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Zusammenfassung 

 

„Cellular repressor of E1A-stimulated genes“ (CREG) ist ein Phosphoglykoprotein in den 

Lysosomen tierischer Zellen. CREG wurde ursprünglich in Drosophila melanogaster (dCREG) 

identifiziert und mittlerweile wurden homologe Gene im menschlichen Genom (hCREG), in 

Arabidopsis thaliana (aCREG) und in der Maus (mCREG) gefunden. In Versuchen mit 

tierischer Zellkultur wurde gezeigt, dass CREG an Prozessen wie Zellteilung und 

Differenzierung teilnimmt. Überexpression von CREG inhibiert Zellwachstum und fördert 

Differenzierung. Obwohl die Sequenz des Gens und die tertiäre Struktur des Proteins 

vollständig geklärt wurden gibt es keinen Hinweis darauf durch welche Mechanismen es den 

Zellzyklus beeinflusst. Die Untersuchung der subzellulären Lokalisation des Proteins in 

tierischen Zellen ergab, dass es sich hierbei um ein lysosomales Protein handelt. Bislang 

wurde CREG nur in tierischen Systemen und in Drosophila untersucht. 

 

Ziel dieser Arbeit war es daher, Einsicht in die subzelluläre Lokalisation und Funktion von 

CREG in pflanzlichen Zellen zu erlangen. Hierfür wurden zwei Konstrukte kreiert (aCREG-GFP 

und aCREG-mRFP), die durch konfokale Laser-Scanning Mikroskopie in den Zellen von 

Nicotiana benthamiana und Arabidopsis thaliana lokalisiert wurden. Die Analyse ergab, dass 

sich aCREG aller Wahrscheinlichkeit nach in den Vakuolen pflanzlicher Zellen befindet. Da 

pflanzliche Vakuolen homolog zu tierischen Lysosomen sind, stimmen diese Ergebnisse auch 

mit den Lokalisierungsstudien in tierischen Zellen überein. 

 

Für die funktionelle Analyse von aCREG wurden A. thaliana Wildtyp Pflanzen mit zwei aCREG 

knock-down Linien unter abiotischen Stress-Bedingungen verglichen. Die Setzlinge wurden 

erhöhten Konzentrationen von Natriumchlorid und Saccharose ausgesetzt. Auch der Einfluss 

erhöhter Außentemperatur während des Wachstums oder das Fehlen von Saccharose im 

Wachstumsmedium wurden untersucht. Die Ergebnisse deuten darauf hin, dass aCREG 

keinen direkten Einfluss auf die Reaktion von Pflanzen auf abiotischen Stress ausübt. 
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Abstract 

 

“Cellular repressor of E1A-stimulated genes” (CREG) is a phosphoglycoprotein found in the 

lysosomes of mammalian cells. CREG was first identified in the Drosophila melanogaster 

(dCREG) genome, but meanwhile CREG homologues have been also identified in the human 

(hCREG), Arabidopsis thaliana (aCREG) and the mouse (mCREG) genome. Experiments with 

mammalian cell culture have shown CREG to inhibit cell division and to promote cell 

differentiation. The mechanisms by which CREG influences cell growth are not clear yet, 

although the sequence and tertiary structure of the protein are known. Subcellular 

localization studies in mammalian cells have shown CREG to reside in lysosomes. Until now, 

only data on the mammalian and Drosophila CREG variants are available. 

 

The aim of this work was to investigate the subcellular localization of CREG in plant cells and 

to get an insight into its functions there. For subcellular localization studies in Nicotiana 

benthamiana and Arabidopsis thaliana, two constructs (aCREG-GFP und aCREG-mRFP), that 

were analysed by confocal laser scanning microscopy, were created. The analysis shows, that 

aCREG is localized in the vacuoles of plant cells. This result is in accordance with the fact that 

vacuoles are the plant homologues of mammalian lysosomes and therefore agree with the 

localization studies in mammalian cells. 

 

For functional analysis of aCREG in A. thaliana, wildtype seedlings were compared to two 

aCREG knock-down lines under abiotic stress conditions. The seedlings were subjected to 

elevated sodium chloride and sucrose levels in the growth medium. The effects of elevated 

temperature or sucrose depletion were also investigated. The results indicate that aCREG is 

dispensible for the abiotic stress response of plants. 
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1 Introduction 

  

1.1 Cellular Repressor of E1A-stimulated Genes (CREG) 

 

1.1.1 Identification 

 

CREG was first identified during a yeast-two-hybrid screen for TATA binding protein (TBP) 

interaction partners in Drosophila melanogaster (Veal et al., 1998). Sequence analysis 

revealed amino acid similarity with two regions of the E1A protein, CR1 and CR2. Further 

analysis identified a CREG homologue in a human cDNA library. It displayed 31% amino acid 

identity to Drosophila CREG (dCREG). Other results showed that hCREG mRNA is widely 

expressed in adult human tissues and that hCREG mRNA levels increased during terminal 

differentiation of several cell lines (Veal et al., 2000). hCREG displayed an anti-oncogenic 

activity (Veal et al., 1998), but until today no enzymatic or other biochemical activity could 

be found. Recently CREG homologues in mice (mCREG) and Arabidopsis thaliana (aCREG) 

have been identified. The amino acid identity of hCREG to mCREG is 77%, to dCREG 31% and 

to aCREG 29% (Figure 1). 
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Figure 1: Amino Acid homology between hCREG, mCREG, aCREG and dCREG based 

on sequence alignment. Secondary structure elements based on the crystal structure 

of hCREG are indicated above the amino acid sequence. Boxes indicate conserved 

amino acid sequences, highly conserved residues are shown in red. 

 

 

Recently, two novel members of the CREG family have been identified: human CREG2 

(hCREG2) and mouse Creg2 (mCreg2). Expression of hCREG2 and mCreg2 has been observed 

only in brain tissue, whereas hCREG is ubiquitously expressed in most adult tissues (Kunita et 

al., 2002). 

 

CREG has also been identified in several proteomic approaches with the aim to fully 

characterize the lysosomal proteome. N-glycosidically linked mannose-6-phosphate (M6P) 

residues specifically label soluble lysosomal proteins. Therefore proteomic approaches 

conventionally rely on immobilized M6P receptors to capture them (Journet et al., 2000). 

Using a combination of one- and two-dimensional gel electrophoresis and protein 

identification by N-terminal sequencing Journet et al. identified 15 proteins, of which 12 

were well known lysosomal hydrolases, one was a putative lysosomal protein and two 

(leukocystatin and human cellular repressor of E1A-stimulated genes (hCREG)) were 
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described for the first time as M6P containing proteins. The same group used this approach 

two years later for the comparison of the lysosomal proteome in undifferentiated and 

differentiated monocytic cells as well as in a breast cancer cell line (Journet et al., 2002). 

Among the 22 identified proteins hCREG was found again, and the results also show that 

hCREG undergoes proteolytic processing (removal of a 14 residue N-terminal extension). 

hCREG was also identified in a screen of the human brain lysosomal proteome (Sleat et al., 

2005) and in a mass spectrometric approach to determine the positions of M6P-modified N-

glycans in lysosomal proteins (Sleat et al., 2006). These findings are in contradiction to 

previous theories that CREG is a transcriptional regulator, because as such it should reside in 

the nucleus or cytoplasm. Therefore further studies are required to understand the function 

of hCREG in the lysosomal compartment. 

 

1.1.2 Putative functions of CREG 

 

Being the transforming factor of adenoviruses, E1A intervenes with the control mechanisms 

for transcription in the host cell in order to propagate cell division and proliferation, thereby 

inhibiting differentiation. E1A cooperates with oncogenes, such as ras, to reprogram cellular 

gene expression and transform primary cells. E1A was shown to interact with several 

transcriptional regulators of cell proliferation, including the tumor suppressor 

retinoblastoma protein, pRb, and the coactivators p300 and CBP, to activate and repress 

expression of particular genes (Veal et al., 1998). CR1 and CR2, two conserved regions of E1A 

that mediate binding to pRb and other cellular transcription factors, such as TATA-binding 

protein (TBP), have been shown to be required for E1A mediated transcriptional regulation 

and cellular transformation. E1A has been observed to activate transcription through several 

response elements, including the binding site for E2F, a cell-cycle regulated transcription 

factor, in the adenoviral E2 promoter. 

Since dCREG was initially identified as a TBP-binding protein, the ability of hCREG to bind TBP 

was investigated in vitro and showed that hCREG can bind not only TBP but also pRB and the 

related p107 and p130 proteins. Expression of hCREG was shown to reduce the efficiency 

with which E1A and the oncogene ras cooperate to transform cells. In transfection assays, it 

has also been demonstrated that hCREG represses E1A mediated activation of adenovirus E2 

and cellular hsp70 promoters.  
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These results suggest that CREG might be involved in the transcriptional control of cell 

growth, inhibiting proliferation and promoting differentiation. 

 

In 2000 Veal et al. confirmed a function of CREG during cell differentiation. They found that 

expression of CREG is enhanced upon in vitro differentiation of NTERA-2 cells induced by 

retinoic acid or hexamethylene bisacetamide. They also found that constitutive 

overexpression of CREG enhances neuronal differentiation of NTERA-2 cells and also that 

NTERA-2 cells grown in CREG-enriched media showed enhanced differentiation upon 

stimulation with retinoic acid. CREG is not expressed at significant levels in pluripotent 

mouse embryonic stem cells but expression levels rise during differentiation. CREG has 

repeatedly been implicated in cell differentiation processes (Di Bacco and Gill, 2003, Han et 

al., 2008) by keeping cells or tissue in a mature state and thus appears to counteract 

pathological de-differentiation and overgrowth. Other putative functions of CREG include 

regulation of the ERK1/2 pathway in cardiac hypertrophy (Bian et al., 2009, Xu et al., 2004) 

and an involvement in the turnover of the M6P/IGF2R during IGF-mediated hypertrophy in 

ileal epithelial cells (Gordon et al., 2005).  

 

As mentioned above, CREG was identified as a novel M6P-modified protein. Such proteins 

carry mannose-6-phosphate moieties on their glycan structures and are recognized by M6P 

receptors. In mammalian cells these are the M6P/IGF2R and MPR 46. Both receptors bind 

M6P-modified proteins and target them to the lysosomes after protein synthesis. The 

M6P/IGF2R is a multifunctional transmembrane glycoprotein of about 300 kDa that is built 

of a large extracellular domain containing 15 repeat regions and a small cytoplasmic domain. 

The receptor has two regions for binding of M6P residues and one region for IFG2 (Insulin 

like growth factor 2) binding. It is not only located in the Golgi membrane but also on the 

plasma membrane where it is responsible for binding of extracellular IGF2 and its delivery 

into lysosomes for degradation. The receptor can also bind other growth factors and 

cytokines like the latent form of transforming growth factor-β (Dennis and Rifkin, 1991), 

leukaemia inhibitory factor (Blanchard et al., 1999), and proliferin (Dahms and Hancock, 

2002), which are all M6P modified. The receptor plays a critical role as a negative regulator 

of cell growth as it influences signalling of growth factors across the cell membrane. The 

M6P/IGF2R has been demonstrated to be required for CREG-induced growth inhibition (Di 
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Bacco and Gill, 2003). How CREG cooperates with the M6P/IGF2R to suppress cell 

proliferation is not clear yet. It is possible that secreted CREG is internalized upon binding to 

the M6P/IGF2R and then transferred to its site of action, or that CREG influences M6P/IGF2R 

interactions with other ligands, like IGF2 (Han et al., 2009).  

 

In conclusion it can be said that CREG has putative functions in cell growth control by 

facilitating tissue hypertrophy in some tissues whereas it permits maturation in others, 

depending on the stage of development.  

 

1.1.3 Structural analysis of CREG 

 

In 2005 the 3D-crystal structure of hCREG (aa 49-220) was solved (Sacher et al., Figure 2). It 

showed that hCREG monomers display a β-barrel fold and that hCREG appears to form a 

tight homodimeric complex. Gel filtration studies performed on recombinant mCREG 

revealed that this homologue also forms dimers. Three potential glycosylation sites (Asn 160, 

Asn 193 and Asn 216) map to a confined patch opposite the dimer interface, and thus upon 

dimerization CREG presents a multivalent ligand for the M6P/IGF2R. Structural homologues 

of hCREG are proteins that bind flavin mononucleotide (FMN), but the putative FMN-binding 

pocket of the hCREG homodimer is sterically blocked by a small loop. This loop was shown to 

be required for CREG function in growth control, but how this function is carried out remains 

unknown. The first 31 amino acids of murine and human CREG and the first 23 aa in dCREG 

target the protein to the secretory pathway of the cell (signal peptides estimated by SignalP 

3.0, Technical University of Denmark). hCREG and mCREG undergo proteolytic maturation, 

as the first 14 aa (propeptide) are cleaved off by proteases in the lysosome (Schahs et al., 

2008). mCREG shares two of the three glycosylation sites of hCREG: Asn 160 and 216. dCREG 

is also modiefied by N-glycosylation on Asn 87. A. thaliana CREG has no identified N-

glycosylation site. 
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Figure 2: The crystal structure of 

human CREG.  

A: Monomeric subunit;  

B: Homodimeric complex. The 

arrow indicates the loop region 

(Sacher et al., 2005). 

 

1.1.4 Subcellular localization of CREG 

 

When CREG was first identified, the question was raised where in the cell the protein 

resides. In 2000 Veal et al. used immunofluorescent staining to show that hCREG is a 

secreted glycoprotein. CREG was found in the perinuclear region of the cell, which is typical 

for the ER (Endoplasmic Reticulum) and the Golgi apparatus. They found secreted hCREG in 

tissue culture media and concluded that the N-terminal signal sequence is necessary for 

secretion. The notion of CREG being a secreted protein is now widely accepted (Di Bacco and 

Gill, 2003, Han et al., 2008, Kunita et al., 2002, Sacher et al., 2005, Xu et al., 2004).  

 

However, recent results point out that CREG is a lysosomal protein (Journet et al., 2000, 

Journet et al., 2002, Sleat et al., 2005, Sleat et al., 2006) that co-localizes with lysosomal 

marker proteins (cathepsin D and LAMP-1), and has putative lysosomal functions (Schahs et 

al., 2008).  

 

How CREG influences cell growth while residing in the lysosome remains to be elucidated. It 

is possible that CREG is being activated in the lysosome and then in turn activates a signalling 

cascade leading to changes in transcription in the nucleus.  
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1.1.5 The Arabidopsis thaliana homologue of CREG 

 

So far, all studies on CREG have been conducted with the mammalian or D. melanogaster 

homologues. The biological processes in which A. thaliana CREG is involved are unknown. 

aCREG has a N-terminal 29 aa signal peptide targeting it to the secretory pathway. The 

predicted tertiary structure of the protein resembles that of hCREG, and it also contains a 

domain related to the FMN-binding split barrel. It is located on the At2g04690 locus of the A. 

thaliana genome. The gene is interspersed by 5 introns, and two estimated splice variants 

exist: At2g04690.1 and At2g04690.2 (www.arabidopsis.org) (Figure 3). The difference 

between the two splice variants is, that At2g04690.2 is 21 bp (or 7 aa) shorter than 

At2g04690.1. Thus, the two splice variants not only differ in the length of the gene product 

but also in the coding sequence. 

 

Figure 3: The splice variants of At2g04690. 5’ and 3’ utr (untranslated regions) sequences 

are shown in light blue, gene coding sequences in dark blue. Introns are shown as 

connecting lines.  

 

The subcellular localization of A. thaliana CREG remains to be investigated. Two reports have 

identified aCREG in plant tissues: once in the vacuolar proteome (Carter et al., 2004) and 

once in the plant cell wall (Irshad et al., 2008). 

 

1.2 Aims of the project 

 

In this diploma thesis, the subcellular localization of aCREG was investigated, as well as its 

biological role. 

 

• Subcellular localization studies were performed with C-terminal fusion constructs of 

aCREG with GFP (green fluorescent protein) or mRFP (monomeric red fluorescent 

protein). The fusion constructs were used for agroinfiltration and transient 
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expression in Nicotiana benthamiana epidermal leaf cells and analysed by confocal 

laser scanning microscopy. 

 

• Also, the fusion proteins were stably expressed in A. thaliana for subcellular 

localization by confocal laser scanning microscopy and sucrose density gradient 

fractionation. 

 

• The biological function of aCREG was investigated by subjecting aCREG RNAi knock-

down lines to abiotic stress. The stress conditions investigated include salt stress, 

sucrose stress and heat stress, with the aim to elucidate whether aCREG participates 

in stress responses. 
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2 Materials and Methods 

 

2.1 Materials 

 

2.1.1 Chemicals and Solvents 

 

Fluka 

 Acetosyringone  

 Acrylamide/ Bisacrylamide solution 40% (29:1) 

Agar 

APS (ammonium peroxisulfate) 

D(+)-glucose monohydrate 

Dithioerythritol (DTE) 

DMSO (dimethylsulfoxide) 

Gentamycin-sulfate 

Potassium chloride 

Potassium dihydrogenphosphate 

Silver nitrate 

Sodium acetate 

Sodium acide 

Sodium hydrogenphosphate 

Sodium thiosulfate pentahydrate 

TEMED (N,N,N’,N’-tetramethyl-ethane-1,2-diamine) 

 

Gibco BRL 

Phenylmethanesulphonylfluoride (PMSF) 

 

Helena Chemical Company  

Silwet L-77 
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PeqLab 

Agarose 

 

Riedel-de Haen 

Sodium carbonate 

 

Rethmann 

Developer 

Fixing Solution 

 

Roth 

Acetic Acid (100%) 

Bovine Serum Albumin 

Citric acid monohydrate 

Disodium hydrogen phosphate 

Ethylenediaminetetraacetic acid (EDTA) 

Ethanol (100%) 

Chloroform (100%) 

Glycerol (100%) 

Glycine 

Hydrochloric acid (37%) 

Isopropanol (2-Propanol) 

Methanol 

SDS (sodium dodecyl sulphate) 

Sodium chloride 

Sodium hypochlorite (12% in water) 

Tris base  

Tryptone 

Yeast extract 

 

Sigma-Aldrich 

Ampicillin sodium salt 
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Brefeldin A 

Ethidiumbromide 

Formaldehyde 

Glutardialdehyde 

Kanamycin-sulfate 

D-Mannitol 

Mercaptoethanol 

MES hydrate 

Murashige and Skoog basal medium 

P-nitrophenyl N-acetylglucosamine (PNP-GlcNAc) 

Phytagel 

Polyvinylpolypyrrolidone (PVPP) 

Ponceau S 

Protease-inhibitor cocktail for plant cell and tissue extracts 

Sodium phosphate dodecahydrate 

Triton X-100 

Tween 20 

 

Wiener Zucker 

Sucrose 

 

2.1.2 Buffers & Solutions 

 

Acetosyringone  

stock solution: 1M; 10 µL aliquots stored at -20° C 

 

Ethidiumbromide 

stock solution: 10 mg/ml (in ddH2O) 

working solution: 600 ng/µL; stored at +4° C 
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Extraction buffer 

 10 mM Tris 

 1% SDS 

 1 mM EDTA 

 pH 8.0 

 

Infiltration buffer (for agroinfiltration; freshly prepared and stored at room temperature for 

no longer than one day) 

50 mM MES, pH 5.6  

2 mM Na3PO4*12H2O 

0.5 % (w/v) D(+)-glucose     

200 µM Acetosyringone     

ddH20  

 

Infiltration buffer (for vacuum infiltration), pH 7.5 

100 mM Tris-HCl 

2 mM EDTA 

10 mM MgCl2   

Stored at 4°C 

PBS (phosphate buffered saline), pH 7.4 

137mM NaCl;  

2.7 mM KCl;  

8.1 mM Na2HPO4.2H2O;  

1.9 mM KH2PO4 

ddH2O 

 

PBST 

PBS, 0.1% Tween 20 
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PCR buffer (homemade) 

10 x: 0.1 M Tris-HCl, pH 8.8 

  0.5 M KCl 

  15 mM MgCl2 

  1 % Triton X-100 

 

Ponceau S stain 

working solution: 0.1 % Ponceau S in 5% acetic acid  

 

Running Buffer (for SDS-PAGE) 

10 mM Tris 

80 mM glycine  

1.4 mM SDS 

ddH2O 

 

Sample Buffer (Laemmli; for SDS-PAGE) 

4 x: 250 mM Tris-HCl, pH 6.8 

  40 % glycerol 

  8 % SDS 

  20 % mercaptoethanol 

  0.2 % bromophenol blue 

  dH2O 

 

Stripping Solution 

0.2 M Glycine-HCl, pH 2.5 

0.05% Tween-20 

100 mM 2-Mercaptoethanol 

 

TAE (Tris-acetate-EDTA), pH 8.2 

40 mM Tris-acetate;  

1 mM EDTA, pH 8.2 
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ddH2O 

 

TE buffer (Tris-EDTA), pH 7.5 

10 mM Tris-HCl 

1 mM EDTA 

ddH2O 

  

Transfer Buffer (for Western Blot); stored at +4° C 

for 1 L: 3 g Tris base 

  14.4 g glycine 

  200 mL methanol 

  ddH2O 

 

2.1.3 Enzymes 

 

Fermentas 

BamHI (10 U/µL), XbaI (10 U/µL) 

(including appropriate 10x buffers) 

Pfu (Pyrococcus furiosus) Polymerase(2.5 U/µL) 

(including 10x Pfu Buffer) 

 T4-DNA ligase 

(including 10x ligase buffer) 

 

Promega 

GoTaq® Polymerase (500 U/µL) 

(including 5x Green GoTaq® Buffer and 5x Colorless GoTaq® Buffer) 
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2.1.4 DNA markers & loading dyes 

 

Fermentas 

6x DNA Loading Dye 

GeneRuler™ 1 kb DNA Ladder 

GeneRuler™ 100 bp Plus DNA Ladder 

GeneRuler™ 100 bp DNA Ladder 

Lambda DNA/ EcoRI+HindIII Marker 

PageRuler™ Prestained Protein Ladder 

Prestained Protein Molecular Weight Marker 

 

2.1.5 Media 

 

All media were autoclaved after preperation and stored at +4° C. 

 

LB (Luria-Bertani) liquid 

0.5 % (w/v) yeast extract 

1 % (w/v) bacto-tryptone/peptone 

0.5 % (w/v) sodium chloride 

 

LB agar 

0.5 % (w/v) yeast extract 

1 % (w/v) bacto-tryptone/peptone 

0.5 % (w/v) sodium chloride 

1.5 % agar 

 

MSS (Murashige and Skoog Sucrose medium), pH 5.7-5.8 (adjusted with 1N KOH) 

0.43 % (w/v) MS-Basal medium (Sigma, M5519) 

2 % (w/v) sucrose 

1 % (w/v) agar 
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MSS for sucrose stress experiment, pH 5.7-5.8 (adjusted with 1N KOH) 

0.43 % (w/v) MS-Basal medium (Sigma, M5519) 

0%; 1%; 4.5% (w/v) sucrose 

1 % (w/v) agar 

 

MSS for salt stress experiment, pH 5.7-5.8 (adjusted with 1N KOH) 

0.43 % (w/v) MS-Basal medium (Sigma, M5519) 

0.5g/l MES hydrate 

1% (w/v) sucrose 

1 % (w/v) agar 

+/- 140 mM NaCl  

 

H+ medium for heat stress experiment, pH 5.7-5.8 (adjusted with 1N KOH) 

1.6g/l Hoaglands Nr.2 Basal Salt Mixture (Sigma) 

1% (w/v) sucrose 

1 % (w/v) agar 

 

SOC (Super Optimal broth for Catabolite repression), pH 7.0 

2 % (w/v) bacto-tryptone 

0.5 % (w/v) yeast extract 

10 mM NaCl 

2.5 mM KCl 

10 mM MgCl2 

10 mM MgSO4 

20 mM D(+)-glucose monohydrate 

 

2.1.6 Antibiotics 

 

Ampicillin 

stock solution: 100 mg/mL (in dH2O) 

working solution: 100 µg/mL  
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Gentamycin 

stock solution: 50 mg/mL (in dH2O) 

working solution: 25 µg/mL  

Kanamycin 

stock solution: 50 mg/mL (in dH2O) 

working solution: 50 µg/mL  

 

2.1.7 Antibodies  

 

Primary antibodies: 

Mouse anti athCREG affipur (homemade 24.01.08) 

working solution: 1:1000 in PBST/ 3% BSA/ 0.02% NaN3 

Mouse anti-GFP [Roche Applied Science] 

working solution: 1:2000 in PBST/ 3% BSA/ 0.02% NaN3 

Rabbit anti-mRFP [US biological] 

working solution: 1:1000 in PBST/ 3% BSA/ 0.02% NaN3 

Rabbit anti-TIP (homemade) 

working solution: 1:4000 in PBST/ 0.5% BSA/ 0.02% NaN3 

 

Secondary antibodies: 

Goat anti-rabbit IgG (peroxidase conjugate) [Sigma-Aldrich] 

working solution: 1:50 000 in PBST/ 0.5% BSA 

Goat anti-mouse IgG (peroxidase conjugate) [Jackson Immuno Research Laboratories] 

working solution: 1:10 000 in PBST/ 0.5% BSA 

 

2.1.8 Molecular Biology Kits 

 

MSB® Spin PCRapace [Invitek] 

Wizard® Plus Minipreps DNA Purification System [Promega] 

NucleoSpin® Extract II [Macherey-Nagel] 
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BigDye® Terminator v3.1 Cycle Sequencing Kits [Applied Biosystems] 

BCA™ Protein Assay Kit [Pierce] 

Supersignal West Pico Horseradish Peroxidase (HRP) Detection Kit [Pierce] 

 

2.1.9 Bacterial Strains  

 

Agrobacterium tumefaciens UIA143  

genotype: autC58 recA::Ery140(pAtC58)+pmp90(Gent
R
) 

 

E. coli DH5α, electrocompentent [homemade] 

genotype: F-
 recA1 endA1 gyrA96 supE44 relA1 deoR Δ(lacZ-argF)U169 hsdR1 thi-1 1

-
 j89Δlac 

Δ(lacZ)M15 

 

2.1.10 Plants 

 

In this work Nicotiana benthamiana wild type plants were used for Agrobacterium 

tumefaciens leaf infiltration studies. Arabidopsis thaliana wild type plants (ecotype 

Columbia-0) were used for floral dip transformation with A. tumefaciens. Two A. thaliana 

aCREG-knockdown lines (line T4/1 and T4/2) as well as two A. thaliana lines carrying the 

p20F aCREG-GFP vector (p20F aCREG T4/1 and p20F aCREG T4/2) had been obtained earlier 

at our institute (Christiane Veit, Institute of Applied Genetics and Cell Biology, BOKU, 

Vienna). The knockdown was achieved by A. thaliana transformation with a hairpin 

construct harbouring the sequence for siRNA complementary to the aCREG gene. Screening 

and confirmation of the knock down effect and the aCREG-GFP expression was done before 

this work started. For CLSM (confocal laser scanning microscopy) localization studies two A. 

thaliana lines expressing different marker constructs were used. The first one expressed a 

PIP2A-GFP fusion protein, marking the plasma membrane. PIP2A (plasma membrane 

intrinsic protein 2A) is an aquaporin localizing in the plasma membrane. This A. thaliana line 

had initially been obtained from the European Arabidopsis Stock Centre (NASC; 

http://arabidopsis.info) and represents a T-DNA insertion line in a Col-2 background. The 
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second line was harbouring a ST-mRFP fusion construct, where ST stands for sialyl 

transferase, marking the Golgi apparatus. The seeds for this line were kindly provided by 

Prof. Chris Hawes (Oxford Brookes University, UK). 

 

2.1.11 Vectors 

 

For CLSM localization studies in N. benthamiana epidermal leaf cells two different constructs 

were used. In the p20F vector the aCREG protein was fused C-terminally to GFP (green 

fluorescent protein) whereas in the p31 vector it was fused to mRFP (monomeric red 

fluorescent protein). The p20F, as well as the p31 vector, is derived from pPT2 (Strasser et 

al., 2005). The aCREG gene lacking its stop codon is inserted in between the strong 

constitutive cauliflower mosaic virus (CaMV) 35S promoter and the GFP or mRFP gene 

lacking the start codon.  

 

For the p20F-aCREG construct (made by Christiane Veit, Institute of Applied Genetics and 

Cell Biology, BOKU, Vienna) the aCREG sequence was amplified through PCR from aCREG 

cDNA from Col-0 and cloned into the PCR4-TOPO vector (described in section 3.1). The gene 

was then subcloned into the p20F vector. In this work, the aCREG gene from the PCR4-TOPO 

vector was subcloned into the p31 vector (described in section 3.2). This vector (p31-aCREG-

mRFP) was then first introduced into E. coli DH5α and then into A. tumefaciens UIA 143 for 

N. benthamiana argoinfiltration and A. thaliana transformation. 

 

Upon agroinfiltration of N. benthamiana leaves the fusion protein is transiently expressed 

and the localization can be monitored by CLSM. Upon floral dip agroinfiltraion of A. thaliana 

the fusion protein is stably expressed. 

 

The pVKH18-En6-ST-mRFP vector (Saint-Jore-Dupas et al., 2006), a construct of sialyl 

transferase fused to mRFP, was used to mark the Golgi apparatus. 

 

 

 



Materials and Methods 

 20 

2.2 General Methods 

 

2.2.1 Agarose gel electrophoresis 

 

For separation of DNA fragments by electrophoresis, 1-1.5% (w/v) (depending on the size of 

the DNA fragment) agarose gels were prepared. The appropriate amount of agarose was 

mixed with 1x TAE buffer and heated up in the microwave. After the agarose was dissolved it 

was left to cool. After cooling, 100µl of ethidium bromide working solution were added to 

100 ml agarose solution and the gel was poured into the gel casting chamber with sample 

combs inserted, and left to solidify. The gels could be stored for up to one month at 4°C 

when soaked in 1x TAE buffer. Samples for electrophoresis were prepared by mixing them 

with 6x loading buffer. 

Electrophoresis was performed at 100V until the DNA bands were sufficiently separated. 

Visualization of the DNA bands was carried out in the UV transilluminator (Gel Doc, BioRad).  

 

2.2.2 Photometric measurement of DNA concentration and bacterial suspension cultures 

 

DNA concentration was determined by measuring the purified DNA at a 1:50 dilution with 

ddH2O at 260 nm in a quartz cuvette (Quartz spectrometer cell micro, BIO-RAD). The 

spectrophotometer (BIO-RAD smart Spec 300) was blanked with ddH2O. 

Cell concentration in bacterial suspension cultures was determined for agroinfiltration. The 

OD (optical density) of a 1:10 dilution in infiltration medium was measured at 600 nm in a 

plastic cuvette (Greiner). Infiltration medium was used as blank. 

 

2.2.3 Preparation of LB-agar and MSS plates 

 

The required amount of LB agar or MSS medium was molten in the microwave and left to 

cool down, before the appropriate antibiotic stock was added. The agar was then poured 

into plastic petri dishes and left to solidify at room temperature. Plates were stored at 4°C 

and could be used up to two months.  
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2.2.4 Confocal laser scanning microscopy (CLSM) 

 

Subcellular localization of aCREG-GFP/ mRFP of marker constructs was analysed in a Leica 

TCS SP2 confocal laser scanning microscope (Leica). Images were obtained using a 40 x 1.25 

numerical aperture or 63 x 1.4-numerical aperture oil immersion objective. GFP was excited 

with a 488 nm argon laser and its emission was recorded from 505 to 535 nm, whereas 

mRFP was excited with a 543 nm helium-neon laser and its emission was recorded from 605 

to 635 nm.  

N. benthamiana leaves were analysed 72 h after infiltration. A small area of the infiltrated N. 

benthamiana leaf or a whole A. thaliana seedling (day 4 – day 8) where analysed placed face 

down on a glass slide. 

 

2.3 Molecularbiological methods 

 

2.3.1 Polymerase chain reaction  

 

Polymerase chain reaction (PCR) was used for screening E. coli colonies for positive 

transformants and for sequencing DNA.  

The technique is used to amplify a copy of a piece of DNA. This is accomplished by several 

cycles of repeated heating and cooling, allowing DNA melting and subsequent enzymatic 

replication. A PCR reaction mix contains the template DNA, forward and reverse primer (in 

the case of sequencing only one primer is used), a thermostable DNA polymerase, 

deoxynucleotide triphosphates (dNTPs) (in the case of sequencing also dideoxynucleotide 

triphosphates (ddNTPs) as chain terminators) and a buffer, providing the optimum 

conditions for the polymerase chain reaction. 

 

The reaction mix for screening of E. coli colonies for positive transformants contained 5 µl 

bacterial DNA, 12 pmol of the forward primer 35S-7 (5’- ATTGATGTGATATCTCCACTGAC-3’) 

and the reverse primer aCREG rev2 (5’- AAGGGTTAGTTTAGAGCAAGTAGGATTCA-3’), 10 mM 

dNTP’s, 0.5 µl Taq-Polymerase, 2 µl of 10 x PCR buffer and the appropriate amount of ddH2O 

to reach the final volume of 20 µl. The PCR program used is listed in Table 1. 
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The sequence of the aCREG-mRFP cDNA construct was determined using the chain 

terminator method (Sanger, 2004). The sequencing PCR reaction mix (10 µl) contained 200 

ng DNA (miniprep) and 12 pmol/ of the forward primer 35S-7 (5’- 

ATTGATGTGATATCTCCACTGAC-3’) or the reverse primer mRFP-4 (5’ 

GAGCCCTCCATGCGCACCTTGAA-3’). All other components were included in the BigDye mix 

and 5 x Sequencing buffer (Applied Biosystems). The PCR program used is listed in Table 1. 

 

Table 1: Thermocycler programs for sequencing PCR and screening PCR 

 Sequencing PCR Screening PCR 

Step Duration [min] Temperature[°C] Duration [min] Temperature[°C] 

Initial Denaturation 1 95 2 95 

Denaturation 0,3 95 0,5 95 

Primer annealing 0,3 50 0,3 50 

Primer extension 1,5 60 1,5 72 

Cycles 27 44 

Final extension   2 72 

 

 

2.3.2 DNA sequencing 

 

After amplification of the DNA fragment by sequencing PCR (see section 2.2.1) the DNA was 

precipitated with sodium-acetate-ethanol. For this, the samples were transferred into clean 

1.5 ml Eppendorf tubes and filled up to 50 µl with ddH2O. Then 5 µl 3M NaAc pH 5.2 (1/10 of 

volume) and 125 µl Ethanol abs. (-20°C) (2.5 x of the volume) were added and the mixture 

was incubated for 20 min. on ice. The samples were then centrifuged for 20 min. at 14 000 

rpm/RT and the supernatant was discarded. The pellet was washed with 250 µl 70% EtOH 

and centrifuged for 5 min. at 14 000 rpm/RT. After the supernatant was discarded the pellet 

was dried and kept at 4°C until sequencing.  

For sequencing by capillary electrophoresis the ABI PrismTM 3100 Genetic Analyser was used 

and analysis of the obtained chromatograms was performed with the computer program 

SeqMan (DNAStar). 

 

2.3.3 Bacterial cultures 

 

For liquid cultures of E. coli and A. tumefaciens a single colony was picked and resuspended 

in 5 ml LB medium containing the appropriate antibiotic. The glass tubes were incubated at 
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37°C (E. coli) or 30°C (A. tumefaciens) for 18 h at 180 rpm. The same incubation 

temperatures and periods applied to LB agar plates, except for A. tumefaciens LB agar plates, 

which were incubated for 48 h.  

 

2.3.4 DNA extraction for PCR screening 

 

For screening of E. coli DH5α colonies for positive p31-aCREG-mRFP transformants a single 

colony was picked from the LB plate, suspended in 50 µl TE buffer and the rest of the colony 

streaked out on a masterplate. The masterplate was incubated at 37°C. The bacterial 

suspension was vortexed, denatured for 5 min at 95°C and centrifuged for 1 min at max. 

speed. 5 µl of the supernatant were used as PCR template. The PCR product was loaded on 

an agarose gel. If a colony was positive for the p31-aCREG-mRFP construct, the masterplate 

was used to propagate the clone. 

 

2.3.5 Plasmid purification 

 

5ml of DH5α overnight culture grown in LB medium were pelleted in a microcentrifuge 

(Eppendorf) for 5 min at 10 000 rpm/RT and the plasmid-DNA was isolated with the Wizard 

Plus Minipreps DNA Purification System (Promega) according to the manufacturer’s 

instructions. The plasmid DNA was eluted in 100µl of the supplied Nuclease Free Water and 

stored at -20°C. 

 

2.3.6 Restriction enzyme digest 

 

Two different digestion preparations were used. For cloning, a 100 µl preparation was made, 

whereas only 20 µl reaction mixes were used for test digestions to check for the presence of 

a desired insert, when screening for positive transformants. All enzymes and buffers were 

obtained from Fermentas. The digestion mixes were incubated from 2-4 h at 37°C. The 

following reaction mixes were set up: 
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Test digestion (20 µl): 

x µl plasmid DNA (approx. 500 ng) 

 2 µl 10 x buffer (as recommended by the supplier) 

 2 µl restriction enzyme (10 U/µl) 

 x µl ddH2O 

  

 20 µl total volume 

  

Preparative digestion (100 µl) 

 x µl plasmid DNA (approx. 3500 ng) 

 10 µl 10 x buffer (as recommended by the supplier) 

 5 µl restriction enzyme (10 U/µl) 

 x µl ddH2O 

 

 100 µl total volume 

 

For cutting with two different enzymes (double digest) the DNA was precipitated with the 

MSB® Spin PCRapace [Invitek] purification kit after the first digestion reaction and digested 

with the second enzyme after elution in the appropriate amount of ddH2O. 

 

To verify that the digestion products were of the expected size, the digestion mix and 

molecular weight markers (Fermentas) were loaded on an agarose gel and electrophoresed 

for 30 min. at 100 V. 

 

2.3.7 Purification of DNA fragments from agarose gel 

 

Purification was performed with the NucleoSpin® Extract II [Macherey-Nagel]. After 

electrophoresis the agarose gel band containing the desired DNA fragment was cut out with 

a clean scalpel and put into a pre-weighted 1.5 ml Eppendorf tube. The weight of the 

agarose gel band was determined and 200 µl NT buffer were added for every 100 mg of gel. 

According to the manufacturer’s manual the sample was incubated at 60°C until the agarose 

gel was completely dissolved (approx. 15 min) and the sample was then loaded onto a 
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NucleoSpin column. The sample was centrifuged (1 min, 11 000 rpm, RT), followed by a 

washing step (adding 600 µl NT3 buffer and centrifuging for 1 min at 11 000 rpm/RT) and 

dry-centrifugation (2 min, 11 000 rpm, RT) to remove residual ethanol. To recover the 

purified DNA, 25 µl NE buffer were added and the DNA was eluted by centrifugation (1 min, 

11 000 rpm, RT). The DNA was stored at -20°C. 

 

2.3.8 DNA ligation 

 

DNA ligation was performed with T4 ligase from Fermentas, and the corresponding 10 x 

ligase buffer. The molar ratio of vector:insert (both restricted and purified) was usually 1:3, 

as calculated below.   

 

ng insert = 
ng vector x kb insert

kb vector

x
3

1
 

 

The following reaction mixture was prepared and incubated overnight in a waterbath at 

14°C. 

 

Ligation mix: 

 x µl vector DNA (approx. 100 ng) 

 x µl insert DNA (calculated as above) 

 1 µl T4 DNA ligase 

 1 µl 10 x ligase buffer 

 x µl ddH2O 

 

 10 µl total volume 

 

2 µl of the reaction mix were then directly used to transform E. coli DH5α by 

electroporation. 
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2.3.9 Transformation by electroporation 

 

For transformation, 100 µl of electrocompetent DH5α were thawed on ice and then mixed 

with 2 µl ligation mix. Electroporation was carried out in pre-cooled electroporation 

cuvettes. Immediately after transformation, 900 µl prewarmed (37°C) SOC medium was 

added and the cells were incubated  for 1 h at 37°C with gentle shaking. After incubation, 50 

µl of the cell suspension were plated on LB agar plates containing kanamycin and incubated 

over night at 37°C.  

 

The same technique applied for UIA143 transformation, except that approx. 400 ng purified 

plasmid (miniprep) was used for transformation instead of ligation mix and that the cells 

were kept at 30°C instead of 37°C. Also the incubation of LB agar plates (containing 

kanamycin and gentamycin) took up to 48 h due to the slower growth rate of A. tumefaciens.  

 

2.3.10 Cryostocks 

 

For cryostocks, 750 µl of a 5 ml E. coli or A. tumefaciens overnight liquid culture were 

trarferred into a cryostock tube and 500 µl sterile glycerol (87%) was added. The cryostocks 

were stored at -80°C. 

 

2.4 Protein methods 

 

2.4.1 Total protein extraction 

 

Total protein was extracted from N. benthamiana leaves and A. thaliana roots, leaves or 

seedlings for subsequent SDS-PAGE and Western blot analysis. 40-50 mg plant material were 

placed into 2 ml round Eppendorf tubes together with two sterile metal beads and put into 

liquid nitrogen. The frozen samples were ground in a mixermill for 1 min at amplitude 60. 

After the sample was pulverised 1.25 µl Extraction buffer were added to 1 mg of plant 

material, vortexed and left on room temperature for 10 min. The samples were transferred 

to clean 1 ml Eppendorf tubes and centrifuged for 10 min at 10 000 rpm on 4°C. The 

supernatant was transferred into a clean tube and again centrifuged (5 min, 10 000 rpm and 
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4°C). The supernatant was either directly used for measurement of protein concentration 

and SDS-PAGE or stored at -20°C. 

 

2.4.2 Determination of protein concentration 

 

Protein concentration was determined with the BCA Protein Assay Kit (Pierce) according to 

the manufacturer’s instructions. The technique is based on a colour change proportional to 

the protein concentration in the sample. When reacting with the peptide bonds of proteins, 

Cu++ is reduced to Cu+, and subsequent formation of a chelate complex with bicinchoninic 

acid causes a colour change from green to purple. The absorbance of the intense purple 

complex can be monitored at around 550 nm (Smith et al., 1985). 

Reagent A was mixed with reagent B 50:1 to give the reagent mastermix. To 200 µl 

mastermix in a 96-well-plate were added either 20 µl of a BSA standard (1 mg/ml, 0.5 

mg/ml, 0.25 mg/ml, 0.125 mg/ml, 0.063 mg/ml, 0.031 mg/ml, 0.016 mg/ml or 0 mg/ml; 

dilution in PBS) or the appropriate amount of sample (from 1-5 µl). The plate was incubated 

at 37°C for 30 min and the absorbance was measured at 550 nm on a plate reader (Victor 

1420 multilabel counter, Perkin Elmer Wallac). Protein concentration was calculated based 

on the BSA standard curve (Microsoft Excel). 

 

2.4.3 SDS-PAGE 

 

SDS-PAGE (sodium dodecylsulfate polyacrylamide gel electrophoresis) was performed 

according to established protocols (Laemmli, 1970). A 15% separation gel and a 6% stacking 

gel were used (Table 2) 
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Table 2: Components necessary to prepare 20 ml 15% 

separation gel and 8 ml 6% stacking gel. 

 
 15% separation gel 6% stacking gel 

Aqua dest. (ml) 7,1 5,84 

40% AA/Bis (ml) 7,5 1 

Tris (1.5 M, pH 8.8) (ml) 5 - 

Tris (0.5 M pH 6.8) (ml) - 1 

10% SDS (µl) 200 80 

10% APS (µl) 200 80 

TEMED (µl) 20 8 

 

Protein samples were mixed with 3 x sample buffer, denatured at 95°C for 5 min and cooled 

on ice. The polymerised gels were inserted into the electrophoresis apparatus filled with 

running buffer and the samples were loaded onto the gels. Electrophoresis was first 

performed at 100 V for 15 min (stacking of proteins) and then at 200 V (protein separation) 

until the loading dye was running out of the gel. After SDS-PAGE the gels were either used 

for silver staining or for Western blot analysis.  

 

2.4.4 Protein detection in gels by silver staining 

 

Protein bands in gels were visualized through silver staining (Switzer et al., 1979). The 

technique is based on the reduction of silver ions by the amino acid side chains to metallic 

silver. Silver staining provides a very sensitive tool for protein visualization with a detection 

level down to the 0.3-10 ng level. The required solutions are listed below (indicated for 100 

ml total volume, filled up with dest. water), as well as the incubation times of the gel in the 

respective solutions. 

 

1. Fixation solution 

 40 ml ethanol 

 10 ml acetic acid 

 50 ml ddH2O 
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2. Sensitizing solution 

 30 ml ethanol 

 250 µl glutardialdehyde 

 314 mg sodium thiosulfate pentahydrate 

 6.8 g sodium acetate 

 

3. Staining solution 

Destilled water was mixed with 40 µl formaldehyde, then 250 mg silvernitrate were 

dissolved. The solution was prepared shortly before use and kept in the dark.  

 

4. Developing solution 

 2.5 g sodium carbonate 

 20 µl formaldehyde 

 

5. Terminating solution 

 1.46g EDTA-Na2 (50mM EDTA) pH 8.0 

 

Procedure: 

 

Table 3: Incubation times for Silver staining. 

 Incubation [min] 

1. Fixation solution min. 30 

2. Sensitizing solution 30 

wash (dest. water) 3 x 5 

3. Staining solution 20 

wash (dest. water) 2 x 1 

4. Developing solution 2-5 

5. Terminating solution 10 

 

 

2.4.5 Western blot 

 

Western blotting allows the detection of specific proteins in a sample. The procedure 

involves the electrophoretic transfer of proteins from the SDS-gel to sheets of nitrocellulose. 
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The immobilised proteins can then be visualized by the reaction with specific antibodies 

(Burnette, 1981). 

After assembly of the Western blot the blotting apparatus (BioRad) was filled with transfer 

buffer and ice and blotting was performed for 1 h at 100 V. After the transfer was completed 

the membrane was incubated in blocking solution (3% BSA in PBS/0.02% NaN3) for one hour 

at room temperature. The membrane was then washed 3 x 5 min with PBST and incubated 

with the primary antibody overnight. After incubation with the first antibody the membrane 

was again washed (5 x 5 min with PBST) and incubated with the secondary antibody for 1.5 h 

(appropriate dilutions for all antibodies are listed in section 2.1.7). Finally, the membrane 

was washed 5 x 5 min with PBST, rinsed twice with PBS before detection was carried out. For 

detection of horseradish peroxidase activity, the membrane was incubated for 2 minutes in 

a 1:1 mixture of the chemiluminescent detection reagents (Supersignal West Pico 

Horseradish Peroxidase (HRP) Detection Kit [Pierce]). The excess reagent was drained off and 

the blot was put into a film cassette after sealing in a plastic bag. The blot was overlaid with 

an autoradiographic film (Amersham Hyperfilm ECL [GE Healthcare]) in a dark room and 

exposed for 10 seconds up to 20 minutes. After the required exposure time, the film was 

placed for two minutes in developer solution, rinsed in water and fixed in fixing solution 

(Rethmann).  

After exposure the membranes could be stained with Ponceau-S to verify protein transfer 

and to compare total protein concentrations between the samples.  

 

2.4.6 Stripping of nitrocellulose membranes 

 

Stripping was required when the same blot had to be probed with a different antibody. The 

membrane was incubated in stripping solution at 60°C for 60 min under shaking. After 

stripping, the blot was washed 2 x 5 min in ddH2O, then 4 x 5 min in PBST, and could then be 

reblocked again for 1 h at room temperature.  

 

2.4.7 Sucrose density gradient fractionation 

 

Sucrose density gradient (SDG) centrifugation was used to separate the different cellular 

compartments. The sucrose gradient was constructed by overlaying lower sucrose 
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concentrations onto higher concentrations (prepared by diluting 64,5% sucrose solution (40 

g sucrose + 22 g H20) with water, covering a range from 20%-52%, as shown in Table 3) in a 

centrifuge tube. The prepared sample was then poured on top of the lowest sucrose 

concentration and ultracentrifuged for 5 h at 33 000 rpm (L8-80M Ultracentrifuge, Beckman; 

SW41 Ti-rotor, swinging bucket). During this time the compartments in the sample travel 

through the gradient until their density (mass/volume) matches that of the surrounding 

sucrose. After centrifugation the different fractions were removed and subjected to further 

analysis. 

 

Table 4: Overview of sucrose densities for SDG fractionation and the volumes of 64,5% 

sucrose solution and H20 required for their preparation. 

density  

[g/ ml] 

sucrose 

w/w 

total volume to 

make 

wgt of 

64,5% sol. 

approx vol. (density=1.33 

g/ml or 64,5%) 

H20 

1.0810 20 % 10 ml 3.352 2.52 ml 6.98 ml 

1.1036 25 % 12 5.133 3.86 7.54 

1.1151 27.5 % 12 5.705 4.29 7.11 

1.1270 30 % 12 6.290 4.73 6.67 

1.1463 34 % 12 7.250 5.45 5.95 

1.1612 37 % 12 7.990 6.01 5.39 

1.1764 40 % 12 8.750 6.58 4.82 

1.1920 43 % 12 9.536 7.17 4.23 

1.2132 47 % 12 10.610 7.98 3.42 

1.2186 52 % 6 6.000 4.51 1.19 

 

Protein extration for SDG centrifugation: 

 

Total protein extracts from A. thaliana roots were prepared for SDG centrifugation. For this, 

approx. 350 mg roots material was harvested ( Col-0: 350 mg; aCREG RNAi T5/1: 377 mg; 

p20F aCREG-GFP: 265 mg), placed into a 2 ml round-bottom Eppendorff tube together with 3 

metal beads and ground in a mixermill 4 x 1 min with amplitude 70. To 1 mg of plant 

material 1.2 µl 1 x complete extraction buffer was added. 
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2 x Extraction buffer: 

 1 ml 1 M Tris pH 7.5  

 25 µl 2 M KCl  

 2,6 ml 64,5% sucrose  

 400 µl 0,5 M EDTA  

 300 µl 0,5 M EGTA 

 200 µl 1 M β-glycerophosphate 

 475 µl H2O 

 

 5 ml total volume 

 

 

1 x Complete extraction buffer: 

 2 ml 2 x Extraction buffer 

 16 µl 1 M DTE 

 100 µl protease inhibitor cocktail [Sigma] 

 1 mM PMSF (solubilized in DMSO) 

 1,88 ml H2O 

 

 4 ml total volume 

 

For each sample 15 mg PVPP were left to soak overnight in 300 µl H2O. The water was then 

removed and 50 µl 2 x extraction buffer were added. The PVPP mix was again left overnight 

and was used the next day. The obtained crude root extract was transferred into a new 

Eppendorf tube containing 50 µl PVPP solution. The samples were then subjected to several 

rounds of centrifugation (5 min, 1000 g; 1 min 1000 g; 4 min 2000 g; 5 min, 1000 g; 3 min 

2000 g; always on 4°C), during which the supernatant was removed every time to give a total 

volume of approx. 400 µl. The remaining pellet was reextracted with 600 µl 1 M Tris / 20 mM 

EDTA, pH 7.5 (5 min, 3000 g, 4°C), and both supernatants of the sample were pooled. The 

sample was then again centrifuged and the clear supernatant was transferred into a clean 

tube. If the total volume was less then 1.2 ml, 1 M Tris / 20 mM EDTA (pH 7.5) was added. To 
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each sample 1 µl PMSF (1mM) was added before the samples were loaded onto the sucrose 

gradient. Before loading 40 µl of the sample was removed for analysis. 

 

2.4.8 β-N-Acetylhexosaminidase assay 

 

This enzyme assay was used to determine the β-N-acetylhexosaminidase content in the 

recovered fractions after SDG centrifugation. The assay was performed in 96-well-plates.  

 

Sodium citrate buffer: 

0,1 M citric acid, pH 4.6 

0,04% NaN3 

0,2% BSA 

1% Triton X-100 

 

In each well 10 µl protein extract were mixed with 10 µl sodium citrate buffer and 20 µl 

substrate (10 mM PNP-GlcNAc) and left for 1 h at room temperature. The reaction was 

stopped with 80 µl 0,4 M glycine/ NaOH, pH 10,4 and absorbance was measured at 405 nm 

on a plate reader (Victor 1420 multilabel counter, Perkin Elmer Wallac). As a blank, 10 µl of 

heat-inactivated protein extract was used for the reaction.  

 

2.4.9 Methanol / chloroform protein precipitation 

 

Samples obtained by SDG centrifugation contain high levels of sucrose, and therefore 

protein precipitation was carried out as a purification step prior to Western blot analysis 

(Wessel and Flugge, 1984). For every 100 µl of sample 400 µl methanol were added and the 

sample was vortexed. Then 100 µl chloroform and 300 µl ddH2O were added and the sample 

was centrifuged for 5 min at 8000 g. After centrifugation the precipitated protein of the 

sample accumulated in the interphase. The upper phase consisting of methanol and water 

was removed and 300 µl methanol were added. The protein was centrifuged for 10 min at 

full speed and the pellet was air-dried on ice before addition of 150 µl 1 x sample buffer 

(diluted in PBS). 
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2.5 Plant methods 

 

2.5.1 Sowing of seeds 

 

Seeds were surface sterilized with a 12% hypochlorite solution for 10 min on a shaker to 

avoid contamination with fungi and other plant pathogens. If the seeds were to be sowed on 

MSS plates then further washing with water and sowing was performed under sterile 

conditions in the laminar flow hood. The seeds were washed four times with 1 ml sterile 

ddH2O, then mixed with 1 ml 0.2% agar and transferred onto appropriate agar plates. For 

abiotic stress experiments the seeds were first sowed onto control plates providing normal 

growth conditions. The MSS plates were covered with aluminium foil and kept in the dark for 

48 h at 4°C before being transferred to the growth chamber (22°C). If the seeds were to be 

sowed on soil then washing was performed with ddH2O and the seeds were placed in 

moistened soil. The pots were covered in cling film and kept in the dark for 48 h (4°C) to 

facilitate germination before putting them into the growth chamber (22°C). 

 

2.5.2 Transfer of seedlings 

 

Seedlings were either transferred from MSS plates onto soil or onto fresh MSS plates. 

Seedling transfer onto fresh MSS plates was carried out with the help of forceps under 

sterile conditions in a laminar flow hood. Seedling transfer onto soil did not require sterile 

working conditions. 

 

2.5.3 Growing of plants 

 

Before being potted into plastic pots (7 x 7 x 8 cm for A. thaliana and 9 x 9 x 9 cm for N. 

benthamiana), the soil was mixed with 1/3 vermiculite and sterilized by two cycles of 

freezing (-20°C, 16 h) and thawing (RT, 16 h). The plants were cultured in growth chambers, 

where the temperature was constantly 22°C under long-day conditions (16 h light per 24 h) 

and watered once every two days with tap water.  
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2.5.4 Harvesting of A. thaliana seeds 

 

After 2 months, the siliques of A. thaliana plants started to become brown. From this time 

on the plants were no longer watered until the whole plant had become dry. The siliques 

could then be crushed open to release the seeds, which were sieved to clear them of plant 

debris and put into Eppendorf tubes. The seeds were stored at 4°C. 

 

2.5.5 Experimental procedure of abiotic stress experiments 

 

A. thaliana seeds were sowed onto control plates providing standard growth conditions (1% 

agar, 2% sucrose) and kept at 22°C in the growth chamber. After 7 days growth in control 

conditions the seedlings were transferred onto fresh plates for stress experiments (MSS 

plates for sucrose stress containing 0%; 1%; or 4.5% sucrose, MSS plates for salt stress 

experiment containing 140 mM NaCl, H+ plates providing optimum conditions for growth at 

elevated temperatures). The plates for sucrose and salt stress experiments were again 

placed on 22°C, whereas the H+ plates were put into a growth chamber providing 30°C. After 

12 days the roots of the seedlings were measured and the root length recorded. Images of 

the plates were then recorded using a conventional scanning device.  

 

2.5.6 A. thaliana floral-dip 

 

For stable transformation of A. thaliana plants the floral-dip method was used (Clough and 

Bent, 1998). A 500 ml overnight culture of A. tumefaciens containing the desired plasmid 

(carrying a kan-resistance gene) for transformation was prepared and the OD of the culture 

was measured until it reached 1,2. Then the Agrobacteria were harvested by centrifugation 

(600 rpm, 30 min, 4°C) and the pellet was resuspended in 100 ml 5% sucrose solution. The 

OD of the Agrobacteria suspension was again measured and the suspension was diluted with 

0.5% sucrose solution until it reached an OD of 0,8.  300 µl/ l Silwet L-77 were added prior to 

floral dipping. 

A. thaliana plants with numerous floral buds and a few siliques were dipped upside-down 

into the A. tumefaciens suspension for 3 min before being laid down in a tray and covered in 

cling film. The plants were kept in the dark at 18°C for 48 h before being transferred to the 
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growth chamber. The transformed progeny was selected on MSS plates containing 

kanamycin. 

 

2.5.7 A. tumefaciens leaf infiltration 

 

For transient expression in N. benthamiana, leaves were infiltrated with Agrobacteria 

(Batoko et al., 2000). A 5 ml overnight culture of an A. tumefaciens UIA143 strain containing 

the desired plasmid was grown in the presence of kanamycin and gentamycin until it 

reached the stationary phase. 1 ml of the culture was then centrifuged at 5000 rpm for 5 min 

and the pellet was resuspended in infiltration buffer. The pellet was again centrifuged for 5 

min and the supernatant was removed. After washing, the pellet was again resuspended in 

infiltration buffer and the OD600 was measured. The required volume of A. tumefaciens 

suspension was calculated for the desired OD600 in V2 = 500 µl with the formula: OD1*V1 = 

OD2*V2. For N. benthamiana infiltration OD600 values of 0.03, 0.1 and 0.3 were used. The 

required volume was diluted to 1 ml with infiltration buffer and the bacterial suspension was 

delivered with the help of a 1 ml syringe without a needle to the lamina tissues of the leaves 

through the stomata of the lower epidermis. The infiltrated leaf area was marked with a pen 

and the plants were put back into the climate chamber. Expression was observed after 48 h. 

 

2.5.8 Vacuum leaf infiltration 

 

N. benthamiana leaves were subjected to vacuum infiltration to recover secreted proteins 

from the interstitial fluid (IF) (McCormick et al., 1999). 48 h after A. tumefaciens infiltration, 

the infiltrated leaves were cut off and weighted. The leaves were placed in 500 ml infiltration 

buffer (100 mM Tris-HCl, 2 mM EDTA, 10 mM MgCl2, pH 7.5) and subjected to a 80 mbar 

vacuum (MZ 2C vacuum pump, Vacuubrand) for 5 min. The IF was recovered by mild 

centrifugation (800 g, 15 min, 4°C) and the protein concentration was determined. 

 

2.5.9 Plasmolysis 

 

When subjected to hypertonic stress conditions the plant cell looses water and the 

plasmalemma pulls away from the cell wall, rendering the protoplasts visible under the 
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microscope. For this, whole A. thaliana seedlings (4 or 8 days old) were kept for 10 min in 

aqueous 0.5 M mannitol solution. The seedlings were then analysed under the microscope. 

 

2.5.10 Perturbation of intracellular protein transport 

 

Brefeldin A (BFA) is a lactone antibiotic that interferes with intracellular protein transport 

from the endoplasmic reticulum (ER) to the Golgi apparatus, so that proteins become 

trapped in the ER. N. benthamiana leaves were Agro-infiltrated with the desired construct, 

expressing a fluorescing fusion protein. Leaves were harvested after 48 h and leaf pieces (0.5 

x 0.5 cm) were placed into a 100 µM BFA solution. The pieces were incubated from 30 min to 

1 h, during which they were constantly observed under the microscope. 

 

2.5.11 Protease inhibitor treatment 

 

N. benthamiana leaves infiltrated with the desired construct were subjected to a protease 

inhibitor (PI) treatment to counteract cleavage of the produced fusion protein. For PI 

treatment, N. benthamiana leaves were infiltrated with an Agrobacterium suspension, 

containing 100 µM E-64d ((2S,3S)-trans-Epoxysuccinyl-L-leucylamido-3-methylbutane ethyl 

ester) in the infiltration medium. E-64d is a membrane-permeable synthetic analog of E-64, a 

cysteine protease inhibitor. The 10 mM stock solution in DMSO was diluted 1:100 in 

infiltration medium prior to use. As a control, leaves were also infiltrated with 1% DMSO in 

the infiltration medium and with the Agrobacterium suspension in infiltration medium alone. 

48 h post infiltration the leafs were observed under the confocal laser scanning microscope. 

 



Results 

 38 

3 Results 

 

3.1 Summary of previous results 

 

Generation of the Arabidopsis thaliana aCREG RNAi lines 

 

For stable silencing of CREG in Arabidopsis thaliana an aCREG RNAi hairpin construct was 

created (work done by Christiane Veit, Department of Applied Genetics and Cell Biology, 

BOKU, Vienna) using the puc18XTI2 plasmid (Figure 4). 

 

 

 

 

 

 

 

 

 

 

Figure 4: The puc18XTI2 plasmid. I2, Intron 2 from the A. thaliana XylT gene.  

0.5 Kb 1.0 Kb 1.5 Kb 2.0 Kb 2.5 Kb

 I2

 

 

The puc18XTI2 plasmid contains the short intron 2 (=I2, 210 bp) from the A. thaliana XylT 

gene in between two multiple cloning sites. For the hairpin construct, the 193 bp sense 

fragment was created by means of PCR from the TOPO aCREG_19 template vector using fwd 

primer RCREG_1F (XbaI) 5’-ATATCTAGACGGTATACCTTACTTTTACTTAACAAC-3’ and rev 

primer RCREG_2R (BglII) 5’-TATAAGATCTGCTTCCTCAGATCCTCCTTCC-3’ (restriction sites 

underlined) and digested with XbaI and BglII before being cloned into the puc18XTI2 plasmid 

previously digested with XbaI and BamHI, giving the pCREGs plasmid. The 193 bp PCR 

antisense fragment was created with fwd primer RCREG_3F (KpnI) 5’- 

TATAGGTACCTGCTTCCTCAGATCCTCCTTCC-3’ and rev primer RCREG_4R (EcoRI/BamHI) 5’-

TATAGAATTCGGATCCGGTATACCTTACTTTTACTTAACAAC-3’ from the TOPO aCREG_19 

template vector. The PCR fragment was digested with KpnI and EcoRI and cloned into the 

pRCREGs plasmid, previously digested with KpnI and EcoRI, thus giving the pCREGsas 

plasmid. The XbaI/BamHI fragment (~ 500-600 bp) from pCREGsas was then cloned into the 
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pPT2M plasmid for transformation in Agrobacterium tumefaciens. The hairpin construct in 

its final form is: 35S promoter (from Cauliflower Mosaic Virus – CaMV) – CREG sense 

fragment – AthXylT intron 2 – CREG antisense fragment – terminator. The 35S promoter 

mediates constitutive transcription of the construct throughout the whole plant. Upon 

formation of dsRNA the endogenous CREG-mRNA is degraded because of RNA interference. 

The transformed A. tumefaciens were then used for floral dip of A. thaliana Col-0 wildtype 

plants.  

After transformation, A. thaliana seedlings that have incorporated the hairpin construct in 

their genomes were selected and the endogenous CREG level determined by means of 

Reverse Transcription (RT) PCR, using aCREG-fw (5’-AGTATGGAACTTCAAGTCCTTGTTCTTCG-

3’) and aCREG-rev2 (5’-AAGGGTTAGTTTAGAGCAAGTAGGATTCA-3’) primer. Figure 5 shows 

the knock-down of endogenous CREG in the aCREG RNAi line in the first generation (T1). 

 

aCREG UBQ

1      2     3     4     5     6     7      8     9    10    11 12   13   14    15   16   17   18  19

1000

500

 
Figure 5: Reverse transcription PCR data from aCREG RNAi lines. Lane 1: marker (100 bp 

DNA Ladder Plus), lanes 2, 3 and 11, 12: Col-0 wildtype, lanes 4 – 7, 9 and 13 -16, 18: aCREG 

RNAi knockdown lines that were not continued, lane 8 and 17: aCREG RNAi T1, lane 10 and 

19: negative control. aCREG ~ 400 bp, UBQ ~ 400 bp. As expected, Col-0 shows a stronger 

aCREG signal than aCREG-RNAi T1. RT-PCR data obtained using aCREG-fw  

(5’-AGTATGGAACTTCAAGTCCTTGTTCTTCG-3’) and aCREG-rev2  

(5’-AAGGGTTAGTTTAGAGCAAGTAGGATTCA-3’) primer for amplification of the aCREG 

sequence and UBQ-5U (5’-CTCCTTCTTTCTGGTAAACGT-3’) forward and UBQ-5D  

(5’-AACCCTTGAGGTTGAATCATC-3’) reverse primer for amplification of the Ubiquitin 

sequence. 
 

The CREG mRNA levels in several aCREG RNAi lines were found to be reduced. For example 

in lane 4 (aCREG RNAi #2, not continued) and lane 8 (aCREG RNAi T1) CREG levels are 

significantly reduced when compared to wildtype expression levels (lane 2 and 3), whereas 

Ubiquitin (UBQ) levels (lane 13 and 17) used as loading control stay constant. The aCREG 
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RNAi T1 line was continued and two lines of the 4th generation (aCREG RNAi T4/ 1 & 2) were 

used for the experiments in this project. 

 

Construction of  the p20F aCREG-GFP vector 

 

For subcellular localization studies in N. benthamiana and A. thaliana using an aCREG-GFP 

fusion protein the p20F aCREG-GFP vector was constructed (work done by Christiane Veit, 

Department of Applied Genetics and Cell Biology, BOKU, Vienna). For this, full-length aCREG 

was amplified by PCR from aCREG cDNA isolated earlier using the aCREGfw5 (XbaI) primer 

(5’- TATATCTAGAATGGAACTTCAAGTCCTTGTTC-3’, restriction sites underlined) and the 

aCREGrev4 (BamHI) primer (5’-TATAGGATCCTAAAAAGGAAGCGAGTTTGATCG-3’). The PCR 

product was digested with XbaI and BamHI and cloned into the PCR4-TOPO vector (giving 

the PCR4-TOPO-aCREG vector) and subsequently cloned into the XbaI/BamHI site of the 

p20F-GFP vector (Figure 6) thus yielding a C-terminal fusion of GFP to aCREG. 

 

p20F-GFP vector 35S GFPKan g7T

XbaI BamHI

 

 

Figure 6: p20-GFP construct for subcellular 

localization studies. Kan, kanamycin resistance gene, 

35S, CaMV 35S promoter, XbaI and BamHI, restriction 

sites, GFP, green fluorescent protein, g7T, gene 7 

terminator. 

 

 

The p20F aCREG construct was introduced into A. tumefaciens and used for floral dip of A. 

thaliana, thus generating stable transformants expressing the aCREG-GFP fusion protein. 

Two lines of the 4th generation (T4) were used in this project: p20F aCREG T4/ 1 & 2. The A. 

tumefaciens strain harbouring the construct was also used for infiltration studies in N. 

benthamiana.  
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3.2 Construction of the p31 aCREG-mRFP vector 

 

The construction of the p31 aCREG-mRFP vector was performed in a similar way to the 

construction of the p20F aCREG-GFP vector. The full-length aCREG sequence was subcloned 

from the PCR4-TOPO-aCREG vector into the p31-mRFP plasmid (Figure 7) thus yielding the 

p31 aCREG-mRFP vector. 

 

35S RFPKan g7T

XbaI BamHI

p31-mRFP vector
 

 

Figure 7: p31-mRFP construct for subcellular 

localization studies. Kan, kanamycin resistance gene, 

35S, CaMV 35S promoter, XbaI and BamHI, restriction 

sites, RFP, red fluorescent protein, g7T, gene 7 

terminator. 

 

For this, the p31-mRFP vector was digested with XbaI and BamHI and the PCR4-TOPO-aCREG 

vector also was digested with the same restriction enzymes. The digestion products were 

loaded on an agarose gel (Figure 8) and the required bands were cut out. After purification 

of the DNA from the gel bands the ~ 650 bp aCREG fragment was ligated into the ~ 12.0 kb 

p31-mRFP vector. 

 

Figure 8: Restriction enzyme digest products. Lane 1: 70 ng p31-

mRFP, lane 2: 135 ng p31-mRFP (~ 12.0 kb); digested with XbaI 

and BamHI. A small ~ 70 bp fragment that is removed by the 

restriction enzyme digest is not visible. Lane 3: 5 µl pCR4-TOPO-

aCREG vector digested with XbaI and BamHI. The aCREG insert is 

visible at ~ 650 bp. Lane 4:  1 µl marker (100 bp DNA Ladder Plus) 

~ 12.0 kb

~ 650 bp

1      2      3      4 

 

 

The vector was introduced into Escherichia Coli and the resulting colonies were screened by 

PCR. Figure 9 shows that out of 28 screened colonies, 16 were positive transformants. Six of 

the clones (#1, #2, #4, #19, #23 and #24) were continued. 
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X X X X X X

 

Figure 9: Agarose gel electrophoresis of PCR samples (colony screening). Lanes 1, 2, 4, 11-

15, 17-19, 23-26 and 28 have an insert of the expected length (~ 500 bp). Clones #1, #2, #4, 

#19, #23 and #24, marked with an “X” were continued. Lane 30: negative control of PCR. 

Lanes 20 and 31: 10 µl marker (100 bp DNA Ladder Plus). 

 

 

From the six selected clones, the plasmid DNA was isolated and digested with XbaI and 

BamHI to prove that the plasmid carried the right insert of ~ 650 bp (Figure 10). 

 

Figure 10: Test digest of the six selected E. coli clones. 

Restriction enzyme digest was performed with XbaI and 

BamHI. Lane 7: 10 µl marker (λ DNA/EcoRI and HindIII 

DNA Ladder). All appear to have the right insert (~ 650 

bp) incorporated. Clones #1 and #24 were selected to be 

continued. 

#1     #2     #4   #19   #23   #24

~ 650 bp

 

 

The clones #1 and #24 were selected and sequenced. After proving that the sequence 

contained no mutations, both constructs were used for A. tumefaciens transformation. The 

A. tumefaciens strain harbouring the p31 aCREG-mRFP #1 construct was used for 

subsequent A. thaliana floral dip and N. benthamiana infiltration studies. 

 

3.3 Subcellular localization of CREG 

 

3.3.1 Expression of CREG-GFP and CREG-mRFP in N. benthamiana 

 

Transient expression of CREG-GFP and CREG-mRFP was achieved by infiltrating N. 

benthamiana leaves with A. tumefaciens carrying the respective constructs at an OD ranging 

from 0.03 to 0.3. The CREG fusion constructs were expected to be localized in the vacuoles 
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of the leaf epidermal cells. It has been reported that vacuolar GFP in higher plants is being 

degraded in the light due to a conformational change of the protein (Tamura et al., 2003). 

The conformational change induced by light leads to exposure of protease recognition sites 

in the otherwise compact structure of the GFP protein and thus makes it susceptible for 

degradation. Therefore plants expressing CREG-GFP were cultivated in light and dark 

conditions after infiltration.  

 

Results 

When kept in the dark, CREG-GFP fluorescence could be observed in the vacuoles of the leaf 

epidermal cells (Figure 11C). In some cases the fluorescence was not restricted to the 

vacuoles but also visible in the apoplast surrounding the cells (Figure 13C). On the other 

hand, when plants were cultivated in the light, the GFP fluorescence was generally 

diminished and no vacuolar staining could be observed (Figure 11A). Instead, the 

fluorescence was reminiscent of cytoplasmic or even apoplastic staining and was probably 

due to small amounts of GFP that was not targeted to the vacuole, and therefore not 

degraded in the light.  

 

p20F-aCREG-GFP OD 0.1 lightp20F-aCREG-GFP OD 0.1 light

A B

p20F-aCREG-GFP OD 0.1 dark p20F-aCREG-GFP OD 0.1 dark

C D

 

Figure 11: aCREG-GFP expression in N. benthamiana, 48 h after infiltration. A: GFP-

fluorescence in leaves cultivated in the light. Fluorescence is observed mainly in the 

cytoplasm. B: Transmission light image corresponding to A. C: GFP-fluorescence in leaves 

cultivated in the dark. Fluorescence is observed in the vacuole. D: Transmission light image 

corresponding to C. 

 

Transient expression of CREG-RFP was additionally used to validate the vacuolar localization 

of CREG, but the subcellular localization of CREG-RFP in N. benthamiana was never observed 

in vacuoles. In fact, only apoplastic staining (the apoplast is the free diffusional space outside 

the plasma membrane, characterised by bulges in the continuous surrounding line) in leaf 
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cells could be detected, regardless of whether the plants were kept in the dark after 

infiltration or not (Figure 12).  

 

p31-aCREG-mRFP #1 OD 0.3 

light

p31-aCREG-mRFP #1 OD 0.3 

light

p31-aCREG-mRFP #1 OD 0.1 

dark

p31-aCREG-mRFP #1 OD 0.1 

dark

A B C D

 

Figure 12: aCREG-mRFP expression in N. benthamiana, 48 h after infiltration. A: RFP-

fluorescence in leaves cultivated in the light. Fluorescence is observed in the apoplast. B: 

Transmission light image corresponding to A. C: RFP-fluorescence in leaves cultivated in the 

dark. Fluorescence is again observed only in the apoplast. D: Transmission light image 

corresponding to C. Higher fluorescence intensities in A are due to higher OD (0.3) of A. 

tumefaciens cultures used for infiltration (OD = 0.1 in C). 

 

 

3.3.1.1  Perturbation of intracellular protein transport using Brefeldin-A 

 

To examine why CREG-mRFP was found in the apoplast whereas CREG-GFP localized in the 

vacuole, we treated the cells with brefeldin-A (BFA), a lactone antibiotic that interferes with 

intracellular transport from the Endoplasmic Reticulum (ER) to the Golgi apparatus. In N. 

benthamiana BFA leads to the fusion of ER membranes with Golgi membranes and proteins 

targeted to the secretory pathway  accumulate in the ER (Nebenfuhr et al., 2002). For BFA 

treatment, pieces of N. benthamiana leaves were incubated for approximately 1 h in 100 

µg/ml BFA solution before being observed under the microscope. 

 

Results 

After incubation in the presence of BFA the fluorescence of the GFP and mRFP fusion 

constructs became visible in the ER network. Cells expressing CREG-GFP that were exposed 

to light showed the typical faint fluorescence in the absence of BFA (Figure 13A). After BFA 

treatment fluorescence was also detectable in the ER (Figure 13B), probably due to newly 

synthesized fusion protein accumulating in this compartment. Expression under dark 
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conditions without BFA was mainly observed in the vacuole (Figure 13C), after BFA 

treatment also in the ER (Figure 13D). 

 

Before incubation with BFA, CREG-mRFP was found mainly in the apoplast (Figure 13E), 

whereas thereafter, it was also found in the ER (Figure 13F). Therefore it can be said that 

both proteins take the same transport route in the beginning, namely the secretory pathway 

via the ER, but that CREG-mRFP then mus take another route (possibly the secretory 

pathway instead of the vacuolar targeting pathway), ending up in the apoplast. 

 

Figure 13: BFA treatment of N. 

benthamiana leaf epidermal cells 

expressing fusion proteins. A, C and E: 

Fluorescence in epidermal leaf cells before 

BFA treatment. GFP fluorescence in leaves 

cultivated in the light (A) is observed 

faintly in the cytoplasm and apoplast. 

When cultivated in the dark (C) it is visible 

in vacuoles and the apoplast. RFP 

fluorescence is observed mainly in the 

apoplast (E). B, D and F: corresponding 

images obtained after 1 h incubation in 

BFA. In all cases fluorescence is observed 

in the ER. BFA treatment was conducted 

48 h post infiltration. 

p20F-aCREG-GFP OD 0.1 light p20F-aCREG-GFP OD 0.1 light, 

BFA-treated

p20F-aCREG-GFP OD 0.1 dark p20F-aCREG-GFP OD 0.1 dark, 
BFA-treated

A B

C D

p31-aCREG-mRFP #1 OD 0.1 
BFA-treated

p31-aCREG-mRFP #1 OD 0.1 

E F

 

 

3.3.1.2 Protease inhibitor treatment 

 

Analysis of the fusion proteins by immunoblotting revealed that the fusion proteins were 

largely degraded into a degradation product of ~27 kDa recognized by α-GFP and  a 

degradation product of ~27 kDa recognized by α-mRFP (Figure 15, first lanes). Therefore the 
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attempt to stabilize the fusion proteins in planta was undertaken using E64d ((2S,3S)-trans-

Epoxysuccinyl-L-leucylamido-3-methylbutane ethyl ester). E64d is a membrane-permeable 

cysteine protease inhibitor (PI) that has been shown to stabilize vacuolar GFP in the light 

(Tamura et al., 2003). 

 

Results 

Figure 14B shows that vacuolar GFP fluorescence appears in plants cultivated in the light, 

thus proving the stabilizing effect of co-infiltrated E64d in this case. Infiltration of 1% DMSO 

(Figure 14C and F) was performed as negative control and shows no stabilizing effect on GFP 

or RFP expression. CREG-mRFP fluorescence remains unchanged by PI treatment and is still 

visible only in the apoplast (Figure 14E).  

 

p20F-aCREG-GFP OD 0.1 p20F-aCREG-GFP OD 0.1, 

E64d coinfiltrated

p20F-aCREG-GFP OD 0.1,  

1% DMSO coinfiltrated

p31-aCREG-mRFP #1 OD 0.1 p31-aCREG-mRFP #1 OD 0.1, 
E64d coinfiltrated

p31-aCREG-mRFP #1 OD 0.1, 
1% DMSO coinfiltrated

D E F

A B C

 
 

Figure 14: E64d protease inhibitor treatment of N. benthamiana leaf 

epidermal cells expressing aCREG-GFP and aCREG-mRFP fusion 

constructs. A: aCREG-GFP expression in the light. B: aCREG-GFP 

expression when the fusion construct was co-infiltrated with E64d. 

Vacuolar fluorescence can be seen. C: Expression of aCREG-GFP in 

epidermal cells co-infiltrated with 1% DMSO (used as solvent for E64d). 

DMSO alone seems to have no effect on aCREG-GFP localization. D,E 

and F: corresponding images obtained for aCREG-mRFP expression. 

Treatment with E64d seems to have no effect on mRFP fluorescence.  
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Analysis by immunoblotting of the CREG-mRFP expression levels upon E64-d treatment 

reveals that the ratio of cleaved mRFP (27.5 kDa) to CREG-mRFP (~50 kDa) remains 

unchanged. An additional band at ~20 kDa indicates that also an mRFP degradation product 

seems to become stabilized by PI treatment (Figure 15, lane on the mRFP blot). 

 

Figure 15: Western blot analysis of 

aCREG-GFP and aCREG-mRFP 

expression in N. benthamiana 

before and after protease inhibitor 

treatment. 20 µl of a protein 

extract prepared with 1.25 µl 

extraction buffer per 1 mg plant 

material were loaded in each lane. 
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3.3.1.3 CREG-mRFP is secreted into the interstitial fluid whereas CREG-GFP is retained in the 

vacuole 

 

To further analyse why CREG-mRFP is found in the apoplast whereas CREG-GFP is found in 

the vacuole, N. benthamiana leaves were subjected to vacuum infiltration and subsequent 

analysis of the obtained interstitial fluid (IF). Additionally, total protein extracts were 

prepared from the remaining leaf tissue for comparison of secreted versus intracellular 

proteins. Total protein and IF fractions were analysed side to side on Western blots, where 

only 1% of the total protein extracts (wet weight) were compared to 10% of the IF fraction 

(in µl). This measure was taken to avoid protein overload in the total protein fraction and 

should be taken into account when comparing protein expression levels in Figure 16.  

 

Results 

Analysis of the secreted protein fraction of leaves expressing the CREG-GFP construct shows 

that CREG-GFP (~ 50 kDa) is found only in the total protein extracts (faintly on the anti-CREG 

blot and clearly on the anti-GFP blot) as well as CREG (~ 18 kDa) alone (Figure 16B). Free GFP 

(~ 25 kDa) is observed in very small amounts in total protein extracts, probably due to 

degradation of vacuolar GFP in the light. The very small amounts of free CREG found in the IF 
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are probably artefacts arising from the IF preparation, where the rupture of cells can cause a 

mingling of intracellular proteins with the IF. To analyze to what extend such mingling takes 

place, leaves were also infiltrated with cytoplasmic GFP. This was performed using the p20-

GFP vector, where GFP has no further targeting sequences attached to it and therefore is 

translated in the cytoplasm. Analysis of total protein extracts and IF from such leaves shows 

that only small amounts of cytoplasmic GFP are found in the IF as shown in Figure 16C on 

the right, taking into account that only 1% total protein fraction is compared to 10% IF. 

These results show that intact CREG-GFP is found in the cells, most likely in the vacuoles and 

no secretion takes place. 

 

Analysis of the IF from CREG-mRFP expressing N. benthamiana leaves by immunoblotting 

revealed that all of the CREG-mRFP (~ 50 kDa) fusion protein is secreted to the apoplast, as 

well as free CREG (~ 18 kDa) and mRFP (~ 27 kDa), as shown in Figure 16A. Free CREG and 

mRFP are also found in total protein extracts, but no fusion protein is detectable there. It 

might very well be possible, that small amounts of fusion protein are also present in the 

cells, but that the amounts are below the detection limit. The vast majority of the construct 

that is found inside the cells is in its degraded form (free CREG and mRFP), and probably 

represents CREG-mRFP that has already been degraded before reaching its final destination 

in the IF. Where the degradation process of CREG-mRFP takes place and what mechanisms 

are involved could not be identified during this work. It also remains unclear why the mRFP 

tagged fusion protein is targeted for secretion whereas the GFP construct is transported to 

the vacuole when transiently expressed in N. benthamiana leaf epidermal cells. 
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Figure 16: Western blot analysis of aCREG-mRFP 

and aCREG-GFP expression in N. benthamiana

total protein extracts and interstitial fluid. 1% of 

the total protein extracts (wet weight) were 

compared to 10% of the IF fraction (in µl). 
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It is possible that different intrinsic sequence motifs in the mRFP and GFP sequences are 

responsible for the different targeting of the fusion proteins. Also the possibility that the 

targeting sequence of endogenous CREG is located on its C-terminus exists. In this case, a C-

terminal tag would interfere with proper targeting. It has been observed, that a GFP tag on 

proteins can influence their localization, as GFP tends to accumulate inside the cell, mainly in 

the ER. mRFP on the other hand has been shown to be secreted when it is expressed with no 

further targeting sequences. It is therefore possible that the fluorescence tags can influence 

the subcellular localization of the fusion proteins.  

 

3.3.2 Expression of CREG-GFP and CREG-mRFP in A. thaliana 

 

3.3.2.1 Screening and identification of stable CREG-mRFP transformants  

 

Two A. thaliana lines expressing the CREG-GFP construct had already been obtained at our 

institute before this work had started. For stable transformation of A. thaliana with CREG-

mRFP young A. thaliana plants were subjected to floral dipping and the produced seeds 

were grown on agar plates containing kanamycin for selection of transformed seedlings. 

Seedlings resistant to kanamycin, were further propagated and total protein extracts were 

obtained from their leaves. These seedlings were supposed to be hemizygous for the CREG-

mRFP construct and immunoblot analysis was performed with anti-mRFP antibody to 

visualize the mRFP expression level. The seedlings were also screened by confocal 

microscopy and the seedlings with the highest fluorescence levels were selected (data not 
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shown). In the second generation homozygote lines (25% of the progeny) arise as a 

consequence of chromosome segregation, as well as 25% that lack the transgene. The 

remaining 50% of the progeny are again hemizygous and carry only one allele of the 

transgene. 

 

Results 

Most of the 28 homozygous seedlings analysedshowed high expression of free mRFP and 

also a band at ~20 kDa, also observed earlier in Western blots, that probably represents an 

mRFP degradation product (Figure 17). Bands of higher molecular weight were also present 

in most seedlings, but the molecular weight varied and it was not clear which of the bands 

represents the fusion construct, if any one did at all. In lines #5 and #6 the expression level 

of free mRFP was lower compared to the other seedlings and an additional band of ~70 kDa 

was detected. The higher molecular weight band at ~ 70 kDa could represent the CREG-

mRFP fusion protein, although its expected molecular weight is ~50 kDa (~20 kDa CREG and 

27.5 kDa mRFP). Western blotting with anti-CREG antibody showed that CREG produced in 

A. thaliana has a lower molecular weight (~18 kDa) than predicted (data not shown). This is 

probably due to additional processing of CREG in A. thaliana, but it is unclear whether this 

processing occurs N- or C- terminally and where it takes place. C-terminal processing of the 

fluorescent aCREG fusion proteins could also explain the high amounts of free mRFP and 

GFP. 

Figure 17: Screening for positive A. 

thaliana transformants by immunoblotting 

against mRFP. A. thaliana lines #5, #6, #10, 

#14 and #20, marked with an “X” were 

continued. 20 µl of a protein extract 

prepared with 1.25 µl extraction buffer per 

1 mg plant material were loaded in each 

lane. Col-0 wt extracts were loaded as 

negative control. 
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The p31 aCREG-mRFP lines #10, #14 and #20 (T1 generation) were also selected for further 

analysis, because those seedlings showed highest fluorescence levels under the microscope. 

T2 seedlings from the lines p31 aCREG-mRFP #5 and #20 showing no growth impairment in 

the presence of kanamycin were then transferred to soil for further propagation. These 

seedlings were also analysed by confocal microscopy to visualize aCREG-mRFP subcellular 

localization. 

 

3.3.2.2 Expression of p31 aCREG-mRFP in A. thaliana 

 

Analysis of p31 aCREG-mRFP #5 and #20 expression in A. thaliana was performed with whole 

seedlings that were mounted on a glass slide and observed under the confocal microscope. 

 

Results 

In these A. thaliana seedlings fluorescence is observed only in cell vacuoles, indicating that 

the fusion protein is targeted to the vacuoles (Figure 18).  

 

A. thaliana aCREG-mRFP

T 2.5

A. thaliana aCREG-mRFP

T 2.5

A. thaliana aCREG-mRFP

T 2.20
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T 2.20

A B C D

 

Figure 18: aCREG-mRFP expression in A. thaliana, as seen under the confocal microscope. 

A and B: A. thaliana aCREG-mRFP #5, where B shows a higher magnification. C and D:  

A. thaliana aCREG-mRFP #20, where D again shows a higher magnification image. 

 

 

Expression of p31 aCREG-mRFP #5 (Figure 18A and B) and #20 (Figure 18C and D) is observed 

in the whole cell, typical for proteins in the central vacuole, which occupies most of the cell 

interior. Expression levels vary between different cells, reminiscent of aCREG-GFP expression 

in N. benthamiana (cultivated in the dark).  
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To exclude the possibility that vacuolar targeting of the fusion protein is due to the mRFP 

tag, a ST-mRFP (Sialyl Transferase-mRFP) marker construct was also analysed by CLSM. ST-

mRFP should locate in the Golgi vesicles of the cells. Figure 19 shows that the marker 

construct indeed locates to small punctuate structures reminiscent of Golgi vesicles. 

Therefore it can be excluded that the mRFP tag is responsible for the vacuolar localization of 

the aCREG-mRFP fusion constructs. 

 

Figure 19: ST-mRFP expression in A. 

thaliana. Fluorescence in punctuate 

structures shows localization in the Golgi 

apparatus. 

A. thaliana ST-mRFP A. thaliana ST-mRFP

A B

 

 

To obtain further evidence that the observed fluorescence of the p31 aCREG-mRFP #5 and 

#20 constructs was indeed confined to the vacuole, plasmolysis experiments were 

performed with the aCREG-mRFP expressing seedlings. Plasmolysis was induced by 

incubation of the seedlings in 0.5 M mannitol for approximately 10 min. The seedlings were 

then analysed under the confocal microscope. Figure 20A-D shows that the fluorescence is 

maintained in the shrinking protoplasts, confirming that aCREG-mRFP expression is 

restricted to the cell interior, most likely to the vacuole. Figure 20E-H shows the expression 

of PIP 2A-mRFP (plasma membrane intrinsic protein 2A), a plasma membrane marker. 

Before plasmolysis the expression of PIP 2A-mRFP is seen in the plasma membrane 

surrounding the cells (Figure 20E) and after plasmolysis the fluorescence is again seen in the 

membrane surrounding the shrinking protoplasts (Figure 20G and H). This serves as a 

confirmation, that plasmolysis indeed worked in the expected way. 
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Figure 20: Analysis of subcellular localization in A. thaliana by plasmolysis. A-D: A. thaliana

aCREG-mRFP #5. E-H: A. thaliana PIP2A.  A and E: before treatment. B and F: images of 

untreated cells obtained by transmission light microscopy. C, D, G and H: cells after 

plasmolysis (10 min incubation in 0.5 M mannitol), overlay of RFP fluorescence and 

transmission light images. Arrows shows cell wall boundaries. Fluorescence of aCREG-mRFP 

is observed only in vacuoles, whereas PIP2A is found in the plasma membrane. 
 

3.3.2.3 Expression of p20F aCREG-GFP in A. thaliana 

 

Two p20F aCREG-GFP expressing lines were obtained earlier at our institute. Analysis of the 

p20 aCREG-GFP lines in the 3rd generation by confocal microscopy showed GFP expression in 

the cell vacuoles (work done by Eva Liebminger, Department of Applied Genetics and Cell 

Biology, BOKU, Vienna; data not shown). The lines were also analysed by immunoblotting, 

and showed high expression levels of ectopic CREG and GFP due to quantitative processing 

of the fusion protein in planta. Figure 21 (left side) shows aCREG levels in roots for both lines 

in the 3rd generation. At this stage, the p20F aCREG-GFP lines were considered as aCREG 

overexpressing lines, due to the strongly increased aCREG levels compared to wildtype.  
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Figure 21: Western blot analysis of aCREG and GFP expression in A. thaliana p20F aCREG-

GFP lines. Protein extracts were prepared with 1.5 µl extraction buffer per 1 mg root 

material. On the anti aCREG blot on the left, 20 µl protein extract were loaded in each lane. 

On the p20F aCREG T4/1 anti GFP blot 10 µl protein extract were loaded in each lane. On the 

p20F aCREG T4/2 anti GFP blot 11.5 µl for p20F aCREG T4/2 light, 17 µl for p20F aCREG T4/2 

dark and 12.1 µl for Col-0 protein extract in each case corresponding to 80 µg of total 

protein were loaded. 
 

Results 

In the 4th generation, immunoblotting with an anti-GFP antibody still shows high GFP-levels 

in the p20F aCREG T4/1 & 2 lines (Figure 21, right side). The seedlings were cultivated in the 

light and in the dark to test for light-induced degradation of vacuolar GFP. As can be seen in 

Figure 21, right side, GFP levels are reduced when seedlings are cultivated under light.  

 

After the seedlings were continued into the 5th generation, GFP expression was diminished 

and so were aCREG levels, as shown for p20F aCREG-GFP T5/1 in Figure 22. 

 

Figure 22: Western blot analysis of p20F 

aCREG-GFP line 1 in the 5th generation 

(T5). Anti CREG blot on the left: 10 µl 
p20F aCREG T5/1 (~67 µg protein) and 

9.4 µl Col-0 (~62 µg protein) were loaded. 

Anti GFP blot on the right: 12 µl Col-0 

(~80 µg) and 11.8 µl p20F aCREG T5/1 

(~80 µg) protein extracts, as prepared 

before, were loaded. 
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GFP was expressed at such low levels, that it appears only as a faint band in the Western 

blot. Also aCREG levels were now similar to wildtype expression. The GFP fluorescence was 

diminished to such a high degree, that it could not be detected under the confocal 
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microscope anymore. The reduced expression of the transgene could be due to gene 

silencing effects. Hence, in the 5th generation the p20F aCREG-GFP lines can no longer be 

considered aCREG-overexpressing lines. 

 

3.3.3 aCREG localization analysis by subcellular fractionation  

 

Subcellular fractionation was performed by discontinuous sucrose density gradient 

centrifugation (SDG), thus separating subcellular compartments according to their density. 

The method was applied as an independent approach to confirm the vacuolar localization of 

endogenous aCREG. The lines that were used for SDG were Columbia wildtype (Col-0), the 

aCREG-RNAi T5/1 line and the p20F aCREG-GFP T5/1 line. The aCREG-RNAi T5/1 line is one of 

the RNAi-knockdown lines obtained earlier at our institute as described in section 3.1. In the 

5th generation, aCREG expression in the knock-down mutant was so low that analysis by 

immunoblotting gave no signal (expression below detection limit). Figure 23 shows a 

comparison of aCREG levels between the lines used for SDG.  

 

Figure 23: Comparison of aCREG expression 

in A. thaliana  aCREG-GFP T5/1, Col-0 wt 

and aCREG RNAi roots. Lane 1: 10 µl root 

extract (~67 µg protein), lane 2: 9 µl (~63 µg), 

lane 3: 12 µl (~48 µg). Root extracts were 

prepared as described before. The 

corresponding anti TIP blot is shown below 

as loading control. 
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The p20F aCREG-GFP line was originally used in this experiment because it was by then still 

assumed to be an aCREG-overexpressing line. Unfortunately, in the 5th generation it turned 

out to have aCREG expression levels similar to wildtype plants, suggesting essentially 

complete loss of transgene expression. Root extracts from all three lines were subjected to 

several rounds of centrifugation before being loaded onto the gradient (see section 2.4.7). 

After SDG centrifugation the gradient was separated into 22 to 23 fractions, with sucrose 
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concentrations ranging from 20% - 52%. Marker molecules for different organelles show a 

distinct distribution pattern in the gradient fractions.  

 

First, all fractions were analysed by measuring their β-N-acetylhexosaminidase activity 

(Figure 24). β-N-acetylhexosaminidase 1 (Hexo 1) is a soluble vacuolar enzyme, whereas 

Hexo 3 is resident in the plasma membrane (Strasser et al., 2007). Therefore Hexo 1 is 

expected to co-localize with aCREG in the gradient.  

 

Results 

As expected, Hexo 1 activity was highest in the low-density fractions. Hexo 1 activity peaked 

in fraction 3 (Col-0 and aCREG RNAi T5/1) or in fraction 4 (p20F aCREG-GFP T5/1). The weak 

enzyme activity peak appearing in fractions 19 to 21 is due to the activity of Hexo 3, a β-N-

acetylhexosaminidase residing in the plasma membrane. These results show that subcellular 

fractionation by SDG was successful and that the soluble vacuolar proteins are confined to 

the low density fractions 1 to 5. 

 

Figure 24: Hexosaminidase activity assay 

of SDG fractions.  

A: Col-0 gradient (23 fractions), B: aCREG 

RNAi gradient (22 fractions), C: p20F aCREG 

gradient (22 fractions). RFU, relative 

fluorescent units. 
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After the different fractions were analysed by hexosaminidase activity assays they were 

subjected to protein precipitation, which was required as a purification step due to the high 
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sucrose levels in the samples. After the samples were purified, they were analysed by silver 

staining to show the protein content in the samples. Protein levels are highest in the soluble 

protein fractions with low density and in fractions 16 to 20, corresponding to sucrose 

densities of 40% to 47%, probably representing plasma membrane proteins and 

mitochondria.  

 

The SDG fractions were also analysed by immunoblotting. Western blot analysis with anti-

CREG antibody shows, that endogenous CREG in Col-0 wt is restricted to the soluble protein 

fractions. Same results were obtained for the transgenic aCREG in p20F aCREG-GFP. In the 

aCREG RNAi knock-down line aCREG was not detectable. To allow quantitative comparison 

of the individual blots, 30 ng recombinant aCREG (21.4 kDa) produced in Escherichia coli 

were used as a positive control in each blot. The fact that endogenous aCREG from A. 

thaliana migrates at a molecular weight of about 18 kDa (theoretical molecular weight of 

aCREG would be ~20 kDa) compared to recombinant aCREG shows that the protein is being 

processed at some point. Figure 25 shows Western blot analysis of SDG fractions. Silver 

stained protein gels are shown for comparison. 
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Figure 25: Sucrose density gradient fractionation of A. thaliana Col-0 wt, aCREG-RNAi and 

p20F aCREG-GFP root extracts. Anti-aCREG western blot analysis was performed with 20 µl 

of protein extracts (preparation described in section 2.4.9). 30 ng recombinant aCREG were 

used as positive control. Silver stained gels of the corresponding SDG fractions are shown 

beneath the Western blots. Molecular weights are indicated on the right. 
 

In conclusion it can be said that endogenous aCREG maps to the soluble protein fractions 

with low density typical for vacuolar proteins, therefore giving another evidence for the 

vacuolar localization of this protein. 
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3.4 Functional analysis of aCREG in A. thaliana 

 

Functional characterization of aCREG was carried out under abiotic stress conditions. 

Phenotypic analysis was carried out on the level of total root length. Seedlings were 

cultivated under stress and under standard growth conditions for comparison. The abiotic 

stress was elicited by: 

 

• Salt stress: The growth medium contained 140 mM NaCl (control: no NaCl addition) 

• Sucrose stress: Seedlings were grown on 0%, 1% (control) and 4.5% sucrose 

• Heat stress: A temperature shift from 22°C to 30°C was used to induce heat stress 

 

In these experiments we used two aCREG-knockdown lines (aCREG RNAi T5/1 &2) and two 

p20F aCREG-GFP lines (p20F aCREG-GFP T5/1 &2). Columbia-0 wildtype seedlings (Col-0) 

were grown as a control. The two knock-down lines showed diminished aCREG expression 

(aCREG RNAi T3/1: 25% compared to Col-0; aCREG RNAi T3/2: 20% compared to Col-0) in the 

3rd generation. In these experiments we used the 4th and 5th generation. These generations 

show aCREG levels below the detection limit of Western blot analysis (shown in Figure 23 for 

aCREG RNAi T5/1, similar results were obtained for the other lines, data not shown). 

Although the aCREG levels were diminished to such high degrees, the A. thaliana knock-

down lines showed no visible phenotype when grown under standard conditions. Therefore 

the stress conditions were thought to be able to induce a phenotype that is not visible under 

normal growth conditions. The two p20F aCREG-GFP lines were originally thought to 

represent aCREG overexpressing lines and were therefore also investigated under abiotic 

stress. As it turned out, aCREG levels were similar to wildtype plants in the 5th generation. 

The p20F aCREG-GFP lines can therefore only be considered as a further control.  

The seedlings in these experiments were first grown on standard MS medium and after 7 

days transferred onto the medium for abiotic stress. After 7 more days the total root length 

(primary root) was determined. 
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Results 

Total root lengths of seedlings grown under standard conditions and such grown on medium 

supplemented with 140 mM NaCl were compared. Seedlings were grown in the light and in 

the dark, as lack of light and therefore inhibited photosynthesis was thought to be able to 

enhance any salt stress phenotype. Figure 26A-C shows three independent repetitions of the 

experiment; Figure 26D shows mean values of the three experiments. As can be seen, there 

is no obvious phenotype in the aCREG RNAi knockdown line compared to the wildtype under 

stress conditions. No phenotype can be observed even when the seedlings are grown in the 

dark. This shows that aCREG knockdown is not able to provoke a salt stress phenotype.  
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Figure 26: Salt stress experiment in A. thaliana. A, B and C: Three independent repetitions 

of the experiment. Bars show total root lengths. Error bars indicate standard deviation. n, 

number of seedlings. D: mean of the three experiments A-C. Error bars indicate standard 

error of the mean. Root lengths were measured on day 7 after induction of abiotic stress.  
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Figure 27 shows seedlings at the time point when the root length was determined. It also 

shows that there is no obvious variation in root length between aCREG-knockdown seedlings 

and wildtype. Also, p20F aCREG-GFP seedlings are shown to behave as wildtype. Although 

phenotypic analysis was carried out by measurement of the total root length only, other 

phenotypes were not observed either. All seedlings cultivated on NaCl containing plates 

generally showed slowed growth but otherwise no differences compared to seedlings grown 

under standard growth conditions. 

 

 

Figure 27: A. thaliana

seedlings of salt stress 

experiment. Seedlings 

were transferred on agar 

plates and imaged after 

root length was measured. 

A and B: seedlings 

cultivated in the light. C

and D: seedlings cultivated 

in the dark. 
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Seedlings subjected to sucrose stress were first cultivated on agar plates supplemented with 

1% sucrose. On day 7 they were transferred to plates supplemented with 0%, 1% (control 

condition) and 4.5% sucrose. Seedlings grown on plates containing no sucrose generally 

showed growth retardation. Seedlings cultivated on 1% sucrose showed normal growth, 

whereas seedlings kept on plates containing 4.5% sucrose showed generally shorter primary 

roots and increased lateral root growth. 

 

Figure 28 shows the total root lengths in the sucrose stress experiment. The experiment was 

repeated twice (Figure 28A and B) and Figure 28C shows the mean of both experiments. As 

in the salt stress experiment there is no correlation between aCREG expression levels and 
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root length under stress conditions. The aCREG knock-down line shows no phenotype under 

sucrose depletion or sucrose excess (osmotic stress). Figure 29 shows seedlings subjected to 

sucrose stress on the day when root length was determined. There are no obvious 

differences between the three lines, confirming the notion obtained by measurement of the 

root lengths. 
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Figure 28: Sucrose stress experiment in A. thaliana. A and B: two independent repetitions 

of the experiment. Bars show total root length. Error bars indicate standard deviations. n, 

number of analysed seedlings. C: Mean of experiments A and B. 
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Figure 29: A. thaliana seedlings of sucrose stress experiment. A, B and C: seedlings 

cultivated in the light, D, E and F: seedlings cultivated in the dark. Seedlings were transferred 

on agar plates and imaged on day 7 after induction of abiotic stress.  
 

 

Heat stress experiments were carried out in a similar way, cultivating seedlings at 22°C 

(control conditions) for the first 7 days and then changing their growth conditions. The 

seedlings that were to be subjected to heat stress were then transferred to H+ plates 

containing a medium supplementation more suitable for higher temperatures, and grown on 

30°C for another 7 days. Again, seedlings were grown in light and dark conditions to see 

whether light depletion can further reinforce a potential phenotype. Figure 30A and B show 

total root lengths of the analysed seedlings. Figure 30C shows mean values of the two 

independent repetitions. As in the stress experiments discussed above, there is also no 

aCREG-dependent phenotype. Seedlings cultivated at 30°C generally showed an increased 

number of lateral roots but there was no difference between aCREG-RNAi lines and wildtype 

or p20F aCREG-GFP seedlings. 
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Figure 30: Heat stress experiment in A. thaliana. A and B: two independent repetitions of 

the experiment. Bars show total root lengths. Error bars indicate standard deviations. n, 

number of analysed seedlings. C: mean of experiments A and B.  

 

 

Figure 31 shows A. thaliana seedlings of the heat stress experiment. No obvious phenotype 

can be seen in the aCREG knock-down seedlings. As there is also no variation in the root 

lengths of the different lines, there is probably no involvement of aCREG in the heat 

response in A. thaliana. 
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Figure 31: A. thaliana 

seedlings of heat stress 

experiment. Seedlings 

were transferred on agar 

plates and imaged after 

root length was measured. 

A and B: seedlings 

cultivated in the light. C 

and D: seedlings cultivated 

in the dark. 

wt aCREG RNAi T5

1 2

p20F aCREG T5

1 2

wt aCREG RNAi T5

1 2

p20F aCREG T5

1 2

A B

C D

22°C control 30°C

 

 

 



Discussion 

 67 

Discussion 

 

4.1 Subcellular localization of aCREG 

 

In mammalian cells, CREG has been shown to reside in the lysosome, but the way it 

influences cell growth and differentiation is still unclear. In plant cells two proteomic studies 

have led to the identification of CREG in different subcellular fractions: Once it was found in 

the vacuole and once in the cell wall (Carter et al., 2004, Irshad et al., 2008). Microarray 

analysis has demonstrated that CREG is expressed in most A. thaliana tissues with 

upregulation in seeds (www.arabidopsis.org). It is supposed that plant CREG resides in 

vacuoles, as these compartments are the plant homologues of mammalian lysosomes, 

although the sequence of the aCREG gene contains no known vacuolar targeting signals 

(Marty, 1999). To prove that aCREG is localized in the vacuole, two fusion constructs (aCREG-

GFP and aCREG-mRFP) were constructed and expressed in N. benthamiana and A. thaliana. 

 

Transient expression in N. benthamiana has the advantages of high expression levels and the 

possibility to generate high resolution images due to the large size of leaf epidermal cells. A 

possible disadvantage is that intracellular protein trafficking can be negatively affected by 

the achieved high expression levels. Stable expression in A. thaliana has the advantage of 

the transgene to be transmitted stably to the progeny, as it is integrated into the plant 

genome, but less efficient transformation rates, compared to transient expression in N. 

benthamiana, make the method more labour intensive and time consuming. In this project, 

both approaches were used to analyse the subcellular localization of CREG in plants.  

 

Localization studies of aCREG-GFP in N. benthamiana show vacuolar localization of aCREG. 

When plants were incubated in the light, GFP-degradation rendered localization analysis 

under the confocal microscope impossible. In this case, addition of E64d, a cysteine protease 

inhibitor, led to slight inhibition of light-induced degradation and thus stabilized the fusion 

construct. After addition of E64d, aCREG-GFP was detected in the vacuoles even when the 

plants were cultivated in the light. E64d has been shown earlier to be able to stabilize 

vacuolar GFP (Tamura et al., 2003). 
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Expression of aCREG-mRFP in N. benthamiana gave a different outcome: aCREG-mRFP is 

located in the apoplast. Analysis of the interstitial fluid, where secreted proteins can be 

found, proved aCREG-mRFP to be actively secreted. The question, why aCREG-mRFP is being 

secreted whereas aCREG-GFP is transported to vacuoles, could not be answered during this 

work. It is possible that most of the detected fluorescence is caused by free / cleaved mRFP 

or GFP. Treatment of the cells with Brefeldin-A (BFA) proved both fusion constructs to be 

targeted to the secretory pathway. BFA treatment of N. benthamiana cells leads to fusion of 

the ER membranes with the Golgi network. Interference with the formation of COPI vesicles 

leads also to an inhibited anterograde protein transport mediated by COPII, and secretory 

proteins thus become trapped in the ER. As both aCREG-GFP and aCREG-mRFP became 

trapped in the ER, they are both targeted to the secretory pathway, but for some reason 

only aCREG-GFP is then targeted to the vacuole. 

 

Western blot analysis of the expressed fusion proteins in N. benthamiana revealed that a 

vast amount of them is being degraded into free aCREG and GFP/mRFP. Treatment of the 

leaves with E64d could not stabilize the aCREG-mRFP fusion protein, but stabilized aCREG-

GFP. Therefore it can be said, that light-induced degradation of aCREG-GFP is probably due 

to the action of cysteine proteases, whereas aCREG-mRFP degradation is carried out by 

other proteases. 

 

Subcellular localization of aCREG-mRFP in A. thaliana again showed aCREG to reside in the 

vacuole. Further evidence for the vacuolar localization was obtained by plasmolysis of the 

cells as aCREG-mRFP fluorescence was observed only in the shrinking protoplasts.  

 

Localization of the aCREG-GFP construct was unfortunately impossible, as the expression of 

the transgene was too low to be detected by CLSM analysis of stably transformed A. thaliana 

plants. This is probably due to gene silencing effects. The transcription of the transgene is 

under the control of the 35S promoter from cauliflower mosaic virus. This ensures a high-

level constitutive transcription of the transgene but can also lead to transcriptional gene 

silencing (TGS) and post-transcriptional gene silencing (PTGS) in plants (Waterhouse and 

Helliwell, 2003). TGS is associated with methylation of the promoter region and involves 

inhibition of transcription, whereas PTGS is associated with methylation of the coding region 
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of the gene and the genes are transcribed but their mRNA is degraded. Both effects have 

been associated with high-copy-number transgenes and could present mechanisms of plants 

to safeguard themselves from viruses, as infected plants are known to accumulate viral 

transcripts at very high level. 

 

The vacuolar localization of aCREG was further confirmed by subcellular fractionation of A. 

thaliana root extracts from Columbia-0 wildtype and an aCREG-RNAi line (negative control). 

Subcellular fractionation showed endogenous aCREG to be localized in the fractions with low 

density as typical for soluble vacuolar proteins. This approach also revealed endogenous 

aCREG to be processed in the cells as the aCREG form detected was of a lower molecular 

weight that expected.  

 

In conclusion it can be said that in three out of four cases studied, aCREG has been found to 

be located in the vacuole, which provides strong evidence for its localization in this 

compartment.  

 

4.2 Functional characterization of aCREG 

 

As CREG has been implicated to participate in signalling pathways in mammalian cells, its 

influence on the metabolic response to abiotic stress in plants was examined. For this, A. 

thaliana seedlings were kept under salt, sucrose and heat stress conditions. Plant mutants in 

several signalling pathways have been shown to be defective in salt and heat tolerance 

(Larkindale et al., 2005, Quesada et al., 2000). It has been also demonstrated that plants 

change their transcriptional program in response to sucrose (Koch, 1996).  

 

The results obtained during this work do not prove any participation of aCREG in metabolic 

responses to salt, sucrose or heat stress. The phenotypic analysis of wildtype and knock-

down seedlings shows no aCREG-dependant effects. Either aCREG is not involved in these 

processes, or the residual aCREG levels are sufficient to maintain its function. Also, the p20F 

aCREG-GFP line, which was believed to be an aCREG overexpresser, turned out to have 

aCREG expression levels comparable to wildtype and could therefore not be used in the 

intended way. Therefore it is impossible to make a statement on the physiological function 
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of aCREG yet, and further investigations into the biological processes in which it participates 

have to be undertaken.  

 

4.3 Future Prospects 

 

It would be of great interest to finally define the physiological function of CREG in plants. 

Phenotypic analysis would be facilitated if knock-out A. thaliana lines were available for 

analysis. The knock-down plants used in this work show aCREG expression below detection 

limit, but expression may still vary between different generations, plants of the same 

generation or even cells of the same plant, and although low, could be enough to fulfil its 

function in the cell. A knock-out mutant line, created by T-DNA insertion mutagenesis or 

point-mutations (e.g. by TILLING) could provide more insight into the biological function of 

CREG. For the same reason a true overexpressing line would be useful.  

 

Another approach to investigate the signalling pathways in which aCREG participates would 

be to find possible interaction partners. This could be achieved by yeast-two hybrid screens 

or co-immunoprecipitation. It can be envisaged that the identification of interaction partners 

would lead to new insights into the functions of aCREG. 

 

Substantial advance has been made in the research into the functions of CREG in mammalian 

systems and the results obtained there may also help to understand the role of CREG in 

plants. 
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