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Figure 1: First parallel mode scan with PACS. A two by two degree scan of the Milky Way in the con-
stellation Southern Cross shows the cold ISM in great detail and makes us enthusiastic about
upcoming discoveries with this fantastic instrument. Without our on-board processing, such im-
ages would not be possible.
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Abstract

Imagine the following problem: you have an instrument on a satellite that makes
50 measurements for good reason, but only 5 values can be transmitted to ground.

What’s the best way to deal with this? – Ever more ambitious astronomical missions
with ever growing detector arrays are faced with exactly this problem. They produce
enormous amounts of data at every instant, yet observational and power budget con-
straints severely limit communication and result in a discrepancy between the available
data rate and the raw science. For this very reason a number of satellites have been
equipped with on-board computers that perform lossy and lossless processing steps to
master this issue. Obviously, there are good and bad choices of how these 5 values could
be made up, but of course you want to keep as much scientific information as possible.
Ideally, your instrument would reduce1 the data for you, so you put a little astronomer
inside and make it an intelligent detector.

This thesis contains the knowledge and a good deal of experience that are neces-
sary for the development of such astronomical on-board software for satellites. The key
elements in the development are the understanding of the scientific purpose, knowl-
edge of the physical properties of the detector, the comprehension of the mathematical
operations involved in data processing and the consideration of the technical and obser-
vational circumstances.

What is presented herein is mainly drawn from the turbulent final development
stage of the on-board reduction and compression software for the PACS instrument of
the Herschel Space Observatory , where almost every suitable concept from information
theory has been confronted with its test data to make it an intelligent detector. Since
almost a decade I am part of the team that developed this mission-critic software and
during the last four years I took over the responsibility to develop the flight model ver-
sion to bring the necessary changes that would guarantee a working instrument. After
many years of hard work, Herschel has finally been launched on the 14th of May, 2009.
During the first months of operation the instrument performance of PACS has been
verified and all there is to say is that the scene is set for the next three or more years
to bring exciting discoveries in the cold universe.

1 Beside the literal meaning of decreasing the amount, “data reduction” is the usual term for data
analysis in astronomy.
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Prologue

A stronomers used to observe the sky with the naked eye for thousands of years,
with no better tools than just rods and the like, later astrolabes and quadrants.

The invention of the telescope 400 years ago revolutionised the field and changed our
view of the world. A few hundred years later, faint distant objects became observable
with the advance of photography. In the 20th century, the silicon revolution brought
again large innovations to science. On the one hand computers reduced the workload
of calculations and large scale simulations could be carried out, on the other hand the
telescopes themselves were updated with much better electronic detectors. When we
speak of the present, we also use the term Space Age, because since 50 years we are able
to send forth our telescopes into space, enabling us to measure objects and wavelengths
that are out of reach from the ground.

Computer science is no more about computers than astronomy is
about telescopes.

—Edsger Wybe Dijkstra

Motivation

The rapid development of detector technology with more pixels and higher efficiency
leads to scientifically more valuable data, but also to much higher data rates. Espe-
cially satellites at far distances, such as the Lagrangian points or solar system probes
and missions with a limited lifetime cannot afford lengthy downlink periods and must
therefore reduce the data to the available amount in real-time. The first missions that
were equipped with a dedicated data compression unit were the Voyager probes. Since
then many satellites had to solve this problem in their own specific way, but mostly
they could go ahead with a lossless compression module. At present there are missions
that don’t need to carry out on-board data compression, but others need to intensively
process their raw data.

The Hubble Space Telescope can be seen as an example for the rapid progression
of detector technologies. During its 19 years of operation, Hubble has had five service
missions that brought new instruments. As a consequence of the higher data rates, the
HST data management system had to be upgraded as well. Figure 2 shows how the
pixel numbers have grown throughout the years. Due to the low earth orbit Hubble can
transmit its data mostly without compression. A mission where on-board compression
is a key component is Herschel. Compared to previous infrared space telescopes, the
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Figure 2: HST detector evolution. This figure shows how the HST has evolved during the five service
missions with respect to pixel numbers and on-board processing power. The HST was launched
with a payload of 5 instruments, but the High Speed Photometer had to be exchanged with the
corrective optics COSTAR during the first service mission. The latest SM 4 was finally made in
May 2009 replacing the WFPC2 with WFC3 and the COSTAR optics with the Cosmic Origins
Spectrograph.

most obvious difference is its sheer size, but also the number of pixels increased from
just a few to several thousand. As Herschel operates at L2,1 even lossy reduction steps
have to be carried out on board to be able to transmit the data within the available
telemetry budget. It is an unpleasing but undeniable fact that current and future
missions will no longer provide raw data to the community, but at least partly reduced
data products. On-board compression software has become a complex and sophisticated
mission-critical component.

About this Thesis

The next 150 or so pages deal with considerations on feasibility and implementa-
tion of on-board reduction and compression concepts. These are given with respect
to the Herschel/PACS instrument.2 The first three chapters deal with fundamentals
– properties of science data, decorrelation and data compression. These are the three
steps in science data compression and I describe how I applied them to PACS in the
middle part. This recipe and experiences from Herschel/PACS can be well applied to
subsequent projects with a need for on-board data processing, as this is done in the last
chapter about SPICA/SAFARI.

1 The second Lagrangian point in the Sun-Earth system, in a distance of 1.5 million km from Earth.
2 PACS is short for Photodetector Array Camera and Spectrometer.
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This thesis contains much of what I have been dealing with during the develop- Intended
Readershipment of the PACS on-board software. Besides the fact that it is needed to get the

doctoral degree, I have written it as a reference for myself and other people who want
to understand how science data compression works and what PACS is doing. I wanted
to create an essential introduction and valuable reference for both scientists and en-
gineers that are involved in space projects. I decided to put considerable effort into
the chapters about the fundamentals by not using existing software packages, but by
programming everything from scratch so that I could stress out the important details
for implementation.

Moreover, I decided to include some short sources in plain C from my rich pool of Source Codes

little programs whenever they are of any help. You are welcome to experiment with
them, but I don’t guarantee their proper functioning, even if many of them are used
right now at the time of writing, 1.5 million km above our heads.

As in many modern books, I added quotes to fill up the page layout. These quotes Quotation Boxes

were selected to be entertaining in the first place, but also to have a vague connection
to the surrounding text to encourage careful reading. Many of them are taken from real
life, but the majority stems from my nighttime study of the Encyclopaedia Britannica
[Hoi07]. These can be identified by two acronyms – EBm stands for Micropaedia and
EBM for the Macropaedia.

The use of computer-oriented units follows the SI standard now. kiB (kibibyte) A Word on
Notationstands for 1024 bytes, whereas kB (kilobyte) would stand for 1000 bytes. Other prefixes

like MiB (Mebibyte) and GiB (Gibibyte) are used accordingly. However, most of the
time kiB and MiB will be used, as they usually give more attractive numbers.
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1
Science Data

S cience is how we call our pursuit for knowledge of the physical world around us
and by data we mean any type of information mostly in digital form. The data

we use to derive scientific results are either measures taken with any kind of instru-
ment or results from numeric simulations. Imprecise or incomplete models as well as
numeric insufficiencies lead to errors in the latter, but progress in computer hardware
and numerical methods allows for results that are in closer agreement with theoretical
expectation. Although all computational aspects treated in this text can be applied to
synthetic data, I will further concentrate on real data only, i.e. science data that are
not synthetic, but were taken by measurement. In this case noise plays a central rôle,
as it defines how precise the taken measure is, or, how much scientific information can
be derived from it.

Every dataset contains noise. Some datasets contain signals.
—Paul Marchant, Univ. Leeds

This chapter contains concepts that are needed as a basis for all kinds of science data
processing. I use the language the astronomer is familiar with to memorise statistical
fundaments, make familiar with laws of information theory and explain mathematical
relations in preparation for the chapters that follow. What is most important here is the
understanding of what data are made of and what the consequences for transmission
and storage are. Although my motivation lies in data compression, the goal is ultimately
the same as in data analysis: in order to extract the maximum scientific information
from a dataset, the noise must first be characterised and a way of distilling the signal
must be found. Once the concept of entropy is established as a measure for noise it will
become clear that the biggest fraction of a dataset is used up by the noise.

The last section of this chapter deals with basic lossy reduction steps of science data
to attack the initial problem of reducing the amount of data to a few values. Among
these classical reduction steps is averaging of course. I will show how easily the trivial
task of averaging can develop into a complex problem under certain circumstances –
such as on board an astronomical satellite. One of the algorithms that I have developed
for PACS averages and quantises in a way that ensures a minimum of degradation. Its
performance on test data is estimated and the source code is given.

13



Science Data

The chapter is divided into the following sections:

1.1 Signal and Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Statistical Basics – Compressed . . . . . . . . . . . . . . . . . . . 15
Random Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Uniform Distribution . . . . . . . . . . . . . . . . . . . . . . . . . 18
Normal Distribution . . . . . . . . . . . . . . . . . . . . . . . . . 19
Poisson Distribution . . . . . . . . . . . . . . . . . . . . . . . . . 21
Exponential and Laplace Distribution . . . . . . . . . . . . . . . 22

1.2 Entropy and Information . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Covariance and Correlation . . . . . . . . . . . . . . . . . . . . . 24
Multiscale Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Kolmogorov Complexity . . . . . . . . . . . . . . . . . . . . . . . 26

1.3 The Colour of Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
White Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Coloured Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.4 Sampling and Quantisation . . . . . . . . . . . . . . . . . . . . . . . . . 29
The Sampling Theorem . . . . . . . . . . . . . . . . . . . . . . . 30
Digitisation and Quantisation . . . . . . . . . . . . . . . . . . . . 30

1.5 Quality of Science Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Signal to Noise Ratio . . . . . . . . . . . . . . . . . . . . . . . . . 33
Error Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Rate Distortion Function . . . . . . . . . . . . . . . . . . . . . . 33

1.6 Combined Averaging and Rounding . . . . . . . . . . . . . . . . . . . . 35
PACS FM Averaging . . . . . . . . . . . . . . . . . . . . . . . . . 35
Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1 Signal and Noise

A typical observational measure in astronomy is a compound of a source signal with a
number of different sources of noise. From the measure we hope to get some information
about the source, but it is equally important to know how precise the result is. Stars
are perfect specimen for demonstrating the intrinsic uncertainty of a signal. First of
all, a star is not a constant source, but emits radiation at a variable rate, depending on
its astrophysical properties. So obviously, the measure we take is determined by when
the observation is made. In addition to that the nature of physical phenomena involves
quantum noise. Especially for weak sources that are sending us their photons as single
events with irregular time intervals inbetween it is important how long the observation
is made. This actually represents the fundamental limit of the achievable signal-to-
noise ratio and determines the exposure time. In case of photon detection with optical
systems this is referred to as photon noise. Photon noise follows a Poisson probability
distribution and is therefore proportional to the square root of the signal. Various other
sources in the fore- or in the background as well as environmental effects pollute our
measurement, but the biggest noise contributor is the detection system itself, which

14



1.1. Signal and Noise

is above all limited by the readout noise of the readout electronics. This component
follows a normal distribution.

In short, we have an intrinsically uncertain signal embedded in an amalgam of other
noise sources. This is where the central limit theorem comes into play and adds all
noise sources up to follow a normal distribution. In the end we may have taken a
digital measure, but a single measure doesn’t tell us anything, it has no information as
long as the signal to noise ratio is not known. This is also well reflected in the variance.
You can calculate the variance for a single measure, but it’s either 0 or ∞ depending
on whether you apply Bessel’s correction or not. A second measure already improves
this – if it is identical, then you know that either there is no noise and you don’t need
to measure any more or – more probably – that there’s something wrong with your
measurement. Ideally, the second value taken will be relatively close to the first one
and now speculation can start what the true value might be. In other words, we can
only use the information of the signal if we know how uncertain it is.

Noise, n. A stench in the ear. Undomesticated music. The chief
product and authenticating sign of civilization.

—Ambrose Bierce, The Devil’s Dictionary, 1911

Two characteristics determine the type of noise: its amplitude distribution (the
histogram) and its spectral density (the colour). These are largely independent of each
other. This chapter first treats the probability distributions relevant for astronomical
data which describe how uncertain a value for a sample is, before the characteristics
of the power spectrum are being discussed. But now let me recapitulate the basic
principles from probability theory and statistics.

Statistical Basics – Compressed

Our datasets are affected by noise and thus at least one of the underlying processes
is indeterministic, or better called a stochastic or random process. Even if the past is
known, there are many possibilities such a process might go to, but some paths are
more probable than others. Its states at any instant, its future evolution are described
by an associated probability distribution,1 which tells us how probable each possible
outcome is. The output of a stochastic process is a random variable X and a sequence
of observations xi of a random variable is also known as a time series. In notation
a distribution is usually given by a letter (or its name) describing the type with the
parameters in parentheses like N(µ, σ2) for normal distribution.

The probability distribution of a random variable is often characterised by a small Mean µ

number of parameters, which also have a practical interpretation. The most important
one is of course the expected value E(X), or equivalently, the (arithmetic) mean µ of
the random variable with distribution P (xi). It is defined by E(X) =

∑

i xiP (xi) for
discrete random variables and E(X) =

∫∞
−∞ xP (x)dx for continuous random variables.

Keep in mind that there is a difference between the true parameters of the distribution,

1 In the discrete case the probability distribution is given by the probability mass function, whereas a
probability density function is defined for continuous random variables, which gives the probability
for the sample interval.
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Science Data

which are normally not known, and parameters that are estimated from the available
samples, like E(X) = n−1

∑n
i=1 xi. Fortunately, estimation gets better the more sam-

ples are taken into account, as will be explained beneath.

Once the mean is estimated, the next question is about statistical dispersion, i.e.Variance σ2

how far away from this average the individual values of X typically are, a question
that is best answered with the standard deviation σ = ±

√

E[(X − E(X))2], the square
root of the mean squared error (MSE), which in turn is known as the variance σ2. Aalternatively, σ2

X =
E(X2) − (E(X))2 small modification, paying again attention to the difference between true and estimated

distribution, known as Bessel’s correction is usually applied to this. Instead of n the
divisor n − 1 is used if the true average of the probability distribution P (xi) is not
known but estimated – derived by averaging the available X.

Other parameters – actually moments of P (x) – are skewness and kurtosis, responsi-Median

ble for asymmetry and peakedness, respectively, but I rather mention the median value
here, which plays an important rôle in astronomical data analysis due to the fact that
it’s almost as good as the mean1 yet much less affected by outliers. The median is found
by sorting the data values and picking the middle value if there is an odd number of
data values, or the average of the two middle values if their number is even. In practice,
the median has a disadvantage – it is relatively expensive to compute.

One question when dealing with noise is what can be done to minimise its effect.Square Root Law

This is where the law of large numbers comes into play. It states that the sample average
converges to the expected value for n → ∞. Yet we would also like to know how fast
this converges, how many samples we have to take to reach a certain precision. For this
purpose the standard error can be taken, which is the standard deviation of the error
in the sample mean relative to the true mean. By simply applying error propagation
to the mean µ =

∑

i=1..n xi/n we get σµ = ±
√

(σ1/n)2 + ...+ (σn/n)2. Assuming that
the uncertainty is the same for all samples σ1..n = σ we find that the error of the sample
mean relative to the true expected value is σµ = ±

√

n(σ/n)2) = σ/
√
n. To wrap this

up in a memorable phrase, the precision of a value generally improves with
√
n.2

Random Numbers

It’s time to become a little bit more familiar with random variables, because if we
want to understand noise we need to know how to generate it as well. To do so we need
random numbers, which are numbers drawn from a stochastic process, whose outcomes
follow a probability distribution and no describable deterministic pattern. Essentially, a
single random number is a sample of a random variable. Ideally, a stochastic process has
no memory, i.e. each number is drawn regardless of what has already been drawn, but in
practice it is not possible to exclude statistical correlations of a certain degree. This is
also true for random number generation. In a computer, unless a specialised hardware
device is used, several parameters such as mouse and keyboard states, interrupts and
disk states are gathered in the so-called entropy pool to generate a seed for pseudo-
random number generation.

1 Recall that the median has 64% efficiency of the mean for a normal distribution.
2 Note that this relation is general and not to be confused with the estimation of the SNR = n/

√
n =√

n which applies only for typical photon-noise dominated imaging.
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1.1. Signal and Noise

A number of random number generators are available for all kinds of purposes. As an
example, here is a very simple rand()-like implementation with the coefficients taken
from the ADSP-21000 Family Development Tools 3.3:1

Listing 1.1: Random Number Generation

1 #define URAND_A_val 1664525

2 #define URAND_C_val 32767

3 #define URAND_CLIP 0x7fffffff

5 static unsigned int URAND_seed = 1;

7 unsigned int GetRandomNumber ()

8 {

9 unsigned int RandomNumber = URAND_seed * URAND_A_val ;

11 RandomNumber += URAND_C_val ; // multiplication and addition will

12 URAND_seed = RandomNumber ; // overflow the 32 bits most of the

13 RandomNumber &= URAND_CLIP ; // time , but we clip the result anyway.

15 return RandomNumber ;

16 }

18 Or, as a compact C macro:

20 #define GETURAND () (URAND_seed = URAND_seed * URAND_A_val +

URAND_C_val , (URAND_seed & URAND_CLIP ))

The implementation above returns a pseudo-random unsigned integer in the range
[0, 232 − 1] with a period in the order of 232 − 1. For many reasons it is desirable to
map this to the interval [0, 1] through (float)RandomNumber/URAND CLIP+1.0. The type
of this algorithm is a linear congruential generator, i.e. of the form

Xn = (aXn−1 + c) mod m .

The integer overflow from the multiplication is no problem, as the result is clipped
by 0x7fffffff anyway, which is the same as a modulo 0x80000000 operation.2 So, in
our case we have:

Xn = (Xn−1 × 1664525 + 32767) mod 2147483648 .

Linear congruential generators are deterministic, as any single number determines
the full sequence of numbers to come. Better pseudo-random number generators such as
the Mersenne Twister [Mat98] abound, where a random variable depends on a larger
sequence of previous ones, but the deterministic nature of numbers calculated in a
computer cannot be eliminated without additional hardware that would sample for
instance thermal resistor noise. Note that the rand() function from the C standard
library implements such a linear congruential generator and with it most applications
do so too. Although there were plans to include a true random number generator in the
Pentium-III CPU, this feature is still not implemented in generic computer hardware.
For a fine introduction on pseudo-random numbers including a table of other possible
coefficients go for [Sch96]. In any case, we keep our fingers crossed that the random
numbers from our generator will be uniformly distributed.

1 The C version is pretty straightforward. Note that the macro version uses the binary (,) operator.
2 A mod B can be calculated by the binary operation A&(B − 1) if B is a power of 2.
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Figure 1.1: Plot of the [0, 1]-uniform distribution U(1/2, 1/12) (green line) with mean µ and standard
deviation σ. The dots inside illustrate how a 2D distribution would look. The red bars are the
histogram of the discrete 2D random samples.

Uniform Distribution

If a random variable is uniformly distributed, all numbers in a certain interval
are equally probable. The uniform distribution U(µ, σ2) exists in a discrete and a
continuous form and its importance is justified by two reasons. First of all, as shown
above, it is easy to generate such random numbers. Secondly, a uniformly distributed
random variable is the starting point for many conversion methods to other probability
distributions, such as the Box-Muller transform [Box58] for the generation of random
numbers following a standard normal distribution. Another method is to make use of
the central limit theorem by summing 12 uniformly distributed random numbers and
subtracting the value 6 to obtain a N(0, 1) distribution.1 In general, inverse transform
sampling can be used to get to all kinds of distributions [Dev86].

The (continuous) uniform distribution has the following characteristics:

f(x) =

{

1
b−a for x ∈ [a, b]

0 for x /∈ [a, b]

mean µ = a+b
2

variance σ2 = (b−a)2

12

entropy H = ld(b− a)

1 Of course, the numbers have to be independent and identically distributed with finite variance,
which is not guaranteed by linear congruential generators, but it is a common mishabit to use
them nevertheless.
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1.1. Signal and Noise

Normal Distribution

The normal or Gaussian distribution is the most important one for scientific work.
It was first introduced by Abraham de Moivre and used by Laplace and later also by
Gauss to analyse the errors of measurements. Gauss was the one to give the equation
for the bell curve. Figure 1.2 shows its typical shape. This distribution has the largest
entropy for a given variance [Cov06], a very useful property in light of data compression
as it tells us that Gaussian noise is the worst one to compress. For any given dataset
with variance σ2 one can immediately calculate the entropy of the normal distribution
H = ld(σ

√
2πe) as an upper limit of the actual entropy of the dataset. The consequences

of that will be outlined in Section 2.

THE

NORMAL

LAW OF ERROR

STANDS OUT IN THE

EXPERIENCE OF MANKIND

AS ONE OF THE BROADEST

GENERALIZATIONS OF NATURAL

PHILOSOPHY • IT SERVES AS THE

GUIDING INSTRUMENT IN RESEARCHES

IN THE PHYSICAL AND SOCIAL SCIENCES AND

IN MEDICINE, AGRICULTURE, AND ENGINEERING •
IT IS AN INDISPENSABLE TOOL FOR THE ANALYSIS AND THE

INTERPRETATION OF THE BASIC DATA OBTAINED BY OBSERVATION AND EXPERIMENT

—Laudatio by William Youden

The reason why the normal distribution is so important is the central limit theo- The Central Limit
Theoremrem, which states that the sum of independent random variables with finite mean and

variance will be approximately normal distributed with µ = µX +µY . Yes, the random
variables can even be drawn from different distributions! As natural processes usually
involve a combination of several sources of noise, the chances are high that the outcome
is well described by a normal distribution.

The normal distribution has the following characteristics:

f(x) =
1

σ
√

2π
exp(−(x− µ)2

2σ2
)

mean µ = µ

variance σ2 = σ2

entropy H = ld(σ
√

2πe) = 1/2 ld(2πeσ2)

By looking at the equation above we see that the normal distribution’s probability σ-Clipping

density function f(x) > 0 for all x ∈ (−∞,∞). So theoretically a Gaussian random
variable could assume just any value, although in practice such extreme outliers are not
encountered. As most of the values concentrate around the mean, an objective way of
getting rid of spoiled data is to discard samples with larger residuals than e.g. 3σ. This
threshold is also indicated in Figure 1.2. Of course, this treatment can be applied to
other distributions as well, though special attention must be paid to distributions with
considerable asymmetry.
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Figure 1.2: Plot of the standard normal distribution N(0, 1) (green line) with mean µ and standard
deviation σ. The spots inside again illustrate how a 2D distribution of that kind would look.
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Figure 1.3: Poisson distribution P(µ=4). The dashed green line indicates the continuous distribution
and the green steps mark discrete intervals. The spots for the 2D plot are intentionally dis-
crete in X this time. Other plots for µ=1 and µ=7 are also given.
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1.1. Signal and Noise

Poisson Distribution

In search of an approximation to Bernoulli’s binomial distribution, Siméon-Denis
Poisson found what would later be known as the Poisson distribution. Also called the
law of rare events, it describes the probability that a number of events occur in a fixed
interval of time, space or any other measure with respect to a known average rate and
independent of the last event. In astronomy, this distribution is of particular interest,
as it expresses the photon noise,1 the noise in images under low signal conditions. This
distribution has only one parameter µ, because the variance σ = µ. This makes signal-
to-noise estimation particularly easy, because SNR = n/

√
n =

√
n as already mentioned

before. However, in practice it’s not that easy as the noise is usually made up of other
components as well.

Poisson sans boisson est poison.
—French proverb

When simulating astronomical data for test purposes it is necessary to consider the
Poisson noise component. Here is a little dirty AWK-function that can be used to
generate Poisson noise:

Listing 1.2: Poisson Random Number Generation

1 function poisson (lambda) {

2 L = exp(-lambda); # set the limit for the event

3 k = 0; p = 1;

4 do {

5 k = k + 1; # count up k ...

6 p = p * rand (); # randomly decrease the interval

7 } while (p >= L) # ... until the event takes place

9 return k-1;

10 }

Poisson noise is prevalent in detection systems that are counting rare events, such
as raindrops on a flower or photons on a pixel. For large µ this distribution can be
approximated by a normal distribution, but the smaller µ is, the more asymmetric it
becomes. That is, we cannot simply treat Poisson data as if they were Gaussian, which
is what we would ideally want to do. Fortunately Francis John Anscombe found in 1948
a transform [Ans48] of Poisson noise to Gaussian noise, which reads t(I) = 2

√

I + 3/8
and creates a normal distribution with σ = 1. The way back is simply I = 4t(I)2 −3/8.
A decade ago, this transform has been extended to a mix of Gaussian and Poisson noise
[Sta98a], which is sufficient to be used on CCD data.

The Poisson distribution has the following characteristics:

f(x) =
e−λλk

k!

mean µ = λ

variance σ2 = λ

entropy H = λ[1 − ln(λ)]+

+e−λ
∑∞

k=0
λk log(k!)

k!

1 More general designations are shot noise or even quantum noise.
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Figure 1.4: Exponential distribution and Laplace distribution. (Left) The exponential distribution “Ex-
ponential(4)” has only one parameter just like the Poisson distribution, whereas the Laplace
distribution (Right) has the usual two parameters “Laplace(2, 16)”.

Exponential and Laplace Distribution

If a process Pλ is Poisson distributed, then the times between the events in Pλ are
exponentially distributed with parameter 1/λ. To help you visualise this, look at the
vertical spaces between the dots in Figure 1.3. The exponential distribution describes
such intervals, like arrival times or nucleon decay times and is memoryless. Generation
of an exponentially distributed random variable X from a uniform distribution U on
[0, 1] is simply done with: X = − ln(1 − U)/λ.

The exponential distribution has the following characteristics:

f(x) =
1

λ
e−

x
λ x, λ > 0

mean µ = 1/λ

variance σ2 = 1/λ2

entropy H = 1 + ldλ

This distribution, which is also known as the double exponential distribution, de-Laplace Dist.

scribes best the difference between two i.i.d. (independent and identically distributed)
exponential random variables. For instance, a Brownian motion evaluated at an expo-
nentially distributed random time is distributed that way. For us the Laplace distribu-
tion is important because many decorrelated/preprocessed datasets are well described
by it [Yeh93]. In general, differences of consecutive correlated values tend to resem-
ble this distribution [Sal07]. Remember this when viewing histograms in Chapter 2.
Generation of Laplace-distributed data from a uniform distribution on [0, 1] works by
X = µ− λ sgn(U − 1/2) ln(1 − 2 |U − 1/2|).

The Laplace distribution has the following characteristics:

f(x) =
1

2λ
e−

|x−Θ|
λ

−∞ < x,Θ <∞, λ > 0

mean µ = Θ

variance σ2 = 2λ2

entropy H = 1 + ld2λ
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1.2. Entropy and Information

2 Entropy and Information

In contrast to its definition in thermodynamics, the entropy in information theory
is a measure for expected uncertainty [Sha48] and not a measure for disorder. Basically,
entropy is the logarithm of the number of states that can be assumed by a system,
regardless of its actual order. Given the probability density function f(x) of a distri-
bution, it can be derived from

H(x) = E

(

ld
1

f(x)

)

= −
∫ ∞

−∞
x ld f(x) dx .1

Regardless of the distribution it can be estimated directly from the data of X using

H(X) = −
∑

x∈X

p(x) ld p(x) ,

where the probability p(x) is best taken from the relative frequency c(x)/n. In that
sense entropy is the average length of the shortest description of X, the amount of
information required on the average to describe the random variable.

In principle that’s all we need to understand science data compression, but here Related Concepts

are some more related definitions that might help to grasp the overall picture. Just to
remind you of the notations that are used in the following context involving the random
variables X and Y , (X, Y ) is read “X and Y ”, (X;Y ) is not really read and (Y |X) is
read “Y conditional on X” or “Y given X”.

As two random variables can be expressed by a common distribution – a joint
distribution p(x, y), they also have a Joint Entropy H(X,Y ) = H(X) + H(Y |X). If
there is a connection between these two random variables, if they are dependent, then
conditioning reduces entropy and the Conditional Entropy reads H(Y |X) ≤ H(Y ) with
equality if X and Y are independent.

The best mathematical answer to the question, “What is information?” is given
through the Mutual Information, which uses the discrepancy between the joint distri-
bution and the product of the separate distributions.

I(X;Y ) = H(X) −H(X|Y ) =
∑

x∈X

∑

y∈Y

p(x, y) ld
p(x, y)

p(x)p(y)
.

This is the reduction of uncertainty in X due to the knowledge of Y . In other words it
is a measure of the amount of information one random value contains about the other.
If I(X;Y ) = 0 then X and Y are independent. An excellent in-depth treatment of
these concepts is [Cov06].

Aside from the noise in our dataset there is hopefully also some signal. Now that we Entropy of
Science Dataknow what entropy is we also understand that it is not the limit of ultimate compression,

because it does not take into account the conditional entropy of the science content.
Thus, as long as the dataset is not just pure noise, we can do better than what the
entropy dictates if we want to compress the data.

1 The Logarithmus Dualis is ld x = ln x

ln 2
.
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A simple example would be to take 10 binary digits, 5 times 1 and 5 times 0. Then
the sequences 1010011010 and 1111100000 both have the same entropy of 10 bits, but
the latter is more easily compressible below that limit, because its bits are obviously
not independent. To make use of the correlation in datasets for the sake of compression
we need a better understanding of independence, which will be given now.

Covariance and Correlation

The covariance of two random variables is a measure of their interdependence, i.e.
how synchronous they vary and correlation coefficient ρ is the covariance normalised to
the standard deviations. Their equations are given by

Cov(X,Y ) = E[(X − µx)(Y − µy)] =

= E[XY ] − µxµy

ρ(X,Y ) =
Cov(X,Y )

σxσy
.

A two-dimensional covariance matrix can be calculated for sequences of random vari-
ables. If X is an n × m matrix with n observations (rows) of m random variables
(columns) and Y is an n × s matrix, then the m × s covariance matrix can be calcu-
lated. In the equation the average of the ith random variable of X is noted as µi and
the averages in Y are found in νi. I give it in a form which allows a direct translation
to a programming language.

Cov(X,Y ) =
∑

ij

=

s
∑

j=1

m
∑

i=1

n
∑

k=1

(Xik − µi)(Yjk − νj)

For the special case Cov(X,X) the variances of the random variables are found in
the diagonal. In Chapter 2 we will make use of that to evaluate the efficiency of
different decorrelations. Note that if applied to 2D-data only the horizontal correlation
is revealed. To depict the vertical correlation, the covariance matrix of the transpose
needs to be calculated.

The cross correlation is a slightly different, but equally useful tool. For two functionsCross Correlation

f(t) and g(t) it is calculated by the convolution

CCF(τ) = (f ∗ g)(t) = 1/T

∫ T

0
f(t)g(t− τ)dt .

In correlating a function with itself we get the autocorrelation, that I give in discrete
form ACF(t) = 1/n

∑n
i=0 f(i) f(i− t), because that way it is used for data analysis in

later chapters. Note that ACF(0) = σ2. If we normalise the ACF by σ2 we get again
the correlation coefficient ρ.

A few paragraphs above the important statement conditioning reduces entropy wasConditioning

made. If two samples are not independent they are correlated and we can use one
sample to predict the other one. The decorrelated samples will have a lower entropy if
that operation was well done. A very simple predictor is to use the first sample as a
predictor for the next one. Essentially, this is a differentiation. Now let’s find out if
this is a good decorrelation.
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1.2. Entropy and Information

Take x1, ..., xn from a discrete source X with a certain σx and let µx = 0 without
loss of generality. The operation we are interested in is di = xi − xi−1.

σ2
d = n−1

∑

(di − µd)
2 = 1 n−1

∑

d2
i = E(d2

i ) = E(xi − xi−1)
2 =

= E(x2
i − 2xixi−1 + x2

i−1) = E(x2
i ) + E(x2

i−1) − 2E(xixi − 1) = 2

= 2σ2
x − 2E(xixi−1) = 3 2σ2

x − 2σ2
x

ACF[x]

σ2
x

= 2σ2
x(1 − ρ)

On the one hand we can now estimate the correlation of our random variable con-
cerning the differentiation:

ρ = 1 − σ2
d

2σ2
x

.

For σ2
d = σ2

x we see that ρ = 1/2, i.e. for a correlation coefficient of 0.5 the noise after
differentiation is still the same. If there is no correlation (ρ = 0), there will be an
increase of σ2

d = 2σ2
x, or σd =

√
2σx. If 0 < ρ < 1/2, we have a smaller increase of

σ2
d and if ρ > 1/2 we finally decrease σ2

d with our operation. For the interesting case
where the data are completely dependent (ρ = 1) we get σ2

d = 0, simply because each
successive element is fully determined by its predecessor. This little example also shows
us the relevance of the autocorrelation for the interpretation of dependencies between
symbols, or, redundancy. Considering the entropy of an i.i.d. (ρ = 0) Gaussian source
H = ld(σ

√
2πe) we see that differentiation increases the entropy by ld(

√
2) = 0.5 bit per

sample, which is certainly something we would like to avoid. The prediction of xi from
xi−1 can be improved by a weight coefficient which depends on ρ. Such an exercise and
the inclusion of even more preceding samples is the scope of linear prediction, which is
briefly treated in Section 2.1.

Multiscale Entropy

The biggest problem of Shannon’s entropy definition [Sha48] is that it completely
ignores patterns and correlation within the data. In [Sta98b] an approach was made
towards finding a better measure of information with the aid of multiscale analysis,
hence the term multiscale entropy. It is defined as the sum of the information of each
scale of a dataset’s wavelet transform. Furthermore the noise is modeled to estimate its
effect on the transform coefficients and allow for filtering to extract the signal. Taking
the à trous wavelet transform, the multiscale entropy for Gaussian noise according to
[Sta98b] is

H(X) =
∑

s

∑

k

ws(k)
2

2σ2
s

.

In this definition ws(k) is the wavelet coefficient at scale s for pixel k and σs is the noise
at scale s. That way a measure for information is established that takes into account
correlation within the data as well as background noise.

1 assuming µd = 0 to guarantee µx = 0
2 As xi and xi−1 stem from the same random variable we have E(xi) = E(xi−1) and because

µx = µd = 0 we have E(x2
i ) = E(x2

i−1) = σ2
xi

= σ2
xi−1

.
3 E(xixi−1) is the auto-correlation function at lag 1: ACF(1) and ACF(x)/ACF(0) = ACF(x)/σ2

x =
ρ(x).
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Kolmogorov Complexity

An entirely different approach towards the information content of a given dataset is
made by trying to find a shorter description for it. The algorithmic information content
of a dataset S is the length K(S) of the shortest program (in a universal programming
language) that would generate the dataset. Kolmogorov complexity [Kol65] is a theo-
retical tool that gives us a better understanding of compressibility, yet it cannot be used
in practice because one of its theorems says that there is no algorithm that correctly
computes K(S) for all S. Simply go back to the example above with the zeros and ones
where it is obvious that shorter representations can be found in the first case where
S = 1111100000. A program that, given the number n would output n ones followed
by the same number of zeros would do the trick. Obviously, for large n the program
itself would be considerably shorter than the whole dataset S. In the other extreme
case where S is a random sequence it is likely that the shortest program simply outputs
S itself by a print-like statement.

One important result from algorithmic information theory is that K(S) does not
depend on the programming language apart from a fixed overhead. Although we never
know if we have found the shortest description or not, the expected value of the Kol-
mogorov complexity is close to the Shannon entropy for the typical datasets we are
interested in. For further diving into the matter I refer to [Say03].

Poincaré had an unusually retentive memory for anything he read;
moreover, he could visualize what he heard, a useful faculty be-
cause he could not clearly see at a distance the mathematical
symbols that were on the blackboard.

—EBm ”Poincaré, Henri”

3 The Colour of Noise

The probability distribution was introduced as the first important characteristic of
noise. Colour is the other one, telling us how a probability distribution evolves. The
parameters of a distribution – the moments like µ, σ, the ACF, etc. – stay the same
in case of a stationary process and thus the power spectral density remains almost
constant throughout the frequency spectrum. In this case the colour is called white –
paying tribute to the electromagnetic spectrum of white light.

As soon as the power spectrum is no longer at a constant level, we call it coloured. In
such a nonstationary process the probability function is a function of time and the ACF
is no longer constant. So, parameters derived from one data interval are no longer valid
for other sections of the dataset and need to be newly estimated. To anticipate what
will be discussed in later chapters, the consequence for data compression is that any
kind of predictive technique needs to constantly adapt to the new noise characteristics.
The same also holds true for entropy coders and, well, compression in general.
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Figure 1.5: White uniform noise. (Left) The random variable X is drawn from a uniform distribution
X ∼U(0, 1). In the logarithmic power spectrum the noise amplitude of σ is indicated by the
solid line.
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Figure 1.6: White Gaussain noise. (Left) X ∼N(0, 1). (Right) The power spectrum is also flat and prac-
tically indistinguishable to white uniform noise.

White Noise

White noise is a random signal (or process) with a nearly constant spectral density,
so that the signal contains equal power within a fixed bandwidth at any centre frequency.
White noise is a valid approximation for many astronomical images, especially CCD
ones [Ber06]. Uniform noise produced by a random number generator is normally
white, unless it is specifically designed for another purpose. Figure 1.5 shows uniform
noise and its power spectrum PSD= 4|F(f(t))|2 1 depicts its frequency characteristics.
So, a histogram of the left plot gives us an idea about the distribution and the PSD
shows if any dependencies are contained in the dataset. White noise is therefore i.i.d.

White Gaussian noise has the additional property of having a Gaussian amplitude White Gaussian

distribution. This type of noise is prevalent in all kinds of electrical circuits and thus
also in astronomical detectors. Such thermal noise, also called Johnson noise or even
Nyquist noise is generated by the thermal agitation of the charge carriers inside an
electrical conductor at equilibrium, which happens regardless of any applied voltage.

1 The factor 1/n was included in F , which then still gives half the amplitude A/2 as the unit of the
transform coefficient. To compensate for this, the PSD is multiplied by 4.
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Thermal noise is approximately white and the amplitude of the signal follows very
nearly a Gaussian probability density function.

White noise is the starting point for science data compression. From this point
of view any preprocessing or decorrelation operation has the purpose of whitening the
signal. Note that the plots for the coloured noise examples (Figures 1.7 and 1.8) were
generated with the white Gaussian dataset (Figure 1.6) as input.

Coloured Noise

So far I have treated a source as an i.i.d. random variable, where drawn samples
adhere to the same static probability density function. In such a case the autocorrelation
at lags different to 0 is – aside from the usual fluctuations – at a constant level and the
power spectrum will be white.1 If the noise spectrum is coloured we can hope to take
advantage of inter-symbol redundancies. Taking the simple example of differentiating
an i.i.d. source as an example, this operation creates purple noise, because the symbols
are no longer independent. Each symbol of the difference set Y depends on two symbols
from the original X and two succeeding symbols in Y even share one of the original
components. Clearly, the differentiation eliminates large drifts at low frequencies and
amplifies high frequency noise. This can be well observed by comparing Figure 1.8 with
the white Gaussian dataset (Figure 1.6), which was used as its input.

Brown noise or even red noise is the kind produced by Brownian motion, or, asBrown(ian) Noise

I prefer to call it, by a random walk. An example in astronomy is non-destructive
sampling during integration, which is the preferred way of reading certain types of
detectors. While white noise can be said to have a 1/ν0 character in the PSD, this type
of noise follows a 1/ν2 trend, which can be verified in Figure 1.7. Brownian noise can
be easily produced by integrating white noise and a cheap but effective treatment is
differentiation.

Purple noise is somewhat the opposite of Brown noise. Its PSD stands out by itsPurple Noise

ν2 trend and it can be produced by differentiating white noise. Note the increase of σ
in Figure 1.8 compared with the i.i.d. source.

Pink noise or 1/ν noise is a signal or process with a PSD that is proportional toPink Noise, etc.

the reciprocal of the frequency. For pink noise, each octave carries an equal amount of
noise power. The name arises from being intermediate between white noise 1/ν0 and
red noise 1/ν2.

Other colours for noise exist in various branches of science and engineering (blue,
grey, green, etc.), but their relevance is minor for the context of this thesis. Astronomical
detectors nearly always have a more or less white Gaussian noise component and apart
from that instrumental effects such as the flatfield dominate the scene.

1 This is a good place to remember the Wiener-Khinchin theorem ACF(t) = F(|f(t)|2) which can
be rephrased to state that the Fourier transform of the ACF is the power spectrum.
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Figure 1.7: Brown Gaussian noise. (Left) The white Gaussian signal is integrated to generate Brownian
noise. In contrast to other types of noise the signal itself already indicates its nature. The
drunkard performing the random walk is this time twisted towards positive numbers. (Right)
In the power spectrum the 1/ν2 characteristic is revealed.
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Figure 1.8: Purple Gaussian noise. (Left) While the signal itself is unremarkable, the PSD reveals its true
nature (Right).

4 Sampling and Quantisation

The problems with science data already begin at the point where they are measured.
It is usually desirable to correctly sample the signal in time and space, but what exactly
does that mean?

Think of the signal as a continuous function f(t). This function might be the amount
of light that falls on a CCD pixel.1 Problem number one is that we cannot measure all
times t for various reasons, number two is that the analogue signal is mapped through
A/D conversion to a coarser set of discrete values. The latter introduces additional
quantisation noise and thereby increases the original noise by a certain factor. The
answer to the former problem was given by Harry Nyquist in the early 20th century
[Nyq24] and is nowadays known as the sampling theorem.

1 From Ludwig Boltzmann and Max Planck we learned that the world is quantised. Especially when
it comes to counting photons in the presence of quantum noise it is obvious, that the signal per se
is not continuous. However, for our typical resolving capabilities we can confidently assume that
the signal is originally continuous.
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The Sampling Theorem

The sampling theorem is normally named after Claude Elwood Shannon, who proved
it in [Sha49]. In his paper he writes:

If a function f(t) contains no frequencies higher than W cps, it is completely deter-
mined by giving its ordinates at a series of points spaced 1/2 W seconds apart.

In a more modern way we would express it like: if a signal is bandlimited to W Hz, a
sampling rate of 2W Hz is sufficient to reconstruct the original signal from the samples.
So, if we want to measure certain details in time or space, we need to sample them
with at least twice the precision. In this thesis uniformly sampled datasets are treated.
It is however worth mentioning that the sampling theorem is also applicable to non-
uniformly spaced samples. In this case the frequency resolution will be given by twice
the average inverse Nyquist interval [Nyq24, Sha48]:

W = 2(n − 1)−1
n−1
∑

i=1

(ti+1 − ti)
−1 = 2(n− 1)−1(tn − t1)

−1 .

An example is the way sound and music are digitised. The human ear is said to have
a frequency response range from 20 Hz to about 20 kHz. Compact discs have a sample
rate at 44.1 kHz to ensure frequency response up to the limit of human hearing.

In general it’s a good rule of thumb to oversample by a factor larger than 2. How-
ever, recent mathematical research has shown that the Shannon sampling theorem is
not complete and there are cases where even undersampled data can be perfectly recon-
structed. These results and their impact on scientific measurement and data processing
are known now by the term Compressed Sensing [Bob08].

Digitisation and Quantisation

The data type provided by typical astronomical CCD cameras or other kinds of
detectors is in these days mostly a 16-bit (un)signed short integer. This is due to the
employed analog-to-digital converters, considerations about gain, dynamic range and
readout noise as well as the comfort of having two whole bytes per measure. The range
of values is therefore between 0 and 65535 (or −32768 and 32767 if the data are signed).
This digital sampling of analogue data is what we call digitisation.

If we speak in a more general context about mapping (continuous) values to a coarserQuantisation

discrete set of values, we use the term quantisation. Even integers can still be quantised:
imagine a grid of even numbers where some input integer values need to be mapped to
without modifying the scale. It seems natural to us that such an operation affects the
data in a negative way and indeed, quantisation leads to an increase of the noise if the
quantisation interval ∆ (the inverse of the new resolution) is finer than ∼ σ2, which
will normally be the case. An even rougher quantisation will quickly degrade the signal
to a point where most of the information has been removed.

Now let’s take a close look at a single quantisation interval Q = [A,B] spanning over
a distance ∆ = B−A. Any sample s ∈ S that falls into A ≤ s ≤ B will be represented by
either A or B, depending on the quantisation strategy used. So we lose the information
of the original shape of the probability distribution and make it uniform on Q. For a
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better understanding imagine Q is one of the steps in a step-wise approximation to the
original histogram of S. If the quantisation process works like normal1 rounding, the
same number of measures should fall between [A, (A + B)/2] and [(A + B)/2, B] if s
is uniformly distributed in Q. If the latter condition is not fulfilled – for very peaked
distributions together with a very large Q – we will get an additional increase in σ
due to the asymmetry of s in Q. The maximum error between s and its quantised
counterpart is ±(A+B)/2. To express this error in a useful form we recall the variance
of the uniform distribution and apply it to our interval σ2

Q = (B − A)2/12 = ∆2/12.
The variance of this error adds up with the original signal variance σs to an increased
total variance of σ2 = σ2

s + σ2
Q.

Quantisation must also be considered when the sample rate is converted. Resam- Resampling

pling is the application of multivariate interpolation. Casual methods are point sam-
pling, where pixel values are derived from the nearest neighbour, bilinear and bicubic
(spline) interpolation [Pre07], kriging [Kri51] and transform-based resampling. In case
the sample rate should be reduced (downsampled) by means of frequency reduction to
the new bandwidth to avoid aliasing , the term decimation is also used. One should
have these things in mind when designing or choosing a quantisation stage, especially
when the linearity of the signal within the dynamic range is questionable. For science
data one should also hesitate with other techniques than scalar quantisation, because
these may lead to differences in the weighting of individual values.

Think of scalar quantisation like simple rounding, but in a more general form. The Scalar Quantisation

word scalar is due to the uniform quantisation grid, which resembles a process of zoom-
ing. Usual definitions found in literature like [Str05] are q = ⌊ |s|∆−1 + 1/2⌋sgn(s) for a
so-called midtread quantisation with reconstruction sq = q∆,2 or q = ⌊ |s|∆−1 + 1⌋sgn(s),
sq = (q − 1/2)∆ for a midrise quantiser, where 0 is not a quantisation step.

Adaptive quantisation is different, because it maps the input to a non-uniform grid
by a scaling function for example. The motivation behind is to give more precision
to more probable values in non-uniform distributions at the cost of values that appear
less frequently. In combination with prefix codes (see Chapter 3) this can make up for
an effective lossy compression technique (e.g. in speech compression), which I do not
recommend for astronomical datasets, where the interesting small bright portions of the
data (the stars) are outweighted by the large background area at low values.

I also need to mention vector quantisation [Sal07], which is something entirely differ-
ent. It merges input values into multidimensional vectors, defines pointers towards the
most frequent ones in a code-book and quantises the pointers of less frequent vectors
to the ones already available in the code book. This is also frequently used in speech
compression systems, but equally problematic for science data.

There is one striking point in where rounding strategies differ and that’s what hap- What about ∆/2?

pens if s lies exactly in the middle of ∆. In daily life we will round up a number like 7.5
to 8 without thinking about it. Blame your teacher, but this is simply not correct! By
doing so a systematic error is made which leads to an increase in µ and an additional
increase in σ. For floating-point data which differ a lot in their decimals this is no
problem of course, but if the only value between integers is .5 this additional bit of
information is simply wiped out.

1 For now we don’t pay special attention to the case s = (A + B)/2.
2 ⌊ ⌋ is the floor operator, the largest integer smaller than x.
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Figure 1.9: Different rounding strategies in comparison. A sequence of numbers increasing by 0.1 from
-10 to 10 was generated and rounded to integer with different strategies. The residuals are
shown as orange circles with the cases where .5 has to be rounded up or down in red colour.
(Top) Rounding towards ∞ increases the mean of the dataset by 0.05. (Second line) Round-
ing away from zero leaves µ in the centre if as many positive as negative numbers are there,
but it leads to a different scale around zero (only 9 points will be rounded to 0). (Third line)
Rounding to even is a well-balanced method, but it introduces periodicities in the dataset.
(Bottom line) Stochastic rounding is balanced and has no systematics if the randomisation is
not too bad.

The most popular strategy to deal with this is to round towards the next even
number. However, on small scales there is still a systematic effect left, which even leads
to periodicities in the dataset. The one correct way of rounding is to randomly round up
or down. This is finally called stochastic rounding. Some rounding strategies introduce
a discontinuity around zero, like rounding towards or away from it. This should be
avoided in any case for science data because it disturbs the metric around zero. Figure
1.9 tries to support what is written here with a graphical comparison of the mentioned
strategies. We will continue with these matters shortly in Section 6, but first we need
to have a measure for the quality of data.

Specific organisms, such as Brevibacterium linens, in Limburger
cheese result in a reddish brown surface growth and the break-
down of protein to amino nitrogen. The resulting odour is offen-
sive to some, but the flavour and texture of the cheese are pleasing
to many.

—EBM ”Food Processing”
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5 Quality of Science Data

Given some sets of science data we need to to distinguish between good and bad
measurements. In other words, we need a measure to assess the quality of a dataset.
This depends on the type of data and their purpose, so several metrics exist.

Signal to Noise Ratio

With the statistical tools that were discussed so far we can intuitively take the ratio
between µ and σ to express how much larger a bias-free signal S is in units of the noise
N . Well, this is already the SNR used in astronomy. There the SNR can be very small in astronomy,

SNR = S/N
in digital units

and it is not uncommon to speak of “5σ, 1h”, which means that a SNR of 5 is achieved
in a one-hour measurement (remember the square-root law). On the other hand when
dealing with bright sources the SNR can grow by up to several orders of magnitude.
In astronomy it is conventional to give the SNR in normal scale units, whereas in
technical disciplines decibels are preferred and both signal and noise are expressed by
the respective power (the squared amplitude). Recall that bel is the common logarithm
of a ratio, then one decibel is 1/10 bel of course, so if A is the amplitude, we have
SNRdb = 10 log(A2

S/A
2
N ).

Error Metrics

The error metric we have been using so far was the mean squared error MSE (the
variance σ2) and its more useful friend the root mean squared error RMSE (the standard
deviation σ). These metrics are useful especially in Euclidean space, so if we want to
test rounding algorithms for instance we take the sum of the squared residuals (and
normalise to the number of pairs if we like). In image processing it is not uncommon
to use the mean absolute difference MAD, which is faster to compute and some authors
even argue that this measure comes closer to human perception.

In mathematics, a metric is a “measure of distance”, that is prerequisite to a norm
– the “measure of size”. Different notions of norms exist for vector spaces, defined by

ℓp : ||x||p =

(

n
∑

i=1

|xi|p
)

1

p

,

of which we recognise the ℓ2-norm as the Euclidean and find ℓ1 in the MAE.

Rate Distortion Function

The effect of quantisation on science data has been explained, but for lossy opera-
tions in general we also need to extend our understanding to the more general theory of
rate and distortion. Distortion describes the error that is made by representing a source
X by the distortedXD, just like the quantisation error. We will use d(x, xD) = (x−xD)2

as the measure of distortion and keep D ≤ E(XD −X)2. The rate is of course the en-
tropy of the dataset. So, given the entropy, we want to know what the effect of a given
distortion is on the rate and equivalently, how large the distortion is if we reduce the
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Figure 1.10: Rate distortion function for N(0, 1). The R(D) function illustrates the tradeoff between
lossy compression and data quality. It is given in bits and represents the lowest limit of all
achievable (R,D)-pairs. The unit of D is σ2. (Orange line) The entropy for N(0, 1) is also
shown in the plot. Close to zero R(D)→ ∞ owing to the fact that continuous samples have
infinite precision and therefore infinite rate.

entropy to a certain rate. So we use the rate distortion function R(D), which I define
similar to [Cov06] by

R(D) = min I(X;XD) subject to p(xD|x) :
∑

(x,xD)

p(x)p(xD|x)d(x, xD) ≤ D ,

where p(x) is the distribution of X. We had the definition of mutual information in
Section 2, I(X;XD) = H(X) −H(X|XD). For a N(0, σ2) source it can be shown that

R(D) =

{

1
2 ldσ2

D , 0 ≤ D ≤ σ2

0, D > σ2 .

The rate distortion function gives the lower bound of the achievable rate distortion pairs
(R, D) as depicted in Figure 1.10.

Another important finding from rate distortion theory is that combined symbols are
less susceptible to distortion than individual ones, even if they are completely indepen-
dent. This justifies the use of transforms together with quantisation as a very good
strategy to reduce the rate at minimum distortion.
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6 Combined Averaging and Rounding

You should already have a feeling that there are cases where averaging is not as
simple as summing up values and dividing by their number. Quantisation effects must
be considered as soon as integer arithmetic is involved. For the purpose of on-board
data reduction I have also developed several algorithms that have the task of averaging
a number of integers with optional rounding. Bit-rounding of integers means to map
to a coarser grid, e.g. after 1-bit rounding all odd numbers will be gone, after 2-bit
rounding only numbers divisible by 4 will be left etc. In here I present what I have put
together as the combined averaging and rounding algorithm which is used in the PACS
on-board software.

PACS FM Averaging

The good thing about the PACS signal processing units, which are the computers
responsible for on-board reduction and compression, is that DSPs are used. They
have quite complex instructions also in floating point precision and every instruction is
executed in one single cycle. The combined averaging and rounding algorithm reads

mr =
1

2rn

n
∑

i=1

xi +
1

2
sgn

n
∑

i=1

xi −
rand(1)

2rn
.

In here n is the number of samples to average, r is the number of bits of additional
rounding and rand(1) is a random number being 0 or 1. The inputs are integers, the
operations are carried out partly in float and after calculation the result is cast back to
integer. Note that the mean mr is right-shifted by r bits if bit-rounding is used.

Here are the sources for the combined stochastic FM averaging and rounding algo-
rithm, consisting of StatAveraging and a helper function StatRestRoland, which takes
care of the second and third term of the formula. You will see that this is a little bit
more tricky than just

∑

x/n.

Listing 1.3: subroutine for the randomisation

1 static float StatRestRoland (int average, float invden)

2 {

3 int temp ;

4 float sign = 1.0;

5 float stat = 0.5;

7 if (average < 0)

8 {

9 sign = -1.0;

10 stat = -0.5;

11 }

12 URAND_seed = URAND_seed * URAND_A_val + URAND_C_val ;

13 temp = (URAND_seed & URAND_CLIP );

15 if (temp > URAND_RMXH )

16 stat = stat - sign*invden;

18 return stat ;

19 }
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In the following listing, StatRest is a function pointer towards StatRestRoland, but
another rounding strategy (StatRestKoryo) could be selected. Also note that roldiv is
a replacement for integer division.

Listing 1.4: stochastic averaging in C

1 int StatAveraging (int *source, int nbPixelsPerFrame, int nbFrames,

2 int *dest, int numavg, int RoundingBits,

3 int strategy)

4 {

5 int pctr =0, bctr =0, sctr =0; // counters for pixels, blocks, samples

6 int blocks = 0; // number of averages to generate

7 int remain = 0; // remaining frames

8 int avg = 0;

9 int destctr = 0;

10 int offset;

11 int den;

12 int rem_den;

13 float favg, deninv, rem_deninv ;

15 // choose between two different kinds of rounding .

16 float (* StatRest) (int average, float invden) = StatRestKoryo ;

17 if (strategy == K_ROUNDING_STYLE_ROLAND)

18 StatRest = StatRestRoland ;

20 blocks = roldiv (nbFrames, numavg);

21 remain = nbFrames - blocks * numavg;

23 den = numavg * (1 << RoundingBits );

24 deninv = 1.0f / (float )den;

26 if (remain)

27 {

28 rem_den = remain * (1 << RoundingBits );

29 rem_deninv = 1.0f / (float)rem_den;

30 }

31 else

32 rem_deninv = 1.0f;

34 for (pctr =0; pctr < nbPixelsPerFrame ; pctr ++)

35 {

36 avg = 0;

38 // average the complete blocks first

39 for (bctr =0; bctr < blocks; bctr ++)

40 {

41 offset = pctr*nbFrames + bctr*numavg;

42 avg = 0;

43 sctr = 0;

44 while (sctr < numavg)

45 {

46 avg += source[offset + sctr ];

47 sctr ++;

48 }

50 favg = (float)avg*deninv + StatRest (avg, deninv);

52 dest [destctr] = (int)favg;

53 destctr ++;

54 }
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55 // last incomplete block (it has less samples than numavg)

56 if (remain)

57 {

58 offset = pctr*nbFrames + bctr*numavg;

59 avg = 0;

60 sctr = 0;

61 while (sctr < remain)

62 {

63 avg += source[offset + sctr ];

64 sctr ++;

65 }

67 favg = (float)avg*rem_deninv + StatRest(avg, rem_deninv );

69 dest [destctr] = (int)favg;

70 destctr ++;

71 }

72 }

74 return destctr;

75 }

The // last block is there for cases where the number of input values is not divisible
without rest by the number of samples to average.

Performance

The performance of the averaging algorithm for PACS is best measured with random
numbers. To resemble the detector noise on short time scales white Gaussian noise was
fed with different µ and σ into the averaging algorithm. The increase of the averaged
noise’s σ with respect to the input is shown in Figure 1.11. For this test, the number
of samples to average has been set to 4 and so the expected result for no quantisation
is 0.5, as this operation reduces the noise by a factor

√
4. This is indeed achieved by

the unquantised averaging in float. Two other lines in the plot compare the rounding
algorithm that was used for the qualification model (“4/0 13.8”, it rounds towards
+∞) with the new averaging (“4/0 R”). The results that are especially interesting for
us are “4/1 R” for 1-bit rounding and “4/2 R” for 2-bit rounding. Of course, if the
quantisation becomes comparable with σ, the noise is gradually cut away. Apart from
that the “R” algorithm follows the theoretical prediction very well. We see that 2-bit
rounding increases this to ∼ 0.56, that is 12 percent, but it is not yet degrading the
amplitude.

For Figure 1.12 the amplitude of the noise was kept constant, but its mean was Behaviour around 0

varied across 0 to see if a sign change causes an effect. Here the “4/2 K” strategy differs
in that it has a peak around zero. The reason for this is that this one changes rounding
direction at zero, which leads to a different scale at that position. All other candidates
have no problems with this.
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2
Decorrelation

T his chapter is essentially about representing signal and noise. The starting point
may be a dataset with all kinds of features on all scales, but what is desired is a

reversible representation in as small values as possible, ideally just noise around zero.
This can be achieved by prediction to take the conditional entropy out of the data. A
simple predictor would be the last seen value and the encoded offset would then just
be the difference. Such preprocessed data can then be passed on to a compression
back-end, an entropy encoding algorithm.

Another way to achieve a flat representation is decorrelation1 through linear trans-
forms. The interesting scientific information – the signal energy – is concentrated by
means of a change of bases in a few large coefficients, whereas the majority of coef-
ficients are found to be small around zero. This now wide-spread principle has some
more advantages, because it allows almost any degree of lossy operation close to the
rate distortion limit. In the last two decades wavelets and all kinds of other -lets have
joined this family of algorithms. Decorrelation is now at the core of almost every lossy
compression, the most prominent ones being JPEG, MPEG and MP3 – three standards
that use the discrete cosine transform. Many modern lossy compression schemes follow
a three step approach by performing decorrelation, quantisation and encoding in three
separate steps.

Roland, I didn’t know I was so ignorant about compression.
—Renato Orfei during coffee break at IFSI

This chapter begins with linear prediction and immediately afterwards we dive into
the reign of linear transforms. There I concentrate on orthonormal transforms, because
they have favourable features for science data. With only a few exceptions, wavelets are
still poorly understood in the astronomical community. One reason for this is that there
are many ways leading to them with discouraging words like multiscale analysis, subband
decoding and filter banks. These are more or less just names for the same thing and I
will try to avoid them. Instead my approach is purely through matrix multiplication,
even if this is not the usual way for some of the presented transforms, but astronomers
rather have a sympathy for pure algebra than for electronic filters. With the exception

1 Concerning terminology I need to clarify that an operation which acts as a decorrelation is at the
same time a correlation as well, it merely depends on the point of view. The reason for this is that
after a (de)correlation, variables which were correlated are then decorrelated and vice versa.
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The chapter is divided into the following sections:

2.1 Predictor and Corrector . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Linear Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
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The Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . 55
The Discrete Fourier Transform . . . . . . . . . . . . . . . . . . . 56
DCT and DST . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
The CDF 9/7 Wavelet Transform . . . . . . . . . . . . . . . . . . 63
KLT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.3 Transforms of Typical Datasets . . . . . . . . . . . . . . . . . . . . . . . 67
1D Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

of the continuous Fourier transform I will also concentrate on discrete transforms only,
simply because continuous transforms have no relevance on discrete uniform datasets.
Most of the transforms have already been used in space applications and I will show
their strengths and weaknesses with an illustrative example data file as well as probe
their performance on real science data.

1 Predictor and Corrector

Linear prediction is the estimation of signal values from linear combinations of
previous samples [Rab78]. This technique is popular in speech compression and analysis,
in the analysis of radar applications and seismic waves. Among the examples for use in
on-board software is also PACS, but higher order predictors have not been used so far
due to their increased computational cost for little additional decorrelation. Basically it
works like predicting the current sample by its neighbours (the already encoded values)
and encoding the error to its actual value (the corrector). That way low frequency
components are more or less absorbed and what is left is the high frequency noise. Of
course a prediction based on the last-seen values can be optimised by weighting them.
Finding these weights is the task of linear prediction. This concept is also found in the
more general context of DPCM (Differential Pulse Code Modulation) [Say06, Jay84].
It is central to many speech compression algorithms like CELP [Sch85] (variants are
used in mobile phones) or lossless audio compression like FLAC [Sal07] and related with
various higher-order prediction techniques in text and image compression.

The easiest predictor pn for a sample sn to use is the previous sample sn−1. Then theDifferentiation

corrector, i.e. the error of the prediction is en = sn − sn−1. The consequences of such
a prediction which is essentially a differentiation have been discussed in Section 1.2.
To give the short version of what was written there, the variance after differentiation
becomes any value between 0 and 2 times the original variance, depending on the
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Figure 2.1: Decorrelation by running average prediction. (Left) The synthetic input values, as plotted
in red colour contain a drift, noise and larger steps. The green dots show how a differentiation
would bring these down to zero. The blue dots show how a running average with threshold
performs. (Right) Histogram of the differences (green) and the correctors (blue) at a bin size
of 2. The differences have a σ of 33, the correctors have σ=27.6. The red line is a Gaussian
envelope of the original noise σ=20.9.

correlation in the dataset. Figure 2.1 shows how simple differentiation already brings
down the data to just noise around zero.

A better predictor is a running average, where pn = mn, mn = (mn−1 + sn−1)/2 Running Average

and m0 = s0. Internally, the predictor is adjusted and the error is encoded. For such
a prediction we can already add a weighting parameter to sn−1 which can be used to
make the running average m(n) more resistant to high noise or outliers. For step-like
functions it might be wise to adjust the running average with more aggression. It can
be a good idea to include a threshold in the correction step. If the error en is found to
be above that threshold, the running average shall then take on the new value instead of
adjusting the mean. Such a decorrelation is also shown in Figure 2.1 in comparison with
simple differentiation. With respect to the input data noise, differentiation increases
the standard deviation σ by a little more than a factor

√
2 for this dataset, because the

signal component (drift and jumps) is not taken completely out. The running average
leads to an increase by a factor 1.32, which is definitely better, but also suffering from the
drift. This can be further reduced by using higher order prediction with self-adjusting
weights, ideally down to almost no increase of σ.

Linear Prediction

The trick in LPC (Linear Predictive Coding) of higher order is to determine the
weights for the particular dataset. If our predictor is to the order of k, our prediction
is pn =

∑k
i=1wisn−i from the last sn−1, ..., sn−k values. The error of that prediction

with respect to the actual sample sn is then en = sn −
∑k

i=1 wisn−i. The coefficients wi

can then be calculated by minimising the expected value of the squared error: minEe2n.
This minimisation has to be made either over the entire dataset or just smaller chunks
of data, depending on whether the probability distribution is stationary as well as on
the general circumstances of the application. These relations are treated in more detail
and with an algorithmic outline in [Say06]. To give you an idea about the complexity
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here is how I digested the matter:

∂

∂wj
E

(

sn −
k
∑

i=1

wisn−i

)2

= −2E

(

sn −
k
∑

i=1

wisn−i

)

sn−j := 0

⇒
k
∑

i=1

wiEsn−isn−j = Esnsn−j

This is the so-called Wiener-Hopf equation [Kam98]. Assuming that the sn are sta-
tionary we can set E sn−isn−j = ACF(i − j) and with the k equations we retrieve a
system:
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Solving the equation system takes a considerable amount of CPU power, which is a
problem for on-board applications. Especially the many autocorrelations take most of
the time, the matrix inversion is not so costly, because it has a special form (Toeplitz)
for which fast algorithms such as Levinson-Durbin [Say06] can be used. In the non-
stationary case the elements E sn−isn−j cannot be replaced by the ACF and the derived
matrix needs to be inverted with slower techniques. This makes it particularly prob-
lematic for on-board data reduction.

If the weights need not be adaptive they can as well be calculated once on an offline
dataset. In this case I can recommend LPC, because the operations left amount to
just a few additions and multiplications for each sample to be made and the prediction
is definitely better than simple differentiation. Note that LPC as presented herein
works on one-dimensional data, though it is possible to extend the concept to higher
dimensions at increased CPU cost.

2 A Zoo of Transforms

I tend to call any operation that uses more than one sample to compute a new one
a (de)correlation, simply because existing dependencies are on the one hand resolved
and new ones are made. However, the family of algorithms that dominate in the field of
decorrelation is the one of linear transforms. Among these especially the orthonormal
transforms are useful for us, because they ensure that the signal energy is conserved
(then also called unitary transform). I guess that everyone has already heard the word
wavelets and at the same time only a vague idea about what they are and what they can
do for us. One reason for this may be that the Fourier transform is so well established
in astronomy and in many fields still the method of choice that the demand for wavelets
is small.

Countless books have been written about transforms and wavelets. The definite
guide to the Fourier transform is [Bra99a]. If the mathematical theory of wavelets is
in focus, then there is hardly a way around the first three chapters of [Dau92]. The
best reference on transforms and applications for the astronomer is however provided
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by [Sta98a] and [Sta06]. Good practical use concerning data compression is provided
by [Sal07]. But before consulting these works I propose to read through this chapter
first. Before we go on, here are a few definitions.

A transform is a mathematical relation that projects data from one basis onto an- Basic Definitions

other. A basis spans the vector space with finite linear combinations of n linearly inde-
pendent vectors generating an n-dimensional subspace of R

n. This sounds awful, so let
me circumscribe it this sloppy way: the basis vectors work just like the axes of the new
coordinate system. The standard basis on the Cartesian plane is e1 = (1, 0), e2 = (0, 1).
A basis is orthogonal if the basis vectors are mutually perpendicular and orthonormal
if they additionally have a length of one. Therefore an orthonormal transform preserves
all lengths and angles and is energy conserving. Once a dataset has been transformed,
the values are called transform coefficients. In many frequency-isolating transforms
the first coefficient (corresponding to a frequency of zero) is called the DC coefficient,
which is not seldomly the average and all others are the AC coefficients, conceivable as
differences. A matrix – an image – with many zeros (or negligibly small values) and
few large values is a sparse matrix. The opposite would be a dense matrix. It seems
natural that a sparse dataset is easier to compress than a dense one.

The term matrix was introduced by the 19th-century English mathemati-
cian Arthur Cayley, who developed the algebraic aspect of matrices.

—EBm “matrix”

The most important thing about the transforms we want to use is that they are 1D and 2D

reversible. The transform is carried out by matrix multiplication where the rows of the
transform matrix W contain the basis vectors. Matrix multiplication can of course be
inverted: A = W−1(WA). Consult your algebra book to find out that if an m×n matrix
A (m rows and n columns) is multiplied with an n×p matrix B the operations to carry
out C = AB are cij =

∑n
k=1 aikbkj (i = 1..m, j = 1..p) and C is an m × p matrix.1

Something that we will definitely need is to deal with the transpose (AB)T = BTAT .
The good thing about an orthogonal basis W is that WW T = W TW = I (the identity
matrix) and W T = W−1, so that the one-dimensional transform is T1D = WA and the
way back is A = W−1T1D. Note that normalising factors need to be considered if W is
not orthonormal. For better memorability I write

A = W−1(WA) = WWA.

It is important to stress that a transform through matrix multiplication is a one-
dimensional operation on the columns of A. However, this can be easily extended to
any number of dimensions because of separability. To do so, we consecutively apply
the basis change along each dimension separately. To make a 2D-transform of an
image A by our orthogonal basis W we transform the transpose of the 1D-transform:
T2D = WT T

1D = (T1DW
T )T = WAW . Analogous to the 1D case I put it into the

memorable equation (this is a nice exercise to build from scratch)

A = W (W (W (WA)T )T ) = WWAWW.

1 Remember that matrix multiplication is commutative, but not associative, i.e. AB 6= BA, but
(AB)C = A(BC).
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In that sense the 2D Fourier transform of the image A is F2D = FF(A)T andNormalisation

the way back is F−1F−1(F2DA)T . Not quite! We have not taken into account that
the discrete Fourier basis is not normalised, so the cleanest thing would be to include
a scalar factor 1/

√
N in F as well as in F−1, but the way the Fourier transform is

normally defined the factor 1/N is included in the inverse transform. Note that 1/
√
N

is energy conserving, whereas 1/N conserves the dynamic.

His lectures at Cambridge attracted very few students; [...]
—EBm ”Arthur Cayley”

Before we begin our journey through that jungle of transforms we need proper test
data. Astronomical images tend to be already sparse, as they have few large values and
lots of dark background. Such an image will not be very helpful to judge the energy
compaction capability of a transform. Therefore I have made up another test image
which will allow for better comparison. Section 3 at the end of this chapter contains
transforms of some typical astronomical datasets and to assess the performance on
one-dimensional data we will continue to use the dataset from Figure 2.1.

La Mona Roli

The test image that I am using to display the properties of each transform in this
chapter is a small image that I made more than a decade ago, cropped and put to
greyscale. It serves better for explanation than real astronomical data, because it has
recognisable features even in the transformed domain. With 256 × 256 pixels in 8 bit
greyscale it has a raw size of 65536 bytes. In Figure 2.2 the image is shown as well
as its covariance matrices and the histogram. A covariance matrix is interpreted the
following way:

It is a symmetric matrix, so only focus on the columns, the lines are not inter-
preted.

On the diagonal lies the σ2 of the respective column. Large positive values should
be found here.

The vertical offset of a nonzero value from the diagonal indicates a correlation for
this column at that shift. If the value is normalised by the variance you get the
correlation coefficient.

The histogram is self-explanatory with one thing to add: the cuts are centred on µ
and set to show 99.75% of the area, so that outliers have no negative effect on the scale.
This is also the way the cuts for scaling the brightness in all images to follow are made
unless otherwise indicated.

A little bit further down we will start to transform Mona Roli with different basesEvaluation

and try to assess the effects of that operation. Whenever necessary, the mean µ and
standard deviation σ, the entropy H (HS for the entropy per symbol) and the multiscale
entropy M will be given. Note that the M I use is inspired by the multiscale definition
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Figure 2.2: Mona Roli test image, covariance matrices and histogram. (Left) The original input image
is an 8-bit 256×256 greyscale image. (Middle left) The covariance matrix of the input image
quantifies vertical correlation. (Middle right) Covariance matrix of the transpose to get an
impression of horizontal redundancies. (Right) Histogram of the input image.

in Section 1.2, but pretty much different. As I wanted a lossless measure comparable
with H, I chose to use the entropy of the decimated CDF 9/7 integer wavelet transform
in standard decomposition. Telling you what all of these words mean is the purpose of
this chapter. For now it’s sufficient to know that M will be much closer to the unknown
compression limit (remember the Kolmogorov Complexity) than H. For residual images
the MSE , its square root σ and the mean absolute error MAE are useful measures of
distortion. Sometimes the signal energy E = n−1

∑

x2 (not to be mixed with the
expected value!) or its square root are used for argumentation.

µ = 123.9282 σ = 45.9376 H = 468235 HS = 7.145 M = 273288
√
E = 132.168

Mona Roli image statistics

In addition to the entropy it may be of interest which values standard lossless
compression algorithms achieve. For that purpose I have chosen the deflate1 algorithm,
the PNG image format (which also uses deflate, but combined with a very simple
prediction – differencing – of neighbouring pixels) and JPEG-LS, previously known as
LOCO-I [Wei98]. Here are the results:

uncompr. H Deflate PNG JPEG-LS M

524288 bits 468235 420432 338680 322336 273288

So to summarise, we can do better than the entropy limit because of the correlation
between pixels, but even with the best lossless technique not even a factor of 2 is
achieved.

The histogram counts the occurrence of each value regardless of any inter-pixel Distortion

dependencies. Similarly, the entropy, which is made up of the probabilities of the
individual values, says nothing about the correlation of the dataset. Now let me pick
two pixels from the image at random and simply exchange them and let me do this a
number of times. Figure 2.3 illustrates the effect of this cruelty. This operation has no
impact on the symbol frequencies and thus the entropy stays the same as the histogram
does. So, once more we see that Shannon entropy is a bad measure for the information
contained in the image. In the covariance matrix we can observe how the correlation

1 Read about this lossless compression algorithm in Section 3 of Chapter 3. For now it is sufficient
to know that it is the heart of the widespread zip.
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Figure 2.3: Mona Roli distorted. The correlation can be easily distorted without altering the histogram
by randomly swapping pixels in the image. (Left) 50 percent of the pixels are displaced. Mona
Roli is still recognisable. (Middle left) The covariance matrix has indications of randomness as
well as for correlation. (Middle right) More than 97 percent of the pixels have been displaced.
(Right) Covariance matrix shows no more correlation.

Figure 2.4: Inverse. (Left) Mona Roli inverse. This operation correlates each pixel with all the others, but
without performing any energy compaction. (Middle left) Covariance matrix of the inverse:
the data are almost perfectly correlated. (Middle right) A single value at row 8, column 17 has
been changed from almost zero to zero and the inversion was undone. (Right) Residual image
for the defect inverse matrix.

fades away. If the heavily distorted image is now given as input to deflate, a size of
58880 bytes (471040 bits), or 7.19 bit/pixel is achieved.

Ideally we would like to have an operation that perfectly decorrelates the input(De)Correlation

data. Such operations exist, as for example matrix inversion. In Figure 2.4 the inverse
is shown, along with its covariance matrix in which the diagonal has disappeared, in-
dicating close to perfect correlation. However, one reason why matrix inversion is not
the perfect operation for data compression is that it has no energy compaction at all.
The other one is that it is very susceptible to modification and therefore prohibiting
any kind of quantisation.

Reduction

The goal of the next experiment is to show how very simple reduction operations
can be used to reduce the amount of data by a factor 64, i.e. down to 1024 bytes and to
estimate the distortion and show the consequences of such a dramatic reduction. Prob-
ably the easiest way to reduce the sheer amount is to subsample the data, that is, throw
away samples and only keep a fraction. This will certainly lead to a loss of information,
unless the dataset is highly oversampled. Averaging neighbouring pixels seems to be a
much better way to reduce an image. In Figure 2.5 I give three useful ways to reduce
the spatial resolution, these are picking a central pixel for each 8 × 8 block, picking
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Figure 2.5: Mona Roli reduced. The input image brought to lower resolution in different ways by a factor
8 yields a 32×32 image. (Left) Coarse version with aliasing, where each 8×8 block is sampled
only once at the centre. (Middle left) Here the median of each block is taken. (Middle right)
The average of each block with its smooth appearance. (Right) Histogram of the average.

the median and averaging. Clearly, any single pixel of a block is a bad representative
for that area, especially for astronomical images, where this method would become a
lottery whether a star or some background is picked and the result can have a very
different appearance (aliasing). The remedy against this is to restrict the bandwidth of
the image S first by F−1

2DF2D(S) ·M , where M is a mask acting as a low-pass filter. This
operation can also be achieved by simply smoothing the image by means of averaging.
But averaging the blocks in our image is a drastic operation as well, because it creates
values in the histogram that did not exist before and reduces the contrast. A way to
circumvent this is to use the median as it retains the most contrast yet uses information
from the whole block, even if it is not as precise as the average. On the other hand it is
almost immune to outliers, which is a nice feature to have for measurements in space.
The residuals of the three images are:

subsampled median average

MSE/MAE = 263.2/9.88 204.0/8.98 140.7/7.65

So, for the Mona Roli the best choice in reducing the resolution is still good old
averaging. Note that the histogram has now a very spiky appearance. This leads to
the problem that although we reduced the number of pixels by a factor 64, the entropy
needs not to follow that decrease. In our case it has, but be aware that smoothing can
actually increase the sample entropy!

Her designs were noted for combining eccentricity with
simplicity and a trim neatness with flamboyant colour.
In 1947 Schiaparelli’s new colour, ”shocking pink,” was
the sensation of the fashion world.

—EBm “Schiaparelli, Elsa”

The Walsh-Hadamard Transform

In the WHT everything starts with the real-valued Hadamard matrix H, which was
first constructed by Sylvester [Syl67] and later extended by Hadamard [Had93]. The
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basis vectors in the square Hadamard matrix are the Walsh functions [Tho86], so the
entries consist of values +1 or −1 only. Each row is a basis vector and because they
are linearly independent we have an orthogonal system. Depending on how the Walsh
functions are arranged in H we get differently ordered matrices with different character-
istics. The most frequently used orders are natural order for the original construction
and sequency order for the rearranged version that has frequency-distinctive properties.

The matrix can be constructed via a recursive formula. Starting with the 1 × 1Construction of the
Matrix dimensional H1 = (1) the N-th order matrix HN is constructed by copying HN−1 also

to the right and down and filling the lower right corner with −HN−1. Graphically:

H1 = 1

HN =

(

HN−1 HN−1

HN−1 −HN−1

)

In Figure 2.6 H256 is shown in natural and sequency order. In order to perform
the transform, H is then simply multiplied with the data vector or matrix and if it is
necessary to conserve the energy a scalar factor 1/

√
N needs to be considered in the

1D transform. The result of the 2D-transform of Mona Roli is shown in Figure 2.7
along with the covariance matrix of the transformed image. This has some similarities
with the miscarried experiment of the inverse, but altering a single pixel has virtually
no effect (not shown) any more. This property, which can be ascribed to the fact that
combined symbols are less susceptible to distortion, is why this transform is useful in
digital holography [Yar03].

By sorting the basis vectors according to their spatial frequency, that is, how oftenSequency Order

the sign changes on the coordinates, we derive the sequency ordered Walsh-Hadamard
matrix and the transform will usually lead to a concentration of coefficients with higher
energies in the top-left corner. The result can now be interpreted much like the modulus
of a Fourier transform. From the first coefficient on, the transform corresponds to
increasing spatial frequency and therefore smaller image details. For the first coefficient
(top-left in a 2D transform) the first column of H and the first row, both containing
only ones, were involved in calculation, as well as the entire input image. Thus, if a
dynamic range conserving normalisation has been made, the first coefficient is the mean
of the original image! As each coefficient is the weighted sum of a row and a column
vector of H with the input this brings us to another way of looking at the transform.

Figure 2.6: Hadamard matrices and basis images. (Left) The original Hadamard matrix in natural order.
Black is −1 and white is 1. (Middle left) Basis images for a 4×4 kernel derived in natural
order. (Middle right) The matrix brought to sequency order. (Right) 4×4 basis images derived
in sequency order.
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Figure 2.7: Mona Roli in the WHT. (Left) Transform of the image on the naturally ordered Hadamard
basis. (Middle left) Covariance matrix. (Middle right) Transform through the sequency ordered
basis. (Right) Covariance matrix.

The operations in a matrix multiplication can be taken apart and set together in a Another Take

different way to arrive at the same result. If we multiply a column vector with a basis
vector we get a kernel image. We do that for all permutations and get 16 kernel images
for a 4×4 matrix, that is, for every pixel in our input image we have a kernel image. In
the Hadamard matrix the first row and the first column are all ones and the resulting
kernel image is thus – all ones. If we compute the cross correlation of the image with
that kernel, we get the average. By correlation of our image with each of the 16 kernel
images we get the transform coefficients. Figure 2.6 shows these kernel images. Note
that they are given for a 4×4 kernel, and not for a 256×256 kernel, as we would need it
for Mona Roli. But two important things become visible: each coefficient is calculated
taking the whole image into account, and that the kernel images which are derived from
the sequency ordered bases are responsible for the frequency ordering.

Just as explained before, 1D transform works like T1D = HA and A = HT1{mathrmD .
This will transform the columns independently. To achieve a 2D transform the rows need
to be 1D transformed as well, so the transform is applied another time with the transpose
of H and we get T2D = HAHT and A = HTHT . For the sake of energy conservation a
factor 1/||H|| = 1/

√
N should be included in the matrix multiplication. The Hadamard

matrix in sequency order has two advantages: it is symmetric and therefore H = HT

and the basis vectors are sorted with increasing frequency, therefore separating spatial
frequencies. We remember that the inverse of an orthonormal matrix is its transpose.
So, the equations become more simple for the sequency ordered Hadamard matrix:
T2D = HAH and A = HT2DH.

The WHT if performed in integer by omitting the normalisation almost doubles the WHT and
Compressionentropy of Mona Roli to 789378 bits. This is because the dynamic range is increased

to R2D = N2R, respectively increased by 2 ldN bits. Of course, if sequency order is
used, the same value is achieved, because the values of the coefficients are the same,
only their location in the new basis is different. As with many transforms, the strength
lies within quantisation. In natural order the coefficients must be treated equally, but
in sequency order unnecessary details can be filtered out. To illustrate its reaction to
such action, Figure 2.9 compares four different approaches, but each one bringing the
entropy down to 1/64th of its original value, that is 8192 bits. Quantisation in the
transform domain can be done in different ways (also see Figure 2.8):

Windowing: a section (probably around the top left corner) is left untouched and
the rest is set to zero. This is a low-pass filter.
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Figure 2.8: More intricate quantisation tables. (Left) Quantisation zones are cubes. (Middle left) Radial
gradient. (Middle right) Linear gradient. (Right) JPEG luminance table.

Hard thresholding: every value |x| < k is set to zero. k is chosen such that the
data rate is achieved.

Iterative thresholding: the largest hard threshold k is chosen iteratively to give an
error < ǫ. This quickly increases the complexity and has thus its largest potential
for blocked transforms.

Rounding: the values are rounded to an integer grid which is coarse enough to
satisfy the data rate. A cheap way to do this is by scalar multiplication with
integer truncation.

Radial/Diagonal/Quadratic gradient: the rounding grid is adapted to the distance
from the top-left corner.

Weight Map: the coefficient matrix is component-wise multiplied with a weighting
matrix.

Whatever operation is used, note that it is not wise to modify the DC coefficient,
because this alters the mean of the whole image. It is also comprehensible that scientists
generally develop allergic reactions to quantisation in the frequency domain, because
this is essentially a nonlinear operation. Uniform quantisation in the time/space do-
main is linear, because a large value is rounded as a small one would. In the frequency
domain this operation emphasises the large coefficients that correspond to the features
with more signal energy and thus affects the photometry.

hard thr. uniform quant. windowing gradient

MSE/MAE 146.5/8.05 122.1/8.36 134.38/8.39 142.65/8.83

The numerical results for Mona Roli are a little bit against perception. Winner
is the WHT with everything equally rounded, but also the hard threshold performed
better than the gradient methods, which require the sequency ordered matrix. These
did slightly worse than a simple binning would have done. This is due to all the zeros
that were still counted in the entropy calculation.
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Figure 2.9: Quantisations with the WHT. (Left) Quantisation achieved with a hard threshold. (Middle
left) Rounding all coefficients equally. (Middle right) A combination of windowing the 32x32
corner and rounding. (Right) A linear rounding gradient emerging from the corner.

In case of the WHT in sequency order or any other energy-compacting transform Compaction
and Entropywe can take advantage of the fact that the few large coefficients that are related to

the image content are concentrated, whereas the coefficients related to the noise fill
the rest of the coefficient matrix. In other words, once the quantisation has removed
the small noise coefficients, what is left are mostly the large coefficients in the top-left
corner. Thus, the lots of zeros in the lower right part don’t need to be considered in
compression and in entropy calculation. If we remove a symbol ”0” from a dataset,
what impact has this on the entropy H ′? To answer this question we work a little bit
with the entropy definition. k is the number of different symbols x, each one appearing
c(x) times in a set of n values. Note that for H the symbol entropy is taken.

H = −
k
∑

x=0

p(x)ld p(x) = −
k
∑

x=1

p(x)ld p(x) − p(0)ld p(0)

p(x) =
c(x)

n
, p′(x) =

c(x)

n− c(0)
= p(x)

n

n− c(0)

H ′ = −
k
∑

x=1

p′(x)ld p′(x) = −
k
∑

x=1

p(x)
n

n− c(0)
ld

(

p(x)
n

n− c(0)

)

=

= − n

n− c(0)

k
∑

x=1

(

p(x)ld p(x) + p(x)ld
n

n− c(0)

)

=

= − n

n− c(0)

k
∑

x=1

p(x)ld p(x) − n

n− c(0)
ld

n

n− c(0)
·

k
∑

x=1

p(x) =

=
n

n− c(0)
(H + p(0)ld p(0)) − n

n− c(0)
ld

n

n− c(0)
· (1 − p(0))

An example: the total entropy of the sequence “1230000000” is 13.57 bits (1.357 for
a symbol), whereas the entropy of “123” is 4.75 bits (1.583). From the equations we see
that the biggest saving is not due to the fact that all 0 are thrown away and no longer
contribute to the total entropy, but from the overall reduction of n.

Version of the bicycle reinvented in the 1860s by the Michaux family of Paris. Its
iron and wood construction and lack of springs earned it the nickname boneshaker.

—EBm ”velocipede”
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Figure 2.10: Noise in the WHT. (Left) Gaussian input noise with µ=0, σ=20 is constructed. (Middle
left) The Gaussian noise transformed in the sequency-ordered WHT. (Middle right) His-
togram of the transformed Gaussian noise, still with σ = 20. (Right) Histogram of the WHT
transformed Mona Roli image (µ=0.57, σ=132.17). The cuts are as in the 2D transformed
image in Figure 2.7.

Figure 2.10 shows the results from a little experiment. Gaussian noise was trans-Noise in the WHT

formed to see what its transform coefficients will look like. Recall that the Hadamard
matrix contains only ones and minus ones. In combination with matrix multiplication
the operations in the transform become simple additions and subtractions of the original
input values. From the central limit theorem we know the effect of this: the input dis-
tribution will mutate into a Gaussian. However, if there are correlations in the dataset,
they will emphasise the respective coefficients and the resulting shape resembles more
a Laplacian.

The WHT is neither the best analysis tool, nor very good for compression. However,Its Use for
the Astronomer it may be the only solution if the computational resources are limited, because it can

be implemented using additions only. Apart from that it is used in radio astronomy
to implement phase shifting for many antennae [Tho86] and in Hadamard spectroscopy
[Nel70]. In natural order it has been used as an error-correcting code, as in the Mariner
and Voyager missions [Eva03]. In sequency order it can serve as a poor-man’s replace-
ment of the DCT. In the H.264/AVC video compression standard the WHT is used to
decorrelate the DC coefficients of a previously blocked DCT [Sal07]. Among the space
missions that were using the WHT for decorrelation is Cassini [Rob04].

The Haar Transform

In 1910 Alfréd Haar constructed the Haar basis [Haa10], which is the most basic
wavelet transform. It is often said to be the most simple one, which may be true for the
multiscale approach (see below), but construction from the basis matrix is not as easy.
In contrast to the Hadamard transform, the Haar transform is still widely used today.
By way of the Haar transform I will establish a connection between linear transforms
and wavelet-based decompositions in general. This is possible, because the Haar basis
can also be constructed in another way, using a scaling function and a wavelet function.

We construct the basis of our transform matrix from top to bottom, starting withConstruction
of the Matrix the first line, which is all ones, because it shall give the DC coefficient, which is the

mean of the input if properly normalised. We will see that the other lines will play a
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Figure 2.11: Haar wavelet construction. Ê Scaling function, Á Mother wavelet and how the following
scales are made up. The encircled numbers mark the basis function (line number) of the
Haar matrix. Note that position 1 given on the abscissa corresponds to the length N of the
discrete input dataset.

rôle as differences at different scales. Figure 2.11 is meant to be helpful for studying
this paragraph. Our second line is the mother wavelet function at full size. In case of
the Haar basis this is the step function

ψ =

{

1, 0 ≤ t < 0.5
−1, 0.5 ≤ t < 1 .

Each line will now contain a wavelet which is derived from the mother wavelet by
scaling and shifting. So line three has the wavelet function at half size. At this scale
we have two possibilities where to insert the wavelet, on the left side or the right side.
We start on the left and leave the rest with zeros, and in the next line we start with
zeros and fill the second half. The next scale is again cut in half1 and we continue to
paste the scaled and shifted wavelet into the basis. Here comes the formal definition,
where the wavelet function is usually denoted with ψ. In the continuous case we use
real-valued parameters for scaling p > 0 and shift q. So we write

ψp,q(t) =
1√
p
ψ

(

t− q

p

)

.

For a discrete transform it is necessary to choose discrete values for p and q in the
scaling p−s and shift kqp−s at scale s with shift index k. Inserting this in the equation
above leads to

ψs,k(t) =
1

√

p−s
ψ

(

t− kqp−s

p−s

)

=
√
psψ(tps − kq) .

In here the fixed scale q is set according to the dimension of the basis vector, for
example q = N = 256 for the 256 × 256 Mona Roli image. We can now construct the
transform matrix:

1 We use a dyadic scaling, but in fact the scaling factor should be adapted to the wavelet function.
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Figure 2.12: Matrices of the Haar transform. (Left) The Haar matrix for a 256×256 dataset. Black is
−1 and white is 1. (Middle left) Basis images for a 4×4 kernel. (Middle right) Mona Roli
Haar transformed to the standard basis. (Right) Pyramidal subband decomposition.
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The Haar transform is said to be simple because its mother wavelet is a step function.
A little bit further down the CDF 9/7 wavelet can be found. Its construction is more
or less the same but with a different mother wavelet and scaling function.

Now that we have gone through the maths here is the relief: it’s not necessary toA Different
Approach use it. Look at the basis matrix or at the kernel image in Figure 2.12. What this

transform essentially does is to compute averages of different sizes of the image and
their differences. A sequence of N numbers (N should be even) can be represented in
N/2 averages of pairs and N/2 differences. This can be iterated on the averages until
1 average and N − 1 differences are left. An example:

Input 1 3 3 -1 1 2 3 2

1. avg/diff 2 1 1.5 2.5 -1 2 -0.5 0.5
2. avg/diff 1.5 2 0.5 -0.5 -1 2 -0.5 0.5

3. avg/diff 1.75 -0.25 0.5 -0.5 -1 2 -0.5 0.5

The result is the Haar transformed original sequence! In the 2D case this averaging
scheme can be applied to all rows and then to all columns and the result is a 2D
transformed image. In this case it is called standard decomposition. It is identical
with the result obtained via matrix multiplication. However, we could decide to only
scale down once in each dimension. Then we have a dataset where in the top left is a
2× averaged image of the original, to the right and below are horizontal and vertical
differences (detail) and in the bottom right quarter are the diagonal differences. The
next iteration would then no longer work on the whole dataset, but continue with the
top left quarter and so on. This is called pyramidal decomposition and it is also shown
in Figure 2.12. Several advantages arise from this kind of decomposition. Above all,
it saves CPU cycles, quantisation is easier and better encoding strategies can be used.
On the other hand this is no longer a linear transform in the strict sense and there is
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Figure 2.13: Mona Roli Haar compressed. (Left) Standard decomposition with a hard threshold. (Mid-
dle left) Standard decomposition equally rounded. (Middle right) Pyramidal decomposition
with scale-dependent rounding (Right) Pyramidal decomposition with a linear quantisation
gradient.

less decorrelation achieved. Several other decomposition strategies exist as well, but
I conclude this subsection with the message that this multiscale approach is the link
towards filter banks.

In analogy with the Hadamard transform I tried again to find an optimal quanti- What about
Mona Roli?sation for Mona Roli. The resulting pictures are presented in Figure 2.13. In terms of

numbers we have:

hard thr. uniform quant. scale dep. gradient

MSE/MAE 114.53/7.64 102.14/7.51 127.70/8.35 123.51/8.06

The characteristic Lüfterl (”Vienna air”), a light breeze blowing from
the northwest and west, provides relief on hot summer evenings.

—EBM “Vienna”

The Fourier Transform

Baron Joseph Fourier (1768–1830), a French egyptologist and gifted mathematician,
introduced series with sines and cosines for the solution of differential equations and
extended this concept into the so-called Fourier integral. Today, Fourier analysis is
a major branch in mathematics. To the astronomer it is one of the most important
analysis tools. Compared to the transforms that we have treated so far, the Fourier
transform has some major differences. First of all, it is complex-valued. Even if only
real-valued data are provided, the result will be complex. Secondly, the transcendent
functions used in the transform kernel lead to new effects, the most striking one being
that the data in the transform domain are no longer localised, i.e. you will not be able to
identify a single feature from the spatial domain as a distinct symptom in the frequency
domain and vice versa. These features are comprised in the basic theorems found in
any authoritative introduction about the Fourier transform, such as [Bra99a]. Of these
I will point out the convolution theorem, which has been mentioned earlier and the
shift theorem, which states that shifting the input does not affect the amplitude but
the phase.

55



Decorrelation

The Fourier transform F of a continuous function f(t) and its inverse F−1 are

F = f̂(ν) =

∫ ∞

−∞
f(t)e−i2πνtdt F−1 = f(t) =

∫ ∞

−∞
f̂(ν)e−i2πνtdν

The definitions above are seen in different notations and forms, essentially differing
whether the factor 2π is found inside the integral or already put as 1/2π or 1/

√
2π in

front.

A Fourier transform of time or space to the frequency domain is a very valuableModulus and Power
Spectrum analysis tool. Interpretation of the frequency spectrum is best done with the modulus

|F(ν)|, because amplitude (the real part) and phase (the imaginary part) are not very
compelling to the human eye. However, it is customary to use |F(ν)|2 instead and refer
to it as the power spectrum.

The Discrete Fourier Transform

The discrete Fourier transform (DFT) is the basis for dealing with sampled data,
i.e. all kinds of signals. In the simplest case we assume that the data are uniformly sam-
pled. When a discrete Fourier transform is made of real-valued input, it is noticeable
that the original N points will lead to real and imaginary parts that also have N points
each, but of which (almost) half of them are complex conjugates, i.e. simply mirrored
with opposite sign and therefore normally redundant. More on how to interpret the
coefficients is found a little further down when the question will be raised, “What are
these coordinates?”

The DFT of a discrete function f(k) and its inverse are defined by

F = f̂(u) =
1

N

N−1
∑

k=0

f(k)e−i2π uk
N F−1 = f(k) =

N−1
∑

u=0

f̂(u)e−i2π uk
N

The complex function f̂(u) can be split into a real and imaginary part (because eiΘ =
cos Θ + i sin Θ), which will then lead to a form that is advantageous for programming:

Re(f̂(u)) =
1

N

N−1
∑

k=0

f(k) cos(2πuk)

Im(f̂(u)) = − 1

N

N−1
∑

k=0

f(k) sin(2πuk)

Another way is to write it using modulus and argument:

f̂(u) = |f̂(u)|ei arg f̂(u)

with |f̂(u)|2 being the power spectrum and Θ(u) = arg f̂(u) being the phase.

56



2.2. A Zoo of Transforms

As the Fourier transform is separable, the 2D DFT can be written as two serial
1D transforms. Here are minimalist DFT functions for real input in AWK for playing
around (In here F is normalised by 1/N):

Listing 2.1: DFT and IDFT

1 function dft (data , ftrans , ftransi , lines) {

2 for (u=0; u < lines; u++)

3 {

4 sumr = 0; sumi = 0;

5 for (x=0; x < lines; x++)

6 {

7 t = 2*3.1415926536 * u*x / lines;

8 sumr += data[x] * cos(t);

9 sumi += data[x] * -sin(t);

10 }

11 ftrans[u] = sumr / lines;

12 ftransi[u] = sumi / lines;

13 }

14 }

16 function idft (rdata , idata , synth , lines) {

17 for (u=0; u < lines; u++)

18 {

19 sumr = 0; sumi = 0;

20 for (x=0; x < lines; x++)

21 {

22 t = 2*3.1415926536 * u*x / lines;

23 sumr += rdata[x] * cos(t);

24 sumi += idata[x] * -sin(t);

25 }

26 synth[u] = sumr + sumi ;

27 }

28 }

Just as we have done with all transforms so far, we will now construct the transform Fourier Basis

matrix W from scratch. Basically, it amounts to

w = e
−2πi

N
= cos

−2π

N
+ i sin

−2π

N

The column and row indices running from 0 to N − 1 are used as powers p, q in
wpq to construct the DFT matrix W , which is then used in the same way as in the
transforms before – through matrix multiplication.

W =











w0·0 w1·0 . . . w(N−1)·0

w0·1 w1·1 . . . w(N−1)·1

...

w0·(N−1) w1·(N−1) . . . w(N−1)·(N−1)











Note that the normalisation (1/
√
N for a symmetric one) needs to be taken into

account as well. For the backward transform, w−pq is used. The matrices and kernel
images are shown in Figure 2.14.

If we transform Mona Roli with the DFT, we find that the large coefficients are not Swapping

concentrated in the top-left corner, but they show up in every corner (cf. Figure 2.15).

57



Decorrelation

Figure 2.14: Matrices of the DFT. (Left) Real part of the Fourier basis. (Middle left) 4×4 Kernel for the
real part. (Middle right) Imaginary Fourier basis. (Right) Kernel images for the imaginary
part.

Figure 2.15: Mona Roli in the DFT. (Left) Real part of the transformed image. (Middle left) Imaginary
part. (Middle right) Modulus and (Right) Modulus with enhanced contrast.

Figure 2.16: Matrices of the swapped DFT. (Left) Real part of the swapped Fourier basis. (Middle
left) 4×4 Kernel for the swapped real part. (Middle right) Swapped imaginary Fourier ba-
sis. (Right) Kernel images for the swapped imaginary part.

Figure 2.17: Mona Roli in the swapped DFT. (Left) Real part of the swapped transform. (Middle left)
Imaginary part of the swapped transform. (Middle right) Modulus of the swapped transform.
(Right) Modulus with enhanced contrast.
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Figure 2.18: DFT as a compression. (Left) Mona Roli compressed with the DFT. (Middle left) A circu-
lar filter window with a radius of 32 pixels. (Middle right) Low-pass component (modulus).
(Right) High-pass component (modulus).

Since this is not very appealing to the human eye, we swap the quarters of the image
so that the interesting low frequencies are now concentrated in the middle. This can
be achieved in two ways, either by swapping the result or by swapping the basis. The
latter is better for complexity reasons and the swapped matrix is shown in Figure 2.16.
How Mona Roli looks in the swapped DFT is shown in Figure 2.17.

Now the question is whether the features of the DFT can be used for data compres- Compression in the
DFTsion. Similar to the transforms we have discussed so far, we want to see the effects of

quantisation and filtering. The latter is very nice to achieve in the DFT and in fact
high or low-pass filtering is one of the major applications of this transform. Figure 2.18
shows the result of uniform quantisation to a factor 64 in entropy and a filtering in the
Fourier domain. Note that the used circular filter has a radius of 32 pixels and thus the
low-pass image is only reduced by a factor of around 10 in entropy.

The result in numbers for the uniformly quantised coefficients is MSE/MAE =
83.20/6.93, which is actually an excellent performance compared with what we had
so far. However, there are many inconveniences with the DFT for use in compression
which are overcome by the DCT (see below).

Fourier analysis is a very powerful tool, however, there is this mind-boggling thing What are these
coordinates?about the Fourier coordinates. Assume you have made a transform of N uniformly

spaced real values, indexed from 0 to N − 1. The first real coefficient r0 corresponds
to the mean. The next one is r1 with a frequency of 1/1,1 r2 is with 1/2 and so on
until the one leading the second half rN/2, which corresponds to the highest frequency
1/(N/2). Coefficients r0 and rN/2 are special in that they have no imaginary part. In
that sense for real-valued input it is only necessary to keep N DFT coefficients, these
are the first N/2 + 2 of the real part and N/2− 2 from the imaginary part (omitting i0
and iN/2). For complex input we have 2N input values (counting real and imaginary
part separately) and also all 2N transform coefficients are needed in this case.

A sine wave which runs through 2 full periods on an interval of 256 points, i.e. it has What happens
to the units?a spatial frequency of 2 and a period of 128, will create a spike of the size one half the

amplitude times N in the modulus of the third transform coefficient m2 =
√

r22 + i22.
Note that if the wave for that frequency does not run over the whole dataset, but only
over a fraction of it, the amplitude will also be reduced to that fraction.

1 A full period over the dataset – so the biggest “feature” to be captured is N/2 in size.
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Gaussian noise stays the same in orthonormal transforms, all other distributionsWhat happens
to the noise? will be modified. The inverse transform can be used to generate white Gaussian noise

from a uniform distribution. The resulting noise is Gaussian with σ =
√

n/12 if both,
the real and the imaginary part are uniformly distributed on [0, 1]. If only the real part
is available and the imaginary part is set to 0, then σ must be corrected by a factor
1/
√

2. Obviously, this is a consequence from the central limit theorem in Chapter 1.

DCT and DST

The Discrete Cosine Transform is the most widespread transform, used in the JPEG
[Pen93] and MPEG standards [Wat01] and also found in modified form in MP3, AAC
[Bra99b] and virtually every other lossy audio codec. It has very good energy com-
paction for correlated datasets. In general, the cosine transform agrees with the Fourier
transform for an even1 function (cos itself is an even function). The similarity between
the basis matrices suggests that the DCT is the top-left quarter from the DFT and
the choice for this quarter is that it has the most resemblance with the ordered WHT.
Its counterpart, the sine transform, is bad for correlated data, but has good energy
compaction capability for small correlations. A commonly used definition for the DCT
is DCT-II:

DCT(k) =

√

1

2N

N
∑

n=0

f(n)cos

(

(n+ 1/2)kπ

N

)

.

The basis matrices of the orthogonal DCT and DST with the respective coefficients
cp,q and sp,q are:

cp,q =

√

1

N
cos

(q + 1/2)pπ

N
p = 0, q = 0..N − 1

cp,q =

√

2

N
cos

(q + 1/2)pπ

N
p = 1..N, q = 0..N − 1

sp,q =

√

2

N + 1
sin

(q + 1)(p + 1)π

2N
p, q = 0..N − 1 .

In Figure 2.19 the bases and kernel images are shown. Do not miss to compare
them with Figure 2.14. There is no doubt2 that Mona Roli is a correlated dataset and

Figure 2.19: Matrices of the DCT and DST. (Left) The orthonormal DCT matrix for a 256×256
dataset. (Middle left) Basis images for a 4×4 kernel. (Middle right) DST matrix. (Right)
DST basis images.

1 f(x) = f(−x)
2 There may be deviating views.
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Figure 2.20: DCT and DST in action. (Left) Mona Roli DCT transformed. (Middle left) Mona Roli DST
transformed. (Middle right) Mona Roli in the 8×8 blocked DCT. (Right) Same with higher
contrast.

Figure 2.21: DCT, DST and quantisation. (Left) DST evenly quantised. (Middle left) DCT with hard
threshold. (Middle right) rounded DCT. (Right) DCT with JPEG luminance quantisation
table.

in Figure 2.20 we observe energy compaction as expected. The transform coefficients
of DCT and DST have the same µ and σ, but the MAE of the DCT is smaller, which
indicates better compaction. This is also confirmed with the impression we get from
the quantised Mona Roli in Figure 2.21 and the numbers support this finding as well.

DST uniform DCT hard thr. DCT uniform DCT JPEG

MSE/MAE 131.64/8.67 79.58/6.52 73.83/6.50 81.85/6.94

From these results we understand why the DCT is so popular in signal processing. Blocking

However, there is still this problem with algorithmic complexity. One way to reduce the
number of operations that are involved in matrix multiplication is to decompose the
transform matrix W by factorisation and reduce the complexity from N2 to N ldN the
way that the Cooley-Tukey [Coo65] scheme does. The Cooley-Tukey algorithm divides
the dataset in two, takes the separate transforms and combines them. In case of a
1024 × 1024 image, the FFT reduces the 2 (dimensions) × 1024 (lines) × 10242 = 2Gi
operations to 2× 1024× 1024 ld1024 = 20Mi operations, but for applications in digital
imaging – including astronomical observation – this can still be too much. Obviously
the largest savings in complexity can be made by reducing N . By segmenting the image
into smaller pieces – blocks – a reduction of the complexity is achieved at the cost of
low frequency correlation. The tradeoff made in the JPEG standard and which has
subsequently been used in blocking transforms is to go for a blocksize of 8 × 8 pixels.
That way enough correlated data points are available and the complexity is reduced
to 128 × 128(blocks) × 2 × 8 × 8 ld8 = 6M operations. Among the problems related
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Figure 2.22: The blocked DCT in action. (Left) Blocked DCT coefficients reordered. (Middle left)
Blocked DCT using JPEG luminance quantisation table. (Middle right) Blocked DCT
(JPEG) with twice the data rate. (Right) Same with linear gradient quantisation table.

to blocking are of course the blocking artefacts, i.e. residual effects from quantisation
that become visible between adjoining blocks. Another problem is that with blocked
transforms no very high quantisation can be achieved, because each block has one DC
coefficient. In case of Mona Roli, we have 32×32 blocks, as shown in Figure 2.21. These
32 × 32 coefficients alone already have an entropy equal to or higher than a 32 × 32
scaled image. This kind of interpretation of the blocked coefficients allows us, however,
to rearrange them in a certain way resembling the multiscale approach (also shown in
Figure 2.22). This is achieved by collecting all coefficients that correspond to the same
spatial frequency and regrouping them in a sub-image of the size N/blocksize with the
block coordinates as coordinates within the sub-image. All DC coefficients form an
image in the top left corner, the next AC coefficients form the image next to that one
and so on. This reordering allows for easier adaptive quantisation and more efficient
back-end compression. The correlations that are left in the dataset due to the blocking
can even be removed now by a further transform.

It has been mentioned before that entropy is not a fair measure for an energy-Blocking Mona Roli

compacting transform, because the coefficients of interest are concentrated around the
DC coefficient and by considering the quantisation one could get rid of all the zeros that
still contribute to the entropy. Not taking this into account, the results for Mona Roli
are very bad for the blocked DCT (cf. Figure 2.22). As soon as we no longer consider
the lower right half of the transformed image and only keep the top left half,1 the results
become again encouraging, however, this optimisation is applicable to any compacting
transform. Here are the results of the blocked DCT:

DCT JPEG DCT JPEG x2 linear gradient

MSE/MAE 1718.7/37.38 85.5/7.07 73.18/6.11

The DCT leaves no doubt that it is an efficient transform for correlated data.DCT in Space

Through the JPEG and MPEG standards it is used in everyday life, though we would
wish that no blocking had been used. These 8 × 8 blocks are part of the standard
and by lifting it a new standard would have to be made. For applications in space,
implementations in hardware are available from different companies and thus the DCT
is in use by the majority of commercial satellites for data compression [Yu09]. One
of the more recent uses with astronomical relevance was in the ESA Huygens Lander

1 At this level of quantisation the nonzero coefficients are found in an even smaller region.
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[Rüf92]. DCT with quantisation is a very good choice if the photometric quality is not
crucial, but for precise measurements this kind of nonlinear operation is not desirable.
To use the DCT without quantisation as a pure decorrelation tool is not possible due to
the coefficients represented in float. However, the DCT exists also in forms where the
operations are carried out in float, but the coefficients are in integer, thus leading to
a fully reversible decorrelation. Examples of such are discussed in [Wei01] and [Iwa04]
and a general way of deriving integer-to-integer mappings is presented in [Plo04].

The CDF 9/7 Wavelet Transform

The drawbacks of the use of a blocked DCT in JPEG are the blocking artefacts
and the problem that very high compression is not possible due to the many DC coef-
ficients. For this and other reasons the JPEG committee drafted a new standard based
on wavelets that satisfies modern requirements and especially removes the mandatory
blocking from the transform. This standard, known as JPEG2000 [ISO04], had its
rusty start and is still poorly supported in computer applications, but the transform
that was selected is worth having a look at, especially since it has become the new
CCSDS recommendation for space applications [CCS05].

Instead of constructing the transform matrix (Figure 2.24) I describe the approach Filter Banks

via filter banks here, which is also used in the CCSDS standard [CCS05]. Even more
material is found in [CCS07]. In [Say06] the link between the multiscale approach
and the way how filter banks work is explained. The Cohen-Daubechies-Feauveau 9/7
wavelet uses two sets of analysis filter coefficients – so-called taps – to derive the average
and detail components. Nine low-pass and seven high-pass coefficients are used. The one
dimensional wavelet transform of a dataset s with 2N samples is achieved by calculation
of the coefficients C(j) (low-pass component) and D(j) (high-pass component) in the
following way:

C(j) =

4
∑

n=−4

h(n)s(2j + n) D(j) =

3
∑

n=−3

g(n)s(2j + n+ 1) j = 0..N − 1 .

On the boundaries the input data s need to be mirrored according to s(−m) = s(m)
and s(2N − 1 + m) = s(2N − 1 − m). The inverse operation is carried out by the
following synthesis filters:

s(2j) =
1
∑

n=−1

q(2n)C(j + n) +
1
∑

n=−2

p(2n+ 1)D(j + n)

s(2j + 1) =

2
∑

n=−1

q(2n− 1)C(j + n) +

2
∑

n=−2

p(2n)D(j + n) .

In both, the even and odd part, j = 0..N − 1. The filter coefficients for analysis and
synthesis are given in the table beneath. Note that the low-pass coefficients h and q
each add up to

√
2, whereas the high-pass coefficients g and p add up to approximately

zero. The filter operation itself is conceivable as a convolution/correlation of the filter
with the dataset, the low-pass derived from even and the high-pass from odd positions.
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Figure 2.23: CDF 9/7 filter coefficients. (Left) The low-pass filter with the nine coefficients for analysis
in red colour and the seven coefficients for synthesis in green colour. (Right) Likewise, the
seven analysis coefficients of the high-pass filter in red and the nine synthesis coefficients in
green colour.

index j LP filter h(j) HP filter g(j) LP synth. q(i) HP synth. p(i)

0 0.852698679009 -0.788485616406 0.788485616406 -0.852698679009
1/-1 0.377402855613 0.418092273222 0.418092273222 0.377402855613
2/-2 -0.110624404418 0.040689417609 -0.040689417609 0.110624404418
3/-3 -0.023849465020 -0.064538882629 -0.064538882629 -0.023849465020
4/-4 0.037828455507 -0.037828455507

Note that this operation decomposes the input only by one level, i.e. into one half
of coarse detail and one half of fine detail. In order to achieve a multiresolution decom-
position, the process needs to be iterated on the coarse detail coefficients to arrive at a
standard decomposition.

Our test image has gone through quite a number of transforms, with the unblockedMona Roli
in CDF 9/7 DCT being the best one so far. In Figure 2.25 the image which is reduced in entropy

by a factor 64 has some cross-like artefacts when uniform scalar quantisation is used.
The thresholded image on the other hand has a very smooth appearance. However, all
cases achieve substantially better results than in the DCT.

Figure 2.24: Matrices of the wavelet transform. (Left) CDF 9/7 basis matrix. (Middle left) 8×8 kernel.
(Middle right) Mona Roli standard decomposition. (Right) Mona Roli in pyramidal decompo-
sition.
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Figure 2.25: Wavelet quantisations. (Left) Pyramidal hard thresholding. (Middle left) Pyramidal decom-
position with rounding. This result is what you will achieve in JPEG2000 as well. (Middle
right) Map of standard deviations of the Pyramidal decomposition. (Right) Standard decom-
position with rounding.

pyr. hard thr. pyr. uniform standard uniform

MSE/MAE 67.72/6.02 61.50/5.78 68.25/6.16

In contrast to the DCT, where uniform quantisation leads to a nonlinear operation,
this is no longer the case here. For the synthesis of a single value in one dimension the
same number of transform coefficients – one from each scale – need to be considered
and the scales are all of the same unit. Thus quantisation with the wavelet transform
keeps the photometry intact (of course, apart from the rounding, which is linear) and
is thus also applicable to astronomical data. In the CCSDS recommendation an inte-
ger approximation to the CDF 9/7 transform is given, which can be used for lossless
compression. This differs to JPEG2000, where the CDF 5/3 integer wavelet is used
for lossless data. In the domain of space missions the discrete wavelet transform is
now successively replacing the DCT, the most prominent astronomical example so far
being the two Mars Exploration Rovers. More on their imaging system can be found
in [Mak05] and a nice detailed description of the software is [Lit05].

KLT

The Karhunen-Loève Transform, also known as the Hotelling transform or Principal
Component Analysis derives its transform matrix from the data and achieves therefore
optimal decorrelation [Mac94]. This sounds great, but the truth is that this transform
is not practical for compression, as it also requires to transmit the basis matrix (or
alternatively, the ACF), which essentially doubles the amount of data. In light of this
fact the other severe drawbacks are almost negligible, but for completeness, the KLT is
not separable, it has very high computational complexity (>N2) and there is no trick to
speed it up. As the performance of the DCT comes asymptotically close, it is seldomly
ever used in image compression, and usually authors stop at this point. I, however, will
give you an idea of how it works with Mona Roli.

Here is a short step-by-step howto for the KLT. If A is an m×n matrix, eventually
centred by subtracting the mean of each column from the vector coordinates, we will
first calculate the m × m covariance matrix C = COV(A). Then the eigenvectors
and eigenvalues are derived from C. Next we sort the eigenvectors according to the
eigenvalues. The result is the m × m basis for the 1D KLT. Each basis vector is a
principal component and the way to reduce the amount of data is to only keep the first
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Figure 2.26: Mona Roli in the KLT. (Left) The basis matrix derived for the Mona Roli image. (Middle
left) Mona Roli transformed (Middle right) Covariance Matrix of the transformed image.
(Right) Reconstruction from the first 12 principal components, quantised.

Figure 2.27: Mona Roli in the 2D KLT. (Left) The basis for the second dimension. (Middle left) Mona
Roli transformed (Middle right) Covariance Matrix of the transformed image. Even the co-
variance matrix of the transpose looks like that now. (Right) Almost perfect reconstruction
even if reduction factors up to 100 are used. No, there is no mistake with this image.

k < m vectors whose eigenvalues contain a certain amount of energy (adding eigenvalues
up to a certain threshold). The KLT is performed thus with a reduced k × m basis.
Of course, that way only a transform in one dimension is made. To achieve a 2D KLT,
we need to transpose the result and repeat every step from above. Note that each
dimension has its own basis, which is why the KLT is not called separable.

The KLT makes a perfect decorrelation, but for reconstruction the basis (or bases
in case of more dimensions) is needed again. Of course, every input image has its own
KLT basis, but if we allow to sacrifice a bit of decorrelation we can assume that the
input data are stationary and keep the basis for a number of data frames.

One consequence of perfect decorrelation is that you can almost throw away yourMona Roli
in the KLT transform coefficients and yet your reconstructed image will be almost identical to the

original. In Figure 2.27 the bases were kept intact and the coefficients were reduced
in entropy by a factor 100 through quantisation. Yet the reconstructed image differs
almost not from the original, with MSE/MAE= 7.41/2.14. This is of course not fair,
because the bases are known to the de-compresser. In Figure 2.26 I tried to put the
record straight and combined the selection of the first few principal components in an
1D KLT with quantisation so that the basis and the transform coefficients together
come up with an entropy of 1/64 of the original image. The result is now discouraging,
with MSE/MAE=148.91/9.60, but my optimisations were also rather crude. Real-world
applications of the KLT in data compression are rare, but there is lively work in that
direction, e.g. [Pen06].
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Figure 2.28: M51 (Left) This picture is an uncorrected 5 minute exposure (V filter) of M51 that I made in
early 2004 on the Vienna Little Telescope. (Middle left) Histogram of the input image. (Mid-
dle right) Discrete cosine transform. (Right) CDF 9/7 transform (standard decomposition).
Now we wish Mona Roli back.
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Figure 2.29: M51 (Left) Haar transformed (standard decomposition). (Middle left) Image after HCOM-
PRESS with a factor 10 in entropy. (Middle right) Residual. (Right) Histogram of the resid-
ual.

3 Transforms of Typical Datasets

All of the transforms presented in this chapter can be used for data of any dimen-
sion, mostly because they are separable, i.e. a n-dimensional transform is achieved by
successive one-dimensional transforms. However, as noted before, astronomical CCD
images tend to be sparse in almost any representation, so that a transformed image is
vastly as grey as in Figure 2.28 (right).

From this we see once more that an astronomical image consists mainly of noise
in terms of entropy. In the example shown below, the dataset has HS = 7.083 and
MS = 6.567, so that compared with the uncompressed image, where a sample is stored
in 16 bits, a factor 2 of lossless compression seems to be easily achievable. However, we
could have the requirement for higher compression and from what we have learned so
far, this will only work with lossy steps. In Figure 2.29 I used HCOMPRESS [Whi92] to
compress down toHS = 0.7. This algorithm uses a 2D Haar transform with thresholding
and it is part of the popular CFITSIO library [Pen99]. This is a dramatic reduction and
a close inspection at higher magnification reveals first visual differences. The variance
of the residual is comparable with the readout noise.

This little example impressively shows that large lossy compression factors are
achievable without much loss of scientific information. To find the best tradeoff be-
tween compression and quality one would determine the R/D function where R would
be the compressed data amount and D a specific quality measure (like distortion of
photometry or astrometry of the data). To get a better feeling about the power of
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linear transforms for compression, filtering and analysis I will now show plots of some
typical 1D datasets including PACS test data.

1D Data

Let’s begin with the data file we are already familiar with, the one used in the
beginning of this chapter (Figure 2.1) to illustrate simple prediction. Our aim was to
decorrelate the data to bring the entropy down to the noise σ = 20.9. In the Haar
transform we get averages and differences, but as the differences are made from the
averages they should not lead to the observed noise increase we had in differentiation.
To find out whether this assumption is true, take a look at Figure 2.30. As we know the
Haar wavelet produces fractional coefficients we multiply each scale with the respective
factor to obtain integers. The integer approximation to the CDF 9/7 wavelet used here
is lossless and works much better on this dataset, as you can see in Figure 2.31. The
entropies HS of this dataset in their different representations are given in the table
below. So, the performance of the wavelet is okay, but it is not superior to a simple
running average on this dataset.

original noise differences runavg Haar (amp) CDF 9/7i

8.41 6.37 6.91 6.61 7.55 6.66

Detectors that are read in a non-destructive way generate so-called ramps, whereRamp Data

the signal is proportional to the slope of the ramp. An example for this are Ge:Ga
photoconductors for the far-infrared, such as the ones used for PACS and FIFI LS
[Ros02]. The data shown in Figure 2.32 stem from tests I made with the flight spare
model of PACS at MPE on the 1st of April in 2009. Data from two pixels of the
red detector array are shown in succession, each one providing 512 samples that are
arranged in 8 ramps. These ramps are almost linear but differ in intercept due to the
so-called reset noise and in slope due to various effects, one of them being the chopping
that was exercised. There will be a lot more about this in Chapter 5.

It is not trivial to determine the entropy-relevant noise in ramp data due to reset
noise, nonlinearities and the inherent random walk. Essentially, the systematic com-
ponents – I summarise them by the term the signal – have to be removed to obtain
the noise (this can be seen as the main goal of decorrelation). One way to do so is to
calculate a keyramp and look at the residuals. For a dataset as short as the one shown
in the plot we simply state for now that the entropy of the noise is not smaller than
half a bit per symbol compared to the entropy of the differences. Figures 2.32 and 2.33
compare differentiation with the Haar and CDF 9/7 wavelet. Here are the numbers for
comparison:

original differences Haar (amp) CDF 9/7i

9.89 6.75 8.67 5.87

A simple differentiation does a good job, but actually cannot bring the numbers
down to 0 but to a value around the mean difference. A similar effect is seen in the
Haar wavelet, but obviously its main problem is the mapping to integer since it is not
really meant to be used without quantisation. The CDF wavelet suffers from its filter
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Figure 2.30: Decorrelation by the Haar transform. (Left) The input data in red were Haar transformed
and mapped back to integer. For this reason the first coefficients are quite far away from
zero. Plotted in green colour are the differences for comparison. (Right) The histogram
shows that the whole operation is not good for lossless decorrelation.
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Figure 2.31: Decorrelation by the CDF 9/7 wavelet. (Left) The advantage of this integer approximation
to the CDF 9/7 wavelet is that the decorrelated values are in integer and don’t need to be
scaled to be lossless.

lengths in a way that it produces large values at all scales for every discontinuity in
the dataset, yet it still performs best. For this kind of data, an approach based on
prediction works best, because we can take advantage of a priori information about the
signal. Such a very specialised prediction model will only work well with the data it has
been designed for. Transforms are not tuned to specific datasets, but they work well
on all kinds of data. Chapters 4 and 5 contain an in-depth treatment about prediction-
based decorrelation stages that I developed for the PACS detector arrays.

To put it in a nutshell, if lossless compression is to be done, use prediction or any
other preprocessing that allows to model the signal. For lossy compression choose a
transform-based approach if possible, but keep a sharp eye on the distortion.
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Pixel A Pixel B
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Figure 2.32: Ramp input data. (Left) The raw readouts from two pixels, each one read at 256 Hz with
a reset interval of 1/8 second. The orange line connects every 32nd readout to give an im-
pression of the variation which is also due to chopping. (Right) The data shown again in red
colour, along with their differences (green), the Haar transform coefficients (light blue), and
the CDF 9/7 integer coefficients in blue. Note that the Haar coefficients have been mapped
to integer.
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Figure 2.33: Properties of transforms. (Left) A closer look at the coefficients to allow for better com-
parison of the performance. (Right) Histogram of the decorrelated values with a bin size of
1. Note that the complete range of values is not shown. The inset histogram shows a larger
range with a bin size of 1024. The three datasets have been slightly shifted for better visi-
bility. These plots indicate that the CDF wavelet brings down the bulk of values to zero yet
suffers from many coefficients with large values.

He invented and introduced the symbol ∞ for infinity. [...] Wallis’ life was em-
bittered by quarrels with his contemporaries, including the political philosopher
Thomas Hobbes, who characterised his Arithmetica Infinitorum as a “scab of sym-
bols”, and the Dutch mathematician Christiaan Huygens, whom he once tricked
with an anagram concerning a possible satellite of Saturn.

—EBm “Wallis, John”
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3
Encoding and Compression

I t’s hard to tell what the first concept was that can really be called a compression.
I tend not to consider Braille or Shorthand, but rather Morse codes that were de-

veloped from the late 1830s on [Hoi07], which are a – well, actually bad – example for
variable-length ternary encoding. These codes basically cover the requirements from
entropy encoding, at least after refinement by Morse’s assistant Alfred Vail, that en-
coded frequent symbols with shorter codes at the cost of rare symbols that get assigned
longer codes. Such variable-length codes are central to many encoding algorithms.·−− ···· ·−− ···· ·−− ···· −−· · ·−·· ·−− · ·· · · ··−−−· ····−

What hath God wrought!
—First message transmitted over the first telegraph line in 1844.

(in American Morse Code)

Data compression can be achieved in different ways. There are basic techniques
like replacing run-lengths of symbols with a symbol/number pair, though they stay
quite far away from the entropy limit unless very special datasets are used. Statistical
methods regard the symbols as independent and aim at encoding the individual symbols
to their entropy limit. Whether this is achieved by variable-length codewords or other
tricky methods such as arithmetic compression does not matter. The model i.e. the
statistical assumption that is made about each symbol determines how a symbol is
encoded. Dictionary methods are very different to that, they assume that the symbols
are dependent and seek for replacing recurring symbol patterns – phrases – with shorter
reference tokens. This is achieved by a dictionary that has of course some relation with
statistical modelling, but the main feature of a dictionary is to contain symbol phrases
of all lengths. Of course, there are still various algorithms left that are hard to classify,
either having features of both groups or standing even outside, roughly categorised as
context-based, but classification is anyhow not the relevant aim of this chapter.

Dictionary methods and context-based techniques are preferred by all kinds of multi-
purpose data compression, such as zip.1 Yet in this chapter I mainly concentrate on
statistical methods because the scientific data we want to compress are affected by a
noise component that is not well handled by that kind of technique. Some methods

1 What we call zip today is a data container format originally introduced by Phil Katz’ ZIP program.
Nowadays it uses the Deflate algorithm for compression, which is closely related to LZ77.
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The chapter is divided into the following sections:

3.1 Basic Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Variable Block Word Length . . . . . . . . . . . . . . . . . . . . 73
Run Length Encoding . . . . . . . . . . . . . . . . . . . . . . . . 73

3.2 Statistical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Huffman Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Golomb and Rice Codes . . . . . . . . . . . . . . . . . . . . . . . 76
Arithmetic Coding . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.3 Dictionary Based Techniques . . . . . . . . . . . . . . . . . . . . . . . . 80
LZ77 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.4 Context Based Compression . . . . . . . . . . . . . . . . . . . . . . . . . 82
Burrows Wheeler Transform . . . . . . . . . . . . . . . . . . . . . 82

3.5 Compression of Floats . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

presented herein, especially among the statistical ones, assume that the data to be en-
coded are already decorrelated. As in the previous chapter, each algorithm is discussed
in terms of fitness for space applications, in particular for data with a large noise com-
ponent. Apart from [Sal07], a fast introduction into basic lossless data compression
focusing on space applications is [Kor90], a similar one is [Her96].

Astronomers are normally not familiar with the vocabulary used in data compres-Terminology

sion. Although the used terms are simple and mostly self-explaining, I don’t want you
to guess what is written in here.

A symbol is the smallest input entity of a compression algorithm, it can be a 16-bit
measure, a sample, a character, or any number of bits grouped together. A single-bit
symbol is called a flag . By stream a sequence of bits is meant, similarly a string is a
sequence of characters or symbols. A token is just like a flag, a symbol, or a combination
of both. A codeword is an output symbol or token. When I speak of a key , a value is
meant that is necessary to interpret another. As you can certainly imagine, the meaning
of these terms depends strongly on the context used.

1 Basic Methods

A variety of compression techniques is easy to understand, but hard to classify. For
example, masking nonzero values with bits or move-to-front coding [Ben86]. Such algo-
rithms have been created for all kinds of purposes, but their compression performance
is usually bad unless very special datasets are used. In here I will only pay a little more
attention on VBWL compression and on run length encoding, of which the latter one
is still a very widespread technique.
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Variable Block Word Length

VBWL encoding [Kor90] is a very rudimentary technique of encoding values to
smaller codewords. Small groups of input symbols are offset, either by the first value,
by the mean or the median, the minimum or the maximum. Then the maximum
number of bits required to encode the offset symbols is determined, and encoded with
the symbols in the output bit stream. This technique obviously has some issues, it
assumes a smooth input sequence, it may require mapping the offset values to positive
or to add additional key information such as the position of the minimum within the
group and so on. Even the computational complexity is pretty high compared with
better encoding techniques. Its overhead can lead to an increase of the data length
after compression for noisy or highly oscillating input. However, if the range of values
of a dataset is pretty large and the compression requirement is not tight, it is at least
better than nothing.

Run Length Encoding

One of the simplest yet widely used algorithms is RLE, as it is very easy to imple-
ment, with very little resource requirements and is pretty effective on structured data
with little entropy. A run length is a sequence of identical symbols. One variant of
RLE would be to send the number of repetitions with every symbol. Another variant
is to use an escape character – usually an infrequent symbol – to mark a run length
and leave single standing symbols untouched. This already greatly reduces the over-
head. Depending on the memory, the escape character could be chosen from the input
data. If only run lengths of a single symbol – such as zero – should be considered,
then even the escape character can be spared. RLE can be made memoryless and has a
complexity ∼N , but noisy data are also increased instead of reduced depending on the
implementation. Run length encoding is good for huge run lengths, such as the dots on
a black and white page. In the early days of image compression, where only few colours
were available, this type of encoding was pretty effective. Even in modern compression
schemes it can be found as a back-end (the final encoding step) to the Burrows Wheeler
transform (see Section 4 below) for example.

For us, RLE is a good starting point for some theoretical considerations. Given RLE and Statistics

a set of symbols we may be interested in the number of run lengths we can expect.
This depends of course on the set size, on the number of different symbols and their
probabilities and on the length of the run we are searching for. The number of ways
some symbols can be arranged is given by their permutations. N different symbols
would have N ! permutations,1 but no run lengths. If any symbol S can occur any
number of times, we have SN permutations.

Now let N be the size of the dataset, c1, c2, ..., cs count the symbols 1...s, then the
number of permutations is N !/(c1!c2!...cs!) (note that

∑

ci = N). In case the symbols
have equal counts this reduces to N !/(sc!) = (N − 1)!/(c − 1)!. For a binary set of k
ones and z = N − k zeros we get N !/(k!(N − k)!) =

(

n
k

)

permutations. The probability
for a specific binary string of k ones and z zeros given the probability of pz = 1 − pk is

1 Instead of computing the factorial N ! =
QN

i=1
i, 0! = 1 the Stirling approximation N ! ≈√

2πN(N/e)N can be helpful for large N and the Gamma function N ! = Γ(N + 1) is useful to
get continuous values.
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P = pk
kp

z
z = pk

k(1 − pk)
N−k and thus the probability, that an arbitrary combination of

k ones and z zeros is found is
(n

k

)

P . Now look at P . This is the Geometric distribu-
tion (the discrete version of the Exponential distribution). Remember the Exponential
distribution showed how intervals between events are distributed. In our case the in-
tervals are the runs of zeros and the events are the ones. Now take a look back at
Figure 1.4. Depending on pk the probability for longer runs will decrease and we are
confronted with the problem of finding optimal codewords to replace the run lengths.
This is what Golomb codes are essentially about and so this is a perfect transition to
dive into statistical compression methods.

2 Statistical Methods

Here are some more terms that are used in connection with statistical methods. A
prefix code or instantaneous code is one where no codeword is the prefix of another
codeword. The opposite, an ambiguous code would not be uniquely decodable. If the
code is universal , then it assumes nothing particular about the probability distribution
of the input data. Variable-length codes compress data by assigning shorter codewords
to symbols with higher probability. The aim of such an algorithm is to represent a
symbol in a codeword of the size of the symbol’s entropy. However, a symbol usually
has an entropy which is not an integer, like HS = 2.34 and the variable-length code has
to use the unused noninteger fraction of the third bit as well. In that sense a variable-
size code has always a penalty due to that fractured bit except if the symbol entropies
are integers, that is, if the symbol probabilities are negative powers of two. Careful
study of this section will make you understand the last phrase.

The data to be compressed by statistical methods need to be decorrelated, otherwise
there is not much compression to be achieved.

Huffman Codes

In 1952 David Huffman [Huf52] worked out the first universal method for construct-
ing an optimal prefix-free variable length code for a finite alphabet, which became
the subject of decades of research and is still used as back-end in many widespread
compression methods such as in the popular ZIP, JPEG or MP3 formats.

The Huffman code is built as a binary tree from the sorted table of symbol proba-
bilities. It starts at the bottom, selects the two least probable symbols and combines
them to a new symbol with a probability equal to the sum of the two. The symbols
are distinguished by a single bit 0 or 1. Now we have n− 1 symbols and we repeat this
procedure until there is only one symbol left. We end up with a binary tree. To find
the codeword for a particular symbol we follow the tree from top to bottom and collect
all 0 or 1 that we find to form the codeword. As the less frequent symbols are now at
the bottom, we have to follow the longest path and collect most bits. Figure 3.1 gives
a visual description that should be easy to follow.

The problem with Huffman coding is that it needs all of the input data to construct
the Huffman tree. This tree or information to construct it, such as the frequency table
need to be transmitted as well. The computational complexity to build the tree is ∼N ,
as is the complexity to actually encode the symbols. For a given dataset, there exist a
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Figure 3.1: Huffman tree buildup. An example input alphabet of five symbols is given together with their
quantity. The frequencies are counted and the sorted frequency table is the starting point for
forming the Huffman tree. In the end a table is established where prefix-free binary codewords
are assigned to the symbols.

number of optimal codebooks (= no codebook with smaller average code length exists),
because codewords of the same size can be assigned differently.

A Huffman table that is derived from the input and never changed throughout the Static vs Adaptive

buffer is called static. Static tables have a very good statistical model of the buffer in
the beginning, but towards the end of the buffer they become inefficient, because the
more symbols we encode, the less are left as possible candidates towards the end of the
buffer. For instance, the last symbol would not have to be encoded at all, because if we
count which symbols we already encoded and compare that with the frequency table we
know which symbol is left. So it would be best to modify the frequency table after each
encoded symbol and rebuild the Huffman code, but obviously this would dramatically
increase the computational complexity. A compromise is a semi-static model, which
is updated from time to time, like rebuilding the Huffman tree for each data chunk.
A fully adaptive code has the advantage of not needing to transmit a frequency table,
because it is regenerated during de-compression. One could start the encoding with a
code table containing only a “new symbol” escape code which would initiate the update
of the frequency table with the given raw symbol. As more and more symbols are seen
the frequency table approaches the probabilities of the sequence’s statistic. However,
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in the beginning a lot of “new symbols” would be seen, so that it is normally better to
start with a coarse frequency table instead. Adaptive Huffman codes can be inefficient
for small datasets or large alphabets.

The problem of developing computer programmes, or software, has long
been a painful one.

—John R. Rice in the EB 1975 Yearbook of Science and the Future

Golomb and Rice Codes

Huffman codes have some disadvantages for the on-board compression of science
data. First of all, it’s a relatively resource-intense task to establish a binary tree and
the data have to be accessible to do so. Even if a previously fixed code is used, it has
to be available as a table in memory, which can be a problem if the range of values is
as already large as 216. In his amusing paper [Gol66], Golomb introduced in 1966 codes
which seek to compress run lengths by assigning shorter codewords to smaller values.
These prefix codes may be used in a way similar to Huffman codes, but they can be
derived on a per symbol basis without the need for a code table.

We remember that run lengths are geometrically distributed, a run of n − 1 zeros
with a trailing 1 in a binary source has a probability of pk(1−pk)

n−1. The codewords of
the Golomb code are optimal for geometrically distributed data. However, a parameter
m is needed to adjust to the distribution. This parameter is chosen best with pm = 1/2
or, equivalently, the median of the (run length) symbols, which makes sure that half of
the symbols are encoded with the shortest codeword length.

Here is a quick outline of how to construct a Golomb code of parameter m. NoteCode Construction

that we need decorrelated positive integers as input. If we build a Golomb code of
parameter m, we begin with asking ourselves about the number of members in the first
group and the number of bits needed there. A group is a set of codewords of the same
length. All groups have m members except the first group, which has less if m is not a
power of 2. A rule of thumb is to use m = ld(H(x)− 2) as a starting point. We answer
the former question by looking at the second group g(1), which has m members. g(0)
has 2⌈ld(m)⌉ −m members (in case of g(0)=0 we use m). The number of bits in the first
group is ⌈ld(m)⌉. The first code in the first group is 0 and changing the group consists
of adding 1 to the previous element followed by a left-shift, so that the new group has
now a codeword of a length longer by one bit. In principle, a codeword is constructed
from the quotient q = int(n/m), coded in unary,1 and the remainder r = n − qm. In
cases where m is a power of 2, it’s as simple as attaching the unary coded q to the
remainder. Golomb codes, where m is a power of 2, are also called Rice codes. They
are especially favourable to compute, because the groups are all of the same length and
the first element of a new group has a remainder of 0. This saves a lot of operations,
especially one division, which is otherwise necessary in the construction of a codeword.

Here are sources for generating Golomb codes and Table 3.1 lists the first codewords
for several values of m.

1 The unary code of a number n is (1 << n) − 1. Its bitwise inverse is the fundamental sequence.
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Listing 3.1: Rice code

1 int mk_Rice (int m2, int value , int *enc)

2 {

3 int q,r,g; // group = nr of leading bits

4 int rl; // remainder length

5 int m; // get m from the input m2 = 2^m

7 // calculate outside function for better performance

8 m = 1 << m2;

9 rl = m2 + 1; // length of rest

11 g = value >> m2; // group nr, nr of leading bits

12 q = (1 << g) - 1; // prepare the left side

13 r = value - g*m; // prepare the right side

15 *enc = (q << rl) | r; // form the codeword

17 return rl+g; // returns the length of the codeword

18 }

For a general Golomb code the binary length c = ⌈ld(m)⌉ and the number of el-
ements in the first group become important, and we have to consider that the first
codeword of a group starts with a different base that depends on the number of code-
words in group 0.

Listing 3.2: Golomb code

1 int mk_Golomb (int m, int value , int *enc)

2 {

3 int g0, l0, b, g, q, lg;

4 int len;

6 l0 = log(m)/log(2) + 1; // codeword length in group 0

7 g0 = (1 << (int)ceil(log(m)/log(2))) - m; // members in group 0

8 g0 = g0 == 0 ? m : g0; // for powers of two we fix g0 = m

10 if (value < g0) // group 0

11 {

12 *enc = value;

13 len = l0;

14 }

15 else // other groups

16 {

17 b = (g0 << 1); // form the base codeword

18 g = (value -g0)/m; // this group is which one

19 lg = l0 + g; // it has lg remainder bits

20 q = (1 << g) - 1; // prepare the left side in unary

21 *enc = (q << l0+1) + b + (value -g0)-g*m; // composed codeword

22 len = l0 + g + 1; // length of the cw

23 }

25 return len;

26 }

There are of course also some traps in the Golomb code. First of all, the different
lengths of codewords require bit stream encoding, which may take more CPU load than
the Rice code generation itself. On the other hand, the size of the codeword quickly
runs away for small parameters m. Assuming a maximum codeword length of 32 bits,
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n m = 1 m = 2 m = 3 m = 8 m = 14 m = 256

0 0 00 00 0000 0000 000000000
1 10 01 010 0001 0001 000000001
2 110 100 011 0010 00100 000000010
3 1110 101 100 0011 00101 000000011
4 11110 1100 1010 0100 00110 000000100
5 111110 1101 1011 0101 00111 000000101
6 1111110 11100 1100 0110 01000 000000110
7 11111110 11101 11010 0111 01001 000000111
8 111111110 111100 11011 10000 01010 000001000
9 1111111110 111101 11100 10001 01011 000001001
10 ... 1111100 111010 10010 01100 000001010
11 1111101 111011 10011 01101 000001011
12 11111100 111100 10100 01110 000001100
13 11111101 1111010 10101 01111 000001101
14 111111100 1111011 10110 10000 000001110
15 111111101 1111100 10111 10001 000001111
16 1111111100 11111010 110000 100100 000010000
17 1111111101 11111011 110001 100101 000010001
18 ... 11111100 110010 100110 000010010
19 111111010 110011 100111 000010011
20 111111011 110100 101000 000010100
21 111111100 110101 101001 000010101
22 1111111010 110110 101010 000010110
23 1111111011 110111 101011 000010111
24 1111111100 1110000 101100 000011000

Table 3.1: Golomb codes for several parameters m. For example, the Golomb code of parameter m = 3
for the number 8 is 11011.

only 31 different symbols can be encoded with the unary code, 62 for m = 2, 91 for
m = 3, 232 for m = 8, 394 for m = 14, 6144 for m = 256. To cover the 16-bit range
of values with a Rice code, a parameter m = 4096 would be required, leading to 12-bit
words in the first group. One way to deal with that is to choose an escape code from the
codebook, signalling that the next value shall be interpreted as a 16-bit raw value. In
that way we can deal with statistical outliers without the need for a compromise in the
m parameter. At last, remember that Golomb and Rice codes require a decorrelated
positive integer input sequence, a requirement that no other algorithm in this chapter
has, although in general it can be profitable for all.

In 1997 the CCSDS adopted a modified Rice code with an extension to low-entropyCCSDS

data as lossless compression standard for space applications [CCS97, CCS06]. The
recommended e Rice algorithm encodes blocks of 16 samples with different encoding
options and selects the shortest one afterwards. This makes it sort of an adaptive
entropy coder, but in a rather crude way. It is worth mentioning that larger symbols
with low entropy are treated with symbol splitting.

Golomb and Rice codes have passed their zenith and the niche that is left now is
when a very CPU efficient implementation is needed. Instead of going after the e Rice
standard I recommend to carefully adapt your own Golomb code to the instrument
data. In Chapter 6 such an approach is made for a potential compression system for
the SPICA/SAFARI instrument.
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Figure 3.2: How arithmetic coding works. The important thing is to understand the cumulative proba-
bility table and how it is iteratively applied to the subintervals after every symbol. If the sin-
gle probabilities p are successively added together, the table of cumulative probabilities cp is
achieved. Note that the p need not be sorted. The interval borders of the symbol to encode
are selected to be again subdivided by intervals projecting the cumulative frequencies. This
process continues until all symbols are encoded. In our example, the string “SETI” is repre-
sented by any number between 0.27901 and 0.28109.

Arithmetic Coding

Generally, variable length codes share the problem that a symbol with a fractional
entropy is encoded in an integer number of bits. By that the compression has an
average inherent inefficiency of half a bit per symbol. One countermeasure is to combine
symbols, but then the code table is becoming increasingly complex. The final solution
to this was provided by a different approach in 1987 [Wit87]. In arithmetic coding,
the exact sequence of the symbols is expressed by means of a fractional number. Once
more, the starting point is a frequency table, but at least it does not have to be sorted as
in Huffman coding. The symbol probabilities are added up in a cumulative probability
table such that the total sum of probabilities give 1. We could now express a symbol
by giving a fractional number falling into one of the probability intervals. Then the
interval corresponding to the current input symbol is selected as the new range and
the pile of probabilities is scaled into this interval to go on with the next symbol etc.
In the end, the fractional number will be increasingly long, but only as long as to
identify the last interval. Figure 3.2 shows how a string is encoded by a fractional
number. An implementation of this algorithm must of course solve the problem that
the encoded fractional number quickly grows out of the data type’s precision. Thus, a
renormalisation step has to be included from time to time.

The decoding procedure works very much the same way as the encoding process.
The encoded fractional number is compared with the nested intervals until the original
string is reconstructed. The statistical model of the data is very well separated from
the encoding process itself. This allows to develop models that are specifically trimmed
towards the dataset. As with Huffman codes, the frequency table can also be updated
after every symbol to obtain a fully adaptive model. One consequence is that the cumu-
lative frequency table has to be recomputed, but efficient algorithms based on balanced
binary trees as described in [Sal07] have been developed to lower the computational
complexity.
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The CPU intense part of arithmetic coding is to calculate the new interval borders.Range Coding

In [Mof98] a number of improved variants were presented that work with lower hard-
ware requirements and in [Sch98] range coding, employing further optimisations on the
output encoder, is described. A full implementation of arithmetic compression can be
found e.g. in [Str05].

Arithmetic compression is optimal, it encodes a decorrelated dataset down to the
entropy limit. If the data model (the cumulative frequency table) is not an exact match
to the actual statistics, the compression performance is not much reduced. Unsurpris-
ingly, arithmetic compression works as the backbone in the most efficient compression
schemes to encode transform coefficients as in JPEG2000 or compression tokens as the
ones produced by dictionary based techniques.

3 Dictionary Based Techniques

In correlated datasets combinations of symbols may occur frequently like words in a
piece of text do. It seems plausible that if recurring patterns are present, compression
can be achieved by replacing the repeated patterns with shorter references. Such a
compression strategy consists of two steps, to construct a dictionary where the patterns
are kept during compression from the input and to make use of it to encode the patterns
as tokens. Applications exist, where such a dictionary can be static, but the true
potential of this family of algorithms lies within the adaptive dictionary. Most dictionary
based algorithms can be divided into two families that stem from two papers of Lempel
and Ziv in 1977 [Ziv77] (the LZ77-family) and 1978 [Ziv78] (the LZ78-family).

LZ77

In LZ77, a buffer window consisting of a look-ahead buffer and a sliding window is
scrolled over the symbols and matches of strings between the two are encoded as phrase
tokens. The sliding window functions as the dictionary and the longest match that is
found is encoded by the position and length of the substring in the sliding window.
This is a bit hard to explain, but with the help of Figure 3.3 you will understand the
mechanism. First, symbols are loaded into the look-ahead buffer until it is full. So far
the dictionary is empty and thus no match can be found. A single unmatched symbol is
encoded by a symbol token, which is the symbol itself. To distinguish between symbol
and phrase token, an extra bit – a prefix – needs to be attached to the token. The
optimal size of a phrase token depends on the size of the sliding window as well as on
the look-ahead buffer, which are typically around 4096 symbols (so we need 12 bits to
encode the offset) for the sliding window and 32 symbols (5 bits) for the look-ahead
buffer. In this partitioning a symbol token is 9 bits (1 for the prefix and 8 for the
symbol) and a phrase token 26 bits (1+12+5+8 for the unmatched next symbol). By
including the next unmatched symbol in the token one prefix bit is saved. In another
variant of LZ77 unmatched symbols are also encoded in phrase tokens with a length
parameter of 0. This way the prefix can be spared. After encoding the whole buffer
is scrolled by the number of symbols that were encoded and the search for the longest
match is again started at the first symbol in the look-ahead buffer.
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À The input string is partly loaded into the look-ahead buffer and the sliding window is empty.

sliding window look-ahead buffer

0 1 2 3 4 5 6 7 8 9

S E T I – Y E T – N O – Y E T I

Á No match for S is found, so it is encoded to output and slided into the window.

OUTPUT: S

0 1 2 3 4 5 6 7 8 9

S E T I – Y E T – N O – Y E T I

Â Same story for the next five symbols.

OUTPUT: SETI–Y

0 1 2 3 4 5 6 7 8 9

S E T I – Y E T – N O – Y E T I

Ã ET has a match, encode the index of the match and its length and the next symbol, then shift.

OUTPUT: SETI–Y[5,2,–]

0 1 2 3 4 5 6 7 8 9

S E T I – Y E T – N O – Y E T I

Ä N and O have no match, so they are individually encoded.

OUTPUT: SETI–Y[5,2,–]NO

0 1 2 3 4 5 6 7 8 9

S E T I – Y E T – N O – Y E T I

Å –YET has a match, so encode it and terminate with next symbol I.

OUTPUT: SETI–Y[5,2,–]NO[3,4,I]

Figure 3.3: How LZ77 works. Sliding window and look-ahead buffer are scrolled over the input symbols.
Matches are encoded by phrase tokens which are compound of offset, length and the next
unmatched symbol.

A modified version of LZ77 is Deflate, which is actually the most widespread com- Deflate

pression algorithm today. It is part of the zlib compression library, the core of the file
formats ZIP, GZIP, PNG, Postscript and PDF. Its main modification is that it looks
up Huffman codes for the offset and length parameter pairs in the tokens. A good
description with further references can be found in [Sal07].

In everyday life, dictionary-based methods are preferred over statistical methods on Performance on
Science Datadatasets like a typical computer user’s files. However, their compression performance

depends on recurring patterns, but how likely are recurring patterns in white noise?
Obviously, this depends on the noise amplitude, and we can also say that larger buffers
have a better chance of finding a match. The probability of a match can be calculated
in a similar way as we did this for run lengths above, thus it follows a geometric
distribution. In Figure 3.4 I show the result of a practical experiment with Deflate,
where the compression performance of 4 bit noise is shown as a function of data amount.
We see that it follows the cumulative distribution function of the geometric distribution,
but it never reaches the entropy limit because of the encoding overheads of the tokens.
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Figure 3.4: Performance of Deflate on noise. (Left) Datasets with different lengths containing 4 bits
of uniform noise (red line) and Gaussian noise (blue), encoded in 8 bit, have been compressed
with Deflate. The compression ratio achieved depends on the length of the dataset. The noise
is uncorrelated, thus the best factor to achieve is 2. Deflate needs a certain amount of data
to achieve any compression at all and even if enough data are available, it stays quite away
from the entropy limit. (Right) The same datasets were correlated by sorting the values. The
algorithm now well exceeds the entropy limit for large datasets. However, again enough data
must be available to have efficient performance. The inset shows the interesting correlation
coefficients for a sorted Gaussian noise dataset with a length of 64. ρ=0.5 lies between 3 and
4, which is the average size of a run length in the dataset.

Contrariwise a correlated structured dataset can be compressed far better than the
entropy limit would suggest, but in the presence of noise this advantage is quickly
nullified. For this reason it’s much better to go for a statistical method in combination
with a preprocessing or decorrelation step for science data.

4 Context Based Compression

In context-based compression, the statistical properties are not known beforehand,
but estimated from the data themselves and the already encoded data are used to pro-
vide more efficient compression. This is done by looking at the context – the neighbour-
hood – in which a symbol occurs. In the course of compression several such contexts are
established and every symbol is looked up in them to encode it in the proper context. A
number of algorithms follow this strategy, such as PPM (Prediction with Partial Match)
[Cle84],1 which is used e.g. by RAR [Sal07] and other schemes. I will not explain this
one here, but an even more astonishing context-based algorithm, which is the relevant
part in bzip2 [Sal07].2

Burrows Wheeler Transform

The BWT [Bur94] is not conceivable as a mathematical transform, it does not
manipulate the symbol values, it merely rearranges them. It is also referred to as block

1 The astronomer might mix this acronym with the Piecewise Parabolic Method which is a popular
extrapolation for hydrodynamic calculations.

2 bzip2 uses BWT and MTF followed by Huffman coding.
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3.4. Context Based Compression

sorting , which is a somewhat more suitable designation. Originally published in 1994
[Bur94], block sorting is one of the newer concepts in data compression and it is used in
the popular bzip2 software as well as in szip [Sch97]. Sorting itself does not compress
anything, it removes the structure of the data, yet the entropy stays the same. But a
sorted dataset has run lengths and is thus compressible with basic techniques. However,
to reconstruct the original data from a sorted dataset we also need the original index
of each symbol. The BWT makes use of dependencies between successive symbols to
obtain an almost sorted order from which reconstruction is possible with only a single
index value. This sounds like magic and I really wonder how Burrows and Wheeler
figured it out, but here is how it works. Note that the entire dataset needs to be
available to the algorithm.

Let S be a string of n symbols. We form an n×n matrix M whose rows are the cyclic
shifts to the left. In the next step the rows of the matrix are sorted in the usual way,
where two rows with the same start are ranked according to the remaining symbols.
The BWT is then the last column L of the sorted matrix, plus the index of the row that
now contains the original string S. To get a better understanding of it look at Figure 3.5
and concentrate on L, where the preceding symbols to the sorted ones are found. If the
symbols of S are not completely independent, then L contains some run lengths. Just
imagine some text that contains frequent combinations such as ch, where the letter h
is preferably preceded by c. In the BWT this combination would sort the h in the first
line of M and thereby concentrate the c in L.

À The matrix M with the input
string S cyclically shifted to the left.

S ET I –YET –NO–YET I
ET I –YET –NO–YET I S
T I –YET –NO–YET I S E
I –YET –NO–YET I S ET
–YET –NO–YET I S ET I
YET –NO–YET I S ET I –
ET –NO–YET I S ET I –Y
T –NO–YET I S ET I –YE
–NO–YET I S ET I –YET
NO–YET I S ET I –YET –
O–YET I S ET I –YET –N
–YET I S ET I –YET –NO
YET I S ET I –YET –NO–
ET I S ET I –YET –NO–Y
T I S ET I –YET –NO–YE
I S ET I –YET –NO–YET

Á M sorted and L highlighted, the
index where S is found is 10.

–NO–YET I S ET I –YET
–YET –NO–YET I S ET I
–YET I S ET I –YET –NO
ET –NO–YET I S ET I –Y
ET I –YET –NO–YET I S
ET I S ET I –YET –NO–Y
I –YET –NO–YET I S ET
I S ET I –YET –NO–YET
NO–YET I S ET I –YET –
O–YET I S ET I –YET –N
S ET I –YET –NO–YET I
T –NO–YET I S ET I –YE
T I –YET –NO–YET I S E
T I S ET I –YET –NO–YE
YET –NO–YET I S ET I –
YET I S ET I –YET –NO–

F L

Â Reconstruction

0 – T 8
1 – I 14
2 – O 15
3 E Y 11
4 E S 12
5 E Y 13
6 I T 1
7 I T 10
8 N – 9
9 O N 2
10 S I 4
11 T E 0
12 T E 6
13 T E 7
14 Y – 3
15 Y – 5

i F L t

Figure 3.5: BWT in action. The input string S=”SETI–YET–NO–YETI” is transformed to the string L=
“TIOYSYTT–NIEEE––” and the index 10. L contains runs of identical symbols and is thus
easier to compress.

As already mentioned before, the BWT is only a preprocessing, it actually does not
compress. In their original paper from 1994 [Bur94], the authors propose a move-to-
front algorithm with Huffman or arithmetic coding. szip for example, uses a range coder
[Sch98]. Depending on the data even RLE works well, but also a simple decorrelation
or predictor with an entropy coder can lead to good results. The good thing is that
even in the worst case of noisy data it does not worsen the situation. The BWT
has computational complexity similar to dictionary-based compression methods, but
achieves better compression. Its efficiency increases with n, but it needs to be taken
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into account that the memory requirements increase with n2 due to the sorting. This
is strongly speaking against its use for on-board processing.

Reconstruction is a little bit more tricky, but Figure 3.5 should give the necessaryReconstruction

support. We only have available L and the start index. The first step is to reconstruct
F by sorting L. After that the mapping t is constructed. It contains the indices where
each symbol of F is located in L. Two guidelines must be followed for reconstruction:
always start at the top and do not consider already looked-up indices. Remember that
the symbols in L cyclically precede the symbols in F, so starting at the correct index i

we use the vector t to get the predecessor of each symbol. Output the symbol in F at
i, update i from t and repeat until S is complete.

Now that we know how BWT works we can also tell that the efficiency of it depends
on AC(1). In case of white noise it is of course useless and as it only depends on AC(1)
and does not make use of other lags it is not a good decorrelation as well. So the verdict
for science data is: if it doesn’t help it doesn’t do much wrong, except that it uses a lot
of resources, especially memory.

5 Compression of Floats

I have added this section for two reasons: astronomical data are sometimes of a
floating point data type and there seems to exist no satisfying lossless compression
algorithm for floating point data. It is well conceivable because of the way that fractional
numbers are represented in the float data type, these data are very hard to compress,
as two similar numbers have very different binary representations. For example, the
numbers 1.233 and 1.234 differ in 4 bits. A floating-point number according to IEEE
754 [IEE87] is made up of 1 sign bit S, E = 8 bits for the exponent and M = 23 bits
for the mantissa, with a radix of 2. The exponent is biased with B = 2E−1 − 1 = 127.
Thus, a number is represented by (−1)S(1 + M) · 2E−B . This is suboptimal, because
the same number can be represented in different ways, e.g. 16 can be 1 ·24, 2 ·23 or 8 ·21

etc. For this reason the numbers are usually normalised, i.e. the exponent is adjusted
to get a fraction starting with 1, which can then be omitted (thus the 1 + M term).
As a consequence, two numbers with the same magnitude will at least have a similar
exponent. This is the basis for simple techniques, such as bitwise subtraction or the
binary XOR-operation, followed by a binary arithmetic encoder. That way it is possible
to achieve a decorrelation that leads to about 30 percent compression.

More efficient methods are based on prediction or on decorrelating transforms as
discussed in [Gam04], where an extension to the JPEG2000 standard is presented.
Strategies for lossless compression of floats have recently been developed, especially in
lossless audio compression [Ghi04], but also in scientific applications [Lin06].

The good thing is that floats usually permit a certain degree of quantisation, as their
precision is not equal to the last digits anyway. If the values are not too far apart in
magnitude, they might be mapped to integer and then be compressed. Otherwise it is
necessary to transform the data before the mapping. Note that all transforms presented
in Chapter 2 can be used without modification for floats as well, but special attention
must be paid to special floating point values like infinities and NaNs.1

1 In float, infinity is represented by E=255 with M =0 and not a number (NaN) is E =255, M 6=0.
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Software

D uring the years 1997–2008 the reduction and compression software for PACS was
developed under the lead of our institute, with partners from the Technical Uni-

versity and Joanneum Research. Several publications were written during this time
[Bis00, Ker00, Ott02a, Ott02b, Rei04, Ott04b, Bel05, Ott05, Ott08]. Part of the chal-
lenge was to develop a reduction system for a detector whose actual performance was to
be known several years later in the future. It was somehow not a big surprise that the
flight model (FM) generation of detector hardware for PACS gave rise to adaptation of
the already qualified flight software. In this and the following chapter the FM reduction
and compression system that I developed for the PACS flight model during 2006–2008
is described in detail.

Time is the fire in which we burn.
—Delmore Schwartz, ”Calmly We Walk Through This April’s Day”, 1937

I start with a brief explanation of the PACS instrument and draw an outline of
the problem with the available data rate. After that, an analysis of FM test data of
the bolometer is given and the derived on-board data processing steps are discussed.
Chapter 5 describes how the processing chain has been established for the spectrometer
and contains sections with implementation details for both detector types, especially
concerning the back-end encoder.

With the knowledge obtained in the previous chapters it should be possible to follow
the described processing steps hereafter, understand why they were implemented and
also see where further improvements could be made. Keep in mind that the key in
developing on-board software algorithms is to trade the limited hardware resources for
scientific information content.

1 Herschel/PACS in a Nutshell

ESA’s Herschel Space Observatory was successfully launched on May 14th, 2009
with an Ariane V ECA and – being the biggest space telescope ever built – is now
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The chapter is divided into the following sections:
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about to explore the far-infrared universe with unprecedented sensitivity [Pil08]. Three
instruments are carried on board the satellite, HIFI for frequencies ranging from 480–
1910 GHz [Gra09], SPIRE for wavelengths between 200 and 670 micron [Gri08] and
PACS for the 55–210 micron range [Pog06]. PACS is built by a European consortium
led by the Max Planck Institut für Extraterrestrische Physik in Garching. It is actually
a two-in-one instrument with four independent detector arrays, offering two basic and
mutually exclusive observing modes:

Imaging photometry over a field of view of 1.75×3.5 arcmin2, with full sampling
of the telescope point spread function. Two independent bolometer arrays are
used and the bands are 60–85 µm or 85–130 µm for what we call the blue channel
as well as 130–210 µm for the red channel.

Integral-field spectroscopy between 55 and 210 µm with a spectral resolution of
R∼940–5500 (55–320 km/s) and an instantaneous 16 pixel coverage of ∼1500
km/s, over a 47×47 arcsec2 field of view using two Ge:Ga photoconductor arrays.

As soon as data from first ground tests of the FM detectors were available, it becameFrom QM to FM

clear that the on-board compression software of the qualification model was unfit for
the kind of data and that new schemes had to be developed as quickly as possible
for the upcoming test campaigns. The biggest problem was that both the bolometer
data as well as the spectrometer data were so different to earlier models resulting in
by far too high data rates at full CPU load. The main reason for this was that the
implemented back-end compression using BWT and a range coder (pacs codec, based on
szip) [Bel04] had been a bad decision for the noisy data and the decorrelation stage lost
too much efficiency concentrating on spatial redundancies. Although the new reduction
and compression schemes are still not optimal, up to ∼20 percent above the entropy
limit, they are a big step into the right direction making the best of the available
hardware.
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The first key element in the evolution from QM to FM was to concentrate on tem-
poral instead of spatial redundancies. Analysis of the FM datasets showed that the best
predictor for a pixel readout is its previous readout and not the neighbouring pixels.
Thus decorrelation of the pixel readouts instead of the frames is the best strategy to
deal with the main signal component of a frame, which is for both detector types the
bias. Ingredient number two was to include an additional quantisation step – rounding,
as presented in Section 1.6 – to deal with the fact that the noise is actually oversampled,
depending on the gain used. The third important change was to implement an entropy
coder which also considers large values, such as values produced by chopper transitions
and glitches. The modular concept still allows for upgrades during flight to respond to
unforeseen matters and to increase performance.

PACS Raw Data Dilemma

PACS with its novel bolometer arrays for photometry and the two Ge:Ga spectrom-
eter arrays has by far the largest number of pixels of the Herschel payload and also
yields the highest data rates. In photometry, the array for the shorter wavelengths has
2048 pixels, whereas the array for the red end has 512 pixels. Both are read at 40 Hz
with 16 bit precision. This leads to a raw science data rate of 1600 kibit/s.1 In addition
to that, a header consisting of sixteen 32-bit parameters is attached to each science
data frame for each array, adding another 40 kibit/s.

In spectroscopy, the two matrices are made up of 25 stacks of 18 pixels for each of
the two arrays and they are read non-destructively at 256 Hz with 16 bits precision,
producing ramps of normally 1/4 second length. An additional electrical column of
18 pixels is added, so the total output yields 3744 kibit/s. We also have 16 header
parameters in spectroscopy, yielding 256 kibit/s. The problem with these data rates
is that operational and power budget constraints severely limit communication with
Herschel and result in an allowed sustainable data rate of 120 kibit/s.2 This is typically
16 times smaller than the raw science output of the PACS photometer and up to 40
for the spectrometer. Note that even the raw header data from one single spectrometer
would already be too much for transmission! For this reason, a signal processing subunit
had to be included in the warm electronics of PACS which performs on-board reduction
and compression of the science data. Section 2 below describes the lossy and lossless
steps involved in photometry and Chapter 5 has all the details for spectroscopy as well
as the back-end encoder that is used for both kinds of data.

On-Board Resources

PACS is a highly computerised instrument, essentially containing four independent
computers, partially backed up by redundant units. Two of them are found inside the
Signal Processing Unit (SPU), which is where the reduction and compression software
is implemented. What all computers have in common is that they are equipped with
an 18-MHz ADI 21020 Digital Signal Processor (DSP) and an SMCS 332 chip for com-
munication. The detector arrays are read by the Detector and Mechanism Controller

1 Binary prefix: 1 kibit = 1024 bits, SI prefix: 1 kbit = 1000 bits.
2 Daily ground contact with the New Norcia Station is limited to 2 hours per 24 hours with a data

rate of 1.5 Mbit/s. Taking the factor (24− 2)/2 into account as well as protocol and housekeeping
(diagnostic values) overheads leads to the 120 kibit/s of sustainable science data rate.
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Figure 4.1: Data flow inside the PACS warm electronics. From left to right: either the bolometer arrays
or the Ge:Ga arrays are used at a time, depending on the mode of observation. Their data are
read by the DMC, which structures them into data frames. Then reduction and compression
is done by the SPU units, where a compressed data stream is produced and sliced into packets
that get wrapped by the DPU to become standard telemetry packets. Aside from the nominal
science data flow, each subunit is obliged to send housekeeping at intervals of ∼2 seconds.

(DMC) built by Centre Spatial de Liège. The data are structured into frames, attached
with a header consisting of 16 32-bit words and sent to the two SPUs, one for the red
and one for the blue channel. This header has parameters to identify the observation
and information about the instrument setup. Among them is also the compression mode
that should be used by the SPU. The SPU reduces and compresses the data according
to the data type, compression mode and the contents of on-board parameter tables,
which are loaded during instrument set-up. More details about this can be found in
the aforementioned publications, especially in [Ott04b, Ott08]. The SPU software is
what was contributed by the University of Vienna1 and the SPU hardware was built
by CRISA who were contracted by the Instituto de Astrof́ısica de Canarias. Each SPU
has 4 MiB of data RAM and 3 MiB of program memory. This means that only a few
seconds of raw data can be buffered. After the data have been processed in the SPU
units they are shipped in packets to the Data Processing Unit (DPU), which has an
interface to the spacecraft and also acts as the instrument command centre. The DPU
hardware is built by Carlo Gavazzi under Istituto di Fisica dello Spazio Interplanetario
(IFSI) contract and the DPU Software is also contributed by IFSI.

Figure 4.1 shows the four on-board computers that are involved in nominal data
flow inside PACS. Regardless whether the instrument is operating in photometry or in
spectroscopy, the data flow of the red and the blue arrays goes separate ways through
dedicated DMC and SPU units. Only the DPU, where everything comes together
before storage in the solid state mass memory of the spacecraft, handles both channels.
This warm electronics chain is backed up by a redundant counterpart, in case that the
hardware of a nominal unit becomes damaged in any way.

1 Our partners were the TU Vienna and Joanneum Research in Graz. For credits see the epilogue.
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2 Photometry with the FM Bolometers

When PACS is operated as a photometer, the two bolometer arrays are in use [Bil06].
The many-stage readout electronics of the bolometers allow for different bias and gain
adjustments, but most importantly, the gain applied at the warm electronics control
box determines the magnitude of both, signal and noise. Just think of your stereo – if
you increase the volume you also amplify the noise. In PACS we either set a low gain
for observing bright sources or high gain to maximise the sensitivity. As this has an
impact on the dynamic range the bias needs to be adjusted to the gain as well. Different
ways of reading the detector elements are also available, leading to varying output data
types that are essentially distinguished whether they are signed or unsigned.

The photometers can be seen as movie cameras and the generated data are thus Bolometer Data

easily understandable. However, in practice the detector technology has some proper-
ties that prohibit the use of popular movie compression schemes, such as the MPEG
standards. First of all, we are talking about science data and thus we have noise that
must not be discarded. In the FM we will see that the readout noise can vary between
3 and 8 bits at signal levels between typically 20000 and 60000 ADU. Figure 4.2 gives
you a preview of a characteristic data frame from the blue array. Above all, its look
is dominated by the bias pattern. Even after bias subtraction, the variation between
neighbouring pixels is still bigger than the readout noise owing to varying sensitivity.
Therefore we can quickly guess that it is better to concentrate on the temporal re-
dundancies rather than on cosmetic aspects within the frame, an assumption that will
be substantiated on the next pages. The plots in Figure 4.3 show how a pixel signal
typically looks like. The drift is in part due to 1/f noise and in part to instrumental
effects. Histograms of the noise reveal its Gaussian nature and facilitate estimates for
entropy encoding. You are now invited to speculate about what kind of processing or
combination of operations will reduce the size of the data by a factor 16 yet retain as
much information as possible. There are many strategies that will work for now, but
be warned – most of them fail as soon as the chopper comes into play. Now let’s go on
for a more detailed analysis.

Hello Roland,

According to our French colleagues, the following data are
representative for flight and should therefore be compressed
within the allocated bandwidth:

Day 20070331: File = FILT Phot spu datarate 20070331 01.tm

Best regards,
Helmut

—email received on the 9th of April in 2007
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Figure 4.2: Appearance of a single frame from the blue bolometer array. A single frame is dominated
by the bias pattern. Even a strong point source is not easy to spot without background sub-
traction. Different sub-matrices that constitute the full array are easily distinguishable. The
level of brightness maps the 16-bit range to black=0 and white=65535. Clearly visible is a line
of dead pixels on the right side. In total there are ∼25 dead pixels, which is slightly more than
one percent.
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Figure 4.3: Typical signal for a single bolometer pixel. The data shown correspond to 51 seconds of
data. Below is the noise histogram (not the histogram of the data), fitted with a Gaussian
distribution of the same variance. The entropy for this pixel is 4.56 bits/sample.
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3 Analysis of the Data

Representative test data are vital in the design of a tailored data processing system.
These were not available before 2007 to us and so any reduction and compression
that we had implemented before was finally put to the test when the data arrived.
Unsurprisingly, we quickly figured out that major modifications had to be made.

The file FILT Phot spu datarate 20070331 01.tm is the result of a test that was The Flightdata file

made through a generic test observation procedure. Its data are said to be what we
expected at that time to have in space, but the data rate is between 140 and 190 kibit/s,
which is too high above the aimed bandwidth. The file contains 736 compressed entities1

for the blue channel and 185 for the red one. Decompression provides 22058 blue reduced
frames (averages of 4 raw frames) and 22086 reduced frames from the red array. For
each array 3 rotating pixels of additional raw data are also available.

The SPU data reduction was performed in the default compression mode2 with the
so-called velvet FM compression scheme, which is already adapted to the FM data as
described in Section 4, yet the data rate is still too high. In this chapter I will show
why this is the case, come up with ideas about what can be done better and what the
finally implemented solution is. The analysis concentrates on the blue channel only,
since it contributes 4/5 of the data rate. Figure 4.4 displays the accurate numbers of
the compressed science data and reveals the 6 sections of different instrument setup.

Ideally, the data rate should be around 120 kibit/s, which is the number you get Data Rate Limits

if you divide the DTCP downlink by the rest of the day, subtracting what is allocated
to housekeeping. This number however, cannot take into account the overheads in the
actual execution of the observation and so the limit is softer in practice, more likely
around 135 kibit/s. The instrument has also no problem to swallow a data rate of 185
kibit/s, but above that a different bus profile in the DPU-spacecraft communication
interface – burst mode – has to be used, otherwise there will be loss of data. In burst
mode data rates up to ∼300 kibit/s go through, but of course this cannot be a basis
for sustained data generation.3 Coming back to Figure 4.4, it’s okay if the data rate
exceeds 120 kibit/s as long as everything stays well below the blue horizontal line, which
is not the case here. Although only the blue channel was examined, the estimation of
the total size of both was made by multiplication with 1.25.

Just to see what the data look like, a pixel can be picked (in Figure 4.5 it’s three Typical Pixels

of them) to plot the signal for all the frames in the file. Comparing data rate and
signal (Figure 4.4 with Figure 4.5) reveals very good agreement of the 6 sections. One
can easily guess that sections À to Â and Ã to Å do the same thing (start staring
on chopper position A, then do the chopping, end on position B), but with different
detector settings. Basically, noise forms the biggest part of the data rate, but the signal
also contributes, as can be seen by comparing the sections Á and Ä (chopping) with
the other sections, where just staring is performed.

1 A compressed entity is composed of a few seconds of compressed headers and data. It reflects the
way the data are buffered and processed by the SPUs.

2 Four samples are averaged, all pixels are selected and the data type is a 16 bit unsigned short.
3 The numbers provided are rough estimates that I found during tests with the FS.
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medium and small numerical values. Note that the measurement lasts for ∼40 minutes.
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The first three sections also differ from the rest in another way. Obviously, some dark
pixels (see the blue line in Figure 4.5) are also brought into play with the different
bolometer settings (presumably the bias) and now have their share on the telemetry.
Even from the three pixels picked for Figure 4.5 (by the way, their location is marked in
Figure 4.6), some educated guesses can be made. First of all, the difference of the three
pixels mostly comes from the bias offset. Another thing is that a comparison of the
bright (red) and the medium (green) pixel on section Á shows that the readout value
is not a measure for sensitivity, because the green pixel responds stronger to the signal
than the red one (compare the dynamic on section Á). A few pages down the noise of
the staring sections will be studied, but for now let’s concentrate on the 2D image.

The Image

If neighbouring pixels tend to show pretty much the same signal, then this corre-
lation can be exploited during compression. Figure 4.6 shows frame 1 (this one is as
good as any one of the 22058 frames) of the dataset. One point to investigate now
is whether the spatial (2D image frame) or temporal (1D pixel signal) similarities are
bigger. Although by simply looking at the image one may conclude that a pixel does
not have too much in common with its neighbours, it could well be that at least their
sensitivity or even their noise is similar. The next frame in sequence (Figure 4.7 left) is
pretty much the same, which is what we expected because we are already aware of the
bias pattern. To see how big the similarity is, their difference is calculated and another
plot is made (Figure 4.7 right), still showing hardly any distinction in the 16-bit range
of values. Setting the cuts to the lowest 6 bits and redoing the plot for Figure 4.8 finally
reveals the noise. This range setting corresponds to an amplification of 1024.

With these images we want to answer whether a single value has more in common Space vs Time

with its neighbourhood or with its own previous values. To do so, a single difference
frame is not enough, but we need to create a noise map by averaging all difference
frames that belong to the same section and plotting the standard deviation. This is
of course a bit fishy, because as we know from Chapter 1, the σ will be overestimated
by a factor

√
2 in case the noise is uncorrelated. The problem of detector drift is also

not sufficiently treated that way.1 The results for two sections are shown in Figure 4.9
and 4.10. So, on average we would have to decorrelate and encode such an image if we
decided to concentrate on the spatial redundancies. I guess your already trained eye
has some justified concerns about this idea.

Spatial Redundancies in the 2D Signal

It’s time to find out if there is a systematic signal left in a difference frame. For
that purpose a plot of the difference image data seen as a 1D signal is made. For the
support of interpretation, we will use autocorrelation and the modulus of the Fourier
transform. In a dataset of uncorrelated noise we will only find a Dirac impulse at 0
lag and some grass at other lags in the AC. Note that in the modulus plot the half
amplitude is given.

1 One of my favourite ways to correct a drift for determining the noise is to subtract a few low-pass
scales of the à trous wavelet transform [Hol89]. In this case a varying background is taken out
leaving the higher frequency noise untouched.
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Blue Frame #1 (of 22058) from the "Flightdata" File. [0...black, 65535...white]
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Figure 4.6: A single frame. This plot shows frame 1 of the reduced data with indicators of the three
pixels from Figure 4.5. Black and white linearly span the 16 bit range of values.
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Figure 4.7: The next frame. (Left) Here is frame 2 seen as an image. The difference to frame 1 is
hardly recognisable. (Right) The difference between frame 1 and 2. Still, a challenge to see...

Difference between Frames 1 and 2 from the "Flightdata" File. [-32...black, 32...white]
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Figure 4.8: Difference frame with different cuts. Adjusting the brightness reveals a noise pattern.
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Noise map for section À [σ = 0...black, 31...white]
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Figure 4.9: Noise map for section À. The mean σ = 8.483 in the plot becomes 5.998 if corrected by
√

2.
Note that the “dark” pixels neither have a signal nor any noise.

Noise map for section Ã [σ = 0...black, 31...white]
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Figure 4.10: Noise map for section Ã. It doesn’t look much like the map for the first section, because of
the different bias settings. σ = 11.003 (the corrected value is 7.780). The previously dark

pixels that are brought to life by the different detector settings can now be identified, but the
cost for this is that the noise has also increased quite a lot.
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Figure 4.11 shows the difference frame if it was read from left to right and from
top to bottom. A close look makes us spot the 16 dead pixels with zero signal right
in the middle of the plot. The autocorrelation shows what was expected: there is no
redundancy in these data. The modulus has a peak at a period of 8 pixels, which is by
far too weak to attract any attention.

However, there is a problem with this plot. Reading the image from left to rightOrder and Colour

and from top to bottom is not what the bolometer output looks like. The detectors
are simply not read that way and the SPU does not get the data ordered like that, but
in a more complicated way. Essentially the eight sub-matrices are read in a fancy way
to be compatible with the three ways of Saclay’s fuzzy logic [Sau09]. Figure 4.12 is the
same plot made for the same data, but in the order the SPU gets them. Even here,
there is more or less the same story to tell: no signal, no redundancies, just noise of
approximately white colour. The missing piece to be inserted now is the histogram.

Entropy of a Noise Frame

Fortunately, the histogram does not depend on the reading order. A quick look at it
(Figure 4.13) is enough to suspect a Gaussian-like distribution. A comparison with the
calculated µ and σ shows acceptable agreement. For an estimate of the compression of
these data we determine the entropy as explained in Section 1.2.

We remember the data will be encoded down to the entropy limit if they are un-
correlated (otherwise the limit can be beaten!) and there are no overheads in the
symbol/probability encoding. Ideally, we will use arithmetic coding to achieve this, but
if we have to use fixed Golomb or Huffman codes, then the compression will perform
very likely around HS +0.5 for each symbol to be encoded. It is trivial now to calculate
the entropy for the difference frame, which is H = 9203.29 bits (HS = 4.494 bits per
sample).1 Remember that of all the methods presented in Chapter 2 differentiation was
simple yet quite effective. In this spirit we can use the obtained H to estimate what a
compression consisting of frame differentiation and entropy encoding would achieve.

Encoding a 3-second buffer of such data by leaving the first frame untouched andA First
Encoding Attempt generating difference frames of the remaining 29 averaged frames would result in 2048×16

bits (for the first frame) + 29×9203.29 bits (for the difference frames) = 299663.41 bits.
In 1 second, that would be slightly less than 100 kbits for the blue channel only. Adding
the red channel adds up to ∼125 kbit/s. Considering the increased symbol entropy due
to a fixed codeword size yields ∼140 kbit/s. These numbers can be compared with the
data rate that has actually been achieved. In Figure 4.4 it’s ∼140 kibit/s (red+blue)
for the first unnumbered short section, which is the one we drew our data for this cal-
culation from. This leads to the assumption that the actual encoding has an overhead
of half a bit per symbol, although it uses arithmetic compression. Further down it will
be shown that most of this comes from an additional step in the decorrelation stage
which is needed for chopped observations and the encoding is performing slightly above
the entropy limit due to some trade-offs that had to be made.

1 Note that these data are already averaged frames, where four raw frames were reduced to one, so
the noise in the original data was even a factor

√
4 higher, but on the other hand we increased the

noise by
√

2 by the differencing, so originally, the noise is half a bit higher in the raw frames than
in the delta frames.
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Figure 4.11: The difference between frame 1 and frame 2 plotted as a 1D dataset in text reading order.
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Figure 4.12: The difference between frame 1 and frame 2 plotted as a signal in spu order.
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Figure 4.13: Histogram of the difference frame. A Gaussian error distribution curve with the derived
µ=0.442 and σ=5.712 is in good agreement (green line). The ticks on the x-axis have been
chosen to resemble a binary encoding. The second histogram has been mapped to positive:
a positive number a becomes b=2a and a negative number is mapped like b=−2a−1. This
is done because it is obligate to encode positive values in many algorithms. No, it does not
increase the entropy. The green line here is the mean number of elements on a binary digit.
The encircled numbers give the number of bits needed to encode a number from that bin.
Find out more in the text.

The Signal on the Sections

Now it’s time to concentrate on the temporal characteristics of the data. For each
of the signal plots, 2048 frames have been taken (for direct comparison with the spatial
analysis) from one of the sections. The first plots to be made with that are the bright
and the medium pixel on section À (see Figures 4.15 and 4.16). With this scale of the
ordinate quite a drift comes out of the staring data. The autocorrelation impressively
shows how much this drift dominates over anything else. Finally, the modulus shows
no serious periodicities.

Making a histogram out of these data to estimate the noise would be meaningless
because of the contained drift, unless the data are properly preprocessed. In this case I
decided to subtract the mean from the data on slices of 30 frames, which is three seconds
of averaged data,1 and by making a histogram out of that, which can be considered an
acceptable method because µ ≈ 0.

1 This is equivalent to the size of a compressed entity for the blue bolometer. Since the SPU has
only a few MB of memory and must process the data in pieces, 120 raw frames (3 seconds) are
buffered and processed to 30 reduced frames (averages). As a consequence, the SPU cannot see
redundancies over a longer time than 3 seconds. The red channel has less pixels and the respective
SPU can thus buffer 12 seconds of data.
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The derived histograms (Figures 4.17 and 4.18) show again a Gaussian noise distri-
bution. The bright pixel has a smaller σ and will need less bits to encode. The entropy
for the bright pixel is H = 4.246 bits per sample. The medium pixel has H = 4.596.
Here is another estimate of the data rate: 2048 (pixel) × (16 (the key frame) + 29
(frames) × 4.5) = 300032 bits (again ∼125 kbit/s for red+blue), which is a similar
number as in the spatial counterpart. However, this estimate does not take the signal
(the drift was eliminated by the slicing process) into account. Such a drift is easily
taken out of the data by calculating the differences between the frames and we know
that the uncorrelated high frequency noise is increased by a factor

√
2. This adds half

a bit per sample and the estimated data rate becomes more like ∼145 kbit/s. Taking a
fixed symbol entropy as a base for our calculation finally leads to ∼160 kbit/s. Again,
this can be compared with the data rate overview (Figure 4.4), where we see that the
data rate of section À is around 155 kbit/s for red and blue.

Figure 4.14: Polar bear measurements. On the 22nd of December in 2006, the last day of the FM-ILT

cold – part I tests of PACS, the consortium mascot Pacsi Bear was used to get a more
complex image onto the arrays. As a by-product of these measurements, the so-called bear

crosstalk was discovered. (Top left) The original design. (Top right) The fabricated aper-
ture that was moved with an external XY-stage in front of the cryo window. (Bottom) The
background-subtracted bear measurements of the blue array. Images provided by Albrecht
Poglitsch and Eckhard Sturm.
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Figure 4.15: The signal of the bright pixel on section À. Periods in the orange segment are not accessi-
ble by the SPU, because the data buffer is too small.
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Figure 4.16: The signal of the medium pixel on section À. The low frequency drift follows the same
trend as the bright pixel, which indicates that this is a systematic component of the signal.
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Figure 4.17: Histogram of the signal of the bright pixel on section À. σ = 4.624
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Figure 4.18: Histogram of the medium pixel on section À. σ = 5.926
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The Effect of Chopping

The data we have seen so far were made by staring at a certain source, such as one
of the two blackbodies inside PACS. But to account for the high background signal in
the observed wavelengths and to compensate instrumental effects, the standard way of
observing with the bolometer is to have a chop/nod pattern at a defined frequency, in
our case one half to several Hz, leading to sections of only a few raw samples on the
same chopper plateau. Although this creates a square wave like pattern in the data,
it is difficult to take advantage of during compression. The main reason for this is
that the chop rate is not in the frame header and therefore not directly known to the
compression software. What is in the header is the chopper position, a parameter that
is also affected by noise and thus not ideal for interpretation on board. Above all, the
on-board averaging is synchronised by a distinct header flag regardless of the chopper
position. Chopping is one of the main problems to consider in the design of a proper
decorrelation step.

Our two example pixels on section Á show the expected square pattern in Figures
4.19 and 4.20. We still see the drift and the readout noise in the data, but above all,
the chop signal now dominates. All the frequencies that compose the signal (on this
data window) are accessible to the SPU. The problem here is that the chopper signal
spans a range of 1600 ADU. Making differences does not help to get rid of that. It’s
even worse: the deltas vary between +1600 and −1600 now and this has to be encoded.
Within 30 averaged frames, 2–3 such transitions happen in this dataset, each one taking
more than just the 4.5 bits to encode. Mapping that to positive and allowing for values
between 0 and 4096 (212) adds 2.5 × 12 × 2048 = 61440 bits to the blue channel in 3
seconds, i.e. ∼ 25 kbit/s for red+blue. This can be compared with the actual data rate
(Figure 4.4): Section Á is 20 kibit/s higher (for red and blue) than section À.

Higher Bias/Gain Settings

The last question to be raised here is what makes the difference between section À

and Ã. The second plot (Figure 4.5) showed that some weak pixels now also contribute
to the data rate. But what about the noise? To answer that, the plots we are familiar
with (Figures 4.21 and 4.22) and histograms (Figures 4.23 and 4.24) for the bright and
the medium pixel are made. The entropy for the bright pixel is now HS = 4.275 bits
per sample and HS = 5.135 for the medium pixel. To put it in a nutshell, the higher σ
also leads to a higher entropy, which requires up to 0.5 bits per sample more to encode.
That is up to 0.5× 29× 2048 = 29696 bits (blue, 3s), which amounts to ∼ 12 kbit/s for
the red and the blue array. The actual data rate (Figure 4.4) shows an increase of 10
kibit/s as estimated for red and blue.
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Figure 4.19: The chopped signal of the bright pixel on section Á.
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Figure 4.20: The signal of the medium pixel on section Á.
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Figure 4.21: The signal of the bright pixel on section Ã.
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Figure 4.22: The signal of the medium pixel on section Ã.
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Figure 4.23: Histogram of the signal of the bright pixel on section Ã. σ = 4.711
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Figure 4.24: The signal of the medium pixel on section Ã. σ = 8.631
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4 The Devised Reduction Scheme

During summer 2006 I developed a new lossless compression scheme for photome-
try and gave it the code name velvet. After that I rewrote the reduction part to add
stochastic rounding (as described in Chapter 1) and optional decimation (frame drop-
ping). During observations in default compression mode 4 frames are averaged and
further processed by the velvet scheme, which will decorrelate and entropy code the
data. This section will now discuss the operations in detail.

At the core of data reduction stands averaging of 4 frames, which reduces the readout
noise by a factor of 2 (i.e. 1 bit), but the averages still span over the whole 16 bit range
and the noise varies from 3–7 bits, as was shown in the previous section. The next
step is to separate signal and noise, with signal comprising the bias offset including any
form of drift, the chopping pattern and the actual source signal. This is approached in
the decorrelation stage, which ought to produce a dataset as sparse as possible, with
more or less the readout noise remaining around zero. The particularities of the data
had to be considered in the design of the decorrelation, but with the limited processing
resources in mind. The easiest operation with yet great effect is a simple differentiation
of the data, with the side-effect of increasing uncorrelated noise by a factor of

√
2. In

terms of data rate, 1 bit of noise gives an overhead of 10 (averaged frames) × 2560 (red
and blue pixels) = 25 kibit/s. This can be avoided by key-framing or offsetting from an
average (or median) frame, but this is a hopeless attempt for data that are drifting and
even chopped. Several predictor/corrector algorithms ranging from a running average
to a full linear prediction of second order have been considered, but although there is
a benefit for staring data they offer no real solution for chopped data. Block-sorting
transforms exceeded the available CPU resources and orthonormal transforms were
regarded problematic due to the increase of the dynamic in the coefficients.

So a simple differentiation for each pixel was chosen, followed by reformatting the
data to an ordering allowing frames differentiation. These 2 differentiations increase
the noise by 1 bit, but their combination eliminates very well the signal redundancy,
any drift and even the chopping, with operations that all work in place and barely need
any processing power. The result is that only 5–10% of the decorrelated values exceed
an 8-bit range even for chopped observations, which is a good starting point for the
back-end encoder (described in Chapter 5).

Step by Step

The input data received from DMC are in what I call frame order, where pixels are
increased before frames in the dataset. Figure 4.25 has plots of the first 8192 samples.
Each successive processing step will now be described with plots of the intermediate
result. Two plots always go together, one for a staring observation and the other one
for an observation where chopping was performed. Note that every plot comes with a
magnified detail to the right. A given zoom factor applies to the ordinate (the y-axis).

The first processing step is to discard data from pixels that were deselected, but1: Reordering

normally the whole frame is kept and so we will omit this step here. After that, the
data are rearranged to what I call pixel order, where the samples of the same pixel are
grouped together. This is shown in Figure 4.26.
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Figure 4.25: Raw input data of a staring and a chopped observation. The frames of an observation
look much the same, whereas within a frame hardly any features span across several pixels. A
grey marked region is shown in the magnified detail plot. Not too much difference is visible
between the staring (top) and the chopped observation (bottom).

Listing 4.1: Pixelize

1 /*

2 Transforms a buffer where data are stored pixel by pixel

3 into a buffer where they are stored frame by frame.

5 SRC contains : p0f0 , p0f1 , p0f2 , ... p0fF , p1f0 , p1f1 , p1f2 , ...

6 DEST contains : p0f0 , p1f0 , p2f0 , ... pPf0 , p0f1 , p1f1 , ...

7 */

9 void Pixelize (int *src , int srcSizeInWords , int pixelsPerFrame ,

10 int *dest )

11 {

12 int i, j;

14 int nbFrames = roldiv(srcSizeInWords , pixelsPerFrame );

16 for (i=0; i < nbFrames ; i++)

17 {

18 for (j=0; j < pixelsPerFrame ; j++)

19 {

20 dest [j*nbFrames + i] = src[i*pixelsPerFrame + j];

21 }

22 }

24 return;

25 }

After reordering the averaging is done, but the averaging algorithms are imple- 2: Sign and
Averagemented for signed integer input, which is provided by the detectors if they are read in

the so-called double differential mode. The more frequently used direct mode provides
unsigned integer input, which needs to be mapped to the signed data type. This is done
by subtracting 0x8000 (in decimal: 32768) from each sample. This mapping and the
averaging are illustrated in Figure 4.27.
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Figure 4.26: Raw input data rearranged. The pattern that is visible is more or less the bias. In the mag-
nification to the right the readout noise is revealed. By comparing the staring (top) with the
chopped (bottom) dataset we find that the signal variation due to the chop is clearly visible,
especially in the magnification.
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Figure 4.27: The dataset signed and averaged. When inspecting the averages (indicated by red dots and
dashes) we observe that the noise is well reduced by this operation. The averaging process
needs to be synchronised with the data to avoid averaging over chopper transitions. In this
dataset the chopper moves so slowly that this is not an issue. The averaged data have to be
compressed in the next processing steps and then sent to ground.

The averaged data still need to be compressed, but what is the best way to do3: Differentiation

this? As we are dealing with noisy science data the recommended strategy is to go for
a combination of decorrelation and entropy coding. Note that the decorrelation step
will determine most of the compression efficiency. For various reasons I decided to use
differencing here. Differences are made between successive frames, but not across frame
transitions. Figure 4.28 shows the result of this operation and the code listing is also
given.
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Figure 4.28: The averages after differencing. Every pixel starts with a spike which is a remainder of the
bias, but the samples are already concentrated around zero. The magnification uncovers that
there are systematic differences between staring (top) and chopped data (bottom).

Listing 4.2: Delta step-wise

1 /*

2 Differentiate a ‘‘pixelized ’’ buffer from back to front ,

3 but not over pixel boundaries (every nbFrames).

4 */

6 void DeltaStepwise (int *buf , int bufSizeInWords , int nbFrames)

7 {

8 int i,j;

10 for (i=bufSizeInWords -1, j=1; i>0; i--)

11 {

12 if (j < nbFrames)

13 {

14 buf[i] = (buf[i] - buf[i-1]) &0 xffff;

15 buf[i] = buf[i] > 0x7fff ? buf[i] | 0xffff0000 : buf[i];

16 j++;

17 }

18 else j = 1;

19 }

21 return;

22 }

In the next step we bring back the data into frame order . As a result of the 4: Reordering

differentiation that was done before, the first frame is still the same, whereas the other
ones contain the residuals (see Figure 4.29). So far no correlation between pixels was
taken into account and a collective signal change – such as chopping – will affect whole
frames by large offsets. The signal variation by a chop is not the same for each pixel
because of the flatfield and the inhomogeneous signal itself, but a chopped frame will
no longer contain noise around zero, but noise around a value which is the mean signal
change across the frame. In the next step, we have to get rid of this.
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Figure 4.29: Data brought back to frame order. Apart from the first frame which contains the bias
the remaining ones are decorrelated. The chopped dataset (bottom) shows small systematic
offsets, e.g. ∼200 in the magnification.

Listing 4.3: Frameify

1 /*

2 Transforms a buffer where data is stored frame by frame

3 into a buffer where data is stored pixel by pixel.

5 SRC contains : p0f0 , p1f0 , p2f0 , ... pPf0 , p0f1 , p1f1 , ...

6 DEST contains : p0f0 , p0f1 , p0f2 , ... p0fF , p1f0 , p1f1 , p1f2 , ...

7 */

9 void Frameify (int *src , int srcSizeInWords , int pixelsPerFrame ,

10 int *dest )

11 {

12 int i, j;

14 int nbFrames = roldiv(srcSizeInWords , pixelsPerFrame );

16 for (i=0; i < pixelsPerFrame ; i++)

17 {

18 for (j=0; j < nbFrames ; j++)

19 {

20 dest [j*pixelsPerFrame + i] = src[i*nbFrames + j];

21 }

22 }

24 return;

25 }

In order to deal with the chopping a second differentiation across frame order is done.5: Differentiation

This step brings chopped frames back down to noise around zero, but also increases
uncorrelated noise by

√
2. A running average for decorrelation can do a slightly better

job, hardly being worth the extra effort. The result of the second differentiation is
plotted in Figure 4.30. The listing for the second differentiation goes over the whole
buffer and makes no pauses as the first one did.
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Figure 4.30: The dataset after the second differentiation. This operation is a countermeasure against
chopping, but at a relatively high cost. Single spikes become a ± spike pair and uncorrelated
noise is increased by half a bit.

Listing 4.4: Delta

1 /*

2 Differences are made in place , from bottom to top ,

3 with 16 bit sign extension . Works in place.

4 */

6 void _Delta (int *buf , int words)

7 {

8 int i;

10 for (i=words -1; i>0; i--)

11 {

12 buf[i] = (buf[i] - buf[i-1]) &0 xffff;

13 buf[i] = buf[i] > 0x7fff ? buf[i] | 0xffff0000 : buf[i];

14 }

16 return;

17 }

Before the data can be passed to the entropy coder, they need to be mapped to 6: Mapping

positive (shown in Figure 4.31). We see that our dataset consists of a turbulent first
frame, i.e. 2048 values that fall into a 16-bit range mainly due to the bias. There will
be hardly any compression done with these. But the remaining 29 reduced frames are
well concentrated in a 5-bit range and will be compressed by roughly a factor of 3. This
is best seen in Figures 4.32 and 4.33.

Listing 4.5: Map2pos

1 /*

2 This function transforms signed data to unsigned data by folding

3 the negative part into the positive one. The peak of the original

4 distribution should be around zero. Positive numbers are multiplied

5 by two and negative ones are inserted in between. It works in place.

6 */
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Figure 4.31: The decorrelated and mapped dataset. This buffer is now passed to the entropy coder,
where the actual lossless compression is performed. The chopped dataset still shows spikes in
the magnification (a 7-bit range is shown), which is a sign of imperfect decorrelation.

8 void Map2Pos32 (int *buf , int sizeInWords )

9 {

10 int i;

12 for (i=0; i < sizeInWords ; i++)

13 {

14 buf[i] = buf[i] < 0 ? (buf[i] * -2 -1) & 0xffff : buf[i] * 2;

15 }

17 return;

18 }

Performance

Obviously, the more the values are concentrated around zero, the higher compres-
sion can be achieved by the entropy coder. In terms of numbers the entropy for the
staring dataset (Figure 4.32) was reduced by conditioning from 13.63 bit/sample to 4.95
bits/sample. A few more overheads lead to an actual encoding of 5.03 bits/sample in
the end. We remember the compromises made in the scheme – differentiation increases
noise – and with an ideal decorrelation we would have been able to further decrease the
entropy down to ∼4 bits/sample. In case of the chopped data we see that the original
histogram was bimodal (4.33). We could concentrate this in one peak around zero, but
still a systematic component contributes to the broadening of the peak. The chopped
dataset is shrunk from 14.04 bits/sample to 6.44 bits/sample. The encoding is also not
ideal here and in the end we get 6.77 bits/sample.

If no chopping would be performed, the second differentiation could be omitted andPossible
Improvements the first one be better replaced by a running average or even by an integer wavelet. But

chopping is an integral part of PACS bolometer observations and the necessary process-
ing steps were included at the cost of staring performance. The biggest improvement
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Figure 4.32: Performance of the decorrelation for staring data. The histogram of the averaged data (in
solid red) fills a wide range of values. After decorrelation the histogram (shown in white) is
much more compact. The inset shows the inner bins. Note that the values are shown before
the final mapping to positive.
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Figure 4.33: Performance for the chopped observation. Although the two histograms are compacted
into one the result is broader than the staring observation, which in turn leads to a higher
data rate.
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for chopped data that could be achieved by a single step would be to sort the pixels
in the beginning or before the second differentiation by their sensitivity. Unfortunately
the sensitivity map depends on the detector setting and so this was never considered
practically feasible. To stay compatible with a data rate of 120 kbit/s the entropy would
have to be ∼4.7 bit/sample, or 5.5 bit/sample for 140 kbit/s. This limit is exceeded for
high gain settings, especially when chopping is done. We see that even with a perfect
decorrelation, we would be able to save only 1 bit/sample for staring data and probably
more for chopped data,1 but this is certainly not enough. Although the on-board soft-
ware has ways to further reduce the data rate – pixel masking, adjusting the number
of samples/average, decimation – an additional quantisation step had to be included to
pay attention to the noise – and this is rounding.

Additional Rounding

The data rate after adaptation of the lossless compression to the FM detectors is still
too high for several high gain settings. As the reason for this is that the noise is actually
oversampled by such settings, a rounding option was included in the software. That
way, even the highest noise setting can fit into the telemetry budget. One rounded
bit of noise for 2560 pixels (red and blue together) at 10 Hz (averages) saves 25600
bit/s in photometry. The cost of this is additional quantisation noise, which amounts
to a few percent of total noise increase. Remember the tricky thing about this is,
that statistically correct rounding involves random number generation. The resulting
combined averaging/rounding algorithm that I developed is given in Section 1.6. The
algorithm tries to save CPU cycles and also ensures that the digitisation noise from
the nominal averaging process and the extra rounding do not cumulate sporadically.
The best way to envision how integer rounding works is to imagine that the values
are projected onto a coarser grid. In 1-bit rounding, no odd numbers are left, in 2-
bit rounding, the numbers are divisible by four etc. In Figure 4.34 the direct effect of
additional rounding is shown. Note that the quantisation error is more or less uniformly
distributed. For the shown dataset, the readout noise σ = 4.5 is increased by the 2-bit
rounding to σ =

√

σ2 + 42/12 = 4.65, i.e. by ∼3 percent. Compared with the savings
of the data rate, this additional quantisation noise is a small price to pay.

Rounding away noise bits helps in reducing the entropy of a dataset as long as theBenefits
of Rounding noise distribution is not degraded. In addition to that, the numerical range of the signal

is reduced, because the rounded bit is always zero and the significant bits can be right-
shifted.2 This has no impact on the entropy, but it makes decorrelation easier. For
each rounded bit we expect to save 25 kibit/s for both arrays together and even slightly
more if chopping is performed, depending on frequency and signal range. Figure 4.35
reveals that this prediction is fine, but the more bits are rounded the less the savings
are. The reason for this is that with too high quantisation the noise is rounded away.

1 It is hard to estimate the contribution of the signal to the entropy. Unless a signal is perfectly

predictable it contributes to the entropy. In our case it is legitimate to say that the chopped signal
has up to 1.5 bits of entropy.

2 This needs to be undone during inflation before the values can be used.
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Figure 4.34: The effect of additional rounding. (Top) The spiky line with the blue dots represents the
pure raw data from a pixel. Every four samples averaged in float give the perfect averages,
shown by dotted green lines. In PACS the averages are integers, so a quantisation of the per-

fect average already occurs in the default reduction anyway. Additional rounding as the 2-bit
rounding indicated by the red dashes still deviates from these values depending on the quan-
tisation interval, which is determined by the number of bits that are rounded. Compared with
the original noise the rounding operation has a hardly noticeable effect. (Bottom) Plot of the
deviation from the perfect average due to the rounding. The errors follow approximately a
uniform distribution.

Conclusion

The FM compression scheme for the bolometers is based on averaging, simple decor-
relation steps and entropy coding. A number of tradeoffs lead to a data rate that is up
to 20% higher than what would be theoretically achievable, but even an ideal decorre-
lation would not meet the 120 kbit/s for high gain measurements. The countermeasure
against this is rounding, which drastically reduces the data rate at little noise increase.

If we could turn back time three or more years into the past, would I come up with What if...

a different compression scheme? Probably not. All the steps involved are well justified
and there are no compression artefacts to be feared in this scheme. The various lossy
steps allow for a control of the data rate. If more processing resources would be available,
a fully adaptive model for the arithmetic compression could save another 5%. I have
mentioned several times already that the biggest savings can still be made by another
decorrelation stage, which would have to be able to cope with chopped data. There are
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bits of noise.

open points in photometry, especially for fast scan observations, where the averaging
step smears the sources in scan direction. Even worse, most scans are made in the
so-called parallel mode, where PACS and SPIRE observe simultaneously and share the
bandwidth. In this case, we have to average 8 frames to stay within the telemetry
budget and the smearing is very unfavourable.

One option that helps is already included in the software, it is decimation, i.e. frameDecimation

dropping. It works like average only 4 frames out of 8, but although it decreases the
smearing it also increases the noise, because it doesn’t make use of all available data. A
completely different approach is made by Compressed Sensing . This is a compression
mode we are currently developing for the PACS parallel mode based on a new sampling
theorem. First experiments are very promising [Bob08] and a dedicated research project
has been started.
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Software

W hen PACS is operated as a spectrometer, the discrepancy between the allowed
data rate and the amount of generated raw science data is even greater than in

photometry. The two Ge:Ga arrays have less pixels, but are read at higher rates and a
reduction of a factor of ∼40 needs to be achieved. The basic idea behind the on-board
data processing is similar to the photometer, but the decorrelation stage is different
and the lossy part, which contributes most to the reduction factor, either consists of
averaging sub-ramps or of slope fitting. The detector technology of the spectrometer is
very different to the photometer, yet the noise after decorrelation is also in the range
of 3–7 bits. What is shared with photometry is the compression back-end, because the
same entropy coder is used, but with a different initial noise model.

ramp, n: the act or an instance of ramping; any of various alliums used
for food; a short bend, slope, or curve usually in the vertical plane where
a handrail or coping changes its direction; a sloping way; a sloping floor,
walk, or roadway leading from one level to another; a stairway for entering
or leaving an airplane; a slope for launching boats; apron 2h

—Merriam Webster’s Collegiate Dictionary

In this chapter we will follow the same structure as in photometry – we analyse
the input data, see which kind of processing is necessary, learn what was actually
implemented and discuss its performance and possible improvements. The latter part
deals with implementation details that concern both photometry and spectroscopy, with
emphasis on the back-end encoder.

1 Imaging Spectroscopy

The particular thing about the two spectrometer arrays [Pog08] (a stressed one for
the red part of the wavelength range and an unstressed one for the blue) is that they
are read very quickly at 256 Hz in a non-destructive way to get a fine description of
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the intrinsic nonlinearity, the high reset noise1 as well as transient effects like glitches
[Eck99, Ste07]. Thus, each sample will provide a larger signal unless the sampling is
reset. This is called sampling up-the-ramp. In a non-destructive readout the measure
for the intensity is the slope of the achieved ramp. Assessing the raw data properties,
especially to separate the entropy of the readout noise from the signal content is a tricky
task, but this is our first step to establish a basis for judging possible strategies for the
compression of these data.

Very similar to the bolometer, a single frame of a spectrometer array as shownImage and Signal

in Figure 5.1 has a quite inhomogeneous appearance. Each column is an integrated
module of 16 photoconductor pixels, stacked to form a 25×16 array. Two so-called
dummy channels, a so-called open channel and a resistor channel plus an additional
ghost column2 finally lead to a dataset of 26×18 pixels for each of the two arrays.
Remember that the data flow of the spectrometer is also illustrated in Figure 4.1. The
two spectrometer arrays have identical dimensions and so they contribute equally to
the data rate.

The signal from an individual pixel is substantially different to the photometer, as it
is read non-destructively. Only after a number of samples are gathered, the capacitance
is reset and the integration starts anew. Some features of photoconductors can be
found in the plots of Figure 5.2. In this sequence of raw data from a single pixel a
reset occurs every 64 samples. Of course you would expect an ascending line, but
the PACS electronics output a descending line – something we will easily get used

1 Every ramp is offset by a considerable random value.
2 There is no official designation, and whenever I used this term people would willingly accept it.
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Figure 5.1: Cosmetic aspect of the spectrometer arrays. (Left) A frame from the red array is shown
and (Right) one from the blue spectrometer. The line on top and on the bottom are dummy
pixels that could be used for calibration and are usually included in the telemetry. The ghost

column is plotted to the right side of each array, although it has no physical pixels. It is nor-
mally excluded from telemetry by the detector selection mechanism.
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Figure 5.2: Signal of the spectrometer, easily identifiable by the ramps. The hook is nicely represented
in the left plot (pixel from red array) of the keyramp. The reset noise can be seen in the plot
of the blue pixel (right side). In both examples the readout noise is between 4–5 bits. The
ordinates of the plots are in ADU except for the histograms.

to. The key in extracting the readout noise in spectroscopy is to subtract a mean
keyramp from each single ramp. It accounts for most of the nonlinearities including
the so-called photoconductor hook [Hae01], but some additional measures still need to
be taken against sensitivity drift and the characteristic reset noise, before we get an
estimate of the data entropy for consideration in the reduction and compression scheme.

The FM Dataset

Similar to the different gains in photometry, different integrating capacitances can
be selected to be able to adjust to faint and bright sources. By increasing the dynamic
range, the noise is amplified as well. For the spectrometer we have 3–7 bits of noise per
readout. Different settings of the filter wheel and the grating order have no effect on
the readout noise and therefore only affect the data reduction by influencing the actual
slope.
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The following analysis is based on raw data from FM instrument level tests on
ground, which were considered what we will likely see in space.1 We will continue with
these test data, because the developed reduction and compression strategies are based
upon them. We will see that the red and the blue array differ in this dataset in that
the red one has a much larger signal as well as a considerable hook, whereas for the
blue array the SNR seems to be the main concern. For this reason we need to analyse
both datasets for now.

Hi Roland.

Sorry for the late answer – I was in a bit of a summer-hibernation.

I think the most appropriate data can be found in the buffer trans-
mission data we took in the loops over the different capacitances:

...

Cheers,
Bart

—email received on the 14th of September in 2007

The test procedure that was conducted is a loop over integrating capacitances
(0.1 pF, 0.2 pF, 0.4 pF, 1 pF) in buffer transmission mode (a few seconds of raw data
are recorded for all pixels) at 3 different grating positions. It takes about 50 minutes
to complete. The blackbody temperatures were at 22.6 and 25.2 K for the analysed
dataset. That file contains 72 compressed entities for the red as well as the blue channel,
each compressed entity having 512 raw frames and therefore adding up to 36864 frames
per channel. Both channels will be treated hereafter.

Spatial and Temporal Features

To get an impression of the spatial and temporal characteristics of the data, I picked
a few frames for displaying the main characteristics and chose three pixels to represent
bright, medium and dark classes. Figures 5.5 to 5.8 show how the image evolves during
ramp integration. The first image is just like a bias frame and as expected, contrast
grows with integration time. Obviously the columns have more in common than rows.
Exact calculations (as can be found next to these figures) underline this statement.
σh is the average of all 16 standard deviations that were derived from calculating the
mean of a 25-pixel line, σv is the same for all 25 16-pixel rows. However, two things
can be derived from that: a pixel does not know much about its horizontal neighbour
and is also quite independent in vertical direction. Secondly, this becomes even clearer
as the contrast grows during integration. This finding more or less disqualifies spatial
redundancy reduction steps, as the uncertainties in the temporal axis are smaller (this
will be uncovered soon).

1 In the meantime, real observations from the performance verification phase are available and the
best instrument setup seems to be the one with the highest readout noise.
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Figure 5.3: Red example data. The image to the left is an example frame for the red array. In the top
line we find the open channel, the bottom line is made up of the resistor pixels. On the right
end of the array is the ghost column, which actually belongs to the left supply group and
would be in the middle of the array if real pixels were attached. The interesting part is the
inner 16×25 pixel area. (Right) Example ramps for the three marked pixels are given. The
black and white colour scale of the image frame is taken from this plot.
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Figure 5.4: Blue example data. In the blue array the two supply groups are easily discernable. By looking
at the ramps we get a feeling of the different behaviour in linearity.

A threesome of pixels have been chosen for each array to represent the rest when we The Three Pixels

focus on the temporal properties. Their locations are indicated in Figures 5.3 and 5.4,
where example ramps can be found as well. In Figures 5.9 and 5.10 the test procedure
– test the four capacitances at three different levels of input signal – is well recognised.
We will now take a closer look at the data during different stages of the performed test
procedure with special interest on the readout noise.1

1 I prepared the analysis steps necessary to separate different sources of noise after discussion with
Rainer Hönle from MPE, an experienced FIFI LS [Ros02] developer.
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Figure 5.5: Start of integration. The first 6 frames
are still affected by the hook. Contrast
is low, as the exposure has just started.
σv=78.2 and σh=186.6.
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Figure 5.6: Early ramp. After the initial hook the
signal is as linear as the individual pixel
allows it to be. σv=170.1 and σh=441.7.
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Figure 5.7: Towards the end the contrast has
grown. This is best seen by comparing
the open and resistor pixels. σv=285.4
and σh=788.0.
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Figure 5.8: The last frame of the ramp has the
best contrast. As a consequence, the
pixel to pixel variation is at a maximum
here. σv=397.1 and σh=1111.6.
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2 Separation of Signal and Noise

As mentioned before, it is not as easy as in photometry to determine the readout
noise. To distill the noise, we have to remove the systematic components – the ramp,
the hook, the nonlinearities. But how hard we may try, we will not succeed completely,
because due to the sampling up-the-ramp the noise is a compound of random walk
and the readout noise. Yet for the purpose of compression it is not necessary to fully
disentangle these two.1 By the way, in case you wonder about the ramp length – it is
something that needs to be optimised with respect to SNR. If the ramp is too short, then
it is dominated by Poisson noise, but increased length brings us closer to saturation, it
means a higher chance of being hit by a glitch and don’t forget that a random walk is
divergent.

Now let’s start to find the best way to isolate the noise. What follows now is a
description of different steps that would work as a decorrelation. Several plots illustrate
the immediate implications and most importantly, the sample entropy HS is given to
get an objective measure of compressibility. In the explanation of the different steps
I use yet another example pixel from section Á of the red array. This one is located
several pixels to the right of the red pixel (at x, y = 16, 1). It was chosen for aesthetic
reasons.

From Ramps to Noise

The central point to start with is the keyramp (or mean ramp) of a pixel, providing
the typical integration ramp. It is derived by averaging all samples with the same index
on the ramp. The average of all first samples of the ramps is the first sample of the
keyramp and so on. In Figure 5.11 the raw data are shown with the derived keyramp
next to the plot. Such a keyramp contains already the main systematic components of
the data. Its shape is not influenced by the reset noise and if the slope would not vary,
the residuals were just noise. Yet Figure 5.12 tells us that there is still some way to go.
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Figure 5.11: Raw data of red pixel 43 on section Á. The abscissa has the sample number, the ordinate
is in ADU. The units stay the same for all plots of that kind. (Right) The keyramp derived
from these data is pretty linear, well, apart from the hook. Note that the ordinate is in the
same scale.

1 In Chapter 1 we learned that random walk noise is the result of the integration of white noise,
hence we could decorrelate it by differentiation, which in turn increases the uncorrelated readout
noise.
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Figure 5.12: The residuals from the keyramp (same units as before). The range of the ordinate was
adjusted to ±40. (Right) The folded plot is an over-plot of the ramp residuals, showing a
cone-like structure. It is however broadened by the reset noise.

Residuals from the Keyramp

The difference between data and keyramp contain systematic effects that still need
to be separated. First of all, the reset noise makes up for a shredded appearance in
Figure 5.12. At a first glance this operation may seem disappointing, because we can
still identify features that have the length of a ramp. Nonetheless virtually all residuals
are already in a range between ±30, or, in terms of entropy, around 5 or 6 bits.

Simply subtracting the keyramp leaves many structures in the residuals, but we Reset Noise

are so convinced about the usefulness of this operation, that we go ahead with little
adjustments. The residuals have not been corrected for the reset noise, something which
can be easily done by subtracting the first sample of a (residual) ramp from the rest.
That way all residuals start from zero when a new ramp is begun. We can confirm this
by taking a close look at the folded plot in Figure 5.13, where the first sample from
each residual ramp starts at zero. The second sample is then already found somewhere
in the scatter field.

What we can see now is that the residuals have improved in that the ramp pieces
have been shifted a bit together. The entropy decreased considerably, which is a sign
that we are improving. Still, we have an unwanted zig-zag-pattern in our data. We
can credit a changing slope due to a sensitivity drift (given that the source signal is
constant) for that, but also the random walk is a candidate. In any case this plot is
handicapped by the fact that the first sample is not only affected by reset noise, but
of course also by readout noise and thus the scatter in the folded plot is higher than it
should be (by one time the readout noise).

We can avoid this by subtracting the intercept instead of the first sample from each
residual ramp. Now the folded plot looks as if it has been focused (compare Figures 5.13
and 5.14). Still, the cone-like shape is present and we cannot tell whether it is due to
drift or random walk. To do so, we would have to plot the slopes and see whether they
are systematically changing. An unsystematic change would be due to random walk.
You see, whichever of the two components – drift or random walk – stands more above
the readout noise is the one that can be credited for the cone shape in the intercept
corrected plot.

In any case the intercept is a better corrector for the residuals as it leads to a
smaller entropy. Yet for real-time compression resources can be tight and so it may not
be possible to do a slope fit. Instead, the idea is to correct each residual ramp by its
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Figure 5.13: The residuals corrected for the reset noise by subtracting the first sample of the resid-
ual slope. All ramps in the folded plot thus start with 0.
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Figure 5.14: The residuals corrected for the intercept. The cone-like shape in the folded plot is now as
clearly visible as it can get.

mean. The result, as shown in Figure 5.15 is yet another decrease in entropy and an
interesting hourglass-like shape in the folded plot. This is because of a systematic effect
– especially if linear – in the residual ramp, which led to the cone shape in the folded
plot before. So the residuals will now be re-centred in the middle of the ramp. Through
this exercise we don’t learn more about our data, but we see that this is a powerful
preprocessing for the purpose of compression. You are now invited to speculate how we
could use this to disentangle random walk and slope drift. In any case we still have a
zig-zag in the data, even if it’s much reduced by now.

So what else can we do? Both, the cone and the hourglass are caused by mostlyReadout Noise

linear systematics. Again, starting from the untouched residuals, the last word is now
spoken by fitting the (residual) ramps again and correcting with the derived lines. That
way the reset noise is removed by the intercept, the sensitivity (signal) fluctuation and
the linear part of the random walk is removed by the slope. What is left is mostly the
readout noise. In Figure 5.16 the residuals appear almost like white Gaussian. A large
random walk would still be visible by a

√
n-like cavity in the folded plot, but in this

dataset the readout noise is of a comparable intensity.
Are the reduction steps also good as a decorrelation? Well, they are not, because

they are not revertible unless additional values – the offset, intercept and slope – are
saved for each ramp to do the reconstruction. Remember our three example pixels? I
will now give you a gallery of useful plots for them on different data sections and you
are again welcome to speculate about your own reduction system, especially concerning
the reversible decorrelation stage.
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Figure 5.15: The residuals corrected for their mean. This leads to a re-centring and a further reduction
in entropy. The hourglass-like shape in the folded plot is the consequence.
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Figure 5.16: The remaining noise after all the correction steps. The folded plot reveals that the re-
maining noise is the same throughout the whole ramp. Only slight traces of the zig-zag pat-
tern are left in the data. This is as close as we can get to the readout noise.

Details for Selected Pixels

The steps above are now applied to the three pixels for selected sections from the
data file and presented in graphical form. A few additional plots, especially the com-
parison between intercept and slope and a histogram of the readout noise will complete
the view on the facing page. The given entropy should be read like this pixel on this
section with that kind of processing has an entropy of HS bits per sample. Red, Green
and Blue pixel are again referring to their origin (refresh your memory at Figure 5.3).

After the plots that concentrate on single pixels additional information is given in
Figures 5.25, 5.26 and 5.27 about the character of the whole array. Knowledge of these
data properties will be useful for the next section, where the implemented decorrelation
will be described in detail.
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Figure 5.17: Red array, blue pixel, section Á. In the plot to the right of the keyramp we see that the
slopes are not correlated with the offset noise. A histogram of the readout noise [quantity
over ADU] shows a Gaussian profile. The bottom left plot is an overlay of all folded plots.
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Figure 5.18: Various plots of the residuals. This pixel nicely demonstrates how the different reduction
steps extract the noise. It is also worth noting that the initial hook leaves no traces in the
residuals. Yet we still see some spikes in the slope fit corrected residuals (Bottom).
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Figure 5.19: Red array, green pixel, section Á. This one has an even larger hook, but the reason why I
picked it is that we see a drift of the slope. In this case we cannot credit the cone shape to
the random walk.
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Figure 5.20: Residuals. Most of the cone shape in the intercept corrected plot comes from the drift. The
difference in the entropy between the uncorrected residuals and the fitted ones is 1 bit, but a
large reduction is already achieved by the mean correction.
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Figure 5.21: Blue array, blue pixel, section Ë. Here we have no hook and the slopes are in general much
smaller. The dataset shown contains four glitches. They disturb the slope and as they rip
apart the ramp they stand out in the residual as well. Even the histogram is spoiled by that.
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Figure 5.22: Residuals. The effect of the glitches is not corrected by any one of the different methods.
We also see that the entropy savings are only little here.
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Figure 5.23: Blue array, blue pixel, section Ç. This is the same pixel as before, but due to the different
capacitor now with with little signal. The ramps are no longer easily visible in the raw data.
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Figure 5.24: Residuals. We are running into troubles with the entropies now. This is an indication that
the ramp is no longer well sampled. There is no cone although we clearly see a pattern in the
offset corrected residuals, which is a sign that we are now dominated by readout noise.
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Figure 5.25: Noise map of the red (Left) and blue (Right) array for section Ë. By noise the standard
deviation of the slope fit corrected residuals from the keyramp is meant, which is as close
as we got to the readout noise. A few isolated pixels are much noisier than others and some
produce less noise. The colour scale is σ =0 ADU for black and 15 ADU for white.
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Figure 5.26: Responsivity maps, showing how the dynamic range is used by the slope. This is to be
interpreted as a flatfield. Especially in the red we see that pixels of the same column have a
similar slope. The scaling in here is 0 ADU/256 Hz for black and -127 (red), resp. -15 (blue)
for white colour. The open channel has no slope and is thus black. Bad pixels have no or
almost no slope and show up in black as well. They correspond well to what we thought were
the low noise pixels in the noise map.
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Figure 5.27: Fluctuation of the slope as measured by its standard deviation. Black stands for 0 and
white for 0.5 ADU/256 Hz. Such a plot can be used to weight individual pixels.
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Summary of the Analysis

The most important information from all the plots made is the entropy of the noise.
Apart from that, the following statements seem to be justifiable now:

There is no obvious correlation between offset noise and signal. The magnitude
of the reset noise is similar to the readout noise, depending on the capacitance
used. There is also no obvious correlation between the size of the hook and the
offset noise.

The readout noise is the same over the whole ramp.

The nonlinearity and especially the hook are sufficiently well covered by the
keyramp.

Random walk and variation of sensitivity cannot be sufficiently well separated by
the presented methods, which is mostly because random walk, drift and readout
noise have much the same magnitude for this dataset.

Different capacitors have a large influence on signal and noise. Through the
entropy this drives the data rate.

The entropy of the readout noise ranges between 3 and 6 bits per sample, but
mostly being around or below 4 bits.

3 The Devised Reduction Scheme

Before we have a look at the implemented reduction scheme we need to recall that
the raw data need to be reduced to meet the large compression factor of ∼40, either by
slope fitting or by averaging. In the latter case, not the whole ramp is averaged – this
would remove the meaningful signal – but partitions of the ramp are. A meaningful
setup is to create four so-called sub-means for a ramp of 64 samples. To get a better
temporal resolution of the ramp a setup with 8 sub-means on a ramp is preferable, but
we will see that in this case the data rates are normally above the limit.

During spring 2007 I came up with what I called the rampdiff compression scheme, Rampdiff

which aimed at keeping as much temporal resolution of the ramp as possible.1 The goal
was to make a setup of 8 sub-means per 64-sample ramp compatible with the downlink
limit. From the analysis of the FM test data we remember that the entropy per sample
is ∼4 bits, so a perfect lossless compression would be able to achieve a data rate of
450 (pixels per array) × 2 (arrays) × 256 (Hz) × 4 (bit entropy) = 921.6 kbit/s. In
case of averaging 8 samples, we reduce the 4 bit readout noise (σ = 13.2) by a factor√

8 = 2.83 (13.2/2.83=4.67, or HS = 2.96), so we get 450×2×256/8×2.96 =85.2 kbit/s.
Even taking some overheads into account this should stay well below 120 kbit/s – in
other words, it should be possible.

After ramp fitting or sub-mean averaging has been performed, the data need to be
decorrelated again before they can be passed to the lossless compression. This is done

1 This has become the default FM compression scheme, because it works also well for different other
scenarios such as slope fitting.
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Figure 5.28: Raw input data for spectroscopy. This is a 1D-plot of the data as they are received by the
SPU from the DMC. The double line is due to the two different supply groups.
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Figure 5.29: Ghost column removed, pixelised and averaged. The ramps can be distinguished now. In
the magnification we see how the sub-mean averaging reduces the temporal resolution.

in a different way as in photometry and the details follow now. For better visibility in
the plots I chose a dataset with longer reset intervals. The ramps used to create Figures
5.28 to 5.35 have a length of 256 samples.

The first processing step is again to discard data from pixels that were deselected.1, 2: Preprocessing
and Averaging Even if the whole frame is selected, the ghost column is deactivated by default. After

that, the data are rearranged to pixel order just as in photometry, to group the samples
of the same pixel together. This is shown in Figure 5.29, where the averaging step is
also already included. In spectroscopy the SPU synchronises to the start of a ramp as
indicated by dedicated header parameters. As you can imagine, unsynchronised slope
fitting or averaging would be disastrous to the ramps. The averaging routine that is
used in spectroscopy is the same as in photometry. This means, that additional bit
rounding can be commanded as well.

Differentiation is also an important ingredient in the rampdiff scheme. First of all,3: Ramp
Differentiation each ramp is differentiated so that the first value of a ramp is left untouched and the

remaining ones become small negative values. This is done in place by applying the
Delta function (the same as in photometry) to each ramp, but it also increases the
uncorrelated noise by

√
2 as a side-effect. Figure 5.30 shows the data after this step.

The analysis of the FM test data in the previous section was based on the keyramp,4: Keyramp
Subtraction but our processing steps contain nothing like that so far. As keyramp we used the

mean of all ramps, but this would not be profitable in our case where we have only a
few ramps per buffer, because the calculated keyramp needs to be transmitted as well.
Instead, we use the first ramp of the buffer and subtract it from the others. That way
the uncertainties of the first ramp are reflected in the residuals and if the first ramp is
hit by a glitch this will create spikes in the residuals, but this is yet another tradeoff
we have to make. In Figure 5.31 the result of this operation is shown.
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Figure 5.30: Ramp Differentiation. The start samples of the ramps have not been altered. In the magni-
fication two neighbouring pixels with very different noise are shown.
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Figure 5.31: The data after keyramp subtraction. Now only one unaltered high value remains for every
pixel. In the magnification we see that the residuals are unchanged.

Although the residuals are close to zero now they will be systematically offset by 5: Differentiation

a constant value if chopping is performed for instance. This makes it necessary to
differentiate the residuals another time. By comparing the magnified plot in Figure
5.32 with the previous one in 5.31 we see that this step is justified.

Now is the time to get rid of the remaining large offset values. There is one such 6: Offset Removal

value for each pixel which is made up of bias, offset noise and readout noise. Ideally,
we would make a bias correction now, but there is no bias frame at hand. In case of
sub-mean averaging of 8 samples we get one such value in a group of 64, so there is not
much compression to be gained by bringing these values down to zero. However, we try
by calculating a mean integer value and subtracting it from these start values. From
their distribution we can tell that this will not bring them down to zero, but at least
closer to it so that less bits will be needed for encoding. This mean value needs to be
included in the compressed data stream otherwise this step cannot be undone.1 Find
the result in Figure 5.33.

We owe one last step to the back-end encoder, this is to map the signed values to 7: Mapping

unsigned ones. For this purpose the same subroutine as in photometry is used. Though
we are sceptical about the spikes still contained in the dataset, we continue to the next
plot showing the overall performance of the decorrelation that was knocked together in
here.

1 I agree that it would be better to use the median instead, but keep in mind that the data rate
savings are minimal.
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Figure 5.32: Another differentiation. The residuals are now really centred, but the uncorrelated noise has
been increased.
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Figure 5.33: Offset shrinking. We were able to minimise the spikes yet they are still clearly visible. The
other residuals were not changed.

Performance

By reading the histogram in Figure 5.35 we see that the rampdiff scheme managed
to concentrate the samples that were originally distributed around ∼60000 ADU to
a ∼5 bit distribution. The remaining spikes we had in Figure 5.34 can be found as
three little heaps around 8000 ADU. They don’t matter much, as they are ∼500 values
around 13 bits, which is 8 bits more than the rest, so we have a penalty of 4 kbit/s for
both arrays together. Yet the distribution is not as concentrated as it could be, mostly
owing to the two differentiations.

In Table 5.1 the results are given for all the sections in the FM data file we analysedData Rate Tests

previously. Three different settings – sub-mean averaging of 16 samples and sub-mean
averaging of 8 samples with and without additional 2-bit rounding – were used.

For each section a new input data file for on-board compression tests at MPE was
generated. Each test file included the first 512 frames of the respective section. They
were further used as input for the software simulator as well as for my own algorithm
framework that I use to develop and test experimental compression schemes. Table 5.1
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Figure 5.34: The result of the rampdiff scheme. The data are unsigned and ready for entropy coding.
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Figure 5.35: Performance of the rampdiff scheme. The yellow histogram shows the original bimodal
distribution that has been converted to the white distribution by the rampdiff scheme. In the
inset the inner 8 bits are resolved. This probability distribution must now be considered for
entropy coding.

compares data rates (for both arrays) for three different reduction settings. The num-
bers provided can be compared with Figures 5.9 and 5.10.

file name segment data rate 16 [B/s (bit/s)] data rate 8 8 with 2-bit rounding

spec_seg01.dat À 14540 (116320) 24088 (192704) 15504 (124032)
spec_seg02.dat Á 12276 (98208) 20484 (163872) 12752 (102016)
spec_seg03.dat Â 10108 (80864) 17296 (138368) 10840 (86720)
spec_seg04.dat Ã 7828 (62624) 14104 (112832) 9232 (73856)
spec_seg05.dat Ê 15012 (120096) 24188 (193504) 15588 (124704)
spec_seg06.dat Ë 12548 (100384) 20780 (166240) 13128 (105024)
spec_seg07.dat Ì 10332 (82656) 17592 (140736) 11252 (90016)
spec_seg08.dat Í 8432 (67456) 15252 (122016) 10248 (81984)
spec_seg09.dat Ä 14012 (112096) 23304 (186432) 14704 (117632)
spec_seg10.dat Å 12360 (98880) 20600 (164800) 12912 (103296)
spec_seg11.dat Æ 10276 (82208) 17500 (140000) 10968 (87744)
spec_seg12.dat Ç 7856 (62848) 14132 (113056) 9320 (74560)

Table 5.1: Data rates using the rampdiff decorrelation. For small capacitances (leading to large sig-
nals) the data rates are exceeded if only 8 samples are averaged. This is well compensated by
additional 2-bit rounding.
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Rounding in Spectroscopy

In photometry we use bit rounding to further reduce the data rate when a high
gain is used. As in spectroscopy the same averaging algorithm is used to calculate the
sub-means, the question is whether we can take advantage of its rounding capability or
if that would degrade our data.

In case of a linear fit the precision of the slope is a function of the precision of the
individual sample. According to [Hig91], for a linear regression of the form y = a+ b ·x
the variance of the slope is

var(b) =
σ2

y

n · var(x)
with σy as the standard deviation of the samples (the readout noise) and var(x) for the
distribution of the sampling. For now we assume a discrete, errorless, uniform sampling
and we use the uniform distribution where var(x) = ∆2/12.

So if we want to know the precision of a slope fit of 64 samples we use var(x) =
(64 − 1)2/12, considering the indexing of the samples with 1..64. This leads to:

σslope =

√

σ2
y

64 · (64 − 1)2/12
= 1/145.5

√

σ2
y =

σy

145.5

However, the slopes calculated in the SPU are not in float but in integer, mul-
tiplied with the number of samples that were fit, leading to a digitisation noise of
√

1/(12 · (subramp length)), which is negligible given the fact that our slopes are any-
way disturbed to a larger extent by nonlinearities.

What is better, 4 sub-means à 16 samples or 8 sub-means à 8 samples, and whatAveraging 4 vs 8

if the 8 are used with rounding? The variance of the sub-mean is σ2
m = σ2

y/n + 1/12
(1/12 due to the representation of the sub-mean by an integer). So the derived slope
fit from the sub-means in comparison looks like:

σ2
fit4 =

σ2
y/16 + 1/12

4(3)212

σ2
fit8 =

σ2
y/8 + 1/12

8(7)212

σ2
fit4/σ

2
fit8 ∼ 98/18 ⇒ σfit4/σfit8 ∼ 2.3

If the 1/12 is negligible, we see that the precision of the fit from 8 sub-means is 2.3
times better than the precision of a fit from 4 sub-means. Now let us consider a 2-bit
rounding (∆ = 2bits = 4) for the 8 sub-means:

σ2
fit8R2 =

σ2
y/8 + 16/12

8(7)212

We see that the quantisation term is no longer negligible and wonder what this means
to 4 bit Gaussian readout noise (σ = 13.2 ADU). A fit made by fitting 8 sub-means
that were derived by averaging 8 samples will yield the following precision: (Setting
σ = 13.2/

√
8 = 4.7, ∆ = 4 and using var(x) = (8 − 1)2/12 = 4.1)

σslope =

√

4.72

8 · 4.1 = 0.67ADU
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The same with the digitisation noise that is introduced with 2-bit rounding:

σslopeR2 =

√

4.72 + 16/12

8 · 4.1 = 0.85ADU

That is, by taking b = 2 bits of rounding in a case where the input noise is just
4 bits, the noise of the slope derived from 8 rounded sub-means is 27% higher than
if no rounding would have been made. However, given the result from above that the
sub-mean fit of 8 is 2.3 times better we are still very much in favour of 8 sub-means
(2.3 − 27% = 1.68).1

What happens to the glitches?

No doubt that a higher temporal resolution helps in the detection and correction of
glitches, but the question is, how much easier or harder is it to find a glitch (by only
looking at the outlier, not considering the change in sensitivity affecting subsequent
samples) if a sub-mean is either 16 samples or 8 samples long and if rounding is used.
It is trivial, that a glitch increases the average by 1/n times its equivalent signal,
whereas the standard deviation of the sub-mean is decreased by 1/

√
n. Thus, if twice

the samples are used, the precision is σ/
√

2, whereas the glitch (of size 1) is reduced to
1/2. We see that the more we average, the harder it is to find a glitch, with the glitch
detection ability following a

√
n trend. A 2-bit rounding affects the sub-mean in that it

increases its noise (σ2
mr = σ2

m +(2bits)2/12). Due to the triangle inequality the rounding
follows a trend less than

√
∆2. If we take the example from above, where σm8 = 4.7

and apply a 2-bit rounding there we get σm8R2 = 4.84, which is a 3% decrease of glitch
detection capability (which goes linear with the standard deviation).

Conclusion

The rampdiff scheme is not ideal, essentially it has two shortcomings that could be
improved. The bigger problem is of course that differentiation is used which increases
the entropy. The other one is that the bias is not well subtracted. In the end all
the overheads add up to 20–30 kbit/s. On the other hand the cases where the data
rate is problematic with 8 sample sub-mean averaging is when the smallest capacitor
is used and large variable slopes are in the observation, such as for a grating scan or a
chopped observation. In such cases we end up around 180 kbit/s and we need anyway
to decrease this by means of lossy reduction. Then the rounding option comes in handy,
which allows us to get high temporal resolution with an acceptable noise increase.

Would I implement rampdiff in the same way again? Let me answer this by telling
you that I had several candidate schemes for the FM decorrelation. As in photometry,
other strategies were better for staring observations, others for chopped data, but the
one which worked best for all the scenarios was rampdiff.

1 When the spectrometer is operated with the smallest capacitor with a higher readout noise we
only get a 10% increase.
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4 Back-end Lossless Compression

The next step for both spectroscopy and photometry after decorrelation is entropy
coding. The FM implementation is based on arithmetic compression, but with a few
modifications to account for the little CPU resources and the few large data values that
are caused by glitches. Due to the noisy nature of our data, compression algorithms
that aim at recurring patterns are not useful, because we have hardly any repeating
segments. The best way to deal with noise is by not trying to compress it but by
efficiently encoding it to the entropy limit and for that we need an entropy coder, such
as the ones described in Section 3.2.

Both reduction schemes produce a data stream of 3–6 bits noise around 0 with
certain peaks that take the full 16 bit range. This had to be considered in designing
the back-end encoding algorithm. I decided to implement arithmetic compression (see
Chapter 3) to have an encoding whose efficiency depends on the data model, but is
relatively stable when the model does not fit well. The limited CPU resources excluded
a fully adaptive (i.e. that the whole probability table is updated after every encoding
symbol) model. On the other hand, static models are not flexible enough for the variety
of effects that impact the probabilities. Another driver in the design of the model was
that the full 16 bit range had to be encoded, yet 90–95% of the encoding symbols are
within the 8 bit region. The trick was to handle values 0–254 with a classical cumulative
probability table and use the index 255 for values 255–65535, indicating that they are
put aside for separate compression with a variable block word length encoder (also in
Chapter 3). The data are processed in chunks of 8192 decorrelated samples and the
semi-adaptivity of the model stems from the probability table, which is replaced after
the encoding of a chunk by its statistics. That way there is no need to transmit the
probability table as well, yet the model is sufficiently well related with the data. The
encoding starts with a fixed initial model, which I derived by averaging a number of
histograms from test data and edited by hand to represent the statistics of the first
chunk as good as possible. Look at Figure 5.36 to see what it looks like.

In terms of CPU power, the lossless compression uses up to 50% of what is available.Performance

This is of course the biggest consumer of available resources, yet this is well justified:
the more efficient the lossless compression works, the less drastic reduction has to be
made. The fact that the model is not an accurate description of the data, but only an
approximation leads to an encoding overhead of 5%. This is very acceptable given the
resource savings that are achieved by this implementation.

5 On-board Implementation

What follows next is a short outline of the implementation of the reduction and
compression software. On various pages I have given detailed information of the lossy
and lossless steps that are performed on board. The short treatment hereafter shall
explain how these algorithms, which are the core of the on-board processing, fit into
the data flow and how they are operated. An in-depth treatment of the on-board
reduction/compression software and related matters can be found in [Ott04a].
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Figure 5.36: Initial noise models. The FM arithmetic compression starts with fixed probability models
for the first 8192 decorrelated samples. The model in photometry (in blue colour) is a wider
distribution and it also assumes that there will be almost 1000 outliers. In spectroscopy (red
colour) a narrower distribution is used for the first chunk, which is – apart from the probabil-
ity reserved for the outliers – similar to a 4-bit Gaussian noise.

Remember that PACS has four independent SPU computers, each one coming with
startup software and low-level drivers. For all the data processing 4 MiB of data memory
and 3 MiB of program memory are available. This is sufficient to buffer a few seconds
of incoming data and still have space for processing. Due to the noisy character of the
data there is not much redundancy to be expected within a few seconds and due to the
drift in the detectors no longer periodicities can be exploited as well.

To handle the task management – especially with all the simultaneously operating SW Infrastructure

high speed communication links – the compression software runs under the Virtuoso�
real-time operating system from WindRiver (previously developed by EONIC). It is
linked with the executable during compilation. The drivers to access the SMCS in-
terface chip and other hardware are provided by the hardware manufacturer. The
operating system supplies the necessary functionality for multitasking, interrupt han-
dling, signalling, semaphores and FIFOs. A number of tasks are running in parallel,
most notably the input and output data buffering tasks, the compression task which
processes the data in chops of a few seconds, the housekeeping task which reports the
software status every two seconds and the so-called watch process, which monitors the
command link with respect to the high priority commands to start and stop process-
ing. The command link is also used for initialisation of software relevant tables such as
principal compression parameters or the detector selection tables used for masking bad
pixels. It is also possible to upload a new software to the EEPROM via that link.
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One SPU communicates via three links: raw data are permanently received from
DMC, compressed data are sent to the DPU and commands can also be received any
time from the DPU. The warm electronics units use a Scalable Multichannel Commu-
nications Subsystem (SMCS) 332 chip which implements the Spacewire standard. It is
nominally configured to handle up to 10 Mibit/s on each link. To meet the real-time
requirements it was necessary to implement the input and output buffers as circular
buffers, that are continuously filled and drained by independent tasks.

PACS operates either as a photometer or as a spectrometer, and each detector typeSPU Software
Structure comes with two independent detector arrays for the red and the blue channel. Nor-

mally, we concentrate on reaching the necessary compression factors yet retaining as
much original data as possible. For some observations, temporal resolution is preferred
over spatial resolution, for others the raw data of a selected sub-area are required.
Other restrictions apply if PACS and SPIRE are operated in parallel mode, sharing the
available bandwidth. There is also burst mode, which more than triples the available
bandwidth if continuous operation is not scheduled. All these things have to be consid-
ered during on-board data processing leading to a variety of sequences and algorithms,
commandable and/or adaptable to the data input and uploadable sets of parameters
and tables to ensure a maximum of flexibility.

Each SPU has a full copy of the data processing/compression software, no matter if
it is installed in the red or in the blue unit. A SPU is not configured to its channel, the
distinction is made only by looking at the metadata in the frame headers. In general,
once the SPU software is booted and has established connection with the other warm
electronics units, it is waiting to receive a start command from the DPU. Once this has
been acknowledged, the compression threads are signalled to be started and data from
the input link are buffered. The data are identified by their headers and the software
branches accordingly into the necessary processing steps.

Compression Modes

The full nominal sequence as illustrated in Figure 5.37 is not the only mode of
operation. All processing steps are optional – it’s even possible not to do anything at
all with the data, though that case is most unfavourable, as the price to be paid for a
few seconds of raw data from all arrays is a 1-minute time-out, because the data cannot
be written fast enough to the spacecraft and need to be buffered in the warm electronics
units. What the compression software is meant to do is determined by:

the header parameters, indicating detector type, channel and compression mode;

direct commands, used for starting and stopping the data flow, for updating
software and tables and for switching to test and diagnostic modes;

the on-board tables, controlling the bad pixel masks as well as various parameters
for fine-tuning, such as choosing the lossless compression algorithm.

If all parameters are left at their initialisation values, the software operates in default
mode, which has the minimum of lossy operations for transmitting the data of all
pixels. This mode has been used during most of the instrument level tests and is
also the standard in space. Default mode in photometry means averaging frames by 4
and lossless compression of the results. In spectroscopy we have either generation of
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Figure 5.37: Default reduction and compression steps. Modules where raw data are irreversibly reduced
are depicted with darker colour. From top to bottom: incoming data are tested for their in-
tegrity, the headers are separated from the data and passed to the header compression sub-
routine. The science data are filtered with the detector selection table mask and passed on to
the reduction module. A few pixels are routed outside the normal data processing for inclu-
sion of additional raw data in the downlink stream. The reduction module is where averaging
or ramp fitting are performed, optionally including an additional rounding step. After that,
the data are prepared in the decorrelation stage for the lossless compression. At the bottom
of the scheme, the data streams that went different paths are reunited and sent to the DPU
in packets ready for transmission.

sub-means of 16 (8) samples length or slope fitting using a length of 32 and lossless
compression. However, if the arrays are driven in very noisy settings, it is necessary
to include an optional rounding step. Figure 5.37 gives an overview of the modules
involved in the standard data processing of the SPU.

Metadata and Header Compression

The origin and type of the data are reported in the frame header, as is the com-
pression mode. This can resemble something like photometry, red channel, default
compression. Some of the 16 header parameters are important for on-board data re-
duction, others – such as the position of the filter wheel – are needed on ground for
pipeline processing and data product generation.

As the header parameters have the same structure for all observations, the header
compression is the same for all of them. Although the headers have to be compressed
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in a lossless way and in the worst case their data rate already exceeds the available
downlink rate by a factor of 2, we manage to yield a typical factor of 40 owing to the
structured content of the headers, which contains parameters that stay the same for
several frames or counters which increase or decrease in a steady manner. Only a few
parameters, such as the chopper position or the grating position, are affected by a 2-
bit noise. The principal algorithm rzip used for header compression has been published
[Ott04b, Ott04a] and is one of the few examples for a subroutine that has survived from
the very beginning of the development until the flight model of the software without
major modification needed.

The frame headers have another very important purpose. In photometry, the data
frames are synchronised with the movement of the chopper via a flag in the header,
signalling the start and stop of a sequence. A start of a sequence marks the first frame
of a number of frames to be averaged. That way it is guaranteed that averaging does
not occur during a chopper transition. In spectroscopy, the thing is a little bit more
tricky. Two header parameters are used for synchronisation. One indicates the length of
a ramp, the other one counts the sample index on the ramp. That way the compression
software can synchronise onto the start of a ramp.

On-Board Tables

The on-board software has a compression parameter table for spectroscopy and one
for photometry, plus detector selection tables for each detector array which are used to
exclude any individual pixel. Most of the compression parameters deal with choosing
different options for the decorrelation and lossless compression modules.

By default, all pixels from the arrays are transmitted,1 but there are cases where
it may not be needed to use the full array for observation. In addition to that, the
detector will degrade over time and individual pixels will become defunct. So it is most
reasonable to apply a pixel selection mask on the detector arrays. Depending on the
number of selected pixels, the raw data could even be transmitted without reduction.

Detector selection is handled by the SPU with uploadable tables. These tables have
a unique identification number that allows to reconstruct the array geometry on ground.
Detector selection tables are stored within the ground segment software, where the tools
for preparation and upload are available.

In the end, the data rate has to be met, no matter what parameters are tuned:

(De)Selecting pixels. If raw data are to be transmitted, the compression factors
of 16 (photometry) and 40 (spectroscopy) have to be achieved by selecting only
that fraction of total pixels from the arrays.

Changing the number of frames to be averaged: instead of the default number
of 4, any other number can be commanded, such as 8 in the photometer parallel
mode.

In addition to averaging, the results obtained can be rounded by 1, 2 or even 3
bits to discard oversampled noise.

1 The read-out electronics of the spectrometer generate 26 columns of 18 pixels although only 25
columns are equipped with Ge:Ga crystals. That 26th ghost column is always deselected by the
pixel mask, as it contains no useful information.
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Decimation. As one of the last additions to the software before launch a config-
urable frame-dropping mechanism was added.

In addition to the nominal data stream, a few pixels’ raw data can always be added
to the downlink stream, mostly for verification purposes. Lossless compression of these
so-called additional raw data typically yields a factor of 2 here.

Ground Software

What is compressed in space needs to be unpacked on ground again. This de-
compression framework is a part of the PACS Common Science System PCSS, which
in turn is a part of the Herschel Common Science System HCSS [Wie04]. This huge
framework (exceeding 100000 files) is written in Java�, which is very beneficial for
collaboration of the many dozen of developers spread all over the globe. Right be-
fore launch it was renamed Herschel Interactive Processing Environment – HIPE. For
de-compression backwards compatibility to old on-board software versions had to be
assured. Although it is not anticipated to revert to any older version any more, the test
and calibration measurements that were made with outdated on-board software still
have to be readable.

Aside from the features of the operating FM software version – which has been used
during the ILT phase with no undesired effects and proved its reliability in the flight
phase up to now – a few more improvements are considered for preparation, such as
a dedicated compressed sensing mode for photometry. If any unexpected instrumental
effect or even damage gives rise to a bigger software update, this can be done due to the
flexibility of the setup. Thanks to the compact format of the executable it is possible
to upload a new software version to the SPU within a few minutes.

Assez. Quand la science a prononcé, il n’y a plus qu’à se taire.
—Jules Verne, Voyage au centre de la terre, 1864
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6
New Challenges with

SAFARI

I n a project like PACS hundreds of people are involved and many of them for more
than a decade. Our on-board software contribution is in itself a substantial project

with some 30 man-years. Ten years ago we started from scratch, we were mostly
unfamiliar with the procedures of space projects and had to learn the language of
the business first. Among the lessons we learned is of course that the compression
techniques we normally use in daily routine are not feasible for science data. Much
of the experience that I have gained throughout the project is written down in this
thesis so that it should be interesting material for everybody in this field. Almost a
decade later I can tell what the relevant components in the design and implementation
of a tailored real-time compression system for science data are and thus it is reasonable
to further involve ourselves in upcoming missions. In this spirit we have joined the
consortia of SPICA/SAFARI and PLATO, two missions that are candidates for selection
as M-class missions in ESA’s Cosmic Vision programme [Big05]. For these and other
next-generation missions our experience in on-board processing is a valuable ingredient
to make them intelligent detectors.

Hello Roland

world is small indeed, especially the astronomical one ...

Ciao
Stefano

—email reply received on the 25th of January, 2008

This short chapter deals with the SAFARI instrument [Swi08] for the SPICA mis-
sion1 [Nak08, Swi09], which can be seen as a successor to both Herschel/PACS and
Herschel/SPIRE. For this mission, I have made an assessment of on-board processing
for the Phase-A1 Study Report [Gri09a]. In the chapters on the PACS FM software I
have described the last stage of development in a space project, here I show how a good
start is made.

1 The acronyms are short for SpicA FAR-infrared Instrument and Space Infrared Telescope for
Cosmology and Astrophysics.
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The chapter is divided into the following sections:

6.1 SAFARI for SPICA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.2 On-Board Compression for SAFARI . . . . . . . . . . . . . . . . . . . . 157
Detector Characteristics . . . . . . . . . . . . . . . . . . . . . . . 157
Processing Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . 158
Instrument Raw Data Rate . . . . . . . . . . . . . . . . . . . . . 158
Simulation of Representative Data . . . . . . . . . . . . . . . . . 160
Decorrelation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Reduction for the PC and Optional Steps . . . . . . . . . . . . . 163
Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Recommendation for SAFARI . . . . . . . . . . . . . . . . . . . . 165

1 SAFARI for SPICA

Herschel was still on the ground, but we were already selling its technological her-
itage by planning the next big infrared observatory. The Japanese space agency JAXA
plans a Cryo-Herschel mission for 2018 with major European contributions, such as
the telescope and one of the prime instruments SAFARI.1 With its actively cooled tele-
scope SPICA will cover wider spectral ranges from the near to the far-infrared at a
much higher sensitivity.

SAFARI is a spectroscopic camera for the 35–210 micron range. The UK, then
Netherlands-led PI instrument is based on the technological heritage from both PACS
and SPIRE. The instrument is an imaging Fourier transform spectrometer, its optical
design has thus similarities with SPIRE. SAFARI’s wavelength range is almost the
same as for PACS, with similar detector technology and an extension to the short. The
detector arrays are bigger and generate a much higher amount of data than PACS did.
Although there is also a technology advance in telecommunication, it cannot compensate
for the large amount of pixels. Well, we know the solution is to carry out data reduction
and compression steps on board. So I carried out a study to shed light on this issue
for the SPICA/SAFARI mission, giving an outline of possible measures to be taken,
including the required resources for implementation on board.

Be aware that at such an early stage there is no way to give precise numbers con-
cerning on-board compression because of the various uncertainties. First of all, the
downlink rate is not contained in the instrument control specification, because a second
ground station was discussed. A number to use as a guideline is 30 GB/day, which
assumes a daily downlink rate of 10 Mbit/s for 8 hours. For lossless compression, signal
and noise related issues are the main points of interest. At this time four different
detector options are still being discussed and even the readout rate is not yet fixed.
With all these obstacles my priority for the study was still to use representative data as
input to derive plausible quantities. Once a set of simulated data was at hand, I knew
that in light of the large raw data rate and the limited hardware resources, it would be
central to find a very simple and fast decorrelation and encoding pair.

1 In the beginning the instrument was called ESI (European SPICA Instrument), but we decided
in the consortium to pay credit to the extra-European contributions by finding a geographically
unrestrictive acronym.
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2 On-Board Compression for SAFARI

SAFARI is planned as an imaging Mach-Zehnder [Mac92] Fourier transform spec-
trometer (FTS). This means that while the FTS mechanism scans over the optical
path differences, the image of the source changes its intensity according to the phase
shift. Four different detector technologies are competing for being selected for SAFARI.
Whichever technology will succeed, three arrays for the different wavelength ranges will
be needed for the FTS output channels. Spectral resolution, sensitivity and scan speed
are given as scientific requirements. They determine the readout rate, which is at least
40 Hz, as the 20 Hz scanning resolution of the FTS mirror have to be Nyquist sampled.
For the following figures I have used this number, even if a higher readout rate of 60 Hz
is used in the final study.

Detector Characteristics

We have become familiar with two of the four detector options that are candidates
for the instrument very well from PACS. These are the bolometers and the Ge:Ga
photoconductors. In the previous chapters we have dealt with data from them and
have a feeling for their signal and noise properties. Just note that the detectors for
SAFARI need to be more sensitive by two magnitudes, so systematic and transient
effects will be much more important.

The silicon bolometers that were used in PACS can be made more sensitive by Bolometers

further cooling. Their biggest problem though is their time constant – at present they
seem to be too slow for the required scan speed. Bolometers are susceptible to transient
effects, such as cosmic rays and solar protons. Their read-out circuits comprise a number
of amplification stages which are by themselves noise contributors. As their fabrication
is difficult, the pixels vary in sensitivity with little correlation.

Transition Edge Sensors (TES) are bolometers with superconducting thermometers TES

[Mau08]. In contrast to semiconductor devices, saturation in a TES means no output
signal, rather than a nonlinear but finite response. The pixels are read and multiplexed
using SQUID (superconducting quantum interface device) amplifiers. As these detectors
are very sensitive, they are also quickly saturated.

Kinetic Inductance Detectors (KID) are fundamentally different to the other de- KID

tector options [Bas08]. When absorbed in the superconductor, the incident radiation
will break Cooper pairs, which result in an excess number of quasi-particles above the
thermal ones. They are read by feeding a high frequency into the channel, and the
resulting resonances are packed closely together in frequency space. The phase change
and/or amplitude change for each resonance feature will be read by a digital readout
circuit. One of the main challenges of the KIDs is that readout process.

The photoconductor (PC) option is completely different, as in this case SAFARI Photoconductors

will not be a FTS, but use a grating just as in PACS to derive the spectrum. It
would require a significantly longer measurement to derive a spectrum with the same
resolution and sensitivity as with the FTS. The photoconductor option combines two
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Ge:Ga arrays with a BIB (Blocked Impurity Band) array. The Ge:Ga detectors are
read non-destructively at a much faster rate to measure accurately the accumulation on
the integrating capacitor. In Chapter 5 we have seen what this means, we know that
they saturate quickly and learned about nonlinearities and memory effects. This option
generates the highest data rate and some sort of on-board data reduction like in PACS
is then mandatory.

Processing Scenarios

According to present planning SPICA will have a daily telecommunication periodAvailable Data Rate

(DTCP) of 8 hours, with a telemetry budget of ∼30 GB/day. Various uncertainties,
such as the precise downlink rate, the telemetry portion of housekeeping (status values
sent independently of the science data) and other non-scientific data – or whether there
will be observations during downlink or not – lead to only a rough estimate for the
average sustainable data rate. Even the metrology1 will have a significant share as well.
To derive a number we can work with we use 30 (GB/day) / 86400 (s/day) = 2.78
Mbit/s.

Instrument Raw Data Rate

In the instrument definition document [Gri09b] the array dimensions, their readout
rates and data types are specified. Three of the four proposed detector technologies
(TES, KID and bolometers) have similar dimensions, which are 64×64, 38×38 and
20×20 pixels. The table below gives the data rates for different ADC bit depths. Note
that in the definition only 12 bit analogue/digital conversion is discussed, but in practice
a 16 bit data type is likely to be taken to have better control over gain and bias – such
as in the case of PACS.

sample rate data rate @40 Hz
µm array pixels samples @40Hz 12 bit ADC 14 bit ADC 16 bit ADC

35–60 64×64 4096 163840 1.97 Mbit/s 2.29 Mbit/s 2.62 Mbit/s
60–110 38×38 1444 57760 0.69 Mbit/s 0.81 Mbit/s 0.92 Mbit/s
110–210 20×20 400 16000 0.19 Mbit/s 0.22 Mbit/s 0.25 Mbit/s

5940 237600 2.85 Mbit/s 3.33 Mbit/s 3.80 Mbit/s

Table 6.1: Baseline data rates. The three distinctive ADC scenarios result in different data rates.

In case of the KIDs, it is possible to transmit twice the data, because the signal can
be derived by the amplitude or by the phase shift of the resonance feature. In case this
kind of redundancy is required, the data rate doubles.

The fourth detector option is to use a grating and Ge:Ga photoconductors, whichPC data rates

need to be read in a non-destructive way at a much higher rate. This also increases the
data rate as shown in the table beneath. Note that for the short wavelengths, a BIB
array is used.

1 Timing and positional parameters needed to interpret the detector data. If these are attached to
the science frames we would call them headers.
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sample rate data rate @256 Hz
PC µm array pixels samples @256Hz 12 bit ADC 14 bit ADC 16 bit ADC

42–110 32×32 1024 262144 3.15 Mbit/s 3.67 Mbit/s 4.19 Mbit/s
110–210 32×32 1024 262144 3.15 Mbit/s 3.67 Mbit/s 4.19 Mbit/s

2048 524288 6.29 Mbit/s 7.34 Mbit/s 8.39 Mbit/s

BIB µm @10Hz @10 Hz, 12 bit @40 Hz, 16 bit

35–40 256×256 65536 655360 7.86 Mbit/s 41.94 Mbit/s

Table 6.2: Data rates for the Photoconductors. The grating with photoconductors option has consid-
erably higher data rates due to the higher readout rate. In here, the numbers for the Ge:Ga
arrays and for the BIB array are given separately.

Obviously, the amount of raw data generated by the photoconductors in combination
with the BIB array is much higher than for the other detector technologies and reduction
steps have to be included as the typical lossless compression factor of 2 (which is found
in PACS for this detector type) is not sufficient.

SAFARI shall also have the possibility of direct imaging. In this case, the main Imaging

difference is that the temporal signal of a pixel is not an interferogram (IFGM), but a
direct measure of brightness, such as in case of PACS photometry.

Given the numbers in the tables above – which can at this point only be rough Need for On-Board
Processingestimates – and the fact that the latest trend is even towards a higher readout rate

of 60 Hz, a form of data preprocessing with successive entropy encoding that yields
a compression factor of 2 is mandatory for proper instrument operation. We know
that the two detector types (photoconductors and bolometers) that are used in PACS
generate data with very little mutual information at a low signal to noise ratio. The
TES and the KIDs have signals that are presumably similar to the bolometers and I
also expect very little spatial correlation with these detector options.1

For these types of detectors I have presented lossy and lossless reduction and com-
pression steps in Chapter 4 and 5. However, special attention must be paid to the
fact that we have a FTS here and the data are samples in Fourier space. The effect
of nonlinearities and memory effects must be studied well before lossy steps such as
quantisation or decimation can be used.

The design of the warm electronics foresees an instrument control unit (ICU) which Available Resources

is responsible for on-board data handling. Its current design is based on a Leon32

SoC (System on Chip), which can be implemented as a FPGA or as an ASIC. In the
FPGA implementation it has 20 MIPS, which is comparable with the DSP used in
Herschel/PACS. Given the fact that the ICU also has the task of commanding and
is the interface to the spacecraft, it cannot dedicate all resources to compression. In
case floating-point operations need to be executed, an FPU must be included in the
SoC design, but for now I’ll show how to achieve a lossless factor of 2 with that little
processing power for SAFARI in integer arithmetics. As a basis for this it is crucial to
have a solid number for the entropy of the data to encode.

1 At the moment only few pixels have been fabricated and I have not received real test data yet.
2 Leon is a high performance 32-bit SPARC V8 processor platform for space applications.
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Simulation of Representative Data

In general, the achievable limit of lossless data compression is the entropy of the
decorrelated data. If the compression factor gained by such techniques is not sufficient,
then lossy reduction steps have to be included in the data processing.

To get as representative test data for SAFARI as possible, I have combined an
ISO/LWS spectrum with real data from Herschel/PACS and design parameters from
SAFARI. For parameters that were uncertain I chose values that would lead to data
that are harder to compress. So an array of 64×64 pixels was simulated, each pixel was
given a modified ISO/LWS spectrum that would agree with SAFARI parameters. The
data cube was multiplied with a galactic input sky map and photon noise was added.
For the FTS we can consider the total intensity at a given optical path difference (OPD)
x [Gri83]:

I(x) =

∫ ∞

−∞
D(k)I(k) cos(2πkx)dk

with k being the wavenumber 1/λ and D(k) is a window function being 1 within the
bandwidth and 0 outside. The scan of the FTS was simulated according to SAFARI
design parameters (scan length and speed). Intensity is lost at larger OPDs due to
imperfections in the alignment of the optical elements and their surfaces, leading to a
drift of the absolute signal during the scan, so an artificial intensity drift was applied
to achieve the typical look of Herschel/SPIRE interferograms. In the end, detector
characteristics, such as bias, flatfield, the relative spectral responsivity function (RSRF),
readout noise, dynamic range, and a sampling rate of 40 Hz were used to modify the
IFGMs.

The result is a dataset with 8240 frames for each of the 64×64 pixels, where each
pixel sees the same original input spectrum. This is not a problem, as we will concentrate
on a single pixel now. Figure 6.1 shows such a typical IFGM.

Decorrelation

My experience with the detector technologies used for the far-infrared is that it
is not useful to go for a 2D decorrelation of the image frame, because neighbouring
pixels have too little correlation that could be exploited. Instead, the best strategy is
to concentrate on the 1D signals of the individual pixels – the IFGMs.

The fastest reversible operation that will bring the IFGM down to noise around zero
is a differentiation. This has of course the negative side-effect of increasing the uncorre-
lated readout noise by

√
2, i.e. half a bit per sample. The next best decorrelation would

be a running average, but this one suffers from the oscillations of the signal component.
LPC is too CPU-intense to be considered for SAFARI unless a dedicated coprocessor
is used, as are transform-based decorrelations such as DCT and the popular CDF 9/7
wavelet. In any case, these sophisticated techniques can save at maximum half a bit
per sample with respect to differentiation. Another reason against sophisticated tech-
niques is that the buffer sizes of the on-board electronics will only be able to store a few
seconds of data, i.e. only short fractions of a full IFGM which takes more than 200 sec-
onds according to the current instrument design. Figure 6.2 shows how a differentiated
IFGM looks like. This works sufficiently well as a starting point for entropy encoding.
To get a better impression of the statistics, I draw the histogram of the decorrelated
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Figure 6.1: Typical pixel IFGM. (Left) An example IFGM from a pixel with H=7.32 bits/sample.

example pixel in Figure 6.3. For an overview of the entire decorrelated dataset another
histogram is also given, showing the entropies that make up the dataset.

The average entropy for the simulated dataset is 7.32 bits/sample. With this number
we can update the table of data rates for the interferometer options.

sample rate data rate @40 Hz,
µm array pixels samples @40Hz H=7.32 bits/sample

35–60 64×64 4096 163840 1.20 Mbit/s
60–110 38×38 1444 57760 0.42 Mbit/s
110–210 20×20 400 16000 0.12 Mbit/s

5940 237600 1.74 Mbit/s

Table 6.3: Compressed data rates. Here are estimated data rates using differentiation and entropy cod-
ing. Note that with more sophisticated decorrelations this can be brought down to 1.62 Mbit/s.

Encoding

The actual entropy coding is another design driver for the warm electronics of the
instrument, at least, whether a dedicated coprocessor is required or not. Ideally, we
would use arithmetic compression, which lets us encode the data down to the entropy
limit.

To stay within the Leon3 resources, we would propose a static encoding model Arithmetic
Compressionderived from the histograms of differentiated IFGMs. A fully adaptive model for the

5 bit range [-16:15] requires on average 16 updates of the cumulative frequency table
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Figure 6.2: Decorrelated IFGM. The example IFGM has been differentiated. That way the intensity drift
and the oversampled features of the IFGM are taken out and what remains is mainly the read-
out noise.

per sample, leading to ∼4 MIPS. A static model requires only a look-up table and thus
stays far below 1 MIPS. The actual arithmetic encoding is independent of the used
model. It takes about 10 operations per sample without writing the output bits into
the compressed bit stream. This in turn takes 20 operations per sample. So, encoding
needs ∼30 operations/sample, leading to ∼7 MIPS. All in all, we end up around 10
MIPS for arithmetic compression, which is already 50% of the Leon3 resources. But
still, as the entropy of 7.32 bit/s is considerably larger than 5 bits, the encoding would
not be very efficient. An increased adaptive model would already require ∼100 updates
per sample and exceed the available CPU resources.

The fastest way of entropy encoding is to use a look up table of fixed codewords.Fixed-Size Codes

For this purpose we could use fixed Huffman or Golomb codes. They come close to the
entropy, but a penalty of another half a bit must be foreseen and we end up with 1.86
Mbit/s for our simulated dataset. The advantage is that the whole encoding procedure
consists of a look up in a table and writing the codeword into the bit stream. As
mentioned before, this encoding takes about 20 operations/codeword if no dedicated
CPU instructions are available. The disadvantage is that the used fixed code can become
inefficient if the properties of the noise change.

If I have to give some sort of least demanding still meaningful encoding I can think
of a code which does not need the bit stream encoding, but collects whole bytes. Then
every decorrelated value between −127 and 127 would be directly coded as a byte and
−128 would be used to escape a larger 16-bit value. For the simulated dataset this leads
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Figure 6.3: Histograms of decorrelated IFGMs. (Left) The histogram of the decorrelated example pixel
has a distribution around zero. It is slightly over-balanced on the left side due to the down-
ward intensity drift of the IFGM. (Right) The entropies of all 4096 simulated pixels, shown
as a histogram. Apart from a few (∼1%) dead pixels with HS=0 most pixels have an entropy
around 7–8 bits/sample.

to 1.93 Mbit/s. This however gets quickly inefficient as soon as the average entropy
is above 8 bit/sample as in the case of glitches, but the CPU requirements would be
around 2 MIPS.

Reduction for the PC and Optional Steps

The grating with photoconductors option requires lossy reduction steps of factors
around – let’s say 8. This strongly depends on the readout frequency, especially for
the BIB array with its many pixels. A simple reduction like averaging of 8 frames for
the two Ge:Ga arrays would require 10 operations for 8 samples and consume only 0.6
MIPS, followed by decorrelation and encoding similar to the IFGM data. As test data
for this option we used input from the PACS spectrometer. Slope fitting, where the
slope s = (

∑

x
∑

y − n
∑

xy)/(
∑

x
∑

x − n
∑

xx) requires ∼200 operations for a 64
sample ramp and may require floating point addition and multiplication. In any case,
less than 1 MIPS for the two Ge:Ga arrays. To further speed this up, one can also use
the faster

∑

xy − (n+ 1)/2
∑

y as a measure for the slope, which works in integer.
Dealing with the BIB array, for example through binning by the OBSW is equally

possible if the sampling rate stays below 10 Hz. But even at this rate a similar lossy
reduction factor as for the Ge:Ga arrays must be accomplished, such as by 2×4 binning
or averaging of 8 frames. This is still possible with the resources of the Leon3, but for
a sampling rate of 10 Hz the resources get tight.

One simple strategy for lossy data reduction is to discard data from pixels that are Optional Lossy
Reduction Stepsnot needed or whole frames that have no use on ground. Pixel masking can be done

by on-board tables that would be uploaded and used by dedicated control procedures.
Another strategy is to reduce the entropy by quantisation. If combined with transform
coding, this will degrade the linearity of the data. If applied directly to the measures,
additional digitisation noise is added.
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Implementation

Here are some early considerations of what will play a role for the actual implemen-
tation. These are relevant for the design of the actual ICU hardware.

Decorrelation. Differencing can be done in place, but the values need to be mapped
from signed to unsigned data type. This works in place as well and the combined
processing resources are about 5 operations per sample, or roughly 1 MIPS.

Encoding. Glitches and other outliers exceeding the intended range (5 bit) of the
entropy coder shall be encoded with an escape character followed by a fixed-size
codeword depending on the valid range of values, e.g. 16 bits. Since SPICA will
operate in a similar environment as Herschel, we can make an estimate based
on the glitch rates, which are about 1 event in 5–10 seconds per pixel. In a
differentiation/encoding scheme this increases the data rate by only a few percent
(2.2% for the one described above). As SAFARI will have more sensitivity, much
more weak glitches are likely to be seen, but the overall increase should be still in
the order of 10%.

Buffer size. In order to operate on the data, each sample must be stored in a
32 bit data word. This leads to a typical buffer size of ∼1 MB/s (950400 bytes).
A positive feature of the differentiation is that it can be done in place, thus no
work buffer is required. Also, arithmetic compression can be made memoryless
depending on the type of prediction model used.

Codeword encoding. The encoding options discussed above need some form of bit
stream encoding. The advantage is, that the bit stream needs not be seekable and
can be implemented in the form of a cache. So, essentially the task is to attach
these n bits to the already cached bits, where n is a number from 1 to 32. Typical
assembler instructions needed to do so are shift, add, subtract, and, or.

Here is an implementation of a bit stream encoding function in C. For PACS, I
rewrote this function in assembler to save CPU power, as it is heavily used there.

Listing 6.1: PutNBits

1 # define u4 unsigned int

3 /* needs an initialised array of bit masks , create it once with: */

4 for(i=0; i < 32; i++) { WordMaskRight [i] = 0xfffffffe << (31-i); }

6 void putnbits (u4 value , u4 bitOffset , u4 nbits , u4 *dest)

7 {

8 u4 A, A1 , A2, A3, offs = bitOffset >> 5, *dest1;

9 dest1 = dest + offs;

11 /* end of the bit string with local offset , overflowed bits: A-32*/

12 A1 = (bitOffset & 0x1f);

13 A = A1 + nbits;

15 if (A <= 32) // the pattern fits into one word

16 {

17 *( dest1) &= WordMaskRight [A1]; /* clear destination */

18 *( dest1) |= (value <<(32- A)); /* assign value */

19 }
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21 else // if the pattern to write falls on two words

22 {

23 A2 = 32 - A1;

24 A3 = A - 32;

25 putnbits (value >> A3, bitOffset , A2, dest); /* first part */

26 putnbits (value , bitOffset +A2, A3 , dest); /* second part */

27 }

28 return;

29 }

Recommendation for SAFARI

A lossless compression factor of 2 can be realised for the interferometer options
of SAFARI without the need for extra hardware, although a Leon3 is typically 50%
busy with this task, where most of this comes from the bit stream encoding. This
factor is achievable with simple techniques. The implementation would have to be in
assembler, otherwise the risk of exceeding the CPU resources is too high. The memory
requirements are low, compression can even be carried out with memoryless algorithms,
but for real-time buffering I suggest to work on data chunks of a few seconds, leading
to a required DRAM of 8–16 MiB.

For the photoconductors option lossy reduction steps have to be considered. De-
pending on the readout rate of the BIB array, a coprocessor may be required. Also, for
optional on-board deglitching a dedicated chip would be needed. The CPU and mem-
ory requirements of this scenario are 2–4 times higher than for the IFGM options and
floating point operations would be favourable for addition and multiplication. There is
also a need to synchronise the reduction steps with the data (the start of a ramp).

SPICA/SAFARI is a challenging new project in many ways – also when it comes Further
Involvementto on-board compression. We can base our contribution on a decade of software de-

velopment for PACS and thereby provide a wealth of experience. On the other hand
working on a FTS is a chance to acquire new skills, because any lossy steps would have
to be studied extensively with respect to their effects on the Fourier reconstruction. If
SAFARI is selected to be built and our institute stays involved I will gladly accept the
challenge, even if this means 10 more years in the business ,.

Hi Roland,

I just am editing the information from your note into the
instrument study. Well done, it is a good report.

Thanks

Doug
—email received on the 19th of August, 2009
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Epilogue

S o, PACS is working, I’m full of ideas of how to further improve the instrument and
the next planned missions are already on the horizon. I have joined the SAFARI

instrument consortium for the Japanese SPICA mission and I am in contact with PIs
from other missions that are currently being planned. Just recently Anna Di Gior-
gio, the warm electronics developer of SPICA/SAFARI surprised me with her words,
“Roland, we can learn so much from you”. This encourages me to continue my work
and take on the new challenges in the European space programme.

In the prologue I have named inventions that revolutionised astronomy. Maybe Compressed
Sensingwhen reading this it came to your mind that it seems we would have everything now –

the best telescopes with the best detectors at the best places to observe. So you might
wonder what the next revolution might be, given these achievements. Well, if I have to
place a bet – it’s the way we measure and analyse the data and I can already name a
candidate invention that has the potential of changing the way we measure, it’s called
Compressed Sensing . Together with French colleagues I am currently researching how
this new conception can be used to improve the performance of PACS and if this is the
next big leap forward.

They say a technology needs to be obsolete on ground to be qualified for space.
—Dinner conversation with Marc Sauvage
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This thesis has been set in LATEX, edited in emacs, plots were done in gnuplot, I
used a little metapost and lots and lots of self-made tools. The complete PACS on-
board software in its current version 13.96 has 16000 lines of C code and 1000 lines of
assembler code. The de-compression module that I provided for the Herschel ground
segment infrastructure has almost the same number of lines, written in Java�. All the
plots in this thesis were made with 8000 lines of gnuplot scripts. The C codes for the
various manipulations of Mona Roli add up to 12000 lines. Another 3000 lines are
composed of shell scripts and awk scripts. Finally, all the LATEX code for this thesis
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Zusammenfassung

Wenn ein Satellit aus gutem Grund 50 Messwerte produziert, aber nur 5 zur Erde
übertragen kann, stellt sich die Frage: Wie können die Daten gesendet werden, ohne
dass wichtige Informationen verloren gehen? Probleme wie dieses kommen bei astrono-
mischen Forschungssatelliten vor, da deren Detektoren vor allem in den letzten Jahren
enorm gewachsen sind. Natürlich gibt es auch Fortschritte bei der Übertragung der
Daten, die jedoch bei weitem nicht ausreichen, um mit dem Mengenzuwachs fertig zu
werden. Die naheliegende Lösung des Problems besteht in der Datenkompression. Das
allein muss nicht ausreichen, da wissenschaftliche Daten verrauscht sind und sich nur
in geringem Maß komprimieren lassen. Also geht man einen Schritt weiter und baut
Reduktionsschritte ein, die sonst Astronomen am Boden vornehmen würden. Ein Mess-
gerät, welches in der Lage ist, in den oben genannten 5 Werten das Maximum an
wissenschaftlicher Information unterzubringen, nenne ich einen intelligenten Detektor.

Die vorliegende Arbeit stellt eine Basis zur Entwicklung von On-Board Software
für astronomische Satelliten dar. Sie dient als Anleitung und Nachschlagewerk und
zeigt anhand der Projekte Herschel/PACS und SPICA/SAFARI, wie aus den Grund-
lagen weltraumtaugliche Flugsoftware entsteht. Dazu gehören das Verstehen des wis-
senschaftlichen Zwecks, also was soll wie gemessen werden und wofür ist das gut,
sowie die Kenntnis der physikalischen Eigenschaften des Detektors, das Beherrschen
der mathematischen Operationen zur Verarbeitung der Daten und natürlich auch die
Berücksichtigung der Umstände, unter welchen der Detektor zum Einsatz kommt.

Diese Dissertation basiert auf Entwicklungen für Herschel/PACS. Sie beschreibt de-
tailliert, wie die Messdaten des Instruments an Bord verarbeitet werden und enthält
Programmteile, welche nun in 1,5 Millionen Kilometer Entfernung eingesetzt werden.
Da das Problem der Kommunikation im Weltraum gegenwärtige und zukünftige Welt-
raummissionen zu Reduktionsschritten zwingt, wie sie bisher nur am Boden durgeführt
worden sind, bedeutet das zugleich, dass den Astronomen nicht mehr Rohdaten zur
Verfügung stehen, sondern zumindest teilweise reduzierte Datenprodukte.

Nach all den durchwegs schwierigen Jahren wurde Herschel am 14. Mai 2009 gestar-
tet. In den ersten Monaten im Weltraum wurde das Instrument auf seine Leistungs-
fähigkeit überprüft und man kann mit Sicherheit sagen, dass die nun folgenden drei bis
vier Jahre fantastische Entdeckungen im kalten Universum bringen werden.
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