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1.  Introduction 

 

1.1. Principles of Inducible Genetic Systems 

 

Inducible genetic systems have a great potential in both molecular genetics to study 

biological functions of induced proteins in almost any field of biology and in 

biotechnology, where controlled expression is essential for the production of 

recombinant proteins. Therefore the requirements for a good inducible system are 

high: 1.) Without induction the expression of the controlled gene should be the least 

leaky possible. 2.) Induction should be dose-dependent and induction levels should 

span over at least three orders of magnitude. 3.) The expression pattern should be 

homogenous in all tissue of the organism. 4.) Inducing conditions should bare 

minimal consequences on the organism’s physiology, fitness and viability (Gatz, 

1997). In plants, prevalent conditional gene-expression systems use chemically 

regulated heterologous promoters (Padidam, 2003) with chemical inducers such as 

tetracycline (Gatz, 1997), steroids (Aoyama and Chua, 1997; Zuo et al., 2000; Zuo et 

al., 2002) and ethanol (Caddick et al., 1998; Roslan et al., 2001). Induction in such 

systems reaches up to a few hundred folds but has several drawbacks such as 

promotor leakiness, non-uniform uptake and toxic effects of the inducing chemicals 

(Padidam, 2003). 

In all cells of organisms gene expression is divided into constitutively active 

expression and conditional expression. Constitutive gene expression is reserved for 

genes that are required during the complete life time of the cell, and are also called 

house keeping genes. They are necessary for fundamental cell functions, ensuring its 

survival. Conditional gene expression serves on the one hand as a response 

mechanism to changing environmental conditions, on the other hand as a regulatory 

mechanism during the development and growth of multicellular organisms. In most 

cases the inducing factor (be it a chemical compound or environmental cues) 

interacts with an endogenous responsive transcription factor, which is then (and only 

than) able to assist in the recruitment of RNA-Polymerases to initiate transcription of 

the target gene. This target gene is usually under control of a minimal promoter, so it 

is genetically silent in the absence of the inducing factor.  
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1.2. Inducible Gene Expression Systems in Plants 

 

The use of inducible systems for various transgenes has become a very important 

tool in the elucidation of plant gene function. It allows a more precise temporal and 

spatial control over the ectopic expression or misexpression of the specific 

transgene. In contrast to transactivation systems, where a latent transgene under the 

control of a minimal promoter is activated by a transcription factor encoded on a 

second vector, inducible systems usually rely on the use of a single vector. This 

vector contains a transgene, often also a reporter gene to monitor the induction 

levels, both under control of a minimal promoter, and a responsive element for 

specific chemicals or environmental conditions such as heat. 

 

 

1.2.1. Chemically inducible systems 

 

Since the initial work of Christiane Gatz, Robin Wilde and their colleagues in the early 

1990s, a large number of chemically inducible systems have been described (Table 

1). 

 

Chemically Inducible System Inducer References 

De-repressible TetR Tetracycline Gatz et al. (1992) 

Inactivable tTA Tetracycline Weinmann et al. (1994) 

Dual control TGV Dexamethasone, 
Tetracycline 

Böhner and Gatz (2001), 
Böhner et al. (1999) 

Copper-inducible Ace1 Copper Mett et al. (1993) 

Dexamethasone-inducible 
 GVG, LhGR Dexamethasone, 

Aoyama and Chua (1997), Craft 
et al.(2005), Samalova et al. 
(2005) 

Insecticide-inducible GVGE, 
GVE, VGE Tebufenozide, methoxyfenozide 

Koo et al. (2004),  
Martinez et al. (1999), Padidam 
et al. (2003) 

Oestrogen-inducible ER-C1, 
XVE 17-ß-oestradiol Bruce et al. (2000), 

Zuo et al. (2000) 
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Ethanol-inducible AlcR Ethanol/ 
acetaldehyde 

Caddick et al. (1998), 
Roslan et al. (2001), 
Salter et al. (1998) 

Table 1 Chemically inducible systems for plants (Moore et al., 2006) 

 

The most important of these systems are described below. 

 

 

1.2.2. The alc System: chemical induction by ethanol 

 

Ethanol-inducible expression from the AlcA promoter in Arabidopis 

 

The system now in discussion uses a natural rather than an artificial transcription 

factor, which originates from Aspergillus nidulans (Caddick et al., 1998; Roslan et al., 

2001; Salter et al., 1998). The A. nidulans ALCR transcription factor responds 

primarily to acetaldehyde, a product of ethanol metabolism. To obtain an ethanol 

inducible system, the gene of interest is cloned under the control of the palcA 

promoter, which consists of the upstream promoter sequences of the A. nidulans 

alcA gene fused to a minimal CaMV 35S promoter (-31 to +5). In the absence of 

ALCR, palcA is silent in Arabidopsis even under conditions that generate 

endogenous ethanol (Roslan et al., 2001), so endogenous transcription factors do 

not recognize the alcA-derived sequences.  

 
Figure 1. In the presence of ethanol or acetaldehyde, the Aspergillus nidulans ALCR transcription 

factor (alcR) drives expression from the palcA promoter by binding to upstream sequences (alcA) from 

the A. nidulans alcA locus. 

 

The alc system has been used in several studies in Arabidopsis for overexpression of 

foreign or endogenous proteins, for tissue-specific inducible expression (Deveaux et 

al., 2003), for conditional complementation of a mutant phenotype (Laufs et al., 2003; 

Maizel and Weigel, 2004) and for expression of RNAi (Chen et al., 2003; Ketelaar et 

al., 2004; Lo et al., 2005). Several methods of induction have been successfully used 

and the characteristics of the system in Arabidopsis have been described carefully by 

Roslan et al. (2001). 
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Induced GUS levels are low (25-40 pmol min-1 µg-1) compared to other systems. 

When fully induced (2% v/v soil drench) the alc switch exhibits a 103-fold induction 

from undetectable levels but in agar-grown seedlings the induction factor is less than 

50-fold owing to a substantial increase in uninduced expression (Deveaux et al., 

2003; Roslan et al., 2001). As the palcA promoter is not active in wild-type plants, this 

increased activity almost certainly results from the accumulation of endogenous 

metabolites that activate ALCR. Anoxia and tissue culture conditions are thought to 

promote the accumulation of these metabolites precluding the use of this system in 

tissue culture (Roberts et al., 2005). For this reason, the alc system is rarely used to 

regulate the activity of genes that affect physiology or development at very low 

expression levels. In one case, Howles et al., 2005 reported the regulated expression 

of a protein that causes plant death upon induction. Leaky expression in vitro may 

not compromise many overexpression or RNAi experiments that depend on strong 

induction to generate phenotypes. Conditional complementation is also possible as 

shown by LEAFY>alcR>LEAFY in a leafy background in which the leafy phenotype 

was lost only sporadically in uninduced individuals of each transgenic line (Maizel 

and Weigel, 2004). Deveaux et al. (2003) note that auto-induction of ALCR in culture 

medium can be minimized if roots are prevented from penetrating the medium, for 

example by increasing the agar concentration or inclining the plates. Another, more 

secure way is to introduce palcA constructs initially into wild-type plants then, once 

transformants have been selected in vitro, to cross to promoter::alcR lines and 

perform subsequent studies in soil. For application of ethanol it is common to add it 

as a drench to soil (5 ml per 100 ml soil) or agar plate (1ml per 12 x 12 x 1 cm plate)( 

Roslan et al., 2001). Alternatively it can also be applied as a vapour if a tube 

containing 50-100% ethanol is placed in a Petri dish with seedlings or in a plastic bag 

or closed propagator containing soil-grown plants (Deveaux et al., 2003; Roslan et 

al., 2001). Enclosure increases the efficiency of the induction and prevents ethanol 

vapour from inducing expression in neighbouring plants. The volatility of ethanol 

means that it is readily applied to whole plants, be they seedlings in a Petri dish or 

mature plants in the greenhouse, and ethanol can penetrate to internal meristematic 

cells (Deveaux et al., 2003; Roslan et al., 2001). The rapid uptake and metabolism of 

ethanol means that the induction period can be limited. Expression begins within 1 or 

2 h of treatment, with transcripts reaching their maximum abundance within 6–8 h 

and disappearing within 18–48 h after removal of the inducer (Deveaux et al., 2003; 
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Laufs et al., 2003; Roslan et al., 2001). Localized induction on the other hand is 

difficult to achieve because of the mentioned volatility. Soil drenches need to be 

repeated at 0,5- to 3-day intervals to sustain induced expression and induction of the 

luciferase protein, which is unstable, was not successful (Roslan et al., 2001). Due to 

the toxicity of ethanol, Roslan et al. (2001) caution that the induction conditions must 

be optimized for each experiment for the optimal compromise between induced 

expression and adverse effects on plants. The concentration where ethanol shows 

inhibitory effects is influenced by the conditions under which the plants are grown. 

Induction by ethanol vapours is advised for short episodes of induction as it 

maximizes the efficiency of induction yet minimizes the toxicity of ethanol (Roslan et 

al., 2001). However, the requirement to keep plants enclosed can affect their biology 

if treatment is extended beyond a day or two (Roslan et al., 2001). Silencing of the 

alc system was observed in some selected lines by Roslan et al- (2001), though it 

was correlated with loss of ALCR expression from the CaMV promoter suggesting 

that palcA remains accessible to activation over many generations (Roslan et al., 

2001). 

 

Ethanol-inducible expression from the AlcA promoter in other species 

 

The alc system was first described in tobacco where it was used for expression of the 

CAT reporter gene and a cytosolic invertase (Caddick et al., 1998; Salter et al., 

1998). Since then it has been used in few studies of gene function in this species 

(Chen et al., 2003; Lo et al., 2005; Schaarschmidt et al., 2004). Similar 

considerations apply to the use of the alc system in tobacco and Arabidopsis with 

respect to activation by endogenous ethanol and optimization of induction regimes 

(Salter et al., 1998; Sweetman et al., 2002). Vapour induction is recommended over 

soil watering and the induced GUS activities compare favourably with CaMV::35S 

GUS values for tobacco (Sweetman et al., 2002). Schaarschmidt et al. (2004) show 

that acetaldehyde is a more effective inducer than ethanol in roots where it has the 

advantage that it is not transported from the site of application. However, with 

increasing acetaldehyde concentrations, induced expression levels in roots peak 

sharply at 0.1% raising concerns that the compound is toxic at or below fully inducing 

levels. Repeated treatment with suboptimal concentrations was more effective at 

inducing GUS activity and was not observed to alter plant growth, though 
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glyceraldehydes phosphate dehydrogenase (GAPDH) activities were reduced 

transiently by 40%. Induced GUS activity remains high for 2 to 4 days after 

application of acetaldehyde, then decreases but does not return to uninduced levels 

for at least 14 days. Induction with acetaldehyde in leaves does not work well but 

Chen et al. (2003) found that RNAi could be confined to a single leaf bagged with 

ethanol vapour. Endogenous genes in tobacco can trigger ALCR, so genes that 

interfere with regeneration must be introduced into an ALCR-free background. 

However, this precludes its use in cultures such as the BY-2 suspension culture. To 

overcome this, Roberts et al. (2005) fused a rat GR ligand-binding domain to ALCR 

to make a dexamethasone-inducible factor that targets palcA. 

Furthermore the alc system has been used in potato, tomato and oil-seed rape 

(Garoosi et al., 2005; Junker et al., 2003, 2004; Sweetman et al., 2002). In these 

species, the system has similar limitations and characteristics to those described for 

tobacco with respect to auto-induction in vitro (Roberts et al., 2005), but in potato 

there is the added drawback that mature soil-grown tubers exhibit very high activation 

of ALCR from endogenous inducers (Junker et al., 2003). The tuber is clearly an 

important focus for research in potato but is far from ideal for the rapid and 

homogeneous application of inducers. In young detached tubers, ethanol vapour is 

able to penetrate to the centre but it takes 7 days to achieve homogeneous induction 

(Sweetman et al., 2002). Maximum induction is achieved with 1% ethanol but 5% is 

substantially worse (Junker et al., 2003) raising concerns that full induction may 

occur close to or above toxic levels. Vreugdenhil et al. (2006) reported that ethanol 

affects important aspects of tuber physiology at inducing concentrations. 

In tomato hydroponically grown seedlings as well as soil-grown mature plants have 

been successfully induced with 0,1% or 10% respectively, with similar toxic side 

effects at concentrations close to maximum induction (Garoosi et al., 2005). Foliar 

application, which is effective in other species, was ineffective in tomato, which were 

sometimes killed after being sprayed with 7% ethanol (Garoosi et al., 2005). 
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1.2.3. Hormone dependent inducible systems 

 

GVG and VGE in Arabidopsis 

 

The first system based on steroid-hormone receptors was the GVG system 

comprising residues 1-74 of Gal4 (DNA binding domain), the Herpes simplex derived 

transactivation domain VP16 and the ligand-binding domain of a rat glucocorticoid 

receptor. The MCS (Multiple cloning site) is preceded by a promoter containing six 

copies of the Gal4 UAS and a minimal CaMV 35S promoter (Aoyama and Chua, 

1997). 

 
Figure 2. GVG steroid-hormone inducible system, pTA7001 (right border on left, left border on right). 

Single T-DNA vector for dexamethasone-inducible expression. The chimeric transcription factor GVG 

comprises residues 1–74 of Gal4, VP16 (see above) and the ligand-binding domain of a rat GR. The 

MCS is preceded by a promoter containing six copies of the Gal4 UAS and a minimal CaMV 35S 

promoter (Aoyama and Chua, 1997).  

 

To construct GVG, the ligand-binding domain of a rat GR was added to the carboxyl 

terminus of a Gal4-VP16 fusion (residues 1–74 of Gal4 fused to VP16 and residues 

519–795 of rat GR). In common with other steroid receptors, the ligand-binding 

domain of GR interacts in a steroid-sensitive fashion with a cytosolic protein complex 

involving heat shock proteins 90 (HSP90). (Picard, 1993). The HSP90 complex 

prevents the bound transcription factor from interacting with essential partners such 

as the nuclear import machinery or the transcriptional apparatus, but the interaction is 

disrupted when the steroid receptor domain binds its ligand. As many animal steroids 

appear to be absent in plants, their receptors have been used in a number of 

inducible expression systems. This system has been successfully used in a great 

number of studies (over 50 so far) in Arabidopsis, making it by far the most widely 

adopted system to date. Most studies have been done in sterile culture but 

dexamethasone can be taken up from the soil as indicated by the partial 

complementation of tps (Trehalose-6-Phosphate Synthase 1) by 

UBIQUITIN10>GR>TPS using the GVG system (van Dijken et al., 2004). All the 

induction characteristics of GVG in Arabidopsis are approximately 10-fold better than 

those reported for GVG in tobacco (Aoyama, 1998; Aoyama and Chua, 1997). The 
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higher induction ratio in Arabidopsis may be attributable to lower uninduced 

expression levels in this species relative to tobacco (Aoyama, 1998). Despite its 

extensive use in Arabidopsis, it is probably not the ideal system for this species, as it 

has been observed that the GVG molecule often perturbs Arabidopsis development 

and triggers defence responses when it is activated by dexamethasone (Kang et al., 

1999; Zuo and Chua, 2000; Zuo et al., 2000). A promising alternative for use with 

genes under control of the Gal4-UAS is based on the ecdysone receptor (EcR) from 

the spruce budworm (Choristoneura fumiferana) and a non-steroidal ecdysone 

analogue methoxyfenozide (Koo et al., 2004; Padidam et al., 2003). Padidam et al. 

(2003) developed this receptor domain and methoxyfenozide as a regulatory module 

that has the potential for field application, but it is applicable in the laboratory and 

greenhouse too. The composition of the VGE system is detailed below 

 
Figure 3. The transcriptional activator VGE (Koo et al., 2004; Padidam et al., 2003) consists of the 

VP16 activation domain, Gal4 DNA-binding domain (1–147) and the ligand-binding domain of 

Choristoneura fumiferana ecdysone receptor (EcR; residues 206–539). Expression is started from the 

Cassava mosaic virus promoter (CsV). The CgCP gene was inserted downstream of the target 

promoter containing five copies of the Gal4 UAS. 

 

VGE and GVE are expressed from the Cassava mosaic virus promoter on the same 

T-DNA as the Gal4-UAS cassette into which genes are cloned. For example, 

luciferase reporter expression assays indicated an average 103-fold induction in GVE 

while quantitative Northern and Western blots using VGE show an average 700-fold 

induction with undetectable background expression in most transformants. According 

to Padidam et al. (2003) and Koo et al. (2004) VGE requires three times more 

methoxyfenoxide for 100% induction than GVE. Both systems respond quite rapidly 

upon induction (by soil drenching, induction within 6-12 h), induced expression can 

be detected by western blotting in all major organs within 120 h. Other methods of 

methoxyfenoxide application are germination of plants on agar media containing the 

inducer or induction of leaf discs, whereas foliar application is ineffective which 

denies the possibility of local induction (Padidam, 2003). So far, no negative effects 

on Arabidopsis growth by induction conditions have been observed or published. 
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GVG and VGE in other species 

 

Originally used in tobacco (Aoyama and Chua, 1997), this dexamethasone-inducible 

system has also been successfully used in BY-2 cell culture system (Nara et al., 

2000; Yang et al., 2005). In other dicots this system has been tested with mixed and 

limited success. In lettuce, it proved possible to regulate the ipt gene such that 

transformants could be selected on cytokinin-free medium without recourse to 

antibiotic resistance (Kunkel et al., 1999). However, few other details of the 

expression characteristics of GVG in this species are known. Andersen et al. (2003) 

found that GVG induced developmental abnormalities in L. japonicus and this 

precluded the interpretation of transgene phenotypes. Developmental abnormalities 

were also observed in rice (Ouwerkerk et al., 2001) after 2 weeks when GVG was 

fully induced, but were attributed to high concentration of dexamethasone and long 

induction time. Indeed, Lee et al. (2003) obtained a cyclin overexpression phenotype 

after 7 days apparently without seeing abnormalities in vector-only controls that 

expressed as much GVG. However, in all these lines there was very significant 

uninduced expression. Wong et al. (2004) obtained very rapid induction of target 

transcripts from endogenous levels in rice cell cultures, but the influence of the 

expression system on the cells was not investigated. Ouwerkerk et al. (2001) 

modified the original GVG vector to make it suitable for rice transformation and for 

the easy insertion of target genes and promoters in polylinker sites downstream of 

UAS and upstream of GVG, respectively. The GVG system has been tested also in 

two gymnosperm species, Pinus taeda and Pinus virginiana. In P. taeda cell cultures, 

100-fold induction of GFP expression was achieved with 5 to 10 µM dexamethasone 

(50% maximum at 0.5 µM; Tang and Newton, 2004a). However, in P. virginiana cell 

cultures, the system was induced only 4- to 8-fold and (Tang and Newton, 2004b). 

 

 

1.2.4.  Chemically inducible expression from the OlexA-46 promotor (XVE) in 

Arabidposis 

 

The OlexA-46 promoter is the target for the XVE transcription factor, which is activated 

by oestrogens (Zuo et al., 2000). The XVE protein comprises residues 1–87 of the E. 

coli lexA repressor domain fused to the VP16 transcription activation domain and the 
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ligand-binding domain (residues 282–595) of the human oestrogen receptor. In the 

presence of oestrogens such as 17-ß-oestradiol or 4-hydroxyl tamoxifen, this protein 

binds to eight copies of the lexA operator in OlexA-46 and activates transcription from 

the adjacent CaMV 35S minimal promotor (Zuo et al., 2000). The XVE transcription 

factor is expressed from the strong synthetic promoter G10-90 that exhibits eightfold 

higher activity than CaMV 35S (Ishige et al., 1999). The vector pER8 carries the G10-

90::XVE cassette on the same T-DNA as the OlexA-46 promoter (Figure 4) 

 
Figure 4. above: pER8 (pER10 is identical to pER8 except that the selectable marker confers 

resistance to kanamycin rather than hygromycin). Promoter G10-90, a synthetic promoter (Ishige et 

al., 1999) controlling XVE; XVE, DNA sequences encoding a chimeric transcription factor containing 

the DNA-binding domain of lexA (residues 1–87), the transcription activation domain of VP16 

(residues 403–479) and the regulatory region of the human oestrogen receptor (residues 282–595); 8x 

lexA Op, eight copies of the lexA operator sequence upstream of a minimal promoter. 

Below: pX8-GFP for inducible conditional knockout studies. A gene of interest in the MCS is 

expressed from the CaMV 35S promoter. Oestrogen application causes Cre mediated excision of this 

gene plus the selectable marker and the XVE elements causing GFP to be expressed from the G10-

90 promoter. If the construct is introduced into a background that is null for the gene of interest, the 

mutant phenotype will be permanently expressed in the GFP-positive sectors (Zuo et al., 2006). 

 

Absolute expression levels and the fold induction are difficult to compare with other 

systems as the system has been characterized using GFP, Northerns and RT-PCR 

that generate relative expression values and do not sensitively quantify uninduced 

levels. However, these methods suggest that genes of interest can be induced 

significantly more than 100-fold from undetectable or low levels (Carranco et al., 

2004; Zuo et al., 2000). For similar reasons, it is difficult to evaluate the stringency 

with which XVE is regulated as we are not aware of the system being used with 

sensitive physiological reporters such as bacterial ipt or avr genes. However, an 

activation-tagged line that carries the OlexA-46 promoter 326-bp upstream of the 

Arabidopsis AtIPT8 locus generated cytokinin over accumulation phenotypes on 17-

ß-oestradiol but was apparently normal in the absence of inducer (Sun et al., 2003). 

Quantification of Northern blots indicated that 5 µM 17-ß-oestradiol is sufficient for 

maximal induction, while 50% induction is achieved with 1 µM (Zuo et al., 2000). 

Oestrogens such as 17-ß-oestradiol are efficiently taken up by seedlings from culture 
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medium as induced transcripts can be detected within less than 1 h of treatment (Zuo 

et al., 2000). Accumulation appears to be slower than with other systems as 

transcripts are most abundant only 24 h after induction and they decrease again over 

the next 3 days indicating that 17-ß-oestradiol is unstable under culture conditions 

and in planta (Guo et al., 2003; Zuo et al., 2000). In order to apply 17-ß-oestradiol it 

has been added to the culture medium or sprayed onto seedlings, or in the 

greenhouse sprayed, painted or infiltrated, whereas application via the soil is not 

reported so far. Due to the relatively low volatility of 17-ß-oestradiol as well as the 

slow transport in plant tissues (Tornero et al., 2002) it is well suited for localized 

expression. In contrast, although dexamethasone remains confined near to painted 

areas of mature leaves over 24 h (Craft et al., 2005), it is systemically transported via 

the roots throughout the shoot so may not be so suitable for sustained localized 

expression. Zuo et al. (2006) report that 17-ß-oestradiol has never been observed to 

elicit physiological effects on plants and that there is no evidence that it disturbs 

endogenous gene expression or development in Arabidopsis. Although lexA operator 

sequences (CTGTWWWWWWWWACAG) occur several thousand times in plant 

genomes, there are no reports of developmental abnormalities arising through use of 

XVE or oestrogens in plants. Furthermore, Zuo et al. (2000) demonstrate that this 

system does not induce PR (Pathogenesis related) proteins as GVG does. The lexA 

operator contains two sites that are prone to cytosine methylation in plants and, 

although it is unclear whether this would compromise binding, the empirical evidence 

is that the XVE system is stably expressed (Zuo et al., 2000). 

This system has been used in a dozen different studies in Arabidopsis to successfully 

induce the expression of proteins or RNAi molecules and for inducible activation 

tagging. 

 

XVE in other species 

 

The XVE system has been used successfully following transient expression in tomato 

leaves (Pedley and Martin, 2004). It has also been used in rice to drive expression of 

the Cre recombinase in the CLX system in order to excise a selectable marker after 

regeneration of transformants (Sreekala et al., 2005). Expression in monocots is 

improved by using the rice Actin1 promoter in place of G10-90 (Zuo et al., 2006). 
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1.2.5. The pOp/LhG4 Inducible System: an E. coli lac operon derivate 

 

Chemically inducible pOp System in Arabidopsis 

 

The pOp/LhG4 system is originally used as a transactivation system, but has been 

modified to facilitate chemically inducible expression (also see Figure 5) and has 

been characterized in tobacco and Arabidopsis (Craft et al., 2005; Samalova et al., 

2005). It is composed as follows: 

 
Figure 5. pOpOff2Kan and pOpOff2Hyg with a CaMV 35S-LhGR cassette on the same T-DNA as the 

target and reporter loci with either kanamycin or hygromycin resistance markers (Wielopolska et al., 

2005). 

 

The principal design of the system is based on the E. coli lac operon. It contains the 

artificial promoter ‘pOp’ and a chimaeric transcription factor ‘LhG4 (Moore et al., 

1998).The pOp promoter consists of two ideal lac operators positioned upstream of a 

minimal CaMV 35S promoter (-50 to +8 relative to the transcription initiation point) 

and is physiologically silent in the absence of the artificial transcription factor LhG4 

(Baroux et al., 2001; Craft et al., 2005; Lexa et al., 2002; Samalova et al., 2005) 

LhG4 binds to the lac operators in the pOp promoter via its DNA-binding domain, 

which is derived from a high-affinity DNA-binding mutant of the E. coli lac repressor 

(Lehming et al., 1987). Once bound, LhG4 promotes transcription from the minimal 

CaMV 35S promoter of pOp by virtue of a transcription-activation domain derived 

from the Saccharomyces cerevisiae transcription factor Gal4p (Moore et al., 1998). 

The sequences that are critical for transcriptional activation in Arabidopsis lie within 

the carboxy-terminal 17 amino acids of the Gal4 activation domain and conform to 

the consensus for eukaryotic acidic activation domains (Rutherford et al., 2005). To 

generate a chemically inducible system where all components are on one vector 

LhG4 was fused to the ligand-binding domain of a rat GR (Craft et al., 2005; Schena 

et al., 1991). The resulting dexamethasone-inducible transcription factor LhGR has 

so far been used for the inducible expression of a cytokinin biosynthetic gene (Craft 

et al., 2005; Jasinski et al., 2005), RNAi molecules (Reddy and Meyerowitz, 2005; 

Wielopolska et al., 2005) and transcription factors protein kinases or dominant-
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inhibitory mutant proteins (Miltos Tsiantis and Jeff Leung, unpublished data cited: 

Moore et al., 2006 after personal communication; H. Betts and I. Moore, University of 

Oxford, UK, unpublished data). Under greenhouse conditions an average 103 fold-

induction and induced GUS activities of 200 pmol min-1 µg-1 in seedlings and mature 

leaves can be found, so the induced GUS activity is fourfold higher than average 

CaMV 35S-GUS levels. 

The pH-TOP vector, which additionally incorporates the TMV O translation enhancer 

in the 5’UTR, can achieve more than 10-fold higher GUS activities and, although it 

also exhibited higher uninduced activities than pOp or pOp6, the dynamic range was 

still at least 103-fold. 

Induction is rapid in cultured seedlings with GUS activities beginning to increase after 

1 h of dexamethasone application and proteins visible by Western blot within 4 h (Jeff 

Leung, ISV, Gif sur Yvette, France, cited Moore et al., 2006 after personal 

communication). Under greenhouse conditions, considerable GUS activity was 

detected in leaves at 6 h after subterranean irrigation with dexamethasone, so uptake 

via the roots and transport to the shoots is also rapid. After 12 to 24 h of induction, 

GUS staining throughout the greenhouse-grown plants resembled that of constitutive 

CaMV 35S_GUS lines. In contrast to tobacco, where the required dexamethasone 

concentration required for induction is 100-fold lower than in Arabidopsis, the inducer 

seems to be metabolized or compartmentalized more rapidly in Arabdopsis 

(Wielopolska et al., 2005; Aoyama and Chua, 1997).  

 

Chemically inducible pOp System in other species 

 

Samalova et al. (2005) have characterized the pOp6/LhGR system in tobacco using 

GUS, luciferase and ipt reporter constructs. As with Arabidopsis, the best induction 

characteristics were obtained with the newer pOp6 promoters. In the absence of 

dexamethasone, GUS activity was indistinguishable from background and CaMV 

35S>GR>ipt exhibited normal root growth rates and normal morphology throughout 

their life-cycle (Samalova et al., 2005). Nevertheless, induction of CaMV 35S>GR>ipt 

lines by germination on inductive medium or by a single application of 

dexamethasone to soil-grown plants resulted in more severe cytokinin overproduction 

phenotypes than those previously reported with other inducible systems in tobacco 

(Böhner and Gatz, 2001; Faiss et al., 1997; McKenzie et al., 1998) and in many 
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cases the plants died (Samalova et al., 2005). Interestingly the pOp6/LhGR system is 

definitely more sensitive to dexamehasone in tobacco than in Arabidopsis (Moore et 

al., 2006). Dexamethasone does not affect tobacco growth up to at least 60 µM in 

soil water (Samalova et al., 2005). The system has not been tested with the BY-2 

suspension culture. 

The older pOp/LhGR system has been tested in potato, but induced GUS activities 

were low (J. Craft, A. Martinez, I. Jepson and I. Moore, University of Oxford, UK, 

unpublished data, cited from Moore et al, 2006), but it has not been tested with the 

newer pOp6 promotor. 

 

 

1.3. Heat shock-based inducible systems 

 

Inducible systems, both chemically and environmental stress dependent are found in 

all living organisms. One example for environmental stress dependent gene induction 

is heat shock activation. This is a highly conserved response to cellular stress. Heat 

shock proteins, which function as chaperonins, help to compensate for heat damages 

on cellular level (Beckmann et al., 1992). The activation of the heat shock response 

is regulated at the transcriptional level (Morimoto et al., 1992), and heat shock 

elements (HSE), short sequences present in all HSP promoters have been identified 

to be essential for stress inducibility (Bienz and Pelham, 1987). HSEs contain 

multiple copies of the five base pairs sequence NGAAN (Amin et al., 1988), detailed 

mutational analysis identified AGAAC as the optimal sequence (Cunniff and Morgan, 

1993), whereas the number of pentameric units in a HSE can vary, but a minimum of 

three is required for efficient heat-inducible expression (Fernandes et al., 1994). 

When positioned upstream of a heterologous promoter, HSEs can confer heat stress 

inducibility to that promotor (Bienz and Pelham, 1986). 

 

 

1.3.1. Heat shock inducible systems in animals 

 

Heat shock promoters have extensively been used in different experimental systems. 

The highly conserved nature of heat stress response allows the use of heterologous 

promoters. Thus, Xenopus and mouse HSP70 promoters were first tested in the fish 
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system (Adam et al., 2000), later followed by experiments with fish promoters 

(Halloran et al., 2000; Molina et al., 2000; Scheer et al., 2002). 

 

 

1.3.2. Heat shock-inducible systems in plants 

 

Plants are sessile organisms with outstanding abilities to withstand temperature stresses. 

Gene expression in plants can therefore be induced by a mild heat-shock with minor 

impact on the fitness, using expression cassettes driven by heat-regulated promoters 

(Ainley and Key, 1990; Schöffl et al., 1989). Plant heat-inducible promoters are well known 

for their strong, rapid and short lasting transcriptional reponse to heat stress (Vierling and 

Kimpel, 1992; Nover et al., 2001) The plant promoters from the small heat shock protein 

(sHSP) gene family provide highly sensitive responses to mild temperature variations (Sun 

et al., 2002). Thus, in Nicotiana tabacum the promotor hsp17.6L from soybean can control 

antibiotic resistance in a temperature-dependent manner (Severin and Schoffl, 1990) as 

well as the expression of the FLP recombinase in maize (Lyznik et al., 1995) and 

Arabidopsis thaliana (Kilby et al. 2000). Similarly, the A. thaliana hsp18.2 promotor was 

successfully used as a heat-inducible expression system in tobacco BY2 cells (Yoshida et 

al., 1995), and to achieve heat-inducible RNAi expression in A. thaliana (Maslcaux et al., 

2004). Another heat-shock inducible system has been tested in Physcomitrella utilizing the 

soybean heat-shock Gmhsp17.3B promotor along with ß-glucuronidase (GUS) and F-actin 

marker (GFP-talin) as reporter genes. In stably transformed moss lines, Gmhsp17.3B-

driven GUS expression was extremely low at 25 °C. In contrast, a short non-damaging 

heat-treatment at 38 °C rapidly induced reporter expression over three orders of 

magnitude, enabling GUS accumulation and the labelling of F-actin cytoskeleton in all cell 

types and tissues. Induction levels were tightly proportional to the temperature and 

duration of the heat treatment. Treatment with acetyl salicylic acid (ASA) and benzyl 

alcohol (BA, a membrane fluidiser) also induced GUS expression at 25 °C (Saidi et al., 

2005). As an example that other factors can induce  

Pollen embryogenesis is a very useful tool to study the molecular mechanisms of 

early plant embryogenesis, since the cells used are freshly isolated single cells, the 

microspores or mid-bicellular pollen, embryogenesis occurs without an intervening 

callus phase and no addition of growth regulators is required to induce and maintain 

embryogenesis. (Pechan et al. 1991;Vicente, Benito Moreno and Heberle-Bors 
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1991). In the two best characterized pollen embryogenesis systems, i.e. those in 

Brassica napus and Nicotiana tabacum, stress treatment is sufficient to switch normal 

gametophytic development towards embryogenesis. This stress treatment includes 

short heat stress and/or starvation. During stress treatment the expression of as yet 

only partly characterized mRNA and protein species, some of which probably 

correspond to products of heat shock genes (Pechan et al. 1991). For example, 

induction of pollen embryogenesis by an in vitro starvation treatment of mid-bicellular 

tobacco pollen was accompanied by a dramatic increase in the levels of the Nthsp 

18p transcript, which accumulated in embryogenic pollen grains at 25°C; lower levels 

of this transcript were also detected in early pollen-derived embryos. A similar pattern 

of expression was observed in transgenic tobacco plants containing the promoter of 

Gmhsp 17•3-B, a soy-bean homologue of the Nthsp 18P gene, fused to the GUS 

reporter gene (Zarsky et al. 1995). 

These heat shock genes (HSPs) may be required for the microspores to survive the 

heat treatment, and the activation of hsp genes could simply reflect a normal stress 

response, as in other plant tissues. But it is also possible that specific heat shock 

proteins are directly associated with the process of induction of pollen embryogenesis 

(Zarsky et al. 1995). The second possibility seems more likely since it is known that 

many heat shock genes, in animals as well as in plants, are not only induced by heat 

or sometimes by other stress factors, but also developmentally regulated, primarily 

during gametogenesis and embryogenesis (Nagao et al. 1986; Bensaude, Mezger 

and Morange, 1991; Zimmerman and Cohill 1991). An increasing amount of evidence 

suggests that in addition to the defense function during thermal shock, the HSPs 

have an important function in cell proliferation and differentiation (Bond et al. 1987). 

Both the expression of HSPs in the absence of heat shock and the altered response 

to high temperature at different developmental stages indicate a possible 

involvement of HSPs in normal development. 

 

 

1.4. Heat shock enhancer element as mediator in gene expression. 

 

A very promising inducible system bases on heat shock induction was developed 

from the group of Thomas Czerny. This inducible element consists of multimers of 

eight idealized heat shock factor (HSF) binding sites, called heat shock elements 
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(HSE). As already mentioned above, HSEs can confer heat inducibility to close-by 

heterologous promoters. When introduced into zebrafish, this element showed 

superior properties in comparison to natural heat shock promoters because of its 

artificial structure: dramatically reduced background activity, improved inducibility and 

loss of all tissue specific components (Bajoghli et al., 2004). 

 

 

2. Aims of the thesis 

 

In search for an alternative to chemically inducible and the existing heat inducible 

systems in plants a heat shock element from zebrafish (Bajoghli et al., 2004, see also 

chapter 1.4.) is to be tested in Arabidopsis thaliana as a plant model system.  

The idealized HSE multimer from zebrafish has been introduced into a binary shuttle 

vector in front of a GUS reporter gene under control of a CaMV minimal promoter. To 

achieve this, the GUS gene under control of a CaMV minimal promoter from p221.9 

Gre6 was used to replace the same gene on pBI101.1 (under full CaMV promoter) to 

obtain a reporter GUS gene genetically silent when not enhanced by an extrernal 

factor such as a heat shock element. For the final test construct, the heat shock 

element from pSGH2 was introduced directly before the minimal promoter of the 

reporter GUS gene. This construct was then transformed into Agrobacterium 

tumefaciens by electroporation. Cultures from positive transformants (screened by 

antibiotic selection and reverse ligation) were used for Arabidopsis floral dip to 

transfer the vector into Arabidopsis plants. The transgenic lines were then tested for 

their heat shock phenotype, using a quantitative assay to evaluate the magnitude of 

induction. 
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3. Materials 

 

3.1. Plasmids 

 

?  pSGH2: This construct is the source of the 8xHSE sequence, which was cut 

out using HindIII and SalI.  

 

?  pBI101.1: pBI101 provided the backbone of the later pBI-HSE-35MinGUS and 

pBI-35MinGUS constructs prepared for this work.  

 

?  p221.9 Gre6: The GUS gene under control of a minimum 35S promotor was 

obtained from this construct, which was cut out using BamHI and EcoRI.  

 

?  pBI-35MinGUS: The construction of pBI-35MinGUS was essential for both a 

control construct with minimum GUS activity and as a first step towards      

pBI-HSE-35MinGUS as a test construct for the heat shock enhancer. A 

scheme of the plasmid with the most important restriction sites can be found in 

Appendix, page 67. 

 

?  pBI-HSE-35MinGUS:  To test the Heat shock enhancer element, it was cloned 

in front of the GUS gene under control of the 35S minimal promoter from the 

pBI-35MinGUS construct. A scheme of the plasmid with the most important 

restriction sites can be found in Appendix, page 68. 
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3.2. Media, buffers and solutions 

 

Media 

 

Media Purpose Total 
Volume 

pH 
adjusted 

to 
Component Amount of 

component 

NaCl 10 g 

Bactotrypton 10 g 

Yeast extract 5 g 
LB Bacterial 

Growth 
1000 

ml 7,4 

Bacterial Agar 15 g if required 

Yeast extract 1 g 

Bactotrypton 5 g 
Sucrose 5 g 

MgSO4.7H2O 0,493 mg 
CPY Bacterial 

Growth 
1000 

ml 7,2 

Bacterial Agar 20 g if required 

Bactotrypton 15 g 

Yeast extract 3,75 g 

NaCl 0,4388 
KCl 0,14 

MgCl2.6H2O 1,525 g 

SOB Bacterial 
Transformation 750 ml 6,7-7,0 

MgSO4.7H2O 1,847 g 

 

Buffers 

 

Buffer Purpose Total 
Volume 

pH 
adjusted 

to 
Component Amount/concentration 

of component 

PIPES 1,785 g 

MnCl2 8,71 g 

CaCl2.2H2O 1,65 g 

TB Bacterial 
Transformation 750 ml 6,7 

KCl 13,97 g 
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CTAB 2 g 

NaCl 8,182 g 
EDTA 0,585 g 

CTAB Plant DNA 
isolation 100 ml 8,0 

Tris/HCl 1,212 g 

NaPO4 Buffer 
pH7 (see below) 0,1 M 

EDTA 10 mM 
Triton X-100 0,10% 

GUS 
Staining 
solution 

Histochemical 
staining 1 ml 7,0 

X-Gluc 2mM 

NaH2PO4  1M 
Stock Solution 0,390 ml 

Na2HPO4 1 M 
Stock Solution 0,610 ml 

NaPO4 
Buffer 
pH7 

Stock Solution 
for GUS 
staining 

10 ml 7,0 

H2O 9 ml 

NaPO4 Buffer 
pH7 (see above) 50 mM 

EDTA 10 mM 
SDS 0,10% 

Triton X-100 0,10% 

GUS 
Extraction 

Buffer 

Plant Protein 
extraction 1000 ml 7,0 

ß-
Mercaptoethanol 10 mM 

4-MUG 0,0116 g 4-MUG 
Reaction 
Solution 

Fluorescent 
GUS Assay 25 ml 7,0 

GUS Extraction 
Buffer (see 

above) 
25 ml 

4-MU 0,0176 g 4-MU 
Standard 

Stock 
solution 

Fluorescent 
GUS Assay 1 ml 7,0 

Methanol 1 ml 

HEPES Agrobacterium 
transformation 100 ml 7,0 HEPES 23,8306 mg 

 

Standards: a standard array has been established by diluting the stock solution and 

after that each standard by 1:100 (10 µl stock or standard and 990 µl) of GUS 

extraction buffer 
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Oligonucleotides 

 

Numbers of 
nucleotides Name Sequence 

A T G C 

GC 
content 

(%) 

Calculated 
Melting 

Temperature 
(°C) 

Primer GUS 
5’ GGCCTGTGGGCATTCAGTCTGGATC 3 7 9 6 60 58,5 

Primer GUS 
3’ CGGCCTTAGGTAGCGTCGCATTACG 4 6 8 7 60 54,12 

 

3.3. Plant Material 

 

?  Arabidopsis thaliana, Columbia  

 

 

 

3.4. Bacteria 

 

?  Escherichia coli: DH5a strain 

 

?  Agrobacterium tumefaciens: Strain AGL1 
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3.5. Chemicals 

 

All chemicals used were of p. A. (pro Analysii) grade or higher. 

 

Category Purpose Compound Full Name 
Compond 

Short 
Name/Formula 

Bacterial 
selection Ampicilin Amp 

Bacterial and 
Plant selection Kanamycin Kann Antibiotics 

Plant selection Hygromycin Hyg 

Sodium Chloride NaCl 

Bactotrypton   
Yeast Extract   

Potasium Hydroxide KOH 
Magnesium Sulfate Heptahydrate MgSO4.7H2O 

Potasium Chloride KCl 
Magnesium Chloride 

Hexahydrate MgCl2.6H2O 

1,4-
Piperazinediethanesulfonicacid PIPES 

Manganese (II) Chloride MnCl2  

Calcium Chloride Dihydrate CaCl2.2H2O 

Media and 
Buffer 

Ethylendiamintetraacetat, Sodium 
salt EDTA 

Media and 
Buffer, Plant 
Growth and 

Transformation 

Sucrose C12H22O11  

Basic 
chemicals 

Plant 
Transformation Silwett I-77   

 

 

3.6.  Enzymes and Buffers 

 

?  Restriction enzymes: HindIII, SalI, BamHI, EcoRI from Fermentas, together 

with suitable buffers suggested by Fermentas Five Buffer System table 

?  Ligases: T4 DNA Ligase from Fermentas and 10X T4 DNA Ligase Buffer 
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?  DNA Polymerases: GoTaq® Hot Start DNA Polymerase and Green Buffer 

including loading buffer for Agarose Gels, together with MgCl2 and dNTP 

solutions 

 

 

3.7. Kits 

 

?  Promega Wizard® Plus SV Minipreps DNA Purification System 

?  Quiagen Plasmid Midi Kit 

?  QIAprep Spin Miniprep Kit 

?  Promega Wizard® SV Gel and PCR Clean-Up System 

 

 

3.8. Other Equipment 

 

?  Tubes, Pipette Tips of various sizes and other plastic equipment from 

Eppendorf 

?  Victor2D Fluorometer 
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4. Methods 

 

4.1. Molecular Biology methods 

 

4.1.1. Transformation of Escherichia coli 

 

Preparation of Ultra-competent cells (Inoue Method) 

 

To increase the chance of DNA uptake into E. coli (competence of cells) the cells of 

the chosen strain (DHa) need treatment including cold and starvation stress. 

 

Inoculate 100 ml of SOB from LB overnight culture and grow to an optical density 

(OD) of 0,4 at 28°C then change to room temperature and grow there to an OD of 

0,6. Place cell suspension on ice for 10 minutes and then centrifuge at 2500xg (5000 

rpm in GSA rotor) for 10 minutes at 4°C. Discard supernatant and resuspend cell 

pellet in 32 ml chilled TB. Incubate on ice for 10minutes. Centrifuge again under the 

same conditions, discard the supernatant and resuspend the pellet in 8 ml TB and 

add 0,56 ml DMSO. Incubate again for 10 minutes on ice. Then place 100 ? l aliquots 

in tubes and freeze in liquid N2. Store the tubes at –80°C until used for 

transformation. 

 

Transformation of Ultra-competent cells 

 

Thaw one tube of prepared cells per transformation event on ice and add about 1 

? l of DNA solution (dependent on DNA concentration, as high amounts of DNA 

reduce transformation efficiency) and stir gently with the pipette tip. Incubate on ice 

for 30 minutes and then place into a thermo block at 42°C for 40 seconds for heat 

shock and immediately place the tubes back on ice. Add 1 ml of chilled LB, seal the 

tube with parafilm and incubate at 37°C for 1 hour on a shaker. After incubation take 

100 ? l of cell suspension and put it onto LB plates containing the appropriate 

antibiotic as selection  

marker (dependent on used vector, in this case Ampicillin and Kanamycin). 

Centrifuge the remaining suspension and remove the majority of the supernatant. 

Resuspend the pellet in the remaining liquid and put it onto other LB antibiotic plates. 
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Incubate the plates overnight at 37°C. From received colonies pick single ones and 

streak out onto a fresh LB antibiotic plate (further called master plate) and incubate 

again overnight at 37°C. Cells from that plate are used for isolation of transformed 

plasmid in different amounts and for preparation of Glycerol stocks. 

 

 

4.1.2. Transformation of Agrobacterium tumefaciens 

 

Preparation of competent cells 

 

Agrobacterium tumefaciens AGL1 cells from a Glycerol stock were inoculated into 2 

ml CPY medium (instead of LB as recommended in the used protocol, cells tend to 

grow in big clumps in LB, but not in CPY) and grown overnight at 28°C. This culture 

was inoculated into 5 ml CPY and grown on a shaker at 28°C to an optical density (at 

600 nm) of 1 to 1,5. The culture was then chilled on ice for 15 minutes, spun down at 

5000 rpm for 20 minutes at 4°C. The medium was removed and discarded, the pellet 

washed three times (using the same centrifugation settings as above) with 10 ml 

1mM HEPES (2-(4-(2-Hydroxyethyl)-1-piperazinyl)-ethansulfonic acid) at pH 7.0. 

After washing, the pellet was resuspended in 540 µl of sterile 10% glycerol, divided 

into 45 µl aliquots in special cryo tubes frozen with liquid nitrogen and stored at -80°C 

for transformation. 

 

Transformation of competent cells by electroporation 

 

For each one transformation a tube of previously prepared Agrobacterium 

tumefaciens AGL1 competent cells was thawn on ice, 1 µl plasmid solution 

(containing about 0,2 µg DNA) was added and the mixture transferred to a prechilled 

electroporation cuvette (0,2 cm gap). The electric pulse applied for transformation 

was at field strength of 12,5kV/cm for 5 ms at 15 µF. Directly after the pulse 1 ml of 

CPY was added and incubated at 28°C for 1 hour. After incubation take 100 ? l of cell 

suspension and put it onto LB plates containing the appropriate antibiotic as selection 

marker (dependent on used vector, in this case Ampicillin and Kanamycin). 

Centrifuge the remaining suspension and remove the majority of the supernatant. 

Resuspend the pellet in the remaining liquid and put it onto other LB antibiotic plates. 
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Incubate the plates overnight at 28°C. From received colonies pick single ones and 

streak out onto a fresh LB antibiotic plate (further called master plate) and incubate 

again overnight at 28°C. Cells from that plate are used for isolation of transformed 

plasmid in different amounts and for preparation of Glycerol stocks. 

 

 

4.1.3. Preparation of Glycerol Stocks 

 

For long time storage of bacterial strains and especially transformants a culture was 

grown overnight. 1,24 ml of this culture was intensively mixed with 0,5 ml 87% sterile 

Glycerol inside a special cryotube and immediately dropped into liquid nitrogen for 

shock freezing. The frozen tubes were stored at -80°C. 

 

 

4.2. DNA isolation and processing 

 

4.2.1. DNA isolation (CTAB) 

 

To prove successful transformation of Arabidopsis plants DNA was isolated using this 

protocol. The isolated DNA was used for PCR to check for inserts. 

Plant material was grinded in a mortar together with liquid nitrogen. 500 µl of CTAB 

mix was added and the mixture was put to a shaker for 30 minutes at 60°C. A 

mixture of 250 µl Phenol, 250 µl Chloroform and Isoamylalcohol (24:1) was added, 

mixed and separated in a centrifuge for 5 minutes at 1600 g. The water phase was 

transferred to a new tube, shortly shaken with 500 µl of a mixture of 

Chloroform:Isoamylalcohol (24:1) and separated again in a centrifuge for 5 minutes 

at 1600 g. The water phase was transferred to a new chilled tube, 500 µl of prechilled 

(4°C) Isopropanol was added. The mixture was then spinned down in a centrifuge for 

15 minutes at 18300 g at 4°C. The remaining liquid was slowly removed and the DNA 

pellet was carefully washed with 200 µl of prechilled 70% Ethanol. After a final 

centrifugation for 1 minute at 18300 g at 4°C the remaining liquid was carefully 

removed, the pellet was dried by leaving the open tube upside down on a paper 

towel for 5 minutes. The dried pellet was dissolved in 50 µl TB buffer for PCR. 
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4.2.2. Plasmid isolation (Miniprep) 

 

Lower purity (Promega kit) 

 

In order to obtain plasmid DNA material in amounts suitable for most further 

processing steps, isolation of plasmids from overnight cultures of transformed 

bacteria is essential. 

Isolation was done in accordance to the manufacturer’s manual. (Promega Wizard® 

Plus SV Minipreps DNA Purification System) 

 

Higher purity (Qiagen kit) 

 

In case of a single isolation and purification step this method was used in order to 

obtain DNA of higher purity, which was the case for pBI-35Min-GUS before restriction 

digest. 

Isolation was done in accordance to the manufacturer’s manual. (Qiagen plasmid 

purification handbook) 

 

 

4.2.3. Plasmid isolation (Midiprep) 

 

When high amounts of plasmid DNA are required (for example serial experiments as 

particle bombardment), a larger volume of overnight culture (about 100 ml) is used 

for isolation, which is in its basic steps the same as the Miniprep but uses another 

purification column. 

 

Isolation was done in accordance to the manufacturers manual. (Qiagen plasmid 
purification handbook) 
 

 

4.3. Cloning of the reporter gene and the heat shock enhancer 

 

The overall plan to test the Heat shock enhancer is to place it in front of a ß-

Glucuronidase gene (GUS) under a Cauliflower mosaic virus minimal promotor. The 

first step was to cut out the minimal promotor CaMV –GUS from p221.9 using 
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BamHI/EcoRI and ligate it into the vector backbone of pBI101.1, resulting in pBI-

35MinGUS. Restriction digests, eluation and purification from agarose gels and 

ligation steps are described below. 

The next step was the insertion of the Heat shock enhancer upstream of the reporter 

gene (GUS). It was first cut out of pSGH2 using HindIII/SalI, the fragment containing 

the heat shock enhancer was precipitated due to its small size and ligated into pBI-

35MinGUS. Precipitation of DNA is described below. 

 

 

4.3.1. Enzymatic Restriction digest 

 

The cutting of DNA using restriction enzymes can be used for many purposes, such 

as cloning or identification of a certain plasmid by its fragment size. 

For majority of digests Fermentas enzymes were used, together with the patented 

Buffer system, in an onset size of 20 ? l in total and an incubation time of about 1 

hour. Enzyme concentration was never above 1/10 of the onset volume, so in most 

cases 2 ? l. Higher onsets were also done, for example 50 ? l or 100 ? l by simply 

using proportional larger amounts of enzyme, buffer, etc. and longer incubation time 

(several hours to overnight). 

 

 

4.3.2. Separation of Fragments and Purification of Gel slices 

 

Often Bands on agarose gels contain DNA that are required for further steps (for 

example fragments of restriction digests) and have to be eluted and purified. 

Gels were developed as appropriate (usually 0,8%, only when separating very small 

fragments 2% gels were used, amperage was usually at 60-80 mA) together with ?  

DNA marker. The band of the desired size was cut out and purification of DNA was 

done in accordance with the manufacturers manual (Wizard® SV Gel and PCR 

Clean-Up System). 
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4.3.3. DNA Precipitation 

 

When a desired DNA fragment is very small (in this case about 150 bp for the Heat 

shock enhancer element) instead of agarose gel electrophoresis the DNA is 

precipitated and dissolved in a suitable buffer for ligation. 

From the solution of previous restriction digest 100 µl were mixed with 10 µl of 

prechilled Sodium acetate (pH=4,9) solution. Then 270 µl of prechilled ethanol 

(100%) were added, shortly mixed and incubated at -20°C for 30 minutes. The 

mixture was spun down at 4°C for 15 minutes at 16.000 rpm. The liquid was carefully 

removed and the DNA pellet washed with 500 µl of prechilled Ethanol (70%). After a 

final centrifugation at 4°C for 5 minutes at 16.000rpm the liquid was carefully 

removed, the pellet was dried by leaving the open tube upside down on a paper 

towel for 5 minutes. The pellet was directly dissolved in Fermentas ligase buffer and 

used for ligation. 

 

 

4.3.4. Ligation 

 

The desired DNA fragments previously cut by restriction endonucleases were mixed 

in a ratio insert to vector backbone of 6:1 together with 10 µl of Ligase aliquote and 

incubated overnight in a waterbath at 16°C. After the incubation an aliquote of the 

mix was directly used to transform E. coli competent cells following the Inoue method 

described above (4.1.1.). 

 

 

4.4. PCR 

 

Genomic DNA from transgenic Arabidopsis plants was used to proof successful 

transformation using specific primers designed to bind inside of the GUS gene.  

A PCR mix was set up as described in the following: 

50 µl total per tube 

1 µl dNTPs 10 µl GoTaq buffer 

1 µl primer GUS 3’ 0,2 µl GoTaq Polymerase 

1 µl primer GUS 5’ 35,8 µl 4x distilled water 
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The thermocycler used was set to the following program: 

 

94°C 10 min 

94°C 1 min 30 sec 

58°C 1 min 

72°C 1 min 

72°C 10 min 

4°C 8  

 

 

4.5. Fluorometric ß-Glucorunidase Assay 

 

Heat shock 

 

Plant explants (leaves and stem) from cultured plants were divided, washed three 

times with sterile water in petri dishes, divided and put into sterile Eppendorf tubes 

and treated for two hours with different temperatures (4°C, 17°C, 25°C, 32°C, 37°C 

and 42°C). The explants were then incubated overnight at 25°C. 

 

Protein isolation and GUS reaction 

 

Explants were transferred into new Eppendorf tubes cooled on ice containing 50 µl of 

prechilled GUS extraction buffer and a small amount of sterile quartz sand. Each 

sample was ground using a glass pestle until the liquid was homogenous. The pestle 

was then rinsed using 150 µ of GUS extraction buffer containing 4-MUG for a final 

concentration of 1 mmol/l. The tubes were then centrifuged at 13000 rpm and 4°C for 

15 minutes. The supernatant of each sample was transferred into a separate new 

Eppendorf tube, and incubated for 24 hours at 37°C. Before incubation, a Bradford 

assay was done using the supernatant as samples to evaluate the overall protein 

concentration of the reaction mix. An aliquote of 1 µl of each sample was added to 

800 µl water and 200 µl of Bradford Dye solution and measured using a UV-VIS 

spectrometer at 595 nm. 

To stop the reaction of 4-MUG to 4-MU by ß-glucuronidase 50 µl of 0,1 M Na2CO3 

solution were added to an 50 µl aliquote of each sample in a microtiter plate. These 
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solutions were put into a Victor2D Fluorometer for measurement. Settings were the 

following: 

 

Exitation wavelength: 355 nm 

Emission filter wavelength: 460 nm 

 

 

4.6. Plant-Related methods 

 

4.6.1. Arabidopsis Floral dip transformation 

 

Agrobacterium tumefaciens carrying transgene on a binary vector (pBI-35MinGUS for 

negative control, pBI-HSE-35MinGUS as test construct for the heat shock element, 

for details on the two plasmids see Appendix I, page III and IV) were grown overnight 

at 28°C in CPY medium containing Kanamycin or Hygromycin (Kan for both Heat 

shock constructs, Hygromycin for GUS positive control plasmid). Cells were spun 

down and resuspended in 100 ml of freshly prepared 5% Sucrose solution. Before 

dipping the flowering Arabidopsis plants, 1 ml of Silwet L-77 was added to a final 

concentration of 0,05%. Above-ground parts of plants were dipped in Agrobacterium 

suspension and wrapped into plastic foil. The tip of the foil of each plant was cut off 

the following morning to avoid fungal growth. Two days after dipping foil was 

removed from each plant and plants were tied to stacks to give stability and avoid 

cross-contamination between plant pods. Dipping was repeated once with the same 

plants after one week to increase transformation efficiency. Plants were watered 

regularly, and seeds were harvested as soon as seed pods were dried out and 

brownish. 

 

 

4.6.2. Seed Sterilisation and Segregation analysis 

 

Seeds taken from dried out (transgenic) plants were washed for 3 minutes in 70% 

ethanol, for 5 minutes in 50% NaOCl, and afterwards three times in sterile water for 

one minute each. After removing water from the final washing step seeds were 

placed onto freshly prepared plates containing MS medium with selective antibiotics 
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of appropriate concentrations by pipette tip and incubated at 25°C. The plates were 

checked regularly, occasionally condensation water was removed under sterile 

conditions, when necessary. 

When the seeds finally germinated (after about 2 weeks), the ratio of living (positive 

transgenic) to dead was determined. Positive transgenics survived through their 

antibiotic resistance, whereas wild type plants died. The ratio between them depends 

of the copy number of inserts in the transgenic plants following mendelian 

inheritance. 

 

 

4.6.3. ß-Glucorunidase Histochemical Staining 

 

Plant explants (leaves, stem, root and flower) from cultured plants were divided, 

washed three times with sterile water, put into sterile Petri dishes and treated for two 

hours with different temperatures (4°C, 17°C, 25°C, 32°C, 37°C and 42°C). Directly 

after the heat shock the dishes containing the explants were incubated at 25°C for 24 

hours. Then the explants were washed once in 50 mM Phosphate Buffer (pH=7) and 

finally treated with X-Gluc Histochemical staining buffer under vacuum and incubated 

overnight. 

The results were then recorded as specified in chapter 5.4. on page 44. 
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5. RESULTS 

 

5.1. Cloning of Heat Shock Enhancer into pBI101.1 

 

The plasmid construct to test the heat shock enhancer in Arabidopsis thaliana was 

constructed from pBI101.1, where the GUS gene under a full CaMV 35S promoter 

was replaced by the GUS gene under the control of a minimal CaMV35S promotor 

from p221.9 Gre6 to reduce background expression of the reporter gene. The heat 

shock enhancer was then cloned right upstream of the now genetically silent GUS 

gene under minimal promoter. 

 

 

 Preparation of Fragments 

 

Transformation of basic DNA constructs into E. coli 

 

The three basic plasmids were transformed into E. coli DH5a (Inoue Method, see 

chapter 4.1.1., page 27) and then isolated following Miniprep protocol (see 

chapter4.2.2., page 30, Promega kit) and transferred to a 0.8% Agarose gel to 

confirm transformation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1: Isolation of pBI101 (02.11.2006) 

 
Figure 2: Isolation of p221 
(20.10.2006) 

 
Figure 3: Isolation of pSGH2 (10.11.2006) 
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Thus, as can be seen on the gel photos, the transformation was successful in every 

case, though especially p221 needed several repeated transformation attempts. The 

size of each plasmid matches that of the corresponding band on the gels. 

 

Restriction digests 

 

To obtain the desired fragments needed for ligation, the basic plasmids isolated after 

successful transformation were cut using suitable restriction enzymes 

(endonucleases, see chapter 4.3.1., page 31 for details). The resulting fragments 

were separated on agarose gels (Concentration of agarose dependent of fragment 

size 0,8% for large fragments, 2% for small ones, such as the eluted fragment of 

pSGH2 in figure 6).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Two fragments of p221 cut with 
BamH1 and EcoR1. The lower fragment 
(marked by an arrow) was isolated and purified 
for the first ligation. 
 

 
Figure 5: Remaining fragment (plasmid backbone) 
of pBI101, also cut with BamH1 and EcoR1. This 
was isolated and purified for the first ligation. 

 
Figure 6: pBI-35S-Min-GUS (Left two lanes) and pSGH2 (Right two lanes) cut with Hind3 Sal1. The 
small fragment of pSGH2 containing an octamer of HSE and the plasmid backbone of pBI-3S-Min-
GUS were isolated, purified and used for the final ligation. 
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Thus, all digests were successful; the predicted fragment sizes match the 

corresponding gel bands. 

 

Purification 

 

Fragments from restriction digests were cut out of Agarose gel, purified (see chapter 

4.3.2., page 31 for details on Promega Wizard® SV Gel and PCR Clean-up System 

protocol) and again put on Agarose gels (with 2% Agarose). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The purified fragments were still available in sufficient amounts as can be seen on 

the gel photos as the intensity of the gel bands. The intensity of the gel bands and 

therefore the amount of DNA decreased naturally because of the purification process. 

 

 

 

 

 

 

 

 

 
Figure 7: Separation of Fragments after eluation 
and purification. Left is the plasmid backbone of 
pBI101, right the 35S Min GUS fragment of p221 

 
Figure 8: Fragments pBI-35Min-GUS 
(Backbone, left) and pSGH2 (HSE, right). The 
gel was run very shortly because of the small 
size of the pSGH2 fragment. 
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 Ligation 

 

Directly after ligation (incubation overnight at 16°C) an aliquote of the mixture was 

used to transform E. coli DH5a, which was again incubated overnight at 37°C to 

allow sufficient growth to allow plasmid isolation (Miniprep) and checking on an 

Agarose gel (0,8%). 

 

 

 

 

 

 

 

 

 

 

Thus, transformations after the ligation was successful as can be seen on the photos 

by distinct bands. If the transformed plasmid really contains the desired insert has yet 

to be determined by reverse ligation (see below). 

 

Reverse Ligation 

 

To prove successful ligation, it is reversed using the same restriction enzymes as for 

the preparation of the fragments ligated. 

 

 

 

 

 

 

 

 

 

 
Figure 9: Isolation of three identical plasmids 
(pBI-35Min-GUS) after ligation. 

Figure 10: Isolation of three identical 
plasmids (pBI-HSE-35Min-GUS) 
 

 
Figure 11: Reverse ligation of pBI-35Min-GUS, 
using BamH1 and EcoR1. 

Figure 12: Reverse Ligation of pBI-35Min-
GUS (left) and pBI-HSE-35Min-GUS 
(right),both using Hind3 and EcoR1. The shift 
in size on the right size indicates the presence 
of the HSE insert. 
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Ligation of the minimal promotor GUS from p221 into the backbone of pBI101 was 

successful, as the treatment with the same restriction enzymes reveals the original 

fragments before ligation. (figure 11). Figure 12 shows the restriction of both pBI-

35MinGUS and the final pBI-HSE-35MinGUS using one restriction enzyme from each 

previous digests to leave a better prove of the small HSE insert then simply reversing 

the second ligation. By comparing the sizes of the smaller fragments of both plasmids 

it is clearly visible that the fragment of pBI-HSE-35MinGUS is about 150 bp larger, 

therefore containing the desired fragment. 

 

 

5.2. PCR of Arabidopsis Transformants 

 

After transformation plants were screened for positive transformants by PCR. The 

primers were designed to pair inside the GUS gene (see chapter 3.2. 

oligonucleotides on page 24) 

 

DNA isolation 

 

The concentration of isolated DNA was measured by UV/VIS Photometry at a 

wavelength of 260 nm. 

 

Sample Absorption Concentration 
(mg/ml) 

Diluted for 
PCR 

I2 0,003 0,146 1:25 
I5 0,006 0,317 1:25 
I6 0,008 0,403 1:25 

I15 0,01 0,488 1:25 
I18 0,011 0,537 1:25 
I19 0,004 0,208 1:25 
I20 0,02 0,977 1:50 
I21 0,016 0,781 1:50 
G3 0,009 0,439 1:25 
M9 0,011 0,574 1:25 

pos HSE 0,009 0,427 1:25 
Pos MIN 0,01 0,513 1:25 

Table 2: UV-VIS Absorption and calculated DNA concentration together with the dilution factor applied 

therefore for PCR for each sample. The samples are denominated as follows: “I” is for inducible lines 

transformed by pBI-HSE-35MinGUS, “G” for constitutively expressing GUS lines not used any further, 

“M” for minimal promotor GUS transformed by pBI-35MinGUS, “pos HSE” and “pos MIN” are positive 

controls of pBI-HSE-35MinGUS and pBI-35MinGUS isolated from corresponding transgenic E. coli. 
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PCR 

 

Samples from the finished PCR were put to a 0.8% agarose gel to check for PCR 

products indicating a DNA insert and therefore positive transformation of Arabidopsis 

plants. 

 

 

 

 

 

 

 

 

 

 

 

 

 

As can be seen in figure 13 the following lines can be considered positive 

transformants as at least a visible band appeared on the gel, indicating the presence 

of a PCR product: I2, I18 and I19 to be used for phenotype analysis. The lines I4, I6 

and I20 were also positive (although in line I6 GUS-staining was barely visible), but 

were not used because of their weak response in GUS stainings. The reason for the 

second band showing at 600 bp and appearing above the predicted PCR product of 

400 bp is unknown; primer mismatches were excluded by sequence comparison.  

 

 

5.3. Segregation analysis 

 

To estimate the copy number of gene inserts in transformed Arabidopsis plants, 

second generation seeds were analyzed for their antibiotic resistance (acquired 

through transformation), where the rate of living seedlings to dead ones (following the 

classical Mendelian rules) resulted in the copy number of the transformed T-DNA. 

 

     ?       I2       I4       I5       I6      I15    I18     I19     I20     I21    G3      M9  HSE    Min wt 

 
Figure 13: PCR products of isolated DNA. The predicted size of the product is 400 base pairs 
(bp), which is visible for I2, I4, I6 (very weak), I18, I19, I20, M9 and the two positive controls 
HSE (posHSE from DNA isolation) and Min (posMin from DNA isolation). A second band 
appears at 600 bp for unknown reasons. Denomination of lines see comments on table 1. 
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Transgenic 
Line Total Plants Plants Survived Plants Died Ratio 

I2 153 99 54 3:1 
I4 94 70 24 3:1 
I6 16 13 3 3:1 
I18 37 27 10 3:1 
I19 370 303 67 3:1 
I20 268 242 26 >3:1 
I21 44 41 3 >3:1 

 
Table 3: Plant number identifies the individual plant and its transgenic background, where “I” means 

inducible, containing pBI-HSE-35Min-GUS. 

 

 

A ratio alive to dead (transgenic to wildtype) of about 3:1 suggests only one copy of 

transgene in the originally transformed plants and therefore also in the T2 generation 

used for fluorometric GUS assay. A higher ratio (>3:1) suggests two or more 

independent copies of the transgene in the plants. First generation seeds were still 

subject to GUS histochemical staining to have several criteria to choose plants for 

fluorometric GUS assay. 
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5.4. GUS Histochemical staining 

 

The transformed plants of the first generation were used for GUS histochemical 

staining to check again for positive transformants, for functionality of the HSE insert 

and to choose plants for quantitative fluorometric GUS assay. 

The following summary shows the different plants staining results. 
Plant 
Nr. 

Temp. 
(°C) Leaf Root Stem Inflourescence Plant 

Nr. 
Temp. 
(°C) Leaf Root Stem Inflourescence 

22 + +     4 - + + - 
33 + ++     17 + - + + 
37 + +++     22 + - + - 

I1 

42 + ++     33 + + + - 
22 + +     37 + ++ ++ - 
33 ++ ++     

I10 

42 na na na Na 
37 ++ ++     4 + - - - 

I2 

42 + +     17 - - + - 
22 + -     22 + - ++ - 
33 + +     33 ++ + +++ - 
37 + +     37 +++ ++ +++ - 

I3 

42 + -     

I11 

42 - - + - 
22 + -     4 ++ + + + 
33 + +     17 - - ++ - 
37 + ++     22 + + ++ - 

I4 

42 + +     33 ++ +++ ++ - 
4 - - - - 37 +++ +++ +++ + 
17 - - - - 

I12 

42 ++ - ++ - 
22 - - - - 4 +- +- + - 
33 - - - - 17 ++ +- + Na 
37 - - - - 22 ++ +- +- Na 

I5 

42 - - - - 25 +- +- - Na 
4 + + + - 33 +++ +- + Na 
17 + + + + 37 ++++ ++ + Na 
22 + + ++ + 

I13 

42 +++ + + Na 
33 + + ++ na 4 + + + Na 
37 + - ++ - 17 + + + Na 

I6 

42 + + + - 22 - + - Na 
4 + + + - 25 - + + Na 
17 + + + + 33 - + + Na 
22 + + + + 37 + + + Na 
33 + + +++ + 

I14 

42 + - - Na 
37 + - + + 4 - - + Na 

I7 

42 + - + - 17 - +- + Na 
4 + + + na 22 + + - Na 
17 + - - - 25 + + - Na 
22 + - + na 33 ++ - ++ Na 
37 ++ + ++ + 37 +++ + + Na 

I8 

42 - - - - 

I15 

42 + +- +++ Na 
4 + - - +       
17 ++ - na -       
22 - - + -       
33 - - ++ -       
37 + - ++ -       

I9 

42 + - + -       
Table 4: Staining results summary of first screen. Explanation for stainings: “-“ is no visible staining, 

“+-“ unclear staining, “+” weak visible staining, “++” clearly visible staining and “+++” strong visible 

staining. 
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Some promising plants were screened more closely in a serial experiment. 

Staining 
Nr. 1 2 3 

Plant 
Nr. 

Temp 
(°C) Leaf Root Stem Inflourescence Leaf Root Stem Inflourescence Leaf Root Stem Inflourescence 

4 - - - - - - - - - +- - - 

17 - - - - - - - - - - - - 

25 - - - - - - - - - - - - 

33 - - - - - - - - - - - - 

37 - - - - - - - - - - - - 

M11 

42 - - - - - - - - - - - - 

4 + - + + + - + - - ++ - - 

17 + - + - + - ++ - - ++ - - 

25 + + + ++ + ++ + ++ - + + - 

33 + ++ +++ ++ ++ + + + - +++ + - 

37 +++ +++ +++ +++ + +++ +++ +++ + +++ +++ +++ 

I18 

42 ++ + +++ na +++ ++ +++ ++ + ++ + - 

4 - - + - - ++ ++ - - - + - 

17 - + + + +- - +- - - - + - 

25 - - + + +- +- + - - + ++ + 

33 + ++ ++ na + + ++ ++ - + - + 

37 ++ ++ +++ ++ ++ ++ +++ +++ ++ - ++ ++ 

19 

42 ++ na ++ - - + ++ - - + ++ ++ 

4 - - +- - - - - - - +- - ++ 

17 +- +- +- - - - - - - - - - 

25 - +- - - - +- + - - - - + 

33 +- - + - + - ++ - - - + + 

37 + + +++ +++ + ++ ++ na - - +++ ++ 

I20 

42 - + + - - + ++ - - - + - 

4 - - - - - - +++ - - - +- - 

17 - - ++ - - - ++ - - - + - 

25 - - + - - - +++ - - - +- - 

33 ++ + ++ + - - ++ - - - + - 

37 +++ + +++ + ++ + ++ ++ ++ + ++ + 

I21 

42 + - + + + - + - - - + - 

Table 5: Staining results summary of serial screens done with some promising lines. Explanation for 

stainings: “-“ is no visible staining, “+-“ unclear staining, “+” weak visible staining, “++” clearly visible 

staining and “+++” strong visible staining. 

 

 

After careful considerations, plants I2, I18 and I19 were selected (together with 

wildtype plants as control) using leave and stem tissue for quantitative fluorometric 

GUS assay. The results leading to this decision are highlighted in tables 4 and 5. 

These plants showed almost no GUS activity when exposed to temperatures from 4 

°C to 25 °C and very high GUS activity at 37°C. 
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5.5. Fluorometric GUS Assay 

 

Standard series 

 

Along with every measurement series a dilution row of 4-methyl-umbelliferone was 

included as standards with defined concentrations. 

Standard 
concentration 

Fluorescence 
Intensity of 
Standards 
series 1 

Fluorescence 
Intensity of 
Standards 
series 2 

Fluorescence 
Intensity of 
Standards 
series 3 

1,E-13 2980 3392 2412 
1,E-11 1176 2121 2029 
1,E-09 5064 7209 6810 
1,E-07 8371 6270 6926 
1,E-05 467792 351911 337290 
1,E-03 8342368 8055720 5708280 

Table 6: The shaded standards appear to be in the linear range, whereas the other, non-shaded 

standards do not obey the law of Lambert-Beer (Linear correlation between fluorescence intensity and 

concentration of fluorescent substance, e.g. 4-MU) and where not utilized in further calculations. 

 

From these standards the slope and the intercept of the regression line (following the 

simple equation for linear correlations y = k * x + d, where k is the slope and d the 

intercept in a xy coordinate system) were calculated. 

 

Standard 
concentration 

Fluorescence 
Intensity of 

Standards series 
1 

Fluorescence 
Intensity of 

Standards series 
2 

Fluorescence 
Intensity of 

Standards series 
3 

1,E-11 1176 2121 2029 
1,E-09 5064 7209 6810 
1,E-07 8371 6270 6926 
slope 53064203064,20 16519422769,42 25545156795,16 

Intercept 3083,66 4643,67 4394,89 
Table 7: Slope and intercept of the y values fluorescence intensity and the x values standard 

concentration. 

 

To calculate the concentration of 4-MU the values from the raw data (umbelliferone 

counts, see table 8) were used, following the equation y = k * x + d, where y is the 

fluorescence intensity and x the concentration of 4-MU, k the slope and d the 

intercept of the y axis, both determined from the standards. Parallel to the 

fluorescence measurement the protein concentration of the used extracts was 
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determined by Bradford protein assay, which was used to calculate the GUS activity 

(nmol of 4-MU produced per minute per mg protein) for an incubation time of 24 

hours. All these values are listed in the following table (Table 8), sorted by the number 

of series of measurement. 

 

Series 1 2 3 

Plant 
Nr. 

Temp 
(°C) 

Umb 
Counts 

4-MU 
conc 

(nmol) 

Prot 
(mg/ml) 

GUS 
act 

Umb 
Counts 

4-MU 
conc 

(nmol) 

Prot 
(mg/ml) 

GUS 
act 

Umb 
Counts 

4-MU 
conc 

(nmol) 

Prot 
(mg/ml) 

GUS 
act 

4 37525 649 0,394 1,14 14090 572 0,594 0,67 15758 445 0,457 0,68 
17 20535 329 0,544 0,42 15667 667 0,588 0,79 20827 643 0,513 0,87 
25 21360 344 0,219 1,09 45628 2481 0,725 2,38 25895 842 0,551 1,06 
33 31174 529 0,250 1,47 42553 2295 0,544 2,93 42090 1476 0,307 3,34 
37 199352 3699 0,263 9,77 42353 2283 0,769 2,06 289564 11163 0,476 16,29 

I2l 

42 19604 311 0,150 1,44 55867 3101 0,657 3,28 12937 334 0,469 0,50 

4 14867 222 0,476 0,32 11340 405 0,432 0,65 6589 86 0,407 0,15 

17 18561 292 0,006 33,76 14290 584 0,063 6,44 8275 152 0,876 0,12 

25 21011 338 0,043 5,46 13004 506 0,194 1,81 9756 210 0,645 0,23 

33 65320 1173 0,031 26,27 30612 1572 0,225 4,85 67208 2459 0,695 2,46 

37 98083 1790 0,169 7,36 171309 10089 0,369 18,99 155166 5902 1,064 3,85 

I2S 

42 9449 120 0,000   214753 12719 0,213 41,47 11935 295 0,482 0,43 

4 15553 235 0,250 0,65 27399 1377 0,113 8,47 12036 299 0,388 0,54 

17 19218 304 0,038 5,56 13378 529 0,188 1,95 81829 3031 0,463 4,55 

25 16439 252 0,113 1,55 15862 679 0,494 0,95 12704 325 0,451 0,50 

33 52965 940 0,000   17370 770 0,300 1,78 24251 777 0,451 1,20 

37 72708 1312 0,000   200558 11860 0,125 65,89 387369 14992 0,482 21,60 

I18L 

42 11253 154 0,106 1,01 25725 1276 0,094 9,43 7042 104 0,551 0,13 

4 11895 166 0,188 0,61 8209 216 0,307 0,49 64916 2369 0,901 1,83 

17 9047 112 0,131 0,60 8403 228 0,194 0,81 8059 143 0,707 0,14 

25 9476 120 0,000   11617 422 0,144 2,04 9641 205 0,432 0,33 

33 9100 113 0,219 0,36 15248 642 0,113 3,95 52669 1890 0,682 1,92 

37 170878 3162 0,206 10,66 145091 8502 0,113 52,25 118906 4483 0,300 10,38 

I18S 

42 11615 161 0,206 0,54 81420 4648 0,106 30,45 4687 11 0,757 0,01 

4 26959 450 0,557 0,56 42805 2310 0,544 2,95 13903 372 0,732 0,35 

17 31897 543 0,338 1,12 14224 580 0,263 1,53 13298 349 0,526 0,46 

25 64757 1162 0,332 2,43 10673 365 0,212 1,20 70913 2604 1,089 1,66 

33 79760 1445 0,369 2,72 35141 1846 0,019 67,48 18725 561 0,482 0,81 

37 559076 10478 0,407 17,88 196020 11585 0,194 41,47 53790 1934 0,619 2,17 

I19L 

42 17725 276 0,307 0,62 55157 3058 0,106 20,03 6320 75 0,469 0,11 

4 10163 133 0,275 0,34 7927 199 0,056 2,47 6435 80 0,663 0,08 

17 19176 303 0,269 0,78 13320 525 0,232 1,57 153138 5823 0,563 7,18 

25 7771 88 0,004 15,34 90344 5188 0,181 19,90 9773 211 0,482 0,30 

33 84588 1536 0,213 5,01 33890 1770 0,344 3,57 72985 2685 0,526 3,54 

37 103418 1891 0,181 7,25 89741 5151 0,006 596,2 159314 6065 0,820 5,14 

I19S 

42 5662 49 0,138 0,24 234214 13897 0,004 2244 5642 49 0,244 0,14 

4 -611 -70 1,821 -0,03 2190 -149 1,352 -0,08 -924 -208 2,490 -0,06 

17 880 -42 1,840 -0,02 2088 -155 1,333 -0,08 4415 1 1,683 0,00 

25 9169 115 1,589 0,05 8420 229 0,914 0,17 -1484 -230 2,027 -0,08 

33 5192 40 1,076 0,03 4262 -23 1,189 -0,01 2554 -72 1,896 -0,03 

37 6816 70 0,738 0,07 5033 24 0,870 0,02 3086 -51 1,871 -0,02 

WTL 

42 3143 1 0,807 0,00 5678 63 0,519 0,08 3014 -54 1,107 -0,03 
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4 5004 36 0,832 0,03 2256 -145 0,901 -0,11 1443 -116 1,320 -0,06 

17 3648 11 0,594 0,01 4653 1 0,588 0,00 318 -160 1,927 -0,06 

25 4181 21 0,857 0,02 4538 -6 0,019 -0,23 1693 -106 1,965 -0,04 

33 6689 68 0,907 0,05 4231 -25 0,451 -0,04 880 -138 1,965 -0,05 

37 5026 37 0,751 0,03 1339 -200 1,145 -0,12 3766 -25 1,283 -0,01 

WTS 

42 5073 37 0,763 0,03 3626 -62 0,131 -0,33 2649 -68 0,551 -0,09 

Table 8: Summary of fluorescence intensity (Umb red by blanc), 4-MU concentration (nmol/l), protein 

concentration of the sample (mg/ml) and the activity of GUS (nmol/min/mg protein) of all series of 

measurement. 

 

From each series of measurement an average was calculated per sample per 

temperature. Because of high standard deviation certain values were not included in 

the average value and considered as measurement errors. Those values are marked 

red in the following table (Table ). The averages were then used for an illustrative 

diagram. 

 

 
 

 

Series 1 2 3 

Plant 
Nr. Temp (°C) GUS 

act 
GUS 
act 

GUS 
act 

Average GUS 
activity 

Standard 
Deviation 

4 1,14 0,67 0,68 0,83 0,22 
17 0,42 0,79 0,87 0,69 0,20 
25 1,09 2,38 1,06 1,51 0,61 
33 1,47 2,93 3,34 2,58 0,80 
37 9,77 2,06 16,29 9,37 5,81 

I2l 

42 1,44 3,28 0,50 1,74 1,16 
4 0,32 0,65 0,15 0,37 0,21 
17 33,76 6,44 0,12 3,28 14,60 
25 5,46 1,81 0,23 2,50 2,19 
33 26,27 4,85 2,46 3,65 10,71 
37 7,36 18,99 3,85 10,07 6,47 

I2S 

42   41,47 0,43   20,52 
4 0,65 8,47 0,54 3,22 3,71 
17 5,56 1,95 4,55 4,02 1,52 
25 1,55 0,95 0,50 1,00 0,43 
33   1,78 1,20 1,49 0,29 
37   65,89 21,60 21,60 22,14 

I18L 

42 1,01 9,43 0,13 3,52 4,19 
4 0,61 0,49 1,83 0,98 0,60 
17 0,60 0,81 0,14 0,52 0,28 
25   2,04 0,33 1,18 0,85 
33 0,36 3,95 1,92 2,08 1,47 
37 10,66 52,25 10,38 21,04 19,67 

I18S 

42 0,54 30,45 0,01 0,55 14,22 
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4 0,56 2,95 0,35 1,29 1,18 
17 1,12 1,53 0,46 1,04 0,44 
25 2,43 1,20 1,66 1,76 0,51 
33 2,72 67,48 0,81 3,53 30,99 
37 17,88 41,47 2,17 20,51 16,15 

I19L 

42 0,62 20,03 0,11 6,92 9,27 
4 0,34 2,47 0,08 0,96 1,07 
17 0,78 1,57 7,18 3,18 2,85 
25 15,34 19,90 0,30 11,85 8,37 
33 5,01 3,57 3,54 4,04 0,68 
37 7,25 596,2 5,14 6,20 278,14 

I19S 

42 0,24 2244 0,14 0,38 1057,90 
4 -0,03 -0,08 -0,06 -0,05 0,02 
17 -0,02 -0,08 0,00 -0,03 0,03 
25 0,05 0,17 -0,08 0,05 0,10 
33 0,03 -0,01 -0,03 0,00 0,02 
37 0,07 0,02 -0,02 0,02 0,03 

WTL 

42 0,00 0,08 -0,03 0,02 0,05 
4 0,03 -0,11 -0,06 -0,05 0,06 
17 0,01 0,00 -0,06 -0,01 0,03 
25 0,02 -0,23 -0,04 -0,08 0,11 
33 0,05 -0,04 -0,05 -0,01 0,05 
37 0,03 -0,12 -0,01 -0,03 0,06 

WTS 

42 0,03 -0,33 -0,09 -0,13 0,15 
Table 9: Average GUS activity of all experiments, together with outliers not included in the averages 

(marked in red) and the standard deviation for each set of values.  
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Diagram 1: Summary of all lines (including Wildtype, barely visible along the x axis), showing clearly 

the inducible properties of the heat shock enhancer, but also revealing background expression. 
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Diagram 2: Temperature dependent GUS activity in the inducible line I2, showing the temperature 

dependent GUS expression of the HSE element. 
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I18 and Wildtype
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Diagram 3: Temperature dependent GUS activity in the inducible line I18, showing inducible 

behaviour as expected with a maximum at 37°C and rather low to zero activity at 25°C and low activity 

at 17°C and 4°C. 
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Diagram 4: Temperature-dependent GUS activity in the inducible line I19. Also here a measurement 

error seems obvious at 25°C for I19S, where the standard deviation is moderately high (8,37). 
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As one can see in the diagrams (especially diagram 2 to 4), all lines transformed by 

pBI-HSE-35MinGUS show increased GUS activity at 37°C and low GUS activity at 

25°C (with exceptions marked in the text below each diagram). During the 

experiments it became obvious that explants were severely damaged by treatment at 

42°C, resulting on the one hand in a strong decrease in GUS activity, on the other 

hand a great variance in protein concentration in the samples resulting in a greater 

variance in GUS activity values. This may explain the in some lines visible increase in 

GUS activity, as it is calculated per mg protein. 

Quite interesting is the fact of moderately increasing GUS activity at temperatures 

below 25°C.  

 

 

6. DISCUSSION 

 

So far, existing inducible genetic systems fulfil the requirements expected from them 

(Gatz, 1997) only partially:  

?  Without induction the expression of the controlled gene should be the least 

leaky possible. 

?  Induction should be dose-dependent and induction levels should span over at 

least three orders of magnitude.  

?  The expression pattern should be homogenous in all tissue of the organism.  

?  Inducing conditions should bare minimal consequences on the organism’s 

physiology, fitness and viability. 

 

Especially the last two requirements are an issue for chemically inducible systems, 

depending of the chemical nature of the inducer. Uptake, transport and distribution 

between plant tissues can be considerable barriers to chemical inducers, preventing 

uniform expression of the transgene, reducing induction efficiency and delaying the 

time of induced expression. Some inducers (most obviously ethanol) also show toxic 

effects when applied to the transformed plant with concentrations close to the 

optimum for induction of the transgene, severely influencing plant physiology and 

viability. The chemically inducible systems presented in chapter 1.2.1. are therefore 

not ideal following the principals suggested by Christine Gatz, though having so far 
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contributed in a large quantity of very interesting studies and being successfully 

applied to a similar number of plant model systems.  

To achieve a more widespread and uniform induction within a transgenic plant an 

environmental cue would be more suitable then a chemical one. The application of 

heat as an inducing cue seems more appropriate simply because plants are quite 

adapted to cope with increasing temperature. Induction via the small heat shock 

proteins (shsp’s) was also mentioned earlier in this work and presents a quite 

suitable system, using expression cassettes driven by heat-regulated promoters 

(Ainley and Key, 1990; Schöffl et al., 1989). An alternative to the application of these 

cassettes is the use of enhancer elements, being only a very small (about 150 bp) 

piece of DNA that can be easily integrated into any existing expression system 

including a minimal promoter in front of the transgene and/or reporter gene, 

conferring gene expression to otherwise silent genes. Heat sensitive enhancer 

systems are therefore a logical step towards improved inducible systems meeting the 

requirements listed at the beginning of the chapter. An artificial enhancer consisting 

of a multimer of ideal binding sites for heat shock factors would be a good candidate 

for this purpose. When introduced into Medaka fish, this enhancer showed superior 

properties in comparison to natural heat shock promoters because of its artificial 

structure: dramatically reduced background activity, improved inducibility and loss of 

all tissue specific components (Bajoghli et al., 2004).  

When introduced into Arabidopsis thaliana, the results were similar to Medaka fish, 

showing an increase of GUS expression from at 37°C which was 13 times higher 

than at 25°C. However, the increase of GUS activity was not linear but exponentially 

rising over 33°C to 37°C. This is similar to heat shock induced GUS expression in 

Physcomitrella patens using a hsp17.3B promotor of a soybean class I sHSP (Saidi 

et al., 2005). At lower temperatures (4°C and 17°C) there was not a clear increase in 

GUS expression in the quantitative assay hinting to a similar response to cold stress 

as to heat stress in Arabidopsis. However, results from GUS stainings indicate that 

such a cold response might exist. Heat shock response in plants is also activated by 

other stimuli such as treatment with acetyl salicylic acid and benzyl alcohol (Saidi et 

al.,2005). Background expression at 25°C was also low, with exceptions mentioned 

in chapter 5.5 where one line showed (I19S) showed abnormally high GUS 

expression at 25°C, but also a high standard deviation (of 11,85), so can be seen as . 
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So, induction of GUS activity was independent of the tissue used for the experiment, 

proving the uniformity of induction granted by the artificial heat shock enhancer. 

Referring to the requirements proposed by Christine Gatz, the heat shock enhancer 

element presents itself as a quite interesting and useful one, though it does not meet 

al requirements completely: 

 

?  Without induction the expression of the controlled gene should be the least 

leaky possible. 

 

With the exception of the sample from plant I19 stem tissue all other samples showed 

low GUS activity levels close to zero when no heat shock or cold stress was applied. 

However, when exposed to low temperatures, GUS activity was in some cases 

slightly higher than at 25°C. This was also visible in the histochemical GUS stainings, 

probably indicating a similar response to cold stress as to heat stress. Since the used 

enhancer element consists exclusively of multimerized binding sites to heat shock 

genes, the same proteins are also activated when plants are exposed to cold stress.  

 

?  Induction should be dose-dependent and induction levels should span over at 

least three orders of magnitude.  

 

The total span of induction is not greater than one order of magnitude, so this 

requirement is not completely met.  

 

?  The expression pattern should be homogenous in all tissue of the organism.  

 

When comparing the GUS activity in tissues of the same plants, no clear difference 

can be seen: in plant I2 GUS activity in leaves is 9,37 nmol/mg/sec and in stem 

tissue it is 10,07 nmol/mg/sec at 37°C, so the values are almost equal. In the other 

plants tested, the values of GUS activity are not so homogenous (I18 leaf 21,60 

nmol/mg/sec and stem 21,04 nmol/mg/sec, I19 leaf 20,51 nmol/mg/sec and stem 

6,20 nmol/mg/sec, it has to be noted that this whole series shows deviating behaviour 

and its measurement values should be questioned as a whole), the expression of 

GUS is also close to equal in the two measured tissues, giving strong support to the 

properties claimed by Bajoghli et al. (2004). 
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So, induction of GUS activity was independent of the tissue used for the experiment, 

proving the uniformity of induction granted by the artificial heat shock enhancer. 

 

?  Inducing conditions should bare minimal consequences on the organism’s 

physiology, fitness and viability.  

 

When applying heat to the sample explants, no effect was visible up to 37°C, where 

the highest induction of GUS activity was achieved. Only at 42°C the sample 

explants were effected, showing brownish spots on the tissues, especially leaves. 

Since GUS was not strongly induced at that temperature, this requirement can also 

be counted as fulfilled. 

 

 

7. SUMMARY 

 

Overall, the HSE system first introduced in Medaka fish (Bajoghli et al., 2004) also 

works well in Arabidopsis thaliana, adding a very versatile inducible system to the 

repertoire of this model system. Because of its simplified nature, an adaption to other 

plant model systems seems quite likely and should prove not a great barrier, allowing 

the study of plant genes under very tight control to better understand their function. 

As could be shown, the requirements proposed by Christine Gatz for an ideal 

inducible genetic system all but one are met:  

?  Without induction, GUS activity is near zero, though slightly higher then in 

wildtype plants (in average 1,59 nmol/mg/min) 

?  Induction of GUS is independent of the tissue, with an average difference 

between the two tissues measured (leaf and stem) of 0,61 nmol/mg/min. 

?  The conditions for induction had no negative impact on the explants, only a 

heat treatment of 42°C left the explants damaged (as expected). 

?  The only condition that induction should at least span three orders of 

magnitude was not met; the reason for this could be simply a different optimal 

temperature for induction than used in these experiments and has yet to be 

determined. 
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ZUSAMMENFASSUNG 

 

Das HSE System, zuerst getestet in Medaka (Bajoghli et al., 2004) funktioniert soweit 

gut in Arabidopsis thaliana, und fügt dem Repertoire dieses Modellsystems ein sehr 

vielseitiges induzierbares System hinzu. Durch den stark vereinfachten Aufbau kann 

man davon ausgehen, dass es auch in anderen Modellsystemen für Pflanzen 

Anwendung finden wird, was keine größeren Schwierigkeiten darstellen sollte, um die 

Funktion von Pflanzengenen unter strikter Kontrolle zu ermöglichen. 

Durch die Ergebnisse dieser Arbeit konnte bewiesen werden, dass fast alle Kriterien, 

die von Christine Gatz für ein ideales induzierbares genetisches System erfüllt 

werden: 

?  Ohne induzierende Bedingungen ging die Aktivität von GUS gegen Null (1,59 

nmol/mg/min) im Durschnitt , obwohl sie noch immer knapp über der Aktivität der 

Wildtyp Pflanzen lag. 

?  Weiters konnten keine Unterschiede in den induzierten GUS Aktivitäten 

zwischen den beiden verwendeten Pflanzengeweben (Blatt und Stiel) festgestellt 

werden (Durchschnittlicher unterschied zwischen den beiden Geweben: 0,61 

nmol/mg/min). 

?  Die induzierenden Bedingungen verursachten keinerlei Schäden bei den 

Pflanzenteilen, erst bei 42°C wurden diese wie erwartet in Mitleidenschaft gezogen. 

?  Das einzige Kriterium, das nicht voll erfüllt wurde, war die, dass die Aktivität 

des Reportergens durch die Induktion um mindestens drei Größenordnungen 

gesteigert werden sollte. Dies kann an einer anderen optimalen 

Aktivierungstemperatur liegen, die erst noch zu bestimmen ist. 

Ein weiteres Ergebnis, die Induktion von GUS durch das HSE Element durch 

niedrigere Temperaturen konnte nur in histochemischen Färbungen beobachtet 

werden. In quantitativen fluorometrischen Bestimmungen konnte dies nicht 

wiederholt bzw. bestätigt werden. Eine möglicherweise vergleichbare Reaktion auf 

Kältestress bzw. Hitzestress kann also noch nicht bestätigt werden, sollte jedoch 

aufgrund der verschiedenartigen Ergebnisse dieser Arbeit noch genauer untersucht 

werden. 

 

Englischspachige Zusammenfassung: siehe Seite 55 
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