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2. Zusammenfassung 
 
Strukturelle Genomanalyse (SG) beinhaltet die, mit hohem datendurchsatz verbundene 

bestimmung der dreidimensionalen struktur von makromolekülen durch experimentelle 

Methoden wie röntgenstrahlen-kristallographie und NMR spektroskopie. Eines der ziele 

von SG ist es, zeit und kosten der bestimmung von dreidimensionalen proteinstrukturen 

zu reduzieren, für die homologe strukturen noch nicht gelöst worden sind. Mehrere 

faktoren wie unregelmäßige conformationen, unzulässige selektion von domängrenzen 

und löslichkeit können die produktion von proteinkonstrukten für die strukturbiologie 

erschweren. Zuverlässige, auf aminosäuresequenz basierende prädiktoren zur berechnung 

von proteinkristallisation sind folglich von nöten. 

 

Die vorhersage von unregelmäßigen konformationen ist essentiell, da diese 

schwierigkeiten in der kristallisation verursachen können. In dieser arbeit wird eine neue 

methode präsentiert, die es erlaubt, ungeordnete residuen auf basis der 

aminosäuresequenz mit hoher genauigkeit vorherzusagen, indem verschiedene, auf einer 

konsensusmethode basierende vorhersagemittel verwendet werden. Die Leistung dieser 

neuen methode ist signifikant besser als von jedem einzelnen, bisher erwähnten 

Prädiktor. 

 

Zusätzlich ist es wichtig, die voraussetzungen für den quartärstatus eines proteins auf 

basis seiner sequenz vorherzusagen. Eine Proteinkette kann aus einem monomeren 

protein bestehen, oder kann, zusammen mit anderen ketten, oligomere komplexe formen, 

die entweder aus homo-oligomeren oder hetero-oligomeren bestehen können. Im letzten 
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fall muss vermieden werden, die dreidimensionale struktur eines einzelnen protomers zu 

bestimmen, weil es nicht funktionell ist und auch extrem schwer in löslicher form zu 

exprimieren ist. Es ist daher erstrebenswert, ein berechnungsmittel zu nützen, das 

vorherzusagen erlaubt, ob ein potentielles genprodukt teil eines permanenten und 

obligaten hetero-oligomeren komplexes ist. Hier wird eine neue, auf der 

aminosäuresequenz basierende methode präsentiert, um hetero-oligomere von monomer 

und homo-oligomeren proteinen und auch um monomere von homo-oligomeren mit 

hoher genauigkeit zu unterscheiden. 

 

Das erfordernis von metallionen ist im design von strukturbiologischen experimenten 

ebenso wichtig. Metalloproteine bilden etwa ein drittel der proteoms. Die vorhersage von 

metalloproteinen hilft kristallographen, geeignetes wachstumsmedium für über-

expressionsstudien auszuwählen und auch die wahrscheinlichkeit zu erhöhen, ein korrekt 

gefaltetes und funktionelles molekül zu erhalten. Hier wird gezeigt, dass die aufnahme 

von metallionen von proteinen auf basis der aminosäurenzusammensetzung und durch 

verwenden von lernfähigen analyseprogrammen mit hoher genauigkeit vorhergesagt 

werden kann. 

 

Die ergebnisse in der vorliegenden Doktorarbeit stellen die basis für das sorgfältige 

design von Proteinkonstrukten dar. Diese computer basierenden selektionsmethoden sind 

hilfreich, um die auswahl von unmöglichen Zielen zu vermeiden – ein Muss in 

Strukturbiologie und Proteomics. 
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3. Summary 
 
Structural Genomics (SG) involves the high-throughput determination of three- 

dimensional structures of macromolecules by experimental methods such as X-ray 

crystallography and NMR spectroscopy. One of the aims of SG is to reduce the time and 

cost in the determination of three-dimensional protein structures for which a homologous 

structure had not yet been solved. Several factors such as conformational disorder, 

improper selection of domain boundaries and solubility can hamper the production of 

protein constructs for structural biology. Reliable computational protein crystallization 

propensity predictors, based on amino acid sequences, are consequently required. 

 

Prediction of protein conformational disorder is important since it can cause difficulty in 

crystallization. In this work, a new procedure is presented that allows one to predict 

disordered residues with high accuracy on the basis of amino acid sequences, by using a 

consensus method based on various prediction tools. The performance of this new 

procedure is significantly better than that of each individual predictor previously 

reported. 

 

Furthermore, it is important to be able to predict the quaternary status requirements of a 

protein on the basis of its sequence. A protein chain can be a monomeric protein or it can 

form, together with other chains, oligomeric assemblies, which can be either homo-

oligomers or hetero-oligomers. In the later case, it must be avoided to determine the 

three-dimensional structure of a single protomer, since it will not be functional and it will 

also be extremely difficult to express in a soluble form. It is thus desirable to have a 
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computational tool that allows one to predict if a potential gene product is a part of 

permanent and obligate hetero-oligomeric assembly. A new method is presented for 

discriminating hetero-oligomers from monomeric and homo-oligomeric proteins and also 

between monomers and homo-oliogmers with high accuracy on the basis of amino acid 

sequences. 

 

Metal ion requirements are also important in designing structural biology experiments. 

Metalloproteins constitute about one-third of the proteome. Prediction of metalloprotein 

helps crystallographers to select the proper growth medium for over-expression studies 

and also to increase the probability of obtaining a properly folded and functional 

molecule. Here it is shown that the uptake of metal ions by proteins can be predicted with 

high accuracy on the basis of the amino acid composition and by using machine learning 

methods. 

 

The results described in the present Thesis provide a basis for the careful design of 

protein constructs. These computational screening methods are helpful to avoid the 

selection of 'impossible' targets- a must in structural biology and proteomics. 
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4. Introduction 

4.1. Structural genomics 
 
Structural genomics (SG) aims to determine the three-dimensional shapes of all important 

biological macromolecules, with primary focus on proteins. The main goal of the project 

is to expand the structural knowledge of biological macromolecules, and lowering the 

average cost of structure determination through high-throughput methods (Joachimiak 

2009). 

 

Structural genomics has now become a driving force behind new developments in protein 

structure prediction technology, aiming to automate, and consequently expedite, all areas 

of the experimental pipeline, ultimately benefiting the structural biology community as a 

whole. Recent analyses of structures released by the initiatives have highlighted the 

significant contribution they are now making in both the scope and depth of our structural 

knowledge of protein families, especially when compared to the relative contribution of 

non-structural genomics structures (Marsden et al. 2007). 

 

4.1.1. Protein Structure Initiative and other SG initiatives 
 
Protein Structure Initiative (PSI) (Hendrickson 2007) is one among the structural 

genomics projects, which aim to determine three-dimensional protein structures, for 

which a homologous experimental structure had not yet been solved.  
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Table 1. Some other SG Initiatives, besides the PSI. 
 
Group or SG center Key ideas Web address 

Berkeley Structural 
Genomics Center 
(BSGC) 

To obtain a structural complement 
of two minimal genomes, 
Mycooplasma genitalium and 
Mycooplasma pneumoniae, two 
related human and animal 
pathogens 

http://www.strgen.org/ 

Protein Structure 
Factory (PSF) 

Technology development; human 
proteins 

http://www.proteinstrukturfabrik.de/ 

Centre for structural 
Genomics of 
Infectious Diseases 
(CDGID) 

To use high-throughput (HTP) 
structural biology technologies to 
experimentally characterize the 
three-dimensional structure of 
targeted proteins from major 
human pathogens 

http://www.csgid.org/csgid/cake/ 

Oxford Protein 
Production Group 
(SPINE) 

To determine structures of 
proteins and protein complexes 
from bacteria and human, viral 
pathogens 

http://www.spineurope.org/ 

RIKEN Structural 
Genomics 

To determine the 3D structures of 
human, mouse, bacteria, and 
archaea 

http://www.riken.go.jp/ 

TB Structural 
Genomics 
Consortium (TB) 

Determination and analysis of 
protein structure from 
Mycobacterium tuberculosis 
proteins, and genomics 
consortium large-scale 
collaboration 

http://www.doembi.ucla.edu/TB/ 

Vizier project Identification of potential new 
drug targets against RNA viruses 
through comprehensive structural 
characterization  

http://www.vizier-europe.org/ 

The structural 
Genomics 
Consortium, Toronto 

To determine the 3D structures of 
human proteins of therapeutic 
relevance to diseases such as 
cancer and diabetes metabolic 
disorders 

http://www.sgc.utoronto.ca 

Targeted Proteins 
Research Program 
(TPRP) 

The program aims to reveal the 
structure and function of proteins 
that have great importance in both 
academic research and industrial 
application. 

http://www.tanpaku.org 
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The long-range goal of the PSI is to make the three-dimensional structures of most 

proteins easily obtainable on the basis of their corresponding Deoxyribonucleic acid 

(DNA) sequences (Norvell and Berg 2007). Structural Genomics centers contribute about 

half of new structurally characterized families of proteins, and PSI centers account for 

about two-thirds of the worldwide SG output. 

 

In the first phase of the Protein Structure Initiative, major goals were to lower the cost 

and to increase the success rates of structure determination by developing new 

methodologies to construct and automate the protein production (Blundell 2007; Norvell 

and Berg 2007). In the second phase of the Protein Structure Initiative, the major goals 

were focused on the structural coverage of sequence families of biological importance, 

beside the development of new methodology for challenging classes of protein (i.e., 

integral membrane proteins and protein-protein complexes) (Matthews 2007; Dessailly et 

al. 2009). Beside Protein Structure Initiative, several other SG Initiatives are in progress 

and some of them are shown in table 1 

 

4.1.2. Target selection 
 
In the Protein Structure Initiative, targets of structure determination are chosen from large 

protein sequence families for which there is no structural information and from very large 

phylogenetically diverse protein families, which are inadequately characterized at the 

level of the three-dimensional structure. Once approved from a scientific committee, each 

PSI production center selects non-redundant target protein families. After a protein 

family is selected, individual targets are chosen at the center (Burley et al. 2008). 



 

 4

4.2. Experimental pipeline of protein crystal structure 
determination 
 
The determination of a protein structure by experimental X-ray crystallographic analysis 

involves the following steps. 

4.2.1. Expression and purification of proteins 
 
For high-throughput analysis, milligram quantities of very pure and homogeneous protein 

are usually required for successful crystal growth and crystal structure determination. 

Over-expression in bacteria or in another suitable system is consequently a necessity in 

most cases. The majority of structural genomics consortia are pursuing high-throughput 

protein expression through constructs expressed in Escherichia coli.  

 

Purification of over expressed protein is greatly simplified for high-throughput studies 

through the use of constructs in which the target gene is fused to an affinity tag, whereby 

the tag can be placed at either the amino- or the carboxy-terminal end of the target 

protein, with a number of options in construct design. Polyhistidine-tag (His-tag) is a 

widely employed method. 

 

4.2.2. Protein crystallization 
 
To obtain well diffracting, well-ordered protein single-crystals is the vital aim of protein 

crystallography. Protein crystals can be obtained by slowly withdrawing solvent from a 

highly concentrated protein solution. 
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In the most common methods of growing protein crystals, purified protein is dissolved in 

an aqueous buffer containing a precipitant such as ammonium sulfate or polyethylene 

glycol, at a concentration just below that necessary to precipitate the protein. Then water 

is removed by controlled evaporation to produce precipitating conditions, which are 

maintained until crystal growth ceases. 

 

There are many methods used for protein crystallization. The most commonly used is 

vapour diffusion. Vapour diffusion has two variants known as the hanging drop and 

sitting drop methods (see figure 1) (McPherson 2004). 

 

A few micro liters solution of purified protein is mixed with an equal amount of the 

reservoir solution, giving precipitant concentration about 50% of that required for protein 

crystallization. This solution is suspended as a droplet underneath a cover glass, which is 

sealed onto the top of the reservoir grease. Because the precipitant is the major solute 

present, vapour diffusion in this closed system results in net transfer of water from the 

protein solution to the reservoir, until the precipitant concentration is the same in both 

solutions. The reservoir is much larger than the protein solution; the final concentration 

of the precipitant in the protein solution is nearly equal to that in the reservoir. When the 

system comes to equilibrium, net transfer of water ceases, and the protein solution is 

maintained at the optimal precipitant concentration. 

 

The hanging drop method differs from the sitting drop method in the vertical orientation 

of the protein solution drop within the system. It is important that both the hanging drop 
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and the sitting drop methods require a closed system, that is, the system must be sealed 

off from the outside using an airtight container or high-vacuum grease between glass 

surfaces. 

 

 

 

Figure 1. Principal techniques of protein crystallization. (i) Hanging drop method (ii) 
Sitting drop method (modified from: http://www.protocol-online.org). 
 

4.2.3. Structure determination 
 
Once suitable protein crystals become available, X-ray diffraction data are collected. 

Diffraction data are measured using monochromatic X-ray from a sealed tube generator, 

a rotating anode X-ray generator or from a synchrotron source. It is obviously important 

to determine the phases of the diffraction data. They can be determined by two methods: 

molecular replacement and isomorphous replacement. With an initial set of phases one 

can calculate an approximate three-dimensional density map of the protein structure. 

Model refinement is carried out against the experimentally measured diffraction data and 

may include the addition of well-ordered solvent molecules. 
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4.3. Crystallization propensity predictors and databases 
 
Several crystallization propensity predictors were developed for predicting if a certain 

sequence will be suitable for expression, purification and crystallization. Some predictors 

were focused on specific problems in the experimental pipeline like predicting 

conformational protein disorder, identification of protein domain boundaries and 

prediction of post-translation modifications, as these factors may hinder in a successful 

structure determination. It is clear that the three-dimensional structure of a 

conformationally disordered protein cannot be determined experimentally. Several 

predictors were based on amino acid sequence. Although none of the available methods 

for disorder prediction are fully reliable on its own, it is often necessary to consider 

merits and demerits and to combine them to achieve reliable prediction. The 

identification of the domain boundaries is often a crucial problem during structural 

biology experiments, in selecting and fine tuning of the amino acid construct. In general 

it is major concern problem with regard to large proteins, usually composed of several 

separate structural domains. Prediction of post-translational modifications and 

translocation signals are important because they are often related to transitions between 

an ordered and a disordered conformational state of the protein and also to the expression 

system (Carugo et.al.2007a). 

 

These predictors help to avoid time consuming expensive experiments on 'impossible 

targets'. These approaches may be valuable in structural genomic projects when there is a 

desire to rank targets according to likely success or for structural biologists to handle 
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their specific problems and optimize their experimental strategy (Carugo et.al.2007b). 

There are several crystallization propensity predictors as follows. 

 

 4.3.1. SECRET 
 
A sequence-based crystallizability evaluator (Smialowski et al. 2006) is a machine-

learning approach that predicts protein crystallizability to support target selection process 

in structural genomics. It uses a meta-method as a classification algorithm, consisting of 

two layered structures with support vector machines as a primary classifier, and a Naive 

Bayes as a second level classifier. It is available online at http://mips.helmholtz-

muenchen.de/secret/secret.seam. 

 

4.3.2. CrystalP 
 
CrystalP (Chen et al. 2007) uses a novel feature-based sequence representation which is 

based on frequency of collocated amino acid pairs in the sequence and applies a Naive 

Bayes classifier. This method can be used to predict if a small and medium size (<200 

amino acids), proteins can be crystallized. Additionally, features used by crystalP may 

help to discover intra-molecular markers that influence protein crystallization. 

Unfortunately it is not available as a web-server or as stand alone software. 
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4.3.3. OBscore 
 
The OB-score (Overton and Barton 2006) estimates a protein propensity to produce 

diffraction-quality crystals, on the basis of calculated isoelectric points and 

hydrophobicity values. High positive OB-score may be used to indicate the proteins that 

should be more prone to structure determination while low OB-score can suggest more 

challenging proteins. The OB-score software is freely available from 

http://www.compbio.dundee.ac.uk/obscore. 

 

4.3.4. Taro 
 
TarO (Overton et al. 2008a) is a predictor focused on structural genomics target 

selection/optimization. It includes crystallization propensity predictions, orthologue 

searching, and many other sequence-based calculations. The results are available through 

an annotated multiple sequence alignment. It is available as a guest account at 

http://www.compbio.dundee.ac.uk/taro/. 

 

4.3.5. ParCrys 
 
ParCrys (Overton et al. 2008b) implements a parzen window approach based on the 

calculated isoelectric point, hydrophobicity and the frequencies of S,C,G,F,Y,M residues. 

It uses the Protein Data Bank (PDB) as the training data. It is available online at 

http://www.compbio.dundee.ac.uk/parcrys. 
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4.3.6. TargetDB 

TargetDB (Chen et al. 2004) is a target registration database that provides information on 

the experimental progress and status of targets selected for structure determination, which 

includes protein target data from the NIH structural genomics centers and a number of 

international structural genomic initiatives.  

 

A number of other worldwide structural genomics centers have also contributed data to 

TargetDB on a voluntary basis. TargetDB, which is hosted by the Protein Data Bank 

(RCSB PDB), provides status information on target sequences and tracks their progress 

through the various stages of protein production and structure determination. TargetDB 

includes information about status category as described in table 2.  

 

Table 2. Various steps along the structural biology pipeline monitored by the 
TargetDB database. 
 
Category  Status 
Target preparation Cloned, expressed. soluble, purified 
Crystallization Crystallized, diffraction-quality crystals, diffraction, crystal 

structure 
NMR structure determination Heteronuclear Singe Quantum Coherence (HSQC), NMR 

assigned, NMR structure 
Deposition status In PDB 
Work stopped  
Test target  
 

TargetDB has the query capabilities and one can search the database by sequence search 

method, based on project site, target ID, protein name, source organism, date of last 

modification, and the current status of the target. The status search category is also 

available with option to indicate if work has been stopped on a particular target. Based on 
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status search information for each target, two types of summary reports are generated. 

One gives the progress for an individual target (or lists of targets) according to its change 

in status over time and other describes the aggregate status information of each structural 

genomics center. TargetDB is available at http://targetdb.pdb.org/ 
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4.4. Machine learning 
 
By dictionary definition, machine learning is defined as "to gain knowledge, or 

understanding of, or skill in, by study, instruction, or experience," and "modification of a 

behavioral tendency by experience". But broadly it can be defined that a machine learns 

from its inputs or in response to external information and it changes its structure, 

program, or data in such a way that it is expected to improve its performance in future. 

 

Machine learning is like programming computers to optimize a performance criterion 

using novel data or past experience. It consists of modelling with defined parameters and 

training data. Learning is the execution of the program to optimize the parameters of the 

model using training data or past experience. In machine learning, first, we need efficient 

algorithms to solve the optimization problem, as well as to store and process the massive 

amount of training data. Second, once a model is learnt, its representation and algorithmic 

solution for inference needs to be efficient, in space and time complexity. 

 

4.4.1. Supervised learning 
 
Supervised learning is a machine learning technique used for prediction of the value of 

the function for any valid training data containing input objects. The goal of supervised 

classification is to find a functional mapping between the input data X, describing the 

input pattern, to a class label Y (e.g. -1 or +1), such that Y= f (X). The construction of the 

mapping is based on the so-called training data, supplied to the classification algorithm. 

Curve-fitting is a simple example of supervised learning of a function (Larranaga et al. 

2006). 
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4.4.2. Unsupervised learning 
 
Unsupervised learning is a type of machine learning technique used to determine how the 

data are organized. It differs from the supervised learning since the training vectors lack 

function values (Goldbaum 2005). Principal component analysis and cluster analysis are 

examples of unsupervised learning/pattern recognition. 

 

4.4.3. Semi-supervised learning 
 
Semi-supervised learning is a machine learning technique intermediate between 

unsupervised learning and supervised learning (Ernst et al. 2008). The semi-supervised 

technique makes use of both labeled and unlabeled data for training, sometime with 

considerable improvement in learning accuracy. 

 

As the supervised learning technique use only labeled data to train, sometime it is very 

time consuming, expensive and also difficult and it requires lot of efforts of experienced 

human annotators. On the contrary, the absence of annotations makes unsupervised 

methods relatively easy. However, their results are often ambiguous. Semi-supervised 

learning solves this problem by using large amount of unlabeled data, together with the 

labeled data, to build better classifiers (Kall et al. 2007). Semi-supervised has advantages 

like less human effort and also can give higher accuracy. 
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4.4.4. Commonly used classifiers 
 
A classifier is a function that takes the values of various features (independent variables) 

and predicts the class (dependent variable) (Pereira et al. 2009). The most commonly 

used classifiers are briefly described in the next few pages. 

 

4.4.4.1. K-nearest neighbor classification 
 
K-nearest neighbor is the method of instance based learning. Each new instance (the 

query) is compared with existing ones using a distance metrics, and the closest existing 

instance is used to assign the class to the new one. Sometime, more than one nearest 

neighbor is used, and the majority class of the closest k neighbors is assigned to the new 

instance. This is the generic k-nearest-neighbor method. This approach is highly intuitive 

and gives low classification errors, but it is computationally expensive and requires a 

large memory to store the annotated data (Gil-Pita and Yao 2008). 

 

4.4.4.2. Naive Bayes 
 
Naive Bayes is a simple probabilistic classifier based on Bayes rules and "naively" 

assumes independence of the events. The assumption that the variables are independent 

can harm the performances, since it is obvious that the conditional independence 

assumption is rarely true in most real-world applications. An advantage of the Naive 

Bayes classifier is that it requires a small amount of training data to estimate the 

parameters necessary for classification (Yan et al. 2006). 
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4.4.4.3. Decision trees 
 
Decision tree algorithms solve the classification problem by repeatedly partitioning the 

input space, so as to build a tree whose nodes are as pure as possible. Nodes of a decision 

tree involve the testing of a particular attribute. Usually, the test compares an attribute 

value with a constant. Classification of a new instance is achieved by moving it from top 

to bottom along the branches of the tree, starting from the root node, until a terminal node 

is reached (Tan et al. 2005). Decision trees are really simple and effective for small 

datasets, but for large datasets they require large storage memory (Salzberg 1995).  

 

4.4.4.4. Neural networks 
 
Neural networks are a computational model inspired by the connectivity of neurons in 

animate nervous systems.  

 

Figure 2. Schematic representation of a neural network. Each circle in the hidden and 
output layer is a computational element known as a neuron. 
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In the figure 2, each circle denotes a computational element referred to as a neuron, 

which computes a weighted sum of its inputs. If certain classes of nonlinear functions are 

used, the function computed by the network can approximate any function (Melville et al. 

2009). 

 

4.4.4.5. Support Vector Machines 
 
Support Vector Machines (SVMs) are machine learning technique related to supervised 

learning methods used for classification and regression.  

 

 

 

Figure 3. Schematic diagram of support vector machine (modified from Byvatov and 
Schneider 2003). By using a kernel, the original bi-dimensional space is transformed into 
the feature tri-dimensional space, on which the instances can be optimally separated by 
the yellow plane. 
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Support vector machines select a small number of critical boundary instances called 

support vectors from each class and build a linear discriminative function that separates 

them as widely as possible. The SVM finds a large margin separation between the 

training examples (figure 3). Hence, the large margin then ensures that new instances can 

be correctly classified as well (Byvatov and Schneider 2003). Kernels are often used to 

linearize and simplify the construction of an optimal separation between the learning sets. 

 

4.4.5. Validation 
 
Validation is a method to assess how model is likely to fit new data. Validating the 

performance of predictive models is the single most important step. The different 

approaches of data validation are as follows. 

 
4.4.5.1. Cross-validation 

Cross-validation is the most widely used method for estimating prediction reliability. To 

determine the accuracy of the prediction, the predicted values are compared with actual 

values obtained from a new sample of subjects or with values from a sample obtained at 

the time of the original data collection but held out from the initial analysis. One fold of 

cross-validation involves partitioning a sample of data into complementary subsets, 

performing the analysis on one subset (called the training set), and validating the analysis 

on the other subset (called test set). 
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4.4.5.2. K-fold cross-validation 

K-fold cross validation splits the data into k approximately equally sized partitions. The 

induction algorithm is executed k times; each time it is trained on k-1 partitions and the 

generated hypothesis is tested on the rest of the data, which serves as a test set. 

 

4.4.5.3. Jackknife 

Jackknife involves in systematically recomputing the estimate leaving out one 

observation at a time from the sample set. Jackknifing is similar to bootstrapping and 

may in many situations yield similar results. However, the jackknife is easier to apply to 

complex sampling schemes, such as multi-stage sampling with varying sampling weights, 

than the bootstrap. 

 
4.4.5.4. Confusion matrix and figures of merit 
 
A confusion matrix contains information about actual and predicted classifications done 

by a classifier. Each row of the matrix represents the instances in a predicted class, while 

each column represents the instances in an actual class. An example for confusion matrix 

for a two class classifier is shown in table 3. 

 

The entries in the confusion matrix denotes as follows: a is the number of correct 

predictions that an instance is true negative, b is the number of incorrect predictions that 

an instance is false positive, c is the number of incorrect predictions that an instance is 

false negative, and d is the number of correct predictions that an instance is true positive. 
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Table 3. Example of Confusion matrix. 
 

Actual Predicted 
 Negative Positive 
Negative a b 
Positive c d 
 

Several standard terms have been defined for the two class matrix. True Positive rate 

(TP) is the proportion of positive cases that were correctly identified, as calculated 

TP=d/c+d. The false positive rate (FP) is the proportion of negatives cases that were 

incorrectly classified as positive, as calculated FP=b/a+b. The true negative rate (TN) is 

defined as the proportion of negatives cases that were classified correctly, as calculated 

TN=a/a+b. The false negative rate (FN) is the proportion of positives cases that were 

incorrectly classified as negative, as calculated FN=c/c+d. 

 

Alternative definitions are also commonly used, like sensitivity, specificity, Matthews 

correlation coefficient, accuracy, precision and probability excess. Sensitivity measures 

the proportion of actual positives which are correctly identified. Specificity measures the 

proportion of negatives which are correctly identified. The Matthews correlation 

coefficient (MCC) takes into account true and false positives and negatives and is 

generally regarded as a balanced measure which can be used even if the classes are of 

very different sizes. The accuracy is the proportion of true results (both true positives and 

true negatives) in the population. On the other hand, precision is defined as the proportion 

of the true positives against all the positive results (both true positives and false 

positives). They are calculated as follows. 
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dSensitivity
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+

 

( . . )_
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−
=

+ + + +
 

_ 1Probability excess Sensitivity Specificity= + −  

 

While sensitivity, specificity, precision and accuracy may be misleading for unbalanced 

data sets. [(a+b) >> (c+d) or (a+b) << (c+d)], the Matthews correlation coefficient 

(MCC) and the probability excess are more robust and tolerate unbalanced samplings. 

The sensitivity, specificity and accuracy values may range, by definition, from 0 to 1, all 

the other figures of merit can range between -1 and 1.The figures of merit which has 

higher values are associated with more reliable predictions, in particular positive values 

of the Matthews correlation coefficient and of the probability excess are associated with 

good and non-random predictions. 
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4.5. Protein conformational disorder prediction 

4.5.1. Introduction 
 
Soluble proteins may consist of globular units and non-globular units. Globular units are 

composed of regular secondary structure elements whereas the non-globular units are 

composed of disordered, unstructured, and flexible regions without regular secondary 

structure elements (Linding et al. 2003a). Recently it is well known that many 

functionally important protein segments occur outside of globular units (Wright and 

Dyson 1999; Dunker et al. 1998). Intrinsically Disordered Proteins (IDPs) (also known as 

intrinsically unstructured, unfolded, or rheomorphic proteins) lack a well defined 3D 

structure and exhibit a multitude of conformations that dynamically change over time and 

population (Dunker et al. 2008; Meszaros et al. 2009). 

 

Many proteins cannot be over-expressed, purified or crystallized. Native conformational 

disorder of proteins is one of the main obstacles facing structural biology analyses. 

Moreover, in structural genomics initiatives, it is becoming increasingly important to 

identify the intrinsic protein disorder during the target selection process (Smialowski et 

al. 2006; Ferron et al. 2006). 

 

4.5.2. Natively disordered proteins 
 
No commonly agreed definition of protein disorder exists. "Natively disordered or 

unfolded proteins are proteins that do not form a stable three-dimensional structure in 

their native state. A disordered protein can be either completely unfolded or comprise 

both folded and unfolded segments" (Fink 2005). While completely unfolded proteins 
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carry out their function by means of regions that lack specific 3D structure and exists as 

an ensembles of flexible molecules, in partially unfolded proteins only localized regions 

lack organized structure. 

 

4.5.3. Biological importance of protein disorder 
 
The native unstructured proteins are found to participate in many biological processes 

and commonly occur in cell signaling pathways, DNA transcription and replication and 

protein translation (Vucetic et al. 2007). Protein disorder is important for understanding 

protein function as well as protein folding pathways (Uversky 2002; Tompa 2002). More 

than 180 such proteins are known including Tau, Prions, Bcl-2, p53, 4E-BP1, elF1A and 

HMG proteins (Linding et al. 2003a). They are thought to become ordered when they are 

bound to another molecule (e.g. CREB-CBP complex) although little is understood about 

the cellular and structural meaning of disorder. Due to the abnormal aggregation patterns 

of these proteins, they are involved in major protein diseases such as Parkinson's and 

Alzheimer’s syndromes (Forloni et al. 2002). 

 

4.5.4. Experimental determination of intrinsic disorder 
 
Protein disorder is indirectly observed with a variety of experimental methods, such as X-

ray crystallography, NMR, Raman spectroscopy, CD spectroscopy, and hydrodynamics 

measurements. 
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4.5.4.1. X-ray crystallography 
 
Disorder leads to missing electron density in protein structures determined by X-ray 

crystallography. Two types of disorder have been recognized: static and dynamic (Huber 

1979). Disorder is static when different molecules are rigid and adopt different 

conformations. It is, on the contrary, dynamic when molecules are flexible and oscillate 

between various conformations. If a region exists as an ensemble of φ and ψ angles, 

whether static or dynamic, it is intrinsically disordered. The major disadvantage of X-ray 

crystallography is that it requires additional experimental confirmation whether the 

missing electron density is a wobbly domain, is intrinsically disordered, or is the result of 

technical difficulties (Dunker et al. 2001). 

 

4.5.4.2. Nuclear Magnetic Resonance spectroscopy (NMR) 
 
Protein three-dimensional structures can be determined in solution by NMR. Under 

favorable circumstances, NMR provides motional information on a residue-by-residue 

basis by means of a variety of different isotopic labeling and pulse sequence experiments 

(Dunker et al. 2001). 

 

4.5.4.3. Circular Dichroism (CD) spectroscopy 
 
Structural information for proteins in solution is also provided by circular dichroism. The 

circular dichroism spectroscopy can give semi-quantitative information by combined use 

of near and far UV CD. It does not provide clear information for the proteins that contain 

both ordered and disordered regions (Dunker et al. 2001). 
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4.5.4.4. Protease digestion 
 
Protease digestion is a well recognized method, which gives insight into protein structure 

and flexibility. The protein digestion method is particularly useful when used in 

combination with other methods. Protein digestion along with X-diffraction method helps 

to sort out whether a region of missing electron density is due to a wobbly domain or to 

intrinsic disorder. Protein digestion is useful when coupled with CD spectra, which lack 

position-specific information. Finally, the combination of proteolysis and mass 

spectrometry for fragment identification can indicate the presence of intrinsically 

disordered regions (Dunker et al. 2001). 

 

4.5.4.5. Stokes radius determination 
 
Random coil disorder has also been detected by various methods for obtaining stokes 

radius such as small-angle X-ray scattering or size exclusion chromatography (Dunker et 

al. 2001). 

4.5.5. Protein conformational disorder predictors 
 
Various computational predictors were developed for predicting protein conformational 

disorder. Since there is no unique definition of protein disorder, each of the predictors has 

its own definition and algorithms. Some of them have different versions of the same basic 

algorithm. Some of the predictors are based on datasets of ordered/disordered proteins. 

Others are based on physicochemical trends and observations. All the predictors 

mentioned here are available as web servers (table 4). 

.
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Table 4. Summary of the web servers available for the prediction of protein conformational disorder. 
 

Server name What is predicted? Web address Reference 
Disembl_hotloops Loops with high B-factors (highly mobile loops) from X-ray 

crystal structures using neural networks 
http://dis.embl.de/ (Linding et al. 

2003a) 
Disembl_loops Residues within loops/coils (regions devoid of regular secondary 

structure) using neural networks 
http://dis.embl.de/ (Linding et al. 

2003a) 
Disembl_remark465 Defined by the REMARK465 (regions lacking electron density) 

lines in the PDB files using neural networks 
http://dis.embl.de/ (Linding et al. 

2003a) 
Disopred Predicts residues with missing atomic co-ordinates in the PDB 

files 
http://bioinf.cs.ucl.ac.uk/disopre
d/disopred.html 

(Ward et al. 2004) 

Drip-pred Secondary structure based using Kohonen's self-organizing maps http://www.sbc.su.se/~maccallr/d
isorder/ 

unpublished 

Foldindex Regions that have a low hydrophobicity and high net charge 
(either loops or unstructred regions) 

http://bip.weizmann.ac.il/fldbin/f
index 

(Prilusky et al. 
2005) 

Globplot_B Uses a propensity scale called "Russel/Linding" based on the 
hypothesis that the tendency for disorder for a given aminoacid to 
be in to be either in regular secondary structures (α-helices or β-
strands) or outside of them (‘random coil’, loops, turns etc.). 

http://globplot.embl.de/ (Linding et al. 
2003b) 

Globplot_R Uses propensity scale based on missing coordinates in X-ray 
structures as defined by the REMARK465 lines in the PDB files. 

http://globplot.embl.de/ (Linding et al. 
2003b) 

Iupred_L Predictions are based on the algorithm that evaluates the energy of 
inter residues interaction. Residues that do not have the capacity to 
form sufficient inter-residue interactions predicted to be 
disordered 

http://iupred.enzim.hu/ 
index.html 

(Dosztanyi et al. 
2005) 

Iupred_S Missing residues in X-ray structure as defined by the 
REMARK465 lines in the PDB files. 

http://iupred.enzim.hu/ 
index.html 

(Dosztanyi et al. 
2005) 

Prelink Predictions are based on amino acid composition and on 
hydrophobic cluster content 

http://genomics.eu.org/spip/PreL
ink 

(Coeytaux and 
Poupon 2005) 

Ronn Uses bio-basis function neural network pattern recognition 
algorithm to the detection of natively disordered (lack well-
defined 3D structure) regions in proteins. 

http://www.strubi.ox.ac.uk/RON
N 

(Yang et al. 2005) 
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4.5.6. Protein trinity/quartet hypothesis 
 
There are two major views of categorization of the form of IDPs (figure 4). According to 

Dunker and Obaradovic (Dunker and Obradovic 2001), IDPs exist in two different forms: 

molten globule (collapsed) and random coil-like.  

 

 

Figure 4.  (i)The Protein Trinity Hypothesis (ii) The Protein quartet hypothesis. 
 
 
On the contrary, Uversky suggested the existence of another form called pre-molten 

globule (Uversky 2002), which is intermediate between the fully extended and the 

molten-globular conformations. Along with the folded conformation, they form the 

protein trinity (Dunker and Obradovic 2001) or the protein-quartet (Uversky 2002) 

hypothesis. 
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4.5.7. Database of protein disorder 
 
(i) ProDDO 

The first public database of disordered proteins regions was limited to the PDB entries 

only. It does not provide information about the type of disorder or the function of 

disordered regions (Sim et al. 2001). The database is now no longer maintained. 

 

(ii) Disprot 

Disprot overcomes the above limitations. It is a curated database that provides 

information about proteins that lack fixed 3D structure in their putatively native states, 

either entirely or in part. The database contains experimentally characterized IDPs and 

includes functional information for many of the IDPs and regions (Sickmeier et al. 2007). 

In its first public release of February 2004, DisProt contained 154 proteins (190 

disordered regions); whereas in June 2009 the database contained 523 proteins (1195 

disordered regions). The database can be accessed at http://www.disport.org. 

 

4.5.8. Protein disorder and the Protein Data Bank 
 
The Protein Data Bank (Bernstein et al. 1977; Berman et al. 2000) stores atomic 

coordinates issued from X-ray and NMR studies. Some of the PDB entries contain the 

lines labeled with "REMARK 465", which list the residues that were not detectable 

experimentally. In a recent survey of the PDB, limited to the crystal structures (Kumar 

and Carugo 2008), it is observed that a considerable number of structures have 

conformational disordered. In 22% of them, more than 5% of the residues are disordered. 
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However, only about 2% of the crystal structures contain more than 20% of the residues 

that lack a well defined structure as shown in figure 5. 

 

It was also observed that resolution tends to decrease if the amount of disorder increases 

as shown in figure 6 although the resolution decrease is not as large as it might be 

expected. 

 

 

 

 

Figure 5. Distribution of protein crystal structures as a function of the percentage of 
disordered residues they contain. The data were taken from the Protein Data Bank; a 
residue was considered to be disordered if not observed in the crystallographic electron 
density maps; the total number of residues was taken from the SEQRES record of the 
PDB files (Kumar and Carugo 2008). 
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Figure 6. Dependence between the crystallographic resolution and the percentage of 
disordered residues observed in the crystal structures deposited in the Protein Data Bank. 
Vertical bars indicate the standard deviation of the mean (Kumar and Carugo 2008). 
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4.6. Protein quaternary status prediction 

4.6.1. Introduction to protein structure 
 
Proteins are polymers of 20 different amino acids joined by peptide bonds. Based on 

structure hierarchy protein structures are classified as primary, secondary, tertiary, and 

quaternary (Yu et al. 2006). Primary Structure refers to the linear sequence of amino 

acids that make up the polypeptide chain. The secondary structure of protein molecules 

refers to the formation of a regular pattern of twists or kinks of the polypeptide chain. 

The regularity is due to hydrogen bonds formed between the atoms of the amino acid 

backbone of the polypeptide chain. The two most common types of secondary structure 

are called α helix and ß pleated sheet. Tertiary structure refers to the three-dimensional 

globular structure formed by bending and twisting of the polypeptide chain. This process 

often means that the linear sequence of amino acids is folded into a compact globular 

structure. The folding of the polypeptide chain is stabilized by multiple weak, non-

covalent interactions. Quaternary structure refers to proteins that contain more than one 

polypeptide chain. Each polypeptide chain in the protein is called a subunit. The subunits 

can contain the same polypeptide chain or different ones. 

4.6.2. Quaternary structure 
 
The concept of quaternary structure was first put forward by Bernal in 1958 (cited in 

Klotz et al. 1970). Many proteins self-associate into assemblies composed by two or 

more polypeptide chains. Protein assemblies composed of one polypeptide chain are 

termed as monomers and those composed of more than one polypeptide chain are called 

oligomers. Oligomer names are based on the number of subunits; dimers are containing 

two subunits, trimers containing three subunits, tetramers containing four subunits and so 
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on. Oligomers which have identical subunits are called homo-oligomers and those which 

are not are called hetero-oligomers. Association of several subunits into a protein has 

important consequences for its function, which is often lost if the subunits are separated. 

Quaternary structure complexes are involved in various biological processes, which 

include metabolism, signal transduction and chromosome replication. 

4.6.3. Importance of quaternary structure prediction in structural 
biology 
 
According to Jones and Thornton (1996), the quaternary status of proteins can be 

described with different types of assemblies. Permanent complexes include those proteins 

that only function in the complex state, and are thus obligatory, e.g. oligomeric proteins. 

Non-obligate complexes are built from units that exist both as part of the complex and 

separately in the cell e.g. enzymes and their inhibitors. Prediction of quaternary status of 

protein is important in structural biology before starting an experimental analysis. The 

structure of an isolated protein chain of a permanent and obligate hetero-oligomeric 

protein cannot be determined experimentally since it has low solubility and 

conformationally inhomogeneity. Moreover, this would anyway result into experimental 

artifacts. Therefore it is important to predict permanent and obligate hetero-oligomeric 

assembly in order to avoid selection of 'impossible targets'. Moreover quaternary 

structure determination through experiments is slow and expensive. However, 

computational methods can play a vital role in extracting valuable information rapidly 

that helps in structural genomics project. 
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4.6.4. Computational tools for quaternary structure prediction 
 
It is generally accepted that the amino acid sequence of proteins contains all the 

information needed to fold the protein into three-dimensional structure (Anfinsen 1973). 

The association of tertiary structure of subunits depends upon the complementary 

'patches' on their surfaces. The patches are buried in the interfaces formed by the 

subunits, thus, play a role in both tertiary and quaternary structure. This suggests that 

primary sequences contain quaternary structure information (Garian 2001). 

 

Quite a few computational tools were developed to predict protein quaternary structure 

from amino acid sequence. Computational methods like machine learning methods were 

employed to predict the number of subunits from amino acid sequences, and in 

discrimination between quaternary statuses of protein. Garian (2001) employed the 

decision-tree method with a feature extraction function to discriminate between homo-

dimer and non homo-dimer. Chou and Cai (2003) developed a method for identifying 

number of subunits in homo-oligomeric quaternary structure by implementing the pseudo 

amino acid composition method. Zhang et al.(2003) developed a method for 

discriminating between homo-dimer and non homo-dimer, using the support vector 

machine and the covariant discriminant algorithm taking in account the amino acid 

composition and auto correlation functions. Song and Tang (2004) implemented the 

function of degree of disagreement (FDOD) to discriminate between homo-dimers and 

other homo-oligomeric proteins from their primary sequence. Carugo (2007c) developed 

a computational method for discriminating between hetero-oligomer and non hetero-

oligomer by implementing the Mahalanobis distance taking in account the amino acid 
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composition. With the exception of the last study, none of these studies dealt with hetero-

oligomers, the target of the present study. 

4.6.5. Quaternary structure and the Protein Data Bank 
 
Jones and Thornton (1996) studied the distribution of multimeric states of proteins in the 

July 1993 release of the PDB. They noted about 66% was monomeric and concluded that 

PDB over-represents small-monomers owing to the difficulties involved in protein 

crystallization of supramolecular assemblies. 15% of the PDB entries were dimeric and 

12% were tetrameric and the remaining adopted other oligmeric statuses. 
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4.7. Prediction of metalloproteins 
 

4.7.1. Metalloproteins 
 
The proteome of every organism requires a significant share of metal ions or metal 

containing cofactors to carry out its physiological function. Metalloproteins are proteins 

capable of binding one or more metal ions or metal containing cofactors, which are 

required for biological function or for the regulation of their activities or for structural 

purposes (Passerini et al. 2007). In in vitro condition, metal ions are observed to interact 

with unfolded polypeptide and may create local structure that initiates and directs the 

polypeptide folding process (Wilson et al. 2004). 

 

Metal-binding capabilities are encoded in the amino acidic sequences and these primary 

sequences are related to the protein three-dimensional structure. Through genomic 

projects various organism genomic sequences have been annotated somehow along with 

metalloproteins contained in them (Andreini et al. 2004). Identification of metal binding 

through experimental methods is difficult and expensive. The use of bioinformatics has 

been extensively used to predict metal binding from amino acid sequences. Predictions of 

metal binding proteins are useful in structural genomics, to select proper growth medium 

for over-expression studies and for the easy interpretation of electron density maps. 

 

However, the available prediction methods are either based on the knowledge of the apo-

protein structure or they are restricted to few specific cases, like the metal binding of 

histidines/cysteines. 
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4.7.2. Metal-binding predictors 
 
(i) CHED 

CHED (Babor et al. 2008) predicts transition metal-binding sites in apo- proteins on the 

basis of their three-dimensional structure. The algorithm first uses geometric search, for a 

triad amino acids composed of four residues types (Cys, His, Glu, Asp) taking account of 

structural rearrangements upon mental binding. Machine learning algorithms (decision 

trees and support vector machines) were used to filter out false positive. The web server 

can be accessed at http://ligin.weizmann.ac.il/~lpgerzon/mbs4/mbs.cgi. 

 

(ii) SeqCHED 

SeqCHED (Levy et al. 2009) is a web-tool for predicting the metal binding sites of 

proteins from translated gene sequences based on remote homology templates with 

sequence identity between 18-100%. A metal binding prediction algorithm (based on the 

CHED procedure) is then applied to the three-dimensional model to identify any putative 

binding sites and their ligating CHED (Cys, His, Glu, Asp) residues. The web server can 

be accessed through http://ligin-temp.weizmann.ac.il/~ronenle/Web/SeqCHED/. 

 

(iii) Metal detector 

Metal detector server (Lippi et al. 2008) is used to predict the metal binding capacities of 

cysteines and hisitidines and disulfide bridges for transition metals from protein 

sequence. A decision tree integrates predictions from two previously developed 

(Disulfind and metal ligand predictor) methods. The server can be accessed through 

http://metaldetector.dsi.unifi.it/. 
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(iv) Metal ligand predictor 

The metal ligand predictor (Passerini et al. 2006) identifies cysteines and histidines in 

transition-metal-binding sites using support vector machines and neural networks. It is 

based on a two-stage machine-learning approach. The first stage consists of a support 

vector machine trained to locally classify the binding state of single histidines and 

cysteines. The second stage consists of a neural network trained to refine local 

predictions by taking into account dependencies among residues within the same protein. 

The method predicts histidines as being in either of two states (free or metal bound) and 

cysteines in either of three states (free, metal bound, or in disulfide bridges). The method 

uses only sequence information by utilizing position-specific evolutionary profiles as 

well as more global descriptors such as protein length and amino acid composition. The 

dataset is available at http://www.dsi.unifi.it/passe/datasets/mbs06/dataset.tgz. 

 

(v) Met site 

The met site server (Sodhi et al. 2004) locates metal-binding regions in protein structures 

using a set of artificial neural network classifiers. The server uses secondary structure, 

solvent accessibility and distance matrices to improve the classification performance. The 

web server can be accessed through http://bioinf.cs.ucl.ac.uk/MetSite/MetSite.html. 

 

(vi) GRID 

GRID (Goodford 1985) is a computational procedure for determining energetically 

favorable binding sites on proteins on known structure. The website can be accessed at 

http://www.moldiscovery.com/soft_grid.php. 
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4.8. Structure and function of filamin 

4.8.1. Introduction 
 
The cytoskeleton plays a fundamental role in spatial organization of cells and their 

movement. The actin cytoskeleton of eukaryotic cells is important for the maintenance of 

cell shape, cell division, adhesion, motility, signal transduction, phagocytosis and protein 

sorting.  The actin cytoskeleton is regulated by many proteins that perform different 

functions like actin polymerisation and cross-linking of actin filaments. In non-muscle 

cells, the actin cytoskeleton consists of globular monomeric actin (G-actin), which can 

reversibly polymerize into filamentous actin (F-actin). 

 

The cross linking and localization of filamentous actin (F-actin) is done by several 

proteins, including spectrin, fimbrin, α-actinin and filamin. Proteins that cross-link F-

actin are important for the maintenance of the viscoelastic properties of the cytoplasm 

and the generation of cell locomotion (Rivero et al. 1996). The cross linking proteins like 

spectrin, fimbrin and α-actinin are thought to form primarily parallel actin bundles, 

whereas filamins can crosslink actin filaments to form orthogonal networks to bundles 

depending on their concentration (Popowicz et al. 2006). The spectrin and α-actinin rod 

domain consist of α-helical regions whereas filamin rod domain are characterized by 

presence of several immunoglobulin-like folds, in which seven β strands are arranged in 

an antiparallel way. 
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4.8.2. Filamin 
 
The name filamin refers to its filamentous colocalization with actin stress fibers. Filamins 

are large cytoplasmic homo-dimeric proteins that crosslink cortical actin into three-

dimensional structures and give mechanical force to cells by binding to actin filaments 

and forming bundles or gel networks (van der Flier and Sonnenberg 2001). Monomeric 

chains of filamin comprise an actin binding domain (ABD) at the N-terminus, followed 

by 4-24 immunoglobulin Ig-like domains depending on the organism including a carboxy 

terminal dimerization domain (Stossel et al. 2001) as shown in figure 7. 

 

 

Figure 7.Overall structure of human filamin (modified from Stossel et al. 2001). 
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Table 5. List of interaction partners of human filamin. 
 
Protein Filamin binding site Function Reference 
Gpibα 
 

Ig-like domain 17-19 Platelet adhesion 
receptor 

(Cranmer et al. 
2005; Nakamura et 
al. 2006) 

D2/D3 dopamine 
receptors 

Ig-like domain 19 Receptor to actin 
anchoring 

(Lin et al. 2001) 

Kir2.1 Ig-like domain 23–24 Receptor to actin 
anchoring 

(Sampson et al. 
2003) 

FILIP Unknown Downregulated by 
FILIP 

(Nagano et al. 
2004) 

Furin  
 

Unknown Sorting, 
compartmentalization 
and stabilization 

(Liu et al. 1997) 

Migfilin Ig-like domain 21 Cell adhesion 
structure to 
cytoskeleton binding 

(Wu 2005; Tu et al. 
2003) 

RalA Ig-like domain 24 Cytoskeleton 
regulation, filopodia 
formation 

(Ohta et al. 1999) 
 

FAP52 Ig-like domain 13–16 Unknown (Nikki et al. 2002) 
Caveolin-1 Ig-like domain 22–24

 
Anchoring caveolae 
to cytoskeleton 

(Stahlhut and van 
Deurs 2000) 
 

Smad Ig-like domain 20–23 Anchoring and 
phosphorylation 
promotion 

(Sasaki et al. 2001) 

TRAF1, TRAF2 Ig-like domain 15–19 Anchoring and 
receptor 
internalization and 
recycling 

(Arron et al. 2002) 

CaR extracellular 
Ca2+ receptor 

Ig-like domain 14–16 Receptor to actin 
anchoring 

(Awata et al. 2001) 

FOXC1 Ig-like domain 20 Nuclear scaffold (Berry et al. 2005) 
SHIP-2 Unknown Receptor to actin 

anchoring 
(Dyson et al. 2003) 

HCN1 Ig-like domain 24 Receptor to actin 
anchoring 

(Gravante et al. 
2004) 

Glutamate receptor 
type 7 

Ig-like domain 21–22 Receptor to actin 
anchoring 

(Enz 2002) 

Calcitonin receptor Ig-like domain 20–22 Anchoring and 
receptor 
internalization and 
recycling 

(Seck et al. 2003) 
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Androgen receptor Ig-like domain 16–24 
after cleavage 

Downregulates AR in 
nucleus 

(Loy et al. 2003; 
Ozanne et al. 2000) 

SEK-1 Ig-like domain 21–23 Tumour necrosis 
factor-α activation 

(Marti et al. 1997) 

BRCA-2 Ig-like domain 21–24 
in nucleus 

Promotes recovery 
from G2 arrest after 
DNA damage 

(Meng et al. 2004; 
Yuan and Shen 
2001) 

Protein kinase Cα Ig-like domain 1–3; 
hinge 2 to Ig-like 
domain 24 

Scaffold for 
signalling pathway 

(Tigges et al. 2003) 

Integrin Ig-like domain 21 Receptor to actin 
anchoring 

(Travis et al. 2004; 
Nakamura et al. 
2006) 

Pak1 Ig-like domain 23 Ruffle formation (Vadlamudi et al. 
2002) 

PEBP2/CBF Ig-like domain 23–24 Retains PEBP2 in 
cytoplasm inhibiting 
its nuclear activity 

(Yoshida et al. 
2005) 

 

Besides actin cross-linking, filamin functions involve anchoring of transmembrane 

proteins, membrane stabilization, interactions between cells and the extracellular matrix , 

scaffold for various signaling molecules and functions related to protein trafficking. 

Filamin proteins are reported to be interacting with more than 20 proteins as show in 

table 5.  

 

4.8.3. Calponin Homology (CH) domain 
 
The calponin homology (CH) domain is one among the many protein domains, which are 

shared by cytoskeletal and signaling proteins and had been identified in a number of actin 

binding proteins. The actin-binding domain is divided into two dissimilar CH domains 

(an N-terminal or type 1 CH domain and C-terminal or type 2 CH domain). It has been 

shown to mediate the actin-binding properties of multiple proteins. These two dissimilar 

CH domains are observed to show differences in binding affinities with F- actin.  
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Type 1 CH domains have the intrinsic ability to interact with F-actin, while type 2 CH 

domains do not, but contribute substantially to the interaction of the complete actin 

binding domain, by acting as a locator or low affinity docking site on the actin filament. 

 

The two tandem calponin homology domains (CH1 and CH2) consist of four main α-

helices of 11-18 residues, connected by two or three less regular helices (Gimona and 

Mital 1998). An example of CH domain of human β-spectrin is shown in figure 8. 

 

 

Figure 8. CH domain of human β-spectrin (PDB ID:1aa2). The architecture of the 
domain is dominated by four α-helices (A,C,E and G) connected by long loops and three 
short less regular α-helices (B,D,F) (Djinovic Carugo et al. 1997). 
 

4.8.4. Structure of actin-binding domain 
 
Generally, the cross-linking of actin requires at least two actin-binding sites, one per each 

filament. A classification of actin binding and cross-linking proteins is based on domain 

composition (Djinovic-Carugo et al. 2002). Proteins involved in F-actin cross-linking 
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generally fall into three subclasses (Gorlin et al. 1990). The first subclass has the simplest 

organization with two tandem ABDs on the same polypeptide chain (fimbrin, plastin); the 

second subclass (α-actinin, spectrin, dystrophin, plakin families, utrophin) form non-

covalent dimers via a coiled-coil called a spectrin repeat (Popowicz et al. 2006); the third 

subclass, which includes filamins, is characterized by a dimerisation of an antiparallel 

seven-stranded β- barrel adopting an Ig-like fold. 

 

The typical ABD has 250 residues and shares 20-60% of sequence identity with other 

ABDs in the family (e.g. filamin, spectrin, fimbrin, nesprin, and plectin). In ABD, three 

N-terminal α-helices form a triple helical bundle, the amino-terminal α-helix of which 

packs in a perpendicular orientation while a fourth carboxy-terminal long α-helix 

connects the two domains (Popowicz et al. 2006). From mutation studies, it has been 

identified that ABD family members have three potential actin-binding sites (ABS1, 2 

and 3). The first α-helix of CH2 domain (ABS3) contributes to F-actin binding. The last 

α-helix of CH1 domain (ABS2) which has conserved hydrophobic region is crucial for 

binding. The amino acids of actin that participate in binding are located between residues 

112-125 and 360-372. 

 

4.8.5. Actin-binding domain of filamin 
 
The actin-binding domain of filamin composed of two calponin homology (CH) domains: 

the amino- and carboxy-terminal CH1 and CH2 domains. Each CH domain consists of 

four main α-helices connected by long loops, and two or three shorter, less regular α-

helices. Three dominant alpha helices form a triple helical bundle, against which the 
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amino-terminal α-helix packs in a perpendicular orientation (van der Flier and 

Sonnenberg 2001). An example of actin-binding domain of filamin A is shown in figure 

9. 

 

Figure 9. A cartoon representation of filamin A actin-binding domain chain A. CH1 and 
CH2 domain connected by the linker region. ABS1 is shown in magenta, ABS2 in green 
and ABS3 in blue. The architecture of the domain is dominated by four α-helices (A, C, E 
and G) connected by long loops (modified from Ruskamo and Ylänne, 2009). 
 
 
The recent high-resolution X-ray crystal structures of the human filamin B wild type 

ABD with other mutant’s shows that they have compact monomeric conformation for the 

ABD with CH1 and CH2 domains in close contact. The filamin B ABD is 242 amino 

acids long comprising two calponin homology (CH) domains, designated CH1 and CH2, 

each approximately 100 amino acids (Sawyer et al. 2009). 
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4.8.6. Rod region 
 
The function of an actin-binding protein is dictated by the mechanochemical properties of 

its rod region. The actin-binding protein fimbrin is a monomer with multiple tandem 

repeats of the ABD. In fimbrin, the absence of rod region results in tight actin bundles 

(Goldsmith et al. 1997). Parallel and less dense formations of actin are induced by α-

actinin, antiparallel homo-dimer containing four rod domains versus none in fimbrin 

(Puius et al. 1998; Zaman and Kaazempur-Mofrad 2004). Even more diverse are the 

filamins, containing a longer rod region in addition to the ABD in each subunit of the 

antiparallel homo-dimer.  

 

4.8.7. Rod region of filamin 
 
 In filamin, the long rod region facilitates binding and stabilizing of actin into an 

orthogonal network of filaments. The human filamin rod domains consist of a β 

sandwich, which resembles the subtype C1 fold of the immunoglobulin family (Fucini et 

al. 1999). Human filamin consists of 24 rod domains composed of immunoglobulin Ig- 

like fold whereas Dictyostelium discoideum filamin (ddFLN) has six tandem repeats. The 

filamin repeats are interrupted by one or two flexible non-modular hinge regions one 

between 15 and 16 and other between 23 and 24 of Ig-like domains as shown in figure 7.  

 

4.8.8. Dimerisation of filamin 
 
Dimerisation is crucial for the actin cross-linking function of filamins and occurs through 

the most C-terminal domain. Based on the significant similarities in protein sequences it 
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was proposed that the dimerisation mode found in human filamin is common for all 

vertebrate filamins. It has been shown that the Ig-like domain 24 alone is sufficient for 

filamin dimerisation. The dimerization of filamin allows the formation of a V-shaped 

flexible structure. The crystal structure of human Filamin C Ig-like domain 23 along with 

small angle scattering (SAXS) study of Ig-like domain 23 and 24, shows that there is no 

significant involvement of Ig-like domain 23 in dimer formation (Sjekloca et al. 2007).  

 

4.8.9. Filamin isoforms 
 
Filamin in humans consists of three genes, (FLNA, FLNB, FLNC), which encode filamin 

A, B, and C, respectively (figure 10). FLNA and FLNB are expressed ubiquitously and 

FLNC is expressed in skeletal and cardiac muscles. Three filamin gene paralogues have 

been mapped on different chromosomes, FLNA is located on chromosome Xq28 

(Maestrini et al. 1993); FLNB on chromosome 3pl4.3 (Chakarova et al. 2000); and FLNC 

on chromosome 7 (Popowicz et al. 2006). The exon-intron structure of all three human 

filamin gene paralogues is highly conserved, but the gene organization does not correlate 

with the domain structure of the proteins (Xie et al. 1998).  

 

In human filamin, each isoform has a relative molecular mass of 280 kDa, consists of an 

amino-terminal actin binding domain (ABD) and 24 Ig-like domains. The three filamin 

proteins (filamin A, filamin B and filamin C) show 60-80% sequence identity along the 

entire molecule, and have divergence at the two hinge regions of the rod region. All 

human filamins has two unique long hinges positioned between repeats 15-16 (27 

residues) and 23-24 (35 residues) that are postulated to be flexible (van der Flier and 
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Sonnenberg 2001). However, only filamin C contains an 81 amino acid insertion in 

repeat 20, not present in filamin A or filamin B (Krakow et al. 2004). 

 

 

Figure 10. The architecture of human filamin isoforms. Indicated are the actin-binding 
domains (ABD) at the N-terminus; the Ig-like domains numbered from 1 to 24; the hinge-
1 (H1) and the hinge 2 (H2) regions. (modified from Stossel et al. 2001). 
 

4.8.10. Filamin functions 
 
Filamins have diverse functions: (i) organising the actin cytoskeleton; (ii) providing a 

link between extra cellular matrix, plasma membrane and actin cytoskeleton through 

interaction with a number of transmembrane receptors; (iii) serving as a platform for a 

variety of signaling molecules and thus playing an important role in signal transduction 

between the cell membrane and cell interior (Robertson 2005) (figure 11). Moreover, 

filamin mutations have been related to several human diseases affecting the brain, bone 

and cardiovascular system, as well as muscle fibers (Stossel et al. 2001; Tseng et al. 

2004).  
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Figure 11. Filamin biological functions (modified from van der Flier and Sonnenberg 
2001). 
 

(i) Role of filamin and its interaction with actin and actin organisation 

Filamin induces the formation of gelatinous actin, by cross-linking actin filaments into 

orthogonal networks. It is evident that filamin must dimerise but the mechanism of how 

filamin promotes actin filament branching is not completely understood (Calderwood et 

al. 2001). 

 

The organization of actin inside the cell depends on the intracellular ratio of filamin to 

actin and the formation of bundles or networks is dependent on the structure of filamin 

variants. Through in vitro experiment with recombinant filamin lacking hinge region 1, it 

is demonstrated that filamin forms linear stiffening and a consequent of breakage of the 

cross-linked actin structures at much lower stress (Gardel et al. 2006). 
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(ii) Role of filamin and its interaction with transmembrane proteins 

Filamins provide stabilization to cell membrane, maintain cell-cell and cell-matrix 

connections by association with transmembrane proteins such as β-integrins (Sampson et 

al. 2003), glycoprotein (GP)Ib-IX-V transmembrane complex (He et al. 2003), ion 

channels like Kir2.1 (Ohta et al. 1999), insulin receptor (Stossel et al. 2001), and small 

GTPases and related proteins like RalA, RhoA,Rac1 (Vadlamudi et al. 2002). Filamin 

plays an important role in transmembrane signaling, regulating cell adhesion and cell 

shape regulation through the association of integral membrane receptors with 

cytoskeleton. 

 

(iii) Role of filamin in signal transduction 

Filamin serves as a scaffold for many intercellular signaling molecules and is involved in 

the regulation of signaling molecules. Although filamins are linked to a number of 

signaling pathways, it is unclear how the signaling reactions affect filamin function (Sells 

et al. 1997). Filamin through interaction with p21-activated kinase (Pak21) (Sells et al. 

1999) results in the formation of ruffles, lamellipodia and filopodia (Ohta et al. 2006) and 

regulates cell  motility (Shifrin et al. 2009) which is indirectly involved in the regulation 

of actin cytoskeleton.  

 

4.8.11. Regulation of filamins 
 
Filamin functions are regulated at many levels by binding of phospholipids (Rosenberg et 

al. 1981), phosphorylation by serine/threonine kinase (Chen and Stracher 1989), and by 
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calcium binding (Ohta and Hartwig 1995). The phosphorylation and dephosphorylation 

process regulate the interaction of filamin with other cytoskeletal elements. 

 

The phoshphorylation of filamin by protein kinase A increases its resistance to calpain 

cleavage (Garcia et al. 2006); and phosphorylation by calcium /calmodulin-dependent 

protein kinase II (CaM kinase II) decreases its actin-binding affinity (Nakamura et al. 

2005). 

 

Dephosphorylation by calcineurin, a calcium/calmodulin dependent theronin/serine 

phosphatase, protects filamin in platelets from calpain degradation. In vivo, assembly and 

disassembly of the actin cytoskeleton in platelets is controlled by the intracellular 

concentration of free calcium. Recently, the first mechanism for the regulation of filamin 

interaction with F-actin has been proposed, providing an explanation for why a large part 

of cellular filamin stays free of F-actin in vivio (Nakamura et al. 2005). It involves direct 

interaction between filamin and calcium/calmodulin, which dissociates F-actin from 

filamin and inhibits its ability to crosslink actin filaments. 
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5. Methods 
 

5.1. Conformational disorder prediction 
 
Protein sequences were downloaded from the Disprot database (http://www.disprot.org/) 

release 3.3 (Sickmeier et al. 2007), which contains information about conformationally 

disordered proteins. The data, downloaded in August 2006, contain about 458 proteins. 

Each residue of these 458 proteins is labeled according to its conformational status: 

ordered, disordered, and unknown. 12 individual predictors were used (table 4) and each 

prediction method produces binary results: a residue can be predicted to be 

conformationally ordered or disordered. More details are available in section 8.1. 

 

5.2. Prediction of quaternary status of protein 
 
5.2.1. Datasets 

Protein sequences were downloaded from the UniprotKB database (Wu et al. 2006) 

according to their quaternary status (using the keywords monomer, homo-dimer, homo-

trimer, homo-tetramer, homo-pentamer, homo-hexamer, hetero-dimer, hetero-trimer, 

hetero-tetramer, hetero-pentamer or hetero-hexamer). The downloaded sequences contain 

about 11096 monomers, 43088 homo-oligomers and 13669 hetero-oligomers. Sequences 

containing non-standard residues were omitted, together with membrane proteins 

(identified by using the server http://www.cbs.dtu.dk/services/TMHMM/), and the 

sequence redundancy was reduced with the program cd-hit (40% maximal identity) (Li & 

Godzik, 2006), resulting in 1404 monomeric, 2982 homo-oligomeric and 1444 hetero-

oligomeric proteins. A total of 5830 protein chains were examined. Each protein 
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sequence was represented by the percentage of occurrence of each of the 20 natural 

amino acids. 

 

5.2.2. Parameterization of the protein dimension 

Not surprisingly, the amino acid composition depends on the dimension of the proteins 

(Carugo 2008d). Both the number of residues exposed to the solvent (which tend to be 

polar) and the number of residues buried within the protein interior (which tend to be 

apolar) increase if the total number of the residues increases. However, the protein 

surface increases less than the interior, just as the surface of a sphere increases less than 

the sphere volume if the radius of the sphere increases.  

 

Table 6. Number of protein chains within each of the 11 subgroups of protein 
dimensions. 
 
Range of number of 
residues 

Monomeric protein 
chains 

Homo-oligomeric 
protein chains 

Hetero-oligomeric 
protein chains 

0-100  111 127 95 
100-200 189 381 222 
200-300 232 576 208 
300-400 238 568 182 
400-500 196 457 176 
500-600 142 265 113 
600-700 92 158 103 
700-800 65 98 82 
800-900 40 63 66 
900-1000 35 55 45 
>1000 64 234 152 
 

For this reason, the data sets were divided into 11 subsets: one containing proteins with 

less than 100 residues, one with 100-200 residue proteins, one with 200-300 residue 

proteins, one with 300-400 residue proteins, one with 400-500 residue proteins, one with 
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500-600 proteins, one with 600-700 residue proteins, one with 700-800 residue proteins, 

one with 800-900 residue proteins, one with 900-1000 residue proteins, and the last one 

with proteins containing more than 1000 residues (table 6). 

 

5.2.3. Predictions 

We used several approaches provided by the freely available package WEKA 

(http://sourceforge.net/projects/weka; Witten & Frank, 2005). They include Naive Bayes, 

support vector machines, trees, meta and rules classifiers etc. 

 

5.2.4. Prediction validation 

All predictions were validated with a tenfold cross-validation. The reliability of the 

predictions was calculated with the following quantities: tp (true positives) is the number 

of correctly predicted hetero-oligomeric proteins, tn (true negatives) is the number of 

correctly predicted non-hetero-oligomeric proteins, fp (false positives) is the number of 

proteins that were predicted to be hetero-oligomeric although they are not, and fn (false 

negatives) is the number of hetero-oligomeric proteins that are predicted to be non-

hetero-oligomeric although they are. On the basis of these quantities, we computed the 

sensitivity, the specificity, the accuracy, the Mathews correlation and the probability 

excess, as described in section 4.4.5.4 

5.3. Prediction of metalloproteins 
 
5.3.1. Metal/non-metal datasets 

All the protein sequences were downloaded from the UniProt database (Wu et al. 2006) 

available at http://www.uniprot.org/. The downloaded sequences, annotated as metal-
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containing, were grouped into eight subsets. Each of the subsets, containing one of the 

metal species viz., calcium, cobalt, copper, iron, magnesium, manganese, nickel and zinc 

was considered to be metal- containing while all other entries were considered to be 

metal-free. Redundant sequences were removed with the cd-hit program (Li and Godzik 

2006) at the 50% level of percentage of identity, analogous by the UniRef 50 list 

available at the UniProt database. 

 

This resulted in eight data sets containing 186 calcium-containing proteins, 69 cobalt-

containing proteins, 215 copper-containing proteins, 315 iron-containing proteins, 961 

magnesium-containing proteins, 386 manganese-containing proteins, 74 nickel-

containing proteins and 1716 zinc-containing proteins. All proteins containing calcium, 

cobalt, copper, magnesium, manganese, nickel or zinc were then subtracted from the 

UniRef50 list, resulting in a collection of 1,640,922 non-metalloproteins. 

 

5.3.2. Selection of variables 

A Simplified amino acid alphabet of 18 characters was used (table 7).It is based on three 

independent aminoacid classifications, viz., (i) the conformational similarity proposed by 

Chakrabarti and Pal (Chakrabarti and Pal 2001) to describe the conformational similarity 

between the 20 amino acids based on torsion angles, which contains  seven clusters: 

[CMQLEKRA], [P], [ND], [G], [HWFY], [S] and [TIV]. 

(ii) The fold-dependent conservation, proposed by Murphy et al (Murphy et al. 2000) on 

the basis of the BLOSUM 50 matrix, that groups together on the basis of the possibility 
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of foldable structures and consists of the clusters: [P], [KR], [EDNQ], [ST], [AG], [H], 

[CILMV] and [YWF] and  

(iii) The hydrophobicity proposed by Rose et al. (Rose et al. 1985) which consists of the 

following groups: [CFILMVW],[AG],[PH],[EDRK] and [NQSTY].  

 

Table 7. The 18 variables, obtained by merging three simplified alphabets of amino 
acid residues, used to represent protein sequences. 
 

Variable Residues 
V1 
V2 
V3 
V4 
V5 
V6 
V7 
V8 
V9 
V10 
V11 
V12 
V13 
V14 
V15 
V16 
V17 
V18 

CMQLEKRA 
P 
ND 
G 
HWFY 
S 
TIV 
CFILMVW 
AG 
PH 
EDRK 
NQSTY 
FWY 
CILMV 
H 
ST 
EDNQ 
KR 

 

Some of the cluster [P] and [AG] which are present in more than one simplified alphabet 

were considered only once. These results in 18 variables and the proteins are represented 

with their percentage of observations.  
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5.3.3. Random forest predictions 

We used several machine learning methods available within the package WEKA 

(http://sourceforge.net/projects/weka/; Witten & Frank, 2005). The best results were 

obtained by using 'random forest trees'. A random forest is an ensemble of decision trees, 

built by random selection of subsets of the data and by using random subsets of the 

variables. 30 random trees were built in each prediction run and the final prediction was 

determined by the majority rule. 

 

5.3.4. Prediction validation 

All predictions were validated with a tenfold cross-validation. When the predictor was 

focused on the problem of distinguishing proteins containing a certain type of metal ion 

from proteins that do not contain any type of metal, three runs were performed, each time 

using non-superposing and balanced data sets. It is important that both sets contain the 

same number of proteins; otherwise, several figures of merit that are commonly used to 

monitor the prediction reliability would be seriously biased. 

 

The reliability of the predictions was monitored with the following quantities. If a protein 

of type 1 must be distinguished from a protein of type 2, a prediction was considered to 

be a true positive (tp) if type 1 was correctly predicted; it was considered to be a true 

negative (tn) if type 2 was correctly predicted; it was considered to be a false negative 

(fn) if a type 1 protein was predicted to be a type 2 protein; and it was considered to be a 

false positive (fp) if a type 2 protein was predicted to be a type 1 protein. Consequently, 
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the following figures of merit, the sensitivity, the specificity, the accuracy, the Mathews 

correlation and probability excess are computed as described in section 4.4.5.4 

5.4. Filamin bioinformatic characterization 
 
5.4.1. Dataset 

5.4.1.1. Filamin datasets of individual domains 

Human filamin (filamin A, filamin B and filamin C) sequences were downloaded from 

the UniProt database available at http://www.uniprot.org/. For each filamin, 26 sets were 

constructed for the CH1, CH2 and the Ig-like domains 1-24. Domain boundaries were 

taken directly from the UniProt annotations. 

 

5.4.1.2. Filamin datasets of large segments 

For each filamin (filamin A, filamin B and filamin C), 26 sets were constructed 

containing increasing segments by combining each individual domain like CH1-CH2, 

CH1-CH2-domain 1, and CH1-CH2-Ig-like domain 1- Ig-like domain 2 till CH1-CH2-Ig-

like domain 1... Ig-like domain 24. 

 

5.4.1.3. Filamin test set for quaternary status prediction 

For quaternary status prediction, individual domains containing 26 sets were represented 

by the percentage of occurrence of each of the 20 natural amino acids. 

 

5.4.1.4. Filamin test set for metal binding prediction 

For metal binding prediction, individual domains and large segments were represented 

with simplified amino acid alphabet as described in section 5.3.2 (see table 7). 
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5.4.2. Homology models of all the domains of filamin 

For conformational disorder prediction of filamin protein, homology models of all 

domains of filamin were generated using the Modeller software version 9v5 (Fiser and 

Sali 2003). Templates were chosen using similarity search which is available in the PDB 

(http://www.pdb.org/pdb/search/advSearch.do?st=SequenceQuery). The structure which 

has high sequence identity, less gap between target and the template sequence was 

selected (see table 8).  
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Table 8. Homology models of human filamin isoforms. The table shows the template taken from PDB and the crystallographic 
resolution and sequence identity (%) between query and template. The resolution is not indicated for the NMR structures. 
 

Domain Template PDB ID Resolution (Å) Sequence 
identity (%) 

 A B C A B C A B C A B C 
CH1 CH CH CH 2eyi 2eyi 2eyi 1.7 1.7 1.7 43.9 43.9 43.9 
CH2 CH CH CH 2eyi 2eyi 1wku 1.7 1.7 1.6 26.7 24.7 27.7 
Ig-like domain 1 F14_C F14_C F14_C 2d7m 2d7m 2d7m NA NA NA 31.3 32.3 36.3 
Ig-like domain 2 F14_C F14_C F14_C 2d7m 2d7m 2d7m NA NA NA 38.3 38.7 37.3 
Ig-like domain 3 F12_B F12_B F15_B 2dic 2dic 2dmb NA NA NA 38.5 36.0 37.1 
Ig-like domain 4 F9_B F9_B F9_B 2di9 2di9 2di9 NA NA NA 51.6 45.1 50.5 
Ig-like domain 5 F14_C F14_C F14_C 2d7m 2d7m 2d7m NA NA NA 41.2 38.1 41.2 
Ig-like domain 6 F13_B F13_C F14_C 2dj4 2dj4 2d7m NA NA NA 26.2 27.1 33.0 
Ig-like domain 7 F14_B F13_B F13_B 2e9j 2dj4 2dj4 NA NA NA 41.4 43.4 39.3 
Ig-like domain 8 F11_B F22_B F12_B 2dib 2eeb 2dic NA NA NA 27.0 27.0 28.1 
Ig-like domain 9 F9_B F9_B F9_B 2di9 2di9 2di9 NA NA NA 75.2 100 82.7 
Ig-like domain 10 F10_B F10_B F10_B 2dia 2dia 2dia NA NA NA 51.5 96.8 63.1 
Ig-like domain 11 F11_B F11_B F11_B 2dib 2dib 2dib NA NA NA 65.0 100 60.0 
Ig-like domain 12 F12_B F12_B F12_B 2dic 2dic 2dic NA NA NA 65.6 97.8 69.8 
Ig-like domain 13 F13_B F13_B F13_B 2dj4 2dj4 2dj4 NA NA NA 68.0 96.8 71.8 
Ig-like domain 14 F14_C F14_B F14_C 2d7m 2e9j 2d7m NA NA NA 76.2 100 95.8 
Ig-like domain 15 F15_B F15_B F15_B 2dmb 2dmb 2dmb NA NA NA 66.6 100 59.5 
Ig-like domain 16 F16_C F16_B F16_C 2d7n 2ee9 2d7o NA NA NA 64.3 91.9 81.1 
Ig-like domain 17 F17_A F17_B F17_C 2aav 2eea 2dmc NA NA NA 97.7 100 97.8 
Ig-like domain 18 F18_B F18_B F18_B 2dmc 2dmc 2dmc NA NA NA 61.7 100 64.3 
Ig-like domain 19 F19_B F19_B F19_B 2di8 2di8 2di8 NA NA NA 71.1 98.9 68.8 
Ig-like domain 20 F20_B F20_B F20_B 2dlg 2e9i 2dlg NA NA NA 60.6 97.8 69.8 
Ig-like domain 21 F21_B F21_B F21_B 2ee6 2ee6 2ee6 NA NA NA 82.7 98.9 84.9 
Ig-like domain 22 F22_B F22_B F22_C 2eeb 2eeb 2d7p NA NA NA 79.7 97.8 98.9 
Ig-like domain 23 F23_B F23_B F23_C 2eec 2eec 2nqc NA NA NA 75.2 100 97.8 
Ig-like domain 24 F24_B F24_B F24_C 2eed 2eed 1vo5 NA NA 1.4 68.4 97.8 96.8 



 

 59

6. Results and Discussion 
 

6.1. Prediction of conformational disorder 
 
Here we summarize a work that was published (Kumar and Carugo 2008). The copy of 

the publication is attached (section 8.1). It describes a consensus approach based on 

various prediction methods, the performance of which is significantly better than that of 

each individual predictor. The only necessary input is the amino acid sequence of the 

protein. Each prediction algorithm, which is freely available must be used separately 

(table 4) and its results (p_indi), which is +1/-1 for a residue that is predicted to be 

disordered/ordered, must be inserted into equation (1), together with the coefficients (Xi) 

reported in table 9 which were optimized by least-square minimization.  

 

Table 9. Optimal values of the coefficients Xi to be used to compute the p_cons 
values.  
 

Method X 
DISEMBL_hot_loops -0.101 
DISEMBL_loops 0.377 
DISEMBL_remark465 -0.172 
DISOPRED 0.048 
DRIPRED 0.096 
FOLDINDEX 0.262 
GLOBPLOT_B -0.199 
GLOBPLOR_r 0.162 
IUPRED_L 0.041 
IUPRED_S -0.126 
PRELINK 0.078 
RONN 0.141 

 

If the value of p_cons is positive, the residue is predicted to be disordered and if it 

smaller than zero, the residue is predicted to be ordered.  
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12

p_cons = . _1 i iX p indii
∑
= ---- (1) 

 
 
This can easily be done for each residue and, as a consequence, it is possible to reach a 

global picture of the conformational status of the protein. 

 

Table 10. Performance of the new consensus prediction method compared to the 
individual prediction techniques. 
 

Method Sensitivity Specificity Accuracy Probability
 excess 

CONSENSUS 0.833 0.968 0.814 0.801 
DISEMBL_HOT_LOOPS 0.481 0.974 0.494 0.455 
DISEMBL_LOOPS 0.761 0.966 0.747 0.727 
DISEMBL_REMARK465 0.409 0.977 0.428 0.385 
DISOPRED 0.568 0.994 0.586 0.562 
DRIPRED 0.640 0.975 0.642 0.615 
FOLDINDEX 0.688 0.981 0.691 0.669 
GLOBPLOT_B 0.421 0.990 0.445 0.410 
GLOBPLOR_R 0.589 0.979 0.597 0.568 
IUPRED_L 0.609 0.993 0.624 0.602 
IUPRED_S 0.529 0.996 0.550 0.524 
PRELINK 0.512 0.970 0.521 0.483 
RONN 0.634 0.985 0.642 0.618 

 

This new prediction method, which is essentially a weighted consensus approach, 

performs quite well, better than any individual prediction algorithm, as shown in table 10. 

It can be seen that this consensus method of prediction is very accurate, with all the 

figures of merit (sensitivity-83%, specificity-96%, accuracy-81%, probability excess-

80%) larger than 80%. This is impossible by using individual predictors. 
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6.2. Prediction of quaternary status of proteins 
 
Amino acid compositions have been widely used in a number of computational methods. 

In the present work, it was used to predict the quaternary status of protein chains, which 

can be monomeric, homo-oligomeric or hetero-oligomeric. It is crucial to be able to 

predict if a protein chain is a part of a permanent and obligate hetero-oligomeric 

assembly, since the structure of this chain, is unsuitable for structure determination. We 

have shown that discrimination of hetero-oligomeric from monomeric and homo-

oligomeric proteins by using machine learning methods with high reliability on the basis 

of amino acid sequences.  

 

6.2.1. Selection of the best machine learning algorithm 

To determine the best machine learning algorithm for prediction of protein quaternary 

status, we have studied several classifiers which are available in the WEKA software 

package. We compared them by using their default parameters with the dataset of 11 

subgroups (table 6). The performance of the algorithms was measured using sensitivity, 

specificity, accuracy, Matthews correlation coefficients (MCC) in a 10-fold cross-

validation analysis. Based on the accuracy, the best-performing algorithm was the 

Sequential Minimal Optimization (SMO) algorithm which is a support vector Machine 

(SVM). The SVM is a learning machine for two-group classifications problems that 

transforms the attribute space into multidimensional feature space using a kernel function 

to separate dataset instances by an optimal hyper plane. SMO implements the sequential 

minimal optimization algorithm for training a support vector classifier, using polynomial 

kernel. 
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Table 11. Prediction performance of the classifiers in discriminating hetero-
oligomeric from monomeric and homo-oligomeric proteins. 
 

Classifier Sensitivity Specificity Accuracy Matthews 
C.C 

Probability 
excess 

Function- 
SMO 

0.926 0.768 0.741 0.147 0.694 

Trees–REP 
tree 

0.962 0.751 0.739 0.054 0.713 

Trees – J48 0.883 0.782 0.739 0.154 0.664 
 

In discriminating hetero-oligomers from monomers and homo-oligomers, SMO classifier 

achieved an overall predictive accuracy of 74.1% (table 11). The next two top algorithms 

are Trees-REP tree and Trees-J48. Decision trees classify instances by sorting them down 

the tree from the root node to some leaf node, which provides the classification of the 

instance. Each node in the tree specifies a test of some attribute of the instance, and each 

branch descending from that node corresponds to one of the possible values for this 

attribute. All of these algorithms contain automatic attribute selection for optimal 

performance. The performance of the decision trees classifier such as Trees-Rep and 

Trees-J48 in discriminating hetero-oligomers from monomers and homo-oligomers, 

resulted with predictive accuracy close to 73.9% (table 11). It is wise to consider several 

figures of merit since they monitor different aspects of the prediction reliability. From the 

table 11, it is observed that the function-SMO algorithm resulted in high accuracy while 

the other algorithm Trees-REP tree resulted in a slightly higher probability excess and in 

a lower Matthews correlation coefficient. Also, Tree-J48 algorithm resulted in 

comparable values of Matthews correlation coefficient and in lower values of probability 

excess. Despite the slight variations in the figures of merit, in this study, it is shown that 
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discrimination of hetero-oligomeric protein from monomeric and homo-oligomeric 

proteins is possible with high reliability by employing machine learning methods. 

 

6.2.2. The reliability of prediction among 11 subgroups of protein chains 

The reliability of prediction among 11 subgroups of proteins was only slightly variable 

(figure 12). The accuracy of discrimination of hetero-oligomeric proteins from 

monomeric and homo-oligomeric proteins ranged from 74% (proteins with 100-200 

residues) to 80% (proteins with 500-600 residues). The maximum prediction accuracy 

(above 80%) is between the proteins with 300-400 and 500-600 residues. The variations 

in performance among the 11 subgroups is not surprising given the relative dearth of 

Uniprot entries that have a proper annotation of the quaternary status and will probably 

decrease in future, when database dimensions increase and their annotations improve.  

 

6.2.3. Performance comparison to other prediction method 

We have compared our classifier with other prediction method which was published a 

few years back (Carugo et.al.2007c); it uses Mahalanobis distance in discrimination of 

hetero-oligomeric from monomeric and homo-oligomeric proteins. The performance 

reported in the published paper in discriminating between hetero-oligmeric and non-

hetero-oligomeric proteins is 78% accuracy, Matthews correlation coefficient is 0.480 

and probability excess is 0.517. In comparison, our classifier achieved slightly lesser 

accuracy about 74%, but higher value in probability excess (0.694). Despite the different 

methods used, our classifier performed like the other predictor. 
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Figure 12. Prediction reliability among 11 subgroups of protein chains of different 
dimension (function SMO classifier). 
 

6.3 Prediction of metalloprotein 
 
The use of a series of simplified amino acid alphabets (table 7) allows one to identify 

which proteins require metal ions and which type of metal is up taken. It can be seen that 

metalloproteins can be identified, though the accuracy of these predictions is rather 

variable ranging from 69% for zinc to 90% for nickel (table 12).  

  

Moreover, prediction performance was studied by feature selection method by removing 

one variable at a time and maintaining the highest value in performance indices. 

Measurements are removed until there is an unacceptable degradation in system 

performance (Guyon & Gunn, 2006). Feature selection eliminates noisy and redundant 
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features, the learning process is then accelerated and the accuracy of learning algorithms 

may be improved.  

 

To select an optimal subset of variables, we first analyzed how individual attributes from 

the initial set of 18 variables, contributed to predictive accuracy. For feature selection, we 

employed the wrapper approach as it uses the learning algorithm to test all existing 

feature subsets. Wrapper methods search through the space of feature subsets and 

calculate the estimated accuracy of a single learning algorithm for each feature that can 

be added to or removed from the feature subset. 

 

We used a backward strategy (by starting with the full set and deleting attributes one at a 

time) for searching the feature space. For e.g. cobalt metal binding protein can be 

discriminated from non-metal ions with all 18 variables with the accuracy of 85% (see 

figure 13). In can be seen that, on removing variable v14 (CILMV) from the subset, the 

accuracy of the predictor improves from 85% to 87%. After removing of variables v8 

(CFILMVW), v3 (ND), v17 (EDNQ), v10 (PH), v16 (ST) the accuracy values are in the 

range from 86% to 87%. There is drastic decrease in accuracy of the classifier by 

removing the variable v12 (NQSTY) to 84%. No further reduction of the set was 

possible, as the performance of random forest classifier dropped if any further attributes 

was eliminated. 

 

It can be seen that accuracy of prediction of metal binding proteins can be improved (for 

e.g. calcium from 74% to 77%, cobalt from 83% to 85%, nickel from 69% to 77%) by 
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elimination of certain noisy features, up to certain limit and further improvement is then 

impossible (table 12). 

 
Table 12. Performance of metalloprotein prediction against proteins that lack metal 
ions. Separate tables are provided for different types of metal cations. 
 
Calcium 
 
Variable 
removed 

Avg.sensi Avg.speci Avg.preci Avg.accur Avg.mcc Avg.pexcess

None 0.769 0.738 0.746 0.754 0.507 0.507 
P 0.783 0.758 0.763 0.770 0.541 0.541 
EDNQ 0.788 0.751 0.760 0.770 0.541 0.541 
EDRK 0.796 0.758 0.767 0.777 0.554 0.553 
PH 0.785 0.756 0.762 0.770 0.541 0.541 
CILMV 0.801 0.754 0.765 0.777 0.556 0.555 
AG 0.790 0.749 0.759 0.770 0.539 0.539 
CFILMVW 0.789 0.765 0.771 0.777 0.554 0.553 
NQSTY 0.785 0.767 0.771 0.776 0.552 0.551 
CMQLEKRA 0.780 0.765 0.769 0.772 0.545 0.544 
 

Cobalt 

Variable 
removed 

Avg.sensi Avg.speci Avg.preci Avg.accur Avg.mcc Avg.pexcess 

None 0.884 0.823 0.832 0.853 0.708 0.707 
CILMV 0.903 0.842 0.851 0.872 0.747 0.745 
CFILMVW 0.899 0.837 0.847 0.868 0.737 0.736 
ND 0.894 0.828 0.838 0.861 0.724 0.722 
EDNQ 0.884 0.833 0.839 0.858 0.717 0.717 
PH 0.894 0.847 0.853 0.87 0.741 0.740 
ST 0.903 0.837 0.846 0.87 0.742 0.741 
NQSTY 0.860 0.833 0.837 0.846 0.693 0.692 
 

 

 

 

 



 

 67

Copper 

Variable 
removed 

Avg.sensi Avg.speci Avg.preci Avg.accur Avg.mcc Avg.pexcess

None 0.746 0.815 0.802 0.781 0.563 0.561 
AG 0.762 0.809 0.799 0.786 0.571 0.571 
CMQLEKRA 0.794 0.804 0.802 0.799 0.599 0.599 
NQSTY 0.779 0.814 0.808 0.796 0.593 0.592 
EDNQ 0.796 0.797 0.796 0.796 0.592 0.592 
CFILMVW 0.785 0.803 0.799 0.794 0.588 0.588 
TIV 0.785 0.798 0.795 0.792 0.583 0.583 
PH 0.774 0.801 0.796 0.788 0.576 0.576 
 

Iron 

Variable 
removed 

Avg.sensi Avg.speci Avg.preci Avg.accur Avg.mcc Avg.pexcess 

None 0.772 0.74 0.747 0.756 0.512 0.512 
NQSTY 0.778 0.731 0.742 0.754 0.509 0.509 
S 0.786 0.727 0.741 0.757 0.514 0.513 
PH 0.786 0.724 0.739 0.755 0.511 0.510 
CMQLEKRA 0.785 0.72 0.736 0.753 0.507 0.506 
CFILMVW 0.787 0.734 0.749 0.761 0.523 0.522 
AG 0.790 0.720 0.737 0.755 0.511 0.510 
TIV 0.780 0.725 0.740 0.753 0.507 0.506 
HWFY 0.790 0.735 0.748 0.762 0.525 0.525 
 

Magnesium 

Variable 
removed 

Avg.sensi Avg.speci Avg.preci Avg.accur Avg.mcc Avg.pexcess 

None 0.766 0.714 0.725 0.740 0.481 0.480 
ST 0.779 0.714 0.731 0.746 0.494 0.493 
ND 0.774 0.720 0.734 0.747 0.494 0.493 
NQSTY 0.767 0.717 0.730 0.742 0.485 0.484 
S 0.772 0.711 0.727 0.742 0.484 0.483 
HWFY 0.770 0.716 0.730 0.743 0.487 0.486 
PH 0.777 0.709 0.727 0.743 0.487 0.486 
CMQLEKRA 0.775 0.708 0.726 0.741 0.484 0.483 
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Manganese 

Variable 
removed 

Avg.sensi Avg.speci Avg.preci Avg.accur Avg.mcc Avg.pexcess 

None 0.729 0.647 0.674 0.688 0.378 0.377 
FWY 0.731 0.717 0.746 0.734 0.474 0.474 
EDNQ 0.741 0.656 0.682 0.698 0.398 0.396 
CMQLEKRA 0.750 0.647 0.679 0.698 0.399 0.397 
AG 0.750 0.643 0.677 0.697 0.396 0.394 
S 0.739 0.660 0.684 0.700 0.400 0.399 
 

Nickel 

Variable 
removed 

Avg.sensi Avg.speci Avg.preci Avg.accur Avg.mcc Avg.pexcess 

None 0.945 0.869 0.877 0.907 0.817 0.814 
EDRK 0.950 0.887 0.893 0.918 0.838 0.837 
G 0.931 0.892 0.895 0.917 0.824 0.823 
NQSTY 0.923 0.887 0.890 0.905 0.810 0.810 
ST 0.941 0.878 0.884 0.909 0.821 0.819 
EDNQ 0.936 0.865 0.872 0.900 0.803 0.801 
FWY 0.918 0.860 0.867 0.889 0.780 0.778 
HWFY 0.931 0.865 0.872 0.898 0.800 0.800 
TIV 0.927 0.869 0.875 0.898 0.797 0.796 
 

Zinc 

Variable 
removed 

Avg.sensi Avg.speci Avg.preci Avg.accur Avg.mcc Avg.pexcess 

None 0.740 0.640 0.672 0.690 0.382 0.380 
HWFY 0.751 0.638 0.675 0.695 0.391 0.389 
CMQLEKRA 0.750 0.636 0.673 0.692 0.386 0.384 
AG 0.747 0.638 0.673 0.693 0.388 0.385 
ST 0.743 0.644 0.676 0.693 0.389 0.387 
EDNQ 0.743 0.636 0.671 0.689 0.381 0.379 
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Figure 13. The performance graph of the Random forest classifier using feature selection 
(10-fold cross-validation). 
 

According to this backward strategy of feature selection it can be observed that the 

prediction performance can be slightly improved. Some common variables rejected are 

v14 (CILMV) in calcium and cobalt, v8 (CFILMVW) in copper and iron. 

 

6.3 Filamin bioinformatic characteriztion 
 
6.3.1. Conformational disorder prediction 

It is commonly assumed that a protein must attain a stable, folded conformation in order 

to carry out its specific biological function. However, it was recently shown that several 

proteins do not assume a well defined and stable three-dimensional structure but are 

natively unfolded. The techniques for predicting conformational disorder are extremely 



 

 70

important in structural biology, where they are becoming routine filters in the pipeline of 

finding suitable targets to be analyzed. 

 

The prediction of conformational disorder for individual domains of filamin was done 

with the  consensus method (Kumar and Carugo 2008) summarized in section 6.1. 

Moreover the predicted disordered residues were mapped on the homology models of 

filamin domains. Different segments in each domain were numbered according to the 

schemes as shown in the figure 14. The topology diagram of filamin isoforms of CH 

domain consists of four main α-helices (1, 2, 3, 4) connected by loop regions (0-1, 1-2, 2-

3, 3-4) that might contain two or three shorter helices. Three dominant helices form a 

parallel bundle against which N-terminal helix packs at a right angle. Similarly the 

topology diagram of Ig-like domain presents an immunoglobulin-like fold made up of 

seven β-strands organized in two beta sheets giving a β-sandwich. The first β -sheet 

consists of strands 1, 2, 5 and 6. The second β -sheet consists of strands 3, 4, 7 and 8. 

Only in some of filamin isoforms strand 4 is present. The loops connecting different beta-

strand are 0-1, 1-2, 2-3, 3-4, 4-5, 5-6, 6-7 and 8-7. 

 

It can be seen that disordered residues were predicted for CH1 in the loop region 2-3 and 

for CH2 domain between the helix 2 and loop 3-4 and for Ig-like domains of all three 

human filamin isoforms mostly in the loop region (mostly in the loop between 1 and 2, 

and between 3 and 4). Moreover, the disordered residues are more often predicted at the 

N-terminus than at the C-terminus of the filamin protein (see table 14). For e.g. as shown 

in figure 15, predicted disordered residues were marked on homology models of Ig-like 



 

 71

domain 3.From the topology diagram, we can infer that disordered residues tend to be in 

the loop region (between loop 1 and loop 2) and at the N-terminus. 

 

Among filamin protein, Ig-like domain 15 of filamin A and B are predicted to be ordered, 

whereas Ig-like domain 15 of filamin C is predicted to be disordered. Also Ig-like domain 

24 of filamin A and C predicted to be completely ordered, whereas Ig-like domain 24 of 

filamin B is predicted to be partially disordered (see table 13). The overall fraction of 

disordered residues predicted in filamin domain is in range from 2% to 20%, in line with 

what is commonly observed in globular proteins (see section 4.5.8). 
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(i) 

 

(ii) 

Figure 14. (i) Toplogy diagram of the CH domain. α-helices (1, 2, 3, 4) connected by 
loop regions (0-1, 1-2, 2-3, 3-4). Three helices (2, 3, and 4) form a parallel bundle against 
which N-terminal helix (1) packs at a right angle. (ii) Topology diagram of the Ig-like 
domain. β-strands are organized in two beta sheets giving a β-sandwich fold. The first β -
sheet consists of strands 1, 2, 5 and 6. The second β -sheet consists of strands 3, 4, 7 and 
8. Strand 4 is present only in some domains. The loops connecting different beta-strands 
are 0-1, 1-2, 2-3, 3-4, 4-5, 5-6, 6-7 and 8-7. 
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Figure 15. Disordered residues mapped on the homology models of Ig-like domain 3 of 
the three filamin isoforms. Blue regions indicate ordered residues, while disordered 
moieties are indicated in red. Strand 4 is not observed in this domain and is indicated in 
grey. 
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Table 13. Prediction of conformationally disordered residues mapped on the 
homology models. CH1_A, CH1_B, CH1_C, CH2_A, CH2_B and CH2_C are the 
CH domains (1 and 2) of the three filamin isoforms (A, B, and C). Within each CH 
domain there are four helices (1, 2, 3, and 4) and the loops between them (0-1, 1-2, 2-
3, and 3-4). The 24 Ig-like domains are indicated as R1A, …, R24C. Each of them is 
a β-sandwich of two β-sheets. The eight β-strands are numbered from 1 to 8 and the 
loops between them are indicated as 0-1, 1-2, 2-3, 3-4, 4-5, 5-6, 6-7 and 8-7. See 
Figure 14 for details about the topology of these structural domains. 
 

Domain 01 1 12 2 23 3 34 4
Ch1_A     X    

Ch1_B     X    
Ch1_C         
Ch2_A    X X X   
Ch2_B    X X X X  
Ch2_C    -  X X - 

 

Domain 01 1 12 2 23 3 34 4 45 5 56 6 67 7 78 8 89
R1A   X    X -          
R1B   X X X X X -          
R1C   X     -          
R2A   X     -  - X       
R2B        -          
R2C   X     -  -  X      
R3A X X X  X   -          
R3B X X X    X -          
R3C X X  X    -          
R4A       X -   X X X     
R4B       X -   X X X X X   
R4C        -   X X X X X   
R5A X  X   X X -          
R5B   X     -          
R5C        -          
R6A      X X -          
R6B   X  X X X X  -        
R6C   X    X -          
R7A   X X    -      X X   
R7B   X X X X X -          
R7C   X     -          
R8A       X - X X X       
R8B                  
R8C   X     -  X X       



 

 75

R9A   X  X   -          
R9B   X   X  -   X       
R9C   X  X X  -          
R10A                  
R10B   X   X            
R10C                  
R11A       X -  X X X X X X   
R11B     X  X -          
R11C   X    X -          
R12A     X   -          
R12B     X X X -   X       
R12C   X               
R13A   X     -          
R13B   X     - X X X X X     
R13C  - X    X -  X X       
R14A   X          X     
R14B   X     -     X X X   
R14C   X     -     X X X   
R15A  -      -          
R15B  -      -          
R15C  -    X X -          
R16A  -         X X      
R16B  -                
R16C  -      -   X X X X X   
R17A        -  - X       
R17B        -  -        
R17C   X     -   X       
R18A   -   X X -          
R18B   -    X -          
R18C   -    X -          
R19A     X X X -    X      
R19B     X   -          
R19C        -          
R20A  -   X             
R20B  -   X  X X          
R20C X X X - X    X         
R21A        -   X X X X X   
R21B     X  X -   X X X X X   
R21C        -   X X X X X   
R22A                  
R22B   X    X -  X        
R22C  -      -  -        
R23A        -          
R23B      X  -          
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R23C   X     -          
R24A        -          
R24B       X -  X        
R24C        -          
X – Disordered residues predicted 
- Not present 
R1A,B,C-R24A,B,C-Filamin Ig-like domain 1-24 
 

Table 14. Frequency of occurrence of conformational disorder in the 24 segments of 
the Ig-like domains of human filamin (percentage). 
 

Segment Filamin Isoforms 

 All A B C 
N-terminus 7 8 4 8 
Strand 1 6 5 5 10 
Loop 1-2 45 35 43 57 
Strand 2 6 4 8 4 
Loop 2-3 21 21 33 8 
Strand 3 18 17 29 8 
Loop 3-4 35 33 50 21 
Strand 4 15 0 40 0 
Loop 4-5 4 4 4 4 
Strand 5 11 9 14 9 
Loop 5-6 25 29 21 25 
Strand 6 17 21 12 17 
Loop 6-7 17 17 17 17 
Strand 7 14 12 12 17 
Loop 7-8 14 12 12 17 
Strand 8 0 0 0 0 
C-terminus 0 0 0 0 
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6.3.1.1. Conformational disorder in the experimental filamin PDB entries 

We studied the conformation disorder status in experimentally solved structures which 

are deposited in the PDB. We inferred the conformational disordered status from the 

missing residues in the REMARK 465 entries. In filamin A Ig-like domain 17 along with 

GPIB alpha cytoplasmic domain complex (PDB ID: 2BP3), the disordered residues is in 

the loop 0-1 and in the loop 8-9. In filamin A Ig-like domain 21 complexed with MIG 

FILIN peptide (PDB ID: 2WOP), the conformation disordered is in the loop 0-1, loop 5-6 

and loop 8-9. In filamin C Ig-like domain 23 (PDB ID: 2NOC), the conformational 

disordered residues is in the loop 0-1. The conformational disorder residues are only 

observed either in the N-terminus (loop 0-1) or at the C-terminus (loop 8-9) of Ig-like 

domain of human filamin. Despite the paucity of the data, they agree quite well with the 

predictions described above. 

6.3.2. Quaternary status prediction of filamin protein 
 
A set of protein chains containing monomeric, homo-oligomeric and hetero-oligomeric 

serve as training set (summarized in section 5.2.2). The 26 individual filamin domains are 

represented with their amino acid composition. As summarized in section 6.2.1, we tried 

several learning schemes on the training data and used a 10-fold cross validation to select 

the best performing algorithm. The classifier function-SMO within the WEKA package 

(http://sourceforge.net/projects/weka/) was selected. The quaternary status of the filamin 

A, filamin B, and filamin C of domains is predicted against the three types of learning 

sets, one with proteins containing less than 100 residues, one with 100-200 residue 

proteins, and the third with 200-300 proteins. 
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According to the expectation, all isoforms of filamin were predicted to be systematically 

homo-oligomeric, with very few expectations localized around the Ig-like domain 10-11 

of filamin A and 19-20 of filamin B, which show a modest tendency to hetero-

oligomerization. 

6.3.3. Metal binding prediction of filamin protein 
 
Predictions were done by using the random forest machine learning method, using the 

freely available package WEKA (http://sourceforge.net/projects/weka/). Learning sets 

and queries were prepared as described in section 5.3. Predictions were done on single 

filamin domains and on increasingly longer constructs by including, one by one, 

successive domains. 

 

6.3.3.1. Metal binding prediction on individual filamin domains 

It is observed that copper ion is predicted to be suitable to bind many domains of the 

filamin protein followed by cobalt ion which show a more modest tendency to be 

complexed by filamin domains. The least occurring metal ions are nickel, manganese and 

magnesium (table 21). 

 

In filamin A the CH1 domain and Ig-like domain 24 have least metal presence. Metal 

affinity is predicted to be higher in Ig-like domain 15 followed by Ig-like domain 5, Ig-

like domain 6 and Ig-like domain 7. In all the domains of filamin A, the most predicted 

metal ions are copper, cobalt, calcium, and zinc ion (table 15). 
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In filamin B, Ig-like domain 13, and Ig-like domain 15 show the absence of metal ion. 

The least presence of metal ion is predicted to be in CH1 domain, CH2 domain and Ig-

like domain 24. The major occurrence of metal ion is predicted among Ig-like domain 2, 

Ig-like domain 6, Ig-like domain 11 and Ig-like domain 21.Among all the domains, the 

most predicted metal ions are copper, iron, cobalt, calcium and zinc and manganese, 

magnesium and nickel are the least predicted (table 16). 

 

In filamin C, the CH2 domain, Ig-like domain 3, Ig-like domain 8 shows the absence of 

metal ion. The major occurrence of metal ion is predicted among the domains Ig-like 

domain 1, Ig-like domain 2. The least occurrence of metal ion is predicted among the 

domains CH1 domain, Ig-like domain 18, Ig-like domain 19 and Ig-like domain 24. 

Among all the domains, the most predicted metal ions are copper, cobalt, calcium and 

iron and the least predicted metal ions are nickel, magnesium, manganese and zinc (table 

17). 

 

6.3.3.2. Metal binding prediction on large filamin segments 

In large segments of filamin protein, cobalt ion is the most frequently cation is predicted 

to be complexed by the protein followed by copper ion. The least occurring metal ions 

are magnesium, nickel and zinc (table 22). 

 

In filamin A, the most frequently predicted cations are copper and cobalt followed by 

iron and calcium. The least frequently predicted metal ions are manganese and zinc. The 

metal ions nickel and magnesium is completely absent in predictions. The large segments 
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like CH1-CH2-R1-R18, CH1-CH2-R1-R19 are predicted to contain more metal ions and 

least metal occurrence is predicted in the segments CH1-CH2, CH1-CH2-R1. The metal 

ions calcium, cobalt and copper are dominant in segments CH1-CH2-R1-R16 to CH1-

CH2-R1-R24 (table 18).  

 

In filamin B, the most frequently predicted metal ions are copper, calcium, and iron and 

the least frequently predicted metal ions are nickel and zinc. The magnesium ion is 

predicted to be completely absent in all segments. Between the large segments more ions 

are predicted in CH1-CH1, CH1-CH2-R1 and CH1-CH2-R1-R2 and less metal ions are 

predicted in CH1-CH2-R1-R20 and CH1-CH2-R1-R21. It is also observed that 

occurrence of metal ion is predicted to decrease as the segments gets larger (table 19).  

 

In filamin C, cobalt and copper ions are frequently predicted and the least frequently 

predicted metal ions are magnesium, iron, and zinc. The cobalt ion is predicted in all the 

segments except in the segment CH1-CH2. The copper ion is dominant starting from the 

segment CH1-CH2-R1-R5 to CH1-CH2-R1-R24. Between the segments, more metal ions 

are predicted for the segment CH1-CH2 to CH1-CH2-R1-R8 and the least occurrence 

metal ions is predicted in CH1-CH2-R1-R9. The presence of metal ions like magnesium, 

manganese, nickel and zinc are predicted only between segments CH1-CH2 to the 

segment CH1-CH2-R1-R11. From the segments CH1-CH2-R1-R15 to CH1-CH2-R1-

R24 metal ions like cobalt, copper and iron are dominant (table 20). 
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Table 15. Metal binding prediction in individual domains of filamin A. CH1 and 
CH2 represents the CH domains. R1, R2...R23, R24 represent the Ig-like domains. 
In this table, 'M' indicated that the metal ion is predicted to be present and the sign 
'-' indicates the absence of metal ion. 
 

 Ca Co Cu Fe Mg Mn Ni Zn 
CH1 - - - - - - M - 

CH2 M - M - - -  - 

R1 - M - - - - M - 

R2 - - M - - - - - 

R3 - - - - - - - - 

R4 - M - - M M - M 

R5 - M M - - - - M 

R6 M M M - - - - - 

R7 - M M - - - - M 

R8 - M - - - - - M 

R9 - - M - - - - - 

R10 M - M - - - - - 

R11 M - M - - - - - 

R12 - - M - - - - M 

R13 - - M - - M - - 

R14 - - M - - - - - 

R15 - M M - M M - - 

R16 M M M - - - - - 

R17 M - M - - - - - 

R18 - M - - - - - - 

R19 M - M - - - - - 

R20 - - - - - - - - 

R21 - M - - - - - M 

R22 - - - - - - - - 

R23 M - M - - - - - 

R24 - M - - - - - - 
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Table 16. Metal binding prediction in individual domains of filamin B. CH1 and 
CH2 represents the CH domains. R1, R2...R23, R24 represent the Ig-like domains. 
In this table, 'M' indicated that the metal ion is predicted to be present and the sign 
'-' indicates the absence of metal ion. 
 

  Ca Co Cu Fe Mg Mn Ni Zn 
CH1 - - - - - - M - 

CH2 - - - M - - - - 

R1 - M - - - - - M 

R2 M - M M - - M - 

R3 - - M - - - - M 

R4 M - M M - - - - 

R5 M M M - - - - - 

R6 M M M M - M - - 

R7 M - M - - - - M 

R8 - M M - M - - - 

R9 - - M - - - - - 

R10 - - M - - - - M 

R11 M - M M - M - M 

R12 - - M - - - - M 

R13 - - - - - - - - 

R14 M - M - - - - - 

R15 - - - - - - - - 

R16 - - M M - - - M 

R17 M - M - - - - - 

R18 - - M - - - - - 

R19 - - M - - - - M 

R20 - M M - - M - - 

R21 - - - M - - - M 

R22 - M M - - - - - 

R23 - - M - - - - - 

R24 - M - - - - - - 
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Table 17. Metal binding prediction in individual domains of filamin C. CH1 and 
CH2 represents the CH domains. R1, R2...R23, R24 represent the Ig-like domains. 
In this table, 'M' indicated that the metal ion is predicted to be present and the sign 
'-' indicates the absence of metal ion. 
 

  Ca Co Cu Fe Mg Mn Ni Zn 
CH1 - - - - - - M - 

CH2 - - - - - - - - 

R1 - M M M M - M - 

R2 - M M M - - - - 

R3 - - - - - - - - 

R4 - M M M - M - M 

R5 - M - - - - - M 

R6 M M M - - - - M 

R7 M M M - - - - - 

R8 - - - - - - - - 

R9 - - M - - - - - 

R10 - - M - - - - - 

R11 M M M - - - - - 

R12 - - M - - - - - 

R13 - M M - - - - - 

R14 M - M - - - - M 

R15 - M M - - - M - 

R16 - M - M - - - - 

R17 - - M - - - - - 

R18 - - - - - M - - 

R19 - - - - M - - - 

R20 M - M M - - - - 

R21 - M - - M - - M 

R22 - - M - - M - M 

R23 - - M - - - - M 

R24 - - - - - - - M 
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Table 18. Metal binding prediction in large segments of filamin A. Each segment 
contains an increasing portion of the protein. For example, CH1-CH2 is a construct 
that consists of the first two CH domains. CH-R1 includes also the first Ig-like 
domain besides the two CH domains. The construct is enlarged until CH-R1-R24, 
which contains the entire protein. In this table, 'M' represents metal ion predicted 
and '-' represents absence of metal ion. 

 

  Ca Co Cu Fe Mg Mn Ni Zn 
CH1-CH2  - M - - - - - M 

CH-R1 - M - - - - - - 

CH- R1-R2 M M - - - - - M 

CH- R1-R3 - M - - - - - - 

CH- R1-R4 - M - - - - - - 

CH- R1-R5 - M - - - - - - 

CH- R1-R6 - M - - - - - - 

CH- R1-R7 - M M - - - - - 

CH- R1-R8 - M M - - - - - 

CH- R1-R9 - M M - - - - - 

CH- R1-R10 - M M M - - - - 

CH- R1-R11 - M M M - - - - 

CH- R1-R12 - M M - - - - - 

CH- R1-R13 - M M - - - - - 

CH- R1-R14 - M M - - - - - 

CH- R1-R15 - M M - - - - - 

CH- R1-R16 M M M - - - - - 

CH- R1-R17 M M M - - - - - 

CH- R1-R18 M M M - - M - M 

CH- R1-R19 M M M - - M - M 

CH- R1-R20 M M M - - - - M 

CH- R1-R21 M M M M - - - - 

CH- R1-R22 M M M M - - - - 

CH- R1-R23 M M M - - - - - 

CH- R1-R24 - M M M - - - M 
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Table 19. Metal binding prediction in large segments of filamin B. Each segment 
contains an increasing portion of the protein. For example, CH1-CH2 is a construct 
that consists of the first two CH domains. CH-R1 includes also the first Ig-like 
domain besides the two CH domains. The construct is enlarged until CH-R1-R24, 
which contains the entire protein. In this table, 'M' represents metal ion predicted 
and '-' represents absence of metal ion. 
 

  Ca Co Cu Fe Mg Mn Ni Zn 
CH1-CH2 - - - M - M M M 

CH-R1 M - - M - M - M 

CH- R1-R2 M M - - - M - M 

CH- R1-R3 - M - - - M - M 

CH- R1-R4 M - - - - - - M 

CH- R1-R5 M M - - - M - M 

CH- R1-R6 M M - - - M - - 

CH- R1-R7 M M M - - - - - 

CH- R1-R8 M M M - - - - - 

CH- R1-R9 M M M - - - - - 

CH- R1-R10 - M M - - - - - 

CH- R1-R11 M M M - - - - - 

CH- R1-R12 M M M - - - - - 

CH- R1-R13 - M M M - - - - 

CH- R1-R14 - M M M - - - - 

CH- R1-R15 - M M M - - - - 

CH- R1-R16 - M M M - - - - 

CH- R1-R17 - M M M - - - - 

CH- R1-R18 - M M M - - - - 

CH- R1-R19 - M M M - - - - 

CH- R1-R20 - M M - - - - - 

CH- R1-R21 - - M - - - - - 

CH- R1-R22 - - M - - - - - 

CH- R1-R23 - M M - - - - - 

CH- R1-R24 - M M - - - - - 
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Table 20. Metal binding prediction in large segments of filamin C. Each segment 
contains an increasing portion of the protein. For example, CH1-CH2 is a construct 
that consists of the first two CH domains. CH-R1 includes also the first Ig-like 
domain besides the two CH domains. The construct is enlarged until CH-R1-R24, 
which contains the entire protein. In this table, 'M' represents metal ion predicted 
and '-' represents absence of metal ion. 
 

  Ca Co Cu Fe Mg Mn Ni Zn 
CH1-CH2 - - - M - M M M 

CH-R1 - M - M - M M M 

CH- R1-R2 - M - M - M M - 

CH- R1-R3 - M - M M M M - 

CH- R1-R4 - M - M M M M - 

CH- R1-R5 - M M - - M M M 

CH- R1-R6 - M M - - M M M 

CH- R1-R7 - M M - - - M - 

CH- R1-R8 - M M - - - M - 

CH- R1-R9 - M - - - M - - 

CH- R1-R10 - M M - - - - - 

CH- R1-R11 - M M - - M - - 

CH- R1-R12 - M M - - M - - 

CH- R1-R13 - M M - - - - - 

CH- R1-R14 - M M - - - - - 

CH- R1-R15 - M M M - - - - 

CH- R1-R16 - M M M - - - - 

CH- R1-R17 - M M M - - - - 

CH- R1-R18 - M M M - - - - 

CH- R1-R19 - M M M - - - - 

CH- R1-R20 - M M M - - - - 

CH- R1-R21 - M M M - - - - 

CH- R1-R22 - M M M - - - - 

CH- R1-R23 - M M M - - - - 

CH- R1-R24 M M M M - - - - 

 

It can be concluded that filamin shows a considerable tendency to uptake metal cations. 

The physiological role of these interactions, however, needs an experimental validation. 
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Table 21. Summary of the metal binding prediction in individual domains of filamin A, B, and C. CH1 and CH2 represents the 
CH domains. R1, R2...R23, R24 represent the Ig-like domains. In this table, 'M' indicated that the metal ion is predicted to be 
present and the sign '-' indicates the absence of metal ion. 

 
 

 Ca Co Cu Fe Mg Mn Ni Zn 
 A B C A B C A B C A B C A B C A B C A B C A B C 
CH1 - - - - - - - - - - - - - - - - - - M M M - - - 
CH2 M - - - - - M - - - M - - - - - - -  - - - - - 
R1 - - - M M M - - M - - M - - M - - - M - M - M - 
R2 - M - - - M M M M - M M - - - - - - - M - - - - 
R3 - - - - - - - M - - - - - - - - - - - - - - M - 
R4 - M - M - M - M M - M M M - - M - M - - - M - M 
R5 - M - M M M M M - - - - - - - - - - - - - M - M 
R6 M M M M M M M M M - M - - - - - M - - - - - - M 
R7 - M M M - M M M M - - - - - - - - - - - - M M - 
R8 - - - M M - - M - - - - - M - - - - - - - M - - 
R9 - - - - - - M M M - - - - - - - - - - - - - - - 
R10 M - - - - - M M M - - - - - - - - - - - - - M - 
R11 M M M - - M M M M - M - - - - - M - - - - - M - 
R12 - - - - - - M M M - - - - - - - - - - - - M M - 
R13 - - - - - M M - M - - - - - - M - - - - - - - - 
R14 - M M - - - M M M - - - - - - - - - - - - - - M 
R15 - - - M - M M - M - - - M - - M - - - - M - - - 
R16 M - - M - M M M - - M M - - - - - - - - - - M - 
R17 M M - - - - M M M - - - - - - - - - - - - - - - 
R18 - - - M - - - M - - - - - - - - - M - - - - - - 
R19 M - - - - - M M - - - - - - M - - - - - - - M - 
R20 - - M - M - - M M - - M - - - - M - - - - - - - 
R21 - - - M - M - - - - M - - - M - - - - - - M M M 
R22 - - - - M - - M M - - - - - - - - M - - - - - M 
R23 M - - - - - M M M - - - - - - - - - - - - - - M 
R24 - - - M M - - - - - - - - - - - - - - - - - - M 
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Table 22. Summary of the metal binding prediction in large segments of filamin A, B, and C. Each segment contains an 
increasing portion of the protein. For example, CH1-CH2 is a construct that consists of the first two CH domains. CH-R1 
includes also the first Ig-like domain besides the two CH domains. The construct is enlarged until CH-R1-R24, which contains 
the entire protein. In this table, 'M' represents metal ion predicted and '-' represents absence of metal ion. 
Segment Ca Co Cu Fe Mg Mn Ni Zn 
 A B C A B C A B C A B C A B C A B C A B C A B C 
CH1-CH2  - - - M - - - - - - M M - - - - M M - M M M M M 
CH-R1 - M - M - M - - - - M M - - - - M M - - M - M M 
CH- R1-R2 M M - M M M - - - - - M - - - - M M - - M M M - 
CH- R1-R3 - - - M M M - - - - - M - - M - M M - - M - M - 
CH- R1-R4 - M - M - M - - - - - M - - M - - M - - M - M - 
CH- R1-R5 - M - M M M - - M - - - - - - - M M - - M - M M 
CH- R1-R6 - M - M M M - - M - - - - - - - M M - - M - - M 
CH- R1-R7 - M - M M M M M M - - - - - - - - - - - M - - - 
CH- R1-R8 - M - M M M M M M - - - - - - - - - - - M - - - 
CH- R1-R9 - M - M M M M M - - - - - - - - - M - - - - - - 
CH- R1-R10 - - - M M M M M M M - - - - - - - - - - - - - - 
CH- R1-R11 - M - M M M M M M M - - - - - - - M - - - - - - 
CH- R1-R12 - M - M M M M M M - - - - - - - - M - - - - - - 
CH- R1-R13 - - - M M M M M M - M - - - - - - - - - - - - - 
CH- R1-R14 - - - M M M M M M - M - - - - - - - - - - - - - 
CH- R1-R15 - - - M M M M M M - M M - - - - - - - - - - - - 
CH- R1-R16 M - - M M M M M M - M M - - - - - - - - - - - - 
CH- R1-R17 M - - M M M M M M - M M - - - - - - - - - - - - 
CH- R1-R18 M - - M M M M M M - M M - - - M - - - - - M - - 
CH- R1-R19 M - - M M M M M M - M M - - - M - - - - - M - - 
CH- R1-R20 M - - M M M M M M - - M - - - - - - - - - M - - 
CH- R1-R21 M - - M - M M M M M - M - - - - - - - - - - - - 
CH- R1-R22 M - - M - M M M M M - M - - - - - - - - - - - - 
CH- R1-R23 M - - M M M M M M - - M - - - - - - - - - - - - 
CH- R1-R24 - - M M M M M M M M - M - - - - - - - - - M - - 
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6.4. Protein domain boundary predictions 
 
Here we summarize a study that was published (Kirillova et al. 2009), and which is 

attached (section 8.2). In structural biology, computational tools for predicting domain 

boundaries play a vital role to design of protein constructs that must be expressed in a 

stable and functional form. However, prediction of protein domain boundaries on the 

basis of amino acid sequence is still very problematical. In this published work, the 

performance of several computational approaches that were made publicly available in 

CASP 7 experiment is compared and the reliability of these prediction methods for 

practical application in structural biology was tested. 

 

In CASP experiments, the three-dimensional structures of protein sequences which were 

determined experimentally though they were not yet published are distributed to 

participants. The key feature is that participants make blind predictions and these 

predictions are assessed in comparison to the reality.  

 

For prediction of domain boundaries, the data were obtained from the CASP7 web page 

(http://predictioncenter.gc.ucdavis.edu/casp7/), for which both predictions and 

experimental data are publicly available. The bioinformatics tools that are freely available 

in CASP7 were examined (table 23). Given the ambiguity in protein domain definition, 

the real boundaries were defined according to the CASP7 organizers and assessors.  
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Table 23. Publicly bioinformatics tools used in CASP7 to predict domain 
boundaries. 
 
Tools URL 
Baker http://robetta.org/submit.jsp 
Chop http://cubic.bioc.columbia.edu/services/chop/index.htm 
Chophomo http://www.cubic.bioc.columbia.edu/services/chop/index.htm
Distill http://distill.ucd.ie/distill 
Domfold http://ww.reading.ac.uk/bioinf/Domfold 
Domssea http://bioinf.cs.ucl.ac.uk/dompred 
Dps http://bioinf.cs.ucl.ac.uk/dompred 
Foldpro http://www.igb.uci.edu/servers/psss.html 
Hhpred1 http://toolkit.tuebingen.mpg.de/hhpred 
Hhpred 3 http://toolkit.tuebingen.mpg.de/hhpred 
Maopus http://sigler.bioch.bcm.tcm.edu/CASP7-DOM 
Metadp http://meta-dp.cse.buffalo.edu 
NNput http://webmobis.cs.put.poznan.pl/webmobis/app 
Robetta http://robetta.org/submit.jsp 
 

To predict, on the basis of the protein length, that a protein contains one domain or it is 

multi-domain, a threshold value t was used. Only proteins shorter than t were considered. 

Table 24 show the values of the Matthews correlation coefficient (MCC) (see methods- 

section 8.2) observed at various threshold values for the proteins examined in the CASP7 

experiment. The highest MCC (0.628) is observed at t=200 residues. This prediction 

strategy is compared with the Matthews correlation coefficient values computed on the 

basis of the predictions deposited by the participants to the CASP7. It is observed that 

most of the bioinformatics tools in CASP7 are less reliable than the predictions based on 

the very simple assumption that a small protein has a high probability to contain a single 

domain and that a large protein is likely to contain two or more domains.  

 

Predicted and real partitions were compared with the Jaccard index, the Rand coefficient 

and the Fowlkes-Mallows index and their statistical significance were calculated (see 
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methods-section 8.2).Based on this statistical calculation it was observed that matching 

between prediction and reality is slightly better for small protein than for large proteins. 

 

Table 24. Matthews Correlation coefficients (MCC) at various threshold values (t). 
 

T MCC 

70 0.063 
80 0.111 
90 0.173 
100 0.233 
110 0.276 
120 0.307 
130 0.367 
140 0.397 
150 0.469 
160 0.535 
170 0.582 
180 0.586 
190 0.614 
200 0.628 
210 0.544 
220 0.559 
230 0.510 
240 0.445 
250 0.462 
260 0.346 
270 0.330 

 

The accuracy with which the domain boundaries are identified by various prediction 

methods was examined. Table 25 show the percentage of domains that are correctly 

predicted and the difference between the real and the predicted boundary in the subset of 

domains that are correctly predicted. It is observed that the percentage of good 
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predictions is about 30-40%, though some of the prediction methods are better than 

others and correctly identify about 60% of the domains. When predictions are good, 

however, they are really excellent. Both the N- and C-terminal boundaries are identified 

with high accuracy-the average Delta_b and Delta_e values are close to 0. 

 

Table 25. Accuracy with which the domain boundaries are identified by various 
prediction methods. Delta_b is the difference between the sequence position in 
which the domain is predicted to begin and the sequence position in which it begins 
in the reality. Delta_e is the difference between the sequence position in which the 
domain is predicted to end and the sequence position in which it ends in the reality. 
Pc_c is the average deviation between the real and the predicted beginning of the 
domain Delta_b and Delta_e are the average difference between the real and the 
predicted end of the domain (standard deviations of the mean in the parentheses). 
 
Method Pc_c Delta_b Delta_e 
baker 56.2 -1.20(0.3) 2.2(0.5) 
Chop 26.1 -2.9(1.0) 1.9(0.7) 
Chophomo 25.0 -2.6(1.0) 2.9(1.0) 
Distill 33.6 -1.5(0.6) 3.2(0.8) 
Domfold 38.0 -1.9(0.6) 2.9(0.7) 
Domssea 42.9 -1.7(0.6) 2.5(0.7) 
Dps 38.7 -2.2(0.8) 1.6(0.9) 
Foldpro 62.8 -1.30(0.4) 2.0(0.4) 
Hhpred1 43.3 -2.1(0.5 2.6(0.5) 
Hhpred3 43.4 -2.1(0.5) 2.7(0.5) 
Maopus 54.2 -1.4(0.6) 3.0(0.8) 
Metadp 39.8 -1.3(0.7) 3.3(0.7) 
NNput 30.8 -1.90(0.7) 2.4(0.8) 
Robetta 57.9 -1.0(0.3) 1.5(0.5) 

 
It can be concluded that bioinformatics tools are still immature and are not yet 

sufficiently accurate to be used as routine tools in experimental structural biology, though 

some of them are rather promising. 
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Consensus Prediction of Protein Conformational Disorder from Amino 
Acidic Sequence 
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Abstract: Predictions of protein conformational disorder are important in structural biology since they can allow the 
elimination of protein constructs, the three-dimensional structure of which cannot be determined since they are natively 
unfolded. Here a new procedure is presented that allows one to predict with high accuracy disordered residues on the basis 
of protein sequences. It makes use of twelve prediction methods and merges their results by using least-squares optimiza-
tion. A statistical survey of the Protein Data Bank is also reported, in order to know how many residues can be disordered 
in proteins that were crystallized and the three-dimensional structure of which was determined. 

INTRODUCTION  

 It was recently shown that several proteins do not assume 
a well defined and stable three-dimensional (3D) structure 
but are natively unfolded [1]. This was absolutely surprising 
since unfolded proteins are known to be less stable and solu-
ble in vitro and protein misfolding is known to be associated 
with several conformational diseases, including Parkinson 
and Alzheimer [2]. However, a considerable fraction of the 
proteome is constituted by natively unfolded proteins and 
this fraction seems to be larger in higher organisms than in 
simpler prokaryotes. 

 Several techniques to predict conformational disorder in 
proteins have been designed [3-5] and the performance of 
many of them is periodically checked, within the CASP ini-
tiatives [6], where several blinded predictions are made on 
targets, the conformational status of which is known only by 
the CASP organizers and is unknown by the various predic-
tion teams that participate to CASP. In general, it appears 
that (i) the reliability of these predictions is rather modest 
and that (ii) different predictions are made by different pre-
dictors. The first point is per se not surprising, given the in-
trinsic difficulty of predicting 3D features on the basis of 
amino acidic sequences. The second point - the inconsis-
tency between different prediction methods - is also not very 
surprising. In fact, various predictors do not differ only in 
their algorithms but also in what they define as "conforma-
tional disorder" and thus in what they want to predict. For 
example, in one of the DISEMBL versions [7], all the resi-
dues in loops are considered to be conformationally disor-
dered, while in another of the DISEMBL versions, only the 
residues that were not visible in the crystallographic electron 
density maps are considered to be disordered. Alternatively, 
in IUPRED no a priori definition of disorder is used [8]. De-
spite their limitations, the techniques for predicting confor-
mational disorder are extremely important. Initially, they  
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were designed principally to study the interesting phenome-
non of conformation disorder and for large-scale proteome 
comparisons. Later, it became clear that they have also a 
series of practical applications, like for example in structural 
genomics, where they are becoming routine filters in the 
pipeline of finding suitable targets to be analyzed [3, 4]. In 
fact, it is obvious that the 3D structure of natively unfolded 
proteins cannot be determined and that these disordered tar-
gets must not be analyzed experimentally by structural bi-
ologists. 

 In this paper we present a consensus method, based on 
various prediction methods, the performance of which is 
significantly better than that of each individual predictor. 
Such a new technique is easily usable with freely available 
software and is interesting not only for structural genomics 
initiatives but also for traditional hypothesis-driven structural 
biology. We also report a statistical survey of the Protein 
Data Bank that shows the fraction of disordered residues in 
proteins the crystal structure of which was determined. It 
appears that a moderate fraction of conformationally disor-
dered residues can be tolerated. About 22% of these crystal 
structures have more the 5% of the residues that are disor-
dered, though only about 2% of them have more than 20% of 
the residues in a conformationally disordered status. 

METHODS 

Data 

 Information about conformationally disordered proteins 
was taken from the DISPROT database (http://www. dis-
prot.org/) release 3.3 [9], which lists, in FASTA format, 458 
proteins that are known, on the basis of several experimental 
studies, to be at least partially disordered. Data were down-
loaded in August 2006. Each residue of these 458 proteins is 
labeled according to its conformational status: ordered, dis-
ordered, unknown. The main advantage of the DISPROT 
database is that it is curated by experts and it is not based on 
some automatic procedure. It is thus reasonable to suppose 
that it contains a very limited number of inaccuracies. 
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Individual Predictors 

 12 individual predictors were used (Table 1). Some of 
them are different versions of the same basic algorithm. For 
example, IUPRED has two versions, one specialized in pre-
dicting short disordered polypeptide fragments and the other 
focused on the prediction of long disordered polypeptide 
fragments. Others have even three versions, like DISEMBL, 
which can predict if a residue is in a loop, in a "hot" loop 
(characterized by high crystallographic B factors), or if it 
was not observed in the electron density maps, as stated on 
the “REMARK 465” lines of the files of the Protein Data 
Bank. Given that the present manuscript is not focused on a 
particular type of disorder but it is focused on the identifica-
tion of protein constructs that cannot be studied by structural 
biologists, we did not make any difference between the vari-
ous versions of the predictors and we used all of them. This 
is justified by the fact that we do not want to design a new 
predictor but we want only to make consensus predictions 
that can be useful in structural biology for high-throughput 
structural genomics initiatives and, more in general, in any 
structural biology project. Moreover, the mathematical ap-
proach we used (see below) is essentially unaffected by the 
use of similar or redundant prediction methods given that it 
is a least-squares optimization, which by definition, weights 
all contributions as a function of each other. 

Consensus Predictions 

 Each prediction method (Table 1) produces binary re-
sults: a residue can be predicted to be conformationally or-
dered or disordered. From a numerical perspective, this can 
be represented by a value of +1 if it is predicted to be disor-
dered, or by a value of -1, if it is predicted to be ordered. The 
numerical value of 1 and its sign, positive or negative, are 
purely arbitrary and different values or opposite signs would 
not affect the quality of the results. 

 If one want to use the prediction of several, individual 
methods and combine their results, it is possible to use least-

squares methods to determine the optimal values of the ele-
ments xi of the vector XT={x1, x2, ..., x12} used in the equa-
tion 

P X = D             (1) 

where P is a N x 12 matrix the elements pij of which are ei-
ther +1, if the ith residues is predicted to be disordered by the 
jth prediction method, or -1 if it is predicted to be ordered, 
and where D is a vector of N elements di, the values of which 
can be either +1, if the ith residues is disordered in the reality, 
or -1, in the opposite case. The value of N is the total number 
of residues that are annotated to be ordered or disordered in 
the DISPROT database and is equal to 54012 residues. 

 Once the optimal values of the elements of X have been 
determined, it is possible to use them to predict if a residue is 
conformationally ordered or disordered by computing its 
p_cons value 

=

=

12

1

__
i

ii indipxconsp            (2) 

where the values of p_indii are either +1, if the residue is 
predicted to be disordered by the ith prediction method, or -1, 
if it is predicted to be ordered. If p_cons is closer to +1 than 
to -1, which means if it is greater than 0, the residue is pre-
dicted to be disordered. On the contrary, it is predicted to be 
ordered if p_cons < 0. The optimal values of the coefficients 
xi are reported in Table 2. 

Prediction Validation 

 Given the extremely high number (54012) of amino acid 
residues contained in the DISPROT database, a complete 
cross-validation, known also as Jack-knife test, is impossi-
ble. We performed thus a 20-fold cross-validation: we built 
randomly 20 non-overlapping sets of residues, each contain-
ing 5% of the data, and the optimization of the X vector was 
performed 20 times by discarding each time one of the small 
subsets, which was then used to compute the p_cons values. 

Table 1. Individual Prediction Methods Used in the Present Paper 

Method URL reference 

DISEMBL_hot_loops http://dis.embl.de/ [7] 

DISEMBL_loops http://dis.embl.de/ [7] 

DISEMBL_remark465 http://dis.embl.de/ [7] 

DISOPRED http://bioinf.cs.ucl.ac.uk/disopred/ [19] 

DRIPRED http://www.sbc.su.se/~maccallr/disorder/ [20] 

FOLDINDEX http://bip.weizmann.ac.il/fldbin/findex [21] 

GLOBPLOT_B http://globplot.embl.de/ [22] 

GLOBPLOT_r http://globplot.embl.de/ [22] 

IUPRED_L http://iupred.enzim.hu/ [8] 

IUPRED_S http://iupred.enzim.hu/ [8] 

PRELINK http://genomics.eu.org/spip/PreLink [23] 

RONN http://www.strubi.ox.ac.uk/RONN [24] 
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Such a separation between the learning sets and the test sets 
allows one to make unbiased predictions, which can then be 
compared with the experimentally known conformational 
statuses of the residues. 

Table 2. Optimal Values of the Coefficients xi to be Used to 

Compute the p_cons Values (Equation 2) 

Method x 

DISEMBL_hot_loops -0.101 

DISEMBL_loops 0.377 

DISEMBL_remark465 -0.172 

DISOPRED 0.048 

DRIPRED 0.096 

FOLDINDEX 0.262 

GLOBPLOT_B -0.199 

GLOBPLOR_r 0.162 

IUPRED_L 0.041 

IUPRED_S -0.126 

PRELINK 0.078 

RONN 0.141 

 A residue correctly predicted to be disordered was 
counted as a true positive (tp). A residue correctly predicted 
to be ordered was counted as a true negative (tn). A disor-
dered residue predicted to be ordered was counted as a false 
negative (fn). An ordered residue predicted to be disordered 
was counted as a false positive (fp). Given these four quanti-
ties, the prediction reliability was estimated with a series of 
figures of merit: the sensitivity, the specificity, the accuracy, 
and the probability excess, defined as 

fntp
tpysensitivit
+

=  (3a) 

fptp
tpyspecificit
+

=  (3b) 

fnfptntp
tntpaccuracy
+++

+
=  (3c) 

1_ += yspecificitysensitivitexcessyprobabilit  (3d) 

 The values of these figures of merit can range from 0 to 
+1 and larger values, closer to +1, are associated with better 
predictions. It must be observed that some of these figures of 
merit, typically the accuracy, can be seriously biased if the 
data are unbalanced. This is exactly what happens here, since 
the number of ordered residues (2649) is very different from 
the number of disordered residues (51363) in the database 
DISPROT. The values of accuracy are thus provided in the 
present paper only because this figure of merit is used very 
commonly in computational biology. A much more robust 
indicator of prediction quality is the probability excess. 

RESULTS AND DISCUSSION 

 Besides their basic biological importance, predictions of 
protein conformational disorder are important in structural 

biology, where "impossible" targets must be identified be-
fore inserting them in the experimental pipe-line that goes 
from cloning to structural determination. This is particularly 
important not only in structural genomics initiatives, the suc-
cess rate of which is still rather modest, but also in tradi-
tional hypothesis-driven applications, especially when the 
protein construct must be designed by the scientists, like for 
example in multi-domain protein and viral poly-proteins 
[10]. 

 Predictions of conformational disorder are thus one of the 
bioinformatics filters that must be used before moving to-
wards experimental analyses. Other filters are focused on the 
quaternary structural requirements of a protein chain [11], on 
protein solubility and stability [12, 13], and some web-based 
servers were created to assist the users in this task [14, 15]. 

 However, before doing predictions of conformational 
disorder it is necessary to know what level of disorder can be 
tolerated by well folded proteins. In fact, while it is clear that 
the 3D structure of a completely disordered protein cannot 
be determined, it is also clear that many (or, maybe, most) 
proteins are partially disordered.  

 For example, many loops at the protein surface are very 
flexible and tend to adopt more than a single shape. For this 
reason, we scanned the Protein Data Bank (PDB) [16, 17] 
looking for regions conformationally disordered.  

 This information was extracted from the records labeled 
with "REMARK 465", where the depositors of the crystal 
structures declare, if necessary, which residues were not ob-
served in the electron density maps. This analysis was lim-
ited to the crystal structures, which are nevertheless the large 
majority of the entries of the PDB, and it was assumed that 
the location of completely unfolded segments cannot be de-
tected in the electron density maps. 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Distribution of protein crystal structures as a function of 
the percentage of disordered residues they contain. The data were 
taken from the Protein Data Bank; a residues was considered to be 
disordered if not observed in the crystallographic electron density 
maps; the total number of residues was taken from the SEQRES 
record of the PDB files. 

 Fig. (1) shows the distribution of the PDB entries accord-
ing to their fraction of residues not observed which are likely 
to be conformationally disordered. It appears that a consider-
able number of structures have conformational disorder. In 
22% of them, more than 5% of the residues are disordered. 
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However, only about 2% of the crystal structures contain 
more than 20% of the residues that lack a well defined struc-
ture. The most extreme case is the entry 1VCR, the light-
harvesting complex from Pisum sativum thylacoid mem-
brane, where 56% of the residues were not observed, though 
this crystal structure was determined and refined at very low 
resolution (9.5 Å) [18].  

 Fig. (2) shows the relationships between the crystallo-
graphic resolution and the percentage of disordered residues. 
It can be seen that resolution tends to decrease if the amount 
of disorder increases, though the effect of disorder on resolu-
tion is not spectacular. In fact the average resolution de-
creases only from 2.13 to 2.45 Å if the disorder fraction in-
creases from 2.5 to 32.5%. 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Dependence between the crystallographic resolution and 
the percentage of disordered residues observed in the crystal struc-
tures deposited in the Protein Data Bank. Vertical bars indicate the 
standard deviation of the mean. 

 This clearly shows that protein 3D structures are often 
partially disordered and that a moderate fraction of confor-
mationally disordered residues can be tolerated. Keeping this 
in mind, one can now try to predict if a protein has a reason-
able probability to be suitable for a structural biology analy-
sis. 

 We designed a prediction method that is based on several 
individual prediction algorithms. The only necessary input is 
the amino acidic sequence of the protein and all the predic-
tors are freely available. Each prediction algorithm must be 
used separately (Table 1) and its results must be inserted into 
equation (2), together with the coefficients xi reported in 
Table 2. If the value of p_cons is positive, the residue is pre-
dicted to be disordered and if it smaller than zero, the residue 
is predicted to be ordered. This can easily be done for each 
residue and, as a consequence, it is possible to reach a global 
picture of the conformational status of the protein. 

 This new prediction method, which is essentially a 
weighted consensus approach, performs quite well, better 
than any individual prediction algorithm. Table 3 shows the 
values of several figures of merit, obtained with a 20-fold 
cross validation procedure. It can be seen that predictions are 
very accurate, with all the figures of merit larger than 80%. 
This is impossible by using individual predictors, though all 
of them have very high specificity. The probability excess, 
which is the best figure of merit because little influenced by 
the fact that the data are unbalanced, is equal to 80.1%, a 
value much larger than any other predictor. 

 It must be observed that the prediction reliability de-
scribed above is based on the particular set of proteins avail-
able at the DISPROT database. Therefore, it would not be 
surprising to obtain other estimations of reliability by using 
different data.  

Table 3. Performance of the New Prediction Methods Described in the Present Paper Compared to the Individual Prediction 

Methods of Table 1 

Method sensitivity specificity accuracy probability excess 

Consensus 0.833 0.968 0.814 0.801 

DISEMBL_hot_loops 0.481 0.974 0.494 0.455 

DISEMBL_loops 0.761 0.966 0.747 0.727 

DISEMBL_remar465 0.409 0.977 0.428 0.385 

DISOPRED 0.568 0.994 0.586 0.562 

DRIPRED 0.640 0.975 0.642 0.615 

FOLDINDEX 0.688 0.981 0.691 0.669 

GLOBPLOT_B 0.421 0.990 0.445 0.410 

GLOBPLOR_r 0.589 0.979 0.597 0.568 

IUPRED_L 0.609 0.993 0.624 0.602 

IUPRED_S 0.529 0.996 0.550 0.524 

PRELINK 0.512 0.970 0.521 0.483 

RONN 0.634 0.985 0.642 0.618 
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 As a consequence, the reliability indicators shown in Ta-
ble 3 cannot be used to rank various prediction methods ac-
cording to their performances. It is however clear that the 
consensus approach presented in this manuscript is likely to 
be superior to all the individual methods on which it is based 
and it is also reasonable to suppose that an increase of ex-
perimental knowledge, which is likely to occur in the future, 
will allow more accurate predictions. 
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Abstract: One of the important fields to apply computational tools for domain boundaries prediction is structural biology. 
They can be used to design protein constructs that must be expressed in a stable and functional form and must produce 
diffraction-quality crystals. However, prediction of protein domain boundaries on the basis of amino acid sequences is 
still very problematical. In present study the performance of several computational approaches are compared. It is ob-
served that the statistical significance of most of the predictions is rather poor. Nevertheless, when the right number of 
domains is correctly predicted, domain boundaries are predicted within very few residues from their real location. It can 
be concluded that prediction methods cannot be used yet as routine tools in structural biology, though some of them are 
rather promising. 

INTRODUCTION 

 Computational/mathematical approaches, such as struc-
tural bioinformatics [1], structural class prediction [2, 3], 
molecular docking [4-9], molecular packing [10, 11], phar-
macophore modelling [12], Mote Carlo simulated annealing 
approach [13], diffusion-controlled reaction simulation [14], 
graph/diagram approach [15-21], bio-macromolecular inter-
nal collective motion simulation [22], QSAR [23-25], pro-
tein subcellular location prediction [26-30], protein structural 
class prediction [31, 32], identification of membrane proteins 
and their types [33], identification of enzymes and their 
functional classes [34], identification of proteases and their 
types [35], protein cleavage site prediction [36-38], and sig-
nal peptide prediction [39, 40] can timely provide very use-
ful information and insights for both basic research and drug 
design and hence are widely welcome by science commu-
nity. 

 Several computational approaches aimed to the predic-
tion of protein domain boundaries have been published dur-
ing the last few years [41, 42]. Besides their intrinsic interest 
in genome analysis and evolution studies, they are tools that 
structural biologists may use to optimize the design of the 
constructs of the proteins, the three-dimensional (3D) struc-
ture of which must be determined [43]. While this is particu-
larly important in structural genomics (SG), where the tar-
gets have, in general, not been deeply characterized with 
appropriate biochemical and biophysical tools, this can be 
important also for traditional hypothesis-driven structural 
biology projects, where a fine tuning of the construct that is 
inserted into the experimental pipeline – cloning, expression, 
purification, etc. – is often necessary in order to get suitable 
samples [44]. 

 Several information about structure prediction methods 
are periodically published in the framework of the CASP  
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initiative, the main goal of which is to promote an evaluation 
of computational prediction methods [45]. This is a periodi-
cal exercise, performed every two years since 1994. During 
CASP experiment a series of protein sequences, the 3D 
structure of which was determined experimentally though it 
was not yet published, are distributed to research groups that 
develop computational methods for predicting protein struc-
tural features. It is thus a blinded test, where several methods 
of “in silico” structural biology techniques can be compared 
to the reality and to each other. Nevertheless, in each CASP 
run, the number of targets is obviously quite limited and a 
prediction method that performs very well in CASP is not 
necessarily better than other techniques in the reality. It is 
necessary to make additional investigations focusing on the 
possibility to use these prediction methods for practical ap-
plication in structural biology. 

 Although it is impossible to consider it a rule, it is gener-
ally easier to work with single-domain proteins than with 
multi-domain proteins, since the latter ones tend to be con-
formationally more flexible [46]. For example, the reciprocal 
orientation of the domains can vary and depend on the pres-
ence of other molecules. Multi-domain proteins may also be 
little prone to refold if, by chance, they had been over-
expressed in cells lacking proper chaperones. This does not 
mean that multi-domain proteins cannot be studied but it 
implies that some care must be paid in structural biology 
experiments and that longer time and larger funding can be 
expected to be necessary to solve multi-domain proteins. It is 
thus extremely important to be able to predict, on the basis of 
its amino acid sequence, if a protein contains one or more 
structural domains. 

 CASP is divided into several sections, ranging from pre-
diction of conformational disorder to tertiary structure pre-
diction. Protein domain boundary predictions began to be 
included in the CASP initiative in 2004. The dissection of a 
protein into separate structural domains is in fact not trivial 
at all [46, 47]. It is related to the ill-definition of what a pro-
tein domain is. An amino acid segment can be in fact consid-
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ered to be a structural domain if i) it is a compact ensemble 
of atoms/residues; ii) it is an ensemble of atoms/residues that 
behaves as a rigid body, in the sense that it can move relative 
to other protein moieties without changing its shape; iii) it is 
a self-folding subunit; iv) it is a polypeptide segment well 
conserved during molecular evolution. Given the ambiguity 
in any quantitative definition, the real domain boundaries 
were defined according to the CASP7 organizers and asses-
sors [47]. They found a reasonable consensus definition for 
each investigated protein, which seems to be well suitable 
for a structural biology analysis. 

 The present study is attempted to compare modern ap-
proaches for predicting protein domain boundaries and to 
define new prediction strategies. Here, we refer to the exer-
cise named CASP7, organized in 2006, for which both pre-
dictions and experimental data are available on-line 
(http://www.predictioncenter.org/casp7/Casp7.html). In this 
manuscript, several tools, designed for predicting domain 
boundaries on the basis of the amino acid sequence, will be 
compared to the real domain architecture. The analysis of 
these data allows one to answer the following basic ques-
tions: i) Is it possible to predict, with the presently available 
bioinformatics tools, if a protein is made by a single domain 
or if it contains more than one domain? ii) What is the statis-
tical significance of the available predictions? iii) How accu-
rately can the domain boundaries be predicted in the cases 
where the presently available bioinformatics predictions 
work well? 

METHODS  

Available Data and Tools 

 Data were obtained from the CASP7 web page 
(http://predictioncenter.gc.ucdavis.edu/casp7/). Table 1 

shows the bioinformatics tools that are freely available and 
that were used in CASP7. Protein domain prediction meth-
ods can be classified into three main categories [42]: i) ho-
mology prediction; ii) domain recognition; iii) new domain 
prediction methods. The 14 prediction methods regarded in 
present study include all types of approaches. The homology 
prediction is presented by the chop [48, 49] methods that 
assign the query sequence to known PDB chains. Dsp [42] 
uses in addition more general properties of sequence conser-
vation throughout the protein and it can be considered as 
lying between domain homology and new domain predic-
tions. Domssea [42] belongs to the domain recognition ap-
proaches. It is based on the assumption that secondary struc-
ture is a more conserved feature of proteins with similar 
folds than sequence. Domssea aligns the secondary structure 
predicted for a query protein against a database of 3D do-
main structures and derives the domain boundaries from the 
known domain with the most similar secondary structure. 
Robetta [50] applies BLAST/PSI-BLAST for domain ho-
mology prediction and it uses FFAS03 and 3D-Jury to find 
remote homologues of known domain structure. Hhpred [51] 
is a server for remote homology detection and for structure 
prediction using pairwise comparison of profile hidden 
Markov models (HMMs). In the foldpro [52] method the 
structural relevance of the query-template pairs is extracted 
from global profile-profile alignments in combination with 
predicted secondary structure, relative solvent accessibility, 
contact map and beta-strand pairing using support vector 
machines. Distill [53] provides prediction of Contact Density 
defined as the Principal Eigenvector (PE) of a residue con-
tact map. This information is an important intermediate step 
towards ab initio prediction of protein structure and is used 
to identify domains. Baker generates 3D protein models us-
ing the de novo prediction algorithm Rosetta and then as-
signs domain boundaries using Taylor's structure-based do-

Table 1. Bioinformatics Tools Examined in CASP7 (Names were Taken from CASP) 

Tools URL Reference 

baker http://robetta.org/submit.jsp [50] 

chop http://cubic.bioc.columbia.edu/services/chop/index.htm [48, 49] 

chophomo http://cubic.bioc.columbia.edu/services/chop/index.htm [48, 49] 

distill http://distill.ucd.ie/distill/ [53] 

domfold http://www.reading.ac.uk/bioinf/DomFold * 

domssea http://bioinf.cs.ucl.ac.uk/dompred/ [42] 

dps http://bioinf.cs.ucl.ac.uk/dompred/ [42] 

foldpro http://www.igb.uci.edu/servers/psss.html [52] 

hhpred1 http://toolkit.tuebingen.mpg.de/hhpred [51] 

hhpred3 http://toolkit.tuebingen.mpg.de/hhpred [51] 

maopus http://sigler.bioch.bcm.tmc.edu/CASP7-DOM/ * 

metadp http://meta-dp.cse.buffalo.edu [54] 

NNput http://webmobis.cs.put.poznan.pl/webmobis/app * 

Robetta http://robetta.org/submit.jsp [50] 

*- No information provided by authors. 
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main identification technique. Maopus performs a template 
screening with PSI-BLAST and FFAS03. The SKELEFOLD 
approach implemented in Maopus is a de novo folding algo-
rithm that uses vector representations of secondary structural 
elements; domain boundaries are defined with three se-
quence-based filters. In the domfold method, the output from 
DomSSEA, DISOPRED and HHsearch is parsed to form a 
consensus. Metadp [54] and NNput are meta servers that 
comprise a number of domain prediction methods. 

 Some of the bioinformatics methods provide multiple 
predictions. In this case, only the first, which is considered to 
be the more reliable, was retained for further analysis. Pre-
dicted domain boundaries were obtained from the CASP7 
web page. The experimental domain boundaries were also 
obtained from the CASP7 web page, where they were gener-
ated by a group of expert scientists. 95 proteins are consid-
ered. Given that predictions were not deposited for each pro-
tein and for each prediction method, this results in a set of 
1210 predictions [47].  

Multi-Domain Prediction Using Protein Length 

 To predict, on the basis of the protein length, that a pro-
tein contains one domain or it is a multi-domain construct, a 
threshold value can be used. If the protein is longer than the 
threshold value it consists of more than one domain. On the 
contrary, a protein, smaller than this threshold value, would 
be predicted to contain only a single domain. Consequently, 
a true positive (tp) is defined as a multi-domain protein, 
which is correctly predicted to be a multi-domain protein; a 
multi-domain protein that is predicted to contain a single 
domain is defined a false negative (fn); a single-domain pro-
tein predicted to be a multi-domain protein is defined a false 
positive (fp); and a correctly predicted single-domain protein 
is defined a true negative (tn). 

These four types of predictions can be used to estimate the 
reliability of this prediction methodology. A number of fig-
ures of merit have been used for that, like, for example, the 
Matthews correlation coefficient (mcc) [55] 

mcc =
tn tp( ) fn fp( )

fn + tp( ) tn + fp( ) fp + tp( ) fn + tn( )
,

        (1) 

the values of which range from -1 to +1 (larger values indi-
cate better predictions) and is little affected by sample het-
erogeneity (the number of single-domain proteins can be 
different from the number of multi-domain proteins). 

 The prediction accuracy was validated with a Jack-knife 
procedure. In statistical prediction, the following three cross-
validation methods are often used to examine a predictor for 
its effectiveness in practical applications: independent test 
dataset, sub-sampling test, and Jack-knife test [56]. How-
ever, as elucidated in references [26] and [27], amongst the 
three cross-validation methods, the Jack-knife test is deemed 
the most objective that can always yield a unique result for a 
given benchmark dataset, and hence has been increasingly 
used and widely recognized by investigators to examine the 
accuracy of various predictors [57-66]. 

Statistical Significance of Predictions  

 To compare the accuracy of different methods with a 
random prediction we estimated numerically the probability 

density functions of the indices used to measure the classifi-
cation validity. This approach is based on idea that the prob-
lem of domain boundary prediction using the amino acid 
sequence is a classification problem. Each residue is in fact 
predicted to belong to a certain class and it cannot belong to 
two different clusters at the same time. In other words, a 
residue can be predicted to belong to a certain domain, to 
another domain, or to a linker segment. The comparison be-
tween a prediction and the reality or between two predictions 
can thus be performed by using statistical tools that are rou-
tinely employed to compare alternative classifications [67] 
and that are briefly described below. 

 Given for example two classifications (C and K) of n 
residues, it is possible to count the number of cases in which 
residues i and j were classified in the same group in C and K 
(n_ss), the number of cases in which i and j were classified 
in the same group in C and in different groups in K (n_sd), 
the number of cases in which i and j were classified into two 
different groups in C and in the same group in K (n_ds), and 
the number of cases in which i and j were classified into two 
different groups both in C and in K (n_dd). On the basis of 
this description, it is possible to compute the Jaccard index 
(J), the Rand coefficient (R), and the Fowlkes-Mallows in-
dex (FM), which are defined as: 

J =
n _ ss

n _ ss + n _ sd + n _ ds           (2) 

R =
n _ ss + n _ dd

M            (3) 

FM =
n _ ss

n _ ss + n _ sd

n _ ss

n _ ss + n _ ds          (4) 

where 

M = n _ ss + n _ sd + n _ ds + n _ dd .         (5) 

 By definition, if the two classifications C and K are iden-
tical, all the indices (J, R, and FM) are equal to one. It is also 
important to observe that these indices can be computed in-
dependently of the fact that the classifications C and K con-
tain the same number of clusters. This means that the values 
of J, R, and FM can be computed also if in one case, for ex-
ample the classification C, all the residues were predicted to 
be in a unique domain while in the other case, for example 
the classification K, some residues were assigned to different 
domains. The only constraint to the computation of J, R, and 
FM is that both classifications C and K must include the 
same number of residues, and in the present case this is ob-
vious. 

 The computation of the values of J, R, and FM is elemen-
tary. The estimation of their statistical significance is less 
obvious [67]. For example, it is difficult to estimate the 
probability that a certain value of the index J was obtained 
by chance. From another point of view, if JCK > JDL, where 
JCK monitors the similarity between the classifications C and 
K and JDL difference between the classifications D and L, it 
is clear that C and K are more similar to each other than D 
and L. However, it is more difficult to estimate the statistical 
significance of the inequality JCK > JDL. In other words, it is 
more difficult to estimate the probability that C and K are 
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really more similar to each other than D and L. This depends 
on the fact that the probability density functions of the indi-
ces J, R, and FM are unknown and must therefore be esti-
mated numerically on the basis of adequate simulations. 

 Therefore, we generated a series of simulated partitions, 
using a Metropolis-Monte Carlo approach, by mean of the 
following procedure. Each partition is characterized by a 
series of boundaries that separate a domain and a loop and 
that can be located also at the N- or at the C-terminus. Given 
a protein containing N residues, a boundary can be any inte-
ger k with 1  k  N. A series of boundaries were generated 
iteratively. The first (k0) was randomly selected in the range 
(1, N); the second (k1) was randomly selected in the range (1, 
m0), where m0 = N - k0; the third (k2) was randomly selected 
in the range (1, m1) where m1 = m0 - k1; and so on, the ith 
boundary (ki) was randomly selected in the range (1,mi-1), 
where m i-1 = mi-2-k i-1. Two constrains were imposed during 
the generation of random domain boundaries within a pro-
tein. We considered that a domain must contain more than 
30 residues and a loop size must be smaller than 30 residues.  

 10,000 random partitions into domains were generated 
for proteins containing 75, 100, 125, ..., 550, 575, 600 resi-
dues. It was then possible to make 49,995,000 pairwise com-
parisons between two partitions and the 49,995,000 values of 
the coefficients J, R, and FM were retained in order to de-
termine their distributions.  

 As an example, Fig. (1) shows the distributions of the 
index R for some N values. It appears that the distribution 
dispersion decreases if N increases and that the maximum 
moves to higher R values for larger proteins. With these 
data, it is possible to estimate the probability pR to have R 
values higher than a given value Rx, simply by integrating 
the probability density curve from Rx to 1, and, analogously, 
it is possible to get the statistical significance for the other 
indices.  

 

 

 

 

 

 

 

 

 

 

 

 
Fig. (1). Distribution of the R index values (fixed bin width of 0.04) 
computed on 10,000 simulated partitions of proteins containing 
different number of residues. 

 

Boundary Accuracy 

 The definition of what is a well predicted domain is ob-
viously arbitrary and here the following conditions were 

used in order to select the predictions that can be considered 
to be satisfactory. If the domain contains N residues and it is 
predicted to contain M residues, and if C is the number of 
residues that are found in both the real and the predicted do-
main, a good prediction was defined as a case in which 

N M < 20            (6) 

and 

C

min(M , N )
> 0.95

           (7) 

 For well predicted domains, we then computed the dif-
ferences between the sequence position in which the domain 
is predicted to begin and the sequence position in which it 
begins in the reality (Delta_b). Note that a negative value of 
Delta_b indicates that the domain is predicted to begin be-
fore the real beginning along the protein sequence. Analo-
gously, we also computed the differences between the se-
quence position in which the domain is predicted to end and 
the sequence position in which it ends in the reality 
(Delta_e). A positive value of Delta_e indicates that the do-
main is predicted to be slightly longer, at its C-terminus, than 
the reality. 

RESULTS AND DISCUSSION 

Single-Domain Versus Multi-Domain Proteins 

 Fig. (2) shows the distributions of the protein dimen-
sions, measured by the number of amino acid residues, for 
the single- and multi-domain proteins examined in the 
CASP7 experiment. As expected, single-domain proteins 
tend to be smaller than multi-domain proteins, though some 
overlap between the two distributions exists.  

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Distribution of the number of residues (nres) in the single- 
and muti-domain proteins examined in the CASP7 experiment. 

 
 It is thus easy to select a threshold value t and to predict 
that a protein contains only one domain if smaller than t and 
that it is multi-domain protein if larger than t. Table 2 shows 
the mcc values [see equation (1)] observed at various thresh-
old values and validated with a Jack-knife procedure for the 
proteins examined in the CASP7 experiment. It can be ob-
served that the mcc values are obviously smaller for very 
small or large values of the threshold. On the contrary they 
are rather large (>0.6) for intermediate threshold values and 
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the highest mcc (0.628) is observed with a threshold of 200 
residues. This prediction approach is clearly very naive. It 
simply assumes that a protein domain has a little probability 
to be very large and, as a consequence, that larger proteins 
have a higher probability to contain two or more domains. 

Table 2. Matthews Correlation (mcc) at Various Threshold 

Values (t) 

t mcc 

70 0.063 

80 0.111 

90 0.173 

100 0.233 

110 0.276 

120 0.307 

130 0.367 

140 0.397 

150 0.469 

160 0.535 

170 0.582 

180 0.586 

190 0.614 

200 0.628 

210 0.544 

220 0.559 

230 0.510 

240 0.445 

250 0.462 

260 0.346 

270 0.330 

A protein is predicted to contain a single domain if it contains less residues that t and it 
is predicted to contain more than one domain if it has a number of residues larger than 
t. Data are taken from the proteins examined in the CASP7 experiment. 

 
 It is interesting to compare the results of this extremely 
simple prediction strategy with the results obtained within 
the CASP7 experiment, where several prediction methods 
were applied to about 100 proteins. Table 3 shows the mcc 
values computed on the basis of the predictions deposited by 
the participants to the CASP7 experiment. The same classifi-
cation in tp, fp, fn, and tn, which is described in the Methods 
section, was used. This means that if protein P contains more 
than a single domain and it was predicted to contain more 
than a single domain by using the prediction method M, this 
was considered a true positive (tp). On the contrary, if it was 
predicted to contain only one domain by the method M, the 
prediction was considered a false negative (fn), etc. The data 
of Table 3 clearly show that most of the prediction methods 
are less reliable than the predictions based on the very simple 

assumption that a small protein has a high probability to con-
tain a single domain and that a large protein is likely to con-
tain two or more domains. Actually, only four methods 
(baker, foldpro, maopus and robetta) can predict a multi-
domain protein better than the simple predictor (Matthews 
correlation coefficient larger than 0.628). 

Table 3. Matthews's Correlation Coefficients (mcc) Associ-

ated with the Prediction of Multi-Domain Proteins 

by Various Methods Used in the CASP7 Experiment 

Method mcc 

baker 0.722 

chop 0.178 

chophomo 0.230 

distill 0.260 

domfold 0.262 

domssea 0.410 

dps 0.277 

foldpro 0.840 

hhpred1 0.304 

hhpred3 0.272 

maopus 0.696 

metadp 0.189 

NNput 0.097 

robetta 0.734 

 
 What does this mean? Are these bioinformatics tools 
useless in structural biology? The answer is no. First, some 
of them seem to be rather accurate. Second, these computa-
tional techniques were not specifically trained to identify 
multi-domain proteins and it is thus not surprising that some 
of them are not suitable to discriminate mono- and multi-
domain proteins. However, it is reasonable to suppose that 
these bioinformatics tools are still immature and progress 
should be expected in the future. 

Is the Partition Correct? 

 Table 4 shows the average values of the J, R, and FM 
indices computed by comparing predicted and real partitions 
[see equations (2)-(4)]. All the values tend to be large, quite 
close to their maximal value of 1. However, the probabilities 
(pJ, pR, and pFM) to observe by chance values higher than 
these are quite large, ranging from about 30% to about 70%. 
Baker, foldpro, maopus and robetta are better in predicting a 
partition that is closer to the real one, with J, R, and FM val-
ues that are larger and have a minor probability to be ob-
served by chance. Not surprisingly, they are the same meth-
ods that work better to identify multi-domain proteins (see 
the mcc values of Table 3). 

 It must also be observed that matching between predic-
tion and reality is slightly better for small proteins than for 
large proteins. For example, the probability pJ to find J val-
ues larger than those observed by comparing the reality and 
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the predictions of the method "baker" is on average equal to 
39%, it decreases to 33% for proteins shorter than 150 resi-
dues, and it increases to 43% for proteins containing more 
then 150 amino acids. This is actually not surprising, since it 
is easier to predict that a small protein contains a single do-
main, with, perhaps, two small N- and C-terminal segments 
protruding from the domain. However, it must be noted that, 
despite the fact that the pJ, pR, and pFM values can be used 
only as semi-quantitative indicators - since they are obtained 
from empirical statistical distributions - it is quite clear that 

the domain boundary predictions are still quite far from 
matching the reality. 

Are the Domain Boundaries Correct? 

 We have seen in the previous chapters that the bioinfor-
matics tools are not yet mature enough to be used as routine 
instruments to design structural biology experiments. How-
ever, a very positive feature of these computational methods 
is that when they work [see equations (6) and (7)] they work 
very well. 

Table 4. Average Values of the Indices J,R, and FM and of the Probability pJ, pR, and pFM that a Values Higher than the One 

that is Observed Might be Obtained by Chance. Standard Deviations of the Mean are Reported in Parentheses 

Method  J R FM pJ pR pFM 

baker 0.80(0.02) 0.82(0.02) 0.88(0.01) 39(4) 35(4) 37(4) 

chop 0.66(0.03) 0.70(0.03) 0.79(0.02) 66(5) 63(5) 63(5) 

chophomo 0.66(0.03) 0.69(0.03) 0.79(0.02) 67(5) 65(5) 64(5) 

distill 0.70(0.02) 0.73(0.02) 0.82(0.01) 58(4) 56(4) 55(4) 

domfold 0.76(0.02) 0.77(0.02) 0.86(0.01) 49(5) 48(5) 46(5) 

domssea 0.76(0.03) 0.78(0.02) 0.86(0.02) 50(5) 48(5) 48(5) 

dps 0.74(0.03) 0.77(0.02) 0.84(0.02) 55(5) 52(5) 52(5) 

foldpro 0.82(0.02) 0.84(0.02) 0.90(0.01) 34(4) 32(4) 31(4) 

hhpred1 0.77(0.02) 0.78(0.02) 0.86(0.01) 46(4) 45(4) 42(4) 

hhpred3 0.76(0.02) 0.78(0.02) 0.86(0.01) 46(4) 45(4) 43(4) 

maopus 0.80(0.02) 0.83(0.02) 0.88(0.01) 42(5) 36(5) 39(5) 

metadp 0.76(0.03) 0.77(0.03) 0.86(0.02) 49(5) 48(5) 46(5) 

NNput 0.71(0.02) 0.73(0.02) 0.83(0.01) 56(4) 55(4) 53(4) 

robetta 0.79(0.02) 0.81(0.02) 0.87(0.01) 40(4) 36(4) 37(4) 

Table 5. Accuracy with which the Domain Boundaries are Identified by Various Prediction Methods 

Method Pc_c Delta_b Delta_e 

baker 56.2 -1.2(0.3) 2.2(0.5) 

chop 26.1 -2.9(1.0) 1.9(0.7) 

chophomo 25.0 -2.6(1.0) 2.9(1.0) 

distill 33.6 -1.5(0.6) 3.2(0.8) 

domfold 38.0 -1.9(0.6) 2.9(0.7) 

domssea 42.9 -1.7(0.6) 2.5(0.7) 

dps 38.7 -2.2(0.8) 1.6(0.9) 

foldpro 62.8 -1.3(0.4) 2.0(0.4) 

hhpred1 43.3 -2.1(0.5) 2.6(0.5) 

hhpred3 43.4 -2.1(0.5) 2.7(0.5) 

maopus 54.2 -1.4(0.6) 3.0(0.8) 

metadp 39.8 -1.3(0.7) 3.3(0.7) 

NNput 30.8 -1.9(0.7) 2.4(0.8) 

robetta 57.9 -1.0(0.3) 1.5(0.5) 

The following data are shown: the percentage of domains that are correctly predicted (see text for details) PC_C, the average deviation between the real and the predicted beginning 
of the domain Delta_b, and the average difference between the real and the predicted end of the domain Delta_e (standard deviations of the mean in parentheses). 
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 Table 5 shows the percentage of domains that are cor-
rectly predicted [according to equations (6) and (7)] and the 
discrepancy between the real and the predicted boundary in 
the subset of domains that are correctly predicted. It appears 
that only a relatively modest fraction of the domains can be 
considered to be well predicted, according to the criteria de-
fined by equations (6) and (7). The percentage of good pre-
dictions is about 30-40%, with some prediction methods 
behaving considerably better than the others and able to well 
predict about 60% of the domains. The average values of 
Delta_b (see Methods) are close to and lower than 0 for all 
the prediction methods. Also the values of Delta_e are very 
small, though their absolute value tends to be slightly larger 
than that of Delta_b. Interestingly, the Delta_e values are 
positive, on average, for each prediction method. 

 This clearly indicates that in the subset of good predic-
tions the domain boundaries are located with very high accu-
racy. Actually, a deviation of 1-3 residues is probably a very 
minor mistake in the process of design a protein construct 
that has, on average, a high probability to be well folded and 
conformationally homogeneous. It is also interesting to ob-
serve that while the Delta_b mean values are negative, the 
mean Delta_e values are larger than 0, indicating that pre-
dicted domains tend to be slightly longer than real domains. 

CONCLUSIONS 

 In the present manuscript we have analyzed the reliability 
of the predictions that were made in the CASP7 experiment 
and that are publicly available. It was found that most of the 
bioinformatics tools are able to determine if a protein is 
made by a single domain or if it contains more than one do-
main, despite a similar reliability is reached by considering 
only the sequence length, a much simpler strategy. Using a 
standard and well known statistical test, we showed that 
most of the predictions that can be done are not impressively 
better than pseudo-random predictions. It was also observed 
that although the reliability of the prediction methods seems 
to be insufficient to make them routine tools in experimental 
structural biology, their performance can be extremely good. 
When the domain is correctly identified, its boundaries are 
very close, within one or two residues, to the experimental 
ones. In conclusion, these bioinformatics applications are not 
yet sufficiently accurate to be used as routine tools in ex-
perimental structural biology. It is rather probable that the 
use of more than a single prediction method by a sort of con-
sensus approach might improve the reliability of the predic-
tions. Although these bioinformatics tools are still immature, 
progress can be expected in the future. 
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