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CHAPTER 1

Introduction

We have all been fascinated by the strange and wonderful motions of water.
We have tried, as children, to dam it - unsuccessfully, as it always found a way
out or around, over or under. We swim and dive in it, feeling its pressure and
buoyancy, and we slide across its surface on craft great and small, from ocean liners
to surfboards.

You will probably have spent time as a child throwing pebbles into it, too.
Watching the strange play of waves across its surface. Yet even these simplest of
waves on the still surface of a pond, small enough to be caused by surface tension,
are somehow ephemeral, elusive. You may follow one with your eyes for a time,
watching as it spreads out from where the pebble was thrown. As it makes an
ever greater ring, it becomes longer and flatter until, suddenly, it is gone! But
just as soon, another wave takes its place, seeming to replicate its form, growing
in length and then disappearing too. If you have a steady supply of pebbles, you
may replicate this observation, noticing too that there are, between groups of waves
regions of still water, which move outwards as well.

Of course, you will have observed that wave motion is not generally a conse-
quence of the water moving. A duck in our pond might move up and down with
the passing of a wave, but not appreciably in the direction of the wave. Similarly,
a surfer outside of the break is safe and relatively stationary, even on a big day at
Waimea Bay, where wave heights can reach 15m. Of course, the situation quickly
reverses itself as the wave breaks, and as anyone who has been in the situation can
attest, the displaced water surges forward at great speed, swallowing unwary ducks,
surfers, and much else.

These examples serve to illustrate a point - wave propagation is, in fact, the
propagation of energy. This energy can come in wave packets, as in the case of
capillary waves. The phenomena we see on a pond - this seeming disappearance
of waves near the front of a wave group, and the birth of waves at the back of a
wave group - is a consequence of the fact that the waves we see travel faster than
the energy! There are really two things propagating here, and of course, this raises
the question of what a wave is. We have seen that to answer this question is not
so simple. Our disturbances are constantly shifting form, making it hard to point
at some geometric feature persistent in time and claim it to be “the wave”. While
some waves may be periodic in nature, there are numerous examples (which will
feature prominently below) where this is not the case. The most famous of these
is the solitary wave, but a flood wave, as when a dam breaks, is surely a wave
without being periodic. And besides, there are many effects in nature that cause
attenuation of amplitudes, elongation of wavelengths, and general breakdown of
periodicity. It seems like a lost cause; we might throw our hands in the air and
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2 1. INTRODUCTION

claim that everything is a wave, but we will not. The salient feature of a wave is
that some property propagates through space at a finite speed.

This means, for example, that in the elementary theory of linear partial differ-
ential equations, the heat equation is shown to possess infinite propagation speed,
while the wave equation propagates disturbances at a finite rate. Thus we do not
refer to the flow of heat in terms of a wave, although we do for wave equation -
despite the fact that, as we shall see below, the wave equation gives a “wave” of
infinitesimally small amplitude.

This is already quite a modern point of view, so we will take a moment to look
back. Man has worked with water in practical ways, from irrigation, to drainage and
flood control, for millenia. The first scientific investigations, however, stem from
Archimedes, who famously (and apocryphally) discovered the principle of buoyancy
while in the bath (upon which he is said to have shouted “eureka” while running
nude through the streets of Syracuse). Progress then stagnated for nearly 1800
years.

In the late 15th and early 16th centuries, Leonardo da Vinci spent part of his
many talents on observing and formulating laws for the motion of water - such as
the principle of continuity that the speed of a stream varies inversely to its cross-
sectional area. A century later, Simon Stevin discovered that the pressure at the
bottom of a container was equal to the weight of the column of water above it -
independent of the shape of the container - the so-called hydrostatic paradox. Fi-
nally, after contributions by Galileo, Pascal, and Torricelli, the theory of hydraulics
got its first big boost by the establishment of Newtonian mechanics. On this ba-
sis, Johann and Daniel Bernoulli (father and son) spent a number of fruitful years
working on hydrodynamics, and Leonhard Euler, contemporary of Daniel Bernoulli,
was able to derive from physical principles equations for fluid motion that are still
used today.

After this point, it is hard to cite all important contributors. Fluid mechanics
became a major area of research, stimulating new discoveries in pure and applied
mathematics. The new “rational hydrodynamics” based on the study of Euler’s
equations generated many important ideas in the theory of partial differential equa-
tions, from Green’s functions to eigenfunctions, shock waves, characteristics, even
the concept of well-posedness first arose from the study of fluid motion. These
rapid advances show no signs of slowing down. Rather, they have been supple-
mented by numerical methods and become central in many of the technologies we
take for granted today. Chief among the successes of numerical experimentation is
the discovery of the soliton, of which we will have much to say below.



CHAPTER 2

The Governing Equations

In order to study the motion of a fluid physically as well as mathematically (as
opposed to simply enjoying the motions of waves in the ocean, ripples in a pond,
or eddies in a fast flowing river from an aesthetic standpoint) we need governing
equations. In fact, we will neglect something very central, namely viscosity, in
our study of fluid flow. This is what caused John von Neumann to quip, quite
tellingly, that this study was better termed the study of “dry water”. While there
are certainly some fascinating aspects we will miss by neglecting viscosity (e.g. the
existence of boundary layers or the fading away of the free surface disturbance due
to friction), many useful models can be derived from the Euler equations. We refer
to [Joh97, Lig78, MT68] for a discussion of the physical relevance of neglecting
viscosity in the study of free surface water waves.

2.1. The equations of motion

We begin with water at rest, and will add motion later on, following the elegant
development in [FLS63]. First though, we need to clarify what separates a fluid
from a solid - what does it mean that something ‘flows’? Physically, a fluid is
such that it cannot maintain shear stress. Of course, physically, how much a fluid
resists this shear (think of honey, or air) depends on viscosity. Also, it is clear that
we cannot explain everything with this description - glass, for example is a fluid,
however you can clearly slide a glass across a table top.

Now, when a fluid is at rest, there are no shear forces, only forces due to
pressure - always acting normal to a given surface. It is then easy to see that the
pressure is then the same in any direction - the pressure is isotropic. We will go
on to make another simplification: that the density of the fluid is constant. To
make this plausible, we will concentrate not on any arbitrary fluid (a term which
encompasses gases, which are largely compressible) but on water (which is largely
incompressible). By this we mean that variations in pressure which we encounter
will have negligible effect on the density. (You may contrast this with the law
of Boyle-Mariott for ideal gases, where varying the pressure while keeping density
constant results in a change in volume.) This simplification means that phenomena
which depend on density changes, such as the propagation of sound, will have no
place in our equations. (Neglecting compressibility is equivalent to the fact that
wave speed c is small compared to the speed of sound. In fact, for a given water
depth h, the wave speed may be estimated by

√
gh ([Lig78] erroneously states that

this is the greatest possible wave speed - this is not the case for solitons). Thus
h � c2sg

−1 = 200km. We note that, on this planet, the deepest part of the ocean
is the Challenger Deep of the Mariana Trench, at 11,034 m.)

We also need to take into account forces other than pressure, such as gravity,
which will come to play a major role in our treatment of water waves. With
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4 2. THE GOVERNING EQUATIONS

gravitational force per unit mass given by the potential ∇φ, we see that the force
per unit volume is simply −ρ∇φ. Consider now a volume of water in the shape
of a small cube, and say we orient the coordinate axes parallel to the edges of the
cube. Considering always pairs of faces, so that we may split the pressure force into
components along the x, y, and z axes, we see that the pressure per unit volume
is simply −∇P . Thus equilibrium between pressure and gravitational forces will
occur for

−∇P − ρ∇φ = 0.
In order for this equation to have a solution, it is clearly necessary that we restrict
ρ in some manner. In our case of constant density, any line of constant P + ρφ is
a solution.

2.1.1. Mass conservation. We have already explained some of the reasoning
behind the equation of state

ρ = const.
which connects the pressure to the density (in a particularly simple way, here). The
next step is to express the conservation of mass. If water flows away from a point,
the amount left behind decreases in kind. Thus, denoting the fluid velocity with
u(x(t), y(t), z(t), t), where u = (u, v, w), we see that the mass passing through a unit
area of surface is the normal component of ρu to the surface. By the divergence
theorem, we have

0 = −
∫
∂V

ρu · ndS =
∫
V

∇ · udx

for any volume V. Therefore

(2.1) ∇ · u = 0

everywhere, which is the equation of mass conservation (or continuity equation).

2.1.2. Euler’s equations. The next equation we shall derive directly from
Newton’s law F = ma. That is, the mass of a fluid element multiplied with its
acceleration must equal the force acting upon it. As before, we take an element of
unit volume, so that it’s mass is given by ρ, then

ρa = F.

Recall from the discussion of hydrostatics in the beginning of Section 2.1 that we
already know what the forces are, namely a force due to pressure and a force due
to gravity (having neglected all others). While they are balanced when the water
is at rest, now we have

ρa = −∇P − ρ∇φ.
All that is missing now is the acceleration. But, the acceleration of what? One
might be tempted to write simply a = ∂u

∂t , but this is not quite right. The partial
differential, with respect to t, say, assumes that all other arguments are constant
while t varies. Writing the acceleration as above will give you only how fast the
velocity changes at some fixed point in the fluid. This is not what we need in
Newton’s law; rather, we need to determine the acceleration for some point as it
moves through the fluid, which means allowing the other t dependent arguments
to vary. Hence the correct acceleration is given by the total differential

a =
du(x(t), y(t), z(t), t)

dt
=
∂u

∂t
+ (u · ∇)u.
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Thus we call
D

Dt
:=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z

the material derivative with respect to u. To demonstrate the fundamental differ-
ence between this and the partial derivative mentioned above, consider the example
of water flow in an annulus. The acceleration at any fixed point is zero (the par-
tial derivative), while the acceleration of any particle1 is nonzero everywhere (the
material derivative). Putting all this together, we have

(2.2)
Du

Dt
= −1

ρ
∇P −∇φ,

the famed Euler equations. Of course, in the case of gravity φ = gz and −∇φ =
(0, 0,−g).

2.2. Boundary conditions

So far, we have arrived at the equations for the flow of an inviscid, incom-
pressible fluid, but we want to study waves. We need to differentiate our problems
involving wave propagation from others which we could model with the equations
derived above - say, the flow of blood through your circulatory system, or oil through
a pipeline, air along the wings of an airplane, and many more.2 The way we un-
dertake this is by prescribing boundary conditions. Consider the case of waves in
the open sea: there are essentially two boundaries - the sea-floor, which we can
measure (at least macroscopically - if we want to account for sediment that moves
with the water, this is another problem), and the surface of the water. The latter
is called the free surface because its determination is part of the solution. This is
the major difficulty in the study of water waves.

On the free surface of the water, we need to account for the fact that we are
trying to describe the boundary between two different phases, i.e. an interface. The
atmosphere above interacts with the water, though since we are not studying wave
generation by means of the wind (cf. [BK75]) we will decouple the motion of the
water surface from that of the air in a very simple manner.3 To this end, the simple
decoupling of the atmosphere and the water takes the form

(2.3) P = Patm on the free surface.

The small density of air compared with water makes it reasonable to assume, even
for large waves, that the atmospheric pressure Patm varies little between wave crest
and trough. Taking z the vertical direction, we will mainly consider the case of a
flat bed at z = 0. Considerations of dynamics on a non-flat bed z = b(x, y) will

1In the above we have referred variously to water particles, elements, and even points. This

may, of course, be a little disquieting, given that water is composed of molecules of finite size. We

note (and you may consult [Yih77] for further discussion, and the source of our example) that the
number or molecules of a gas in 1 µ3 is about 2.69× 107 (using the Loschmidt constant at 1 atm

and 0oC) at standard temperature and pressure. The number for a fluid will be higher still. This
means that when we refer to the velocity of a point, it is reasonable to consider this the average
velocity of a great number of particles, this in turn as the velocity of their center of mass.

2Of course, we would have try to justify ρ = const. and neglect of viscosity in all these cases.
In fact, blood is a non-Newtonian fluid.

3The motion of wind across the water can only generate waves if we allow for a shear force.
We could conceivably model the passage of storms or pressure-systems over the water by allowing
the pressure to vary in time and space.



6 2. THE GOVERNING EQUATIONS

be mentioned as special cases. We will write the free surface z = h(x, y, t) where h
stands for “height”.

The next step in our decoupling of the air and water is to make sure that
the free surface is composed of water particles at all times - no particles leave
the body of water. This implies that velocities along this surface have no normal
component. This is called the kinematic condition. We can reformulate this to
read: the surface, S(x, t) = const. say, moves with the fluid so that it contains
always the same fluid particles. This means that the material derivative (2.1.2) of
this surface must vanish:

DS

Dt
= 0

Now, taking S(x, t) = z − h(x, y, t) = 0, we see that

D

Dt
(z − h(x, y, t)) = 0.

which yields

(2.4) w = ht + uhx + vhy on the free surface z = h(x, y, t).

Similarly, we have a kinematic condition for the bottom, the interface between
water and the sea-floor, which we find in a manner analogous to the above con-
siderations. In the general case z = b(x, y), we again postulate that no water may
penetrate the sea-floor, so that

D

Dt
(z − b(x, y)) = 0.

This, in turn, yields

(2.5) w = ubx + vby on the bottom z = b(x, y).

In the simplified case of a flat bed z = 0, this is clearly w = 0 on z = 0.

2.3. Vorticity

Next, we will introduce a concept central to many questions about the flow of
water. This concept is called vorticity . Before we get into the details, it is useful
to have an idea of what vorticity means. In a sense it is a measure of local spin.
A useful analogy (from the classical text [MT68]): if a spherical element of the
water were suddenly solidified, would it spin as the water flowed past it. Of course,
a uniform velocity field u has no such local spin. On the other hand, if u, for
example, decreases with depth, we see that there is a local spin; if u describes a
flow of constant angular velocity about an annulus (in 2 dimensions, or a cylinder
in 3 dimensions), although there is clearly a global rotation, local rotation is absent.
Vorticity is thus simply ω = ∇× u. We call flows with ω = 0 irrotational , and we
will see that these flows have very special and useful properties - especially in that
we can thereby reduce the nonlinear Euler equations to the linear Laplace equation
∇2φ = 0 (see below). This is already a significant improvement, although we still
have the free boundary to deal with.

Furthermore, if we start with irrotational flow, we need never worry about
vorticity cropping up, by virtue of

Theorem 2.1 (Lagrange’s Theorem). A water flow that is irrotational initially
will be irrotational at all later times.
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A proof may be found in most texts on classical hydrodynamics, e.g. [Lam95].
Although in real water flows, vorticity is rarely absent, it is usually small enough
that it does not play a major role in water wave dynamics unless we wish to ac-
count for the presence of underlying non-uniform currents [KS08b, KS08a, CS04,
CE04].

2.3.1. The irrotational equations of motion. The equations of motion
along with their boundary conditions are commonly expressed as follows:

Du

Dt
= −∇P − g(2.6)

∂u

∂x
+
∂u

∂y
+
∂u

∂z
= 0(2.7)

P = Patm and w = ht + uhx + vhy on z = h(x, y, t)(2.8)
w = ubx + vby on z = b(x, y)(2.9)

There are, however, equivalent formulations, and we will make use of one that is
particularly useful in the irrotational case, involving a velocity potential. Assuming
ω = ∇×u = 0, we see that u = ∇φ for a so-called velocity potential φ, if we consider
flows in a simply connected domain, as is the case for water waves. Then, from
(2.7), ∇ · u = 0 we see that φ satisfies the Laplace equation

∇2φ = 0.

Making use of the identity ∇(u ·u) = 2(u ·∇)u+ 2u× (∇×u), we can rewrite (2.6)
as

∂u

∂t
+∇(

1
2
u · u+ P + gz) = u× ω

which, in view of u = ∇φ implies

∇(
∂φ

∂t
+

1
2
|∇φ|2 + P + gz) = 0

or
∂φ

∂t
+

1
2
|∇φ|2 + P + gz = f(t)

for some constant of integration. This is known as Bernoulli’s equation. The
dynamic boundary condition in (2.8) becomes

φt +
1
2
|∇φ|2 + P + gh = 0 on z = h(x, y, t),

where we have absorbed f(t) into φ. The kinematic boundary condition of (2.8)
becomes

φz = ht + φxhx + φyhy on z = h(x, y, t),
while the bottom condition (2.9) becomes

φz = φxbx + φyby on z = b(x, y).

The well-posedness of the governing equations for irrotational water waves 4

was established in [CS07b, Lan05, Wu97]. This will be addressed in more detail
in Section 3.5 below.

4Whereby we mean local existence in time with continuous dependence on the initial data

for u and h in suitable Sobolev spaces, given an initial velocity u(x, y, z, 0), an initial wave profile

h(x, y, 0), and an initial pressure P (x, y, z, 0) throughout the fluid. The existence of P is viewed as
a closing condition for the system, being determined from a knowledge of u by means of Bernoulli’s

equation.





CHAPTER 3

Asymptotic Models

Although derived more than 200 years ago by Leonhard Euler, the free bound-
ary problem associated with the governing equations for water waves has turned
out to be too difficult to allow the development of a direct theory. It is one of
the astounding facts about mathematical fluid mechanics that, despite centuries of
study, only one explicit solution to the free boundary problem of the Euler equa-
tions was ever found. This solution is the so called Gerstner wave, discovered in
1802 by it’s namesake Frantǐsek Josef Gerstner (1756 - 1832). Gerstner described
two-dimensional waves where all particles circumscribe circular trajectories, whose
radius decreases with depth. The free surface is then in the form of a trochoid,
or, in the limit case, a cycloid. A rigorous examination of the Gerstner flow was
undertaken in [Con01] (see also [Hen08]). It is, in fact, quite remarkable that such
a simple idea, each particle moving in a circular trajectory, would lead to a solution
where particles never collide and yet fill out the entire region below the surface. On
the other hand, there are many examples throughout history of people who sought
to model specific phenomena observable in connection with water waves. Asymp-
totic methods have always played a central role in this endeavor, as they give us
simpler equations that are nevertheless connected to the Euler equations. In what
sense we should interpret this connection, we shall see below.

3.1. Derivation of the Korteweg de-Vries equation

The Korteweg de-Vries equation, one of the most prominent of the asymptotic
models associated with the Euler equations, describes the propagation of plane
waves. Thus in what follows, we will use the two-dimensional form of the irrota-
tional Euler equations. Here we use the usual planar coordinates x and y to denote
the horizontal respectively vertical directions, u and v the corresponding velocities.
Therefore, mass conservation takes the form

(3.1) ux + vy = 0.

The Euler equations are

(3.2)
Du

Dt
= −∂P

∂x

Dv

Dt
= −∂P

∂y
− g

where
D

Dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
.

The condition of irrotationality is simply

(3.3) uy − vx = 0.

Some of the material in this chapter has been adapted from [Stu09]

9



10 3. ASYMPTOTIC MODELS

We write y = h0 +H(x, t) for the free surface, where h0 is an average depth for the
water under consideration, and denote the flat bed by y = 0. Note that it is possible
to include an analysis of these dynamics with a non-flat bed as in [CJ08b, Isr]
provided the variations in bottom topography are limited appropriately. In order to
make the derivations that follow as transparent as possible, we will restrict ourselves
to the case of a flat bed. Lastly, the boundary conditions take the form:

(3.4) P = Patm on the free surface y = h0 +H(x, t)

v = Ht + uHx on y = h0 +H(x, t)(3.5)
v = 0 on y = 0(3.6)

3.1.1. Non-dimensionalization and Scaling. Roughly speaking, one might
say that nonlinear phenomena arise through the interaction of physical parameters
on scales of differing magnitude. “In a singled out scale, the same physical quan-
tity may manifest itself linearly. This phenomenon is sometimes referred to as the
method of nonlinear separation of variables” [She93]. As such, given that we are
working with physical variables (e.g. [u]=m/s, [λ]=m, etc.), in order to compare
magnitudes meaningfully, the first step is to get rid of their units. Experience has
borne out the fact that nonlinear problems are often fruitfully tackled by approxi-
mation - by introducing special scales to an otherwise too expansive problem and
then considering regimes corresponding to certain values of these scales. Simpler
approximate equations in such regimes permit an in-depth analysis of waves enjoy-
ing special attributes (such as the existence of solitons [CE07, Joh03] or stability
properties [CS07a].)

3.1.1.1. Non-dimensionalization. In keeping with this, we introduce h0 as the
typical depth of the water and λ the typical wavelength. These two scales provide
the basis for a nondimensional version of the governing equations. The charac-
teristic speed for long gravity waves is taken to be

√
gh0, and together with the

wavelength λ this gives us a time scale for horizontal propagation of the wave,
λ/
√
gh0, as well as horizontal speed. Care must be taken with the vertical speed v

in order to be consistent with (3.1). These considerations lead us to the following
non-dimensional variables, which we denote with the usual variable names:

x −→ λx y −→ h0y t −→ λ

c
t c =

√
gh0(3.7)

u −→ cu v −→ cv
h0

λ
(3.8)

Accordingly, we transform the pressure P into a perturbation of the hydrostatic
pressure as follows

(3.9) P = Patm + g(h0 − y) + gh0p

where p is a new non-dimensional pressure variable. Lastly we set

(3.10) H(x, t) = aη(x, t)

where η is the nondimensional surface profile and a is a typical amplitude.
The components of the Euler equation (3.2) under these transformations be-

come

(3.11)
Du

Dt
= −∂p

∂x
δ2Dv

Dt
= −∂p

∂y
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where δ = h0/λ is the long wavelength or shallowness parameter. Owing to our
abuse of notation, the equation of mass conservation (3.1) remains unchanged. The
irrotationality condition (3.3) becomes

(3.12) uy − δ2vx = 0

The second characteristic parameter enters via the transformation of the boundary
conditions in accordance with (3.7) - (3.10)

p = εη on y = 1 + εη(x, t)(3.13)

v = ε(
∂η

∂t
+ u

∂η

∂x
) on y = 1 + εη(x, t)(3.14)

v = 0 on y = 0(3.15)

where the ε = a/h0 is the so-called amplitude parameter.

3.1.1.2. Scaling. At this point, we note that ε and δ between them determine
the type of water wave problem under consideration. Looking at the surface bound-
ary conditions, we see that v and p are both proportional to ε, the wave amplitude.
This is sensible, since as ε→ 0 the vertical velocity v → 0 and of course the pressure
perturbation p→ 0; the free surface is perfectly flat. Taking advantage of this, we
define a set of scaled variables

(3.16) p→ εp, v → εv, u→ εu

where u is scaled similarly for consistency (note that these formal considerations
are supported by rigorous results - see [CSnt]). This leads to the transformation
of the system of equations (3.11) with D

Dt = ∂
∂t + ε(u ∂

∂x + v ∂
∂y ), which we can write

explicitly as

ut + ε(uux + vuy) = −px(3.17)

δ2(vt + ε(uvx + vvy)) = −py(3.18)

The equation of mass conservation (3.1) again remains unchanged, as does the
nondimensional irrotationality condition (3.12).

The boundary conditions (3.13) - (3.15) become

p = η on y = 1 + εη(3.19)
v = ηt + εuηx on y = 1 + εη(3.20)
v = 0 on y = 0(3.21)

3.1.1.3. Approximate Equations. We now have a series of equations depending
on two parameters ε and δ which measure contributions of amplitude, respectively
wavelength, to the problem under consideration. The most common approximations
made are ε→ 0 for fixed δ and δ → 0 for fixed ε. These are known as the linearized
problem and shallow-water (or long wave) problem respectively. As noted above,
in the first approach, the hitherto unknown free surface becomes the surface y = 1,
and in a first approximation, we have a linear problem with dispersive effects. In
the latter, a glance at (3.18) shows that the pressure becomes independent of y;
dispersive effects are neglected. For more details see e.g. [Joh97].

While these approximations have been used extensively (and sometimes with
some abandon) in the history of water-wave problems, the question remains to what
extent any formal asymptotic model can give us relevant results for water waves.
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Two questions arise: does an asymptotic model provide a good approximation of a
solution to the Euler equations, and is the time scale of the model applicable.

Our goal of understanding the dynamics of the Korteweg-de-Vries equation
(henceforth abbreviated KdV) and its possible application to tsunami must there-
fore proceed cautiously. Roughly, we understand that the KdV describes a balance
between nonlinearity and dispersion, which means that we will need to retain both
parameters ε and δ to some order in the above equations.

We note that the parameters occur in our equations to order ε and δ2 - it turns
out that these are precisely the orders that must be retained. It has been pointed
out in [CJ08a] that the KdV may be derived without this assumption by using an
additional scaling,

x→ δ√
ε
x, y → y, t→ δ√

ε
t

p→ p, η → η, u→ u, v →
√
ε

δ
v.

As is remarked therein, there is no compelling physical connection between ε and
δ, nor more generally between amplitude, wavelength, and water depth. In view of
this additional scaling, it is possible to find a KdV balance at some time and place
for any δ provided ε → 0. Unfortunately, no rigorous results exist to corroborate
this formal conclusion. Therefore we will retain the classical point of view for which
rigorous results are available.

3.1.2. The Korteweg-de Vries equation (KdV). Starting from the equa-
tions (3.17) - (3.21) we will proceed to derive KdV (introduced in [KDV95]),
following the exposition in [Joh97]. As discussed above, we take the classical ap-
proach and consider a special choice of parameters, namely δ2 = O(ε) as ε → 0.
Then the equations of motion (3.17) - (3.21) along with mass conservation (3.1)
and irrotationality (3.12) now appear with δ scaled out in favor of ε:

ut + ε(uux + vuy) = −px ε(vt + ε(uvx + vvy)) = −py(3.22)
ux + vy = 0(3.23)
uy − εvx = 0(3.24)

p = η on y = 1 + εη(3.25)
v = ηt + εuηx on y = 1 + εη(3.26)
v = 0 on y = 0(3.27)

Now we let ε → 0 and observe that for a first order approximation (3.22) implies
ut + px = 0 as well as that p is independent of y. Therefore (3.25) implies that
p = η everywhere and (3.24) that u is independent of y. It then follows from (3.23)
that

(3.28) v = −yux
which satisfies the boundary condition (3.27). Furthermore, since v = ηt on y = 1,
(3.28) implies ηt = −ux or ηt+ux = 0. This together with mass conservation (3.23)
means that η fulfills the wave equation

(3.29) ηtt − ηxx = 0
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We know that the wave equation has right-running as well as left-running solutions
(cf. [Eva98]), and will follow the right-running waves, consistent with the intro-
duction of the characteristic variable ξ = x − t. We also introduce a slow time
scale

(3.30) τ = εt

in order to treat the far-field region, where we consider the regime for ξ = O(1) and
τ = O(1). In view of this, we can rewrite the equations of motion (3.22) - (3.27) as
follows:

−uξ + ε(uτ + uuξ + vuy) = −pξ ε(−vξ + ε(vτ + uvξ + vvy) = −py(3.31)
uξ + vy = 0(3.32)
uy − εvξ = 0(3.33)

p = η on y = 1 + εη(3.34)
v = −ηξ + ε(ητ + uηξ) on y = 1 + εη(3.35)
v = 0 on y = 0(3.36)

We would now like to determine an approximate solution in terms of an asymptotic
series Ansatz in ε (for background cf. [Nay81]) by introducing the series expansions

η(ξ, τ, ε) ∼
∑
n≥0

εnηn(ξ, τ) u(ξ, τ, y, ε) ∼
∑
n≥0

εnun(ξ, τ, y)(3.37)

v(ξ, τ, y, ε) ∼
∑
n≥0

εnvn(ξ, τ, y) p(ξ, τ, y, ε) ∼
∑
n≥0

εnpn(ξ, τ, y)(3.38)

Notice, however, that we have a problem in (3.34) and (3.35): ε appears both in
the coefficients as well as the arguments, making it impossible to equate powers of
epsilon as we would like to do. To this end, we perform a transfer of the boundary
conditions from y = 1 + εη to y = 1 by expanding p(ξ, τ, y), u(ξ, τ, y) and v(ξ, τ, y)
in Taylor series about y = 1 as follows

(3.39) p(ξ, τ, 1 + εη) = p(ξ, τ, 1) + py(ξ, τ, 1)εη +
1
2!
pyy(ξ, τ, 1)ε2η2 + . . .

Substitute this into (3.34) and apply the series expansions for η and p in (3.37) and
(3.38) to get

(3.40) p0 + εp1 + εη0p0y = η0 + εη1 +O(ε2)

Analogously substitute the Taylor series for u, v into (3.35) and expand to get:

(3.41) v0 + εv1 + εη0v0y = −(η0ξ + εη1ξ) + ε(η0τ + u0η0ξ) +O(ε2)

At leading order (ε0) (3.31) - (3.36) then reduces to:

u0ξ = p0ξ p0y = 0(3.42)
u0ξ + v0y = 0(3.43)

u0y = 0(3.44)
p0 = η0 on y = 1(3.45)

v0 = −η0ξ on y = 1(3.46)
w0 = 0 on y = 0(3.47)
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This system is analogous to that in (3.22) - (3.27) above - and the analogous
arguments lead to the fact that p0 = η0, u0 = η0 + C, C a constant which we may
assume to be zero, and v0 = −yη0ξ.

At order ε1 we get

u0τ + u0u0ξ + v0u0y − u1ξ = −p1ξ(3.48)
−v0ξ = −p1y(3.49)
u1ξ + v1y = 0(3.50)
u1y − v0ξ = 0(3.51)

p1 + η0p0y = η1 on y = 1(3.52)
v1 + η0v0y = −η1ξ + η0τ + u0η0ξ on y = 1(3.53)

v1 = 0 on y = 0(3.54)

Recall that we know from the first order approximation

p0 = η0 u0 = η0 v0 = −yη0ξ

p0y = 0 u0y = 0 v0y = −η0ξ

Taking this into account, and in view of the boundary conditions in the second
approximation it is easy to see

p1 = η1 on y = 1 and p1 =
1− y2

2
η0ξξ + η1

Now we would like to eliminate η1 and get an equation solely in η0. Notice that

v1y = −u1ξ = −p1ξ − u0τ − u0u0ξ =
y2 − 1

2
η0ξξξ − η1ξ − u0τ − u0u0ξ =

=
y2 − 1

2
η0ξξξ − η1ξ − η0τ − η0η0ξ

Integrating with respect to y yields

v1 =
y3

6
η0ξξξ − y(

1
2
η0ξξξ + η1ξ + η0τ + η0η0ξ)

which on the free surface y = 1 is equal to −η1ξ + η0τ + 2η0η0ξ, whereupon the
factor −η1ξ cancels and we have:

(3.55) 2η0τ + 3η0η0ξ +
1
3
η0ξξξ = 0

the Korteweg-de Vries equation.

3.1.3. The far-field vs. the near field. One issue we have glossed over in
the above is the rationale behind introducing far-field variables. This is essential, as
we will see below, since we must know at what spatial and temporal scales the KdV
dynamics become important in order to study their bearing on natural phenomena.
We will see that the scaling (3.30) is essential in the KdV by studying the same
problem without this scaling. We follow the treatment in [Joh97, Joh05]. Our
starting point is again the nondimensionalized, scaled governing equations (3.22)
- (3.27). Again we expand η, u, v and p in asymptotic series, and transfer the
boundary conditions, albeit without a change of variables. Note that, at first order,
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essentially nothing has changed - we again recover the wave equation. At order ε
we have:

u1t + u0u0x + v0u0y = −p1x(3.56)
v0t = −p1y(3.57)

u1x + v1y = 0(3.58)
u1y − v0x = 0(3.59)

p1 + η0p0y = η1 on y = 1(3.60)
v1 + η0v0y = η1 + u0η0x on y = 1(3.61)

v1 = 0 on y = 0(3.62)

We recall some useful facts from the first order expansion:

p0 = η0, u0x = −η0t, v0 = −yu0x, u0y = 0, p0y = 0

Thus we see (3.60) implies p1 = η1 on y = 1, which, together with (3.57) means

−p1y = v0t = −yu0xt ⇒ p1 = −1− y2

2
u0xt + η1

and

(3.56)⇒ u1t + u0u0x =
1− y2

2
u0xxt + η1x.

Then

(3.58)⇒ v1yt = −1− y2

2
u0xxxt + η1xx + (u0u0x)x,

which, upon integrating with respect to y gives

v1t = (−1
2
u0xxxt + η1xx + (u0u0x)x)y +

y3

6
u0xxxt,

where constants of integration are neglected by virtue of (3.62). Now differentiate
(3.61) with respect to t

v1t − (η0u0x)t = η1tt + u0tη0x + u0η0xt

and use the expression for v1t above on the surface y = 1

v1t = −1
3
u0xxxt + η1xx + (u0u0x)x

to yield finally

−1
3
u0xxxt + η1xx + (u0u0x)x − (η0u0x)t = η1tt + (u0η0x)t

or equivalently

η1tt − η1xx − (
1
2
η2

0 + u2
0)xx −

1
3
η0xxxx = 0.

We know from the first order expansion that η0tt − η0xx = 0, so that for the
asymptotic expansion of η

η ∼ η0 + εη1 + ε2η2 + . . . ,

upon eliminating the term u0 by virtue of u0 = −
∫ x
−∞ η0tdx (making use of the

decay assumptions), we have

(3.63) ηtt − ηxx − ε(
1
2
η2 − (

∫ x

−∞
ηtdx)2)xx −

ε

3
ηxxxx = 0
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to second order in ε. This is an integral form of the Boussinesq equation. It can be
transformed into the conventional form

(3.64) ηtt − ηxx −
3ε
2

(η2)xx −
ε

3
ηxxxx = 0

by

η → η − εη2 x→ x+ ε(
∫ x

−∞
ηdx)

(which is equivalent to transforming from Eulerian to Lagrangian coordinates). It
is now straightforward to consider the long-time behaviour of (3.64) by making an
ansatz

η(x, t, ε) ∼
∞∑
n=0

εnηn(x, t) as ε→ 0.

First, we absorb the constants 3/2 and 1/3. Again, at first order, we recover the
wave equation, and since we are not interested in full generality but rather in
comparing with KdV dynamics, we may follow only the right-going component of
the solution, η0 = f(x− t). This is consistent with introducing initial conditions

η(x, 0, ε) = f(x),
ηt(x, 0, ε) = −f ′(x).

Introducing new variables

ξ = x− t ζ = x+ t

we have at order ε

−4η1ξζ = (f2 + f ′′)′′ ⇒ η1 = −1
4
ζ(f2 + f ′′)′ + C1(ξ) + C2(ζ).

By virtue of the initial conditions and the asymptotic expansion, we see that

ηn = 0, ηnt = 0 ∀n > 1,

which will allow us to determine C1, C2.

η1(ξ, ζ)|t=0 = −1
4
x(f2 + f ′′)′ + C1(x) + C2(x) = 0

and

η1t|t=0 = (− ∂

∂ξ
+

∂

∂ζ
)η1|t=0 = −1

4
(f2 + f ′′)′ + C ′2(x) +

1
4

(f2 + f ′′)′′ − C ′1(x) = 0

which may be integrated to give
1
4
x(f2 + f ′′)′ − 1

2
(f2 + f ′′) + C2 − C1 = C

for some constant C. Together with the condition for u1 we have

2C2 =
1
2

(f2 + f ′′) + C

2C1 =
1
2
x(f2 + f ′′)′ − 1

2
(f2 + f ′′)− C

which gives

η1(ξ, ζ) =
1
4
t(f2(ξ) + f ′′(ξ))′ + f2(ζ) + f ′′(ζ)− f2(ξ)− f ′′(ξ),
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and an asymptotic expansion of η

η(x, t, ε) ∼ f(x− t) +
ε

4
t(f2(ξ) + f ′′(ξ))′ + f2(ζ) + f ′′(ζ)− f2(ξ)− f ′′(ξ) +O(ε2).

Here we see explicitly the nonuniformity in the expansion when t = O(ε−1) and the
source of the long time variable in the KdV. Indeed, we can recover the KdV from
the Boussinesq equation (3.64) simply by transforming to far field variables. Again
assuming the constants absorbed,

ηtt − ηxx − ε(η2)xx − εηxxxx = 0

under the transformation (x, t)→ (ξ, τ) with ξ = x− t and τ = εt gives

−2εuξτ + ε2uττ = ε(2uξu)ξ + εuξξξξ

which, to order ε, after integrating with respect to ξ gives

2uτ + 2uξu+ uξξξ = 0.

3.2. Solitons

What is a soliton? It is best to delay answering this question for a time, giving
first some historical ideas, and then seeing how the modern treatment provides a
comprehensive delineation between soliton and solitary wave. No text treating the
Korteweg de-Vries equation is complete without the remarkable discovery made by
J. Scott Russell in 1834 of the “great wave of translation”[Rus44].

I was observing the motion of a boat which was rapidly drawn
along a narrow channel by a pair of horses, when the boat suddenly
stopped - not so the mass of water in the channel which it had put
in motion; it accumulated round the prow of the vessel in a state of
violent agitation, then suddenly leaving it behind, rolled forward
with great velocity, assuming the form of a large solitary elevation,
a rounded, smooth and well-defined heap of water, which continued
its course along the channel apparently without change of form or
diminution of speed. I followed it on horseback, and overtook it still
rolling on at a rate of some eight or nine miles an hour, preserving
its original figure some thirty feet long and a foot to a foot and a
half in height. Its height gradually diminished, and after a chase
of one or two miles I lost it in the windings of the channel.

The existence of solitary waves of translation was at first vehemently denied
following J. Scott Russell’s discovery. Speaking to Sir John Herschel, Russell faced
the retort that “it is merely half of a common wave that has been cut off”. His
rebuttal ([Rus65]):

But it is not so, because the common waves go partly above and
partly below the surface level; and not only that but its shape is
different. Instead of being half a wave it is clearly a whole wave,
with this difference, that the whole wave is not above and below
the surface alternately but always above it.

One of Russells most prominent critics was the British Astronomer Royal G.B.
Airy, who based his critique on a long wave equation he deduced, with small (but
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not vanishing) amplitude:

(3.65) ηtt − ghηxx = gh
∂2

∂x
(
3
2
η2

h
)

This equation has no non-trivial stationary traveling wave solutions, i.e. solutions
of the form η(x, t) = η(x − ct). Further, this equation is well known in gas dy-
namics, where it has been shown that for a simple wave traveling in one direction
(such as Russell’s solitary wave), crests travel faster than troughs, which leads to a
steepening of the wave front and eventual wave breaking. Russell was able to repro-
duce these solitary waves of translation in a number of experiments, and eventually
gained some insight on their special properties. Writing in 1844, Russell noted “the
length, therefore, increases with the depth of fluid directly, being equal to about
6.28 times the depth. The length does not, like the velocity of the wave, increase
with the height of the wave in a given depth of fluid. On the contrary, the length
appears to diminish as the height of the wave is increased. [...] This extension of
length is attended with a diminution of height, and the diminution of length with
an increase of height of the wave, so that the change of length and height attend
and indicate changes of depth.” In fact, it is easy to demonstrate some of this using
the solitary wave solution to the KdV

u1(t, x) = 2A2sech2A(x± ct).
Assuming that the amplitude A is doubled, the above becomes

u2(t, x) = 4A2sech2A(
√

2(x± ct)).
We see that the height of u2 at the position (t, x) is twice that of u1 at the position
(t,
√

2x), but not at the point (t, x). The wave shortens by a factor of 2−1/2 as it
doubles in height.

x
K8 K6 K4 K2 0 2 4 6 8

y
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Figure 1. Comparisons of sech2 solitons u1, u2 with A = 0.5

Problems surrounding solitary waves persisted well into the 20th century. In
1953 Ursell, writing on “The long-wave paradox in the theory of gravity waves”
[Urs53] highlighted some of these:

The reason for these difficulties is to be sought in the present
incomplete state of the theory of non-linear partial differential
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equations. In each of the derivations a formal series-expansion
in terms of a small parameter is assumed, but the convergence or
even the asymptotic nature of the series cannot be proved. How-
ever, when the resulting theory contains paradoxes and internal
inconsistencies, we must conclude that the original assumption
was unjustified.
In other words, the long-wave paradox results from assuming
that the conditions h/λ � 1, η0/h � 1 must lead to a unique
theory, whereas actually the order of magnitude of η0λ/h

3 is
equally fundamental.

In what does this long-wave paradox consist? Airy, in stating that a solitary wave
could not propagate without change of form, relied on an argument that the pressure
at any point in a fluid equals the hydrostatic head of water above that point. From
this assumption, he derived by formal asymptotic expansion the equation (3.65) to
second order. Rayleigh, without using this hydrostatic long-wave assumption, was
able to derive the Boussinesq equation

(3.66) ηtt − ghηxx = gh
∂2

∂x
(
3
2
η2

h
+
h2

3
∂2η

∂x2
)

which admits solitary wave solutions. Under different assumptions, expanding in
terms of ε/δ2 Friedrichs obtained Airy’s theory as a first approximation. Keller
was able to reproduce the solitary wave, but obtained solitary waves of arbitrary
amplitude for a given water depth. These problems lacked a satisfactory theoretical
framework, one that was only provided by modern developments in the latter half
of the 20th century.

At this point, it is helpful to recall what a traveling wave refers to. Given a
velocity field u(x, t), when we look for solutions to some equations describing wave
propagation in the form u(x, t) = f(x− ct) for some constant c, we can clearly see
that this implies that a profile f(x) is translated to the right at speed c, if we give
x the dimensions of space and t dimensions of time. This is exactly the solution
to the simplest IVP that can be said to model wave propagation, the transport
equation

ut + cux = 0 in R× (0,∞),
u = f on R× 0.

The term solitary wave often refers to any surface wave profile that dies out at
infinity, by which we mean that the profile drops back to the flat water level. We
now attempt a first definition of a soliton. The classical text Solitons by Drazin
[Dra83] provides the following:

A ‘soliton’ is not precisely defined, but it is used to describe any
solution of a nonlinear equation or system which (i) represents a
wave of permanent form; (ii) is localized, decaying or becoming
constant at infinity; and (iii) may interact strongly with other soli-
tons so that after the interaction it retains its form, almost as if the
principle of superposition were valid. [...] a soliton is a localized
entity which may keep its identity after an interaction.

A solitary wave may be defined more generally than as a sech-
squared solution of the KdV equation. We take it to be any solution
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of a nonlinear system which represents a hump-shaped wave of
permanent form, whether it is a soliton or not.

Here we see already part of the confusion that is widespread whenever topics of
solitons and solitary waves are covered. Often, the differences can get mixed up,
and especially as regards the purely applied perspective, it is difficult to distinguish
the two. This ties in with our discussion of measurement in 4.5. Drazin follows up
with the following caveat:

In the context of the KdV equation, and other similar equations,
it is usual to refer to the single-soliton solution as the solitary
wave, but when more than one of them appear in a solution they
are called solitons. Another way of expressing this is to say that
the soliton becomes a solitary wave when it is infinitely separated
from any other soliton. Also, we must mention the fact that for
equations other than the KdV equation the solitary-wave solution
may not be a sech2 function; for example, we shall meet a sech
function an also arctan(eαx). Futhermore, some nonlinear systems
have solitary waves but not solitons, whereas others (like the KdV
equation) have solitary waves which are solitons.

(The other solitons he mentions are those of the sine-Gordon equation ψtt −ψxx +
sinψ = 0.) An illustrative example is that of the Burgers equation

ut + uux = νuxx,

which has a traveling wave solution of the form

u(x, t) = c(1− tanh(c(x− ct)/2ν))

for all c, but these solutions do not interact as solitons. Newell, one of the ar-
chitects of inverse scattering theory (and the N of AKNS) in his book Solitons in
Mathematics and Physics [New85] writes:

The fact that two solitary waves of an equation preserve their form
through nonlinear interaction is often taken to be both the acid test
for and the definition of the soliton. I want to warn the reader that
this condition is only necessary. There are equations [...] which
admit two-phase solitary wave solutions, and therefore the asymp-
totic form of each individual solitary wave is preserved through
collision, which do not possess all the ingredients for the admission
to the soliton class. The proper definition of a soliton involves its
identification with certain of the scattering data of an eigenvalue
problem.

One such equation to which Newell refers is given by

2(ττtx − τxτt) + (∂8
xτ)τ − 13(∂7

xτ)τx + 44τxx(∂6
xτ)− 119τxxx(∂5

xτ) + 77τ2
xxxx = 0.

In fact, the above equation has only 2-soliton solutions. (This equation did not
appear out of thin air; using the Hirota differential operator D the above can be
written as (DxDt +D8

x)τ · τ = 0.)
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3.3. A brief look at inverse scattering theory

Fermi expressed often a belief that future fundemental theories in
physics may involve non-linear operators and equations, and that
it would be useful to attempt practice in the mathematics needed
for the understanding of non-linear systems. Stansilaw Ulam

Having discussed solitons in nature and soliton solutions to certain equations,
the question arises what these have to do with one another. Can we establish when
and whether solitons will arise from some disturbance in a fluid? It seems that for
displacements of a net positive volume, there are experimental results that support
the eventual emergence of solitons[HS74]. The theoretical background for these
results [Zab68] goes back to inverse scattering theory and the work of Zabusky,
Kruskal, Gardner, Greene, Miura, and others[GGKM67]. We will give a short
description of the development of this remarkable theory of eigenvalue problems as-
sociated with certain, so-called completely integrable equations, looking specifically
at the KdV.

In order to understand the background that led to these developments, we will
consider the problem of heat conduction in solids. The classical heat equation

ut −∆u = 0

is derived from the law of conservation of heat

ut = −∇ · F

(cf. [FLS63, Eva98]) under the assumption that the flux density F is linear, i.e.

F = −κ∇u,

for some thermal conductivity κ. You may recall (or cf. [Eva98]) that the heat
equation forces infinite propagation speed for disturbances. Clearly this is not
physically meaningful. An analogue of this equation can be derived by assuming
the material modeled by a set of masses coupled by springs - a lattice - as opposed
to a continuous medium. Still the problem of infinite heat conductivity remains.
To go about resolving this, the suggestion was made to assume the coupling in the
lattice to be weakly nonlinear. It is easy to appreciate that this makes the problem
considerably more difficult, and it was not until the advent of the modern computer
that it became possible to treat this problem numerically. The expectation was
clearly to see the heat in a localized initial state flow into the other masses until
a thermal equilibrium was reached. (Note that this is not exactly the vantage
point taken by the experimenters Fermi, Pasta, and Ulam [FPU74] (using the
MANIAC at Los Alamos - see [Ula76] for an engaging account). In fact their
idea was a much more general one, namely to get a preliminary idea for the rate
of mixing or “thermalization” in nonlinear problems. At the time, the prevalent
belief was clearly in the universality of such mixing in non-linear systems.) Instead
of seeing this energy distributed among the 64 modes in their lattice, however,
the experimenters found that it flowed back and forth, eventually reproducing the
initial conditions.

This aroused considerable interest - in fact, Newell [New85] compares it to the
Michelson-Morley experiment in having challenged “the basic thinking of physicists
of the day”. Before we delve into the details, we emphasize again the main point,
from [AS81]:
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Certain nonlinear problems have a surprisingly simple underly-
ing structure, and can be solved by essentially linear methods.

We begin by noting that the KdV

(3.67) ut − 6uux + uxxx = 0

is invariant under Galilean transformations u(x − 6ct, t) − c. Next we apply the
Miura transformation, which takes u into the Riccati equation

(3.68) u = v2 + vx.

Substituting this into the KdV and rearranging terms, we see that we recover an
operator plus a modified KdV equation(henceforth mKdV)

ut − 6uux + uxxx = (2v +
∂

∂x
)(vt + 6v2vx + vxxx).

Therefore we see that for v a solution of the mKdV, (3.68) yields a solution of the
KdV (3.67). It may seem that we are simply going in circles, but this is not so. It
is well known that Riccati equations may be linearized under the transformation
v = ψx/ψ for some differentible ψ 6= 0. This linearization gives us

(3.69) ψxx − uψ = 0,

and upon introducing a Galilean transformation for u which we now denote by
u→ u− λ, we see that

(3.70) ψxx + (λ− u)ψ = 0,

where ψ and λ depend parametrically on time. This is, in fact, the stationary
Schrödinger equation. At first glance, this may look entirely unhelpful - but luck-
ily Gardner, Greene, Kruskal and Miura were familiar with quantum physics and
the well-established scattering theory of the Schrödinger equation. The idea is as
follows: if we have an initial condition u(x, 0) for t = 0 which we call a potential
evolving according to (3.67), we can determine the time-evolution of ψ and λ. Mo-
tivated by the physical scattering of, e.g. an electron in a crystal lattice with an
impurity, the following idea is helpful: we imagine an incident wave e−ikx (the elec-
tron) coming from the right (+∞) towards the potential u(x) (the impurity). The
result of this interaction is a transmitted wave Te−ikx traveling towards −∞ and
a reflected wave Reikx traveling towards +∞. The amplitudes of the reflected and
transmitted waves, R and T constitute part of the scattering data for this potential.
We will follow the development in [Dra83].

Since we want to solve a Cauchy initial value problem for t > 0 and x ∈ R, we
let

u(x, 0) = g(x).
In the context of water waves, this could mean that we prescribe an initial displace-
ment, for which we further require square-integrability of g and its derivatives∫ ∞

−∞
|d
ng

dxn
|2 <∞ for n ∈ {1, . . . , 4},

to ensure the existence of unique smooth solutions to the IVP. We will also require
stronger decay in terms of the Faddeev condition∫ ∞

−∞
(1 + x2)|g(x)|dx <∞.
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This ensures that u decays rapidly enough for |x| → ∞ that we may write

ψ′′ ∼ −λψ,
the free Schrödinger equation. Consequently, the further asymptotic behavior of ψ
depends on the sign of λ. We consider now the so-called bound states corresponding
to λ < 0. Define κ =

√
−λ > 0. We consider first x→ −∞, where, in order for ψ to

remain bounded we require ψ(x) ∼ αeκx. What happens to this bounded solution
as x→ +∞? In general, unfortunately, we will have

ψ ∼ βeκx + γe−κx as x→ +∞
which incorporates both exponential and decaying terms. Of course, this is un-
bounded unless β = 0, and those distinguished λ for which β = 0 are called the
discrete spectrum. (Note that we could fix the coefficients for x → ∞ in place of
those for x→ −∞.) For such λ we see ψ → 0 as |x| → ∞. Such λ need not exist,
such as in the case u(x) ≥ 0 for all x ∈ R.

It is useful to note that (3.70) is a Sturm-Liouville equation. Thus we can bring
the well-develped spectral theory for Sturm-Liouville operators (such as − ∂2

∂x2 + u)
to bear (see, e.g. [CL84]).

We will be particularly interested in the case where u ≤ 0 for all x ∈ R and
u decays sufficiently fast at infinity, which yields only a finite number of discrete
eigenvalues λ1, . . . , λN which may be ordered so that κ1 < . . . < κN - this is
guaranteed by the Faddeev condition above. Otherwise we could also encounter
infinitely many bound states, as is the case for the Coulomb potential u(x) = −α/x
or for u(x) = α/x2.

We denote the corresponding eigenfunctions ψ1, . . . , ψN where

ψn(x) ∼ cne−κnx as x→∞.
We will find it convenient to have ψn ∈ L2, which fixes the constants cn. The
alternative case for λ > 0, the unbound states poses no problems with exponential
terms, and we have

(3.71) ψ̂ ∼ Te−ikx for x→ −∞
and

(3.72) ψ̂ ∼ e−ikx +Reikx for x→ +∞

in analogy with the above, where we have k =
√
λ. T and R are called the trans-

mission respectively reflection coefficients.
It will be useful in some of the calculations that follow to differentiate (3.70)

with respect to x to yield

(3.73) ψxxx − uxψ + (λ− u)ψt = 0,

and with respect to t to yield

(3.74) ψxxt + (λt − ut)ψ + (λ− u)ψt = 0.

Now for general ψ, κ let

(3.75) R = ψt + uxψ − 2(u+ 2λ)ψx

so that

(3.76)
∂

∂x
(ψRx − ψxR) = ψ2(ut − λt + uxxx − 6uux).
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So we see by virtue of (3.70) and (3.67) that

ψ2λt +
∂

∂x
(ψRx − ψxR) = 0.

At this point, we recall the above results about specific eigenvalues λ in order to
progress. For the bound states λ < 0 we assumed that ψn ∈ L2 decays as |x| → ∞,
integrating the above w.r.t. x yields the surprising conclusion that λnt = 0, i.e. the
eigenvalues are independent of time. Hence we also deduce that

∂

∂x
(ψnRnx − ψnxRn) = 0,

whereby we see that

ψ2
n

∂

∂x
(
Rn
ψn

) = ψnRnx − ψnxRn = lim
x→∞

ψnRnx − ψnxRn = 0.

As before, we see that Rn/ψn depends only on time, and thus equate it with its
limit for x→∞. Recall (3.75) so that

(3.77) lim
x→∞

Rn
ψn

= lim
x→∞

ψnt + uxψn − 2(u+ 2λn)ψnx
ψn

= −4κ3
n

since u and its derivatives decay at infinity, and ψn ∼ cne
−κnx. Substituting this

into (3.75) we get the evolution equation for the bound states

(3.78) ψnt + uxψn − 2(u+ 2λ)ψnx + 4κ3
n = 0,

whereby we can deduce (letting x→∞, since κn is independent of t) that

c′n(t) = 4κ3
ncn ⇒ cn(t) = cn(0)e4κ3

nt.

We apply an analogous procedure to the unbound states λ > 0. We define

(3.79) R̂ = ψ̂t + uxψ̂ − 2(u+ 2λ)ψ̂x
and, since any real k is admissible, we consider the problem for fixed k. Therefore
ψ̂2λt + ∂

∂x (ψ̂R̂x − ψ̂xR̂) = 0 (and λt = 0 by virtue of k fixed) yields the fact that
ψ̂R̂x − ψ̂xR̂ depends only on time and k. Therefore,

lim
x→−∞

R̂ = lim
x→−∞

ψ̂t + uxψ̂ − 2(u+ 2λ)ψ̂x = (
dT
dt

+ 4λTik)e−ikx,

since u and ux decay, and using (3.71), so that

lim
x→−∞

ψ̂R̂x − ψ̂xR̂ =

= Te−ikx(
dT
dt

+ 4λTik)(−ik)e−ikx +

+(ik)e−ikx(
dT
dt

+ 4λTik)e−ikx = 0.

and thus ψ̂R̂x − ψ̂xR̂ = 0 for all t. Again we see that 0 = ψ̂R̂x − ψ̂xR̂ =
ψ̂2 ∂

∂x ( R̂
ψ̂

) ⇒ ∂
∂x ( R̂

ψ̂
) = 0. Now, using the asymptotic behavior of ψ̂, R̂ as x → −∞

and the fact that
R̂/ψ̂ = f(t)

we see that

(3.80)
dT
dt

+ 4Tik3 = Tf(t).
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Now, as x→ +∞, we have

lim
x→−∞

R̂ = lim
x→−∞

ψ̂t + uxψ̂ − 2(u+ 2λ)ψ̂x =
dR
dt
eikx − 4k3i(Reikx − e−ikx)

whereby

R̂/ψ̂ = f(t) so that
dR
dt
eikx − 4k3i(Reikx − e−ikx) = f(t)(e−ikx +Reikx).

Since eikx and e−ikx are linearly independent, we match the coefficients to give
dR
dt
− 4k3iR = Rf(t),(3.81)

4k3i = f(t).(3.82)

Using (3.82) in (3.80) we see
dT
dt

= 0

and then from (3.81) we note
dR
dt

= 8k3iR

allowing us to solve for T and R:

T (k, t) = T (k, 0)(3.83)

R(k, t) = R(k, 0)e8k3it(3.84)

We now have all the scattering data needed for a complete picture of the asymptotic
behavior of ψ. The crucial next step is finding u(x, t) from this data, the inverse
scattering problem. This can be done via the Gel’fand-Levitan-Marchenko integral
equation

K(x, y, t) +B(x+ y, t) +
∫ ∞
x

K(x, z, t)B(y + z, t)dz = 0 for y > x

where B is defined by

B(x+ y, t) =
N∑
n=1

cn(t)e−κn(x+y) +
1

2π

∫ ∞
−∞

R(k, t)eik(x+y)dk.

Then, for K(x, y, t) the unique solution to this linear ordinary integral equation,
we find the time evolution of u by

(3.85) u(x, t) = −2
∂

∂x
K(x, x, t).

This is still a non-trivial problem, but it is important to note that we have gone
from a nonlinear partial differential equation to needing to solve only a linear second
order ODE for u(x, 0) = g(x) and a linear ordinary integral equation. The crucial
step in this development was that we were able to show that the bound-state eigen-
values were independent of time. There is a more general method used to establish
this fact, due to Lax [Lax68]. Our presentation follows that in [Dra83]. In this
development, we formulate our nonlinear IVP in the general form

(3.86) ut = N(u)

for N : X → X some nonlinear operator on a function space, e.g. N(u) = 6uux −
uxxx. Assume we can show that (3.86) is equivalent to

(3.87) Lt = BL− LB
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for some linear operators L and B depending on u on a Hilbert space H, and assume
that L is symmetric. We wish to treat the eigenvalue problem

Lψ = λψ

for all t ≥ 0, ψ ∈ H, and differentiate it with respect to t to yield

Lψt + Ltψ = λtψ + λψt.

Using (3.87)

Lψt + (BL− LB)ψ = λtψ + λψt

⇒ Lψt +Bλψ − LBψ = λtψ + λψt

⇒ λtψ = (L− λ)(ψt −Bψ)

so that, by symmetry

λt〈ψ | ψ〉 = 〈ψ | (L− λ)(ψt −Bψ)〉 = 〈(L− λ)ψ | ψt −Bψ〉 = 〈0 | ψt −Bψ〉 = 0.

So we see λt = 0, and
L(ψt −Bψ) = λ(ψt −Bψ).

Since B and L are not unique in (3.87), we may redefine B so that ψt = Bψ for all
t > 0 without changing (3.87). To summarize: If (3.86) can be expressed with a so
called Lax pair L,B according to (3.87), and if Lψ = λψ, then the eigenvalues are
independent of time, and ψ evolves according to

ψt = Bψ.

In the context of the KdV, the eigenvalue problem was simply that of the Schrödinger
equation, so we see

L = (− ∂2

∂x2
+ u)

and we had an evolution equation derived from R. Indeed, setting

B = −4
∂3

∂x3
+ 6u

∂

∂x
+ 3ux + α

we recover (for any constant α)

BL− LB = −uxxx + 6uux

and Lt = BL − LB gives the KdV. Now we may apply the scattering and inverse
scattering theory as above. Note that there is a systematic way to find suitable
B when L is the Schrödinger operator. This has to do with making the com-
mutator [L,B] a multiplication operator and the fact the B must necessarily be
anti-symmetric. Therefore B may be composed of odd-order differential operators,
giving rise to a Lax hierarchy for the KdV. The major obstacle in this method is,
of course, finding the Lax pair! Generally, this is far from easy, although for linear
PDE, a general method for constructing Lax pairs can be found in [Fok97]. How-
ever, the advantage of this more general approach is that we can see that a whole
class of equations can be treated with scattering and inverse scattering theory, e.g.
the transport equation can be shown to have constant eigenvalues by virtue of the
choice B = c∂/∂x, L = −∂2/∂x2 +u. This is the first equation in the Lax hierarchy
for the KdV.
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3.4. The Riemann-Hilbert problem for the KdV

The Riemann-Hilbert problem originated in the 19th centruy with the work
of Bernhard Riemann on a certain extension of the Poisson formula, which for
the half-plane is a consequence of Cauchy’s integral formula. This generalization
consists of finding an analytic function within a closed contour C fulfilling

α(t)u(t) + β(t)v(t) = γ(t) on the contour

for w = u + iv analytic and given real functions α, β, γ. Hilbert later identified
this problem with that of finding two analytic functions Φ+,Φ− defined within
respectively without a closed contour C such that

(3.88) Φ+(t)− g(t)Φ−(t) = f(t) on the contour

for given g, f . Hilbert related this problem to certain singular integral equations,
and Plemelj was able, in 1908, to make major inroads in treating what has come to
be known as the Riemann-Hilbert problem. A closed form solution was first given
by Muskhelishvili [Mus53].

Just as the Poisson formula follows from Cauchy’s integral formula

φ(z) =
1

2πi

∫
C

φ(ζ)
ζ − z

dζ

for φ analytic on and within a simple closed contour C, we shall first investigate
generalizations in the form of Cauchy-type integrals

(3.89) Φ(z) =
1

2πi

∫
L

φ(τ)
τ − z

dτ

for φ Hölder continuous on a simple smooth arc L of finite length; that is:

there is a κ > 0, 0 < λ ≤ 1 such that |φ(τ1)−φ(τ2)| ≤ κ|τ1−τ2|λ for all τ1, τ2 ∈ L

For infinite arcs, such as L the real axis, we additionally require that, for t→ ±∞,
φ(τ)→ φ(∞) with

|φ(τ)− φ(∞)| ≤ M

|τ |µ
, M > 0, µ > 0.

Under this assumption, (3.89) defines a function analytic off L. As z approaches
some t ∈ L, we define the Cauchy principal value of (3.89) as the symmetric limit

lim
ε→0

∫
L−Lε

φ(τ)
τ − t

dτ =: p.v.
∫
L

φ(τ)
τ − t

dτ

where Lε is the part of the contour within a circle of radius ε centered at t.
We will use the convention in what follows that, for L oriented, the ⊕ side lies

to the left in direction of orientation, while the 	 side lies to the right. We now give
the Sokhotski-Plemelj formulae for the limits of Φ (above) as z approaches t from
the ⊕ resp. 	 side, denoted by Φ+ resp. Φ−. A proof may be found in [Mus53]
or [AF03].

Theorem 3.1 (Sokhotski-Plemelj).

Φ±(t) = ±1
2
φ(t) +

1
2πi

p.v.

∫
L

φ(τ)
τ − z

dτ
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or

Φ+(t)− Φ−(t) = φ(t)

Φ+(t) + Φ−(t) =
1
πi
p.v.

∫
L

φ(τ)
τ − z

dτ

We may now restate the Riemann-Hilbert problem in terms of finding a section-
ally analytic function Φ, that is, analytic on D−L for some domain D ⊂ C, L ⊂
D, continuous on L from the ⊕ and 	 side, and with limits Φ+,Φ− such that

Φ+(t) = g(t)Φ−(t) + f(t)

where g, f satisfy Hölder conditions on L, g(t) 6= 0 ∀t ∈ L. This inhomogeneous
scalar Riemann-Hilbert problem always has a solution. If we specify the degree of
Φ at infinity, i.e. Φ(z) ∼ zn, |z| → ∞, then we may also establish uniqueness of
this solution.

We can also formulate so-called vector Riemann Hilbert problems of the same
form

Φ+(t) = g(t)Φ−(t) for t ∈ C
where C is a contour, G a nonsingular matrix whose entries satisfy a Hölder con-
dition. The task then is to find a sectionally analytic vector function Φ(t) whose
components tend from the ⊕ side to those of Φ+(t) and from the 	 side to those
of Φ−(t). Furthemore we ask that the components of Φ have some finite degree at
infinity.

In this case, existence of solutions with a given degree is considerably more
difficult than in the inhomogeneous scalar problem (where solutions always exist)
or the homogeneous scalar problem (where nontrivial solutions exist if the index of
g is positive). In general, we need to take into account the partial indices of the
matrix G, of which there are n if G is n × n. At best, we can give an iterative
procedure for the fundamental solution matrix [Vek67].

We turn our attention now directly to the Riemann-Hilbert problem for the
KdV. Our point of departure is again the time independent Schrödinger equation

(3.90) −ψxx + (u− k2)ψ = 0

(where we write k2 = λ, which physically corresponds to using the momentum k
in place of the energy λ). For each real k 6= 0 the solutions of (3.90) form a two
dimensional vector space. We consider two bases in this space

ψ1(x, k) ∼ e−ikx
ψ2(x, k) ∼ eikx x→ +∞

and
φ1(x, k) ∼ e−ikx
φ2(x, k) ∼ eikx x→ −∞

Since u(x) is real valued, we have

φ1 = φ̄2, ψ1 = ψ̄2

and

(3.91) φ1(x, k) = φ2(x,−k), ψ1(x, k) = ψ2(x,−k).
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Since ψ1, ψ2 are linearly independent (consider the Wronskian W (ψ1, ψ2)), we
may write

φi(x, k) =
2∑

n=1

Tin(k)ψn(x, k), i = 1, 2

where we see that the matrix T (k) must have the form

T =
(
a(k) b(k)
ā(k) b̄(k)

)
We will now single out φ1 =: φ. Considering W (φ, φ̄) = W (ψ, ψ̄) = 2ik, we see
that |a(k)|2 − |b(k)|2 = 1.

Now consider the asymptotic behaviour of φ(x, k)/a(k) for x→∞:

φ(x, k)
a(k)

∼ e−ikx +
b(k)
a(k)

eikx

and for x→ −∞
φ(x, k)
a(k)

∼ e−ikx

a(k)
.

We can identify φ/a with ψ̂ in 3.3 above and see that the coefficient of reflection R =
b(k)
a(k) and the transmission coefficient T = 1/a(k). We also see that |R|2 + |T |2 = 1.

We have already determined the time evolution of T and R above. Now, how-
ever, we depart from the classical approach, where we suppressed analytical proper-
ties of the transmission coefficient. We will be interested in studying these proper-
ties and formulating the inverse scattering problem in terms of a Riemann-Hilbert
problem.

To this end, let us consider Im(k) > 0 above. Here we can identify φ with ψ
in the preceding section, where we see

a(k)e−iRe(k)x = β

b(k)e−iRe(k)x = γ

where we recall that β vanishes at the eigenvalues κ1, . . . , κn, i.e. a(k) has zeroes
at these points [DJ89]. The expression W (φ1, ψ1) = 2ika when differentiated with
respect to k can be used to show that the poles of T (k) = 1/a(k) are simple. T (k)
is otherwise analytic in the upper half k-plane. Since |a(k)|2 = (1− |R(k)|2)−1 and
we know the zeroes of a(k), we can recover a from R. We need to supplement this
data with the norming constant for the bound states derived above. Recall that for
eigenvalues −κ2

n we had eigenfunctions

φn ∼ cne−κnx x→∞.

We fixed the constants cn via the L2-norm of φn, and derived their time evolution.
Now we will construct the Riemann-Hilbert problem. Note that

φ1(x, k)eikx ∼ 1, |k| → ∞, Im(k) > 0(3.92)

ψ1(x, k)eikx ∼ 1, |k| → ∞, Im(k) < 0(3.93)

where (3.92) is analytic in the upper half k-plane and (3.93) is analytic in the lower
half k-plane, while the reverse holds for φ2(x, k) = φ1(x,−k), ψ2(x, k) = ψ1(x,−k)
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when these are multiplied by e−ikx. Notice also that we have

φ1e
ikx

a(k)
= eikxψ1(x, k) +

b(k)
a(k)

eikxψ2(x, k)

φ2e
−ikx

ā(k)
=
b̄

ā
e−ikxψ1(x, k) + e−ikxψ2(x, k)

using the linear combinations with the matrix T (k). Therefore

T (k)φ1(x, k) = (1−R(k)R̄(k))ψ1e
ikx +R(k)(eikxψ2 + R̄(k)eikxψ1) =

= (1−R(k)R̄(k))ψ1e
ikx + (R(k)e−2ikx)φ2e

−ikxT̄ (k)

and
ψ2(x, k)e−ikx = −R̄(k)e−ikxψ1(x, k) + T̄ (k)φ2e

−ikx.

Now, using (3.91) we rewrite this as
(3.94)(

T (k)φ1(x, k)eikx

ψ1(x,−k)e−ikx

)
=
(

1−R(k)R̄(k) R(k)e2ikx

−R̄(k)e−2ikx 1

)(
ψ1(x, k)eikx

T̄ (k)φ1(x,−k)e−ikx

)
which defines a matrix Riemann-Hilbert problem on the line k ∈ R of the form

Φ+ = GΦ−

where Φ+ is analytic in the upper half plane except for the poles of T (k), and
Φ− likewise in the lower half plane, and owing to our normalization Φ+ and Φ−

approach (1, 1)T as |k| → ∞. Also note detG = 1 6= 0.
While this is a generalized Riemann-Hilbert problem of index zero (owing to

the fact that G + G∗ is positive definite, cf. [AF03]), uniqueness of the solution
can be established and it can be transformed into a conventional vector Riemann-
Hilbert problem by supplementing the above with certain pole conditions around
±κi (cf. [GT09]).

In order to recover the potential, we will need to derive some integral equations
for the expression φ1(x, k)eikx =: M , which solves the ODE

Mxx − 2ikMx = −u(x)M

(obtained by transforming the Schrödinger equation ψ → Meikx). This yields the
following representation as an integral equation (see [AF03])

M(x, k) = 1 +
∫ +∞

−∞
G(x− ξ, k)u(ξ)M(ξ, k)dξ

(where we have suppressed the parametric dependence on time). The kernel G(x, k)
is the Green’s function of M , and satisfies

Gxx − 2ikGx = −δ(x).

We find that

G(x, k) =
1

2ik
(1− e2ikx)H(x)

for the Heaviside function H. Thus

M(x, k) = 1 +
1

2ik

∫ x

−∞
(1− e2ik(x−ξ))u(ξ)M(ξ, k)dξ.
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Now consider the limit as |k| → ∞, where we make the time dependence explicit.
The term ∫ x

−∞
e2ik(x−ξ)u(ξ, t)M(ξ, k, t)dξ

vanishes by virtue of the Riemann-Lebesgue lemma, so that

M(x, k, t) ∼ 1− 1
2ik

∫ x

−∞
u(ξ, t)dξ

where we have used the asymptotic behavior of M = φ1(x, k)eikx → 1. We write
M ∼ 1+ Θ(x,t)

k as the large k asymptotics, and, finding an analogous expression for
the lower half plane (using ψ1(x, k)eikx) we have

Θ(x, t) =
{ −1

2ik

∫ x
−∞ u(ξ, t)dξ Im(k) > 0

1
2ik

∫∞
x
u(ξ, t)dξ Im(k) < 0

So that we can recover the potential via

u(x, t) = −2ik
∂

∂x
Θ(x, t).

3.5. Well-posedness and existence for asymptotic regimes

We now need to address a question posed above: what do these asymptotic
models tell us about actual water waves. Although we have derived a number
of asymptotic equations from the water wave equations, the central question is
whether the properties of these equations carry over to properties of the full water
wave equations. (It might be interjected that it is naive to assume that the Euler
equations will tell us everything about fluid motion, as Lagrange did in writing
“By this discovery, all fluid mechanics was reduced to a single point of analysis,
and if the equations involved were integrable, one could determine completely, in
all cases, the motion of a fluid moved by any forces...” (translated by G. Birkhoff
in [Bir60]. Birkhoff goes on to describe many of the paradoxes resulting from
solutions to the Euler equations (with known boundary) which “disagree grossly
with observation, flagrantly contradicting the opinion of Lagrange”. We remain
cautiously optimistic.) In order to compare solutions of an asymptotic model and
those of the governing equations, the first question is whether the water wave
equations are well posed. We say, following [Eva98] that a certain problem for
a PDE is well-posed if

• the problem has a solution,
• this solution is unique, and
• the solution depends continuously on the initial or boundary data given.

Since we are concerned only with water waves, this last point is especially impor-
tant to ensure that we are working with a physically relevant solution. For the
governing equations, this problem was solved during the latter half of the twentieth
century, starting with the case of 1-dimensional propagation for irrotational flow
over finite depth in [Yos82], albeit for small displacements and short time. Major
breakthroughs were made by [Wu97] for the case of infinite depth by removing the
restrictions to small displacements, and [Lan05] who treated the finite depth case
with varying bed in 3-dimensions. Newer results exist for cases of rotational flow,
but for our purposes - understanding the dynamics in the shallow-water, small am-
plitude regime as exemplified by the KdV and Boussinesq equations - it is enough
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to know of the well-posedness as presented in [Lan05]. More recently, Coutand and
Shkoller [CS07b] were able to remove the condition of irrotationality under some
additional hypotheses on the behavior of the surface at the water/air interface.

We will be asking in what sense solutions of an asymptotic model like the KdV
have something in common with solutions to the water wave equations. Do solutions
of the governing equations exist on the time scales of the asymptotic models, and
are the models good approximations of these solutions? For example, do N-soliton-
like solutions of the governing equations exist? We should not expect too much, as
the following quote from [Wri06] demonstrates.

The most notable deviation between true solutions and the KdV
approximation is the size of the phase shift after a collision. In
addition, soliton-like solutions to the type of systems we study
frequently develop a very small amplitude dispersive wave train
behind each soliton, which moves in the same direction[...]. The
KdV approximation does not predict the existence of these disper-
sive wave trains. As these sorts of discrepancies are observed even
in the case where there is only one wave train moving unidirection-
ally, we believe that they are, loosely, independent of interactions
between the left- and right-moving wave trains. They reflect intrin-
sic differences between the approximation and the original system.

Nevertheless, we can answer the questions of existence time and quality of approx-
imation largely positively. We present a brief sketch of the results as they relate to
the KdV. Some of the first work in this direction was done by Kano and Nishida
[KN86] in 1985. Unfortunately, this was predicated on the assumption of ana-
lytic initial conditions and presented results for too short a time scale to see KdV
dynamics. Schneider and Wayne [SW00] were able to improve upon this result,
achieving an approximation on the slow time scale of order ε−1, albeit with an error
estimate of order ε1/4. Unforunately, for large times, this means that the error is of
the order ε−3/4, which is not desirable for small ε. The most recent results are due
to Lannes [Lan05] and Alvarez-Samaniego and Lannes [ASL08], where the latter
work gives the same estimates as the former using a more general method which is
also used to treat the KP, Green-Naghdi, and other equations.

The main thread of [Lan05] is to explore systems of Boussinesq-type introduced
by Bona, Chen, and Saut in [BCS02]. A subclass related to these systems is
derived which is symmetric, bringing to bear many desirable properties of such
systems. The relations between these systems are explored, and they are shown to
be consistent. The main result of interest for the KdV approximation is

Theorem 3.2 (Theorem 7). Let s ∈ R. For σ large enough, if (v0, η0) ∈
(Hσ(R))2, then there exists T0 > 0 such that for all t ∈ [0, T0

ε ],

|(vε, ηε)− (vεKdV , η
ε
KdV )|L∞([0,t],Hs(R)2) ≤ Const.ε2t3/2

Herein we have used v as the gradient of the velocity potential at the free
surface, and it is understood that (vε, ηε) is a solution to the Euler equations, and
(vεKdV , η

ε
KdV ) a solution to the KdV. If, in addition, the initial conditions satisfy a

decay assumption such that there exists α > 1
2 and

sup
x∈R
|(1 + x2)α(∂βxv0(x), ∂βxη0(x))| <∞, β = 0, . . . s
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then the approximation can be improved to

|(vε, ηε)− (vεKdV , η
ε
KdV )|L∞([0,t],Hs(R)2) ≤ Const.ε2t.

The long-time nature of this existence result is especially important for the KdV,
since time therein is slowed in comparison to physical or Boussinesq time. We also
note that the error never grows beyond O(ε).





CHAPTER 4

Tsunami Modelling

4.1. Tsunami

What is a tsunami? I am sure you already have a picture in your mind, per-
haps of a towering wave ready to crash on some unsuspecting coastline, perhaps
something resembling “The Great Wave off Kanagawa” of Katsushika Hokusai.
Tsunami is a Japanese word meaning “harbor wave”, however, it is not in general
one wave, but rather a series of waves generated by impulsive vertical displace-
ment of the ocean surface. The first tsunami in recorded history occurred in 2000
B.C. off the coast of Syria, but instrumental earthquake recording and the accurate
identification of tsunami associated therewith has only been used since 1900.

Most tsunami are caused by rapid vertical movement along breaks in the Earth’s
crust. A large mass of earth rising or falling imparts energy to the column of
water situated above it, resulting in wave generation. The areas most prone to
such movements are called subduction zones, where an oceanic plate collides with
and dips under a continental plate. These zones are prevalent along much of the
Pacific rim (excepting the west coast of the United States and Canada) as well as
along many island arcs, such as New Guinea, Japan, Kamchatka, and the Solomon
Islands. There are only small subduction zones in the Atlantic Ocean, along the
Carribean and Scotia arcs, while the Indian Ocean houses the major subduction of
the Indo-Australian plate beneath the Eurasian plate - the characteristics of which
mean that most tsunami generated here propagate towards Java and Sumatra,
rather than into the Indian Ocean.

Other prominent sources of tsunami include volcanoes - generally through col-
lapse of the volcanic edifice, subsidence, landslides or earthquakes associated with
the eruption. Tsunami may also be caused by submarine landslides, rockslides, or,
more rarely, meteors, or deep-focus earthquakes with no surface rupture.

While no direct observation or measurement of the generation of tsunami has
been undertaken, studies of the data suggest that several factors correlate with the
size of a tsunami. Among these are the size of the (shallow-focus) earthquake, the
area and shape of the rupture zone, rate and type of displacement of the sea-floor,
magnitude of displacement, and the water depth in the generation region. Many of
these factors are also discussed in [Ham73] (see below). It may also be observed
that tsunamis generated on the continental shelf tend to be of longer period, while
those generated in the deep waters beyond the continental shelf tend to have shorter
periods. It is important to note that, because of their long period compared with

Some of the material in this chapter has been adapted from [Stu09]
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wind waves, tsunami waves can bend around obstacles and enter bays and gulfs
readily. Hawaii 47 

FIGURE 27.-Aftermath of the tsunami of May 
22, 1960, in the Waiakea area of Hilo, 
Hawaii. Note the scattered debris, gutted 
foundation, and the bent parking meters. 
(Photo Credit: Sunset Newspaper) 

tractor in a showroom was swept away; 
heavy machinery, mill rollers, and metal 
stocks were strewn about. Rocks weighing 
as much as 20 metric tons were plucked from 
a sea wall and carried as far as 180 m inland. 
Damage elsewhere on the Island of Hawaii 
was restricted to the west and southern 
coasts, where about a dozen buildings, mostly 
of frame construction, were floated off their 
foundations, crushed, or flooded. There was 
h'alf a million dollars of damage on the Kona 
coast alone. Six houses were destroyed at 
Napoopoo. 

On Maui the damage was concentrated in the 
Kahului area on the north coast. A 
warehouse and half a dozen houses were 
demolished, and other warehouses, stores, 
offices, and houses, and their contents were 
damaged. A church floated 6.1 m away from 
its foundation. Other buildings were 
damaged at Paukukalo, just outside and west 
of the harbor. At Spreckelsville and Paia, 
east of Kahului. houses were damaged, and 
one house at each place was demolished. 
Additional damage occurred at Kihei on the 
south coast and Lahaina on the west coast. 
On the island of Molokai there was some 
damage to houses, fish ponds, and roads, and 
a beachhouse was demolished on the Island 
of Lanai. The islands of Kauai and Oahu 
escaped with only minor damage. Fifty 
houses at Kuliouou, an eastern suburb of 

Honolulu, were flooded, and $250.000 in 
damage was done. Elsewhere on Oahu no 
damage was reported, even where there was 
inundation of areas occupied by houses. On 
Kauai, so far as is known, the only damage 
consisted of one frame building being floated 
off its foundation on the south coast. (Cox 
and Mink, 1963; Lida et al., 1967; 
Pararas-Carayannis and Calebaugh, 1977, 
Loomis, 1976) 

FIGURE 28.-Aerial view of damage at Hilo, 
Hawaii, from the tsunami of May 22, 1960. 
(Photo Credit: National Oceanic and 
Atmospheric Administration) 

1960, November 20, 2202. A magnitude 6.8 
earthquake in Northwest Peru generated a 
measurable tsunami with a 0.10-m amplitude 
at Hilo and a 14-minute period. (Iida et al., 

1967; Soloviev and Go, 1974, p. 154; 
Pararas-Carayannis and Calebaugh, 1977) 

1962, December 21, 08:43. A magnitude 6.8 
earthquake in the Fox Islands. Aleutian 
Islands, caused a tsunami warning to be 
issued. Oscillations reported by Honolulu 
observatory started 4.75 hours too early to be 
a tsunami from this source, and so this is a 
doubtful tsunami. (Iida et al., 1967; COX, 
1968; Pararas-Carayds and Calebaugh, 
1977) 

1963. October 13, 05:17. A magnitude 8.1 
earthquake in the Kuril Islands generated a 
tsunami that was widely recorded in Hawaii. 
The maximum amplitude of 0.4 m was 
reported at Hilo, Hawaii, and Kahului, 
Maui. (Iida et al., 1967; Pararas-Carayannis 
and Calebaugh, 1977) 

Figure 1. Destruction wrought by the Chilean tsunami of
1960 at Hilo, HI

Also note that radiation of tsunami is directional. Source regions are generally
elliptical, with a major axis as long as 600 km corresponding to the active part
of the fault. The majority of tsunami energy is transmitted at right angles to the
major axis, which allows us to consider some tsunami models two-dimensional for
simplicity (at least as long as the propagation is over the open ocean of relatively
uniform depth). Tsunami may propagate in deep water at speeds in the neighbor-
hood of 1,000 km per hour, but their height in the open ocean is generally 1 m or
less, with wavelengths in the hundreds of kilometers. Borrowing an example from
[Seg07], sitting in a boat in the Pacific, the great Chilean tsunami of 1960 would
have taken between 45 min to an hour to pass one by while raising the boat by less
than one centimeter per minute - hardly noticeable on the open sea. Nevertheless,
the tsunami reached run-ups of 7 m in Kamchatka and 10.7 m in Hilo, Hawai’i 1

where it caused widespread destruction after traveling 10,000 km in just under 15
hours. This is due to the fact that, as the tsunami enters coastal waters, its velocity
is reduced while the height of each wave increases. This “pile up” of waves can then
produce a devastating local tsunami. (Perhaps a word on the terminology run-up is
in order: the run up is defined as the maximum height of the water observed above
a reference sea level.) Locally, “run ups” of 30 to 50 m have occurred, generally in
close proximity to the generation region of the tsunami. In the far field, the severity
of a tsunami decreases only slowly with distance. As for the behaviour of tsunami
near the coast, a tsunami wave may break on the beach, or appear as a flood, a
bore, or an undular bore. However, it is possible that the trough of the wave arrives
first, in which case the water level recedes rapidly [MR99]. This is an unfortunate
contribution to fatalities, as curious inhabitants explore the offshore area, unaware

Figure 1 reprinted from [LL89]. Photo Credit: Sunset Newspaper
1http://wcatwc.arh.noaa.gov/web tsus/19600522/runups.htm
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(1946, April I, continued) 
launch, washed the tug against the 
breakwater, and shifted several buoys. 

Island of Niihau: The waves severely 
damaged this island, but caused no injury or 
loss of life. At Naina, on the northern coast, 
a cottage that had been in the same location 
for more than 60 years was destroyed. At 
Kii Landing the waves destroyed the small 
wharf, damaged houses and fences, washed 
cobbles inland over part of the area, and in 
other areas stripped the surface down to the 
hard pan. The wharf and some houses were 
badly damaged at Nonopapa Landing. 

At Kahana Bay the waves swept violently 
against both sides of the entrance to the bay, 
wrecking houses as much as 3.5 in above sea 
level on the western side, but reached a little 
more than about 2 m above sea level at the 
head of the bay. However, the return of the 
water from the bay head swept a house into a 
fishpond on the southeastern side of the bay 
and drowned three clddren. 

Although the water rose only 4.5 m at 
Kaloko, 1.6 km southwest of Makapuu Point, 
a group of houses inland from the beach was 
demolished. One man waded in the rising 
water up to his armpits carrying a picture 

FIGURE 18.-Tsunami wave arrivals between 
10 and 11 A.M. local time at Hilo, Haw‘aii, 
from the earthquake in the Aleutian Islands 
on April 1, 1946. Note that one span of the 
railroad bridge has already been destroyed by 
an earlier tsunami as it advanced up the 
Wailuku River. (Photo Credit: Univ. of 
California at Berkeley) 

Island of Oahu: The highest amplitude on 
the island (11 m) occurred at Makapuu 
Point near Koko Head. At Kawela Ray, 
houses were damaged by the waves which 
came across the off-lying reefs and rose as 
high as 5.8 m just west of the bay. At the 
airport just east of Kahuku Point the waves 
drove inland across the dunes, flooding the 
lowlands inside the coastal dune ridge and 
causing extensive damage. There was one 
fatality at Kahuku. To the southeast of Laie 
the water caused extensive destruction to 
houses at Haleaha and Makalii Point. 
Sugar cane on 50 mz of Kahuku Plantation 
was damaged or destroyed by the force of the 
waves and by salt poisoning. 

FIOURE 19.-Close-up of bridge shown on the 
left and a tsunami becoming a bore as it 
advances past the bridge and up the Wailuku 
River. (Photo Credit: Univ. of California at 
Berkeley) 

over his head. His house was destroyed. 

Island of Molokai: Many people observed 
the waves at Kalaupapa, and some houses 
were destroyed. The wave backwash 
undermined a road and washed away several 
houses. 

Island of Lanai: This island sustained little 
damage. 

Island of Maui: At Kahului several houses 
were damaged or destroyed, and a number of 
military amphibious tanks parked near the 
breakwater floated off. Along the beaches 
for about 10 km east of Kahului the waves 
rose 5 m or more above sea level. At 
Spreckelsville the waves reached 8.5 m and 

Figure 2. Bore formed by the tsunami of April 1, 1946 at
Hilo, HI

that this phenomenon is caused by a tsunami, or that a tsunami consists of several
waves.

One of the primary problems of mathematical tsunami modeling is to reconcile
the dynamics near the generation-region with those of the far field (and, in turn, to
match these with the near-shore dynamics of shoaling and inundation). An engaging
historical account of tsunami modelling can be found in [Ham73]. Initially, because
of the difficulty of the nonlinear models, solutions were sought for the linear theory
for specific bed deformations. Attempts have been made to evaluate the resulting
integrals asymptotically [Kel63][Kaj63], but as a consequence of the purely linear
theory used, the far field behavior was determined to be solely an oscillatory wave
train which continues to disperse into its harmonic components. As a result, the
amplitude of the leading wave decays, and no waves of permanent form develop,
something clearly at odds with real world tsunami dynamics where nonlinear effects
eventually become apparent.

4.2. Dynamics near the generation region

The KdV gives a balance of nonlinearity and dispersion for the far-field region
of a tsunami, meaning that an initial disturbance must travel long distances until
these dynamics can become important. What happens for shorter distances? This
is by no means a simple question, since near the tsunami source we must take
into account the complex impulsive deformation of the bottom. We look at the
lucid presentation in [Ham73] for possible answers. Initially, for the irrotational
Euler equations given in terms of a stream function, it is possible to incorporate
a prescribed bed movement ζ(x, t) into the linearized boundary conditions. This
yields the system:

φy(x,−h, t) = ζt(x, t)(4.1)
φtt(x, 0, t) + gφy(x, 0, t) = 0(4.2)

Figure 2 reprinted from [LL89]. Photo Credit: Univ. of California at Berkeley
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Upon using the Laplace transform in t and the Fourier transform in x, we are able
to get a rather complicated expression for the free surface,

η(x, t) =
1

2π

∫ +∞

−∞
( lim
Γ→∞

1
2πi

∫ µ+iΓ

µ−iΓ

s2e−ikxestζ̄(k, s)
(s2 + ω2) cosh kh

ds)dk,

where ω2 = gk tanh kh. Hammack then poses the question under what conditions
the linearized governing equations are applicable to the region near the tsunami
source. He proposes a scaling and nondimensionalization similar to that done for
flat beds in Chapter 3, with the difference that the scales of the bottom deforma-
tion are included and play a major role. Examining these new scaled equations,
we differentiate two cases depending on the rupture speed. In case of impulsive
deformation, i.e. cases where the rupture is fast enough that the displaced water
has not had the time to leave the generation region, linear theory is seen to be
appropriate when ζ0/h� 1. This means that the rupture size ζ0 is small compared
to water depth h. On the other hand, for creeping ruptures, it is seen that linear
theory is always applicable near the generation region. Taking into account the
generation of tsunami along large subduction zones where we may expect typical
water depths to be in the range of kilometers, the bed displacement is largely in
the range of meters to tens of meters. In fact, it is unlikely to be much more than
30 m even for the largest tsunami [Bar05]. Thus it appears we may always take
linear theory to be relevant near the generation region for physical tsunami gener-
ated by displacement of the sea-floor (of course, tsunami generated by landslides,
submarine landslides, rockfalls, or meteors could have different dynamics). In the
subsequent experimental examination, Hammack determined that for ζ0/h > 0.2
significant nonlinear effects where apparent in the impulsive deformation case, as
well as in the case of an intermediate-speed displacement, starting from the edge
of the displaced bed onwards. As predicted, in the case of creeping displacements,
nonlinear effects were absent even when ζ0/h ≈ 1. It is interesting to note that
the numerical simulations based on MOST and SIFT algorithms currently used in
tsunami warning systems incorporate only instantaneous rupture. Therefore the
question of whether different dynamics result with variations in rupture speed is of
great practical importance. Hammack’s experimental results [Ham73] once again
provide stimulating information. For impulsive rupture, near the generation region
the wave profile depends primarily on the shape of the final displacement. However,
as the rupture time increases, the wave signatures become more and more depen-
dent on the time-displacement history of the movement - which means that slower
ruptures might result in tsunami dynamics unaccounted for by current numerical
models.

There is another perspective we might bring to bear on near-field dynamics
- that of the Boussinesq model. Recall that we derived the Boussinesq equation
(3.63) in an attempt to elucidate the nonuniformity that caused us to consider the
KdV. In light of this, we see that the Boussinesq equation

ηtt − ηxx − ε(η2)xx − εηxxxx = 0

is accurate to order ε in the near field x = O(1), t = O(1) for long waves (ε =
O(δ2), ε → 0), but breaks down for long times t = O(1/ε). For ε very small in a
given physical problem, as is the case for tsunami, it seems the near-field might
be described essentially by the classical wave equation - which is the view taken in
[Seg07]. On the other hand, [MFS08] argue that, for rectangular displacements,
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dispersion plays a role from the very beginning, and the appropriate leading order
equation is simply a linearized KdV (or Airy equation)

ηt +
1
6
ηxxx = 0.

In this case, it might be argued that a linearization of the Boussinesq equation
could be a better choice, as we have seen that KdV arises for long times, whereas
the Boussinesq model more aptly describes the near source region.

4.3. Dynamics in the far field

4.3.1. The Ursell number - an approach to far field dynamics. The
theory surrounding the Ursell number U was first established in [Urs53] and further
developed in [Ham73]. In the main, it revolves around a few simple observations.
The terms ε and δ that we have used in the process of nondimensionalization and
scaling have been called the amplitude parameter and long wavelength (or shallow-
ness) parameter respectively. They can also, and are often, interpreted differently
- namely as the relative magnitudes of the nonlinear and linear terms respectively.
Hammack writes:

the relative importance of nonlinear and linear effects in a long
wave propagating in a two-dimensional fluid domain is indicated
by the ratio

(4.3)
nonlinear effects

linear effects
∝ a/h0

(h0/λ)2
=
aλ2

h3
0

= U

As mentioned, this stems from considering the nondimensional scaled Euler equa-
tions

φzz + δ2φxx = 0,(4.4)
φz = δ2(ηt + εφxηx) on z = 1 + εη,(4.5)

φt + η +
1
2
ε(

1
δ2
φ2
z + φ2

x) = 0 on z = 1 + εη,(4.6)

φz = 0 on z = 0,(4.7)

where we see that the magnitude of the nonlinear terms is given by the parameter ε,
while the linear contribution is measured in terms of δ2 (cf. [Ham73]). We might
thus assume that, so long as ε is small enough, linear theory yields an appropriate
model. Recall that ε → 0 leads to the linearised problem (which is dispersive),
δ → 0 to the long-wave problem (nonlinear and nondispersive).

However, Ursell [Urs53] states “that the linear theory of surface waves is valid
only if aλ2/h3

0 � 1, the well-known condition a/λ� 1 not being sufficient”.
Looking at this problem, it seems that a measurement of the initial profile of

a wave, including all the data needed to determine ε and δ (namely amplitude,
wavelength, and water depth) would determine the Ursell number and thereby
the applicability of either linear or nonlinear theory. However, here we run into
complications. An initial disturbance must propagate somehow, and this could
lead to changes in all these parameters with time. Concentrating on the long-wave
region, Ursell assumes initial conditions that were used historically to generate
solitary waves: a partition in a tank of water, on one side of which the water level
is higher, was to be suddenly removed. This may be likened (cf. [Ham73]) to an
impulsive deformation η(|x| < b, 0) = const., η(|x| > b, 0) = 0 (it is also analogous
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to the dam break problem). Following Jeffreys and Jeffreys [JJ46], who present
the long-time behavior for this initial condition via an Airy integral, Ursell derives
a relation wherein U grows with time like t

1
3 . On the basis of this, it is argued that

nonlinear effects will always come to be important given long enough times; Ursell
writes that it may be seen “in a rough way how a non-linear solitary wave can emerge
after a time ε−3”. It seems a shortcoming of this approach, however, that once a
wave of permanent form has been established, the Ursell number no longer changes
(insofar as the water depth remains constant). Therefore this evolution of U as t1/3

must come to an end somewhere. Indeed, the experimental results of Hammack
[Ham73] corroborate this. U was computed for measured wave profiles generated
by an impulsive exponential deformation, and an initial growth in nonlinear effects
was established until the amplitude and frequency dispersion (contributions of ε
and δ respectively) were about equal. A balance of these effects was maintained
during further propagation.

This breakdown in the growth of the Ursell number suggests that there may be
shortcomings to this approach. Indeed, the hydrodynamical relevance of solving the
dam-break problem by linear theory and then extrapolating the results is uncertain.
Ursell must nevertheless be credited for highlighting the importance of the regime
ε = O(δ2).

4.3.2. The KdV balance - another approach to far field propagation.
It is certainly sensible to ask why the KdV equation should be chosen to model
natural phenomena. In most instances in nature, when we observe a solitary wave,
that is in fact all we are observing. As we have pointed out, there is no reason
to think that this solitary wave must be a soliton. Further, there are a number of
model equations that allow solitary wave solutions. The BBM model, for example,
describes shallow water waves to the same order as the KdV, and allows solitary
wave solutions that are not solitons. The important point, though, is that solitary
waves can be generated in the laboratory, and their interaction seems to fit very
well that of soliton solutions of the KdV. The BBM model, on the other hand, has
a number of properties that make it more accessible to computation, in particular
the simple numerical solution developed in [Per66]. Of course, there are a number
of other completely integrable equations that may be used to model certain aspects
of water wave propagation, such as the Camassa-Holm, Degasperis-Procesi, and
others [CL09]. We will focus exclusively on the KdV.

A central question is where the notion of a KdV balance comes from. The idea
is, of course, that, since the KdV contains both weakly nonlinear and dispersive
terms, and since the soliton solutions of the KdV are clearly of permanent form,
nonlinearity and dispersion must be holding each other in check. Intuitively, it
is said that the nonlinearity of the KdV causes waves to break (or, cf. [Ham73],
nonlinearity is referred to as causing amplitude dispersion) while dispersion causes
components of different frequencies to travel at different speeds. Clearly, neither of
these forces has the upper hand in the motion of solitons.
Two mechanisms are at work when solitons arise, one being the balance of non-
linearity and dispersion, the other the actual separation of solitons. One of the
remarkable things inverse scattering theory for the KdV tells us is that for essen-
tially any localized positive disturbance, we can always decompose it into a number
of solitons and an oscillatory tail. If the initial disturbance is exactly of the form
n(n+ 1)sech2, we get n solitons and no oscillatory tail (i.e. the one soliton solution
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of the KdV is reproduced by a 2sech2 initial profile, the two soliton solution by a
6sech2, and so on), otherwise we always have some oscillatory components. In this
sense, it bears some resemblance to the Fourier transform.

The balance of nonlinearity and dispersion goes back to the slow time scale τ
and the new distance ξ that were introduced in the derivation of the KdV. Thus,
in looking for relevant effects in these new variables, i.e. when ξ, τ are of order 1,
we need first to return to the original variables. Recall that we transformed τ = εt,
and the non-dimensionalisation (3.7) performed in 3.1.1.1. Then

(4.8) x− t = O(1) τ = O(1)

means

(4.9)
x− t

√
gh0

λ
= O(1),

εt
√
gh0

λ
= O(1).

which gives a length scale for the KdV balance of

(4.10) x = O(
λ

ε
).

We note that this length scale was long thought to be x = O(h0/ε), (cf. the classical
results [Ham73], [HS78]) as is also espoused in the recent survey [Seg07], but
(4.10) provides the correct scale - see also the discussion in [Con09].2

Thus far we have identified a regime, ε = O(δ2), but what does this mean in
practical terms? Given that we need to check whether this regime holds based on
real-world data, we take the approach that O(1) allows for deviation by a factor of
ten in either direction, as is usually assumed in the hydrodynamical literature (see
e.g. [Lig78]). Thus

10−1 ≤ ε

δ2
≤ 10

is a good realization of the KdV regime. Recall that the definitions ε = a/h0,
δ = h0/λ mean that the above is

(4.11)
10−1h3

0

a
≤ λ2 ≤ 10h3

0

a
.

4.4. Applications to Tsunami

We have established length scales for a KdV balance, but it remains to be
seen whether such scales are applicable to real world tsunami. In doing so, we
will focus on two of the largest tsunami of recorded history. We will look at the
first, generated by a series of earthquakes in southern Chile on May 22, 1960 - as
it propagated from Chile to Hawai’i. These earthquakes, among them the largest
ever recorded, resulted from a rupture about 1000 km long and 150 km wide along
the fault between the Nazca and South American plates, at a focal depth of 33
km. The principal shock occurring on May 22 at 19:11 GCT registered at 9.5 on
the moment magnitude scale, and led to changes in land elevation ranging from
6 m of uplift to 2 m of subsidence - which has been modeled to correspond to an

2The previously mentioned work of Constantin and Johnson [CJ08a], which uses a formal
additional scaling in place of the relation ε = O(δ2) derives the length and time scales for a KdV

balance of

x = O(λδε−3/2) and t = O(
λ

√
gh0δε−3|2 )

for any δ as ε→ 0. This is consistent with our results, as the scale (4.9) can be recovered simply

by returning to ε = O(δ2), i.e. rendering the scaling meaningless.
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average dislocation of 20 m along the fault, with peaks of more than 30 m [Bar05].
This subsidence extended as far as 29 km inland, resulting in some 10 km2 of forest
around the Ŕıo Maulĺın being submerged by the tides and consequently defoliated
[CA+05].

Not only was the principal earthquake at 39.5◦S, 74.5◦W especially powerful,
it generated tsunami with an average run-up of 12.2 m and a maximal run-up on
the adjacent Chilean coast of 25 m. Over the course of the next day, a number of
tsunami wreaked havoc upon the Pacific, taking the lives of more than 2000 people
and causing millions of dollars in damages. The initial wave traveled between 670
and 740 km/h, with a wavelength of between 500 - 800 km and a height in the
open ocean of only 40 cm [Bry08], [HGR96]. The propagation distances involved
in the 1960 Chilean tsunami are among the largest possible on earth, making it
one of the best candidates among teleseismic tsunami for the appearance of a KdV
balance.

The second tsunami we focus on is the devastating Boxing Day (December
26) tsunami of 2004, generated by a magnitude 9.0 earthquake off the coast of
northern Sumatra which killed more than 290,000 people and displaced millions.
Wave heights of 30 m were reported along the west coast of Sumatra, 5-10 m
along the east coast of India and 3-5 m around Phuket, Thailand. For the first
time, heights in the open ocean were measured by satellite. Two hours after the
earthquake, the open water height was 60 cm, while by 3 hours and 15 minutes,
it had dropped to about 40 cm.3 Traveling westward towards India, the tsunami

Figure 3. The Boxing Day tsunami reaching the coast of
Thailand. Note the initial negative wave, followed by two essen-
tially two-dimensional waves, both of which have broken further
out, the larger behind the smaller.

had a speed of about 620 km per hour in waters about 3 km deep, while the
eastward wave towards Thailand travelled at a slower rate of 350 km per hour in
about 1 km deep waters [Seg07] (note that these are essentially the shallow water
speeds

√
gh). The wavelengths westwards are said to have been about 100 km,

3http://www.noaanews.noaa.gov/stories2005/s2365.htm
Figure 3 reproduced courtesy of A. Constantin
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and those eastwards slightly smaller [Seg07]. It is also important to note that the
rupture was roughly 100 km in the east west direction and 900 km in the north
south direction. This makes it feasible to expect some directivity in the tsunami
energy, and gives a rationale for using the two-dimensional KdV model initially for
east-west propagation.

4.4.1. Indonesia, 2004. We may treat the eastward and westward propaga-
tion as separate cases. Since the tsunami reached Thailand to the east after about
1 hour, we assume a = 1 m and h0 = 1 km, with λ ≤ 100 km. We see that (4.11)
yields a realistic range of wavelengths between 10 and 100 km. So far we are in the
right regime to see KdV dynamics, but we need to find a bound for the distance in
which we expect a balance of nonlinearity and dispersion to appear. In its eastward
propagation, the tsunami travelled about 600 km before reaching Thailand, thus
(4.10) means that our length scale for KdV balance must fulfill

(4.12)
λ

ε
< 600 km.

Together with (4.11) we can eliminate a herein to get

λ3 < 6000h2
0 km

which means

(4.13) λ < 18 km,

clearly an unrealistic figure. In Figure 3, we see that an initial negative wave was
followed by a series of waves, the first considerably smaller than the second, which
can be seen some distance behind it. Had soliton theory played a role, we would
expect the largest wave to be in front, as larger solitons travel faster than smaller.

We make the same calculations for the westward propagation, with a distance
of 1500 km across the Bay of Bengal. Considering the travel time, we know from
satellite data that the amplitude was roughly 60 cm. Therefore we have

(4.14) λ < 51 km,

which is also at odds with the calculated wavelengths.

4.4.2. Chile, 1960. For the Chilean tsunami of 1960, taking a = 0.4 m and
h0 = 4.3km (cf. [Bry08]), we see that (4.11) yields a range of wavelengths between
140 and 1400 km. Given that we consider the 1960 tsunami only between Chile
and Hawai’i, a distance of about 104 km, (4.10) means that we need

(4.15)
λ

ε
< 104 km.

Again using (4.11) to eliminate a herein to get

λ3 < 105h2
0 km ≈ 1.8× 106 km

or

(4.16) λ < 121 km.

However, measurements place the wavelength of the tsunami of May 22, 1960 be-
tween 500 - 800 km [Bry08] making it unlikely that KdV dynamics played a role.
This is further supported by the fact that the first two tsunami waves reaching
Hilo, Hawai’i were smaller than the third, most destructive wave - something which
should not occur if KdV dynamics were significant for the leading waves of the
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tsunami. We have deliberately used the wavelength λ, because of the relative ease
of measurement and error tolerance compared with measuring amplitude. An ar-
gument based on the amplitude can be found in [CH09] and [Con09].

4.4.3. Is there hope for the KdV paradigm in tsunami modelling?
It seems from the above considerations that KdV theory is unlikely to play a role
in tsunami dynamics in the open ocean. A look at the formula for identifying the
KdV regime (4.11) shows that for tsunami in most oceans, we have ε = O(δ2), but
the length scales required to see KdV dynamics are too long. This is represented
below (cf. [CJ08a] where a similar table is presented for the KdV balance in terms
of amplitude and depth):

Table 1. Upper bounds on wavelengths necessary for KdV length
scales by propagation distance and water depth, under the assump-
tion ε = O(δ2)

Propagation distance (km) 1 4 100 1,000 10,000
Depth 5 m 63m 100m 292m 629m 1.3 km
Depth 10 m 100m 159m 464m 1 km 2.2 km
Depth 100 m 464m 737m 2.2 km 4.6 km 10 km
Depth 1000 m 2.2 km 3.4 km 10 km 22 km 46 km
Depth 2000 m 3.4 km 5.4 km 16 km 34 km 74 km
Depth 4000 m 5.4 km 8.6 km 25 km 54 km 117 km
Depth 4300 m 5.7 km 9 km 26 km 57 km 122 km

We see that, for Scott Russell’s soliton, described to be 30 ft (9 m) long and
between a foot and a foot and a half in height (30 - 45 cm) in a channel perhaps 5
m deep, it would certainly be possible for a KdV balance to occur over the distance
he followed it (“one or two miles”, or between 1.5 and 3 km). And although it
seems that tsunami in the open ocean generally have wavelengths too long for this
balance to occur, the possibility remains that in their near-shore dynamics, perhaps
following shoaling, solitons could be generated. We will explore this possibility for
one event in 1986, the tsunami of May 7th, as it impacted Kaiaka Bay on the north
shore of Oahu, HI. An earthquake of magnitude 7.7 occurred off the Andreanov
Islands, Alaska and caused a tsunami that was felt in many places along the Pacific.
In Hawai’i, though a costly evacuation was ordered, abnormally small run-ups were
recorded. These are attributed to the short fault length and the shallow angle of
subduction [LL89]. Despite this, in Kaiaka Bay a significant solitary wave was
generated. The best DEM (Digital Elevation Model) data for the bay suggests that
it is no more than two meters deep [fTR]. This is by the fact that Kaiaka Bay
is the drainage basin for the Paukauila and Kiikii streams which carry sediment
down from approximately 610 m above mean sea level [oLNR02]. While the bay
is approximately 500m wide, the areas seen in the photos are in a section where
it narrows to between 100 (left photo) and 125 m (right photo). Cane Haul Rd.
bridge seen to the right in Figure 3 is about 8m wide, while the Haleiwa Road
bridge crossing Paukauila Stream in the left photgraph is about 11 m wide. In the
upper left corner of the right photograph, one can see Kiikii Stream entering the
bay. Given this, it seems feasible to estimate the effective wavelength as in the area
of 3 m.(cf. [MFS08]. Since there is only a single crest, wavelength in the classical
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Figure 4. Solitary wave on May 7, 1986 at Kaiaka Bay,
Oahu, HI

sense does not apply. [MFS08] refer to “effective duration in time and space”, but
it seems to us more succinct to say simply effective wavelength. Hammack suggests
in [Ham73] that an appropriate definition of λ in a region of complex waves is
λ = O(a/ax), where he takes ax to be the slope of the wave. He further suggests
that, to establish a numerical value for the characteristic length, the operational
definition λ = |a0|/|(ax)max| where a0 is the total change in wave amplitude within
a region and (ax)max is the maximum slope of the wave in the region. Of course,
for a tsunami in the open ocean, this would be very difficult to implement, seeing
as, if we have a wavelength of some 500 km, and an elevation of 0.5 m, the slope
is very near to zero (10−6).) It is difficult to ascertain the amplitude of the wave.
It appears in the photo as a solitary bore, lacking a significant oscillatory tail (as
opposed to the case of undular bores). The wake seen behind the wave suggests
that some turbulent mixing is going on. The strength threshold β at which such
turbulent bores appear is said to be approximately 0.3 [Lig78]. Thus a crude
calculation of bore strength

β =
A1 −A0

A0
,

where A0 is the initial cross sectional area and A1 is the cross sectional area behind
the bore, using an average water depth of 1m, a width of 100m, yields that the wave
should be some 30 cm or more in height. This seems reasonable given the other
dimensions of the wave. We may take a = 0.5m. We see with this data, λ = 3m,
a = 0.5m, and h0 = 2m that we are indeed in an appropriate regime to see KdV
dynamics, as

ε

δ2
=
aλ2

h3
0

≈ 0.56

Figure 4 courtesy of the Department of Ocean and Resources Engineering, School of Ocean
and Earth Science and Technology, University of Hawaii at Manoa
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which is within the tolerance range 10−1 < ε/δ2 < 10. The distance between deeper
waters and the location of the wave in the photographs is about 800m, so the length
scale for KdV dynamics yields

λ

ε
< 800m

or
λ < 31m,

which appears to be the case. Although we find that KdV dynamics could be
relevant in a wave such as that discussed, some cautionary remarks are in order.
Clearly the wave pictured does not look much like a KdV solitary wave - but it
is important to note that, outside of controlled experiments, or in the confines of
a relatively uniform canal (in which we may expect a relatively uniform bottom
topography, few if any existing waves or currents, etc.) we cannot expect a solitary
wave in nature to meet the standards of mathematical rigor. It nevertheless seems
appropriate to consider the wave at Kaiaka Bay as a proof of concept - that tsunami
in their near shore dynamics could very well generate solitary waves that might be
modeled with the KdV. It does not seem that this is simply an artifact of the
particular numbers involved, as changing them by a factor of 2 does not impact the
conclusion. (It is also interesting to note that the dam break problem from which
classical models for bores may be derived is the same that was used experimentally
to generate solitary waves [Urs53]. Ursell writes “since the days of Scott Russell it
has been customary to generate the solitary wave by putting a water-tight partition
in the canal, raising the level on one side of the partition, and then removing the
partition suddenly”.)

4.5. Measurements

The problem of accurate measurement of the many parameters involved in
developing a theory for shallow-water waves is now apparent. While we generally
take a typical wavelength λ in our nondimensionalization procedure, it is not quite
clear how typical any such length can be. Strictly speaking, wavelengths are defined
for wave trains, which tsunami are not, for the most part. Further, a look at
the period data for most tsunami will typically reveal a very large variance.4 In

Table 2. Periods for the 3.01.2009 Tsunami

Location Period(min)
Tosa-Shimizu 14

Ishigakiko 18
Naha 24

Omaezaki 12
Yap Island, Caroline Islands 6

Malakal Island, Caroline Islands 14

Table 2, even within Japan (Omaezaki and Naha) there is a 2-fold difference in
periods. Taking into account the data from Malakal in the Federated States of
Micronesia, we see a four-fold difference. In Table 3 it is interesting to note that
Luganville, Vanuatu is the location closest to the tsunami source (294 km) for

4Data from http://www.ngdc.noaa.gov/hazard/tsu db.shtml
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Table 3. Periods for the Samoan tsunami of 7.10.2009

Location Period(min)
Port San Luis, CA 9
Hilo, Hawaii, HI 10

Honolulu, Oahu, HI 7
Kawaihae, Hawaii, HI 6
Nawiliwili, Kauai, HI 4

Luganville 20

which period data is available. Hawaii is roughly 5500 km distant; nevertheless,
the variability of tsunami period for different locations in Hawaii is 2.5-fold. Clearly
many phenomena could play a central role in determining this variability, among
them reflection, resonance, refraction or diffraction. It seems that the Hawaiian
Islands, due to their proximity, make an accurate period difficult to discern. It is
well known that Hilo, Hawaii, due to the shape of its bay is particularly prone to
large run-ups5, perhaps due to its natural resonant frequencies. At any rate, what
we must take away from this data is the knowledge that caution must be exercised
when trying to apply our mathematical methods to real world tsunami. This is
especially difficult for historical tsunami for which few accurate measurements exist.

Attempts have been made to reconcile variability of tsunami periods with the
mathematical theory. Initial attempts were made to explain this on the basis of
viscosity, the internal friction of the fluid. Later theories focused on the effects
of dispersion [Mun46, Kaj63]. Therein, for long distances from the tsunami
source and constant depth, the period increase was noted to be proportional to
t1/3 (for one dimensional wave propagation). This does not seem to be borne out
by our data, suggesting that other effects than those considered may play a role.
(There may certainly be good criteria for discarding certain data points, and the
two representative events we have chosen were selected at random from events of
the past year. Munk [Mun46] finds favourable comparisons between this theory
and data for the tsunami of April 1, 1946. Unfortunately, the in-depth look at
global tsunami data necessary to corroborate this, while interesting, is outside the
scope of this manuscript.) Most significantly, in the above studies the equations
of motion are linearized in order that disturbances in the bottom topography may
be modeled. On the basis of this, the far field behavior of these disturbances is
investigated. Kajiura in [Kaj63] lists his main concerns as the assumptions of 1)
linear approximation, 2) constant depth and no lateral boundary, 3) the leading
wave at long distances from the source, and 4) time dependence of the source of
delta-function type.

Further problems exist, of course, in the measurement of tsunami amplitudes,
which are typically very small in the open ocean. This problem is almost universally
circumvented simply by assuming the amplitude to be 1m. Especially in the case
of older tsunami data when amplitudes were not recorded by satellite but solely by
tide gauges, the design of these gauges introduces errors into the data. The prob-
lem lies in the fact that tide gauges are designed to measure a phenomenon with a
period of twelve hours, and not a tsunami with a period measured in minutes. In
order to eliminate short period waves of no interest, these tide gauges have wells

5Dr. G. Fryer, personal communication
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which dampen these disturbances. In general, the larger the wave and the shorter
the period, the greater is the discrepancy between real and recorded amplitudes in
such gauges[Noy76]. There are a number of linear models that have been used to
explain attenuation of tsunami waves in the far field (cf. the discussion in [Kaj63],
who proposes an attenuation proportional to powers of the distance from source r;
r−1/3 for 1 dimensional propagation, and either r−2/3 or r−1 based on source char-
acteristics for 2 dimensional propagation), but these models do not seem to account
well for observations made in laboratory experiments, and it may be assumed that,
due to the difficulties sketched above, it will be difficult to verify their agreement
with actual tsunami.



Appendix: deutsche Zusammenfassung

In dieser Arbeit werden die reibungslosen Bewegungsgleichungen für wasser
Wellen mit physikalischer Motivation eingeführt. Es folgt ein Studium der Eigen-
schaften dieser Gleichungen, die durch anwendung asymptotischer Näherungen zur
Korteweg-de Vries Gleichung führen. Schließlich wird die Korteweg-de Vries Gle-
ichung hinsichtlich ihrer Anwendung im Bereich der Tsunami Modellierung unter-
sucht.
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tsunamis. J. Geophys. Res., 113, 12 2008.

[MR99] R. K. Mazova and J. Ramirez. Tsunami waves with an initial negative wave on the
Chilean coast. NATURAL HAZARDS, 20(1):83–92, 1999.

[MT68] L. M Milne-Thomson. Theoretical hydrodynamics. Macmillan, London, 5th ed., re-

vised and enlarged edition, 1968.
[Mun46] W. H. Munk. Increase in the period of waves traveling over large distances: with

applications to tsunamis, swell, and seismic surface waves. PhD thesis, UC San Diego:

Scripps Institute of Oceanography, 1946.
[Mus53] N. I Muskhelishvili. Singular integral equations: boundary problems of function theory

and their application to mathematical physics. P. Noordhoff, Groningen, 1953.

[Nay81] A. H. Nayfeh. Introduction to perturbation techniques. Wiley, New York, 1981.
[New85] A. C. Newell. Solitons in mathematics and physics, volume 48. Society for Industrial

and Applied Mathematics, Philadelphia, Pa., 1985.
[Noy76] B.J. Noye. Recordings of tsunamis by tide wells. In R.A. Heath and M.M. Crisswell,

editors, Tsunami Research Symposium, 1974, volume Bulletin 15, pages 87–94. Royal

Society of New Zealand, 1976.
[oLNR02] Department of Land and State of Hawaii Natural Resources. North shore paukauila

streambank erosion and riparian area community project. Technical report, Annual

Report to the Twenty-Second Legislature, Regular Session of 2003, December 2002.
[Per66] D. H. Peregrine. Calculations of the development of an undular bore. Journal of Fluid

Mechanics Digital Archive, 25(02):321–330, 1966.

[Rus44] J. Scott Russell. Report on waves. Rept. Fourteenth Meeting of the British Association
for the Advancement of Science, pages 311–390+57 plates, 1844.

[Rus65] J. Scott Russell. The Modern System of Naval Architecture, volume 1, page 208. Day

and Son, London, 1865.
[Seg07] H. Segur. Waves in shallow water, with emphasis on the tsunami of 2004. In A. Kundu,

editor, Tsunami and Nonlinear Waves, pages 3–29. Springer, 2007.
[She93] S. S. Shen. A course on nonlinear waves, volume v. 3. Kluwer Academic, Dordrecht,

1993.

[Stu09] R. Stuhlmeier. KdV theory and the Chilean tsunami of 1960. Discrete Contin. Dyn.
Syst., Ser. B, 12(3):623–632, 2009.

[SW00] G. Schneider and C. E. Wayne. The long-wave limit for the water wave problem.

I: The case of zero surface tension. Commun. Pure Appl. Math., 53(12):1475–1535,
2000.

[Ula76] S. M. Ulam. Adventures of a mathematician. Scribner, New York, 1976.

[Urs53] F. Ursell. The long-wave paradox in the theory of gravity waves. Math. Proc. Cam-
bridge Philos. Soc., 49(4):685–694, 1953.

[Vek67] N. P Vekua. Systems of singular integral equations. P. Noordhoff, Groningen, 1967.

[Wri06] J. D. Wright. Corrections to the KdV approximation for water waves. SIAM J. Math.
Anal., 37(4):1161–1206, 2006.

[Wu97] S. Wu. Well-posedness in Sobolev spaces of the full water wave problem in 2D. Invent.
Math., 130(1):39–72, 1997.

[Yih77] C.-S. Yih. Fluid mechanics: a concise introduction to the theory. West River Press,

Ann Arbor, Mich., corrected ed edition, 1977.
[Yos82] H. Yosihara. Gravity waves on the free surface of an incompressible perfect fluid of

finite depth. Publ. Res. Inst. Math. Sci., 18:49–96, 1982.
[Zab68] N. J. Zabusky. Solitons and bound states of the time-independent schrödinger equa-

tion. Phys. Rev., 168(1):124–128, Apr 1968.





Index

Airy, G.B., 17

Bernoulli’s equation, 7

bound states, 23

Boundary conditions, 5

Boussinesq equation, 16

Burger’s equation, 20

continuity equation, 4

dynamic boundary condition, 5

equation of mass conservation, 4

equation of state, 4

Euler equations, 5

Faddeev condition, 22

Far-field region, 14

far-field variables, 13

fluid, 3

free surface, 5

Gel’fand-Levitan-Marchenko equation, 25

Gerstner wave, 9

inverse scattering theory, 21

irrotational, 6

J. Scott Russell, 17

KdV balance, 40

kinematic condition, 6

Korteweg-de Vries equation, 14

Lagrange’s theorem, 6

Lax pair, 26

long-wave paradox, 19

Mass conservation, 4

Material derivative, 5

Miura transformation, 22

Nondimensionalization, 10

Riemann-Hilbert problem, 27

run up, 36

Russell, J. Scott, 17

Scaling, 11

Schrödinger equation, 22

Sokhotski-Plemelj formula, 27
solitary wave, 19

soliton, 20

transfer of boundary conditions, 13

transport equation, 19

traveling wave, 19
tsunami, 35

tsunami period, 47

unbound states, 23

Ursell number, 39

velocity potential, 7

vorticity, 6

Waimea Bay, 1
wave, 2

well-posed, 31

57





Curriculum Vitae

Raphael Stuhlmeier

Personal

Born: Graz, Austria on July 5, 1985

Austrian Citizen

Education

1991 - 1992: Grade 1 Longfellow Elementary School, Teaneck, NJ, USA

1992 - 2000: Grades 2-8 William H. Lincoln School, Brookline, MA, USA

2000 - 2003: Grades 9-12 GRg 23/VBS Draschestraße, Vienna, Austria

2005 - 2010: Diploma Studies in Mathematics, University of Vienna, Austria

Publications

R. Stuhlmeier and K. M. Stuhlmeier, Fast, simultaneous, and sensitive detec-
tion of staphylococci, Journal of Clinical Pathology, 56 (2003), 782-785

R. Stuhlmeier, KdV theory and the Chilean tsunami of 1960, Discrete and
Continuous Dynamical Systems - Series B, 12 (2009), 623-632

59


