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Abstract

In contrast to the traditional notion of a supercomputer, which has many processors
connected by a local high-speed computer bus, heterogeneous computing environments
rely on ”complete” computer nodes (CPU, storage, network interface, etc.) connected to a
private or public network by a conventional network interface. Computer networking has
evolved over the past three decades, and, like many technologies, has grown exponentially
in terms of performance, functionality and reliability. At the beginning of the twenty-first
century, high-speed, highly reliable Internet connectivity has become as commonplace as
electricity, and computing resources have become as standard in terms of availability and
universal use as electrical power.

To use heterogeneous Grids for various applications requiring high-processing power,
researchers propose the notion of computational Grids where rules are defined relating to
both services and hiding the complexity of the Grid organization from the users. Thus,
users would find it as easy to use as electrical power [1].

Generally, there is no widely accepted definition of Grids. Some researchers define it as a
high-performance distributed environment. Some take into consideration its geographically
distributed, multi-domain feature [2]. Others define Grids based on the number of resources
they unify [3].

Parallel database systems [4] gained an important role in database research over the
past two decades due to the necessity of handling large distributed datasets for scientific
computing such as bioinformatics, fluid dynamics and high energy physics (HEP) [5]. This
was connected with the shift from the (actually failed) development of highly specialized
database machines to the usage of conventional parallel hardware architectures. Generally,
concurrent execution is employed either by database operator or data parallelism [6].
The first is achieved through parallel execution of a partitioned query execution plan by
different operators, while the latter is achieved through parallel execution of the same
operation on the partitioned data among multiple processors.

Parallel database operation algorithms have been well analyzed for sequential processors.
A number of publications have covered this topic, such as [7, 8, 9], which proposed and
analyzed these algorithms for parallel database machines. Until now, to the best knowledge
of the author, no specific analysis has been done so far on parallel algorithms with a focus
on the specific characteristics of a Grid infrastructure.

The specific difference lies in the heterogeneous nature of Grid resources. In a ”shared
nothing architecture”, which can be found in classical supercomputers and cluster systems,
all resources such as processing nodes, disks and network interconnection have typically
homogeneous characteristics as regards to performance, access time and bandwidth. In
contrast, in a Grid architecture heterogeneous resources are found that show different
performance characteristics. The challenge of this research is to discover the way how to
cope with or to exploit this situation to maximize performance and to define algorithms
that lead to a solution for an optimized workflow orchestration.

To address this challenge, we developed a mathematical model to investigate the per-
formance behavior of parallel database operations in heterogeneous environments, such as
a Grid, based on generalized multiprocessor architecture. We also studied the parameters
and their influence on the performance as well as the behavior of the algorithms in he-
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terogeneous environments. We discovered that only a small adjustment on the algorithm
is necessary to significantly improve the performance for heterogeneous environments. A
graphical representation of the node configuration and an optimized algorithm for finding
the optimal node configuration for the execution of the parallel binary merge sort have
been developed.

Finally, we have proved our findings of the new algorithm by implementing it on a
service-orientated infrastructure (SODA). The model and our new developed modified
algorithms have been verified with the implementation.

We also give an outlook of useful extensions to our model e.g. using performance indices,
reliability of the nodes and approaches for dynamic optimization of workflows.
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Zusammenfassung

Im Gegensatz zu dem traditionellen Begriff eines Supercomputers, der aus vielen mittels
superschneller, lokaler Netzwerkverbindungen miteinander verbundenen Superrechnern
besteht, basieren heterogene Computerumgebungen auf ”kompletten” Computersystemen,
die mit Hilfe eines herkömmlichen Netzwerkanschlusses an private oder öffentliche Netz-
werke angeschlossen sind. Der Bereich des Computernetzwerkens hat sich über die letzten
drei Jahrzehnte entwickelt und ist, wie viele andere Technologien, in bezug auf Performan-
ce, Funktionalität und Verlässlichkeit extrem gewachsen. Zu Beginn des 21.Jahrhunderts
zählt das betriebssichere Hochgeschwindigkeitsnetz genauso zur Alltäglichkeit wie Elek-
trizität, und auch Rechnerressourcen sind, was Verfügbarkeit und universellen Gebrauch
anbelangt, ebenso Standard wie elektrischer Strom [1].

Wissenschafter haben für die Verwendung von heterogenen Grids bei verschiedenen re-
chenintensiven Applikationen eine Architektur von computational Grids konzipiert und
darin Modelle aufgesetzt, die zum einen Rechenleistungen definieren und zum anderen
die komplexen Eigenschaften der Grid-Organisation vor den Benutzern verborgen halten.
Somit wird die Verwendung für den Benutzer genauso einfach wie es möglich ist elektri-
schen Strom zu beziehen. Grundsätzlich existiert keine generell akzeptierte Definition für
Grids. Einige Wissenschafter bezeichnen sie als hochleistungsfähige verteilte Umgebung.
Manche berücksichtigen bei der Definierung auch die geographische Verteilung und ihre
Multi-Domain-Eigenschaft [2]. Andere Wissenschafter wiederum definieren Grids über die
Anzahl der Ressourcen, die sie verbinden [3].

Parallele Datenbanksysteme [4] haben in den letzten zwei Jahrzehnten große Bedeutung
erlangt, da das rechenintensive wissenschaftliche Arbeiten, wie z.B. auf dem Gebiet der
Bioinformatik, Strömungslehre und Hochenergie physik die Verarbeitung riesiger verteilter
Datensätze erfordert [5]. Diese Tendenz resultierte daraus, dass man von der fehlgeschlage-
nen Entwicklung hochspezialisierter Datenbankmaschinen zur Verwendung herkömmlicher
paralleler Hardware-Architekturen übergegangen ist. Grundsätzlich wird die gleichzeitige
Abarbeitung entweder durch verteilte Datenbankoperationen oder durch Datenparallelität
gelöst [6]. Im ersten Fall wird ein unterteilter Abfragenabarbeitungsplan durch verschiede-
ne Datenbankoperatoren parallel durchgeführt. Im Fall der Datenparallelität erfolgt eine
Unterteilung der Daten, wobei mehrere Prozessoren die gleichen Operationen parallel an
Teilen der Daten durchführen.

Es liegen genaue Analysen von parallelen Datenbank-Arbeitsvorgängen für sequenzielle
Prozessoren vor. Eine Reihe von Publikationen, wie z.B. [7, 8, 9] haben dieses Thema ab-
gehandelt und dabei Vorschläge und Analysen für parallele Datenbankmaschinen erstellt.
Bis dato existiert allerdings noch keine spezifische Analyse paralleler Algorithmen mit dem
Fokus der speziellen Eigenschaften einer ”Grid”-Infrastruktur.

Der spezifische Unterschied liegt in der Heterogenität von Grid-Ressourcen. In ”sha-
red nothing”-Architekturen, wie man sie bei klassischen Supercomputern und Cluster-
Systemen vorfindet, sind alle Ressourcen wie z.B. Verarbeitungsknoten, Festplatten und
Netzwerkverbindungen angesichts ihrer Leistung, Zugriffszeit und Bandbreite üblicherweise
gleich (homogen). Im Gegensatz dazu zeigen Grid-Architekturen heterogene Ressourcen
mit verschiedenen Leistungseigenschaften. Der herausfordernde Aspekt dieser Arbeit be-
stand darin aufzuzeigen, wie man das Problem heterogener Ressourcen löst, d.h. diese

3



Ressourcen einerseits zur Leistungsmaximierung und andererseits zur Definition von Al-
gorithmen einsetzt, um die Arbeitsablauf-Orchestrierung von Datenbankprozessoren zu
optimieren.

Um dieser Herausforderung gerecht werden zu können, wurde ein mathematisches Mo-
dell zur Untersuchung des Leistungsverhaltens paralleler Datenbankoperationen in hete-
rogenen Umgebungen, wie z.B. in Grids, basierend auf generalisierten Multiprozessor-
Architekturen entwickelt. Es wurden dabei sowohl die Parameter und deren Einfluss auf
die Leistung als auch das Verhalten der Algorithmen in heterogenen Umgebungen beob-
achtet. Dabei konnte man feststellen, dass kleine Anpassungen an den Algorithmen zur
signifikanten Leistungsverbesserung heterogener Umgebungen führen. Weiters wurde eine
graphische Darstellung der Knotenkonfiguration entwickelt und ein optimierter Algorith-
mus, mit dem ein optimaler Knoten zur Ausführung von Datenbankoperationen gefunden
werden kann.

Diese Ergebnisse zum neuen Algorithmus wurden durch die Implementierung in einer ser-
viceorientierten Architektur (SODA) [10] bestätigt. Durch diese Implementierung konnte
die Gültigkeit des Modells und des neu entwickelten optimierten Algorithmus nachgewie-
sen werden.

In dieser Arbeit werden auch die Möglichkeiten für eine brauchbare Erweiterung des
vorgestellten Modells gezeigt, wie z.B. für den Einsatz von Leistungskennziffern für Algo-
rithmen zur Findung optimaler Knoten, die Verlässlichkeit der Knoten oder Vorgehens-
weisen/Lösungsaufgaben zur dynamischen Optimierung von Arbeitsabläufen.
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1 Introduction

1.1 Motivation

Parallel database systems and their operations are well analyzed for special multiprocessor-
and cluster environments. Also the area of distributed database systems are thoroughly
investigated. The findings of this research are implemented in many commercial products.
The underlying parallel algorithms of the most important operations (like sort, join and
aggregate) are optimized and tuned to these environments. The field of parallel database
operations in heterogeneous environments does not attract much attention. The relevance
of the usage of optimized algorithms in heterogeneous environments has been growing in
the last years. The reason for it is the demand for distributed database systems to handle
large data-sets for scientific computing such as bioinformatics, fluid dynamics and high
energy physics (HEP) [5]. The arising questions are:

• Which optimizations of parallel database algorithms in heterogeneous environments
are possible ?

• How can these parallel algorithms be described in a mathematical model ?

• How can the algorithms be compared in terms of performance, flexibility and practical
usage ?

The goal was to find answers to these questions:

• Are there present algorithms for parallel database operations that can be optimized
for heterogeneous environments ?

• How can the performance and the adaptability be optimized in such environments ?

• How can these findings be used in a query-optimizer ?

We have done following steps in our research to find answers to the previous questions
by:

• Analyzing the existing parallel algorithms of the most important database operations
in conventional environments.

• Building an analytical model to describe the characteristics of heterogeneous envi-
ronments.

• Investigating the existing algorithms in terms of performance in this model for the
purpose of optimizing it.

• Studying the performance behaviors and the influencing variables of the heteroge-
neous environments on these algorithms.

• Optimization of the workflow orchestration.

• Implementation of the model to justify and proof the results found.
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1.2 Overview

This thesis presents an analytical study of parallel algorithms for relational database ope-
rations in a heterogeneous environment and compares the findings to the classical genera-
lized multiprocessor framework. It also describes an optimization algorithm to maximize
performance for a heterogeneous environment. This optimization algorithm can be used
in a Grid environment for the orchestration of the execution workflow.

We developed a concise but comprehensive analytical model of parallel algorithms for
sorting, joining and aggregation. In our approach, we focussed on a limited number of cha-
racteristic parameters to keep the analytical model clear. It is shown that an expressive
model can be built upon only three characteristic parameter sets: the node processing per-
formance; the network; and the disk bandwidth. Based on these results, the thesis proves
that exploiting the heterogeneity of the Grid by smart enhancement increases markedly
the performance of the algorithms for database operations.

We believe that the Grid delivers a suitable environment for parallel and distributed
database systems. We are sure there is an urgent need for novel database architectures
and application domains with huge data sets to administer, search and analyze, such as
high-energy physics experiments, bioinformatics and drug design. This situation is reflected
by a specific impetus in distributed database research in the Grid. This research started
with the DataGrid project [11] and, currently, the OGSA-DAI project [12].

In the past, research was conducted primarily in the area of distributed data manage-
ment, but now there is a focus on research of parallel database operators targeting Grid
architectures (see [13, 14]). We focused on the most important operation in relational da-
tabase systems, sorting, because it is an extremely demanding operation in such a system.
Sorting is one of the most frequently used operators in query execution plans generated by
database query optimizers. Therefore, its performance influences dramatically the perfor-
mance of the overall database system [15, 16]. Generally, sorting algorithms can be divided
into main memory based (internal) and disk based (external) algorithms [17]. An external
sorting algorithm is necessary if the data set is too large to fit into the main memory.
Obviously, this is a common case in database systems. Therefore, in this thesis we present
an analysis and evaluation of the most prominent parallel sort, that is, join and aggregate
algorithms in a Grid architecture, and compare the results to the well-known analysis and
findings of Bitton et al. [18].

These algorithms are investigated and reviewed under the specific characteristics of the
Grid environment. And the surprising fact, justified by the findings of this research and
resulting from the characteristic situation of the Grid, is that some results of Bitton et al.
on the general performance of these parallel algorithms for a homogeneous multi-processor
architecture are invalidated and reversed for a Grid environment. In a Grid environment,
the performance of these algorithms can be improved by choosing an adapted workflow
layout on the Grid, taking into account the specific node and the connecting network
characteristics.

These stimulating results lead to consequences for the design of database query execution
workflows on the Grid and the development of novel cost-based broker policies of the Grid
middleware.

1.3 Organization of this Thesis

In chapter 1 we describe our motivation to do this work, the major questions at the
beginning of this research and also a short overview.

The chapters 2 and 4 are designed to give an overview in the state of the art of relational
database system infrastructures.

10



Chapter 2 gives a short introduction in relational database system infrastructures. The
relational model from Codd, the most important relational operators and query languages
are also described.

Chapter 3 describes modern database system architectures with a section of distributed
database management systems

In chapter 4 the common parallel database operations and their algorithms are presented.
In the last section query optimization in parallel and distributed database systems are also
introduced. The section of query optimization is important to understand our approach
of workflow optimization.

Chapter 5 describes heterogeneous architectures for parallel database systems. This
chapter includes sections with workflow systems and database systems in heterogeneous
environments as well as sections for our developed static heterogeneous model. We in-
troduce the modification of the traditional parallel database operations to optimize their
performance in heterogeneous environments. An in depth performance evaluation of the
modified algorithms compared to the unmodified algorithms is presented. The last section
covers the results of the modified algorithms and a new workflow orchestration algorithm
has been defined.

The optimization of the workflow orchestration developed in the previous chapter is
shown in chapter 6. For this purpose we developed a graphical representation of our sta-
tic heterogeneous infrastructure and an algorithm, the so called Perfect Binary Tree
Search Algorithm, for the optimal node configuration in the modified parallel data-
base sort operation. Based on the result of this search algorithm an optimized workflow
execution process is presented.

A real implementation of the static heterogeneous model with the modified and unmo-
dified parallel database operations is presented in chapter 7. In this chapter we introduce
a service oriented workflow environment where the operations have been implemented.
Sections with the implemented prototype and an in depth performance evaluation are also
included in this chapter.

Chapter 8 describes extensions of our static heterogeneous model. The following exten-
sions have been discussed:

• Performance Indices.

• Reliability Extension.

• Performance Metrics for Workflows.

• Dynamic Optimization of Workflows.

In the section of performance indices we show that it is possible to optimize the node
selection in the workflow orchestration, if the application (the parallel database operations
in our case) and their resource usage are known. The reliability of the involved nodes is an
important factor in heterogeneous environments, especially the number of nodes is very
large, the node selection should be done carefully and depending on their reliability. A
short introduction to performance metrics for workflow is also presented. In the section of
dynamic optimization of workflows we give an overview of the necessary requirements.

The thesis ends with a chapter that contains a conclusion of this thesis, further research
and the statements of the thesis.
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2 Basics of Relational Database Systems

In this chapter we a give an explanation of the relational model, the most important rela-
tional operators and an overview of database-system architectures. The primary function
of this introduction is to understand the concepts of the relational model and their opera-
tors and how they are implemented in database systems. We have carefully investigated
the implementation of relational operators in parallel architectures.

2.1 Relational Model

The relational model is the most established database system model at the moment and
most of the current database systems are based on it [19] because of its solid theoretical
foundation and the ability to use mathematical set operations on relations. It was proposed
by Codd in 1970 [20].

The appropriate database management system DBMS is denoted as the relational da-
tabase management system RDBMS.

The relational model does not only describe the data formally, but it is also directly
implemented by most of the commercial database systems, which means that the data in
the database system is really organized like in the model.

The dominant data manipulation and data definition language is SQL (Structured Query
Language) which was also invented by Edgar F. Codd [21]. The first relational database
systems were:

• 1970: RDMS developed at M.I.T. from L.A. Kraning and A.I. Fillat [22].

• 1974: INGRES (INteractive Graphics and REtrieval System) developed from Micha-
el Stonebraker and Eugene Wong at the University of California, Berkeley, California
[23].

In INGRES the query language QUEL (QUery Language) has been developed. QUEL
was the predecessor of SQL (Structured Query Language). Stonebraker and Wong imple-
mented the ideas of Codd’s paper [24].

The relational model has an advantage in respect to the network- or hierarchial models.
That is to say that nearly the whole data is mathematically describable by the help of the
set theory, which makes relational database systems flexible. Hence most of the definitions
in this model are mathematical. The assumption of the relational model is that all data
is represented as mathematical n-ary relations, an n-ary relation being a subset of the
Cartesian product of n domains.

Operations and requests on the relations are all determined by the relational algebra.
To illustrate the concepts of the relational model a number of different fictitious relations

will be used. These examples may not be like they would actually be implemented in a
database systems in real world.

A relational database system can be seen as a set of tables, where the whole information
is represented, which means that you see the data and the relationships among those data
in the tables. Since this model is mathematically describable a table is called relation,
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from which the relational model takes its name. Due to special characteristics which a
relation must have, every relation is a table but not every table is a relation.

Each relation represents an entity in real world, whereas an entity in a database system
is defined as a set of attributes. In each row of a relation there are values which all belong
to one object of the entity. The set of values of one row is denoted as a tuple. Therefore
a relation is a set of tuples.

In each column of the relation there are values, which are of the same kind but each
value belongs to another object. Being of the same kind means that all values exist in the
set of permitted values, called the domain of the attribute.

In order to be a relation a table has the following characteristics:

• the columns do not have to be ordered

• the rows do not have to be ordered

• there are no identical tuples (set property)

Abbildung 2.1: The relation CUSTOMER

The formality in the relational model is very strict and as mentioned it is based on the
mathematical set theory. So the concept of the relation is also formally defined:

A relation instance r(R) is an instance with the relational schema R. A relational schema
R, denoted by R(A1, A2, ..., An) is a set of attributes R = {A1, A2, ..., An}. For every
attribute Ai the domain Dom(Ai) is the set of all permitted values for this attribute.

Each tuple t of a relation is a set of n values t = {v1, v2, ..., vn} where all values vi are an
element of the domain Dom(Ai) or they have the value null. So the value null is a member
of any possible domain [19]. If any vi is null, it implies that the value for the attribute Ai
is whether not known or it does not exist. Null values can cause a number of problems,
which were discussed for example in [25]. Therefore, null values should be eliminated if
possible.

A relation can also be defined as the subset of the Cartesian product of the domains
that define R [26].

r(R) ⊆ (dom(A1)× (dom(A2)X...(dom(An))

The Cartesian product is the set of all possible combinations of values of the domains.

To explain the formal terms better, in Figure 2.1 there is an example of a relation. So
CUSTOMER is an instance of a relation with the relational schema

CUSTOMER(CustomerID,F irstName,LastName,City, Country)

The domain for the attribute FirstName Dom(FirstName) is a set of all possible first
names. So Dom(LastName) is a set of all possible last names and Dom(CustomerID), for
example, is a set of all possible ID numbers consisting of four numbers. A possible definition
of Dom(FirstName) is the set of all possible string values with a given maximum length
and with some special characters not being allowed to use. Of course the value null is also
a member of this domain.

14



A domain is also often defined as a set of atomic values, whereby atomic values are
not further divisible in a meaningful way as far as the relational model is concerned.
This definition can be explained by means of the CUSTOMER relation. If you merged the
attributes FirstName and LastName into one attribute Name, the domain Dom(Name)
would be made up by all possible first and all possible last names together. These would
not be atomic values, as they are further divisible in a meaningful way.

A tuple of the CUSTOMER relation is for example:

t = {0001,Maria,Anders,Berlin,Germany}

As already mentioned the values in a table, more specifically the columns of a relation do
not need to have a specific order because of the fact that there are never two identical
tuples. So the tuple

t = {Maria,Germany, 0001, Berlin,Anders}

is identically equal to the first one.

As each tuple is unique in a relation, there must be an attribute or a combination of
attributes which is always unique in the relation. So any attribute or any combination of
attributes which has the characteristic to distinctly identify a tuple is called superkey.
They can also consist of more than the minimum number of attributes needed to identify
tuples. So superkeys consist of any combination of attributes which are a subset of the
relational schema and distinctly identify tuples.

Abbildung 2.2: The relation ORDER with the primary key: OrderID

If you have a relation r with the relation Schema R then the superkey SK of R is always
a subset of R. Since two tuples are never identical in R, they must not be identical in SK.
Mathematically that means, if t1[R] 6= t2[R], then t1[SK] 6= t2[SK].

The minimum number of attributes of a superkey is called candidate key. Though, the
attribute or combination of attributes which really has the purpose to distincly identify
tuples is called primary key. The primary key of a relation is mostly the candidate key
with the fewest attributes.

Candidate keys must be chosen carefully. The combination of first and last name for
example is not sufficient to identify tuples distinctly. The combination of first, last name
and date of birth may not be enough too, because there could still be persons with same
characteristics. A candidate key could be the combination of the name and the address of
a person. Certainly, this candidate key would not be a good primary key, since primary
keys should consist of attributes which hardly ever change. So a good primary key would
be the social security number or any other identical number of an object. If there are no
senseful candidate keys in a relation, an ongoing number could be added as an attribute
in the relation. Furthermore it is necessary that the attributes of a primary key are not
nullable, which means that the value null should not be part of their domain. Otherwise
the primary key would not always have the feature to make tuples unique. Of course the
attributes of a candidate key (which are not part of the primary key) can be nullable.

15



In Figure 2.2 there is a relation ORDER. Superkeys of that relation are for example
{OrderID, OrderDate, ShipCity} or {EmployeeID, CustomerID, OrderID}. As candidate
keys are always a subset of superkeys, a possible candidate key could be {OrderID} or
{CustomerID, OrderDate, EmployeeID}. These keys do not have any attributes that you
do not need for identifying tuples. The best primary key, as it is the one with the fewest
number of attributes, would be {OrderID}. In the relational model attributes that are
part of the primary key are underlined, that is why {OrderID} in 2.2 is underlined.

A foreign key is an attribute or again a combination of attributes in a relation r1 which
is a primary key in another relation r2. The relation r1 where the foreign key occurs is
called the referencing relation, while r2 is the referenced relation. The domain of
the foreign key in r1 is always dependent on the values of the primary key in r2. That
means, that in attributes of the foreign key of r1 values can not appear which do not exist
in attributes of the primary key of r2.

According to that the foreign keys are used to represent relationships between the rela-
tions of a database system. As depiction of foreign key and primary key dependencies the
schema diagram is used.

In Figure 2.3 there is a schema diagram of a part of a database system, namely the
relations from Figures 2.1 and 2.2, ORDER and CUSTOMER, and a third relation EMPLOYEE.
The primary key of each of the relations is in the top of the box divided by a horizontal line
from the other attributes of the relation. The dependencies between the relations are shown
by the help of arrows which go from the referencing relation to the referenced relation. So
ORDER has an attribute as primary key {OrderID} and two foreign keys {CustomerID}
and {EmployeeID}. These foreign keys cause the relationship to the referenced relations.

Abbildung 2.3: Schema diagram for the relations CUSTOMER, ORDER and EMPLOYEE

2.2 Query Languages

Every data model needs possibilities for retrieving as well as manipulating data. In order
to fulfill these functions there are query languages for every model. For the relational mo-
del the dominant query language is SQL, derived from Structured Query Language.
Most of the relational database management systems support the SQL Language, as it
has become a standard for the relational data model. In 1986, the American National
Standards Institute (ANSI) and the International Organization for Standardization (ISO)
published an SQL standard, called SQL-86 in the standard ISO/IEC 9075 [19]. Since then
a few new versions followed. At the moment SQL:2008 is the latest release from ISO [27].

There are two classes of query languages. First procedural languages, where it is
specified by the user what data is needed and how to obtain it. Then the systems perform
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the needed operations on the database system and returns the result. In nonprocedural
languages a statement is given to the database management system, which is transla-
ted into a procedure describing the result wished. This procedure manipulates the data
eventually.

Most relational database systems offer a query language that includes elements of both
types, procedural and nonprocedural [19]. The relational algebra, which is a collection of
operations, is not a real query language itself. But it is procedural and the basis for SQL.
By the means of the operations, which are provided by the relational algebra, relations
can be manipulated and the result is always another relation. The operations are divided
into unary and binary operations. Unary operations are the ones which operate on one
relation. The other ones operate on two relations.

2.3 Relational Operations

At first unary operations will be explained. These are the Select Operation and the Project
Operation. Afterwards, the binary operations, working with two relations, are explained.
These are in particular the Union Operation, Set-Difference Operation, Cartesian-Product
Operation, Set-Intersection Operation, Natural Join Operation and the Division Operati-
on.

Select Operation

With the select operation all tuples of a given relation, which satisfy a given condition
can be selected. So the result of a select operation is always another relation. Furthermore
the resulting relation is always a subset of the tuples of the original relation.

For instance, to filter out all customers from our CUSTOMER relation in Figure 2.1, whose
home country is ”Germany” you can use the select operation. The notation is the following:

σCountry=”Germany”(CUSTOMER)

The σ stands for the select operator and then the condition is following which is a boolean
expression. This expression is made up of an attribute name, an operator and usually a
constant value like ”Germany” in our case or another attribute name. Possible operators
are {=, ≤, ≥, <, >, 6=}. At the end of the select operation the name of the relation on
which the operation is carried out, is specified. That is in CUSTOMER our case.

The result of our operation is a relation in which all tuples of CUSTOMER are shown that
have the value true for the boolean condition Country = ”Germany”. The attributes of
the new relation remain the same as in the original relation, as you can see in Figure 2.4.

Abbildung 2.4: Result of σCountry=”Germany”(CUSTOMER)

As the condition expression can be made up of two attribute names, you have the
possibility to compare two attributes of one tuple. If you wanted to get all customers
whose first name is the same as their last name, you would write:

σFirstName=LastName(CUSTOMER)

In our CUSTOMER relation there is no customer who this condition is true for.
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Furthermore several boolean expressions can be combined by using and(∧), or(∨) or
not(¬). So if you want all customers, whose home country is Germany or whose home city
is Marseille then you write:

σCountry=”Germany”∨City=”Marseille”(CUSTOMER)

The result would be a relation with three tuples. All customers for who either the first
condition or the second condition is true would be selected.

That leads us to the following interpretations [26]:
• (condition1 ∨ condition2) is true if either condition1 or condition2 is true. Only if

both conditions are false, the tuple is not selected.

• (condition1 ∧ condition2) is only true if both conditions are true. If only one of the
conditions is false, the tuple is not selected.

• (¬ condition) is true if the condition is false. If the condition is true, the tuple is not
selected.

Project Operation

As already mentioned the result of the select operation is a relation with the same attri-
butes as in the original relation. For selecting certain attributes of a relation, the project
operation is needed.

So for filtering out only the first and last names of the CUSTOMER relation, the project
operation is used with following notation:

πFirstName,LastName(CUSTOMER)

The attributes CustomerID, Country and City are left out now.
Since the result is a relation, again all tuples must be distinct. But the projected at-

tributes do not have to be key attributes, so it is possible that there would be duplicate
tuples which are eliminated.

So if you project the city and the country of all customers, you write:

πCity,Country(CUSTOMER)

The result is shown in Figure 2.5. As there are two customers who are from London, one
duplicate is eliminated and only five tuples are in the new relation.

Abbildung 2.5: Result of πCity,Country(CUSTOMER)

Of course the select and project operations can be combined by the help of the relational
algebra. To get a relation with the attributes FirstName and LastName of those customers
who live in the UK you write

πFirstName,LastName(σCountry=”UK”(CUSTOMER))

So the project operation does not get directly a relation as input, but instead an expression
whose result is a relation.
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Union Operation

The union operation is already a binary operation in contrast to the project and select
operation. With the union operation, values of a specific attribute which appear either in
one of two different relations or in both, can be found.

If you want a relation which contains all first and last names of persons who are customer
and employee, the union operation can be used. But for a union operation r ∪ s to be
valid, two conditions are required [19].

• The relation r and s must have the same number of attributes.

• The domains Dom(Ai) of r and Dom(Bi) of s must be the same for all attributes.

It does not matter whether the relations are database system relations or even results of
relational-algebra operations. So to get the union of CUSTOMER and EMPLOYEE from 2.3,
firstly the relations must meet the conditions above. So for both relations only the names
are projected and let us say the results are the relations CUSTOMERnew and EMPLOYEEnew.
To get the union of these relations, you write:

πFirstName,LastName(CUSTOMERnew) ∪ πE FirstName,E LastName(EMLOY EEnew)

The result is again a relation and like in all relations tuples must be distinct, so duplicates
are eliminated again. The union operation could be compared to an or -operator. It does
not matter if a tuple appears in one table or in both, it forms part of the resulting relation.

Set-Difference Operation

If you need all tuples which are part of one relation but not in another you use the
set-difference operation. Therefore, getting all persons who are customers but not
employees is possible by writing:

πFirstName,LastName(CUSTOMERnew)− πE FirstName,E LastName(EMLOY EEnew)

In the set-difference operation the two affected relations underly the same conditions as
relations in the union operation.

Set-Intersection Operation

The set-intersection operation, which can be compared with the and -operator is not
a fundamental operation of the relational algebra, but it is an additional operation which
could also be defined by the means of fundamental operations. With the binary set-
intersection operation you can select all tuples which are part of both affected relations.
You could get a relation with all tuples which are in the CUSTOMER relation and in the
EMPLOYEE relation by writing:

πFirstName,LastName(CUSTOMERnew) ∩ πE FirstName,E LastName(EMLOY EEnew)

If using the fundamental operations of the relational algebra the same operation could be
written in the following way:

πFirstName,LastName(r)− (πFirstName,LastName(r)− πE FirstName,E LastName(s))

while r = CUSTOMERnew and s = EMPLOYEEnew.
To summarize the union operation selects all tuples which are either in one or in both

affected tuples. The set-difference operation selects those which are in one specified but
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not in another specified relation and the set-intersection operation filters out all tuples
which are part of both affected relations.

Cartesian-Product Operation

At the beginning of this chapter it was mentioned that every relation is a subset of the
cartesian product of the values that are part of the attributes’ domains. This concept which
is relevant for the definition of a relation, is also possible for any two relations that are
combined. With the cartesian-product operation of two relations r1 and r2, each tuple
ofr1 is combined with each tuple of r2. So by using the cartesian-product operation on
the two relations CUSTOMER and ORDER, you get a relation with all possible combinations
of the tuples of CUSTOMER and ORDER. The operation would be noted as follows:

CUSTOMER×ORDER

Since each tuple from r1 is combined with each tuple from r2 there are n1 × n2 ways of
choosing a pair of tuples, while n1 is the number of tuples in r1 and n2 is the number of
tuples in r2.

For the cartesian-product operation it should be distinguished by the notation from
which relation the attributes originally came from, as there could be attributes which
occur in both relations. That is why the original relation before the attributes is noted
in the queries. If an attribute name is only in one relation, the relation name before the
attribute name could be left out, too.

To find all OrderId numbers of a specific customer, you could use the cartesian-product
operation. If you want the orders of the customer with the CustomerID 0002, you need at
first all tuples of the cartesian product relation that have the customer ID 0002:

σCustomerID=0002(CUSTOMER×ORDER)

In each tuple of the resulting relation there are two CustomerIDs, Customer.CustomerID
and Order.CustomerID. But only if both IDs are the same, the customer of any tuple ti
has really the OrderID of the tuple ti. So to really get the right set of tuples the customer
ID in the ORDER relation must be equal to the customer ID in the CUSTOMER relation:

σCustomer.CustomerID=Order.CustomerID

(σCustomerID=0002(CUSTOMER×ORDER))

In Figure 2.6 and 2.7 you see the difference between the two queries above.
Since operations can be combined, only the first and last name and the order id could

be projected by writing:

πCUSTOMER.F irstName,CUSTOMER.LastName,ORDER.OrderID

(σCustomer.CustomerID=Order.CustomerID

(σCustomerID=0002(CUSTOMER×ORDER)))

Natural Join Operation

The natural join operation is again an additional operation which only simplifies a fun-
damental operation of the relational algebra, namely the just discussed cartesian product
operation.
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Abbildung 2.6: Result of σCustomerID=0002(CUSTOMER×ORDER)

Abbildung 2.7: Result of σCustomer.CustomerID=Order.CustomerID(σCustomerID=0002(CUSTOMER ×
ORDER))

A cartesian-product operation usually contains some select operations, like the one above
where the name and the order ID’s of all customers with a given CustomerID are wanted.
Since the query for the cartesian-product operation is relatively long, the natural join
operation can be used. This operation is noted by the join symbol ./. So the natural join
operation can be used to combine a cartesian product operation with certain selections
[19]. This operation is an abbreviation for forming a cartesian product of two relations and
filtering out all tuples where the attributes which appear in both of the original relations
have the same value. So to show all customers with the orders that really belong to them,
you write:

CUSTOMER ./ ORDER

Other selections can be used like they are used for the cartesian product operation. For
example

πCUSTOMER.F irstName,CUSTOMER.LastName,ORDER.OrderID

(σCustomerID=0002(CUSTOMER ./ ORDER))

has again as a result a relation from Figure 2.7.
Formally the natural join operation can be defined as follows [19]: The natural join of r

and s, denoted by r ./ s, is a relation on schema R ∪ S. Furthermore it is defined as:

r ./ s = πR∪S(σr.A1=s.A1∧r.A2=s.A2∧...∧r.An=s.Anr × s)

where R ∩ S = {A1, A2, ..., An} This operation is one of the most important relational
database operations in practice and theory.

Division Operation

Another additional binary operation is the division operation. To illustrate when this
operation is used, following example has been chosen:

If you for example need all customers’ last names whose orders were shipped to all cities
in France where orders have ever been shipped to, you would first need a relation with all
cities in France where orders have been shipped to:

πShipCity(σShipCountry=”France”(ORDER))
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Furthermore you need a relation where all customers’ last names with the cities, their
orders have been shipped to, are shown. You get such a relation with the following query:

πCUSTOMER.LastName,ORDER.ShipCity(CUSTOMER ./ ORDER)

The two resulting relations of the queries above are shown in Figure 2.8. If you want to
get the wanted names eventually, the division operation is made on these two relations:

πCUSTOMER.LastName,ORDER.ShipCity(CUSTOMER ./ ORDER)

÷πShipCity(σShipCountry=”France”(ORDER))

The result is also shown in Figure 2.8. So the customer with the last name Trujilo is the
only person with the asked characteristics. That is because Trujilo is the only customer
who got his orders shipped to all cities of the relation in Figure 2.8 (a).

The division operation can be formally defined as well. The resulting relation t(T) of a
division operation on two relations r(R) and s(S) has the schema T = R − S. So T has
all attributes of R, that are not in S. That definition implies that the attributes in S are
a subset of the attributes in R, S ⊆ R.

A tuple v is only in the resulting relation t if the values in v appear in a tuple of r in
combination with every tuple in s.

Abbildung 2.8: (a) Result of πOrderID(σShipCountry=”France”(ORDER))
(b) Result of πCUSTOMER.LastName,ORDER.OrderID(CUSTOMER ./ ORDER)
(c) Result of the division operation

Aggregate Functions

A further extension of the relational algebra operations are the aggregate functions.
There are different aggregate functions which all get a set of values and return a relation
with a single value as result. The set which is used by the function does not have to be a
set of distinct values, which means that a value can appear more than once in the set.

The aggregate function sum returns the sum of the taken values, while the function avg
for example returns the average of a set of values. Furthermore count returns the number
of values, the functions min and max return the minimum and the maximum of a set of
values.

For instance, to get the number of all orders, you would write:

Gcount(OrderID)(ORDERS)

To get the number of customers who made an order, an addition is needed. Due to the
fact that a customer can make more orders than one, there are often more tuples with the
same customer ID. To get the right number of customers, you write:

Gcount−distinct(CustomerID)(ORDERS)

22



With the distinct addition duplicates are eliminated and each customer is counted only
once.

While using aggregate functions on relations, there is the possibility to divide the relation
into groups. For example the EMPLOYEE relation can be divided into groups based on the
countries orders where shipped to. Then the number of orders for each group could be
returned by the aggregate function count. To do so, you write:

ShipCountryGcount(OrderID)(ORDERS)

The result for this operation is shown in Figure 2.9. So the resulting relation consists of
following attributes:

• the attribute on which the groups are based, that is to say the part in the left-hand
subscript of G

• one attribute for each aggregate function in the resulting relation which are in the
right-hand subscript of G

Abbildung 2.9: Result of ShipCountryGcount(OrderID)(ORDERS)
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3 Database-System Architectures

The architecture of a database system can be distinguished into centralized and distributed
systems. Centralized systems run on a single computer system and are not connected to
other computer systems. This definition does not imply that the system consists of only
one computer. The difference to distributed systems is that the database (i.e. data) is not
distributed over more than one site. So centralized systems are also systems which are
on one company site, while the single parts of the system can be scattered over several
buildings and over a great areal. Most of the centralized systems at the moment are based
on the client-server architecture which will be explained in the next part.

Distributed database systems are distributed over several sites, while each site has a
local database system and usually operates on that database. But in distributed database
systems there exist global applications, which means that there are data accesses which
concern more than one local database and more than one site.

As database systems can be very large and there are applications which must query
these databases, usual database systems like client-server databases are often not fast
enough. For that reason parallel systems have been improved in the last years. Though,
in parallel systems many operations can be performed at the same time. There are different
architectures of parallel database systems which will also be explained below.

3.1 Centralized Architectures

Abbildung 3.1: The process of a client-server database operation with a two-tier architecture

Systems can be split into a back end and a front end. The back end is the program
on the server and manages the access structures, query evaluation and optimization, con-
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currency control, and recovery [19]. Moreover, the back end is closer to the system than
the front end which is closer to the user.

The front end is served by the back end, so it gets data from the back end. The front end
consists of the user interface. Furthermore it is responsible for providing tools for reporting,
data mining and analyzing. The back end and the front end are either connected via SQL
or an application program. Both parts of a client-server database systems, the back end
as well as the front end, could also be part of the same personal computer. But it is also a
client-server system if the client is a computer for itself and is connected over a network to
the server. Usually the computational power to perform the asked operations is provided
by the server, so the back end. Figure 3.1 shows such a system, which adopts a two-tier
architecture: At first the asked operation which the user, a client, wants to perform, is
entered. So the instruction is transferred to the server (1) which is connected to the data
and which performs the asked operation (2). The result is then sent back to the client (3).

It is also possible that the operation is performed by the client. In such a system the
server is only a data server. That means that not just the result is returned to the
client but the server returns the data which is required to perform an asked operation.
For instance, if a client wants to perform a select operation, the whole table on which this
selection is performed is returned by the server and the operation is then carried out by
the client. That implies that the client requires full back end functionality. If there is a
data server system, the costs of communication is very high compared to systems where
the server performs the operations.

If there are many users who use the database system, there is mostly a special architec-
ture, where the front end talks to an application server and the application server is the
client for the back end. Such systems adopt a so called three-tier architecture. That is
because the server would have to perform a lot of operations at the same time if there are
many users and so the time for performing could last too long. Though, by the help of a
further application server the processes can be optimized. As you see in Figure 3.2 the user
is not directly connected to the database server anymore. The application server performs
a big part of the tasks which would be done by the database server in a two-tier architec-
ture and the database server is just directly connected to the application server. So the
application server acts like a client, which means that independently from the number of
users, the database server is always connected to one client only. So again the application
server is connected to the database server over an application program which is usually
based on SQL. But the real front end, which is seen by the user, is connected with the
application server in another way. Their interface is either a standard network protocol or
a self developed protocol for a specific use.

3.2 Distributed Systems

A distributed database system, as already mentioned above, is a system which is usually
spread over more than one site and consists of several processors which all have their own
local database, but also interconnect with the other processors and their data. Defining
distributed database systems is rather difficult. For a system to be distributed the following
two aspects must be true [28]:

1. The data is distributed, which means that not the whole data is in one node. Usually
theses systems are distributed over several sites, although that is not a mandatory
requirement. A distributed database system could also be spread over several nodes
which are located at the same physical site.

2. There must be a difference between a set of local databases and a distributed database,
where the local parts must be connected somehow. This characteristic is called logical
correlation.
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Abbildung 3.2: The process of a client-server database operation with a three-tier architecture

But this definition is still vague and these two facts do not always distinguish distributed
database systems from local ones. The fact which is really crucial to distinguish a distribu-
ted database system from a set of centralized systems, is that global applications exist.
Such applications access data for the performed operations from more than one site.

A good example for explaining distributed database systems is a bank which has several
branches on different sites. Usually in each branch most of the transactions and operations
can be carried out on the local database. But if for instance, a transaction is performed
with an account, which belongs to another branch, the local system has to access data
from another database, too. The existence of such applications is crucial for a system to
be called distributed. Though, it does not matter if nearly most of the operations and
transactions are carried out locally.

As mentioned above, the branches do not have to be at different sites. What is really
important for distributed databases is that every branch has its own processor with own
local data. It is possible that there is a computer center where the processors and databases
of all branches are together. But to be a distributed system each branch must still have its
local applications and its local data. So one local branch database can be local although
the data and the terminals are geographically distributed. Furthermore a system can be
distributed although the local data of all branches is at one site.

A system which would not be seen as distributed is for example: All local databases are
connected via an interconnection network to an application server. Furthermore, all the
terminals of all branches are just connected to the application server. Now the terminals
just communicate with the application server which is directly connected to all local da-
tabases. In such an architecture the access structure for global as for local applications
would be the same for the branches. Due to that characteristic this system would not be
distributed.

3.3 Differences between Distributed and Centralized Database Systems

There are some differences between distributed and centralized database systems, which
are very important when setting up a distributed system or changing a set of local data-
bases to a distributed database system.

One of the most important reasons for inventing database systems in general was to get
centralized control over the data. In distributed database systems the idea of centralized
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control is a bit different. When having a centralized system, there is one function of a
database administrator. But since a distributed database system consists of the local parts,
there are often the so called local database administrators and there also can be global
databases administrators. The systems can be very different from each other, so there
sometimes is no global database administrator at all and the local database administrators
are responsible. In other cases, global database administrators can have a high degree of
responsibility.

The data independency which describes the fact that application programmers are not
affected by the physical organization of data as there is a conceptual view of data, is very
important for centralized database systems as well as for distributed database systems.
Indeed, for distributed database systems there exists another independency, namely the
distribution transparency. Due to this concept it is possible to write programs, while
it is completely irrelevant that the database is distributed.

Avoiding to have redundant data was also one of the main reasons for inventing database
systems. The reduction of redundancy is also an important feature, in distributed
database systems. Although for distributed database systems redundancy of data also
has its advantages as it makes the single sites more local and global applications become
less important. Furthermore, if one site has a failure or loses the data, it would still be
available if it was redundant. In general, redundancy is the better the more important
retrieval of the data is and the fewer updates are performed on that data. The reason for
this statement is that an update must be performed on all copies of the affected data while
for retrieving data any copy can be taken.

The issue of integrity, recovery and concurrency control in distributed databases
was solved by the help of transactions. A transaction is a sequence of operations and
when a transaction is started it is either performed entirely or no data is changed at all.
This concept ensures that there are no different copies of the same data in different sites.
For instance, if a branch of a bank performs a funds transfer, either all the affected data
is changed or if there was a failure nothing would happen. Due to this concept it is not
possible that for example the money from one account is deducted but is not transferred
to the other account.

3.4 Distributed Database Management Systems

A distributed database management system consists of [28]:

• the database management component (DB)

• the data communication component (DC)

• the data dictionary (DD), which represents information about the distribution of data
in the network

• the distributed database component (DDB)

If one site wants to access data from another site, the DDMBS is responsible for perfor-
ming the operation at the right site and routing the result to the enquiring site. There
are two different ways of access to data of another site. The first way is that the DDBMS
routes automatically to the right site and performs the task. Finally the result is returned
to the first site. This approach makes it really irrelevant if the database system is distribu-
ted or not. Therefore distribution transparency is provided. The other possibility is that
there is an auxiliary program at the site the data is needed from. That approach is often
more efficient as the auxiliary program is able to manipulate several records at the same
time while by the most DBMS this feature is not provided and that is why the second
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way of accessing remote data is often the more efficient way, although the distribution
transparency is not provided.

Distributed database systems are divided into heterogenous or homogenous systems.
There are several possibilities why distributed systems could be heterogenous, but con-
cerning distributed database systems, one type of heterogeneity really affects the system,
namely if the DBMS are heterogeneous. That case occurs if there are at least two different
and autonomous DBMS in a distributed system. This kind of database system is called
federated Database system. When building a distributed system the same DBMS should
be used at all sites, but as often local databases are combined to a distributed database
system, the DBMS of the sites can differ from each other. The problems between different
DBMS are very hard, especially when different data models are used, so the feature of
homogeneity or heterogeneity is very important.

3.5 Reference Architecture of Data Dictionary and Fragmentation

Abbildung 3.3: Account Relation

Due to distribution transparency which is provided by a distributed database system,
it has a special reference architecture whose top level is the global schema. The second
level is the fragmentation schema and the third level is the allocation schema. The first
three levels are site independent schemas. The global schema shows the data as if the
database was not distributed. But to allow the sites to work with the data, the data must
be split in several parts, called fragments. The connection between the global relations
and their fragments is defined in the fragmentation schema. The third level of the
site independent schemas, the allocation schema, defines at which sites the different
fragments can be found, since a global relation could be distributed over several sites.
Furthermore the allocation schema defines whether the fragment is redundant or not. The
fourth schema is already site dependent and is called local mapping schema. It defines
for each local database system, where the physical image to the fragments can be found
which they manipulate.

Due to the fact that global relations have to be divided into fragments, queries which
operate on global relations also have to be transformed into queries which operate on
fragments. The resulting query which operates on fragments is called canonical expres-
sion, which could be directly executed on the distributed database system. But since the
canonical expression is often very inefficient, a lot of transformations are possible to get a
simpler expression.

An example for horizontal and vertical fragmentation can be seen in figure 3.4 and 3.5.
Given the relation account depicted in figure 3.3 the horizontal fragmentation of this rela-
tion is done by the two select operations account1 = σbranch−name=”Hillside”(account) and
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account2 = σbranch−name=”V alleyview”(account). The union of these results is the original
account relation. The vertical fragmentation is done by project operations and the results
deposit1 and deposit2. A natural join with the tuple-id attribute on the result relations
produces the account relation.

Abbildung 3.4: account1 = σbranch−name=”Hillside”(account)
account2 = σbranch−name=”V alleyview”(account)
account = account1 ∪ account2

Abbildung 3.5: deposit1 = πbranch−name,customer−name,tuple−id(account)
deposit2 = πaccount−number,balance,tuple−id(account)
account = deposit1 ./ deposit2

Summary for Distributed Database Systems

Distributed database systems are a very large and complex topic. First of all it is not
easy to distinguish between centralized and distributed systems, but the crucial point is
whether global applications between local databases exist, or do not. Furthermore there are
some differences between centralized and distributed databases which are important and
which affect the system. There ia another important difference between heterogeneous and
homogeneous systems, which makes a big impact. It is important that distributed systems
have not only the local DBMS, but also distributed database management systems which
are responsible for the communication between the sites. Additionally, as distribution
transparency is an important feature for distributed databases, the reference architecture
of distributed databases is very important. It defines how global relations are divided into
fragments and how the fragments can be found by the local sites.

3.6 Parallelism in Database Systems

As mentioned above database systems can be very large, but they still must be queried in
an appropriate way. To find out if the database system has become too large for the used
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physical system, there are two main performance numbers:

1. throughput

2. response time

The throughput of a system is the number of tasks that can be finished in a given time
interval, whereas the response time is the required time for completing one single task
[19]. Using a client-server system for querying large databases, these two performance
numbers would have bad values. For that reason parallel systems are needed. Parallel
systems can perform many operations simultaneously, while non-parallel systems perform
operations sequentially.

There is a separation into coarse-grain parallel machines and fine-grain parallel (or mas-
sively parallel) machines. Today, most of the general-purpose computer systems are already
coarse-grain parallel machines as they have multiple processors. Machines having such
a parallelism have a higher throughput than machines without any parallelism, but the
response time for a single task remains the same. That is because the single tasks are not
distributed on the processors, but each processor can perform a single operation at the
same time. So more operations can be performed in a given time interval, but nevertheless
a single task is not performed faster than on a non-parallel machine.

Fine-grain parallel machines consist of a large number of processors. Furthermore,
the single operations can be parallelized on the processors. That means that an operation
of one user is carried out by more than one processor, so it is divided into subtasks. The
advantage of fine-grain parallelism is that the amount of response time of an operation
declines and of course due to a shorter response time, more tasks can be completed in a
given time interval; so the throughput increases.

As described in DeWitt [4] relational queries are ideally suited to parallel execution be-
cause they consist of uniform operations applied to uniform streams of data. The operators
can be composed into parallel dataflow graphs due the fact that each operation produces
a new relation. Two kinds of parallelism can be distinguished:

• pipelined parallelism

• partitioned parallelism

The output from one operator can be streamed into the input of the other operator,
therefore the two operators can work in series giving pipelined parallelism. Partitioned
parallelism is partitioning the input data over multiple processors and splitting one
operator into many independent operators each working on a part of the input data. The
two kind of parallelism are depicted in figure 3.6.

Parallel database systems can have different architectures, while these architectures in-
fluence the efficiency of the systems. Stonebraker [29] suggested the following simple ta-
xonomy for the spectrum of designs:

• Shared memory

• Shared disk

• Shared nothing

In shared memory architectures, see figure 3.8, the memory is shared among the pro-
cessors and disks. Due to that sharing a very efficient communication between processors
is possible. But as the processors have to share the bus, there is a maximum limit of
processors which can be added to the system. Exceeding that limit does not make sense
as the system would not get faster due to long waiting times for accessing the memory.
Current shared-memory machines are usually scalable to 64 processors.
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Abbildung 3.6: Pipeline- and Partitioned Parallelism

Abbildung 3.7: Shared-Nothing Architecture

Processors of systems with shared disk architecture can access all disks directly over a
interconnection network. In figure 3.9 the shared memory architecture is depicted. Though,
the processors have own memories in contrast to the shared-memory systems. This means
that there is no bottleneck at the memory bus anymore. But in this system there is a
maximum limit of processors due to the interconnection with the disk subsystem, so there
is still a scalability problem. In such architectures more processors can be added than in
shared-memory machines. A big advantage of shared disk systems is that they provide a
degree of fault intolerance. So if a processor fails, the task can be carried out by any other
processor since they have direct access to the disks. In return the communication between
the processors is slower than in shared memory architectures.

Shared nothing systems do not provide any shared components between the processors.
Each processor has its own local memory and its own local disks. See figure 3.7. Due to
that feature, there are no bottlenecks and the machines can support a large number of
processors. The disadvantage of such machines is that the communication cost for them is
higher than for the other systems as every non-local access works over an interconnection
network.

Systems with a hierarchical architecture are a combination of the characteristics of
the architectures above. Though, in a hierarchical system there exist more levels. At the
top level the system could have a shared nothing architecture, while the basis of such
a system could be a shared memory system. In the middle there might be a level with
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Abbildung 3.8: Shared-Memory Architecture

shared-disk architecture.

Abbildung 3.9: Shared-Disk Architecture

On the other hand a NUMA(Non-Uniform Memory Access) Architecture is a speciali-
zed memory architecture for multiprocessor based systems.

In a NUMA architecture multiple processors are grouped and these groups have their
own local memory attached over a memory bus. These grouped processors are linked
together with a high speed link interface. Therefore all the processors can access other
memories over this link interface. Therefore the grouped processors have very low latencies
for accessing their local memory and higher latencies for accessing the other memories
over the high speed interface. This is the reason for why this architecture is called a
Non-Uniform Memory Access.

The NUMA architecture is in contrast to the SMP (Symmetric Multi-Processing) whe-
re all memory access is done over a common single memory bus. In an SMP architecture
the latencies for the memory access are the same for all processors.

3.7 Parallelism Goals and Metrics: Speedup and Scaleup

In this thesis we use the definition of the key properties for parallel systems as defined in
DeWitt [4, 30].

There are two properties for ideal parallel systems:
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1. (1) linear speedup: Twice as much hardware can perform the task in half the elapsed
time.

2. (2) linear scaleup: Twice as much hardware can perform twice as large the task in
the same elapsed time.

Speedup

The speedup describes the effect on processing time of adding computing nodes. This can
be defined by the ratio of the time used for a fixed job run on a small system and the time
used of the same job on a larger system. The speedup can be measured as:

Speedup =
Small−System−Elapsed−Time

Big−System−Elapsed−Time
(3.1)

Speedup holds the problem size constant and grows the system size. So the speedup des-
cribes how much an operation is faster if it is performed parallel than if it was performed
sequentially. The ideal speedup of an algorithm is linear, which means by increasing the
resources of a smaller system MS n times, the speedup of the new larger system ML is
n. As a linear speedup is not always achievable, linear speedup is a very good measure.
Though, a speedup which is less than the ideal is called sublinear speedup. The ob-
jective when increasing the degree of parallelism of a system is that the needed time for
processing a task is inversely proportional to the resources allocated. In other words, the
speed of a system should grow proportional to the resources. In Figure 3.10 the difference
between the ideal linear speedup and the sublinear speedup is shown. To describe the
ideal linear speedup mathematically, the time for executing an operation on the smaller
machine is TS and the execution time on the larger machine is TL. If the speedup is linear,
then the speedup, defined as S, is:

S = TS/TL

Abbildung 3.10: Difference between linear, sublinear and superlinear speedup [19]

Note that superlinearity speedup can be achieved by a cache effect using different me-
mory hierarchies of the nodes used in the algorithm. As an example the effects of caches
on scalability and performance for hash join algorithms are described in [9]. Performing
backtracking can also be a reason for superlinearity speedup.
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Scale-Up

Scaleup measures the ability to grow both the system and the problem. Scale-up gives an
explanation of the scalability of an algorithm, that means if increasing problem size can be
practically compensated by increasing resources (e.g. number of processing nodes). This
behavior can mathematically be described by the following formula:

Scale− up =
Small−Sys−Elap−Time−On−Small−Prob

Big−Sys−Elap−Time−On−Big−Prob
(3.2)

If the scaleup equation evaluates to 1, then the scaleup is linear. The probably most im-
portant goal of parallelism is that even if the database and the number of transactions
grow, the speed stays acceptable. The scale-up metric shows how able the system is, to
perform larger operations in the same amount of time if more resources are provided. More
precisely, if there are two machines MS and ML and ML is n times larger than MS and
there are two tasks QL and QS , where again QL is n times larger than QS . QL is executed
by ML and QS is executed by MS . As long as both machines need the same amount of time
to perform their tasks, the parallel system ML demonstrates a linear scale-up on QS . So
the amounts of time the machines need to execute the task are TL and TS . If TL = TS the
scale-up is linear. But if the amount of time TL which the machine ML needs is bigger than
the needed amount of time TS of machine MS , a sublinear scale-up is demonstrated
by ML on QS . In Figure 3.11 it is shown that as long as TS/TL is constant by growing
problem size, the scale-up is linear. The goal is that the scale-up which a parallel system
demonstrates is preferably linear.

Barriers to linear speedup and linear scaleup are the threats startup, interference and
skew. The first factor is made up by the start-up cost; When initiating an operation on
a processor there are start-up cost associated which could have a bad impact on speed-up
and scale-up. The bad impact would especially occur if there were a lot of processes.

Another factor is the interference which was already mentioned in the parallel database
architectures above. Bottlenecks could occur if not a shared-nothing system was used. Due
to waiting times the two performance numbers could also be badly affected.

The last factor which influences speed-up and scale-up in a negative way is that is often
very difficult to break down a single task into same sized parts. This factor is called skew
as the way the parts are then distributed on the processors is skewed [19]. If skew occurs
the speedup of tasks running could be badly impacted, dependent on how big the biggest
part of the original task is.

Abbildung 3.11: Difference between linear, sublinear and superlinear scale-up [19]
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3.8 Parallel Database Architectures

The work of Bitton et al. [18] is based on a so called generalized multiprocessor organi-
zation, which basically comprises a homogenous classical supercomputer architecture,
where every working node shows the same characteristics:

1. processing power

2. disk I/O,

3. network interconnect bandwidth

That means all these characteristics are the same for all nodes. So for the evaluation of
the parallel operations on the generalized multiprocessor organization only the following
components are considered:

1. a set of general-purpose processors,

2. a number of mass storage devices,

3. an interconnect device for connecting the processors to the mass storage devices via
a high-speed cache

The definition of such an organization is shown in Figure 3.12.

Abbildung 3.12: Generalized Multiprocessor Organization

3.9 Heterogeneous Database Architectures

In chapter 2 the issue of heterogeneity in distributed database systems was mentioned.
Here, this issue especially concerning heterogeneity of Database Management Systems
(DBMS), will be further discussed. In particular, the problems and the possible solutions
of this kind of heterogeneity will be covered.

It is a main goal of heterogeneous DDBSs to provide transparency concerning data
distribution but also concerning heterogeneity. That means that there should be a view
of the DDBS which makes it irrelevant that the system is distributed and heterogeneous.
If different DBMSs are used, this feature is not easy to achieve. Ceri et al. [28] claims in
his work that the most convenient way to reach transparency is to select a common data
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model and data manipulation language (DML) for all component DBSs. But that selection
leads to two main problems, which concern data conversion and program conversion.

In order to make it possible that all component DBs have the same data model and
DML, an appropriate selection must be made. The chosen data model and DML should
have two main properties. (1) A simple translation from a used DBMS’s data model and
DML to the chosen data model and DML should be feasible which means that the common
data model should be as simple as possible. (2) It must be possible to represent the global,
fragmentation and allocation schemata by the means of the selected data model and the
DML should own set-oriented primitives. Hence, the relational model and algebra might
be good candidates.

The problems concerning the translation to the common data model and DML can
be related to data conversion or program conversion. Data conversion problems can be
further classified into problems at schema level or at instance level. Problems at schema
level refer to the fact that for each local DBMS a schema must exist that is equivalent
to the schema of the common data model. The instance level problems arise due to the
automatic conversion of large amounts of data from one representation to another. Two
database states are just equivalent if they have equivalent schemata and the stored data
represent the same facts. Program conversion problems occur because a conversion between
two different DMLs is necessary. Two programs are just equivalent, if they produce the
same output for any input provided to them.

Usually heterogeneous DDBS are built bottom-up, meaning that existing systems are
linked together to one system. Thus, it is possible that two or more DBMSs represent the
same facts. Although the DBMSs might represent the same facts, the descriptions of the
facts do not have to agree. Such differences are called conflicts and can be classified in the
following way:

• Name conflicts: DBMSs describe different facts with the same name (homonyms)
or they use different names for the same fact (synonyms).

• Scale conflicts: DBMSs use different units of measure

• Structural conflicts: DBMSs use different structures to describe the same facts

• Different levels of abstraction: DBMSs provide more or less detailed information
than the other ones.

If such conflicts occur, databases usually cannot just be altered. Indeed, an auxiliary
database can be produced. Such auxiliary databases can be used for name or scale con-
version, respectively for solving structural and abstraction problems.

There is another kind of problem in heterogeneous DDBS due to query processing.
Most heterogeneous systems just allow distributed retrievals. Update applications on the
other hand are usually done locally. As the updates are done locally, it is possible that
inconsistencies of data occur. Then, different policies can be applied for dealing with such
data. For instance, the maximum, the average or the minimum could be taken. Another
query processing problem is that processing cost can hardly be evaluated. Heterogeneous
DDBS consist of different DBMSs and the DBMSs have different performances. Hence,
as much as possible should be performed locally as it is possible that some functions are
more expensive or not available at remote DBMSs.

The optimization process of queries is responsible for distributing the execution and
deciding how and where the query should be executed. Generally, optimization can be
subdivided into global optimization and local optimization. The global optimization is
responsible for the query execution to be distributed among the different sites of a DDBS.
This kind of optimization is just necessary if local execution of the query is not possible. In
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contrast to that, the local optimization exists at each site and is responsible for deciding
locally the best method for its part of the execution. If the global optimization of an execu-
tion is performed after the translation, it has the advantage that there is just one version
of the global optimizer. But on the other hand all applications must be translated, even
if they could be executed completely at its site of origin, which would lead to unnecessary
performance cost. Therefore, there are two more possibilities:

1. Using a local analyzer: A local analyzer can decompose the application into local
and remote portions. Hence, just the remote portion is translated into the common
DML

2. Classifying applications: The applications are classified into completely local ap-
plications, respectively all other applications.

To summarize, heterogeneity concerning DBMSs can best be solved if a common data
model and DML is used. The translation to the common model and DML brings some
problems, though. The problems can be due to data conversion or program conversion. A
specific problem is the integration of different schemata which represent the same facts
using different descriptions. These conflicts can be solved by producing auxiliary databases.
Other specific problems are due to query processing. For instance, processing cost in
heterogeneous DDBS can hardly be evaluated and are often unnecessarily high. Therefore,
optimization of queries is an important issue, especially the point of time when query
optimization is performed is crucial since processing cost can be saved.

3.9.1 An Infrastructure for Scientific Grid Computing

EGEE (Enabling Grids for E-SciencE) [31] (visited June 2009) is an engineering project
deploying a complex infrastructure for the scientific community. Until March 2004 the
European DataGrid (EDG) project [32] (visited June 2009) was the predecessor of EGEE
and was a successful establishment of a functional Grid testbed fore more than 20 countries
in Europe. The motivation for EGEE is to establish a production-quality Grid for offering
reliable Grid services.

The EGEE Structure

The EGEE project was originally proposed by experts in Grid technology from the lea-
ding Grid activities in Europe. The project now includes more than 70 project partners
organized in twelve partner regions or federations, as shown in figure 2. Furthermore,
with the deployment of the EGEE project structure, several of these partners have begun
integrating regional Grid efforts in order to provide coordinated resources to the EGEE
project. There are several participating resource centers of more than 70 project partners
in twelve regions in Central Europe,France, Germany, Switzerland, Ireland, UK, Italy and
USA. Pilot initiatives, like the Large Hadron Collider Computing Grid (LCG) [33], serve
as a guide for the implementation. These pilots are used to certify the performance and
the functionality of the Grid services. The pilots store and analyse petabytes of data from
high-energy physics (HEP) experiments in CERN from the Large Hadron Collider [34].
On the current EGEE production service Biomedical Grid applications have also been
deployed.

The EGEE Middleware

EGEE uses a re-engineered middleware with his branded name gLite [35]. gLite is based
on best practice experience middleware projects: Globus, Condor, DataTAG and so on.
gLite provides a framework for building grid applications across the Internet.
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Abbildung 3.13: Schema of the Evolution of the EGEE Grid Infrastructure

In Figure 3.13 the evolution of the EGEE Grid infrastructure is depicted. The EGEE
infrastructure is grown from 10 sites, 1000 CPU’s and 10TB Data up to 100 sites, 50000
CPU’s and 1 PB data [36].

3.9.2 A Static Heterogeneous Model

The big difference between a Grid environment [37, 38], which is the focus of this thesis,
and the Generalized Multiprocessor Organization laid out in section 3.8 is the heteroge-
neity of all included elements, which are processing nodes, interconnect bandwidth and
disk performance. For the analytical comparison of the parallel algorithms in focus we
restrict our approach to a simplified Grid computing organization focusing on the sensi-
tive parameters of the model. These sensitive parameters are processing power, disk and
network bandwidth.

We use the term Static Simplified Grid Organization, which describes an organiza-
tion to perform a distributed query on a loosely coupled number of heterogeneous nodes.
We define that there is no logical order or hierarchy. There is no logical topology of the
nodes (e.g. no master/slave nor an equivalent order). Each node has a fixed number of
properties with defined values. The term Static is used to describe that the values of each
node and the network bandwidth are fixed. That means these values are not changeable
during the execution of a query. The sketch of such an organization is shown in Figure
3.14. These assumptions build the basis for our approach to analyze the parallel database
operations in a simplified Grid organization.

General architectural overview

The general layout of our architecture is as follows: A number of nodes are connected via
a network. A node consists of one ore more CPUs (Central Processing Unit), one or more
disks or disk-arrays and a network interface to the interconnect they are connected.

The actual configuration of a node is transparent (that means not ”seen” by the outside
user). However there exists a database to describe the system at the time of the query
execution. All relevant data (parameters and their values) describing the architecture are
stored in this database. It is assumed that the following architectural characteristics hold
constant during the operation:

• Nodes can perform a dedicated operation (compare, sort and merge two pages).
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Abbildung 3.14: Static Simplified Grid Organization

• Each node has its own mass storage device and the nodes are connected over a
network.

• Nodes can send and receive messages.

• The availability and the reliability of each node during the query execution is also
guaranteed.

3.10 Peer to Peer Database Architecture

Peer to Peer architectures of database systems are also called Peer data management
systems (PDBS). Referring to [39] PDBS are on an evolutionary path and can be descri-
bed as a collection of autonomous local repositories which interact in a peer-to-peer style.
The repositories are the peers which all have the same rights. Furthermore peers can join
and leave the network without any obligation of carrying out administrative tasks. In [40]
pictured peer-to-peer as the most general architecture, where a peer can act as a server,
storing a part of the database, but as well as a client, executing application programs
and initiating queries. In [41] a similar definition of PDBS is used while in stead of server
and client the notion of source and target is used. So every peer is at the same time a
source-peer as well as a target-peer.

There are some specific characteristics which PDBS have in general and also in respect
to other distributed databases. The first difference in respect to distributed databases
concerns the data integration architectures. Usually distributed database systems provide
a global schema integrating the local DBS schemas as discussed in section 3.2. On the
other hand PDBSs avoid such global schemes, but provide mappings between two sources
(Figure 3.15). It is not necessary that all sources are connected as long as the graph
illustrating all pairwise mappings connects somehow the source- and the target-peer, no
matter how many other peers are in between. In the export schema the peers provide
the information they want to share with the outside world. Basically an export schema
does not really exist as the dependencies between two peers and therefore the information
they want to share is defined in the mapping rules. Due to the global schema of usual
distributed database systems it is possible that global requests can be carried out and
distributed to all the component DBSs as global subrequests. PDBSs do not have this
possibility but a query is submitted to a local peer. Depending on the mapping graph
the query is then forwarded to the next peer or not. Furthermore if it is forwarded it can
happen in the original form or in a modified way depending on the mapping rules. The
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Abbildung 3.15: Data Integration Architecture of PDBS

difference between the two architectures is shown in Figure 3.16. With reference to [42] it
is possible that the participation of all peers at query time is necessary to answer a local
query. But as peers might have full autonomy and can join and leave the network without
problems a complete response to a request is not guaranteed in contrast to global requests.

The distribution of a DBS ranges from centralized architecture over client-server archi-
tecture to full-scale distribution. The distribution in PDBS is dependent on the under-
lying Peer-to-Peer network. [39] classifies existing networks in three categories, namely
pure Peer-to-Peer, super-peer systems and hybrid systems while the first one is also
called unstructured and the latter two are referred to as structured networks. The
pure Peer-to-Peer systems consist of participants which are all equal and do not store any
global indexes and therefore they are full-scale distributed. The super-peer systems on the
other hand have some super-peers storing internal indexes where data of other peers are
contained. The last class consists of the hybrid systems where servers or clusters are used
to store global indexes. Systems which underly structured networks provide a distribution
that is classified into client-server architecture and full-scale distribution.

Abbildung 3.16: (a) the distribution of a global request in a usual DDBS. (b) the distribution of a request in a
PDBS.
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As described above, queries in (unstructured) PDBS are forwarded from peer to peer.
Hence, the performance of such a system depends on the mapping path, which can be
very large, especially in unstructured networks. That is the reason for why more and more
structured networks have been used. The structured networks are based on Distributed
Hash Tables (DHT) where hash keys are used to make efficient lookups and therefore effi-
cient routing possible. Moreover, if a structured network underlies the PDBS, a guaranteed
answer, that is to say a perfect recall can be guaranteed.

In chapter 4.4.2 it was discussed that data independency for distributed databases is as
important as for centralized databases. Concerning Peer-to-Peer systems data independen-
cy would be likewise desirable so that the data is independent of its physical location [43],
but there are still hardly any systems which provide data independence. A big difference
between PDBS and other DBS is that other database systems assume a close world view
which means that it can be assumed that the whole relevant data is stored in the database
and can be returned if requested. Apart from that, in unstructured PDBS an open world
assumption must be made, as nodes can join and leave freely and therefore just certain
query answers can be returned [44]. A very big disadvantage of PDBS is that they do not
provide support for transactions. Due to the autonomy of the nodes the systems are very
loosely-coupled and therefore the issue of integrity, recovery and concurrency control has
still not been solved.

Eventually there are Peer-to-Peer centric characteristics which should be discussed. The
degree of coupling is the first special Peer-to-Peer characteristic. It defines the number
of other peers’ existences one peer knows about. Usually in PDBS the degree of coupling
is not very tight as the nodes can leave and join freely. Therefore, especially unstructured
PDBS do not know many of there neighbors. On the other side, in distributed database
systems all nodes are known by other nodes.

The next two Peer-to-Peer centric dimensions are coupled together. The routing stra-
tegies of a PDBS are connected to the overlaying network topology. The network
topology for unstructured PDBS is not fixed but just a result of the connections bet-
ween the peers, similar to DDBS. Besides, structured networks like super-peers are built
differently. The super-peers which contain more information than the usual peers are
connected to each other in a predefined way, for example a ring or a hypercube. There is
also the possibility that the whole PDBS has an overlaying network topology but not just
some dedicated super-peers. Thus, if there is no predefined network topology the routing
strategy of a PDBS can just be flooding, meaning from peer to peer as explained and
shown in Figure 3.16. If a structured network is concerned, not just information about
one neighbor is available but there is information about more neighbors and therefore
some kind of greedy routing can be used, which makes it to look for the right peers more
efficient.

The scalability is supposed to be a main advantage of peer-to-peer databases. If un-
structured networks are involved, PDBS are poorly scalable as the routing of messages is
flooding and so the network could become overallocated quickly. By using a super-peer
network, the problem becomes smaller because the messages are just flooding the network
of super-peers. If a fully structured network is overlaying the PDBS, the queries are routed
to selected peers and unnecessary networking cost can be avoided. Thus, structured PDBS
are much more scalable than unstructured ones. Another Peer-to-Peer specific characte-
ristic is anonymity. Since requests are routed through many peers, the participants can
stay hidden.

In conclusion, the peer-to-peer database system is a rather new development. It has some
advantages as it is well scalable in terms of number of nodes and distribution. Furthermore
there is the advantage that nodes can join and leave the network freely and do not have any
administrative tasks. There is no special infrastructure required too, since a global schema
does not exist. Moreover, since the data is accessed directly, freshness is guaranteed in
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contrast to centralized databases. But on the other hand, PDBS still have some problems.
Especially unstructured PDBS, which are not very famous anymore, have problems with
scalability and cannot provide a perfect recall. But PDBS have some problems in general
as well, namely that although data independence is desirable, it is hardly achieved since
they do not have strategies for replication and fragmentation. A very big disadvantage of
Peer-to-Peer systems is that there is still no support for transactions. Hence, Peer-to-Peer
database systems are still a young issue and many things are still open.

Peer Data Exchange and queries and Updates in a Peer to Peer Database System are des-
cribed in [42] and [41]. They define a model-theoretic semantics and coordination formulas
between nodes for a Peer to Peer database system to avoid inconsistency.
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4 Parallel Database Operations

This chapter gives an overview of the most important parallel database operations in an
multiprocessor architecture: sort, join and aggregate. The chapter starts with a definition
of a cost model and ends with a short introduction in query optimization in parallel and
distributed database systems. The explanation of the database operations in conjunction
with the cost model is the basis of our analysis for the performance behaviors of the
algorithms in a homogeneous and heterogeneous environment. The introduced cost model,
with a few adoptions , is also used in the heterogeneous environment and is required to
compare the performance to the homogeneous environment.

4.1 Parallel Database Operations in Multiprocessor Architectures

We focus on the most common and well studied parallel relational database algorithms
for sorting, joining and aggregates and analyze their performance. These algorithms are
described in Bitton et.al. [45]. Bitton uses a generalized parallel multiprocessor organiza-
tion described in section 3.8. This architecture is very similar to DIRECT [46]. Based on
the dataflow machine DIRECT an earlier study of parallel join algorithms was done by
Boral and DeWitt [47].

4.1.1 Cost Model

For comparing the algorithms we use the same definitions of the analysis parameter as
described in [18]. We define n as the number of pages with k tuples, and p is the number
of processors.

Communication Cost

A processor must request a page, for this purpose a message is necessary, the cost for such
an ”I/O-related” message is Cmsg

I/O Cost parameters

• H ... certain hit ratio for the cache

• H ′ ... fraction amount of time a free page frame will be available in the cache during
a writing operation

• Rc ... cost of a cache to processor transfer

• Rm ... cost of a mass-storage transfer

The average cost of a read by a processor is

Cr = HRc + (1−H)(Rc +Rm) + 2Cmsg

The average cost of writing a page is

Cw = H ′Rc + (1−H ′)(Rc +Rm) + 2Cmsg
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Scan Cost

The sequential scan cost within a page are

Csc = kC

where k is the number of tuples in a page,and C are cost of a simple operation (scan,
compare, add).

Merge Cost

All operations require internally sorted pages. Thus the number of comparisons required
to perform the merge of two sorted pages of length k is 2k.

• V is the cost to move a tuple inside a page

Thus the cost of merging a page are

Cm = 2k(C + V )

Page Reorganization

To keep the tuples in sorted order in a page, we assume half of the tuples in the page will
be affected to reorganize after an update or modify operation. The page reorganization
cost are

Co = (1/2)k(C + V )

and the cost to sort a page internally1

Cso = (klog(k))(C + V )

To group some of the above parameters we define analogously to Bitton et.al. [18] we
group some parameters to a so called ”2-page operation” C2

p :

C2
p = 2Cr + Cm + 2Cw

Disk, Network and Cache

The bandwidth of the network in a Grid varies from 100 kbit/s up to 10000 kbit/s for uploa-
ding data, and about 200 kbit/s up to 10000 kbit/s for downloading. Their values have
been derived from measuring more than one hundred actual internet service-providers (see
[48]). The disk bandwidth in disks available today range from about 100 Megabit/second
up to 1200 Megabit/second. Different spindle speeds and seek-times are available. Table
4.1 shows an overview of today’s common disks available and their parameters.

As we use the C2
p operation in the Static Simplified Grid, a ”disk cache” is not necessary,

because a C2
p operation is only performed between a local node and a remote node and

not from a local node to itself. Thus, we can refine the definition of the average cost of a
read by a node

Cr = HRc + (1−H)(Rc +Rm) + 2Cmsg

refined to Cr = Card + Carn + 2Cmsg
The average cost of writing a page in a Grid organization is therefore

Cw = H ′Rc + (1−H ′)(Rc +Rm) + 2Cmsg
1We assume in this thesis all log() functions are to the basis of 2
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Tabelle 4.1: Common Disk Parameters

spindle-speed[rpm] seek-time[ms] interface bandwidth[Mbit/s]

15000 3.6 1129
15000 3.3 1129
10000 4.5 1075
7200 8.5 998
7200 8.8 757
7200 14 998
7200 14 966
7200 10 629
5400 11 510
5400 12 493
4200 15 289
4200 13 288
3600 12 125

refined to Cw = Cawd + Cawn + 2Cmsg
This also leads to a new definition of the architectural underlying model which is similar

to the Generalized Multiprocessor Organization as the basis for the ”2-page operation”
C2
p analysis of the algorithms. This revised architecture is depicted in Figure 4.1.

Abbildung 4.1: Revised Static Simplified Grid Organization

If we use the values of network bandwidth and disk bandwidth to calculate the cost2

with a page size ps of 16Kbyte we get the values given in Table 4.2. Based on these findings
we can neglect to differentiate between disk read and write cost, because the values are
nearly identical.

4.1.2 The Influence of Network Cost

The percentage of message- (Msg), processing power (CPU), disk- (disk) and network-
cost (net) as part of a C2

p operation in the Revised Static Simplified Grid Organization is
shown in Figure 4.2. Only the network speed (sum of Carn and Cawn) is varied, the costs
of the message transfer Cmsg, processing power Cm, sum of disk cost Card, Cawd are fixed.
The message cost have been left fixed because a message contains only a few bytes. The
2Time for reading a page from disk is seek-time+rotational delay+transfer time
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Tabelle 4.2: Average Cost of Network and Disk

name value[sec] type of costs

Carn 0.0542 average costs for read network
Card 0.0197 average costs read disk
Cawn 0.2418 average costs write network
Cawd 0.0197 average costs write disk

transfer time of such a short message is nearly independent of the network speed, as a
result of protocol overhead. The disk cost for transferring a page of 16 Kbyte varying only
marginally (see table 4.1) and therefore we can neglect them.

The influence of the network speed on the cost of a C2
p operation can be summarized

by: ”the higher the network speed, the lower the impact on the cost of a C2
p operation”.

Abbildung 4.2: Percentage of C2
p cost in a Revised Static Simplified Grid Organization

4.1.3 Parallel Sorting Algorithms

Sorting is an important operation in a database system. It is frequently used in query exe-
cution plans generated by database query optimizers. Therefore its performance influences
dramatically the overall performance of a database system [15, 16].

Generally sorting algorithms can be divided into internal and external sorting. Internal
sorting is done by using the main memory of a processor while external sorting uses also
the disk [17]. If the data set for sorting is too large to fit into the main memory, external
sorting is necessary. The common case in database systems is using external sorting.

In the following we concentrate our discussion on two well known parallel sorting algo-
rithms, the parallel binary merge sort and the block bitonic sort algorithm.
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4.1.3.1 Parallel Binary Merge Sort

Binary Merge Sort uses several phases to sort nk tuples, where n is the number of pages
containing the data set and k denotes the number of tuples per page. We assume that
there are much more pages n than processing nodes p ( i.e. n >> p) and that the size of
the data set is much larger than the available main memory of the nodes.

We assume the very general case that the pages are not distributed equally among the
mass storage media of the available nodes and that the tuples are not presorted according
to the sorting criteria in the pages. Therefore the algorithm starts with a prepare phase
(see Figure 4.3), which distributes the pages equally across all p nodes, sorts the tuples
inside every page according to the sort criterion and writes the pages back to disk. After
the prepare phase n/p (respectively n/p − 1) pages are assigned to each node and the
tuples of each page are sorted. The algorithm continues with the suboptimal phase by
merging pairs of longer and longer runs3. In every step the length of the runs is twice as
large as in the preceding run. At the beginning each processor reads two pages, merges
them into a run of 2 pages and writes it back to the disk. This is repeated, until all pages
are read and merged into 2-pages-runs. If the number of runs exceeds 2p, the suboptimal
phase continues with merging two 2-page-runs to a sorted 4-page-run. This continues until
all 2-page-runs are merged. The phase ends, when the number of runs is 2p. At the end of
the suboptimal phase 2 sorted files of length n/2p exist on each node . In the suboptimal
phase the nodes work independently in parallel. Every node accesses its own data only.
During the following optimal phase (see Figure 4.4) each processor merges 2 runs of length
n/2p and pipelines the result (run of length n/p) to a target node. The number of target
nodes is p/2. The identification of the target-node is calculated by

nodenrtarget =
p

2
+ nodenrsource

for even source-node-numbers, and

nodenrtarget =
p

2
+ nodenrsource + 1

for odd source-node-numbers.

Abbildung 4.3: Prepare and Suboptimal Phase

In the postoptimal (last) phase the remaining p/2 runs are merged into the final run of
length n. At the beginning of the postoptimal phase, we have p/2 runs. During this phase
one of the p nodes is no longer used. Each of the other nodes is used only once during
3a run is an ordered (respective to the tuples contained) sequence of pages.
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this phase. Two forms of parallelism are used. First, all nodes of one step work in parallel.
Second, the steps of the postoptimal phase overlap in a pipelined fashion. The execution
time between two steps consists of merging the first pages, building the first output-page
and sending it to the target-node. During the postoptimal phase every node is used only
in one step, that means that every node is idle for a certain time.

Abbildung 4.4: Optimal phase

Thus the algorithm costs are
n

2p
log(

n

2p
)︸ ︷︷ ︸

suboptimal

+
n

2p︸︷︷︸
optimal

+logp− 1 +
n

2︸ ︷︷ ︸
postoptimal

(4.1)

which can be expressed as

nlogn

2p
+
n

2
− (

n

2p
− 1)(logp)− 1 (4.2)

4.1.3.2 Block Bitonic Sort

For better understanding of the Block Bitonic sort we give a short introduction to sorting
networks.

Sorting Networks

The basis of sorting networks are the comparison networks, which consist of wires and
comparators. A comparator gets two inputs and gives back two outputs. It performs the
functions x′ = min(x, y) and y′ = max(x, y) while x and y are the inputs. In short, the
comparator gets two inputs and returns on the top the minimum and on the bottom
the maximum. Figures 4.5(a) and 4.5(b) represent exactly such a comparator. The only
difference between the two Figures is that the comparator in Figure 4.5(b)is drawn as a
single vertical line.

A comparison network consists of multiple comparators that are connected by wires.
An example for a comparison network is shown in Figure 4.6. The wires a1, a2, ..., an are the
so-called input wires while b1, b2, ..., bn represent the output wires. The values of the wires
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Abbildung 4.5: (a) operator with two inputs and two outputs. (b) same comparator, just drawn as vertical line

are represented in the input sequence 〈a1, a2, ..., an〉, respectively in the output sequence
〈b1, b2, ..., bn〉 which means that the notation for the wires as well as for their values are
the same.

Referring to Figure 4.6, it can be seen that every comparator is either connected to an
input wire or to an output wire of another comparator. On the other hand the output of
a comparator can be either an output wire of the network or an input wire for another
comparator. For instance the comparator A from Figure 4.6 is connected to two input
wires while the comparator C is connected to output wires from A and B.

For comparison networks it is of particular importance that the path of connections does
not cycle back on itself. Thus, the path must not go through the same comparator twice.
If the interconnection graph can be read from left to right like in Figure 4.6, the path is
acyclic and the requirement is fulfilled.

Assuming that each comparator takes the same amount of time, that is to say one unit,
the ”running time” of the network can be calculated. More specifically the depth of the
comparison network can be defined. A comparator can just produce its output value when
it has received both input values. Given that the input wires appear at time 0, the input
values for comparators A and B would be provided at time 0 and their output values would
be produced at time 1. At the same time the depth of those comparators would be 1 as
can be seen in Figure 4.6(b). Therefore, at time 1 comparators C and D have their inputs
and can produce their outputs at time 2. The top output of C and the bottom output of
D are already the output wires of the network carrying the output results as can be seen
in Figure 4.6(c) and (d). The comparator E gets its input from C and D at time 2 and
produces results at time 3 which means that the whole comparison network has a depth
of 3.

Abbildung 4.6: (a) The comparison network, which is in fact a sorting network, at time 0. (b) comparison network
at time 1. (c) comparison network at time 2. (d) comparison network at time 3

As soon as the comparison network produces a monotonically increasing output sequence
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(b1 ≤ b2 ≤ ... ≤ bn) for every input sequence, it is called a sorting network. The example
from Figure 4.6 shows a sorting network.

A bitonic sorting network is a sorting network which can sort any bitonic sequence.
A bitonic sequence is defined as a sequence that is monotonically increasing and then
monotonically decreasing. Alternatively a sequence is also called bitonic if it can be made
monotonically increasing and then monotonically decreasing by circular shifting. Possible
bitonic sequences would be 〈3, 4, 7, 5, 2, 1〉 or 〈4, 7, 5, 2, 1, 3〉. The first sequence is increasing
until the maximum of 7 and then decreasing. The second sequence can be cyclically shifted
to the first sequence and is so bitonic as well. If a sequence is just monotonically increasing
or monotonically decreasing, it is also bitonic.

The bitonic sorting network will be explained using the set {0, 1}. Due to the Zero-one
principle [49], a comparison network is able to sort all sequences of arbitrary numbers
correctly if it is able to sort all 2n possible sequences of 0’s and 1’s correctly. Bitonic
zero-one sequences have always one of two different forms. The two possibilities are either
0i1j0k or 1i0j1k for i, j, k ≥ 0.

A bitonic sorter consists of several comparison networks of depth 1, which are called half-
cleaners. In a half-cleaner input line i is compared with line i+ n/2 for i = 1, 2, ..., n/2.
Figure 4.7 shows two examples where bitonic sequences of 0’s and 1’s are used as input to
a half-cleaner. Those specific comparison networks produce two bitonic output sequences
where the smaller outputs are in the top and larger values in the bottom.

Abbildung 4.7: two comparison networks with depth 1, called half-cleaner.

Actually, there are some more characteristics of a half-cleaner that can be identified
and proved by looking at the different possible cases depending on where the midpoint
of a bitonic zero-one sequence falls. Assuming that a bitonic sequence with the form
000..011...100...0 is used as input, there are three different cases where the midpoint can
fall. It can occur either in the first ”0” subsequence, in the ”1” subsequence or in the
second ”0” subsequence. If it occurs in the ”1” subsequence, a further split into two cases
is possible. Therefore, there are eventually four different cases which are shown in Figure
4.8. Anyway, if the form of the input sequences would be 111...100...011...1, the situation
would be symmetric.

As can be seen, all of the four possible cases in Figure 4.8 have similarities due to general
characteristics of a half-cleaner. That signifies that no matter how big i, j, k of a bitonic
sequence 0i1j0k or 1i0j1k are, as long as the condition i, j, k ≥ 0 is satisfied, the following
characteristics of a half-cleaner are valid:
• The two output halves of a half-cleaner are always bitonic sequences themselves, both

the top as well as the bottom half.

• Every output element of the top half is at least as small as every output value of the
bottom half.
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• One of the produced output sequences, either the top or the bottom half are clean.
That means that it consists either of just 0’s or just 1’s.

Abbildung 4.8: There are four different cases where the midpoint of a bitonic zero-one sequence can fall. (a)-(b)
the division occurs in the middle subsequence of 1’s. (c)-(d) the division occurs in one of the
”0” subsequences. The outputs consist always of two bitonic parts and one part is always clean.
Furthermore every output element of the top half is always at least as small as every output
element of the bottom half.

As previously mentioned, a BITONIC-SORTER consists of several half-cleaners. Those
half-cleaners are recursively combined as shown in Figure 4.9. In general, a BITONIC-
SORTER[n] starts with a half-cleaner which is followed by two copies of BITONIC-

53



SORTER[n/2] that operate in parallel. The number of half-cleaners needed in total is
dependent on the number n of input-wires. If n = 8 like in Figure 4.9, every BITONIC-
SORTER[n/2] consists of three half-cleaners and therefore seven half-cleaners are needed
in total. All half cleaners in Figure 4.9(b) are shaded. The depth of such a network is given
by:

D(n) =

{
0 if n = 1
D(n/2) + 1 if n = 2k and k ≥ 1

The solution of this function is D(n) = lg n. [49]
So any bitonic zero-one sequence can be sorted by the BITONIC-SORTER with the

depth of lgn. Furthermore it can be deduced from the zero-one principle that any bitonic
sequence of arbitrary numbers can be sorted by this sorting network.

Abbildung 4.9: The bitonic sorting network[n] for n = 8 is shown. (a) The recursive construction of the sorting
network. (b) The network showing the details and the progressively smaller half-cleaners that sort
the input eventually.

Improvements of the bitonic sort has been introduced (like a recirculating bitonic
sorting networks for minimizing communication) in [50] which reduces the cost comple-
xity to O(NlogN) from O(Nlog2N), originally. Also the improvement of the preprocessing
stage in a parallel block bitonic sort was investigated by Menon [51].

Batcher’s bitonic sort

Batcher’s bitonic sort algorithm sorts n numbers with n/2 comparator modules in 1
2 logn(logn+

1) steps [52]. Each step consists of a comparison-exchange at every comparator module
and a transfer to the target-comparator module. The comparator modules are connected
by a perfect shuffle arrangement described in [53]. (Figure 4.10). The perfect shuffle uses
three types of comparator modules. (Figure 4.11). The comparator module is represented
by a node. This comparator module merges two pages and distributes the lower page and
the higher page to two target-nodes. The way to define the target-nodes is done by a
mask-information. This mask-information is the schema building the perfect shuffle inter-
connection. This configuration is called block parallel algorithm and can sort n pages with
n/2 comparator modules in 1

2 logn(logn+ 1)C2
p time units.

Note that the block bitonic algorithm can process at most 2p blocks (runs) with p pro-
cessors. If the number of pages exceeds 2p a preprocessing stage is necessary to produce
2p sorted blocks with the size of n/2p pages. This preprocessing stage can be done by per-
forming the suboptimal phase of the binary merge sort and the costs are (n/2p)log(n/2p).
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Abbildung 4.10: Bitonic Sort

After this preprocessing stage a external block bitonic sort is applied to 2p blocks with
size n/2p and this cost are:

n

2p
log2p

2
(log2p+ 1)C2

p (4.3)

Abbildung 4.11: Perfect Shuffle

The implementation algorithm uses three basic operations, which are described below.

1. circulate(S)
From each of the 2p files the pages are routed to a node through the perfect shuffle
interconnection. Each node pi creates its MASK(i) each node merges its pages and
distributes them according to MASK(i) = 0, 1, -1

2. shuffle(mask)
This operation shuffles the MASK-array from the second 2p−1 nodes to their target-
nodes such that the target-nodes will use the same type of comparator.

3. mask(j)
It computes the entries of the MASK-array. Given an integer j, an array of length 2p

is created as follows.
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MASK = -1, -1, -1, ..., -1 if j = −1
MASK = 0, 1, 0, 1, ..., 0, 1 if j <= p− 1
MASK = 0, 0, 0, ........,0, 0 if j = p

The algorithm for the perfect shuffle is defined by Algorithm 1.

Algorithm 1: Perfect shuffle algorithm

foreach i from 1 to p do1

Mask(-1);2

foreach j from 1 to p-i do3

Circulate(S);4

Mask(i);5

foreach j from p-i+1 to p do6

Circulate(S);7

Shuffle(MASK);8

The total cost for the block bitonic sort with the preprocessing stage are:

n

2p

(
logn+

log22p− log2p
2

)
C2
p (4.4)

4.1.4 Parallel Join Operations

In this section we introduce three join algorithms for relational database systems, a parallel
”nested-loop” , parallel ”sort-merge” and a parallel ”Hashing” algorithm. Like the sort
algorithms the presented join algorithms are commonly used in database systems. We have
carefully investigated join algorithms in parallel environments like [54, 55, 56, 57, 58, 59]

4.1.4.1 Parallel Nested Loop Join

The inner (smaller) relation T, and the outer relation R (larger one) are joined together.
The algorithm can be divided into two steps:

1. Initiate
Each of the processors reads a different page of the outer relation R

2. Broadcast and join
All pages of the inner relation T are sequentially broadcast to the processors. After
receiving the broadcast page, each processor joins the page with its page from R.

n and m are the sizes (number of pages) of the relations R and R′, and we suppose n >= m.
To perform the join of R and R′ we assign p processors. If p = n, the execution time is:

Tnested−loop = T (read a page of R)
+mT (broadcast a page of R′)

+mT (join 2 pages)
(4.5)

S is the join selectivity factor and indicates the average number of pages produced by
the join of a single page of R with a single page of R′. Joining two pages is performed
by merging the pages, sorting the output page on the join attribute and write the sorted
page to disk.

S =
size(R join T)

mn
(4.6)
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If the number of processors p smaller than the number of pages n, step 1) and 2) must
be repeated n

p times. Therefore the cost for the Parallel Nested-Loop Join is

Tnested−loop =
n

p

[
Cr +m[Cr + Cm + S(Cso + Cw)]

]
(4.7)

4.1.4.2 Parallel Sort Merge Join

The algorithm processes in two steps. The first step of the algorithm is to sort the two
relations on the join attribute (we assume, that the two relations are not already sorted).
After sorting, the second step is performed, where the both sorted relations are joined
together and the result relation is being produced. If we use the block bitonic sort for the
first step, the cost of the Sort Merge Join are

T =
[
n
2p logn+ m

2p logm+ (log22p− log2p)n+m
4p

]
C2
p

+(n+m)Cr +max(nm)Cm +mnS(Cso + Cw).
(4.8)

Using the Parallel Binary Merge Sort the cost in term of C2
p cost are

T =
[
nlogn

2p + n
2 − ( n2p − 1)(logp)− 1

]
C2
p

+(n+m)Cr +max(nm)Cm +mnS(Cso + Cw).
(4.9)

4.1.4.3 Parallel Hashing Join

The algorithm is based on the analysis described in [60]. The Architectural model in [60]
is very close to that described in Bitton et al. The Hashing Join in [60] uses Bit-Arrays.
The method is to hash the join attribute and to use the result as an address into the
Boolean array. The marked bit in the array denotes that matching tuples exist. The value
of the Boolean arrays is to eliminate most of the data not needed in the result. To keep
the algorithm simple only the equijoin is analyzed.

The algorithm is divided in two stages. In the first stage, a cache processor is chosen and
the smaller relation is read into the cache memory and hashed on the join attribute. The
result are tuples written in buckets of a hashed file. The hashed file is composed of buckets
having a variable number of linked pages. For each bucket a page frame is maintained in
cache memory. This avoids the need to manage an overflow area. Simultaneously, for each
join attribute value ν, a boolean array B(h(ν)) is marked (set to 1), where h is a hashing
function applied to the join attribute. The first stage is completed when the entire relation
has been hashed.

In the second stage, the Boolean array is broadcast to p processors. The larger relation
is sequentially distributed among p processors. Each processor uses two buffers as input
pages, one buffer as the output page and one buffer to store the Boolean array. Thus, each
processor receives one page of the larger relation.

Algorithm 2: Hash Stage-2 Algorithm

foreach page in a Bucket do1

foreach tuple in the page do2

if join attribute value ν′ satisfies B(h(ν′)) = 1 then3

One bucket of the hashed file is accessed by specifying the key to find the matching4

tuple(s);
The tuples of each page are then compared with ν′ to complete the join ;5
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To avoid collisions in hashing more than one hashing function is used. If ν1 and ν2 are
different join attribute values, we can have hν1 = hν2. Since the Boolean array is accessed
by hashing, collisions can lead to useless access to the hashed file during the second stage.
In order to reduce collisions, several hashing functions h1 , h2 , . . . , hq can be used,
each associated with a Boolean array B1 , B2 ,. . . , Bq . Then, for each value ν, all of
the corresponding bits in each Bi must be set (i.e., Bl(h1(ν)) = 1 , B2(h2(ν)) = 1 ,. . .
Bq(hq(ν)) = 1). Increasing q results in a probability of collisions near zero.

For better comparison we translated the original names of the variables used in [60] to
that defined in [18].

The execution time of the algorithm comprises time T1 for hashing the smaller relation
by the cache processor, time T2 for distributing the larger relation among p processors,
time T3 for accessing the hashed file, and, finally, time T4 for writing the result. The time
for broadcasting the Boolean arrays is negligible and, thus, is ignored. c page frames are
available in the cache for the join operation. Thus the creation of the hashed file consists
of creating m buckets, if c > m, or c buckets, otherwise. In the first case, the hashed file
can be maintained in cache memory during the entire execution of the join operation. In
the latter case, the pages of the same bucket would be linked and written to disk, and
retrieved using a table of physical addresses. The time for reading a page for R, taking
into account the ratio H, is

t1 = (1−H)Rc.

The time for hashing a page of k tuples is

t2 = k(C + V ).

The time for writing the hashed file is the time for writing (m - c) pages, since c pages
are reserved in cache memory during the join execution. Furthermore, page frames may
be available in the cache with the probability H ′. Thus the time for writing (m− c) pages
from cache to disk is

t3 = (m− c)(1−H ′)Rc.
Then, the execution time for hashing a relation of m pages is

T1 = m(t1 + t2) + t3

which is
T1 = m[(1−H)Rc + k(C + V )] + (m− c)(l −H ′)Rc

The cost in term of time of the second stage consist of following:

1. Reading the relation S by p processors in parallel,

2. Accessing the hashed file, and

3. Writing the result relation.

Each processor reads n/p pages of the relation S, and, for each of the t tuples of a page,
accesses the Boolean array. The cost are therefore

T2 = (Cr + k · C)
n

p
.

For each matching tuple of S an access to the hashed file is needed. The number of
matching tuples is defined by the semijoin selectivity factor SS, and each bucket of the
hashed file contains m

c pages. Thus, for each page of S, the number of pages read from the
hashed file is k · SSmc Cr; and this occurs n

p times for the entire relation S.

T3 =
n

p

m

c
Cr · k · SS
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The time for writing the result relation of size m · n · JS in parallel by p processors is

T4 = m · n · JSCw
p

The total time T of the Hashing Join is the sum of T1, T2, T3 and T4

T = m[(1−H)Rc + k(C + V )] + (m− c)(1−H ′)Rc
+(Cr + k · C)np + n

p
m
c Cr · k · SS +m · n · JS Cwp

(4.10)

Another approach instead of using hashing for partitioning data is to use range par-
titioning instead of hash partitioning. One of these approaches is described in [61] as
hybrid-range declustering strategy. In this strategy, the user specifies a range of key values
for each processor and the range of values of the partitioning attribute for each processor
is stored in a so called range table. Ghandeharizadeh and Dewitt showed that in mixed
workloads the hybrid-range declustering strategy is the better one.

4.1.5 Parallel Aggregate Operations

Two different kinds of aggregates can be distinguished, ”scalar” aggregates and aggregate
”functions”. Scalar aggregates are aggregations (average, max, etc.) over an entire rela-
tion. In contrary, aggregate functions first divide a relation into disjoint partitions (based
on some attribute values) and then compute scalar aggregates on the individual partiti-
ons. Scalar aggregates compute a single result, while aggregate functions produce a set of
results as a temporary relation. The operations for aggregation are depicted in table 4.3.
In Bitton et al. [18] QUEL as query language is used. For the purpose of this analysis we
stick to QUEL as example language to make the results directly comparable. All findings
are easily applicable to other languages, as SQL or even the relational algebra. The syntax
of the scalar aggregate in QUEL has the form

agg op (agg attwhere qual)

and for aggregate functions

agg op (agg att by listwhere src qual) where by qual

where agg op denotes an aggregate function as given in table 4.3 and agg att is the attri-
bute on which the aggregate is been calculated. by list is a list of attributes and src qual
is a qualification for the source relation. Qualifications may be added (”where qual”)
to compute an aggregate over a subset of tuples in a relation. That means the by qual
eliminates unwanted tuple sets of result partitions. Partitioning a relation on more than
one attribute is also possible (e.g., partitioning employees by department and task within
department). Also note that the result of an aggregate function may depend on qualifi-
cations outside the aggregate (by qual). In Bitton et al. [18] ”simple” qualifications are
distinguished from ”complex” qualifications. Simple qualifications can be processed simul-
taneously to the computing of the aggregate. On the other hand complex qualifications
require interrelated operations. So the relation must be preprocessed before computing
the aggregates. We analyze aggregates with ”simple” qualification only. For computing a
scalar aggregate two variables are needed: a count variable, and the aggregate variable.
The count variable holds the number of tuples contributing to the aggregate value and is
used in averaging and initialization. While processing aggregate functions, a third varia-
ble is required to identify the partition. We focus on aggregate functions because scalar
aggregates are a special case of them.

An aggregation performed over a set of different values of an attribute is called a unique
aggregation. QUEL supports three unique aggregates: countu, sumu, and avgu. Unique
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Tabelle 4.3: Aggregate Functions

Function Value returned

count() Number of entries in column.
countu() Number of unique entries in column.
sum() Sum of values in column.
sumu() Sum of unique values in column.
avg() Average of values in column.
avgu() Average of unique values in column.
max() Maximum value in column.
min() Minimum value in column.
any() Returns 1 if any rows satisfy

the condition expressed by the argument

versions of any, max and min are not necessary.

Tabelle 4.4: Employee Relation

name department task salary mgr

Smith Toys Clerk 300 Johnson

Miller Shoes Buyer 650 Bergman

Jones Books Account 550 Harris

Brown Shoes Clerk 400 Conners

Now we describe two algorithms for aggregate functions which distinguish two types of
qualifications. This is explained by the following example. Given the relation in Table 4.4
we express the query:

count (emp.name by emp.mgr where emp.salary > 500)

This query requests, for each manager, a count of the number of employees earning more
than 500. Even if a manager does not have any employees making more than 500, he
should not be excluded from the list and his count should be set to 0. If we apply the
qualification first and then compute the aggregate function on the result, we would miss
those managers since all his employees were removed by the qualification. The result is
therefore:

Johnson 0
Bergman 1
Harris 1
Conners 0

As another example, consider

count (emp.name by emp.mgr where emp.salary > 500)
where emp.mgr <> ”Johnson”

In this query we want to include the count for all managers other than Johnson. The
result for this query is:

Bergman 1
Harris 1
Conners 0

Thus, we need to distinguish restrictions on the source tuples from restrictions on the set
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of possible partitions. The source qualification (”src qual”) is the qualifications inside the
aggregate. That means to select a subset of the source relation may have the undesirable
side effect of removing necessary partitions (manager Johnson in our example). Qualifi-
cations outside the aggregate (the ”by qual”) are used to eliminate unwanted partitions.
That means the result of an aggregate function may depend on qualifications outside the
aggregate (”by qual”).

On the other hand, scalar aggregates are not affected by the rest of the query, they are
self-contained.

If a src qual is specified in an aggregate function, any algorithm must start by deter-
mining the set of desired partitions so that all partitions which are removed by applying
the src qual (e.g. managers with zero counts) can be included in the result of the query.
Determining the set of partitions requires one or two steps, depending on whether the
query contains a by qual or not. If the query has a specified by qual, the source relation
eliminates unwanted partitions. Then this result relation is projected on the by list attri-
butes to determine the names of the desired partitions. If the query has no by qual, the
original source relation is projected.

4.1.5.1 Subqueries with Parallel Merge (Aggregate Algorithm A)

Our first aggregate algorithm is performed in two stages:

1. Stage 1
Each of the p processors reads the pages of its source relation and builds one aggregate
value for each partition. The result is a set of pages containing partial results.

2. Stage 2
The parallel merging of the pages produced in Stage 1 is performed.

Algorithm 3: Aggregate Algorithm A

if by qual then1

Eliminate unwanted partitions by applying the by qual predicate;2

end3

if src qual then4

Step 1: Project the source relation or the relation produced by executing the by qual5

predicate on the attributes of the by list. This step will produce a temporary result relation
with the result and count values for each partition initialized to 0;
Step 2: Apply the source qualification src qual and compute the aggregate values. If the6

query has a simple src qual, it may be processed at the same time the aggregate is
computed; otherwise, it is performed as a separate operation before the aggregate is
computed;
Step 3: One Processor merges the temporary result relation with its run of t pages;7

end8

Perform the parallel merge;9

If unique aggregates are used, a separate preprocessing step is required in which the
source relation is sorted on the by list in order to eliminate duplicates.

The execution time of the algorithm is derived from two stages. We assume a query with
no qualification and an aggregate that is not unique.

T (Algorithm A) = T (produce partial result pages)
+T (parallel merge)

In Stage 1 each of the p processors read n/p source relation pages. The processors update
the aggregate value for their specific partition and keep the tuples in the pages sorted.
There are x = min(m, r) partitions, where m is the number of partitions and r is the
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number of result tuples in the output page. To locate the correct partition a binary search
is used, which requires log(x) comparisons. Then the aggregate value can be updated for
the partition. Therefore the cost for processing the source relation pages is:

T (processing source relation) =
n

p
{Cr + k[(logx) + 1]C} (4.11)

The estimation of the number of output pages produced by one processor is t = dm/re
if the partition is uniformly distributed in the relation and every processor ”sees” all
partitions. Therefore the cost for one processor to write the partial result pages is tCw.
The cost for keeping the pages in sorted order by using a binary search is as follows: Each
time a new partition (new by list value) is encountered, the processor must create a new
tuple and adds it to the sorted page. The number of moves for each partition is on the
average x(x+1)/4 where x is the number of partitions (half of the tuples must be moved).
The cost to process each of the t pages produced by a processor is:

t

[
V x

4
(x+ 1) + Cw

]
(4.12)

The Stage 2 is a parallel merge operation where two partial output runs are combined to a
single output run. Each processor must create a sorted run of the t pages it has produced
itself. A merge sort requires ( t2)log( t2) C2

p operations. To combine the p runs of t pages into
one run of t pages, a binary merge (see section 4.1.3) is used. This binary merge requires
log(p) stages. Each of the processors reads two runs of t pages, merges them, and writes
a run of length t. The costs of merging two output pages is Cm′ = 2r(C + V ) (where r is
the number of tuples in a output page). The cost for the parallel merge is therefore:

T (parallel merge) = (t+ log(p))(2Cr + Cm′ + Cw) (4.13)

Now we are ready to write the final formula for Aggregate Algorithm A:

T (AlgoA) = T (execute by qual) if by qual
+T (project on by list) if src qual
+T (execute src qual) if complex src qual
+T (project) if unique aggregate

and the processing of partitions:

+n
p{Cr + k[(log(x)) + 1]C} x = min(r,m)

+n
p qCsc if simple src qual

+t(x(x+ 1)(V4 ) + Cw) t = dm/re
and the parallel merge operation:

+( t2)log( t2) C2
p

+t(2Cr + Cm′ + Cw) if src qual
+(t+ log(p))(2Cr + Cm′ + Cw)

4.1.5.2 Project by list and broadcast source relation (Aggregate Algorithm B)

A typical multiprocessor architecture supports broadcasting pages to multiple processors.
This ability is used in this algorithm. First, the source relation is being projected on the
by list domains to determine the partitions. Now this list of partitions will be distribu-
ted to the p processors. Then the pages of the source relation will be broadcast to all
processors and each processor computes the aggregate value for its set of partitions. If
the memory space occupied by the list of partitions exceeds the combined buffer space of
the processors, then the source relation will have to be broadcast more than once. As in
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Aggregate Algorithm A, if the query has a simple src qual predicate, it may be processed
concurrently while the aggregate value is being computed. If a unique aggregate is used,
the source relation must be sorted on its by list and each processor must compare the
tuples to eliminate duplicates.

The cost of the algorithm is (as in Algorithm A, where we assumed a query with no
qualification and an aggregate that is not unique):

T (Algorithm B) = T (project by list)
+T (process partitions)

A processor processes every page of the n source relation pages. Each tuple must be
placed in the correct partition. There are m/p or r partitions, depending on the number
of passes over the source relation. We assume that the partitions are sorted to allow the
usage of a binary search. The number of broadcasts of the source relation is b = d(m/r)/pe.
Then the cost to process the partitions is

T (process partitions) = b{n[Cr + (log(x)Csc] + Cw} (4.14)

where x = min(r,m/p). The total cost for Aggregate Algorithm B is therefore

T (AlgoB) = T (execute by qual) if by qual
+T (project by list) determine partitions
+T (execute src qual) if complex src qual
+T (project source) if unique aggregate
+bnCsc if unique aggregate

and the processing of partitions:

+b{n[Cr + (log(x)Csc] + Cw}
+bnqCsc if simple src qual

4.2 Query Optimization in Parallel and Distributed Database Systems

In this section we give a short overview about query optimization and their used technology
based on publications like [19, 1, 62, 63, 40]. Query optimization is an important factor for
the success of relational database systems. Query optimizer for parallel database systems
are more complicated than that for sequential query evaluation. The general problem of
query optimization is known to be NP-hard even for centralized database systems, see
Ibiraki [64]. Stonebraker et.al. [6] and Murphy [65] shows that a near optimal solution, in
reasonable time, can be found when a given optimized sequential query execution plan is
parallelized.

The reasons for the complexity are:

1. How to parallelize the query to execute

2. The cost model is more difficult due partitioning of data

4.2.1 Query Optimization

A query optimizer is one part in the execution of phases in query processing, typical steps
or phases are depicted in figure 4.12 which was described in [1].

The first step in query processing is to parse the input. The Parser checks the syntax
and translates the input (query expression) into an internal representation, in a operator
tree. As an example the query expression

πcustomer−name(σbranch− city = Brooklyn ∧ balance > 1000
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Abbildung 4.12: Phases of Query Processing

(branch ./ (account ./ depositor)))

can be translated in the operator tree seen in figure 4.13.
The next step is the Query Rewrite, it transforms the query e.g. by elimination of

simplification of expressions, redundant predicates and unnesting of subqueries and views.
Query Rewrite optimizes the query independent of the physical state (e.g., the table sizes,
presence of indices, locations of copies of tables, speed of machines) of the database system.

Abbildung 4.13: Operator Tree

The third step is to optimize the query depending on the physical state of the system.
The optimizer decides:

1. Which methods (e.g., hashing or sorting) to use to execute

2. Which indices to use to execute a query

3. In which order to execute the operations of a query

4. How much main memory would be allocated

5. Which site each operation is to be executed
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The result of the Query Optimizer are alternative plans to execute the query and chooses
the best plan using a cost estimation model. A Query Execution Plan specifies in detail
how the query is to be executed.

Alternate plans are generated by equivalence translation of the input query. After this
translation all result expressions are been annotated with alternate algorithms to have
different query plans and therefore different cost estimations. The optimizer takes the
best plan in terms of cost. This process is called Cost Based Optimizing.

The fourth step is the Plan Refinement/Code Generation. This component trans-
forms the plan produced by the optimizer into an executable plan. In most database
systems the query execution plan is translated in a assembler-like language.

The Query Execution Engine provides generic implementations for every operator
(e.g., send, scan, or NestedLoopJoin). Query execution engines are based on an itera-
tor model [62]. The iterator model supports pipelining from one operator to another.
The operators have the same interface and can be plugged together (consumer-producer).
Therefore any plan can be executed and achieve good performance.

All the information for parsing, rewrite and optimize a query is been held in the Catalog.
The data stored in the catalog is:

1. Schema of the database (tables, views, functions, integrity constraints, etc.)

2. Partitioning scheme of the tables and how they can be reconstructed

3. All physical information (Location of copies from tables, indices, statistics)

4.2.2 Interquery Parallelism

Different queries run concurrently to increase throughput of the system. Interquery par-
allelism is the easiest form of parallelism support in a database system, particularly in a
shared-memory parallel architecture. Transactions on a shared-memory architecture run-
ning concurrently in a time-sharing manner. In a shared-memory architecture this tran-
sactions can run in parallel.

4.2.3 Intraquery Parallelism

Intraquery parallelism is used to speedup a single query. Two kinds of intraquery paralle-
lism can be distinguished:

1. Inter-operational parallelism

2. Intra-operational parallelism

Inter-operational parallelism: A query can be parallelized by parallelizing individual
operations that do not depend on one another.

Intra-operational parallelism: Operations can be parallelized by executing them in
parallel on different subsets of the relations.
In this thesis we focused on Intra-operational parallelism and their optimization.

65



66



5 A Heterogenous Architecture for Parallel Database Operations

In this section we describe the modifications of the most important parallel database ope-
rations sort, join and aggregate in a static simplified grid organization and a performance
analysis and comparison to the unmodified operations.

5.1 Modified Parallel Database Operations

The parameters for the calculation of the particular cost in the analysis are specified
in Table 5.1. The values chosen reflect the characteristic parameters of actual hardware
technology.

Tabelle 5.1: Cost Values for Analysis

name value description

H 0.85 hit ratio for the cache
H ′ 0.35 fraction amount of time a free page

frame will be available in the cache
during a write operation

Rc 16ms costs of a cache to processor transfer
Rm 28ms costs of a mass-storage transfer
Cmsg 15ms costs of I/O related message
k 128 tuples per page
C 10µs costs of a simple operation (compare,add)
V 225µs costs of moving a tuple inside a page
ps 16kbyte page size
tl 150byte tuple length
S 0.001 join selectivity factor
SS 0.1 semijoin selectivity factor
m number of partitions (aggregate)
r number of result tuples per page (aggregate)
q 10 number of operations to

apply a simple qualification (aggregate)
t number of output pages in aggregate

5.1.1 Modified Sort Operations

Based on the work of Bitton et al. in a generalized multiprocessor organization the block
bitonic sort has in any case a better performance than the binary merge sort (see Figure
5.1 which is based on the analysis in [18]). To analyze the mapping of the algorithms onto
a simplified Grid organization we have to pay special attention to the three phases of the
algorithms as laid out in section 4.1.3. The last phase (postoptimal) of the Binary Merge
Sort algorithm is split into three parts (see equation 5.1) because only one processor is
necessary for n

2 cost.
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[logp− 1 +
n

2
]︸ ︷︷ ︸

postoptimal

→ logp− 1︸ ︷︷ ︸
postoptimalI

+
n

2︸︷︷︸
postoptimalII

(5.1)

If for this ”bottleneck” we choose the nodes of the Grid with the best network band-
width available, the effect on the overall performance has to be at least noticeable. We
specifically emphasize that even one single processing node with high network performance
is worthwhile to exploit this effect. It is intuitively clear that this situation can be seen
as normal in a heterogenous Grid organization, where nodes with different performance
characteristics are the rule.

This leads to the clear policy for orchestration of a Grid workflow for a parallel binary
merge sort to use nodes with the highest network performance in the postoptimalII phase
as laid out in algorithm 4.

On the other hand, using one high performance node in the bitonic sort gives no perfor-
mance gain at all, because this node is slowed down by all other nodes working in parallel
in a staged manner.

The effect that the binary merge sort now outperforms the block bitonic sort in a simpli-
fied Grid organization is shown in Figure 5.2 by the line labeled ”binary merge modified”
(please notice the logarithmic scale of the values).

This effect can easily be explained by Amdahl’s law too, where simply said the perfor-
mance of a parallel algorithm is dependent on its sequential part. More specific, Amdahl’s
law is stating that the speedup is limited by the sequential part. It is intuitively clear that
even the most powerful node will limit the performance increase if the number of used
nodes for the whole parallel algorithm is increasing. A speedup and scale-up analysis will
clear up this issue.

Abbildung 5.1: Sort in a Generalized Multiprocessor Organization

5.1.2 Modified Join Operations

In the simplified grid organization the Merge-Sort join algorithm based on the bitonic-sort
outperforms the Merge-Sort join based on the binary merge sort up to 26 processors, see
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Abbildung 5.2: Sort in a Simplified Grid Organization

”Parallel Merge-Sort Join (Binary Merge Sort) modified” in Figure 5.3.
As in the multiprocessor organization we have analyzed the join algorithms in the sim-

plified grid organization with a selectivity factor between 0.05 and 0.9. The effect is the
same as for the generalized multiprocessor organization, the difference between the merge-
sort algorithm (Parallel Merge-Sort Join (Bitonic) and Parallel Merge-Sort Join (Binary
Merge) ) remains constant (if S >= 0.05), see Figure 5.4. The reason for it is, that the
merge cost have an insignificant influence on the overall cost of the algorithm. On the
other hand, in this case the Parallel Merge-Sort Join (Binary Merge) modified is always
faster (in terms of C2

p costs) than the unmodified version. The Hashed Join algorithm in
a Simplified Grid Organization performs similarly as in the multiprocessor organization.
And also in the case of using nodes with a buffer greater than ten percent of R the Hashed
Join outperforms all other analyzed algorithms.

5.1.3 Modified Aggregate Operations

We chose Aggregate Algorithm A for analysis within a Simplified Grid Organization. The
reason is clear, the project operation is done by a parallel binary merge sort, and as seen
in the performance analysis of the sort algorithms in a Simplified Grid Organization, the
last processor is the bottleneck in the algorithm. We modify the workflow orchestration
of Aggregate Algorithm A to exploit the highest bandwidth in the network accordingly.
As a result the algorithm is now faster than without modifying it, which can be seen in
Figure 5.5.

5.2 Performance Analysis and Comparison of the Modified Operations

5.2.1 Sort Operations

5.2.1.1 Speedup and Scale-up of the Sort Algorithms

The speedup of the parallel binary merge versus block bitonic sort algorithm is shown in
Figure 5.6. As expected by the discussion above the speedup of the parallel bitonic sort is
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Abbildung 5.3: Join in a Simplified Grid Organization with S =0.001

Abbildung 5.4: Join in a Simplified Grid Organization with S=0.5

far beyond the speed-up of the parallel binary merge because of the sequential part of the
postoptimal phase. The use of a processing node with higher performance is only limiting
the effect in absolute numbers but has clearly no influence on the algorithmic performance
behavior. It has to be noted that the numbers of processing nodes shown in the speedup
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Abbildung 5.5: Aggregate in a Simplified Grid Organization

Figure 5.7 are unrealistically high and for a more realistic situation as shown in Figure
5.2 the smart use of high performance processors is definitely worth the effort.

Abbildung 5.6: Sort Speedup in a Generalized Multiprocessor Organization
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Abbildung 5.7: Sort Speedup in a Simplified Grid Organization

An analysis of the scale-up numbers as depicted in Figure 5.8 shows a similar result. Also
here the scale-up of the modified parallel binary merge outperforms the classical parallel
binary merge in absolute numbers only, but can not cope with the bitonic sort.

5.2.2 Join Operations

Similar to the effects on the performance of the Sort Algorithms in a Generalized Mul-
tiprocessor Organization, the Merge-Sort Join algorithm with the block bitonic sort out-
performs the Nested-Loop Join and also outperforms the Merge-Sort Join based on the
binary-merge sort algorithm, unless the number of processors available is close to the lar-
ger relation size. Figure 5.9 shows the join algorithms with a selectivity factor of 0.001. If
the ratio between the relation sizes is significantly different from 1, the nested-loop algo-
rithm outperforms the merge-sort (except for a small numbers of processors). For lower
selectivity factor values, the merge-sort algorithm performs better than the nested-loop
algorithm because the merge step (handled by a single processor) has to output fewer
pages. The Hashing Join algorithm is strongly influenced by the available memory of the
nodes used in the algorithm. In 5.9 we can see the performance of the Hashed Join with
ten percent or fifty percent of the pages in the smaller relation R of memory available in
the nodes. We remember that the algorithms, except the Hashing Join, only have three
pages as buffer. In the case of using nodes with buffers greater than ten percent of R the
Hashed Join outperforms all other analyzed algorithms.

In a generalized multiprocessor organization we have analyzed the algorithms with a
selectivity factor between 0.001 and 0.9. The effect is, that the difference between the two
merge-sort algorithms stays constant (if S >= 0.05). The reason is, that the merge cost
are only marginal to the overall cost of the algorithm.

In the simplified grid organization the Merge-Sort join algorithm based on the bitonic-
sort outperforms the Merge-Sort join based on the binary merge sort up to 26 processors,
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Abbildung 5.8: Sort Scale-up in a Simplified Grid Organization

Abbildung 5.9: Join in a Generalized Multiprocessor Organization with S=0.001

see ”Parallel Merge-Sort Join (Binary Merge Sort) modified” in Figure 5.3.
As in the multiprocessor organization we have analyzed the join algorithms in the sim-

plified grid organization with a selectivity factor between 0.05 and 0.9. The effect is the
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same as for the generalized multiprocessor organization, the difference between the merge-
sort algorithm (Parallel Merge-Sort Join (Bitonic) and Parallel Merge-Sort Join (Binary
Merge) ) remains constant (if S >= 0.05), see Figure 5.4. The reason is, that the merge
cost have insignificant influence on the overall cost of the algorithm. On the other hand, in
this case the Parallel Merge-Sort Join (Binary Merge) modified is always faster (in terms
of C2

p costs) than the unmodified version. The Hashed Join algorithm in a Simplified Grid
Organization performs similarly as in the multiprocessor organization. And also in the case
of using nodes with a buffer greater than ten percent of R the Hashed Join outperforms
all other analyzed algorithms.

5.2.2.1 Speedup and Scale-up of the Join Algorithms

The speedup in a generalized multiprocessor organization of the investigated join algo-
rithms is depicted in Figure 5.10. The parallel nested-loop join has a linear speedup. The
sharp bend at the end of the curve shows that the number of processors becomes equal
to the number of pages of the larger relation. In contrast the parallel merge-sort based on
the bitonic sort has a moderate speedup until the number of processors is greater than 27.
Beyond this number of processors, no more speedup can be reached. In a Simplified Grid
Organization the speedup is similar to that in a generalized multiprocessor organization,
see Figure 5.12. The modified version of the parallel merge-sort join has a better speedup
than the unmodified version. A nearly linear speedup is also seen in the Hashing Join
algorithm. In the case of using ten percent of the number of pages as buffer for the smaller
relation R the speedup is more linear than using fifty percent of the number of pages. This
circumstance can be used for the workflow orchestration of selecting nodes to choose the
best performing algorithm, especially in a Simplified Grid Organization.

Abbildung 5.10: Join Speedup in a Generalized Multiprocessor Organization with S=0.001

The scale-up is depicted in Figure 5.11. The parallel nested-loop join shows the best
scale-up effect. The Merge Sort algorithms (also the modified Version of the Merge Sort
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based on the Binary Merge Sort) have the best scale-up. The Hashing Join algorithm has
similar scale-up as Nested Loop.

The hump at log(n) = 11 is the effect of the size of the relation n size 210 = 1024. Setting
the selectivity factor much larger than 0.001 (like in the analysis of the overall C2

p cost
evaluation) the effect is, that the scale-up of the three investigated merge-sort algorithms
shows the same scale-up even with a lower number of processors. Like the speedup, the
scale-up in a Simplified Grid Organization is similar to that in a generalized multiprocessor
organization, see Figure 5.13. The modified version of the parallel merge-sort join is nearly
identical with the unmodified version.

Abbildung 5.11: Join Scale-up in a Generalized Multiprocessor Organization with S=0.001

5.2.3 Aggregate Operations

The performance in a Generalized Multiprocessor Organization of the two aggregate algo-
rithms is depicted in figure 5.14. We assume for both algorithms one source qualification
(simple qualification) and 32 processors. The parameters of the analysis are listed in table
5.1. When the query contains a src qual, Aggregate Algorithm B performs better except
when the relation is very large. The performance of Aggregate Algorithm A is sensitive to
the number of partitions. Both algorithms process the by qual in the same way, the results
shown are independent of the use of a by qual.

We chose Aggregate Algorithm A for analysis within a Simplified Grid Organization. The
reason is clear, the project operation is done by a parallel binary merge sort, and as seen
in the performance analysis of the sort algorithms in a Simplified Grid Organization, the
last processor is the bottleneck in the algorithm. We modified the workflow orchestration
of Aggregate Algorithm A to exploit the highest bandwidth in the network accordingly.
The result is that the algorithm is now faster than without modifying it, which can be
seen in Figure 5.5.
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Abbildung 5.12: Join Speedup in a Simplified Grid Organization with S=0.001

Abbildung 5.13: Join Scale-up in a Simplified Grid Organization with S=0.001
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Abbildung 5.14: Aggregate in a Generalized Multiprocessor Organization

5.2.3.1 Speedup and Scale-up of the Aggregate Algorithms

The speedup in a generalized multiprocessor organization of the investigated aggregate
algorithms is depicted in Figure 5.15. Note, Aggregate Algorithm A shows the better
speedup. The investigated aggregate algorithms in a Simplified Grid Organization have
similar speed-up behavior as the algorithms in a generalized multiprocessor organization.
This is depicted in Figure 5.17. The modified version of the aggregate algorithm A shows
a better speed-up than the unmodified version. The scale-up of the aggregate algorithms
in a Generalized Multiprocessor Organization is depicted in Figure 5.16. The parallel
Aggregate Algorithm A shows the best scale-up effect. But as seen in Figure 5.18, the
scale-up of the modified Algorithm A in a Generalized Multiprocessor Organization and
the one in a Simplified Grid Organization are nearly the same.
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Abbildung 5.15: Aggregate Speedup in a Generalized Multiprocessor Organization

Abbildung 5.16: Aggregate Scale-up in a Generalized Multiprocessor Organization
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Abbildung 5.17: Aggregate Speedup in a Simplified Grid Organization

Abbildung 5.18: Aggregate Scale-up in a Simplified Grid Organization

79



80



6 Optimization of Workflow Orchestration

The general problem of query optimization is known to be NP-hard even for centralized
database systems, see Ibiraki [64]. lbaraki and Kameda prove that the problem of mi-
nimizing page fetches in multirelational joins by means of a nested loops is in general
NP-complete.

As such, heuristic solutions are often needed to find good plans for query execution.
In this chapter we present an algorithm to find all perfect binary trees in a given undi-

rected graph. First we define a graph representation of the Static Simplified Grid Organi-
zation.

6.1 Workflow Orchestration

6.1.1 Algorithm for the Workflow Orchestration

The cost of disk accesses are therefore much less influencing the overall performance than
the network cost. Focusing on the sort algorithms the impact on the performance of the sort
merge algorithms depends predominantly on the network bandwidth. Therefore the nodes
with the best network-bandwidth should be grouped to perform the last (postoptimalII)
phase in the binary merge sort (see equation 5.1). One stage in this last phase consists
of a number of sender and a (number of) receiver nodes. The algorithm of defining the
layout of the workflow for the postoptimal phase can be described by choosing the nodes
with the best network bandwidth starting from the final stage. If the bandwidth is the
same for some nodes the ones with the best computational power have to be chosen then.
This can be described by the algorithm 4:

Algorithm 4: Workflow Orchestration Algorithm for Grids

Input: Available Nodes and Algorithmic Sub Task
Output: Node Layout according to Algorithm Deployment)

Determine the network bandwidth and processing power for each processing node;1

Sort nodes according to network bandwidth;2

Nodes with equal network bandwidth in the sequence are sorted according to their processing3

power;
Identify postoptimal phase as binary tree structure with node creating final run of length m as4

root;
Starting from the beginning of sequence (i.e. best node first) map nodes level-wise from right to5

left beginning from root (root is level 0, successors of root are level 1, etc.);

6.1.2 A Graph Representation of the Static Simplified Grid Organization

For the representation of the Static Simplified Grid Organization we use the common
definition of a weighted undirected graph. An example of such a graph is depicted in
figure 6.1. For better understanding it is necessary to explain some definitions of graph
theory.

A graph G is a pair (V,E), where V is a set of vertices, and E is a set of edges between the
vertices E ⊆ {{u, v}|u, v ∈ V }. An undirected graph is a graph whose edges are unordered
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Abbildung 6.1: A Weighted Undirected Graph

pairs of vertices. That is, each edge connects two vertices. A weighted graph associates
a label (weight) to every edge in the graph. Weights in our definition are restricted to
integers. The weight of a path or the weight of a tree in a weighted graph is the sum of
the weights of the selected edges. The notion cost can be used equally to weight. A
full binary tree is a tree in which every node other than the leaves has two children.
A perfect binary tree is a full binary tree in which all leaves are at the same depth or
same level. A perfect binary tree has 2h+1−1 nodes, where h is the height of the tree [49].
Sometimes perfect binary trees called complete trees. In figure 6.2 we see 5 examples of
perfect binary trees, from height h = 0, 1, 2, 3, 4.

Abbildung 6.2: Perfect Binary Trees of height h = 0, 1, 2, 3, 4

6.1.3 A Binary Tree Search Algorithm

As explained in section above, to execute the parallel binary Merge Sort it is necessary
to arrange nodes to build a perfect binary tree. It is easy to understand, that the
maximum performance of the parallel binary Merge Sort can be reached by minimizing
the connection weights (i.e. network bandwidth) between each level of the perfect binary
tree.

We start by repeating the motivation and the basic strategy for our approach again. In
homogeneous environments all nodes and networks are equal, therefore it does not matter
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how the nodes are arranged in the binary tree. But in a heterogeneous environment, the
arrangement of the nodes influences the performance (execution time) heavily, because the
processing power and the bandwidth of the network connections between nodes can vary
and influence the execution time of each step of the binary Merge Sort. The behavior of the
parallel binary Merge Sort in a heterogeneous environment lead to arrange the nodes and
their edges in the binary tree with the highest bandwidth on top (the root). That means
we start the process by choosing the root node with two connections to other nodes with
the highest bandwidth. With an underlying representation of the existing environment as
a graph with weighted edges the optimal solution for the Binary Merge Sort can be found
by performing a search of all possible perfect binary trees starting from every node and
choose the binary tree with the best over all execution time. This is very time consuming
for large networks (graphs) and large perfect binary trees to found. Therefore we propose
an optimized algorithm to determine the optimal node arrangement as perfect binary tree
to perform a parallel binary tree with the lowest overall execution time.

We define an algorithm, which is based on PRIM’s algorithm [49] for finding a minimum
spanning tree in an undirected weighted graph. The algorithm to find all binary trees with
minimal weight is described in Algorithm 5.

Algorithm 5: Binary Tree Search Algorithm

Input: undirected graph G(V, E) with weights of the edges, maxdepth of tree
Output: all possible perfect binary trees from the graph with depth ’maxdepth’

forall nodes in the graph do1

create empty binary tree;2

set actual node to root;3

for level:=0 to maxdepth do4

forall leafs in the current binary tree do5

search for minimum edge from leaf that is not already in the tree;6

if edge found then7

add node to binary tree as left child;8

search for minimum edge from leaf that is not already in the tree;9

if edge found then10

add node to binary tree as right child;11

if binary tree not empty and binary tree is a perfect binary tree then12

save binary tree in a list of trees;13

delete binary tree;14

6.2 Implementation of the Perfect Binary Tree Search Algorithm

We implemented the search algorithm to find the optimal solution in terms of minimal
execution time of the parallel binary Merge Sort algorithm. Our goal was using realistic
networks (graphs) as input. For this purpose we investigated Internet random topology
generators, as described in section 6.2.1, to analyze the behavior of our search algorithm
in realistic scenarios.

6.2.1 Generating Random Graphs

Studies on generating random graphs dates back to Erdös and Rényi [66] [67]. The process
generating a random graph can be divided into two steps. Step one is generating a set of
n vertices, the second step is adding edges between them at random. As we see later an
important property of graphs are the node degree and their distribution in the graph. The
node degrees in a network is the number of connections or edges the node has to other
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nodes. The degree distribution is the probability distribution of these degrees. Networks
like protein networks, citation networks, the Internet and some social networks have degree
distributions that approximately follow a power law. The fraction P (k) of nodes in the
network having k connections to other nodes goes for large values of k as P (k) ∼ k−y

where y is a constant. Such networks are also called scale-free networks.
We used tiers [68] and BRITE [69] to generate input graphs. tiers generates a random

graph based on the Minimum Spanning Tree algorithm [70] [49]. Tiers is based on a
three-level hierarchy aimed at reproducing the differentiation between Wide-Area (WAN),
Metropolitan-Area (MAN) and Local-Area networks (LAN) comprising the Internet. In
the original version tiers does not generate random weights of the edges therefore we
altered the source-code to generate random edge weights. Networks generated with tiers
can be pictured by using gnuplot [71].

On the other hand BRITE implements the Waxman [72] and Barabási-Albert [73]
generation model.

Waxman defines a probability model for interconnecting the nodes of the topology,
which is given by the power law function: P (u, v) = αe−d/(βL) where 0 < α, β ≤ 1, d is
the Euclidean distance from node u to node v, and L is the maximum distance between
any two nodes. The nodes in the network are distributed at random across a Cartesian
coordinate grid. A large value of α increases the number of connections, a large value of
β increases the number of edges from each node.
BRITE implements also the Barabási-Albert model in which a network grows incremen-

tally and the nodes interconnect with preference towards higher degree nodes. BRITE
generated graphs can be viewed by the general purpose visualization tool otter [74]. Some
example generated graphs, which built the basis for our analysis, are shown in Figure 6.4
and Figure 6.5. These two Figures should also demonstrate visually the enormous number
of edges as input to the proposed algorithm.

6.2.2 Analysis of the Perfect Binary Tree Search Algorithm

We investigated the influence of the different random generation models and parameters on
our binary tree search algorithm. The node degree of the generated graphs shows the most
important influence on the number of possible perfect binary trees. With the generated
binary trees we calculated the execution time of the parallel binary Merge Sort to find
the minimum execution time of the algorithm using the particular binary trees. For the
evaluation of our Perfect Binary Tree Search Algorithm we have implemented a
complete test suite with a comfortable GUI (graphical user interface) and various features
for importing generated graphs and exporting the results to a spreadsheet software. Figure
6.3 shows the test suite with a BRITE generated graph having 1000 nodes and a mean
degree m = 4.

The results of our investigation can be summarized as follows:

1. Networks with higher degrees contain much more perfect binary trees and deeper
perfect binary trees. See Table 6.1 and Figure 6.4 and Figure 6.5.

2. The minimum execution time shows always these trees where the last level delivers
the minimum transfer time (that means the fastest connection).

3. The last processor (precisely the last three processors and the bandwidth between
them) contributes more than 50 percent to the perfect execution time between 8 and
16 processors. Figure 6.6 shows this influence of the last three processors and their
bandwidth in percentage of the overall execution time.

4. The splitting of the algorithm in two parts (part one and part two, as shown in
equation 6.1) and computing the permutation of min and max values of C2

p gives the
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Abbildung 6.3: Perfect Binary Tree Searcher Test Suite

result, that the avg/min (average/minimum) combination is always the second-best
solution for minimum execution time. Therefore this is the optimum solution. Note
that a min/min configuration is not possible, except all edges show nearly the same
weight. In this case the avg/min is also the optimum solution, because the average
(avg) of minimum (min) is minimum (min). Figure 6.7 depicts this situation.

Note: Table 6.1 shows an extract of the results of our graph analysis.

n

2p
log(

n

2p
) +

n

2p
+ logp− 1︸ ︷︷ ︸
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+
n

2︸︷︷︸
parttwo

(6.1)

Tabelle 6.1: Number of Binary Trees found in generated Graphs

name nodes edges degree 16 leafs 32 leafs 64 leafs 128 leafs 256 leafs

n1000-waxman-uniform 1000 2000 2 44 - - - -
n1000-waxmann-uniform 1000 2000 2 36 1 - - -
n1000-waxmann-alpha09-uniform 1000 2000 2 40 - - - -
n1000-waxmann-uniform-m4 1000 4000 4 998 984 886 354 -
n2000-waxman-uniform 2000 4000 2 81 - - - -
n4000-waxmann 4000 8000 2 170 2 - - -
... ... ... ... ... ... ... ... ...
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Abbildung 6.4: 1000 nodes with degree m=2

6.3 The Optimized Workflow Execution Process

Now we refine and speedup our algorithm for finding optimal perfect binary trees in a
given graph in Algorithm 6.

Algorithm 6: Optimized Binary Tree Search Algorithm

Input: Environment representation as weighted undirected graph
Output: Optimal node arrangement as perfect binary tree

Search for all perfect binary trees with level 1 (root and two children);1

Sort the found binary trees according to their weight (sum of the two edges)(ascending);2

Choose the root from binary tree with the lowest weight (sum of the two edges);3

Perform a binary tree search with the found root as described in algorithm 2 (Binary Tree Search4

Algorithm) with the necessary depth for the binary Merge Sort;
Output the perfect binary tree to perform the optimal parallel binary Merge Sort;5

Based on the findings of section 6.2.2 it is not necessary to search for all perfect binary
trees with the necessary full level depth. A search for all perfect binary trees with three
nodes (trees of height 1) and only one search (from the starting node of the found optimal
binary tree) with the necessary full level depth has to be done to find the optimum binary
tree configuration to get a minimum execution time of the parallel binary Merge Sort.

The dramatic improvement can be seen in Figure 6.8. The diagram shows the relative
runtime in numbers of child searches. A child search means, that given a starting node,
two connected nodes that are not already in the tree should be found. One node for the
left child of a node and one for the right child.
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Abbildung 6.5: 1000 nodes with degree m=4

Abbildung 6.6: Contribution to execution time of last three processors
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Abbildung 6.7: Performance influence of partone and parttwo combinations
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Abbildung 6.8: Comparison of algorithm search space between conventional to optimized algorithm
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7 Implementation and Evaluation of the Static Heterogeneous
Model

To prove our statements of the preceding chapter we implemented the discussed algo-
rithms using SODA (Service Oriented Database Architecture), which is a novel execution
framework for parallel and distributed database operations [10].

Soda builds up on Web-services, which can be plugged together very easily, almost in
a LEGOTMlike manner. These services provide the business logic for distributed query
execution, specifically supporting autonomous databases in heterogeneous environments.
Operations used in this framework – like selection, projection, join, product or sort – can
be orchestrated (used, added and removed) dynamically. The architecture is based on the
WSRF standard and thus supports stateful Web Services.

Most recently we have seen the emergence of XML, XML storage in DBMS’s. The Global
Grid Forum (GGF) is producing specifications for both relational and XML databases in
Grid environments to be located, accessed, and replicated [75].

7.1 Introduction to SODA

SODA, which means Service Oriented Database Architecture, is a proof-of-concept
implementation of a middleware for distributed database environments [10]. This middle-
ware provides small Web Services which can be combined, so that database queries which
have to collect their data from different sites can be handled. Therefore, SODA makes
it possible that database operations can be independent from the databases themselves.
Furthermore SODA offers the possibility of adding, removing and using operations dyna-
mically.

This middleware is based on two standards of distributed computing. The first one is
the Web Service standard. A Web Service gives machines and software components the
possibility to interact with each other while they use XML based messages for communica-
tion. The network protocol used for that XML-based communication is called SOAP. The
second standard is called SOA (Service Oriented Architecture) and is actually a ”descrip-
tion” or guidance how software should be implemented so that it can be used by other
software components. The architecture of SODA is shown in Figure 7.1 and as can be
seen it is based on four services, namely the Acquisition Web Service, the Transformation
Web Service, the Storage Web Service and the Broker Web Service. All of them interact
with each other using the same common interface. That means that the three operation
web services and the broker web service can communicate with each other using a simple
mechanism.

7.1.1 Components of Soda

The second layer and hence first Operation Web Service layer is the Acquisition Web
Service, which is the one that interacts with the databases. The databases in turn are
in the first layer of the Soda Layered Architecture. So the entirety of all Acquisition Web
Services contains all data of the distributed database system. Usually one Acquisition Web
Service is connected to one data source. The main task of this layer is to make the data
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Abbildung 7.1: Soda Layered Architecture

accessible for all other Web Services. That is done by transforming the data in so-called
WebRowSet documents, which can be accessed by the other services later. The operation
which is performed by this layer is the following one:

• LOAD (in 0, out 1): The operation is made up by a process which collects data
from existing data sources. The sources can be databases or CSV, respectively other
text files. The only requirement is that the Acquisition Service can gain access to the
source. This is the only operation in the SODA framework where the database name
and the database schema must be defined in the ServiceParameters.
Parameters: TABLENAME (exactly one)

The third layer is the Transformation Web Service layer. This operation web service
is responsible for transforming the data. By converting one or more input streams to one
or more output streams this layer is able to perform the following operations:

• SELECT (in 1, out 1): This service filters data. It is the same what in a classical
relational database a select-operation which compares an attribute with a literal or
a number, is (see Chapter 3.3).
Parameters: ATTRIBUTE (exactly one), OPERAND (exactly one), LITERAL (exactly one)

• PROJECT (in 1, out 1): This operation makes it possible to filter out attributes
of a data document. The project operation explained in chapter 3.3 has the same
purpose like this service.
Parameters: ATTRIBUTE (at least one)

• SORT (in 1, out 1): With this operation it is allowed to order datasets while one
or more sorting attributes are used. The sorting order can be either descending or
ascending.
Parameters: ATTRIBUTE (at least one), ORDER (zero or more)

• CARTESIAN PRODUCT (in 2, out 1): All rows from one dataset are combined
with all rows from a second dataset and as explained in chapter 3.3 the Cartesian
Product returns the product out of two datasets.
Parameters are not required

• JOIN (in 2, out 1): Like the natural join explained in chapter 3.3, this service
provides the join on two data documents or more specifically on two datasets which
are the basis for the data documents.
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Parameters: ATTRIBUTE (exactly two), OPERAND (exactly one)

The results from performed queries are stored within layer four, the Storage Web
Services. These services just provide one operation which is:

• STORE (in 1, out 0): a data document is stored permanently. Hence, there is no
real operation performed here, just the result of a query execution is delivered and
stored.

As the first four layers have been explained now, the function of the Broker Web Service
must be understood and the way how SODA clients interact with the system. The SODA
Broker Service is the central component of the framework and the only point of contact
for clients [10]. So the requirements for being a SODA client are very low as they have just
to communicate with the broker, but do not have to understand the underlying structure.
SODA clients must therefore use the WSDL [76] service interface to communicate with
the broker. The clients can still be implemented using different programming languages
as long as they implement the service interface.

The responsibilities of the broker are eventually to coordinate, orchestrate and distri-
bute incoming query requests. Moreover, the broker offers the possibility to register and
unregister operation services, which means that this service can make operation services
accessible. If there occur mistakes during the query execution, the broker’s task is it to
detect the failures and to recover them. The global database schema, which is made up
by all database schemata of registered data sources is also held by the Broker Service.

7.1.2 Communication in SODA

Abbildung 7.2: Soda Layer-Cross Communication

To explain the different services and their tasks better, the communication process will
now be discussed. Furthermore the whole process is shown in Figure 7.2. The communica-
tion process consists of four steps, namely client request, task distribution, data exchange
and result delivery.

Client Request An SQL statement is sent to the broker by a client. This statement can
just request databases, that are registered.

Task Distribution This task is one of the broker’s main responsibilities. The broker ana-
lyzes the query and creates a query execution tree. Based on the execution tree, the
different tasks are distributed to the operation services. As already mentioned above,
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the communication is based on XML, more specifically the authors of [10] propose
an approach using a RequestDocument and a ResponseDocument.

The subtask which each single operation service has to carry out is defined in the
RequestDocument. To make it possible that subtasks are uniquely identifiable and
that they can be coupled together with a query task, every RequestDocument has a
ReqID and a SubReqID. The ReqID is unique for every query task. So for every single
client request, a new ReqID is made. The SubReqID is unique for every subtask of
the whole query task. Furthermore the RequestDocument has information about the
predecessors, a list of successors and a parameter section where additional settings
for the execution can be provided.

Data Exchange As soon as the single services receive their task from the broker they start
processing. Acquisition Services can send the requested data immediately to the next
services as they do not get any further inputs. Indeed, the other services have to wait
for inputs from their predecessors before they can start processing. The information
needed is sent by the above mentioned ResponseDocuments. Those documents contain
besides the results from predecessor, again the ReqID and the SubReqID. So the
services can put related information together. Moreover, the ResponseDocuments
contain information about possible errors that emerged. That information can then
be used by the broker for error recovery. As some services might send their results in
small pieces, there is a Pipeline element where metadata about the process is enclosed.

Result Delivery Eventually the data is stored in the Storage Web Services. The client can
then request the data either from the broker or from the Storage Service itself.

7.1.3 Query Execution in SODA

Concerning the query execution, it should be mentioned that the execution of a NATURAL
JOIN (see chapter 3.3) is not available at the moment [10]. The currently available query
execution operations are the following:

• SELECT

• PROJECT

• SORT

• CARTESIAN PRODUCT

• JOIN

As the broker service is responsible for generating an execution tree before sending the
RequestDocuments, it must rely on some rules for generating the execution tree. But first
of all it is important that the broker knows all databases, tables and attributes so that a
suggestive execution tree can be generated. If this prerequisite is met, one of the rules for
generating the tree is that the amount of data transmitted between the services should be
as small as possible. That means that operations which reduce the data most should be
performed first. Such operations are for example projection and selection. Another rule is
that if multiple tables are joined, the small tables should be used first. So the broker does
not have just to know the tables themselves but also the size of all tables. Those rules and
the execution tree generation in general are based on heuristic rules [10].
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7.1.4 Performance and Performance Analysis in SODA

For speeding up the query execution process there are actually two different paralleliza-
tion possibilities. These two possibilities are speedup and scale-up and they were already
discussed in chapter 3.4.2.1 and 3.4.2.2. The speedup of a system describes how much
the amount of response time is decreased by increasing the parallelism of a system. In
other words, speedup describes the gained benefit if for example services are implemen-
ted intra-parallel on current multi-core processor architectures [10]. It is called linear
speedup if the amount of time needed to process a query is inversely proportional to the
resources allocated. Note, a linear speedup is hardly achievable. On the other hand there
is the possibility to use inter-parallelism. That means that the concept of scale-up is
used. The scale-up of a system shows how able the system is, to perform larger operations
in the same amount of time if more resources are provided.Concerning the SODA there
are two possibilities to gain inter-parallelism:

1. multiple services use different Acquisition Services to collect data parallel at different
hosts.

2. multiple instances of the same service divide the data amount that has to be processed.

As already mentioned in the Data Exchange part of the SODA communication there
might be services which send their data in packets and not the whole data as one document.
Therefore, the pipelining approach is used and furthermore if intra-parallel systems are
used there is the possibility of sending through an applicable number of pipes. Those pipes
can then send the data with different speed and so intra-parallel systems can divide their
datasets into blocks and operate on these blocks separately.

In Beran et.al. [10] a performance analysis for justifying the usage of SODA in a Web
based environment was carried out. For defining the speedup of a query execution the
change of time used for one specific query execution if computing nodes were added was
analyzed. The approach for executing the query was the following: First the data was
read from the disk, then the data was distributed for the Quicksort-Phase. In this phase a
high benefit due to intra-parallelism can be achieved. After the Quicksort-phase the partly
sorted data are collected again using a merge-sort. Finally the data was stored in the last
step. The results are shown in Figure 7.3. As the Figure shows the speedup is not linear
but still very remarkable. The disk processing cost is very low, but the processing and
network costs are very high. Concerning the processing cost the reason for their size is the
excessive packing and unpacking of the XML data format [10].

Abbildung 7.3: Speedup numbers
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For analyzing the scale-up, the impact of increasing workload on the runtime was tested.
The results of this test are shown in Figure 7.4 and here the scalability shows a slightly
over-linear behavior which is again connected to the high processing cost which are related
to the packing and unpacking of the XML format. These scale-up and speedup analyse
show a very good runtime behavior and therefore a certain degree of scalability can be
seen. The issue with the high-performance cost could be solved if the data exchange format
between compatible nodes could be more efficient [10].

Abbildung 7.4: Scale-up numbers

In conclusion SODA is a very flexible architecture as operators can be easily added,
removed or exchanged. Furthermore due to the layer architecture, the Acquisition layer
is able to make various kinds of databases and datasheets available. At the moment just
basic operations are available but these operations can be extended and moreover operators
which benefit from inter/intra parallelism could be implemented.

7.2 Prototype

We focus in the following proof on the Binary Merge Sort algorithm, which is the central
point of interest for the orchestration of the Grid workflow (see Algorithm 4). The per-
formance analysis by the presented analytical model shows that a smart orchestration of
the available nodes with heterogenous performance characteristics, results in an increased
performance behaviour, as depicted in Figure 5.7 and Figure 5.2 by the speedup numbers
for the modified parallel merge sort algorithm. This effect influences also the performance
of all other parallel database operations on the merge sort algorithm dependent.

For our practical implementation we used a heterogenous hardware infrastructure con-
sisting of a mix of three different blade systems (different number of cores and different
clockrate of processors) each running a Scientific Linux. The configuration of the nodes
for the Parallel Binary Merge Sort is seen in Figure 7.5 and the hardware configuration is
listed in table 7.1. As described in the previous section, the workflow is executed in two
configurations: using 4 nodes and 8 nodes. Cha1, cha2 and cha3 are the names of the
physical nodes. The bar with the ”throttling” tag shows where the network connection
speed has been altered. We have done runs with different network speeds: 1GBit, 50MBit,
5MBit and 512kBit. We have also done multiple passes of the same configuration to avoid
unexpected differences in the duration time of the workflow. This configuration reflects the
unmodified implementation of the parallel binary merge sort. In Figure 7.6 the modified
version is depicted. That means the last 3 nodes run with 1 GBit/s and the other nodes
running slower.
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Abbildung 7.5: Parallel Binary Merge Sort Workflow Configuration

Tabelle 7.1: Blade Server Infrastructure for Performance Measurement

Name Processor Speed Memory Storage

cha1 1x Intel Core 2 Duo 2 cores (E 5130) 2.0 GHz 8.0 GB 300 GB
cha2 2x Intel Core 2 Duo 4 cores (E 5130) 2.0 GHz 8.0 GB 300 GB
cha3 1x Intel Core 2 Quad 4 cores (E 5335) 2.0 GHz 8.0 GB 300 GB

7.3 Performance Evaluation

According to our presented orchestration algorithm we placed, simply said, the postopti-
mal phase of the merge sort algorithm on the node with the highest performance and best
bandwidth connection. We did several scenarios of orchestration by varying the different
performance parameter values of the nodes, as pure processing power, disk performance
and network bandwidth. The practical results justified our analysis that the most influ-
encing factors are the processor performance and the network bandwidth. Figure 7.7 shows
the actual execution times of the parallel merge sort algorithm for a conventional scenario
and the modified one according to our orchestration algorithm. The expected performance
improvement is easily recognizable and justifies our analytical findings. The benchmark
configuration was 8 nodes all running with 512kBit network speed in the unmodified ver-
sion and in the modified version the last 3 nodes running 1GBit network speed instead of
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Abbildung 7.6: Modified Parallel Binary Merge Sort Workflow Configuration

512kBit. The regression coefficient between real measured time and calculated with our
model is

runmodified = 0.985

for the unmodified algorithms, and respectively

rmodified = 0.983

for the modified algorithms.
That means the real measured time values are very close to our model and the behavior

of the real measured values to that of the model are identical. Please note that the values
with smaller amount of data have more deviation than the values for higher amount of
data. The reason is, that in a service orientated architecture latencies can be occur and
therefore for lower amount of data the model is not accurate enough.
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Abbildung 7.7: Real and Model performance behavior of Parallel Merge Sort, unmodified and modified
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8 Extensions of the Static Heterogeneous Model

In this chapter we describe some ideas for possible extensions of our developed Static
Heterogeneous Model. This extensions can be used to make it easier to implement a broker
application and to take into account changes during execution of a workflow, because
nodes can fail during execution and it is necessary to rearrange the node configuration
dynamically. We have identified following extensions:

• Using Performance Indices to determine the optimal node configuration.

• Adding Reliability to the node characteristics.

• Dynamic Optimization of Workflows.

8.1 Performance Indices

Performance Indices for heterogeneous systems are well described in Kalinka et. al. [77]and
load indices in [78]. Kalinka et. al. present two performance indices PIV - Performance
Index Vector and a weighted index WPIV Weighted Performance Index Vector. PIV
and WPIV based on a Euclidian metric. These new developed performance indices use
vectors to describe the load of the system or machine and take care of the characteristics
of the load. In this section we give a short introduction to their definitions.

Kalinka et. al. define four basic resources to be analyzed in a machine CPU, Memory,
Disk and Network and is obtained in equation 8.1.

ID = f(ICPU , IMemory, IDisk, INetwork) (8.1)

where ID is the performance index of a specific machine. For each of the given indices a
weight W is also defined. These weights depend on the characteristics of the application
to be scheduled.

The indices ICPU , IMemory, IDisk and INetwork are combinations of indices that describe
applications to be more strictly bounded to their respective resource.

That means, ICPU is a combination of the CPU indices describing applications to be
more strictly CPU-Bound, IMemory is a combination of the Memory indices describing
applications to be more strictly Memory-Bound, and so on.

Each of the resource indices is calculated independently. The measured values cannot
be directly combined and compared, and therefore a normalization should be used. Thus,
each measured value is normalized separately. The specific index of CPU, Disk, Memory
and Network resources has its value between 0 and 1. The normalization gives the ability
to compare the indices among different machines and the values of each index can be
added together.

Performance indices and load indices must be able to estimate the future for the decision
putting a load on a specific machine. This estimation is based on current and past values.
Kalinka et. al. define a performance index as the metric that can provide an image of the
work capacity, or in other words, illustrate what can be expected. The load index can be
defined as a non-numerical variable, zero if the resource is idle and positively when the
load of the resource increases [79].
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Wolffe at al. [80] propose the use of Load Capacity as a load index for heterogeneous
environments. The Load Capacity is the effective use of the processor. The Load Capacity
is defined:

(1− CPUutilization) ∗RelativeCPUSpeed (8.2)

where RelativeCPUSpeed is measured against some common reference processors.
In equation 8.1 it is possible using a specific load index for each resource, where each of

them may be seen as a vector base. That means every resource can be represented as vector.
e.g. < 1, 0, 0, 0 > represents an application that is 100% CPU bounded. < 0, 1, 0, 0 > is
a 100% Memory application, < 0, 0, 1, 0 > 100% Disk and < 0, 0, 0, 1 > 100% Network
application. The resources n that a machine can provide may be considered to form an
n dimensional space. Where n is the number of resources. A point in this n dimensional
space represent the current state of the machine. The point for an idle machine is located
in < 0, 0, 0, 0 > and a completely overloaded machine’s point is located in the opposite
vertex < 1, 1, 1, 1 >.

Abbildung 8.1: Three Dimensional Index

For instance, Figure 8.1 presents a three-dimensional space. We used three dimensions
because for dimensions n > 3, the visualization became very complex. It shows the situa-
tion for four points of load of a particular machine. Vector A represents a machine with
following load :

• great use of CPU

• no use of memory

• average use of network

Vector B shows a machine with:

• no use of CPU

• average use of memory

• average use of network

Similar, Vector C represent a situation for a machine with:

• great use of CPU

• great use of memory

• great use of network
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The representation as vectors in an 3-dimensional space have two kinds of information.

1. length of the vector

2. angle between vector and x-axis

The length represents how much of each resource is used and the angle between shows
the relative percentage of each resource used.

Abbildung 8.2: Two Machine Resource Vectors

As depicted in Figure 8.2 Load Balancing can be observed through the angle α of the
vector. In general we can distinguish between following situations:

1. When α ≈ 45◦, both resources are equally loaded.

2. When α� 45◦, it indicates that the Resource 1 is predominant.

3. When α� 45◦, it indicates that the Resource 2 is the predominant one.

Machine G is balanced due situation 1 (| 45◦ − α |= 0) concerning resource 1 and
resource 2, machine F is less overloaded than G regarding resource 2, that is because close
due situation 2. If α ≈ 0 and length tends to 1, then resource 2 is close to saturation and
in the same way if α ≈ 90◦ and length tends to 1, then resource 1 is close to saturation.
In these cases we notice overload conditions. Therefore for overload conditions we had to
check the angle and the length of the vector.

8.1.1 One Dimensional Result Index

In Figure 8.3 we have depicted two different machines (Machine 1 and Machine 2)
with different load index but equally loaded. At both machines a new process (Process)
is arriving. The new process uses only Resource 1, that means the process is Resource
1 bound. In Machine 1 Resource 1 is more loaded and in Machine 2 Resource 2 is more
loaded. The new process can be allocated in Machine 1 and in Machine 2. It should be
determined in which situation a better result is obtained. The length of the vector, the
Euclidian distance, can be used as metric for this decision. Therefore Equation 8.1 can be
written again as

ID =
√
I2
CPU + I2

Memory + I2
Disk + I2

Network (8.3)

Allocating the new process to Machine 1 and Machine 2 lead us to the result vectors Result
1 and Result 2. Result 1 is lower than Result 2 and therefore the process is allocated in

103



Machine 2. If we have two equally loaded machines and want to put a load on one of these
these indices lead us to a better allocation of the load.

Kalinka et. al. proposed this metric as load identification by resource.
The example Figure 8.3 illustrates an example that uses processes with only 1 resource.

Abbildung 8.3: Process arrives on Machine 1 and Machine 2

8.1.2 Two Dimensional Result Index

Figure 8.4 shows a more complex example for applications (processes) that uses 2 resources.
We use again two different machines Machine 1 and Machine 2 that are equally loaded.
As in Figure 8.3 Resource 1 is more loaded in the Machine 1 while Resource 2 is more
loaded in the Machine 2 in terms of use.

It should be determined in which machine a better result is obtained, and as in the
previous example the resulting vector is used for that decision. The shorter result vector
indicates which machine should be used to allocate the process. In this case the shorter
result vector is in machine 2, therefore the process should be allocated there so that a
better performance can be obtained.

The performance index presented from Kalinka et. al. bases itself on the Euclidian
distance. The Euclidian distance is the distance between the origin point (0,0,0) where the
machine is idle and the resulting vector of the two vectors: the load vector before receiving
an new application and the load vector of the new application.

The machine with the shortest Euclidian result distance should be chosen to deploy the
application or load.

Kalinka et. al. show also with modeling techniques and simulation that their propo-
sed performance index PIV leads to a performance increase. They used the AMIGO
(dynAMical flexIble schedulinG envirOnment) environment and several load indices exe-
cute tests were accomplished. PIV can present better results for the cases in which there
are some knowledge from the kind of application or process.

8.1.3 Using Indices in a Static Heterogeneous Model

As seen in chapter 5 we have following node characteristics defined in our model for
heterogeneous environments:

• Processing Power.

• Disk Speed.
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Abbildung 8.4: Process with 2 resources arrives on Machine 1 and Machine 2

• Network Bandwidth.

Now we can define a three-dimensional vector as described in the previous sections for the
representation of the resources in our model. This three-dimensional vector can be used
to find the optimal solution for the parallel Binary Merge Sort as described in section 6.
The binary tree can be built upon the calculated performance index. It must be investi-
gated if using performance indices to build the binary tree, the optimal solution could be
found. This is a difficult and sophisticated problem, even possible np-hard, because all the
combinations of nodes used in the build binary tree should be used.

8.2 Reliability Extension

An ad hoc extension for the consideration of reliability in our Static Heterogeneous Model
can be done by using a fourth parameter in the model, the reliability of a node. The
reliability can also be used in performance indices to choose the ”best” node.

For the clarification of reliability we give a short introduction. One of the first definitions
of reliability is that from Edward P. Coleman introduced in Techniques for reliability [81]
1957: ”Reliability is the probability of a system performing its purpose adequately for the
period of time intended under the environmental conditions encountered.”

Reliability in computer systems plays an important role, a very early investigation of
reliability of vacuum tubes for storing information has been introduced by E.B. Ferrell in
his work Reliability and its relation to suitability and predictability 1953 [82]. Ferrell made
live test inspections on vacuum tubes to control the manufacturing process of these tubes.
His goal was to make the live time of the produced tubes predictable.

There exist also other definitions of reliability, here are some examples:

• Military standard definition of reliability : ”The probability that an item will perform
a required function without failure under stated conditions for a stated period of time.”

• Engineering definition: ”The probability that a component part, equipment, or system
will satisfactorily perform its intended function under given circumstances, such as
environmental conditions, limitations as to operating time, and frequency and tho-
roughness of maintenance for a specified period of time.”

• Reliability definition from NASA (National Aeronautic and Space Administration):
”Reliability is the probability of a device performing adequately for the period of time
intended under the operating conditions encountered.”

105



To define reliability it is necessary to define the following constraints:

1. Reliability is a probability. This means that failure is regarded as a random pheno-
menon.

2. Reliability is predicated on ”intended function”. That means operation without fai-
lure.

3. Reliability applies to a specified period of time, that means that a system has a
probability to operate without failure within time t.

4. Reliability is restricted to operation under stated conditions.

Examples for reliability:

• Less than two hours of downtime in five years.

• A Mean Time Between Failures (MTBF) of at least 3000 hours.

An as mathematical description, see also Figure 8.5: The Reliability R(t) is the proba-
bility of a system not failing during the period [0, t]. Where F (t) is the failure distribution
function, R(t) = 1− F (t) is the reliability and f(t) is the failure density function.

R(t1) = 1−
t1∫

0

f(t)dt =

∞∫
t1

f(t)dt

Note availability is not equal to reliability. Availability is the proportion of time a system
is in a functioning condition and in his simplest form is as a ratio of the expected value of
the uptime of a system to the aggregate of the expected values of up and down time.

A =
E(Uptime)

E(Uptime) + E(Downtime)

Abbildung 8.5: Time-to-Failure (Random-Function)

The probability distribution function curve can take many forms. Some of the different
distributions are listed below.
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Normal Distribution

Representing random events is the normal curve or gaussian curve.

f(t) =
1

σ
√

2π
e−(t−µ)2/2σ2

where µ = the Mean and σ = the standard deviation.

Lognormal Distribution

The lognormal distribution is used for general reliability analysis. To test failures in ma-
terial strengths and loading.

Weibull Distribution

The Weibull distribution function is a generalization of an exponential distribution and
is a general purpose distribution. W. Weibull introduced this statistical distribution fore
wide applicability first 1939 for material strength and 1951 more general [83]. It can be
used for:

• Yield strength of steel

• Size distribution of fly ash

• Fiber strength of cotton

• system reliability

• failure of electronic components

An example for using the Weibull distribution function is e.g. testing the archival per-
formance of digital magnetic tapes [84].

f(t) =
(
β

η

)(
t− γ
η

)β−1

e
−

(
t
η

)β
where β = shape parameter, γ = location parameter and η = scale parameter. The β is
the shape parameter. β gives indications on the failure modes e..g. old age or wear out.

Exponential Distribution

The exponential distribution is a simple distribution which can be used if units have con-
stant failure rate. The exponential distribution is simple but this simplicity can lead to
use it in inappropriate situations. A good introduction for using the exponential distri-
bution or the Weibull distribution is the very new study of K. Das [85]. Das studied the
two distributions for machine reliability in a cellular manufacturing system and handled
different failure characteristics for maximizing the system reliability.

f(t) = λ exp−λ(t−γ)

where λ = scaling factor or failure rate and γ = location factor.

8.2.1 Node Reliability

For our model extension we define that the reliability of the nodes and their representation
as a graph is known by the broker as all other node characteristics, therefore we can use
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this information to optimize the workflow. We can extend our model defined in chapter 5
with a fourth parameter, the reliability of a node. Please note that not the reliability of
the Database System is used here, we use only the reliability of a the involved nodes. It
is necessary to define the reliability of a processing node, because this is the element used
in the execution of the workflow by arranging the nodes. Then we can extend the node
characteristics defined in our model for heterogeneous environments with the reliability of
a node:

• Processing Power.

• Disk Speed.

• Network Bandwidth.

• Reliability.

The node is a system containing electronic components and therefore a Weibull distribution
with a ”bath-tube” shaped curve is suitable. The ”bath-tube” means at the beginning of
the lifetime there are more failures, then the failure rate is relatively constant and at the
end of the lifetime the failure rate increases again. This kind of distribution is typical to
electronic systems.

As easily can be imagined arranging the nodes to build a perfect binary, it is necessary
to have the most reliable nodes at the root of the tree. The reason is clear, if a node
fails during execution of the parallel binary merge sort workflow the cost of this failure
increases during execution of the phases. As seen in Figure 6.6 the last processor and their
two predecessors must be the most reliable nodes.

As described in section 8.1 the reliability can be also used to calculate a performance
index. Therefore Equation 8.3 can be rewritten as

ID =
√
I2
CPU + I2

Memory + I2
Disk + I2

Network + I2
Reliability (8.4)

Analogous the reliability extension as a parameter in an performance index to find the
optimal solution must be investigated. Please note that the reliability extension influences
the duration time of the parallel merge sort in that way, that we have to weight the
most influencing parameter, the network bandwidth, with the reliability of the node. An
example can be seen in table 8.1, where Node4 would be chosen without the reliability
extension, but if we used the reliability as additional parameter we would choose Node1
as one of the last three nodes. Note using the reliability in this manner is only valid if the
time of transferring data between the nodes is for all the three nodes the same, because
the reliability varies from level to level of the perfect binary tree.

8.2.2 Database Reliability

In the previous section we introduce an approach for finding the optimal solution for the
execution of the workflow in a parallel binary merge sort algorithm using the reliability of
the involved nodes. In the field of database systems the term reliability is used to improve
the reliability of the whole database system [86] or the reliability of queries [87]. Sadri
[87] studies the problem of determining the reliability of answers to queries in a relational
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Tabelle 8.1: Node Reliability Extension

Node Network Weighted Network
Number Bandwidth [Mbit/s] Reliability Bandwidth [MBit/s]

Node1 90 0.95 85.5
Node2 50 0.98 49.0
Node3 10 0.99 9.9
Node4 100 0.83 83.0
Node5 50 0.78 39.0

database system, where the information in the database comes from various sources with
varying degrees of reliability. Sadri extends the relational model with an ”information
source vector”. This also enables the database system to calculate the reliability of each
tuple in the answer to a query as a function of the radiabilities of information sources.

8.2.3 Grid Reliability

In Dai et. al. [88] the two kinds of reliability in Grid systems have been investigated:

• Grid program reliability: grid program reliability is defined as the probability of suc-
cessful execution of a given program running on multiple Virtual Nodes (VNs) and
exchanging of information through Virtual Links (VLs) with the remote resources of
other VNs, under the environment of grid computing system.

• Grid service reliability: grid service reliability is defined as the probability for all of
the programs involved in the considered grid service to be executed successfully.

The failure process of either VN or VL can be modeled as a Poisson process, this ass-
umption can be justified by the operational phase in which the software and hardware are
not changed. This justification can be seen in e.g. Yang and Xie [89].

Different from software reliability, the grid program reliability actually involves the hard-
ware reliability including the failures on VNs and VLs though this reflects the probability
of successfully running the program.

Grid services reliability can be computed with the graphic theory using the concept of
Minimal Resource Spanning Tree (MRST). This is similar to our graphical representation
of the network using an adapted minimal spanning tree algorithm for finding the optimal
workflow orchestration.

8.3 Performance Metrics for Grid Workflows

Performance metrics for Grid workflows are developed in Truong et. al. [90]. They introduce
an ontology for describing performance data of Grid workflows and illustrate how the
ontology can be utilized for monitoring and analyzing the performance of Grid workflows.
They classify performance metrics according to five levels of abstraction, including, from
lower to higher level, see Figure 8.6.

109



1. code region

2. invoked application

3. activity

4. workflow region

5. workflow

The metrics are categorized into: execution time, counter, data movement, syn-
chronization, ratio and temporal overhead.

Abbildung 8.6: Hierarchical structure view of a Workflow

An example of Performance Metrics at Code Region is shown in table 8.2. Most metrics
can be constructed from metrics at code region level. and most existing conventional
performance tools provide these metrics. Existing workflow monitoring and analysis tools
normally do not. The challenging issue is to integrate conventional performance monitoring
tools into workflow monitoring tools.

Truong et.al. develop an ontology named WfPerfOnto (Ontology describing Performan-
ce data of Grid Workflows) for describing performance data of workflows. WfPerfOnto
is based on OWL [91]. The Web Ontology Language OWL is a semantic markup language
for publishing and sharing ontologies on the World Wide Web. OWL is developed as a
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Tabelle 8.2: Performance Metrics at Code Region Level

Category Metric

Execution time ElapsedTIme, UserCPUTime, SystemCPUTime, SerialTime, EncodingTime
Counter L2-TCM, L2-TCA (hardware counters)

NCalls, NSubs, RecvMsgCount, SendMsgCount
Synchronization CondSynTime, ExclSynTime
Data Movement TotalCommTime, TotalTransSize
Ratio MeanElapsedTime, CommPerComp, MeanTransRate, MeanTranSize

CachMissRatio, MFLOPS, etc.
Temporal overhead temporal overhead of parallel code regions

vocabulary extension of RDF (the Resource Description Framework) and is derived from
the DAML+OIL Web Ontology Language. The visualization of the described performance
data of a workflow has been done in Protege [92]. Different monitoring and analysis tools
can store/export performance data in/to ontological representation to use for high-level
search and retrieval of performance data. The ontology WfPerfOnto can be used for:

• Knowledge base performance data of Grid workflows.

• Utilized by high-level tools such as schedulers, workflow composition tools.

• Re(discover) workflow patterns, interactions in workflows, to check correct execution.

• Distributed Performance Analysis.

• Performance analysis requests can be built based on WfPerfOnto.

8.4 Dynamic Optimization of Workflows

We have developed a static model for the execution of parallel database operations in
heterogeneous environments, but in the real world there are not only static parameters.
In this section we give some ideas to extend our model to consider dynamic aspects.
Workflow optimization in Grid environments regarding dynamically changing resources
and conditions are well described in [93].

Following events can happen during the execution of a workflow:

• One or more nodes fail.

• One or more nodes exceed their workload.

• Nodes with higher performance are available.

• The algorithm itself needs more nodes (resources).

In case 1, case 2 and case 3 new nodes have to be added and rearranged. Case 4 is
for special applications like the calculation of fluid dynamics in astrophysics [94]. These
applications are difficult to adapt in the current distributed processing model (such as the
Grid) because of a lack of interface for them to directly communicate with the runtime
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system and the delay of resource allocation. For this particular case an Application Agent
(AA) embedded between the application and the underlying conventional Grid middleware
is necessary, see [95]. For the execution of the presented parallel database operations no
dynamic resource allocation is necessary, therefore we neglect this case in our extended
model.

The simplest reaction to case 1, case 2 and case 3 is to abandon the whole workflow
and start it again with the new nodes involved. This can be useful for small datasets,
but for huge datasets this is not a clever strategy. A more sophisticated strategy should
be used. Depending on the consumption of the cost of the workflow and the cost for the
rearrangement of the nodes on the opposite should be compared. And therefore a restart
of the whole workflow is cheaper in terms of duration time.

One of the premises for rearranging nodes is to have synchronizing points or checkpoints,
where temporary results are written to disk for restarting reasons. Another requirement for
rearranging nodes during the execution of a workflow is to have an Application Agent as
introduced in [95] to have direct control to the resources as described in [96] for providing
resource management services to parallel applications.

The dynamic extension of our model should have at least these features:

• Resource management services to parallel applications (or an Application Agent).

• Supporting checkpoints.

• A continuous progress check must be supported.
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9 Conclusion

In this work we have shown that heterogeneous computing environments are suitable for
the implementation of parallel database operations and can be optimized for such an envi-
ronment. Only a few characteristic parameters are necessary to describe the performance
of heterogeneous nodes, and based on these characteristics an optimal workflow execution
algorithm can be found. We have developed a new optimization algorithm to find the op-
timal arrangement, in terms of processing time, of the involved nodes. The justification of
this work has been done by an implementation of the unmodified and modified version of
the algorithms. The results have shown the gain on performance when using the modified
parallel database algorithms. We have also developed a heuristic solution for finding the
optimal node configuration for the execution of specific parallel operators. This algorithm
can be used for the implementation of a query optimizer in heterogeneous environments.

Our findings can be used for the implementation of database systems based on heteroge-
neous environments for applications in scientific computing, such as bioinformatics, fluid
dynamics and high energy physics (HEP). Such applications are handling huge datasets
and heterogeneous environments are cheaper than specialized parallel database machines.
Therefore there is an urgent need for an optimized data management in heterogeneous
environments.
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Statements of Thesis

1. ”Heterogeneous computing environments are suitable for parallel database operati-
ons.”

2. ”The heterogeneity of computing environments can be used to optimize the execution
of parallel database workflows on it.”

3. ”The network bandwidth has the most influence on the performance of the execution
of parallel database operations in heterogeneous environments.”

4. ”Classic performance evaluations on general multiprocessor environments are rever-
sed or invalidated with modified versions of the same algorithms on heterogeneous
environments.”

5. ”Amdahl’s law built the basis for optimization on heterogeneous environments.”

6. ”The optimization of the parallel sort operation has the highest performance gain in
heterogeneous environments of all other operations.”

7. ”Finding the perfect binary tree to perform the optimal parallel sort operation can be
done heuristic.”

8. ”Every man is the architect of his own fortune.” and ”Man has no power over his
destiny.” is no contradiction.

9. ”Often it is better to wait until things happen, rather than to snatch them.”

10. ”The fortune of your life depends on the kind of your thoughts.”

121



CURRICULUM VITAE Werner Mach

General Informations

Date of birth April 6, 1960 Amstetten (Lower Austria)

Citizenship Austria

Status Married to Sylvia Mach

Education 1966-1970 Primary School in Amstetten (Lower Austria)

1970-1974 Middle School in Steyr (Upper Austria)

1974-1979 School for higher technical education (HTBLA) Vienna (Aus-
tria)

1984-1989 Computer Science and Business Informatics at the University
of Vienna

1989 Master degree Magister der Sozial- u. Wirtschaftswissenschaften
(Mag.rer.soc.oec.) equivalent to Master of Business Information systems

Since Nov. 2006 PhD study at the University of Vienna under the guidance
of Prof. Erich Schikuta

Languages German native

English written and oral

Professional Career

Studies in Computer Science and Business Informatics at the University of
Vienna (UV), graduation with a Master degree while working as software
engineer.

Software development projects like database-applications, CAD and dis-
tributed database systems.

Head of the computer department in a world-wide acting electronics com-
pany.

Project leader of IT infrastructure projects in Austria and Germany. Ma-
ny of these projects are trend-setting inside the company, like corporate
environment -, networking- and information retrieval concepts.

Project manager of an electronic enforcement application.

Head of the development department for intelligent traffic systems and
electronic design.

Head of project management and industrial engineering department.

Vienna, June 2009



Literaturverzeichnis

[1] Carl Kesselman and Ian Foster. The Grid: Blueprint for a New Computing Infra-
structure. Morgan Kaufmann Publishers, November 1998.

[2] George A. Gravvanis, John P. Morrison, and Heinz Stockinger. Special section:
Defining the grid, experiences and future trends. Future Generation Comp. Syst.,
25(4):399–400, 2009.

[3] Zsolt Németh and Vaidy Sunderam. Characterizing Grids: Attributes, Definitions,
and Formalisms. 1(1):9–23, 2003.

[4] D.J. DeWitt and J. Gray. Parallel Database Systems: The Future of Database
Processing or a Passing Fad? SIGMOD record, 19(4), 1990.

[5] Heinz Stockinger, Marco Pagni, Lorenzo Cerutti, and Laurent Falquet. Grid ap-
proach to embarrassingly parallel cpu-intensive bioinformatics problems. page 58,
2006.

[6] W. Hong and M. Stonebraker. Optimization of Parallel Query Execution Plans in
XPRS. In Proc. 1st Int. Conf. on Parallel and Distributed Information Systems,
1991.

[7] H. Pirahesh, C. Mohan, J. Cheng, T.S. Liu, and P. Selinger. Parallelism in Relational
Database Systems: Architectural Issues and Design Approaches. In Proc. Of the
IEEE Conf. On Distributed and Parallel Database Systems. IEEE Computer Society
Press, 1990.

[8] M. Stonebraker, P.M. Aoki, R. Devine, W. Litwin, and M. Olson. Mariposa: a
new architecture for distributed data. Data Engineering, 1994. Proceedings.10th
International Conference, pages 54–65, Feb 1994.

[9] Edward Moreno. Hash Join Algorithms on SMPs Clusters: Effects of Netcaches on
Its Scalability and Performance. Journal of Information Science and Engineering,
18(1-10), 2002.

[10] Peter Paul Beran, Gernot Habel, and Erich Schikuta. SODA A Distributed Data
Management Framework for the Internet of Services. In GCC ’08: Proceedings of the
2008 Seventh International Conference on Grid and Cooperative Computing, pages
292–300, Washington, DC, USA, 2008. IEEE Computer Society.

[11] Wolfgang Hoschek, Javier Jaen-Martinez, Asad Samar, Heinz Stockinger, and Kurt
Stockinger. Data Management in an International Data Grid Project. In IEEE/ACM
International Workshop on Grid Computing Grid, 2000.

123



[12] M. Antonioletti, M.P. Atkinson, R. Baxter, A. Borley, N.P. Chue Hong, B. Collins,
N. Hardman, A. Hume, A. Knox, M. Jackson, A. Krause, S. Laws, J. Magowan,
N.W. Paton, D. Pearson, T. Sugden, P. Watson, and M. Westhead. The Design
and Implementation of Grid Database Services in OGSA-DAI. Concurrency and
Computation: Practice and Experience, 17(2-4):357–376, February 2005.

[13] Anastasios Gounaris, Rizos Sakellariou, Norman W. Paton, and Alvaro A. A. Fern-
andes. Resource Scheduling for Parallel Query Processing on Computational Grids.
In 5th International Workshop on Grid Computing (GRID 2004), pages 396–401,
2004.

[14] Khin Mar Soe, Than Nwe Aung, Aye Aye Nwe, Thinn Thu Naing, and Nilar Thein.
A Framework for Parallel Query Processing on Grid-Based Architecture. In ICEIS
2005, Proceedings of the Seventh International Conference on Enterprise Informati-
on Systems, pages 203–208, 2005.

[15] B.R. Iyer and D.M. Dias. Issues in Parallel Sorting for Database Systems. In Proc.
Int. Conf. on Data Engineering, pages 246–255, 1990.

[16] M. Jarke and J. Koch. Query Optimization in Database Systems. ACM Computing
Surveys, 16(2):111–152, 1984.

[17] Dina Bitton, David J. DeWitt, David K. Hsaio, and Jaishankar Menon. A taxonomy
of parallel sorting. ACM Comput. Surv., 16(3):287–318, 1984.

[18] Dina Bitton, David J. DeWitt, and Carolyn Turbyfill. Benchmarking Database
Systems A Systematic Approach. pages 8–19, 1983.

[19] S. Sudarshan Abraham Silberschatz, Henry F. Korth. Database System Concepts,
5th Edition. 2005.

[20] E. F. Codd. A relational model of data for large shared data banks. Commun. ACM,
13(6):377–387, 1970.

[21] E. F. Codd. The Significance of the SQL/Data System Announcement. Computer-
world, 15(7):27–30, 1981.

[22] James Steuert and Jay Goldman. The relational data management system: A per-
spective. In FIDET ’74: Proceedings of the 1974 ACM SIGFIDET (now SIGMOD)
workshop on Data description, access and control, pages 295–320, New York, NY,
USA, 1974. ACM.

[23] Michael Stonebraker and Eugene Wong. Access control in a relational data base
management system by query modification. In ACM 74: Proceedings of the 1974
annual conference, pages 180–186, New York, NY, USA, 1974. ACM.

[24] Michael Stonebraker. Retrospection on a database system. ACM Trans. Database
Syst., 5(2):225–240, 1980.

[25] E. F. Codd. Extending the Database Relational Model to Capture More Meaning.
Commun. ACM, 4(4):397–434, 1979.

[26] Shamkant B. Navathe Ramez Elmazri. Fundamentals of Database Systems. The



Benjamin/Cummings Publishing Company, Inc., 1989.

[27] ISO. www.iso.org. Website, 2009.

[28] Ceri Stefano. Distributed Databases - Principles and Systems. McGraw-Hill Book
Co, 1985.

[29] Michael Stonebraker. The Case for Shared Nothing. Database Engineering, 9:4–9,
1986.

[30] David DeWitt and Jim Gray. Parallel database systems: the future of high perfor-
mance database systems. Commun. ACM, 35(6):85–98, 1992.

[31] Enabling Grids for E-SciencE. http://www.eu-egee.org/. Website, 2009.

[32] European Datagrid Project DataGRID. http://eu-datagrid.web.cern.ch/eu-
datagrid/. Website.

[33] Ian Bird. Operating the LCG and EGEE production Grids for HEP. Proceedings
of the CHEP’04 Conference, 2004.

[34] The Large Hadron Collider LHC. http://public.web.cern.ch/public/en/LHC/LHC-
en.html. Website.

[35] Lightweight Middleware for Grid Computing gLite. http://glite.web.cern.ch/glite/.
Website.

[36] Fabrizio Gagliardi, Bob Jones, Franois Grey, Marc-Elian Bgin, and Matti Heikkuri-
nen. Building an Infrastructure for Scientific Grid Computing: Status and Goals of
the EGEE Project . Philosophical Transactions: Mathematical, Physical and Engi-
neering Sciences, Scientific Grid Computing, 363:1729–1742, 2005.

[37] Ian Foster, Carl Kesselman, and Steven Tuecke. The Anatomy of the Grid: Enabling
Scalable Virtual Organizations. Int. J. High Perform. Comput. Appl., 15(3):200–222,
2001.

[38] Jeffrey M. Nick Steven Tuecke Ian Foster, Carl Kesselman. The Physiology of the
Grid. 2002.

[39] Aris M. Ouksel Kai-Uwe Sattler Angela Bonifati, Panos K. Chrysanthis. Distributed
Databases and Peer-to-Peer Databases: Past and Present. SIGMOD Record, 37(1):5–
11, 2008.

[40] Donald Kossmann. The state of the art in distributed query processing. ACM
Comput. Surv., 32(4):422–469, 2000.

[41] Renee J. Miller Wnag-Chiew Tan Ariel Fuxman, Phokion G. Kolaitis. Peer Data
Exchange. ACM Transactions on Database Systems, 31(4):1454–1498, 2006.

[42] Andrei Lopatenko Ilya Zaihrayeu Enrico Franconi, Gabriel Kuper. Queries and
Updates in the coDB Peer to Peer Database System. In Proceedings of the 30th
VLDB Conference, pages 1277–1280, 2004.



[43] J. M. Hellerstein. Toward Network Data Independence. SIGMOD Record, 32(3):34–
40, 2003.

[44] D. Suciu I. Tatrinov A. Y. Halevy, Z.G. Ives. Schema Mediation in Peer Data
Managment Systems. In Proc. of ICDE, 2003.

[45] Dina Bitton, Haran Boral, David J. DeWitt, and W. Kevin Wilkinson. Parallel
algorithms for the execution of relational database operations. ACM Trans. Database
Syst., 8(3):324–353, 1983.

[46] David J. DeWitt. DIRECT - a multiprocessor organization for supporting relational
data base management systems. pages 182–189, 1978.

[47] Haran Boral and David J. DeWitt. Design considerations for data-flow database
machines. In SIGMOD ’80: Proceedings of the 1980 ACM SIGMOD international
conference on Management of data, pages 94–104, New York, NY, USA, 1980. ACM
Press.

[48] Team DSLReports. www.dslreports.com. Website.

[49] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. In-
troduction to Algorithms, Second Edition. McGraw-Hill Science/Engineering/Math,
July 2001.

[50] Jae-Dong Lee and Kenneth E. Batcher. Minimizing Communication in the Bitonic
Sort. IEEE Trans. Parallel Distrib. Syst., 11(5):459–474, 2000.

[51] Jai Menon. A Study of Sort Algorithms for Multiprocessor Database Machines.
In VLDB ’86: Proceedings of the 12th International Conference on Very Large Data
Bases, pages 197–206, San Francisco, CA, USA, 1986. Morgan Kaufmann Publishers
Inc.

[52] K. E. Batcher. Sorting networks and their applications. In AFIPS ’68 (Spring):
Proceedings of the April 30–May 2, 1968, spring joint computer conference, pages
307–314, New York, NY, USA, 1968. ACM.

[53] H. S. Stone. Parallel Processing with the Perfect Shuffle. IEEE Trans. Comput.,
20(2):153–161, 1971.

[54] Peter Kirkovits and Erich Schikuta. Parallel Join Algorithms on Clusters. Issue of
Calculateurs Parallèles journal, 2001.
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