

DIPLOMARBEIT

Titel der Diplomarbeit

„Heuristics for Service Technician Routing and

Scheduling Problems”

Verfasser

Attila Kovacs

angestrebter akademischer Grad

Magister rerum socialium oeconomicarumque

Wien, 2009

Studienkennzahl: A 157

Studienrichtung: Internationale Betriebswirtschaft

Betreuer: O.Univ.Prof. Dipl.-Ing. Dr. Richard F. Hartl

ii

iii

Contents

1. Introduction ... 1

2. Problem formulation ... 2

3. Mathematical model .. 4

4. Related work ... 7

5. Solution method .. 8

5.1 Adaptive large neighborhood search .. 8

5.2 Outline of the algorithm ... 10

5.3 Selection of the repair and destroy heuristics ... 13

6. Version without team building .. 17

6.1 Construction heuristic ... 17

6.1.1 Introduction .. 17

6.1.2 Greedy heuristic ... 18

6.2 Solution improvement .. 18

6.2.1 Destroy heuristics ... 19

6.2.2 Repair heuristics ... 24

7. Version with team building ... 28

7.1 Construction heuristic ... 29

7.1.1 Initial team composition .. 31

7.1.2 Greedy heuristic ... 33

7.2 Solution improvement .. 34

7.2.1 Destroy heuristics ... 34

7.2.2 Repair heuristics ... 35

7.2.3 Team completion ... 36

7.2.4 Setup of new teams .. 38

8. Further improvement .. 38

9. Data Sets ... 39

10. Computational experiments .. 42

10.1 Parameter tuning ... 42

10.2 Experimental results ... 44

10. Conclusion .. 52

Bibliography ... 53

Abstract .. 55

iv

Zusammenfassung .. 56

Curriculum vitae ... 58

1

1. Introduction

The everyday business for many companies that operate in sectors like

telecommunications, electricity or gas supply is to create, maintain and repair their

clients´ infrastructure by executing on-demand interventions. Given the new

developments in the above mentioned industries, there is a steady increase in the

demand for interventions and as a result, an increase in the number of competing

companies as well. So, in order to save labor costs, the firms beware themselves from

increasing their staff in big scales. Nevertheless, the demanded tasks must be performed

anyhow, which calls for smart scheduling methods.

Because of this and the need to maintain competitiveness, technicians and interventions

must be scheduled in a sophisticated manner so that as many interventions as possible

can be performed by the existent pool of technicians. This economization can, in some

cases, lead to unscheduled tasks, but because interventions are services to the customers

that should be executed as soon as possible, these unscheduled tasks must be outsourced

to external companies. The schedules that indicate who is assigned to which

intervention and the sequence in which interventions must be executed are arranged by

supervisors in many companies (Dutot et al., 2006). Therefore, without computational

assistance the plans might demonstrate weaknesses, especially when the number of

technicians and interventions is high.

The aim of this thesis is to create a fast heuristic, which is able to support the

supervisors by providing schedules that are as efficient as possible. In our context,

efficiency is measured by the objective function, composed of the routing costs and

outsourcing costs for those tasks that cannot be scheduled.

For a solution method that is applied to such real life problems it is important to cover a

large number of parameters like the specialization of the technicians in different areas

with different skill levels, the geographical distribution of the demanded interventions

and derived from that, the travel costs among each other. What´s more, time windows in

which technicians must arrive at the intervention locations must be considered. Beyond

that, some interventions might have very high skill requirements so the grouping of

some technicians to a team must also be taken into account.

A heuristic approach is presented in the following chapters, which creates a schedule

from scratch by considering the above mentioned requirements. The framework used

2

for this solution method is called adaptive large neighborhood search as applied by

Ropke and Pisinger (2006b), Pisinger and Ropke (2007) and Cordeau et al. (2008).

2. Problem formulation

Basically, the problem denoted as service technician routing and scheduling problem

(STRSP) can be interpreted as an extended vehicle routing problem with time windows

(VRPTW) where a set of customers (tasks) are spatially distributed and each of them

requires a determined time period to be serviced. A set of vehicles, initially located at

their depot, which can have same or different characteristics are available to visit each

customer and to execute the required services. These services can be a pickup or a

delivery in the simplest cases and in more complex cases both, just like for the pickup

and delivery problems with time windows (PDPTW). Furthermore, some customers are

characterized by time windows defined as the earliest possible time to begin the service

and the last time when servicing could still be started. This implies that if a vehicle

arrives at a customer too early it has to wait until the time window of the customer

begins to be able to start the service. In other words, the vehicles can have idle times.

The tours created by visiting customers are associated with some costs, which are

derived either from the travel distances or the travel times between each of the

customers and the depot.

Moreover, problems can be distinguished on the base of the number of depots. In

contrast to the multi-depot vehicle routing problem (MDVRP), all vehicles are located

at the same depot in the VRPTW from which they start their routes and where they must

return to after finishing.

In our context, the VRPTW is extended by referring to the technicians and interventions

scheduling for telecommunications problem described in Dutot et al. (2006) and the

following paper by Cordeau et al. (2008).

In the following, we denote the modified customers as tasks and the vehicles are

converted in teams of technicians with different skills. The tasks require only the skills

of the technicians, so no goods are transported.

Technicians are specialized in different areas with different proficiency levels to be able

to work on a high variety of tasks. Tasks are independent from each other and are

characterized by their skill requirement matrix requested from the technicians. Their

3

demand on the technicians´ skills determines the configuration of the teams. To come

up with the required abilities, some technicians are grouped together into teams, which

must stay together for one day. As already mentioned for the VRPTW, tasks are

requested by the clients who are located at different sites and as a result, travel times

and travel distances between the locations must be taken into account. Furthermore,

some clients require a service within a specified time window in which the servicing of

the job must be started. The execution of the interventions is urgent since this solution

framework deals with the handling of service demands. So if the available set of

technicians is not able to complete all of them, outsourcing can be chosen to satisfy the

clients, which of course comes along with some costs.

The solution method, which is characterized by the necessity of grouping technicians,

can be simplified by assuming that tasks still have different skill requirements but they

can be performed by only one technician. If so, the grouping of the technicians becomes

needless and one technician represents one team. Nevertheless, tasks must be assigned

in a way such that a team with a single technician is able to meet all requirements.

This variation shows similarities to a more complex version of the VRPTW with a

heterogeneous vehicle fleet. Such problems occur for example, when some vehicles

cannot visit some customers because of their dimensions.

The requirements to perform a task can be illustrated by a p x q skill requirement matrix

(wi
αβ), where the number of technicians needed, skilled in domain p with the level q, is

posted. The columns of the matrix refer to the different domains and the rows to the

proficiency levels.

1 2 0 2
0 1 0 2
0 1 0 2

The values in the upper example (Cordeau et al., 2008) denote that for task i one

technician is needed, which is trained in domain 1 with the proficiency level of 1. It

requires 1 trained technician in domain 2 with level 3 and due to the fact that a better

skilled technician can also perform simpler functions, the same technician is used for

the first and the second level. Nevertheless, in this example, a second technician is

needed with at least level 1 proficiency in domain 2. No knowledge is needed in domain

3 and two technicians with skill level 3 are sufficient in the fourth domain, because they

are also able to execute the simpler functions.

4

The technicians are characterized by their skills, which again can be demonstrated in a

skill matrix (vj
αβ) where the columns of the matrix refer to the domains and the rows to

the levels:

1 1 1 1
1 0 0 1
0 0 0 1

The skill matrix in the example above shows that technician j is skilled in all domains

but at different levels. In domain 1 he can perform level 1 and 2 functions, in domain 2

and 3 he is only skilled at the competence level 1 and in domain 4 he is an expert and

can perform all functions.

Because the upper technician doesn’t have the skills to execute the upper task he must

be grouped together with another technician.

Technician 1 Technician 2 Teamed together

1 1 1 1 1 1 1 1 2 2 2 2
1 0 0 1 + 0 1 1 1 = 1 1 1 2
0 0 0 1 0 1 0 1 0 1 0 2

The generated team would be able to carry out the task because all required skills are

covered. Nevertheless, there is a waste of capacity, but this is allowed in this scenario.

Only one day is planned at once with the objective to find a schedule, which ensures

minimal travel costs and in which as many jobs as possible can be assigned to the

available technicians to avoid the need for outsourcing for some additional costs.

3. Mathematical model

The problem is described precisely by the mathematical model demonstrated below and

is based on Xu and Chiu (2001) and Cordeau et al. (2008).

A set of tasks N = {1, …, n} has to be performed by the set of teams τ = {1, …, μ}

whereas each team is arranged by the set of technicians T = {1, …, m}.

Moreover, the model uses binary variables xjr equal to one if technician j א T is assigned

to team r א τ and variables yir equal to one if task i א N is performed by team r. Binary

variables zi take value one if it is not possible to assign a task to a team and therefore it

has to be outsourced.

5

Finally, the binary variables uii´r signify whether job i´ is performed immediately after

job i by team r which then implies the travel costs cii´. The travel costs can either be

derived from the travel times tii´ or the travel distances dii´ between each task.

The tasks are characterized by their requirement matrix wi
αβ, the earliest possible

starting time ei and the last possible ending time li, the duration of the service si, the

actual starting time bi and outsourcing cost oi. An upper bound for the technicians to

return to the depot is given by the time window end of the depot l0. The teams can leave

the depot at time zero (e0 = 0).

The skills of the available technicians are displayed in the matrix vj
αβ. Variables M

denote a large constant number.

෍ ݁ݖ݅݉݅݊݅݉ ෍ ෍ ´௜௜´௥ܿ௜௜ݑ
௜´אே׫ሼ଴ሽ

൅
௜אே׫ሼ଴ሽ௥אఛ

෍ݖ௜݋௜
௜אே

 (1)

෍ݔ௝௥ ൑ 1
௠

௥ୀଵ

׊ ݆ א ܶ (2)

ቌ෍ݔ௝௥ ൑ 1
௝்א

ቍ ׊ ݎ א ߬ (3)

෍ݕ௜௥ ൅ ௜ݖ ൌ 1 ׊ ݅ א ܰ
ఓ

௥ୀଵ

 (4)

෍ݑ଴௜௥ ൑ 1
௜אே

 ׊ ݎ א ߬ (5)

ఈఉ௜ݓ௜௥ݕ ൑෍ݔ௝௥
௝்א

ఈఉݒ
௝ ׊ ݅ א ܰ, ׊ ݎ א ߬,

 ׊ ߙ א ሺ1, … , ,ሻ݌ ׊ ߚ א ሺ1,… , ሻ (6)ݍ

݁௜ ൑ ܾ௜ ൑ ݈௜ ׊ ݅ א ܰ, ׊ ݎ א ߬ (7)

෍ ௜௜´௥ݑ
௜אே׫ሼ଴ሽ

ൌ ෍ ௜´௜௥ݑ
௜אே׫ሼ଴ሽ

ൌ ௜௥ݕ ׊ ݅´ א ܰ, ݅ ് ݅´, ׊ ݎ א ߬ (8)

ܾ௜൅ݏ௜ ൅ ´௜௜ݐ ൑ ܾ௜´ ൅ ଵሺ1ܯ െ ௜௜´௥ሻݑ ׊ ݅, ݅´ א ܰ, ݅ ് ݅´, ׊ ݎ א ߬ (9)

6

଴௜ݐ ൑ ܾ௜ ൅ ଶሺ1ܯ െ ଴௜௥ሻݑ ׊ ݅ א ܰ, ׊ ݎ א ߬ (10)

ܾ௜ ൅ ௜ݏ ൅ ௜଴ݐ ൑ ݈଴ ൅ ଵሺ1ܯ െ ௜଴௥ሻݑ ׊ ݅ א ܰ, ׊ ݎ א ߬ (11)

௝௥ݔ א ሼ0,1ሽ ׊ ݆ א ܶ, ׊ ݎ א ߬ (12)

௜௥ݕ א ሼ0,1ሽ ׊ ݅ א ܰ, ׊ ݎ א ߬ (13)

௜ݖ א ሼ0,1ሽ ׊ ݅ א ܰ (14)

௜௜´௥ݑ א ሼ0,1ሽ ׊ ݅, ݅´ א ܰ ׫ ሼ0ሽ, ݅ ് ݅´, ׊ ݎ א ߬ (15)

ܾ௜ ൒ 0 ׊ ݅ א ܰ (16)

ଵܯ ൌ max
௜אே

ሺ݈௜ሻ ൅ max
௜,௜´אே׫ሼ଴ሽ

ሺݐ௜௜´ሻ (17)

ଶܯ ൌ max
௜אே

ሺݐ଴௜ሻ (18)

The objective function (1) minimizes the total travel costs and the outsourcing costs for

the unscheduled tasks. Inequality (2) ensures for every available technician that he is

not assigned to more than one team. Note that inequality (3) is only used for the case

when one technician alone forms a team, thus the solution method without team

building. Constraint (4) ensures that every task is either performed or outsourced, while

inequality (5) makes sure that each team leaves the depot once only. Inequality (6)

denotes that each task is assigned to a team which is able to meet its requirements.

Inequality (7) sets the range for the beginning time between the earliest possible starting

and the last possible ending time. Constraint (8) ensures that each task has a direct

predecessor and a successor (also including the depot). Inequalities (9), (10) and (11)

are responsible for the correct time sequence of the tasks, where inequality (9) ensures

for each task that its direct successor cannot be started until it is finished and the team

arrives at the next location. Inequality (10) bounds the earliest starting time for the first

assigned tasks for every team. The teams leave the depot at time zero (e0 = 0), therefore

the service can begin at the earliest when they arrive (0+t0i). Inequality (11) makes sure

that all teams get home to their depot in time. The constraints (12) – (16) define the

characteristics of the used variables. In (17) and (18) sufficiently big values are used for

setting the variables M.

7

4. Related work

A very similar problem is dealt with in Xu and Chiu (2001) named field technician

scheduling problem (FTSP). Different types of tasks with different requirements have to

be executed by technicians with differing skills. The tasks are located at different

locations and their visiting is constrained by time windows. In contrast to the current

solution method the FTSP neglects the chance of forming teams. Furthermore, tasks can

have different priorities since a repair job might be more important than a periodic

maintenance. An aggravating factor is the working time window for each technician in

which they are available.

 To identify a good quality solution, three levels of objectives are used. The first

objective is to schedule as many tasks as possible within the given time frames.

Secondly, the working time, including travel and waiting time is minimized, whereas

the third objective only pays attention to the total traveling time of the employees.

Additionally, the challenge organized by the French Operational Society (ROADEF) in

2007 handled the scheduling problems of the telecommunication company France

Telecom (Dutot et al., 2006). The participants of the challenge faced a similar problem,

where technicians with different skills have to perform tasks with varying difficulties

and different priorities. Some tasks have higher priorities as they might be urgent repair

tasks and others might have lower priorities because they are regular maintenance tasks.

What´s more, some tasks depend on each other because of the existence of precedence

constraints. Another differentiation is the budget for outsourcing which is not penalized

in the objective function but may not be exceeded.

The problem however does not consider routing costs between the tasks. The solutions

are graded by the objective function, which is the weighted sum of the ending times of

the last tasks of each priority type. As the team of Cordeau et al. (2008) achieved a tied

second place in the challenge by using a solution framework based on the adaptive

large neighborhood search (ALNS), several ideas are implemented in the present

solution method.

8

5. Solution method

Since the basic vehicle routing problem (VRP) is NP-hard it is clear that the service

technician routing and scheduling problem, which is an extension of it, must be NP-

hard as well. It is unreasonable to solve such problems exactly because this would take

too long for being useable in real life situations. Therefore, the problem is tackled by

using a heuristic approach which creates an initial solution and then improves it by

applying a local search method.

An improvement phase is executed since simple construction heuristics are usually

unable to find high quality results. Nevertheless, local search methods can improve the

results as they try to find better solutions by iteratively exploring the neighborhood of

the initial one. Hence, the solution quality depends largely on the initial solution itself

and the way how neighborhoods are defined. Even though various neighboring

solutions are compared, the descending characteristic of many local search approaches,

which only accept improved solutions as new incumbents, might prevent moving

towards the global best solution from a local optimum. This disadvantage is

compensated by applying a metaheuristic framework, which also allows a deterioration

of the solution to a certain extent.

The recently applied adaptive large neighborhood search achieved very impressive

results when using it to solve VRP instances as demonstrated in Pisinger and Ropke

(2007). What´s more, it was also able to perform very well when solving the technician

and task scheduling problem (TTSP) (Cordeau et al., 2008) assigned during the

ROADEF challenge. Since the current problem is a mix of the two mentioned problems,

the ALNS was chosen to apply, in the hope that it also copes with the characteristics of

this problem.

5.1 Adaptive large neighborhood search

The adaptive large neighborhood search proposed by Ropke and Pisinger (2006b),

Pisinger and Ropke (2007) and Cordeau et al. (2008) is derived from the large

neighborhood search (LNS) proposed by Shaw and the ruin and recreate algorithm

(RR) described by Schrimpf et al. (2000). Both methods were applied to the VRP and

9

are based on the idea of continuously removing tasks from the routing plan (destruction)

and reinserting them at positions where they ideally cause less costs (repair).

Given an initial solution obtained by a construction heuristic, the factors which affect

the quality of these methods are the number of tasks to remove from the schedule and

the decision how to destroy and repair the solution.

Traditionally, classic neighborhood search algorithms, with the corresponding

neighborhood operators, are able to discover a lot of solutions in short time.

Nevertheless, for large problem instances or instances which are highly constrained,

they fail to achieve big improvements due to the constrained neighborhood size.

A relief for this weakness is the application of very large-scale neighborhood search

techniques (VLNS) presented by Ahuja et al. (2002). Ahuja et al. analyzed the

importance of the applied neighborhood structure and highlighted the positive

relationship between the neighborhood size and the solution quality. However, a larger

neighborhood is connected to longer execution times, which in turn results in fewer

solutions found per time unit, unless very efficient search mechanisms are executed.

The neighborhood selection mechanisms of the LNS and RR algorithms could be

interpreted as efficient in a sense that numerous possibilities for removing and

reinserting visits are exploited to move freely in the solution space instead of exploring

it in big segments.

So, in comparison to the classic neighborhood search algorithms, which try to obtain

improvements by iteratively changing some attributes of the given solution, the

described methods perform very powerful moves resulting in a large alteration of the

solution.

The ALNS is extended in a way that various simple destroy and repair heuristics are

used, while the LNS uses one destroy and one repair method. This extension enables the

adaptation to different problem instances due to the fact that different sub-heuristics

cause the ALNS to be able to operate on structurally different neighborhoods.

Furthermore, the ALNS uses a simulated annealing (SA) procedure to avoid getting

trapped in a local minimum.

10

5.2 Outline of the algorithm

Given an initial solution obtained by the construction heuristic, in the ALNS phase one

destroy and one repair heuristic is chosen as described in Section 5.3.

First, the destroy heuristic is applied and the solution is destroyed by removing already

scheduled tasks. The destroy sub-heuristics used are the random destroy, worst destroy,

related destroy and cluster destroy as described in Pisinger and Ropke (2007) and the

team destroy as used by Cordeau et al. (2008). Second, the unscheduled tasks are tried

to be reinserted to repair the schedule and obtain a new solution. The applied repair sub-

heuristics are the greedy heuristic and the regret-q heuristics as described in Pisinger

and Ropke (2007). Additionally, the insertion heuristic suggested by Solomon (1987)

was implemented.

The new solution obtained by the destruction and the subsequent repair is accepted to be

the new current incumbent solution under certain circumstances. Even though a simple

descent approach was used in the LNS which accepts improved solutions only, the

ALNS is based on a simulated annealing framework developed by Kirkpatrick et al.

(1983), which also allows a worsening of the solution with a certain probability.

The term simulated annealing originates from the discipline of statistical mechanics,

which among others is concerned with the process of finding the ground state of a

matter with low energy configurations. To obtain a clean crystal from a melt, the melted

substance has to be cooled down slowly. This allows the atoms to find their equilibrium.

A fast cool down, also called as quenching, would cause the substance to get out of

equilibrium, resulting in a crystal which would have many defects. The link to the

combinatorial optimization arises by comparing the energy state with the value of the

objective function. Accepting only improved solutions during a local search is like a

rapid quenching from high temperatures, so it is obvious that the obtained results are

usually metastable. The simulated annealing is applied to the underlying solution

method in a way that as a result better solutions are always accepted to be the current

incumbent. But to escape from a local optimum, even an increase of the objective value

is accepted with a probability calculated as:

݁ିሺ௙ሺ௫´ሻି௙ሺ௫ሻሻ/்

11

The acceptance criterion is controlled by the temperature T and the cooling rate c,

whereby f(x´) denotes the objective value of the new solution x´ and f(x) the objective

value of the current incumbent solution x. The solution is “melted” at a high

temperature and in every iteration the temperature is lowered linearly with 0 < c < 1 so

in the following iteration T = Tc. To define the melting point TStart, we refer to Ropke

and Pisinger (2006b), who calculated it in dependency of the initial solution instead of

setting a fixed value disregarding the problem instance. Nevertheless, the initial solution

is modified in a way that the outsourcing costs are neglected. The reason for doing so is

that travel costs are small in comparison to the outsourcing costs, so if the construction

heuristic would not be able to schedule all tasks, TStart would be set to very high values.

Let f(x)modified denote the modified initial objective value, then TStart is calculated in such

a way that a solution which is wT percent worse than the initial solution is accepted with

probability 0.5.

ௌܶ௧௔௥௧ ൌ െ
்ݓ

ln 0.5 ݂ሺݔሻ௠௢ௗ௜௙௜௘ௗ

The selection of the destroy and repair heuristic is performed stochastically by applying

a roulette wheel selection mechanism. Nevertheless, every pair of destroy “a” and repair

“b” heuristics is weighted in the weight matrix ρab according to its combined

performance. The better a pair of methods performs, the higher its weight and therefore

the probability of getting chosen in the following iterations. This is due to the fact that

the probabilities are calculated on the base of the weights. The heuristic selection is

explained in the next section in more detail.

Algorithm 1 outlines the pseudo code of the ALNS process in which variable f(x*)

represents the objective value of the global best solution x*.

Algorithm: 1

1 input: feasible solution x created by the construction heuristic

2 x* = x; ρab = (1, …, 1)

3 repeat

4 choose a pair of destroy and repair heuristic (a and b) by using the roulette

wheel selection (Section 5.3)

5 x´ = b(a(x)) // apply the heuristics to solution x to obtain x´

12

6 if f(x´) < f(x*)

7 x = x* = x´

8 else if accept(x´, x)

9 x = x´

10 record the solution quality and update ρab as described in Section 5.3

11 until stopping criterion is met (number of iterations)

12 return x*

The check of the time window feasibility of any solution is performed by using

Solomon´s (1987) lemma. It is applied every time the algorithm tries to insert a task into

the schedule and can be described as follows.

Before inserting task h into a team´s route, first, the compliance of its time window

constraint is verified. Moreover, h´s effect on all subsequent tasks in the route must be

considered. For all subsequent tasks, a push forward value PFi is calculated, which

declares by how much the starting times are delayed because of the insertion of h. Task

h is only scheduled to a team if the starting times of all its successors are within the

respective time windows and the team can return to the depot before it is closed.

The effect on h´s successors is calculated as

௜ܨܲ ൌ ܾ௜௡௘௪ െ ܾ௜ for task i = h´s direct successor ׫ ሼ0ሽ

whereas bi
new denotes the new starting time of i under the assumption that h is scheduled

before it.

´௜ܨܲ ൌ maxሼ0, ௜´ିଵܨܲ െ ׫ i´ scheduled after i ׊ ௜´ሽ݁݉݅ݐ ݈݁݀݅ ሼ0ሽ

The idle time at task i´ is the time that appears if a team arrives to task i´ before its time

window has started.

The insertion of h is feasible if:

ܾ௛ ൑ ݈௛

and

ܾ௜ ൅ ௜ܨܲ ൑ ݈௜ ׊ ݅ א ݏݎ݋ݏݏ݁ܿܿݑݏ ݏ´ݑ

13

5.3 Selection of the repair and destroy heuristics

Given that several sub-heuristics are available, one destroy and one repair method must

be chosen to obtain a new solution. This selection happens randomly, but the probability

for choosing a heuristic depends on its performance in the former applications. The

applied selection approach is similar to that used by Ropke and Pisinger (2006b) and

Pisinger and Ropke (2007) but it contains a few modifications. While the mentioned

algorithms select the destroy and repair heuristics independently from each other, this

approach links them together to identify good pairs of heuristics. The probability of

choosing a heuristic pair is controlled by the matrix ρab that indicates the weight for

choosing destroy method “a” together with repair method “b”. If the number of

available destroy heuristics is denoted with ηd and the number of repair heuristics with

ηr, then the probability ϕab for choosing the pair “a” and “b” is calculated as:

߶௔௕ ൌ
௔௕ߩ

∑ ∑ ௞௟ߩ
ఎೝ
௟ୀଵ

ఎ೏
௞ୀଵ

The actual heuristics are chosen by a roulette wheel selection mechanism. It can be

imagined as a wheel where all possible heuristic pairs (ηd x ηr) are represented by a slice

of it, with the size being determined by the corresponding probability. The higher the

probability the bigger is the slice. The wheel is spun just like a roulette wheel and the

heuristic pair on which the “ball” comes to rest is applied.

In contrast to the LNS, in which only one removal and one insertion approach is

applied, this type of selection enables the algorithm to adjust itself to various problem

types. It does this by simply weighting more appropriate heuristics higher than those

heuristics which are not able to push the solution search further.

To adjust the weights automatically, the adaptive weight adjustment algorithm proposed

by Ropke and Pisinger (2006b) is used.

The weights on the base of which probabilities are determined are equal in the

beginning and are set to one. Nevertheless, during the search, pairs of heuristics can

earn higher weights by providing better solutions. After every iteration of the ALNS

heuristic, the solution is analyzed and the scores ψab for every pair of sub-heuristics are

updated by increasing them by either σ1, σ2 or σ3. Each parameter corresponds to a

certain category of solution quality.

14

In the first category, the obtained solution is the new global best solution, so the score is

increased by parameter σ1. In the second category, the score is increased by σ2 due to

the fact that the application of the destroy and repair heuristic led to a solution that is

better than the current incumbent and it has not been visited before. Finally, the third

category which contributes σ3 to the score, is characterized by a solution that is worse

than the current incumbent, but it was accepted because of corresponding to the

simulated annealing criterion and it has not been visited before.

 ψab+ σ1 if the last destroy-repair operation obtained a new global best

solution

ψab = ψab+ σ2 if the last destroy-repair operation yielded a solution that is better

than the current incumbent and it has not been accepted yet

 ψab+ σ3 if the last destroy-repair operation yielded a solution that is worse

than the current incumbent and has not been accepted yet but is

accepted now

Of course, heuristics that generate improved solutions are preferred. Nevertheless, it

makes sense to remunerate all heuristics that are able to identify unvisited solutions and

diversify the search, because such heuristics help to explore the solution space at a

higher level.

This is true for the σ3 cases: even though the heuristics cannot create a good solution,

they bring the search forward so they earn an increase in the score.

The evaluation of the sub-heuristics is divided in segments of 100 iterations of the

ALNS heuristic. The scores ψab and the counter ϴab, which counts how many times a

pair of heuristics has been applied, are all initialized with zero at the beginning of each

segment and are updated after every destroy-repair operation until the segment is

finished. Then, the new weights ρab and the new probabilities ϕab derived from them are

calculated for the next segment by using the captured data.

At the beginning of the first segment, all weights are initialized with one. Therefore,

during the first 100 iterations the heuristics are chosen with the same probability.

Afterwards, when a segment is finished the new weights are calculated as follows:

௔௕ߩ ൌ ௔௕ሺ1ߩ െ rሻ ൅
ψୟୠ

ԕୟୠ
r

15

Parameter r [0 ;1] א is the reaction factor that controls how sensitive the weights are to

changes in the heuristic pair performance and derived from that, to changes in the

scores. The extreme case of setting r equal to zero would ignore the performance of the

heuristics and the weights would remain unchanged, whereas r equal one means that the

historic performance has no impact. A reasonable setting for r should be selected in-

between the two extremes.

Note, that only the weights for those destroy-repair method pairs are changed that have

been used during the respective segment.

Figure 1

Figure 1 illustrates an example of the weight development (y-axis) of three different

pairs of heuristics during 25000 iterations (x-axis). The compared pairs are random-

greedy, random-regret-2 and random-insertion heuristics. The problem instance used for

this run is R101_5x4_noTeam with the complete set of technicians (see Section 9).

All weights are set to one initially, but during the run it becomes apparent that the

random-regret-2 curve earns the highest weight and dominates the compared method

pairs almost over all iterations. The pair random-greedy performed slightly worse than

the random-regret-2 pair, while the heuristic combination random-insertion performed

worst. Based on this graph, it can be said that the random-insertion heuristics are used

much rarely than the other two pairs.

The shape of the graphs can be explained by the fact that in the beginning it is easier to

improve the solution and to identify unvisited solutions. Therefore, the heuristics are

0

1

2

3

4

5

6

7

8

9

0 5000 10000 15000 20000 25000 30000

random‐greedy

random‐regret‐2

random‐insertion

16

rewarded with higher scores ψab, which implies a higher positive slope of the curves.

Later, when it becomes much harder to improve the solution or to find unvisited ones,

the heuristics are rewarded lower or not at all. This results in a downward slope of the

weight development curves.

Figure 2

The data for Figure 2 were collected during the same run of the ALNS as for Figure 1,

but in this graph the weight development of heuristic pairs, which use the same repair

heuristic, namely the greedy approach, are compared. In the beginning, all pairs perform

quite equally, but from iteration 1200 the cluster-greedy pair cannot achieve as good

results as the worst-greedy or the related-greedy methods. At the end of the search the

performances are evened again. Therefore, all the compared pairs have almost equal

probabilities of getting chosen in the roulette wheel selection except during iterations

1200 to 6000. In this state the cluster-greedy pair is used more scarcely.

Given the different destroy-repair heuristic pairs, in principal, a local search with

several neighborhood structures is applied in the ALNS. Therefore, some conformities

can be identified when comparing the ALNS to the variable neighborhood search

(VNS) proposed by Mladenović and Hansen (1997). Based on an initial solution, which

is set to be the current incumbent, the VNS applies different neighborhood operators.

In every iteration, one of the available neighborhood types is selected and used to obtain

a set of new solutions. One of them is chosen randomly and is optimized in a further

0

1

2

3

4

5

6

7

8

9

0 5000 10000 15000 20000 25000 30000

worst‐greedy

related‐greedy

cluster‐greedy

17

local search phase. Whether the achieved solution is accepted as current incumbent or

not, depends on the user’s solution evaluation approach.

6. Version without team building

In this thesis two algorithm versions are distinguished: the first, in which tasks require

only one technician, so team building is not allowed (or one team consists of only one

technician) and the second, in which tasks may require more technicians, so technicians

must be grouped together to combine their skills.

In this chapter we focus on scheduling problems, in which no task requires more than

one technician. Therefore, technicians move and work alone. Even though technicians

are not grouped, every technician represents one team. Or in other words, teams execute

tasks, whereas one team consists of exactly one technician.

6.1 Construction heuristic

6.1.1 Introduction

This section describes how an initial solution is generated with an easy heuristic, which

is also used later in the improvement phase with further heuristics. The aim is to select

tasks and to schedule them repeatedly until a feasible and preferably low cost solution is

created.

Basically, two types of construction heuristics are distinguished for the VRPTW,

namely sequential and parallel tour building heuristics. Sequential methods build one

route at a time, whereas parallel methods work on several - or in our case - on all

available routes simultaneously. Given that the minimization of the number of routes is

not relevant, each available team represents one route. In the first phase, empty routes

are generated for every team and in the second phase, these empty routes are filled up

with the unscheduled tasks by applying a greedy approach. Even though, Pisinger and

Ropke (2007) applied the regret-2 heuristic to create the initial solution, in this solution

method the greedy approach is used. This is done because to be able to calculate a regret

18

value at least two routes are necessary. Nevertheless, in some instances one route might

be sufficient to cover all tasks.

This type of solution method is referred to as the version without team building in the

following, as technicians are not grouped together.

6.1.2 Greedy heuristic

The greedy heuristic is a parallel route building method and was used by Ropke and

Pisinger (2006b) and Pisinger and Ropke (2007) as a repair heuristic in the

improvement phase. It works simultaneously on the number of routes m, which is given

by the number of teams. As mentioned above one team consists of one technician in this

version. The method checks every feasible insertion position for every task and inserts

the task at the position which produces the least increase in the objective value. This

process continues until either all tasks have been scheduled or no more tasks can be

inserted without violating some constraints.

Formally spoken, all Δfi,r values, which denote the change in the objective value if task i

is assigned to team r at its cheapest position, are kept. Subsequently, the task which

produces the least increase or the biggest decrease in the objective value is scheduled at

its minimum cost position.

ሺ݅, ሻݎ ൌ ݃ݎܽ min
௜אே,௥אሺଵ,..,௠ሻ

∆ ௜݂,௥

In order to save computing time, the characteristic of changing only one route per

iteration is exploited and only those Δfi,r values are recalculated which are affected by

the previous insertion.

6.2 Solution improvement

To improve the initial solution, the ALNS is applied. The algorithm iteratively destroys

the solution by removing some of the scheduled tasks to reinsert them at better

positions. To do so, five destroy heuristics and three basic repair heuristics are

available. The method pairs to apply are chosen randomly on the base of their

19

corresponding weights, earned during former iterations. Whether the new solution,

achieved by the applied heuristic pair, is accepted to be the next current incumbent or

not is decided according to the SA criterion. In the following, the available destroy and

repair heuristics are described.

6.2.1 Destroy heuristics

In every iteration, one of the four destroy methods proposed by Ropke and Pisinger

(2006b) and Pisinger and Ropke (2007) is applied to remove a set of already scheduled

tasks. Every method has a different approach and tries to react to the various aspects of

the problem sets and therefore makes it easier to find better results.

When tasks have been removed, it is important to compress the solution in a way that

the already scheduled tasks are tried to be moved to an earlier position for every team,

taking into account the time window constraints. This compressing process was

suggested by Cordeau et al. (2008) to avoid too big holes in the schedule. This is

possible, as by executing the repair methods, tasks can be inserted in every feasible

position anyhow by pushing the successor tasks forward.

Before starting the destruction, u, the number of tasks to remove must be set. This

number is chosen randomly from the range of min {0.1na, 30} and max {0.4na, 60}

whereas na denotes the number of assigned tasks, as suggested by Pisinger and Ropke

(2007). This means that for large instances the number of tasks to remove is between

[30, 60] and for small instances between [0.1na, 0.6na]. Removing more than 60 tasks in

each iteration would lead to solutions which are rarely accepted, because of the weak

repair methods. On the other hand, removing less than 0.1na would not contribute much

to an improvement of the solution either.

6.2.1.1 Random destroy

The random destroy is the simplest method, but it helps to diversify the search. This

method continues to remove scheduled tasks randomly until the earlier set number of

tasks to remove u is met.

20

6.2.1.2 Worst destroy

Worst destroy is an approach which pays attention to the objective function and so

removes tasks which deteriorate it the most because of a wrong positioning. To find out

which task contributes the most to a bad solution, for every task i its cost of insertion

(cost(i,x)) is calculated. This insertion cost is defined as the difference between the

solution with task i (f(x)) and the solution when task i is removed (f-i (x)):

cost(i,x) = f(x) – f-i (x)

It is obvious that tasks with high cost(i,x) should be removed to be rescheduled at a

cheaper position. The heuristic repeatedly chooses a task and removes it until u tasks

have been removed as demonstrated in Algorithm 2. Nevertheless, it is not always the

task with the highest cost(i,x) that is removed but a randomized selection with a degree

of randomization controlled by the parameter pworst is used. All scheduled tasks are

listed in the array L sorted in descending order of cost(i,x). A random number y in the

interval [0,1] is drawn and the task in the ܮሾݕ௣ೢ೚ೝೞ೟|ܮ|ሿ position is chosen to be

removed. The larger the parameter pworst, the higher the probability that the task with the

highest cost(i,x) is selected.

Without this type of selection, the same set of tasks would be removed again and again,

provided that the input solution for the worst destroy method is the same. Therefore, no

improvement in the solution could be expected.

Algorithm: 2

1 input: feasible solution x

2 removed = 0

3 repeat

4 array L = scheduled tasks i sorted in decreasing order of cost (i,x)

5 choose random floating number y in the interval (0,1)

6 select task: i = ܮሾݕ௣ೢ೚ೝೞ೟|ܮ|ሿ

7 remove task i

8 removed++

9 until removed >= u

10 compress solution

21

6.2.1.3 Related destroy

The related destroy approach was introduced by Shaw (1997, 1998). The main idea is to

remove related tasks which will help to create more opportunities for interchange in the

reinsertion phase or in other words, remove tasks that can easily be exchanged. By

removing dissimilar tasks, they probably would be reinserted at their former position, so

no improvement could be expected.

Relatedness is defined as geographical closeness, closeness in the starting time of the

service but also as the similarity of the task requirements. Therefore, two tasks are

related, if they have a small distance to each other, their current service starting times

are scheduled close and they require similar technician skills. The skill similarity γii´

between two tasks i and i´ is used as proposed by Cordeau et al. (2008) and is obtained

by comparing their skill requirement matrices wi
αβ

´௜௜ߛ ൌ ෍෍หݓ௞௟௜ െ ´௞௟௜ݓ ห
௤

௟ୀଵ

௣

௞ୀଵ

The three criteria are combined in the following formula to obtain the weighted

relatedness measure R(i,i´) between task i and i´. The weights are indicated by the

respective w parameters.

ܴሺ݅, ݅´ሻ ൌ ௗ௜௦௧௔௡௖௘݀௜,௝ݓ ൅ ௧௜௠௘หܾ௜ݓ െ ௝ܾห ൅ ௜௝ߛ௦௜௠௜௟௔௥௜௧௬ݓ

So, the lower R(i,i´), the more related the two interventions are.

The heuristic first selects and removes a task i randomly from the schedule. Then the set

of removed tasks S is initialized with i. On the base of the chosen task, the relatedness

to all other scheduled tasks is calculated and one with a lower R(i,i´) measure is chosen

to be removed. Again, the algorithm is diversified by adding some randomness into the

choice. Tasks are sorted in list L in increasing order of relatedness and the task in the

 .ሿ position is removed from the solution and inserted into the set S|ܮ|௣ೝ೐೗ೌ೟೐೏ݕሾܮ

Parameter prelated again controls the degree of the random influence to the selection and

y is a random number in the interval [0,1]. The next task on the base of which the R(i,i´)

values are calculated is chosen randomly from S and the algorithm is continued until u

tasks have been removed as in Algorithm 3.

22

Algorithm: 3

1 input: feasible solution x

2 choose a scheduled task i randomly

3 remove task i and initialize set S of removed tasks S = {i}

4 compress solution //by removing a task the starting time of the remaining changes

5 removed = 1

6 repeat

7 i* = task randomly selected from S

8 array L = scheduled tasks i not in S sorted by increasing R(i,i*) values

9 choose random floating number y in the interval (0,1)

10 select task: i = ܮሾݕ௣ೝ೐೗ೌ೟೐೏|ܮ|ሿ

11 S = S ׫ {i}

12 remove task i

13 compress solution

14 removed++

15 until removed >= u

6.2.1.4 Cluster destroy

Cluster destroy (Ropke and Pisinger, 2006a) is based on the related destroy heuristic

where some kinds of related tasks are selected to be removed. However, it is not the

first priority in this heuristic to make it easier to interchange them among each other,

but to spot and remove clusters of tasks which are on the same route instead of

removing fewer tasks from more routes. In this method, the term related refers to spatial

closeness, so local coherent tasks are removed. The reason for not using the related

destroy but implementing a variant of it, is that it is important to remove the whole

cluster with all its associated tasks on a given route at once, otherwise there would be a

tendency to reinsert the removed tasks back to their former position. The cluster destroy

selects a geographical cluster for a certain route and removes it entirely. Then, the

removed tasks can either be distributed to different routes or the whole cluster can be

integrated into a close route.

23

Figure 3

Figure 3, assumed from Ropke and Pisinger (2006a), depicts an example for the cluster

removal with a subsequent repair. The square stands for the depot whereas the circles

represent the individual tasks. In the upper example the cluster removal heuristic is

applied to route 2. As a next step, the route is divided into two clusters. The first,

consisting of task g, l, m and n and the second, consisting of tasks h, i, j and k. The

heuristic chooses one of the clusters with a probability of 0.5 and removes all tasks in a

cluster, in the upper example tasks h - k. The removal of the entire chunk of tasks makes

it possible for the repair heuristic applied afterwards to create a schedule with lower

routing costs. Even if one of the tasks in the cluster would be retained in route 2, as

could happen in the related destroy, the repair heuristics would tend to reinsert the

removed tasks back to their former position.

For identifying clusters, Kruskals algorithm (1956) for identifying the shortest spanning

subtree is applied. By deleting the longest edge of the minimum spanning tree, two

clusters are obtained. The clustering is embedded into the removal heuristic as follows.

The first team whose route is destroyed is selected randomly. After indentifying two

clusters of tasks, one of them is chosen with a probability of 0.5 and all tasks in this

cluster are removed. If the number of tasks to remove is achieved, the algorithm stops.

Otherwise, one of the current removed tasks is chosen randomly (i*) and the closest

scheduled task on a different route is selected. The route of the new task is than divided

in two clusters and one of them is removed. This process continues until the number of

removed tasks reaches u or no more clusters can be found because of too short routes.

Algorithm 4 shows the pseudo code of the described procedure.

24

Algortihm: 4

1 input: feasible solution x

2 choose team j randomly which has at least 3 assigned tasks

3 removed = 0

4 repeat

5 find the minimum spanning tree between the assigned tasks of team j

(Kruskal`s algorithm)

6 remove the largest edge to obtain two clusters

7 select one of the clusters with probability 0.5 and remove all tasks

8 removed += |removed cluster|

9 select task i* of selected cluster randomly

10 find scheduled task i which is spatially closest to i*, is in a team different

from j and has at least 3 assigned tasks

11 j = team of i

12 until removed >= u or there are no more teams with at least 3 assigned tasks

13 compress solution

6.2.2 Repair heuristics

After the solution is ruined by one of the available destroy heuristics, the removed tasks

together with the residual unscheduled tasks are tried to be reinserted by one of the

repair heuristics described below. In the improvement phase, parallel and sequential

methods are used side by side, since both of them have specific advantages when

applying them on different problem sets. Potvin and Rousseau (1993) came to the

conclusion that the parallel approach performs better than the sequential one when

solving VRPTWs with exclusively random, and a mix of clustered and random

distributed customers. In turn, the sequential method outperforms the parallel for

exclusively clustered problems. To combine the strengths of both methods, sequential

and parallel methods are used together in the improvement phase.

25

6.2.2.1Greedy heuristic

Just like described above in the solution construction phase, the greedy heuristic is used

to repair the solution by repeatedly inserting tasks in their cheapest possible route at

their best position.

6.2.2.2 Insertion heuristic

The insertion heuristic used in this solution framework is a slight modification of

Solomon´s (1987) insertion method called I1. It differs from the greedy and regret

approach in a way that it is a sequential route construction heuristic. It considers only

one route at the same time and only continues with the next if there is no possibility to

insert another task. Furthermore, the decision which task to include is based on multiple

criteria in addition to the objective function.

The heuristic for the VRPTW first initializes a route with a seed customer and then adds

the remaining unscheduled customers, by considering the respective constraints, into the

route until it is full. If there are still unscheduled customers, a new route is initialized.

This procedure is continued until all customers are serviced. The seed customers to

initialize a new route are either the geographically farthest unrouted customer or the

unrouted customer with the earliest deadline.

However, the initialization process in this heuristic framework is omitted because of

two reasons. First, the heuristic is used as a repair heuristic, so it faces existing routes

which in most of the cases are initialized anyway. Second, in cases, in which the destroy

heuristics remove all tasks from a route, the insertion criteria on the base of which tasks

are assigned are good enough to initialize the routes. Another difference to the original

solution method is the restriction on the number of routes derived from the number of

teams.

This method uses two criteria c1(i, h, i´) and c2(i, h, i´) to decide which customer h is

inserted at which position between two assigned and adjacent customers i and i´. In the

case of empty routes, i and i´ refer to the depot, so inserting h between them would

result in a pendulum route. The cost for inserting h between i and i´ is reflected by c1(i,

h, i´), which is defined as the weighted average of the extra travel cost c11(i ,h, i´) and

the extra time needed for the insertion c12(i ,h, i´). In the current heuristic, factor c11(i ,h,

26

i´) is modified to be the extra cost of the objective function when inserting h, to account

for the outsourcing costs as well. Factor c12(i ,h, i´) is defined as the difference between

the new starting time for service at task i´ (bi´
new) when h is inserted between i and i´ and

the staring time before inserting h (bi´).

The criteria c1(i ,h, i´) and c2(i ,h, i´) are calculated as follows

c1(i ,h, i´) = α1c11(i, h, i´) + α2c12(i, h, i´)

where

α1 + α2 = 1 α1 ≥ 0, α2 ≥ 0

c11(i ,h, j) = dih + dhi´ - dii´ - oh

c12(i, h, i´) = bi´new – bi´

c2(i, h, i´) = λd0h - c1(i ,h, i´)

Factor c2(i, h, i´) depends on the insertion cost for inserting h between i and i´ and the

distance from h to the depot. It is easy to observe that we want to insert customers with

high c2(i, h, i´) values, as they stand for the benefit derived from servicing a customer

on the current route rather than on a direct route. Parameter λ defines how much the best

insertion position of h depends on its distance from the depot. Furthermore, λ adjusts the

weighting between the mentioned distance and the insertion cost.

6.2.2.3 Regret heuristic

The regret heuristic was proposed by Potvin and Rousseau (1993) for the VRPTW by

adopting the insertion framework of Solomon (1987). Furthermore, Ropke and Pisinger

(2006b) and Pisinger and Ropke (2007) used this heuristic in the ALNS framework.

It is a parallel approach which is based on a regret measure calculated for all unrouted

customers.

The regret heuristic develops the greedy approach further in order to overcome its

weaknesses in identifying difficult tasks which have only a few feasible and reasonable

insertion possibilities. As the greedy heuristic inserts tasks at their current best cost

position, it ignores that by doing so, the placement of more challenging tasks is delayed

27

to later iterations where the possible insertion positions are either limited or nonexistent.

The regret heuristic reacts to this problem by adding a kind of forecast measure to the

insertion decision. This measure named regret is calculated for every task and is an

indicator of by how much the solution quality would suffer later if we wouldn´t insert a

task at its best position now. As the Potvin and Rousseau approach is based on

Solomon´s insertion heuristic, they define the value of the regret as the “gap between

the best insertion place for a customer and its best insertion place in the other routes”,

whereby the best insertion places are determined by the insertion cost formula

developed by Solomon. In our context, regret is defined as in Ropke and Pisinger

(2006b).

If the variables Δfi
q represent the change in the objective value when task i is inserted

into its qth cheapest route at its best position, then in each iteration, the regret value for

task i is defined as:

௜ݐ݁ݎ݃݁ݎ ൌ ∆ ௜݂
ଶ െ ∆ ௜݂

ଵ

Regret values therefore indicate the difference in the cost of inserting task i at the best

position in its cheapest route, and the best position in its second cheapest route. The

infeasibility of scheduling a task in a route would result in Δfi
q = ∞, which in turn would

cause tasks which have the fewest feasible routes for a potential insertion to have the

highest regret.

Because we want to insert difficult tasks earlier to consider that they have fewer

reasonable alternatives for insertion, the task with the biggest regret is inserted in its

best route at its best position.

݅ ൌ max݃ݎܽ
௜אே

ሺ ∆ ௜݂
ଶ െ ∆ ௜݂

ଵሻ

In the case of facing more tasks with equal regrets, the task which produces the lowest

insertion cost is assigned just like it would happen in the greedy approach. The process

continues until either all tasks are scheduled or no feasible position for unscheduled

tasks can be found.

Pisinger and Ropke (2006b) refer to the extension of the basic regret-2 heuristic, in

which the best and the second best routes are crucial to a set of regret-q heuristics. The

regret in regret-q heuristics is calculated as:

28

௜ݐ݁ݎ݃݁ݎ ൌ ෍∆ ௜݂
௛ െ ∆ ௜݂

ଵ

௤

௛ୀଶ

Again, the task with the highest regret value is inserted at its lowest cost position

according to:

݅ ൌ max݃ݎܽ
௜אே

൭෍∆ ௜݂
௛ െ ∆ ௜݂

ଵ

௤

௛ୀଶ

൱

Regret-q heuristics with q > 2 involve more than the best two routes in the decision.

This enables an earlier identification of tasks which have only few good alternatives for

insertion, so those are scheduled with higher priority. In other words, the higher q the

further the heuristic looks ahead. Therefore, it detects earlier big insertion cost

differences. On the other hand a regret-1 heuristic focuses only on one route, therefore

the regret is ignored and tasks are selected in decreasing order of their best insertion

cost. Hence the solution obtained by the regret-1 heuristic equals the solution achieved

by the greedy approach. When applying different regret heuristics, attention should be

paid to the number of existent routes. In either case the number of routes must be bigger

or equal q. For the current algorithm regret-2, -3, -4 and -m heuristics are used in

dependency of the number of teams.

7. Version with team building

It happens frequently in real life situations that one encounters tasks that are too

complex or too labor-intensive to be serviced by a single technician even if he is fully

trained.

To handle such situations, several technicians must be grouped together so that their

aggregated skills are sufficient to execute the assigned tasks together. As defined in

Dutot et al. (2006), teams must stay together for a whole day, because the increased

complexity and time consumption of mixing teams during a shift would make it

ineffective to separate them. This is true since all technicians whose teams are affected

must meet each other at the same time and the same location to enable a reassignment.

The condition that teams can´t be separated calls for a sophisticated solution method

that is able to construct adequately arranged teams that ideally have low waste of skills.

29

Let´s assume that a team is built in order to serve a high number of tasks, but one of the

technicians assists only during the execution of one intervention. The mentioned

technician’s skills would be wasted, except for this one task. So the quest is to innately

form reasonable teams to avoid that some technicians have to kick their heels almost all

day long, while their resources would be needed on other fields.

This chapter outlines the extensions made on the solution method described above to

cope with variable team configurations in the construction, as well as in the ALNS

phase.

7.1 Construction heuristic

As tasks require more than one technician, the first aim is to form teams in a way that

their aggregated skill configuration enables the assignment of various interventions.

Once the team building phase is completed, the greedy heuristic is applied to assign the

unscheduled tasks as a second step.

A sophisticated approach for grouping technicians is the team construction method

proposed by Cordeau et al. (2008), which is based on the selection of some seed tasks

on the base of which teams are arranged. The algorithm is slightly modified to comply

with the current problem’s characteristics, but the basic idea to choose a task and then

assign technicians one by one to an empty team until the resulting team is able to cover

all of the tasks requirements is unchanged.

As we want the resulting teams to be heterogenic to be able to work on various tasks

and to be sufficiently skilled to serve more complex tasks as well, seed tasks are

determined by considering two criteria: difficulty and similarity in terms of the tasks´

requirement matrix wi
αβ.

Difficulty βi is a measure of how hard it is to create a team for a task. It is derived from

the requirement matrix wi
αβ and is defined as:

௜ߚ ൌ ෍෍ݓ௞௟௜
௤

௟ୀଵ

௣

௞ୀଵ

This measure provides information about the number of technicians needed, but also

about the demand of technicians’ skills. Consider two tasks A and B with the

corresponding requirement matrices below. Even though both tasks require only one

30

technician, task B is more difficult (βB=3) than task A (βA=1), because a higher skilled

technician is required to execute task B.

A = ൭
0 0 1
0 0 0
0 0 0

൱ B = ൭
0 0 1
0 0 1
0 0 1

൱

As heterogeneous teams with different skill configurations are able to serve a higher

variety of tasks, the heuristic tends to choose seed tasks which differ from each other a

lot. The actual value, by how much two tasks differ from each other, is defined by

comparing their skill requirement matrix wi
αβ just like in Section 6.2.1.3. Nevertheless,

it is not enough to define the similarity between only two seed tasks, since depending on

the number of technicians, more teams may be constructed, which requires more seed

tasks. Let S represent the set of already chosen seed tasks, then the similarity of task i

to the whole set is defined as:

௜ௌߛ ൌ෍ߛ௜௜´
௜´אௌ

The two measures are combined to form a score for each task i defined as:

݂ሺ݅, ܵሻ ൌ ௜ߚఉݓ ൅ ௜ௌߛఊݓ

Variables wβ and wγ are parameters which control the impact of each measure on the

selection of the seed tasks.

The f(i,S) values are calculated for all unscheduled tasks. Nevertheless, because S is

empty at the beginning, in the first iteration the scores are determined by only

considering the difficulty. However, as seed tasks are added to S the f(i,S) values have

to be recalculated as well. Tasks are sorted in list L in decreasing order of their

corresponding score and the one with the highest f(i,S) is selected to build a team for it.

If there is no possibility to form a team, the heuristic continues with the next task on the

sorted list until a team can be created which is able to perform the selected task. The

task is declared as a seed task, it is included in set S and scheduled to the new team. The

f(i,S) values are recalculated by excluding the already chosen seeds and those tasks for

which no team can be arranged because of the lack of technicians. Then the task with

the highest score is selected again for the team creation. This process continues until

either all tasks have been scheduled or the number of assigned technicians is greater or

31

equal χ|T|. χ [0,1] א can be defined as a safety stock of technicians that can be used in

the following scheduling phase to reinforce the existent teams.

At first sight it seems that the outsourcing costs which have a big impact on the

objective function are neglected. Nevertheless, we assume that difficult tasks also have

higher outsourcing costs, so they are considered in the difficulty criterion implicitly. On

the other hand, even if easy tasks would have high outsourcing costs because of some

reasons, it would be counterproductive to consider these costs explicitly. Creating teams

on the base of easy tasks, even if they have high outsourcing costs, would cause the

teams to be too understaffed to serve a high variety of interventions.

7.1.1 Initial team composition

The process of forming teams follows a greedy approach (Cordeau et al., 2008) where

technicians are assigned to teams that are dedicated to serve the potential seed tasks.

The assignment happens according to the compliance of the skills demanded and

offered. The initial point is an empty team which is gradually filled up with technicians

until the resulting team is able to cover all of the required skills. The choice of including

technicians into the team is based on their ability to cover preferably many of the

required skills which are not covered yet by already assigned technicians. For

exemplifying the team building procedure, the example used by Cordeau et al. (2008) is

demonstrated.

Matrix A represents the requirement matrix of a task which is chosen to have a team

built for it.

1 2 0 2
 A = 0 1 0 2

0 1 0 2

Three technicians are available with the respective skill matrices B, C, D:

1 1 1 1 1 1 1 1 1 1 0 0
 B = 1 0 0 1 C = 0 1 1 1 D = 0 0 0 0

0 0 0 1 0 1 0 1 0 0 0 0

The following formula is used to calculate, how many skills a technician j with skill

matrix vj
αβ covers of a task i´s skill requirement matrix wi

αβ:

32

෍෍݉݅݊ሼݒ௞௟
௝ , ௞௟௜ݓ ሽ

௤

௟ୀଵ

௣

௞ୀଵ

For the upper example, the resulting covering scores would be 5, 7 and 2, respectively.

Technician C is able to perform the most out of task A’s demands, so he is the first to be

included in the team. Only those requirements which have not been handled yet must be

considered in the following steps, so matrix A is updated to the actual requirements.

Formally spoken, the new matrix A´= (w´i
αβ) is calculated by setting

ఈఉ௜´ݓ ൌ max ቄ0,ݓఈఉ௜ െ ఈఉݒ
௝ ቅ

The updated requirement matrix A´ is

0 1 0 1
 A´= 0 0 0 1

0 0 0 1

The new covering scores are 4 by using matrix B and 1 by using matrix D. Accordingly,

technician B would be assigned to the team. The combined skills of technician B and C

are sufficient to execute task A.

In the case of more technicians having the same covering scores, a second criterion is

introduced. The measure waste is defined as the unused or wasted skills that occur at

assigning a technician to a task and a team.

෍෍݉ܽݔሼ0, ఈఉݒ
௝ െ ఈఉ௜´ݓ ሽ

௤

ఉୀଵ

௣

ఈୀଵ

The resulting waste scores for the technicians with skill matrices B, C and D when

assigning them to perform the task with requirement matrix A would be 2, 2 and 0

respectively. The team creation is illustrated in Algorithm 5.

Algorithm: 5

1 input: set of available technicians, set of unscheduled tasks

2 set of seed tasks S = {}

3 repeat

4 array L = unscheduled tasks that were not considered for team creation,

 sorted by decreasing f(i,S)

33

5 counter = 0

6 repeat

7 select task: i = L[counter]

8 create Team for task i //according to the procedure described above

9 if create team == possible

10 update available technicians

11 S = S ׫ {i}

12 assign task i to new team

13 else counter++

14 until counter >= |L| or create team == possible

15 until all tasks are scheduled or all technicians minus the safety stock χ|T| are

planned

7.1.2 Greedy heuristic

After the team building phase, the unscheduled tasks are assigned to the existent teams

by using the greedy approach from Section 6.1.2 with some extensions. Again, the

principle is to calculate the best insertion cost for all tasks and the one whose insertion

is associated with the lowest increase or the biggest decrease in the objective value is

assigned to its lowest cost position. Nevertheless, since there are unscheduled

technicians from the safety stock which can be used to reinforce the existent teams, the

skill requirement constraints are ignored. So the task with the lowest feasible insertion

cost is selected to be inserted (ignoring the skills). If the team is skilled sufficiently, the

task is inserted. If not, the team is tried to be complemented by the free technicians by

performing the team completion algorithm as described in depth in Section 7.2.3. If it is

not possible to complement the team either, the task with the next lowest insertion cost

is considered. To save computational time, a list of all feasible tasks with insertion costs

and insertion positions is set up and only the values which are affected by an insertion

are recalculated.

The process stops if no more tasks can be scheduled to the existent teams. Nevertheless,

if there are still free technicians, the algorithm tries to set up a further team with the

objective to schedule some of the remained tasks. The process is explained in detail in

Section 7.2.4.

34

7.2 Solution improvement

The initial solution is improved by applying the ALNS as described above. Again,

several sub-heuristics for the solution destruction and repair are available, which makes

it possible for the algorithm to adjust itself to different problem specifications. The

heuristic pairs (destroy-repair) to apply are selected by running the roulette wheel

selection mechanism as in 5.3, whereas the probabilities for getting chosen depend on

the heuristics´ previous performance. A new solution is obtained by applying the

heuristics. Whether the new result is accepted or rejected, is decided by using the

simulated annealing framework as for the version without team building.

The process of continuously destroying and repairing the schedule to create new

solutions is repeated until the stopping criterion is met.

7.2.1 Destroy heuristics

Before starting the destruction of the current solution, again, the number of tasks to

remove u is determined by drawing a random number from the interval of min {0.1na,

30} and max {0.4na, 60} as described in Section 6.2.1.

To destroy the solution, the destroy heuristics random destroy, worst destroy, related

destroy and cluster destroy are applied in the same way as described for the solution

method without team building. What’s more, a fifth destroy method named team

destroy is implemented.

To avoid needless waiting times, the solution is compressed after every removal by

trying to serve the tasks scheduled to an affected team earlier. Furthermore, every

affected team is checked for redundant technicians as in Cordeau et al. (2008). A

technician is redundant for a team if all scheduled tasks could be executed without his

assistance. As an extreme example, consider the case when all tasks are removed from a

team´s schedule. Then, all technicians belonging to that team would be redundant. The

basic idea is to set free unused technicians in order to use them for establishing new

team configurations during the search. This enables to search the solution space at a

much larger level. The unused technicians are identified by checking every team, which

was affected by the task removal whether it could complete all its assigned tasks

without one of its technicians. More formally, the algorithm checks for every technician

in an affected team if any assigned task would be performable without him. Among all

35

redundant technicians, one is chosen randomly and is unscheduled. This process

continues until no more technicians can be exempted.

7.1.2.1 Team Destroy

The team version method is extended by the team destroy heuristic, in which entire

teams are deleted from the schedule. Teams are chosen randomly and removed until the

number of removed tasks is equal or greater than u as outlined in Algorithm 6. The main

idea of this method is the same as the checking for redundant technicians, namely to

release some scheduled technicians. This makes it easier for the repair heuristics to

regroup them into different teams with different resources where preferably few skills

are wasted.

Algorithm: 6

1 input: feasible solution x

2 removed = 0

3 repeat

5 select team j to remove randomly

6 remove all scheduled tasks from team j

7 removed += number removed tasks

8 delete team and set assigned technicians free

9 until removed >= u

7.2.2 Repair heuristics

The ruined solution is composed by again applying the greedy heuristic, the regret-q

heuristics in dependency of the number of teams and the insertion heuristic.

Nevertheless, it is important to note that the application of the team destroy heuristic, as

well as the check for redundant technicians might change the number of existing teams

during the search, which can cause problems when applying the regret-q heuristics.

Since the destroy and repair heuristics are chosen simultaneously (Section 5.3), it makes

it inevitable to check if the number of teams has decreased after every destruction and if

the actual number of teams is lower than q. If both cases are true, the weights ρab for the

36

unusable heuristic pairs are set to zero, the new selection probabilities are calculated

and a new repair heuristic for the already applied destroy heuristic is chosen by the

roulette wheel selection. Afterwards, the weights and probabilities are set to their

former values since the number of teams can again increase during the search.

Essentially, the repair methods work as described above, but the grouping of the

technicians calls for an advancement. The available technicians gained from the check

for redundant technicians, and especially from the team destroy heuristic, are used to

support the existing teams if they are understaffed to perform tasks. Basically, the

greedy heuristic tries to insert tasks according to their insertion costs. The regret

heuristics apply the regret measure to identify good tasks and positions to insert.

Finally, the insertion heuristic is based on the c2(i, h, i´) measure. Nevertheless, the fact

that the teams are expansible makes the check for the skill feasibility negligible. If the

task, selected by any heuristic to be the most adequate for an insertion, fits into the

determined team, it is scheduled just like that. If not, the team is tried to be adjusted by

applying the team completion algorithm as described in the next section. If the

completion is successful, the task is scheduled, but when it is not possible to form an

adapted team, the heuristics consider the next best task until no more tasks can be

inserted feasibly in the existent teams.

Furthermore, it might happen that even if the existent teams are skilled sufficiently, no

task can be inserted due to the time window constraints. To react to such situations the

algorithm tries to form new teams if there are unscheduled technicians left. This process

is described in Section 7.2.4.

7.2.3 Team completion

As a consequence of the initial safety stock of technicians, of the characteristics of the

team destroy heuristic and of the check for redundant technicians, there are consistently

unscheduled technicians available. These technicians can be used to try different team

configurations by adding them to teams that do not have sufficient skills to execute the

tasks´ requirements. This switching of technicians during the search might result in big

solution improvements, since the solution space is explored at a much larger level than

if the team configuration would be fixed after the construction heuristic. This is

especially true, as there is no possibility to change the teams during the day as described

37

in the problem formulation. Therefore, the algorithm must setup the teams in a way that

they become as effective as possible. The team completion algorithm uses the same

basic idea as the team construction method described in Section 7.1.1 and works for all

repair and construction heuristics as follows.

First, the chosen repair or construction heuristic is applied to set up a list L composed of

all feasible tasks and their corresponding insertion positions, but without considering

the skill requirement constraints. The skills are ignored, since the aim of the team

completion is to reinforce the group anyway if it is not arranged sufficiently. The list is

sorted according to the applied heuristic: for the greedy heuristic in increasing order of

the insertion costs and for the regret and insertion heuristics in decreasing order of the

regret and c2(i, h, i´) values respectively.

Now, the first task on the list L is tried to be scheduled at its position determined earlier.

If the team is skilled sufficiently, the task is inserted and the algorithm goes on with the

recalculation of the insertion costs and the updating of list L.

If it is not possible to serve the task with the team´s existing skills, but there are still

unscheduled technicians, the algorithm tries to add some of these technicians to

reinforce the team. The procedure is the same as for the team creation above. The task

to insert can be imagined as the seed task for which a team must be constructed. Of

course, only the uncovered skills denoted as w´i
αβ must be considered, so the

requirements which can be executed by the existing team r (composed of technicians

with skill matrices vj
αβ) must be deducted from the task´s requirement matrix.

ఈఉ௜´ݓ ൌ maxቐ0,ݓఈఉ௜ െ෍ݔ௝௥ݒఈఉ
௝

௝்א

ቑ

Given the new matrix w´i
αβ, the algorithm selects the free technician that can perform

the most out of the task´s uncovered demands and adds him to the team. This process

continues until the team achieves the abilities to serve the task. As in the example

above, if there are technicians that cover the same amount of requirements, the

technician with the lowest waste in skills is the one to be selected.

If the team completion was successful, the algorithm recalculates the insertion costs,

updates list L and tries to insert the first task on the list. If it is not possible to

complement the team and adjust the skills, because of the lack of skilled technicians, the

algorithm goes on by trying to insert the next task on the sorted list L.

38

This process continues until no more tasks can be scheduled feasibly.

7.2.4 Setup of new teams

After a solution is destroyed, the repair heuristics attempt to schedule as much tasks to

the available teams as possible. Nevertheless, the time window constraints can prevent

the scheduling of tasks, even if the teams are highly skilled. The algorithm reacts to

such situations by trying to form additional teams with the remaining free technicians.

First, the unscheduled technician with the lowest ID number is selected and declared as

the first member of the new team. Then, unscheduled tasks are assigned to the new team

by using the insertion heuristic. Since only the new team is considered for the

scheduling, the sequential approach of this heuristic is especially suited. Again, tasks

are inserted according to their c2(i, h, i´) value, and if the team with the single technician

is not able to execute them, he gets reinforcement by applying the completion algorithm

from above. Of course, this is only possible if there are additional free technicians. The

process of creating new teams is continued until no tasks can be inserted feasibly. If a

new team is not able to execute any task, it is deleted and the assigned technicians are

set free.

8. Further improvement

Ropke and Pisinger (2006b) suggested the application of some noise to the objective

function, since the randomization in the repair phase leads to better results. Their

suggestion is based on the claim that even though the search is guided by the

randomized simulated annealing framework, the exploration of the neighborhood is

done by the repair heuristics, so there should be a randomization at that level as well.

This further randomization leads to a diversification of the found solutions, which in

turn can help to identify better results.

The noise term is applied to the objective function when calculating the insertion costs

in such a way that not always the best adequate task at the best position is selected for

insertion. The noise term is a randomly chosen value, but it is bound by the maximum

distance between two tasks times parameter ϑ, which controls the amount of noise. This

39

constraint is set to choose the noise parameter in dependency of the problem instance

characteristics.

Every time when calculating a task´s insertion cost C, a random number in the interval

ൣെߴmax௜,௜´אே ݀௜௜´, ߴ max௜,௜´אே ݀௜௜´ ൧ is chosen and added to C to obtain C´. Whether C

or C´ is considered in the insertion phase, is decided on the base of the past performance

of the two cost values by using the adaptive mechanism as described in Section 5.3.

9. Data Sets

Given that the problem discussed in this thesis, is a combination of the vehicle routing

problem and the technicians and interventions scheduling for telecommunications

problem, the test instances are generated out of Solomon´s VRPTW benchmark

problems and the test instances which were provided by the organizers of the ROADEF

2007 challenge. From the VRPTW point of view, 12 different instance groups are used:

random (R1, R2), clustered (C1, C2) and semi-clustered (RC1, RC2) geographical data.

All instances have 100 customers and one depot, whereas the distances (= travel times)

between them are given in Euclidean distances. Problem sets R1, C1, and RC1 have a

short scheduling horizon, which allows only a few customers per route because of

tighter constraints. On the other hand, problem sets R2, C2, and RC2 are characterized

by a long scheduling horizon, where many customers can be scheduled per route.

Furthermore, every problem set differs in the time window density, which is defined as

the percentage of customers that have time windows at all. The mentioned sets are split

into 50% and 100% time window density problems.

The Solomon instances were combined with the ROADEF data sets in a way that each

one of the 100 customers (tasks) was reconfigured with randomly chosen skill

requirements. What´s more, three different groups of requirement matrices are used,

namely 5x4, 6x6 and 7x4. However, the data is slightly changed to cope with the actual

problems characteristics. The number of columns in the matrices indicate the number of

different domain types and the number of the rows the number of skill levels. Due to the

fact that two algorithm versions, with team building and without, are tested, we

distinguish between problem sets where every task must be performed by a single

40

technician and problem sets where technicians must be grouped together to come up

with the required skills.

The outsourcing costs that accrue if a task cannot be scheduled are calculated as

follows:

oi = 200 + difficultyi
δ

The outsourcing cost depends on the difficulty of the task plus a fix value of 200. 200 is

derived from the fact that tasks are distributed in a 100 x 100 coordinate system and

with the depot at (35/35) for instances R1 and R2, the farthest pendulum tour would

result in

ቒඥሺ100 െ 35ሻଶ ൅ ሺ100 െ 35ሻଶ כ 2ቓ ൌ 200

This increase is done, because the main objective of the solution method is to serve as

many customers as possible. Consequently, tasks are only given off if there is no

feasible way to serve them, and not if they are too far away. Weight δ > 1 is included to

make tasks that require more technicians more expensive. An exponential increase of

the outsourcing costs with increasing difficulties seems to represent a real life situation

the best, so δ is set to 1.5 for testing this heuristic.

Finally, we come up with: 3 (R, C, RC) x 2 (long and short planning horizon) x 2 (high

and low time window density) x 3 (requirement matrices) x 2 (with and without team

building) = 72 data sets.

The corresponding list of the available technicians which perform the tasks is also

derived from the ROADEF data sets. Two types of technician sets are used. The first

set, which contains sufficient technicians to serve all tasks, is used to test the

algorithm´s routing efficiency. Additionally, a second set is created with a reduced

number of technicians. This is done to simulate situations where it is impossible or very

difficult to schedule all tasks. In such situations, besides good routing, it is essential to

create reasonable teams in order to exploit all the technicians´ skills.

The number of the available technicians is listed in Table 1, however, it must be noted

that technicians are mostly unique due to their different training.

41

 Team Version No Team Version

Complete Set

Of Technicians
Reduced Set

Of Technicians
Complete Set

Of Technicians
Reduced Set

Of Technicians
C101_5x4 90 22 17 6
C103_5x4 90 22 17 6
C201_5x4 90 11 8 3
C203_5x4 90 11 8 3
R101_5x4 90 22 25 10
R103_5x4 90 22 25 10
R201_5x4 90 11 7 3
R203_5x4 90 11 7 3
RC101_5x4 90 22 22 9
RC103_5x4 90 22 22 9
RC201_5x4 90 11 9 3
RC203_5x4 90 11 9 3
C101_6x6 130 26 16 6
C103_6x6 130 26 16 6
C201_6x6 130 12 7 3
C203_6x6 130 12 7 3
R101_6x6 130 26 26 11
R103_6x6 130 26 26 11
R201_6x6 130 12 7 3
R203_6x6 130 12 7 3
RC101_6x6 130 26 24 10
RC103_6x6 130 26 24 10
RC201_6x6 130 12 8 3
RC203_6x6 130 12 8 3
C101_7x4 110 27 17 7
C103_7x4 110 27 17 7
C201_7x4 110 13 8 3
C203_7x4 110 13 8 3
R101_7x4 110 27 28 12
R103_7x4 110 27 28 12
R201_7x4 110 13 10 3
R203_7x4 110 13 10 3
RC101_7x4 110 27 23 10
RC103_7x4 110 27 23 10
RC201_7x4 110 13 9 3
RC203_7x4 110 13 9 3

Table 1: Number of available technicians

42

10. Computational experiments

The algorithm was implemented in C++ and run on an Intel® Pentium® D CPU 3.20

GHz computer with 2 CPUs sharing a memory of 4GB. For testing the developed

algorithms, the 72 problem instances described above were used once with the complete

set of technicians where it is possible to schedule all tasks, but also with a reduced set,

in which the number of technicians is limited so it is much harder to assign tasks.

10.1 Parameter tuning

The present solution method uses a lot of parameters, which is rather undesirable,

because all of them would have to be balanced against each other in order to find the

optimal tuning. Nevertheless, during the test runs it turned out that the algorithms are

very insusceptible against slight changes in the parameter tuning. This robustness is

exploited by mainly applying the parameters determined in the related papers written by

Cordeau et al. (2008) and Ropke and Pisinger (2006b). Therefore, only the parameters

that are added for this problem are tuned. In the following, a short overview of all

parameters is presented.

The parameters used for the simulated annealing criterion are wT and the cooling rate c.

The parameters used in the destroy heuristics are pworst in the worst destroy and prelated,

wdistance, wtime and wsimilarity in the related destroy heuristic. Cluster and team destroy

methods are parameter free. In the repair phase, only the insertion heuristic uses

parameters α1, α2 and λ. For the version with team building, further parameters are

applied, namely wβ, wγ and χ for the initial team creation. The weight adjustment

algorithm uses parameters σ1, σ2, σ3 and r. Finally, parameter ϑ determines the amount

of noise.

Only parameters wβ, α1, α2 and wsimilarity were tuned for this algorithm by applying all

problem instances with the complete and the reduced types of technician sets. Since

parameter wβ is only used for the solution construction together with the greedy

heuristic, the initial solutions generated with different parameter adjustments were

tested. The solution quality in dependency of different wβ settings is posted in Table 2.

For calibrating α1 and α2, the insertion heuristic was used as a construction method and

the created (initial) solutions were compared in Table 3. In Table 4 the results obtained

43

by the ALNS in dependency of different wsimilarity settings is posted. The parameters

were set by ignoring their interaction among each other by first fixing one parameter

and then continuing with the next. The parameter setting that led to the best average

result was chosen.

 wβ 0.5 0.75 1 1.25 1.5 1.75 2
Team V. / complete
set of technicians 2551.593 2516.42 2547.81 2533.83 2537.24 2509.61 2527.09
Team V. / reduced set
of technicians 10170.44 9967.87 10014.2 10004.3 9920.75 9920.75 9983.6
Avg. 6361.01 6242.15 6281.00 6269.05 6229.00 6215.18 6255.34

Table 2: Initial solutions created by the greedy heuristic with different wβ parameters

 α1 α2

Team V. /
complete set
of technicians

Team V. /
reduced set
of technicians

No Team V. /
complete set
of technicians

No Team V. /
reduced set
of technicians Avg.

0 1 3504.98 11850.85 2646.90 6109.84 6028.14
0.1 0.9 3403.80 11669.54 2607.76 6165.43 5961.64
0.2 0.8 3379.67 11350.33 2564.33 6046.04 5835.09
0.3 0.7 3378.96 11291.99 2542.51 6139.72 5838.29
0.4 0.6 3268.08 11082.22 2562.61 6164.49 5769.35
0.5 0.5 3286.63 10780.96 2557.91 6121.92 5686.85
0.6 0.4 3284.95 10840.57 2526.56 6061.93 5678.51
0.7 0.3 3238.53 10735.06 2530.10 6077.16 5645.21
0.8 0.2 3228.08 10730.20 2497.74 5949.82 5601.46
0.9 0.1 3231.50 10598.19 2483.69 6052.46 5591.46

1 0 3187.21 10502.18 2430.74 5808.48 5482.15

Table 3: Initial solutions created by the insertion heuristic with different α parameters

 wsimilarity 2 3 4 5 6
Team V. / complete set of techn. 1077.78 1076.79 1077.16 1076.75 1077.39
Team V. / reduced set of techn. 6141.13 6209.09 6071.73 6165.11 6179.16
No Team V. /complete set of techn. 1296.41 1296.83 1299.71 1297.33 1296.93
No Team V. / reduced set of techn. 3499.42 3509.91 3502.81 3505.79 3511.03
Avg. 3003.69 3023.15 2987.85 3011.24 3016.13

Table 4: Solutions created by the ALNS with different wsimilarity parameters

44

All used parameter settings are indicated in the parameter vector (wdistance, wtime,

wsimilarity, prelated, pworst, wT, α1, α2, λ, c, σ1, σ2, σ3, r, ϑ, wβ, wγ, χ) = (9, 3, 5, 6, 3, 0.05,

1, 0, 2, 0.99975, 33, 9, 13, 0.1, 0.025, 1.75, 1, 0.2).

10.2 Experimental results

In this section, the obtained results of the approaches described in Chapter 6 and 7 are

presented. At the beginning the performance of the repair sub-heuristics is shown in

Table 5 - 8. However, to make the methods comparable each of them was applied as a

construction heuristic to use them to build a solution from scratch. The tables contain

the averaged results of all problem sets described above. Each run was executed once

since the heuristics are not affected by random parameters.

Table 5 and Table 6 show the results for the version without team building and Table 7

and 8 for the version with team building. Note that all construction heuristics for the

version with team building use the same initial team construction procedure as

described in Section 7.1.1.

Furthermore, for the results in Table 5 and 7 the entire set of technicians was used, and

in Table 6 and 8 the reduced set. The columns of the tables stand for the different sub-

heuristics that are compared to each other. These are also compared to the average result

obtained by the ALNS. The rows indicate the average objective value across all

instances of the respective data set and the corresponding number of tasks that could be

scheduled, the number of technicians used and the time needed to obtain the result.

Furthermore, in Table 7 and 8 the number of composed teams is indicated. For Table 5

and 6 this is not necessary, since all technicians work alone.

It is obvious that the results obtained by these simple construction heuristics are far

away from those found by the ALNS, nevertheless it must be pointed out that the ALNS

is based on them. Based on Tables 5 – 8, it can be said that each heuristic has different

pros and cons for different problem instances.

In most of the cases the regret-q heuristics prove to have the best quality. However, in

Table 8 the insertion heuristic outperforms all of the regret-q heuristics. The greedy

heuristic achieves the best average solution in Table 8. Even though it is outperformed

by the regret-q heuristics in the other instances, it has quite a stable performance.

45

 ALNS Greedy Insertion Regret-2 Regret-3 Regret-4 Regret-m
Objective 1299.71 2205.68 2430.74 2028.84 1890.17 1831.88 1945.19
Assined Tasks 100.00 99.11 99.58 99.81 99.92 99.94 100.00
Assigned Technicians 10.77 12.39 13.28 12.42 12.31 11.94 11.39
Time (s) 78.94 0.00 0.00 0.02 0.02 0.02 0.03

Table 5: Construction heuristics (no team version / complete set of technicians)

 ALNS Greedy Insertion Regret-2 Regret-3 Regret-4 Regret-m
Objective 3502.81 5602.19 5808.48 5040.68 5036.52 5076.09 5165.68
Assined Tasks 89.96 80.56 80.53 83.83 84.11 84.06 83.61
Assigned Technicians 7.56 7.56 7.64 7.58 7.53 7.58 7.61
Time (s) 53.04 0.00 0.00 0.01 0.01 0.01 0.01

Table 6: Construction heuristics (no team version / reduced set of technicians)

 ALNS Greedy Insertion Regret-2 Regret-3 Regret-4 Regret-m
Objective 1077.16 2509.61 3187.21 2370.65 2393.43 2379.71 2379.86
Assined Tasks 100.00 98.86 98.78 99.31 99.19 99.25 99.44
Used Teams 8.73 31.69 31.72 31.72 31.69 31.67 31.78
Assigned Technicians 41.66 104.64 99.81 105.06 104.78 104.92 104.83
Time (s) 84.63 0.02 0.02 0.07 0.07 0.06 0.07

Table 7: Construction heuristics (team version / complete set of technicians)

 ALNS Greedy Insertion Regret-2 Regret-3 Regret-4 Regret-m
Objective 6071.73 9920.75 10502.18 11276.23 10954.81 10872.12 11224.79
Assined Tasks 79.44 60.61 58.92 57.06 57.47 58.08 57.11
Used Teams 6.19 4.86 5.22 5.14 5.11 5.08 5.11
Assigned Technicians 18.47 18.11 18.39 18.39 18.44 18.36 18.42
Time (s) 72.49 0.00 0.00 0.01 0.01 0.01 0.01

Table 8: Construction heuristics (team version / reduced set of technicians)

To be able to compare the developed approach to already existent ones, the ALNS

algorithm was applied to the classical VRPTW instances of Solomon. The solution

method was adapted in a way that it fits to the problem sets characteristics. This implies

the neglecting of the skill requirements and outsourcing costs but the introduction of a

team (vehicle) capacity constraint.

46

The most heuristics applied to the VRPTW focus on the minimization of the route

numbers and only as a second objective try to reduce the routing costs. Therefore, the

ALNS is compared to the exact solutions where the number of routes is irrelevant but

the routing costs are considered. As a consequence, the route number was not bound

either when applying the ALNS.

Table 9 demonstrates the averaged solutions over five runs, each of them using 25000

iterations of the ALNS algorithm. The table reports the basic VRPTW instances as

described in Section 9 (column 1), the exact (optimal) solution as posted in Kallehauge

et al. (2006) (column 2), the travel distance achieved by the ALNS and the gap between

the obtained solution and the best solution (column 3 and 4). The average number of

routes and the average time for one run are listed in column 5 and 6. In the last row the

averages of the columns are indicated.

The average gap of 0.50% verifies the goodness of the solution finding ability of the

ALNS.

 ALNS

Instance Best Avg. Gap (%)
Number Of

Routes Time (s)
C101 827.30 828.94 0.20% 10 53.08
C103 826.30 828.07 0.21% 10 96.39
C201 589.10 591.56 0.42% 3 84.83
C203 588.70 591.17 0.42% 3 152.48
R101 1637.70 1643.29 0.34% 20 76.92
R103 1208.70 1213.64 0.41% 14 95.17
R201 1143.20 1150.25 0.62% 8.2 102.98
R203 876.45 6 146.82
RC101 1619.80 1635.17 0.95% 15.6 78.26
RC103 1276.04 11.2 88.99
RC201 1261.80 1274.10 0.97% 9 100.77
RC203 939.06 5 129.80
Avg. 1078.07 1070.64 0.50% 9.58 100.54

Table 9: ALNS applied to VRPTW vs. optimal solution values

The results for the service technician routing and scheduling problem obtained by the

ALNS are demonstrated in Tables 10 - 13. The results are obtained by averaging five

runs of the heuristic with 25000 iterations. Tables 10 and 11 show the outcome of the no

team version, where the complete set of technicians is used for Table 10 and the

47

reduced set for Table 11. In Tables 12 and 13, the findings of the team version are

listed. Table 12 shows the results with the complete set of technicians and Table 13 with

the reduced set. The tables contain the average objective value (column 2) and the worst

and the best found solution during five runs (columns 3 and 4). In Tables 10 and 11,

columns 5 and 6 report how many tasks could be assigned to how many technicians,

whereas in Tables 12 and 13, columns 5, 6 and 7 indicate how many tasks could be

performed by how many teams and the number of technicians belonging to the team.

The last column indicates the average computational time in seconds. The last row

again shows the average values of the columns.

Unfortunately, the results cannot be compared to other heuristics, since this is the first

time that the mentioned problem sets were applied. To have an idea about the quality of

the solution, the instances in which all tasks are scheduled can be compared to the

VRPTW solutions.

The average result of the team version algorithm which uses a large set of technicians is

very close to the best routing of the VRPTW. Likewise, the heuristic performed quite

well for the no team version method in which there is no possibility to change the

teams´ skill configurations.

48

Instance Objective MAX MIN
Assigned

Tasks
Assigned

Technicians Time (s)
C101_5x4_noTeam 1117.85 1156.18 1097.67 100 12.8 65.96
C103_5x4_noTeam 1031.31 1043.10 1015.46 100 11.8 84.71
C201_5x4_noTeam 1165.95 1183.22 1158.97 100 7.2 54.06
C203_5x4_noTeam 1063.25 1084.87 1046.93 100 5 87.70
R101_5x4_noTeam 1680.20 1688.34 1675.35 100 20 84.40
R103_5x4_noTeam 1250.88 1260.45 1240.19 100 14.8 103.07
R201_5x4_noTeam 1455.05 1477.68 1447.32 100 6.8 56.44
R203_5x4_noTeam 1107.79 1115.58 1099.31 100 6 85.69
RC101_5x4_noTeam 1703.03 1717.75 1686.36 100 16.8 77.71
RC103_5x4_noTeam 1372.35 1392.17 1346.51 100 12.4 91.52
RC201_5x4_noTeam 1617.57 1635.67 1607.71 100 8.4 58.40
RC203_5x4_noTeam 1161.53 1161.53 1161.53 100 6 86.38
C101_6x6_noTeam 1016.62 1065.60 989.21 100 11 68.04
C103_6x6_noTeam 910.03 929.59 893.94 100 10.6 87.41
C201_6x6_noTeam 821.55 821.55 821.55 100 4 56.32
C203_6x6_noTeam 690.53 691.93 689.60 100 4 100.55
R101_6x6_noTeam 1667.52 1675.72 1662.69 100 19.6 94.96
R103_6x6_noTeam 1222.46 1226.02 1218.23 100 14 114.40
R201_6x6_noTeam 1277.36 1287.53 1268.95 100 6 62.30
R203_6x6_noTeam 949.73 956.83 934.98 100 5 97.80
RC101_6x6_noTeam 1693.50 1703.37 1686.29 100 16 90.17
RC103_6x6_noTeam 1320.30 1336.70 1283.74 100 11.8 103.76
RC201_6x6_noTeam 1408.52 1443.51 1394.40 100 6.2 61.73
RC203_6x6_noTeam 1027.80 1044.58 1006.25 100 5 90.81
C101_7x4_noTeam 1394.70 1424.97 1365.49 100 15.4 58.01
C103_7x4_noTeam 1241.41 1249.63 1233.40 100 12.8 75.76
C201_7x4_noTeam 1274.84 1302.56 1256.30 100 8 49.83
C203_7x4_noTeam 1151.49 1152.94 1150.85 100 7.8 77.20
R101_7x4_noTeam 1790.33 1805.71 1783.35 100 21.6 87.75
R103_7x4_noTeam 1382.22 1405.34 1359.45 100 16.4 101.53
R201_7x4_noTeam 1407.66 1416.72 1398.14 100 8.6 58.61
R203_7x4_noTeam 1168.13 1169.27 1164.69 100 8 80.91
RC101_7x4_noTeam 1846.80 1892.21 1800.65 100 18.2 75.20
RC103_7x4_noTeam 1448.71 1474.43 1431.92 100 13.6 84.99
RC201_7x4_noTeam 1708.08 1718.79 1697.82 100 9 53.65
RC203_7x4_noTeam 1242.39 1248.79 1235.75 100 7.2 74.20
 Avg. 1299.71 1315.58 1286.42 100.00 10.77 78.94

Table 10: ALNS (no team version / complete set of technicians)

49

Instance Objective MAX MIN
Assigned

Tasks
Assigned

Technicians Time (s)
C101_5x4_noTeam 5716.57 5806.38 5656.63 76.6 8 35.34
C103_5x4_noTeam 2746.88 2888.93 2600.27 92.6 8 50.87
C201_5x4_noTeam 2755.52 2755.52 2755.52 94 4 36.56
C203_5x4_noTeam 2392.62 2393.62 2389.21 94 4 70.15
R101_5x4_noTeam 5859.14 5979.65 5761.62 77.6 12 53.58
R103_5x4_noTeam 1797.26 1957.80 1707.51 98 12 61.46
R201_5x4_noTeam 2847.96 2885.80 2838.50 94 4 38.86
R203_5x4_noTeam 2332.23 2332.23 2332.23 94 4 68.24
RC101_5x4_noTeam 5201.64 5311.38 5080.75 81.4 11 51.01
RC103_5x4_noTeam 2365.39 2492.17 2173.86 95.8 11 55.39
RC201_5x4_noTeam 3092.29 3093.34 3088.23 94 5 40.76
RC203_5x4_noTeam 2545.58 2551.54 2543.86 94 5 69.11
C101_6x6_noTeam 7734.60 7776.46 7714.11 68 8 40.31
C103_6x6_noTeam 5126.26 5169.75 4969.91 81.2 8 55.24
C201_6x6_noTeam 3289.97 3311.21 3278.07 90.4 4 38.74
C203_6x6_noTeam 2461.28 2472.21 2449.63 94 3 66.93
R101_6x6_noTeam 6175.71 6319.02 5959.53 76.8 13 60.40
R103_6x6_noTeam 2313.35 2356.46 2263.68 95.4 12 72.20
R201_6x6_noTeam 3557.53 3604.69 3545.74 91 4 38.60
R203_6x6_noTeam 2437.51 2438.44 2437.28 94 3 71.98
RC101_6x6_noTeam 5465.28 5748.17 5165.14 81.2 12 59.87
RC103_6x6_noTeam 2270.25 2542.33 2132.54 97.4 12 65.06
RC201_6x6_noTeam 4566.26 4742.02 4422.86 87.4 4 34.49
RC203_6x6_noTeam 2667.29 2668.47 2663.33 94 3 61.74
C101_7x4_noTeam 5251.51 5297.75 5208.30 81 9 38.58
C103_7x4_noTeam 2039.42 2169.19 1968.95 97.8 9 50.30
C201_7x4_noTeam 2773.41 2773.41 2773.41 95 4 32.77
C203_7x4_noTeam 2281.59 2284.92 2277.79 95 4 60.74
R101_7x4_noTeam 5290.47 5403.91 5144.04 82 14 47.88
R103_7x4_noTeam 2258.08 2339.01 2151.79 96.2 14 63.91
R201_7x4_noTeam 2679.13 2700.10 2668.81 95 5 41.82
R203_7x4_noTeam 2217.18 2230.42 2199.10 95 5 66.84
RC101_7x4_noTeam 5693.87 5857.17 5520.77 80 12 53.15
RC103_7x4_noTeam 2682.16 3066.69 2586.03 94.6 12 58.55
RC201_7x4_noTeam 2930.85 2942.84 2908.33 95 5 39.73
RC203_7x4_noTeam 2285.18 2303.44 2277.62 95 5 58.21
 Avg. 3502.81 3582.40 3433.75 89.96 7.56 53.04

Table 11: ALNS (no team version / reduced set of technicians)

50

Instance Objective MAX MIN
Assigned

Tasks
Used

Teams
Assigned

Technicians Time (s)
C101_5x4_Team 828.94 828.94 828.94 100 10 50 56.66
C103_5x4_Team 815.44 815.44 815.44 100 10 51.6 99.48
C201_5x4_Team 591.56 591.56 591.56 100 3 25.8 44.93
C203_5x4_Team 591.17 591.17 591.17 100 3 25.6 71.09
R101_5x4_Team 1648.76 1653.99 1642.88 100 19.4 84.8 88.72
R103_5x4_Team 1215.32 1218.14 1213.62 100 14 63.6 104.72
R201_5x4_Team 1191.13 1198.41 1179.14 100 5.2 32.6 71.72
R203_5x4_Team 896.97 901.43 892.92 100 4.2 29 111.33
RC101_5x4_Team 1629.60 1644.25 1618.14 100 15.2 72 76.02
RC103_5x4_Team 1261.76 1272.62 1249.37 100 11.2 56.6 81.46
RC201_5x4_Team 1316.82 1329.95 1307.20 100 5.4 34.8 69.00
RC203_5x4_Team 946.55 951.06 940.81 100 4.4 31.2 101.51
C101_6x6_Team 828.94 828.94 828.94 100 10 29.2 63.81
C103_6x6_Team 815.44 815.44 815.44 100 10 31.2 100.44
C201_6x6_Team 591.56 591.56 591.56 100 3 10.2 46.60
C203_6x6_Team 591.17 591.17 591.17 100 3 10 89.67
R101_6x6_Team 1649.42 1651.01 1644.97 100 19.6 50.2 106.09
R103_6x6_Team 1215.59 1218.53 1213.62 100 14 37.6 108.51
R201_6x6_Team 1195.38 1198.41 1189.13 100 5 16.6 71.88
R203_6x6_Team 897.83 904.47 892.92 100 4 13.2 114.51
RC101_6x6_Team 1622.77 1629.79 1618.14 100 15 42.4 86.49
RC103_6x6_Team 1257.24 1266.84 1250.13 100 11 31 87.64
RC201_6x6_Team 1305.46 1317.46 1298.92 100 5.6 18.4 73.43
RC203_6x6_Team 948.29 951.06 944.80 100 4.2 14.6 101.57
C101_7x4_Team 828.94 828.94 828.94 100 10 59.6 64.76
C103_7x4_Team 815.44 815.44 815.44 100 10 59 102.26
C201_7x4_Team 591.56 591.56 591.56 100 3 27.4 47.78
C203_7x4_Team 591.17 591.17 591.17 100 3 27.6 79.72
R101_7x4_Team 1647.54 1651.07 1642.88 100 19.8 92.2 94.63
R103_7x4_Team 1215.53 1217.60 1213.62 100 14 74.6 108.46
R201_7x4_Team 1189.79 1200.95 1171.30 100 5.2 39 73.11
R203_7x4_Team 895.23 895.23 895.23 100 4 35.6 112.77
RC101_7x4_Team 1627.74 1641.16 1618.14 100 15.2 78.8 77.28
RC103_7x4_Team 1265.18 1276.18 1259.13 100 11 67.2 85.71
RC201_7x4_Team 1311.73 1325.91 1299.16 100 5.6 41.2 72.07
RC203_7x4_Team 944.73 950.01 937.45 100 4.2 35.2 100.78
 Avg. 1077.16 1081.86 1072.64 100.00 8.73 41.66 84.63

Table 12: ALNS (team version / complete set of technicians)

51

Instance Objective MAX MIN
Assigned

Tasks
Used

Teams
Assigned

Technicians Time (s)
C101_5x4_Team 8873.86 9384.44 7414.42 62.6 6.4 22 60.38
C103_5x4_Team 6516.33 7329.40 3943.93 73.6 6.4 22 57.36
C201_5x4_Team 4879.62 5756.14 4326.97 84.2 3 11 62.73
C203_5x4_Team 4275.89 7357.72 3464.24 85.4 2.8 11 93.71
R101_5x4_Team 11415.84 12383.40 10335.50 51.2 7 22 31.76
R103_5x4_Team 9169.39 9927.13 8553.07 60 5.6 22 41.98
R201_5x4_Team 5723.10 6575.80 4395.26 80.2 2.4 11 35.34
R203_5x4_Team 2410.72 2727.62 2206.64 95 2.8 11 99.03
RC101_5x4_Team 9393.39 10481.10 8648.72 61.4 7.6 22 47.06
RC103_5x4_Team 8342.85 9767.47 5809.87 65.4 6.4 22 49.62
RC201_5x4_Team 6468.31 7842.63 5721.41 78.6 2.8 11 49.58
RC203_5x4_Team 2402.10 2445.12 2287.43 96.2 3 11 82.97
C101_6x6_Team 2587.69 2822.44 2439.61 95.8 13 26 94.62
C103_6x6_Team 1245.10 1349.32 1142.06 99.6 10.8 24.8 102.64
C201_6x6_Team 2314.92 2483.80 2185.09 96 4.8 12 79.60
C203_6x6_Team 2111.98 2859.82 1628.75 96 5.6 12 131.42
R101_6x6_Team 6920.80 7334.27 6640.74 77.8 14.2 26 89.70
R103_6x6_Team 3007.50 3078.38 2970.66 94 13 26 109.46
R201_6x6_Team 2685.26 2858.94 2489.11 95.8 4.8 12 85.10
R203_6x6_Team 1498.98 1913.47 1384.22 98.6 4.8 12 117.72
RC101_6x6_Team 5190.32 5596.93 4847.97 86.4 13.8 26 115.91
RC103_6x6_Team 2949.12 3076.42 2826.37 94.6 12.2 26 100.69
RC201_6x6_Team 2976.32 3127.04 2835.16 95.6 5.6 12 84.16
RC203_6x6_Team 1955.94 2364.50 1553.31 97.8 4.6 12 116.40
C101_7x4_Team 8507.47 9847.93 7700.61 70.2 7.6 27 54.92
C103_7x4_Team 5947.76 6422.18 5420.87 80.2 7.2 27 73.37
C201_7x4_Team 9436.25 9713.15 8328.67 65.6 2.2 13 22.09
C203_7x4_Team 8551.38 8552.59 8550.46 67 2 13 38.13
R101_7x4_Team 12215.94 12645.00 11741.70 55.6 9 27 53.77
R103_7x4_Team 8442.06 9736.15 7757.92 69.6 7.4 27 58.46
R201_7x4_Team 8423.12 8610.98 8242.72 71.4 2 13 41.17
R203_7x4_Team 5069.80 5314.86 4301.80 86 2.2 13 81.81
RC101_7x4_Team 11006.04 11436.80 10793.60 60.2 8.6 27 79.26
RC103_7x4_Team 8817.29 9478.41 8069.80 69 7.4 27 70.13
RC201_7x4_Team 10350.58 10438.20 10280.60 63.6 2 13 25.11
RC203_7x4_Team 6499.11 6649.61 6426.90 79.8 2 13 72.55
 Avg. 6071.73 6658.03 5490.73 79.44 6.19 18.47 72.49

Table 13: ALNS (team version / reduced set of technicians)

52

10. Conclusion

The adaptive large neighborhood search proposed by Ropke and Pisinger (2006b),

Pisinger and Ropke (2007) and Cordeau et al. (2008) was used to solve the problem

described in this thesis. The method was adapted according to better fit the problem

characteristics. The differences appear in the way how the initial solution is created, but

there are also changes in the repair and destroy heuristics and the way they are selected.

In contrast to Pisinger and Ropke (2007) who created the initial solution by using the

regret-2 heuristic, the current method uses the greedy heuristic. The reason for this is an

existing possibility that only one route is needed to serve all customers.

Another adaptation is that the original method doesn´t use the insertion heuristic to

repair the destroyed solutions. Additionally, in this thesis the selection of the sub-

heuristics is done by recording the joint performance of pairs of destroy-repair methods,

whereas they are chosen independently in the underlying solution methods.

To test the developed algorithms 72 problem instances where created by combining

Solomon´s VRPTW instances and the instances from the ROADEF 2007 challenge.

Furthermore, each instance was tested by applying an oversized and a reduced set of

technicians.

Unfortunately, there is no comparison to the application of the ALNS to the current

problem sets. Nevertheless, it is assumed that it is going to be able to compete with

upcoming solution methods, as it performed very well when solving the VRPTW.

Additionally, the results of the STRSP instances with the complete set of technicians are

close to the VRPTW solutions.

Further extensions of the solution method could consist of elements, which would make

it even a better fit for real life situations. Such extensions could include the integration

of lunch breaks, overtime of the technicians or the assignment of trainees to the teams.

53

Bibliography

Ahuja R. K., Ergun Ö., Orlin J. B., Punnen A. P.: A survey of very large-scale

neighborhood search techniques. Discrete Applied Mathematics, 2002, 123: 72–102.

Bräysy O., Gendreau M.: Vehicle routing problem with time windows, part I: route

construction and local search algorithm. Transportation Science, 2005, 39:104–118.

Bräysy O., Gendreau M.: Vehicle routing problem with time windows, part II:

metaheuristics. Transportation Science, 2005, 39: 119–139.

Cordeau J.F., Laporte G., Pasin F., Ropke S.: Scheduling Technicians and Tasks in a

Telecommunications Company. Les Cahiers du GERAD, 2008, G–2008–45.

Dutot P.-F., Laugier A., Bustos A.-M.: Technicians and interventions scheduling for

telecommunications. France Telecom R&D, 2006.

http://web.cba.neu.edu/~msolomon/problems.htm (09.11.2009)

http://www.g-scop.inpg.fr/ChallengeROADEF2007/index.php?page=4&lang=1

(09.11.2009)

Kirkpatrick S., Gelatt C.D. Jr., Vecchi M. P.: Optimization by simulated annealing.

Science, 1983, 220: 671–680.

Kallehauge B., Larsen J., Madsen O. B. G.: Lagrangian duality applied to the vehicle

routing problem with time windows. Computers & Operations Research, 2006, 33:

1464–1487.

Kruskal J. B. Jr.: On the shortest spanning subtree of a graph and the traveling salesman

problem. Proceedings of the American Mathematical Society, 1956, 7: 48- 50.

Mladenović N., Hansen E.: Variable neighborhood search, Computers & Operations

Research,1997, 24 (11): 1097-1100.

54

Potvin J.-Y., Rousseau J.-M.: A parallel route building algorithm for the vehicle routing

problem with time windows. European Journal of Operational Research, 1993, 66: 331-

340.

Pisinger D., Ropke S.: A general heuristic for vehicle routing problems. Computers &

Operations Research, 2007, 34: 2403–2435.

Ropke S., Pisinger D.: A unified heuristic for a large class of Vehicle Routing Problems

with Backhauls. European Journal of Operational Research, 2006a, 171: 750–775.

Ropke S., Pisinger D.: An adaptive large neighborhood search heuristic for the pickup

and delivery problem with time windows. Transportation Science, 2006b, 40: 455–472.

Schrimpf G, Schneider J, Stamm-Wilbrandt H., Dueck G.: Record breaking

optimization results using the ruin and recreate principle. Journal of Computational

Physics, 2000, 159: 139–171.

Shaw P.: A new local search algorithm providing high quality solutions to vehicle

routing problems. Technical report, Department of Computer Science, University of

Strathclyde, Scotland, 1997.

Shaw P.: Using constraint programming and local search methods to solve vehicle

routing problems. CP-98, Fourth international conference on principles and practice of

constraint programming, Lecture notes in computer science, 1998, 1520: 417–431.

Solomon M. M.:. Algorithms for the vehicle routing and scheduling problems with time

window constraints. Operations Research, 1987, 35: 254–265.

Xu J., Chiu S. Y.: Effective heuristic procedures for field technician scheduling

problem, Journal of Heuristics, 2001, 7: 495-509.

55

Abstract

The current thesis deals with a real life planning challenge faced by many companies,

namely the service technician routing and scheduling problem. The problem appears

when a given pool of differently skilled technicians has to execute a set of tasks which

have different skill requirements. Furthermore, tasks are located at different sites and

their visiting is constrained by time windows. As in some cases the tasks´ requirements

are too high to be met by a single technician, it may also be necessary to group some

technicians together to aggregate their skills.

Basically, this problem can be interpreted as an extended vehicle routing problem

(VRP) in which the vehicles are replaced by the different teams or technicians, and the

customers by tasks with diverse demands. The challenge is now to create routes that

visit as many tasks as possible, by considering the demanded skills and the time window

constraints.

To tackle this problem the adaptive large neighborhood search heuristic (ALNS) was

applied. It proved to have a very good performance when used for solving the classic

VRPs in which the routing aspect is in the front. Nevertheless, when applied to the

technician and task scheduling problem, in which the routing is not an issue but the

team creation and assignment, the ALNS achieved impressive results as well. It is based

on the idea of continuously destroying the current solution and rebuilding it in an

improved way. The destruction is done by removing some of the already scheduled

tasks and the repair by reinserting them at a position where they cause less costs.

In contrast to the underlying large neighborhood search heuristic, the ALNS uses

several destroy and repair sub-heuristics, to allow the algorithm to adjust itself to

different problem types (therefore the name). To decide which sub-heuristics to use, the

past performance of each destroy-repair method pair is recorded. The better a pair of

methods performs, the higher the probability that it is applied again.

Two solution approaches were created for two variants of this problem. First, when

technicians work alone, since all tasks can be executed by an individual, sufficiently

skilled technician. And second, when it is impossible to perform some tasks alone, so

several technicians must be grouped together in order to form teams.

56

Zusammenfassung

Die vorliegende Arbeit befasst sich mit einer Planungsherausforderung, der sich viele

Unternehmen täglich stellen müssen, nämlich dem service technician routing and

scheduling Problem. Das Problem entsteht dadurch, dass eine fixe Belegschaft von

unterschiedlich ausgebildeten Technikern eine Menge von Aufträgen bearbeiten muss

die unterschiedliche Fachkenntnisse erfordern. Erschwerend kommt hinzu, dass die

Aufträge örtlich unterschiedlich gelegen sind und nur in bestimmten Zeitfenstern

besucht werden können. Darüber hinaus kommt es vor, dass manche Aufträge zu hohe

Anforderungen an einzelne Techniker stellen. Dies erfordert die Zusammengruppierung

von mehreren Technikern um mit den vereinten Kenntnissen den nachgefragten

Anforderungen gerecht zu werden.

Grundsätzlich kann dieses Problem als eine Erweiterung des vehicle routing Problems

(VRP) verstanden werden, wobei die Fahrzeuge durch die Techniker oder Teams ersetzt

werden und die Kunden durch die Aufträge mit den unterschiedlichen Anforderungen.

Die Herausforderung besteht nun darin, Routen zu generieren die möglichst viele

Aufträge einschließen, wobei den nachgefragten Fähigkeiten und den Zeitfenstern

entsprochen wird.

Um das Problem zu lösen wird die sogenannte adaptive large neighborhood search

Heuristik (ALNS) angewendet. Bei der Anwendung an klassischen VRPs, bei denen der

Routenplanungsaspekt im Vordergrund steht, konnte diese Methode sehr gute

Ergebnisse erzielen. Aber auch bei der Anwendung an dem technician and task

scheduling Problem, bei dem keine Routen geplant werden, aber die Zusammenstellung

und Einteilung von unterschiedlichen Teams gefordert wird, konnte ALNS seine

Stärken unter Beweis stellen. Es basiert auf der Idee, eine aktuelle Lösung fortlaufend

zu zerstören um sie anschließend besser wiederherzustellen. Das Zerstören wird durch

entfernen bereits eingeplanter Aufträge bewirkt und die Reparatur durch das

wiedereinfügen in Positionen in denen sie weniger Kosten verursachen. Im Gegensatz

zu der zu Grunde liegenden large neighborhood search Heuristik, werden bei der

ALNS Methode mehrere Zerstörungs- und Reparatur-Subheuristiken verwendet. Dies

ermöglicht es dem Algorithmus sich an unterschiedliche Probleminstanzen anzupassen

(daher auch der Name). Die Entscheidung, welche Subheuristiken verwendet werden

basiert auf dem Erfolg, den die Zerstörungs-Reparatur Heuristikpaare in

vorangegangenen Iterationen erzielen konnten. Je besser die erreichten Lösungen eines

57

Methodenpaares, desto höher die Wahrscheinlichkeit, dass es noch einmal zum Einsatz

kommt.

Ein Lösungsansatz wurde für beide Varianten des Problems entwickelt. Erstens, bei

dem alle Techniker alleine arbeiten, da alle Aufträge individuell bearbeitet werden

können. Zweitens, bei dem es nicht möglich ist manche Aufträge alleine zu bewältigen

und deswegen Teams zusammengestellt werden müssen.

58

Curriculum vitae

Personal data:

Name: Attila Kovacs

Date of birth: September 14, 1983

Citizenship: Austria

Education:

since 2003 University of Vienna

International Business Administration

Financial Services and Logistics

Thesis: “Heuristics for Service Technician Routing and

Scheduling Problems”

1997 – 2002 Secondary technical college of Eisenstadt

Aeronautical engineering

Thesis: “Test bench for a model turbo jet engine”

International experience:

09/2008 – 02/2009 University of Las Palmas de Gran Canaria

 Erasmus student exchange

June 2001 Aviation practical training JAR 66, Budapest

EU-Technical training program LEONARDO da VINCI

Professional experience:

 10/2008 - 01/2008 Study assistant

 and 03/2009-07/2010 University of Vienna

59

Chair for Production and Operations Management

Since 06/2008 Driving instructor

Driving school “Fahrschule Ing. Kovacs”

10/2005 – 07/2008 Educator

Secondary school “Institut Neulandschule”

Languages:

Hungarian native

German native

English fluent

Spanish good

