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Chapter 1

Introduction to the δ Scuti stars

δ Scuti stars are pulsating stars with spectral types between A0 and F2 and periods between
18 minutes and 8 hours. Their masses range between 1.5 and 2.5 solar masses and their
source of energy is hydrogen burning in the core, or in more evolved phases, hydrogen shell
burning. In the Hertzsprung-Russell diagram (or shorter: HR diagram) they are situated in
the lower part of the classical Cepheid instability strip. Figure 1.1 schematically shows the
part of the HR diagram in which the δ Scuti stars are located.
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Figure 1.1: HR diagram with the schematic position of different types of pulsators in the
classical instability strip. The evolutionary tracks for Population I models with 1.5, 2.0
and 2.5 M⊙ are shown. For better clarity only a few types of pulsators are shown in the
diagram, omitting some other groups of pulsators in the same region.

In the HR diagram the δ Scuti stars are surrounded by other types of pulsators with
different oscillation characteristics. The instability strips of different groups of pulsators
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partly overlap. At the extension of the instability strip to higher luminosities the RR Lyrae
stars and Cepheids can be found. Contrary to the δ Scuti stars which are main sequence
and immediate post-main sequence stars (exhibiting hydrogen core or shell burning, respec-
tively), the RR Lyrae stars are more evolved objects of Population II or old Population I.
They are in the helium core burning phase on the so-called horizontal branch and have
typical masses around 0.8 M⊙ and periods less than one day. The classical Cepheids are
also in an advanced evolutionary stage with central helium burning but have higher masses
between 5-15 M⊙. Their periods are longer than those of the RR Lyrae stars and are of
the order of days and months.

On the red edge, or in other words, the cold border of the instability strip the δ Scuti
pulsators overlap with the γ Doradus stars. These stars are main sequence stars with periods
of the order of one day and masses between 1.4 and 1.8 M⊙. Stars in which both γ Dor
and δ Scuti-like periods are excited have already been found (e.g., Henry & Fekel 2005).
Due to their dual nature these stars are sometimes called hybrid pulsators.

One group of pulsators which has similar periods as the δ Scuti stars, are the β Cephei
stars. The main differences between the two groups are due to the different fundamental
parameters, since the β Cephei stars are primarily main sequence B-stars with masses around
8 to 12 M⊙. The physical processes that drive the pulsations will be discussed in the next
sections.

1.1 Theory of δ Scuti pulsations

δ Scuti stars pulsate in radial and nonradial modes. Radial pulsation maintains the spherical
symmetry of a star. This is not the case for nonradial oscillations, which cause some parts
of the stellar surface to contract while other parts expand. Since the radius variation due to
pulsation is small compared to the stellar radius the surface geometry of the oscillations can
be described by spherical harmonics, Y m

ℓ . ℓ is the spherical degree of the pulsation mode; it
characterizes the number of node lines on the surface of the star. m is the azimuthal order
and represents the number of node circles crossing the equator in latitudinal direction. By
definition |m| can only be lower or equal to ℓ. In this work we use the common terminology
of denoting modes with m = 0 as zonal modes, |m| < ℓ as tesseral and |m| = ℓ as sectoral
modes. The sign of the azimuthal order determines whether a mode is prograde (i.e., a
running wave in the direction of rotation), retrograde or axisymmetric (m = 0). According
to the sign convention used in this work, positive m indicate prograde modes.

1.1.1 Driving mechanism for oscillations

The observed pulsations of stars are caused by a mechanism that transforms thermal energy
into mechanical energy of oscillation. Consequently, pulsating stars are nothing but a
thermodynamical heat engine. This was already noted by Eddington (1919) who suggested
this mechanism to explain the pulsation of the radially oscillating Cepheids.
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In a stellar layer in which the opacity, κ, increases with increasing temperature, e.g.,
due to compression, the radiative flux will be blocked in the compression phase. The
second temperature derivative of κ is positive in outward direction in such a case. Energy
is temporarily stored in that layer and transformed into expansion work. Contrary to the
concept of a usual combustion engine (which is based on a variation-of-heat concept) the
energy generation in the center of a star remains constant over a work cycle. However, in
the zones where the second temperature derivative of κ is positive the energy leakage varies
with temperature. The opacity driving mechanism, therefore, acts like a valve mechanism
in such a layer. This mechanism is commonly termed κ mechanism.

The second temperature derivative of the opacity is positive when the first temperature
derivative, κT , is increasing, which occurs at different temperatures inside a star as can be
seen in the lower panel of Figure 1.2 for a δ Scuti model. The zones where κT increases
in outward direction are connected to bumps in the opacity shown in the upper panel of
the diagram. The opacity bumps are situated at temperatures at which the ionization of
specific abundant elements takes place. As marked in Figure 1.2 the partial ionization zone
of neutral hydrogen and neutral helium are located close to the surface at a temperature of
approximately 14 000 K. The second ionization of helium (He II) occurs at a temperature
of 45 000 K and the so-called Z bump at 200 000 K is attributed to the partial ionization
of M-shell electrons of iron. In these partial ionization zones the specific elements are
permanently ionized and recombined due to pulsation.
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Figure 1.2: Variation of opacity, κ, and its temperature derivative from the center (left) to
the surface (right) inside a post-main sequence δ Scuti model. The vertical line marks the
stellar layer in which the conditions are favorable for the κ mechanism to excite pulsations
in δ Scuti stars.

It was shown by Cox (1963) that in most of the stars situated in the classical instability
strip the opacity mechanism is acting in the partial ionization zone of He II. It is exactly
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the same mechanism which drives the pulsations in δ Scuti stars and in the more evolved
RR Lyrae stars and Cepheids. Contrary, the more massive β Cephei pulsators with masses
around 8-12 M⊙, were found to be unstable due to the opacity mechanism operating at the
Z bump (Moskalik & Dziembowski 1992; Cox et al. 1992).

For low degree modes in δ Scuti stars the ionization zones of neutral helium and hydrogen
have a negligible contribution to the driving. However, the contribution of these outer layers
slowly increases with the spherical degree of the mode. It was shown by Dziembowski
(1980) that for modes with ℓ=80-100 the He I and H ionization zone dominate the driving.
Currently, such modes are only of theoretical interest because even with present day satellites
it is very unlikely that they can be observed due to their expected small amplitudes.

1.1.2 Oscillation properties of modes

Solving the equations of linear stellar oscillations leads to two characteristic frequencies: a
critical acoustic frequency, commonly termed as Lamb frequency, defined as

L2
ℓ =

ℓ(ℓ + 1)

r2
c2, (1.1)

where ℓ is the spherical mode degree and c is the speed of sound at the radius r from the
center of the star. The Brunt-Väisälä frequency, N, is given by the equation

N2 = g

(

1

H
−

g

c2

)

, (1.2)

where H is the density scale height, and g the local gravity. The Brunt-Väisälä frequency
is the oscillation frequency of a vertically displaced fluid element due to buoyancy. Pulsa-
tion modes can only oscillate in specific regions (so-called cavities) in the star which are
constrained by the Lamb and Brunt-Väisälä frequencies:

• ω2 > L2
ℓ and ω2 > N2 where ω is the eigenfrequency of the mode.

The cavity for propagating modes that suffice these conditions is mainly situated in
the outer layers of the star. Since the restoring force of oscillations in this regime is
pressure, propagating modes in this cavity are called acoustic modes or p modes.

• ω2 < L2
ℓ and ω2 < N2.

In this cavity the restoring force is buoyancy. Pulsation modes propagating in this
cavity are called gravity modes or shorter: g modes.

Almost all mode energy is confined to the layers where the pulsation mode can propa-
gate. Outside the propagation zones the mode is evanescent (i.e., damped). The propaga-
tion regions defined by the Brunt-Väisälä and the Lamb frequency for dipole (ℓ=1) modes
are shown in Figure 1.3 for a post-main sequence model with 2 M⊙. The inner boundary for
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Figure 1.3: Propagation diagram for dipole modes in a post-MS model with a mass of 2
M⊙. The horizontal lines mark the propagation zones of an acoustic, a gravity and a mixed
mode. The positions of the radial nodes are depicted by circles (using empty circles for the
mixed mode).

the acoustic mode cavity moves closer to the surface with higher ℓ. The Brunt-Väisälä fre-
quency shows a more complicated dependence on the radius than the Lamb frequency.
Generally, the real part of the complex frequency N is zero in layers where convection takes
place. Just above the convective core the Brunt-Väisälä frequency exhibits a sharp maxi-
mum. This feature is a consequence of the evolution in the chemical composition. During
the main sequence evolution of a δ Scuti star the CNO cycle is the dominant energy source
in hydrogen burning. The high temperature sensitivity of this nuclear process leads to the
formation of a convective core. The core shrinks during the main sequence evolution and
leaves behind a gradient in the mean molecular weight between the envelope (which, gener-
ally speaking, still exhibits the original element abundances) and the fully mixed hydrogen
burning core. This chemical gradient affects the sound speed which enters N through
equation 1.2.

The evolutionary changes of the Brunt-Väisälä frequency affect the pulsation properties
of a star significantly, because the boundaries of the g mode cavity are modified. Due to
the development of a maximum in the Brunt-Väisälä frequency in the partially mixed layer
above the convective core, gravity modes penetrate into the frequency region of acoustic
modes. When a gravity mode interacts with an acoustic mode it adopts a dual nature.
This phenomenon is known as avoided crossing (Aizenman et al. 1977). The mode then
acts like an acoustic mode in the envelope and like a gravity mode in the interior. Such
modes are called mixed modes.
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δ Scuti stars oscillate in low-order acoustic and gravity modes. In Figure 1.3 three repre-
sentative pulsation modes are shown, an acoustic mode (with a frequency of 23.4 cd−1), a
gravity mode (4.8 cd−1) and a mixed mode (13.9 cd−1). In this model unstable modes are
only predicted between 6.5 and 16 cd−1 and most of the pure p and g modes are damped.
This exemplifies that the nonradial modes in evolved δ Scuti stars are mostly of mixed
character. Only if a star is close to the ZAMS the gravity modes are well separated from
the acoustic modes.

Commonly, the modes for each spherical degree are numbered by their radial order: for
example, p3 denotes an acoustic mode with three radial nodes and g7 a gravity mode with
seven radial nodes. This numbering scheme cannot directly be applied to mixed modes.
It has been shown by Scuflaire (1974) that mixed modes exhibit additional radial nodes
which appear in-between the radial nodes in the g mode cavity and the p mode cavity. For
mixed modes the numbering scheme is therefore modified: the number of radial nodes in
the g mode cavity is subtracted from the number of nodes in the acoustic cavity. Following
this scheme a mixed mode with the label p3 does not necessarily have only three radial
nodes.

1.1.3 Linear stability of pulsation modes

As mentioned in the previous section, not all of the modes in a cavity are unstable. Whether
an individual mode is unstable or not, is determined by an additional set of requirements.
These additional conditions for instability are:

(i) The amplitude of the Lagrangian pressure eigenfunction, δP/P , of the mode is large
and changes only slowly in the driving region.

(ii) The thermal relaxation time, τth, in the driving region is longer or of similar mag-
nitude as the period of the pulsation mode. Otherwise, the heat stored in the layer leaks
outward and cannot be used to perform mechanical work.

For a mode to be unstable, the driving effects have to exceed the damping effects, i.e.,
the dissipation of energy throughout the star. These different contributions are summed
up by the work integral, W , which expresses the work done over one pulsation cycle. W is
evaluated between the surface and a sphere of radius r . If the quantity W is positive local
driving occurs.

The growth-rate of a mode, γ, describes the increase of oscillation energy during one
cycle and is directly connected to the work integral through the equation γ = W

2ωI
where

I is the mode inertia and ω is the mode frequency. From a computational survey of linear
growth-rates Dziembowski (1975) concluded that nonradial modes are likely to be excited
along with radial modes in δ Scuti stars. This was confirmed by observations.

For a comparison between the frequency range of predicted unstable modes and the
observed range of frequencies the normalized growth-rate, η, according to Stellingwerf
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(1978) is commonly used,

η =

∫ R

0
dW
dr

dr
∫ R

0

∣

∣

dW
dr

∣

∣ dr
. (1.3)

A value of η = −1 corresponds to full damping and η = +1 to full driving. The mode
instability is mainly governed by the conditions in the stellar envelope.
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Figure 1.4: Instability parameter, η, for a main sequence model with 1.6 M⊙ and
Teff=8500 K. The results for ℓ=1 and 2 modes are shown.

It was shown by Dziembowski & Pamiatnykh (1993) and discussed in more detail in
Dziembowski et al. (1993) that for the β Cephei stars a second instability domain at low
frequencies exists. The predicted unstable modes in this region are high-order g modes which
are also driven by the κ-mechanism. These modes correspond to SPB (slowly pulsating
B-star) pulsations.

A similar behaviour in η can be seen in some δ Scuti models. As shown in Figure 1.4
for an early main sequence δ Scuti model η is locally higher at frequencies below 5 cd−1.
This is the frequency region, where the γ Dor pulsations are expected. However, due to
the negative values of η at this low-frequency bump no mode driving occurs. Currently,
a convective blocking mechanism is the most promising explanation for the oscillations
of γ Dor stars (Guzik et al. 2000). Nevertheless, the somewhat lower damping at low
frequencies may contribute to the mode instability.

The reason for the given variation of η with frequency shown in Figure 1.4 is related to
condition (i) mentioned above. At high frequencies relative Lagrangian pressure variation,
δP/P , varies too rapidly in the driving region and in the frequency region in-between the
absolute value of δP/P is too small in the driving region.
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1.2 Motivation to do asteroseismology of δ Scuti stars

The occurrence of many mixed acoustic and gravity modes in δ Scuti stars is fortunate
because they allow us to study the conditions in deep layers inside these stars. The δ Scuti
stars are good laboratories to test stellar opacities, internal rotation rates, rotationally
induced element mixing, the extent of convective overshooting from the core and envelope
convection. Consequently, the δ Scuti stars also provide an important test whether our
understanding of stellar evolution is correct.

Due to historic reasons one distinguishes between two main groups. The high-amplitude
δ Scuti stars (short: HADS) with peak-to-peak pulsation amplitudes of the order of 0.3 mag
and the low-amplitude δ Scuti stars (LADS) exhibiting amplitudes at the millimag level.
While in HADS stars radial pulsation is dominant the LADS stars pulsate in many nonradial
modes. Empirical studies indicate that this difference is related to the rotational velocity
of these stars (see Fig. 1.5). However, in the recent years it became clear that these two
groups are connected. Stars in an intermediate region – slowly rotating stars which exhibit
radial modes with large amplitudes along with many nonradial pulsation modes – could be
found.
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Figure 1.5: Johnson V amplitude versus v sin i . Diagram courtesy of Michel Breger.

For theoretical studies of δ Scuti pulsations these ’intermediate’ stars are ideal for the
following reasons:

• They pulsate in a sufficient number of radial and nonradial modes. This makes them
more interesting for an asteroseismic study than mainly radially oscillating HADS,
because each additional frequency provides an independent information about the
star.
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• They do not rotate as fast as most of the low-amplitude δ Scuti stars. This is an
advantage for modeling since the effects of rotation are small enough to be approx-
imated by one-dimensional models. The pulsation theory for fast rotators relying
on two-dimensional models is currently being developed (e.g., Roxburgh 2004, 2006;
Lignières et al. 2006; Reese et al. 2006; Lovekin & Deupree 2008, . . . ).

• Slow rotation also reduces uncertainties in mode identification, as will be discussed
later.

It is therefore desirable to study a δ Scuti star with such properties. This was the
motivation to observe 44 Tau. On the other hand it is interesting to test our asteroseismic
methods for a star which may be at the limit of the validity of our methods. The evolved
δ Scuti star 4 CVn represents such a challenge.

1.3 δ Scuti stars examined in this work

1.3.1 44 Tauri

44 Tau is one of the stars in the intermediate region between the HADS and LADS stars
shown in Figure 1.5. Smith (1982) was the first to determine the projected rotational
velocity, v sin i , for 44 Tau. With a value of v sin i = 5 km s−1 it was found to be
exceptionally low. The low projected rotation rate was later confirmed by other authors
(Solano & Fernley 1997; Zima et al. 2007). As discussed in Antoci et al. (2007) such
a low value may be explained by a pole-on view (with an intrinsically higher equatorial
rotation rate) or by intrinsically slow rotation. Later, Zima et al. (2007) could constrain
the inclination angle to 60 ± 25o and determined the equatorial rotation rate to be 3 ± 2
km s−1. Thus, 44 Tau has approximately a similar rotation rate as the sun.

A detailed review on the history of its discovery and previous observations is given
in Antoci et al. (2007). This paper also contains a comprehensive frequency analysis of
extensive observations with the Delta Scuti Network from 2000 to 2003. Two additional
years of photometry were obtained in the seasons 2004/5 and 2005/6 and analyzed by
Breger & Lenz (2008). The final frequency solution consists of 49 frequencies of which 15
are independent. The spectrum of observed independent frequencies is shown in Figure 1.6.

Mean stellar parameters

Asteroseismic analyses require knowledge of the fundamental parameters of the star. The
spectral type of 44 Tau is F2 IV. From Strömgren and Geneva photometry the effective
temperature can be derived with the common calibrations and by utilizing stellar atmosphere
model grids. The Strömgren indices of uvbyβ photometry from Hauck & Mermilliod (1997)
are given in Table 1.1.
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Figure 1.6: Detected independent frequencies in 44 Tau and 4 CVn. For 44 Tau the
minimum and maximum annual Strömgren y amplitudes between 2000 and 2006 are given.

V [mag] b − y [mag] m1 [mag] c1 [mag] β

5.390 0.215 0.170 0.755 2.711
±0.040 ±0.005 ±0.005 ±0.009 ±0.006

Table 1.1: Measured Strömgren indices for 44 Tau.

From these values and the well known calibration rules for Strömgren indices of F stars
(Crawford 1975) no significant interstellar reddening was found. The metallicity derived
with the calibration given in McNamara & Powell (1985) is close to the solar values.

Based on this metallicity estimate it is possible to utilize the Vienna NEMO grid (New
Model Grid of Stellar Atmospheres, Nendwich et al. 2004, Heiter et al. 2002) to derive the
effective temperature and the surface gravity as shown in Fig. 1.7. The final estimate for
the effective temperature is 6900 ± 100 K. The log g value is 3.57 ± 0.10 dex. The errors
of the grid correspond to the common estimates given in Garrido (2000).

The luminosity can be easily derived from the measured Hipparcos parallax of
16.72 ± 0.93 mas. The given apparent brightness and a bolometric correction of
0.034 mag from Kurucz model atmospheres (Bessell et al. 1998) lead to a luminosity of
log L/L⊙ = 1.305 ± 0.065.
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Figure 1.7: Observed position of 44 Tau in the Vienna NEMO grid. A grid with standard
metallicity, [M/H]=0.0, and a microturbulence velocity of 2 km s−1 is shown.

Independent estimates of the stellar fundamental parameters were obtained from spec-
troscopy. By measuring equivalent widths of the spectral lines of Fe I, Fe II, Ni I and Mn I
Zima et al. (2007) determined a microturbulence of vmic = 1.85 km s−1. The estimate
of this parameter from their spectrum synthesis is slightly lower, 1.30 km s−1. Adopting
the photometrically derived Teff and log g as starting values for their abundance analysis,
they iteratively derived an effective temperature of 7000 ± 200 K and a log g of 3.6 ±
0.1, which agree well with the photometrically derived values. The element abundances
were estimated from spectrum synthesis and were found to be close to the solar values.
Moreover, they found no indications for a global magnetic field.

1.3.2 FG Virginis

FG Vir is a main sequence δ Scuti star of spectral type A5 V which exhibits moderate
rotation. The v sin i measured by Zima et al. (2006) is 21.6 ± 0.3 km s−1. With a derived
inclination of 19 ± 5o these authors could determine the equatorial rotation velocity to be
66 ± 16 km s−1. Currently, 79 frequencies are known of which 67 are independent. For
the most dominant modes the spherical degrees and azimuthal orders were determined by
Breger et al. (1999b), Daszyńska-Daszkiewicz et al. (2005b) and Zima et al. (2006) using
various methods.

We do not discuss this star in too much detail because for FG Vir asteroseismic models
were already computed by several other authors (see, e.g., Templeton et al. 2001; Guzik
et al. 2000; Breger et al. 1999b; Viskum et al. 1998). Therefore, this star was only used to
examine specific aspects in the asteroseismic analyses presented in this work. These analyses
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rely on the fundamental parameters given in Breger et al. (1999b): Teff = 7500 ± 100 K,
log L/L⊙ = 1.170 ± 0.055 and log g = 4.0 ± 0.1.

1.3.3 4 Canum Venaticorum

4 CVn is an evolved δ Scuti star of spectral type F3 III-IV. The v sin i values given in the
literature range from 70 to 130 km s−1. The most recent measurements converged to a
projected rotational velocity around 120 km s−1, e.g., Glebocki & Stawikowski (2000) with
v sin i = 115 ± 10 km s−1 or Royer et al. (2002) with 128 ± 7 km s−1. Consequently, it
cannot be considered to be a slow rotator.

The hitherto most extensive data analysis of 4 CVn was published by Breger et al.
(1999a) who analyzed the 1996 photometric data and found 34 frequencies of which 18
are independent frequencies. The corresponding frequency spectrum is shown in the lower
panel of Figure 1.6.

Mean stellar parameters

The measured Strömgren indices for 4 CVn from Hauck & Mermilliod (1997) are given in
Table 1.2. Due to the lack of a sufficient number of measurements no errorbars are available
for this data set. Another source of photometric indices is available from the catalog of
measurements in the Geneva photometric system (Rufener 1976).

Johnson Strömgren Geneva
V b − y m1 c1 β U V B1 B2 V1 G

6.035 0.226 0.178 0.833 2.707 1.570 0.528 0.980 1.390 1.257 1.630
[mag] [mag] [mag] [mag] [mag] [mag] [mag] [mag] [mag] [mag]

Table 1.2: Measured photometric indices for 4 CVn.

The photometric calibrations of the Strömgren indices (Crawford 1975) indicate an
overabundance of metals in 4 CVn. This was confirmed by the calibrations for the Geneva
photometric system (Meléndez & Raḿırez 2003) computed with the software TempLogg1.
The results obtained from both systems are in good agreement and the derived metallicity
is [Fe/H] = +0.20 ± 0.15 dex. Following the assumption that the overabundance also
concerns other metals to the same extent as iron, we adopted [M/H] = +0.20 to determine
the effective temperature and surface gravity by means of the NEMO atmosphere grid.

The fundamental parameters derived from photometry and atmosphere models are given
in Table 1.3. The measured Hipparcos parallax is 9.75 ± 0.69 mas. With a bolomet-
ric correction of -0.080 mag taken from Bessell et al. (1998) the luminosity amounts to
log L/L⊙ = 1.55 ± 0.070.

1http://www.univie.ac.at/asap/templogg/main.php
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Figure 1.8: Fundamental parameters of 4 CVn derived from Strömgren photometry using
the Vienna NEMO model atmosphere grid for [M/H]=+0.20.

Teff [K] log g [Fe/H]

Strömgren + NEMO 6820 ± 100 3.34 ± 0.10 +0.25
Geneva (TempLogg) 6740 ± 50 3.33 ± 0.16 +0.13 ± 0.08

Summary 6800 ± 150 3.34 ± 0.20 +0.20 ± 0.15

Table 1.3: Derived fundamental parameters of 4 CVn.

The rapid rotation of 4 CVn may affect the photometric indices and, therefore, the
derived values for effective temperature and luminosity. As shown by Pérez Hernández
et al. (1999) the log L value generally depends on the inclination angle, i . In the case
of pole-on view the value may increase up to 25%, for equator-on view a decrease of
20% is possible. Moreover, the effective temperature is also affected by projection effects.
Unfortunately, the inclination angle of 4 CVn could not yet be determined. To account for
these effects the error bars were increased correspondingly to obtain the final mean values
of luminosity and effective temperature.

1.3.4 Position of 4 CVn, FG Vir and 44 Tau in the HR diagram

The positions of 4 CVn, 44 Tau and FG Vir in the HR diagram are shown in Figure 1.9
along with the edges of the instability strip. As can be seen all three stars are not too close
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to the cold border of the instability strip where the effects of envelope convection on the
instability of the modes become important.
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Figure 1.9: Observed positions of 44 Tau, FG Vir and 4 CVn in the Hertzsprung-Russell
diagram. Blue edges of the instability strip for various radial overtones were computed with
OPAL opacities, the GN93 element mixture, and a standard chemical composition with
X=0.70, Z=0.02. The theoretical red edge for the radial fundamental mode was taken
from Dupret et al. (2004).



Chapter 2

The computational tools to study
δ Scuti stars

The computer codes used in this work were provided by asteroseismologists from the Coper-
nicus Center in Warsaw (Poland). In the next sections a brief description of these up-to-date
codes for the computation of stellar evolution and pulsation is given.

2.1 Warsaw - New Jersey stellar evolution code

The original version of this stellar evolution code was developed by B. Paczyński, R.
Sienkiewicz and M. Koz lowski. The code was presented in Paczyński (1969) and some
technical details are also discussed in later papers (Paczyński 1970a,b,c).

The stellar structure equations are solved with a Henyey type method (Henyey et al.
1964). Starting from a chemically homogeneous zero-age main sequence (ZAMS) model
the evolution of the stellar model is computed adopting the nuclear reaction rates given
in Bahcall et al. (1995). The boundary of the convective core is determined by evaluating
the Schwarzschild stability criterion. Inside the convective core an adiabatic temperature
gradient is used and element mixture is allowed. At the boundary of the core, convective
overshooting can be assumed. The size of the overshoot layer is commonly defined by the
quantity αov which is measured in units of the pressure scale height at the boundary of the
convective core. In the traditional approach the adiabatic temperature gradient is used in
the overshoot layer while element mixing is ignored.

Additionally a new two-parametric description of overshooting from the convective core
was applied. This new approach allows to consider different profiles of the hydrogen abun-
dance inside the partly mixed region (the overshoot layer) just above the convective core.
The same approach was used by Dziembowski & Pamyatnykh (2008) in an asteroseismic
study of the two β Cephei stars ν Eri and 12 Lac. The first parameter, αov , again, defines
the overshooting distance above the convective core. The second parameter, w , adjusts

15
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the profile of the hydrogen abundance between the convective core and the upper boundary
of the overshooting region. Thus it characterizes the efficiency of element mixing in the
overshooting region. The hydrogen profile, X, is defined as a function of fractional mass,
q:

X = Xc + (q − qc)w [a + b(q − qc)]. (2.1)

The coefficients a and b in this equation are determined from w , αov and the requirement of
a smooth transition of the hydrogen abundance (and its first derivative) at the boundaries of
the overshoot layer. An infinitely high value of w corresponds to the traditional treatment
for overshooting.

δ Scuti stars exhibit convection zones in the envelope. Convection takes place in the
layers where the partial ionization of He II and H/He I occurs. In these outer layers the
temperature gradient cannot be approximated as adiabatic because of radiative losses. To
determine the temperature gradient in these regions a standard mixing-length theory (MLT,
Böhm-Vitense 1958) of convection is used in the stellar evolution code.

Rotation is an important effect in stellar modeling. In the code, rotation is implemented
using a rigid body rotation law and it is assumed that the star conserves its total angular
momentum during its evolution. Stellar rotation reduces the effective gravity by the spher-
ically averaged contribution of the centrifugal acceleration. Rotationally induced mixing is
ignored in the code.

Moreover, the code ignores diffusion (i.e., the segregation of elements due to the slightly
different impact of gravity and radiative pressure on atoms of different elements). Mass
loss from the stellar surface is neglected as well.

2.2 Dziembowski’s pulsation code

The eigenfrequencies of a stellar equilibrium model are computed with a modern version of
Dziembowski’s pulsation code (Dziembowski 1977b, 1971). This code relies on the linear
theory of pulsation. For δ Scuti stars linear models are justified because the relative radius
variations are sufficiently small even for high-amplitude δ Scuti stars. Linear pulsation
models are well suited to compute the eigenfrequencies of stellar oscillations, but they
cannot predict the amplitudes of the pulsation modes. This task remains to be solved by
nonlinear pulsation theory as will be briefly discussed in Chapter 6.

In the envelope of the stellar model the full nonadiabatic equations are solved. This is
necessary because the thermal time scale in the subphotospheric layers is comparable to
the oscillation period. For central regions the quasi-adiabatic approximation is used when
justified (see Dziembowski 1977b, for a more detailed description).

In the code the assumption of frozen convective flux during the pulsation cycle is
adopted. This approximation may not be realistic for δ Scuti stars close to the red edge
of the instability strip and could introduce uncertainties in mode identification or linear
stability surveys. We will discuss this matter in more detail in the following chapters.
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To ensure a high numerical accuracy of the frequencies integral expressions of the eigen-
frequencies are evaluated and additional mesh points are included if necessary to improve
the resolution of the grid. The achieved relative accuracy of the period is 10−4.

2.3 Treatment of stellar rotation

The modification of the stellar structure due to rotation naturally also influences the pul-
sation frequencies. Rotation increases the star’s volume, leading to a lower density and a
change in the size of the resonant cavities. Consequently, the frequencies of acoustic modes
are decreased by rotation.

Moreover, rotation lifts the degeneracy between different m-values. A very nice physical
picture of this effect is given in Cox (1984). The separation between frequencies of unlike
azimuthal order increases with the rotation rate. Since mixed modes are sensitive to different
layers in the star the observed frequencies of rotationally split multiplets provide information
about the internal rotation rate. The rotation rate, Ω, can then be inferred with the simple
equation

ν ≈ ν0 + mΩ(1 − C ). (2.2)

where ν0 is the unperturbed frequency, C describes the Ledoux constant and m denotes
the azimuthal order. This simple equation allows to estimate the equatorial rotational
velocity for a slowly rotating star if at least two components of a multiplet are observed.
As shown by Goupil et al. (2000) the limit of the validity of this equation is at a rotation
rate of approximately 50 km s−1. At higher rotation rates the rotational splittings are more
asymmetric due to higher order effects of the Coriolis and centrifugal force. Therefore, the
perturbation approach applied in the pulsation codes used in this work takes into account
the effects of rotation up to second order following Dziembowski & Goode (1992).

Certainly, the second order theory also has its limitations. Since it relies on the pertur-
bation approach it can only be applied to rotating stars which still can be approximated
as spherically symmetric, and when the rotation rate Ω is small against the pulsation fre-
quency. Rapid rotation forces a departure from the spherically symmetric geometry due to
the centrifugal force. The oblateness of a star is described by the parameter ǫ,

ǫ = 1 − Rp/Re (2.3)

where Rp and Re are the stellar radius at the pole and the equator, respectively. Fast
rotation may also lead to structural instability of the star. The critical rotation rate, the
so-called Keplerian break-up rate, ΩK , is

ΩK =

√

GM

R3
e

. (2.4)

Recently, Lignières et al. (2006) and Reese et al. (2006) studied the effects of rotation
on acoustic modes by numerically solving the two-dimensional eigenvalue problem for a
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simple model of a star. They found that if the rotation exceeds a value of approximately
Ω/ΩK ≈ 0.10 the differences between their method and the second order perturbative
approximation become evident (see Figure 12 in Lignières et al. 2006).

A 2.0 M⊙ δ Scuti model with a rotation rate of 50 km s−1 at the ZAMS has a Ω/ΩK of
0.10. As shown in Figure 2.1, Ω/ΩK increases only slightly during the main sequence phase
but reaches a value of 0.13 in the post-main sequence phase. Consequently, such a model
may be at the limit of the validity of the perturbative approach used in this work. These
results also illustrate that Ω/ΩK has to be checked in particular for post-main sequence
models of δ Scuti stars. At Ω/ΩK ≈ 0.24 Lignières et al. (2006) found that the deviations
between the frequencies predicted by their two-dimensional method and the perturbation
approach is as high as 0.95 cd−1. This corresponds to a δ Scuti model with a rotation rate
of 100 km s−1. Thus for one of the stars examined in this study, 4 CVn, which exhibits a
v sin i of approximately 120 km s−1, an accurate prediction of individual frequencies is not
possible with the codes applied in this work.

4.00 3.95 3.90 3.85 3.80 3.75 3.70
0.00

0.05

0.10

0.15

0.20

0.25

0.30

 V
rot

(ZAMS)= 50.0 km/s
 V

rot
(ZAMS)= 100.0 km/s

 

 

/
K

log T
eff

ZAMS

TAMS

Figure 2.1: Evolution of the fraction Ω/ΩK for a 2.0 M⊙ model with an initial rotation rate
of 50 and 100 km s−1.

2.4 Input data for the models

In stars energy is transported through radiation, convection and conduction. To model the
radiation transfer inside a star the opacity in the different layers in the star is needed. In
stellar models Rosseland’s mean coefficient of absorption is commonly used:

1

κR

=

∫ ∞
0 dν 1

κ(ν)
dBν

dT
∫ ∞
0 dν dBν

dT

(2.5)
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As shown in this equation the opacity is obtained by computing a weighted average of the
individual monochromatic opacity, κ(ν), of different chemical elements over all wavelengths.
Consequently, to compute stellar opacities a chemical composition has to be assumed for
the stellar model.

2.4.1 Element abundance mixtures for stellar models

For the computation of a stellar model a specific chemical composition, i.e., an abundance
distribution of various elements, has to be adopted. The element mixture of a star reflects
the abundances of the cloud in which the star was formed. This original element mixture is
almost preserved in the stellar envelope. In the recent years photospheric abundances were
measured for several δ Scuti stars (e.g., Fossati et al. 2008; Zima et al. 2007; Mittermayer
& Weiss 2003, . . . ). These results showed that the examined abundance patterns of normal
δ Scuti stars are similar to those derived for the solar system.

The abundances derived for our solar neighbourhood are much more accurately measured
than those of other stars. It is often difficult to assess the abundance of important elements
in distant stars. Therefore, the solar element mixture is also used for the computation of
models of other stars. The chemical composition of a star is usually given in certain mass
fractions, X for hydrogen, Y for helium and Z for metals. The term metals is used in the
astronomical sense, denoting all elements with a higher atomic number than helium. For
stars in which the metallicity is observed to be higher or lower than for the sun, the measured
solar abundance mixture of metals is scaled accordingly to obtain the requested metal mass
fraction, Z. This means that the relative abundances between the different metals remain
unchanged.

The measured values of the solar element abundances are subject to changes and im-
provements because they are derived based on a theoretical atmosphere model. Thus an
improvement to the atmosphere model is also reflected in the values of the abundances.
The most commonly used solar element mixtures for stellar modeling are given in Table 2.1.

Abbreviation Reference Mass fractions for solar composition

GN93 Grevesse & Noels (1993) X=0.70, Z=0.02
A04 Asplund et al. (2005) X=0.7392, Z=0.0122

Table 2.1: Solar element mixtures.

The initial abundances in the solar system can be derived from meteorites and the
analysis of the photospheric spectrum of the sun. Grevesse & Noels (1993) determined
the solar photospheric abundances with a one-dimensional hydrostatic atmosphere model
of the sun and found a good agreement with the results derived from meteoric data. Their
proposed element mixture (GN93) combines the results of both sources of abundance data.
This mixture has been the standard element mixture in stellar modeling for a long time.
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Asplund et al. (2004) derived the solar abundances by means of a three-dimensional
hydrodynamical model of the solar atmosphere using the most recent atomic physics data
for atoms and molecules. Contrary to one-dimensional models the new models are successful
in reproducing the shape of photospheric spectral lines and other observable parameters
without assuming any free parameter (such as the microturbulence velocity, vmic). The
new results by Asplund et al. (2004) and Asplund et al. (2005) for the solar abundances
led to a significant downward revision of the metal mass fraction. The element abundances
of CNO and Ne were decreased by 40% and Fe by 20%. Since iron group elements have
higher abundances in A04, a smaller metal mass fraction Z is needed to obtain the same
effect. The mass fraction of heavy elements was revised to Z = 0.0125. This is much lower
than the metal mass fraction suggested by Grevesse & Noels (1993).

This revision caused a serious problem for the theoretical models of the sun. The dif-
ference between the sound speed in the solar model and the sound speed derived from
helioseismic inversions increased. The effect of the new abundances on the stellar models
is mainly caused by the corresponding change of opacity. Since the new abundances have
become available, several approaches to compensate for the effects of the new solar com-
position have been suggested. Possible solutions range from a significant increase of the
abundance of elements which are difficult to assess (such as Neon) to the suggestion that
opacity data still lack the contribution of a large number of elements of low abundance
which could have a significant effect on the opacity.
Christensen-Dalsgaard et al. (2009) derived an intrinsic opacity modification that would be
required to reproduce the sound speed structure of their solar model with the new heavy-
element composition. They found that the opacity has to be modified by 30 % at the base
of the solar convection zone to solve the problem. However, the question arises whether
such a change is justified.

In another paper Christensen-Dalsgaard (2009) made an asymptotic analysis of the most
recent data set of observed solar frequencies and found that the solar age derived with the
A04 composition is inconsistent with the age derived from meteoritic analyses, while the
GN93 composition is in sufficient agreement.

Obviously, the new solar abundances are still subject to discussions. In this work both
element mixtures are adopted and the differences in the asteroseismic results are compared.

2.4.2 Equation of state

For different values of density and temperature the equation of state delivers the corre-
sponding pressure, ionization degrees and thermodynamic quantities that are required to
determine the stellar structure. The equation of state includes the most abundant elements
in stars and is evaluated for the desired chemical composition.

A general review of various equations of states and their area of application is given in
Däppen & Guzik (2000). In our work the Lawrence Livermore National Laboratory equation
of state (Rogers et al. 1996) is used in its latest version (OPAL EOS2005). This equation
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of state is commonly used for asteroseismic studies and is valid for stars with a mass larger
than 0.8 M⊙.

Another popular equation of state which is mainly used for helioseismology is the CEFF
equation of state (Christensen-Dalsgaard & Däppen 1992). Contrary to the OPAL EOS,
which relies on pre-tabulated data, the CEFF EOS is an analytic equation of state. The main
disadvantage of an analytic equation of state is the extremely time-consuming computation.
In section 4.2.4 we briefly examine the influence of the choice of the equation of state on
an asteroseismic model of 44 Tau.

2.4.3 Opacity data

Based on the chemical composition, the density and temperature of a medium, the ion-
ization equilibrium concentrations and level populations are computed by the equation of
state. These data are important to evaluate the Rosseland mean opacities. Radiative
opacities were calculated and made available by two independent teams, OPAL and OP.
Corresponding references and online data bases are listed in Table 2.2.

Source Reference and link to online-database

OPAL Iglesias & Rogers (1996)
http://physci.llnl.gov/Research/OPAL/

OP (Opacity Project) Badnell et al. (2005), Seaton (2005)
http://cdsweb.u-strasbg.fr/topbase/op.html

Table 2.2: Sources of opacity data.

The references in the table are given for the most recently published updates of opacity
data. The computation of monochromatic opacity tables is very complex and requires
sophisticated methods and up-to-date atomic data. Both groups have a slightly different
approach to compute the radiative opacities (following the ’chemical’ vs. the ’physical
picture’, see e.g., Seaton & Badnell 2004, for details).

The comparison of Rosseland mean opacities computed from OPAL and OP tables by
Badnell et al. (2005) shows an agreement within 5 to 10%. With the OP opacities the
metal opacity bump is predicted at a slightly higher temperature and, therefore, deeper in
the star than with OPAL data. While this is not important for the δ Scuti stars it produces
more efficient driving for hybrid SPB and β Cephei pulsators which is in better agreement
with observations (Miglio et al. 2007).

Opacity data have an important impact in modeling the pulsations of stars. Incomplete
atomic data and uncertainties in opacity calculations may lead to differences in asteroseismic
models, which may be used to pinpoint potential problems with opacity data at certain
temperatures and densities.
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Conductive opacities

At high densities such as the central region in δ Scuti stars, heat conduction from electrons
has to be taken into account. In our code these conductive opacities are evaluated with
the formulae of Yakovlev & Urpin (1980).

Low-temperature opacities

The OPAL and OP opacities do not include the contribution of molecules and dust to the
radiative opacity. Their effect becomes increasingly important with decreasing temperature.
In δ Scuti stars the layers close to the surface are cold enough to have a small opacity
contribution by molecules.

Such molecular and grain opacities have been provided by Alexander & Ferguson
(1994) (hereafter AF94). A decade later, Ferguson et al. (2005) published updated low-
temperature opacities for a more extended temperature range. The new opacities were
computed based on an up-to-date list of molecular and atomic lines and grain species.

As stated by Iglesias & Rogers (1996) the good agreement between atomic line opacities
and the molecular AF94 opacities allows to combine these tables for the use in stellar
modeling. As part of this work the Ferguson et al. (2005) low-temperature opacities were
implemented into our codes and the implications on the models were tested.

2.4.4 Implementation of updated low-temperature opacities into the codes

The Rosseland mean opacities are commonly tabulated as a function of logarithms of
temperature and the density parameter R=ρ/(10−6T )3 for a set of different mass fractions
of X and Z. For the use in our codes a two-dimensional cubic spline formula is applied
to transform the original opacity grid into tables for κ adopting a grid denser than the
original grid. The opacity derivatives are computed from the same spline formula to ensure
consistency with the opacity. This approach allows for a fast linear interpolation for required
T and ρ in the tables during evolutionary computations.

Opacity database Range in log T Step size in log T

OPAL 8.70 - 3.75 0.05
AF94 4.10 - 3.00 0.05
F05 4.50 - 2.70 0.05 (0.01 between log T=3.5 and 2.9)

Table 2.3: Temperature ranges of opacity data.

The upper boundary of the temperature range for the new Ferguson et al. (2005)
opacities has been extended to 30000 K in contrast to 12000 K of AF94 (see Table 2.3).
The preparation of a combined table of atomic line opacities (OPAL, OP) and molecular
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data (AF94, F05) is done prior to the transformation to a denser grid. First the agreement
of the different opacities in the overlapping temperature region has to be checked. This is
done in Figure 2.2.

The large differences between F05 and AF94 at temperatures below log T=3.2 are due
to more complete computations of opacities (e.g., the inclusion of more grain species in the
EOS). Details are discussed in Ferguson et al. (2005). However, this temperature regime is
not negligible for δ Scuti stars. For the AF94 opacities a good fit to the radiative opacities
is possible at log T = 3.95. At this temperature the mean relative differences in R between
both tables is around 2% for a hydrogen mass fraction X > 0. For the new F05 opacities a
fit of similar quality is achieved and the same temperature was used to fit the two opacity
data sets.

The effect of the implementation of new low-temperature data on the final opacities
in a stellar model is small, as shown in Figure 2.3 for a δ Scuti model with 2.1 M⊙ and
an effective temperature of 6800 K. Therefore, the impact of this change on evolutionary
models is almost negligible. However, the implementation of updated low-temperature
opacities is important for the accurate computation of theoretical amplitude ratios and
phase differences between different photometric passbands. As will be discussed in more
detail in the next chapter, these quantities are indicators of the spherical degree of a
mode. Figure 2.4 examines the impact of the choice of molecular opacities on the predicted
amplitude ratios and phase differences between the Strömgren v and y passband for the
same stellar model as used in Figure 2.3. As can be seen, the differences increase with
higher spherical degrees. The deviations are expected to be largest for acoustic modes with
high spherical degrees, because the propagation zones of these modes do not extend into
deep layers of the star and are, therefore, more sensitive to the choice of low-temperature
opacities which have their main contribution in layers close to the surface. The following
chapter will discuss the theoretical background of this diagram and its diagnostic value for
the important task of mode identification.
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(a) GN93 element mixture with X=0.70, Z=0.02
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Figure 2.2: Comparison of tabulated Rosseland mean opacities at low temperatures for
log R=-3. The dotted vertical line marks the temperature (log T=3.95) where the OPAL
and AF94 opacities are fit together. The comparison is made for both solar element mix-
tures.
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Figure 2.3: Comparison of Rosseland mean opacity, κR , in models constructed with different
combinations of atomic and molecular opacities.
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Chapter 3

Mode identification and its
diagnostic power

3.1 Mode identification techniques

The assignment of correct angular numbers (ℓ,m) to an observed pulsation mode is an
essential step for successful asteroseismology. How can we infer the surface geometry of
a pulsation mode? We only have a limited amount of information in the emitted light
of a star. Stellar pulsation causes the brightness of a star to vary due to the change of
the surface area and the variation of the temperature. On the other hand, by means of
radial velocity measurements we can determine the radius variation of a star, which can be
compared to the light curve.

For an adiabatic pulsation the luminosity is highest in the phase of minimum radius
(i.e., maximum compression). In reality, for stars in the classical Cepheid instability strip
the maximum brightness is observed close to maximum velocity. Consequently, there is a
phase lag of the luminosity which corresponds to 90o which means that nonadiabatic effects
are important. As shown by Castor (1968) the phase lag mainly forms in the ionization
zone of neutral hydrogen. During the compression phase energy is temporarily stored due
to ionization and released again in the expansion phase. As stated by Castor (1968) the
hydrogen ionization zone “acts like a low-pass filter” because matter is only ionized by
photons with a certain amount of energy. An illustrative representation of the formation
of the theoretical phase-lag between intensity and velocity curves throughout the different
layers in a star can be found in Baker & Kippenhahn (1965).

There is not only a phase-lag between the luminosity and radial velocity curve. The same
effect leads to an increasing phase retardation of the light emission to longer wavelengths.
Since this effect depends on the spherical degree of a mode the observed small phase
differences in different passbands can be used for mode identification. For example radial
modes in δ Scuti stars exhibit a small positive phase difference between the Strömgren v
and y passband, while for nonradial modes the phase differences are negative.

26
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Another important factor which is perturbed by pulsation is limb-darkening. In the
central part of a stellar disc more light is emitted than near the limb, because we look
into different layers of the star. Since limb-darkening depends on temperature and gravity
the limb-darkening coefficients also change during a pulsation cycle. The strength of these
effects depends on the spherical degree of the mode, i.e., the number of node lines on the
surface.

Dziembowski (1977a) derived formulae for the periodic flux and radial velocity variations
caused by nonradial pulsation based on the linear oscillation theory. He concluded that the
Baade-Wesselink relation can be used to derive the ℓ values of modes if the stellar radius
is known. The formula was derived for a non-rotating star. It was found by Gautschy
& Saio (1996) that this approximation is justified for β Cephei and δ Scuti stars. For
g mode pulsators such as SPB or γ Dor stars this theory is not valid because the Coriolis
force becomes important. For these types of pulsators Townsend (2003) and Daszynska-
Daszkiewicz et al. (2007) derived a more sophisticated approach to determine the spherical
degrees.

The derivation given in Dziembowski (1977a) was reformulated by other authors (Balona
& Stobie 1979; Watson 1988; Garrido 2000) and lead to amplitude-phase diagnostic tech-
niques to determine the spherical degree using multicolor photometry. In this study the
theoretical mode positions are computed following Daszyńska-Daszkiewicz et al. (2003).
Balona & Evers (1999) noted that the theoretical mode positions in a diagnostic diagram
are sensitive to the modeling of the outer envelope, in particular to the efficiency of con-
vection in the partial ionization zones in the envelope. From the results of their study,
Daszyńska-Daszkiewicz et al. (2003) concluded that the amplitude ratios and phase differ-
ences mainly depend on the value of α in the hydrogen ionization zone. The mixing-length
parameter in the He II ionization zone has only a little effect. Consequently, deviations
between observed and theoretical amplitude ratios and phase differences can be used to
pinpoint problems in the modeling of the neutral hydrogen ionization zone.

Our computations rely on the mixing-length theory of convection and assume the frozen
flux approximation for the pulsation-convection interaction. This assumption may not be
appropriate for δ Scuti stars close to the red edge of the instability strip and result in
uncertainties in mode identification. Montalbán & Dupret (2007) investigated the effect
of different treatments of convection on the predicted phase differences and amplitudes.
While the use of a time-dependent theory of convection was shown to be important for
some cases, they stated that for frequencies close to that of the fundamental mode the
influence of the treatment of convection on the determination of mode degree is small.

The amplitude ratios and phase differences between different passbands are independent
of the intrinsic mode amplitudes, azimuthal order and inclination angle. The main problem
for δ Scuti stars is that we cannot use regular frequency patterns such as the so-called
large frequency spacing which is used for the identification of spherical degrees in the sun.
Moreover, the majority of δ Scuti stars rotate much faster than the sun and the effects of
rotation, such as the larger separation of the rotational splitting of the modes, complicate
the picture. A major effort was made to develop new methods for mode identification
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especially in the spectroscopic field. Currently, the most important spectroscopic mode
identification techniques are the moment method (Balona 1986; Aerts 1996) and the Fourier
Parameter Fit method (Zima et al. 2006). Both methods investigate the intensity variations
in the line profiles caused by pulsation to model the surface velocity field and then extract the
most likely azimuthal orders and spherical degrees. Their stronger sensitivity to azimuthal
orders make these techniques complementary to photometric mode identification. These
methods also have a higher potential to detect modes of spherical degrees higher than those
accessible by earth-bound photometry.

On the other hand the radial velocity data (the first moment of the line profile variation)
are affected by disc averaging effects similar to those in photometric passbands. Conse-
quently, they are more sensitive to low degree modes than the latter methods. A powerful
method to determine the spherical degree of low degree pulsation modes was presented
by Daszyńska-Daszkiewicz et al. (2005b). These authors combines photometric and radial
velocity data to infer the ℓ value of modes by means of a statistical test. Since we also
apply this technique in our work we will discuss the theoretical background of this method
in the next section.

3.1.1 A least-squares approach for three passbands (the DD-method)

In the preceding section we noted that the positions of modes in the photometric diagnostic
diagrams depend on the efficiency of convection. The sensitivity for convection enters
through the complex parameter f which is the ratio of the relative luminosity variation
to the relative radial displacement of the surface. Daszyńska-Daszkiewicz et al. (2003)
proposed a statistical approach based on three passbands to simultaneously determine ℓ
and f by means of a χ2 test

We will briefly outline their method. In an oscillating stellar photosphere the radius
variation is given by

δr(R , φ, θ)

R
= Re[εY m

ℓ e−iωt ] (3.1)

and the variation of the bolometric flux by

δFbol

Fbol
= Re[εfY m

ℓ e−iωt ] (3.2)

where the complex parameter ε describes the amplitude and phase of a mode. The spherical
harmonic, Y m

ℓ , is defined as

Y m
ℓ (θ, φ) = (−1)

m+|m|
2

√

(2ℓ + 1)(ℓ − |m|)

(ℓ + |m|)!
P
|m|
ℓ (cos θ e imφ) (3.3)

where Pℓ is the Legendre polynomial. Note that a non-standard normalization is adopted.
For δ Scuti stars the approximation of a static plane-parallel atmosphere is valid. Relying on
this approximation ε and f can be regarded as constant. Following Daszyńska-Daszkiewicz
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et al. (2002, 2003) the complex amplitude of flux variation at a given passpand λ can be
written as

Aλ = Dλ
ℓ (ε̃f ) + Eλ

ℓ (ǫ̃). (3.4)

where
ε̃ = εY m

ℓ (i , 0) (3.5)

and

Dλ
ℓ ≡ bλ

ℓ

1

4

∂ log(Fλ|b
λ
ℓ |)

∂ log Teff
(3.6)

Eλ
ℓ ≡ bλ

ℓ

[

(2 + ℓ)(1 − ℓ) −

(

ω2R3

GM
+ 2

)

∂ log(Fλ|b
λ
ℓ |

∂ log g

]

(3.7)

bλ
ℓ is the disc averaging factor which is defined as

bλ
ℓ =

∫ 1

0
hλ(µ)µPℓ(µ)dµ (3.8)

with the limb darkening law hλ. The other quantities have their usual meaning. In this
study the limb darkening coefficients of Claret (2000) are used. The partial flux derivatives,
Fλ|b

λ
ℓ |, are computed from the Vienna NEMO atmosphere models (Heiter et al. 2002;

Nendwich et al. 2004).

The system of three complex linear equations given in Equation 3.4 contains the two
unknown quantities f and ε̃. If observations in three passbands are available, it is possible to
determine the quantities ℓ and f simultaneously by means of a least-squares technique using
trial values for ℓ. Unfortunately most of the photometric studies only utilize two filters,
e.g., Strömgren v and y . However, in the recent years spectroscopic measurements gained
importance due to the development of new mode identification techniques. Consequently,
radial velocity data have become available. Instead of a third photometric passband, the
radial velocity data can be related to ε̃ through

iωR

(

uλ
ℓ +

GMυλ
ℓ

R3ω2

)

ε̃ = Aλ
RV (3.9)

The coefficients uλ
ℓ and υλ

ℓ and are given in Dziembowski (1977) for gray atmospheres.
This method which utilizes two photometric passbands and radial velocity data was used
by Daszyńska-Daszkiewicz et al. (2005b) to determine the spherical degree of the modes
in FG Vir. This was the first application of this method to a δ Scuti star. Due to the
different nature of radial velocity and photometric data the DD-method provides a much
stronger constraint on the identification of ℓ compared to results solely based on multicolor
photometric data. For example, Daszyńska-Daszkiewicz et al. (2005a) showed that for the
β Cephei star δ Ceti the method did not lead to a clear decision between several even ℓ
values from the χ2 results obtained from the pure photometric approach. Using the radial
velocity data a clear discrimination was possible.

The effects of rotation are not included in the equations 3.4 and 3.9 but they represent
a good approximation for Ω/ω ≪ 1.
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Issues to take care of when dealing with observational data

For a correct application of the DD-method one has to check the time-dependence of the
observational frequency solution. Observations are usually analyzed by fitting sinusoidal sine
curves to the data adopting the equation A0 sin(ωt + φ). Contrary, in theory |A|e iφe−iωt is
widely used. The conversion between theory and observations can be made with the simple
relation φth = π

2 − φobs.
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3.2 Application to 44 Tau

In the following sections the spherical degrees of the modes observed in 44 Tau will be
determined by means of the photometric amplitude-phase analysis and the DD-method
utilizing two photometric passbands and radial velocity data.

3.2.1 Photometric mode identification

Observational amplitude ratios and phase differences

The data used in this study were obtained during several seasons. Table 3.1 below lists the
amount of Strömgren vy photometry that has been gathered by the Delta Scuti Network.

Season Observations Observatories

2000/1 259 h during 42 nights APT 0.75m, OSN 0.90m
2001/2 143 h during 31 nights APT 0.75m
2002/3 70 h during 17 nights APT 0.75m
2004/5 143 h during 26 nights APT 0.75m
2005/6 173 h during 26 nights APT 0.75m

Table 3.1: Observing log 2000-2006. APT denotes the Automatic Photoelectric Telescope
in Arizona (USA) and OSN the Observatorio de Sierra Nevada (Spain).

The frequency analysis of the total data set was published in Breger & Lenz (2008).
Michel Breger extracted a total number of 49 significant frequencies, of which 15 are inde-
pendent. The remaining 34 frequencies are combinations or harmonics of these frequencies.
Table 3.2 lists the frequencies and amplitudes in the Strömgren v and y passband according
to the latest frequency solution by Breger & Lenz (2008).

For f12 to f15 only the amplitudes of the combined y and scaled v data are given. Due to
possible phase shifts between the different years the amplitude ratios and phase differences
between the v and y filter were determined for each season separately. The results are
listed in Table 3.3 and 3.4.

The amplitude ratio and phase difference of f6 is affected by the near zero amplitude
in the season 2004/5. The uncertainties of some of the low-amplitude modes are also very
high. From these single year solutions one can find a mean solution by weighting the annual
solution with the corresponding SNR of each frequency. This step ensures that observing
seasons with more data and lower noise contribute to the average value with a higher weight
than shorter observing runs. Table 3.5 lists the final mean values for the amplitude ratio,
Av /Ay , and the phase difference, φv -φy of all observed modes. Fig. 3.1 presents these
results in a corresponding diagram with labels for each mode.
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Frequency Amplitude [mmag]
ID cd−1 2000/1 2001/2 2002/3 2004/5 2005/6

v y v y v y v y v y

f1 6.8980 39.64 27.37 39.41 27.46 39.32 26.94 39.23 27.42 39.53 27.40
f2 7.0060 19.11 13.30 16.80 11.86 13.86 9.19 10.00 6.92 8.29 5.64
f3 9.1174 16.76 11.48 21.09 14.56 17.62 11.91 4.87 3.37 0.81 0.61
f4 11.5196 18.16 12.73 16.53 11.65 16.72 11.70 10.25 7.21 8.78 6.36
f5 8.9606 13.81 9.53 13.75 9.24 12.82 8.78 13.58 9.49 13.77 9.51
f6 9.5611 10.68 7.28 18.95 12.87 21.31∗ 14.54∗ 0.61 0.75 10.45 7.07
f7 v 7.3031 6.67 4.54 6.11 3.98 7.43 4.91 9.00 6.45 5.71 3.82
f8 v 6.7955 3.16 2.31 4.46 3.02 2.55 2.17 3.56 2.37 4.00 3.05
f9 v 9.5828 2.08 1.34 4.04 2.36 4.70∗ 3.23∗ 2.13 1.47 0.93 0.79
f10 6.3390 2.34 1.70 2.15 1.61 3.34 1.85 1.93 1.30 2.74 2.00
f11 8.6391 2.17 1.60 1.89 1.46 2.34 1.66 3.24 2.19 2.91 2.00
f12 11.2947 0.62 1.00 1.21 1.11 1.19
f13 12.6915 0.43 0.32 0.41 0.09 0.13
f14 5.3047 0.59 0.73 1.04 0.75 0.41
f15 7.7897 0.50 0.77 1.67 0.28 1.03

Table 3.2: Frequencies and amplitudes in the Strömgren v and y filters. Values taken from
Breger & Lenz (2008). Amplitudes marked with an asterisk are uncertain.
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Figure 3.1: Observed amplitude ratios and phase differences for the Strömgren v and y
passbands. Only detected frequencies with sufficiently small error bars are considered.

Computation of theoretical amplitude ratios and phase differences

To compute the positions of modes of different spherical degree in the diagnostic diagrams
a stellar model with an appropriate effective temperature and luminosity is required. Esti-
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Frequency Av/Ay

ID [cd−1] 2000/1 2001/2 2002/3 2004/5 2005/6

f1 6.8980 1.448 ± 0.004 1.436 ± 0.010 1.455 ± 0.012 1.430 ± 0.005 1.442 ± 0.006
f2 7.0060 1.438 ± 0.009 1.413 ± 0.023 1.560 ± 0.041 1.447 ± 0.022 1.478 ± 0.028
f3 9.1174 1.457 ± 0.010 1.449 ± 0.019 1.485 ± 0.022 1.442 ± 0.043 1.431 ± 0.295
f4 11.5196 1.426 ± 0.009 1.433 ± 0.022 1.422 ± 0.026 1.428 ± 0.020 1.383 ± 0.022
f5 8.9606 1.447 ± 0.012 1.478 ± 0.032 1.522 ± 0.044 1.432 ± 0.016 1.445 ± 0.018
f6 9.5611 1.472 ± 0.017 1.465 ± 0.023 1.455 ± 0.022 0.799 ± 0.139 1.470 ± 0.023
f7 7.3031 1.486 ± 0.029 1.514 ± 0.074 1.425 ± 0.097 1.425 ± 0.025 1.427 ± 0.043
f8 6.7955 1.364 ± 0.062 1.483 ± 0.091 1.024 ± 0.154 1.387 ± 0.092 1.374 ± 0.067
f9 9.5828 1.567 ± 0.096 1.705 ± 0.157 1.441 ± 0.083 1.537 ± 0.125 1.250 ± 0.180
f10 6.3390 1.389 ± 0.071 1.412 ± 0.175 1.811 ± 0.213 1.414 ± 0.105 1.312 ± 0.072
f11 8.6391 1.341 ± 0.070 1.301 ± 0.192 1.321 ± 0.195 1.471 ± 0.071 1.386 ± 0.079
f12 11.2947 1.536 ± 0.200 1.219 ± 0.206 1.234 ± 0.183 1.469 ± 0.129 1.380 ± 0.116
f13 12.6915 1.484 ± 0.281 1.144 ± 0.577 2.236 ± 1.048 1.524 ± 1.735 1.015 ± 0.689
f14 5.3047 1.364 ± 0.191 2.313 ± 0.398 1.511 ± 0.210 1.444 ± 0.287 0.976 ± 0.325
f15 7.7897 1.303 ± 0.248 1.314 ± 0.325 1.074 ± 0.216 2.800 ± 2.252 1.129 ± 0.153

Table 3.3: Observed amplitude ratios Av /Ay .

Frequency φv − φy [o]
ID [cd−1] 2000/1 2001/2 2002/3 2004/5 2005/6

f1 6.8980 2.81 ± 0.18 3.25 ± 0.38 2.71 ± 0.44 3.12 ± 0.21 2.62 ± 0.23
f2 7.0060 -1.62 ± 0.35 -1.00 ± 0.98 -0.99 ± 1.53 -1.53 ± 0.83 -3.38 ± 1.08
f3 9.1174 -1.89 ± 0.40 -0.73 ± 0.76 -1.00 ± 0.91 -1.93 ± 1.72 6.66 ± 10.83
f4 11.5196 -1.98 ± 0.36 -1.78 ± 0.89 -2.26 ± 1.04 -2.20 ± 0.80 -3.29 ± 0.97
f5 8.9606 2.07 ± 0.48 1.40 ± 1.18 0.14 ± 1.65 2.92 ± 0.63 2.82 ± 0.73
f6 9.5611 -1.17 ± 0.68 1.18 ± 0.93 -1.45 ± 0.92 -20.34 ± 9.90 -0.11 ± 0.90
f7 7.3031 -7.17 ± 1.11 -5.97 ± 2.84 -10.70 ± 3.22 -5.31 ± 0.99 -5.36 ± 1.78
f8 6.7955 -4.83 ± 2.67 -4.58 ± 3.70 -26.04 ± 9.38 -4.17 ± 3.88 -2.03 ± 2.66
f9 9.5828 -7.26 ± 3.54 -11.90 ± 5.20 -7.40 ± 3.29 -1.28 ± 4.72 -18.52 ± 7.75
f10 6.3390 -1.21 ± 2.92 4.91 ± 7.22 -19.55 ± 6.72 -2.41 ± 4.23 -7.63 ± 3.05
f11 8.6391 -8.22 ± 3.01 -18.14 ± 8.42 4.36 ± 7.87 -6.95 ± 2.75 -1.20 ± 3.37
f12 11.2947 -10.40 ± 7.51 -2.33 ± 9.45 6.19 ± 8.17 -3.32 ± 5.09 -1.08 ± 4.99
f13 12.6915 10.26 ± 10.79 -58.93 ± 28.91 15.47 ± 25.68 -333.23 ±65.10 -42.39 ± 31.16
f14 5.3047 -8.25 ± 7.92 -10.75 ± 22.02 -12.98 ± 16.91 15.61 ± 8.49 16.02 ± 12.81
f15 7.7897 -13.87 ± 10.82 -14.62 ± 18.37 19.55 ± 11.11 45.20 ±45.64 -23.27 ± 13.16

Table 3.4: Observed phase differences φv − φy .

mates of the fundamental parameters of 44 Tau were derived in section 1.3.1. We computed
evolutionary models for a range of masses relying on the standard recipe (OPAL opacities,
GN93 element mixture, normal chemical composition with X=0.70, Z=0.02). An evolu-
tionary track for 1.82 M⊙ reproduces a model in the center of the photometric box as shown
in Figure 3.2.

For the model in the middle of the photometric error box (Teff = 6900 K and log L/L⊙ =
1.305) the theoretical amplitude ratios and phase differences were computed. An underlying
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Frequency [cd−1] Av /Ay φv -φy [◦]

f1 6.8980 1.442 ± 0.003 +2.89 ± 0.13
f2 7.0060 1.465 ± 0.011 -1.57 ± 0.43
f3 9.1174 1.463 ± 0.011 -1.19 ± 0.45
f4 11.5196 1.421 ± 0.009 -2.23 ± 0.36
f5 8.9606 1.463 ± 0.012 +1.92 ± 0.45
f6 9.5611 1.451 ± 0.012 -0.94 ± 0.51
f7 7.3031 1.449 ± 0.025 -6.91 ± 0.90
f8 6.7955 1.342 ± 0.041 -7.26 ± 2.01
f9 9.5828 1.517 ± 0.054 -7.82 ± 2.02
f10 6.3390 1.482 ± 0.064 -6.55 ± 2.24
f11 8.6391 1.383 ± 0.054 -4.87 ± 2.19
f12 11.2947 1.368 ± 0.072 -1.28 ± 3.08
f13 12.6915 1.611 ± 0.381 -30.70 ± 11.55
f14 5.3047 1.521 ± 0.189 -1.28 ± 6.69
f15 7.7897 1.292 ± 0.215 +2.59 ± 7.31

Table 3.5: Mean observed amplitude ratios and phase differences obtained by weighting
with the annual SNR of the frequency.
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Figure 3.2: Evolutionary track of a nonrotating model with 1.82 M⊙.

atmosphere model with [M/H]=0.0 and a microturbulence velocity, vmic, of 2 km s−1 was
chosen. The adopted value for vmic is close to the measurements of Zima et al. (2007) who
derived 1.85 km s−1 from the equivalent widths and 1.30 km s−1 from a line synthesis.

The selected model is a post-main sequence model. The actual evolutionary stage
only has a minor effect on the mode identification. The theoretical amplitude ratios and
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phase differences are sensitive to the conditions in the outer envelope while the evolutionary
changes are mainly in the deep interior of the star. As mentioned before, the results are
very sensitive to convection in the envelope. In this study the standard mixing-length theory
of convection is used which parametrizes the efficiency of convection by the mixing-length
parameter, αMLT. αMLT describes the travel distance of convective elements in units of
pressure scale heights. Hence the efficiency of energy transport due to convection increases
as αMLT increases.

In Figure 3.3 the computed amplitude ratios and phase differences for different values of
the mixing-length parameter, αMLT, are compared to the observed values. In the diagram
only predicted modes inside the observed frequency range are shown. For αMLT=0.4 there is
no good agreement between observed and theoretical mode positions. Instead, the mixing-
length parameter can be restricted to α . 0.2. This means that envelope convection is not
very efficient in 44 Tau.

Two observed modes, f1 and f5, have positive phase shifts, which indicates that they
are radial modes. The position of the modes f2, f3, f4 and f6 in the diagram are in good
agreement with the theoretical amplitude ratios and phase differences of ℓ=1 modes. The
error bars of the remaining observed modes are already considerably larger. However, the
most likely spherical degree of some of these modes (f7, f9, f10) is ℓ=2. The theoretical
positions of ℓ=3 and 4 modes are outside the scale of this diagram.

It is also important to test the influence of other parameters on the theoretical amplitude
ratios and phase differences. Differences in the modeling of the outer envelope of a δ Scuti
star may also arise from the choice of opacity data, because deviations in the radiative
opacities lead, e.g., to more extended convection zones. In particular we tested the choice
of low-temperature opacities on the predicted mode positions in the diagnostic diagrams.
We computed evolutionary tracks through the center of the photometric box using the
OPAL and OP opacities extended with the AF94 or F05 low-temperature opacities. Both
the GN93 and the A04 element mixtures were adopted. The results are given in Figure 3.4.
It can be seen that the choice of opacity data does not pose a severe problem for the
spherical degree identification in 44 Tau. The error bars of the observations are too large
to favor a specific configuration of opacities.

As already mentioned, the influence of the evolutionary stage on mode identification is
expected to be negligible. Figure 3.5 compares the results for the post-main sequence model
with a main sequence model constructed with an overshooting parameter of αov=0.3, a
mass of 1.940 M⊙ and, otherwise, the same input parameters as the post-MS model. As
can be seen in the diagram the mode positions are almost the same.

In Figure 3.6 the influence of the uncertainties in luminosity and temperature on the
theoretical mode positions is presented. The impact on the predicted amplitude ratios and
phase differences is too small to change the derived mode identifications.

The photometric spherical degree identification is indeed definitive for many modes in
44 Tau. Moreover, due to the slow rotation mode coupling (Daszyńska-Daszkiewicz et al.
2002) which may influence the amplitude and phase of a mode is not important for 44 Tau
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Figure 3.3: Predicted amplitude ratios and phase differences for different mixing-length
parameters αMLT. Theoretical mode positions are given with points connected by lines.
Only the observed frequency range of 44 Tau (5.30-12.70 cd−1) was considered. See
Fig. 3.1 for the labels of observed modes.
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Figure 3.4: Influence of opacity data and element mixtures on the results. Each underlying
model is situated at the center of the photometric box. See Fig. 3.1 for the labels of
observed modes.
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Figure 3.5: Predicted amplitude ratios and phase differences for a post-main sequence and
a main sequence model which are both situated at the center of the photometric box in the
HR diagram. See Fig. 3.1 for the labels of observed modes.
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Figure 3.6: Theoretical mode positions for models at the edges of the photometric error
box in the HR diagram. See Fig. 3.1 for labels of observed modes.
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and can, therefore, be neglected. The spherical degree identification based on the upper
diagrams is listed in Table 3.7.

3.2.2 Spectroscopic mode identification

Summary of the LPV analysis of Zima et al. (2007)

Since 44 Tau rotates very slowly, spectroscopic mode identification methods that rely on
the Doppler broadening of absorption lines, such as the FPF method, cannot be used.
Therefore, only the Moment method could be applied to 44 Tau. Table 3.6 lists the
identified azimuthal orders, m, for the observed modes.

Frequency [cd−1] m A<v1> [km s−1] SNR<v1>

f1 6.8980 0 2.22 100.5
f2 7.0060 1 0.46 21.2
f3 9.1175 1 0.44 24.3
f4 11.5196 0 0.73 40.6
f5 8.9606 0 1.03 55.6
f6 9.5613 - 0.30 15.9
f7 7.3034 0 0.70 33.1
f8 6.7953 0 0.28 12.6
f9 9.5801 - 0.12 6.4
f10 6.3390 - 0.21 8.5
f11 8.6394 0 0.32 17.1
f12 11.2946 - 0.11 5.8

Table 3.6: Results of Zima et al. (2007).

The close frequency pair, f6 (9.56 cd−1) and f9 (9.58 cd−1), is not sufficiently resolved
in the spectroscopic data set. According to the criterion by Loumos & Deeming (1978) the
given short time baseline corresponds to a frequency resolution of 0.05 cd−1 which is larger
than the observed frequency spacing between the two modes. However, Zima et al. (2007)
argue that after the prewhitening of one peak another significant close signal is present,
which can only be removed after prewhitening the second frequency. Consequently, they
conclude that both signals exist.

Most of the modes were found to be axisymmetric, which already points to a high
inclination (that is equator-on view). From the two non-axisymmetric prograde modes f2
and f3 Zima et al. (2007) constrained the possible range for the inclination angle to 35
- 85o. Thus they concluded from their measured v sin i value of 2 ± 1 km s−1 that the
equatorial rotational velocity of 44 Tau amounts to 1-5 km s−1.
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3.2.3 Mode identification with the DD-method

Before applying the DD-method to the photometric two-color data and the radial velocities
a potential source of error has to be removed. The time stamp of observational data is
usually given in the heliocentric Julian date. If the full Julian date is used, the zero point
is far in the past and due to missing decimal places in the frequency values and round-off
errors the accuracy of the phases is degraded. To decrease such errors, we have subtracted
245 3200 from the Julian date of all data points prior to computing the frequency solution.

Due to the longer time baseline, the frequencies are more accurately determined from
the photometric data. Therefore, the photometric frequency values were used for the
prewhitening of the radial velocity data. It is crucial to use exactly the same frequency
values for both the photometry and radial velocity data.

The 12 dominant frequencies in photometry could also be detected in the radial velocity
data. Wolfgang Zima kindly provided the accurate values of the frequency solution for the
radial velocity data for the chosen time zeropoint. The uncertainties of amplitudes and
phases were computed by Period04 by means of Monte Carlo simulations. In the present
analysis we did not consider the close pair f6 and f9 because the amplitudes and phases in
the radial velocity data are only poorly determined because they are not well resolved. It
is, therefore, safer to determine the spherical degree of these modes with the photometric
data only, as has been done in the previous section.

Figure 3.7 presents the results of the DD-method obtained for the same atmosphere
model as was used for the photometric mode identification. The diagrams not only show
the results for a model in the center of the photometric box (points connected with a
line) but also the result of models with different effective temperatures (mean Teff ± 1σ)
and luminosities (mean log L ± 1σ). As can be seen, the uncertainties in temperature and
luminosity do not cause ambiguities in the mode identifications in 44 Tau. For a reliable
mode identification a clear minimum in χ2 is required. f1 and f5 are clearly identified as
radial modes. f2, f3, f4 are identified as ℓ=1 modes with a high probability. f7 is definitely
an ℓ=2 mode, for f8 and f10 the χ2 values are not as strongly distinguished as for f7, but
are still clearly seen as ℓ = 2 modes. For f11 ℓ=2 or 1 are most likely and for f12 one cannot
discriminate between ℓ=2,1 or 0 from the computed χ2 values.

3.2.4 Summary of mode identification for 44 Tau

Table 3.7 summarizes the mode identifications for 44 Tau. The results obtained with
different methods are in excellent agreement. For six modes both the spherical degree
and the azimuthal number are unambiguously determined. No candidate modes to directly
measure the rotational splitting from multiple components could be found.
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Figure 3.7: Determination of the spherical degree of the modes in 44 Tau with the DD-
method. The results for a model in the center of the photometric box in the HRD are
connected with a line. Results for models with 1σ changes in effective temperature and lu-
minosity are also shown. The lowest minima in χ2 indicate the most probable identification.
Note the different scales in χ2.
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Method: photometric MI DD-method Moment method

Data sets: vy photometry vy photometry spectroscopy (LPV)
spectroscopy (RV)

2000-2006 2004 2004

Reference: this work this work Zima et al. (2007)

Frequency [cd−1] ℓ ℓ m

f1 6.8980 0 0 0
f2 7.0060 1 1 1
f3 9.1174 1 1 1
f4 11.5196 1 1 0
f5 8.9606 0 0 0
f6 9.5611 1 - -
f7 7.3031 2 2 0
f8 6.7955 - 2 0
f9 9.5828 2 - -
f10 6.3390 2 2 -
f11 8.6391 - 2,1 0
f12 11.2947 - 2,1,0 -
f13 12.6915 - - -
f14 5.3047 - - -
f15 7.7897 - - -

Table 3.7: Summary of mode identifications for 44 Tau.

3.3 Application to 4 CVn

3.3.1 Photometric mode identification

A comprehensive analysis of the frequency content of 4 CVn was made by Breger et al.
(1999b). The authors reported 18 independent frequencies in the photometric data from
1996. After a break of several years new extensive photometric data were gathered with
the Automatic Photoelectric Telescope in Arizona starting from 2005. Table 3.8 illustrates
the observational effort from 2005 to 2008.

Season Observations Observatories

2005 278 h during 62 nights APT 0.75m
2006 291 h during 63 nights APT 0.75m
2007 400 h during 86 nights APT 0.75m
2008 379 h during 87 nights APT 0.75m

Table 3.8: Observing log for 4 CVn from 2005 to 2008.

Since the main aim of this long-term campaign is the investigation of the strong am-
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Frequency [cd−1] Av /Ay Mean Av /Ay Sigma
2005 2006 2007 2008

f1 8.59427 1.486 1.458 1.468 1.467 1.470 0.006
f2 5.04795 1.553 1.537 1.547 1.539 1.544 0.004
f3 5.85074 1.455 1.464 1.463 1.469 1.463 0.003
f4 6.97644 1.530 1.544 1.555 1.552 1.545 0.006
f5 5.53239 1.477 1.476 1.491 1.509 1.488 0.008
f6 7.37511 1.533 1.486 1.493 1.511 1.506 0.011
f7 7.55149 1.458 1.470 1.472 1.464 1.466 0.003

Frequency [cd−1] φv − φy [o] Mean φv − φy [o] Sigma [o]
2005 2006 2007 2008

f1 8.59427 -2.852 -2.495 -2.289 -2.664 -2.575 0.120
f2 5.04795 -2.270 -2.058 -2.124 -2.528 -2.245 0.104
f3 5.85074 -6.002 -7.102 -6.270 -7.045 -6.605 0.276
f4 6.97644 0.841 -0.081 0.194 0.697 0.413 0.215
f5 5.53239 -5.622 -6.693 -6.032 -4.695 -5.760 0.418
f6 7.37511 -2.732 -2.504 -2.746 -1.942 -2.481 0.188
f7 7.55149 -2.624 -3.424 -1.918 -2.637 -2.651 0.308

Table 3.9: Observed amplitude ratios and phase differences in 4 CVn. The formal uncertain-
ties of the mean values were obtained by error propagation from the annual uncertainties.

plitude variability of 4 CVn more observations are still retrieved. Thus the data are not yet
published. In this work only the data obtained during the four years from 2005 to 2008 are
considered.

Observational amplitude ratios and phase differences

The mean observational amplitude ratios and phase differences between the Strömgren v
and y passband were determined by Michel Breger. A complicating fact in this task is the
strong amplitude modulation of the pulsation modes in 4 CVn which is discussed in detail
in Breger (2000). Therefore, annual frequency solutions have to be made to determine
the amplitudes and phases. This can only be done in a reasonable way for modes which
exhibit a sufficient signal to noise in the annual solutions. Therefore, for the 2005-2008
data set only seven frequencies are considered at the present stage. Some of the dominant
frequencies in the 1996 data set, such as the modes at 6.117 and 6.190 cd−1, have much
smaller amplitudes in the more recent 2005-2008 data sets and, therefore, could not be
included. The results are provided in Table 3.9.

The uncertainties of the mean amplitude ratios and phase differences were determined
in the same way as for 44 Tau. Due to the extensive data base the uncertainties of the
frequencies are lower than 1 ·10−5 cd−1. It is remarkable that despite the strong amplitude
variability of 4 CVn the amplitude ratios of the modes remain quite stable throughout
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the different years. This means that mode identification is not affected by amplitude
modulation. Figure 3.8 shows the position of the examined seven modes in an amplitude
ratios vs. phase differences diagram. As for 44 Tau, distinct groups in the distribution of
the phase differences can be found.
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Figure 3.8: Observed amplitude ratios and phase differences between the Strömgren v and
y passbands for the seven dominant modes in 4 CVn.

Comparison with theoretical amplitude ratios and phase differences

As mentioned in section 1.3.3 the photometric calibrations indicate an overabundance of
metals in the outer envelope of 4 CVn. The photometrically derived metallicity, [M/H], is
+0.20 ± 0.15 dex. Unfortunately, a detailed analysis of the photospheric elements (as has
been done for 44 Tau) is not yet available. Regarding the high uncertainties in [M/H], the
possibility of a normal (solar) metallicity was not excluded in our analyses. In the calcula-
tions of theoretical amplitude ratios and phase differences the metallicity can be adjusted
by changing the metallicity of the evolutionary models and, independently, by changing
the metallicity of the stellar atmosphere models. For example, this allows for assuming
solar composition in the stellar interior and overabundant metals in the atmosphere. The
strongest impact on the mode positions in the diagnostic diagrams is imposed by the choice
of metallicity of the atmosphere model. The variation of the metallicity of the evolutionary
model has a much smaller effect, which is mainly due to the change in the surface gravity.

To find a representative model in the center of the photometric error box in the HR
diagram we constructed a sequence of models adopting the OPAL opacities and the GN93
element mixture. The observed projected rotational velocity is around 120 km s−1. How-
ever, this value is currently not well constrained. To obtain models inside the photometric
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box at this lower limit of the equatorial rotation rate, an initial rotation rate of 150 km s−1

was adopted. Convective overshooting was neglected. Different mixing-length parame-
ters and two different metal mass fractions (Z=0.02 and Z=0.025) were used. Note that
Z=0.025 corresponds to a metallicity which is slightly lower than [M/H]=+0.20. When a
standard chemical composition is assumed, a model with 2.10 M⊙ matches the position in
the center of the HR diagram. For the model with a higher metallicity, Z=0.025, the mass
has to be increased to 2.18 M⊙ to fit approximately the same position in the HR diagram.
The evolutionary tracks of both models are shown in Figure 3.9.
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Figure 3.9: The evolutionary tracks of two reference models used for mode identification in
4 CVn.

A first comparison between the theoretical amplitude ratios and phase differences com-
puted for these models and the observed values is given in Figure 3.10. The diagram
shows the results for the evolutionary model with Z=0.025 and a model atmosphere with
[M/H]=+0.20 and a microturbulence velocity of 4 km s−1. If not stated otherwise the
same value for the microturbulence velocity was adopted in all subsequent models. The
differences to the mode positions obtained for the evolutionary model with Z=0.02 is very
small. Therefore, it can be concluded that the metallicity adopted in the evolutionary model
is not an important factor in this analysis.

It is obvious that the agreement between theory and observations is not as good as for
44 Tau. The formal uncertainties of the observed amplitude ratios and phase differences
may underestimate the true errors. On the other hand adopting larger uncertainties did
not improve the agreement significantly. Consequently, possible uncertainty factors in the
theoretical predictions have to be considered in more detail. For the previously examined
star, 44 Tau, Figure 3.6 already illustrated the temperature and luminosity dependence of
the mode positions in the diagnostic diagram. Due to the larger uncertainties in the derived
fundamental parameters of 4 CVn the effects may be larger for this star.
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Figure 3.10: Comparison between observed amplitude ratios and phase differences with the-
oretical models using different values of αMLT and a model atmosphere with [M/H] = +0.20
and vmic = 4 km s−1.

We computed an extensive model grid that covers the complete photometric box in
the HR diagram with models of different masses. The adopted masses change in steps of
0.02 M⊙. Moreover, αMLT was varied in steps of 0.1 to examine different efficiencies of
convection. Otherwise the same parameters as in the previously mentioned 4 CVn models
were used. For all models inside the photometric box the corresponding amplitude ratios
and phase differences were computed. Atmosphere models with different metallicities were
adopted to study the effect of the poorly constrained metallicity.

Figure 3.11 shows the result of these computations for different values of the mixing-
length parameter for an atmosphere model with [M/H]=+0.20. The spread of the results
due to different temperatures and luminosities is not very large. A perfect fit between
theory and observation is not achieved. This concerns the amplitude ratios in particular.
The effect of adopting different metallicity values in the stellar atmosphere model are
shown in Figure 3.12. In this diagram the mixing-length parameter of convection was fixed
to αMLT = 0.3. The variation of the metallicity mainly affects the amplitude ratios, but
the quality of the results is not good enough to determine a preferred value. While the
modes with negative phase differences are in better agreement with metallicities close to
solar values, the mode with the positive phase difference prefers a higher metallicity. It may,
however, be possible that the neglect of the interaction between pulsation and convection
is responsible for the poor agreement.

Nevertheless, some conclusions are possible. The results shown in Figure 3.11 indicate
an upper limit for the mixing-length parameter of αMLT ≈ 0.4. For αMLT ≈ 0.0 some
modes with phase differences typical for ℓ=1 modes are identified as ℓ=2. The best fit of
modes with ℓ=0 and ℓ=2-like phase differences is obtained with αMLT ≈ 0.0 while the best
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Figure 3.11: Theoretical mode positions for different values of the mixing-length parameter.
The results of all models inside the photometric error box are shown. For α > 0.5 the ℓ=2
mode positions are predicted to be outside the scales of the given diagrams.

fit of modes with ℓ=1-like phase differences occurs at αMLT ≈ 0.3

Caution is needed not to put too much focus on the position of a single mode in the
diagnostic diagrams. It was shown by Daszyńska-Daszkiewicz et al. (2002) that for rotating
stars mode coupling may significantly affect the amplitude ratio and phase difference. We
examined possible shifts of modes due to rotational mode coupling for various models.
However, the results strongly depend on the individual frequencies in the pulsation model.
Unfortunately, the models examined here do not reproduce the individual frequencies in
the observed frequency spectra well enough, so no general conclusions can be made at the
moment. However, in some models the mode f4 (6.976 cd−1) is a radial mode which is
coupled to an ℓ=2, m=0 mode of nearly the same frequency. In such a configuration of
a coupled pair the radial mode tends to look more like an ℓ = 1 mode than an uncoupled
ℓ = 0 mode. However, the strength of this effect depends on the efficiency of the coupling
which is strongly dependent on the model. This would explain why the observed phase
shift of f4, 0.41 cd−1, is closest to the value predicted for the fourth radial overtone which
does not agree well with the fundamental parameters of the star. As we will see later the
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Figure 3.12: Effect of different metallicity on the theoretical mode positions. The underlying
evolutionary model was computed with αMLT = 0.3.

asteroseismic models indicate a lower radial order for f4 which is predicted to have a phase
difference higher than 1o .

3.3.2 Spectroscopic mode identification

Summary of the LPV analysis of Castanheira et al. (2008)

In early 2008, 4 CVn was observed for 38 nights at the 2.1m telescope at McDonald Ob-
servatory. Based on the line profile variations of the two unblended Fe II lines at 4508.29
and 4549.48 Ångström Castanheira et al. (2008) determined the azimuthal numbers for
the five dominant modes utilizing the Fourier Parameter Fit method. They identify f1 and
f3 as prograde modes with m = 1, f2 and f6 as retrograde modes with m = −1, and f4
as an axisymmetric mode. It should be noted that their results are preliminary. Currently
the spectroscopy members of the Vienna TOPS group are rereducing the spectroscopic
data utilizing a better treatment for the determination of the spectral continuum. More-
over, more spectral lines will be used for the line-profile analyses. Therefore, more mode
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identification results may be expected in the near future.

3.3.3 Application of the DD-method

The availability of spectroscopic and photometric data in 2008 suggests the application of
the DD-method. Our spectroscopy group kindly provided me with the preliminary reduced
spectroscopic data. By means of the FAMIAS software (Zima 2008) we extracted the radial
velocities for the same two Fe II spectral lines that were used in the analysis of Castanheira
et al. (2008). This was done following the recommended procedure according to FAMIAS.

The frequency analysis of the averaged radial velocity curve from the two Fe II lines
was done with Period04 (Lenz & Breger 2005). Once a frequency is detected in the radial
velocity data the more accurate frequency value of the photometric counterpart is adopted.
12 frequencies were found above the signal to noise criterion of SNR=4.0 (Breger et al.
1993). Another frequency at 5.13 cd−1 with a SNR of 3.90 is found close to this limit. As
this frequency was already proved to exist in the photometric data with a sufficient SNR
(f15 in Breger et al. 1999b) we also accepted this detection. The preliminary results are
given in Table 3.10. Due to the fact that the spectroscopic data are not final these results
should only be considered as preliminary.

Frequency [cd−1] m A<v1> [km s−1] SNR<v1> SNRvy

f1 8.594 1 1.05 9.6 123.5
f2 5.048 -1 1.75 13.6 89.5
f3 5.851 1 0.69 5.6 67.4
f4 6.976 0 0.81 7.0 54.9
f5 5.532 1.01 7.9 53.2
f6 7.375 -1 1.55 13.5 31.5
f7 7.552 0.47 4.1 48.9
f8 6.118 0.53 4.4 5.1
f9 6.681 0.69 5.7 4.2
f10 4.748 0.62 4.7
f11 6.439 0.49 4.1
f12 6.191 0.57 4.8
f13 5.139 0.50 3.9

Table 3.10: Results from the FPF method and the analysis of the radial velocity curve.

In the extensive 2008 photometric data nine frequencies exhibit a SNR > 4.0. Since
these nine frequencies are also significant in the radial velocity data, their spherical mode
degree can be investigated by means of the DD-method. The uncertainties of the amplitudes
and phases in the photometric passbands and the radial velocities were determined by means
of Monte Carlo simulations in Period04. As for 44 Tau, the DD-method was applied for
a model in the center of the HR diagram and for models at the edges of the photometric
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error box (defined by one standard deviation in effective temperature and luminosity). The
results are shown in Figure 3.13.

0 1 2 3 4 5 6
0

20

40

60

80

100

120

140

0 1 2 3 4 5 6
0

10

20

30

40

50

0 1 2 3 4 5 6
0

20

40

60

80

100

120

0 1 2 3 4 5 6
0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6
0

10

20

30

40

50

0 1 2 3 4 5 6
0

5

10

15

20

25

30

35

0 1 2 3 4 5 6
0

20

40

60

80

100

120

140

160

0 1 2 3 4 5 6
0

2

4

6

8

10

12

14

16

18

0 1 2 3 4 5 6
0

20

40

60

80

100

120

140

 

 

f2 = 5.05 c/d

 

 

f1 = 8.59 c/d

 

f4 = 6.98 c/d

 

f5 = 5.53 c/d

 

 

f6 = 7.37 c/d

 

f7 = 7.55 c/d

 

f8 = 6.12 c/d

 

 

f3 = 5.85 c/d

 

f9 = 6.68 c/d

Figure 3.13: Dependence of χ2 on the spherical degree for the nine dominant modes in
4 CVn. The results of the DD-method for different models at the edges of the photometric
error box are shown.

The diagrams show that there is no reliable mode identification for most of the modes.
The χ2 values are much too high and also have unlikely minima at ℓ=5 and 6 for some
pulsation modes. The disc averaging effects for such spherical degrees are large and the
photometric amplitudes of such modes are expected to be much smaller than the observed
amplitudes of the specific modes. The reason for the poor results is very likely due to the
fast rotation of 4 CVn since the equations 3.4 and 3.9 assume a nonrotating case. The
rotation rate of 4 CVn is approximately 0.5 cd−1 for an equator-on view and higher for other
inclinations. This corresponds to Ω/ω of at least 0.1 for the lowest frequencies. Therefore,
these results should be taken with caution. For the mode f4 at 6.98 cd−1 photometry
indicates ℓ = 0 due to the clearly positive phase shift. The DD-method finds the lowest
χ2 values at ℓ=0 and 1 and, unfortunately, does not provide a clear preference. The radial
velocity measurements are more strongly affected by rotation than brightness measurements
due to the direct influence on the line profiles. Since the results of the DD-method may not
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be very reliable in the case of 4 CVn it is safer to rely solely on the results from photometric
mode identification which are less affected by rotation.

3.3.4 Summary of mode identification for 4 CVn

Table 3.11 summarizes the mode identification results for 4 CVn. Due to considerable
uncertainties in the determination of the spherical degrees, these results should be taken
with caution. The identifications from the various methods list the ℓ value with the highest
probability first, then the other possible values. The frequency separation between the
two quadrupole modes f3 (5.85 cd−1) and f5 (5.53 cd−1) is in good agreement with the
measured projected rotation velocity, which means that these modes may be components of
a rotational splitting. f3 could be identified as a prograde mode with m=1, but unfortunately
no azimuthal order could be determined yet for f5.

Method: photometric MI DD method FPF method

Data sets: vy photometry vy photometry, spectroscopy (LPV)
spectroscopy (RV)

2005-2008 2008 2008

Reference: this work this work Castanheira et al. (2008)

Frequency [cd−1] ℓ ℓ ℓ m

f1 8.59 1 (2?) 2, 1 1
f2 5.04 1 (1,2) 1, 2 -1
f3 5.85 2 1, 2 1
f4 6.98 0 (0,1) 2,0,1 0
f5 5.53 2 (1,2)
f6 7.37 1 (2?) (1) 2, 1 -1
f7 7.55 1 (2?)
f8 6.11 (3,2)
f9 4.74
f10 6.19
f11 6.44
f12 6.68 (1)

Table 3.11: Summary of mode identifications for 4 CVn. The results of the DD-method
should be taken with great caution (see discussion in Section 3.3.3).
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Asteroseismic modeling of 44 Tau

During the life of a δ Scuti star on the main sequence it transforms hydrogen into helium
in its core. The central nuclear reactions slowly change the stellar structure which causes
the star to expand slowly while the surface gravity decreases. Towards the end of this
phase the amount of hydrogen in the core gets very low. To keep the energy production
from hydrogen burning efficient, the star increases its central temperature by an overall
contraction. This leads to an increase in the effective temperature and the surface gravity.
At some stage the hydrogen in the core is finally depleted and a hydrogen-burning shell
becomes the dominant source of nuclear energy. This causes the stellar envelope to expand
again leading to a decrease in the effective temperature and surface gravity.
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Figure 4.1: Observed position of 44 Tau in a surface gravity versus effective temperature
diagram. Evolutionary tracks for stellar models constructed without convective overshooting
(solid lines) and with an overshooting parameter of αov = 0.2 (dashed lines) are given.
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The close relation between the surface gravity and stellar evolution is often used to
determine the evolutionary stage of a star. Figure 4.1 shows evolutionary tracks of stel-
lar models with different masses in a gravity vs. effective temperature diagram. In the
first model sequence convective overshooting was neglected, in the second sequence an
overshooting parameter of αov=0.2 was assumed. Overshooting increases the amount of
hydrogen available for the nuclear reactions in the core and, therefore, increases the life time
on the main sequence. The extent of convective overshooting is still subject to uncertainty
in δ Scuti stars.

The spectroscopically determined log g value of 44 Tau is 3.6 ± 0.1. This puts the star
in a region in which an unambiguous identification of its evolutionary stage is not possible.
Hence we have to consider the main sequence as well as post-main sequence phases in our
asteroseismic modeling.

4.1 The choice of the element mixture

For 44 Tau Zima et al. (2007) obtained the photospheric abundances for several elements
from a spectrum synthesis. Table 4.1 compares the measured element abundances in 44 Tau
to the GN93 mixture and the more recent A04 solar abundances.

Abundance (log N) ∆(44 Tau - Sun)
Element 44 Tau Sun (GN93) Sun (A04) GN93 A04

O 8.63 8.87 8.66 -0.24 -0.03
Mg 7.72 7.58 7.53 0.14 0.19
Ca 6.51 6.36 6.31 0.15 0.20
Sc 2.80 3.17 3.05 -0.37 -0.25
Ti 4.99 5.02 4.90 -0.03 0.09
V 4.06 4.00 4.00 0.06 0.06
Cr 5.79 5.67 5.64 0.12 0.15
Mn 5.60 5.39 5.39 0.21 0.21
Fe 7.59 7.50 7.45 0.09 0.14
Co 5.21 4.92 4.92 0.29 0.29
Ni 6.24 6.25 6.23 -0.01 0.01

Uncertainties ≤0.14 ≤0.10 ≤0.10

Table 4.1: Comparison between the abundances of 44 Tau and the Sun.

As can be seen in Table 4.1 and in Figure 4.2, the element abundances of 44 Tau
are generally close to those of the Sun. Some elements in 44 Tau are slightly under-
or overabundant, though. However, the differences are not much larger than the given
uncertainties. Moreover, the abundance pattern of 44 Tau does not show a clear preference
for the GN93 or A04 element mixture.
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Figure 4.2: Photospheric element abundances of 44 Tau compared to the solar abundances
of GN93 and A04.

The web interface of the OPAL project1 allows for computing OPAL opacities for a
user-defined element mixture. Unfortunately, the abundances of important elements such
as C and N were not determined in 44 Tau. Therefore, we did not utilize a special element
mix, but constructed asteroseismic models of 44 Tau utilizing both solar element mixtures.

4.2 Inferences from the observed radial modes

Radial modes are a good probe for the global parameters of a star. While the frequency of
one radial mode is sufficient to determine the mean density of a star, a second radial mode
additionally provides a mass constraint. Therefore, the identification of two radial modes in
44 Tau poses an important constraint to the pulsation models. Considering the measured
fundamental parameters, the observed spacing of 2.06 cd−1 between the two radial modes
allows to conclude that the radial order of these modes only differs by one. A difference
of two radial orders would be incompatible with the measured fundamental parameters of
44 Tau.

In a Hertzsprung-Russell diagram or a log g vs. log Teff diagram the models which
fit the first radial overtone are situated on a line which is slightly inclined to the line of
models that fit the radial fundamental mode. This can be clearly seen in Figure 4.3 which
shows this situation for post-main sequence models. The model that fits both radial modes

1http://adg.llnl.gov/Research/OPAL/new.html
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Figure 4.3: log g vs. log Teff diagram. Models with the radial fundamental mode
at 6.8980 cd−1 are connected by a dashed line and models with the first overtone at
8.9606 cd−1 by a solid grey line. The photometric error box is in good agreement with the
model at the intersection of the two lines.

simultaneously is situated at the intersection of the two lines, which constrains the mass
of the model. For this reason, two identified radial modes restrict the number of possible
models significantly.

4.2.1 Petersen diagrams

A convenient tool to find models that fit the observed radial frequencies is the Petersen
diagram (Petersen & Jørgensen 1972). In a Petersen diagram the period ratio between two
consecutive radial modes is plotted against the period of the mode with lower frequency.

In Figure 4.4 a Petersen diagram is presented for representative models in all possible
evolutionary stages for 44 Tau. The observed period ratio between the two radial modes
f1 and f5 is 0.769815 ± 0.000002. The low uncertainty is due to the excellent accuracy
of the observed periods with a formal uncertainty of only 1.4 · 10−5 d. As shown for the
post-main sequence expansion case in Figure 4.4 the observed period ratio can be fitted by
adjusting the mass of the stellar model. However, the period ratio depends not only on the
mass of a star but is also sensitive to changes in metallicity and rotation rate which both
modify the stellar density and the surface gravity (Suárez et al. 2006).

Figure 4.5 shows the effect of rotation on the evolutionary track of a model in the
Petersen diagram. For 44 Tau the measured rotation rate is 3 ± 2 km s−1 and, therefore,
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Figure 4.4: Petersen diagrams in which the observed radial period ratio is fit by a main
sequence model (left panel), a post-MS contraction model and a post-MS expansion model
(right panel). The red circle marks the observed period ratio. The observational uncertain-
ties are smaller than the size of the symbol.
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Figure 4.5: Effect of rotation on the radial period ratio.

essentially has a negligible effect. Since the surface abundances in 44 Tau are close to solar,
one may also assume normal metallicity for the whole star. Moreover, the effects of different
opacity tables and element mixtures are also important, as will be shown later. The dip in
the period ratio at the beginning of the main sequence phase is due to the contraction of
the convective core and has been discussed in more detail by Templeton et al. (2002).

The fundamental parameters of the three representative models, in Figure 4.4 are given
in Table 4.2. The models were computed with OPAL opacities, the GN93 element mixture
and assuming no rotation. As can be seen the log g values is alike in all models despite the
three different evolutionary stages.
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X Z αMLT αov M/M⊙ log Teff log L/L⊙ log g

MS 0.70 0.02 0.2 0.3 1.847 3.8088 1.2205 3.6702
post-MS contraction 0.70 0.02 0.2 0.0 1.862 3.8118 1.2353 3.6713
post-MS expansion 0.70 0.02 0.2 0.0 1.875 3.8422 1.3601 3.6712

Table 4.2: Parameters of the representative models. For all models OPAL opacities and
the GN93 element mixture were adopted.

For a more quantitative investigation we constructed a grid of stellar models adopting
different chemical compositions, mixing-length and overshooting parameters. As for the
representative models the OPAL opacities and the GN93 element mixture were used and
only nonrotating models were constructed. Table 4.3 lists the wide range of the chosen
input parameters (with the initial standard values for 44 Tau given in bold face).

Parameter Range of values

X 0.65, 0.70, 0.75
Z 0.015, 0.02, 0.025, 0.03, 0.04
αMLT 0.0, 0.2, 0.5
αov 0.0, 0.1, 0.2, 0.3, 0.4

Table 4.3: Parameter range for the model grid.

Along each evolutionary track in this model grid, the corresponding radial modes were
computed. By means of Petersen diagrams the stellar mass of the model that fits both
observed radial modes for the given input parameters was determined. Figure 4.6 shows
the position of these models in a HR diagram separately for each evolutionary stage.
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Figure 4.6: Position of models that fit the observed radial modes in a Hertzsprung-Russell
diagram. The leftmost diagram shows MS models, the diagram in the middle models in the
post-MS contraction phase and the rightmost diagram models in the post-MS expansion
phase. A representative evolutionary track is shown for each evolutionary stage. The
photometric error box is given.
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Even though a wide range of input parameters was used, the models are restricted to
three distinct small regions in the HR diagram. While most of the models in the post-main
sequence expansion phase are located inside the photometric error box, main sequence mod-
els fit the radial modes at significantly lower effective temperatures. Post-main sequence
models in the contraction phase are more widespread in the diagram.

After this rather quantitative examination we will now restrict our investigations to the
standard chemical composition of X=0.70 and Z=0.02. Since the rotation rate as well as
abundances of 44 Tau are known, this star represents a good testing object to evaluate the
impact of the choice of different element mixtures or opacity tables. As these effects are
similar in every possible evolutionary stage, the impact will be examined only for the case
of a post-MS model in the expansion phase.

4.2.2 Effect of different solar element mixtures on the radial period ratio

As discussed in section 4.1 the abundance pattern of 44 Tau does not show a preference for
the GN93 or A04 element mixtures. Hence it is interesting to test whether the asteroseismic
models of 44 Tau point to a favored element mixture.
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Figure 4.7: Effect of different element mixtures on the radial period ratio. Left panel:
comparison of the results obtained with the GN93 and A04 mixture for constant metallicity
(Z=0.02). Right panel: comparison of the results using the suggested solar value of Z for
each mixture.

The Petersen diagrams in Figure 4.7 present the results considering two cases: in the left
panel the period ratios computed with the GN93 and A04 element mixture are compared
for the same metallicity of Z=0.02. The effect shown here is only the effect of changing the
abundance mixture. With A04 the period ratio during the main sequence stage is predicted
to be higher but it decreases more strongly during the post-main sequence evolution. A
slightly lower mass is needed to fit the observed radial period ratio of 44 Tau.

However, Z=0.02 for the A04 mixture corresponds to a metal overabundance in com-
parison to the Sun. For the A04 element mixture the solar chemical composition was
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determined to be X=0.74 and Z=0.012. In the right panel of Figure 4.7 the results ob-
tained with the suggested solar composition for each mixture are given. The effect is larger
as in the previous case. To fit the observed periods the mass has to be decreased from
1.875 to 1.805 M⊙. Figure 4.8 shows how this change affects the position of the models
that fits the observed radial modes in the HR diagram. Both models are in satisfactory
agreement with the photometric error box. The parameters of the models obtained in this
section are given in Table 4.4.
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Figure 4.8: Comparison of evolutionary tracks obtained with the GN93 element mixture
using X=0.70, Z=0.02 and the A04 mixture adopting X=0.74 and Z=0.012.

Opacity Element mixture X Z M/M⊙ log Teff log L/L⊙ log g Age [Myr]

OPAL GN93 0.70 0.02 1.875 3.8422 1.3601 3.6712 1120
OPAL A04 0.70 0.02 1.860 3.8313 1.3070 3.6767 1250
OPAL A04 0.74 0.012 1.805 3.8303 1.3035 3.6635 1330

Table 4.4: Comparison of the parameters of models obtained with different element mix-
tures.

For all models rather inefficient convection (αMLT = 0.2) and no overshooting from the
convective core were assumed. The main effect of changing the element mixtures is a small
modification of the opacities in the model. The results given in this section were obtained
with the OPAL opacities. Using a different source of opacity data may, therefore, also have
an influence on the period ratio. This will be tested in the next section.
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4.2.3 Effect of different opacity data on the radial period ratio

As shown in section 2.4.3, the Rosseland-mean opacities given by the Lawrence Livermore
Laboratory and the Opacity Project team exhibit small differences. Since opacity data
are very important for asteroseismic studies we tested the effect of using different opacity
sources on the predicted radial period ratio. As can be seen in Figure 4.9 the results are
striking.
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Figure 4.9: Comparison between results obtained from OPAL and OP opacities. Left panel:
the influence of opacity tables in the Petersen diagram. Right Panel: Position of models
that fit the radial period ratio in the HR diagram.

With OP opacities the predicted radial period ratio is much higher compared to that
in the OPAL case. The differences in the opacity lead to a different sound speed in the
stellar model. The periods of the pulsation modes are, therefore, also modified. To fit
the observed radial modes in 44 Tau the mass has to be reduced from 1.875 to 1.69 M⊙.
Due to this low mass, the model that fits both radial modes is situated far outside the
photometric error box. The fundamental parameter of the OPAL and the OP model are
given in Table 4.5.

Opacity Element mixture X Z M/M⊙ log Teff log L/L⊙ log g Age [Myr]

OPAL GN93 0.70 0.02 1.875 3.8422 1.3601 3.6712 1120
OP GN93 0.70 0.02 1.695 3.8052 1.1822 3.6571 1520

Table 4.5: Comparison of the parameters of models calculated with different opacity data.

It is necessary to examine these results in more detail. Figure 4.10 shows the Rosseland
mean opacity for the OPAL model given in the Table 4.5. Moreover, for the temperature
structure of the OPAL model, the OP opacities are evaluated to allow a direct comparison
of the differences in opacity. It can be seen that the relative differences are below 15%.
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Figure 4.10: Left panel: Rosseland mean opacity for the OPAL model compared to the OP
opacities evaluated for the temperature structure of the OPAL model. Right panel: relative
differences between the two opacity data.

Due to the differences between the opacities the radial modes do not fit the observed
period ratio if the OP model is evaluated for the structure of a model originally computed
with OPAL opacities. Let us now compare the OPAL model with an OP model that actually
fits the radial modes. As shown in Figure 4.11 the differences between the opacities in the
1.875 M⊙ OPAL model and the 1.695 M⊙ OP model very large.
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Figure 4.11: Rosseland mean opacity for the OPAL and OP model that fit the radial modes
(left panel). Right panel: relative differences between the two opacity data.

We examined the differences between the opacities to find the reason for the large
differences when fitting the radial fundamental and the first overtone. In particular the
question arises whether the differences are created due to opacity deviations in a restricted
range in temperature or not.

We computed Rosseland mean opacities for OPAL and OP data for a chemical com-
position with X=0.70, Z=0.02 using the GN93 element mixture. Figure 4.12 shows the
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comparison between the two data sets. The mean opacities are in general very similar
and at certain temperatures the values are even equal. In the diagram these temperatures
(log T=4.263, 4.625, 5.146, 5.308, 5.725, 6.332, 6.745 [K]) are marked with vertical lines.
The relative differences in opacity are similar as in Figure 4.10.
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Figure 4.12: OPAL and OP mean opacities for X=0.70, Z=0.02. Vertical lines mark some
of the temperatures at which the OPAL and OP opacities are equal. Different temperature
regions are marked with labels.

For testing purposes, it is feasible to exchange opacity data between equal-opacity
temperatures and to create an artificial opacity set which is a mixture between the OPAL
and the OP opacities. In this context it is crucial to make sure that the resulting log κ
and its derivative have no discontinuities. The influence on the models that fit the radial
fundamental and first overtone in the HR diagram is then examined.

As we know from history, radiative opacities were increased step-by-step. Hence in the
first test the maximum value of log κOPAL or log κOP was used to create the new opacity
data set with its corresponding derivatives. Then we tested how these new opacity data
influence the fit of the observed radial modes. As can be seen in the left panel of Figure 4.13,
using only the highest opacity values from both sources results in a model in-between the
pure OPAL or OP case. Similar results are found when only the smallest opacity values
are considered (the corresponding model is denoted as ’min’ in Figure 4.13). Since these
results do not fully explain the differences between the OPAL and OP results a more detailed
investigation is necessary.

The next test was to examine whether specific temperature regions are responsible for
the difference between the OPAL and OP models. The chosen method was to exchange
the opacity data in-between the opacity-equality points for each of the temperature regions
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Figure 4.13: HR diagram showing the influence of the adopted artificial opacity data on
the models which fit the observed radial modes in 44 Tau. See text for details.

labeled in Figure 4.12. The results of this test are that the opacity in the temperature
regions #2 and #3 have the main responsibility for the different results between OPAL
and OP in the case of 44 Tau. Thus if the OP opacities are replaced with OPAL data in
the temperature region between log T=5.15 and 6.33, the radial fundamental and the first
overtone can be fit at a similar position in the HR diagram as in the pure OPAL case (see
right panel in Figure 4.13). The mass of this model is 1.865 M⊙, which is only slightly
lower as for the pure OPAL case.

The difference of OPAL and OP opacity in the temperature region log T=5.15 and
6.33 is therefore important for the period ratio between the radial fundamental and first
overtone. This is in agreement with Petersen & Jørgensen (1972) who stated that the
fundamental mode has the highest weight around x=r/R=0.7 which corresponds to the
same temperature region considered here. Figure 4.14 shows the kinetic energy density
of the radial fundamental and first overtone mode inside the star. Pulsation modes are
sensitive to the conditions in temperature regions in which the kinetic energy density is
high. Due to the position of its node the radial first overtone mode probes the temperature
region between log T = 4.5 and 7.0 with different weights than the radial fundamental
mode. This explains our findings above.

As shown in the third panel in Figure 4.14 the OP opacities are lower by approximately
10% around log T=6.05 in comparison with OPAL. This is the main reason for the different
results between OP and OPAL and was also noted by Montalban & Miglio (2008). These
authors artificially increased the OPAL opacities by 5% around log T ∼ 6.25 and could fit
the observed period ratio with a main sequence model with 1.9 solar masses and αov = 0.3
using the standard chemical composition of X=0.70, Z=0.02 (see Figure 5 in that paper).
Consequently, this may indicate that the OP data underestimate the true opacity in the
temperature region around log T = 6.05.
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Figure 4.14: The radial fundamental and first overtone mode as a probe for opacity data.
Uppermost panel: relative Lagrangian pressure variation. Second panel: kinetic energy
density inside the star. Third panel: comparison between OPAL and OP opacities for the
same model. Lowest panel: absolute values of Rosseland mean opacities from OPAL and
OP data.

4.2.4 Effect of the CEFF equation of state on the period ratio

To check for the influence of the equation of state on the models and the period ratio
we performed additional tests with the CEFF equation of state (Christensen-Dalsgaard &
Däppen 1992). Since the conditions in the interior of post-MS expansion models are partly
outside the parameters of the CEFF equation of state, these tests were only performed for
an MS model of 44 Tau.

The reference model was constructed with the OPAL opacities, the GN93 element mix-
ture and a standard chemical composition (X=0.70, Z=0.02). The mixing-length parameter
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of convection was set to αMLT=0.2 and a convective overshooting parameter of αov =0.4
was used. With such a configuration a nonrotating model with 1.850 M⊙ reproduces the
observed period ratio.
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Figure 4.15: Comparison between the results obtained with the CEFF and OPAL equation
of state in the HR diagram (left panel) and the Petersen diagram (right panel). See text
for model parameters.

With the same input parameters a model with the CEFF equation of state was computed.
Figure 4.15 compares the results for the OPAL and the CEFF models. As can be seen in
the HR diagram, the differences in effective temperatures and luminosities are small. The
effect on the radial period ratio is slightly larger, especially in the early phases of main
sequence evolution. Close to the TAMS the differences between the period ratios diminish.
Since the observed radial periods put 44 Tau near the TAMS, the choice of the equation
of state appears to be of less importance. As the computation of models with the CEFF
equation of state is very time consuming, we rely on the OPAL equation of state in the
remaining parts of this work.

4.3 Main sequence models

In section 4.2.3 we showed that OPAL opacities reproduce the observed fundamental pa-
rameters of 44 Tau much better than the OP opacities. We will now examine the OPAL
models in more detail. In Figure 4.6 the location of main sequence models in the HR
diagram was already shown.

One of the general arguments in favor of main sequence models is that the time spent to
cross the photometric box is approximately 5 times larger compared to a post-main sequence
model which also fits both radial modes. It is therefore more likely that we observe the star
in the core hydrogen burning phase.

Main sequence models which fit the period ratio of 44 Tau can only be obtained if
one assumes overshooting from the convective core. Otherwise the hydrogen in the core is
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depleted before the overall density and correspondingly the predicted frequencies decrease
to sufficiently low values to fit the radial modes to the observed values.

Since a change of metallicity shifts the position of the evolutionary track in the HR
diagram due to the change of mean opacity, the minimum size of the overshoot layer
depends on metallicity. Table 4.6 lists the minimum overshooting parameter αov for different
adopted metallicities:

Z αov,min Mass [M⊙]

0.015 0.38 1.737
0.019 0.28 1.828
0.020 0.25 1.849
0.021 0.23 1.867
0.025 0.16 1.935

Table 4.6: Minimum overshooting parameter to fit f1 and f5 as radial modes.

The mass given in this table results from fitting both radial modes. The adopted
hydrogen mass fraction was X=0.70. For a few main sequence models the hydrogen content
was changed to X=0.75 and 0.65 for testing purposes. This adjustment shifts the position of
the evolutionary tracks in the HR diagram to higher or lower luminosity, respectively. High
values for the hydrogen mass fraction are favorable to reduce the discrepancy in luminosity
between theoretical models and the photometric box. However, the large offset in effective
temperature remains.

Hitherto we only discussed the fit of radial modes, which are sensitive to the global
parameters of the star. Nonradial modes probe different layers of the star and, therefore,
are an important asteroseismic diagnostic. For the family of models that reproduce the
observed radial period ratio, the corresponding ℓ=1 and ℓ=2 modes were computed and
compared to the observations. The frequency separation between the two observed dipole
modes at 9.11 cd−1 and 9.56 cd−1 is closer than the common spacing between pure acoustic
ℓ=1 modes. Consequently, an avoided crossing between an acoustic and a gravity mode is
observed (Aizenman et al. 1977).

The phenomenon of avoided crossings is also known as mode bumping. The reason for
this term becomes more clear when the evolution of the frequencies from the ZAMS to the
TAMS is examined. Figure 4.16 shows the change of the theoretical frequencies due to
evolutionary structural changes for dipole and quadrupole modes. Since the gravity modes
are sensitive to the conditions in the stellar core the occurrence of an avoided crossing
critically depends on the overshooting assumed in the model. This poses an additional
strong constraint to the pulsation model. By changing the overshooting parameter, αov,
the fit of the ℓ=1 modes that undergo an avoided crossing can be optimized for a given
metallicity, Z.

As shown in Figure 4.17 a good fit of the observed dipole modes can be achieved.
The parameters of this model are given in Table 4.7. Comprehensive additional model
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Figure 4.16: Change of dipole and quadrupole mode frequencies during the evolution from
the ZAMS to the TAMS in a main sequence model. The observed temperature and fre-
quency domain are indicated with a box. The vertical line marks the effective temperature
which allows the fit of the observed avoided crossing of dipole modes.
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Figure 4.17: Comparison between observed frequencies (vertical lines) and predicted un-
stable frequencies (circles) for a main sequence model. If predicted frequencies match
observed frequencies they are marked as filled circles. The numbers on top of the vertical
lines indicate measured spherical degrees of the modes.

computations using a wide range of input parameters were performed to improve the fit
of the quadrupole modes. However, a model that simultaneously provides a good fit of
both ℓ=1 and ℓ=2 modes could not be found. The pulsation model with the best fit
was constructed with a metallicity of Z=0.03, which is significantly higher than the metal
content indicated from photospheric element abundances.

Another important seismic constraint is the comparison between the theoretical range
of unstable modes with the observed frequency range. Whether a mode is unstable or
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X Z αMLT αov M/M⊙ log Teff log L/L⊙ log g Age [Myr]

MS 0.70 0.03 0.2 0.25 2.010 3.8077 1.2385 3.6848 1150

Table 4.7: Parameters of the MS model with the best fit of the observed frequencies.

stable is determined by evaluating the instability parameter η (see Section 1.1.3). η = −1
corresponds to full damping and η = +1 to full driving. The behavior of η as a function
of frequency is shown in Figure 4.18 for all modes with ℓ ≤ 2 in the best main sequence
model. There is excellent agreement between observations and the theoretical prediction
of this model.
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Figure 4.18: Normalized growth rate, η, as a function of mode frequency for the main-
sequence model of 44 Tau. η is positive for unstable modes. The vertical lines mark the
position of observed modes (with longer vertical lines for the two observed radial modes).

The predicted mode instability for a model in an advanced phase of core hydrogen
burning is convincing. Is the poor fit of ℓ=2 modes an indication that the stellar layers
which are probed by the quadrupole modes are not sufficiently described by our models?
And what is the reason for the discrepancy between observations and theory concerning the
location of the model in the HR diagram? Before we answer these questions we should also
investigate the other evolutionary stages which are possible for this star.
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4.4 Post-main sequence expansion models

Seismic models that fit the observed period ratio in the post-main sequence expansion phase
were already shown in Figure 4.6. Many of these models are located inside the photometric
error box in the HR diagram. Despite the lower probability of observing a star in this
evolutionary stage it cannot be excluded that 44 Tau is observed in just this phase of its
evolution. The model parameters of the post-MS model with the best fit of the observed
frequencies are shown in Table 4.8.

X Z αMLT αov M/M⊙ log Teff log L/L⊙ log g Age [Myr]

post-MS exp. 0.70 0.02 0.2 0.0 1.875 3.8422 1.3601 3.6711 1120

Table 4.8: Parameters of the post-MS model with the best fit of the observed frequencies.

Since the convective core vanishes after the end of hydrogen core burning the Brunt-
Väisälä frequency increases in the center and many more g modes populate the domain of
the acoustic modes. The predicted frequency spectrum of models in this phase is much
denser than observed, as can be seen in Figure 4.19. This problem for evolved δ Scuti
stars was already noticed by Dziembowski & Krolikowska (1990). Obviously, a mechanism
is active which excites specific modes to observable amplitudes, while others remain at a
low-amplitude level and may only be accessed by satellite measurements.
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Figure 4.19: Similar to Figure 4.17 but for a model in the post-MS expansion phase.
Trapped ℓ=1 modes are surrounded with black concentric circles.

4.4.1 Mode trapping as a mechanism of mode selection

Dziembowski & Krolikowska (1990) proposed that partial trapping of modes in the stellar
envelope may be a selection rule which excites specific pulsation modes to high amplitudes
in δ Scuti stars. Due to a resonance effect some modes are trapped in the acoustic cavity.
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The major fraction of the kinetic energy of trapped modes is concentrated in the envelope,
where the density is low. As stated by Dziembowski & Krolikowska (1990) the total kinetic
energy of trapped modes is lower than that of other modes. Thus they may have a higher
probability to grow to observable amplitudes.

In Figure 4.20 the kinetic energy density along the stellar radius of two trapped dipole
modes and one mode which is not trapped are compared. The difference is striking and
clearly shows that for trapped modes more kinetic energy is confined in the envelope.
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Figure 4.20: Kinetic energy density of the three ℓ = 1 modes at 9.21, 10.25 and 11.65 cd−1.
Two of the modes are trapped; the third mode (middle panel) is not trapped (see Fig-
ure 4.21).

Figure 4.21 presents the fraction of kinetic energy confined in the gravitational cavity,
Eg , to the total kinetic energy, Ek . Modes that are partially trapped in the envelope
are located at minima in this diagram. The comparison to the observed distribution of
frequencies shows a good agreement with the location of trapped dipole modes. In the
theoretical frequency spectrum in Figure 4.19 the trapped ℓ=1 modes are marked with
black concentric circles.

However, Figure 4.21 also shows that mode trapping for quadrupole modes is consider-
ably weaker than that of the ℓ=1 and 3 modes. The observed ℓ = 2 modes are situated at
6.34, 6.79 and 7.30 cd−1. At these frequencies theory predicts no effective mode trapping
while at higher frequencies the trapping of quadrupole modes is slightly more effective.

To examine the reason for the ineffective mode trapping for ℓ = 2 modes in more detail
the Brunt-Väisälä and Lamb frequencies were inspected (see Figure 4.22). The Brunt-
Väisälä frequency and the Lamb frequency define the regions in a star in which a mode
oscillates. As discussed in Section 1.1.2, the propagation zone for p modes is located in the
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Figure 4.21: Fraction of the kinetic energy of a pulsation mode that is confined in the
g mode cavity. Vertical lines indicate the position of observed modes. Modes at minima in
Eg/Ek are partially trapped in the envelope.

envelope (N2 > ω2, L2
ℓ > ω2) and the g mode cavity in the interior (N2 < ω2, L2

ℓ < ω2).
In between these mode cavities there is an evanescent zone in which the oscillations are
damped.

The size of the evanescent zone depends on the spherical degree of the mode. For ℓ=2
modes this zone is much smaller than for ℓ=1 or 3 modes. The location of the observed
ℓ=2 frequencies is close to the region where essentially no evanescent zone is expected.
Consequently, there is no effective trapping in the envelope for these modes.

4.4.2 Mode instability

The predicted frequency range of unstable nonradial modes for the post-main sequence ex-
pansion scenario is shown in Figure 4.23. For this model the lowest two observed frequencies
(5.30 and 6.33 cd−1) are predicted to be stable.

The boundaries of the instability range depend on convection. In Figure 4.24 the pre-
dicted range of unstable quadrupole modes is shown for different mixing-length parameters
of convection. In the case of 44 Tau convection only has a small effect on the low-frequency
boundary of the instability range but a strong effect on the high-frequency boundary. The
value of the highest unstable frequency is not only sensitive to the efficiency of convection
but also to the treatment of the interaction between convection and pulsation (Montalbán
& Dupret 2007). Since our code relies on the simplest frozen convection assumption, it
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Figure 4.22: Brunt-Väisälä frequency and Lamb frequencies for different spherical degrees
in a post-MS model of 44 Tau in the expansion phase. The two horizontal lines mark the
lowest and highest observed frequency (6.3 and 12.7 cd−1).
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Figure 4.23: Predicted mode instability for the post-main sequence expansion case. Vertical
lines mark the position of observed frequencies. Positive values for η correspond to unstable
modes.

may not be suitable to accurately predict the upper limit of the frequency instability range
for 44 Tau.
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Figure 4.24: Predicted instability of ℓ=2 modes computed for different mixing-length pa-
rameters.

Changing other input parameters of the model within reasonable amounts does not
suffice to shift the predicted range to lower frequencies. One may also argue that the
mode at 5.30 cd−1 may have a spherical degree higher than 2. However, the low-frequency
boundary is similar for spherical degrees of 3 or 4. Moreover, pulsation modes with higher
ℓ-values are less likely to be observed, because of cancellation effects in the integrated light
curve.

Another uncertainty of the boundaries of the frequency range of unstabe modes may
originate from uncertainties in opacity data. Adjustments in the opacity can also lead to
instability for modes at lower frequencies, however, the required changes may be to big to
be physically meaningful.

Consequently, despite the good fit of the fundamental parameters, pulsation models in
the post-main sequence expansion phase do not sufficiently explain the observed frequency
spectrum and mode instability.

4.5 Post-MS contraction models

In this section we will examine models in the overall contraction phase after the TAMS. The
evolution during the contraction phase is approximately 10 times faster compared to the
main sequence evolution of the same model in the same range of effective temperatures.

Similar to the main sequence case the observed avoided crossing of dipole modes puts
strong constraints on the models and in particular on convective overshooting. A first model
was computed with standard chemical composition, OPAL opacities and GN93 element
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Figure 4.25: Comparison between observed frequencies (vertical lines) and predicted unsta-
ble frequencies (circles) for a post-MS contraction model (Model 1). If predicted frequencies
match observed frequencies they are marked as filled circles. The numbers on top of the
vertical lines indicate the measured spherical degrees of the modes.

abundances. The overshooting parameter was adjusted to fit the observed avoided crossing
of dipole modes. The model which provided a good fit of the two radial modes and all four
dipole modes, also exhibited a good agreement between observed and predicted quadrupole
modes. By adjusting the hydrogen mass fraction to a higher value of X=0.75 an even
better fit of the avoided crossing could be achieved.

A comparison between the observed and the predicted frequency spectrum for this model
is shown in Figure 4.25. It can be seen that there is an excellent fit between observed and
predicted modes and that the pulsation model explains all observed modes with ℓ ≤ 2.
In a few cases ℓ = 3, 4 frequencies are also close to observed values but photometric
cancellation effects clearly favor low degree modes. The parameters of this model can be
found in Table 4.9 (Model 1).

The theoretical frequency range of unstable modes is also in good agreement with the
observed frequency range as shown in Figure 4.26. The model also predicts mode instability
between 13 and 18 cd−1. However, this is not a serious problem as this may be due to
an overestimation of mode instability in this frequency region by our codes, as discussed in
Section 4.4.2. Due to our use of the frozen convective flux approximation the high-frequency
border between unstable and stable modes is subject to uncertainty.

As shown in Figure 4.27 the predicted effective temperature of this post-main sequence
contraction model is cooler than the value derived from photometry. However, the standard
deviation of the measured effective temperature is 100 K which may be optimistic. The
predicted luminosity is in excellent agreement with the values derived from Hipparcos.

The excellent fit of the individual frequencies, the instability range and the good agree-
ment of the fundamental parameters allow us to conclude that 44 Tau is in the overall
contraction phase after the main sequence phase.
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Figure 4.26: Instability parameter, η, for Model 1 (left panel) and Model 3 (right panel).
Positive values indicate mode driving, modes with negative η are damped.
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Figure 4.27: Position of Model 1 in Table 4.9 in the HR diagram.
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4.6 Mixed modes as probes of the stellar core region

The partial mixing processes at the convective core boundary are still not fully understood.
During the hydrogen core burning we expect a region around the convective core that is
partially mixed due to several mechanisms: (i) overshooting from the convective core, (ii)
rotationally induced mixing (the core rotates faster than the envelope leading to additional
mixing, and (iii) higher opacity close to the boundary of convective core (leading to a larger
convective core).

Unfortunately, until now no rotational splittings could be detected in 44 Tau. Therefore,
we cannot derive the profile of differential rotation which would be necessary to disentangle
the effects of rotation in element mixing.

An excellent probe of the size of the overshoot layer is the g1 mode for ℓ > 0 as stated
by Dziembowski & Pamyatnykh (1991). This mode is partially trapped in the overshoot
region and, therefore, its frequency is of high diagnostic value. In 44 Tau models in the
contraction phase after the TAMS this mode already moved to higher frequencies outside
the observed frequency range. However, the frequencies of mixed acoustic and gravity
modes are also expected to be sensitive to the conditions in the stellar core and can be
used to examine the partially mixed region above the convective core.

Aside from the traditional description of overshooting from the convective core we also
applied a new two-parametric description that allows for partial element mixing in the
overshooting region (Dziembowski & Pamyatnykh 2008). It allows us to consider different
profiles of the hydrogen abundance inside the partly mixed region just above the convective
core. To find the optimum fit for the nonradial modes a series of computations with
different overshooting distances, αov, and w was made. Since the predicted frequencies
also depend on the hydrogen content available for mixing we also tested different values
for the initial hydrogen mass fraction, X. The best pulsation models for the GN93 and A04
element mixtures are given in Table 4.9. Again, an increased initial hydrogen mass fraction
produces better fits to the observed frequencies.

The positions of the models listed in Table 4.9 in the HR diagram is shown in Figure 4.28
for the models computed with the GN93 element mixture and in Figure 4.29 for models
with the A04 mixture. The effective temperatures of the pulsation models are generally
cooler than photometric and spectroscopic measurements indicate.

The pulsation models obtained with A04 are closer to the TAMS than the models
computed with GN93. A 15-frequency fit with w=2.0 is not possible, because the required
overshooting distance should be smaller than possible for post-MS models. The main
reason for the differences between pulsation models obtained with the GN93 vs. A04
mixture is the different opacity in the overshooting region which affects the size of the
convective core. The uncertainties in the element abundances in 44 Tau therefore lead to
an uncertainty in the determination of the overshooting distance αov.
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Figure 4.28: HR diagram with evolutionary tracks for models with a good fit of the 15
observed modes, constructed with OPAL opacities and the GN93 element mixture.
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Figure 4.29: HR diagram with evolutionary tracks for models with a good fit of the 15
observed modes, constructed with OPAL opacities and the A04 element mixture.
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No. Opacity El. mixture X Z M [M⊙] w αov log Teff log L/L⊙ lg geff

1 OPAL GN93 0.75 0.02 2.021 - 0.195 3.8220 1.3016 3.6823
2 OPAL GN93 0.72 0.02 1.920 2.0 0.268 3.8200 1.2773 3.6753
3 OPAL GN93 0.72 0.02 1.922 8.0 0.155 3.8215 1.2839 3.6749
4 OPAL GN93 0.70 0.02 1.860 8.0 0.178 3.8225 1.2777 3.6707

5 OPAL A04 0.74 0.012 1.783 8.0 0.219 3.8077 1.2091 3.6621
6 OPAL A04 0.80 0.012 1.958 8.0 0.164 3.8060 1.2292 3.6760

7 OP GN93 0.70 0.02 1.678 8.0 0.212 3.7784 1.0711 3.6561
8 OP GN93 0.75 0.02 1.800 8.0 0.166 3.7740 1.0745 3.6660

Table 4.9: Parameters for post-MS contraction models with a good fit of the 15 frequencies
observed in 44 Tau. All models were computed for a mixing-length parameter, αMLT=0.2.
Starting with an initial rotation rate of 3.5 km s−1 and assuming uniform rotation the
tabulated evolved models exhibit rotation rates close to 3 km s−1. Model 1 was computed
with the traditional description of overshooting.

Theoretical frequencies and other properties of unstable modes predicted by Model 3
are listed in Table 4.10. The differences between observed and calculated frequencies are
given. If the azimuthal order of an observed mode is unknown the frequency difference to
the theoretical m=0 modes is given and the corresponding value is enclosed by brackets.
The uncertainty in frequency due to unknown azimuthal order may be as high as 0.05 cd−1

for ℓ = 2 modes.

We observe many mixed modes in 44 Tau which are also sensitive to the conditions
in the chemically inhomogeneous overshoot layer above the convective core. Table 4.10
lists the fraction of oscillation kinetic energy confined in the g mode cavity for all predicted
unstable modes in Model 3. Since the given values are very similar for the different OPAL
and OP models they can be considered representative for all post-MS contraction models.

The mixed ℓ=1 mode at 7.79 cd−1 has strong g mode characteristics. Almost 87% of
its kinetic energy is confined in the g mode cavity in the stellar interior. This also explains
why the observed amplitude of this mode is significantly smaller than that of other dipole
modes in 44 Tau. Consequently, this and other mixed modes are sensitive to the shape of
the hydrogen profile in the partially mixed layer above the convective core.

In Figure 4.30 we compare the predicted frequency spectra for Model 2 and Model 3
(obtained with w=2.0 and w=8.0, respectively). As can be seen, modes with dominant
gravity behavior have slightly different frequencies in these models. The frequency of the
g4 mode at 7.79 cd−1 shifts most significantly. The results shown in Figure 4.30 suggest
preference for more efficient mixing in a small partially mixed region (w=8.0) over less
efficient mixing in a larger partially mixed region (w=2.0).

The profile of the hydrogen mass fraction for the fitted pulsation model is given in the
upper panel of Figure 4.31. In the middle panel the corresponding Brunt-Väisälä frequency
in the core region is shown. In the lower panel the eigenfunction of the relative Lagrangian
pressure variation is given for the mixed ℓ = 1 modes: g4 at 7.79 cd−1 and p1 at 7.01 cd−1.
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Mode νmodel νobserved νobserved − νmodel Eg/Ek

ℓ ID cd−1 cd−1 cd−1

0 F 6.8980 6.8980 0.0000 0.0
0 1H 8.9607 8.9606 -0.0001 0.0
0 2H 11.20 - - 0.0
0 3H 13.48 - - 0.0

1 g6 5.44 - - 0.96
1 g5 6.29 - - 0.92
1 p1 7.0342 7.0060 -0.0282 0.13
1 g4 7.7915 7.7897 (-0.0018) 0.87
1 p2 9.1099 9.1174 0.0075 0.35
1 g3 9.5748 9.5611 (-0.0137) 0.61
1 p3 11.5526 11.5196 -0.0330 0.04
1 p4 13.74 - - 0.19
1 g2 14.51 - - 0.75

2 g10 5.3375 5.3047 (-0.0328) 0.96
2 g9 5.78 - - 0.93
2 g8 6.3076 6.3390 (0.0314) 0.83
2 g7 6.7795 6.7955 0.0160 0.68
2 f 7.3023 7.3031 0.0008 0.67
2 g6 7.98 - - 0.74
2 p1 8.6401 8.6391 -0.0010 0.64
2 g5 9.5584 9.5828 (0.0244) 0.62
2 p2 10.47 - - 0.57
2 g4 11.3129 11.2947 (-0.0182) 0.60
2 p3 12.7043 12.6915 (-0.0128) 0.34
2 g3 13.92 - - 0.04
2 p4 15.17 - - 0.35

Table 4.10: Theoretical frequencies of m=0 modes predicted by Model 3 listed in Table 4.9.

Due to its larger eigenfunction in the partially mixed region the gravity mode is more
sensitive to the conditions in this region.

4.7 Predictions of the post-MS contraction model

Post-MS contraction models of 44 Tau predict a few additional dipole and quadrupole modes
which are currently not observed. After fitting the observed 15 modes, the frequencies of
the remaining modes no longer strongly depend on the input parameters. However, small
deviations may be found especially for g modes which will provide additional constraints on
mixing in the overshoot layer. The expected frequencies of hitherto not observed modes
can be found in Table 4.9. The detection of these modes would help to refine our models.

A reexamination of our photometric data indeed shows a prominent peak at the predicted
position of the second radial overtone (11.198 cd−1). This peak has a SNR below the
significance limit 4.0 but may be confirmed with additional data. A reexamination of radial
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Figure 4.30: Theoretical mode frequencies of two models with different hydrogen-profile
modeling, w=8.0 and w=2.0, are compared. Vertical lines indicate observed modes. The
position of these lines corresponds to the detected spherical degree of the given modes.
Modes sensitive to the different modeling of the partially mixed layer above the convective
core are surrounded with dotted circles.

velocity data by Wolfgang Zima did not show reliable prominent peaks at the predicted
positions of modes (private communication). Many of the predicted modes which lack
an observational counterpart are gravity modes for which we expect only low amplitudes.
Therefore, more accurate data are needed to extract these frequencies.

Moreover, the model predicts the spherical degree of some of the observed modes: ℓ = 1
for 7.79 cd−1 and ℓ = 2 for 5.30, 8.64, 11.30, 12.69 cd−1. These predictions also need to
be confirmed by high-resolution spectroscopic data.

In the contraction phase the frequencies of the modes change faster than in the main se-
quence phase. The computed evolutionary period changes, (1/P)dP/dt, are approximately
1 · 10−8 yr−1. Such changes are too small to be measured with the five-year time-base of
our data.
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Figure 4.31: Comparison of the effects for different hydrogen mixing profiles. Upper panel:
profile of the hydrogen mass fraction in the stellar core. Middle panel: Brunt-Väisälä fre-
quency. Lower panel: relative Lagrangian pressure perturbation for two mixed ℓ=1 modes,
the mode at 7.01 cd−1 with strong acoustic character, and the mode at 7.79 cd−1 with
strong gravity character.
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4.8 Variability of photometric mode amplitudes

As mentioned earlier, 44 Tau was observed during several seasons from 2000 to 2006.
Annual least-squares fits were made by Michel Breger to check the long term behavior of
the amplitudes of the observed modes. Figure 4.32 presents the amplitudes of the annual
solutions for the dominant modes with known spherical degree. The formal errors are very
small and generally smaller than the size of the symbols. The radial modes exhibit essentially
constant amplitudes. The ℓ = 1 modes, however, feature strong amplitude variability, with
a decrease of the amplitudes of f2, f3 and f4 during most of the observed period. The
most significant changes are observed for f6. The ℓ = 2 modes change their amplitudes on
smaller scales.
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Figure 4.32: Observed amplitude variability of ℓ=0,1 and 2 modes in the Strömgren y
passband. The given error bars are very small and partly obscured by the symbols. This
figure was created by Michel Breger for publication in Breger & Lenz (2008).

In the two seasons 2000/1 and 2005/6 the most extensive photometric data sets were
obtained with a total of 259 h and 173 h, respectively. To test whether the variations within
one season are consistent with the long-term trend these data sets were divided into two
parts and analyzed. As can be seen in Figure 4.32 the amplitude variability on a short time
scale are indeed in agreement with the general amplitude modulation. In other words, there
are no indications of rapid amplitude variability within one season.

With the current data set we cannot decide whether the amplitude modulation is periodic
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or not. However, since the observed variability appears to follow a rule and not to depend
on a chaotic process, the question about the cause arises. Amplitude changes may be
produced by various effects: (i) variable mode visibility due to geometrical causes, (ii)
artifacts of unresolved modes in the frequency analysis, and (iii) changes of the intrinsic
mode amplitudes due to resonance effects. These three hypotheses which will be examined
in the next sections do not exclude other explanations. Therefore this list should not be
seen as complete.

4.8.1 A geometrical explanation: precession of the pulsation axis

In a star that undergoes nonradial pulsation some parts of the surface move outwards
while other parts move inwards. The amount of the light variation due to pulsation that
arrives the observer depends on the inclination of the stellar pulsation axis and the surface
geometry of the mode, i.e., the position of node lines on the surface. Since we only
observe the integrated light over the stellar disc the light contribution from expanding and
contracting parts of the surface is partly compensated. This effect is called geometrical
light cancellation. For example the light variation of a zonal dipole mode is completely
averaged out in an equator-on view (inclination angle i=90o), while a sectoral mode (a
running wave) causes clear light variations in the integrated light. Therefore, the stellar
inclination, the spherical degree and the azimuthal order of a pulsation mode determine the
visibility of a mode.

Figure 4.33 shows the photometric amplitudes in the Strömgren y band for axisymmet-
ric and non-axisymmetric dipole and quadrupole modes computed for different inclination
angles. The same intrinsic mode amplitude, δr/R , was assumed for all modes to exam-
ine only the geometrical aspect of the problem. The value of the intrinsic amplitude, ε,
which was assumed to be the same for all modes, was determined by scaling the resulting
photometric amplitudes to observed values. The Strömgren y amplitudes were computed
following Daszyńska-Daszkiewicz et al. (2003)

Ay(i) = εY m
ℓ (i , 0)T y

ℓ (4.1)

where T is derived from an atmosphere model for the given spherical degree of the mode.

Figure 4.33 clearly shows the effects discussed above. It also shows that light cancella-
tion is more efficient for quadrupole modes. Their net light variations are smaller because
more node lines are on the surface which results in more effective light cancellation. The
photometric amplitudes of radial modes are not shown because they are the same for all
inclinations.

The observed photometric mode amplitudes depend on the geometrical visibility and on
the intrinsic mode amplitudes, δr/R . Let us assume that the observed amplitude variability
in 44 Tau is solely due to a change of the geometrical mode visibility. The only quantity
that may be considered variable is the stellar inclination angle. This leads to the hypothesis
that the pulsation axis executes a precession.
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Figure 4.33: Photometric Strömgren y amplitudes of axisymmetric and nonaxisymmetric
modes as a function of stellar inclination. The left diagram shows the case for dipole modes,
the right diagram for quadrupole modes. The shaded area marks the range of uncertainty
for the measured inclination of 44 Tau derived by Zima et al. (2007).

The symmetry axis for stellar pulsation is not chosen arbitrarily. Pulsation is commonly
aligned to natural symmetry axes such as the rotational or magnetic axis. A well known
example for stars in which the pulsation axis is aligned to the magnetic axis, while the
rotation axis is inclined, are the roAp stars. It has been shown, e.g., by Kurtz (1982) that
such a configuration explains the observed amplitude variability in this stars. These stars
have strong magnetic fields which makes the magnetic axis the dominant symmetry axis.
However, for 44 Tau Zima et al. (2007) did not find a strong magnetic field. As the rotation
rate is very small one may assume that a dominant symmetry axis is not well defined in
44 Tau. On the other hand, for the Sun which has a similar equatorial rotation rate as
44 Tau the pulsation axis is in good agreement with the rotation axis.

Let us, nonetheless, assume that the pulsation axis undergoes precession due to an
unknown reason. The inclination changes periodically with time. Since the cancellation
effects of radial modes do not depend on inclination the visibility of radial modes remains
the same, as observed.

Spectroscopic mode identification revealed that the dipole modes f2 and f3 are prograde
modes (m=1) while f4 is a zonal mode (m=0). The azimuthal order of the fourth ℓ = 1
mode, f6 could not be derived because it is not well resolved from the nearby mode f9 in
the spectroscopic data. The measured inclination angle of the pulsation axis in 2004 was
60 ± 25o.

Let us assume that inclination axis changes between 30-90o due to precession as shown in
the lower panel of Figure 4.34. The resulting photometric amplitudes for an axisymmetric
and a nonaxisymmetric dipole mode is given in the upper panel of the diagram. The
computed amplitude modulation for the axisymmetric mode mimics the observed change
of f6. This may indicate that this mode is axisymmetric. The low amplitude of f6 in 2004
would suggest an inclination of 85o which is at the upper limit given by Zima et al. (2007).
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Figure 4.34: Influence of a precession of the pulsation symmetry axis on Strömgren y
amplitudes. The inclination varies between 30 and 90o as given in the lower panel. The
corresponding photometric amplitudes for a (ℓ,m)=(1,0) mode and a (ℓ,m)=(1,1) mode
are given in the upper panel. The time is in arbitrary units.

However, the axisymmetric mode f4 does not show a similar amplitude modulation and does
not reach zero amplitude simultaneously with f6. Moreover, the prograde modes f2 and f3
clearly behave different, than what we would expect if the hypothesis of precession of the
pulsation axis is true.

If we assume that the intrinsic mode amplitudes do not change strongly enough to
compensate for the effects of a varying aspect view due to precession of the pulsation axis
we have to conclude that this does not explain the observed amplitude variability in 44 Tau.

4.8.2 Beating between close frequencies

Beating between two modes with almost similar frequencies is a common phenomenon in
δ Scuti stars because of their dense frequency spectrum. This effect was studied in detail
for BI CMi by Breger & Bischof (2002) and FG Vir by Breger & Pamyatnykh (2006a). The
authors show that close frequencies which are not resolved in a data set exhibit amplitude
and phase modulation when prewhitened as a single mode. According to the rules of
frequency beating (for frequencies with equal amplitudes) the resulting frequency is centered
between f1 and f2, fr = 1

2(f1 + f2). The period of the amplitude modulation is Pbeat =
1/|f1 − f2|.

Hence the beat period allows to draw a conclusion on the frequency spacing between
the two pulsation modes generating this effect. Another important fact which can be used
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as a proof for beating is the occurrence of a phase jump of 0.5 at the time of minimum
amplitude (assuming the ideal case of equal amplitudes). However, if the amplitudes of the
two beating modes are not equal, the effects described above are still present in a modified
way.

In the case of 44 Tau special attention has to be given to the fact that the star rotates
very slowly and rotationally split multiplets may not be resolved. Hence the observed
amplitude variability of the dipole modes may be caused by three very close frequencies.

While the amplitude and phase modulation is well known for two-mode beating it may
look different for three-mode beating. To examine the expected amplitude and phase vari-
ability for beating between the components of a rotational split multiplet artificial datasets
were created and analyzed with the software Period04.

Depending on the actual inclination angle the components of a rotational splitting have
different cancellation factors and hence different photometric amplitudes (assuming that
the intrinsic mode amplitudes are equal). I examined impact for the two limits of the
inclination, 35 and 85o. The rotationally split frequencies were computed for an equatorial
rotation of 3 km s−1 using a second order perturbation approach. At such low rotation rates
the frequency splitting is almost equidistant (with a frequency separation of 0.011 cd−1).
Artificial data sets were created using:
(i) the frequency values of the rotationally split components of the predicted dipole mode
at the observed frequency of f6,
(ii) the photometric amplitudes for different inclinations were computed for each data set
using the same approach as in the previous section, and finally
(iii) arbitrary phases were chosen.

These artificial data sets were analyzed with Period04 assuming a single frequency
hypothesis centered at the axisymmetric mode. The data set was divided into subsets and
a least squares fit was performed allowing the amplitudes and phases to vary. The results
are shown in Figure 4.35 for the two limits in the inclination.

At 35o the period of the amplitude modulation is Pmod = 1/∆ν0,±1, where ∆ν0,±1 is
the frequency separation between rotationally split components of a pulsation mode. The
limit of 85o is very close to an equator-on view. At such inclinations the zonal mode at the
center of the rotational splitting is almost canceled out as can be seen in Figure 4.33. The
situation is nearly the same as in the case of beating between the frequencies of only two
close modes with Pmod = 1/∆ν+1,−1 . Therefore, frequency beating between components
of a dipole triplet essentially occurs between the two sectoral modes of a dipole mode at
such high inclinations.

An important proof of the presence of beating between two modes is the occurrence
of a phase change at minimum amplitude. The only dipole mode for which a minimum is
observed is f6. However, due to annual gaps in the data the exact time of the minimum
is not known. No clear phase change can be seen (private communication with Michel
Breger). The phase test is, therefore, only applicable for beating on shorter time scales
than those seen in 44 Tau. So far amplitude variability due to beating was only confirmed
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Figure 4.35: Beating between the frequencies of an unresolved rotational splitting of a dipole
mode. The upper panels shows the expected amplitude modulation for the lower and the
upper limit of 44 Tau’s inclination range. The lower panels present the corresponding phase
change. The inset diagram shows the mode visibility at the given inclination.

for modes with amplitude modulations less than one year (see Breger & Bischof (2002) and
Breger & Pamyatnykh (2006a)).

Nevertheless, we can study the time scales of amplitude modulation. For three-mode
beating between the components of a dipole rotational splitting for different equatorial
rotation rates the results are given in Table 4.11.

Frequency [cd−1] Pmod [d] for Vrot=. . .
1 km s−1 3 km s−1 5 km s−1

f2 7.01 176 65 35
f3 9.11 202 75 40
f6 9.56 248 92 50
f4 11.52 167 62 33

Table 4.11: Modulation period for three-mode beating.
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For two-mode beating between the two non-axisymmetric modes in an ℓ = 1 multiplet
the values in the table can be divided by two. All modulation periods are smaller than one
year. Consequently, beating between the components of a dipole triplet do not explain the
observed changes in the photometric amplitudes.

Another explanation based on mode beating relies on the assumption that beating be-
tween the frequencies of close modes of different spherical degrees may occur. To generate
amplitude modulation on the time scale of, say, 6 years the generating frequencies should
be separated by only 0.0005 cd−1. Close to the frequencies of the dipole modes f2 and f3
the pulsation model of 44 Tau predicts an ℓ = 3 multiplet, and close to f4 there is an ℓ = 4
multiplet. However, it is unlikely that components of ℓ = 3 and ℓ = 4 reach amplitudes high
enough to generate beating. It would require very high intrinsic amplitudes significantly
larger than for the observed dipole modes.

Hence, beating between close frequencies does not explain the observed amplitude vari-
ability in 44 Tau.

4.8.3 Resonant coupling of pulsation modes

Up to now we considered the intrinsic amplitudes of the modes to be constant. In this
section we will examine a modulation of the intrinsic amplitudes. A mechanism that could
cause the temporal variation of the amplitudes of excited modes is resonant mode coupling.
If two or more modes interact due to resonance, pulsation energy is transferred between
the modes.

In the case of δ Scuti stars nonlinear effects are less important than for RR Lyrae stars
as shown by Nowakowski & Dziembowski (2003). The occurrence of resonances in δ Scuti
stars has been discussed mainly within the context of an amplitude limiting mechanism
(e.g., Dziembowski & Krolikowska 1985; Dziembowski et al. 1988). However, some studies
are explicitly devoted to the modulation effect of the amplitudes and phases. (Nowakowski
2005; Buchler et al. 1997; Moskalik 1985). In the context of this work we will restrict
ourselves to use some of the results of these papers to qualitatively examine the impact of
resonances on the mode amplitudes and phases in the case of 44 Tau. Currently, we still
lack an ultimate confirmation of the presence of such nonlinear effects in δ Scuti stars.

The impact of nonlinear effects on the mode amplitudes are commonly studied within
the framework of the so-called amplitude equations (Dziembowski 1982). This system of
equations is difficult to study analytically and have to be solved numerically. Unfortunately,
the time baseline of photometric data of 44 Tau is insufficient for a detailed examination
of nonlinear effects by means of an integration of the amplitude equations.

Not long ago, resonant coupling between an unstable acoustic with stable g modes
was studied for a model of the δ Scuti star XX Pyxidis by Nowakowski (2005). Due to
resonance linearly stable modes of high ℓ are excited. From ground-based photometric data
these modes cannot be detected, because the photometric amplitudes are very small due to
large disc averaging factors. However, current satellite missions may provide the required
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accuracy to find gravity modes of with high spherical degrees. Indeed, the first published
results of a δ Scuti star observed with the CoRoT satellite mission, Poretti et al. (2009)
detected a dense spectrum of nonradial modes. Fig. 3 in this paper shows many high order,
high ℓ g modes below the identified fundamental mode at 6.92 cd−1. Nowakowski (2005)
also finds that the amplitude of the unstable acoustic modes shows irregular temporal
behavior of its amplitude on a time scale which corresponds to the inverse linear amplitude
growth rate of unstable mode. This is the typical time scale for many resonance effects.

Frequency [cd−1] τres ≈ 1/γ [yrs]

f2 7.01 52.6
f3 9.11 9.9
f6 9.56 10.9
f4 11.52 1.4

Table 4.12: Predicted time scales for resonance effects for a post-MS contraction model of
44 Tau. The inverse linear amplitude growth rates for the observed ℓ = 1 modes are given.

For the dipole modes observed in 44 Tau which exhibit variable amplitudes the corre-
sponding time scales are listed in Table 4.12. The predicted time scales are quite different
while the observed time scales are similar for different modes. For f2 the predicted resonance
time scale is much longer than what we observe, whereas for f4 τres is significantly shorter.
Only for the two modes f3 and f6 which undergo an avoided crossing the time scale of 10
years is of the order of the observed amplitude modulation.

For a special type of resonance, the 1:1:1 resonance, the nonlinear interactions be-
tween the components of a rotationally split ℓ=1 multiplet was examined by Buchler et al.
(1995). Even at small rotation rates the frequency separation of the different azimuthal
orders computed by linear theory is slightly asymmetric in frequency. It is assumed that
the rotational triplet does not interact with other modes excited in the star. They found
that the nonlinear frequencies are equally spaced due to resonance (meaning that the asym-
metry of the rotational splitting is removed when the modes are coupled). This effect is
called frequency locking and has been studied in great detail by Buchler et al. (1997).
Consequently, in observed frequency spectra a rotational splitting may be found in exact
resonance, while computed linear frequencies are only in near-resonance. This frequency
mismatch (or off-resonance parameter), which characterizes the asymmetry of the linear
frequencies is defined as

δν = ν+1 + ν−1 − 2ν0 (4.2)

where the subscripts denote the corresponding m values. The higher the frequency mis-
match, the less important is resonance. It is therefore obvious that in slowly rotating δ Scuti
stars the 1:1:1 resonance might be an important effect. Moreover, Buchler et al. (1997)
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found another condition that has to be fulfilled to generate resonant amplitude modulation:

δν

ν
∼ O

(

Ω

ν

)2

. O
(γ

ν

)

(4.3)

where γ is the linear amplitude growth rate and Ω the rotation rate. γ/ν should be higher
by an order of a magnitude. The authors also show that the period of the amplitude
modulation corresponds to the inverse of δν.

To examine whether the observed amplitude variability of the dipole modes in 44 Tau
can be explained by 1:1:1 resonance, we computed the rotationally split frequencies with
a second order perturbation approach for equatorial rotation rates of 1, 3 and 5 km s−1.
The underlying model was the post-MS contraction model No. 3 in Table 4.9. Table 4.13
summarizes the results for the corresponding rotational splittings at different rotation rates.
However it should be noted that we used the assumption of uniform rotation for the com-
putation of the rotational splittings which may not be adequate. Differential rotation may
modify the frequency spacing between the modes.

Frequency [cd−1] δν
ν

γ
ν

δν
γ

τ1:1:1 [yrs] Vrot

f2 7.01 5.7 · 10−6 7.4 · 10−6 0.77 68














1 km s−1f3 9.11 4.4 · 10−6 3.1 · 10−5 0.14 68
f6 9.56 1.0 · 10−4 2.6 · 10−5 3.79 273
f4 11.52 1.7 · 10−5 1.7 · 10−4 0.10 14

f2 7.01 4.8 · 10−5 7.4 · 10−6 6.47 8.1














3 km s−1f3 9.11 4.4 · 10−5 3.1 · 10−5 1.44 6.8
f6 9.56 1.8 · 10−5 2.6 · 10−5 0.68 16.1
f4 11.52 6.1 · 10−5 1.7 · 10−4 0.36 3.9

f2 7.01 1.5 · 10−4 7.4 · 10−6 20.2 2.6














5 km s−1f3 9.11 1.3 · 10−4 3.1 · 10−5 4.25 2.2
f6 9.56 5.0 · 10−5 2.6 · 10−5 1.9 5.7
f4 11.52 1.8 · 10−4 1.7 · 10−4 1.05 1.3

Table 4.13: Amplitude modulation period for 1:1:1 resonance between the components of
a rotational splitting of dipole modes, τ1:1:1 ≈ |1/(ν+1 + ν−1 − 2ν0)|.

At the lower limit of the rotation rates the predicted time scales for amplitude modulation
due to 1:1:1 resonance are too long. Moreover, the factor δν/γ should be larger than 1
(preferably of the order of 10) to suffice the condition given in Equation 4.3. This is not
the case at this low rotation rate. At the upper limit of rotation the modulation time
scales are shorter than observed for f2, f3 and f4. For f6 the predicted modulation period
matches the observed variability. From these results we may conclude that within the limits
of the measured rotation rate the time scales for the 1:1:1 resonance are of the order of
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the observed changes in amplitudes. Remember that the underlying model relied on the
assumption of rigid rotation. Nowadays, it is widely assumed that the internal rotation
rate is a function of radius. For some β Cephei stars differential rotation could already be
confirmed by observations of rotational splittings (Pamyatnykh et al. 2004).

It should be noted that for a rotation rate close to the upper limit of 5 km s−1 the
components of triplet should have been detected since the frequency resolution of our
data is smaller than the frequency separation between axisymmetric and nonaxisymmetric
components of a triplet of ∼ 0.02 cd−1 (provided that the amplitudes of these modes are
large enough). These missing multiplets are an argument against 1:1:1 resonance because
as the mode amplitude of one component goes down that of the other component should
increase.

Again, the time baseline is too short to draw definitive conclusions. However, the
examined time scales of the different effects point to resonance effects as the most plausible
cause for the amplitude modulation observed in 44 Tau.



Chapter 5

Asteroseismic models for 4 CVn

The observed frequency range (4.7-8.6 cd−1) and the low log g value of 3.34 ± 0.20 dex
indicate a higher probability that 4 CVn is in the post-MS expansion phase. Nevertheless,
the case of 44 Tau taught us that we should not neglect the possibility that 4 CVn is a
less evolved object. Currently, we do not know its inclination angle and its v sin i value
of approximately 120 km s−1 only poses a lower limit for the equatorial rotation rate.
Imagine two stars in the same evolutionary stage and with the same mass. If star A rotates
significantly faster than star B the observed log g value for star A will be smaller and it may,
therefore, appear more evolved. This fact stresses the importance of considering models in
earlier evolutionary stages even for this star.

A preliminary asteroseismic model of 4 CVn was presented by Zhou (1998). The author
concluded that a post-MS model with a mass of 2.2 M⊙ matches the observed fundamental
parameters well. Their pulsation model explains the seven dominant modes with spherical
degrees between ℓ=1,2 and 3. Unfortunately, their results are not supported by our mode
identification.

5.1 Validity of the perturbation approach for rotation in the
case of 4 CVn

Since the rotation rate of 4 CVn is high it is necessary to examine whether our perturbation
approach to model rotational effects is still valid. As discussed in Section 2.3 the limit of
the second order perturbation theory is expected when the equatorial rotation rate exceeds
approximately 10% of the Keplerian break-up rate defined as

ΩK[cd−1] ∼= 54.233

√

M[M⊙]

R3
e [R⊙]

(5.1)

where Re denotes the radius at stellar equator.
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The mass and the radius of 4 CVn can be estimated from evolutionary models. A post-
main sequence model in the expansion phase which fits the observed effective temperature
and luminosity has a mass of 2.10 M⊙, and a radius of 4.30 R⊙. A main sequence model
at the same position in the HR diagram has slightly different values with 2.17 M⊙ and
4.33 R⊙. Table 5.1 lists the results for the corresponding fraction Ω/ΩK :

αov Vrot [km s−1] Ω [cd−1] ΩK [cd−1] Ω/ΩK

post-MS 0.0 120 3.47 8.81 0.39
MS 0.4 120 3.44 8.87 0.39

Table 5.1: Ω/ΩK for a MS and post-MS model in the center of the photometric box in the
HR diagram.

As we can see for the given case the criterion Ω/ΩK . 0.10 is not fulfilled. Moreover,
attention has to be given to an additional requirement for the validity of the perturbation
approach: Ω/ω ≪ 1. For the frequencies detected in 4 CVn the fraction Ω/ω has a
rather high value of ≈ 0.1. Therefore, the second order perturbation approach does not
allow us to accurately predict the individual frequency values of the observed modes and
corresponding uncertainties in the results have to be taken into account. Considering the
results by Lignières et al. (2006) these uncertainties may exceed 1 cd−1. However, this
does not prevent to derive some general conclusions from an asteroseismic investigation.
Nevertheless, the uncertainties in our computations should be kept in mind for the next
sections.

5.2 Inferences from the observed radial mode

In the case of 44 Tau the detected two radial modes put strong constraints on the pulsation
models. In 4 CVn only one mode is identified as a radial mode with a high probability.
Consequently, for 4 CVn the model parameters are less constrained. However, the radial
mode at 6.98 cd−1 allows to approximately determine the mean density of the star. Since
we only have one confirmed radial mode, we restricted the asteroseismic analysis to the use
of OPAL opacities and GN93 mixture. Tests with different opacities and element mixtures
only make sense if the theoretical models are well constrained by the observational data.
This is (currently) not the case for 4 CVn. As we have seen in the previous section this
standard recipe (OPAL GN93) successfully reproduced the observed modes of 44 Tau.

We computed sequences of evolutionary models adopting a mixing-length parameter
of αMLT=0.2 and an initial equatorial rotation velocity of 150 km s−1. The photometric
indices indicate metal overabundance in the atmosphere of 4 CVn. To consider a possibly
higher metallicity in the stellar interior two values for the metal mass fraction were adopted:
0.02 and 0.025. The hydrogen mass fraction was fixed with X=0.70. Moreover, the as-
teroseismic results were examined for different convective overshooting parameters ranging



Chapter 5. Asteroseismic models for 4 CVn 93

from αov=0.0 to 0.7. Due to the expected stronger rotationally induced mixing in 4 CVn
the partially mixed region should be larger than in 44 Tau. Therefore, such high values of
αov are justified. In the following sections pulsation models which fit the observed radial
mode at 6.98 cd−1 are examined for different evolutionary stages. For the sake of brevity
we will denote models which fit the first radial overtone to the frequency of 6.98 cd−1 as
1H models. The same scheme is used for the other radial overtones.

5.2.1 Post-main sequence models in the expansion phase

Figure 5.1 shows the position of post-main sequence models computed with αov=0.0 in the
HR diagram for two cases: a standard (solar) metallicity and metal overabundance.
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Figure 5.1: Evolutionary tracks of models with different mass in the HR diagram. The circles
mark pulsation models in the post-MS expansion phase with a radial mode at 6.98 cd−1.
Asteroseismic models for the same radial overtone are connected with a line.

As we can see in the diagrams the models that fit the mode at 6.98 cd−1 as first or
second radial overtone are inside or in the immediate vicinity of the photometric error box.
The most likely value for the mass of 4 CVn ranges between 2.0 - 2.2 M⊙ for Z=0.02 and
2.1 - 2.3 M⊙ for Z=0.025. For these models the instability of the predicted modes was
computed. The results are shown in Figure 5.2. Since the instability ranges for low-degree
modes are nearly the same, the diagrams only present the results for quadrupole modes.

The computed instability ranges are quite different and allow to exclude some of the
pulsation models. For example the pulsation models which fit the mode at 6.98 cd−1 as the
radial fundamental mode can be discarded because the predicted instability range does not
match the observed frequency range. The best agreement is found if the radial mode at
6.98 cd−1 is assumed to be the second overtone. However, some of the 1H and 3H models
cannot be excluded. From the given results no conclusions about the metallicity can be
made.
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Figure 5.2: Instability parameter, η, for the predicted modes of selected post-MS models in
the expansion phase. The vertical lines mark the observed modes. The longest vertical line
delineates the position of the observed radial mode which is fit by all given models. The
results for Z=0.02 are shown on the left side, those for Z=0.025 on the right side.
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5.2.2 Post-main sequence models in the contraction phase

Pulsation models in the post-MS contraction phase provide a fit of the radial mode at
6.98 cd−1 only for specific overshooting parameters. To fit the radial first overtone to
6.98 cd−1, an overshooting parameter of approximately 0.4 has to be chosen, whereas to
fit the second radial overtone to this frequency a higher value of αov=0.7 (for Z=0.02)
or 0.6 (for Z=0.025) is required. The results for these models are shown in Figure 5.3.
The corresponding instability ranges are given in Figure 5.4. For the first radial overtone
scenario the observed frequencies are only predicted as unstable in models with a mass
around 2.1 M⊙ and lower. For the case that the second radial overtone is at 6.98 cd−1 a
good agreement is found for the given models. Note that the rotation rate slightly reduces
with evolution, however, even for the 3H model the rotation rate is still within the expected
uncertainty range of the derived v sin i value.
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Figure 5.3: Evolutionary tracks of models with different mass in the HR diagram. The
circles mark pulsation models in the post-MS contraction phase with a radial mode at
6.98 cd−1. Like radial overtones are connected by a line.
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Figure 5.4: Instability parameter, η, for the predicted modes of selected post-MS contraction
models. The vertical lines mark the observed modes. The longest vertical line delineates
the position of the observed radial mode which is fit by all given models. The results for
Z=0.02 are shown on the left side, those for Z=0.025 on the right side.

5.2.3 Main sequence models

The Figures 5.5 and 5.6 summarize the results for main sequence models. The best agree-
ment is found for the assumption that the radial mode 6.98 cd−1 represents the first overtone
for masses lower than 2.2 M⊙. If 6.98 cd−1 is assumed as the fundamental radial mode
a large part of the observed frequency range is predicted unstable by a 2.0 M⊙ model.
However, such a model also predicts excited modes at higher frequencies of up to 16 cd−1

which are currently not observed and does not reproduce the fundamental parameters well,
as shown in Figure 5.5.

5.2.4 Theoretical frequency spectra

From the instability survey no clear preference for a specific model is given. Models ex-
plaining the frequency at 6.98 cd−1 as radial second overtone as well as first overtone are
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Figure 5.5: Evolutionary tracks of models with different mass in the HR diagram. The
circles mark pulsation models in the main sequence phase with a radial mode at 6.98 cd−1.
Like radial overtones are connected by a line.

most probable. These models are also those closest to the photometric error box in the
HR diagram. To examine whether the frequency spectra of models in different evolutionary
stages can be used to make further constraints, the theoretical frequencies are compared to
the observed frequencies for different models in Figure 5.7. For each case only the model
closest to the derived luminosity and effective temperature of 4 CVn is shown.

Unfortunately, mode identification could not yet confirm the observation of a rotational
splitting. The two ℓ=2 mode at 5.53 cd−1 and 5.85 cd−1 may be candidates for a rotational
splitting, however, the azimuthal order of the mode at 5.53 cd−1 is currently unknown. At
an equatorial rotation velocity of 120 km s−1 the rotational splitting is very asymmetric. The
asymmetry also depends on the Ledoux constant which is different for acoustic and gravity
modes. Hence it will be necessary to observe at least three components of a rotational
splitting to provide strong constraints on the rotational velocity of 4 CVn.

As can be seen the comparison between the structures of theoretical and observed
frequency spectra does not provide a clear preference for a specific evolutionary stage.
However, some general conclusions can be made: 6.98 cd−1 could be the only radial mode
that is observed. The first radial overtone in 2H models is predicted at 5.60 cd−1. This
frequency is close to the mode at 5.58 cd−1 which though was already identified as a
quadrupole mode. The fundamental radial mode would be expected at approximately
4.33 cd−1 and the third overtone at ≈ 8.34 cd−1.
For 1H models we generally expect the fundamental radial mode at approximately 5.42 cd−1,
and the second radial overtone around 8.68 cd−1. Currently, no candidate peaks are found
around these frequencies. The detection of a frequency at these values could be used to
finally determine the radial order of the radial mode at 6.98 cd−1. However, with our
current instruments it will be unlikely to obtain reliable mode identification for a frequency
with a presumably quite low amplitude.
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Figure 5.6: Instability parameter, η, for the predicted modes of selected main sequence
models. The vertical lines mark the observed modes. The longest vertical line delineates
the position of the observed radial mode which is fit by all given models. The results for
Z=0.02 are shown on the left side, those for Z=0.025 on the right side.

Another difference between the 1H and 2H models is the corresponding log g value which
is around 3.5 for 1H models, 3.38 for 2H models and 3.3 for 3H models.These predicted
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Figure 5.7: Theoretical frequency spectra of 1H (right) and 2H models (left) in all possible
evolutionary stages. Observed frequencies are indicated as vertical lines. The theoretical
modes are shown as filled grey circles. Axisymmetric modes are additionally marked with a
concentric circle. For post-MS expansion models trapped modes are shown with red points.
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log g values do not significantly change between MS and post-MS models. All these values
are within the uncertainty range of the value derived from observations: 3.34 ± 0.20.
However, the results depend on the assumed rotational velocity. A higher rotation rate
leads to a lower surface gravity. Therefore, a future determination of the log g value from
spectroscopy would also provide valuable information as a consistency check and allow to
decrease the error bars.

Contrary to 44 Tau, our asteroseismic analysis of 4 CVn was less successful in determin-
ing the optimum stellar model. The identification of the spherical degrees and azimuthal
orders of additional modes will allow us to put stronger constraints on the asteroseismic
models of 4 CVn. Moreover, a two-dimensional theoretical model and a proper implemen-
tation of rotational effects is required to obtain more accurate theoretical frequencies.



Chapter 6

Determination of intrinsic mode
amplitudes

For evolved δ Scuti stars theory predicts many more unstable modes than observed with
ground-based data. However, recent space missions such as CoRoT revealed that the
pulsation spectra of δ Scuti stars consist of up to 1000 frequencies of which the majority
has very low amplitudes (Poretti et al. 2009; Garćıa Hernández et al. 2009). These low-
amplitude modes could only be found due to the excellent photometric accuracy of space
telescopes.

These results imply that the predicted modes exist but only some of them are excited
to large amplitudes. Consequently, a mode selection mechanism exists. Observational data
can provide hints to identify this mechanism. For example low-degree modes which exhibit
amplitudes that are high enough to be seen in ground-based data, tend to cluster around
radial modes (Breger et al. 2009). This can be explained by trapping of specific modes
in the acoustic cavity. Dziembowski & Krolikowska (1990) argue that trapped modes may
have a higher probability to grow to large amplitudes due to their low kinetic energy.

In the framework of linear pulsation theory the amplitudes of pulsation modes cannot
be predicted, because the mode amplitudes are not linearly related to the growth rates.
The amplitude of a mode grows exponentially until nonlinear effects limit the growth and
lead to a constant or modulated amplitude. Consequently, a nonlinear pulsation theory is
required to determine the mode amplitudes. A detailed discussion of these effects is out of
the scope of this work, therefore, we only briefly mention the two nonlinear main processes
that may limit the mode amplitudes:

• Resonant coupling between pulsation modes.
Resonance occurs, e.g., when the frequency of one mode is n times the frequency of
another mode, where n is an integer number. Due to mode coupling an exchange of
pulsation energy takes place which modifies the amplitudes.
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• Saturation of the driving mechanism.
Christy (1966) showed that the κ mechanism can be saturated, which means that
the efficiency of the conversion of the radiative energy flux into work is limited.

The importance of these effects for a δ Scuti star was examined by Nowakowski (2005).
The author compared the computed amplitudes for the star XX Pyx with observations and
concluded that resonant mode coupling is not the dominant effect in a slightly evolved
main sequence δ Scuti star like XX Pyx and that the collective saturation of the pulsation
instability is important.

For these comparisons observationally derived intrinsic mode amplitudes are crucial.
Hitherto, a reliable determination of mode amplitudes was hampered by the lack of reli-
able mode identifications. With the successful identification of the spherical degree and
azimuthal order of many modes in 44 Tau and FG Vir, and the well constrained stellar
inclination angle it is now possible to estimate the intrinsic mode amplitudes for these
stars.

6.1 The method

The DD-method discussed in Chapter 3 not only evaluates the spherical degree of a mode
based on the amplitudes and phases derived from multicolor photometry and radial velocity
data, but also determines the quantity ε̃ from the semi-analytical equations 3.4 and 3.9.
ε̃ is defined as

ε̃ ≡ εY m
ℓ (i , 0) (6.1)

where ε is a complex parameter fixing the amplitude and phase of the pulsation mode.
The first parameter of the spherical harmonic, Y m

ℓ , denotes the inclination and the second
parameter is the azimuth angle. As the azimuth angle is unimportant due to symmetry, it
is set to 0.

Consequently, if the spherical degree, the azimuthal order and the stellar inclination are
known, the complex quantity ε can be derived. |ε| then corresponds to 〈δr/R〉rms over the
stellar surface. In the next sections the derived intrinsic amplitudes for 44 Tau and FG Vir
are presented.

6.2 Intrinsic mode amplitudes of 44 Tau

The examined modes of 44 Tau are listed in Table 6.1 with their identified spherical degrees
and azimuthal orders. The m-values were determined by means of the FPF-method by Zima
et al. (2007). For f10 and f12 the azimuthal order is unknown. Therefore, all possible m
values (|m| ≤ ℓ) were considered for these two pulsation modes. The ℓ values given in the
table refer to the results of the DD-method presented in Chapter 3. For the two modes
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DD-method Asteroseismic model Zima et al. (2007)
Frequency [cd−1] ℓ ℓ m

f10 6.3390 2 2 -
f8 6.7955 2 2 0
f1 6.8980 0 0 0
f2 7.0060 1 1 1
f7 7.3031 2 2 0
f11 8.6391 2,1 2 0
f5 8.9606 0 0 0
f3 9.1174 1 1 1
f12 11.2947 2,1,0 2 -
f4 11.5196 1 1 0

Table 6.1: Set of modes of 44 Tau used for the analysis. Mode identification for the
frequencies of 44 Tau with ℓ values according to the results of the DD-method and the
post-MS contraction model presented in this work. m values from Zima et al. (2007).

f11 and f12 the DD-method did not yield an unambiguous solution. However, in both cases
the lowest χ2 values were found for ℓ=2 which is supported by the post-main sequence
contraction model presented in Chapter 4. Since this model was obtained solely relying on
the uniquely identified modes and shows an excellent fit of these modes, the model can be
used to point to the correct identification. The spherical mode degrees according to the
model are shown in the last-but-one column in the table. The close pair f6 (9.56 cd−1) and
f9 (9.58 cd−1) is not considered in this analysis since the resolution of the radial velocity
data does not allow for a reliable determination of their amplitudes and phases.

To compute the intrinsic mode amplitudes the stellar inclination has to be known. Zima
et al. (2007) measured the inclination of 44 Tau to be 60 ± 25o. Moreover, an adequate
atmosphere model is required. The fundamental parameters of Model 3 in Table 4.9 were
adopted. The measured microturbulence velocity of 1-2 km s−1 and normal (solar) metal-
licity were assumed.

The calculated estimates for the intrinsic mode amplitudes are shown in Figure 6.1 for
several inclination angles within the possible range between 35 and 85o. The effect of the
choice of the microturbulence velocity on the determination of intrinsic mode amplitudes
was tested and found to be very small. The results are presented for vmic = 2 km s−1.
The intrinsic mode amplitudes, |ε|, for the measured mean inclination of 60o are listed in
Table 6.2.

The Strömgren y amplitudes refer to the observed photometric values in 2004. The
radial velocity amplitudes were taken from Zima et al. (2007). The corresponding formal
uncertainties of the intrinsic mode amplitudes, σ|ε|, are given in the last column. Since
these uncertainties do not incorporate the uncertainties in the inclination angle they only
represent lower limits. The discussion of these results follows after the next section which
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Figure 6.1: Intrinsic mode amplitudes of 44 Tau for the mean inclination i=60o and other
possible angles within the uncertainty range. If there are several possible mode identifica-
tions for one frequency, the corresponding intrinsic amplitudes are connected with dotted
gray lines.
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Frequency [cd−1] Ay [mmag] ARV [km s−1] ℓ |m| |ε| σ|ε|

f10 6.3390 1.36 0.21 2 0 0.0060 0.0007
2 1 0.0014 0.0002
2 2 0.0016 0.0002

f8 6.7955 2.34 0.28 2 0 0.0074 0.0003
f1 6.8980 27.42 2.22 0 0 0.0094 0.0003
f2 7.0060 6.86 0.46 1 1 0.0021 0.0003
f7 7.3031 6.19 0.70 2 0 0.0184 0.0009
f5 8.9606 9.44 1.03 0 0 0.0034 0.0001
f3 9.1174 3.51 0.44 1 1 0.0017 0.0002
f4 11.5196 7.27 0.73 1 0 0.0027 0.0002
f11 8.6391 2.21 0.32 2 0 0.0081 0.0002
f12 11.2947 1.26 0.11 2 0 0.0022 0.0003

2 1 0.0005 0.0001
2 2 0.0006 0.0001

Table 6.2: Intrinsic mode amplitudes of 44 Tau for an inclination angle of 60o.

presents results for FG Vir.

6.3 Intrinsic mode amplitudes of FG Vir

FG Vir is a δ Scuti star in the main-sequence evolutionary stage. The latest frequency solu-
tion with 79 frequencies was published by Breger et al. (2005). Many authors contributed to
the important task of mode identification (e.g., Viskum et al. 1998; Mantegazza & Poretti
2002, . . . ). The most recent mode identifications were obtained by Daszyńska-Daszkiewicz
et al. (2005b) and Zima et al. (2006). These authors obtained their results based on a
data set consisting of many more nights of data than previous mode identification studies.
Their results are listed in Table 6.3.

Some spherical degree identifications of the FPF-method could be excluded by the DD-
method and vice versa. The last column lists the subset of ℓ values which are in agreement
in Daszyńska-Daszkiewicz et al. (2005b) and Zima et al. (2006). Only this set of ℓ values
was used in this study. The results for modes without a unique identification should be
taken with caution.

The data set used in this study was gathered in 2002 and was also used in the two papers
mentioned above. For FG Vir, Daszyńska-Daszkiewicz et al. (2005b) determined the best
value for the microturbulence velocity, vmic, to be 4 km s−1. This value is supported by
the results from spectral line synthesis by Mittermayer & Weiss (2003) who found a value
of 3.9 ± 0.2 km s−1. These authors also determined the photospheric element abundances
and found a near-solar abundance pattern. The equatorial rotational velocity, v sin i , is
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JDD (2005) Zima et al. (2006) used in this work
Frequency [cd−1] ℓ ℓ m ℓ

f6 9.199 2 1,2,3 1 2
f8 9.656 2 0,1,2 0 2
f3 12.154 0 0,1,2 0,1 0
f1 12.716 1 0,1 0 1
f13 12.794 2,1 2,3,4 -2 2
f9 19.227 2,1,0 1,2 1 1,2
f7 19.867 2,1 0,1,2 0 1,2
f10 20.287 0,1 1,2,3 -1 1
f4 21.051 1,0 0,1,2 0 0,1
f5 23.403 2,1 2 0 2
f2 24.227 1 0,1 0 1

Table 6.3: Mode identification for FG Vir frequencies according to Daszyńska-Daszkiewicz
et al. (2005b) and Zima et al. (2006).

21.6 ± 0.3 km s−1 and the inclination angle was determined to be 19 ± 5o by Zima et al.
(2006). For the computation of the intrinsic mode amplitudes the same model parameters
as given in Breger & Pamyatnykh (2006b), i.e., M=1.80 M⊙, log Teff=3.8658, log L/L⊙

= 1.120, log g = 3.980 and Vrot = 62.5 km s−1 were used.

Figure 6.2 shows the results for |ε| for the inclination angles 14, 19 and 24o with
corresponding error bars. If the identification of ℓ and/or m is ambiguous, the amplitudes
for all possible (ℓ,m) values are plotted for this frequency. In Table 6.4 the intrinsic mode
amplitudes for the mean inclination of 19o are listed. The Strömgren y amplitudes in the
table and in Figure 6.2 refer to the values in 2002 using the frequency fit from Breger et al.
(2005). The radial velocity amplitudes were taken from Zima et al. (2006).

6.4 Discussion

The intrinsic mode amplitudes are of the order of 0.1 % of the stellar radius for most of
the modes in FG Vir, but significantly higher for the modes f1, f6 and f13. In the case of
44 Tau the inclination angle is not as well constrained as for FG Vir which results in larger
uncertainties in the mode amplitudes. However, it can be concluded that the intrinsic
mode amplitudes in 44 Tau are slightly higher, with values around 0.2 % of the stellar
radius. A few modes also have significantly larger values of |ε|. In both stars there is no
clear evidence that higher intrinsic mode amplitudes are limited to a specific region of
the frequency spectrum. However, the modes with higher frequencies tend to have low
intrinsic amplitudes.
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Figure 6.2: Intrinsic mode amplitudes, |ε|, of FG Vir evaluated for the mean inclination
angle of 19o and its uncertainty limits. If the identification of ℓ and/or m is ambiguous,
the amplitudes for all possible (ℓ,m) values are plotted for this frequency and connected by
a line. Upper right panel: observed Strömgren y amplitudes in the observing season 2002.

The correlation between photometric and intrinsic mode amplitudes for the two δ Scuti
stars is examined in Figure 6.3. Similar plots comparing |ε| with the radial velocity ampli-
tudes show essentially the same results.

Figure 6.3 shows that there is no clear correlation between the photometric y amplitudes
and the intrinsic mode amplitudes, |ε|, from the analyzed sample of frequency peaks in
FG Vir. However, in a similar plot for 44 Tau (Figure 6.3) two slopes can be clearly seen. The
modes identified as (ℓ, m) = (2, 0) show a different correlation between photometric and
intrinsic amplitudes than the ℓ=0 and ℓ=1 modes. Generally, one can expect a correlation
between photometric and intrinsic amplitudes as far as modes with like (ℓ, m) are concerned,
because of the same geometrical cancellation factor. Modes with a different spherical
degree and azimuthal order are expected to form different slopes. The steep slope of the
quadrupole modes illustrates that a much higher intrinsic amplitude is needed to produce
the same photometric amplitude as a dipole mode. For FG Vir we do not see a similar
distinct structure in the diagram because not enough modes of the same species (i.e., with



108

Frequency [cd−1] Ay [mmag] ARV [km s−1] ℓ m |ε| σ|ε|

f6 9.1991 2.74 0.34 2 1 0.0035 0.0013
f8 9.6563 3.62 0.26 2 0 0.0011 0.0011
f3 12.1541 4.11 0.41 0 0 0.0014 0.0009
f1 12.7163 22.10 2.23 1 0 0.0056 0.0034
f13 12.7942 0.69 0.08 2 -2 0.0039 0.0020
f9 19.2279 1.73 0.22 1 1 0.0020 0.0008

2 1 0.0015 0.0007
f7 19.8676 1.97 0.30 1 0 0.0005 0.0003

2 0 0.0006 0.0005
f10 20.2878 1.18 0.25 1 -1 0.0016 0.0005
f4 21.0515 3.07 0.41 0 0 0.0007 0.0004

1 0 0.0006 0.0003
f5 23.4033 3.99 0.37 2 0 0.0009 0.0005
f2 24.2280 4.27 0.48 1 0 0.0007 0.0004

Table 6.4: Intrinsic mode amplitudes, |ε|, for a FG Vir model with a mean inclination of
19o. The corresponding uncertainties, σ|ε|, are given in the last column. The Strömgren
y amplitudes refer to the values in 2002 using the frequency fit from Breger et al. (2005).
The radial velocity amplitudes were taken from Zima et al. (2006).

like ℓ and m values) were observed. For 44 Tau, with exception of two ℓ=1 modes, all
identified modes are axisymmetric, which causes a clearer structure in the diagram.

The aspect factor determined by the spherical harmonic can be removed from the
photometric amplitudes. The results are shown in Figure 6.4. As expected, the slopes for
ℓ=2 and ℓ=1,0 are closer but a difference remains. This is mainly due to the fact that the
ratio Ay/Y m

ℓ does not consider all geometrical effects as can be seen in equation 4.1.

It is an unexpected result that in both stars some ℓ=2 modes have a very high intrinsic
mode amplitude. In the case of 44 Tau the (ℓ,m)=(2,0) mode f7 has even a larger value
of |ε| than the fundamental radial mode. A similar result was found for the β Cephei star
θ Oph by Daszyńska-Daszkiewicz & Walczak (2009) where a quadrupole mode was found
to have a significantly higher intrinsic amplitude than a radial mode. The reason for the
excitation of ℓ=2 modes to such large values of |ε| is currently not known.

The excellent theoretical fit of the observed modes in 44 Tau allows to examine the
relation between intrinsic mode amplitudes and linear growth-rates or the fraction of kinetic
energy confined in the gravity cavity, Eg/Ek , respectively. Table 6.5 lists the corresponding
values predicted by Model 3 in Table 4.9. Figure 6.5 shows the results. No clear correlation
is found between the intrinsic mode amplitudes and the linear growth-rates. This may
indicate that nonlinear effects are important.

For δ Scuti stars the main uncertainties in this approach, originate from uncertainties
in the modeling of the outer stellar layers, in particular the treatment of convection. This
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Figure 6.3: Correlation between the derived intrinsic mode amplitudes and the photometric
Strömgren y amplitudes for FG Vir (assuming i=19o) and for 44 Tau (assuming i=60o).
The errors of the observed y amplitudes are smaller than the size of the symbols. If there
are several possible identifications for one frequency, the corresponding intrinsic amplitudes
are connected by lines.

affects the quadrupole modes more than the dipole modes and a confirmation of the results
presented in this work with a time-dependent convection theory would be useful. Despite
these uncertainties, our results show that with reliable mode identification and a good
estimate for the inclination angle some constraints on the intrinsic mode amplitudes, |ε|,
can be made which may lead to important insights in further studies of mode selection and
amplitude modulation.

Frequency [cd−1] Ay [mmag] ARV [km s−1] ℓ |m| |ε| σ|ε| γ [yr−1] Eg/Ek

f1 6.8980 27.42 2.22 0 0 0.0094 0.0003 0.01787 0.0
f5 8.9606 9.44 1.03 0 0 0.0034 0.0001 0.14827 0.0

f2 7.0060 6.86 0.46 1 1 0.0021 0.0003 0.01898 0.13
f3 9.1174 3.51 0.44 1 1 0.0017 0.0002 0.00707 0.87
f4 11.5196 7.27 0.73 1 0 0.0027 0.0002 0.10290 0.35

f8 6.7955 2.34 0.28 2 0 0.0074 0.0003 0.00437 0.68
f7 7.3031 6.19 0.70 2 0 0.0184 0.0009 0.01080 0.67
f11 8.6391 2.21 0.32 2 0 0.0081 0.0002 0.04054 0.64

Table 6.5: Intrinsic mode amplitudes of 44 Tau for an inclination angle of 60o. Theoretical
frequencies of m=0 modes predicted by Model 3 listed in Table 4.9.
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amplitudes divided by the aspect factor of the mode for FG Vir (left panel) and 44 Tau (right
panel). The errors of y amplitudes are smaller than the size of the symbols. Ambiguous ℓ
identifications are connected by a line.
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Figure 6.5: Correlation between derived intrinsic mode amplitude and growth-rates (left
panel) or Eg/Ek (right panel) in 44 Tau.



Chapter 7

Conclusion

In this work mode identification and an asteroseismic analysis was carried out for the two
δ Scuti stars 44 Tau and 4 CVn.

In the slowly rotating star 44 Tau the spherical degree of 10 modes could be determined
by (i) modeling the observed amplitude ratios and phase differences between the Strömgren
v and y passband and (ii) utilizing the method by Daszyńska-Daszkiewicz et al. (2003).
The results of both methods were found to be in excellent agreement. Two modes could
be identified as radial, which puts tight constraints on asteroseismic models. The detailed
examination of the radial period ratio in pulsation models obtained with OPAL and OP
opacities points to an underestimation of opacity by the OP opacities at temperatures
around log T=6.05.

An avoided crossing between two observed ℓ=1 modes could be confirmed and played
an important role in the determination of the evolutionary stage of 44 Tau. A post-MS
model in the contraction phase was found to provide an excellent fit of all 15 independent
frequencies observed in 44 Tau. The detected frequency spectrum can be explained solely
with ℓ ≤ 2 modes. The predicted range of unstable frequencies is in excellent agreement
and the fundamental parameters in good agreement with observations. 44 Tau, there-
fore, is an example for a successful determination of the evolutionary stage of a star by
asteroseismology.

The excellent fit of the observed modes allowed to investigate the efficiency of partial
element mixing and the extent of the overshoot layer above the convective core through
mixed modes. Different models of the hydrogen abundance profile were tested according to
the approach described in Dziembowski & Pamyatnykh (2008). The results favor efficient
mixing in a small overshoot layer to inefficient mixing in a large overshoot layer. The main
uncertainties in the determination of the size of the partially mixed layer arise from the
uncertainties in the opacities.

The observed amplitude modulation of 44 Tau between 2000 and 2006 was examined.
Different reasons for amplitude variability, such as beating between close frequencies or
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resonance phenomena, were examined. However, the time base line of the observations is
to short to draw definitive conclusions on the cause of the amplitude modulations.

The second star examined in this work is 4 CVn. This star exhibits a v sin i of approx-
imately 120 km s−1 and metal overabundance. Based on unpublished data the spherical
degree of five modes could be uniquely determined by means of photometric mode identi-
fication. The results from the mode identification method by Daszyńska-Daszkiewicz et al.
(2003) were shown to be partly affected by the fast rotation of the star. At the present
stage no components of the same rotationally split multiplet could be confirmed.

Unfortunately, the mode identification of 4 CVn does not put as tight constraints to
the models as in the case of 44 Tau. Only one radial mode was found. Therefore, there
are many free parameters in the asteroseismic modeling of 4 CVn of which the unknown
equatorial rotation rate is of main concern. The second order perturbation approach used
in this work is not well suited to accurately predict the frequencies of individual modes in
4 CVn and corresponding uncertainties have to be taken into account. The comparison
between observed and predicted fundamental parameters points to an identification as the
radial first or second overtone. These results are confirmed by the predicted instability
ranges. The best agreement between the theoretical and the observed frequency range is
found if the radial mode is assumed to be the second overtone. At the present stage the
evolutionary stage is still unclear and the theoretical frequency spectra computed for each
evolutionary stage do not show a clear preference. The case of 4 CVn shows that more
mode identifications are still necessary to put additional constraints on the models.

Finally, we showed that if the spherical degree and the azimuthal order of pulsation
modes, and the stellar inclination angle are well determined (such as in 44 Tau and FG Vir),
estimates of the intrinsic mode amplitudes can be derived. The mode amplitudes were
found to range between approximately 0.05 and 2 % of the stellar radius. The comparison
between the intrinsic amplitudes of 44 Tau and the corresponding linear growth rates does
not show a correlation. Hence nonlinear effects are important to explain the given mode
amplitudes. These empirical data for the mode amplitudes may be important input data
for the nonlinear pulsation theory.
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Daszyńska-Daszkiewicz, J., Dziembowski, W. A., Pamyatnykh, A. A., & Goupil, M.-J.
2002, A&A, 392, 151
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Meléndez, J. & Raḿırez, I. 2003, A&A, 398, 705

Miglio, A., Montalbán, J., & Dupret, M.-A. 2007, MNRAS, 375, L21

Mittermayer, P. & Weiss, W. W. 2003, A&A, 407, 1097

Montalbán, J. & Dupret, M.-A. 2007, A&A, 470, 991

Montalban, J. & Miglio, A. 2008, Communications in Asteroseismology, 157, 160

Moskalik, P. 1985, Acta Astronomica, 35, 229

Moskalik, P. & Dziembowski, W. A. 1992, A&A, 256, L5



Chapter 7. Conclusion 117

Nendwich, J., Heiter, U., Kupka, F., Nesvacil, N., & Weiss, W. W. 2004, Communications
in Asteroseismology, 144, 43

Nowakowski, R. M. 2005, Acta Astronomica, 55, 1

Nowakowski, R. M. & Dziembowski, W. A. 2003, Ap&SS, 284, 273
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Appendix A

Appendix

A.1 Zusammenfassung

δ Scuti Sterne sind pulsierende Sterne, die sowohl radiale Schwingungsmoden als auch
nicht-radiale Druck- und Schwerkraftmoden aufweisen. Der Hauptaspekt dieser Arbeit ist
die Bestimmung der Geometrie der Schwingungsmoden (Modenidentifikation) und eine
asteroseismische Analyse der δ Scuti Sterne 44 Tau und 4 CVn.

Der langsam rotierende Stern 44 Tau pulsiert mit 15 unabhängigen Frequenzen. Für
die 10 dominanten Moden konnte der Grad der zugehörigen Kugelflächenfunktion ermit-
telt werden. Zwei radiale Moden und die Interaktion zwischen einer Druck- und Schwer-
kraftdipolmode schränken die möglichen Pulsationsmodelle stark ein. Ausgehend von den
erhaltenen Modenidentifikationen, wurden Modelle in allen drei möglichen Entwicklungs-
phasen untersucht: der Hauptreihenphase, der darauf folgenden Kontraktionsphase und
der Nach-Hauptreihen-Expansionsphase. Ein Pulsationsmodell in der Nach-Hauptreihen-
Kontraktionsphase zeigt eine ausgezeichnete Übereinstimmung mit allen 15 beobachteten
Frequenzen.
Der Vergleich asteroseismischer Modelle, die mit OPAL und OP Opazitäten berechnet wur-
den, deutet darauf hin, dass die OP Opazitäten die wahre Opazität bei einer Temperatur von
1.1 · 106 K unterschätzen. Die Auswirkung der unterschiedlichen Modellierung der Mischre-
gion zwischen dem konvektiven Kern und den darüberliegenden radiativen Schichten wurde
getestet. Die Übereinstimmung zwischen theoretischen und beobachteten Frequenzen ist für
ein Modell, das eine effiziente Elementvermischung innerhalb einer schmalen Schichtdicke
annimmt, besser als bei einer ineffizienten Elementvermischung in einer größeren Schicht.

Im Stern 4 CVn konnte nur eine Schwingungsmode als radial identifiziert werden. Die
Modenidentifikation erlaubt in diesem Fall keine so starken Einschränkungen der astero-
seismischen Modelle wie für 44 Tau. Eine allgemeine Modellstudie lässt den Schluss zu,
dass es sich bei der radialen Mode um den zweiten Oberton oder, jedoch mit geringerer
Wahrscheinlichkeit, um den ersten Oberton handelt.
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Weiters wird anhand der zwei δ Scuti Sterne 44 Tau und FG Vir gezeigt, dass mit eindeu-
tiger Modenidentifikation und bekanntem Inklinationswinkel die intrinsischen Amplituden
der Pulsationsmoden aus den Beobachtungen abgeschätzt werden können.
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A.2 Abstract

The δ Scuti stars are pulsating stars which exhibit radial modes as well as nonradial low-
order acoustic and gravity modes. The main scope of this work is the determination of
the spherical mode degrees and an asteroseismic analysis of the δ Scuti stars 44 Tau and
4 CVn.

The slowly rotating star 44 Tau pulsates in 15 independent frequencies. For the 10
dominant modes the spherical degree could be determined. Two radial modes and an
avoided crossing between two dipole modes put strong constraints on the models. Taking
into account the mode identifications, models in all three possible evolutionary stages were
examined: the main sequence phase, the overall contraction phase after the TAMS and
the post-main sequence expansion phase. A model in the post-main sequence contraction
phase was found to provide an excellent fit of all 15 observed frequencies.
The comparison of asteroseismic models computed with OPAL and OP opacities indicates
that the OP opacities underestimate the true opacity at a temperature of approximately
1.1·106 K. The effect of different modeling of the partially mixed region above the convective
core on the mixed modes were tested. The fit between theoretical and observed frequencies
is better for a model with efficient mixing in a small overshoot layer than inefficient mixing
in a more extended overshoot layer.

For the star 4 CVn only one mode could be identified as radial. Consequently the mode
identifications do not put as strong constraints on the asteroseismic models as for 44 Tau.
A general model survey allows to conclude that the radial mode is the second or, less likely,
the first overtone.

It is shown for the case of the two δ Scuti stars 44 Tau and FG Vir that with unambiguous
mode identifications and a well constrained inclination angle an estimate of the intrinsic
mode amplitudes can be derived.
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24. Juni 1999 Reifeprüfung mit ausgezeichnetem Erfolg bestanden

Akademische Ausbildung

10/1999 Beginn des Astronomie-Studiums an der Universität Wien
10/2000 - 09/2001 Unterbrechung des Studiums zwecks Ableistung des Zivildienstes

in den Pfarreien Bregenz-Mariahilf und Dornbirn-Schoren
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