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Summary 

Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) 

triggers apoptosis in a variety of tumor cells, but not in normal cells. 

Therefore, TRAIL and in particular agonistic antibodies to the functional 

TRAIL receptors TRAIL-R1 (DR4) and TRAIL-R2 (DR5) are currently being 

explored in pre-clinics and clinical trials for the treatment of various 

malignancies. 

TRAIL is highly prevalent in ovarian tumor microenvironment and is 

being associated with prolonged survival. In addition, more than two third of 

ovarian cancer (OC) patients have a disturbed TRAIL signaling pathway, a 

fact important not only for prognosis, but also for future therapeutic options. 

Defects in the TRAIL pathway include a downregulation of TRAIL functional 

receptors DR4 and DR5, and/or an overexpression of the long isoform of 

caspase-8 inhibitor protein cellular Fas-associated death domain-like 

interleukin-1β-converting enzyme (FLICE)-like inhibitory protein (c-FLIPL). 

 The central aim of my PhD thesis was to gain further insight into the 

deregulation of the TRAIL signaling axis as potential tumor escape 

mechanism in OC. In the first part of my PhD thesis I elucidated whether 

human OC resistance to TRAIL may be overcome by an agonistic anti-human 

DR5 monoclonal antibody (AD5-10). I identified that co-administration of AD5-

10 with carboplatin exhibits more than an additive effect in vitro, which may be 

explained by the finding that carboplatin upregulates DR5 expression on OC 

cells irrespective of the p53 status. The combination therapy of AD5-10 with 

carboplatin eliminated large established platin resistant ovarian tumors in vivo, 
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reducing tumor size to undetectable levels in more than 50% of mice 

(P=0.002). In addition, I found that TRAIL and natural killer (NK) cell 

expression are abundant in the tumor microenvironment, and that depletion of 

NK cells abolishes the antitumor activity of AD5-10. Taken together, these 

data show that a combination of agonistic anti-DR5 monoclonal antibody such 

as AD5-10 and carboplatin is a promising regimen for treatment of OC. These 

results also highlight the interplay between a therapy addressing the 

apoptosis cascade and the role of the immune system. 

In the second part of my PhD thesis I focused on the physiological role 

of c-FLIPL in OC progression. To address this question, a loss of function 

approach was applied utilizing RNA interference (RNAi) in OC in vitro and in 

vivo. I was able to demonstrate that suppression of c-FLIPL enhanced 

sensitivity of human OC cells to TRAIL-mediated apoptosis and significantly 

decreased tumor development in vivo. Interestingly, I observed that 

downregulation of c-FLIPL decreased the rate of apoptosis and proliferation in 

vivo. The knockdown of c-FLIPL particularly inhibited the invasion of OC cells 

into the peritoneal cavity, which might be due to the high expression of TRAIL 

by NK cells in the tumor-stroma. Altogether, these results indicate that c-FLIPL 

regulates TRAIL-induced apoptosis in OC cells. 

I complemented my work by utilizing an established syngeneic ovarian 

tumor model kindly provided by a collaboration partner, and obtained some 

very first insights into the interplay between the TRAIL pathway and OC in the 

immunocompetent situation. I observed that DR5 expression is reduced in all 

ten transformed mouse ovarian surface epithelial (MOSE) cell lines when 

compared to normal (non-tumorigenic) MOSE cells. About 70% of tumorigenic 
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MOSE cell lines were resistant to TRAIL-induced apoptosis. In a preliminary 

animal experiment, the downregulation of mouse DR5 accelerated the 

development of ascites and decreased mouse life span, which is in line with 

previous observations that TRAIL receptors play a key role in human OC.  

 In conclusion, the data generated in the course of my PhD thesis 

indicate that DR5 and c-FLIPL, in the context of the TRAIL signaling pathway, 

play a fundamental role in OC pathogenesis and thus are potential targets for 

future OC therapy.  
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Zusammenfassung 

TRAIL (Tumor necrosis factor (TNF)-related apoptosis-inducing ligand) 

induziert in einer Vielzahl von Tumorzellen Apoptose, nicht jedoch in 

gesunden Zellen. Deshalb werden TRAIL selbst, sowie agonistische 

Antikörper für die funktionellen TRAIL-Rezeptoren (TRAIL-R1 (DR4) und 

TRAIL-R2 (DR5)) gegenwärtig in präklinischen und klinischen Studien für die 

Behandlung von diversen Erkrankungen untersucht. 

TRAIL ist im Mikroumfeld von Ovarialtumoren prävalent und wird mit 

verlängertem Überleben assoziiert. Mehr als zwei Drittel der 

Ovarialtumorpatientinnen haben einen gestörten TRAIL-Signalweg, ein 

wichtiges Faktum für Prognose und Therapiemöglichkeiten. Defekte im 

TRAIL-Signalweg beinhalten eine Reduzierung der funktionellen Rezeptoren 

DR4 und DR5 und/oder eine Überexpression der langen Isoform von c-FLIP 

(cellular Fas-associated death domain-like interleukin-1β-converting enzyme 

(FLICE)-like inhibitory protein, c-FLIPL). 

Das Hauptziel meiner Doktorarbeit war Einblicke in die Deregulierung 

des TRAIL-Signalweges als potentiellen Tumor-Escape-Mechanismus beim 

Ovarialkarzinom zu erhalten. Im ersten Teil meiner Arbeit habe ich untersucht, 

ob eine Resistenz gegen TRAIL beim Ovarialkarzinom durch einen 

agonistischen anti-humanen DR5 monoklonalen Antikörper (AD5-10) 

aufgehoben werden kann. Ich konnte zeigen, dass die gemeinsame 

Anwendung von AD5-10 mit Carboplatin einen mehr als additiven Effekt in 

vitro hat. Dies könnte dadurch erklärt werden, dass Carboplatin die DR5-

Expression an Ovarialkarzinomzellen, unabhängig von deren p53-Status, 
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steigert. Eine Kombinationstherapie von AD5-10 mit Carboplatin eliminiert 

etablierte, platinresistente Ovarialtumore in vivo und reduziert deren Größe in 

mehr als 50 % der Mäuse (P=0.002) bis unter die Nachweisgrenze. Zusätzlich 

konnte ich zeigen, dass TRAIL und Natürliche Killerzellen (NK-Zellen) im 

Tumor-Mikroumfeld in sehr hohem Ausmaß vorhanden sind und der Abbau 

von NK-Zellen die antitumorale Aktivität von AD5-10 aufhebt. 

Zusammengefasst zeigen diese Daten, dass eine Kombination eines 

agonistischen monoklonalen anti-DR5 Antikörpers wie AD5-10 und 

Carboplatin eine vielversprechende Therapie für die Behandlung des 

Ovarialkarzinoms sein kann. Diese Ergebnisse zeigen auch die Interaktion 

zwischen einer Therapie, die die Apoptose-Kaskade in Gang setzt, und der 

Rolle des Immunsystems. 

Im zweiten Teil meiner Arbeit habe ich mein Hauptaugenmerk auf die 

physiologische Rolle von c-FLIPL in der Ovarialkarzinomentstehung gelegt. 

Um auf diese Frage einzugehen, habe ich die Loss-of-Function-Methode, 

unter Verwendung von RNA Interferenz (RNAi) im Ovarialkarzinom in vitro 

und in vivo, angewendet. Es war mir möglich zu zeigen, dass durch die 

Unterdrückung von c-FLIPL die Sensitivität von menschlichen 

Ovarialkarzinomzellen für TRAIL-induzierte Apoptose erhöht und die 

Tumorentstehung in vivo gehemmt wird. Von besonderem Interesse war die 

Beobachtung, dass eine Reduzierung von c-FLIPL die Apoptoserate und die 

Proliferation in vivo senkt. Die Reduzierung von c-FLIPL verhinderte 

insbesondere die Invasion der Ovarialkarzinomzellen in die Peritonealhöhle, 

eine Beobachtung die auf die hohe Expression von TRAIL durch die NK-

Zellen im Tumorstroma zurückzuführen sein könnte. Alles in allem zeigen 
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diese Resultate, dass c-FLIPL die TRAIL-induzierte Apoptose in 

Ovarialkarzinomzellen wesentlich beeinflusst. 

Ich habe meine Arbeit durch die Verwendung eines etablierten, 

immunkompetenten Ovarialtumor-Modells ergänzt, welches freundlicherweise 

von einem Kooperationspartner zur Verfügung gestellt wurde. Durch die 

Anwendung dieses Modells erhielt ich allererste Einsichten in die Interaktion 

zwischen dem TRAIL-Signalweg und dem Ovarialkarzinom in einer 

immunkompetenten Situation. Ich konnte beobachten, dass DR5 in allen zehn 

tumorigenen MOSE (Mouse-Ovarial-Surface-Epithel)-Zelllinien weniger 

exprimiert wird als in normalen (nicht-tumorigenen) MOSE-Zellen. Rund 70 % 

der tumorigenen MOSE-Zelllinien waren resistent gegen TRAIL-induzierte 

Apoptose. In einem vorangegangenen Tierexperiment hat die Reduktion von 

Maus-DR5 die Entstehung von Aszites beschleunigt und die Lebensspanne 

der Mäuse verkürzt. Dies stimmt mit unseren früheren Beobachtungen, 

bezüglich der zentralen Rolle von TRAIL-Rezeptoren im menschlichen 

Ovarialkarzinom, überein. 

Zusammenfassend zeigen die Ergebnisse meiner Dissertation, dass 

DR5 und c-FLIPL im Zusammenhang mit dem TRAIL-Signalweg eine 

fundamentale Rolle in der Pathogenese des Ovarialkarzinoms spielen und 

dass DR5 und c-FLIPL potentielle Ziele für die Therapie des Ovarialkarzinoms 

darstellen. 
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1. Introduction 

1.1. Ovarian Cancer 

Ovarian cancer (OC) is the most lethal gynecological malignancy and the fifth 

leading cause of cancer-related deaths among women (1, 2). OC originating 

from the ovarian surface epithelium (OSE) is the most common form and is 

displayed in a range of histological subtypes. The OSE consists of a single 

layer of squamous to cuboid cells covering the surface of the ovary and arises 

ontogenetically from the mesothelial lining of the embryonic coelom. It shares 

many common histological features with the rest of the peritoneum, albeit 

being phenotypically different and developmentally less mature than the 

peritoneum itself (3). Generally accepted risk factors for OC include genetic 

predispositions based on germline mutations in DNA repair genes (BRCA1, 

BRCA2, HNPCC), and hormonal and lifestyle factors such as early menarche, 

late menopause and number of pregnancies. Most of these risk factors 

influence the number and quality of the repeated trauma to the OSE during 

ovulation (incessant ovulation theory (4)) and in parallel paracrine hormonal 

exposure from ovarian stroma. Surface papilations, invaginations and 

inclusion cysts of OSE, which may develop in an ovulating ovary, are 

therefore thought to be putative premalignant lesions due to their increased 

incidence in high-risk populations. 

 

1.2. TRAIL and its receptors 

Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), also 

designated as Apo2L, is a type II transmembrane protein of about 33-35 kDa 
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(5). TRAIL was identified by homology search of a highly conserved sequence 

motif characteristic for the TNF family members (6, 7). Like Fas ligand (FasL) 

and TNF-α, TRAIL can be cleaved from the membrane by metalloproteases, 

and the resulting soluble TRAIL has been shown to maintain biological 

activity. The extracellular domain of TRAIL forms a bell-shaped homotrimer, 

like other ligands of the TNF family (8, 9), by a cysteine residue at position 

230 that coordinates with divalent zinc. Human TRAIL has been proven to 

bind to five different paralogous receptors; TRAIL-R1/DR4, TRAIL-R2/DR5, 

TRAIL-R3/DcR1, TRAIL-R4/DcR2 and osteoprotegrin (10). While DR4 and 

DR5 are intact functional TRAIL receptors, the others do not contain a 

functional death domain and may thus act as decoy receptors competing with 

DR4 and DR5 for TRAIL (Fig. 1.1) (11). Interestingly, the genes for the DR4, 

DR5, DcR1, and DcR2 receptors are tightly clustered on human chromosme 

8p21-22 (12-14). Osteoprotegrin (OPG) is a soluble receptor stimulating 

osteoclastogenesis by competing with receptor activator of NF-KB (RANK) for 

RANK ligand. It has however been shown to bind TRAIL with only a very low 

affinity (15). 

Interestingly, in mice it has been shown that there is only one death-

inducing receptor homologous to human DR5 (mTRAIL-R2/mDR5), and two 

potential decoy receptors (mDcTRAIL-R1/mDcR1 and mDcTRAIL-R2/mDcR2) 

specific for mouse TRAIL (Fig. 1.1) (16). Mouse DR5 (mDR5) contains the 

death domain and signals apoptosis in response to both mouse and human 

TRAIL. mDcR1 is a GPI-anchored membrane protein that binds mouse, but 

not human TRAIL. mDcR2 can be expressed as two alternative splicing 

variants, a secreted form (mDcR2S) and a transmembrane form (mDcR2L), 
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which binds with both mouse and human TRAIL. OPG can also bind to mouse 

TRAIL, and may act as soluble decoy receptor for TRAIL. 

In humans, DR4 and DR5 receptors are characterized by an 

extracellular cystein-rich domain and an intracellular death domain giving 

them the ability to trigger the assembly of the death-inducing signaling 

complex (DISC) upon ligand stimulation which initiates the apoptotic cascade. 

The cytoplasmic regions of both DR4 and DR5 contain a death domain 

homologous to Fas and TNF-R1. Recent studies have shown that DR5, and 

less clearly DR4, signal apoptosis in a similar way to Fas (17). Mutations in 

DR5 encoding gene have been described in several cancers like in head and 

neck cancer (18), non small cell lung (19), breast cancer (20), colorectal 

cancer (21), gastric cancer, and hepatocellualr carcinoma (22). 

 

 
 
 
 
 
Figure 1.1. TRAIL receptors in 
human and mouse (adapted from 
(23)). TRAIL binds to two functional 
receptors, DR4 and DR5, in human, 
and one functional receptor in mouse, 
mDR5. Functional receptors encode 
intact death domain and can therefore 
transmit signals, which may result in 
induction of apoptosis. Also, TRAIL 
can bind with DcR1, DcR2 and OPG 
in both species (mDcR1 and mDcR2 
in mouse), which lack functional death 
domain and therefore act as decoy 
receptors. 
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1.3. TRAIL signaling pathway 

Trimerization of DR4 and DR5 by TRAIL on the surface of target cells leads to 

recruitment of adaptor molecule Fas-associated death domain protein 

(FADD), which in turn leads to recruitment and activation of caspase-8 (24). In 

certain cell types, type I (type I proteins are characterized by having their 

amino terminus side exposed on the exterior side of the membrane and the 

carboxy terminus exposed on the cytoplasmic side), activation of caspase-8 is 

sufficient for subsequent activation of the effector caspase-3 to execute 

cellular apoptosis (extrinsic pathway, Fig. 1.2) (25). In other cell types, type II 

(type II membrane proteins are characterized by having their amino terminus 

exposed on the cytoplasmic side of the cell and the carboxy terminus exposed 

on the exterior), amplification occurs through the mitochondrial pathway 

(intrinsic pathway, Fig. 1.2), which is initiated by cleavage of Bid by caspase-8 

(25). The truncated Bid (tBid) translocates to the mitochondria and leads to 

Bax and Bak-mediated release of cytochrome-c (cyt-c) and Smac/DIABLO 

from mitochondria. The released cyt-c binds to Apaf-1 to activate caspase-9, 

which in turn activates caspase-3. The Smac/DIABLO promotes caspase-3 

activation by preventing IAPs from attenuating caspases. Activation of 

extrinsic and intrinsic pathways by TRAIL depends on the cellular context. As 

a potential resistance mechanism, in contrast to DR4 and DR5, DcR1 is a 

GPI-anchored membrane protein and does not mediate apoptosis; DcR2 

contains a truncated death domain, which also does not mediate apoptosis. 

Hence, DcR1 and DcR2 may act as decoy receptors, which compete with 

DR4 and DR5 for TRAIL binding. Cellular Fas-associated death domain-like 

interleukin-1β-converting enzyme (FLICE)-like inhibitory protein (c-FLIP) can 
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prevent the recruitment of caspase-8. Bcl-2 and Bcl-xL can suppress the 

Bax/Bak-mediated release of cyt-c and Smac/DIABLO from mitochondria. 

IAPs can attenuate the activities of caspase-9 and caspase-3, although 

Smac/DIABLO can counteract IAPs (Fig. 1.2) (23). The cytoplasmic regions of 

DR5 and DcR2 contain potential TRAF-binding motifs, which may be 

responsible for NF-kB and MAP kinase activation by these receptors (23). 

 
Figure 1.2. Schematic overview illustrating the TRAIL-induced apoptosis 
signaling pathway. Upon ligation of TRAIL ligand to its respective receptors DR4 
and DR5, FADD protein is recruited, which in turn leads to recruitment and activation 
of caspase-8. Activation of caspase-8 leads to either activation of cell- extrinsic 
(mitochondria independent) or cell-intrinsic (mitochondria dependent) pathway. Both 
pathways lead to activation of active caspases such as caspase 3, which cause 
chromatin condensation and apoptosis. 
 

1.4. c-FLIP as inhibitor of TRAIL functional receptors-

mediated apoptosis 

c-FLIP was initially identified in 1997 in various γ-herpesviruses and poxvirus 

MCV (26-28). Viral FLICE inhibitory proteins (v-FLIP) were named so as they 

displayed inhibitory effects on apoptosis through caspase-8 inhibition. In 1997 

human cellular-FLIP (c-FLIP) was identified, also named FLAME-1, I-FLICE, 
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Casper, CASH, MRIT, CLARP, and usurpin, which is located on chromosome 

2q33-34 (29-36). While there are 13 distinct splice variants of c-FLIP mRNA 

(37), three splice variants were detected at the protein level: c-FLIPL, c-FLIPs 

and c-FLIPR (38).  

Both c-FLIPL and c-FLIPs have been shown to interact with FADD and 

procaspase-8 and consequently, inhibit apoptosis induced by death receptors 

like FAS, DR4 and DR5 (Fig. 1.3 and Fig. 1.4) (29-31, 33-36). Although, c-

FLIP proteins (c-FLIPS and c-FLIPL) are recruited to the DISC, they do not 

preclude capsase-8 from recruitment to the DISC (39). c-FLIPL is cleaved into 

two subunits  p43 and p12 subunits, p43 subunit remains at the DISC and p12 

subunit releases (Fig. 1.4A) (39). In the presence of large amount c-FLIPL, 

caspase-8 is incompletely cleaved upon recruitment to the DISC (Fig. 1.4.C) 

(39, 40). However, in presence of large amount of c-FLIPs, processing of 

capsase-8 is completely prevented at the DISC (Fig. 1.4.D) (40). 

 

 

Figure 1.3. Diagram showing structural similarities between caspase-8 and c-
FLIP proteins [adapted from (41)]. c-FLIPL encoded tandem death effector domains 
(DEDs) and caspase like domain; however, it lacks amino acid residues that are 
required for caspase activity. c-FLIPs and v-FLIP are similar consisting of two DEDs 
and a short c-terminal part. 
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Figure 1.4. Model showing mechanism of action of c-FLIP at the DISC [adapted 
from (41)]. A) CD95L binds with CD95 and induces formation of the DISC. B-D) The 
ratio of procaspe-8 and c-FLIP proteins at the DISC controls cleavage and activation 
of caspase-8. B) In presence of small amount of c-FLIP, procaspase-8 is cleaved, 
producing active caspase-8 heterotetramer composed of the p18 and p10 subunits. 
C) In the presence of high amount of c-FLIPL, procaspase-8 is cleaved upon 
recruitment to the DISC; however, its cleavage is incomplete. D) In the presence of a 
large amount of c-FLIPs recruitment of procaspase-8 at the DISC occurs; however, 
procaspase-8 remains unprocessed. 
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1.5. TRAIL and immunosurveillance 

Natural killer (NK) cells and cytotoxic T lymphocytes both have the ability to 

destroy tumor cells by various mechanisms, one of them being the production 

of death ligands such as FasL or TRAIL. While TRAIL mRNA is constitutively 

expressed in a wide variety of normal tissues, the expression of functional 

TRAIL protein appears to be rather restricted to immune cells (42-48). In 

addition, TRAIL-deficient mice do not show large abnormalities, except for 

impaired tumor immunosurveillance and higher sensitivity to experimental 

autoimmune diseases, such as collagen-induced arthritis (CIA), 

streptozotocin-induced diabetes, and experimental autoimmune 

encephalomyelitis (EAE). These facts support the hypothesis of the 

physiological role of TRAIL in the immune system (23, 49-51). 

 TRAIL is involved in the cytotoxic activity of activated NK cells directed 

against tumor cells in vitro (52), and is at least in part responsible for their 

antimetastatic activities in vivo (53, 54). The physiological regulation of NK 

cell activity is largely dependent on expression of MHC class I molecules. In 

normal cells, NK cells receive inhibitory stimulation from MHC class I 

molecules on the surface of their respective target cells. Nevertheless, 

expression of stimulatory molecules, such as CD27 or CD28, was also found 

in NK cells. These receptors may activate NK cell function upon interaction 

with their specific ligands, CD70 or CD80/CD86 respectively, which are found 

to be expressed in a variety of tumors (55). TRAIL has been shown to play a 

critical role in interferon (IFN)-γ-dependent NK cell protection from tumor 

metastasis (56, 57). Malignant transformation of cells may result in expression 

of some ligand for NK cell-activating receptor (NKR) and/or downregulation of 
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MHC class I (MHC-I) molecules engaging NK cell inhibiting receptor (KIR), 

thereby activating NK cells. The activated NK cells produce IFN-γ, which in 

turn up-regulates TRAIL expression on NK cells and sensitizes transformed 

cells to TRAIL, resulting in tumor suppression (Fig. 1.5). 

 Furthermore, IFN-producing killer dendritic cells (IKDCs) mediate lysis 

of tumor cells, which are poorly recognized by NK cells, by secreting high 

levels of IFN-γ followed by TRAIL dependent apoptosis (58). A number of 

recent studies using neutralizing antibodies to TRAIL, or TRAIL-/- mice, 

showed that TRAIL could limit the development of experimental tumors (52, 

54). In these mouse tumor models, liver NK cells were the important source 

of TRAIL, and were responsible for protection against liver metastasis of 

TRAIL-sensitive tumors (49, 52, 54, 59). The in vivo effect of IL-12 or α -

galactosylceramide (α-GalCer) appeared to be due, at least, to an increase 

in the level of IFN-γ and TRAIL in these mice following the biological 

therapies (57, 60). A role for TRAIL in host immunosurveillance against 

primary tumor development has also been described (49, 52, 61). All these 

findings provide support for the physiological function of TRAIL as a tumor 

surveillance factor. 
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Figure 1.5. The model indicates the role of TRAIL in immunosurveillance 
hindering tumor development. Natural killer cell activating receptors (NKR) 
recognize ligands on tumor cells and activate protein tyrosine kinase (PTK), whose 
activity is inhibited by killer inhibitory receptors (KIR) that recognize MHC class I 
antigens and activate protein tyrosine phosphatases (PTP). The activated NK cells 
produce IFN-γ, which subsequently activates expression of TRAIL on activated NK 
cells. As a result, activated NK cells eliminate the transformed cells in a TRAIL-
dependent manner. 



Introduction 

   19 

1.6. References 

1. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 

2009. CA Cancer J Clin 2009 Jul-Aug;59(4):225-49. 

2. Landen CN, Jr., Birrer MJ, Sood AK. Early events in the pathogenesis 

of epithelial ovarian cancer. J Clin Oncol 2008 Feb 20;26(6):995-1005. 

3. Wong AS, Auersperg N. Ovarian surface epithelium: family history and 

early events in ovarian cancer. Reprod Biol Endocrinol 2003 Oct 7;1:70. 

4. Fathalla MF. Factors in the causation and incidence of ovarian cancer. 

Obstet Gynecol Surv 1972 Nov;27(11):751-68. 

5. Wajant H, Pfizenmaier K, Scheurich P. TNF-related apoptosis inducing 

ligand (TRAIL) and its receptors in tumor surveillance and cancer therapy. 

Apoptosis 2002 Oct;7(5):449-59. 

6. Wiley SR, Schooley K, Smolak PJ, et al. Identification and 

characterization of a new member of the TNF family that induces apoptosis. 

Immunity 1995 Dec;3(6):673-82. 

7. Pitti RM, Marsters SA, Ruppert S, Donahue CJ, Moore A, Ashkenazi A. 

Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis 

factor cytokine family. J Biol Chem 1996 May 31;271(22):12687-90. 

8. Hymowitz SG, O'Connell MP, Ultsch MH, et al. A unique zinc-binding 

site revealed by a high-resolution X-ray structure of homotrimeric 

Apo2L/TRAIL. Biochemistry 2000 Feb 1;39(4):633-40. 

9. Cha SS, Kim MS, Choi YH, et al. 2.8 A resolution crystal structure of 

human TRAIL, a cytokine with selective antitumor activity. Immunity 1999 

Aug;11(2):253-61. 



Introduction 

   20 

10. Ashkenazi A. Targeting death and decoy receptors of the tumour-

necrosis factor superfamily. Nat Rev Cancer 2002 Jun;2(6):420-30. 

11. Clancy L, Mruk K, Archer K, et al. Preligand assembly domain-

mediated ligand-independent association between TRAIL receptor 4 (TR4) 

and TR2 regulates TRAIL-induced apoptosis. Proc Natl Acad Sci U S A 2005 

Dec 13;102(50):18099-104. 

12. Degli-Esposti MA, Dougall WC, Smolak PJ, Waugh JY, Smith CA, 

Goodwin RG. The novel receptor TRAIL-R4 induces NF-kappaB and protects 

against TRAIL-mediated apoptosis, yet retains an incomplete death domain. 

Immunity 1997 Dec;7(6):813-20. 

13. Degli-Esposti MA, Smolak PJ, Walczak H, et al. Cloning and 

characterization of TRAIL-R3, a novel member of the emerging TRAIL 

receptor family. J Exp Med 1997 Oct 6;186(7):1165-70. 

14. Walczak H, Degli-Esposti MA, Johnson RS, et al. TRAIL-R2: a novel 

apoptosis-mediating receptor for TRAIL. EMBO J 1997 Sep 1;16(17):5386-97. 

15. Truneh A, Sharma S, Silverman C, et al. Temperature-sensitive 

differential affinity of TRAIL for its receptors. DR5 is the highest affinity 

receptor. J Biol Chem 2000 Jul 28;275(30):23319-25. 

16. Schneider P, Olson D, Tardivel A, et al. Identification of a new murine 

tumor necrosis factor receptor locus that contains two novel murine receptors 

for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). J Biol 

Chem 2003 Feb 14;278(7):5444-54. 

17. Wang S, El-Deiry WS. TRAIL and apoptosis induction by TNF-family 

death receptors. Oncogene 2003 Nov 24;22(53):8628-33. 



Introduction 

   21 

18. Pai SI, Wu GS, Ozoren N, et al. Rare loss-of-function mutation of a 

death receptor gene in head and neck cancer. Cancer Res 1998 Aug 

15;58(16):3513-8. 

19. Lee SH, Shin MS, Kim HS, et al. Alterations of the DR5/TRAIL receptor 

2 gene in non-small cell lung cancers. Cancer Res 1999 Nov 15;59(22):5683-

6. 

20. Shin MS, Kim HS, Lee SH, et al. Mutations of tumor necrosis factor-

related apoptosis-inducing ligand receptor 1 (TRAIL-R1) and receptor 2 

(TRAIL-R2) genes in metastatic breast cancers. Cancer Res 2001 Jul 

1;61(13):4942-6. 

21. Arai T, Akiyama Y, Okabe S, Saito K, Iwai T, Yuasa Y. Genomic 

organization and mutation analyses of the DR5/TRAIL receptor 2 gene in 

colorectal carcinomas. Cancer Lett 1998 Nov 27;133(2):197-204. 

22. Jeng YM, Hsu HC. Mutation of the DR5/TRAIL receptor 2 gene is 

infrequent in hepatocellular carcinoma. Cancer Lett 2002 Jul 26;181(2):205-8. 

23. Yagita H, Takeda K, Hayakawa Y, Smyth MJ, Okumura K. TRAIL and 

its receptors as targets for cancer therapy. Cancer Sci 2004 Oct;95(10):777-

83. 

24. Peter ME. The TRAIL DISCussion: It is FADD and caspase-8! Cell 

Death Differ 2000 Sep;7(9):759-60. 

25. Scaffidi C, Fulda S, Srinivasan A, et al. Two CD95 (APO-1/Fas) 

signaling pathways. Embo J 1998 Mar 16;17(6):1675-87. 

26. Bertin J, Armstrong RC, Ottilie S, et al. Death effector domain-

containing herpesvirus and poxvirus proteins inhibit both Fas- and TNFR1-

induced apoptosis. Proc Natl Acad Sci U S A 1997 Feb 18;94(4):1172-6. 



Introduction 

   22 

27. Hu S, Vincenz C, Buller M, Dixit VM. A novel family of viral death 

effector domain-containing molecules that inhibit both CD-95- and tumor 

necrosis factor receptor-1-induced apoptosis. J Biol Chem 1997 Apr 

11;272(15):9621-4. 

28. Thome M, Schneider P, Hofmann K, et al. Viral FLICE-inhibitory 

proteins (FLIPs) prevent apoptosis induced by death receptors. Nature 1997 

Apr 3;386(6624):517-21. 

29. Goltsev YV, Kovalenko AV, Arnold E, Varfolomeev EE, Brodianskii VM, 

Wallach D. CASH, a novel caspase homologue with death effector domains. J 

Biol Chem 1997 Aug 8;272(32):19641-4. 

30. Han DK, Chaudhary PM, Wright ME, et al. MRIT, a novel death-

effector domain-containing protein, interacts with caspases and BclXL and 

initiates cell death. Proc Natl Acad Sci U S A 1997 Oct 14;94(21):11333-8. 

31. Hu S, Vincenz C, Ni J, Gentz R, Dixit VM. I-FLICE, a novel inhibitor of 

tumor necrosis factor receptor-1- and CD-95-induced apoptosis. J Biol Chem 

1997 Jul 11;272(28):17255-7. 

32. Inohara N, Koseki T, Hu Y, Chen S, Nunez G. CLARP, a death effector 

domain-containing protein interacts with caspase-8 and regulates apoptosis. 

Proc Natl Acad Sci U S A 1997 Sep 30;94(20):10717-22. 

33. Irmler M, Thome M, Hahne M, et al. Inhibition of death receptor signals 

by cellular FLIP. Nature 1997 Jul 10;388(6638):190-5. 

34. Rasper DM, Vaillancourt JP, Hadano S, et al. Cell death attenuation by 

'Usurpin', a mammalian DED-caspase homologue that precludes caspase-8 

recruitment and activation by the CD-95 (Fas, APO-1) receptor complex. Cell 

Death Differ 1998 Apr;5(4):271-88. 



Introduction 

   23 

35. Shu HB, Halpin DR, Goeddel DV. Casper is a FADD- and caspase-

related inducer of apoptosis. Immunity 1997 Jun;6(6):751-63. 

36. Srinivasula SM, Ahmad M, Ottilie S, et al. FLAME-1, a novel FADD-like 

anti-apoptotic molecule that regulates Fas/TNFR1-induced apoptosis. J Biol 

Chem 1997 Jul 25;272(30):18542-5. 

37. Djerbi M, Darreh-Shori T, Zhivotovsky B, Grandien A. Characterization 

of the human FLICE-inhibitory protein locus and comparison of the anti-

apoptotic activity of four different flip isoforms. Scand J Immunol 2001 Jul-

Aug;54(1-2):180-9. 

38. Yang JK. FLIP as an anti-cancer therapeutic target. Yonsei Med J 2008 

Feb 29;49(1):19-27. 

39. Scaffidi C, Schmitz I, Krammer PH, Peter ME. The role of c-FLIP in 

modulation of CD95-induced apoptosis. J Biol Chem 1999 Jan 

15;274(3):1541-8. 

40. Krueger A, Schmitz I, Baumann S, Krammer PH, Kirchhoff S. Cellular 

FLICE-inhibitory protein splice variants inhibit different steps of caspase-8 

activation at the CD95 death-inducing signaling complex. J Biol Chem 2001 

Jun 8;276(23):20633-40. 

41. Krueger A, Baumann S, Krammer PH, Kirchhoff S. FLICE-inhibitory 

proteins: regulators of death receptor-mediated apoptosis. Mol Cell Biol 2001 

Dec;21(24):8247-54. 

42. Kayagaki N, Yamaguchi N, Nakayama M, et al. Involvement of TNF-

related apoptosis-inducing ligand in human CD4+ T cell-mediated cytotoxicity. 

J Immunol 1999 Mar 1;162(5):2639-47. 



Introduction 

   24 

43. Kayagaki N, Yamaguchi N, Nakayama M, Eto H, Okumura K, Yagita H. 

Type I interferons (IFNs) regulate tumor necrosis factor-related apoptosis-

inducing ligand (TRAIL) expression on human T cells: A novel mechanism for 

the antitumor effects of type I IFNs. J Exp Med 1999 May 3;189(9):1451-60. 

44. Kayagaki N, Yamaguchi N, Nakayama M, et al. Expression and 

function of TNF-related apoptosis-inducing ligand on murine activated NK 

cells. J Immunol 1999 Aug 15;163(4):1906-13. 

45. Griffith TS, Wiley SR, Kubin MZ, Sedger LM, Maliszewski CR, Fanger 

NA. Monocyte-mediated tumoricidal activity via the tumor necrosis factor-

related cytokine, TRAIL. J Exp Med 1999 Apr 19;189(8):1343-54. 

46. Nakayama M, Kayagaki N, Yamaguchi N, Okumura K, Yagita H. 

Involvement of TWEAK in interferon gamma-stimulated monocyte cytotoxicity. 

J Exp Med 2000 Nov 6;192(9):1373-80. 

47. Fanger NA, Maliszewski CR, Schooley K, et al. Human dendritic cells 

mediate cellular apoptosis via tumor necrosis factor-related apoptosis-

inducing ligand (TRAIL) 

Monocyte-mediated tumoricidal activity via the tumor necrosis factor-related 

cytokine, TRAIL. J Exp Med 1999 Oct 18 

Apr 19;190(8):1155-64. 

48. Koga Y, Matsuzaki A, Suminoe A, Hattori H, Hara T. Neutrophil-derived 

TNF-related apoptosis-inducing ligand (TRAIL): a novel mechanism of 

antitumor effect by neutrophils. Cancer Res 2004 Feb 1;64(3):1037-43. 

49. Cretney E, Takeda K, Yagita H, Glaccum M, Peschon JJ, Smyth MJ. 

Increased susceptibility to tumor initiation and metastasis in TNF-related 



Introduction 

   25 

apoptosis-inducing ligand-deficient mice. J Immunol 2002 Feb 1;168(3):1356-

61. 

50. Sedger LM, Glaccum MB, Schuh JC, et al. Characterization of the in 

vivo function of TNF-alpha-related apoptosis-inducing ligand, TRAIL/Apo2L, 

using TRAIL/Apo2L gene-deficient mice. Eur J Immunol 2002 

Aug;32(8):2246-54. 

51. Lamhamedi-Cherradi SE, Zheng SJ, Maguschak KA, Peschon J, Chen 

YH. Defective thymocyte apoptosis and accelerated autoimmune diseases in 

TRAIL-/- mice. Nat Immunol 2003 Mar;4(3):255-60. 

52. Takeda K, Smyth MJ, Cretney E, et al. Critical role for tumor necrosis 

factor-related apoptosis-inducing ligand in immune surveillance against tumor 

development. J Exp Med 2002 Jan 21;195(2):161-9. 

53. Smyth MJ, Hayakawa Y, Takeda K, Yagita H. New aspects of natural-

killer-cell surveillance and therapy of cancer. Nat Rev Cancer 2002 

Nov;2(11):850-61. 

54. Takeda K, Smyth MJ, Cretney E, et al. Involvement of tumor necrosis 

factor-related apoptosis-inducing ligand in NK cell-mediated and IFN-gamma-

dependent suppression of subcutaneous tumor growth. Cell Immunol 2001 

Dec 15;214(2):194-200. 

55. Kelly JM, Darcy PK, Markby JL, et al. Induction of tumor-specific T cell 

memory by NK cell-mediated tumor rejection. Nat Immunol 2002 Jan;3(1):83-

90. 

56. Takeda K, Hayakawa Y, Smyth MJ, et al. Involvement of tumor 

necrosis factor-related apoptosis-inducing ligand in surveillance of tumor 

metastasis by liver natural killer cells. Nat Med 2001 Jan;7(1):94-100. 



Introduction 

   26 

57. Smyth MJ, Cretney E, Takeda K, et al. Tumor necrosis factor-related 

apoptosis-inducing ligand (TRAIL) contributes to interferon gamma-dependent 

natural killer cell protection from tumor metastasis. J Exp Med 2001 Mar 

19;193(6):661-70. 

58. Taieb J, Chaput N, Menard C, et al. A novel dendritic cell subset 

involved in tumor immunosurveillance. Nat Med 2006 Feb;12(2):214-9. 

59. Seki N, Hayakawa Y, Brooks AD, et al. Tumor necrosis factor-related 

apoptosis-inducing ligand-mediated apoptosis is an important endogenous 

mechanism for resistance to liver metastases in murine renal cancer. Cancer 

Res 2003 Jan 1;63(1):207-13. 

60. Hayakawa Y, Takeda K, Yagita H, et al. Critical contribution of IFN-

gamma and NK cells, but not perforin-mediated cytotoxicity, to anti-metastatic 

effect of alpha-galactosylceramide. Eur J Immunol 2001 Jun;31(6):1720-7. 

61. Cretney E, Shanker A, Yagita H, Smyth MJ, Sayers TJ. TNF-related 

apoptosis-inducing ligand as a therapeutic agent in autoimmunity and cancer. 

Immunol Cell Biol 2006 Feb;84(1):87-98. 

62. Smyth MJ, Takeda K, Hayakawa Y, Peschon JJ, van den Brink MR, 

Yagita H. Nature's TRAIL--on a path to cancer immunotherapy. Immunity 

2003 Jan;18(1):1-6. 

 

 



Aim 

   27 

2. Aim of my PhD thesis 

The overall aim of my PhD study was to decipher the key role of the TRAIL 

signaling pathway in terms of DR5 and c-FLIPL in inhibiting OC development. 

Moreover, I also aimed to shed some light on the mechanisms by which OC 

cells escape the natural immunosurveillance and subsequently acquire the 

potential to develop overt malignancy.  

In the course of my PhD thesis I used two different animal models that 

made it possible to investigate different aspects of TRAIL-mediated 

cytotoxicity in protecting the host from ovarian tumor formation in vivo:  

The xenograft mouse model reflects similarities with human OC but 

tumorigenesis can only be studied in immune deficient animals providing a 

strategy to model late stages of OC progression. I prepared and inoculated 

parental and genetically modified human OC cells in nude mice which lack T 

cell lympocytes and therefore prevent xenograft rejection of the introduced 

tumors. This model offered an ideal environment to perform in vivo functional 

analysis of the role of DR5 and c-FLIPL in human ovarian tumor development, 

which is not possible in an immunocompetent mouse model. 

 The syngeneic mouse model naturally displays species differences 

with human cancer, but tumorigenesis can be studied in an immunocompetent 

setting, which reflects both early and late stages of the disease. I applied this 

model in pathogen-free C57BL/6 mice. 
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To provide a clear layout of my PhD thesis, two specific aims were 

defined: 

Specific Aim-I. Functional analysis of TRAIL signaling pathway in OC 

progression. In particular, my aim was to describe the molecular basis of DR5 

and c-FLIPL on the outgrowth of ovarian tumor in vitro and in vivo. Moreover, I 

also aimed to study the role of NK-mediated tumor immunity against OC.  

Specific Aim-II. Characterisation of the TRAIL pathway in a syngeneic mouse 

model of OC. Specifically, I aimed to analyze the expression of mDR5, c-

FLIP, and caspase-8 in ten established transformed mouse ovarian surface 

epithelial (MOSE) cell lines and to compare their expression to normal (non-

tumorigenic) MOSE cells, as well as to measure their sensitivity to TRAIL-

induced apoptosis. Furthermore, I aimed to apply loss of function approach to 

analyze the influence of DR5 on the development of OC in immunocompetent 

mice. 
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Abstract 

The TNF-related apoptosis-inducing ligand (TRAIL) induces apoptosis 

specifically in cancer cells with little effect on normal cells. We have previously 

demonstrated that TRAIL signaling is altered in most ovarian cancer (OC) 

patients, and that resistance to TRAIL contributes to OC progression. In this 

study we investigated whether resistance to TRAIL may be overcome by a 

monoclonal TRAILR2 (DR5) agonistic antibody (AD5-10). We found that the 

joint presence of AD5-10 with TRAIL and NK-cells expressed TRAIL 

resensitizes OC cells to apoptosis in vitro and in vivo respectively. The 

combination of AD5-10 with carboplatin exerts a more than additive effect in 

vitro, which may at least partially be explained by the fact that carboplatin 

triggers DR5 expression on OC cells. Moreover, AD5-10 restores the 

sensitivity of platin-resistant OC to carboplatin in vivo. In addition, we found 

that TRAIL expression and natural killer (NK) cells are abundant in the tumor 

microenvironment, and that depletion of NK cells abolishes the antitumor 

activity of AD5-10. This indicates that NK-mediated immunosurveillance 

against OC might be mediated by TRAIL and that apoptosis-induced by AD5-

10 requires the presence of NK cells. In conclusion, this study indicates a key 

role and strong antitumorigenic effect of DR5, and highlights a novel link 

between NK-mediated immunosurveillance and activation of DR5-mediated 

apoptosis in OC. 
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Introduction 

Ovarian cancer (OC) is the most lethal gynaecological cancer and the fifth 

leading cause of cancer-related deaths among women in western 

industrialized countries (1, 2). OC originating from the ovarian surface 

epithelium (OSE) is the most common form and displays a range of 

histological subtypes (3). While most OCs are sensitive to platin-based 

chemotherapy at the time of diagnosis, recurrence of the disease is frequent, 

and ultimately platin-resistant disease develops in all patients. 

 Apoptosis is important for maintaining cellular homeostasis in normal 

tissues by eliminating disordered cells, and defects in the apoptosis pathway 

may lead to cancer (4). The apoptotic cascade can be stimulated by death 

receptors, resulting in activation of caspases (5). Trimerization of TRAIL 

(tumor necrosis factor related apoptosis-inducing ligand) functional receptors 

TRAILR1 (DR4) or TRAILR2 (DR5) by their ligands leads to assembly of the 

death-inducing signaling complex (DISC), which initiates the apoptotic 

cascade (6). DR4 and DR5 are characterized by an extracellular cystein-rich 

domain and an intracellular death domain, giving them the ability to trigger the 

assembly of the DISC. We have previously found that TRAIL is highly 

expressed in the human OC microenvironment, but that tumor tissues display 

a reduced number of TRAIL functional receptors (7). 

 One major physiological role of TRAIL is the mediation of natural 

immunity and the elimination of developing tumors (8, 9). Previous studies 

have shown that soluble TRAIL, or agonistic monoclonal antibodies specific 

for functional TRAIL receptors, exhibit tumoricidal activities, a phenomenon 

that has been tested in clinical trials (10). The agonistic human DR5 specific 
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monoclonal antibody AD5-10 used in this study was reported to mediate 

antitumor effects in various tumor cells and due to its unique binding site does 

not compete with TRAIL for binding to DR5 in contrast to other agonistic DR5 

antibodies (11). 

 In the current study, we identified the functional role of DR5 in OC 

progression, and shed light on a novel strategy to eliminate OC in a preclinical 

mouse model. Moreover, we show for the first time that the function of NK 

cells is necessary for the activation of DR5-mediated apoptosis and that the 

presence of NK cells is highly correlated with a longer life span in xenograft 

mice. 
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Material and methods 

Drugs 

Carboplatin, paclitaxel (both EBEWE), bevacizumab (Roche), lapatinib 

(GlaxoSmithKline), agonistic DR5 monoclonal antibody (AD5-10) prepared as 

described previously (11), and recombinant human soluble TRAIL (Alexis) 

were used for stimulation of OC cell lines at various concentrations.  

 

Cell culture 

The human OC cell lines MDAH-2774 (ovarian endometroid adenocarcinoma 

(OEA)-derived cell line, originating from ascitic fluid of a patient (12)), and a 

platin resistant sub-line of the OC cell line A2780 (human epithelial OC cell 

line established from tumor tissue (13)) were cultured in RPMI 1640 medium 

(Invitrogen). The OC cell line ES-2 (human ovarian clear cell carcinoma cell 

line taken from a 47-year-old woman (14)) was cultured in McCoy’s medium 

(Invitrogen). Medium was supplemented with 10% FCS (PAA Laboratories 

GmbH), 1 mmol/L glutamine, and 1% penicillin/streptomycin (PAA 

Laboratories GmbH). MDAH-2774 and ES-2 cell lines were obtained from the 

American Type Culture Collection (ATCC, Manassas, VA), and the cell line 

A2780 was obtained from the European Collection of Cell Cultures (ECACC, 

Salisbury, Wiltshire, UK). 

 

Determination of apoptosis 

MDAH-2774, A2780, and ES-2 OC cell lines were plated at a density of 5 x 

104 cells/well in 24-well plates and incubated for 24 h prior to stimulation. 

Then cells were treated with either AD5-10 (1 µg/ml) or carboplatin (100 
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µg/ml), paclitaxel (0.05 µM), bevacizumab (100 ng/ml), lapatinib (4 µM) or with 

an antibody–drug combination for 24 h. Cells were harvested by trypsinization 

using 0.05% trypsin and 0.02% EDTA without Ca2+ and Mg2+ (PAA 

Laboratories GmbH). Apoptosis was determined by an annexin V-FITC 

apoptosis detection kit (Alexis) according to the manufacturer’s instructions. 

Flow cytometry of annexin V-FITC and Pidium Iodide (PI) staining was 

performed using FACScan (Becton Dickinson) with CELLQuest Pro software. 

 

Immunoblotting analysis 

Western blot analysis was performed according to the standard protocol. 

Briefly, proteins were extracted from cells lysed for 30 min at 4oC in RIPA+ 

buffer supplemented with complete protease inhibitor (Roche) and 1 mM 

orthovanadat, followed by high speed centrifugation. Protein concentration 

was determined according to the method of Bradford (Sigma-Aldrich). Equal 

amounts of protein (~ 50 µg protein per lane) were separated by 12% SDS-

PAGE gel and electroblotted onto PVDF membranes (GE Healthcare). The 

membrane proteins were incubated with the following primary antibodies: 

mouse anti-caspase-8 monoclonal antibody, 12F5 (recognizes human 

procaspase-8 and active human caspase-8, Alexis), mouse anti-caspase-3 

monoclonal antibody, 31A1067 (recognizes human procaspase-3 and active 

human caspase-3, Imgenex), mouse anti-p53 monoclonal antibody (Cell 

Signaling), and goat anti-actin polyclonal antibody (Santa Cruz). Detection 

was performed with the appropriate peroxidase-conjugated (HRP) secondary 

antibody (Santa Cruz). The membranes were developed using enhanced 

chemoluminescence (ECL, Amersham). 
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Detection of TRAIL ligand and its functional receptor expression by flow 

cytometry 

MDAH-2774, A2780, and ES-2 OC cell lines were collected and washed in 

PBS. The cells were then incubated with mouse monoclonal antibodies 

against human TRAILR1, HS101 (Alexis), human TRAILR2, HS201 (Alexis), 

or mouse IgG1 isotype control (Ancell) for 1 h at 4oC. Afterwards, cells were 

washed in PBS, incubated with goat anti-mouse IgG-FITC (Santa Cruz) for 1 

h at 4oC in the dark and washed with PBS and analysed by flow cytometry. 

TRAIL intracellular staining was performed as described previously (15). 

Briefly, cells were washed with PBS and resuspended in 2% formaldehyde 

and incubated for 10 min at 4oC. Afterwards, cells were washed with PBS and 

resuspended in blocking solution (0.1% Saponin and 20% serum) and 

incubated for 20 min at room temperature.  Cells were then stained with 

mouse monoclonal antibody against human TRAIL, III6F (Alexis) or mouse 

IgG2b isotype control (Ancell) for 30 min at room temperature in staining 

buffer (0.1% Saponin, 2% FCS serum). After that, cells were washed three 

times with staining buffer, resuspended in secondary antibody goat anti-

mouse IgG-FITC (Santa Cruz), and incubated for 1 h at 4oC in staining buffer. 

Then, cells were washed three times with staining buffer and analysed by flow 

cytometry. Flow cytometric analysis was performed using FACScan (Becton 

Dickinson) and the resulting data were analysed with CELLQuest Pro 

software. 
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Immunohistochemistry 

Immunohistochemical analysis was performed using paraffin embedded 

sections as described previously (7). Briefly, tissue sections were 

deparaffinized and rehydrated. For epitope retrieval, specimens were 

incubated in 96°C pre-warmed 10 mM citrate buffer (pH 6.0) for 20 min. 

Slides were then incubated with 0.3% H2O2/PBS for 10 min at room 

temperature to block endogenous peroxidase. After blocking the background 

staining with serum of the secondary antibody (diluted 1:10 in PBS), tissues 

were incubated for 1 h at room temperature with primary antibody diluted in 

serum/PBS. The following primary antibodies were used: rabbit anti-human 

cleaved caspase-3 monoclonal antibody, Asp175 (dilution 1:50, Cell 

Signaling); mouse anti-human Ki-67 monoclonal antibody (dilution 1:200, 

Dako); goat anti-mouse TRAIL polyclonal antibody, AF1121 (dilution 1:100, 

R&D Systems); rabbit anti-human TRAILR1 polyclonal antibody, H130, 

(dilution 1:200, Santa Cruz); rat anti-mouse Ly-49G2 monoclonal antibody, 

4D11 (16) (dilution 1:400, eBioscience). The appropriate secondary 

biotinylated antibodies (Vector Laboratories) were diluted with the 

serum/PBS-buffer (dilution 1:200) and incubated for 30 min at room 

temperature. Tissue sections were incubated with StreptABComplex/HRP 

(Dako) for 45 min at room temperature and then visualized with DAB (Dako) 

and counterstained with Mayer’s Haematoxyline. Tissue sections were 

analysed on an Olympus BX50 upright light microscope (Olympus Europe) 

equipped with the Soft Imaging system CC12. 

Apoptosis was measured by using an in situ cell death detection kit 

(Roche) according to the manufacturer’s instructions. Afterwards the cells 
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were analysed on a fluorescence microscope (Nikon Eclipse 800) equipped 

with a Nikon DS-R1 camera, using the NIS-Elements software.  

Negative controls were performed by excluding incubation with primary 

antibody, and yielded negative results. The percentage of positive cells was 

determined by a blinded operator. 

 

Xenograft mouse model 

Four to six week-old female athymic nude-Foxn1 nu/nu mice were obtained 

from Harlan (Italy) and maintained under specific pathogen-free conditions at 

the animal resource service of the Medical University of Vienna. Mice were 

subcutaneously inoculated with A2780 OC cells on both sides. Treatment 

started on day 2 by intraperitoneal injection of PBS, AD5-10, carboplatin, or 

the latter two in combination. Tumor size was measured every second day by 

calipers. The tumor volume was calculated according to the formula V=4/3 x π 

x (L/2 x W/2 x W/2); L, length; W, width (17). At the end of the experiment, 

tumors were recovered and weighed and then prepared for histological and 

pathological analysis. Animal experiments were performed according to 

protocols approved by the Austrian Federal Ministry for Education, Science 

and Art. For NK depletion experiments, mice were treated with 20 µl anti-

asialo GM1 antibody (Wako) and 100 µ g NK1.1 antibody (prepared as 

described previously (18)) 3 days before inoculation, and then every 4 days.  
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Generation of splenocytes and analysis of NK cells 

The spleen was removed from sacrificed mice and placed into 60 mm tissue 

culture dishes. A single cell suspension was made by passing the tissue 

through a 70 µm nylon cell strainer (BD Bioscience) in PBS containing 2% 

FCS. Cells were centrifuged and hypotonic lysis of red blood cells was 

performed using ACK lysis buffer (0.15 M NH4Cl, 1 mM KHCO3, and 0.1 mM 

Na2EDTA, pH 7.2), followed by resuspension in an appropriate volume of 

PBS containing 2% FCS. Cells were incubated at 4oC with Fc-block (BD 

Bioscience) for 5 min, and then stained with PerCP Hamster anti-mouse 

CD3e, APC mouse anti-mouse NK-1.1, and FITC rat anti-mouse CD49b (BD 

Bioscience) antibodies for 30 min at 4oC in PBS. After that, cells were washed 

three times with PBS and analysed by flow cytometry. Flow cytometric 

analysis was performed on FACSCalibur (BD Biosciences). Data were 

analysed using the CellQuest Pro software. 

 

Statistical analysis 

Two-sided Student’s t-tests were used to detect statistically significant 

differences between study groups and controls, using R and Statstoft’s 

Statistica software. Data were visualized with box plots or bar plots. P values 

below 0.05 were considered statistically significant, and P values below 0.005 

were considered highly significant. The correlation between variables was 

estimated using the Pearson correlation coefficient. 
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Results  

In vitro effect of combining AD5-10 with cytotoxic drugs  

We have previously demonstrated that the TRAIL signaling pathway plays a 

fundamental role in OC progression (7, 19). In this study, we addressed the 

functional role of human DR5 using three distinct OC cell lines (MDAH-2774, 

A2780, ES-2). The selected OC cell lines have accumulated different 

mutational and epigenetic changes that alter normal cell growth and survival 

pathway e.g. mutated p53 in MDAH-2774 and ES-2, epigenetic silencing of 

DR4 in A2780, as well as upregulation of c-FLIP in most of them (19-22).  

Moreover, they express different levels of DR5 (Fig. 3.1.1A) and all of them 

were resistant to TRAIL-induced apoptosis. We found that AD5-10 triggered 

tumor cell apoptosis to a detectable extent and had an additive effect when 

combined with different pharmacological and cellular anticancer agents 

(paclitaxel, bevacizumab, and lapatinib; Fig. 3.1.1B). In combination with 

carboplatin, AD5-10 showed a more than additive effect (Fig. 3.1.1B), 

illustrated by comparing the sum effect of AD5-10 and carboplatin to a 

combination of both. This particular effect was observed in three different 

carboplatin-resistant OC cell lines and was confirmed by detection of active 

caspase cleavage fragments (Fig. 3.1.1B and C). The dose response curves 

for carboplatin in the presence of AD5-10 confirmed the observed effects (Fig. 

3.1.1D). Together, these findings suggest that AD5-10-mediated stimulation of 

DR5 in the presence of carboplatin efficiently sensitizes OC cell lines to 

apoptosis. 
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Figure 3.1.1. Effect of combining AD5-10 with carboplatin in vitro. A) Histogram 
showing expression of the TRAIL ligand as well as its functional receptors DR4 and 
DR5 on the surface of selected OC cell lines as determined by flow cytometry. 
Selected OC cell lines were stained with either TRAIL ligand (III6F, Alexis), anti-DR4 
(HS101, Alexis), anti-DR5 (HS201, Alexis) monoclonal antibody (coloured 
histogram), or isotype control IgG1 monoclonal antibody (unfilled histogram). Data 
represent three independent experiments. B) Upper panel, the A2780 OC cell line 
was treated with either AD5-10 (1 µg/ml), carboplatin (100 µg/ml), paclitaxel (0.05 
µM), bevacizumab (100 ng/ml), lapatinib (4 µM) or with an antibody-drug combination 
for 24 h. Apoptosis was determined by annexin-V and PI staining. Numbers in dot 
plot quadrants represent the percentage of stained apoptotic cells. Lower panel, 
quantitative evaluation of upper panel as well as the apoptosis rate of MDAH-2774 
and ES-2 OC cell lines. Columns represent the mean of three independent 
experiments; bars, ±S.E.M. (the standard error of the mean); *statistically significant 
(P<0.05), or **highly significant (P<0.005) differences obtained by comparing the 
sum effect of AD5-10 and carboplatin to a combination of both. C) Expression levels 
of activated caspase-8 and caspase-3 were determined by immunoblotting in 
untreated and treated OC cells using AD5-10 (1 µg/ml), carboplatin (100 µg/ml), or 
both. Data represent two independent experiments. CF, cleavage form. D) Dose 
response curve of carboplatin is presented using MDAH-2774 cells. MDAH-2774 OC 
cell line was incubated with the specified concentration of carboplatin, AD5-10 (1 
µg/ml), or both for 24 h, and apoptosis was determined. Columns represent the mean 
of four independent experiments; bars, ±SE; **statistically highly significant 
(P<0.005) differences obtained by comparing the sum effect of AD5-10 and 
carboplatin to a combination of both. EC50 values of carboplatin shifted from 105.5 
µg/ml to 172.6 µg/ml (95% confidence interval) in the presence of 1 µg/ml AD5-10. 
 

Carboplatin cooperates with AD5-10 to trigger apoptosis in OC cells by 

upregulation of DR5 

We then focused on the mechanism by which carboplatin cooperates with 

AD5-10 signaling to mediate enhanced tumor cell death. DR5 is a 

transcriptional target of p53 (23), and carboplatin has been shown to induce 

the p53 tumor suppressor pathway (24). In order to identify whether 

carboplatin cooperates with AD5-10 via upregulation of DR5 expression, we 

treated MDAH-2774 cells (overexpressing a mutated form of p53; Arg273His, 

(22)), A2780 cells (expressing wt p53, (20)), and ES-2 cells (expressing a 

mutated form of p53; S241F, (21)) with carboplatin and analysed the 

expression of p53 and DR5 by immunoblotting and flow cytometry, 

respectively (Fig. 3.1.2). The p53 status in selected OC cell lines was 
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confirmed by sequencing p53 in all three selected cell lines (data not shown). 

While DR5 expression levels were increased in all cell lines after carboplatin 

treatment, p53 expression was only increased in some (Fig. 3.1.2). Notably, 

DR5 expression (after treatment with carboplatin) and the apoptosis rate (after 

treatment with a combination of AD5-10 with carboplatin) in wt p53 cells were 

higher than in cells with mutant p53 (Fig. 3.1.2B and 3.1.1B respectively). 

These observations indicate that carboplatin forces expression of DR5 on OC 

cells, thereby enhancing their susceptibility to AD5-10-mediated apoptosis. In 

addition, MDAH-2774 harboured a mutant p53 allele; nevertheless, it showed 

a clear dose-dependent effect in vitro (Fig. 3.1.1B and D), illustrating that 

carboplatin also cooperates with AD5-10 regardless of the p53 status in OC 

cells. Thus, carboplatin treatment induced an increase in the expression of 

DR5 irrespective of the p53 status; hence, p53 mutations do not limit the 

therapeutic usefulness of combining AD5-10 with carboplatin. 

 

A) 

 

 



Results and Discussion 

   45 

B) 

 

Figure 3.1.2. Carboplatin cooperates with AD5-10 to trigger apoptosis in OC 
cells by upregulation of DR5. A) Selected OC cell lines were either untreated or 
treated with carboplatin (100 µg/ml) for 24 h. Expression of p53 was determined by 
immunoblotting; data represent two independent experiments. B) Flow cytometry 
analysis of DR5 expression on OC cell lines either untreated or treated with 
carboplatin (100 µg/ml) for 24 h; data represent three independent experiments. 
 

Combination of AD5-10 and carboplatin eradicates tumors in a xenograft 

OC mouse model 

To assess the antitumor efficacy of AD5-10 alone and/or in combination with 

carboplatin, we applied a tumor model of OC in xenograft-bearing mice. In this 

model, mice bearing subcutaneously established tumors were randomly 

grouped for treatment with vehicle, AD5-10, carboplatin, or a combination of 

AD5-10 and carboplatin. Treatment started on day 2, and tumor size was 

measured every second day after tumor inoculation. After two weeks, all 

tumor-bearing mice were sacrificed and tumor-free mice were maintained for 

another two weeks (Table 3.1.1). 

Mice treated with AD5-10 showed a clear reduction in tumor 
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progression compared to untreated mice (Fig. 3.1.3A and B). As expected, 

the treatment with carboplatin alone had no significant effect on tumor growth. 

In contrast, the combination of AD5-10 with carboplatin significantly 

suppressed tumor growth. Six out of seven treated mice (86%) remained 

tumor-free at the time of sacrificing (day 14th). After 28 days, >50% of mice 

(n=4) remained tumor-free following combined AD5-10 and carboplatin 

treatment (Table 3.1.1). Overall, our data suggest that AD5-10 in combination 

with carboplatin induces a high apoptosis rate in OC cells in vitro, and OC 

rejection in a significant number of mice in a xenograft model, whereas 

carboplatin alone has no significant effect (Fig. 3.1.1B and 3.1.3, and Table 

3.1.1). 

Significant differences in tumor volume between control and AD5-10 

treated mice were also observed. The largest reduction in tumor volume 

compared to the control group of untreated mice was observed in the group 

treated with AD5-10 in combination with carboplatin (Fig. 3.1.3A and C, and 

Table 3.1.1). Similar results were obtained for tumor weight (Fig. 3.1.3B). In 

contrast, mice receiving carboplatin alone did not display any statistically 

significant differences in tumor volume or tumor weight. Clearly, the tumor 

suppressive effect of AD5-10 alone and the elimination effect of AD5-10 in 

combination with carboplatin suggest that DR5 plays a strong antitumor role in 

carboplatin-resistant OC. 
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Table 3.1.1. Antitumorigenic effect of AD5-10 alone and/or in combination with 
carboplatin in a xenograft nude OC mouse model. 
 

 
A) 

 

 

B) 
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C) 

 

Figure 3.1.3. Combination of AD5-10 with carboplatin eradicates large, 
established tumors in a xenograft OC mouse model. A) 28 nude/nude mice were 
inoculated subcutaneously with 1.5x107 A2780 OC cell line into the left and right hind 
ventral flank (day 0). Random groups of seven mice each were then treated 
intraperitoneally with either saline (control tumor) or AD5-10 (10 mg/kg) on days 2, 6, 
9, 13, 16, and 20; carboplatin (100 mg/kg) on day 2; or a combination of AD5-10 and 
carboplatin at the respective doses and time as indicated above. Tumor volumes 
were measured every second day and on day 14 all tumor-bearing mice were 
sacrificed. Each measurement in each group is the sum of both left and right tumor 
volumes per animal and is included in the box plots. Box plots depict median values 
and the interquartile range, whereas dotted lines depict mean values in each group. 
Statistically significant differences * P<0.05, ** P<0.005 were determined by 
comparing tumor volume in the control group with treated groups. B) Tumor weight 
(after 14 days) in the four different groups; the median is indicated by a horizontal 
line. Each measurement in each group is the sum of both left and right tumor weight 
per animal. C) Representative mice and tumors of the indicated groups were 
assessed on day 14. 
 

AD5-10 enhances antitumor activity against OC in vivo 

We then evaluated the cytotoxic effect of administered substances on tumor 

tissues by immunohistochemical analysis. We observed a significant increase 

in caspase-3 activation and consequently in the apoptosis rate (measured by 

terminal deoxynucleotidyltransferase-mediated dUTP nick-end-labeling, 

TUNEL, assay) for AD5-10, but not for carboplatin, when compared to a 

control group (Fig. 3.1.4A and B). No significant differences in proliferation 

were observed for AD5-10 or carboplatin treatment (Fig. 3.1.3C). These data 

indicate that AD5-10 treatment induces apoptosis, consequently inhibiting the 
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growth of ovarian tumor tissue. 

DR4 is epigenetically silenced in the A2780 cells in vitro (19). To 

determine whether the observed effects are due to DR5 and not to DR4 e.g. 

by demethylation of the DR4 promoter and reconstitution of DR4 expression 

in vivo, we analysed the expression of DR4 in tumor tissues. 

Immunohistochemical and immunoblotting analysis showed no reconstitution 

of DR4 expression in vivo (Fig. 3.1.4D), indicating that TRAIL-induced 

apoptosis is only mediated by DR5. Furthermore, we analyzed the 

immunohistochemical expression of murine TRAIL using anti-mouse TRAIL 

antibody. Interestingly, we found that murine TRAIL to be highly expressed in 

tumor tissues (Fig. 3.1.4D). Remarkably, selected human OC cells do not 

express human TRAIL (Fig. 3.1.1A) and murine TRAIL was shown to have 

some cross-reactivity with human tumor cells (25). This finding might support 

our previous observation in humans that TRAIL is highly expressed in the 

tumor microenvironment of OC patients (7).  TRAIL is a key mediator of 

cytotoxic activity of activated NK cells and CD8+ lymphocytes (26), and is at 

least in part responsible for antimetastatic activities in vivo (27, 28). 

Immunohistochemical analysis revealed a dense infiltration of the tumor 

tissues with NK cells (Fig. 3.1.4D), suggesting that NK cells mediate 

cytotoxicity in OC by TRAIL-induced death. 
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D) 

 

Figure 3.1.4. AD5-10 enhances sensitivity of ovarian tumors to apoptosis. 
Immunohistochemical analysis of tumors obtained from mice inoculated with A2780 
OC cell line and sacrificed on day 14 (Fig. 3.1.3) for A) H&E and caspase-3 staining; 
B) Tunel assay; C) Ki-67 staining; and D) TRAIL ligand, DR4, and NK cell staining; 
magnification 20x. A) H&E staining showed vital solid intact tumor tissues in control 
and carboplatin-treated mice. In contrast, tumor cells from AD5-10 treated mice 
appeared damaged, leading to structural alteration and secondary bleeding. A and 
B) Proportional cell numbers in each micrograph (in caspase-3 staining, numbers of 
cleaved caspase-3 positive cells) are given as median values, and the interquartile 
range of 12 subsections of four different tumor sections per group is indicated within 
brackets. The median and interquartile range of the percentage of cleaved caspase-3 
and TUNEL positive cells are given below micrographs. Significant differences 
between the control group and the various treated groups are indicated: * P<0.05, ** 
P<0.005. C) Numbers given in the lower section show Ki-67-positive cells of nine 
subsections of three different tumor sections per group. Statistically significant 
differences are given as *P<0.05, comparing the control tumor group with the various 
treated groups. D) TRAIL staining (performed using goat anti-mouse TRAIL 
polyclonal antibody, AF1121 (R&D Systems)): vital tumor cells with weak diffused 
background staining of murine TRAIL, probably representing the soluble form of the 
molecule in control and carboplatin-treated tumor tissues. However, damaged tumor 
cells were observed in TRAIL positive AD5-10 treated tumor tissue. DR4 staining: 
tumor cells were consistently negative for DR4 in all tumor sections. Tissues from 
animal treated with AD5-10 showed granular-intercellular staining, which probably 
represents unspecific staining of degenerated apoptotic tumor cells. 4D11 staining: 
monoclonal antibody 4D11 (anti-Ly-49G2) revealed specific reactivity for mouse NK 
cells (16). Specific staining for NK cells was observed in all tumor sections. Damaged 
tumor cells were observed close to positive NK cells staining in AD5-10-treated but 
not in control or carboplatin-treated tumors. 
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AD5-10 cooperates with NK cells to suppress tumor growth of 

established OC in a xenograft mouse model 

We further explored the antitumor effect of AD5-10 in combination with TRAIL. 

Combination of TRAIL with AD5-10 enhances A2780 cellular sensitivity to 

TRAIL-induced apoptosis in vitro (Fig. 3.1.5A). Notably, AD5-10 antibody has 

been shown to bind to a different binding site than TRAIL (11). Therefore, 

AD5-10 does not compete with the TRAIL-binding site, which may explain a 

significantly increased rate of apoptosis observed after treatment with the 

combination of AD5-10 and human soluble TRAIL. 

Finally, we determined whether NK cell-mediated cytotoxicity is 

involved in AD5-10-induced effects. To do so, we made use of NK-cell-

depleting antibodies. Four groups of nude mice were subcutaneously 

inoculated with A2780 cells and were either left untreated or treated with AD5-

10 and/or NK1.1- and anti-asialo-depleting antibodies (Fig. 3.1.5B). Tumor 

development was observed for a period of 4 weeks. In NK-cell-depleted mice, 

AD5-10 had only a minimal effect on tumor growth (Fig. 3.1.5C), whereas 

AD5-10 significantly reduced tumor volume in the presence of NK cells (Fig. 

3.1.3A and 3.1.5C). This suggests that TRAIL expressed by active NK cells is 

required for AD5-10-induced apoptosis. This finding is in line with the fact that 

DR5 is more efficiently activated by secondary cross-linked trimers of TRAIL 

(29, 30). NK cell depletion alone had only a small effect on tumor growth, 

which might reflect the fact that A2780 cells are resistant to TRAIL-induced 

apoptosis (expressed via NK cells). Moreover, we found that NK cell numbers 

correlate with the survival of the animal, with a high NK cell number being 
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protective (Fig. 3.1.5D). In summary, these data suggest that the antitumor 

activity of AD5-10 depends on NK in OC. 

 

A) 

 

B) 

 

C) 

 



Results and Discussion 

   54 

D) 

 

Figure 3.1.5. Depletion of NK cells suppresses the tumoricidal effect of AD5-10 
on tumor outgrowth. A) A2780 OC cell line was incubated with the specified 
concentration of TRAIL, AD5-10 (1 µg/ml), or both for 24 h, and the apoptosis rate 
was measured. Columns represent the mean of three independent experiments; 
bars, ±SE; *statistically significant (P<0.05) difference obtained by comparing the 
sum effect of AD5-10 and TRAIL to a combination of both. B) Two groups of mice 
were depleted of NK cells by administration of polyclonal rabbit anti-asialo GM1 
antibody at a dose of 20 µl intraperitoneally every 4 days starting on day 3, and 
NK1.1 antibody 100 µg intraperitoneally every third day starting at day 3. A total of 
1x107 A2780 cells were inoculated subcutaneously into the left and right dorsal sides 
of the mice. Mice were treated intraperitoneally with AD5-10 or saline as indicated in 
Fig. 3.1.3A. Left panel: Histograms showing analysis of NK expression on 
splenocytes from NK-competent and NK-depleted mice. Numbers in dot plot 
quadrants indicate the percentage of NK-positive staining. Right panel: numbers of 
NK cells in NK-competent and NK-depleted mice are indicated. Each measurement 
in each group is included in the box plots showing the median; 25th and 75th 
percentiles; statistically highly significant differences **p<0.005 were determined by 
comparing the number of NK cells in NK-competent and NK-depleted groups. C) 
Tumor volumes in the four different groups were measured every second day. Mice 
were sacrificed when tumor size (at least in one flank) reached the required volume 
(~ 4000 mm3). Each measurement in each group is the sum of both left and right 
tumor volumes per animal. Data are represented as indicated in Fig. 3.1.3A. D) 
Correlation between NK cells (%) in depleted mice and life span.  
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Discussion  

The TRAIL pathway has been extensively studied in vitro and in vivo, and 

molecules targeting this pathway have become attractive candidates for 

anticancer treatment (10). Preclinical studies in mice provided the first 

evidence that the soluble form of recombinant TRAIL (rTRAIL) suppresses the 

growth of human tumor xenografts with no apparent systemic toxicity (31, 32). 

More  recently, rTRAIL has also entered clinical trials for the treatment of 

various malignancies (33). Although published phase 1 and 2 studies have 

indicated tolerated toxicity, the therapeutic efficiency is variable. In addition to 

the soluble ligand, several agonistic antibodies to the TRAIL functional 

receptors (DR4 or DR5) have been developed and entered into clinical trials 

in parallel (10). These agonistic antibodies may be more effective than the 

ligand at eradicating tumors for several reasons, one of them being the 

prolonged half-life time in vivo when compared to the recombinant proteins. 

Furthermore, the decoy receptors, which have been implicated in modulating 

the response to TRAIL, are not targeted by these ligands. Cross linking 

therapeutic antibodies might also overcome the resistance mechanisms to 

TRAIL-induced apoptosis observed in OC (5,13) according to the data in our 

study, which provides a novel link between NK-mediated immunosurveillance 

and activation of DR5-mediated apoptosis. 

DR5 was identified in 1997 (23, 34) and several DR5 agonistic 

antibodies exhibit a potent antitumor effect against TRAIL-sensitive tumor 

cells, but not against TRAIL-resistant tumor cells. These are currently in 

phase II evaluations in patients with advanced malignancies (35, 36). In the 

present study we used a DR5 agonistic antibody AD5-10 against TRAIL-
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resistant OC cells, and our results shed light on the postulated critical role of 

DR5 and NK-mediated immunosurveillance in OC progression. As expected, 

we observed limited cytotoxic effects on OC cells resistant to TRAIL-induced 

apoptosis in vitro upon stimulation with AD5-10 alone (Fig. 3.1.1B and C). We 

hypothesized that combined therapy with anti-DR5 and different 

pharmacological anticancer agents might induce more than additive antitumor 

activity. Our results showed that out of a number of agents used in the 

standard treatment of OC only the combination of AD5-10 with carboplatin 

displayed more than additive effect in vitro (Fig. 3.1.1B). This phenotype 

stimulated our interest in the nature of this mechanism. Consequently, we 

determined the cytotoxic effect of AD5-10 alone or in combination with 

carboplatin in a platin-resistant OC mouse model. While there was, as 

expected, no effect of carboplatin alone, an effect of AD5-10 was observed. 

Importantly, the combination of AD5-10 with carboplatin eventually eliminated 

OC (Fig. 3.1.3A, B, and C; and Table 3.1.1) in a significant number of 

animals. Chemotherapeutic agents have been shown to cooperate with the 

TRAIL ligand to enhance apoptosis (37). However, the molecular basis behind 

such cooperation has not yet been elucidated. One mechanism (probably not 

the only one) is based on our observation that carboplatin cooperates with 

AD5-10 by upregulating DR5 expression regardless of the p53 status (Fig. 

3.1.2). However, this finding does not fully explain the exceptional activity of 

AD5-10 and carboplatin in vivo and makes it necessary to consider the activity 

of these substances in the context of the immune system. 

As postulated previously the TRAIL pathway plays a key role in tumor 

surveillance (7, 26-28). Understanding the activity of a potential agent 
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targeting this pathway requires putting a spotlight on the activity of the hosts’ 

immune system as reflected in the tumor microenvironment. Our previously 

published data support a key role of TRAIL and the functional TRAIL 

receptors in OC, showing increased survival in patients expressing a high 

level of TRAIL in tissue adjacent to the tumor (7, 19). However, the origin of 

this expression has not been fully evaluated to date. In our current study we 

addressed the role of NK cell-mediated effects of DR5-induced apoptosis. We 

recorded that AD5-10 alone did not have a significant effect on apoptosis; 

however, it had a more than additive effect when combined with human 

soluble TRAIL in vitro to enhance TRAIL-mediated cytotoxicity (Fig. 3.1.5A). 

Moreover, we observed that TRAIL and NK cells are highly expressed in the 

tumor microenvironment (Fig. 3.1.4D), and that depletion of NK cells from 

mice bearing tumors led to increased tumor growth and also abolished the 

cytotoxic effect of AD5-10 (Fig. 3.1.5C and D). These findings indicate that 

TRAIL expressed on active NK cells might cross link AD5-10, suggesting that 

DR5 is more efficiently activated by secondary cross-linked trimers of soluble 

TRAIL than by non-cross-linked molecules (Fig. 3.1.5A, and (29, 30)). 

Notably, AD5-10 antibody binds to a different binding site than TRAIL cells 

(11), and murine TRAIL was shown to have some cross-reactivity with human 

tumor cells (25). However, other mechanisms like upregulation of DR5 on OC 

cells by carboplatin and targeting by AD5-10 efficiently activated cell killing 

without the need for secondary cross linking (Fig. 3.1.1B and C). In fact, 

according to our data, forced expression of DR5 in the presence of TRAIL-

expressing NK cells provides an ideal environment for highly efficient 

activation of DR5 by AD5-10. This fact is supported by eradication of 
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implanted tumors in an NK-competent xenograft OC mouse model (Fig. 

3.1.3A and Table 3.1.1), and by the abolished cytotoxic activity of AD5-10 in 

NK-depleted mice (Fig. 3.1.5C and D). This finding clearly confirms the 

importance of NK-mediated immunosurveillance in OC in a preclinical mouse 

model. Agonistic DR5 antibodies probably act together with naturally 

occurring TRAIL ligand to overcome the resistance mechanisms that develop 

during tumorigenesis. 

Our study highlights the lack of knowledge regarding the interplay 

between therapeutic agents, host immunity, and the evasion mechanisms 

developed by individual tumors. Only an improved understanding of these 

basic mechanisms will ultimately lead to tailored patient selection and the 

choice of combination partners for drugs targeting the TRAIL pathway. 

Carboplatin and AD5-10 seem to be a promising regimen for future clinical 

trials in platin-resistant OC. 
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Abstract 

Activation of tumor necrosis factor (TNF)-related apoptosis-inducing ligand 

(TRAIL) functional receptors by their ligand induces apoptosis through 

activation of caspase-8. Cellular Fas-associated death domain-like interleukin-

1β-converting enzyme (FLICE)-like inhibitory protein (c-FLIP) blocks TRAIL-

mediated apoptosis through inhibition of caspase-8 activation. The current 

study is based on our previous observations that about 40% of OC patients 

express high levels of c-FLIPL, and that natural killer (NK) cells mediated 

immunosurveillance in OC. In the present study, we observed that the 

knockdown of c-FLIPL in human OC cell lines not only enhanced their 

sensitivity to TRAIL mediated-apoptosis, but also inhibited their migratory 

phenotype in a TRAIL-dependent manner in vitro. Shutdown of c-FLIPL in OC 

cells significantly decreased tumor development by induction of apoptosis and 

reduction of proliferation in vivo. Importantly, the knockdown of c-FLIPL 

particularly inhibited the invasion of OC cells into the peritoneal cavity, which 

might be due to high expression of TRAIL by NK cells and NK-cell mediated 

immunosurveillance. These data demonstrate that c-FLIPL exhibits multiple 

functions in OC cells: first by concomitantly evading the natural immunity 

mediated by TRAIL-induced cell death, second by augmenting cell motility 

and invasion in vivo. Our findings indicate that c-FLIPL regulates sensitivity of 

OC to TRAIL-mediated apoptosis and offers possible therapeutical 

implications for OC in the future. 
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Introduction 

Apoptosis is a physiological process playing a fundamental role not only in 

controlling cell differentiation and tissue homeostasis, but also in eliminating 

cells that undergo uncontrolled cellular proliferation [1-4]. Caspases, a family 

of cysteine proteinases, are key elements in apoptosis [5, 6]. So far, at least 

10 caspases have been reported [5], each encoding sequences essential for 

proteolytic activity and induction of apoptosis. Activation of the caspase 

cascade is triggered by various death signals, subsequently leading to 

apoptotic cell death. 

Death receptors such as APO-1/FAS or functional tumor necrosis 

factor (TNF)-related apoptosis-inducing ligand (TRAIL) receptors exhibit an 

intracellular sequence denoted as death domain (DD). The adaptor protein 

Fas-associated death domain protein (FADD) is recruited to the death 

receptors by homotypic DD interaction [7]. Ligation of death receptors by their 

cognate ligands leads to recruitment of FADD, which in turn leads to 

activation of caspase-8, further resulting in assembly of the death-inducing 

signaling complex (DISC) initiating the apoptotic cascade [8]. 

The apoptosis signaling pathway induced by death receptors is 

regulated by inhibitor proteins at distinct steps. Among these proteins is the 

cellular Fas-associated death domain-like interleukin-1β-converting enzyme 

(FLICE)-like inhibitory protein (c-FLIP). c-FLIP interferes with activation of pro-

caspase-8 most proximal to the plasma membrane [9, 10]. Eleven distinct 

isoforms of c-FLIP produced by alternative splicing at the RNA level have 

been described. Of these, two splice variants, the long c-FLIPL and the short 

isoform c-FLIPS, were found to exhibit different molecular mechanisms for 
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inhibiting the activation of pro-caspase-8 at the protein level [10-13]. While c-

FLIPS inhibits activation of pro-caspase-8 by blocking cleavage for processing 

the active form, c-FLIPL triggers the first cleavage of pro-caspase-8 resulting 

in the large and small subunit [14]. c-FLIP was found to be highly expressed 

in various human tumors such as melanoma [10, 15, 16] and ovarian cancer 

(OC) [17]. c-FLIPL was shown to prevent natural killer (NK) cells and cytolytic 

T lymphocytes (CTLs)-mediated cell killing via Fas ligand (FasL), resulting in 

escape of immunosurveillance and establishment of aggressive tumors in vivo 

[18-20]. In this regard, we have shown recently that NK cells play an essential 

role in immunosurveillance of OC [21], and that c-FLIPL is upregulated in OC 

patients [17]. 

 So far, several intracellular signaling pathways, including ERK, 

AKT/PI3K, and NF-κB pathways [22-24] were shown to regulate c-FLIP 

transcription and posttranslational regulation. Moreover, p53 was shown to 

inhibit c-FLIP expression [25, 26]. 

In the present study, we deciphered the role of c-FLIPL in OC. We 

report that removal of c-FLIPL from TRAIL-resistant OC cells not only 

enhances sensitivity to TRAIL-induced apoptosis, but also inhibits tumor 

growth in vitro as well as in vivo. We found that downregulation of c-FLIPL 

inhibits migration of OC cells in presence of soluble TRAIL in vitro, and 

abolishes the invasive behaviour of ovarian tumors in vivo. Altogether, our 

data highlight c-FLIPL as a key regulatory protein in ovarian tumor 

progression. 
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Material and Methods 

Cell lines 

Human OC cell lines MDAH-2774 (ovarian endometroid adenocarcinoma 

(OEA)-derived cell line, derived from the ascitic fluid of a patient [27], and a 

platin resistant sub-line of the OC cell line A2780 (human epithelial OC cell 

line established from tumor tissue [28]) were used in our study. Cell lines were 

cultured in RPMI medium supplemented with 10% fetal calf serum (FCS) 

(PAA Laboratories GmbH, Pasching, Austria) and 0.1% penicillin/streptomycin 

(PAA Laboratories GmbH). The cell line MDAH-2774 was obtained from the 

American Type Culture Collection (ATCC, VA, USA), and the cell line A2780 

was obtained from the European Collection of Cell Cultures (ECACC, 

Wiltshire, UK). 

 

RNA interference (RNAi) 

Oligonucleotides encoding short hairpin RNAs (shRNAs) targeting c-FLIP 

were designed (Sigma-Aldrich, MO, USA) to hold restriction sites for BamH1 

and HindIII at their 5' and 3' end, respectively. The annealed oligonucleotides 

were cloned into BamH1 and HindIII of pSilencer 4.1-CMV neo vector 

(Applied Biosystems, CA, USA). Cloning of resulting vectors was verified by 

sequencing. The specificity of the shRNA was confirmed using two 

oligonucleotides targeted to different regions of the mRNA: oligo 1 

(nucleotides 514-534 ORF): 5'-

GATCCGCAGTCTGTTCAAGGAGCATTCAAGAGATGCTCCTTGAACAGAC

TGCTTA-3' [29]. Oligo 2 (nucleotides 29-49) 5'-

GATCCGAAGCACTTGATACAGATGTTCAAGAGACATCTGTATCAAGTGCT
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TCTTA-3' [30]. Each of the shRNA suppressed the encoded protein and 

exerting the same effects. shRNA control was used to confirm that the 

observed effects are indeed specific and due to c-FLIPL suppression by RNAi. 

The control was designed in a way to avoid targeting of any protein coding 

gene product. 

Selected OC cell lines were transfected with the corresponding vectors 

utilizing the Lipofectamine method according to the manufacturer's 

instructions (Lipofectamine 2000; Invitrogen, CA, USA). Stable clonal 

transfectants were generated, and the efficiency of downregulation was 

confirmed by quantitative reverse transcription-polymerase chain reaction and 

Western blot. 

 

Quantitative Reverse Transcription-Polymerase Chain Reaction (qRT-

PCR) 

Total RNA was isolated from parental and genetically manipulated OC cell 

lines by RNeasy Mini Kit (Qiagen, Hilden, Germany) according to the 

manufacturer's instructions. RNAs were then quantified by Nano Chips (Lab-

on-a-Chip, Agilent Technologies, CA, USA). Subsequently, cDNAs were 

generated by reverse transcription of isolated mRNAs using SuperScript II 

RNase H- Reverse Transcriptase (Invitrogen, CA, USA) according to the 

manufacturer's instruction. Quantitative real time PCR was performed using 

the following Assay On Demand probes: c-FLIP, Hs00153439_m1; HPRT1, 

Hs99999909_m1 purchased from Applied Biosystem (CA, USA). qRT-PCR 

Master MIX (Eurogentec, CA, USA) was used to perform the qRT-PCR. The 

qRT-PCR was performed on a 7900HT Sequence Detection System (Applied 
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Biosystems) applying the following program: 50°C for 2 minutes and 95°C for 

10 minutes, followed by 40 cycles of 95°C for 15 seconds and 60°C for 1 

minute. Relative expression was calculated from the threshold cycles (Ct) 

obtained with the SDS 2.2 Software (Applied Biosystems) as follows: 2^–

[(Ctgene mean of duplicated probes – Ctgene mean of duplicated calibrator) – 

(CtHPRT1 mean of duplicated probes – CtHPRT1 mean of duplicated calibrator)]. 

 

Western blot 

Western blot was performed as described previously [21] using the following 

primary antibodies: mouse monoclonal anti-human c-FLIP (NF6; dilution 

1:500; Alexis, Lausen, Switzerland), and goat anti-actin polyclonal antibody 

(dilution 1:500; Santa Cruz, CA, USA). 

 

Determination of apoptosis 

Parental as well as genetically manipulated MDAH-2774 and A2780 OC cell 

lines were plated at a density of 5 x 104 cells/well in 24-well plates and 

incubated for 24 hours prior to stimulation. Then cells were treated with 

soluble TRAIL (Alexis) 100 ng/ml for 24 hours. Cells were harvested by 

trypsinization using 0.05% trypsin and 0.02% EDTA without Ca2+ and Mg2+ 

(PAA Laboratories GmbH). Apoptosis was measured by an annexin V-FITC 

apoptosis detection kit (Alexis) according to the manufacturer’s instructions. 

Flow cytometry of annexin V-FITC and Propidium Iodide (PI) staining was 

performed using FACScan (Becton Dickinson, Heidelberg, Germany) with 

CELLQuest Pro software. 

 



Results and Discussion 

   73 

Proliferation assay 

Selected OC cell lines were plated at a density of 5 x 10 3 in 100 µl of culture 

medium in a 96-well plate and were left to adhere. Cells were then incubated 

for 24 to 72 hours. Cell viability was measured by CellTiter-Blue® Assay 

(Promega, WI, USA) according to the manufacturer's instructions. The 

fluorescence signal was recorded using a Wallac 1420 VICTOR2 

fluorescence plate reader (Perkin Elmer, MA, USA). Three independent 

experiments, each in triplicate, were performed. 

 

In vitro migration assay 

Migration assays were performed using a 24-well trans-well cell culture 

chamber (BD Biosciences, CA, USA) according to the manufacturer's 

instructions. Briefly, 500 µl of selected OC cells were suspended in the upper 

chamber at a final concentration of 5x104 cells/ml in duplicate. One group was 

left untreated and the other was supplemented with 100 ng/ml medium of 

soluble TRAIL. The lower chamber contained 30% FCS/culture medium. After 

24 hours incubation, the OC cells on the upper surface were removed by 

wiping with cotton swabs, and the migrated cell on the lower surface were 

stained with mounting medium for fluorescence with DAPI (Vector 

Laboratories, Inc., CA, USA). The number of cells on the lower surface of the 

filters was counted under a fluorescence microscope (Nikon Eclipse 800, 

Tokyo, Japan) equipped with a Nikon DS-R1 camera, using the NIS-Elements 

software. Three independent experiments, each in duplicate, were performed. 
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Xenograft animal model 

4-6 week-old female athymic nude-Foxn1 nu/nu mice were obtained from 

Harlan (Udine, Italy) and maintained under specific pathogen-free conditions 

at the animal resource service of the Medical University of Vienna. Mice were 

subcutaneously inoculated with 1.5 x 107 A2780 OC cells on both ventral hind 

flanks. Tumor size was measured every second day by calipers. The tumor 

volume was calculated according to the formula V=4/3 x π x (L/2 x W/2 x 

W/2); L, length; W, width [31]. Mice were sacrificed two weeks after 

inoculation. Tumors were recovered, weighed and further processed for 

histological and pathological analysis. Animal experiments were performed 

according to protocols approved by the Austrian Federal Ministry for 

Education, Science and Art. 

 

Immunohistochemistry 

Formalin fixed, paraffin embedded sections were deparaffinized, rehydrated 

and cooked in 10 mmol citrate buffer (pH 6,0) for 20 minutes. To inhibit 

endogenous peroxidase, slides were incubated in 0.3% hydrogen peroxide. 

Serum was used to block background staining. Sections were subsequently 

incubated with the following primary antibodies: anti-human Ki-67 (clone MIB-

1; dilution 1:200; Dako, CA, USA) for 1 hour, c-FLIPL (C-19; dilution 1:25; 

Santa Cruz; this antibody shows non cross-reactivity with FLIPS) for 1 hour. 

The secondary biotinylated antibody was applied corresponding to the source 

of the primary antibody. Then the Strep-ABComplex (Dako) was added for 45 

minutes and DAB (Dako) was used for color development and Mayer’s 

hematoxylin for counterstaining. Tissue sections were analyzed on an 
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Olympus BX50 upright light microscope (Olympus Europe, Hamburg, 

Germany) equipped with the Soft Imaging system CC12. 

 

Tunel Assay 

Apoptosis was determined by terminal deoxynucleotidyltransferase-mediated 

dUTP nick end labeling (TUNEL; Roche, Manchester, UK) according to the 

manufacturer’s instructions. Cells were analyzed on a fluorescence 

microscope (Nikon Eclipse 800) equipped with a Nikon DS-R1 camera, using 

the NIS-Elements software. 

Positive and negative controls were performed by treating samples with 

DNase I or excluding incubation with primary antibody, and yielded positive 

and negative results, respectively. The percentage of positive cells was 

determined by a blinded operator. 

 

Statistical analysis 

Statistical significance was assessed by two-sided Student’s t-tests using R 

and Statstoft’s Statistica software (Hamburg, Germany). Data were visualized 

with box plots or bar plots. P values below 0.05 were considered as 

statistically significant, and P values below 0.005 were considered highly 

significant. The correlation between variables was estimated using the 

Pearson correlation coefficient. 
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Results 

c-FLIPL depletion sensitizes OC cells for TRAIL-induced apoptosis 

We previously showed that more than two third of OC patients display defects 

in the TRAIL pathway, including downregulation of TRAIL functional receptors 

DR4 and/or DR5, as well as upregulation of c-FLIPL [17]. Based on these 

finding we intended to decipher the physiological function and intracellular 

regulation of c-FLIPL in OC development. We applied a loss of function 

approach via expressing shRNA for depleting c-FLIPL expression in OC cell 

lines. We expressed shRNA from two different c-FLIPL sequences (shRNA1 

or shRNA2) in two human OC cell lines, namely MDAH-2774 and A2780. 

These cell lines are highly resistant to TRAIL-induced apoptosis, and harbor 

various alterations ranging from non-functional p53 in MDAH-2774 [32], and 

silencing of DR4 expression in A2780 (Supplementary Fig. 3.2.1) [33]. The 

shRNA reduced the expression of c-FLIPL protein significantly, as 

demonstrated by immunoblotting (Fig. 3.2.1A). Respective mRNA expression 

levels were reduced by 61% and 55% in MDAH-2774, and by 63% and 46% 

in A2780 in both c-FLIP shRNA1 and c-FLIP shRNA2 when compared to 

control shRNA (Fig. 3.2.1B and Supplementary Fig. 3.2.2A). c-FLIPL 

expression remained unaltered in MDAH-2774 and A2780 cell lines 

expressing a control shRNA not targeting a protein coding transcript when 

compared to parental cells (Fig. 3.2.1A and B). 

We found that depletion of c-FLIPL increased the apoptosis rate of c-

FLIP shRNA1 and c-FLIP shRNA2 in MDAH-2774 and A2780 OC cell lines 

significantly when compared with parental and control shRNA cells in a 

TRAIL-dependent manner in vitro (Fig. 3.2.1C and D, and Supplementary Fig. 
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3.2.2B). Next, we wanted to determine whether the genetic alterations 

introduced into OC cells affected their proliferation. c-FLIP shRNA1, c-FLIP 

shRNA2, control shRNA and parental cells from MDAH-2774 and A2780 OC 

cells were seeded into 24-well plate and the proliferation rate was determined 

every 24 hours for 4 days. No significant differences were found in c-FLIPL 

depleted cells compared to either control shRNA or parental counterparts in 

vitro (Fig. 3.2.1E). 

Together, these data show that downregulation of c-FLIPL significantly 

enhanced the susceptibility of OC cells to TRAIL-induced apoptosis in vitro. 

 

A) 

       

 

B) 
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C) 

 

D) 

 

E) 

    

Figure 3.2.1. c-FLIPL depletion sensitizes OC cells for TRAIL-induced 
apoptosis. A) MDAH-2774 and A2780 OC cells were either left untransfected or 
were transfected with a vector encoding control shRNA or c-FLIP shRNA1. Protein 
expression of c-FLIPL and actin, used as housekeeping protein, were assessed by 
Western blot. A representative experiment for two independent experiments is 
shown. B) RNAs were isolated from untransfected MDAH-2774 and A2780 OC cells 
and those transfected with a vector encoding control shRNA or c-FLIP shRNA1. 
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qRT-PCR was performed using specific primers for c-FLIP and HPRT1, used as 
housekeeping gene. Columns represent the mean of duplicate of one experiment; 
bars, ±S.E.M. (standard error of the mean). Data represent three independent 
experiments. C) Parental A2780 cells or those transfected with control shRNA or c-
FLIP shRNA1 were either left untreated or treated with soluble TRAIL (100 ng/ml) for 
24 hours. Apoptosis was determined by annexin-V and PI staining. The percentage 
of apoptotic cells in the respective quadrant is given. D) Parental MDAH-2774 and 
A2780 OC cells or those transfected with control shRNA or c-FLIP shRNA1 were 
either left untreated or treated with soluble TRAIL (100 ng/ml) for 24 hours, and 
apoptosis was measured as indicated above. Columns hold the mean of three 
independent experiments: bars, ±S.E.M.; *statically significant (P<0.05), or **highly 
significant (P<0.005) differences obtained by comparing c-FLIP shRNA1 transfected 
cells to either parental or control shRNA transfected cells. E) In vitro cell proliferation 
assay. The proliferation rate of MDAH-2774 and A2780 parental cells or those 
transfected with control shRNA or c-FLIP shRNA1 was determined by Cell Titer-Blue 
for 24, 48 and 72 hours. The experiment was performed in triplicate, columns 
represent the mean of triplicate of one experiment; bars ±S.E.M. Data represent 
three independent experiments. 
 

c-FLIPL depletion causes regression of OC in a xenograft mouse model 

We next evaluated the effects of c-FLIPL depletion on OC progression in vivo. 

We used the A2780 human epithelial OC cell line, representing the most 

common category of human OC, to establish a xenograft OC mouse model. 

We subcutaneously implanted c-FLIP shRNA1, control shRNA expressing 

cells, or parental cells (1.5 x 107) into 6 to 8-week-old female athymic mice, 

and monitored tumor growth. All mice were sacrificed after 2 weeks and tumor 

weights were determined. We observed that both parental (n=5) and control 

shRNA cells (n=8) formed very large tumors within 2 weeks, whereas mice 

injected with c-FLIP shRNA1 cells showed either no tumor (n=4) or reduced 

tumor formation (n=4) (Fig. 3.2.2A, and Supplementary Fig. 3.2.3A). These 

results were obtained from two independent experiments. In contrast to both 

parental and control shRNA cells, which showed large tumor weight, c-FLIP 

shRNA1 cells resulted in significantly reduced tumor weight (Fig. 3.2.2C and 

Supplementary Fig. 3.2.3C). The correlation between tumor volume (day 14) 

and tumor weight was high (Pearson r=0.84 and 0.87, Fig. 3.2.2B and 
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Supplementary Fig. 3.2.3B respectively). These results indicate that c-FLIPL 

expression promotes OC development in vivo, giving new insights about the 

physiological role of c-FLIPL in ovarian tumor progression in vivo. 

 

A) 

 

B) 
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C) 

 

Figure 3.2.2. c-FLIPL depletion causes regression of OC in a xenograft mouse 
model. A) Groups of five female nude/nude mice were subcutaneously inoculated 
with 1.5 x 107 of either parental A2780 ovarian tumor cells or those transfected with 
control shRNA1 or c-FLIP shRNA1 into left and right ventral hind flanks (day 0). 
Tumor volumes were measured every second day for a period of 14 days. Every 
measurement in each group represents the sum of both left and right tumor volumes 
per animal and is depicted by box plots; the line inside each boxplot indicates 
median, and the boxes at the 25th and 75th percentiles indicate error bars at minimum 
and maximum, respectively. * P<0.05,  ** P<0.005, comparing tumor volume in c-
FLIP shRNA1 group with either parental or control shRNA groups. B) Correlation 
between tumor volume on day 14 and tumor weight. C) The tumor weight of the 
given groups after 14 days is depicted by box plots; * P<0.05, ** P<0.005, comparing 
the c-FLIP shRNA1 group with parental or control shRNA groups. Weight 
measurement in each group is represented by the sum of both left and right tumors 
per animal. 
 

c-FLIPL depletion enhances sensitivity of ovarian tumors to apoptosis 

and inhibits proliferation in vivo 

We analyzed whether the suppressive effect of c-FLIPL depletion on ovarian 

tumor growth in vivo is due to increased apoptosis or reduced proliferation. 

Histological analyses confirmed that the number of vital, intact cells was 

markedly reduced in mice injected with c-FLIP shRNA1 when compared to 

control shRNA or parental cells, indicating that c-FLIPL depletion influenced 

tumor cell survival (Fig. 3.2.3A). c-FLIPL was markedly reduced in c-FLIP 
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shRNA1 compared to control or parental tumor tissues, again confirming 

effective depletion of c-FLIPL (Fig. 3.2.3A). 

 Interestingly, immunohistochemical analysis of tumor tissues showed 

that c-FLIP shRNA1 expressing tumors displayed a reduction in Ki-67 

(indicator for cell proliferation) positive cells when compared to control shRNA 

and parental cells (Fig. 3.2.3A and B). Moreover, the apoptosis rate was 

significantly increased from 4% in parental and control shRNA to 27% in c-

FLIP shRNA1 expressing cells (Fig. 3.2.3A and C). This observation reflects 

the finding mentioned above that c-FLIPL restores sensitivity of OC to TRAIL-

induced apoptosis (Fig. 3.2.1C and D, and Supplementary Fig. 3.2.2B). Taken 

together, these data indicate that the antitumorigenic effects observed in mice 

implanted with c-FLIP shRNA1 are in fact not only due to induction of 

apoptosis, but also due to inhibition of proliferation. Our finding indicates that 

c-FLIPL is indeed an apoptosis inhibitor as well as a proliferation mediator in 

vivo. 
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A) 

 

 

B) 
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C) 

 

Figure 3.2.3. c-FLIPL depletion enhances sensitivity of ovarian tumors to 
apoptosis and inhibits proliferation in vivo. Immunohistochemical analysis of 
tumors obtained from mice on day 14 transplanted with either parental A2780 cells or 
cells transfected with control shRNA or c-FLIP shRNA1 for A) H&E, c-FLIPL, Ki-67 
staining, and Tunel assay; magnification 200x. B and C) Proportional cell numbers of 
positive staining of 9 subsections of three different tumor sections per group are 
depicted by box plot; *statistically significant (P<0.05), or **highly significant 
(P<0.005) differences when comparing the c-FLIP shRNA1 group with parental or 
control shRNA groups. 
 

c-FLIPL depletion inhibits migration and the invasive behavior of OC 

cells  

We examined whether c-FLIPL depletion has an effect on the migratory 

phenotype of OC cells in vitro. c-FLIP shRNA1, control shRNA, and parental 

A2780 cells were grown in absence or presence of 100 ng/ml TRAIL for 24 

hours, and the number of migrated cells through chambers was determined. 

We found that the depletion of c-FLIPL by shRNA completely inhibited 

migration of OC cells (98.7%), whereas cells treated with control shRNA or 

parental cells were not inhibited in presence of soluble TRAIL (38%) (Fig. 

3.2.4A and B). Importantly, no differences in migration were observed 

between the tested groups in absence of TRAIL (Fig. 3.2.4A and B), which 
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might suggest that the observed inhibitory effects are indeed due to the 

increase of apoptosis upon downregulation of c-FLIPL. Moreover, this result 

confirms the increase in apoptosis rate which was observed after c-FLIPL 

depletion and treatment with soluble TRAIL (Fig. 3.2.1C and D, and 

Supplementary Fig. 3.2.2B). Together, these data indicate that c-FLIPL 

inhibits TRAIL-induced apoptosis, and also permits migration of OC cells in 

presence of TRAIL. 

We finally examined whether c-FLIPL-mediated tumor growth is 

required for the invasive phenotype of OC in vivo. We subcutaneously 

inoculated control shRNA and c-FLIP shRNA1 expressing cells into athymic 

nude mice. Two weeks after inoculation we observed that control shRNA 

tumors inoculated into mice (n=4) invaded the peritoneal cavity, whereas no 

invasive tumors were observed in mice inoculated with c-FLIP shRNA1 

expressing tumors (n=3) (Fig. 3.2.4C). This finding is in line with our 

observation outlined above that c-FLIPL depletion inhibits migration of OC 

cells in the presence of soluble TRAIL (Fig. 3.2.4A and B). Taken together, 

these results indicate that the expression of c-FLIPL promotes tumor 

development, furthermore acquiring the ability to invade the peritoneal cavity.  
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A) 

 
 
B) 

 
 
C) 

 

Figure 3.2.4. c-FLIPL depletion inhibits migration and the invasive behavior of 
OC cells. A) In vitro migration assay. Parental A2780 cells, transfected with control 
shRNA, or with c-FLIP shRNA1 were either left untreated or treated with soluble 
TRAIL (100 ng/ml), and their migratory potential was assessed in 24-well transwell 
cell culture chambers for 24 hours. Migrated cells were counted by staining the lower 
surface of the membrane with DAPI. Data represent three independent experiments. 
B) The number of migrated cells is shown in presence or absence of soluble TRAIL. 
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Data represent three independent experiments. C) Groups of five female nude/nude 
mice were subcutaneously inoculated with 1.5 x 107 A2780 ovarian tumor cells 
expressing either control shRNA or c-FLIP shRNA1 into left and right ventral hind 
flanks (two mice of the group inoculated with c-FLIP shRNA1 were excluded from the 
analysis as inoculation resulted in intraperitoneal tumors). In contrast to A2780 OC 
cells transfected with c-FLIP shRNA1, cells transfected with control shRNA invaded 
the peritoneal cavity of nude mice. 
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Discussion 

TRAIL is known to induce apoptosis in transformed cells but not in normal 

cells. There are several potential resistance mechanisms that protect normal 

cells from the cytotoxic effect of TRAIL, including expression of decoy 

receptors (DCR1 and DCR2), or the presence of apoptosis inhibitor proteins 

such as c-FLIP. The expression of functional TRAIL protein appears to be 

restricted to immune cells. Moreover, TRAIL-deficient mice do not show large 

abnormalities, except for impaired tumor immunosurveillance and higher 

sensitivity to experimental autoimmune diseases [34]. These findings provide 

strong evidence for the physiological role of TRAIL in the immune system. NK 

cells and CTLs both have the ability to destroy tumor cells by various 

mechanisms; one of them is the production of death ligands such as FasL and 

TRAIL. As published previously, c-FLIPL prevents NK cells and CTLs-

mediated immunosurveillance, resulting in aggressive tumors in vivo [18-20]. 

We have recently shown that TRAIL is highly expressed in the ovarian tumor 

microenvironment, and NK-mediated immunosurveillance in OC might be 

mediated by TRAIL [21]. We further wanted to investigate the role of c-FLIPL 

in inhibiting TRAIL-induced apoptosis and in mediating OC progression. 

Initially, we examined expression values of c-FLIP in gene expression 

datasets in human primary ovarian tumors as stored in the Oncomine 

database [35]. The expression level of c-FLIP was found to be upregulated in 

various ovarian tumors (endometrioid, serous, mucinous, and clear cell 

carcinomas) when compared to normal ovarian tissue samples in a dataset 

published by Lu [36]. These observations in human primary ovarian 

carcinoma are in line with previous findings that c-FLIPL is highly expressed in 
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primary ovarian tumors [17, 37]. Actually, c-FLIP has been suggested to 

mediate proapoptotic as well as antiapoptotic effects [9, 10, 13, 38, 39]. 

Nonetheless, proapoptotic effects were observed mainly upon transient, 

forced expression, which may have been due to high cytoplasmic levels of c-

FLIP. This in turn may have mediated activation of procaspase-8 [40]. Results 

from stably forced expression of c-FLIP and from c-FLIP knockout mice 

supported the anti-apoptotic effect [10, 41]. In the current study, we showed 

that c-FLIPL mediates anti-apoptotic signals in ovarian tumor malignancy 

using OC cell lines resistant to TRAIL-mediated apoptosis. We found that 

depletion of c-FLIPL in OC cell lines breaks the resistance mechanism to 

TRAIL-induced apoptosis in vitro. We observed that depletion of c-FLIPL in 

MDAH-2774 cells enhanced sensitivity to TRAIL-induced apoptosis to about 

25%, and in A2780 cells to about 45% (Fig. 3.2.1 and Supplementary Fig. 

3.2.2). 

In the preclinical xenograft mouse model we found that the shut down 

of c-FLIPL reduced tumor development (Fig. 3.2.2A and C, and 

Supplementary Fig. 3.2.3A and C). Tumor volume and tumor weight were 

dramatically reduced in c-FLIPL depleted cells when compared to cells given 

control shRNA, or parental cells. Moreover, we found that c-FLIPL depletion 

increased the rate of apoptosis in tumor cells implanted in mice (Fig. 3.2.3A 

and C). These in vivo results, next to our in vitro data, indicate the key role of 

c-FLIPL in inhibiting apoptosis in OC via mediating the escape of ovarian 

tumors from immunosurveillance. Remarkably, nude mice are characterized 

by a higher cytotoxic activity of NK cells and macrophages than their euthymic 

counterparts [42, 43]. Therefore we preferred nude mice for our studies over 
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other immune deficient animal models. The homology between the human 

and murine TRAIL ligand is only 65%; however, murine TRAIL was shown to 

have some cross-reactivity with the receptors on human tumor cells [44]. 

Interestingly, we found that c-FLIPL depletion has no effect on 

proliferation and migration of OC cell lines in absence of soluble TRAIL in 

vitro. However, our in vivo results showed that depletion of c-FLIPL decreased 

the rate of proliferation in ovarian tumor tissues (Fig. 3.2.3A and B). Several 

lines of evidence support such a role for c-FLIPL in induction of proliferation: 

First, studies applying gain of function showed that c-FLIPL activates ERK and 

NF-κB -mediated T-cell proliferation [45-47]. Second, conditional removal of c-

FLIP in mouse T-cells displayed a decrease in TCR-activated proliferation and 

IL-2 production, which has been linked to a defect in NF-κB signaling [45, 48]. 

Third, c-FLIPL has been shown to mediate T-cell proliferation through an NF-

κB -independent mechanism, which still needs to be further illustrated [49]. In 

our study, we did not observe any alterations in proliferation of c-FLIPL 

depleted OC cells in vitro (Fig. 3.2.1E), which might be explained by the fact 

that the specific microenvironment is absent in vitro. We noted that in the 

presence of soluble TRAIL, c-FLIPL depletion completely inhibited the 

migratory behavior of OC cells (Fig. 3.2.4A and B), and inhibited the invasive 

behavior in vivo. This observation indicates that c-FLIPL depletion induces 

apoptosis in OC cells (Fig. 3.2.4), which might be the reason that these cells 

do not go through the peritoneal cavity and therefore inhibits their invasive 

behavior. Additionally, c-FLIPL has been shown to regulate ERK and NF-κB 

pathways [46], which might explain why c-FLIPL induces OC invasion. 

Notably, OC in humans metastasizes in most cases into the free peritoneal 
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cavity and is restricted to the peritoneal cavity. Metastases at other sites are a 

rare event, which is in line with our observations in the xenograft mouse 

model that also showed invasion restricted to the peritoneal cavity and not 

other sites. 

 In conclusion, our in vitro and in vivo data indicate that c-FLIPL depletion 

inhibits tumor growth through induction of apoptosis and inhibition of 

proliferation, indicating that c-FLIPL plays a key role in ovarian tumor 

progression. Our study highlights c-FLIPL as a central switch between cell 

proliferation and cell death at the DISC level in OC, suggesting that c-FLIPL is 

a potential target for OC therapy. 
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Supplementary data 

 

Supplementary figure 3.2.1. Expression of DR4 in selected OC cell lines. 
Immunoblotting analysis of DR4 and actin expression in MDAH-2774 and A2780 OC 
cell lines. 
 

A) 

 

B) 

 



Results and Discussion 

   101 

Supplementary figure 3.2.2. c-FLIPL depletion sensitizes OC cells for TRAIL-
induced apoptosis. A) RNAs were isolated from untransfected MDAH-2774 and 
A2780 OC cells and those transfected with a vector encoding control shRNA or c-
FLIP shRNA2. qRT-PCR was performed using specific primers for c-FLIP and 
HPRT1. Columns represent the mean of duplicate of one experiment; bars, ±S.E.M. 
Data represent three independent experiments. B) Parental MDAH-2774 and A2780 
cell lines or those transfected with control shRNA, c-FLIP shRNA1, or c-FLIP 
shRNA2 were either left untreated or treated with soluble TRAIL (100 ng/ml) for 24 
hours. Apoptosis was determined by annexin-V and PI staining. Columns hold the 
mean of three independent experiments: bars, ±S.E.M.; *statically significant 
(P<0.05), or **highly significant (P<0.005) differences obtained by comparing c-FLIP 
shRNA1/2 transfected cells to either parental or control shRNA transfected cells. 
 

A) 

 

B) 
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C) 
 

 
 
Supplementary figure 3.2.3. c-FLIPL depletion causes regression of OC in a 
xenograft mouse model. A) For each experimental group, holding five female 
nude/nude mice, the animals were inoculated subcutaneously with 1.5x107 A2780 
ovarian tumor cells either as parental or transfected with control shRNA1 or c-FLIP 
shRNA1 into left and right ventral flank (day 0). Tumor volumes were measured 
every second day for a period of 14 days. Each measurement in each group 
represents the sum of both left and right tumor volumes per animal and is depicted 
by box plot; the line inside each boxplot indicates the median, and boxes at 25th and 
75th percentiles indicate error bars at minimum and maximum, respectively (results 
are based on two independent experiments). * P<0.05,  ** P<0.005, comparing tumor 
volume in c-FLIP shRNA1 group with either parental or control shRNA groups. Two 
mice in the c-FLIP shRNA1 inoculated group were excluded from the analysis due to 
inoculation resulting in intraperitoneal tumors. B) Correlation between tumor volume 
on day 14 and tumor weight in all mice as found in two independent experiments. C) 
Tumor weight of the given (two independent experiments) as found after 14 days is 
depicted by box plots; *statistically significant (P<0.05), or **highly significant 
(P<0.005) differences comparing the c-FLIP shRNA1 group with parental or control 
shRNA groups. Every weight measurement in each group is represented by the sum 
of both left and right tumor per animal. 
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3.3. Characterization of the TRAIL pathway in a 

syngeneic mouse model of ovarian cancer 

Introduction 

Most human tumors eventually continue to grow independently of 

spontaneous or therapy induced immune responses, a process described as 

escape from tumor surveillance. There is ample evidence that this rests on 

the ability of a fraction of cancer cells to continuously evade potentially 

effective immune recognition and destruction (1-3). Immunosurveillance 

against tumors is mediated by both innate and adaptive components of 

cellular immunity. Endogenous TRAIL protein expressed mainly on a variety 

of cells of innate and adaptive immune cells, and its expression depends on 

the stimulation status (4-10). IFN-γ can induce expression of TRAIL on 

dendritic cells (DCs) and NK cells (4, 5). Increased expression of TRAIL was 

detected on monocytes and macrophages after stimulation with 

lipopolysaccharide (LPS) and interferon-β (11, 12). Moreover, TRAIL is 

upregulated on the surface of CD4+ and CD8+ human T cells after T-cell 

receptor stimulation, in presence of type I IFNs. TRAIL has been shown to 

suppress tumor growth of various types such as B-cell lymphoma (13) and 

breast and renal carcinoma cells (14-16). However, the role of TRAIL-

mediated tumor surveillance in the context of ovarian tumors is unclear. As 

mentioned before, human TRAIL has two known functional receptors DR4 

and DR5 and two additional decoy receptors (cell-bound receptors incapable 

of driving apoptosis signals) DCR1 and DCR2. In addition, human TRAIL can 

bind with OPG (17, 18). By contrast, in mice there is only one death-inducing 

receptor homologous to human DR5 (mTRAIL-R2/mDR5), and two potential 
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decoy receptors (mDcTRAIL-R1 and mDcTRAIL-R2) specific for mouse 

TRAIL (19). Even though, the homology between the human and murine 

TRAIL ligands is only 65%, murine TRAIL has been shown to have some 

cross-reactivity with human tumor cells (20). Mouse DR5 (mDR5) contains the 

death domain and apoptosis can be induced in response to both mouse and 

human TRAIL (21). Interestingly, the overall sequence structures of 

mDcTRAIL-R1 and mDcTRAIL-R2 are distinct from those of the known 

human decoy TRAIL receptors. OPG can also bind to mouse TRAIL, and 

might act as soluble decoy receptor for TRAIL (21). 

Although both subcutaneous and intraperitoneal xenograft OC mouse 

models have provided useful insights into clinical treatment (22-29), 

understanding early events in the establishment and progression of OC is not 

possible in immunodeficient mice. The immunocompetent mouse model I 

applied in this study (30) is based on established models utilizing human and 

rat ovarian surface epithelial cells and tumor cell lines (25, 29, 31-33). Rat 

ovarian surface epithelial cells become transformed after multiple passages in 

vitro and have been shown to develop tumors in athymic mice (32, 33). The 

hypothesis is that multiple passages of ovarian surface epithelial cells might 

cause transformation, which is in line with the theory of incessant ovulation 

and development of OC (32, 34). 

In this part of my PhD thesis I utilized a syngeneic mouse model using 

ten transformed mouse ovarian surface epithelial (MOSE) cell lines derived 

from C57BL/6 mice to assess the implications of TRAIL in OC. I characterized 

all tumorigenic MOSE cell lines in terms of the most relevant players in the 

TRAIL signaling pathway (mDR5, c-FLIP and caspase-8), and measured their 
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sensitivity to TRAIL-induced apoptosis. Interestingly, I observed that all 

tumorigenic MOSE cell lines showed a downregulation of mDR5 when 

compared with normal (non-tumorigenic) MOSE cells. Additionally, seven out 

of ten cell lines were resistant to TRAIL-induced apoptosis. I subsequently 

focused on the well-characterized MOSE ID8 cell line. In vivo preliminary data 

showed that the knockdown of mDR5 by shRNA in the selected ID8 cells 

accelerated the development of ascites compared to control shRNA and 

parental cells. Moreover, the downregulation of mDR5 inhibited significantly 

the apoptosis rate. In vitro data as well as preliminary in vivo results clearly 

suggest that the TRAIL/TRAIL-R2 system plays a fundamental role in tumor 

progression in an accepted immunocompetent OC mouse model. 
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Material and Methods 

Tumorigenic MOSE cell lines 

Tumorigenic MOSE cell lines have been kindly provided by Dr Kathy Roby 

from the University of Kansas, USA. These cell lines were isolated from 

C57BL/6 mice, cultured in vitro, and underwent spontaneous transformation 

after multiple passages. The parental cell line was cloned and ten tumorigenic 

MOSE cell lines were established (Fig. 3.3.1). 

Tumorigenic MOSE cells (greater than pass 20) were subcultured at 1-

2 week intervals in complete medium (DMEM supplemented with 4% FCS 

(Gibco), 100 U/ml penicillin, 100 µg/ml streptomycin, 5 µg/ml insulin, 5 µg/ml 

transferring, and 5 ng/ml sodium selenite (Sigma)) and split at ratios of 1:10. 

 
 
Figure 3.3.1. Schematic map of applying the syngeneic OC mouse model. 
Tumorigenic MOSE cell lines enriched by mouse ovarian surface epithelial cells were 
isolated from C57BL/6 donor mice. Proliferation of MOSE cells was induced by 
adding murine epidermal growth factor (EGF), and cells became transformed after 
multiple passages. The ID8 MOSE cell line was selected and genetically manipulated 
by downregulating mDR5. Parental and manipulated cells were subsequently 
transplanted individually into immunocompetent C57BL/6 recipient mice. Eight weeks 
after tumorigenic MOSE cells reconstitution, the development of OC cells was 
analyzed. 
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Isolation and culturing of normal (non-tumorigenic) ovarian epithelial 

cells 

Ovaries were isolated from five female C57BL/6 mice (eight weeks old; 

Charles River) and placed in a culture dish containing 1xPBS (Gibco) at 4ºC, 

under sterile conditions. The ovaries were washed with 1xPBS and placed in 

a 15 ml conical culture tube containing 10 ml 1xPBS with 0.2% trypsin. The 

ovaries were incubated in a horizontal position in a tube containing trypsin 

solution at 37ºC in a humidified atmosphere of 5% CO2 and air for 30 minutes. 

After 30 minutes, the media containing epithelial cells was transferred to a 

fresh tube and 5 ml complete medium was added. The epithelial cells 

(approximately 100.000 per 10 ovaries) were harvested by centrifugation 

(1000g for 10 minutes at 22ºC), and were resuspended in 2 ml complete 

medium and placed in a single well of a 6-well culture dish (all cells were 

subcultured with trypsin (0.2%) at near confluent). 2 ng/ml murine epidermal 

growth factor (EGF, Sigma) was added to the medium during the early 

passage growth. 

 

RNA isolation, cDNA synthesis, and qRT-PCR 

RNA isolation, cDNA synthesis and qRT-PCR were performed as described in 

sections 3.1 and 3.2. For quantitative real time PCR, the following mouse 

assay-on-Demand probes were used: Mm00457866_m1 DR5, 

Mm01255578_m1 c-FLIP, Mm00437174_m1 TRAIL, and Mm01545399_m1 

HPRT1. 
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Protein preparation and Western blot analysis 

Protein preparation and Western blot were performed as described before in 

sections 3.1 and 3.2. The following primary antibodies were used: monoclonal 

anti-mouse TRAIL-R2 (DR5)/TNFRSF10B antibody (dilution 1:250; R&D 

systems), monoclonal anti-mouse FLIP antibody (Dave-2, dilution 1:1000, 

Alexis), monoclonal anti-mouse caspase-8 antibody (1G12; dilution 1:1000; 

Alexis), and goat polyclonal actin HRP (dilution 1:500; Santa Cruz) antibody. 

The protein bands were quantified using Epi Chemi II Darkroom chamber 

(UVP laboratory products) and LabWork Gel-Pro Application software. 

 

Apoptosis Assay 

Apoptosis assay was performed as decribed before in sections 3.1 and 3.2. 

Briefly, MOSE cell lines were treated with recombinant mouse soluble TRAIL 

(Alexis) at final concentrations of 100, 500 and 1000 ng/ml and incubated for 

24 hours. Cells were harvested by trypsinization and assessed for apoptosis 

by a propidium iodide and annexin-V staining assays according to the 

manufacturer’s instruction. The degree of apoptosis was calculated by 

subtracting measured apoptosis in treated cells from untreated controls. 

 

Generation of RNAi  

Oligonucleotides encoding shRNA targeting mDR5 were designed by using 

Ambion's online Target Finder (Fig. 3.3.2). The specific target sequence for 

mDR5 (accession number: AF176833) are shown in Table 3.3.1. Control 

shRNA was used to confirm the specificity of selected shRNAs. 

Oligonucleotides were annealed by mixing 10 µg of each oligonucleotide 
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(forward and reverse) with 2 µl 10x annealing buffer (1 M NaCl and 100 mM 

Tris HCl ‘pH 7.4’) in a total volume of 20 µ l. The reaction mixture was 

incubated at 95ºC for 5 minutes and then cooled down slowly at room 

temperature. 

The oligonucleotides were designed to contain restriction sites BamHI 

and HindIII at 5' and 3' respectively. 1 µg/µl pSilencer 4.1-CMV neo vector 

(Applied Biosystems) was linearized by digestion with BamH1/HindIII, 

followed by gel purification on a 1% agarose gel. The annealed 

oligonucleotides were cloned into a pSilencer 4.1-CMV neo vector and 

sequences of the resulting vectors were verified by sequencing. 

ID8 MOSE cell line was then transfected with the according vectors 

(encoded shRNA oligonucleotide) by the lipofecatmine transfection method 

(Invitrogen) according to the manufacturer's instructions. To measure the 

suppression level of the mDR5 target gene mRNA and protein were isolated, 

and qRT-PCR and Western blot were performed respectively. 

 

 
 
 
 
 
 
 
 
Figure 3.3.2. Schematic map of the design of the shRNA target sequence. A 
prototypical shRNA is comprised of two hybridized RNA molecules with 19 
complementary nucleotides (derived from mRNA sequence), a loop sequence 
separating the two complementary domains, and 3′ polythymidine tract to terminate 
transcription. Transcription is regulated by the CMV promoter. 
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Target name Oligonucleotide sequence 

 
A Forward: 

5'-GATCC GCGCAGACTTCTATATAGC TTCAAGAGA 
GCTATATAGAAGTCTGCGCTTA-3' 
Reverse: 
5'-AGCTTAAGCGCAGACTTCTATATAGCTCTCTTGAA 
GCTATATAGAAGTCTGCGCG-3' 

B Forward: 
5'-GATCCATACGGTGTGTCGATGCAATTCAAGAGA 
TTGCATCGACACACCGTATTTA-3' 
Reverse: 
5'-AGCTTAAATACGGTGTGTCGATGCAATCTCTTGAA 
TTGCATCGACACACCGTATG-3' 

C Forward: 
5'-GATCCCCGGAAGTGTGTCTCCAAATTCAAGAGA 
TTTGGAGACACACTTCCGGTTA-3' 
Reverse: 
5'-AGCTTAACCGGAAGTGTGTCTCCAAATCTCTTGAA 
TTTGGAGACACACTTCCGGG-3' 

D Forward: 
5'-GATCCAGTGCGAACTCTGTGCATTTTCAAGAGA 
AATGCACAGAGTTCGCACTTTA-3' 
Reverse: 
5'-AGCTTAAAGTGCGAACTCTGTGCATTTCTCTTGAA 
AATGCACAGAGTTCGCACTG-3' 

E Forward: 
5'-GATCCCCTGGCAAGACTCAGAAAATTCAAGAGA 
TTTTCTGAGTCTTGCCAGGTTA-3' 
Reverse: 
5'-AGCTTAACCTGGCAAGACTCAGAAAATCTCTTGAA 
TTTTCTGAGTCTTGCCAGGG-3' 

 
Table 3.3.1. Oligonucleotide sequences of the various hairpins used for the 
knockdown of  mDR5. The sequences of the forward and reverse primers are 
shown. Five oligonucleotides were designed (A, B, C, D, and E). The underlined 
sequences were added for cloning purposes and contain restriction sites (BamHI or 
HindIII) required for cloning. The red sequence indicates the hairpin. 
 

Immunocompetent OC mouse model 

Female immunocompetent C57BL/6 mice, eight weeks of age, were injected 

intraperitoneally with a single-cell suspension (5x106 cells in 0.2 ml DMEM 

containing no additives) of the individual parental or manipulated ID8 MOSE 

cell line. Observation and measurement of the tumor development were 

performed by weighting mice every 2-3 days after inoculation. Intraperitoneal 
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tumor formation was monitored by the accumulation of ascitic fluid. 

Approximately two weeks after the development of visible ascites (detected by 

abdominal swelling) the animals were sacrificed. Ascitic fluid was collected at 

the time of sacrifice and the tumor sizes were noted. As a control, mice were 

injected with DMEM medium free cells to ensure that the observed tumors are 

due to the inoculated tumor cells. Animal experiment was performed 

according to protocols approved by the Austrian Federal Ministry for 

Education, Science and Art 

 

H&E staining and Immunohistochemistry  

H&E staining and Immunohistochemistry were performed as described before 

in sections 3.1 and 3.2. The following primary antibodies were used: 

monoclonal anti-mouse TRAIL-R2 (DR5) antibody (dilution 1:100, R&D 

systems), goat anti-mouse TRAIL antibody (dilution 1:1200, R&D systems), 

and monoclonal rat anti-mouse Ki-67 (dilution 1:25, Dako). 

 

Tunel assay 

Apoptosis was assessed by TUNEL (Roche) according to the manufacturer’s 

instructions. As described before in sections 3.1 and 3.2, cells were analyzed 

on a fluorescence microscope (Nikon Eclipse 800) equipped with a Nikon DS-

R1 camera, using the NIS-Elements software. Positive and negative controls 

were performed by treating samples with DNase I or excluding incubation with 

primary antibody, and yielded positive and negative results, respectively. 
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Statistical analysis 

Data were analyzed using the Student’s t-tests. P values below 0.05 were 

considered as statistically significant, and P values below 0.005 were 

considered highly significant. 



Results and Discussion 

   113 

Results 

Tumorigenic MOSE cell lines regulate differentially mDR5 and c-FLIP, 

and are resistant to TRAIL-induced apoptosis 

Tumorigenic clonal MOSE cell lines (kindly provided by a collaboration 

partner) were derived from the ovarian surface epithelium of C57BL/6 mice 

(30). MOSE cell lines were isolated and cultured in vitro and underwent 

spontaneous transformation after multiple passages. The parental cell line 

was cloned and ten lines were established [(30) and Fig. 3.3.1 in Materials 

and Methods]. 

First, I aimed to characterize the ten tumorigenic MOSE cell lines and 

to examine the status of the TRAIL-dependent apoptosis signaling pathway in 

each of them. I isolated MOSE cells from C57BL/6 mice as outlined in (30) 

and used as normal (non-tumorigenic) MOSE cell control for the endogenous 

expression of the target genes. The expression of the target molecules 

mDR5, c-FLIP and caspase-8 were determined on the mRNA and protein 

level by qRT-PCR and Western blot respectively, and compared to normal 

MOSE cell levels. Unexpectedly, all ten tumorigenic MOSE cell lines 

displayed a downregulation of mDR5 as compared with the non-tumorigenic 

MOSE cell at mRNA and protein level (Fig. 3.3.3A, B and C). By contrast, c-

FLIP showed an upregulation in four out of ten tumorigenic MOSE cell lines 

(IC5, ID3, 2C12 and 3E3) compared with the non-tumorigenic MOSE cells at 

protein level (Fig. 3.3.3B and C upper panel). Expression of caspase-8 was 

unaltered in all ten tumorigenic MOSE cell lines as compared with the non-

tumorigenic MOSE cell control at protein level (Fig. 3.3.3B and C lower 

panel). 
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Furthermore, the sensitivity of the established MOSE cell lines to 

TRAIL were measured by stimulating with soluble mouse recombinant TRAIL, 

and the degree of apoptosis, in a concentration-dependent manner, was 

determined (Fig. 3.3.3D). I incubated the ten cell lines with recombinant 

mouse soluble TRAIL at final concentrations of 100, 500 and 1000 ng/ml for 

24 hours. Apoptosis was then detected by Annexin-V and PI staining and 

compared with untreated controls. Three out of ten tumorigenic MOSE cell 

lines (IC5, ID9, and 3B11) showed response to TRAIL-induced apoptosis only 

at very high concentrations (1 µg/ml, Fig. 3.3.3D). As mentioned above, all ten 

tumorigenic MOSE cell lines downregulated mDR5 but at different levels. The 

expression of mDR5 in all ten tumorigenic MOSE cell lines was positively 

correlated with apoptosis rate. For example, IC5 and 3B11 tumorigenic MOSE 

cell lines showed high apoptosis upon stimulation with TRAIL and expressed 

high mDR5 in comparison with other tumorigenic MOSE cell lines. 

Taken together, these data show that all ten tumorigenic MOSE cell 

lines showed differential expression of the most relevant players in the TRAIL 

pathway (mDR5 and c-FLIP) when compared with normal (non-tumorigenic) 

MOSE cells. I further showed that 70% of tumorigenic MOSE cell lines were 

resistant to TRAIL-induced apoptosis. In conclusion, these results indicate 

that mDR5 and c-FLIP in the context of TRAIL pathway were highly modified 

in mouse OC cells. 
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A) 

 

 

B) 
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C) 

 

 

 

D) 
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Figure 3.3.3. Tumorigenic MOSE cell lines regulate differentially mDR5 and c-
FLIP, and are resistant to TRAIL-induced apoptosis. A) mRNA expression levels 
of mDR5 and c-FLIP in tumorigenic MOSE cell lines were determined by qRT-PCR. 
B) Western blot analysis of mDR5, c-FLIP and caspase-8 expression in ten 
tumorigenic MOSE cell lines. Western blots were performed with the total cellular 
proteins of the given cell lines. C) Quantitative evaluation of Western blot for mDR5, 
c-FLIP (upper panel) and caspase-8 (lower panel). Protein bands were quantified 
and standardized with actin. D) Measured TRAIL sensitivity on tumorigenic MOSE 
cell lines. MOSE cell lines were treated with recombinant mouse soluble TRAIL at 
final concentrations of 100, 500 and 1000 ng/ml and incubated for 24 hours. Cells 
were then assessed for apoptosis by Annexin-V and PI staining and compared with 
untreated controls. No effects were observed with 100 and 500 ng/ml soluble TRAIL 
(data not shown). 
 

Knockdown of mDR5 leads to an increase in transformation and a 

shorter life span 

To analyze the influence of differentially expressed mDR5 on the 

development of OC in immunocompetent mice, the loss of function approach 

was applied using RNAi technology. The well-characterized tumorigenic 

mouse OC cell line ID8 (of which the chromosomes were analyzed and 

structural abnormalities were described (30)), which displays an abnormal 

regulation of mDR5 and c-FLIP (Fig. 3.3.3A, B and C), was selected and 

considered for further work. To shutdown (or at least reduce) mDR5 

expression by RNAi approach, five synthetic shRNA oligonucleotides (A, B, C, 

D, and E; sequence shown in Table 3.3.1 in Material and Methods) spanning 

various regions of the mDR5 open-reading frame were designed and cloned 

into pSilencer 4.1-CMV neo vector. 

The effects of shRNA constructs were controlled by comparing mRNA 

and protein levels from pSilencer mDR5 vector-transfected ID8 cells with non-

transfected ID8 cells or with cells transfected with control shRNA. Control 

shRNA sequence was designed not to target any gene in the whole genome. 

One out of five generated shRNAs showed highly efficient downregulation of 
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mDR5 on mRNA and protein level as shown in qRT-PCR and Western blot 

respectively (Fig. 3.3.4A and B). 

 Consequently, 5 ×  106 of the manipulated and parental tumorigenic 

MOSE cell lines were transplanted intraperitoneally with a single cell 

suspension into female immunocompetent C57BL/6 mice individually, and 

tumor development was determined. Three mice were analyzed per group. 

Mice were weighed every second day, and intraperitoneal tumor formation 

was monitored by the accumulation of ascitic fluid. Approximately 9-18 days 

after the development of visible ascites (detected by abdominal swelling) the 

animals were sacrificed. Interestingly, I observed that suppression of mDR5 

led to an increase in transformation and, consequently, a shortened life span 

(Fig. 3.3.4C). This might be explained by the inhibition of mDR5 expression 

thereby increasing the resistance of ID8 cell lines to TRAIL-induced apoptosis 

expressed by immune cells. I could not observe any tumors outside the 

peritoneal cavity. Notably, these in vivo data were obtained from single 

experiment and, therefore, should be considered preliminary results. My 

preliminary in vivo results indicate that mDR5 is a key player in OC 

progression. 
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A)        B) 

 

 

C) 

 
 
Figure 3.3.4. Knockdown of mDR5 leads to an increase in transformation and 
shorter life span. A and B) Knockdown of mDR5 in the established OC mouse 
model. ID8 tumorigenic MOSE cells were either left untransfected or transfected with 
control shRNA or mDR5 shRNA. RNA and protein were isolated and the efficiency of 
mDR5 shRNA was determined by qRT-PCR (left panel) and Western blot (right 
panel). C) The phenotypic effect of mDR5 suppression on OC progression in a 
syngeneic OC mouse model. Groups of female immunocompetent C57BL/6 mice 
(three mice each), eight weeks of age were either left or transplanted 
intraperitoneally with 5 × 106 ID8 cells of the individual parental or control shRNA or 
mDR5 shRNA MOSE cells. Mice were weighed twice per week after inoculation and 
tumor formation was monitored by the accumulation of ascitic fluid (detected by 
abdominal swelling). 
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Knockdown of mDR5 increases the resistance to TRAIL-induced 

apoptosis in vivo 

To correlate the observed tumor growth with the rate of apoptosis in vivo, 

isolated tumors were subsequently sectioned for pathological analysis. 

Tumors stained with mDR5 confirmed that mDR5 is silenced in vivo compared 

with the control shRNA or parental cells (Fig. 3.3.5A). Immunohistochemical 

analysis for TRAIL indicated that it is highly expressed in the tumor 

microenvironment (Fig. 3.3.5A), which is in line with my previous data from a 

xenograft mouse model (section 3.1). Tumor tissues stained with proliferating 

cell nuclear antigen (Ki-67) showed no significant increase in the proliferation 

in mDR5 downregulated tumors compared with controls (Fig. 3.3.5A and B). 

In contrast, tumor tissues stained via TUNEL assay, which detects 3' DNA 

strand breaks, showed marked decrease in the frequency of apoptosis 

occurring in mDR5 shRNA expressing tumor tissues compared with the 

control shRNA or parental cells (Fig. 3.3.5A and C). Soluble TRAIL induces 

apoptosis in tumor cells and membrane-bound TRAIL is known to be more 

active than soluble TRAIL. Moreover, specific microenvironment plays a role 

in vivo. These facts might explain the reason of reduced apoptosis (only 4%) 

in parental cells in vivo and not in vitro (Fig. 3.3.3D and 3.3.5C). These data 

obtained from preliminary in vivo results suggest that the increase in tumor 

development and shorter life span occurring in mDR5 shRNA expressing cells 

is because of a decrease in apoptosis rate in vivo. Taken together, these 

preliminary in vivo results next to my previous data (section 3.1) highlight DR5 

as a potential target for OC therapy. 
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A) 

 

B)      C) 

 

Figure 3.3.5. Knockdown of mDR5 increases the resistance to TRAIL-induced 
apoptosis in vivo. A) Immunohistochemical analysis of tumor sections isolated from 
the given groups and stained with mDR5, TRAIL or Ki-67. In addition, apoptosis was 
determined by TUNEL assay. B) The percentage of Ki-67 positive cells in each group 
is shown. Columns represent the mean of proportional cell numbers of Ki-67 positive 
staining of three different tumor sections per group; bars, ±SE. No statically 
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significant (P<0.05) difference was obtained by comparing the mDR5 shRNA group 
with parental or control shRNA groups. C) Percentage of TUNEL positive cells is 
shown. Columns represent the mean of the proportional cell numbers of TUNEL 
positive staining of three different tumor sections per group; bars, ±SE; *statically 
significant (P<0.05) or **highly significant  (P<0.005) differences comparing the 
mDR5 shRNA group with parental or control shRNA groups. 
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Discussion 

TRAIL is a natural immune system associated molecule that has been shown 

to play an important role in tumor immunosurveillance, and is in the meantime 

also being developed for clinical trials in cancer patients (15, 16, 35, 36). In 

this study, I applied an immunocompetent C57BL/6 OC mouse model (30) to 

address the molecular and cellular events of the TRAIL/TRAIL-R system in 

host protection from ovarian tumor development. This immunocompetent OC 

mouse model, reflecting both the early and late stages of the disease, is ideal 

for the investigation of the molecular and immune interaction of the TRAIL 

pathway in OC progression. The model has the following benefits. First, the 

ability of tumorigenic MOSE cells to grow in mice with an intact immune 

system, which makes it possible to study the interaction of the immune 

system during the development, progression and treatment of ovarian 

carcinogenesis in contrast to xenograft mouse models, which lack a functional 

immune system. Second, the development of the tumor requires a long time 

(about 2-3 months), which allows for the detection and manipulation of cellular 

and molecular processes during development of the disease. Third, the ability 

to maintain the tumorigenic MOSE cell lines in culture aids genetic 

manipulation. Fourth, the ability of tumorigenic MOSE cells (manipulated and 

parental) to grow in gene deficient mice i.e. TRAIL knock-out C57BL/6 mice, 

makes this model a potential tool for further TRAIL-based studies. 

MOSE cells were isolated and cultured in vitro and underwent 

spontaneous transformation after multiple passages (30). The parental cell 

line was cloned and ten lines were established [(30) and Fig. 3.3.1 in 

Materials and Methods]. Upon intraperitoneal application in a syngeneic 
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C57BL/6 mice, all ten cell lines were capable of inducing intraperitoneal 

tumors, with ascitic fluids accumulating at a late stage of OC, like in women 

(30). In fact, epithelial cells isolated from the surface of mouse ovaries grew 

very slowly. Therefore, to establish these tumorigenic MOSE cells, EGF was 

added to the culture medium to accelerate its growth. In another experiment, 

in the absence of EGF, transformed phenotype was also observed in vitro 

(30). This observation suggested that the transformation of these cells is 

related to the degree of proliferation (30). Remarkably, incessant ovulation is 

a risk factor in OC because it increases the proliferation of the surface 

epithelium (34). Early MOSE cell passages exhibit classical morphology of 

epithelial cells; proliferation was stopped when cells became confluent. 

However, with multiple passages the morphology of cells changed, with the 

contact inhibition of growth mainly lost and cell proliferation continuing. In this 

study, I identified that the TRAIL pathway is altered in malignant cells, which 

might be one of the factors responsible for that transformation. 

Established tumorigenic MOSE cell lines were kindly provided by 

collaboration partner (30). I isolated MOSE cells from C57BL/6 mice and used 

a normal (non-tumorigenic) MOSE cell control for the endogenous expression 

of the target genes. I characterized ten tumorigenic MOSE cell lines in terms 

of their expression of mDR5, c-FLIP and caspase-8, and furthermore 

measured their sensitivity to TRAIL-mediated apoptosis. I observed that 

mDR5 is downregulated in all ten tumorigenic MOSE cell lines when 

compared with normal (non-tumorigenic MOSE cells) (Fig. 3.3.3A, B, and C). 

Moreover, I documented that 70% of tumorigenic MOSE cell lines are 

resistant to TRAIL-induced apoptosis, and 30% showed apoptosis upon 
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treatment with mouse soluble TRAIL. These cells showing a response to 

TRAIL-induced apoptosis expressed higher levels of mDR5 compared with 

those resistant to TRAIL-induced apoptosis (Fig. 3.3.3). These data suggest 

that the sensitivity of tumorigenic MOSE cell lines to TRAIL-induced apoptosis 

is directly correlated with mDR5 expression. My observation in mice is in line 

with my previous finding in humans that resistance to TRAIL in OC can be 

overcome by an agonistic anti-human DR5 monoclonal antibody, such as 

AD5-10, together with an application of TRAIL (section 3.1). c-FLIP 

expression was altered in 40% of the tumorigenic MOSE cell lines at protein 

level when compared with non-tumorigenic MOSE cell control (Fig. 3.3.3B 

and C). This finding reflects our lab’s observation in humans that about 40% 

of OC patients overexpressed c-FLIPL, and that c-FLIPL suppression 

enhanced OC to TRAIL-induced apoptosis (22, 37). Taken together, these 

data indicate that the immunocompetent OC mouse model I applied in this 

study closely mimics human disease, proving valuable in current 

investigations. 

The immunocompetent OC mouse model develops widespread 

intraperitoneal disease with morphological characteristics of epithelial OC 

within two to three months after injection. No metastatic disease could be 

observed in these mice, and this fact is verified in my study. Notably, human 

OC metastasizes into the free peritoneal cavity and is restricted to the 

peritoneal cavity. Metastases at other sites are a rare event. The well-

characterized tumorigenic mouse OC cell line ID8 was genetically 

manipulated by inhibiting mDR5 expression using shRNA (Fig. 3.3.4A and B). 

Interestingly, the preliminary data of a syngeneic OC model showed that 
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silencing mDR5 expression decreased the life span of OC mice. Moreover, 

ascite development was accelerated and apoptosis was decreased in tumor 

tissues downregulated mDR5 compared with control shRNA or parental cells 

(Fig. 3.3.4C, 3.3.5A and B). These results indicate that mDR5 contributes 

significantly to TRAIL-induced apoptosis in OC cells and support my previous 

findings in humans that AD5-10 sensitized OC cells to TRAIL mediate 

apoptosis in vitro and decreased dramatically tumor size in vivo (section 3.1). 

In conclusion, my data show that the TRAIL/TRAIL-R system in 

addition to the caspase-8 inhibitor protein c-FLIP is modified in mouse OC, 

and that the alterations are very similar to that observed in human OC. This 

fact indicates the value of my study, and adds additional weight for applying 

syngeneic OC models to the study of the TRAIL pathway in an 

immunocompetent setting. Moreover, immunotherapeutic strategies designed 

to treat OC will be evaluated using this model in future experiments. 
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Future Directions 

In the future experiments, we will explore the role of TRAIL in natural 

antimetastatic function of immunosurveillance against ovarian transformed 

cells in vivo, using TRAIL knock-out mice (will be kindly provided by 

collaboration partner). We will analyze the inhibitory effect of TRAIL on the 

outgrowth of OC by reconstituting TRAIL deficient C57BL/6 mice with parental 

or manipulated tumorigenic MOSE cell lines and detect the metastatic spread 

of the tumor cells.  

Next, in order to demonstrate the contribution of TRAIL in NK cell 

surveillance of OC; first, we will assess the primary growth of tumorigenic 

MOSE cells transplanted into pathogen-free C57BL/6 and TRAIL knock-out 

mice (having the same genetic background). Second, pathogen-free C57BL/6 

mice reconstituted with tumorigenic MOSE cells will be treated with IL-12 and 

either depleted from NK cells or treated with anti-TRAIL mAb. Notably, IL-12 

has been shown to induce proliferation, IFN-production and cytotoxicity of NK 

cells in vivo, which is associated with their antitumor effects (38-40). 

Subsequently, the antitumor effect will be detected and compared to TRAIL 

knock-out mice reconstituted with the same tumorigenic MOSE cells. This 

experiment will illustrate the critical role of TRAIL expressed on NK cell in 

mediating antitumor activity against OC. 
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4. Conclusions 

The main focus of my PhD work was to demonstrate the key role of the most 

relevant player in TRAIL signaling pathway, namely the TRAIL functional 

receptor 2 (DR5) and c-FLIPL, in suppressing tumor initiation of OC. TRAIL 

has been shown to be one of the most promising agents in selectively 

inducing apoptosis in tumor cells. However, many cancer cells including OC 

are inherently resistant to TRAIL-induced apoptosis, presumably as a result of 

multiple genetic alterations in the TRAIL signaling pathway. Several 

mechanisms underlying TRAIL resistance have been suggested, including 

mutation in DR5 and/or anti-apoptotic protein c-FLIPL. 

 During the course of my PhD thesis, I identified the role of DR5 as well 

as c-FLIPL in OC development. In a study using primary tumor material, I 

selected three different human OC cell lines, namely MDAH-2774, A2780 and 

ES-2. Selected OC cell lines harbored different mutations, ranging from silent 

DR4 expression, upregulation of the inhibitor protein c-FLIPL, and further to 

mutated p53, representing the majority of OC patients. Moreover, these cell 

lines are resistant to carboplatin and recombinant soluble human TRAIL. I 

succeeded to show that stimulation of OC cells with an agonistic antibody 

(AD5-10) against human DR5 in presence of carboplatin restored sensitivity of 

platin-resistance OC cells to apoptosis in vitro and in vivo. Moreover, I could 

show that carboplatin forced expression of DR5 on OC cells independent of 

the p53 status, which might explain the high apoptosis rate observed after 

treating OC cells with a combination of AD5-10 and carboplatin. Furthermore, 

I described that NK cells play a critical role in immunosurveillance and in the 
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function of the agonistic antibody AD5-10 in OC. I reported that depletion of 

mice from NK cells led to increased tumor development and abolished the 

cytotoxic effect of AD5-10 in xenograft mouse model. 

 As second part in my PhD thesis, I aimed to clarify the antagonistic role 

of c-FLIPL in OC progression. I found that c-FLIPL downregulation enhanced 

significantly OC cells to TRAIL-induced apoptosis in both in vitro and 

decreased tumor growth rate in vivo. Moreover, c-FLIPL underexpression 

inhibited migration of OC cells in presence of soluble TRAIL in vitro, and 

hindered invasion of ovarian tumors in a preclinical OC mouse model. 

Interestingly, c-FLIPL suppression inhibits proliferation of OC cells in vivo, 

which might be in line with previous findings that c-FLIPL activates ERK and 

NF-κB -mediated cell proliferation. This finding adds additional weight in the 

role of c-FLIPL in mediating OC development. The summary of this study was 

that c-FLIPL is a fundamental player in controlling the balance between 

proliferation and apoptosis in human OC cells. 

 The results provided in this study, and also complemented by other 

studies showed that TRAIL and DR5 play an essential role in 

immunosurveillance, it was important to further investigate this finding in an 

appropriate animal model. Therefore, in the last part of my PhD thesis, I 

applied an immunocompetent OC mouse model to study TRAIL and DR5 in 

the interplay between cancer cells, microenvironment, and immune system. 

An established immunocompetent OC mouse model showed close 

resemblance to human OC in context of the TRAIL pathway. Accordingly, I 

found that mouse DR5 is an important player in OC progression, since 

silencing mouse DR5 increased ascites development and decreased life span 
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of a syngenic OC mouse in a preliminary animal experiment. Indeed, this 

observation is in line with my previous finding on the key role of DR5 in OC 

development. 

  Collectively, my PhD study provided a unique strategy to illustrate the 

basic framework for the natural TRAIL effector molecule in host protection 

against ovarian tumorigenesis. These results might add new insight into 

several additional aspects of this disease, furthermore supporting novel 

therapy options. 
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