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SUMMARY 
 

Both perceiving the world as consisting of stable, unified, three-

dimensional objects and recognising them despite changes in vantage point, size, 

and lighting conditions are fundamental abilities for all mobile animals. Whether 

an animal is able to retrieve 3-D information also from flat displays (e.g., 2-D 

projections of 3-D objects presented on a computer screen) has been a matter of 

interest in the last decades of research. For instance, pigeons (Columba livia) may 

perceive two-dimensional pictures of three-dimensional objects simply as random 

collections of flat, two-dimensional features instead of experiencing them as 

generalised 3-D representations. If, however, pigeons are indeed able to form 

object-like representations of two-dimensional displays, “dynamic presentation”, 

(i.e., presentation of views onto the object in rapid succession) should facilitate 

recognition across various stimulus modifications, since continuous dynamic 

change of perspective may help integrating individual views of an object into 

three-dimensional images. This hypothesis was tested in the current thesis. Pigeons 

were first trained in a go/no-go procedure to discriminate between 2-D projections 

of a cube and a pyramid, presented as static images or as rotating around the y-

axis. When they had acquired the discrimination the birds were subjected to a 

series of transfer tests with new, modified, projections. These involved various 

featural and rotational transformations, such as novel size, altered surface 

colouration, novel viewpoint, and randomised rotation sequences. The results 

showed that most types of transformations clearly impaired recognition. In contrast 

to a study by COOK & KATZ (1999), who used a similar experimental design I 

could neither find object constancy across various stimulus transformations, nor 

any indication of a "dynamic superiority effect", i.e., discrimination performance 

was not improved by dynamic as compared to static presentation, and the order of 

images within a dynamic sequence was not crucial for object recognition. 

Furthermore, the ability to recognise an object was found to be strongly viewpoint-

dependent and influenced also by modifications in size and colouration to some 

degree. Together, the results strongly suggest that object discrimination was based 

on stored 2-D featural information rather than on object-like 3-D representations. 
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They are in line with the view that pigeons’ object recognition is controlled by 

view-based rather than object-based mechanisms. 

 

ZUSAMMENFASSUNG 
 

Für mobile Tiere ist sowohl die Fähigkeit, dreidimensionale Objekte als 

solche wahrzunehmen, als auch das Vermögen, diese trotz Änderung des 

Blickpunktes, Veränderung der Größe und unterschiedlicher Beleuchtung wieder 

zu erkennen, von großer Bedeutung. Die Frage, ob ein Tier fähig ist, 

dreidimensionale Information aus rein zweidimensionalen Darstellungen zu 

erschließen (wie es zum Beispiel bei Bildern dreidimensionaler Objekte der Fall 

ist, die auf einem Computer-Monitor präsentiert werden), wurde in den letzten 

Jahrzehnten der Wahrnehmungsforschung zunehmend zu einem zentralen Thema. 

Es ist durchaus möglich, dass zum Beispiel Tauben (Columba livia) 

zweidimensionale Bilder dreidimensionaler Objekte eher als beliebige 

Ansammlungen zweidimensionaler Merkmale sehen als diese als generalisierte 3-

D-Repräsentationen wahrzunehmen. Sollten Tauben aber tatsächlich fähig sein, 

objektartige Repräsentationen zweidimensionaler Projektionen zu bilden, sollte die 

„dynamische Präsentation“ (d.h., das schnelle Abbilden aufeinander folgender 

Objekt-Ansichten) das Wiedererkennen bei diversen Stimulusmodifikationen 

erleichtern, da dynamische, kontinuierliche Veränderung der Perspektive die 

Integration einzelner Objektansichten zu einem dreidimensionalen Bild fördern 

kann. Diese Hypothese wurde in der vorliegenden Diplomarbeit getestet. Dazu 

wurden Tauben zuerst mit Hilfe einer Go-/No-Go-Prozedur darauf trainiert, 

zwischen 2-D-Projektionen eines Würfels und einer Pyramide zu unterscheiden. 

Diese wurden entweder als statische Einzelbilder oder in Rotation um die y-Achse 

präsentiert. Nachdem sie die Diskriminierungssaufgabe erlernt hatten, wurden den 

Vögeln in einer Reihe von Generalisationstests neue, modifizierte, Projektionen 

gezeigt. Die Änderungen betrafen unterschiedliche Objektmerkmale sowie die Art 

der Rotation, z.B. die Größe, die Oberflächen-Färbung, den Blickwinkel und die 

Reihenfolge der Einzelbilder einer dynamischen Sequenz. Die Ergebnisse zeigten, 
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dass die meisten Arten von Transformationen das Wiedererkennen klar 

beeinträchtigten. Im Gegensatz zu einer Studie von COOK & KATZ (1999), die ein 

vergleichbares experimentelles Design verwendeten, fand ich weder 

Objektkonstanz über verschiedene Reiztransformationen, noch Anzeichen für 

einen „Dynamischen Superioritätseffekt“, das heißt, dass die 

Diskriminierungsleistung bei dynamischer gegenüber statischer Präsentation nicht 

verbessert war. Auch die Reihenfolge der Einzelbilder innerhalb einer 

dynamischen Sequenz schien für die Fähigkeit zur Objektunterscheidung nicht von 

Bedeutung zu sein. Die Fähigkeit, ein Objekt zu erkennen, war stark 

blickpunktabhängig und war bis zu einem gewissen Grad auch durch Größen- und 

Farbänderungen beeinflusst. Zusammengenommen legen die Ergebnisse den 

Schluss nahe, dass die Objektdiskriminierung auf gespeicherter zweidimensionaler 

Merkmalsinformation beruhte und nicht auf der Verwendung von 

dreidimensionalen Objektrepräsentationen. Sie bestätigen damit die Ansicht, dass 

das Wiedererkennen von Objekten von Mechanismen kontrolliert wird, die 

blickbasiert und nicht objektbasiert sind. 
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1.  INTRODUCTION 
 

 

“All our knowledge has its origins in our perceptions.” 

Leonardo da Vinci  

(visual artist and scientist,  

1452-1519) 

 

For animals living in a world consisting of both animate and inanimate 

meaningful items it is one of the fundamental visual abilities to identify objects 

despite changes in various respects, such as viewpoint, size, and lighting 

conditions. But despite the fact that the visual input that reaches the eye changes 

dramatically depending on these alterations, the object remains the same. 

Regarding the basic demand of recognising items of high ecological value even 

under varying viewing conditions (e.g., navigational landmarks indicating food 

locations or breeding sites, mates, or objects to avoid, such as predators) it is 

vitally important to be capable of generalising across depth-rotated views, and 

across changes in colour or size. Consider further that for an animal also 

sensitivity to object motion (i.e., an object property in which all or part of it 

changes continuously in position over time) may be substantially important since, 

in its natural environment, both the object perceived as well as the perceiver itself 

is often moving. Thereby, in the real world, movement may be crucial for 

extracting three-dimensional information about an object since motion can 

facilitate the perception of depth. Under completely artificial conditions, however, 

such as it is the case in a discrimination task carried out by means of a computer 

screen, in which an animal is required to discriminate virtual objects that a human 

would perceive as dynamically rotating, such assumptions may not be qualified 

anymore. A pigeon (Columba livia), for instance, may be incapable to perceive 

neither the two-dimensional object shapes as three-dimensional coherent objects 

nor their apparent motion (i.e., the illusion of motion resulting from rapid 

presentation of static single images) as true motion. The current thesis tries to 

increase our knowledge about how a highly mobile bird species, as is the pigeon, 
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might perceive visual stimuli, that for us appear to be three-dimensional 

dynamically rotating objects. 

 

1.1. From the pigeon’s perspective – Visual 

capabilities in the pigeon 

Pigeons like most birds are highly visual animals. This becomes particularly 

obvious if one considers their relatively large eyes, which are each about 1 ml in 

volume, and the high proportion of the pigeon’s nervous system that is engaged in 

visual functions (namely, an estimated third; c.f., DELIUS et al. 2000). Since, 

evolutionary speaking, birds and mammals diverged a long time ago (c.f., KUMAR 

& HEDGES 1998), pigeon vision differs from human vision in many respects (for 

reviews see D’EATH 1998; EMMERTON & DELIUS 1980; HUSBAND & SHIMIZU 2001; 

LEA & DITTRICH 2000; ZEIGLER & BISCHOFF 1993). Differences concern retinal as 

well as brain structures (e.g., avian double cones, avian oil droplets, number of 

retinal ganglion cells, post-retinal processing), colour vision (pigeons are 

suggested to have five different receptor types and are sensitive to ultraviolet 

light), and the morphology of the eyes (e.g., lateral eyes in the pigeon versus 

frontal eyes in humans). As regards its visual capacities, the pigeon has been 

shown to “outplay” humans in many respects. Pigeons are capable to distinguish 

between bars that differ in length by less than 2 % (SCHWABL & DELIUS 1984), can 

detect even small differences in the size of a target (HODOS et al. 1985), and their 

visual acuity is assumed to be excellent (HODOS et al. 1976). Beyond doubt, a 

pigeon perceives the world in a different way than we do. However, picture 

technology is primarily adjusted to “fool” human but not bird vision, and pictorial 

projections of objects, such as those depicted on a computer screen, may thus 

appear quite different to birds than they appear to us (see also BOVET & VAUCLAIR 

2000; DELIUS et al. 2000; D’EATH 1998; FUJITA 2001). Due to different 

physiological systems, perception and interpretation of the visual input derived 

from a computer monitor may differ in these two species. Consider, for example, 

the pigeon’s high flicker-fusion frequency, i.e., the frequency at which a flickering 



Percept ion of rotat ing objects by pigeons INTRODUCTION 

 

 6  

stimulus starts to appear continuous, of 140 Hz (DODT & WIRTH 1953). Since this 

threshold is suggested to be clearly higher in pigeons than in humans, displays of 

movies on a monitor may be experienced in a “stroboscopic” manner by a pigeon, 

due to a human-adapted image build-up (see JITSUMORI et al. 1999; JITSUMORI & 

MAKINO 2004; LOIDOLT et al. 2006, for discussion). Furthermore, certain aspects 

of the pigeon’s visual system that enable it to recover information about depth, 

have to be considered in the light of the limitations that are possibly set to object 

perception due to the use of computer displays.  

In general, depth perception is based on the use of various depth cues, 

which are typically classified into monocular and binocular depth cues. The former 

require input from one eye only, whereas the latter require input from both eyes. 

Monocular depth cues include for instance shading, perspective, relative density, 

relative size, occlusion, and motion parallax. Binocular depth cues include, for 

example, stereopsis. In humans, stereopsis (i.e., the perception of depth on the 

basis of the difference in points of view of the two eyes, described first by 

WHEATSTONE 1938) is one of the fundamental sources of depth perception. The 

difference in the two retinal images is caused by the slightly different projections 

of an object seen by the right and the left eye (i.e., binocular disparity). This 

disparity results from the horizontal separation of the eyes in the head. Although 

stereoscopic vision is clearly limited in the pigeon due to a lateral placement of the 

eyes resulting in only a small overlapping binocular field (c.f., MCFADDEN et al. 

1986; MARTINOYA et al. 1981), binocular cues are nevertheless suggested to play a 

role in the pigeon’s depth perception (MCFADDEN 1993). Two-dimensional 

pictures generally do not provide the viewer with binocular cues, but since pigeons 

experience their surroundings mainly monocularly, “… this relative emphasis on 

monocular vision might be thought to contribute to pigeons perceiving two-

dimensional pictures and three-dimensional scenes as equivalent”, as noted by 

DELIUS et al. 2000 (p. 9). Monocular depth cues can therefore be assumed to be of 

primary relevance for gaining depth information. There is indeed growing 

evidence that pigeons, like humans, are capable of using monocular cues, and 

moreover, are even susceptible to visual illusions that require sensitivity to 

pictorial depth cues, such as the Ponzo illusion, i.e., a size constancy illusion 
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induced by converging contextual lines (FUJITA et al. 1991). Pigeons are also 

suggested to be able to use monocular depth cues to perceive spatial three-

dimensionality in a scene (CAVOTO & COOK 2006, SPETCH et al. 1998), and even to 

extract three-dimensionality from pictorial representations of objects by means of 

monocular depth cues, such as perspective and shading (REID & SPETCH 1998). 

Alternatively, however, the use of two-dimensional discriminative cues (e.g., 

differential shading of the objects or spurious discriminative cues resulting from 

photo editing) might account for at least some of the positive findings, without any 

recognition of the object’s 3-D structure being involved. Additionally, motion 

parallax is suggested to play an important role in the pigeon’s perception of depth 

as well (e.g., DAVIES & GREEN 1988; FROST 1978; TROJE & FROST 2000). Hence, 

to what degree a pigeon uses particular depth cues – both monocular and binocular 

ones – is still uncertain.  

It is still a matter of debate whether the information provided in two-

dimensional images on a computer screen is sufficient for a pigeon to interpret 

them as three-dimensional objects. This issue shall be considered in the next 

chapter. 

 

1.2.  How to recognise an object – Theories of object 

recognition 

The aim of examining the cognitive processes underlying the visual 

recognition of three-dimensional objects has become one of the most challenging 

topics in research on visual perception. Indeed, the issue of object recognition 

deals with a twofold question. First, in which representational format are objects 

encoded in visual memory? Second, how does an observer match visual percepts of 

objects to mental representations of objects? Processes of three-dimensional object 

recognition go thereby far beyond simple mechanisms of detection. The cognitive 

demands are evident: objects have to be identified across transformations in size, 

position, illumination, and viewpoint changes.  
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Theories of object recognition must therefore provide accounts of how an 

observer can compensate for various changes in the visual appearance of an object. 

In human visual object recognition research, broadly speaking, two classes of 

theories have been proposed. Basically, they differ in terms of how objects are 

represented, and what processes are used to recognise them. 

One class of theories assumes that representations of objects are encoded as 

“structural descriptions” of their 3-D properties. These theories are said to be 

viewpoint-invariant or object-based since a structural representation provides 

sufficient information for recognising the object despite changes in viewpoint 

(e.g., BIEDERMAN 1987; BIEDERMAN & GERHARDSTEIN 1993, 1995; CORBALLIS 

1988; HUMMEL & BIEDERMAN 1992; MARR & NISHIHARA 1978, MARR 1982). A 

topic of discussion has been the specific representational format. Generally, it has 

been proposed that an object is represented on the basis of the relations among its 

distinctive features, defined by a kind of object-centred coordinate system. MARR 

& NISHIHARA (1978) were the first to describe representations by structural 

descriptions based on three-dimensional volumes and their spatial relations. 

However, the most famous example of a volume-based account of recognition is 

probably the Recognition-by-Components theory (RBC) proposed by BIEDERMAN 

(1987). It suggests that object representations consist of a restricted set of 

volumetric parts (geons), such as spheres, cubes, and wedges, and their spatial 

interrelations. RBC theories predict that all views of an object should be 

recognised with approximately the same speed and accuracy, as long as certain 

conditions are met (BIEDERMAN & GERHARDSTEIN 1993). The criteria for 

viewpoint invariance are that, first, the object is decomposable into geons; second, 

the arrangement of these geons forms a distinct structural description that differs 

from other arrangements; and third, changes in the view of the object do not 

change the structural description. In general, viewpoint-invariant theories suggest 

that the visual system recognises an object by decomposing it and then comparing 

its parts to stored templates. 

The other class of theories assumes that an object is represented in visual 

memory in the appearance (i.e., the view) in which it is seen by the observer (e.g., 

BÜLTHOFF 1995, 1998; BÜLTHOFF & EDELMAN 1992; EDELMAN & BÜLTHOFF 1992; 
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HAYWARD & TARR 1997; JOLICOEUR 1985; JOLICOEUR & HUMPHREY 1998; POGGIO 

& EDELMAN 1990; TARR & BÜLTHOFF 1995; TARR & KRIEGMAN 2001; TARR 1995; 

TARR & PINKER 1990; TARR et al. 1997, 1998). The representation thereby 

preserves viewpoint-dependent shape information and surface appearance, and is 

defined by a coordinate system based on the observer. Since the representation is 

view-based and recognition is viewpoint-dependent, these theories are accordingly 

termed. View-based representations may emerge as a collection of stored views. 

As regards generalisation to novel unfamiliar views, different processes have been 

proposed. One of them is a process termed normalisation. This is defined as a 

mechanism that “normalises” (i.e., transforms) a novel view until it matches one of 

the stored single views (TARR 1995; TARR & PINKER 1990). As originally 

conceived by SHEPARD and METZLER (1971), the process was suggested to operate 

in terms of a “mental rotation” that transforms the novel percept until a stored 

view is matched. More recently, another account has been developed – the view 

combination approach (e.g., BÜLTHOFF & EDELMAN 1992; EDELMAN 1999). This 

assumes that recognition of an object from novel viewpoints occurs by 

mathematically interpolating between two or more prototypes of the object (i.e., 

the representations of an object in a multidimensional “shape space”). In both 

types of approaches it is predicted that the speed of or the accuracy in recognising 

an object will decrease as a function of the rotational distance between a given 

novel view and the closest stored view. However, the two can be distinguished by 

their predictions regarding the recognition of interpolated novel views (i.e., in 

between the range of two stored views) versus extrapolated ones (i.e., outside the 

range of two stored views). Whereas normalisation approaches suggest that object 

recognition should be equally impaired in both cases, view combination 

approaches predict that performance should be better with interpolated than with 

extrapolated views.  

To summarise, viewpoint-invariant and viewpoint-dependent theories make 

different general predictions when an object is presented in an unfamiliar view. 

Viewpoint-invariant theories assume only insignificant decreases in speed and 

accuracy of recognition, whereas viewpoint-dependent theories suggest a large 

continuous decrease in recognition performance. However, in specific cases also 
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view-based theories occasionally predict viewpoint-invariance; namely, when an 

object contains a single distinctive feature that can serve as diagnostic cue, and is 

still available in several novel views (c.f., SPETCH et al. 2000, 2001). 

Over the last decades research on human object recognition has provided 

evidence for both types of recognition performances – viewpoint-dependent and 

viewpoint-independent approaches (see e.g., PEISSIG & TARR 2007, for a review), 

which suggests that certain elements from both types may play some role in human 

object recognition. The current view, however, rather favours view-based object 

recognition. In particular, RBC has been suggested being not robust enough to 

explain general object recognition. As criticised by TARR & BÜLTHOFF (1998), “ … 

actual evidence for viewpoint-invariance in human visual recognition (as 

predicted by RBC) is somewhat thin – the most notable experiments that obtain 

viewpoint invariance for rotations in depth (Biederman & Gerhardstein, 1993) 

having only limited generalisabilty to other recognition tasks and stimulus sets …” 

(p. 2). Nevertheless, object-based mechanisms may well be applied in specific 

situations, depending on specific factors. For instance, TARR (1995) noted that 

“The mechanisms used in human object recognition are almost certainly a product 

of many factors, including the task, the learning and retrieval contexts, and the 

functional and visual relationships between objects both encoded in memory and 

observed in the environment …” (p. 73). Indeed, researchers have highlighted the 

idea that a combination of theories might be more useful to explain processes of 

object recognition than making dichotomous contrasts (e.g., TARR & BÜLTHOFF 

1998). 

Consider, however, that both main classes of visual object recognition 

theories are based on the assumption that the percepts derived from objects are 

actually interpreted as instances of a three-dimensional shape. In examining visual 

recognition of three-dimensional objects in the pigeon, it should be kept in mind 

that both types of theories originate from a purely anthropocentric approach. 

Therefore, their predictions are valid for human object perception in the first place 

and suggest that a human subject should, in principle be able to experience the 

views of a two-dimensionally presented three-dimensional object in its coherent 3-

D appearance (both in reality and as a two-dimensional projection like on a 
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computer screen). Provided that a non-human animal, such as a pigeon, parses and 

perceives visual stimuli, in particular objects presented as 2-D pictures (!), quite 

differently than the human observer, the animal might be, in the extreme case, 

completely insensitive to three-dimensional information that can be derived from a 

two-dimensional projection, and instead perceive and store the object as a random 

collection of two-dimensional features. Considering the foregoing, it may be 

essential to bring up a third potential mechanism of discriminating visual stimuli, 

namely one that is based on generalisation over the different views of each of the 

objects to be distinguished. In other words, the different “forms of appearance” of 

an object are sorted into a category according to specific stimulus properties (see 

also JITSUMORI & MAKINO 2004, for related discussion). Mental representations 

that are acquired during such classification learning and that define class 

membership can be captured by different theories (for reviews see HUBER 2001, 

SMITH & MEDIN 1981). First, categorisation may be based on exemplar learning, 

which means that during training all or many instances of one class are memorised 

(e.g., ASTLEY & WASSERMAN 1992, CHASE & HEINEMANN 2001, PEARCE 1987). 

Generalisation to a novel member of the learned class is thereby determined by the 

degree of similarity to the stored exemplars. Second, categorisation may be based 

on the abstraction of class defining features, as proposed by feature learning 

theories (e.g., HUBER & LENZ 1993; HUBER & AUST 2006; SCHYNS et al. 1998). 

Thereby, generalisation to novel class members is controlled by the presence or 

absence of common features. Third, categorisation may be based on the acquisition 

of a prototypical representation of a category by means of an abstraction process 

that “summarises” all exemplars that have been experienced during training, 

resulting into a representation that corresponds to the average or central tendency 

of the class members (e.g., HUBER & LENZ 1996; POSNER 1969). Generalisation to 

novel instances of the class is thereby based on their similarity to this “best 

example”.  

The stimulus properties that are exploited in order to form a category can be 

global or local in nature. Global features are said to be characteristics of the whole 

stimulus (such as brightness, orientation, configural information, and size), 
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whereas local features are mainly characterised as restricted distinct portions of an 

object, i.e., elemental units (c.f. AUST & HUBER 2001, 2003).  

 

Studies of object recognition in the pigeon 

What do we know so far about a pigeon’s ability to recognise objects across 

different viewpoints? For practical reasons, research concerning this issue has 

relied almost exclusively on the use of two-dimensional representations of three-

dimensional objects, as provided by drawings, photographic stimuli, or digitised 

stimuli. Over the last decades work on visual object recognition in the pigeon has 

provided evidence for all types of object recognition theories described in the 

previous chapter, although most of the findings indicated viewpoint-dependent 

mechanisms (for a review see e.g., FAGOT 2000; SPETCH & FRIEDMAN 2006). 

Several authors have reported evidence against pigeons’ discrimination 

performance being controlled by object-based recognition processes. In particular, 

they consistently found a substantial lack of generalisation to novel views, with 

systematic decreases in discriminative performance occurring as a function of 

rotation angle from the training orientation (e.g., CERELLA 1977; JITSUMORI & 

MAKINO 2004; LOIDOLT et al. 2006; LUMSDEN & PULLEN 1970, LUMSDEN 1977; 

SPETCH et al. 2001). Research to date suggests that view-combination may thereby 

be the process underlying generalisation to novel unfamiliar views of a familiar 

object (FRIEDMAN et al. 2005, 2009, but see SPETCH & FRIEDMAN 2003 for results 

rather supporting generalisation processes). Evidently, interpolated views are 

mostly better recognised than extrapolated views.  

Conversely, however, some studies (e.g., COOK & KATZ 1999; WASSERMAN 

et al. 1996) have reported pigeons’ significant generalisation of discriminative 

responding to untrained views over numerous untrained depth orientations 

(although with some generalisation decrements). The authors thus claimed to have 

found evidence in support of the hypothesis that recognition of an object might 

also be based on a three-dimensional object-like representation. They concluded 

that the birds were able to retrieve three-dimensional structural information from 

the two-dimensional displays.  
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But how can we reconcile these obviously contradictive findings? Possibly, 

the way in which pigeons responded was influenced by several task-specific 

factors. Whether an outcome is in keeping with one object recognition theory 

rather than with another, is likely dependent on the specific methods or the use of 

particular stimuli. For instance, PEISSIG and co-workers (2000a) explored effects 

of depth rotation on pigeons’ discriminative performance by using different 

computer-rendered versions of single geons and clearly found geon-specific 

responding. With some stimuli the pigeons showed significant generalisation, 

whereas with others correct responding systematically decreased with the objects’ 

rotation angle in depth. In addition, also methodological factors have been 

suggested to affect a pigeon’s ability to distinguish among stimuli in an object 

discrimination task. Different studies found strong indication that experiencing an 

object from multiple views throughout training may enhance the pigeon’s 

recognition of an object (PEISSIG et al. 2000b; WASSERMAN et al. 1996). PEISSIG 

and co-workers (2002), for example, could demonstrate that transfer to views 

along a novel axis of rotation was much higher after training with multiple-views 

than after single-view training. It was therefore concluded that training with 

multiple views rather than training with single views facilitated the formation of 

object representations that support generalised recognition, and that exposure to 

multiple views was thus necessary for a pigeon to show robust object recognition 

even with novel orientations. Another stimulus aspect that may be crucial in 

facilitating a pigeon’s ability to discriminate between objects was highlighted by 

SPETCH et al. (2000, 2001), namely the role of distinctive object parts. If such parts 

remain stable across variations in viewpoint, they may serve as discriminative 

diagnostic features.  

Among the accounts to explain visual object recognition that have been 

considered in the previous chapter, the one based on a mechanism of classification 

by means of mere two-dimensional feature discrimination is the most parsimonious 

one. Thereby, research on visual categorisation in the pigeon has provided 

evidence for all three main theories of categorisation, namely exemplar theory 

(e.g., HUBER et al. 1999; PEARCE 1988), feature theory (e.g., AUST & HUBER 2001, 

2002; HUBER & LENZ 1993; LEA 1983, 1984), and prototype theory (e.g., AYDIN & 
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PEARCE 1994; HUBER & LENZ 1996). Hence, it seems plausible to assume that 

pigeons may be rather flexible in their use of learning strategies when acquiring a 

categorisation task (see HUBER & AUST 2006; HUBER 2001) and that their choice 

of strategy may strongly depend on task requirements. Furthermore, there is ample 

evidence that particularly local features may play a primary role in the pigeon’s 

pattern recognition. First hypothesized by CERELLA (1980), evidence has increased 

over the last decades that pigeons’ responding to complex visual patterns may be 

controlled by local rather than by global features, (e.g., AUST & HUBER 2003; 

CAVOTO & COOK 2001; DELIUS & HOLLARD 1992; KELLY & COOK 2003). In the 

light of this local dominance hypothesis (c.f., LEA et al. 2006) it seems possible 

that pigeons may discriminate objects by means of a simple feature detection 

mechanism without recovery of the three-dimensional object structure. However, 

as several researchers have pointed out, there is also evidence that pigeons are able 

to use configural information in addition to elemental cues (e.g., AUST & HUBER 

2001, 2002, 2003; COOK 2001; FREMOUW et al. 1998, 2002; GOTO & LEA 2004; 

KIRKPATRICK-STEGER & WASSERMAN 1996, KIRKPATRICK-STEGER et al. 1996, 

1998, 2000; VAN HAMME et al. 1992, WATANABE & ITO 1991). WATANABE (2001), 

for example, reported different responding behaviour on scrambled pictures of 

people depending on whether they were presented as photographs or as cartoons. 

Altogether, it is most likely that factors like type, composition, or complexity of a 

stimulus determine by which kind of information – elemental, configural, or both – 

responding is controlled.  

Most of the studies summarised in the current chapter have primarily 

focused on the investigation of static stimuli. Whether dynamic presentation of an 

object may facilitate its recognition shall be discussed in the next section. 

 

1.3. The relevance of dynamic cues for object 

recognition 

When animals interact with a dynamic, non-static environment, the role of 

object motion (i.e., a physically continuous change of an object’s position over 
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time, c.f., PALMER 1999) and dynamic object information (in terms of a continuous 

spatiotemporal sequence of views, c.f., VUONG & TARR 2004) is ambiguous. 

Primarily, motion cues can be used to identify objects only by their motion 

characteristics (e.g., the biological motion of a snake versus the movement of a 

cricket). Additionally, as highlighted by VUONG & TARR (2004), there are several 

ways that dynamic change of perspective may facilitate the integration of views 

into an object-like 3-D image, which may contribute to its recognition. First, object 

motion may enhance the recovery of information about an object’s shape. This 

phenomenon is described as structure-from-motion, first hypothesised by ULLMAN 

(1979). It characterises the capability to recover the three-dimensional structure of 

a two-dimensionally projected object from motion-based information. For 

example, human literature on face recognition refers to this facilitating effect as 

the representation enhancement hypothesis (c.f., O’TOOLE et al. 2002), which 

postulates that facial motion contributes to recognition by enhancing the encoding 

of the 3-D structure of the face. Second, object motion may provide the observer 

with more views of the object, and may thereby enhance integration of these views 

into a more coherent stable representation. Third, object motion may help to 

segment a scene into discrete objects. Finally, object motion may also enhance the 

anticipation of novel object views.  

In summary, there is convincing evidence that dynamic presentation of 

objects (of both real objects and pictures or computerised projections of them) 

facilitates object recognition in humans (see e.g., GREEN 1961; KNIGHT & 

JOHNSTON 1997; LIU & COOPER 2003; PIKE et al. 1997; VALLORTIGARA et al. 1988, 

VUONG & TARR 2004, 2006; WALLACH & O’CONNELL 1953). May this be also true 

for non-human species? To date, a couple of experiments have provided indication 

that various species including bird species indeed share with humans the ability to 

recover structure from motion (e.g., macaque monkeys in SIEGEL & ANDERSON 

1988; marmoset monkeys in CLARA et al. 2007 or chicken in CLARA et al. 2006, 

and MASCALZONI et al. 2009). It is important to note, that these studies used 

equipment that create displays involving real object movement (e.g., by using the 

object’s shadow on a translucent screen). However, if motion picture technology 

(e.g., film, television, computer graphics) has been used the results need to be 



Percept ion of rotat ing objects by pigeons INTRODUCTION 

 

 16  

taken with care. Consider that in movies or video displays presented on monitors 

or television screens no actual physical movement occurs. The reason why a 

human observer perceives motion in such displays is a phenomenon called 

apparent motion (EXNER 1988) which refers to the fact that realistic motion 

perception also arises from rapid presentation of completely static images (see 

PALMER 1999). Responsible for this visual impression is the alternation rate of the 

pictures. Within a specific frequency motion is perceived (this is about 10-40 times 

per second for humans). Motion picture technology uses this illusion by flashing a 

sequence of motionless images in rapid succession (e.g., frames in a movie are 

flashed at a rate of 24 frames/sec) in order to produce the perception of continuous 

motion, which for the human eye is indistinguishable from real motion. For this 

reason, in humans also stimuli produced as two-dimensional projections on screens 

are appropriate means for examining motion perception. Since motion picture 

technology is adapted to human vision one must be cautious to assume that species 

that differ remarkably in their visual system will perceive motion in motion picture 

displays as well. In animals with a visual system very similar to ours it may be 

justified to hypothesise that displays presented in apparent motion would elicit the 

perception of real motion (see e.g., macaque monkeys in UNNO et al. 2003). But 

what about the pigeon – a species whose visual system differs remarkably from 

that of humans? 

 

The role of dynamic presentation for object recognition in the 

pigeon 

There is strong evidence coming from different studies that pigeons are 

basically sensitive to motion cues (e.g., EMMERTON 1986; HODOS et al. 1975; and 

DITTRICH & LEA 2001, for review), which is a prerequisite for extracting stimulus 

structure from motion-based information. For practical reasons, however, a great 

number of experiments investigated motion perception by using motion picture 

technology, e.g., movies or computer graphics (e.g., COOK et al. 2001; DITTRICH et 

al. 1998; GOTO & LEA 2003; HERBRANSON et al. 2002; KOBAN & COOK 2009; 

RILLING & LACLAIRE 1989, SPETCH & FRIEDMAN 2006; VUONG & TARR 2006; 
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WILKINSON & KIRKPATRICK 2009). But consider that in all of these studies any 

object movement (at least perceivable for the human observer) arises from rapid 

presentation of static frames, or more precisely, it appears as apparent but not as 

real movement. Although pigeons are suggested to be able to perceive apparent 

motion (SIEGEL 1970, BISCHOF et al. 1999), and that “… it seems likely that both 

real and apparent movement detection are mediated by processes that are at the 

least very similar …” (SIEGEL 1971, p. 192), it is not clear to what extent a pigeon 

perceives real motion in such displays (but see COOK & ROBERTS 2007 for related 

discussion). This aspect must always be taken into consideration – at least one 

should bear in mind that in such displays no actual physical movement occurs1.  

Also research that investigated whether dynamic change of perspective 

contributes to object recognition in the pigeon predominantly used motion picture 

technology (e.g., COOK & KATZ 1999; JITSUMORI & MAKINO 2004; LOIDOLT et al. 

2006; FRIEDMAN et al. 2009; SPETCH et al. 2006). The findings are rather 

inconsistent. On the one hand, several studies examining discrimination of human 

faces dynamically rotating in depth could not find any facilitating effect of 

dynamic when compared with static presentation on object recognition (JITSUMORI 

& MAKINO 2004; LOIDOLT et al. 2006; ROVINA 2006). These results suggested that 

the birds had difficulty using additional structural information provided by 

dynamic presentation and integrating the multiple views into a three-dimensional 

object. On the other hand, there is indication that dynamic presentation facilitates 

visual recognition of depth rotated objects across different stimulus modifications 

(COOK & KATZ 1999). In this study, the authors trained pigeons in a go/no-go 

procedure to discriminate between two differently shaped objects, namely 

computer-generated three-dimensional projections of a pyramid and a cube. On 

half of the training trials the stimuli were presented as static single views in a 

randomly selected orientation along the vertical axis. On the other half of the 

training trials the objects were presented rotating dynamically around the vertical 

axis. Subsequently, a series of transfer tests was carried out. These included 

                                                
1  In both the current thesis and in all studies using dynamic stimuli that are presented on 
computer or TV screens the term “motion” refers exclusively to apparent motion (i.e., an illusion 
of continuous motion arising from a series of purely static frames presented at the proper rate, see 
PALMER 1999). 
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changes to new axes of rotation, transformation in size, changes in surface 

colouration, elimination of contour information, and changes in the direction of 

rotation. The results revealed that discrimination performance remained invariant 

for a variety of stimulus transformations. Namely, transfer was significant to novel 

object sizes, to novel rates and directions of motion, as well as to novel surface 

colouration, and was at least above chance to stimuli with new axes of rotation. 

Interestingly, dynamic stimulus presentations resulted in substantially better 

discrimination performance than equivalent sets of static presentations, an effect 

that the authors described as dynamic superiority effect. Overall, the results – good 

transfer to a large variety of object transformations and superiority of dynamic 

presentation – led COOK & KATZ (1999) to conclude that their subjects 

discriminated the objects by experiencing a generalised 3-D representation of 

them. They claimed to have found convincing evidence that the pigeons 

experienced the stimuli as invariant coherent three-dimensional objects, but not as 

collections of flat two-dimensional features. According to the authors, the finding 

of dynamic superiority resulted from the fact that more discriminative information 

was available in dynamic displays than in static images. Dynamic change of 

perspective might thus have helped to integrate the single views into a unified, 

object-like 3-D image. These conclusions were both ground-breaking and 

provocative, because they touched on a longstanding controversy between 

proponents of conflicting approaches to object recognition, namely feature-based 

versus object-based explanations. Based on their results COOK & KATZ (1999) 

argued with regard to pigeons’ visual object perception that “… they see the world 

as composed of unified objects much like we do …” (p. 209), and further that “… 

the birds discriminated these objects by experiencing a generalized 3-D 

representation of them” (p. 207) – notions clearly opponent to the ideas of feature-

based theories (e.g., CERELLA 1977, 1980, 1986). However, on closer inspection, 

also a cognitively simpler account may explain the results by COOK & KATZ 

(1999), namely, one in terms of two-dimensional cue detection (see also LOIDOLT 

et al. 2006, for related discussion). Indeed, some conspicuous two-dimensional 

features (e.g., contour differences) were available in the displays, which might 

have been sufficient for correct discrimination. In order to properly test whether 
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the birds had indeed perceived the projections as generalised 3-D objects instead of 

collection of single views or even features, it would have been necessary to rule 

out the possibility of retrieving three-dimensional structure, but to preserve 

availability of two-dimensional discriminative features in a display. For example, 

examination of discriminative response to randomised dynamic sequences might 

thereby have been the appropriate means of testing. Randomisation (i.e., 

scrambling) of a coherent sequence of images causes disruption of various kinds: It 

may dramatically alter the temporal sequencing of the single frames and may 

destroy any cues provided by (apparent) motion. Above all, it may widely rule out 

the possibility to retrieve from coherent dynamic presentation the three-

dimensional structure of an object. Whether pigeons are sensitive to differences in 

coherent dynamic presentation (logically consistent position changes of an object 

over time) as compared to non-coherent dynamic presentation has been focused on 

in the last years – however, the results seem conflicting. Whereas some studies 

have found a coherence superiority effect (CSE), i.e., coherent sequences 

facilitated and/or improved discrimination and accelerated learning (COOK et al. 

2001; COOK & ROBERTS 2007; FRIEDMAN et al. 2009, Exp. 2; KOBAN & COOK 

2009), others failed to provide evidence for an advantage of coherent presentation 

(COOK et al 2003, Exp. 4; FRIEDMAN et al. 2009, Exp. 1B; LOIDOLT et al. 2006; 

ROVINA 2006).  

 

1.4. Statement of the problem 

Despite extensive research on a pigeon’s general capability of recognising 

objects under many variations in conditions – particularly over rotations in depth – 

answers to the question on which mechanisms object recognition might be based, 

are still ambiguous. As discussed previously there is evidence in favour both 

views, namely that pigeons may rely on generalised object-like three-dimensional 

representations (COOK & KATZ 1999), and alternatively that they may use simple 

two-dimensional features to recognise objects instead. Support for the latter theory 

was strongly provided by some work carried out in the pigeon laboratory of the 

Department for Neurobiology and Cognition Research of the University of Vienna. 
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Similar to COOK & KATZ (1999), LOIDOLT et al. (2006) and ROVINA (2006) posed 

the question whether “motion” does enhance recognition of an object. 

Interestingly, they could find neither generalisation to novel views nor any 

enhancing effect of dynamic presentation. The obvious question to arise from these 

results concerned the nature of the factors that might have led to the different 

outcomes. For example, differences in stimuli, training and testing procedures, 

technical equipment as well as reinforcement schedules might have influenced the 

results. Therefore, it seemed worth examining whether it may be possible to 

replicate the results of COOK & KATZ (1999) particularly in a laboratory that has, 

so far, found no evidence of dynamic presentation facilitating recognition – not 

least because it may have implications for comparing future work from different 

laboratories.  

 

The aim of this study 

The overall objective was hence to re-examine whether pigeons are able to 

discriminate two-dimensional projections of three-dimensional objects based on 

generalised three-dimensional representations. To this end, pigeons’ ability to 

generalise to various stimulus transformations during dynamic versus static 

presentation was assessed. The experimental design as well as the choice of stimuli 

was thereby adopted from the experiments described by COOK & KATZ (1999). 

Furthermore, I extended the original experiment by examining whether 

randomisation of a dynamic sequence would affect discrimination performance. 

The rationale behind this additional test was that inhibition of the possibility to 

recover structure from coherent dynamic presentation should clearly impair 

performance if the birds had indeed experienced the projections as coherent stable 

three-dimensional units.  

Two contrasting hypotheses were put to the test in the current study.  

(A) The pigeons learn the discrimination on the basis of stable generalised three-

dimensional object representations (c.f., COOK & KATZ 1999), and (B) they learn 

the discrimination on the basis of two-dimensional features or templates (LOIDOLT 

et al. 2006; ROVINA 2006). To decide between the two hypotheses, three main 
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questions were investigated. First, would discrimination performance be similar to 

training performance despite various stimulus transformations? Second, would 

discrimination performance with static presentation be different from performance 

with dynamic presentation? Third, would discrimination performance differ 

depending on the order of frames in a dynamic sequence? 

Based on the foregoing hypotheses, the following predictions could be 

made: 

(A) The pigeons learn the discrimination by means of stable 

generalised three-dimensional object representations.  

First, discrimination performance should not be significantly 

impaired by stimulus transformations concerning size, surface 

colouration, or rotation in depth. Second, dynamic presentation 

should facilitate object recognition. Third, randomising a sequence 

should clearly deteriorate to discrimination. Generally, the results 

should be in line with the ones reported by COOK & KATZ (1999). 

(B) The pigeons learn the discrimination by means of two-

dimensional features or templates. 

First, discrimination performance should be negatively affected by 

stimulus transformations, with the extent of decreases depending on 

the availability of discriminative cues provided by the stimuli. 

Second, performance with dynamic stimuli should not be different 

from performance with static stimuli, i.e., no facilitating effect of 

dynamic presentation should occur. Third, randomising a sequence 

should not affect the ability to discriminate. Generally, the results 

should be inconsistent with those reported by COOK & KATZ (1999), 

and should rather confirm the ones by LOIDOLT et al. (2006) and 

ROVINA (2006). 

Comparisons of the outcomes of the present experiment and the original 

study by COOK & KATZ as well as studies that have yielded contrasting results 

should further elucidate the nature of the procedural parameters that may control 

discriminative responses in this kind of discrimination task.
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2. METHODS 
 

2.1. Subjects 

Common pigeons (Columba livia) of two different breeds (C. livia forma 

urbana, carrier pigeon, and C. livia forma domestica, a huge Austrian livestock 

breed called “Strasser”), and of mixed sex were employed as experimental 

subjects. The two breeds are suggested not to noticeably differ regarding cognitive 

abilities, as has been demonstrated in several previous experiments (e.g., AUST & 

HUBER 2001; HUBER & LENZ 1993, 1996; HUBER 1994; HUBER et al. 1999; LOIDOLT 

et al. 2006; ROVINA 2006; TROJE et al. 1999). Only a slight difference concerning 

their behaviour has been noticed: Strasser pigeons have been shown to be more 

balanced, as well as more eager to peck in experiments compared to the less tame 

carrier pigeons that are generally more difficult to handle. I initially employed a 

total of twelve pigeons as experimental subjects. However, five of them had to be 

excluded from the study later, either because of their inability to reach the criterion 

of learning (Felix_T9a, Viktor_T8a) or due to their early decease during the 

experimental period (Nina_T75a, Hanna_T3, Otto_T10). The following seven 

subjects eventually completed the entire experiment:  Auge (T_47a), Herbert 

(B_3a), Robin (T_44), Herwig (T_42a), Ricky (T_11a), Moses (T_48a), and 

Arthur (B_31a). 

At the experiment's onset all subjects were already familiar with the 

procedure and the apparatus because of participation in previous discrimination 

experiments unrelated to the current study. Furthermore, none of the birds had 

prior experience with dynamically presented stimuli, except one, Herbert (B_3a). 

He had previously participated in an experiment using video stimuli (ROVINA 

2006). The pigeons’ experimental histories, thus, involved extensive exposure to 

static stimuli of many kinds. The birds were all naïve to the stimuli used in the 

present study, namely, two-dimensional computer-generated projections of three-

dimensional cubic and pyramidal objects.  
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The subjects were housed with other conspecifics in three 300 x 120 x 170 

cm compartments of a 54 m² roofed outdoor aviary located in one of the courtyards 

of the Biology Centre of the University of Vienna. Each compartment comprised 

groups of approximately 10 individuals of mixed sex. The birds were allowed free 

access to grit (a mixture of silex, red stone and oyster shells; Natural Granen 

Antwerp) and water in the aviary, whereas food was administered only in the 

experimental chambers (i.e., in the course of testing), as well as immediately after 

the daily experimental sessions. The provided mixture of grain (complete food for 

pigeons – Standard, Natural Granen Antwerp) consisted of a variety of corn (35.0 

% French maize, 20.0 % milo corn, 20.0 % wheat, 15.0 % yellow peas, 10.0 % 

green peas, 5.0 % maple peas, 2.5 % dari, 2.5 % safflower seed). On non-testing 

days the birds were supplied with extra rations of food. In order to increase 

motivation to work, the birds were maintained at about 90 % of their free-feeding 

weights. 

 

2.2. Apparatus 

The apparatus is depicted in Figure 1. Training and testing was conducted 

indoors in one of three identical 50 x 30 x 40 cm wooden operant chambers (i.e., 

“Skinner boxes”). Each of them was connected to one compartment of the outdoor 

aviary by means of a passageway system (see HUBER 1994). The pigeons were let 

into the chamber via a Perspex sliding window, which separated the passageway's 

inner part from the outdoor compartment. The rear wall of each chamber served as 

a sliding door for letting the pigeons enter.  The front wall of the operant chamber 

served as a so-called intelligence panel which comprised two essential 

components. The first was a clear Perspex pecking key (5 cm in diameter, ENV-

125M, MED Associates, Georgia, Vermont), that provided free view on the stimuli 

presented on the monitor which adjoined to the Skinner box. The pecking key was 

fixed in a manner that its dislocation, caused by the subject’s pecking, led to 

interruption of an electric circuit. This was recorded by a PC for later performance 

assessment. The second component of the intelligence panel was located directly 

below the key, namely, a 6 x 6 cm aperture for a 28-V DC solenoid-activated 
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hopper of the grain feeder (ENV-205M, MED Associates, Georgia, Vermont). A 

hopper light illuminated the aperture whenever grain was accessible. The 

chamber's interior was weakly lit by a 2-W house light (ENV-215, MED 

Associates, Georgia, Vermont), located in the rear part of the chamber. 

 

 

 
 
 
Figure 1.   Schematic drawing of  the apparatus.  

By means of a manual ly l i f ted Perspex sl iding window (SW) the pigeon enters 

the passageway (PW) that  connects the outdoor compartment (OC) with the 

apparatus. The subject  enters the operant chamber (OPC) through a wooden 

sl iding door (SD). The interior of  the chamber is i l luminated by a house l ight  

(HL). The front wall  serves as intel l igence panel (IP) containing a clear 

Perspex pecking key (PK) and a grain feeder (GF) that  provides food through 

an aperture (AP). The food receptacle is l i t  by a hopper l ight  (HOL) while  

food is administered.  At  a distance of  about 5 cm behind the front panel a 

computer screen (CS) is located for st imulus presentation (red dotted l ines 

indicate the actual posit ion of the monitor).  The two l ights,  the grain feeder,  

the monitor, and the pecking key are connected to  a PC (PC).  

CS 
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Each Skinner box was connected to a PC, equipped with a relay board (8 x 

input, 8 x output) by Keithley/Metrabyte and with a software package (PigeonLab; 

STEURER 2002) that controlled all events in the operant chamber during 

experimental sessions, such as stimulus presentation, registration of responses, and 

activation of the feeder. The 15-inch LCD monitor (Videoseven L15C-TCO99) that 

displayed the stimuli was located at a distance of 5 cm behind the pecking key. 

 

2.3. Stimuli 

Orthographic computer-generated projections of cubic and pyramidal 

objects served as stimuli for the pigeons. The stimuli were framed by a black area. 

The (whole) images – consisting of the projection of an object and the surrounding 

black area – were presented at a size of 150 x 150 pixels and at a resolution of 72 

dpi (pixels per inch). Monitor adjustments were set to true colour, and to 1024 x 

768 pixel spatial resolution. Thus, the presentations were produced as 4.69 x 4.69-

cm images on the screen. Since the stimuli were actually a part of these images 

they were smaller than the whole presentation image. The actual stimulus size 

depended on the size class they belonged to (see later). For detailed descriptions of 

the stimulus sizes see chapters 2.3.2 (Training stimuli) and 2.3.3 (Test stimuli). I 

created the projections by means of a graphics program (Maya 7.0, Autodesk). 

Each individual sample of the various projections (i.e., one individual projection of 

an object featuring a specific combination of the surface colours or modification of 

its intrinsic properties, see later) was rendered as a sequence of images that 

depicted the respective object rotating around one ore two axes (see Figure 2 for 

the coordinate system used in this study). Such a sequence comprised a full 

rotation of an object around its axis (or axes), and provided the observer with 

successive views of the object. The single images of a sequence were generated in 

Windows bitmap format. Each frame differed from the next in viewing angle by 

3°. Thus, one full rotation comprised 120 consecutive views onto the respective 

object (an example of a rendered rotation sequence is pictured in Figure 3). The 

images were rendered via orthographic mode. Orthographic projection is best 

defined as a form of parallel projection, where the view direction is orthogonal to 
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the projection plane. Due to the absence of a vanishing point, the projections of the 

present study were generally non-perspective.  

 

Figure 2.   The coordinate system used in this study.  Rotations occurred 

around the y-axis,  the x-axis and simultaneously around both the y-  and the y-

axis.  

 

 
 
Figure 3.   Example of  a rendered rotation sequence depicting 120 single  

images (views onto a cubic object  rotating around the y-axis).  Order of  

succession is top lef t  to down right .  Images are smaller-sized than those 

presented in the experiment.  
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A lighting model assuming diffuse reflection and full illumination by 

ambient light was applied to the rendering process. Diffuse reflection means that 

rays of light were re-irradiated isotropically from the object in all directions. 

Hence, the object neither featured shading nor produced shadows. The cubic and 

pyramidal objects were placed in the centre of a black perspectiveless background. 

These default settings were equally applied to training and test stimuli. 

 

2.3.1. Presentation mode 

Half of the trials within a session (except for the sessions of Test 

Randomised, see below) involved static stimulus presentation, the other half of the 

stimuli involved dynamic stimulus presentation. The stimuli were presented in 

random order during a session. 

 

Static presentation 

On static trials one single image that was arbitrarily selected from each 

rendered rotation sequence was displayed throughout a pre-specified presentation 

time interval. Hence, within a static trial an object was presented in only one 

angular orientation (i.e., view).  

 

Dynamic presentation 

On dynamic trials the individual frames of one complete rendered rotation 

sequence were displayed in rapid succession throughout the presentation time 

interval. The single images were shown at a rate of 30 frames per second, 

controlled by a program that had been generated with Microsoft Visual C++. I 

chose to apply uncompressed bitmap files, since – in contrast to the commonly 

used video formats that involve video compression, such as AVI- or MPEG-

formats (e.g., COOK et al. 2001; KOBAN & COOK 2009) – they allow for picture-by-

picture presentations of video sequences. At least to the human eye, the pyramidal 

and cubic object appeared to rotate smoothly during dynamic presentation. A 
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complete object rotation (i.e., the successive presentation of all 120 frames of one 

sequence) took 4 seconds.  

 

2.3.2. Training stimuli 

Examples of training stimuli are depicted in Figure 4. I created a total of 96 

different rotation sequences (i.e., object samples). Half of them contained two-

dimensional projections of a three-dimensional pyramid and the other half 

contained two-dimensional projections of a three-dimensional cube. For dynamic 

presentation each rendered sequences was presented in rapid succession; for static 

presentation one out of the 120 single images of each rendered sequence was 

arbitrarily chosen and presented as single bitmap image on the screen (it was 

ensured, however, that all static stimuli showed the object from a different 

viewpoint). Thus, in total the pool of training stimuli contained 192 stimuli. 

 

        

 

       

 a b   a b 

Projections of  a cube.   Projections of  a pyramid.  

Figure 4.   Examples of  training st imuli  used for static presentation (a  small ,  

b  large).  Images are smaller-sized than actually presented on the screen.  

 

Each individual object sample featured a unique combination of six (in case 

of the cube) or five (in case of the pyramid) colours that were assigned to the 

object’s surfaces. The chosen colours were yellow (RGB 255, 255, 0), red (RGB 

255, 0, 0), purple (RGB 255, 0, 255), blue (RGB 0, 0, 255), green (RGB 0, 255, 0) 

and grey (RGB 127, 127, 127). It was made sure that, overall, each colour 

appeared equally often across object samples. Thin black contour lines marked the 

object’s edges. During the creation of the objects the virtual camera of the graphics 

program was set to “recording” the rotation sequence from a viewing angle 15° 

relative to the object’s transecting horizontal plane. Hence, the human viewer had 
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the impression to look from a slanted position above down onto the object’s top. 

Rotation proceeded counter-clockwise around the vertical axis, i.e. the y-axis (see 

Figure 3). Every individual sample was unique regarding the orientation from 

which the object started to rotate. 

Each object was presented at two different sizes (“large” and “small”). This 

was conceived in order to prevent the pigeons from using information about size or 

screen position as a discriminative cue. Since in the original study (COOK & KATZ 

1999) a particular size was primarily defined by a particular object volume (large 

stimuli depicted projections of objects that in reality would have a volume of 4.4 

cm³; small stimuli depicted objects with a volume of 2 cm³), also in the current 

study different size was defined by different object volume. This was done for 

reasons of comparability. The volumes used in the present experiment, however, 

were larger than in the original study. Consequently, half of the training stimuli 

comprised projections of objects that in reality would have a volume of 

approximately 5 cm³ (small stimuli) and the others comprised projections of 

objects that in reality would have a volume of approximately 6.8 cm³ (large 

stimuli). Calculation of the volumes was based on the objects’ side lengths which I 

measured from screen with a ruler (a small volume was equivalent to a side length 

of 1.7 cm in case of the cube, and 2.9 cm in case of the pyramid; a large volume 

was equivalent to a side length of 1.9 cm in case of the cube and 3.2 cm in case of 

the pyramid). Since the stimuli differed according to the viewpoint the actual sizes 

of the two-dimensional projections of the objects on the computer screen varied 

relative to the objects’ orientation. 

Altogether, the 192 training stimuli comprised 48 small-sized and 48 large-

sized projections of an object presented statically, as well as 48 small-sized and 48 

large-sized projections of an object presented dynamically. Half of these 

projections were cubic objects, the other half were pyramidal ones. Therefore, 

each stimulus was eventually defined by a combination of three parameters, each 

of which could take one of two forms: shape (cube/pyramid), mode of presentation 

(static/dynamic), and size (large/small). Thus, there were 23 different stimulus 

types in total. The training stimuli were organised into 5 sets, with one set per 

session being presented (see Table 1). Each set consisted of five stimuli of each 
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type, resulting in 40 training stimuli per set (and thus per session). The five stimuli 

of the same stimulus type differed from each other according to the combination of 

surface colours and the object’s orientation (in case of dynamic presentation this 

means that the orientation from which the object started to rotate differed, in case 

of static presentation the viewpoint differed). The training sets were shown 

consecutively in cycles. Due to the fact that one set always comprised 5 stimuli per 

stimulus type and that 5 sets were used in total, but only 24 stimuli per type were 

available, one additional stimulus per stimulus type was arbitrarily chosen from the 

pool of training stimuli and was arbitrarily assigned to any of the 5 sets. 

 

Table 1.   Numbers and types of  st imuli shown in  every training session.  

 

Shape Cube Pyramid  

Mode of Presentation static dynamic static dynamic 

Size small large small large small large small large 

Number of Stimuli 5 5 5 5 5 5 5 5 

 

 

2.3.3. Test stimuli 

A total of 18 novel types of modified stimuli served as test stimuli. Test 

stimuli used in the study by COOK & KATZ (1999) thereby served as model. 

However, not all transfer tests conducted in the original experiment were 

replicated. I created a selection of test stimuli which I considered appropriate for 

examining the contribution of particular stimulus properties to discrimination. 

However, I am aware that this selection may reflect an arbitrary selection. 

Additionally, I introduced three new types of stimuli not included in the study by 

COOK & KATZ (Colchange, Colchange_yx, and Randomised, see later). 

Each transfer test was labelled according to the type of transformation 

applied to the original training objects from which the test stimuli were derived. 

Examples of the test stimuli are depicted in Figures 5.1-17.  
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  small  large   

  

 

  

 

  

 a b   a b   a b 

1.   Newtrain    2.   Newsize 
     

  

 

  

 

  

 a b   a b   a b 

3.   1Col  4.   1Col_no_cont  5.   Newcol 
     

  

 

  

 

  

 a b   a b   a b 

6.   Colchange  7.   View -50  8.   View +50 
     

  

 

  

 

  

 a b   a b   a b 

9.   View 0  10.   View +90  11.   View -90 
     

  

 

  

 

  

 a b   a b   a b 

12.   Rot_x  13.   Rot_yx  14.   1Col_no_cont_x 
     

  

 

  

 

  

 a b   a b   a b 

15.   1Col_no_cont_yx  16.   Newcol_yx  17.   Colchange_yx 
     
Figures 5.1-17.   Examples of  test  st imuli  (a  cube,  b  pyramid). Images are 

smaller-sized than actually presented on the screen.  
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In total, I used 136 test stimuli (for numbers of stimuli per type see later). 

They were created as rotation sequences in the same manner as the training 

stimuli, with the exception of the test stimuli that were used for Test Randomised 

(for details see APPENDIX). Both static and dynamic presentation mode were 

basically the same for test as for training stimuli. Test stimuli were projections of 

large-sized objects (i.e., those with a volume of 6.8 cm³), except for the ones used 

in Tests Newtrain, Newsize, and Randomised (for details see APPENDIX). As with 

the training stimuli, the observer’s viewpoint was 15° above the object’s 

transecting horizontal plane, except for transfer tests involving transformations in 

relation to the observer’s perspective (i.e., Tests View -50, View +50, View 0, View 

-90 and View +90). Test stimuli used in Tests Rot_x, 1col_no_cont_x, Rot_yx, 

1col_no_cont_yx, Newcol_yx, and Colchange_yx differed from the training stimuli 

in terms of the object’s axes of rotation. It is important to note that test stimuli that 

included a novel angle of elevation of the viewpoint or a novel axis of rotation 

differed substantially from the training stimuli since, in both cases, the object was 

presented from a novel perspective relative to the observer. Both transformations 

also resulted in considerable changes in the two-dimensional shape of the 

projections. To explicitly highlight this important aspect I divided the tests into 

two groups, according to the presence or absence of perspective-changing 

transformations. Training Perspective tests (TP tests) included stimuli with a 

perspective identical to the training perspective (i.e., Tests Newtrain, Newsize, 

1col, 1col_no_cont, Newcol, and Colchange). By contrast, Modified Perspective 

tests (MP tests) comprised stimuli including modifications in perspective (i.e., 

Tests View -50, View +50, View 0, View +90, View -90, Rot_x, 1color_no_cont_x, 

Rot_yx, 1color_no_cont_yx, Newcol_xy and Colchange_yx). Only Test 

Randomised did not fit into either group for two reasons. First, this test comprised 

only dynamic stimuli, and second, the individual displays were the same as in the 

training stimuli, with which the birds had gathered extensive experience. Thus, the 

test stimuli provided exactly the same visual information as the training stimuli 

(and differed from the latter only with regard to their mode of presentation; see 

below). The main aspects by which the stimuli presented in the individual tests 

differed from the training stimuli are specified in Table 2. The different types of 
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transformations should examine generalisation to particular stimulus 

modifications. Stimuli with novel combinations of surface colours (Test 

Newtrain, Figure 5.1) tested how the pigeons would generalise to novel samples of 

the training classes. Stimuli with a new size (Test Newsize, Figure 5.2) examined 

effects of novel object size on the pigeons’ responding. Test stimuli with novel 

surface colouration examined generalisation to novel types of colouration 

including monochromatic presentation (i.e., Tests 1col, Figure 5.3), elimination of 

contour information (i.e., Test 1col_no_cont, Figure 5.4), novel colours (Test 

Newcol, Figure 5.5), and surface colouration that transformed continuously over 

time (Test Colchange, Figure 5.6). In general, test stimuli that presented the 

objects from a novel viewpoint examined the pigeons’ responding to perspective 

changes. Thereby, stimuli presenting a novel observer’s perspective (Tests View -

50, View +50, View 0, View -90 and View +90, Figures 5.7-5.11) tested 

generalisation to changes in the observer’s viewpoint, stimuli presenting novel 

axes of rotation (Tests Rot_x, Figure 5.12, Rot_yx, Figure 5.13) tested 

generalisation to depth rotations of the object around different axes of rotation. 

Tests that included both novel surface colouration and novel viewpoint 

examined the influence of both transformations combined (Tests 

1color_no_cont_x, 1color_no_cont_yx, Newcol_xy and Colchange_yx, Figures 

5.14-5.17). Finally, presentations of incoherent sequences (Test Randomised) 

examined generalisation to non-coherent sequences of dynamic stimuli. A detailed 

description of the properties of the individual types of test stimuli and the way in 

which they were generated is given in the APPENDIX (pp. 87-91). All stimuli of 

one specific type of transformation (i.e., one test) were pooled together in one test 

set, with the exception of the Tests Colchange and Colchange_yx that were 

combined into one single test set2. Each test set comprised 8 test stimuli. The 

composition of the test stimuli within a test session with respect to the different 

types of presentation can be seen in Table 3. 

                                                
2  Regarding the use of Colchange- and Colchange_yx-stimuli, the initial focus was 
basically on examining how the pigeons would react to a continuous change of colouration, but 
not on the influence of viewpoint. Therefore, the stimuli were combined into one test set. 



Percept ion of rotat ing objects by pigeons METHODS 

 

34  

Table 2.   Main dif ferences (indicated by x) between test  and training st imuli .   

Test Size Viewpoint 
Surface 

Colouration 

Lack of 
Contour 

Lines 

Mode of  
Presentation 

Newtrain      

Newsize x     

1Col   x   

1Col_no_cont   x x  

Newcol   x   

Colchange   x   

View -50  x    

View +50  x    

View 0  x    

View +90  x    

View -90  x    

Rot_x  x    

Rot_yx  x    

1Col_no_cont_x  x x x  

1Col_no_cont_yx  x x x  

Newcol_yx  x x   

Colchange_yx  x x   

Randomised     x 

 

Table 3.    Overview of  the composit ion of  the test  st imuli  within a test  session 

regarding mode of  presentation and size of  the test  st imuli .  The f igures 

indicate the numbers of  stimuli  of  the respective type that  were shown.  Empty 

f ields indicate that  the respective test  did not  include st imuli  of  that type.  

Test 
Cube static Cube dynamic Pyramid static Pyramid dynamic 

sma lar med sma lar med sma lar med sma lar med 

Newtrain 1 1  1 1  1 1  1 1  

Newsize   2   2   2   2 

1col  2   2   2   2  

1col_no_cont  2   2   2   2  

Newcol  2   2   2   2  

Colchange  1   1   1   1  

View -50  2   2   2   2  

View +50  2   2   2   2  

View 0  2   2   2   2  

View +90  2   2   2   2  

View -90  2   2   2   2  

Rot_x  2   2   2   2  

Rot_yx  2   2   2   2  

1col_no_cont_x  2   2   2   2  

1col_no_cont_yx  2   2   2   2  

Newcol_yx  2   2   2   2  

Colchange_yx  1   1   1   1  

Randomised    2 2     2 2  

Note.  sma = small-sized, lar = large-sized, med = medium-sized  
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2.4. Procedure 

The subjects already had experience with the procedural requirements at the 

outset of the experiment. This is, they entered the box voluntarily, accepted food 

reward from the food hopper, and pecked at the pecking key for food. Therefore, 

no further habituation phase was required. A counterbalanced design was 

employed, that is, the subjects were arbitrarily assigned to either of two 

experimental groups. An overview of the birds’ assignment is given in Table 4. For 

three of the seven eventually remaining birds (i.e., the birds whose data could 

actually be used for analysis), pyramids were the positive stimuli (S+), and cubes 

the negative ones (S-), and vice versa for the four other subjects.  

 

Table 4.   Group assignment of  the experimental  birds.  Subjects that  had to 

be excluded in the course of  the experiment are put  in parentheses. 

Experimental group pyr+ cub+ 

Subject 

Ricky_T11a Herbert_B3a 

Moses_T48a Robin_T44 

Arthur_B31a Herwig_T42a 

(Hanna_T3) Auge_T47a 

(Victor_T8a) (Nina_T75a) 

(Felix_T9a) (Otto_T10) 

 Note.   Cub+ indicates that  projections of  a cube were designated as 

S+, Pyr+ indicates that  projections of  a  pyramid were designated as 

S+.  

 

After a subject had entered the operant chamber, the computer program that 

was in charge of stimulus presentation and recording of the emitted pecks, and 

which also controlled the administration of food and time-outs, was started. The 

pigeons were subjected to a well-established successive discrimination paradigm, 

the go/no-go procedure as described by VAUGHAN & GREEN (1984; see also e.g., 

AUST & HUBER 2001, 2002, 2003, 2006a, 2006b; HUBER & LENZ 1993, 1996; 

HUBER et al. 2000; LOIDOLT et al. 2006). It requires the birds to peck frequently in 

the presence of a positive stimulus in order to get a reward and to refrain from 

pecking in the presence of a negative one in order to avoid a delay. Each subject 

accomplished one session a day, i.e., five days a week. Training as well as test 
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sessions consisted of 40 trials, i.e., individual presentations. Half of the stimuli of 

one session were assigned to the positive class, the other half to the negative one. 

Only trials on which positive stimuli were presented provided an opportunity to 

receive food. Each trial began with the presentation of a stimulus on the screen. To 

prevent discouragement already at the very beginning of a session, the stimulus 

shown in the first trial was always a positive one and never a test stimulus. The 

remaining trials were presented in quasi-randomised order. That is, stimuli of the 

same contingency (positive or negative, see below) were never presented in more 

than three consecutive trials. During the first 10 seconds of a trial, the pecks 

emitted to the pecking key were counted for later calculations. Except for trials 

with neutral contingency (test trials, see below) this period was followed by a 

variable interval (VI), ranging from one to ten seconds, to avoid conditioning on a 

specific time schedule. During the VI the stimulus remained visible, but pecks 

were not registered. During the subsequent decision phase the pigeon was required 

to respond differently, depending on the contingency of the stimulus, in order to 

terminate the trial. In positive trials, two pecks emitted within two seconds resulted 

in eight seconds of food access. The stimulus remained visible until the response 

requirement was accomplished. In negative trials, the pigeon was required to 

refrain from pecking for eight seconds in order to terminate the trial, and to 

proceed to the next one. At failure, i.e., if pecks were emitted during this interval, 

the subject was exposed to an error-delay of another eight seconds, and so on. No 

food reward was delivered after the response requirement had been accomplished. 

In trials with neutral contingency, i.e., in test trials, no response requirement had 

to be fulfilled in order to terminate the trial. After the first ten seconds of stimulus 

presentation, during which pecks emitted to the key were counted, test trials ended 

immediately without any food reward or time-out. That is, they were conducted in 

extinction. Thus, learning about the contingency of a stimulus could not occur 

during the test trials. Every trial (training and test) was followed by an inter-trial-

interval (ITI) of four seconds. During this period the screen remained dark, and the 

house light was turned off, to signal the forthcoming presentation of the next 

stimulus. 
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This procedure caused the pigeons to learn to discriminate between positive 

and negative stimuli by reinforced pecking at the former and non-reinforced 

pecking at the latter.  

 

2.4.1. Training phase 

The training phase consisted of repeated runs of cycles, each of which 

comprised 5 training sets. Within one session, the subjects were presented with one 

training set (consisting of 40 stimuli, i.e., five stimuli of each type of presentation; 

for details see Chapter 2.3.2). The very first training session started with the 

presentation of Training set 1, the four remaining sets of one cycle (Training sets 

2-5) were presented consecutively in the following sessions. When all sets of a 

cycle had been presented, another cycle was started. The subjects were trained 

until they reached a pre-specified criterion of successful discrimination, namely, 3 

rho-values ≥ 0.750 in 5 consecutive sessions (see Chapter 2.5). The criterion thus 

required discrimination performance above the level of significance for a 40-trial 

session (rho-value ≥ 0.677). Furthermore, a minimum of 8 accomplished training 

cycles (i.e., 40 sessions at minimum) was required. However, if a subject did not 

reach a rho-value of ρ ≥ 0.750 in at least one of the first 40 sessions training was 

terminated and the bird was excluded from the experiment. 

 

2.4.2. Test phase 

Only subjects that had acquired the discrimination (i.e., reached the learning 

criterion) were subjected to a series of 18 different transfer tests, each of which 

involved the presentation of one particular test set, with the exception of the Tests 

Colchange and Colchange_yx that were combined into one test set  (see Chapter 

2.3.3). The 40 trials of a test session comprised 8 test stimuli; these were 

interspersed among 32 training stimuli at pre-specified positions. The 17 test sets 

were presented consecutively. The entire “test battery” was repeated three times. 

In order to ensure that the birds showed reliable baseline performance during test 

sessions, some of them had to be repeated several times, since only test sessions 
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that yielded a discrimination performance of ρ ≥ 0.75 (which was calculated only 

from the training trials of a test session) entered data analysis.  

 

2.5. Data evaluation and statistics 

Calculations concerning discrimination performance (i.e., assessment of the 

differences in peck rates to positive and negative stimuli) were made on the basis 

of automatically registered pecks, which were emitted onto the pecking key during 

the first ten seconds of a trial. In order to assess discrimination performance a 

well-established non-parametric significance test was used – the Mann-Whitney U 

test. This test was proposed by MANN and WHITNEY (1947) and assesses whether 

two samples of observation come from the same distribution. Therefore, the 

stimuli included into estimation are ranked according to the number of registered 

pecks emitted to them. If the number of pecks in response to every stimulus from 

the positive class is higher than the number of pecks emitted to any stimulus of the 

negative class, discrimination is perfect (100 %). To measure to which extent the 

two distributions (i.e., responses to positive and to negative exemplars) 

overlapped, the rho-value (ρ) i.e., the discrimination ratio was calculated. This 

statistic was introduced by HERRNSTEIN et al. (1976) and estimates the probability 

that the average positive exemplar will be ranked above the average negative 

exemplar. Therefore, the U-value derived from the Mann-Whitney U test is divided 

by the number of positive stimuli multiplied by the number of negative stimuli 

within a session. ρ can take values between 1 (perfect discrimination) and 0 

(perfect converse discrimination). Both extremes thus indicate completely separate 

distributions, while a ρ of 0.5 reflects a complete overlap (chance performance). 

The level of significance from which onwards a result is assumed to be significant 

varies with sample size and α. In a 40-trial training session a rho-value ≥ 0.677 or 

≤ 0.323 indicates significance (α = 0.05). For evaluation of performance on the 

transfer tests, the data of each test was pooled (1n2 = 6, ρ ≥ 0.813 for all tests 

except Tests Colchange and Colchange_yx, 1n2 = 3, ρ ≥ 0.922, and Test 

Randomised, 1n2 = 12, ρ ≥ 0.726). To provide one general baseline value which 
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indicated basic performance on training trials during the test phase, all training 

trials that entered analysis were used as basis (1n2= 408, ρ ≥ 0.540). 

To directly compare the birds' rating of different types of stimuli, mean 

standardised response rates (MSRR) were used. They were obtained for each trial 

by dividing the pecking rate in response to the respective stimulus by the average 

peck rate measured over all training trials of the session. Thus, peck rates of 

different birds as well as peck rates in response to different types of stimuli 

became relative values and thereby comparable because inter- as well as intra-

individual variations in pecking behaviour were compensated for.  

On the basis of mean discrimination ratios and mean standardised response 

rates non-parametric statistical tests were conducted. Wilcoxon signed-ranks tests 

examined potential subject group differences, effects of stimulus size and mode of 

presentation during training, general differences between training and test 

performance, and between TP and MP test performance, potential differences in 

test performance between static and dynamic presentation, particular test 

performances compared with training level, the influence of non-coherent 

presentation on discrimination performance, and finally assessed discrimination 

performance with regard to particular stimulus properties. Comparisons between 

training and test components were based on the MSRRs emitted to the test stimuli 

in each test (averaged across the three test sessions that entered analysis), and the 

averaged corresponding MSRRs emitted to the training stimuli presented in the 

same test sessions. Data analysis was done in Data Desk, SPSS 14.0 and Microsoft 

Office Excel 2003. 

 

2.6. Comparison to COOK & KATZ (1999) 

Basically, the present study was devised and developed following COOK & 

KATZ's experiment (1999). Therefore, the experimental design of my study was 

derived from and similar to that used by COOK & KATZ. Nonetheless, the present 

study deviated from the original one in some respects, due to procedural 
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constraints and theoretical considerations. The most fundamental differences can 

be seen Table 5. For further details see also COOK & KATZ (1999), and Chapter 2.  

 

Table 5.  Overview of  major procedural di f ferences between COOK & KA TZ  

(1999) and the present  study.  

 COOK & KATZ 1999 KRAMER 2010 
Apparatus NEC Multisync 2A (CRT display) 15-inch LCD monitor 

Procedure Registration of pecks 

by infrared touch screen 
pecks registered during first 15 sec 
(S- trials … only first 15 pecks used) 

by dislocation of pecking key (interruption 
of electric circuit), 
pecks registered during first 10 sec of trial 

pecking on white circular signal initiated 
trial 
S+ … 15 pecks → reward 
S- … stimulus visible for 15 sec →  no 
reward 
5 sec inter-trial-interval 

no specific initiation of the trial required; 
variable interval 
S+ ...  2 pecks within 2 sec → reward 
S- ...  no peck within 8 sec (otherwise error-
delay of further 8 sec) 
4 sec inter-trial-interval 

Requirement for Reward 

Training: completion of S+ peck 
requirement … reward,  
from 30

th
 training trial on partial 

reinforcement schedule (12.5 % of S+ end 
with no reward after 15

th
 peck) 

Tests: variable (partial reinforcement or 
completion in extinction) 

Training: completion of S+ requirement … 
reward  
Tests: neutral contingency (no reward) 

Stimuli Generation 

on the fly via QuickBasic  
Version 3 and Computer Graphics 

in advance via Maya© 

Presentation  

directly rendered during presentation;  
no detailed specifications available 

(successive) presentation of uncompressed 
images (bitmap) via Visual C++  

Assignment of colours to surfaces 

on each trial at random   equal distribution of colours over trials 

Size of object Training: 2 cm³/4.4 cm³ Training: 5 cm³/6,8 cm³ 

Rate of rotation Training: 1 rev/5 sec, 1 rev/1 sec Training: 1 rev/4 sec 

Frames/sec unknown; no detailed specification 
available 

30 frames/sec 

Frames/ 
Rotation 

unknown; no detailed specification 
available 

120 frames/rotation, each differs from the 
next by 3°  

Subjects 4 7  

Number of 
trials/Session 

Training: 96 
Tests: variable number  

Training: 40  
Tests: 40 comprising 8 test trials 

Discrimination 
Measure 

Discrimination Ratio (0-100 %) 
rho-value (0-1) 
standardised response rate 

Tests novel rates, novel sizes, novel direction of 
rotation  

novel size, continuous change of 
colouration, randomised sequence 

Criterion of 
success 

None 
3 rho-values ≥ 0.750 on 5 successive 
sessions, minimum of 40 sessions 
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3. RESULTS AND DISCUSSION 

 

3.1. Training Phase 

The subjects were trained to discriminate between two-dimensional 

projections of two three-dimensional objects, a cube and a pyramid. The stimuli 

comprised projections of two object sizes, i.e. small and large, and were presented 

either statically or dynamically. In the latter case the objects rotated around the y-

axis.  

 

Results and Discussion 

The birds’ training performance is illustrated in Figure 6 and summarised in 

Table 6. Since the criterion of mastery was determined as 3 rho-values of 0.750 or 

higher in 5 successive sessions combined with completion of at least 40 sessions 

the training required at least 8 weeks (5 sessions a week provided). Of the twelve 

subjects three (Nina_T75a, Hanna_T3, Otto_T10) died in the course of training 

and two (Felix_T9a, Viktor_T8a) had to be discontinued since their discriminative 

performance did not reach a rho-value of ρ ≥ 0.750 in any of the first 40 training 

sessions. Therefore, all results reported in the remainder of this thesis were 

calculated from pecking responses of the seven successful birds only. Five of them 

acquired the task within 40 training sessions (this corresponds to the completion of 

8 cycles). One bird (Arthur_B31a) needed 60 sessions (this corresponds to the 

completion of 12 cycles) and one (Herwig_T42a) needed 80 sessions (this 

corresponds to the completion of 16 cycles). Hence, 38.29 (± 23.16) sessions on 

average were required by the seven subjects to reach learning criterion (see Table 

6, left panel). Figure 6 shows acquisition performance (assessed as rho-values, 

performance on all stimulus types combined) of the individual birds. For reasons 

of clarity rho-values were calculated separately for each cycle of training sessions; 

that is, five sessions were pooled together for calculation. The learning curves 

clearly show that the subjects differed from each other in terms of learning speed. 
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Figure 6.  Discrimination performance assessed as rho-values throughout the 

training phase, shown separately for each of the seven successful subjects, 

performance on all stimulus types (i.e., small, large, dynamic, static) combined. Filled 

symbols indicate performance of subjects assigned to group cub+, open symbols 

indicate assignment to group pyr+. The solid horizontal line indicates the level of 

chance performance. The criterion of successful discrimination was pre-specified as 

combining 3 rho-values ≥ 0.750 in 5 successive sessions with a minimum of 8  

accomplished training cycles.  If a subject’s discriminative performance did not 

reach the learning criterion during the first 8 cycles training was continued until the 

criterion was met. 

 
Table 6. Training performance of the individual subjects.  

 

Subject Experimental Group Number of Sessions Final rho-value 

Ricky_T11a pyr+ 20 0.928 (40) 

Moses_T48a pyr+ 26 0.788 (40) 

Arthur_B31a pyr+ 60 0.812 (60) 

Herbert_B3a cub+ 36 0.723 (40) 

Robin_T44 cub+ 28 0.781 (40) 

Herwig_T42a cub+ 80 0.904 (80) 

Auge_T47a cub+ 18 0.757 (40) 

Mean  38.29 ± 23.16 0.813 ± 0.076 

Note. Listed are the numbers of sessions required to achieve 3 rho-values ≥ 0.750 in 

5 successive sessions, and the rho-value of the last training session. The total 

numbers of training sessions needed to fulfil the learning criterion (at least 40) are 

given in parentheses. Cub+ indicates that projections of a cube were designated as 

S+, Pyr+ indicates that projections of a pyramid were designated as S+. 
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Most birds started to discriminate above chance level (ρ ≥ 0.677), already at 

the end of the first cycle, and then performance continuously increased further in 

the course of training. One bird (Herwig_T42a), however, failed to show steady 

improvement for several cycles. Considerable fluctuations of his discriminative 

behaviour can be noticed, especially between the 13th and 15th cycle. At this time, 

he was afflicted with a serious disease, but recovered during the 16th cycle. 

Furthermore, Figure 6 suggests that there was no difference in acquisition 

performance between the two experimental groups. This was confirmed by a 

Wilcoxon’s signed-ranks test, which compared rho-values (averaged across the 

birds of each group separately) obtained in the first eight cycles. No inter-group 

difference was revealed (z = -0.700, p = 0.547). That is, group assignment 

influenced neither the speed nor the accuracy of learning. The right panel of Table 

6 presents the rho-values reached by the individual subjects in the last training 

session. The mean of ρ = 0.813 (± 0.076) indicates a high level of performance, far 

above the level of significance (≥ 0.677) as well as the level set for the learning 

criterion (≥ 0.750). 

Altogether, this shows that the pigeons were basically able to learn to 

discriminate reliably between projections of a cube and projections of a pyramid. 

This finding is consistent with the study by COOK & KATZ (1999) which yielded 

comparable results. Apparently, acquisition of the discrimination was not affected 

by procedural differences between the two experiments (e.g., the use of different 

stimulus material). Nevertheless, the birds of the present study seemed to acquire 

the task slightly less accurately and a little bit more slowly than the subjects in the 

original experiment, and they needed more trials to reach high levels of 

performance. Overall, however, the learning progress of the subjects of both 

studies was similar throughout the first sessions, with an increase in discrimination 

performance being evident from about the 200th trial onwards (this corresponds to 

the end of the first cycle in the present study and to the beginning of the third 

session in COOK & KATZ 1999). 

Moreover, it seems that the birds did not noticeably benefit from either 

mode of presentation (i.e., neither dynamic nor static), regarding learning speed or 

accuracy. Figure 7 compares discrimination performances assessed as rho-values 
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for the two different modes of presentation. Discrimination ratios were calculated 

for each subject in each cycle, with the five sessions of a cycle being pooled. Then, 

rho-values were averaged across all subjects for each cycle (±SD).  

 

 
 

Figure 7.   Learning curves assessed separately for each type of  

presentation (static and dynamic)  as rho-values (± SD).  Performance is shown 

separately for each training cycle,  but  averaged across subjects.  The solid 

horizontal  l ine indicates the level  of  chance performance. For the f irst  eight  

cycles (= f irst  40 training sessions) assessment of discrimination performance 

was based on the data of  al l  seven subjects,  from the ninth to the twelf th cycle 

(= 41
s t  

to 60
t h

 t raining session) on the data of  two subjects,  and for the last  

four cycles  (= 61
s t

 to 80
t h  

training session) on the data of  one subject .  

 

The progression of the curves confirms that the subjects’ performance was 

not influenced by the mode of presentation. Additionally, for each cycle a 

Wilcoxon’s signed-ranks test was carried out which compared rho-values obtained 

for dynamic presentations with the rho-values obtained for static presentations. 

Thereby, rho-values were pooled across birds. Only the first eight cycles entered 

analysis, since the remaining cycles included only two birds. In neither cycle the test 

revealed a significant difference between static and dynamic presentation (all p-values 

> 0.05). On the one hand, the use of a new stimulus type (i.e., dynamic 

presentation) did not aversely affect the subjects’ willingness to peck, and the 
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birds did not show any signs of neophobia towards the dynamic stimuli (which one 

may have expected, considering that this was the first time the birds encountered 

non-static images at all). Thus, the extended experimental history with static 

stimuli had obviously not biased the results towards a preference for these. But on 

the other hand, the use of dynamic stimuli failed to enhance discrimination 

learning, as would have been expected if dynamic change of perspective was 

indeed an effective cue to facilitate object recognition. The result is therefore 

consistent with the original study (COOK & KATZ 1999) which also did not find 

different effects of dynamic and static presentation on training performance.  

Acquisition performance with the two different sizes (large/small) was 

assessed separately, and is summarised on a cycle-by-cycle basis as rho-values in 

Figure 8. Calculations of discrimination ratios were first conducted for each 

subject individually and then averaged across birds (±SD).  

 

 

Figure 8.  Learning curves assessed separately for each size (small and large) as 

rho-values (± SD). Performance is shown separately for each training cycle, but 

averaged across subjects. The solid horizontal line indicates the level of chance 

performance. For the first eight cycles (= first 40 training sessions) assessment of 

discrimination performances was based on the data of all seven subjects, from the 

ninth to the twelfth cycle (= 41
st

 to 60
th

 training session) on the data of two subjects, 

and for the last four cycles (= 61
st

 to 80
th

 training session) on the data of one subject. 
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At first sight, the progression of the learning curves seems to suggest a 

slightly better performance with small-sized than large-sized stimuli. However, 

Wilcoxon’s signed-ranks test comparing for each cycle separately the rho-values 

obtained for small stimuli with the rho-values obtained for large stimuli (rho-

values were pooled across birds, only the first eight cycles entered analysis) 

revealed no significant difference (all p-values > 0.05). Consequently, the present 

results indicate size invariance across training stimuli. In contrast to this, COOK & 

KATZ (1999) reported a significant effect of stimulus size throughout the entire 

training, with discrimination of the larger objects being slightly better than 

discrimination of the smaller ones. Given the fact that the latter had a volume of 

only 2 cm3 in the COOK & KATZ study (compared to 5 cm3 in the present study), 

the difference in discrimination performance they found for large and small stimuli 

might have been the consequence of pigeons’ reduced visual acuity for very small 

stimuli. COOK & KATZ (1999) used stimuli that were considerably smaller than the 

ones of the current study. Thus, problems with visual acuity, enhanced by poor 

monitor resolution (640 x 350 pixels), might explain why the pigeons in the 

original study discriminated less accurately between the small than between the 

large stimuli. In contrast, the results of the current study suggest that the birds did 

not have difficulties discriminating the small stimuli. The larger absolute size of 

the smaller stimuli (as compared to COOK & KATZ) in combination with higher 

monitor resolution (1024 x 768 pixels) may have been advantageous for accurate 

recognition of small stimuli.  

The pigeons showed reliable discrimination in the end of training, 

irrespective of the type of stimulus (dynamic/static, large/small) they responded 

to. But what may have been the basic mechanism by which the pigeons learned the 

task? Attributing the acquisition of the discrimination to the use of a strategy 

beyond two-dimensional feature detection may be jumping to a conclusion too 

hastily. It is, of course, possible that the birds indeed used an answering strategy 

based on the recall of structural object-like descriptions (i.e., 3-D representations) 

of a pyramid and a cube. But there are other strategies that could just as well have 

controlled discriminative behaviour, such as memorising the individual training 

exemplars, i.e., rote learning, as assumed by the exemplar view of categorisation 
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(see e.g., HUBER et al. 1999). If one considers the relatively small number of 

training stimuli as well as pigeons’ outstanding capacities of picture memorisation, 

it seems indeed plausible to suggest rote learning as an alternative to the formation 

of generalised 3-D-representations. Recent examinations of the pigeon’s visual 

memory revealed a tremendous exemplar-specific memory capacity of over 800 

single pictures stored in the brain (FAGOT & COOK 2006; COOK et al. 2005). In 

comparison, the birds of the current study were subjected to a total of only 96 

static and 96 dynamic stimuli. It should be considered, however, that the stimulus 

set used in the studies by COOK and colleagues (2005, 2006) varied substantially in 

terms of the visual appearance of the stimuli (wide variety of landscapes, objects, 

and abstract photography), whereas the stimuli used in the current study bore 

strong overall similarities. Memorising all pyramid and cube pictures individually 

may therefore have been quite difficult. The pigeons may thus have not learned 

every single stimulus as a whole, but may have memorised just some specific 

stimulus parts or simple conspicuous 2-D features of specific individual pictures as 

encoded in viewer-centred 2-D templates (c.f., SPETCH et al. 2000, 2001). 

Alternatively, learning may not have been based on individual exemplars (or parts 

of them) at all, but on the extraction and combination of some category-defining 

features that were common to all or most instances of one class and distinguished 

them from instances of the other class. Possible candidates may be the right angles 

characterising cubes or the acute angle at the top of the pyramids. Such a 

mechanism would be in keeping with the feature theory of categorisation (see e.g., 

AUST & HUBER 2001, 2002; HUBER & AUST 2006). Finally, the pigeons may have 

abstracted a summary representation that corresponded to the average, or central, 

tendency of each class in order to distinguish between pyramids and cubes. Such a 

strategy would be predicted by the prototype view of categorisation (HUBER & 

LENZ 1996). 

Concluding, for reasons of parsimony, it seems to be the most likely 

explanation that the subjects based their discrimination on the memorisation of 

particular stimuli (or conspicuous parts of them). Nevertheless, also learning 

mechanisms beyond mere rote learning might account for the training results. 

Thus, investigation of generalisation to novel instances of the familiar object 
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classes was essential in order to shed light on the mechanisms that may have 

controlled pigeons’ responding in the training task. For this purpose, a variety of 

transfer test was carried out. 

 

3.2. Test Phase 

To disentangle possible contributions of different mechanisms of object 

recognition the subjects were confronted with various transformations of the 

objects. Since object-based approaches account for recognition invariance with 

regard to changes in size, position, and viewpoint (c.f., KIRKPATRICK 2001), the 

birds’ responses to novel – transformed – exemplars of the object classes might 

allow for a better understanding of what was represented in the pigeons’ brains.  

 

Familiar objects in a new guise – Basic f indings from the transfer 

tests 

Performances on the 18 different types of tests were assessed separately, as 

both mean discrimination ratios (ρ) and mean standardised response rates (MSRR), 

averaged across subjects. The results are summarised in Table 7, and illustrated in 

Figures 9, 10, and 12. Each figure combines the results of several tests, grouped 

according to the types of transformation the stimuli underwent (marked by 

coloured frames). Performances on the test stimuli were averaged across subjects, 

and the same was done for the training stimuli.  

Overall, discrimination performance was quite inconsistent over tests and 

subjects. The large inter-individual variations are reflected by substantially high 

standard deviations that occurred in all tests. Generally, mean test discrimination 

ratios dropped below training level (see right section of Table 7), with only one 

test yielding significant discrimination, namely, Test Randomised. Regarding mean 

standardised response rates (MSRRs; see left section of Table 7) it can be noticed 

that on average the subjects performed worse with the test stimuli than with the 

training stimuli. More specific, a general decrease in responses to positive test 

stimuli and an increase in responses to negative test stimuli can be observed.  
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Table 7. Overview of the test results shown as mean standardised response rates (left panel) 

and mean discrimination ratios ρ (right panel), averaged across subjects (± SD). 

 Mean Standardised Response Rate (MSRR) Discrimination Ratio (ρ) 

Test dyn + dyn - stat + stat - dyn  stat 

Newtrain 1.600 ±0.52 0.829 ±0.61 1.326 ±0.65 0.921 ±0.74 0.805 ±0.21 0.686 ±0.22 

Newsize  1.420 ±0.58 0.592 ±0.33 1.472 ±0.38 0.390 ±0.21 0.722 ±0.17 0.796 ±0.16 

1Col 1.156 ±0.54 0.504 ±0.62 0.862 ±0.46 0.894 ±0.67 0.712 ±0.15 0.553 ±0.24 

1Col_no_cont 1.031 ±0.31 0.586 ±0.58 1.591 ±0.48 0.419 ±0.37 0.599 ±0.09 0.806 ±0.10 

Newcol 1.570 ±0.38 0.673 ±0.44 1.293 ±0.36 0.336 ±0.31 0.780 ±0.12 0.807 ±0.13 

Colchange 2.018 ±1.15 0.309 ±0.21 1.122 ±0.61 0.590 ±0.61 0.913 ±0.15 0.738 ±0.30 

View -50 0.938 ±0.22 1.099 ±0.41 1.704 ±0.66 0.985 ±0.43 0.476 ±0.16 0.645 ±0.20 

View +50 1.267 ±0.41 1.071 ±0.52 1.282 ±0.52 0.914 ±0.64 0.565 ±0.19 0.549 ±0.15 

View 0 1.216 ±1.23 0.272 ±0.32 0.838 ±0.53 0.218 ±0.36 0.738 ±0.24 0.725 ±0.11 

View +90 0.498 ±0.32 1.300 ±0.84 0.652 ±0.33 1.210 ±0.40 0.280 ±0.14 0.361 ±0.18 

View -90 0.529 ±0.33 1.329 ±0.59 0.891 ±0.46 1.221 ±1.11 0.286 ±0.18 0.464 ±0.17 

Rot_x 1.446 ±0.36 0.895 ±0.40 0.980 ±0.50 0.963 ±0.50 0.655 ±0.13 0.486 ±0.11 

Rot_yx 1.527 ±0.63 0.790 ±0.50 1.355 ±0.49 1.117 ±0.35 0.631 ±0.12 0.567 ±0.19 

1Col_no_cont_x 1.057 ±0.58 0.626 ±0.54 0.608 ±0.32 0.668 ±0.35 0.641 ±0.17 0.502 ±0.11 

1Col_no_cont_yx 0.945 ±0.60 0.940 ±0.91 0.806 ±0.54 0.832 ±0.69 0.571 ±0.33 0.512 ±0.19 

Newcol_yx 0.935 ±0.46 0.623 ±0.26 0.927 ±0.43 0.395 ±0.37 0.667 ±0.16 0.671 ±0.13 

Colchange_yx 1.382 ±0.69 0.594 ±0.38 0.947 ±0.99 0.609 ±0.63 0.730 ±0.14 0.548 ±0.17 

Randomised 1.255 ±0.28 0.524 ±0.36     0.794 ±0.14   

Training stimuli 1.730 ±0.16 0.369 ±0.14 1.642 ±0.19 0.339 ±0.12 0.836 ±0.06 0.817 ±0.06 

Note. Response tendencies are indicated by type of font: italic type indicates values 

approaching levels of significance; bold type highlights values exceeding levels of 

significance (ρ ≥ 0.813, except for Tests Colchange and Colchange_yx, ρ ≥ 0.922, and for Test 

Randomised, ρ ≥ 0.726; Training stimuli, ρ ≥ 0.540)  

dyn+ = MSRR on positive dynamic stimuli, dyn- = MSRR on negative dynamic stimuli, stat+ = 

MSRR  on positive static stimuli, stat- = MSRR  on negative static stimuli,  

dyn = rho-values of dynamic stimuli, stat = rho-values of static stimuli. 

 

In order to determine whether the use of test stimuli in general had any 

effect on performance, Wilcoxon’s signed ranks tests were carried out. Therefore, 

all MSRRs emitted to the different test components (except Test Randomised since 

this test only included static presentations) were pooled across subjects and tests 

and then compared with the MSRRs emitted to the corresponding training 

components, for positive and negative trials separately. Peck rates for each training 

component were based on the averaged MSRRs emitted to the training 

presentations in the respective test. Analyses revealed a highly significant decrease 
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of MSRRs in both dynamic and static positive test trials compared to positive 

training trials (dynamic: 1n2 = 119, z = -6.457, p > 0.0001; static: 1n2 = 119, z = -

6.945, p > 0.0001), and a highly significant increase of MSRR in both dynamic and 

static negative test trials as compared to negative training trials (dynamic: 1n2 = 

119, z = -6.327, p > 0.0001; static: 1n2 = 119, z = -6.229, p > 0.0001), which 

indicates a significant effect of the introduction of novel stimuli. Obviously, the 

ability to discriminate was impaired by the introduction of novel stimuli of any 

kind whatsoever. This may not be entirely due to a general effect of confusion 

caused by stimulus novelty per se, but may also indicate that at least parts of the 

training stimuli were learned by rote. However, there were a couple of tests that 

yielded discrimination ratios approaching significance, namely, Tests Newtrain, 

Newsize, 1col_no_cont, Newcol, and Colchange. The birds therefore showed at 

least a tendency to generalise to some of the presented modifications. 

Consequently, mere memorisation of specific training stimuli on a pixel-by-pixel 

basis as exclusive learning mechanism can hardly account for these findings. 

Rather, it seems that learning mechanisms besides mere rote learning of individual 

stimuli were used in addition. 

Another general tendency that is apparent across tests is that the subjects 

transferred noticeably better to test stimuli comprising objects that were presented 

in the same orientation relative to the observer as the training stimuli, i.e., 

Training Perspective (TP) tests (see Figure 9), than to stimuli that contained views 

of objects which deviated from the training stimuli in terms of perspective, i.e., 

Modified Perspective (MP) tests (see Figure 10). In five out of six TP tests, i.e., 

Colchange, Newtrain, Newsize, 1col_no_cont, and Newcol, mean discrimination 

ratios for one or both presentation modes at least approached significance. Only in 

Test 1col no such tendency was found. Moreover, with the exception of only one 

test (1col, MSRRstatic+ = 0.862) the averaged MSRRs on positive test stimuli were 

always > 1 (i.e., above the level of average performance), and MSRRs on negative 

test stimuli were always < 1 (see left section of Table 7, and lower panel of Figure 

9). In contrast to the TP tests, the birds’ performance was quite poor in the MP 

tests, with none of the mean discrimination ratios being even close to significance 

(see right section of Table 7 and upper panel of Figure 10). Accordingly, the two 
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types of tests differed considerably also with respect to the MSRR obtained for 

both positive and negative trials (see left section of Table 7 and lower panel of 

Figure 10). Two additional Wilcoxon’s signed-ranks tests confirmed that the birds 

discriminated differently in Training Perspective and Modified Perspective tests. 

One compared the subjects’ mean standardised response rates on the averaged 

positive trials of the TP tests with the averaged positive trials of the MP tests. The 

other test compared the respective peck rates on negative trials. Thereby, 

performances with dynamic and static presentation were averaged for analysis. 

Results of Test Randomised were excluded from analyses. The tests revealed 

significantly higher MSRRs on positive trials of Training Perspective tests 

compared to Modified Perspective tests (1n2 = 7, z = -2.028, p = 0.047), and 

significantly lower MSRRs on negative trials of Training Perspective tests 

compared to Modified Perspective tests (1n2 = 7, z = -2.028, p = 0.047). Figure 11 

compares discrimination performances in the Training Perspective and Modified 

Perspective tests, with both modes of presentation averaged and means taken 

across the individual tests and birds (±SD). The results indicate that in particular 

the shape of the stimuli might have served as a crucial discriminative cue. 

However, the impaired performance to any kind of stimulus transformation 

suggests that also manipulation of stimulus properties other than alterations in 

perspective (and thus shape) appeared to affect conjointly the pigeons’ ability to 

discriminate – although to different extents.  
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Figure 11.  Comparison between TP and MP tests shown as mean standardised 

response rates in posi t ive test  trials (f il led circles) and negative ones (plain  

circles).  Response rates were calculated for each subject  individually and 

then averaged across tests and birds (± SD).  The solid horizontal  l ine indicates 

average performance; an asterisk marks a signif icant dif ference.  

 

The role of particular stimulus properties 

To evaluate in detail to what degree the specific types of stimulus 

transformations (represented by coloured frames in Figures 9 and 10) had 

controlled responding, a series of additional Wilcoxon’s signed-ranks tests was 

carried out. The results are shown in Table 8. Therefore, MSRRs emitted to each 

test component showing stimuli that had in common a particular stimulus property 

that distinguished them from the training stimuli (i.e., new combination of surface 

colours, novel size, novel viewpoint, novel colouration, and novel colouration in 

combination with novel viewpoint) were pooled across the respective tests and 

subjects. Then they were compared with the corresponding training MSRRs in the 

respective tests. Thereby, performances with dynamic and static presentation were 

averaged for analysis. Response rates on positive and negative trials were 

evaluated separately.  
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Table 8.  Wilcoxon’s signed-ranks tests assessing performance with regard to 

particular stimulus properties.  

 

 novel training 
stimuli 

novel size novel viewpoint 
novel colouration, 
y-axis 

novel colouration,  
novel viewpoint 

 Newtrain Newsize 

View -50, View +50, 
View 0,  
View +90, View -90, 
Rot_x, Rot_yx 

1col, 1col_no_cont, 
Newcol, Colchange 

1col_no_cont_x, 
1col_no_cont_yx,  
Newcol_yx, 
Colchange_yx 

 1n2 z p 1n2 z p 1n2 z p 1n2 z p 1n2 z p 

pos 7 -0.676  7 -1.014  49 -5.595 **** 28 -2.163 * 28 -4.304 **** 

neg 7 -2.028 * 7 -2.366 * 49 -5.655 **** 28 -0.296  28 -3.211 *** 

Note. MSRRs on the test  components summarised according to particular 

st imulus properties were compared with MSRRs on the corresponding training 

component (performances were pooled across subjects  and tests); results are 

given for positive and negative stimuli separately, pos = positive stimuli, neg = 

negative st imuli .  Signi f icance levels: * p ≤  0.05, ** p  ≤  0.01, *** p ≤  .0001, 

**** p ≤  0 .0001.  

 

For purposes of clarity the results are reported and discussed in detail in the 

following results sections together with individual results of the transfer tests. 

Hence, they are summarised according to the type(s) of transformation the test 

stimuli had been subjected to. 

 

Similar but not familiar – Newly combined surface colours (Novel 

training stimuli)   

Figure 9 (upper panel; marked by a light grey frame) and Table 7 (right 

panel) indicate a drop in performance in Test Newtrain compared with training 

performance. This is evident from non-significant discrimination performances, 

and lower MSRRs on positive test stimuli as well as higher MSRRs on negative 

test stimuli compared to training level (Figure 9, lower panel; and Table 7, left 

panel). A Wilcoxon’s signed ranks test which compared responses on test stimuli 

with responses on training stimuli (both modes of presentation combined) for 

positive and negative MSRR separately, showed that this difference was 

significant for negative trials (Table 8). Summarising, the results revealed that 

even performance on novel stimuli that matched the training stimuli in all respects 
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except colour combinations was decreased. This strongly suggests that responding 

was – at least to some degree – controlled by memorisation of the individual 

training exemplars or specific parts of them. But the fact that some tendency to 

discriminate correctly was nevertheless present indicated that rote learning as the 

exclusive mechanism could not account for the results. 

 

Variation of metric properties – Novel stimulus size  

Discrimination performance did not reach significant levels in Test Newsize 

(see Table 7, right panel; and Figure 9, upper panel, marked by orange frame). On 

average, MSRRs on positive test stimuli were below, and MSRRs on negative test 

stimuli were above training MSRR (Figure 9, lower panel; and Table 7, left panel). 

Combining both modes of presentation, a significant difference was found between 

negative MSRRs of the test and training component but no significant difference 

was found between positive MSRRs (Table 8). Together, these findings indicate 

that metric object properties were obviously not used as the primary discriminative 

cue but nevertheless acquired some control over the pigeons’ responding. In 

general, size dependence indicates that metric information is stored as part of the 

representation of the object (e.g., BUNDESEN & LARSEN 1975, LARSEN & 

BUNDESEN 1978). As a result, recognition is impaired by changes in size. 

Invariance to size changes, by contrast, indicates that metric information is stored 

separately from the representation used for recognition (or is not stored at all). 

Consequently, generalisation of discriminative performance to familiar stimuli 

presented in a novel size ought to be expected (e.g., COOPER et al. 1992). While 

size independence favours recognition mechanisms based on structural 

descriptions as proposed by object-based theories, size dependence rather points to 

mechanisms based on 2-D templates as proposed by viewer-based theories of 

object recognition. Studies on the influence of stimulus size on pigeon object 

recognition have concordantly reported significant generalisation of discriminative 

performance to familiar stimuli presented in novel sizes, indicating size invariance 

in this species (e.g., JENKINS et al. 1958; LOMBARDI & DELIUS 1990; TOWE 1954; 

PISACRETA et al. 1984). Nevertheless, small decrements in accuracy were found as 
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well in these studies, with small sizes obviously causing some drop in 

performance, which could not be explained by general problems with visual acuity. 

It is important to note, however, that the stimuli used in these studies either 

consisted of simple two-dimensional objects (geometrical shapes, or silhouette 

stimuli) or spots of light. Therefore, it is hard to tell, whether the discrimination of 

projections of more complex, three-dimensional objects would be supposed to vary 

in a similar manner with different sizes. Since a change in size does not disrupt the 

structural description, 3-D objects should be recognisable despite such variations. 

PEISSIG and her colleagues (2006) addressed this issue by presenting pigeons with 

shaded static visual stimuli that implied three-dimensionality at least to the human 

eye. They found systematic performance decrements as a function of increasing 

deviations of the testing size from the original training size and thus inferred that 

metric information was stored as part of the object representations. It is, however, 

not clear, whether the pigeons indeed perceived these stimuli as three-dimensional. 

Therefore, it might not be justified to draw from this study any conclusions on 

whether or not the recognition of three-dimensional objects may be invariant over 

changes in size. COOK and KATZ (1999) reported no significant effect of object 

size when testing for the pigeons’ response to novel sizes and took this as further 

evidence that the subjects had based their discrimination on a 3-D representation of 

the objects (c.f., COOK 2001). Similarly, in category or concept discrimination 

tasks (e.g., AUST et al. 2001; BHATT et al. 1988; HERRNSTEIN & LOVELAND 1964) 

the size of the transfer stimuli was found to be almost irrelevant for correct 

classification, except for extremely small targets (see, e.g., AUST & HUBER 2002).  

Considering the foregoing, what might then have been the reason for size 

effects revealed in the present study? As mentioned previously, a perceptual 

problem of acuity cannot account for them since the pigeons had been subjected to 

even smaller-sized stimuli in training. (The novel size introduced in Test Newsize 

actually lay between the two sizes of the training objects.) It seems thus that the 

pigeons had indeed stored metric information as part of the object representations, 

which then impaired transfer to sizes other than the ones encountered during 

training. The effect of size transformation found in the current study is thereby in 

accordance with other studies reporting systematic accuracy decrements when 
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object size was manipulated. However, one should nevertheless keep in mind that 

the test stimuli featured – besides novel size – new combinations of the surface 

colours, and might thus have generally been harder to discriminate than training 

stimuli.  

 

A matter of viewpoint – Novel perspective (novel angles of  

elevation, novel axes of rotation) 

The results of tests examining the influence of novel viewpoints (i.e., 

modification of the viewer’s perspective, and novel axes of rotation) are shown in 

Figure 10 (marked by red frame). The results of tests examining the effect of the 

viewer’s perspective (i.e., View_-50, View_+50, View_0, View_+90, and View_-

90) clearly suggest that performance varied systematically as a function of the 

degree of deviation from the training orientations (angle of elevation 15° relative 

to the transecting horizontal plane). That is, discrimination was most accurate for 

views closest to the training views (0°), and least accurate for viewpoints farthest 

away (90°). However, in neither test discrimination was significant. In Tests View 

+90° and View -90° (see Figure 10, upper panel, and Table 7, right panel) all rho-

values were even < 0.5 (i.e., average performance), thereby indicating “inverse 

discrimination”, which was also reflected by the corresponding MSRRs. 

Accordingly, Wilcoxon’s signed-ranks tests revealed no significant difference 

between MSRRs derived from negative test trials of Test View +90 and View -90 

and positive training trials, and the same was found for a comparison between 

positive test trials and negative training trials, for both modes of presentation. 

Evidently, in Tests View_+90 and -90 the birds “mistook” pyramids for cubes and 

vice versa (Test View_+90: Comparisons of MSRRs on dynamic positive test 

stimuli with dynamic negative training stimuli, z = -1.521 p = 0.156, on dynamic 

negative test stimuli with dynamic positive training stimuli, z = -1.352 p = 0.219, 

on static positive test stimuli with static negative training stimuli, z = -1.521, p = 

0.156, and on static negative test stimuli with static positive training stimuli, z = -

1.521, p = 0.156; Test View -90: Comparisons of MSRRs on dynamic positive test 

stimuli with dynamic negative training stimuli, z = -0.338, p = 0.813, on dynamic 
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negative test stimuli with dynamic positive training stimuli, z = -0.845, p = 0.469, 

on static positive test stimuli with static negative training stimuli, z = -1.690, p = 

0.091 and on static negative test stimuli with static positive training stimuli, z = -

0.676, p = 0.578).  Figure 10 (upper panels, red frame) and Table 7 also show poor 

discrimination performance with stimuli comprising novel views of the objects due 

to the use of untrained axes of rotation. Transfer was evidently weak for both 

rotation around the x-axis, and the combined rotation around the y- and the x-axis. 

Dynamic presentation failed to facilitate discrimination with mean discrimination 

ratios ranging clearly below the limit of significance. Finally, a comparison of the 

viewpoint-modified test stimuli with the corresponding training components (Table 

8) revealed a highly significant decrease on positive test MSRRs, as well as a 

highly significant increase on negative test MSSRs compared to training MSRRs. 

Altogether, the results suggest that the birds’ ability to discriminate pyramids and 

cubes was negatively affected by any change in the observer’s perspective relative 

to the object. The present experiment is therefore in line with pigeon studies 

reporting viewpoint-dependence (e.g., CERELLA 1977, 1990; FRIEDMAN et al. 2005; 

LOIDOLT et al. 2006; LUMSDEN 1970; SPETCH et al. 2000, 2001, 2003; SPETCH & 

FRIEDMAN 2003; WASSERMAN et al. 1996). Such viewpoint-dependence can be 

explained by two theories of object recognition, namely by view-based accounts to 

visual recognition of three-dimensional objects (c.f., BÜLTHOFF & EDELMAN 1992; 

POGGIO & EDELMAN 1990; TARR 1995, TARR & PINKER 1990, TARR & BÜLTHOFF 

1995, 1998; TARR & KRIEGMAN 2001)3 and also by 2-D feature- or exemplar-based 

accounts (c.f., CERELLA 1980, 1986; HUBER et al. 1999; PEARCE 1988). In the 

former case, the pigeons would have perceived the two-dimensional projections in 

a more unitary way and encoded them as collections of the 2-D views they 

encountered during training. If the pigeons had actually used object-like structural 

descriptions to serve as representational formats, as proposed by object-based 

theories (e.g., BIEDERMAN 1987; BIEDERMAN & GERHARDSTEIN 1993, 1995; MARR 

& NISHIHARA 1978), accurate transfer to novel views should have occurred, since 

                                                
3  Assuming such accounts it is, however, not possible to tell from the findings whether 
recognition might have been based on view normalisation (e.g., TARR 1995, TARR & PINKER 
1989), or on a view combination mechanism (e.g., BÜLTHOFF & EDELMAN 1992, EDELMAN 1999) 
since I did not systematically control for extrapolated versus interpolated views (c.f., SPETCH 
2006). 
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in my judgement, the objects used in the present study met the criteria for allowing 

viewpoint invariance (i.e., decomposability into geons, arrangement of these geons 

as a distinct structural description that differs from other arrangements, and no 

alteration of these structural descriptions by changes in view) stipulated by 

BIEDERMAN & GERHARDSTEIN (1993). Admittedly, the second and the third 

criterion might have been violated in views in which the pyramid was hard to 

distinguish from the cube and/or in which some presumably conspicuous object 

parts (e.g., the top of the pyramid) were not visible (View +90 and View -90). 

Viewpoint-dependence occurred, however, with all views, and was not exclusively 

restricted to those that did not fully meet the criteria. Interestingly, not even 

training with multiple views of the objects seemed to improve performance on 

stimuli involving x-axis or yx-axis rotations. This is not in line with the results of 

other studies which found that experiencing an object from multiple views 

throughout training enhanced its recognition (PEISSIG et al. 2000b; WASSERMAN et 

al. 1996), even with views along a novel axis of rotation (PEISSIG et al. 2002). All 

the more it is surprising that the birds in the present study, which had already 

experienced a large number of different training views along the y-axis, failed to 

form stable representations that allowed for generalised recognition along other 

axes. This together with the finding that the birds also showed impaired transfer to 

the Training Perspective test stimuli (which were actually presented in the same 

perspective as the training stimuli, and should thus be recognised without any 

decrease in performance) rather points  to the alternative explanation of a feature- 

or exemplar-based account for object recognition. That is, the pigeons might not 

have recognised the individual views as depicting a three-dimensional object, but 

encoded the stimuli either as a collection of discriminative features (CERELLA 

1980, 1986; HUBER & LENZ 1993) or memorised all or many instances of them 

(HUBER et al. 1999; PEARCE 1988). Hence, discrimination could have been based 

on simple, two-dimensional, diagnostic object properties – the more perceptually 

“similar” an image appeared to a familiar training stimulus, the stronger would be 

transfer. In fact, the subjects might have been insensitive to the three-dimensional 

information that was derivable from the two-dimensional projections. Consider 

that the stimuli of the present study were relatively easy to distinguish, for instance 
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on the basis of conspicuous contour differences (e.g., a vertex top versus a flat top, 

roughly triangular shape versus square shape). Therefore, both local and/or global 

features might indeed have controlled pigeons’ responding (see e.g., AUST & 

HUBER 2001, 2002, 2003; KELLY & COOK 2003; MATSUKAVA et al. 2004; 

KIRKPATRICK-STEGER & WASSERMAN 1996; WATANABE 2001). It is possible, for 

example, that properties like the number of coloured pixels in a specific stimulus 

area provided salient cues for discrimination. It has been shown that pigeons are 

indeed highly sensitive to the specific appearance of individual pixels or pixel 

blocks (AUST & HUBER 2001). Regarding the current study, it should be noted that 

the two classes of training stimuli (cubes and pyramids) differed in the ratio of 

coloured (object) to black (background) pixels within a single frame. More 

precisely, the number of coloured pixels varied among different stimulus areas. In 

training, the upper part of pyramid frames always featured a relatively small 

amount of coloured pixels compared to the upper part of cube frames. The ratio of 

chromatic versus achromatic pixels in the upper part of a training image was thus 

generally lower in pyramids than in cubes. In some types of test stimuli, however, 

this was no longer the case. This could account for the drops in performance on 

stimuli involving changes in perspective and may even explain the puzzling results 

of Tests +90, and -90, where the birds seemed to “mistake” pyramids for cubes and 

vice versa. In these tests – as opposed to training – the number of coloured pixels 

was lower in the upper part of cubes than in the upper part of pyramids. As a 

consequence, a cube as presented in Tests +90, and -90 might have been 

perceptually more similar to the training pyramids than to the training cubes, and 

vice versa for the pyramids presented on test. Additional investigation would thus 

be needed to test this hypothesis, e.g., by examining whether inverting the training 

stimuli would impair discrimination performance.  

 

Does colour matter? – Novel surface colouration 

Mean discrimination performances and MSRRs in tests involving 

modifications in terms of surface colouration, but no modification in terms of 

viewpoint, i.e., Tests 1col, 1col_no_cont, Newcol, and Colchange, are illustrated in 



Percept ion of rotat ing objects by pigeons RESULTS & DISCUSSION 

 

62  

Figure 9 (marked by light blue frame). Performances in tests involving 

modifications in terms of surface colouration combined with modifications in 

terms of perspective, i.e., 1color_no_cont_x, 1color_no_cont_yx, Newcol_yx, 

Colchange_yx, are illustrated in Figure 10 (marked by dark blue frame). As can be 

seen, three tests – 1col_no_cont, Newcol, and Colchange – yielded quite good 

although non-significant discrimination of transfer stimuli, with performance at 

least approaching significance for one of the two modes of presentation (see also 

Table 7, right panel). In general, performance on colour-modified stimuli was 

worse when they were additionally presented from novel viewpoints than when 

they differed from training stimuli only with respect to surface colouration. 

Accordingly, Wilcoxon’s signed ranks tests revealed a highly significant 

difference of response rates compared with the training stimuli in case of colour 

plus viewpoint transformations, but in case of colour transformations without 

viewpoint manipulations a significant difference was only found in positive trials 

(Table 8). The results suggest that the introduction of modified or novel surface 

colours per se may have had a minor impact on discrimination performance 

compared to the effects of altered perspective. Overall, it seems that successful 

discrimination was mainly based on cues other than colour (otherwise the tendency 

to respond correctly to this kind of colour-modified stimuli should not have been 

found). More precisely, recognition was not exclusively controlled by specific 

internal surface features like colour or internal contours. Instead, poor transfer in 

some of the tests comprising colour transformations was presumably based on 

viewpoint rather than on colour dependence. 

In summary, the results indicated that the pigeons were able to use two-

dimensional shape information as a basis of responding (while colour information 

was also important, but not crucial). Work on pigeon object recognition has 

consistently shown that pigeons can recognise objects from silhouettes alone, but 

negative results were mainly obtained for transfer from shaded images to line 

drawings of the objects (e.g., CABE 1976; DELIUS 1992; LUMSDEN 1977, PEISSIG et 

al. 2005; YOUNG et al. 2001). This suggests that pigeons may not be able to extract 

internal edges or contours of a shaded object in order to assess its general shape. 

Although I did not explicitly test for transfer to line drawings, comparatively good 
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transfer in Test 1col_no_cont indicates that successful discrimination was not 

crucially dependent on the presence of internal contour lines. (The fact that 

performance in this test nonetheless missed significance demands caution, 

however.) Overall, the results suggest that the subjects encoded and used for 

discrimination the two-dimensional shape or distinctive parts of the shape of the 

two-dimensional projections. This is largely consistent with a recent result 

reported by GIBSON and his colleagues (2007) who found that pigeons based their 

recognition of an object on so-called coterminations (i.e., corners) instead of 

relying on other features such as colour and shading. At first sight, the preference 

for shape information relative to surface cues found in this study appears to be in 

contradiction to studies reporting that pigeons were sensitive to surface features, 

such as colour or brightness, but seemed to widely neglect shape information (e.g., 

KIRSCH et al. 2008; LAZAREVA et al. 2005; WILKIE & MASSON 1976). These 

studies showed conclusively that, when both types of cues – shape and colour – are 

provided in a task, pigeons tend to use colour as the primary cue to guide their 

decisions. In the present task, however, the wide variety of different surface colour 

combinations occurring in the training stimuli may have made it difficult for the 

pigeons to remember them all. This may have devalued colour features as “good” 

cues (i.e., cues that substantially facilitate stimulus recognition), whereas shape 

features provided a quite reliable basis for classification. Furthermore, the two 

classes (cubes and pyramids) were not perfectly separable by means of colour 

information. That is, colour alone would not have been sufficient for reliably 

predicting class membership and the subjects were thus forced to use (also) other 

features, such as shape information, in order to correctly classify the objects. 

Neither test including monochromatic stimuli revealed an advantage of 

dynamic over static presentation. In particular, it is worth mentioning that the 

mean discrimination ratio on static trials in Test 1col_no_cont clearly exceeded the 

mean level of performance on dynamic trials (ρstat = 0.81 ± 0.1; ρdyn = 0.59 ± 0.09); 

a Wilcoxon’s signed-ranks test revealed that this difference was even significant (z 

= -2.371, p = 0.016). Hence, it seems that dynamic monochromatic stimuli did not 

contain any additional information relevant for discrimination that was not present 

in the static images. To the human observer, however, the addition of apparent 
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motion inevitably led to a strong impression of three-dimensionality. Provided that 

also pigeons are able to extract stimulus structure from motion-based information, 

dynamic presentation should enhance perception of a three-dimensional object. 

The results of the present experiment, though, did not support the notion of a 

facilitating effect of dynamic presentation on the recognition of monochromatic 

displays. This contrasts sharply with the findings of COOK & KATZ (1999), who 

reported significantly better transfer with dynamic monochromatic stimuli than 

with static monochromatic stimuli.  

 

Screwing up the order – Incoherence of the rotation sequence 

(modification of the sequence of images) 

Figure 12 illustrates mean performance in Test Randomised compared to 

performance with dynamic training stimuli (see also Table 7, right panel). 

Evidently, the pigeons were able to significantly discriminate randomised 

sequences of training stimuli. Wilcoxon’s signed-ranks tests revealed no 

significant differences between the test and the corresponding training component 

(positive MSRR, z = -1.183, p = 0.297, negative MSRR, z = -0.676, p = 0.578). 

Provided that the subjects perceived all successive views of an object within 

a coherent sequence as if representing one stable three-dimensional object, and 

provided that the discrimination was facilitated by the extraction of 3-D 

information from dynamic presentation, scrambling should have severely disrupted 

the structural description. As a consequence, incoherent presentation should have 

negatively affected performance. However, this was not the case. Discrimination 

of scrambled sequences was not significantly worse than discrimination of the 

training stimuli shown in coherent apparent motion. The result of Test Randomised 

thereby completes evidence that the pigeons did not represent the projections of 

the objects as three-dimensional structural descriptions. Rather, the results are 

compatible with the assumption that the pigeons relied on two-dimensional 

information. Since such cues were still present in scrambled sequences, 

recognition should not have been impaired by frame randomisation. This finding is 

in line with studies that failed to provide evidence for an advantage of coherent 
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presentation (COOK et al 2003, Exp. 4; FRIEDMAN et al. 2009, Exp. 1B; LOIDOLT et 

al. 2006; ROVINA 2006), and in contrast with studies reporting a coherence 

superiority effect (COOK et al. 2001; COOK & ROBERTS 2007; FRIEDMAN et al. 2009, 

Exp. 2; KOBAN & COOK 2009). In considering what might account for the 

contrasting results, it is important to note that researchers used a wide range of 

different stimuli in their studies. For examining the role of frame randomisation in 

dynamic displays, stimulus quality may indeed play a critical role, with object 

recognition possibly being controlled by specific stimulus-based properties. It 

might make a difference whether (1) the object’s “motion” is unique (i.e., if the 

characteristic trajectory of an object can be used in order to distinguish it from 

other objects, randomising a sequence is suggested to have a negative effect on the 

ability to discriminate), (2) whether the subjects have already had experience with 

scrambled versions of the stimuli (e.g., the sudden experience of in-coherent 

presentation might elicit a neophobic reaction), (3) whether object-unique invariant 

features are available in all displays irrespective of the order of the frames (i.e., 

scrambling would not cause a loss of information required for recognition), and 

finally (4) which video-format is used for presentation (compressed algorithms 

such as AVI- or MPEG-formats are producing visual displays quite different from 

uncompressed ones, see METHODS). Considering that, the similar findings in my 

study and in LOIDOLT et al. (2006) and ROVINA (2006) might be based on 

procedural similarities. These studies have at least two aspects in common which 

set them apart from studies that reported a facilitating effect of coherent “motion” 

(COOK et al. 2001; COOK & ROBERTS 2007; FRIEDMAN et al. 2009, Exp. 2; KOBAN 

& COOK 2009). First, invariant discriminative features were at all times available 

in the displays, irrespective of the order in which the images were presented. 

Second, the trajectories of the objects were insufficient and thus not crucial for 

properly distinguishing among them, since both objects were rotated around the 

same axis in the same way. Third, the use of different video formats may account 

for the different outcomes. It has been suggested that pigeons may be more 

sensitive than humans to unintended deformations of the displays caused by video 

compression, such as AVI compression. LOIDOLT and her colleagues (2006), and 

also ROVINA (2006) could demonstrate that recognition in pigeons was severely 
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impaired by AVI presentation in comparison to uncompressed video formats. As 

AVI formats are not presented on a picture-by-picture basis, the process of 

combining single frames into a movie sequence might add additional spurious 

discriminative cues caused by the compression algorithm. This means that 

randomised sequences shown in compressed formats may carry additional visual 

cues that are not available in properly ordered sequences, although both sequences 

are composed of the same single images. As a consequence, a pigeon might judge 

the two types of presentation differently. 

 

 

Figure 12.  Test Randomised. 

Transfer is shown as mean discrimination ratios ± SD (upper panels), and mean 

standardised response rates ± SD (lower panels), averaged across birds. Dashed 

horizontal lines indicate the limit of significance; solid horizontal lines indicate 

average performance, solid turquoise circles around symbols mark significant 

performance. Overall  baseline performance on the training st imuli during 

test ing is marked by a black frame.  
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Does dynamic presentation help? – Dynamic versus static stimuli  

To examine potential effects of the mode of presentation (dynamic/static) 

on test performance two Wilcoxon’s signed-ranks tests were carried out. They 

compared MSSRs across tests and subjects obtained for the averaged dynamic test 

stimuli with those obtained for the averaged static test stimuli. Results of Test 

Randomised were excluded from analyses. Analysis revealed no significant 

differences between static and dynamic presentation, neither for the positive test 

stimuli (1n2 = 7, z = -1.014, p = 0.375) nor for the negative test stimuli (1n2 = 7, z = 

-0.338, p = 0.813). This is illustrated in Figure 13, which shows mean standardised 

response rates averaged across tests and birds (± SD).  

 

 

Figure 13.  Mean performance during static versus dynamic presentation of  

test  st imuli ,  shown as mean standardised response rates,  separately for  

posit ive (f i lled circles) and negative test  trials (plain circles),  and averaged 

across tests and birds (± SD). The solid l ine indicates average performance,  

n. s.  = “not signif icant” 

 

The present results therefore failed to support the hypothesis that dynamic 

change of perspective enhances object recognition in the pigeon (dynamic 

superiority effect; c.f., COOK & KATZ 1999). Actually, the pigeons could not 

benefit from dynamic presentation, when they had to transfer to novel versions of 
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the training objects. This suggests that dynamic information whatsoever provided 

by the apparent movement was basically redundant, and not essential for object 

recognition. Hence, the current study is rather in line with JITSUMORI & MAKINO 

(2004), LOIDOLT et al (2006) and ROVINA (2006), who consistently found that 

dynamic presentation of rotating human faces did not facilitate discrimination 

compared to the presentation of static views of a face. JITSUMORI & MAKINO 

(2004) suggested that the birds did not benefit from the additional structural 

information provided by dynamic presentation. The authors concluded that the 

pigeons did not form a three-dimensional structural representation of each face, but 

instead relied on multiple 2-D features as cues by which to discriminate the 

stimuli. As discussed previously, it might be possible that the birds did not 

perceive the apparent motion provided in the dynamic displays as real motion, but 

rather perceived the displays as collections of single images instead, without any 

impression of movement. Thus, the pigeons might have based their discrimination 

on classification of the individual views within a sequence instead of integrating 

the single views into one coherently rotating object. Indeed, it has been shown that 

pigeons are able to classify geometric stimuli when flashed very briefly (KRAMER, 

unpublished). Perfect discrimination could be reported for presentation times of 

100 ms, which suggests that stimulus classification might even be possible with 

times below that. In the current study the single frames of a sequence were shown 

at a rate of 30 frames per second. It is therefore possible that the pigeons had 

problems with view integration and rather experienced the displays as collection of 

individual pictures, or in a “stroboscopic” manner (see JITSUMORI et al. 1999, for 

discussion). Nevertheless, one can’t directly infer from this that the pigeons did 

not notice the dynamic cues available in the displays. It might be possible that the 

birds in the current study could perceive the dynamic cues, but failed to use them 

as facilitators of object recognition. Obviously, they neither made use of the 3-D 

structure provided by dynamic presentation (or they were not able to recover it), 

nor did they profit from additional views. Presumably, it was simply not necessary 

in this specific discrimination task to use such information, since discrimination 

was also possible by means of static, two-dimensional, object-distinguishing cues 

alone. 
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4. GENERAL DISCUSSION 
 

Imagine a pigeon observing a rotating pyramid displayed on a computer 

screen. Would the bird perceive it in the same manner as a human observer? That 

is, would the pigeon experience its shape as three-dimensional or rather parse the 

display into a collection of simple two-dimensional features? And, besides that, 

would the object be recognised by the pigeon despite changes in size, colour, or 

perspective? And most importantly, what may the coherent presentation of views 

in rapid succession contribute to recognition? 

In the current thesis I tried to address these challenging issues against the 

background of different theories of object recognition. My experiment was based 

on a study by COOK & KATZ (1999) regarding the experimental design – however, 

used more advanced technical equipment. Interestingly, the results deviated from 

those of the original study. First the subjects of the present study did not show 

object constancy across different types of object transformations (e.g., novel size, 

altered surface colouration, new axis of rotation). Second, my results failed to 

show any advantage of dynamic over static presentation (i.e., dynamic superiority 

effect). Third, randomisation of dynamic sequences (Test Randomised) revealed 

that properly ordered presentation of successive views of dynamic stimuli was not 

critical for discrimination. In summary, the results do not support the hypothesis 

that the pigeons recognised and discriminated the object projections by means of 

generalised three-dimensional representations. They are more in line with the 

assumption that the birds discriminated them by means of viewpoint-dependent 

recognition mechanisms (c.f., CERELLA 1977; FRIEDMAN et al. 2005; JITSUMORI & 

MAKINO 2004; LOIDOLT et al. 2006; ROVINA 2006; SPETCH & FRIEDMAN 2006), 

and rather used two-dimensional cues instead. The findings of the current study 

may thus be best accounted for by feature theory or by tolerant versions of the 

exemplar view (see HUBER & AUST 2006).  

Thereby, the pigeons might not have recognised the individual views as 

depicting a three-dimensional object, but rather encoded the stimuli either as a 

collection of discriminative features (as suggested by feature-based accounts, c.f., 
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CERELLA 1980, 1986; HUBER & LENZ 1993) or memorised all or many instances of 

them (as suggested by exemplar-based accounts; c.f., HUBER et al. 1999; PEARCE 

1988). Hence, discrimination could have been based on detection of simple, two-

dimensional, diagnostic features or broad similarity judgements. The more 

perceptually “similar” an image appeared to a familiar training stimulus, the 

stronger would be transfer. Support in favour of such an exemplar-based account 

was mainly provided by the general lack of good transfer to all test stimuli 

irrespective of the type of transformation and, in particular, poor transfer to stimuli 

that were the same as the training stimuli with respect to shape, but displayed 

different combinations of surface colouration. However, the finding that the 

pigeons showed at least some tendency to generalise to stimuli with novel 

colouration and size provides support for feature-based accounts and rather speaks 

against mere memorisation of specific training stimuli on a pixel-by-pixel basis. If 

indeed particular features were used as discriminative cues – what stimulus aspects 

in particular might have acquired control over the pigeons’ responding? Impaired 

performance to any kind of stimulus transformation suggests that the pigeons 

relied on a collection of discriminative features, such as represented by a 

“polymorphous feature rule” c.f., AUST & HUBER 2002; HUBER & LENZ 1993; 

HUBER et al. 2000; HUBER 2001; LEA & HARRISON 1978; VON FERSEN & LEA 

1990). Thereby, some features seemed to be more relevant for object recognition 

than others. Evidently, information about two-dimensional object shape was used 

as discriminative cue in the first place. Size and colouration also contributed to 

discrimination, though to a much lesser extent. One should keep in mind, however, 

that the training stimuli comprised various combinations of surface colours and 

that the training stimuli were presented in two different sizes. Consequently, 

neither size nor colour as such would have been sufficient for reliably 

discriminating the stimuli. Whether discrimination was based on the recognition of 

particular elemental features (such as a vertex top versus a flat top), or rather on 

the use of global shape or contour properties (such as a roughly triangular form 

versus square form), the present study cannot tell (nor was it designed to answer 

such specific questions). A possibility to investigate what type of shape 

information controlled the birds’ responding would be to test them with 
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fragmented stimuli, generated by scrambling the individual views (see, AUST & 

HUBER 2001, 2003; CERELLA 1980; KIRKPATRICK-STEGER & WASSERMAN 1996; 

KIRKPATRICK-STEGER et al. 1996, 1998). Thereby the overall spatial arrangement 

of shape properties would get distorted. Another way that could also help to 

pinpoint the functional features that pigeons use to make the discrimination would 

be isolation of particular local features by means of covering the objects with a 

mask that reveals only a portion of the underlying stimuli through openings (e.g., 

“Bubbles procedure”, GOSSELIN & SCHYNS 2001; see also GIBSON et al. 2005, 

2007, NIELSON & RAINER 2007). 

Further support for the assumption that discrimination was based on 2-D 

properties of the objects was provided by the fact that dynamic presentation failed 

to facilitate the pigeons’ ability to recognise the projections. This was obvious 

from the training as well as from the test phase. If the subjects had based their 

discrimination on object-like representations, they should have benefited from 

dynamic change of perspective. But even with monochromatic displays, the current 

study failed to reveal any advantage of dynamic as compared to static presentation. 

Other than humans, in whom the addition of apparent motion to the 

monochromatic displays inevitably led to a strong impression of three-

dimensionality and thereby enhanced the ability to identify the objects, the pigeons 

were apparently not able to extract such information.  

Presumably the strongest evidence that the birds did not perceive the 

projections as depicting stable three-dimensional objects was provided by the 

findings of Test Randomised. The results failed to reveal any coherence 

superiority effect (CSE), i.e., a facilitating effect of coherent as compared to non-

coherent presentation of a sequence. Since frame randomisation had widely 

destroyed the objects’ three-dimensional structure available in coherent sequences, 

significant transfer to non-coherent sequences suggests that the birds did not 

integrate the single views of a sequence into a unified, three-dimensional structural 

object representation.  

In summary, the current findings – discrimination dependence across all 

stimulus transformations and no advantage of coherent dynamic stimulus 



Percept ion of rotat ing objects by pigeons GENERAL DISCUSSION 

 

72  

presentation for discrimination – are in sharp contrast to results of the original 

study by COOK & KATZ (1999). But what might have caused these substantial 

differences?  

First, regarding the question of invariance across various stimulus 

transformations including novel viewpoints, it has to be considered that all transfer 

tests in the current experiment were non-reinforced, and therefore did not provide 

any feedback about the presented stimulus. However, this was not true for the 

transfer tests in the original study by COOK & KATZ (1999). Since they used a 

partial reinforcement schedule for particular test sessions, effects of reinforcement 

might have influenced the formation of object representations. Moreover, novel 

views were subsequently integrated into the training sets (e.g., novel x-axis 

rotation). The additional information provided by reinforcement may well have 

extended the variety of stored perspectives, and may thereby have facilitated 

subsequent transfer to novel views. Furthermore, different experimental histories 

of the birds participating in the two studies may have led to differences in the 

type(s) of information the subjects relied on. Two aspects could thereby have 

played a role. On the one hand the pigeons’ pre-experience with two-dimensional 

pictorial stimuli acquired in previous experiments might have influenced 

responding. On the other hand experience with three-dimensional objects in real 

life might have facilitated recognition of the objects when presented in novel 

views. There is indeed some indication that familiarisation with real three-

dimensional objects may enhance viewpoint invariance of their 2-D images 

(WATANABE 1997, 1999, 2000). Similar discrimination-enhancing effects have 

also been reported for the discrimination of stimuli of pictures of familiar versus 

unfamiliar conspecifics in hens (BRADSHAW & DAWKINS 1993), and recently in 

pigeons (WILKINSON et al., under review), and also in the context of landscape 

discriminations (WILKIE et al. 1989).  

Second, the differences concerning the contribution of apparent motion to 

discrimination might be explained by several factors: Above all, the quality of the 

visual input the pigeons received differed in the two studies. Video formats and 

technical equipment, in particular the computer screens, were not the same. Also, it 

is very likely that the two studies differed as regards the appearance of the 
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dynamic stimuli. While I presented uncompressed bitmap images in rapid 

succession, dynamic sequences in the COOK & KATZ study were rendered directly 

during their presentation. This might have severely affected the visual appearance 

of the dynamic displays (at least for the pigeon eye), and could thus have 

contributed to the observed differences in responding. Additionally, the use of 

CRT monitors used in the COOK & KATZ study (i.e., NEC Multisync 2A monitors) 

versus TFT monitors used in the current experiment (i.e., Videoseven L15C-

TCO99 monitors) could have caused differences in the quality of the dynamic 

stimuli. Although, interestingly, no difference was found in a study comparing 

pigeons’ discrimination performances with CRT and TFT monitors (ROVINA 

2006), the human literature consistently shows that in sequences with rapid 

movements the subjective quality of a sequence displayed on a TFT is generally 

lower than the subjective quality of the same sequence displayed on a CRT (see 

e.g., TOURANCHEAU et al. 2007). As a consequence, the effect of motion blur 

caused by the TFT monitor might have decreased, e.g., the pigeons’ ability to 

recover structure from the dynamic displays in the current study.  

Finally, the subjects in the two studies may indeed have perceived and 

encoded the objects differently. While transfer may have been based on 

generalised object-like 3-D representations (indicated by discrimination 

invariance, enhanced by dynamic presentation) in COOK & KATZ (1999), 

discrimination in the present experiment may have been controlled by two-

dimensional properties (indicated by discrimination dependence, with no 

additional value of dynamic presentation). But if so, one should ask why the birds 

in the two experiments based their responding on different learning mechanisms. 

The question may be answered as follows. It is possible, although not very likely, 

that the greater variety of stimuli used in COOK & KATZ’s study supported the 

generation of structure-based rather than feature-based object representations. 

(They used two rates of rotation instead of just one, and, due to the simultaneous 

rendering process, a higher number of object samples than the present experiment.) 

Namely, the large number of different stimuli may have impeded the use of 

exemplar-based learning mechanisms such as learning individual stimuli by rote or 

extracting item-specific invariant local or global features. The pigeons in the study 
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by COOK and KATZ might thus have been virtually “forced” to rely on structural 

properties rather than on two-dimensional cues since the latter were insufficient for 

discrimination. Hypothetically, it is also possible that the birds in the original 

study indeed had different prior experiences with real life objects similar to the 

projections of a cube and a pyramid than the subjects in the present study. 

(However, in this regard the authors do not provide further information). As 

discussed above, exposure to real objects has been suggested to affect a pigeon’s 

behaviour towards their pictorial equivalents. Possible differences in the degree of 

pre-experience in the two studies might therefore have biased the formation of 

object representation. Further examination of the role of pre-exposure to real 

objects in a controlled set-up would thus be required to rule out this possibility.  

In view of the conflicting results obtained in the present study and the 

original experiment by COOK & KATZ (1999) on the one hand, and consistent 

outcomes obtained in studies carried out in our lab on the other hand (i.e., 

viewpoint dependence and no advantage of dynamic presentation for object 

recognition, LOIDOLT et al. 2006, ROVINA 2006), further inspection seems 

warranted. Could the experimental conditions provided by different laboratory 

environments have influenced the pigeons’ responding to a larger extent than could 

be compensated for by the use of similar methodology? And could, in turn, the 

same laboratory environment have biased the results of different studies in the 

same direction? This possibility must indeed be considered. While not all the 

technical equipment used in the present study was the same as the one used in 

previous studies that were conducted in our laboratory (e.g., different computer 

monitors), many other parameters were nearly or entirely identical. They 

concerned stimulus presentation (e.g., dynamic presentation mode, spatial 

resolution of the monitors), laboratory conditions (e.g., pigeons’ housing, skinner 

boxes), and details of the experimental procedures (e.g., reinforcement schedules). 

Finally, let me return to the scenario brought up at the beginning of this 

section. What does a bird actually see in an object presented on a screen? As nicely 

put forward by LEA (2006), “Humans, including human experimenters, ‘see’ (…) 

logical relations within stimuli that are not necessarily ‘there’ for other species” 

(p. 254). In other words, the answer to this question demands caution, and without 
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doubt, appropriateness of 2-D stimuli for examining three-dimensional object 

recognition in the pigeon needs reconsideration. Although the stimuli used in the 

present study “appeared” three-dimensional (at least to the human observer) they 

were actually strongly impoverished 2-D versions of the real 3-D-objects they 

depicted. Forming object-like structural descriptions thus required the subjects to 

interpret the 2-D projections as if representing (or being) 3-D objects. Humans 

with their extensive experience in interpreting pictorial stimuli would most 

probably be able to do so spontaneously and effortlessly. But this may not be true 

for pigeons, which might be completely insensitive to the 3-D information 

provided in the 2-D displays. Given that the presence of monocular depth cues 

(e.g., shading, perspective, relative density, relative size, and occlusion) in a 2-D 

picture may support three-dimensional perception of an object (CAVOTO & COOK 

2006; DELIUS 1992; REID & SPETCH 1998; SPETCH et al. 1998), the outcome of my 

study should be interpreted with caution. As the stimuli used in the present 

experiment provided neither perspective nor shading cues the subjects may not 

have been able to encode the 3-D structure of the objects. Comparing 

discrimination performance on projections devoid of pictorial depth cues with that 

on projections comprising such cues may be a challenge for future research. 

The question, however, remains unanswered whether the outcome of a study 

using 2-D projections may indeed allow for conclusions regarding the general 

ability of a pigeon to perceive objects as 3-D units. There are various kinds of cues 

that are present in real objects but absent from their two-dimensional projections, 

and it is unknown to which extent they are used by a pigeon. Pigeons may, for 

example, be well able to perceive three-dimensional shapes in their natural 

environment, but may fail to derive them from two-dimensional displays. There is 

in fact evidence that pigeons perform faster and better with novel views of a real 

object than with photographs of the very same views (FRIEDMAN et al. 2003, 

2005). The non-realistic nature of computer-generated pictures may thereby 

contribute to the pigeons’ failure to perceive a two-dimensionally presented object 

as three-dimensional. As computer monitors are adapted to the demands of human 

but not pigeon vision, factors such as colour mode, picture resolution, and the lack 

of UV emission or temporal frequencies of a computer screen might account for 
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impaired performance in an object discrimination task. Generally, it should be 

borne in mind that the outcome of an experiment must always be examined with 

regard to the stimuli used in the task. Furthermore, the difficulty of the 

discrimination task as experienced by the pigeons might also influence the results 

(see LOIDOLT et al. 2006, for related discussion). To put it in the context of the 

current study, there might have been no particular need for a pigeon to acquire a 

complex structural description of a pyramid in order to distinguish it from a cube. 

Instead, it may have been sufficient to base discrimination on two-dimensional 

object features. In order to pinpoint more precisely whether a pigeon has the 

general capability of forming a three-dimensional representation of an object, it 

would be necessary, first, to create stimuli that better represent real three-

dimensional objects (e.g., by including monocular depth cues), and, second, to 

reduce availability of discriminative features other than three-dimensional cues. 

For example, one may use stimuli that consist of the same local units, but differ 

with regard to their configural arrangement, as were, e.g., employed in a mental 

rotation experiment by SHEPARD & METZLER (1971). As advice for future research 

aimed at further elucidating the nature of object representations used by the 

pigeon, I would thus recommend the choice of more “appropriate” stimuli than 

those used in the COOK & KATZ study and in the present experiment. 

In the end, it should be emphasised that, of course, the validity of the results 

and conclusions of the COOK and KATZ (1999) study should by no means be 

depreciated on the basis of the present study. Although their interpretations in 

terms of three-dimensional object representations may have been premature in the 

light of the methodological problems discussed earlier, and despite the fact that a 

cognitively simpler (and thus more preferable) account may actually be one in 

terms of two-dimensional cue detection, the possibility that their pigeons indeed 

used structure-based object descriptions cannot be ruled out.  

Concluding, the “take-home-message” to receive from my thesis is that it 

should always be borne in mind that even two studies examining the same issue in 

almost identical set-ups may nevertheless yield diverging results and thus may lead 

to deviating conclusions, due to slight differences in experimental design and 

methodology.
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APPENDIX 
 

The following part gives a detailed description of the properties of the 

individual types of test stimuli and the way in which they were generated. For 

reasons of clarity the single descriptions are grouped according to the main 

aspect(s) in which they differed from the training stimuli, and are generally 

divided into Training Perspective tests and Modified Perspective tests. 

 

TRAINING PERSPECTIVE TESTS 

Novel combination of surface colours – novel training stimuli 

Newtrain   (see Figure 5.1)  
 

Angle of elevation (15°) and axis of rotation (y-axis) were the same as for 
the training stimuli. However, each projection featured a novel combination of the 
six colours used for the training stimuli (yellow, red, purple, blue, green and grey). 
As with the training stimuli, black contour lines were applied to the object’s edges.  

 

Novel size 

Newsize   (see Figure 5.2)  
 

The stimuli comprised projections of novel size and thus volume. Their size 
lay between the two training sizes, with their volume being approximately 5.8 cm³. 
This corresponds to a side length of 1.8 cm for the cube, and 3.1 cm for the 
pyramid, derived from dimensions on screen. With respect to rotation axis (y-axis), 
contour lines, and observer viewpoint they were the same as the training stimuli. 
The object’s surfaces featured novel combinations of the six colours assigned to 
the training stimuli.  

 

Novel colouration 

1col   (see Figure 5.3)  
 

Regarding rotation axis (y), contour lines, and observer viewpoint the 
stimuli were the same as the ones used in training. However, only one of the six 
training colours was assigned to each object’s surfaces. By making all surfaces the 
same colour, all surface cues were eliminated.  

 

1col_no_cont   (see Figure 5.4)  
 

Regarding rotation axis (y) and observer viewpoint the stimuli were the 
same as the ones used in training. The test stimuli were, like in Test 1col, 
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monochromatic and thus devoid of surface cues. But other than in the previous 
test, also the contour lines were removed from the object’s edges.  

Newcol   (see Figure 5.5)  
 

The test stimuli were the same as the training stimuli, however, novel 
colours were assigned to the object’s surfaces. Six novel colours were introduced, 
namely orange (RGB 255, 144, 33), white (RGB 255, 255, 255), turquoise (RGB 0, 
255, 255), brown (RGB 187, 105, 39), pink (RGB 255, 130, 144), and olive (RGB 
118, 185, 148). The colours were arbitrarily assigned to the object’s surfaces and 
appeared equally often throughout the test. Observer viewpoint and axis of rotation 
were the same as for the training stimuli.  

Colchange   (see F igure 5.6)  
 

The test stimuli were the same as the training stimuli, except for the fact 
that the colour presentation mode was altered. Surface colours were the same as 
used in training (yellow, red, purple, blue, green and grey). However, the 
originally assigned colours continuously changed within a rotation sequence by 
smoothly transforming into another colour. Thereby, the object’s surfaces featured 
a successive change from one surface colour (i.e., the “initial colour”) to the next 
colour (i.e., the “target colour”) by presenting decreasing proportions of the initial 
colour and continuously increasing proportions of the target colour over time (e.g., 
purple changed continuously into yellow, from yellow into blue, from blue into 
green, from green into grey, and from grey into red). At the beginning of a trial, 
each object sample featured another combination of initial colours. The process of 
transforming one colour into the next target colour required 20 single frames, since 
every rotation sequence showed a complete transformation cycle that included all 
six surface colours. Observer viewpoint and axis of rotation were the same as for 
the training stimuli. 

 
MODIFIED PERSPECTIVE TESTS 

Novel viewpoint – observer’s perspective 

View -50   (see Figure 5.7)  
 

The axis of rotation was the same as for the training stimuli. Contour lines 
as well as new combinations of the six different colours used for the training 
stimuli were applied to the projections. The observer’s viewpoint was changed 
from 15° (training stimuli) to -50° relative to the object’s transecting horizontal 
plane. Hence, the viewer had the impression to look from a slanted position below 
the object up to its bottom.  

View +50   (see F igure 5.8)  
 

All specifications were the same as for the View -50-stimuli. Only the 
observer’s angle of elevation was changed to +50° relative to the object’s 
transecting horizontal plane. Therefore, the viewer's impression was to look from a 
steep position above the object down onto its top.  
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View 0   (see Figure 5.9)  
 

The axis of rotation and the application of contour lines were the same as 
for the training stimuli, but the viewing angle was 0° relative to the object’s 
transecting horizontal plane. Hence, the viewer's impression was to look from a 
frontal position directly onto the object. To the human eye, the impression of 
three-dimensionality was thereby remarkably diminished or got even lost, 
especially during static presentation. New combinations of the six different colours 
used for the training stimuli were applied to the projections. 

View +90   (see F igure 5.10)  
 

As with the training stimuli, the axis of rotation was the y-axis, and contour 
lines were applied to the edges. The surfaces featured new combinations of the six 
training colours. These stimuli, however, comprised projections that were 
“recorded” by the virtual camera of the graphics program from a perpendicular 
position, i.e. +90° relative to the object’s transecting horizontal plane. The 
viewer's impression was to look directly from above down on the object's top. To 
the human eye, the impression of three-dimensionality got lost, for both static and 
dynamic presentation. The stimuli appeared as square-shaped objects (a 
monochromatically coloured smaller square in case of the cube and a larger square 
divided into four differently coloured triangles in case of the pyramid). 
Furthermore, the dynamic projections appeared to rotate counter-clockwise in the 
plane of the screen.  

View -90   (see Figure 5.11)  
 

The axis of rotation, surface colours, and contour lines were the same as for 
the training stimuli. The viewpoint's angle of elevation was -90° relative to the 
object’s transecting horizontal plane. Hence, the viewer's impression was to look 
directly from below up to the object's bottom. As was the case with the View +90-
stimuli, to the human eye, the impression of three-dimensionality got lost and the 
stimuli appeared as square-shaped objects (both projections were 
monochromatically coloured, and the projection of the cube was somewhat smaller 
than that of the pyramid). The dynamic stimuli appeared to rotate clockwise in the 
plane of the screen.  

 
 
Novel viewpoint – novel axes of rotation 

Rot_x   (see Figure 5.12)  
 

In terms of their features the test stimuli were the same as the training 
stimuli, i.e., the surfaces showed the same colours (though in new combinations), 
and contour lines were applied to the object’s edges. Also the observer viewpoint 
was the same as for the training stimuli. However, the axis of rotation was 
changed. Namely, the test stimuli comprised projections of an object rotating 
around its horizontal axis, i.e., the x-axis. To the human eye, the object appeared to 
rotate in a bottom-up motion, first toward, and than away from the observer (see 
Figure 2). The orientation from which the object started to rotate was arbitrarily 
chosen along the horizontal axis.  
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Rot_yx   (see Figure 5.13)  
 

The stimuli rotated simultaneously around both the y- and the x-axis (see 
Figure 2). To the viewer's eye, the object appeared to rotate in a tumbling manner. 
The object’s surfaces featured different combinations of the six colours used for 
the training stimuli. Contour lines were applied to the edges. The observer 
viewpoint was the same as for the training stimuli. 

 
Novel colouration 

1color_no_cont_x   (see Figure 5.14)  
 

As in the Test Rot_x, the object rotated around the x-axis. However, surface 
cues as well as contour cues were eliminated, that is, all surfaces and edges of an 
object featured only one of the colours used for the training stimuli. To the human 
eye, the impression of three-dimensionality was remarkably diminished for static 
presentation. In fact, static stimuli rather appeared to be planar two-dimensional 
objects, whereas the addition of apparent motion in dynamic presentation led to a 
strong impression of three-dimensionality. The observer viewpoint was the same 
as for the training stimuli. 

1color_no_cont_yx   (see F igure 5.15)  
 

As with the stimuli of Test Rot_yx the axes of rotation were the y- as well 
as the x-axis. The object’s surfaces and their edges featured only one of the six 
colours used for training stimuli. Thus, surface cues as well as contour cues were 
eliminated. As was the case also with the 1color_no_cont_x-stimuli, to the human 
eye, the impression of three-dimensionality was remarkably diminished for static 
presentation. However, dynamic stimuli evoked a strong impression of three-
dimensionality. The observer viewpoint was the same as for the training stimuli. 

Newcol_yx   (see Figure 5.16)  
 

Stimulus modifications were the same as in Test Newcol, but the object 
rotated simultaneously around both the y- and x-axis. Each projection featured a 
novel combination of the six novel colours (i.e., orange, white, turquoise, brown, 
pink, and olive), and the observer viewpoint was the same as for the training 
stimuli.  

Colchange_yx   (see Figure 5.17)  
 

The mode of colouration was the same as in Test Colchange, but the stimuli 
were rotated around the y- and x-axis simultaneously. The observer viewpoint was 
the same as for the training stimuli.  
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INCOHERENT ROTATION SEQUENCE 

Randomised 
 

The test stimuli were arbitrarily selected from the training set and presented 
only dynamically. Thereby, the single images of a rendered coherent rotation 
sequence were randomly put into a new order so that they eventually formed a 
novel – incoherent – sequence of views. To the human eye, the continuity of the 
rotation was thereby disrupted. This is, the impression of a smoothly moving 
object was lost. Instead, the object seemed to strongly jiggle and to move in an 
erratic way. (It should be kept in mind, however, that the birds had already 
experienced during training the images that constituted these sequences, although 
in consistent order.) 
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