, yj+1),

(iii) nodes (xi, yj) and (xi+1, yj+1),

(iv) nodes (xi, yj) and (xi−1, yj),
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(v) nodes (xi, yj) and (xi, yj−1),

(vi) nodes (xi, yj) and (xi−1, yj−1).

There are always two triangles contained in the intersection. Therefore, if (xk, yl) is a

neighbouring point of (xi, yj), then

a(i,j),(k,l) = a(Λi,j,Λk,l) =

∫
Ω

κ(x, y)∇Λi,j(x, y) · ∇Λk,l(x, y)d(x, y)

+

∫
Ω

c(x, y)Λi,j(x, y)Λk,l(x, y)d(x, y)

=
2∑

k=1

∫
Tk

κ(x, y)∇Λi,j(x, y) · ∇Λk,l(x, y)

+ c(x, y)Λi,j(x, y)Λk,l(x, y)d(x, y).

To evaluate the integrals, we use the formula∫
T

f(x, y)d(x, y) ≈ hxhy
6

(f1 + f2 + f3), (A.2.4)

where T is a rectangular triangle with side length hx and hy and f is a real-valued function

on T with f1 denoting the value of f in the first edge of T and so on.

(A.2.4) is the two-dimensional analogue to (A.1.5). Suppose f is linear on T , i.e. f(x, y) =

f1 + f2−f1
hx

x+ f3−f1
hy

y, then

∫
T

f(x, y) d(x, y) =

∫ hx

0

∫ hy−
hy
hx
x

0

f1 +
f2 − f1

hx
x+

f3 − f1

hy
y dy dx

=

∫ hx

0

[
f1y +

f2 − f1

hx
xy +

f3 − f1

hx

y2

2

]
|
hy−

hy
hx
x

0 dx

=

∫ hx

0

f1(hy −
hy
hx
x) +

f2 − f1

hx
x(hy −

hy
hx
x) +

f3 − f1

hy

(hy − hy

hx
x)2

2
dx

=

[
f1(hyx−

hy
hx

x2

2
) +

f2 − f1

hx
(hy

x2

2
− hy
hx

x3

3
)− f3 − f1

hy

(hy − hy

hx
x)3

6hy

hx

]hx

0

=
hxhy

6
(f1 + f2 + f3).

Therefore, for linear functions the formula (A.2.4) is exact.

Using (A.2.4), the integrals can be evaluated numerically and the matrix A can be deter-
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mined. Using the mapping

r : {1, . . . , n} × {1, . . . ,m} → N, r(i, j) = (j − 1)n+ i, (A.2.5)

we can draw the matrix A as an element of Rnm×nm. The (j − 1)n + ith equation is of

the form:

a(i,j),(i,j−1)ui,j−1 +a(i,j),(i−1,j)ui−1,j +a(i,j),(i,j)ui,j +a(i,j),(i+1,j)ui+1,j +a(i,j),(i,j+1)ui,j+1 = bi,j.

(A.2.6)

A short calculation shows that all entries of the form a(i,j),(i+1,j+1) and a(i,j),(i−1,j−1) are

0 since the gradients of the corresponding hat functions are orthogonal. Therefore, in

every line of A there are five non-zero entries, but the bandwidth of A is larger than n.

Now, calculating a Cholesky factorisation is much more expensive concerning computation

time and memory requirements. To solve these systems, it is advisible to use iterative

algorithms which are described in Section 3.3.

Since the matrix A is a sparse matrix, it is recommendable to store only the non-zero

entries of A. This can be done by using five one-dimensional arrays, which correspond to

the upper, lower, left and right neighbour of each node and to the node itself.

In the case of Poisson’s Equation, i.e. κ(x) = 1, c(x) = 0, the matrix A has the form



2hx

hy
+ 2hy

hx
−hy

hx
· · · −hx

hy
· · · 0

−hy

hx

2hx

hy
+ 2hy

hx
−hy

hx
· · · −hx

hy
· · ·

...
. . . . . .

· · · −hx

hy
· · · −hy

hx

2hx

hy
+ 2hy

hx
−hy

hx
· · · −hx

hy
· · ·

...
. . . . . .

0 · · · −hx

hy
· · · −hy

hx

2hx

hy
+ 2hy

hx


, (A.2.7)

which has, after dividing by hx ·hy, the same entries as the matrix which results when the

Finite Difference Method is employed to discretise Poisson’s Equation. If the CG algo-

rithm 1 is employed to solve this system, most of the computation time is spent calculating

the matrix-vector product Ad(k). For Poisson’s Equation, this can be implemented much

faster since the entries of A are the same along the diagonals and they do not need to be

stored and accessed separately. The effect of using algorithm 9 instead of 8 is shown in

the first test case in chapter 4.

Again, if κ (or any other variable) is not given on the central, but on the boundary grid,

some sort of interpolation must be performed.
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Algorithm 8 Application of A in the general case.

1: Apply A to d ∈ Rn×m.
2: for i = 1 to n do
3: for j = 1 to m do
4: Ad(i, j) = a(i,j),(i,j)di,j
5: Ad(i, j) = Ad(i, j) + a(i,j),(i−1,j)di−1,j + a(i,j),(i+1,j)di+1,j

6: Ad(i, j) = Ad(i, j) + a(i,j),(i,j−1)di,j−1 + a(i,j),(i,j+1)di,j+1

7: end for
8: end for

Algorithm 9 Application of A for Poisson’s Equation.

1: Apply A to d ∈ Rn×m.
2: for i = 1 to n do
3: for j = 1 to m do

4: Ad(i, j) =
(

2hx

hy
+ 2hy

hx

)
di,j

5: Ad(i, j) = Ad(i, j)− hy

hx
(di−1,j + di+1,j)

6: Ad(i, j) = Ad(i, j)− hx

hy
(di,j−1 + di,j+1)

7: end for
8: end for

Figure A.4: The dashed line is the central grid, the big dots are nodes of the central grid.
Nodes on the boundary grid (dashed-dotted) are squares.
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In figure A.4, the triangle on the central grid where the integration should be performed,

is in light grey. If the values of the function f that should be integrated are available only

on the boundary grid, two possibilities for numerical integration are available:

(i) Suppose f is linear. Calculate the value of f in the barycentre of the triangle in

darker grey by linear interpolating the values on the edges which are not on the

boundary grid. The barycentre of the two triangles coincide.
∫
T
f(x, y)d(x, y) =

fbarycentre · hxhy

2
.

(ii) Use a linear two-dimensional interpolation to determine the values of f on the edges

of the triangle in lighter grey and then use (A.3.3).

If inhomogeneous Dirichlet boundary conditions are used, the procedure is the same as it

was described before for one dimension. The right-hand side of Auh = b changes to

b2,j = b2,j − a(2,j),(1,j)u1,j,

bn−1,j = bn−1,j − a(n−1,j),(n,j)un,j, j = 1, . . . ,m,

if the boundary is in x direction, and analogously if it is in y direction. If there is a

Neumann boundary condition e.g. in (x1, ·) and (xn, ·), the right-hand side changes to

b1,j = b1,j + hyκ1,jg1,j,

bn,j = bn,j + hyκn,jgn,j, j = 1, . . . ,m.

Periodic boundary conditions change the bandwidth of A, since now – if the periodic

boundary is in y direction – the nodes (·, y1) and (·, yn) are connected.

A.3 On a Cuboid

Let Ω be a cuboid, i.e. ∃x1, x2, y1, y2, z1, z2 ∈ R such that Ω = [x1, x2]× [y1, y2]× [z1, z2] ⊂
R3, with homogeneous Dirichlet boundary conditions in all directions.

Let the grid be given by

{(xi, yj, zk) : i = 1, . . . , n, j = 1, . . . ,m, k = 1, . . . , p} , (A.3.1)

with xi+1 = xi + hx, yj+1 = yj + hy, zk+1 = zk + hz, where hx, hy, hz ∈ R are the

constant spacings between two grid points in the corresponding direction. For each point
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(xi, yj, zk) ∈ Ω, we want to define Λi,j,k such that

Λi,j,k(xl, ym, zn) = δ(i,j,k),(l,m,n) :=

1, i = l, j = m and k = n,

0, else,
(A.3.2)

and Λi,j,k decays linearly in between.

Figure A.5: Dividing a cuboid in six pyramides.

If the cuboid is divided in six pyramides as shown in figure A.5, the functions Λi,j,k can

be designed such that they are linear on each pyramid.

Figure A.6: The six pyramides which together build a cuboid.

If the big dot at the edge of each pyramid in Figure A.6 is the node (xi, yj, zk), we can

assign uniquely the tuple (i, j, k, l) to each pyramid. i, j, k are the indices of the node

marked by the big dot and l ∈ {1, . . . , 6} denotes which of the six pyramides from A.6 is

appealed to.

The volume of each pyramide is hxhyhz

6
. Analogously to before, the formula∫

P

f(x, y, z)d(x, y, z) ≈ hxhyhz
6

· f1 + f2 + f3 + f4

4
(A.3.3)
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is applied, where f is a real-valued function on the pyramide P with values f1 on the first

edge of P and so on. Again, the formula (A.3.3) is exact for linear functions.

To simplify further calculations, we define the function Vf by

Vf : {1, . . . , n} × {1, . . . ,m} × {1, . . . , p} × {1, . . . , 6} → R,

Vf (i, j, k, l) =
hxhyhz

6
· f1 + f2 + f3 + f4

4
,

using the same notation as before. Vf (i, j, k, l) is the approximate value of the integral of

the function f over the pyramide Pi,j,k,l.

In the same manner as before the entries of A and b are determined. Since there are no

big differences to the two-dimensional case, only the results are stated. First the diagonal

entries of A,

a(i,j,k),(i,j,k) = (
1

h2
y

+
1

h2
z

) · Vκ(i− 1, j − 1, k, 1) + (
1

h2
x

+
1

h2
z

) · Vκ(i− 1, j − 1, k, 2)

+ (
1

h2
x

+
1

h2
y

) · Vκ(i− 1, j, k, 1) + (
1

h2
x

+
1

h2
z

) · Vκ(i− 1, j, k, 3)

+
1

h2
x

· Vκ(i, j, k, 1) +
1

h2
y

· Vκ(i, j, k, 2) +
1

h2
x

· Vκ(i, j, k, 3)

+
1

h2
y

· Vκ(i, j, k, 4) +
1

h2
z

· Vκ(i, j, k, 5) +
1

h2
z

· Vκ(i, j, k, 6)

+ (
1

h2
x

+
1

h2
y

) · Vκ(i, j − 1, k, 2) + (
1

h2
y

+
1

h2
z

) · Vκ(i, j − 1, k, 4)

+
1

h2
z

· Vκ(i− 1, j − 1, k − 1, 1) +
1

h2
z

· Vκ(i− 1, j − 1, k − 1, 2)

+
1

h2
y

· Vκ(i− 1, j − 1, k − 1, 3) +
1

h2
x

· Vκ(i− 1, j − 1, k − 1, 4)

+
1

h2
y

· Vκ(i− 1, j − 1, k − 1, 5) +
1

h2
x

· Vκ(i− 1, j − 1, k − 1, 6)

+ (
1

h2
y

+
1

h2
z

) · Vκ(i− 1, j, k − 1, 3) + (
1

h2
x

+
1

h2
y

) · Vκ(i− 1, j, k − 1, 5)

+ (
1

h2
x

+
1

h2
z

) · Vκ(i, j, k − 1, 5) + (
1

h2
y

+
1

h2
z

) · Vκ(i, j, k − 1, 6)

+ (
1

h2
x

+
1

h2
z

) · Vκ(i, j − 1, k − 1, 4) + (
1

h2
x

+
1

h2
y

) · Vκ(i, j − 1, k − 1, 6)

+ hxhyhz · ci,j,k,

and now the other non-zero entries and the right-hand side.
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a(i,j,k),(i+1,j,k) = − 1

h2
x

· (Vκ(i, j, k, 1) + Vκ(i, j − 1, k, 2) + Vκ(i, j, k, 3)

+ Vκ(i, j − 1, k − 1, 4) + Vκ(i, j, k − 1, 5) + Vκ(i, j − 1, k − 1, 6)),

a(i,j,k),(i,j+1,k) = − 1

h2
y

· (Vκ(i− 1, j, k, 1) + Vκ(i, j, k, 2) + Vκ(i− 1, j, k − 1, 3)

+ Vκ(i, j, k, 4) + Vκ(i− 1, j, k − 1, 5) + Vκ(i, j, k − 1, 6)),

a(i,j,k),(i,j,k+1) = − 1

h2
z

· (Vκ(i− 1, j − 1, k, 1) + Vκ(i− 1, j − 1, k, 2) + Vκ(i− 1, j, k, 3)

+ Vκ(i, j, k, 5) + Vκ(i, j, k, 6) + Vκ(i, j − 1, k, 4)),

bi,j,k = hxhyhz · fi,j,k.

In every row, there are only seven non-zero entries of A, but again, the bandwidth is much

larger. The same considerations concerning the inversion of A as in the two-dimensional

case apply.
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mische Einführung. Walter de Gruyter, Berlin, New York, 2nd edition, 1993.

[4] Lawrence C. Evans. Partial Differential Equations, volume 19 of Graduate Studies

in Mathematics. American Mathematical Society, Providence, Rhode Island, 1998.

[5] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard, Ver-

sion 2.1. High-Performance Computing Center Stuttgart, University of Stuttgart,

Nobelstr.19, D-70550 Stuttgart, June 2008.

[6] Andreas Frommer. Algorithmen und Datenstrukturen II. Parallele Algorithmen. Ber-

gische Universität Wuppertal, 2004/05.

[7] Martin Hanke-Burgeois. Grundlagen der Numerischen Mathematik und des Wis-

senschaftlichen Rechnens. Teubner, Wiesbaden, 2., ueberarb. und erw. edition, 2006.

[8] Mark T. Jones and Paul E. Plassmann. An improved imcomplete cholesky factoriza-

tion. ACM Transactions on Mathematical Software, 21(1):5–17, March 1995.

[9] Friedemann Kemm. Divergenzkorrekturen und asymptotische Untersuchungen bei der

numerischen Simulation idealer magnetohydrodynamischer Strömungen. PhD thesis,

Universität Stuttgart, Stuttgart, Germany, 2006.

[10] Nipun Kwatra, Jonathan Su, Jón T. Grétarsson, and Ronald Fedkiw. A method for

avoiding the acoustic time step restriction in compressible flow. Journal of Compu-

tational Physics, 228(11):4146–4161, June 2009.

61



BIBLIOGRAPHY
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